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Introduction

In this work I have analyzed the plausibility of autoassociative neuronal networks
as models for neocortical areas and their functions. The constructive elements of
the model network are based on the neuroanatomical and physiological literature. 1
have tried to keep some fundamental characteristics of real neuronal systems in the
modeling, such as the use of the neuron as the elementary unit of cerebral systems. I
have concentrated my attention on the associative areas of neocortex, the regions in
which autoassociative processes are plausibly more frequent and effective. In spite
of the attempted neurophysiological realism, I have kept the model simple enough
to allow for the analytical treatment of large ensembles of neurons and modules, and
I have investigated the consequences of some assumptions on elementary cognitive
processes postulated by the models, such as the retrieval of stored patterns.

In neuropsychology the use of the so called ‘connectionist’ models is very com-
mon. These models often succeed in reproducing cognitive deficits due to brain
damage. They usually schematize the brain structures involved in the processes in-
- vestigated with a set of units and connections between units. Each unit is thought to
be responsible for a particular function, and the connections allow for the interaction
and the co-operation of several functions toward the common cognitive goal. The
network is constructed and trained so to perform some particular cognitive tasks;
then the ‘lesion’ is introduced as a damage to a particular subset of units or con-

nections, and the consequences of such operation on the ‘cognitive’ abilities of the




network are analyzed. The aim is to find out a relation between the damaged sub-
system and the cognitive deficit in the view of transposing such mapping to the real
brain and the deficits observed in neurological patients. Quite often the units and
the connections of connectionist models are given the dynamics and the distributed
representation typical of neuronal networks. Nevertheless, their identification with
neurophysiologically concrete neural systems is usually improbable.

I think that this gap between cognitive models and neuronal models should be
filled, and the present work is an attempt to move toward this direction.

The first chapter of the thesis is a short overview of the anatomical and phys-
iological data about mammalian neocortex, particular attention being paid to the
evidences of modular anatomy and of a possibly modular organization subserving
cognitive functions, in particular memory. The connectivity structure plays a crucial
role in information processing.

In the second chapter, I introduce the concepts of autoassociative memory and of
memory retrieval, also describing how some analytical models reproduce the prop-
erties of autoassociators. Some neocortical structures, due mainly to their connec-
tivity, are plausibly working as autoassociators. Then a particular analytical model
introduced earlier is described. Such a model is composed by a large set of intercon-
nected modules of neurons, and it presents severe difficulties in performing retrieval
of complex patterns. The authors of the original model discussed their results sug-
gesting that the bad performance is a consequence of the implausibility of their
model. In the last section of the second chapter I analyze the main contrasts of that
model with biological systems, and hypotesize that the necessary modifications in
order to make such model more realistic may also provide the network with a more
realistic ‘cognitive’ performance.

In chapter 3, I describe a model with more realistic ‘anatomy’ and ‘physiology’,



that has beén studied by me and Alessandro Treves. We obtain a marked improve-
ment of the retrieval abilities in comparison with the model described in the previous
chapter, mainly due to the refinement of the extramodular connectivity structure
and the introduction of correlation between the activity of connected modules. The
results obtained seem to give new support to the modeling of neocortical areas by
modular autoassociators. The relation between the co-variance of modular activity
and the underlying long-range connectivity is thought to represent semantic knowl-
edge.

Chapter 4 contains a mathematical demonstration of the validity of some assump-
tions that are of fundamental importance in the model considered in the previous
chapter. Indeed, in that model the suppression of the noxious states that marred
the performance of the model of chapter 2 is strongly dependent on the average
correlation of the activities of adjacent modules. In this chapter the mathemati-
cal consistency of the induced set of marginal probabilities is proven and an upper
bound to the average correlation is provided. This upper bound is fully compatible
with the improvements obtained with the new modular network.

In chapter 5, I attempt to reproduce peculiar cognitive deficits, due e.g. to
Alzheimer’s disease, within our new médel. In particular, I try to verify the hypothe-
ses recently proposed in the neuropsychology literature about the basic phenomena
that are responsible for category-specific impairments.

In conclusion, I think that our results sustain the notion of autoassociative multi-
modular neuronal networks as candidates for modeling neocortical association areas.
The obstacle of glassy states seems to be overcome and a proposal is formulated for

finding deep relations between the semantic system and the neuronal correlates.




Chapter 1

Neocortical modular structures

It is well known that the mammalian neocortex is far from being a homogeneous
sheet, of neural tissue. Beside the vertical organization in six layers (Braitenberg and
Shutz, 1991), one can find cytoarchitectonical and physiological differences moving
throughout the cortex parallel to its surface (Kaas, 1987; Fuster, 1997; Mountcastle,
1997).

1.1 Areas and columns

At the scale of a few millimeters, anatomical differences sharply define areas (Kaas,
1987); this is the scale usually considered by lesion studies, i.e. in neuropsychology.
Indeed it has been known for long that a lesion onto the cortical tissue may provoke
cognitive deficits whose pattern strongly depends on the location of the damage.
Neuropsychological studies of patients with brain damages have allowed the con-
struction of an approximate map of the cortex in which anatomically distinguishing
characteristics of a region quite often correspond to peculiar cognitive functions that
are presumably subserved by that region.

Neurophysiological studies investigate more finely the biological structures sub-
serving cortical functions, and at the scale of one millimeter these studies reveal the

columnar organization of neurons and neural projections (Mountcastle, 1997).
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In the somato-sensory cortex, microelectrode penetrations normal to the pial
surface reveal that the neurons, tested along the way, have very similar receptive
fields on the skin. On the contrary, if the electrode moves parallel to the surface,
the receptive fields of the encountered neuron are very similar for a penetration
length of 300-500 pm, but then abrouptly change and another sequence of neurons
is found, whose receptive fields are very similar to each other and evidently distinct

from those of the preceding sequence (fig. 1.1).

V. B. Mountoastle
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Fig. 6 Location of the peripheral receptive fields of 14 neursns
observed in a microelectrode penetration made tangentiully
through the somatic sensory cortex of the cat. {A) The clevuode
passed nearly parallel to the pial surface. (B) There arc three
abrupt shifts in receptive field locations, a5 the electrode traversed
2 series of adjacent columns. (From Favorow, 1991, with
permission from MacMillan.}

Figure 1.1:

A well defined columnar organization is also found in the wisual cortex. For
example, it is well known that any neuron in area V1 responds preferentially to visual
stimuli shown to one of the eyes and in a well defined restricted visual field of that

eye. Besides, when tested with short straight line stimuli, it is selectively sensitive
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to the lines at a particular angle of orientation. When the electrode penetrates
vertically the visual area V1, it encounters neurons Wit.h the same ocular dominance,
the same visual field, and with the same preferential line stimuli direction (exceptions
may occur in layer IV). If instead the penetration is oblique to the surface (fig. 1.2),
sharp changes in some of the perceptual preferences are detected. In particular, if the
electrode moves in certain directions, an abrupt change of the directional selectivity
happens at regular intervals such that the preferential angle of orientation varies
monotonically until the 180 degrees round is completed. The complicate distribution
of iso-directional hypercolumns crossing ocular dominance columns is still the ob ject

of intensive studies, both theoretical and experimental.
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Fig. 9 Left. Organization of the striate cortex for orientation preferences, from the work of Hubel and

Wiesg:i, For penetrations made perpendicular to the surface of the cortex the preferred orentation

remains almost constant, except for layers TVa and IVe. For penetrations made almost parallef to the

cortical surface, the preferred otientation rotates Iinearly with distance in sequences of 0.5-1.0 mm,

Linearity is broken at longer intervals by reversals in the direction of rotation. Right. The Hubel and

Wiesel model, genermted from the inference that slightly rotated orientation preferences may be

organized in siacks of paraile! slubs, with spacing between slabs of ~700 um. (From Blasded, 19924,

with permission from Oxford University Press.) ’

Figure 1.2:

Columnar organization can be found also in other regions, like in the motor and
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in the auditory cortices, suggesting that modularity is common maybe to all the
neocortex. In the scope of the present work our interest is focused on association
areas, located in the parietal, temporal, and frontal lobes. Neurons of these areas
cannot be classified according to their selectivity to simple sensorial stimuli. Lesion
studies have shown that the damage to a portion of these higher areas produces
impairment with tasks requiring complex behaviour. The posterior parietal cortex
seems to be responsible for higher perceptual memory and processing (Fuster, 1997).
There, neurons with similar properties are arranged in vertical columns extending
across the layers; neurons of adjacent columns have different properties (Mountcastle
et al., 1975; Mountcastle, 1995). No simple sensorial input seems to select activ-
ity in such regions. What all the columns in that area have in common is their
activability in tasks involving the actions in, or the perception of, or the attention
to the environment that surrounds the subject. A column could be active during
fixation of gaze, or slow pursuit tracking, or reaching by an arm, or manipulation,
or visual stimulation (Mountcastle, 1997). In the latter, the activating stimuli are
much more complex than those that select columnar activity in the primary visual
cortex, being for example the flow fields generated by the displacement of objects
or by the movement of the subject itself.

Strictly related to the motion flow are the neurons in area MT. Albright et al.
(1984) have found that neurons of monkey MT with similar motion direction pref-
erences are arranged in vertical columns. These columns are organized in slabs (fig.
1.3) such that, moving from any column in a certain horizontal direction into the
cortical sheet, a sequence of columns is found whose preferred motion directions
constitute a discrete monotone succession of angles that describes a complete 360
degrees rotation in about 1mm of linear progression through the cortex. If from the

same starting column one instead move horizontally in the direction orthogonal to




the previous one, one finds a succession of columns whose favorite motion flows are

just 180 degrees rotated each step of the sequence.

N\ 2
\\? %6(@;\0{(«\

Fig. 13 Three-dimensional model of colummar organization for
direction and axis of motion sensitivity of neurons in prestriate
area MT in the macague monkey. Vertical dimension represents
depth in the cortex.The long axis of the figure represents two
complete revolutions of axis of metion columns; the two
directions of motion are represented in adjacent columns, When
moving at right angles o the long axis, one encounters frequent
180° reversals in the preferred direction of motion, with no
change in the preferred axis of motion. (From Albright er al.,
1984, with permission from the American Physiclogical Seciety.)

Figure 1.3:

In the nearby area MSTd, the columns are responsive to more complicated
visual flow stimuli like contraction, expansion, rotation and translation. The flow
selectivity has a non-trivial distribution onto the columns in this area (Graziano
et al., 1994) such that each column is selective to a characteristic combination of
the cited flows, that is a spiral, according to a continuous tuning curve. Besides, the
visual fields of the neurons in MSTd area are very large and the neuronal response

does not depend on the position of the reference object in its visual field.
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The recognition of shapes and therefore of objects is mainly due to the infero-
temporal cortex. In particular, electrophysiological studies (Tanaka, 1996) have
shown that neurons in area TE respond selectively to visual stimuli that can be
moderately complex (fig. 1.4) but also to some very rich of details like individual
faces. TE neurons are thus responsive to non-elementary visual features. Accord-
ing to Tanaka (1996), TE neurons may be also sensible to orientation, size, and
contrast polarity of their critical visual features, though being neutral to the ob-
ject position in their large visual fields. Neurons recorded during electrode vertical
penetration into TE are selective for the same feature or a slightly different one
(Fujita et al., 1992). During oblique penetration, the monitored neurons respond
to features that are slightly different as the electrode procedes for a maximum of
about 400pm along the horizontal axis. Going further on, neurons are found that
respond selectively to a completely different visual feature. This is the signature of
the columnar, and actually minicolumnar (cf. section 1.2), organization of area TE
in the inferotemporal cortex.

Columnar organization is evident also in frontal association cortex. Connec-
tions from the ipsilateral and cqntralateral areas are interdigitated into alternating
columns that span the full thickness of the cortical sheet and whose width is 500um
(Goldman and Schwartz, 1982; Benes et al., 1988). The frontal lobe supports the
highest levels of the hierarchy of motor memories. The primary motor cortex repre-
sents and mediates elementary motor acts. Above it, in the hierarchy, the premotor
cortex encodes motor acts and programmes defined by goal, sequence or trajectory,
rather than by specific movement or muscle group (Fuster, 1997). Higher in the mo-
tor hierarchy is the prefrontal cortex, that is commonly identified as the association
cortex of the frontal lobe. Rich of connections with subcortical, limbic and neocor-

tical areas, like the reciprocal connections with the association perceptual posterior
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FIGURE 2. An example of further atudy of tha seiectivily after the reduciion pm@en was compiated. Thiz gecond celf Is differeni from the
cell whose responses are shown In Figure 1, but was also recorded from ?E tfmm Kobatake & Tareka, 1984).

Figure 1.4:

cortex, the prefrontal cortex may keep the representing schemas of goal-directed
actions, usually named plans. In general, the activation of a motor representation
in prefrontal cortex is more evident when the subject is learning a new motor task.
After practice, it seems that the ‘schemas’ are relocated in motor areas that lie in
lower levels of the motor hierarchy (Jenkins et al., 1994). The prefrontal cortex
seems to support also other cognitive functions than pure motor planning. This is
suggested, for example, by the results of some delay task experiments. A typical de-
lay task is made of three steps: 1) a sensory cue; 2) the removal of the stimulus and
a delay during which the subject must retain memory of the cue in order to execute
the task correctly; 3) a motor response that must be the one appropriate to the
given cue. During the second phase, in animal experiments, marked self-sustained

neuronal activity is found in the prefrontal cortex. Also the posterior association
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area maintains high activity level since a perceptual stimulus is analyzed, and if the
stimulus involves visual recognition also inferotemporal regions keep high activity.
The prefrontal cortex is activated independently of the stimulus modality maybe
due to its involvement in the planning of the movement to come, according to the
learned task. In this view, the working memory is not peculiar of prefrontal cortex
(Fuster, 1997). The latter indeed is often performing working memory processes
because of the motorial components that usually are part of the experiments, and
that not necessarﬂy are acted. As expected, the co-operation between posterior
and frontal association cortices is intensive, since both the presence of an external
stimulus, that signals the beginning of a well defined task, and the planning of a
motor action, that may be acted in the surrounding environment with possible in-
volvement of objects, need a complex perceptual analysis (see e.g. Friedman and
Goldman-Rakic (1994)). It is often hypothesized that the self-sustained activity is
strictly related to the retrieval of old or new learned features in recurrent neuronal
networks localized in the cited areas according to the kind/class/category of features
they analyze.

Whether the columns are an epiphenomenon, due e.g. to developmental processes
(Rakic, 1988; Rakic, 1972), or a convenient solution produced by natural selection
is not entirely clear and the debate about this question is still open (Purves et al.,
1992; Hevner et al., 1993). Nor it is clear what could be the possible advantages
deriving from such an organization (Malach, 1994; Favorov and Kelly, 1994; Jacobs

et al., 1991).

