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Preface

The aim of this thesis is to provide a classification of the unitary representations
of the Heisenberg group, equivalently of the C*-algebra of the Canonical Commutation
Relations A, without the standard Stone-von Neumann regularity condition that the
corresponding Weyl operators are strongly continuous. As a consequence one has to al-
low the representation space to be non-separable. The strategy followed is that of first
discussing the representation of a maximal abelian C*-subalgebra of A,,., denoted by A_,
and then inducing the representation of the full algebra.

In this way, the first problem one meets is the general problem of spectral represen-
tations of an abelian C*-algebra A in non-separable Hilbert spaces. More precisely one
has to find necessary and sufficient conditions which ensure that the representation space
is isomorphic to an L2-space over the spectrum of 4. This problem is solved in Part 1,
where we show that the standard condition of maximality of the weak closure of m(A)
(which works in the separable case) is not enough and has to be replaced by an analogous
condition on the o-closure of (. A). Equivalently, one can formulate a condition on the
spectral measures (“spectrally multiplicity-free condition” ) which strengthens the standard
multiplicity-free condition.

In Part 2 we present a classification of the not necessarily strongly continuous repre-
sentations of the algebra A, , which generalizes the classical Stone-von Neumann Theorem,
under the following conditions '

i) the representation of the commutative subalgebra A, is spectrally multiplicity-free (a
notion which generalizes the irreducibility of the representation of the full algebra and it
is in fact equivalent to it in the case of strong continuity)

i1) the unitary Weyl operators are strongly measurable with respect to the spectral measures
of the representation.

Under these assumptions the representations of the algebra of the Canonical Commutation
Relations are classified by translation-invariant measures on the two-dimensional torus.

Basic notation. Throughout this thesis, IN = the set of positive integer numbers, Z =
the set of integers, Q = the set of rational numbers, IR = the set of real numbers, € =
the set of complex numbers. Moreover: L?(IR,dz) denotes the space of square-integrable
functions on IR with respect to the Lebesgue measure, £(#) is the set of bounded linear
operators in the Hilbert space H and, for every topological space A , C(jl\) denotes the set
of complex-valued continuous functions on A. Finally, the symbol [ indicates the end
of a proof.
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PART 1

SPECTRAL REPRESENTATIONS IN NON-SEPARABLE HILBERT SPACES






Introduction to Part 1

The notion of spectrum and spectral representations. If T is a bounded operator in the
Hilbert space #, its spectrum is defined as the set o(T') of all complex numbers A such
that (Aly — T) has no bounded inverse. The use of this notion has made possible a
detailed analysis of the operator structure allowing, for example, to develop a functional
calculus for operators and to obtain for them explicit forms as multiplicative mappings
on L2-spaces. (As a rule, one refers to a result of this kind using the generic term of
spectral theorem). In addition, the idea of spectrum was successfully transferred to more
general contexts. It can be observed for instance that, if T is bounded, the definition of
o(T) is related only to algebraic properties of the abelian C*-algebra generated by 7'. In
effect the notion of spectrum became an essential tool also in the study of operators with
algebraic methods, i.e. in the theory of C*-algebras. Another important generalization
of this concept concerns the possibility of “embedding” o(T') in the space of characters
of a commutative C*-algebra containing T'. This space is called Gelfand spectrum of the
algebra. Actually commutative C*-algebras are the object of a version of the spectral
theorem on which we want to focus our attention.
Let A be an abstract unital abelian C*-algebra and (#, 7) a nondegenerate representation
of A; the cited version of the spectral theorem aims to reduce simultaneously by a unitary
map, U, the abelian C*-algebra of operators in H, 7(A), to an algebra of multiplication
operators on a direct sum of L2-spaces, @, L (A Le). In particular: the direct sum
@Oy L (.A Iie) follows from a decomposition of H in a direct sum @4 Ha of cyclic and
7(A)-invariant subspaces, A is the Gelfand spectrum of A4 and, for each A in A, UAU*
is the operator of multiplication by the Gelfand transform of A. This map U of # onto
®a L2(A, 1), that simultaneously “diagonalizes” all elements of 7(A), is called spectral
representation (relative to w(A)).

Multiplicity-free representations in separable spaces. Another basic concept in the study
of C*-algebras is the notion of multiplicity-free representation. Roughly speaking, a rep-
resentation of a C*-algebra A is multiplicity-free if it does not contain multiple copies of
the same subrepresentation. If A is commutative it is not difficult to see that a represen-
tation (#,7) of A is multiplicity-free iff w(A)" (i.e. the von Neumann algebra generated
by m(A)) is a maximal abelian subalgebra of £(#). The notion of multiplicity-free repre-
sentation is particularly useful for representations in separable Hilbert spaces. In fact, in
this case, m(.A) admits a cyclic vector; from this fact it follows that the spectral represen-
tation relative to w(A) is actually realized on a single space L2(4, 1). In other words, each
muliiplicity-free nondegenerate representation of a unital commutative C*-algebra A in a
separable Hilberl space is unitary equivalent to a multiplicative representation of C(A (A ) on
a space L2(A, ). (See Maurin [1; Section 1.7].)

The above problem is also very important for the foundations of quantum mechanics:
given a commutative C*-algebra A of observables with a maximal abelian weak closure (in
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the Dirac-von Neumann terminology a “complete commuting system of observables”), the
problem is whether the quantum mechanical Hilbert space is isomorphic to an L2-space
over the spectrum of A4, i.e. if A possesses enough “quantum numbers” for a complete
description of the quantum mechanical vector states. For the separable case the positive
answer to this problem was given by von Neumann, but the non-separable case is open.

Aims and contents of Part 1. The above result on the multiplicity-free representations
in separable Hilbert spaces is a standard and well-known result, but, as we have just
observed, the case of non-separable Hilbert spaces is an open problem. In the first part
of the thesis we address the problem of diagonalizing a representation of a commutative
algebra on a single copy of its spectrum when the Hilbert space of the representation is
non-separable.(!) In this regard note that, if £ is not separable, the concept of multiplicity-
free nondegenerate representation is not equivalent to the possibility of diagonalizing m(.4)
on a single copy of A

(Consider, for example, the representation = of the algebra C[0, 1] (of all continuous func-
tion on [0, 1]) on the Hilbert space 12(0,1) & L?(0, 1) by multiplication (i.e. w(f){v1,%2} =
{f1, f2}, where f € C[0,1], ¥, € 12(0,1), ¥2 € L2(0,1)). Then one has that:
(12(0,1) ® L2(0, 1), 7) is multiplicity-free, but it cannot be equivalent to any multiplicative
representation of C[0, 1] on a single space L?([0, 1], 1) (with u positive measure on the Borel
o-algebra of [0, 1]). (See Remark I1.1.8.)

To study this notion of absence of multiplicity “in the spectral sense” for representations
in arbitrary Hilbert spaces we shall introduce the following definition.

A representation (H, ) of a unital commutative C*-algebra A is said to be spectrally
multiplicity-free if there exists a positive measure u on the Baire o-algebra of the Gelfand
spectrum A of A such that there is a unitary operator U from H onto Lz(f/l\, i) and, for
every A in A, Un(A) U™ is the operator of multiplication by the Gelfand transform of A.
(Definition 1.4.3.)

In this part of the thesis we shall find some necessary and sufficient conditions for a
representation of an abelian C*-algebra to be spectrally multiplicity-free and we shall
compare this notion with the standard multiplicity-free property. The main properties we
shall prove can be summarized as follows.