1.2 Minicolumns

The column, however defined, does not seem to be the ultimate elementary module,

since there is anatomical evidence that cortical columns are made up of collections
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of parallel quasi-cylindrical constructions, the minicolumns, of densely‘connected
neurons (Tommerdahl et al., 1993; Mountcastle, 1997; 'Tanaka, 1996).

As described in the previous section, small oblique displacements of the electrode
in the somatosensory cortex reveal discontinuoué Shifts in the receptive fields. In area
SI cylindrical regions about 50um wide, with axis orthogonal to the cortical sheet,
are found whose neurons have almost coincident receptive fields. Such cylinders are
commonly called minicolumns. Neighboring minicolumns are usually grouped for
having similar and overlapping receptive fields (Favorov and Whitsel, 1988; Favorov
and Diamond, 1990), and are thus considered as constituents of the sensorial column
selective for that part of the skin. The column is found to be about 350um wide,
being composed of about 80 minicolumns. As already stated, when the electrode
exits a column to enter an adjacent one, the receptive field is found to have an
abroupt marked shift on the skin surface. Each minicolumn may contain about
80-100 densely connected neurons. The presence of minicolumns has been verified
in somatosensory SI also with the analysis of metabolism within single columns
(Tommerdahl et al., 1993).

Also the small changes in visual stimuli selectivity found in area TE (cf. previous
section) are attributed to the passage of the recording electrode from a minicolumn
to an adjacent one (Tanaka, 1996).

These and other anatomical and physiological studies are currently suggesting
to consider the minicolumn as the constructive element of the neocortical networks.
The explanation of this phenomenon of diffuse modularity in mammalian neocortical

structures is still lacking (at least to our knowledge).
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1.3 Connections

It is often remarked (Braitenberg and Shutz, 1991; Young, 1993; Scannell et al.,
1995) that the distribution of long-range projections is not governed by randomness
except in the neighbourhood of the target region, where in any case experience is
expected to model synaptic contacts. One function that short-range extramodular
projections may subserve is the control of the average activity level, exerted by
inhibition (Tommerdahl et al., 1993; Favorov and Kelly, 1994; Jacobs and Donoghue,
1991) against the spreading of excitation. The local intra-modular connectivity is
relatively high (Braitenberg and Shutz, 1991), supporting the hypothesis that each
module may serve, inter alia, as an autoassociative network (cf. sections 2.1 and 2.2).
This hypothesis is also supported by the finding of persisting activity (Miyashita and
Chang, 1988; Fuster, 1997) and of neuronal responses consistent with retrieval and
récognition capabilities, especially in associative areas (Mountcastle, 1997; Tanaka,

1996; Van Hoesen, 1993).

1.3.1 Thalamo-cortical and cortico-thalamic projections

Old studies indicate that each cytoarchitectonic area of the cortex receives input
from one and only one major thalamic nucleus, beside the input from the so-called
‘non-specific’ nuclei that project diffusely onto many cortical areas. Instead more
recent studies indicate that each cortical area receives projections from several thala-
mic nuclei. Several studies have indicated that thalamic terminal fields are disjunc-
tive in association cortex (Giguere and Goldman-Rakic, 1985; Jones et al., 1982), as
they are in sensory regions (Jones et al., 1982; Jones, 1985). Besides, the cortical
prefrontal neurons of l'ayer VIV that project to thalamus are found to form .5mm wide
clusters, horizontally alternating along the cortical sheet with .5mm-wide neuronal

clusters that are deprived of cortico-thalamic fibres. The reciprocal thalamocortical
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projections seem to spread more irregularly onto the cortical sheet, without selecting
cortical modules to synapse into.

Any thalamic nucleus sends projections to several cortical areas. Nevertheless
there is some evidence that thalamic neurons projecting to neocortex are organized
in clusters, and different clusters seem to project to different cortical areas. It
may be that any thalamic nucleus can activate a large network of cortical areas
(Goldman-Rakic, 1988).

Thus, experimental evidence seems to suggest that the thalamo-cortico-thalamic
system is organized in modules such that specific groups of cells in the thalamus

project upon and receive input from specific columns of cortical cells.

1.3.2 Cortico-cortical connections and parallelism

For a long time, association areas have been treated as more or less homogeneous
modality-unspecific neocortical regions. Recent studies seem to be in contrast with
this view, and also suggest that at least from anatomical considerations associative
areas can be subdivided in small areas in which a considerable degree of modal speci-
ficity survives (Goldman-Rakic, 1988; Cavada and Goldman-Rakic, 1986). In the
parietal lobe these anatomical findings, in some cases supported by electrophysiolog-
ical data (Hyvarinen, 1982; Mountcastle et al., 1984), suggest that small associative
regions may be specialized for a sensorial modality more than for the others, as if
they were interested in some aspects of the input signals that are markedly conveyed
through a sensorial mode more than through the others. Besides, the projections
from these quasi-specialized sub-areas to the prefrontal cortex terminate onto well
defined and non overlapping regions, suggesting some modal preferences also in pre-
frontal associative areas.

On the other hand, a sub-division of the prefrontal cortex is suggested also

16



by electrophysiological investigations. It seems that the prefrontal cortex can be
divided in at least two parts that are responsible for different cognitive functions.
The dorsal region of the prefrontal cortex may be specialized for working memory
of spatial knowledge, while the ventral region may be more involved in non-spatial
working memory tasks (Goldman-Rakic, 1987).

In support to the theory of parallel processing in prefrontal and parietal asso-
ciative areas, there are also some anatomical findings on the connections of the two
regions with the rest of the cortical and sub-cortical systems: “Double-label studies
reveal that posterior parietal and dorsolateral prefrontal cortices project in com-
mon to virtually the same targets in over a dozen distinct cytoarchitectonic areas.
[...] Moreover, the prefrontal and parietal axons within these ‘third party’ targets
terminate in one of two characteristic modes: either as interdigitated , spatially
alternating fiber columns or in complementary layers within a single column or set
of columns.” (Goldman-Rakic, 1988)

(ThOugh being a very interesting problem, in the present work we do not con-
sider the different modes of the axons in approaching the cortical targets, e.g. into
different layers. We hope to be soon able to put these properties into our analytical

model and to give them some functional interpretation.)

1.4 Organization and function of the columns

Assuming modularity and considering that inside a module the connectivity is sensi-
bly higher than between different modules (Braitenberg and Shutz, 1991; Mountcas-
tle, 1997), the question arises of how this multitude of units is organized to perform
cognitive tasks. F&rst ambng these tasks, the ability to retrieve from memory distri-
butions of neuronal activity, as allowed by recurrent connectivity (Braitenberg and

Shutz, 1991; Fuster, 1997). Fundamental in this view is the structure of the long
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range connectivity.

Different areas seem to detect different properties of the percept (see, e.g., Tanaka
(1996), Mishkin et al. (1983)). Columns (or minicolumns?) may be the sites for the
memory of the finest elements of the percept. (In this context, the term “per-
cept” should be considered in its widest meaning, thus including also intellectual
experiences.) Thus, many modular retrievals of single elementary features must be
coordinated to result in a complete global pattern. The global attractors of the large
network’s dynamics must represent realistic correct combinations of local features,
while “strange” combinations which have never been stored in memory should be
suppressed.

Different “generalized” percepts (that from now on will be called patterns) may
share some elementary features; this may also be a source for apparently abstract or
even unconscious associations and analogies among initially different patterns (e.g.
the priming effect).

One of the advantages of a modular structure of this kind could be the possibility
of storing any feature that is common to many patterns in one of the modules, so
that it can be used again in new patterns and consequently the whole network does

not have to produce a completely new global activity distribution for every pattern.
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Chapter 2

Modular autoassociators

The concept of autoassociative memory and the properties of neuronal autoassoci-

ators are introduced.

2.1 Autoassociative memory

By definition an autoassociator is a device able to retrieve a memorized represen-
tation of an item when cued with a portion, or a noisy version, of the ‘perceptive’
input from that item. For this reason, any autoassociative memory system is often
referred to as content addressable memory, that is the stored information about an
object can be extracted from the system memory by providing a fraction of the same
informative content. Systems of this kind are of interest in many applicative dis-
ciplines, since they lend themselves as feature detectors, hand-written manuscripts
readers, and for many other practical tasks in which it is necessary to verify whether
an incomplete or noisy input pattern actually comes from a ‘known’ object and, in
the case, to complete the representation of the object correctly.

The concept of autoassociative memory is one of the main themes of neuroscience.
It is widely accepted that the peripheral input stimuli to mammal nervous system
produce peculiar distributions of activity in cortical structures subserving cognitive

functions (cf. Chap.1). The recognition of a perceptual input as a familiar (that
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is, already experienced and learned) complex stimulus plausibly coincides with the
reproduction of a characteristic neuronal activity distribution at the level of some
cortical areas. Besides, the neural circuitry found in some cortical regions could in
principle be able to support autoassociative process.

One of the first, and maybe the best known, analytical models of autoassociative
neural networks is the Hopfield model. In the simplest version of that model, neurons
are represented by binary units, thus considering only two possible states of activity
of any neuron, that could be interpreted as the firing and the non-firing neuron
states. The recurrent connectivity among the neurons is the key ingredient to provide
the network with autoassociative abilities. While in the simple pattern associators
the flux of the signal is unidirectional (fig.2.1), going from the input toward the
output of the neural system so that the state of a neuron cannot influence the
state of the afferent neurons, the recurrent networks are provided with backward

connections that allow for recursive processing.
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input output input output
pattern pattern

(a) (b)

Figure 2.1: (a) Simple pattern associator: to any presented input the network associates one
output pattern. (b) Recurrent network (autoassociator): once the neuronal activities are put in
a specific initial condition and then let free to follow the dynamics determined by the collateral
interactions, the activity distribution evolves toward the configuration that among the learned
patterns is the most similar to the initial condition.
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In the Hopfield model, the influence (the field h;) of the afferent fibres on a given
neuron (7) is represented by a weighted summation of their activity binary variables
(S; =-1,1):

hi= > Ji;S;. (2.1)

J.J#L
The ‘weights’ represent the synaptic strengths. Their values are determined by the
correlation of the neuronal activities across the set of learned patterns according to

the formula
Jiy=—> SIS%, (2.2)

where N and P are the number of neurons and that of the learned patterns respec-
tively, and S? is the state of activity of neuron ¢ when the network is imposed with
the pattern of activity p. During the learning phase, that is the period in which the
patterns are arbitrarily given to modify the synapses, the statistics of the patterns is
supposed to attribute a neuron a given state of aétivation with probability 1/2 across
the different patterns and independently from the other neurons. In this model it is
assumed that the network is either in a learning phase or in an interrogation phase;
in the latter the input is used as a cue possibly to retrieve a stored pattern, but can-
not modify the synapses. The hebbian (covariance) learning rule (eq.2.2) is such that
the synaptic weights are symmetric, that is the synapse of the projection of neuron
i onto neuron j has the same strength that the one in the reciprocal connection
j — 4. Besides, the network is fully connected. Evidently this model is quite a rude
approximation of biological nets. Though numerous more elaborated evolutions of
this model have been produced, it already shows the properties of autoassociative
memory due to the existence of metastable states in one-to-one correspondence with
the set of the learned patterns. Each of these metastable states is an attractor in
the network dynamics, so that when the network is put in the basin of one of the

attractors the dynamics drive the neurons to reproduce the distribution of activity
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characteristic of the learned pattern corresponding to the considered attractor. It
could be said that, once put in an initial configuration of neuronal activities, the
network evolves toward the most similar configuration among the learned ones.

The existence of the multiblicity of attractors, together with their basins, cor-
rectly corresponding to the learned configurations, may be corrupted when the net-
work is requested to store too many patterns. Indeed, when the number of stored
patterns approximates the number of neurons, the co-operative effect no longer
dominates over the noise and the Hopfield network develops a very large number
of attractors whose (meta)stable configurations have null overlap with every stored
pattern. In this case, the network cannot work as an autoassociator since the prob-
ability that its dynamics is captured by one of the undesired attractors is very near
to one.

The problem of the existence of an upper bound to the number of patterns that
can be stored is common to all neuronal network models, though the nature of the
phase beyond the upper bound may depend on the particular model (for example,
models with analogue neuronal outputs do not present the marked spin-glass be-
haviour shown by the Hopfield network beyond maximal storage (Treves, 1991)).
Supposing that the approximation of the continuous input evolution with a dis-
crete sequence of representative patterns makes sense, the number of patterns that
a neuronal network can store in its synapses is a fundamental static characteris-
tic of the considered network. Since in many models the thermodynamic limit is
necessary’, the number of patterns that can be efficiently stored diverges; thus one
usually defines its ratio with another diverging quantity (e.g., the number of neurons

in the Hopfield model previously described) as the storage capacity of the consid-

Tt means that in order to obtain correct results from the analytical treatment it is necessary to
consider systems with very large number of neurons (infinite, in the ideal case). Practically, such
‘thermodynamic’ theories usually are good model for large finite systems.
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ered neuronal network. When one tries to model a system of recurrently connected
real neurons within the analytical framework of the attractor neural networks, it
is necessary that the theoretical storage capacity is large enough to be biologically

plausible. This is sometimes what decides a theoretical model to be viable or not.

2.2 Neocortical areas as large autoassociators

The neurophysiological data exposed in ‘Chap.l are interpreted in terms of neural
network architecture and hypotheses are formulated about the subserved cognitive

functions.

2.2.1 The cortical column as an autoassociator

As stated in Chap.1, the connectivity inside a column is very high compared to the
average connectivity across the neocortex. This suggests to consider cortical areas
as composed by a large number of processing units. Whether the fundamental unit is
the column or the microcolumn is not crucial in the theoretical context that is to be
introduced, and the term ‘column’ will be used in the following without specifically
referring to one of the two possibilities.

The idea of modelling the neocortex as composed of a number of compartments
is not new. In neuropsychological models of brain functions and impairments the
presence of modular structures is very common, though usually no precise corre-
spondence is provided between the compartment and the physiological system that
in the real brain should subserve the functions theoretically ascribed to the former.

Also from the neuroanatomy some proposals of modularity have emerged. In
Braitenberg (1978) the author suggested to consider the cortex as a set of v/ N
compartments each composed of /N neurons, being N evidently the total number

of cortical neurons. He justified his idea on the basis of connectivity statistics.
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Indeed the possibility of a full connectivity among the cortical neurons is not to
be considered at all. In a more plausible way the Braitenberg’s model allows the
neural information to propagate throughout the cortical areas. In that model every
compartment sends an axon to every other compartment, apparently respecting the
anatomy statistics about the number of white matter projections per pyramidal
cell and the white matter volume. It is interesting that such simple approximate
reasoning brings to a quantitative estimate of the compartment width that in the
human brain roughly equals the columnar diameter.

Here we consider the column as a module, and a large number of its replicas is
considered to form both the physiological and the functional architecture of neocor-
tical areas. To be as near to the anatomical and electrophysiological data as possible,
we restrict the scope of our model to associative neocortical areas (cf. Chap.1).