Let (H, ) be a nondegenerate representation of a unital commutative C*-algebra 4. Each
vector = in H defines, via the Riesz Representation Theorem, a positive Baire measure i
on the Gelfand spectrum of A of A by relations

(w(A)z, z) :’/,\A\d/iz - Ac A
A

(1) The case is interesting also from a physical point of view: for a class of physical sys-
tems one needs non-regular representations of the algebra of the Canonical Commutation
Relations; these representations are realized in non-separable spaces. (They are defined,
for instance, by “momentum states” or by “Zak states”; see Part 2 of the thesis.)
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where A is the Gelfand transform of A; this measure p. is called the spectral measure
associated to . Denoting by #H; the cyclic and 7 (.A)-invariant subspace {m(4)z|A € A},
one has that * ‘ 7

(H, ) is multiplicity-free if and only if for every z,y in H such that Hy L Hy, the corre-
sponding spectral measures are also orthogonal, in other terms iff

VzeH and Vy L H, there exists a Baire set ofﬁ, SY, such that:
pa(A\SY) =0 (%)
py(SY) =

(see Proposition 11.1.6). On the other hand
(H, ) is spectrally multiplicity-free if and only if

Vze€ H there erists a Baire set of.Z, Sz, such that:

/J'z(f/{ \Sz) =0 (**)
Ly(Sz) =0 Vy L H,

(see Proposition II1.1.2). Furthermore, if (%, ) satisfies the property (*x), the measure p
on the Baire o-algebra of A, such that L2(A, ) is unitarily equivalent to 7, can be defined

by relation
=Y b,
acl

where {:ca}aej is a family of orthogonal vectors such that H = @aeﬂima Note that the
set I may be non-countable.(®

As one can see, property (**) is a sort of “uniform orthogonality” requirement; obviously
it implies (*), but it is not equivalent to (). More precisely we have that

(H, ) nondegenerate and — (H,n) spectrally
multiplicity-free == multiplicity-free

Another equivalent condition for the multiplicity-free property is that, for each z in H,
the projection P, on the cyclic subspace #H, belongs to 7(A)”. Also this requirement
has a “stronger version” that characterizes the spectrally multiplicity-free representations;
namely (#,7) is spectrally multiplicity-free iff for each = in H, the cyclic projection Py
belongs to the Baire*-algebra generated by w(A) (Proposition I11.2.4). We recall that the
Baire*-algebra generated by w(A) is, by definition, the smallest C*-algebra containing
7(A) and closed under monotone weak sequential limits (see Definition IT1.2.1 and Remark
111.2.2).

() Symbol 3° el Pz, indicates the sum of the measures {4z, },c;, according to a def-
inition of sum of an arbitrary family of positive measure that we give in Section 1.2; our
definition is a little more general than the standard notion of direct sum of measure spaces.



4 Introduction to Part 1

In conclusion, Part 1 consists of three chapters. Chapter I contains standard definitions
and properties concerning the theory of C*-algebras (Section 1.1), the theory of measure
(Section 1.2) and the spectral theory for abelian C*-algebras (Section 1.3). In this chap-
ter we also introduce two “non-standard” notions: the definition of sum of a family of
positive measures (Definition 1.2.3 and Propositions 1.2.2 and 1.2.5) and the definition of
spectrally multiplicity-free representation (Section 1.4). Chapter II consists of two sec-
tions. In the first one we characterize the multiplicity-free property in terms of conditions
on the family of spectral measures. In Section I1.2 we discuss the related mathematical
problem of multiplicity-free and spectrally multiplicity-free nondegenerate representations
of commutative W*-algebras and we point out that, due to the special properties of the
spectra of these algebras, the two notions are in this case equivalent (see Corollary 11.2.11
and Comment I1.2.12). Chapter III contains some necessary and sufficient conditions for
a representation of an abelian C*-algebra to be spectrally multiplicity-free (Sections III.1
and IIL.2). Finally Section III.3 resumes and compares the main ideas we have expounded
concerning the concepts of multiplicity-free and spectrally multiplicity-free representations.



CHAPTER I

PRELIMINARY CONCEPTS

Summary. This chapter collects some basic definitions and properties that will be fre-
quently used in the sequel.