The prototypical column, for the densely recurrent structure of connections
aniong its neurons, is an excellent candidate to have autoassociative memory abil-
ities, so we consider the module as an efficient autoassociator of the kind of those
described in section 2.1. In this view we are supported by numerous experimental
findings of local self-sustained activity (Miyashita and Chang, 1988; Fuster and Jer-
vey, 1982) and, above all, by the visual features responses found by Tanaka (1996)
in the infero-temporal cortex of primates?.

When the long-range cortical connections, that is the projections between differ-
ent modules, are included in the model, the elementary autoassociators build up a
large autoassociator. We adopt the hypothesis that each module analyzes a particu-
lar ‘aspect’ of the information content of the axonal signals arriving at the associative

areas from primary and more peripheral cortices. It is not easy to provide examples

’In experiments Tanaka and his group have considered the firing rate of the neural cells as
indicative of the ‘recognition’ of a feature, disregarding any temporal organization of the spikes.
We also avoid the problem of temporal information in the ‘static’ analyses exposed in the following.
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of such feature decomposition since we think that it may be much finer and obscure
than common sense could suggest. There are easily comprehensible cases, such as
the recognition of geometrical figures, the detection of particular visual features and
the possible modality of use of the observed object. It seems more difficult to find
examples in non perceptual contexts. The featural description here adopted is not
approved by the whole scientific community (see e.g. McRae et al. (1997)).

The very high ratio between the local connectivity and the long-range connectiv-
ity brings us to consider the retrieval process of the large autoassociator as deriving
from the co-operation of the modules in producing a meaningful composition of lo-
cally retrieved features. Then the problem arises of verifying the plausibility of such
modelling of neocortical associative areas, namely to test the ability of such model
networks in storing a large number of global patterns and correctly reproducing them

in retrieval tasks.

2.3 Analysis of an ‘isotropic’ multimodular model

An analytical model of multimodular cortex is reported®. The exposition of calcula-
tions is avoided since quantitative information can be derived from the model to be
introduced in Chap.3 that in the aim of the present work is to be considered more
general. Nevertheless large space is given to some of the notions since they will be

useful in the next chapter.

2.3.1 Modules and connectivity

A network with a large number of neurons is considered. They are grouped in M
modules (fig.2.2), each containing N neurons. The local network, that is the set

of neurons belonging to the same module, with their intramodular projections, is

3Most of the discussion in this section derives from O’Kane and Treves (1992a).
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taken fully connected. Thus each neuron receives N — 1 inputs from the neurons
of the module it belongs to. From the other A — 1 moduli, the neuron is assumed
to receive L projections. According to data in Braitenberg and Shutz (1991), it
is assumed that one half of the afferent axons to any neuron come from the ipsi-
modular neurons, the other one half coming from the rest of the network, that is
through the white matter. Since both N and M are taken to be diverging in the
thermodynamic limit, it follows that the long-range connectivity is very diluted,
being 'J\ZL‘JV the probability that any neuron receives a projection from a given neuron
of another module. Such a connectivity has been chosen in O’Kane and Treves
(1992a) with the aim of approximating the neurobiological data according to which

the local connectivity is largely denser than the long-range one.

D
Figure 2.2: The structure of connections in the model of O’Kane and Treves (1992a). The
black dots represent the neurons, the circles are the modules, the thin lines are the intramodular

connections, the thick lines are the extramodular connections. For clarity we have drawn only the
intramodular connections and the extramodular projections from the neurons in module A.

One of the assumptions that we will show to be crucial is about the distribution
of the long-range, that is extramodular, axonal projections from any neuron: they

are randomly distributed with constant probability across the neurons of all the
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other moduli. “This is the reason why we call this model ‘isotropic’.

Both the intramodular and the extramodular synapses are given weights accord-
ing to a covariance rule. As shown in section 2.1, this rule assigns equal weights to
reciprocal connections. Though at the level of the single module this means that any
two neurons have symmetric coupling, in the long-range net actually no symmetry
is required since the probability of having a bi-directional connection is vanishingly
small due to the extreme dilution.

In O’Kane and Treves (1992a) the authors adopt a particular neuronal model in
order to perform statistical mechanics calculations of the mean-field kind. They use
the threshold-linear neuron model (Treves, 1990): the input signal is calculated as
the weighted sum of the afferent neuronal outputs; if the input is below a character-
istic threshold, the neuron is silent, if the input is above the threshold, the firing rate
of the neuron is taken to be proportional to the difference between the input value
and the threshold (fig.2.3). It has been shown (Treves, 1990) that (non-modular)
networks of such neurons are able to perform the retrieval of stored configurations.
In the analysis of our model (Chap.3) we will not make use of a detailed description

firing
rate

input current

0

Figure 2.3: The input-output relation for the neuron model used in O’Kane and Treves (1992a).
The threshold is indicated by #. In abscissa, the value of the total input (arbitrary units). In
ordinates, the spike firing rate.

of neuronal response, since this would preclude the possibility of obtaining compre-
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hensible formulas due to the complexity of the more general framework. For this
reason, we do not report the results of O’Kane and Treves (1992a) in their original
mean-field fashion, preferring their signal-to-noise counterparts that are more easily

comparable with our new results in Chap.3.

2.3.2 Pattern structure

The global pattern of activity, that is the distribution of the neuronal activity over
the whole network (IV - M neurons), is considered to be decomposed in M features.
Namely, the flux of axonal information about what we may generically call object,
arriving to the associative areas from more peripheral regions, is analyzed by the
modules in a parallel manner. Each module takes care of the part of information
carried by its afferents and that is supposed to be rich of details about one particular
aspect of the object.

Different patterns may share some features. This means that in a module they
may elicit the same distribution of neuronal activity, so that at the level of that
module those patterns would be indistinguishable. In a sense this would be the
consequence if two or more objects had some common ‘characteristics’. In O’Kane
and Treves (1992a) it is aésumed that p > 1 patterns activate the same firing distri-
bution in any given module. However, due to the high number of possible featural
combinations, the probability that two or more patterns share common features in
more than one module is vanishingly small (equal to zero in the thermodynamic
limit).

Looked at as an isolate network, any module is supposed to store a large number
D of local configurations, that are the features. Thus the total number of patterns
stored in the large modular network is P = p - D. It is also assumed that every

pattern activate a precise feature in every module. Thus every module is always



elicited and no state of quiescence is allowed. Besides, the activation of a feature in
a module is taken to be independent from which features are activated in the other

modules*. These also will reveal to be critical assumptions.

2.3.3 Metastable states

In O’Kane and Treves (1992a) it is shown that the proposed model network may be
in several states with interesting cognitive interpretation.

One class of possible (meta)stable states includes the retrieval states, that is
those states in which the network correctly sustains distributions of activity that
reproduce the stored patterns. If the neurons are forced into a configuration of their
activities that overlaps with one of the stored patterns, once let free the network is
able to reconstruct all the corresponding original pattern of activity.

Beside the retrieval states, in fact some undesired states are present in large
number. In each of these states locally, that is at the intramodular level, a good
feature retrieval is performed, but different modules do not co-operate in producing
a global retrieval. Since such state is a (meta)stable state, the network may settle
in it and no longer evolve to a global retrieval state. If this happens, the network
presents a meaningless patchwork of well defined but incoherent features. Namely, it
is not able to recognize an object as a whole complex of co-ordinated characteristics.

O’Kane and Treves (1992a) call these noxious states memory glass.

2.3.4 The phase diagram

O’Kane and Treves (1992a) calculated the critical storage of the network with mean-
field statistical techniques. As explained at the end of subsection 2.3.1, we now

show the corresponding results obtained with a signal-to-noise analysis, that is a

“Note that hypothesis is on the statistics of the pattern of signals arriving to the considered
area, and not on the network dynamics.
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Figure 2.4: Plot of the critical storage of the network for retrieval states and memory-glass states.
The useful range, that is the vertical distance between the two curves, is very small and decreases
quickly as p increases. This result is valid for very large networks with parameters v = .5 and
a = .01.

less precise and simpler method. This will allow us to calculate the capacity of
the more complicated network of the next chapter with the further benefit of not
requiring a detailed neuron model.

The storage capacity of the present network has different values if calculated
either for retrieval states or for memory-glass states. As shown in fig.2.4, the retrieval
is more robust, to the noise produced by the stored patterns, than memory glass
(cerit is defined as the ratio between the maximum number of patterns that can
be stored before the considered retrieval or glassy states become unstable, and the
number of connections per neuron, C' = L + N — 1). Above the retrieval critical
storage the network is unable to perform any kind of retrieval, neither global nor
simply local. Below the memory-glass capacity the states of both global retrieval and

memory glass are stable, so that the network with large probability falls in one of the

numerous glassy states and does no longer evolve toward a complete global retrieval.
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Thus the only possibility to make the network work as a good autoassociator consists
in keeping the storage load in the range between the memory glass capacity curve
and the retrieval capacity curve. Indeed, in that region the memory glass states are
not stable and thus cannot prevent the network from flowing toward a good retrieval
state.

Thus, in principle, if one does not require biological plausibility, the modular

network described in this section may be a good autoassociator.

2.4 May a modular autoassociator model neocor-
tex?

An attempt of computationally modelling semantic memory has been done by Lauro-
Grotto et al. (1997), who considered the retrieval abilities of a modular network in
which each module was thought to be responsible of the storage and processing
of a given semantic ‘aspect’ of the input signal. They analized the network ana-
lytically and numerically in the noiseless limit, and at a low storing level, that is
no quenched noise was generated by stored patterns in the thermodynamical limit.
They considered the thermodynamic limit only for the number of neurons, while
the number of modules was kept small (in particular, in simulations the number of
modules was between 2 and 5). Although the connectivity between modules was
taken smaller than the intramodular one, the two connectivities were of the same
order of magnitude. The network was in principle able to sustain states in which a
fraction of the modules were in a non-retrieval state, that is a state of null overlap
with every locally stored pattern. Nevertheless the authors found that the states
with a small number of retrieving modules were strongly unstable: very often, when
set in a stored configuration and then let free, if the imposed configuration has a

small number of active retrieving modules, the network prefers to evolve toward
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‘meaningless configurations’ (Lauro-Grotto et al., 1997). The authors considered
this behavioﬁr as a sign of non-plausibility of the model and of the necessity of
introducing modifications.

In this section we try to understand whether the network presented in section
2.3 is a good candidate to model the neocortical areas supposed to function as
autoassociators. The only property we are to discuss is the retrieval ability. We
think that this kind of quality is not crucially dependent on the details of the adopted
neuron prototype and that also the study of a non-dynamical approximate model
like ours can give insights about brain functioning.

As stated in the previous section, that network is able to perform good retrieval.
Even disregarding the absolute storage capacity, whose biological plausibility is dif-
ficult to test, the network is nevertheless an implausible model for real brain areas
(O’Kane and Treves, 1992b). Indeed the network performs correctly only if the
number of the stored patterns lies between the two curves in fig.2.4. This interval
is too thin to be biologically plausible, and becomes even thinner the higher is the
average number of patterns which a single feature is part of (fig.3.1). It is difficult
to imagine how a biological system could select a number of patterns to learn with
such a small percentile error.

From the results in O’Kane and Treves (1992a) it seems that the local field,
that is the signals arriving to a neuron from the cells of the module it belongs to,
competes with, and in some cases dominates over, the long-range component of the
total neuron input. Thus the local module net cannot correctly discriminate between
global states.

In the next chapter we will modify the network presented in the previous section
with the aim, above all, of putting the memory-glass at a disadvantage in comparison

with the retrieval states. The changes will also improve the biological plausibility
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of the model. Namely, making the net 'more similar to the biological system also
improves its retrieval abilities. The main criticisms to the network described in

O’Kane and Treves (1992a) from the point of view of the neurobiologist are:

e Modular activation: all the modules of the present model are involved in every

pattern. Many studies, especially PET and similes, have shown that any pat-
tern selectively elicits hot spots over the neocortical surface thus suggesting
that only a (small) fraction of the modules take part in the pattern represen-

tation, the rest being in a quiescent state®.

e Long-range projections: the model has been constructed distributing the ax-

onal long-range projections at random among the modules. This is in contrast
with some findings (e.g. by Braitenberg and Shutz (1991) in the rat) according

to which every column interacts with a small number of other columns®.

e Correlation of the activities: The model assumes that modules are activated

independently one from the others across patterns. Implementing a modifi-
cation to the model in agreement with the criticism exposed in the previous
point, it becomes possible to consistently introduce correlation between the
activation states of different modules following the plausible conjecture that
two any modules are connected if they analize features Ythat are significantly

interdependent across the patterns statistics.

e Local connectivity: It is actually a minor item from a theoretical perspective,

but in fact the local connectivity, though being much higher than the long-

range one, is not complete. Thus the full intramodular connectivity used before

5To our knowledge, Lauro-Grotto hypothesized the reduction of the number of active modules
in the model as a possible benefit to the network performance (Lauro-Grotto et al., 1997).

%In spite of the simplistic model described in Braitenberg (1978), long-range projections are
known to be anisotropic, as stated in Braitenberg and Shutz (1991) pages 142 and 146.
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should be substituted by a diluted one.
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Chapter 3

A model for neocortical
assoclative areas

A new modular network is proposed as a model of associative areas'. A qualitative

description is followed by a mathematical analysis of the new model.

3.1 Two steps toward the suppression of memory
glass

The first modification we operate on the model considered in O’Kane and Treves
(1992a) is about the average number of active modules per stored pattern.
In O’Kane and Treves (1992a) every pattern implies the activation of all modules,
while, e.g. from PET studies, it is quite evident that each cognitive task increases
the activity level of only a small subset of cortical hot spots (moduli?). The fact
that each feature in any module is presented many times during learning implies
that the modification of each local recurrent synapse, according to the covariance
rule, occurs many times in the same direction; on the contrary, the long-range
connections modify their own weights every time in a random direction, even during

the presentation of a number of patterns that imply the activation of the same

'Most of the material in this chapter is taken from Fulvi Mari and Treves (1998).
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feature in a module. It follows that the local component of the field perceived by
a neuron is st'ronger than the long-range part to the extent the number of patterns
that involve a feature in the module (=the multiplicity, p) is large. This means
. that local currents come to dominate the dynamics of the single module as p gets
larger, thus giving memory-glass (MG) states almost the same stability of retrieval
(R) states.

We introduce in the modified model the possibility for a module to be involved
only in a small fraction (7) of the memory patterns, its neurons being for the rest in
a state of spontaneous firing. Now 4, still defined as the ratio between the number of
stored global patterns and that of stored local features (4 = P/D), no longer equals
the number of patterns activating a given feature in a module. The latter quantity
is now a binomial random variable with average value 7. This proviso improves the
capacity of the whole network, but is not the resolutive change, since also the MG
states are stable up to a higher limit, so that the ratio of the respective capacities
stays unchanged in comparison with the model of O’Kane and Treves (1992a) (on
a logarithmic scale, the distance between the curves remains the same, fig.3.1).
However, note that in our model the modular sparseness 7 allows to increase the
ratio P/D, while retaining a moderate advantage of retrieval states over memory-
glass states.