Section 1 contains standard results in the theory of C*-algebras: definition of C* and von
Neumann algebras, definition of spectrum, etc. We also give the notion of multiplicity-free
representations.

Section 2 is devoted to measure theory. At the beginning of the section the definition of
Lebesgue integral and the Radon-Nikodym Theorem are expounded. Then we introduce a
notion of sum of a family of positive measure (Definition 2.3) and we prove a property of its
integral (Proposition 2.5). Our definition of sum does not coincide with the standard notion
of direct sum of measure spaces, but it can be considered, in a sense, as a generalization
of this concept. (See Comment 2.4 in this regard.) We conclude the section with a brief
part concerning measure theory on compact spaces: it contains the definitions of Borel
and Baire measures and the Riesz Representation Theorem.

Section 3 reports some aspects of the spectral theory for commutative C*-algebras: defini-
tion of Gelfand spectrum, Gelfand-Naimark Representation Theorem. Moreover we intro-
duce spectral measures and their connection with the extension of a representation of an
abelian algebra A to the algebra IB(,Z) (of bounded Baire-measurable functions on the
spectrum of A). Finally we give the notion of spectral representations.

In Section 4 we examine the “spectral content” of the multiplicity-free property in the case
of representations of abelian algebras on separable spaces; then we state the definition of
spectrally multiplicity-free representations.

§1 Algebraic preliminaries

C* and von Neumann algebras

A Banach algebra B is an algebra which is also a Banach space over the field of complex
numbers C and such that its multiplication satisfies inequality

IAB] < [|AllIB]] VA,BeB.
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B is commutative (or abelian) if AB = BA (for all A, B in B). An element 1 of B is called
an identity if 1A = Al = A for all A in B; if B has an identity one also requires that
II1]| = 1. A Banach algebra with an identity is said to be unital

A Banach *-algebra is a Banach algebra B endowed with an antilinearmap B> A —+ A* € B
such that relations

(A7) = A (AB)" = B*A* 1A%] = 1l A]

hold for all A,B in B. Such a map is called an involution. Furthermore if involution
satisfies the additional condition

[A* Al = [|A*[[ ]| A VAEB,

B is called a C*-algebra.
Let B be an algebra with identity. An element A of B is said to be invertible iff there

exists an element of B, call it A™!, such that AA~™! = A='A = 1. The spectrum og(A4) of
an element A of B is the set of all complex numbers A for which (A1 — A) is not invertible.

Remark 1.1. In the case of a C*-algebra the spectrum satisfies the following independence
property. Let B be a unital C*-subalgebra of the C*-algebra A. Then: og(A) = o.4(A)
for each A in B. Due to this property the spectrum of an element A of a C*-algebra A
can be denoted simply by o(A4) (dropping the suffix A).

Concerning spectra of elements of a unital C*-algebra A we also mention the following
facts.
a) If A € A, then o(4) is a non empty compact set of C and sup{|}| | Aea(4)} < |A].
The value sup{|| I A € 0(A)}, usually denoted by p(A), is called spectral radius of A.
b) If A € Ais normal (i.e. if A"A = AA*), then p(A) = || 4]
c) If A€ Ais selfadjoint (i.e. if A= A*), o(4) C [-]|4]], ||A]]] and o(A?) C o, HAHQ]
d) If A€ Ais unitary (Le. if A"A=1=AA4%),0(A) C {Ae C||A|=1}.

Let H be a Hilbert space. The set £L(#H) of all bounded operators in # is a C*-algebra
in a canonical manner.(!) Furthermore every algebra in £(#) which is invariant under

adjoint operation and closed with respect to the norm topology(2) is a C*-algebra; these
algebras are usually called C*-algebras of operators or concrete C*-algebras. If X is an

(1) More explicitly, £(#) is a C*-algebra with involution defined as the adjoint operation
and with norm :

[A4llop = sup {4zl [z € #, |lz] =1} A€ L(H).

(2) In £(#) one can introduce several locally convex topology; besides the norm topology
(or uniform operator topology), i.e. the topology induced by the operator norm || - || op? W€
cite here: the weak and the strong operator topology, that are defined respectively by the
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arbitrary subset of £(7) there is a smallest C*-algebra of operators containing X, called
the C*-algebra generated by X.

A von Neumann algebra is a concrete C*-algebra which contains the identity operator and
which is closed with respect to the weak operator topology. The von Neumann algebra
generated by X C L(#) is the smallest von Neumann algebra which contains X'.

For every set X C L(H) it is customary to denote X’ the commutant of X, i.e.

X' ={BeL(H)|BA=AB VAe X}

X' is a weakly closed algebra and, if X is a self-adjoint family, then X’ is a C*-algebra.
One also writes X, X", etc. instead of (X'), (X)), etc. If X; C Xa, then X| D Xj;
moreover, since X C X", this implies that X’ = X" and X" = X" for every subset of
L(#H). A fundamental result in the theory of operator algebras is the

Von Neumann’s Bicommutant Theorem. Let X C L(H) be a *-algebra of operators
such that {Bz|B € X,z € H} is a dense set in H. (In other words, assume X to be a
nondegenerate *-algebra.) Then the weak closure of X coincides with the bicommutant X" .

Remark 1.2. From the previous theorem it follows immediately that the von Neumann
algebra generated by a *-algebra X C L(#) coincides with X”; in fact, by definition, the
von Neumann algebra generated by X is the weak closure of the nondegenerate *-algebra
{X Uﬂ]l'H}.

A von Neumann algebra X" is called o-finite iff every family of non-zero pairwise orthogo-
nal projections of X"’ is countable. (In particular each von Neumann algebra of operators
in a separable Hilbert space is o-finite.) Let x|’ be a von Neumann algebra of operators in
the space H; and &} a von Neumann algebra in Hy; &) and Xj are called unitarily (or
spatially) equivalent iff there exists an isometry U of H; onto H, such that UX] U* = X4

Bibliographic note. Fundamentals of Banach Algebras and C*-algebras can be found in
several books. See for instance: Takesaki [1], Bratteli Robinson [1], Li Bing-Ren [1],

Pedersen [1]. We also mention two famous monographs on von Neumann algebras: Dixmier
[1] and Stratila Zsidé [1].

Basic results in representation theory

A representation of a C*-algebra A is a pair (H,w), where H is a complex Hilbert
space and 7 is a linear mapping of A into the algebra £(#) of all bounded operators on

families of seminorms
A — |(Az,y)] and A — ||Az|| (Ae L(H) z,yeH).
Relations between these topologies are as follows:
weak op. top. C strong op. top. C  uniform op. top.,
where “C” means that the left side is weaker than the right side.
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# such that: 7(AB) = 7(A) 7(B) and w(A4*)=nx(A)* forall A,Bin A. Such a map
is called a *-morphism of A into L(#).

Remark 1.3. Let (#, ) be a representation of the C*-algebra .A. Then
| (A)llop < [14]] VAe A.

Moreover the range m(A) = {w(A) | A € A} of 7 is a C*-subalgebra of L(#).

A representation (#, ) is called faithful iff it is a *-isomorphism between .4 and 7(A) i.e.
HF || (A)|| = ||A]| for all A in A. Conversely, if 7(A) = 0 for all A in A, the representation
is said to be trivial. A representation might be nontrivial but nevertheless have a “trivial
part”, i.e. the subspace Ho = {z € % |m(A)z =0 VA € A} could be different from {0}.
Thus one says that a representation (7, 7) of a C*-algebra A is nondegenerate iff Hy = {0}.

Remark 1.4. It is not difficult to prove that (#,n) verifies condition Ho = {0} if and
only if the subspace n(A)H = {7(A)z|A € A, z € H} is dense in H. (See Takesaki [1;
Ch. I, Prop. 9.2].)