To pull down, as it were, the curve of the MG state, we may look for some
modification that might help prevent the activation of incoherent combinations of
features.

Examining the next point listed in section 2.4, we restrict the number of modules
connected to a given one. To this end we introduce the communication channels.
They may be seen as ‘tubes’ exiting a module, each one projecting onto a different

module. The number of channels is a Poisson random variable with a small mean,
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Figure 3.1: The retrieval and memory glass storage capacities vs feature multiplicity (acps is
still defined as the ratio between the critical number of patterns that make the considered state
unstable and the number C = L + N —1).

From the top, the first two curves are respectively the retrieval and the memory glass critical
capacities when 7 = .01. The other curves are the corresponding ones in the model described in
O’Kane and Treves (1992a) (the new model reduces to that one if one sets 7 = 1). The improvement
is evident, especially if one notes that for each value of u the new model is positioned much more
to the left (by a factor 7) than the old one. (The local connectivity parameter b, to be introduced
later, is here equal to 1, that means full local connectivity.)

called s', that is supposed to be a small number, e.g. 2-7, in agreement with the
neuroanatomical data (Braitenberg and Shutz, 1991). Any extra-modular projection
of any module is now constrained to choose randomly one of the channels and to
go through it. When the axon reaches the postsynaptic module, it can synapse
onto any of the neurons therein. For simplicity, every channel is assumed to be
bi-directional, that is: in the case of the channel that connects module m with
module n, the axons of neurons in module m can pass through toward module n,
and the axons from module n can pass through toward module m. Though the
number of extra-modular fibres per neuron is untouched, now every module can

‘see’ only a few others. In fact, it would seem useless or even counterproductive to

build up connections between modules that analyze independent features in natural
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patterns, so that these modules cannot exchange useful information, for instance,
for a retrieval task, with each other.

We argue that the structure of the extra-modular connectivity is “semantically”
meaningful: the fact that a module sends projections to another one underlies the
fact that the aspects eliciting the two modules are correlated (e.g. semantically).
Consequently the activation of the first module makes the probability of involve-
ment of the second in the same pattern higher than chance (in the statistics of the
patterns). We implement this idea in the model by creating a table of marginal con-
ditional probabilities on the statistics of the patterns, given the structure of “com-
munication channels” among modules. These probabilities are such as to favour (in
comparison to chance) the activation of a module if another module, presynaptic to
the former, is active. Analogously, if the presynaptic module is not active, then the
postsynaptic is not active with larger probability than chance. Since the probability
scheme introduced here is marginal, it does not give immediately a picture of the
global statistics of the patterns of activity. To the verification of the self-consistency
of the probability scheme and of the available ranges of parameters, we dedicate the
rather technical Chapter 4.

Finally, we introduce the local connectivity dilution. This further improves the
advantage of retrieval states over memory glass, since local field is weakened and

long-range signals are thus more effective.

3.2 The mathematical model

We consider a neural network composed of a large number M of modules, each made
up of a large number N of identical neurons. Inside any module the connection
probability is finite, while the extramodular average connectivity is very diluted.

In any module (m) of the network, the state (output) of any single neuron (i)
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is assumed to be represented by a real non-negative number (V; ). Each neuron
receives a projection from any other neuron of its same module with finite probability
b, and from a small subset of the neurons belonging to the other modules (for a
total L of extra-modular inputs, with L/N finite in the thermodynamic limit). Tt
computes, independently from the other neurons, the sum of the afferent currents
produced by its synapses. The total afferent current into a neuron is computed as
the weighted sum of the outputs of the presynaptic neurons, where the weights are
given by the (real-valued) synaptic strengths (JJ ;. for intramodular connections
and Jifn ;. for extramodular projections). The long-range (extra-modular) and short-

range (intra-modular) contributions are summed as in the following formula, that

defines the total input current (feld):

Z Z'n-LJm Jm + Z Z JL Jn‘/;n + ‘[7'771 (31)

JmFEim " nFEM Ju
where the index n runs over the total number (M) of modules except the module of
the neuron considered (m). I;  represents the non-specific inhibitory contribution
whose role is to keep the network at an average activity level below the saturation;
this inhibition depends on the average neuronal activity. Synaptic strengths are
supposed to be determined by hebbian (covariance) learning of a large discrete set

of quenched patterns. The quenched values of the synapses are set as

1 ., T,
S o= b p(fim oy m
JZm]m Cb"'mjm ;Tm( a )( a 1) (32)
and
" 7
Jz{In.’ln sz]" ZT:D Tp - — )( ZLTL - 1) (33)

where p runs over the P patterns; {nim} are independent random variables repre-
senting the activities of the neurons during learning of pattern p (for the sake of

simplicity they are taken in the following to be just binary, i.e. to assume only the
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value 0 or 1); a is the sparseness of the representation, that is to say, jche probability
for anf_to be equal to 1. The binary quenched random variable 72, which assumes
value 1 with probability 7 and 0 with probability 1 — 7, models the activity state of
module m during realization of pattern p: if the pattern in consideration requires
the activation of a feature in that module, then 75 = 1, otherwise 7, = 0.

~ As can be easily recognized, the expressions 3.2 and 3.3 for the synapses are a
generalization to a modular neural network of the well knovvnkformula for a network
with sparse neuronal activity (Tsodyks and Feigel’'man, 1988). In our model, we
have added sparseness in the patterns of activation of the modules during global
processing. The synapse between two neurons belonging to the same module can
be modified only if this module is involved by the processes developed in the global
net, e.g. following a sensory input. If, on the contrary, the presynaptic and post
synaptic neurons belong to two different modules, the necessary condition to allow
for modification of the synapse is that both modules are involved in the global
processing.

The quenched random variable b;,_;,, determines the dilution of the connectivity
inside a single module; its value is 1 with probability b, and 0 with probability 1 —b.
That is, the probability for a neuron to receive axonal projection from any other
neuron of the same module is taken equal to b.

The factor % appearing in eq.3.3 ensures the correct normalization. When the
contributions to the input of a unit frofn the other modules are summed, on average
only a fraction 7 of those terms are non-zero. The omission of the renormalizing
factor % would make the remote component of the field negligible compared to the
local one when 7 is much smaller than one (cf. section 3.7).

We assume solutions of the network equations according to which any module is

either retrieving a feature (77, = 1) or remaining in a state of spontaneous activity
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(77, = 0) . We also assume that the average activity in any module is of the same
order during retrieval as in the spontaneous firing state; the firing rate of any neuron
in a module in the spontaneous activity state is lower than that of a typical excited
neuron, and higher than that of a quiescent neuron, in a retrieving module. The
single unit activity level has then a uniform distribution over the neurons in a passive
module, while the distribution in a retrieving module is bimodal (assuming binary
patterns), with t‘he same average.

The quenched random variable ¢;, ; assumes value 1 if neuron j, in module
n projects onto the dendrites of neuron i, of module m; otherwise it is equal to
zero. The quantities {c; ;. } hold the information about the anatomical structure of

long-range connectivity of the considered multimodular net. We factorize
cimjn = Smn ° kimjn' (34)

The structure variable s,,, is equal to 1 if there exists a communication channel from
module n to module m. With this we intend to model a functional structure such
that axonal projections, from a module to another, exist only if these two modules
are one after the other in an anatomical tree of cortical modules. The probability
of the event s,,, = 1 is equal to SM', so that any module receives projections from a
finite number (about s') of other modules, even in the thermodynamic limit; this is a
model of the experimental observations described in Braitenberg and Shutz (1991).
The variable k; ;. assumes value 1 with probability equal to ;/D—N; otherwise it is
zero. Hence the value of k;_;, given the existence of a communication channel from
module n to module m (s, = 1), reports the existence, or absence, of an axon from
neuron 7, that synapses onto neuron %,,.

The output of the neuron receiving the total current h; depends on the term
hi,, — 0y, where 8y is the net contribution of spontaneous activity and real thresh-

olds coming from the non-linear spike dynamics. We do not specify a particular
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transfer function, but assume some of its basic properties, which become clear in
the following.

The activity of neuron 1,, inside the module m, involved in the correct retrieval
of the local feature corresponding to the global pattern p, is proportional to n? .
Since we assume that any global pattern p has probability & = % to elicit a given
feature in a module (different patterns are independently assigned the corresponding

features with a uniform distribution), it is necessary to introduce the functions
d,:[1,2,..,P] —[1,2,..., D] (3.5)

defining the quenched correspondence of a global pattern p to the feature d,(p)
elicited in module 7 in the global activation of pattern p. So there are on average p
global patterns involving the retrieval of each feature d,,. For example, 77?: refers to
the activity of neuron i,, in module m during the presentation of one of the (about
1) global pattkerns ({p1,p2, ...,pu}) that involve the same feature dp, in module m
(dm(pa) = dm for @ = 1,2, ..., ). It will be necessary in the following calculations
to keep in mind that the probability for two patterns to elicit the same feature in
a given module is vanishingly small (%) in the thermodynamic limit, in which we
take D —=+ oo. Analogously, the probability that two patterns eliciting the same
feature in a module involve the same feature also in another module is —115 (these
observations are useful in the calculation of some correlation functions).

Note that we are not bound to binary neurons: the real activities during retrieval
are in our model only proportional to the binary pattern, but it has been already

noticed (e.g. Treves (1990)) that the introduction of more graded distributions of

activity levels does not bring substantial changes.
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3.3 Parameters of the model:

Beside p, already defined, we make use of other network parameters indicating finite
ratios of quantities that diverge in the thermodynamic limit. They are the storage
load a = —g and the fraction of long-range afferent projections onto any neuron
v o= —(Lj, being €' = N — 1+ L. (The average number of inputs per neuron is
b(N — 1) + L, and reduces to C when full local connectivity, b = 1, is considered.)
The capacity limits cited in the first paragraph are actually espressed through a,
being c, the maximal value of o for which the system is in a stable state, that can
be either a global retrieval state or a memory glass. For example, oM@ is the value
of the ratio a = g over which the system cannot persist in a memory-glass state,
and decays in a retrieval state or in a uniformly disordered (paramagnetic) state.
Analogously, if g > af the system can not sustain a state of retrieval, and falls in the
disordered state (see below). Given a., the maximum number of patterns storable
in the network, above which the state considered (retrieval or memory-glass) ceases
to exist, is then given by P, = a, - C. So the largest number of patterns that can
be stored and then succesfully retrieved is proportional to the average number of
synaptic contacts onto any neuron (PX = of - C).

The parameter v measures the fraction of connections that are long-range. If
7 is very small, the network looks very similar to a set of M independent fully -
connected neuronal networks, that is, the global associative properties are negligible
and the capacity of the large network coincides with that of single module. On
the contrary, if v is very near to 1, then the long-range interactions dominate over
the local ones, and the large network behaves as a diluted associative network in
which the molteplicity u of any pattern becomes irrelevant. A model that describes

neocortex is likely to fall somewhere in the middle of the range, since it is estimated

that about one half of the projections that any neocortical pyramidal neuron receives
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come from outside the module the neuron belongs to, that is from the white matter.

3.4 The correlation of modular activity

The second main point of this model beside 7 < 1 is the introduction of the correla-
tion between the set of activity patterns {72} and that of communication channels
{Smn}, whose physical meaning has been described above. We require that when
module n sends projections to module m and module n is active in a pattern, then
in the same pattern module m is active with a probability higher than the uncon-
ditional one. Similarly, when module n is not active, module m is active with a
probability smaller than chance. This preference of a postsynaptic module to be
in the same state of the presynaptic module it is connected to is translated in the

following table of conditional probabilities:

PirE =1t =1,8pmn=1)=1
PP =12 =0,5mn=1) =1
P(Tﬁz = 1‘7—5 =1, 8mn = 0) =T (36)
P2 =12 =0,5mn=0)=7

where t;, > 7, while ty < 7 (7 is the unconditional probability for a module to be
active, introduced above). So the activity of module m does not depend on that of
module 7 if the latter does not project axons onto the former.

If the structure quenched variables are taken to be symmetric (S, = Spm), the

table above is a consistent probability scheme only if
(1-t) - 7=t-(1—-1). (3.7)
It can be shown that this equality implies that
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If we eliminate the reciprocity of the structure variables, the condition of eq. 3.7 is

no longer necessary. This corresponds to the possibility of having
Prh =1smn =1) # P(} = 1lsmn =1) = 7. (3.9)

We assume eq. 3.7 to be valid, and this implies that, averaging over the possibility
to be active or not, a module receives non-zero contributions from a fraction 7 of
the modules it ‘sees’. (For more about this point, cf. Chap. 4.)

During correct retrieval a fraction 7 of the modules are active and reproduce the
features corresponding to the global pattern retrieved by the whole large network.
The remaining modules, inactive, present a uniform distribution of spontaneous
firing. We mathematically represent this state by the expression of the neuronal
output

Vi =B qin® AT (1= 12, (3.10)

m

that is, in any module m that is active in pattern p (72, = 1) the neuronal potentials
follow a retrieval distribution given by the first term on the right-hand side of eq.
3.10. If module m is not activated by pattern p (72 = 0), only the second term
survives and the neurons of that module are in a spontaneous firing state. The real
coefficients A" and B’ should be set by solving the equations of the network, and p
is the index of the global pattern that is retrieved. Actually it is not necessary to
determine exactly the two coefficients, since in the final expression of the signal-to-
noise ratio we are interested only in the ratio —g—:, and this can be estimated to be
about a from the sparseness requirement mentioned above.

In a memory glass state the fraction of active modules is arbitrary, and also the
statistics introduced with eqs.3.6 is not considered to apply. It is easy to show (cf.
appendix to this chapter) that the most robust memory-glass states (i.e. the ones

with the highest capacity limit), even though less numerous, are those with a low
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fraction of active moduli and without correlations between activity and connectivity.
The neuronal activity in a memory;glass state is expressed again as in eq. 3.10, with
coefficients A and B that could be different from A’ and B’ of the retrieval case,
but are assumed to keep —g—, = g all the same. Now no global pattern is reproduced
by the network, since each of the many groups of moduli retrieves a fragment of a

different pattern.

3.5 Signal-to-Noise analysis

We study the stability of the states of retrieval and memory glass with a simple
signal-to-noise analysis. Considering the field h;, onto neuron %,,, as usual we
isolate the specific term that tends to maintain the state stable, and call it signal,
S. The rest of the field is a combination of interference terms coming from the
other patterns stored in the same synapses, that are the hebbian terms that have
influenced the final values of single synapses. These terms are actually quenched
random variables (close to normally distributed), whose values vary from a neuron to
another, from a module to another, and changing the pattern (or feature) retrieved.
The set of these interfering terms gives a net zero-mean contribution, and we call
the total standard deviation noise (N). There are three values that S may assume,
corrisponding respectively to high, spontaneous, and suppressed firing activity of the
neuron. In order to maintain the state stable, the noise has to be, roughly speaking,
less than the distance between the signal corresponding to the high firing and that
corresponding to suppressed firing.