An important class of nondegenerate representation is the class of cyclic representations:
a representation (H, ) of a C*-algebra A is said to be cyclic if there exists a vector z of
7 such that the subspace 7(A)z = {w(A)z| A € A} is dense in H; z is called cyclic vector
for the representation (#, ).

Two representations (#1, 1) and (Ha, ) of A are said to be unitarily equivalent if there
exists a unitary operator U from #; onto H2 such that Ui (A) U* = m,(A) for every A
in A.

Finally we introduce the notion of multiplicity-free representations. Let (#,w) be a rep-
resentation of the C*-algebra A. A subspace H; of H is said to be w(A)-invariant iff
m(A)H1 C Hq for all A in A. If H; is a closed subspace of # and Py, is the projection
with range 7, then it is easy to check that: H; is w(A)-invariant if and only if Py,
commutes with 7(A) for each A in .A. Moreover, if H; is a closed 7(A)-invariant subspace,
relation

m1(A) = 7(A) Py, Ac A

defines a representation of A on Hy; (H1, ) is called a subrepresentation of (H, ).
Using this notion one can obtain a decomposition of 7 in the following sense. If (H1,7;) is a
subrepresentation of 7, then the subspace Hi = {y € #|y L = Vz&H;} is also invariant
(due to the fact that 7(A) is a self-adjoint family of operators). So setting # = i,
one may define a second subrepresentation (72, ) with: ma(A) = Py, m(A) Py,. In this
way one has that: H can be splitted in the direct sum # = H; & H» and correspondingly
each operator m(A) decomposes as a direct sum 7(A) = 71(A) ® m2(A); thus we write:
m=m1@nme and (H, ) = (H1, ™) ® (Ha, 72). Obviously, generally speaking, also subspace
H1 (or Hz) could contain invariant subsets and the previous procedure could be repeated.
In conclusion, an arbitrary representation (#,7) may be decomposed in a direct sum,
T D @3 @ ..., of alarge number of subrepresentations.
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A starting point in the study and classification of representations of a C*-algebra is isolating
those which do not contain multiple copies of the same subrepresentation. In this regard the
term “multiplicity” is used to indicate the presence of this kind of multiple decompositions.
(For instance, if m; is a representation of A in the Hilbert space 1, then 7(4) = m;(A) @
71(A) © 71 (A) defines a representation of A on H; & Hy @ H1 which “has multiplicity”.)
So one finds in literature the following definition (see Arveson [1; Chapter 2]).

Definition 1.5. A representation (#,r) of a C*-algebra A is said to be multiplicity-free
if (#, ) does not have two orthogonal equivalent subrepresentations.

Proposition 1.6. Let (H,n) be a representation of the C*-algebra A; then the following

statements are equivalent:

(1.6)(a) (H,n) is multiplicity-free

(1.6)(b) m is such that the commutant m(A) = {C€L(H) | Cn(A) = n(A)C YA€ A} is
abelian.

(Actually many authors give condition (1.6)(b) as the definition of multiplicity-free repre-
sentation (see, for instance, Dixmier [2; page 122]).)

§2 Measure theoretic preliminaries

Abstract measure theory

A collection M of subsets of a set X is called a o-algebra in X iff it satisfies the
following properties:

i)y XeM

ii) if A € M then Ae M ®

ili) if A=US2, A, and A, € M for every n in IN, then A € M.
If M is a o-algebra in X, then the elements of M are called measurable sets and the pair
(X, M) is said to be a measurable space.

Let (X, M) be a measurable space. A M-measurable simple function s is a finite linear
combination of characteristic functions of measurable sets of X, i.e. s = Yo Bi xa,
where n € IN, B; € €, A; € M and x4, denotes the characteristic function of A;.
A complex-valued function on X is called M-measurable iff it is the pointwise limit of a
sequence of measurable simple functions.