We analize separately the retrieval states and the memory glass states. We
do not report the calculations, that mainly involve handling sums and products of
random variables and applying asympthotic theorems of probability theory. We

show only the results, i.e. the conditions under which the states are stable; from
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these conditions, it is straightforward to extract the critical storage values in the

two states studied (cf. Appendix about the memory glass capacity):

(%) N (L) [1+(u—1)r]+v 2
B amay ot Drh e () + 2]
(3.11)
(£) ~ b1 )[1+ (1))
MG

\/am\/b(l—v)[1+(u—1)r]+7‘-j—s;-

where we have used the relation 4 ~ a.

As can be seen, our modifications act on both the components of the signal
(intramodular and extramodular). In the case of the ‘local’ signal, we reduce the
number of patterns that map on the same feature in a module by making modular
activity sparser, and dilute the local connectivity. Thus, the local signal no longer
dominates over the ‘remote’ signal: now the former is proportional to [1 + (u — 1)7]-
b, while in the old model (i.e. 7 = 1) this factor was u. The ratio £ is however
unchanged (equal to x in both models).

The introduction of the activity correlation acts on the remote component of
the field, bringing a factor  instead of 1. Thus, strengthening the long-range
interaction, the global pattern is favored. When the quantity %1— becomes large, the

capacity of memory-glass states is decreased, while the capacity of retrieval states

is slightly modified.

3.6 Results

The critical storage load for the two states studied can be derived from espressions
3.11, and is shown in figure 3.2 vs the feature multiplicity u. Following Braitenberg
and Shutz (1991), we put v = .5; the neuronal sparseness a and the modular sparse-
ness 7 have been taken both equal to .01, which seems in the order of what the little

experimental evidence available would estimate. Figure 3.1 shows the improvement
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Figure 3.2: The critical capacities for two values of ¢;. From the top: retrieval storage capacity
and MG storage capacity for t; = 7 = .01; retrieval storage capacity and MG storage capacity for
t1 =407 = 4. (b =1 in both cases.) Note that the first two curves are the same as in fig.3.1.
obtained with the introduction of only modular sparseness, 7 < 1, keeping still the
complete independence of patterns from long-range structure and full local connec-
tivity. Note that the abscissa is not the same for the old and new model, since in
the old ohe, one has to consider that 7 = 1; this gives our model an advantage over
the old one, as explained in section 3.1.

It is possible to show that ¢; can assume values up to an upper bound (< 1) that
depends on s’ and 7. Beyond such a bound, the activity statistics here considered
is no longer consistent. In the next, more mathematical chapter we report the
theoretical and numerical study we have developed about this bound and other
properties of the statistics considered. We anticipate that the study justifies values
of & up to 40 in the fairly plausible case of s’ = 4 and 7 = .01,

Figure 3.2 shows the memory-glass suppression operated by the introduction
of also the pattern-structure correlation, with t?l = 40. A crossover can be noted

between the two capacities in the correlated case when the abscissa becomes large.
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It is due to the fact that the most dangerous memory-glass states have a much

smaller number of active modules than the retrieval states.

10000 E T . T T T N
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Figure 3.3: Comparison between the critical capacity of the original model in O’Kane and Treves
(1992a) and the present model with 7 = .01, t; = .4, b = .1. The capacity of retrieval states has
- been largely increased while the memory-glass states have been strongly suppressed.

When also the local dilution is introduced (b < 1), the critical capacities of the
new model become as plotted in fig. 3.3, where they can be directly compared with
the corresponding ones of the original model of O’Kane and Treves (1992a).

To stress the importance of the modular activity sparseness and correlation, in
fig. 3.4 we compare the performance of the new model without sparseness and
correlation, that is the model of O’Kane and Treves (1992a) added of only local
connectivity dilution, with the new model of fig. 3.3. Note the marked improvement
given by the introduction of sparseness (7 < 1) and correlation (¢; > 7), considering
also that in the case without sparseness the label of the abscissae axis must be read
as ‘pu—1".

Finally, in figure 3.5 we compare the model with sparseness, correlation and local

dilution with the model in which the correlation is not included (¢; = 7).
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Figure 3.4: Comparison between the critical capacities of the new model with 7 = .01, t; = .4,
b = .1 and those of the same model deprived of the modular activity interdependence and sparseness
(that is, t; =7 = 1), here called ‘O’K-T(b=.1)".

In conclusion, introducing three modifications in the model considered by O’Kane
and Treves (1992a) we have been able to increase the storage load limit of retrieval
states and to strongly destabilize the memory-glass states that marred the memory
operation of the original model. The modifications, a sparse rather than complete
activation of cortical modules, the correlation between the patterns of activation
and the underlying connectivity, and the dilute local connectivity are consistent
with available evidence. Once the modular activity sparseness is introduced, the
improvements separately provided by correlation and local dihition are of compara-
ble magnitude, and together co-operate in strongly suppressing the noxious states
while leaving the correct retrieval states almost unaltered. The larger the ratio b

the better the suppression of the undesired states. Thus, the question arises as to

whether the correlated statistics is consistent, and, if so, how large t;l can be.
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Figure 3.5: Comparison between the critical storage of the new model with 7 = .01, t = .4,
b = .1 and those of the model with modular activity sparseness and local dilution only (that is,
t1=7=.01land b=.1).

3.7 Comments on the synaptic rule

According to the synaptic rules of the model (eqs. 3.2 and 3.3), the increment
of the weight due to one learning step (=1 pattern) must be larger in the long-
range synapses than in the others, because the event of a synaptic contribution is
rarer due to the product 7,7, that appears in eq.3.3. Indeed, we have assumed
that the synapses of long-range axons are modified only when both the presynaptic
and the postsynaptic modules are active, and this event is obviously rarer than
the activation of any single module. The deletion of the factor -}, responsible of the
differentiation for the synapse learning speeds, allows the local currents to dominate,
with the consequent reinforcement of memory-glass state. How large actually the
compensation factor must be is not clear. We have chosen the factor 1/7 before
introducing correlation. One may object that after having introduced the correlation

it should have been changed in ;. However this scaling is not equivalent to the
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introduction of the correlation, since a simple constant factor would be linear in
the long-range signal term (eq.3.11) and would be squared in the long-range noise
variance, under the square root of the denominator. On the contrary, the factor
arising from the correlation is linear both in the long-range signal and in the long-
range noise variance. This allows a marked improvement of the signal-to-noise ratio
that could not be obtained with a multiplicative constant in front of the long-range

synaptic weight (eq.3.3).

Appendix: Memory glass storage capacity

Since the memory-glass states do not reproduce global patterns, also the modular
activity statistics may be different from that imposed by the set of learned global
patterns. Accordingly, the signal-to-noise ratio in memory-glass states can be shown

to be

(£). ~ bt (1)7]
B amay o) 21 -7+ ]

(3.12)
where 7 is the probability thvat any module is active when the network is in a
memory-glass state. It is easy to show that when a and 7 are similar in magnitude
and very small, the memory-glass states with the highest signal-to-noise ratio are
those in which few modules are active, that is ideally 7 = 0. Thus, putting 7 = 0 in
the previous equation, the second espression in eq. 3.11 is obtained. This condition

may be relaxed if one assumes that external inputs to the network have a finite

fraction 7 of active modules. However, we continue to deal with the worst case of

7 =0.
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Chapter 4

Bounds to the correlation between
modules

A class of families of marginal probabilities on sets of discrete random variables is
studied and a necessary and sufficient condition for the consistency of the given
marginals is provided. Use is made of theorems from Markov Random Fields and
from Probability Distributions with Given Marginals.

Then, the specific consistency problem from the theory on neocortical modular ac-
tivity described in the previous chapter is faced. The above-mentioned condition
for consistency of marginals provides a method for the verification of the hypotheses
assumed by that model, according to which connected modules of neurons are simul-
taneously active with probability higher than chance, and inter-modular connections
are very diluted. The results of the verification strongly support the neuroscientific

theory!

4.1 Introduction and summary

The probability distribution of a proper subset from the set of random variables of

a stochastic system is usually called the marginal probability or simply the marginal

1The material for this chapter is taken from Fulvi Mari (1998).
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and from elementary probability it can be obtained by integration of the joint prob-
ability distribution function over the values of the RVs that are not involved in the
marginal to be calculated.

When the complete p.d.f. is not known and use is made of an Ansatz for its
marginals, the problem of verifying the self-consistency of such marginals arises. In
other words, it is necessary to demonstrate the existence of at least one joint p.d.f.
whose marginals coincide with the conjectured ones. Otherwise, the probabilistic
model would be unrealizable: no set of RVs that follow the required statistics could
be defined. In the case of a physical theory, such inconsistency would mean that no
real system could be described by that theory (as long as Probability Theory is able
to model physical systems).

The problem of the consistency of a set of marginals belongs to the mathematical
theory of Probability Distributions with Given Marginals. Some works about this
subject can be found in the mathematics literature, the most remarkable ones being,
maybe, the papers by Vorobev (Vorobev, 1962) in a combinatorial context, and by
Kellerer (Kellerer, 1964) in a more functional measure-theoretic fashion.

In the present chapter I face the problem of marginal consistency over sets of
discrete RVs whose correlations are randomly generated, so that the system may
be represented as a random graph whose nodes can be each in one of two possible
states.

In section 4.2, I propose a general systematic method for verifying the consistency
of a family of marginals of a certain class, defined over stochastic systems of discrete
RVs, making use of results from the theory of Markov Random Fields (MRFs) and
of Vorobev’s theorem.

From section 4.3 to 4.9, I deal with a specific marginal problem to which I

partially apply the method. The neuroscientific origin of this problem is given by
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the analytical neuronal model of the previous chapter.

In section 4.3, I define the problem in terms of a probabilistic model, putting in
evidence the underlying question of probability distribution with given marginals.

In section 4.4 I show the inapplicability of the already existing theorems on
consistency by Vorobev and Kellerer.

In section 4.5, I derive some conditions on the parameters of the model from an
assumption of self-averaging.

In section 4.6, approximating the method introduced in section 4.2 through an
Ansatz, I create a fictitious stochastic dynamics on the configuration space of the
system, with the aim of obtaining an asymptotic distribution of the activities that
satisfies the marginals and which, at the same time, can be studied through numer-
ical simulations.

In section 4.7 an analytical approach to the dynamical system of section 4.6 is
exposed. In fact, this analytical study of the asymptotic distribution allows the
verification of the consistency of the given marginals only in a particular limit, due
to mathematical difficulties in ‘mere’ calculations connected with the non-mean-field
behavior of the statistical system.

In section 4.8 an analogy with diluted Ising ferromagnets is proposed.

Then, in section 4.9 I describe and discuss the results of the numerical simu-
lations, that are in favor of the hypothesis of consistency of the given family of
marginals thus supporting the underlying neuroscientific theory.

In section 4.10, I sum up the conclusions and some directions for ongoing inves-

tigations.
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4.2 Mathematical basis of the method

Let S be a finite set of n discrete random variables, and M a set of marginals such
that any marginal is defined either over a couple of RVs or on a single RV from S.
For any marginal P4, € M over a RV or a couple of RVs, called A, in S, I call A the
support of P4. The main hypothesis is that the marginals of all the possible couples
in § are present in M.

Compatibility: The marginalsin M have to be compatible, that is the marginal-

ization of every couple of them on the intersection of their supports must coincide.
Otherwise, M is a set of inconsistent marginals. For example, let F'(z,z,) and

G(zq,x3) be two of the marginals in M; then it is necessary that

> F(zi,z2) = Y Gz, z3)

for any value of 5. In the rest I assume the compatibility of the marginals in M.

Construction of the MRF: Given a variable z; € S, one may consider all the
couple marginals in M whose supports contain x;. This subfamily is denoted A,
and Y; is the set of RVs that belong to the supports of ;. The RVs in Y¥; — {z;}
are the neighbors of z; from the point of view of the MRF theory. The marginals
in NV; are cdmpatible and their supports constitute a regular complex (Aleksandrov,
1956). Thus Vorobev’s theorem (Vorobev, 1962) can be applied: At least one joint
probability distribution of all the variables in Y; exists such that its marginals over
the supports of N; coincide with the given marginals in N;. Any distribution with
this property is called an eztension of N;.

Usually there are several extensions. Suppose to have two extensions 73/(\}3 and
P,(\i) of N;. Then for any z,, € Y; — {z; }:

ij(\}i)(xi,mm,x’) = ZPﬁ?(zi,azm,x’), (4.1)
"
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where z’ is a collective symbol for {z; € Y; — {z;, zn}} and the sums are over the
values they can assume. It follows that the two local distributions can differ only

by a function F; = 73/(\}3 - 73/(\%3 such that
> Fi(zi, tm,a") =0 (4.2)

for every RV z,, € ¥; — {z;}. Thus, knowing one particular extension P; of N;, all
the other extensions of A can be obtained from P; by adding functions F; defined
on Y; satisfying the property of eq.4.2.

Considering only binary RVs (z; = 0,1), the function F; can always be written

as

Fiz)= > (1—22,)(1 - 225)1mn(z) (4.3)
i)

where z represents all the variables in Y}, the sum is over the indices of the RVs in
Y; —{z;}, and ¢, may depend on all the RVs in Y¥; — {z;, ,» }. Thus one can choose
a convenient extension of A; and then add to it the generic function in eq.4.3. As a

convenient solution I propose the conditional independency distribution
PO (2) = P(z)) [ Pa(zalzs), (4.4)
A

where the product is over all the supports of A;, P, is derived from the marginal in
N; with support A, and z 4 is the other RV that belongs to the support A together
with x;. The distribution in eq.4.4 has the property that its marginalization over
any variable in Y; — {z;} is still a conditional (with respect to z;) independency
distribution.

Thus, the most general joint p.d.f. on binary RVsin Y; that satisfies the marginals
in NV; can be written as

Pilzy) =P (zv) + Y (1= 22m)(1 = 220)mn (T% - (2 20}, (4.5)
{mn#i}

57




where zp is the collective symbol for all the RVs in the set R C S. Since v, addi-
tively modifies t.he probabilities of the events related to Y;, it cannot be completely
arbitrary, so that its values can move only in bounded intervals.

For simplicity I indicate the local solutions by U, only, implicitly keeping the
arbitrariness, provided by eq.4.5, that represents degrees of freedom possibly useful
to the solution of the marginal problem.

From the parametrized joint distribution ¥;, it is easy to extract the conditional
probability ®;(z;|{zy € Y,k # 1}). (For simplicity, I assume that no event has null
probability.)

Performing this construction for every variable z,, in S, one obtains the field
{®;,1=1,...,n} candidate to be a MRF.

Derivation of the Gibbs state: From the theorem of equivalence between

MRFs and Gibbs states (Kemeny et al., 1976; Hammersley and Clifford, 1971) it
follows that, given an MRF', a Gibbs field that generates the MRF exists with the

canonical neighbor potential

Vxm) = T ()" a(n”) vieXec

(4.6)
=0 VX ¢ C,
where 7 is an event (that is, a realization of the RVs in X), C is the set of all the
cliques of the MRF, U is a subset of the clique X, n¥ is the vector such that nY = 7
when z € U and 77 = 0 otherwise, and 7 indicates any variable (=node) in X.
Thus the Gibbsian distribution Gs can be constructed?, whose marginals possibly

generate the MRF.

2The hamiltonian of the Gibbs distribution is

Hw) = %ZVQ(UJ)
Q

where @ is any subset of S, w is any configuration of the system, and —é— is the ‘temperature’.
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Verification: At this point; possibly making use of the above-mentioned degrees
of freedom, one has to verify whether all the marginals in M can be obtained
marginalizing Gs (obviously, it is equivalent and more convenient to check the set
{¥;,7 =1,...,n}). If they can, then the family M is consistent and Gs gives the
solution (or the set of solutions, since there could remain some free parameters).
If they cannot, then the given family M of marginals is inconsistent. In a single
proposition:

The family M of compatible marginals is a consistent set of marginals if and only
if the constructed Gibbs distribution Gs is compatible with all those marginals.

This verification rule might be formalized and shown in a more mathematical
treatment, and its hypotheses a little relaxed. I will expose the technicalities and a
more detailed description of the method in a forthcoming paper.

The only problem now is provided by the practical calculations, where in the
case of large systems Statistical Mechanics of Gibbs ensembles may be of some help.
Indeed, sometimes calculations are not easily performed, as in the case analyzed
in the rest of this chapter, where the difficulty in managing with a large set of
randomly correlated random variables does not allow one to apply the complete

procedure presented in this section.

4.3 The randomly interacting system

In the rest of this chapter I define the neuroscientific problem of marginals in more
general terms and find some results addressing its solution. In order to imagine the
following in a neuronal context, the reader should identify the nodes of the random
graph I will define with their activities as the modules and the modular activities
respectively. The presence of a channel between modules m and n will be represented

by the binary connection variable s, being equal to 1 (instead of 0).
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Consider a set of binary RVs {r,,m = 1,..., M}, with large M; the configu-
rations assumed by this set trial by trial are points in {0,1}¥. Let the average
“activity” < %;Tm > be equal to 7. (Pointed brackets indicate the ensemble
average. )

The RVs {7,,} are not independent. I consider the case in which the joint p.d.f.
P({rm}) is unknown and an Ansatz is proposed on the pairwise marginals. To
simplify the formulation, it is useful to give an intuitive representation of the systém
from the beginning.

Consider a random graph G(M, s), where s is the probability for any edge to be
present; the adjacency matrix (s,,) is symmetric, that is the graph is undirected,
and there is no simple loop ($mm = 0). Each node represents one of the RVs;
the presence of the edge indicates a marked dependence in the activities of the
two nodes, while two non—adjacént variables are nearly independent (in this case the
dependence in a couple is defined as the non factorizability of their marginal p.d.f.?).
To be more precise, the marginal distribution of the activities in a randomly chosen

pair of nodes is given by the following probability table:
Plrm =1,7n = Usmn) = Tt18mn + 72(1 = Spmn)
Plrm=1,70=08mn) = (1 —7)t0Smn+ (4.7)
+ (1 =7)7(1 = Spmn)
where t; is a probability larger than 7 and ¢, is smaller than 7. According to eqs.4.7,
the probability that two connected nodes are in the same state of activity (0 or 1),

averaged over the connected couples, is greater than chance (positive dependence).

Actually, if one looks at the same pair (m,n) during trials, the probabilities of the

3This definition is convenient also from the neurophysiological point of view since in experiments
usually only a small number of modules can be simultaneously monitored

60



activities of the two nodes are

Pt = 1,7 = 1|S) = [l Tt18mn + AL 72(1 — 5pn)
(4.8)

Pt = 1,7 = 0[S) = fOL (1 = T)toSmn + A0, (1 — T)7(1 — Sy

where S represents the knowledge of the adjacency matrix, and A RO

mn7 mn’ mn7
are positive structure factors that take into account the fluctuations of the marginals
across the node couples and depend only on the quenched structure of the graph.

The structure factors are normalized as follows:
57\4(1%4—_” > %Lsmn =1,
(m,n)

;M_(]%J_j]j 2 ﬁ%smn =1
(m

k]

e 2, frinlL = 3nn) = 1, (49)
MO Z)hm( — Smn) = 1,
where
T MM ) ~1 Zsmn (4.10)

So, the average of eqs.4.8 over the connected and unconnected couples gives back

eqs.4.7; for example,

T 2 SmaP(Tm = 1,7 = 1]5) =
Y | (4.11)
= P(Tm = 177_7’& - 1!Smn == 1) = Ttl.
I also assume that the marginal distribution of a single node does not depend on

the structure of connections, that is
P(rm =1|5) =T (4.12)

Indeed, I want to study the existence of distributions with marginals deviating from
independence without introducing an a priori position-dependent distribution of

single node activity.
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From eqs.4.8 and 4.12:

P(1m = 1]5) = [finmts + fon (1 = T)to]Smn+

(4.13)
+[AE 72+ R (1 —7)7T)(1 = 8pn) = T
Then 1t must be that
ot + fOU(1—T)tg =T,
(4.14)

R 4+ hE (1—71)=1.

Averaging the first one over the connected pairs, I obtain the necessary condition
(1=7)to =7(1—t,). (4.15)

This may be seen as an “equilibrium” condition; infact, if one averages egs.4.8 over

the connected couples and over the unconnected ones respectively obtains:

Pt = 18mn = 1) = 7t + (1 = 7)to,
(4.16)
Pty = USmn =0) = 7.

Thus, the relation in eq.4.15 implies that the presence, or absence, of a connection
between node m and any other node does not condition, by itself, the activity of
node m (on average). This is consistent with eq.4.12.

Relation 4.15 may also be seen as a “detailed balance”: if‘each node represents
the state of a dynamical system and this can move only from one state to an adjacent
one at each time step, then the probability of observing the evolution of the system
from state m of “class 17 (7, = 1) to state n of “class 07 (7, = 0) is equal to the
probability of observing the reverse kind of transition.

One of the aims of this chapter is to show that the marginals in 4.8 over the
random graph can be realized if the parameters of this stochastic system satisfy
appropriate conditions. In particular, I show that, for fixed s and 7, there exists
an upper bound to t; above which the network can no longer support the desired

statistics.

62



o
o
T
}

010203040506070809 1

conn

Figure 4.1: Average number of channels per node versus the probability for two nodes to be
reachable one from the other through a path of the graph.

Trivially, the problem is solvable if t; = 7, that is with independent RVs. I
concentrate on the case with t; > 7; the case with ¢; < 7 is similarly treatable.

The probability for two nodes to be reachable, one from the other, through a
path in G(M, s) is easily found to be as in figure 4.1 versus the average number of
connections per node (=s'=s-(M —1), the analytical relation being s’ = _l_n(lp;p); cfr
Appendix A). In the range interesting for neuroscience (2 < s’ < 10) such probability
is very near to 1. If ¢; were equal to 1, the large majority of the nodes would be in
the same state (0 or 1), which is not acceptable. Thus, ¢; must be smaller than 1.

Is it sufficient to keep ¢; smaller than 1?7 One is brought to conjecture that the
higher the correlation inside the set of nodes (that is the higher s'), the lpwer the

upper bound to ¢;. This idea seems to be confirmed by the results obtained in this

chapter.
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4.4 Existing theorems

The theorem of Kellerer (Kellerer, 1964; Kellerer, 1991) gives a necessary and suf-
ficient condition for the consistency of a finite set of marginals, but in the present
context it is not useful. In fact, since I am dealing with a large number of randomly
correlated RVs, the hypotheses of Kellerer’s theorem cannot be verified for each
specific realization of the random graph representing the correlations. On the other
hand, T could verify the hypotheses in probability when considering the thermody-
namic limit (M — oo), but then I would have an infinite set of marginals and the
cited theorem could not be applied. Besides, the theorem requires the verification
of a condition over a large set of test functions, and this would also be a difficult
task.

The crucial hypothesis in Vorobev’s theorem (Vorobev, 1962) is the regularity
of the complex of the subsets of RVs that are the arguments of the given marginals.
Roughly speaking, the set of marginals is consistent (or “extendable” in Vorobev’s
terminology) if it is not possible to describe a cycle in the cited complek passing
from one subset to another one only if these have not empty intersection. Obviously,
this is not the case in the present model, since every couple of nodes is argument of a
marginal. So, Vorobev’s theorem cannot be applied in the present context. However,
it should be noted that most of the couple marginals are almost factorizable, and this

could be an hint toward an extension of Vorobev’s theorem to the present model.

4.5 Conditions from self-averaging

A first condition on the parameters is obtained from the reasonable assumption that
in the thermodynamic limit the average activity on the graph is not affected by the

condition that one particular node is active (actually, this is equivalent to requesting
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self-averaging of the average activity -]%4— > Tm; cf. Appendix B):
m

<37 D Tm|Ta=1>=
. - (4.17)
- mménP(Tm = 1ITTL = 1,8) — T

for any n. Then the average over the nodes must be
'ﬁf%]\—/fl:imgnp(TmzllTn:l,S) — 7. (418)

Using egs.4.8, it follows
s (ty—7)=0. (4.19)

If s is finite when M — oo, t; cannot be greater than 7. Thus, the stochastic system
I consider in this work makes sense only if A}iinoos = 0. Indeed, it is interesting
to study the statistical properties of the model without conditioning them through
adequate tuning of the input patterns statistics: the main point is how the structure
of connections can reflect the correlations among the parallel contributions of the
input signals, keeping the average activity constant.

If T allowed for anticorrelation between unconnected nodes, that is

Pt = 1,7 = 1smn) = TtiSmn +72(1 — Spn)
P(Tm = 19 Tn = Olsmn) - (1 - T)tosmn+ (420)
+ 1-=7)2"(1 - smn)

with z < 7 and 2’ = 73=2 > 7, the previous argument of self-averaging would give

the bound (see Appendix B):
T — Stl
1—s '

T =

(4.21)

This implies that ¢; must never be larger than I. In particular, ¢; must be equal to
7 if s = 1 (while z loses physical meaning).
Thus, marginals in 4.20 can satisfy the request of self-averaging also with finite

s. In this chapter I discuss only the case with s = O(5;), and hence with z = 7, that

65




seems to be the more interesting at least for the neuroscientific problem. Perhaps
useful results for the finite s case could be obtained by introducing correlations
in the set of connections {s,,} also, such that the probability for the connection
(,7) to exist is larger than chance if the connections (i,k) and (k,7) exist, for
any k; this would also be interesting from the point of view of neuroscience since
there is appreciable evidence that any two small neocortical areas are more probably

connected with each other if another area is connected to both (Jouve et al., 1998).

4.6 A Fictitious Dynamics from a MRF

I introduce a stochastic dynamics of the activity of interacting nodes to construct
a probability distribution whose marginals are those in eqs.4.7, when &' is finite. I
want to underscore that this dynamics is purely fictitious: no particular real physical
process is assumed to underlie the stochastic system. The desired p.d.f. is given
by the asymptotic distribution of the dynamical process, so demonstrating that at
least one solution to the marginal problem exists.

First, guessing an Ansatz, I consider the marginals in eq.4.8 with fll = f0l =
1 for any connected pair (m,n), and insert them into eq.4.4 in order to obtain

the conditional probability distribution of the activities of all the nodes directly

connected to another one, the condition being the activity of the latter:

P, V0|8 = 1}Tm = 1) = 177 (1 — 1),
, (4.22)
P({Tnavnlsmn - 1}|Tm = 0) = t(T)H_(]- - tO)n“:

where n., and n_ are the numbers of adjacent nodes in activity level 1 and, re-
spectively, 0. The assumption of conditional independence in egs.4.22 as a first
approximation is partially justified by the absence, with probability equal to 1, of
direct connections among the n, + n_ nodes connected with module m, and can

be considered as the zero-th order approximation of eq.4.5 for small ,,,. This
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approximation is adopted due to the difficulties in the analytical treatment (see
the following), and in fact is a limit to the application of the method that instead
requires the most general local marginal.

For a pair of unconnected nodes (m,n) that share a common neighbor,k eqs.4.22
give

ST (ﬁ)g +(1-7) (@)2 _ (4.23)

T T

At this point, the p.d.f. for a node given the activities of all its neighbors can

be found through Bayesian inversion. After some algebra, this can be written as

1
m ns mn = 1) = .
P(tm = 1|{m, Vn|s 3 T+ exp{—Bns —on_ 7] (4.24)
being
tl 1-— to T
froe —_ = = 2
,6 Into, BA 1n1_t1, 1517 1n1~7_. (4.25)

Equation 4.24 defines a MRF over the graph if M is consistent.
Then I use eq.4.24 to generate the discrete-time stochastic asynchronous dynam-
ics:

At each time step

e choose a node randomly,
e update its activity with probability given by eq.4.24.

Actually, numerical simulations have shown that the system is more stable (in
simulations M must be finite) and reaches equilibrium more easily if the term v in
eq.4.24, which is mainly responsible for keeping the average activity in the net at
the desired level, is modified as the instantaneous average activity deviates from 7.

Thus, in place of eq.4.24 I consider the following expression:

1

P(tm = 1|{mn,Vn # m) = 1+ exp{—f(ny — An_ + Vﬁvf > Tm)}

(4.26)
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So the attractor with average activity 7 is strengthened. When, at equilibrium, the

average activity is equal to 7, expression 4.26 coincides with expression 4.24.

4.7 Analytical approach

The Markov dynamics generated by eq.4.26 satisfies detailed balance in the thermo-
dynamic limit. Hence, during time evolution, the system tends to an equilibrium
state. It can be shown that the corresponding asymptotic p.d.f. over the configura-

tions is Boltzmann-like with Hamiltonian

1-A y 2
H = 5 ; 8i5TiTj + A ; siTi(1—75) — By (}; Ti> : (4.27)

Applied to the present case, the theorem of section 4.2 confirms, through eq.4.6,
the form of the Hamiltonian in eq.4.27 (except for the strengthening factor of v),
since the contributions to H by the cliques with more than two nodes are negligible
in the thermodynamic limit. However, the equivalence theorem cannot substitute
the construction of a dynamics since the latter is needed for the simulations until an
analytical solution of the statistical canonical model with H is found (from which
to extract the relation between ¢7"** and s'). It seems interesting that the use of the
characteristics of a MRF' as updating laws for an asynchronous dynamics drives the
system toward an equilibrium distribution that coincides with the global distribution
provided by the equivalence theorem.

The Boltzmann distribution with the Hamiltonian of eq.4.27 is the candidate for
the distribution with the desired marginals I am looking for. Mathematical tools of
the statistical mechanics of the Boltzmann-Gibbs ensemble may be used, in principle,
to study the equilibrium properties of the system. Unfortunately, the application of
the mean-field techniques to the calculation of the partition function soon finds a

serious mathematical obstacle whose physical correlate is the high variability of the
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field (acting on a node) across nodes.

Then, since the system does not lend itself to a mean-field analysis, I try another
approach. If £, were equal to 7 the system would not deviate from independence
and the only effective term of the Hamiltonian in eq.4.27 in the partition function

would be

2
v
Hy = ~ 537 (Z n) : (4.28)
Such a reduced Hamiltonian is easily treatable with mean-field techniques. Thus,

I perform a perturbative expansion for ¢; ~ 7. Defining ¢ = ¢; — ¢, as the small

parameter, the constants entering the “perturbed” Hamiltonian are:
thh=7+¢el—71),

ty =T — €T,
B==2+0(e), (4:29)
BA =15 +0(e%).
Writing H as Hy + H; and
Zexp —~B8Hy({r}), (4.30)
{ri}
up to the second order in € I have
1
Z ~ Zy [1— < BH; > +§ < (ﬁHl)z >0 (431)

where < A > is the average of A in the ensemble with Hamiltonian H, (“unper-
turbed” system).

Then, the free-energy is (up to O(e?))

<<InZ >>~InZy— << (BHp), >> +% << [<(5H1)2>0 - (<5H1)0)2] >>
' (4.32)
where << - >> indicates thé average over the quenched variables.
To verify if the statistics of the system have the desired marginals, I define the

“observables” .
tl - T]\/[SI Z Si5Ti Ty,

5 7 (4.33)
M (3]
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The averages of these quantities can be derived from eq.4.32, and are respectively
equal to t; + O(éQ) and 7 4+ O(e?). This means that the canonical model, in the
approximation used in the mathematical treatment, obeys a p.d.f. whose marginals
are those of egs.4.8.

This result strongly supports the belief that the particular marginal problem
analyzed in this work (with s’ finite) has at least one solution and, consequently,
that the Ansatz for the marginal used to solve the original neurobiological problem
constitutes a meaningful model. Unfortunately, the perturbative expansion up to
order €2 does not provide an upper bound to ;. As already stated, any increase in
s’ makes the system more strongly correlated; this should reduce the upper bound
to t; monotonically until, for s’ large enough, the statistics should not appreciably

deviate from independence (¢, = 7).

4.8 Analogy with the Ising ferromagnet

One could think about the correlated system in question as an Ising spin model in
which each spin interacts ferromagnetically with a small number (about s') of other
spins randomly chosen at the beginning. Let us define “cluster centered around a
spin” the set of all the spins connected to that one; this relation is quenched. It can
be shown that, at least in an approximate calculation (e.g., large temperature), as
intuition suggests, the spins of a cluster tend to be oriented parallel to the center
of that cluster even if the temperature is well above the Curie point and the global
magnetization is zero. In a sense this phenomenon reminds of Weiss domains but in
the present model there is no topology: the spins belonging to the same cluster may
be scattered throughout the system and may interact with several different clusters.
If s is finite, the ferromagnetic model is purely mean-field and the phenomenon of

cluster polarization disappears (s;; are homogeneously distributed).
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Figure 4.2: Typical output of a simulation with #; and  in the useful region (s' =5, 7 = 4,
t) = .5, M = 40,000).

4.9 Simulation results

I have implemented the dynamics in numerical simulaﬁions, where s’ has been taken
between 2 and 8 since this appears to be the interes'tingkregion to study. Having a
small s" allows one to simulate very large networks up to more than 100,000 nodes,
on a modest PC.

The main quantities observed in the simulations have been #, 7, f,. According
to these “order parameters” (actually, the last one is obtainable from the other two),
the system soon reaches equilibrium (if the selected parameters ¢, and 7 are in due
ranges; to is then fixed by the relation 4.15). The oscillations of the order parameters
derive from the finiteness of the simulated net and are in good agreement with the
prediction of the variances (see Appendix B).

In figure 4.2 a typical output of the simulation when #; is in the useful range
(see below) is shown. At first the dynamics drive the system activities toward the
equilibrium distribution. Then, the order parameters oscillate around their averages:

1 =~ 0.5000 + 0.0043, 7 ~ 0.4001 % 0.0037, , ~ 0.3335 & 0.0038, with standard

71




0.45 | T 1 T T T T
04
0.35 -
0.3 .
0.25 -
0.2
0.15 - -
0.1

0.05 P -

0 200 400 600 800 1000 1200 1400 1600
time steps

T
|

Figure 4.3: Output of a simulation with biologically plausible parameters: ¢, = .4, 7 = .01,
s' =4, M = 10°. The quantities 7 and ¢, are very small compared with & (& = 40).

deviations that are compatible with the estimates based on the pattern statistics
(Appendix B) and that decrease as the number of nodes increases. The relation in

eq.4.15 is fully respected, that is:
(1 -7l = 7(1 —11). (4.34)

In figure 4.3 it is shown the output of a simulation with parameters and T
biologically plausible. The order parameters assume the following values: ; =~
0.3956 & 0.0100, 7 ~ 0.010040.0002, £ ~ 0.0060 4 0.0002. The standard deviations
are compatible with the estimates and relation in eq.4.15 is fully respected.

In these conditions the system does not switch among different equilibrium values
of the order parameters, possibly indicating that the dynamics cannot switch to
different metastates, at least at the level of the measured quantities. This has been
verified by testing the system dynamics for a very long time and for several quenched
structures of connections.

The other important result from simulations is the estimation of the upper bound

Mm% 0 ¢1, that is the value of ¢; beyond which the system is no longer able to sustain
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Figure 4.4: Estimation, from simulations, of the upper bounds to t; as functions of ', for three
values of 7 (.01, .03, .05)

the distribution with the desired marginals. If ¢; is increased above its upper bound,
the average values of ¢, 7, fy no longer equal t;, 7, %o, being #; and 7 lower than #,
and 7 respectively. In this out-region case the relation in eq.4.15 is not respected.
Figure 4.4 shows the dependence of 1" on s’ for three different values of
(around the biologically interesting values). It confirms that the more correlated
the system, that is the larger &', the smaller the useful range available to ¢,. This
result, obviously, might not be universal; other dynamics, that is other Ansatz on
the probability of eq.4.5, might provide the system with a larger useful range for ¢;.
So, the bound depicted in figure 4.4 might not be the necessary one implied by the
general assumption about the marginals in eq.4.7. Further investigation is going on
to find an analytical prediction on the bound and to verify its generality.
Simulations also show the necessity of the structural factors, at least when the
MRF is defined by eq.4.26. For example, it is very clear from computer outputs that
the correlation between two unconnected nodes that share a common neighbor is,

for many such pairs of nodes, sensibly larger than in the case of independence (e.g.t,

“The indicated standard deviations are not the experimental ones (overestimates) but those
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< Ty Ty >= .0055 + .0007 instead of .0025 +.0005, being T = 05, t; = .3, ' =4,
M = 20,000; or < T, 7, >= .0044 + .0005 instead of .0025 & .0005, being 7 = .05,
t; = .2, s =4, M = 100,000). The values are in good agreement with the value
712 + (1 — 7)t2 from eq.4.23, that is what one expects from a generating dynamics
as the one here implemented and from the consideration that the probability for
a pair of nodes to have more than one common neighbor in the diluted graph is
negligible, and the contribution given by longer connecting paths is not dominant.
The ensemble average of the activity of any node is in good agreement with the
fixed value of 7. The correlation of the activities of connected nodes is most usually

in excellent agreement with the expected value 7.

4.10 Conclusions

In the first part of this chapter I have presented a necessary and sufficient condition
for the consistency of a class of families of marginal distributions defined on finite
sets of discrete random variables. The main assumption is the presence, in the given
family of marginals, of all possible pairs of random variables from the given stochastic
system. Using mainly the theorem of equivaleﬁce between Markov Random Fields
and Gibbs states, I have shown that a family of marginals is consistent if and only
if such marginals equal the corresponding marginalizations of a Gibbs distribution
constructed according to a precise rule.

The second part of the chapter has been dedicated to the study of a particular
system from theoretical neuroscience.

In previous chapters it has been shown that one of the ingredients to construct
a plausible model of the dishomogeneous neuronal networks subserving memory

retrieval in the associative areas of primate neocortex is the introduction of corre-

inferred from a binomial distribution over trials with the mean equal to the indicated experimental
mearn.
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lations among the activities of connected modules of recurrent networks. Modules,
consisting of densely connected neurons, can be each in one of two possible states
(either active or non-active). Any two modules are more likely to be in the same
state of activity if connected by a channel of Commﬁnication through which, as an
abstraction, neuronal projections are ailowed to pass. This biological system is mod-
eled as a set of binary random variables (corresponding to modular activities) that
are randomly correlated, thus constituting a graph where the presence of an edge be-
tween two nodes is to be interpreted as the existence of prominent interdependence
between the two corresponding RVs.

The positive results obtained in the work (Fulvi Mari and Treves, 1998) are valid
only if one verifies the hypothesis used there about the marginal distributions of the
activities of pairs of connected and unconnected units (=modules). In particular,
the set of marginals has to be confirmed as a consistent family.

Theorems already existing (to my knowledge) about probability distributions
with given marginals cannot be applied because of the large number of RVs together
with the randomness in the structure of correlations.

I have formulated the problem in terms of probability distributions on random
graphs. I have demonstrated that the stochastic system cannot be realized if any
node is connected with finite probability to any other node while the global average
activity is fixed. Then, with the idea of making use of the condition derived in
the first part of the chapter, I have produced a fictitious dynamics whose asymp-
totic distribution has the desired marginals, thus showing that the set of given
marginals is consistent. For small correlations I have analytically accounted for the
equilibrium properties of the system. For arbitrary correlations I have performed
numerical simulations whose outputs confirm (within the statistical fluctuations)

the analytical results more generally and provide the upper bound to the node ac-
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tivity correlation as a function of the average activity for some values of the average
number of neighbors per node. Both approaches have strongly suggested that the
particular marginals family is consistent, thus supporting the underlying neuronal
theory. An analogy with a magnetic system is also proposed to emphasize the main
phenomenon.

Further investigations are going on to find out an analytical relation between the
upper bound to the correlation and the number of neighbors that fits the numéri;:alﬂ /
results.

[ am also studying possible refinements of the result of section 4.2 and a more ex-
tensive use of Markov Random Fields theory to the problem of marginal consistency

of arbitrary families of marginals.

Appendix A: Connectivity of the random graph

Be p the probability for any node, different from node m, to be connected to node

m, through a path belonging to the graph. Then

S E——
k=0

(4.35)
in the thermodynamic limit. It follows
In(1 —
s = _%ﬂ. (4.36)

Appendix B: Self-averaging

As already stated, the average over the patterns of the average activity in the network
is
< ! D T >=T (4.37)
il =T 37
M4
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The fluctuation around this mean can be calculated:

0° =< 55 2t = 7)) g 2T —7) >= Ml,g > < (T = T) (T —7) >=

1— —
=B R <>~ T <>+

(m.n)
="t T rnsmabi7 + bt (1= sma)ar] = 2R 52 < > 4 20
(4.38)
Using 4.9:
1- M-1 M-1 M—-1
o = ul i 7) ST+ (1—s)zr — i 2. (4.39)
In the thermodynamic limit (M — oo):
o — s7(ty —z) +7(x — 7). (4.40)

Assuming self-averaging means to assume that the right-hand-side of eq.4.40 van-

ishes. This implies:
T sl
o 1-s

z (4.41)

that is easily seen to be not larger than 7.

Sl

In the simulations I have taken s = 77,

with s’ finite, and, according to eq.4.41,

z = 7. Thus, the fluctuation is given by:

1—7) M-1
&:waﬂ+ st = 7). (4.42)

In a very similar way, fluctuation of the parameter £; can be estimated:

<t >=ty; (4.43)
3 2t 1
< (B —t)? >~ -M—;l(tl + ), (4.44)

having assumed the approximation

Prh=lLn=4Lmn=1Ln=1sm=1su=1)~
(4.45)
~P(r=117=1s$pmm =1) - Plne=1,71=1l|sp = 1),
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being 1, 7, k, [ four different site indices. Estimate in 4.42 is in excellent agreement
with simulation data, while that in 4.44 is slightly an overestimate due maybe to

the approximation 4.45.
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Chapter 5

Neuropsychology and the model:
features, modular retrieval, and
category-specific impairment

Some kinds of ‘modular’ structures often appear in neuropsychology, especially in
the connectionists’ attempts at modeling neurological disease (e.g.,Rumelhart and
McClelland (1986). Recent theories have been formulated, in particular, in order
to account for the apparently incongruent results from neuropsychological investi-
gations on semantic category-specific impairments (Gonnerman et al., 1997; Devlin
et al., 1998). Even though their connected units tend to abstract from the neu-
rophysiological correlates keeping only some salient characteristics of distributed

neuronal systems, we found a deep analogy between such theories and our model.

5.1 Features and category-specific impairments

Among the category-specific deficits the most studied is the double dissociation in
the ability of the patients at recognizing artifacts and natural kinds. Typically, a
patient suffering such a deficit presents either a difficulty in naming items among
artifacts more than among natural kinds, or, more frequently, the opposite pattern.

One of the first reported cases of category-specific semantic impairments is that of
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patient VER, described in Warrington and McCarthy (1983). VER, after having
suffered a left hemisphere infarct, presented a peculiarly selective impairment in as-
signing items to their correct categories: in a matching to sample test she scored 96%
correct for the category flowers, 86% correct for animals, and the remarkably lower
63% for objects. Thus, VER was more accurate with ‘biological’ items than with
inanimate objects. One year later, Warrington and Shallice (1984) described also
some patients that were presenting the pattern of deficits opposite to VER’s one,
that is a selective difficulty with living things rather than with non-living things.
Since then many other analogous cases of selective semantic impairments have been
reported. Initially, many investigators interpreted the difference between these dual
patterns of deficits as a consequence of the differences in the exact locations of the
lesions on the cortices, having assumed that the structures responsible for specific
categories are spatially distributed on distinct areas of the human cortex (Pietrini
et al., 1988). However the living/non-living categorization soon failed to account
for some pathological cases. Indeed, some patients seemed to perform with cate-
gories like body parts similarly to how they did with artifacts more than with natural
kinds. Analogously, the degree of the ability of some patients with musical instru-
ments was nearer to that shown with natural kinds. For these cases the previous
theory would have predicted the converse behaviour. Warrington and McCarthy
(1987) suggested that the correct discrimination to be considered is that between
functional and perceptual properties of the items. They argued that living things are
more often discriminated through their perceptual properties while the distinction
between artifacts is mostly based on their functional properties. This observation
justifies the performances in knowledge tests with musical instruments and body
parts: musical instruments, though being artifacts, are distinguished one from the

other more on the base of their visual features than on that of their functional fea-

80



tures (their functions are very similar); analogously, body parts are identified more

often through their functions than through their visual aspects.

5.2 A topographic computational model

According to the theory exposed in the previous section, different cortical ‘structures’
should be responsible for the representations of different features and should be
located in different parts of the cortex.

These hypothetical characteristics of the semantic system have been implemented
in a computational model by Farah and McClelland (1991). They adopted the
assumption common in the field of Parallel Distributed Processing studies according
to which the knowledge of an item corresponds to the ability of reproducing a
specific distribution of activities across a network of neuron-like units. These units
are usually grouped in pools modeling different cortical structures responsible for
different tasks. In the model proposed in Farah and McClelland (1991) the units are
thought of as each representing some ‘aspect’ or property of any item presented to
the peripherical sensorial system. In particular, two classes of units are considered:
those representing visual aspects of the items, and those representing functional
characteristics of the same items.

The units are grouped in three pools (fig.5.1): two of them model the peripherical
verbal and visual systems, whose activity patterns can either be determined by an
imposed input or result from the elaboration that has followed a previous, possibly
incomplete, input. The third pool models the semantic system and consists of
a set of units representing functional properties and a set of units representing
visual, that is perceptive, aspects of the items. The simulated net has 24 name
units, 24 picture units, 60 visual semantic units, and 20 functional semantics units.

There are bidirectional connections between the units belonging both to the same
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Figure 5.1: Schema of the model introduced by Farah and McClelland (1991). All units belonging
to the same pool can be connected. All units belonging to distinct pools can be connected with the
exception of the verbal input and visual input pools that cannot communicate directly. (Redrawn

from Farah and McClelland (1991).)

pool and to distinct pools, except that there are not direct connections between
the verbal and the visual input groups. Any unit can be in one of two states of
activity, and connected units interact according to a synchronous dynamics’. In
Farah and McClelland (1991) the network learned 20 randomly generated patterns
of activity, representing 10 living and 10 non-living things. The repfeéentation of
each item included all the 48 name and picture units; instead on the semantic level
the living things were represented with an average of 16.1 visual and 2.1 functional
active units, while the non-living things were represented with an average of 9.4
visual and 6.7 functional active units. These numbers were set following statistics,
reported in the same article, according to which in common language living things
are attributed perceptual and functional features in the ratio 7.7:1, while for non-
living objects this ratio is 1.4:1. These figures are in agreement with the suggestion

given in Warrington and McCarthy (1987), that is: living things rely much more on

In our model (Fulvi Mari and Treves, 1998; Fulvi Mari, 1998) each module (that is, unit) is
able to settle in one of many states of activation (local feature retrieval).
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perceptual features than on functional features, while non-living things rely almost
equally on both. Then Farah and McClelland (1991) simulated cortical lesions onto
the semantic system by damaging (more exactly, eliminating) units. Damage to
semantic units caused a deficit of the network in producing the correct name output
when presented with a visual input. They found the easily predictable result that
selective lesions to perceptual semantic units provoke impairments especially with
living things, while lesions to functional semantic units bring a deficit more marked
with non-living things. They also found that when the degree of damage in the
perceptual semantic system was large enough, also the performance with non-living
things is impaired. Analogously, extensive damage to functional semantic units
led to impairments with living things. This phenomenon is due to the recurrent
connectivity inside the semantic systems and the consequent interaction of the two
subgroups: this allows the network to produce the correct name éutput in the
absence of lesions, but also implies that the dynamics of the whole semantic system
is distorted even when only one of the two subgroups is damaged. Thus the model in
Farah and McClelland (1991) was constructed to support the idea that in patients
impaired more heavily with living [non—living] things recognition thé lesions are
mostly localized in neocortical areas that are responsible for memory and processing
of perceptual [functional] features.

This apparently satisfying model of semantic category-specific deficits is criti-
cized by some authors as failing to predict the pattern of deficit in Alzheimer disease

patients.

5.3 The intriguing case of Alzheimer Disease

There are few studies on category-specific deficits in patients affected by Alzheimer

disease. In Silveri et al. (1991) the authors report the results of tests on a group
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of mild to moderate AD subjects, indicating a pattern of impairment of the kind
of category-specific deficits with on average more difficulty with living things than
with non-living things. Giustolisi et al. (1993) found that three AD patients in the
early stage of the disease behaved as those described by Silveri et al. (1991), but six
months later two of them showed the same degree of impairment with living and
non-living things, thus suggesting the occurrence of variations in the selectivity of
the deficit with the progress in time of the disease.

The main objection to the model described in the previous section is that al-
though AD causes category-specific semantic impairments, it is characterized by a
damage widely diffused over the brain, in particular over cortical associative areas,
and not specially localized in any area. Thus, the main hypothesis, of topographical
difference, in the distribution of perceptual and functional ‘units’ in the neocortex
in Farah and McClelland (1991) is no longer valid, and that model is unable to ex-
haustively explain the behavioral consequences of AD. Indeed even if the semantic
units were actually distributed as in Farah and McClelland (1991), the widespread
AD lesions would equally damage the two groups. Nonetheless, category-specific

impairments are evident in some AD patients.

5.4 A non-topographic model for category-specific
deficits

In agreement with the objection reported in the previous section, Gonnerman et al.
(1997) have formulated an alternative theory to predict the AD semantic impair-
 ments together with those due to cortical focal injury. They introduce in the previous
model the concepts of intercorrelation between semantic features that are simultane-
ously activated in many of the object representations, and of distinguishing features

by which members within a category are best discriminated. The basic assumptions
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they extrapolate from experimental data are the following:

e Concepts are represented as distributed patterns of activation over semantic

features throughout the network;
e Perceptual features are more numerous than others;

e Living things tend to have a higher ratio of perceptual to functional features

then do artifacts;
e Living things have more intercorrelations among features than do artifacts;

o The distinguishing features for biological kinds tend to be perceptual rather

than functional, while the opposite pattern is true for artifacts;

e Living things tend to share more features across items than do artifacts.

About the biological kinds they state that, while damage may remove certain
connections, the high level of interconnectivity allows the remaining links to com-
pensate for the loss. As the disease progresses, however, and damage accumulates, a
critical point is reached beyond which the performance of the net rapidly decrease.

Due to the weaker intercorrelation, artifacts are differently affected by the pro-
gression of the damage. Since any of the feature is scarcely supported by the others
as a consequence of the low intercorrelation, the decrease of the performance with
artifacts is more ‘linear’ (fig,5.2), so that in a first phase of the disease the per-
formance with artifacts becomes worse than that with biological kinds, but after
the abrupt decrease the performance with biological kinds crossovers below the one
with artifacts. Since biological items usually are represented by more correlated
features and any feature is activated by many natural items, each feature has a low
probability to be very informative. As a consequence, in biological representations

it is less probable that a main distinguishing feature is damaged than in the case
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Figure 5.2: Qualitative evolution of the performance with biological kinds and artifacts according
to Gonnerman et al. (1997). (Redrawn.)

of the artifacts, for which individual functional features usually constitute funda-
mental discriminators. Beyond the critical point cited above entire living things
categories are damaged, while for artifacts the damage to a feature continues to
impair only single objects rather than categories. The prediction thus depends on
the distribution of the damage over the neocortex on a small scale, and it could also
happen that a single biological item cannot be recognized while other things of the
same category are, but it is a low probability event. The authors do not exclude the
importance of function localizations, saying that it could also happen that a corti-
cal area mainly responsible for perceptual features (temporal lobe) is more heavily
damaged than the areas with functional features (frontoparietal regions), thus, e.g.,
initially causing a worse performance with living things than with artifacts. This
observation protects their theory against some exceptions verified in screening the
AD group.

Devlin et al. (1998) tried to give these qualitative ideas a more quantitative sup-

port by implementing a connectionist model whose dynamics was numerically sim-

86



Semantics f .
145

Phonology 7
40

Figure 5.3: Scheme of the connectionist network simulated by Devlin et al. (1998). The figure
in a block reports the number of units in that layer. (Redrawn.)

ulated. Their model is an attractor network consisting of 4 layers (fig.5.3). There is
no connection joining units belonging to the same layer. The semantic layer contains
units that represent the perceptual features (88) and units that represent functional
features (57), while the activity distribution over the phonological units represent
the presented or produced word thus providing an input/output interface. The se-
mantic layer is fully connected to the Semantic Clean-up Units (SCU); this allows
for recursive process at the semantic level (cf. Chap.2 about recurrent networks abil-
ities). For the same reason, the phonologic layer is coupled with a set of Perceptual
Clean-up Units (PCU). They obtained a list of features from a group of undergradu-
ate students who had been asked to ascribe functional and perceptual characteristics
to 60 given items. The resulting statistics did not coincide with those in Farah and
McClelland (1991), but had the same trend suggested by Warrington and McCarthy
(1987) about the ratios of perceptual to functional features in living and non-living
things. They also verified their hypotheses on the intercorrelations between features,
finding that features related to biological kinds occurred simultaneously more often
than those related to artifacts. For this reason and for the large number of items

that shared features, each biological feature retained on average less ‘information’
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about the represented item than artifact features did. Usually, among the features
representing an artifact, the number of ‘informative’ features (that is, the featur.es
that resulted to have an ‘informativeness index’ above an arbitrarily fixed threshold)
Was‘larger than for biological kinds. “Consequently random damage is more likely
to strike an informative feature in an artifact object than in a natural kind object
and thus increase the likelihood of misnaming that item.” (Devlin et al., 1998)

The network was trained until it was able to produce the correct output word
when driven into the semantic representation of an item, and to retrieve the correct
semantic representation when presented with an input word. Then, they simulated
AD damages by progressively removing a number of randomly chosen connections
between the semantic pool and its clean-up pool. The majority of the simulations
displayed a mild selective impairment with artifacts in a brief initial period of the
damage progression, but quite soon the performance with biological kinds became
on average the worse. Only some simulations showed a more marked differential
behavior. The authors stress the qualitative agreement with the proposed theory.
There was also quite a large variability of the behaviour of the net across repeated
simulations. According to the authors, this explains the apparently contradictory

results obtained by a few patients in neuropsychological semantic tests.

5.5 The modular neuronal model with selective
semantic deficits

In neuropsychology literature, as in the papers reported above, the concepts of fea-
ture and of units supporting their representation are quite common, and often the
approximate positions of these hypothetical units on the neocortical surface is also
indicated, using a rough correspondence between cortical areas and cognitive func-

tions obtained with neuropsychological investigations. Nevertheless, in that litera-
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ture a more precise relation between these units and neocortical neuronal structures
is never indicated.

At the level of neocortical associative areas, we propose the identification of the
units with the modules, whose existence and structure has been well studied (see
Chapter 1). Considering modules as small autoassociators, as described in Chapters
2 and 3, we make the hypothesis that each of them analyzes one particular ‘aspect’ of
the information coming from perceptual cortices, as a shape, a visual characteristic
of an object, a modality of use of an object, and so on. If the input arriving to
a module equals, or is very similar to, a significant part of a learned pattern, the
local net of the module ‘recognizes’ it and settles in the corresponding retrieval state
for some time. (We have not investigated strictly dynamical aspects of the process,
having limited our study to a ‘static’ analysis.) Actually, the module may be seen as
a generalization of the connectionist unit, since the latter is usually allowed to settle
in one of only two possible states (an either ‘yes’ or ‘no’ answer), while the module,
once active, can ‘choose’ from a large set of possible output states. The interaction
between modules, that is the long-range projections of their neurons, provide the
ability of the whole net to compose the complete representation of an item through
the retrieval of the correct feature (or a silent state if no feature is elicited) in every
module. When all the aspects of the object are correctly represented, that is each
module recognizes the particular aspect that it analyzes, it can be said that the whole
modular network has recognized the object. If, e.g. due to damage, some modules
lose their ability to retrieve the features, the items whose representation patterns
differ by only tvhe aspects analyzed by the damaged modules will be confused and,
thus, misnamed and inappropriately identified.

" In this view, we probe our model (Fulvi Mari and Treves, 1998) at reproducing

the semantic deficits due to damage to connections and/or to breakdown of entire
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modules. We adopt the same hypotheses on semantic statistics as in Devlin et al.
(1998). We can implement the larger number of correlated units that analyze fea-
tures belonging to biological kinds by providing the correspondent modules with
more neighbours, that is by assigning to those modules a number of connected mod-
ules larger than the average, s'. The higher correlation between biological features
is reproduced with a ¢;, larger than the average ¢;. (See chapters 2,3, and 4 for the

meaning of the symbols.)
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Figure 5.4: Error probability as predicted by the model in Fulvi Mari and Treves (1998), with
v =.5b=.1,A=aB,a=r71=.0Lt(funct) = .2, t1(perc) = 4, u— 1 = 100, s'(funct)) = 2,
s'(perc) = 6, s' =4, a = 100.

To model the damage, we assume that the activity of the neurons belonging to
a module is less selective as the disease worsens. For simplicity, we assume that
the degree of the damage is homogeneous throughout the network. This should also
be the case of more interest in the view of non-focal damages analyzed in Gonner-
man et al. (1997) and Devlin et al. (1998). If we only implement the hypothesis
of intercorrelation between features, we obtain (fig.5.4) that the probability that
a module retrieves a wrong feature or becomes inactive monotonically increases as

the injury increases, but on average the performance of a ‘natural kinds’ module
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is always better than that of an ‘artifacts’ module. Thus, the only hypothesis of
intercorrelation is not sufficient to reproduce the crossover in our model at the level
of the single module. However, it is necessary to consider the global information and
to estimate the inability in identifying the pattern as a function of the probability of
failure by any single module to obtain a reliable prediction from our model. When
a module fails, the probability of the failure of a module connected to the former
is plausibly larger than chance, thus apparently putting in disadvantage biological
features in comparison with thé arﬁfact ones. On the other hand, in the presence of
a few errors, it is more difficult to identify an item when featural interdependence
is low (artifacts) than when it is high (biological kinds), implying that the failure
of a biological feature may have lighter consequences in the recognition of the cor-
responding item than it happens with artifact features. This sort of ‘redundancy’
error correction may revert to a dramatic ‘co-operation in erring’ when the number
of failing modules reaches a critical value. A complete model that aims to describe
the AD deficits must include all these aspects and cannot be based on only siﬁgle
module predictions. Work is going on in this direction, to verify analitically the
plausibility of the model in Gonnerman et al. (1997) and Devliin ét al. (1998) with

our neuronal model.
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