A function p defined on M is called a positive measure iff
i) 0 < u(A) < oo, forall Ain M

(3)  A° is the complement of A relative to X.
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ii) u(®) =0
i) p(USZ A4n) =3 27 u(An),if A, € M forevery n in IN and A, N A,, = @ for every
n # m (sigma-additivity property).
The triple (X, M, 1) is called a measure spaceand u(A) the measure of the set A. A measure
space (X, M, p) (with p positive) is called o-finite if X is the union of a countable family
{Er} of measurable sets with finite measures.

Let M be a o-algebra in X, p a positive measure on M and E an element of M. The
Lebesgue integral on E with respect to measure u can be defined by the following steps.
1) If s=3"", Bi xa, is a positive measurable simple function, we write(*)

/sd,u Zﬁz (AiNE)

2) Let now f > 0 be a M-measurable function. Then

/19de = Sup{/Esd,u

3) If g is a measurable function with range in [—co, +00], then its positive and negative
parts, g* = max {g, 0} and g~ = —min {g, 0}, are also measurable. So we can define

/gd#:/g+du— /g’du :
E E E

provided that at least one of the integrals on the right of this equation is finite.

4) Finally, if L}(X, 1) denotes the collection of all complex M-measurable functions f for
which [y |f|du < oo, the Lebesgue integral over E of a function f in LY(X, u) w.r.t. p is
defined writing f as the sum u + v of two real measurable functions, i.e.

/fdp,::/udu—}—i/'udu
E E E

Let M be a o-algebra in X. A complez measure u on M is a complex function on M
such that

s simple M-measurable s.t. 0 < s < f }

pA) = 3 ulA)  (AeM)

for every partition {4,} of A.(5)

Remark 2.1. Contrary to the positive case, convergence of the series ) . , u(A,) is now
required.

(4) In this definition, convention 0 - co = 0 is understood.
() “Partition of A” means here a countable collection {A,} of elements of M such that
A, NA,=0Vn#mand U, A, =A.
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If i is a complex measure, then relation

(4) = sup{z (4]

{An} partition of A}

defines a positive measure on M called the total variation of p; such |u| is bounded, i.e.
|#](X) < o0, and |pu(A)| < [pl(4) (L |p[(X)) for every A in M.

Let u be a positive measure on the o-algebra M and let A be an arbitrary measure on M
(i.e. A may be positive or complex). Then X is called absolutely continuous with respect to
p (notation: X < p) iff A(IV) = 0 for each N in M for which p(N) = 0. A measure ) on
M is said to be concentrated on the measurable set E if A(A) = A(AN E) for every A in
M. Two measures A; and Ay on M are called mutually singular (notation: A; L Xo) iff

there exists a pair of disjoint measurable sets, F; and Ey, such that \; is concentrated on
E1 and )\2 on Ez.

Radon-Nikodym Theorem. Let (X, M, 1) be a o-finite measure space (with p positive
measure) and let A be a complex measure on M. Then
a) There exists a unique pair of complez measures on M, X, and X, , such that
A=A+ As Ao € As Lo
If X is positive and finite, so are Mg and A, .
b) There ezists a unique h in LY(X, 1) such that

Ao (E) :/ hdy VE € M
E

The pair (Aq, Ac) is called the Lebesgue decomposition of X relative to p.

Bibliographic note. Concerning the definition of Lebesgue integral and the theorem of
Radon-Nikodym we refer to the book of Rudin [1; Chapters 1,6].

We conclude this subsection introducing a notion of sum of a family of positive mea-

sures. Let {(X, M)} be a measurable space and {uq},¢; a family of positive measures on
M. For every A in M, let:

w(A) = 3 pa(4) . | (2.2)(a)

a€cl

Proposition 2.2. Relation (2.2)(a) defines a positive measure p on M. (©)

(6) Symbol Lo (A) indicates the supremum of the set of all finite sums pq, (A) +
acl 1
.. .+pay(A4) (@1, .., an being distinct members of I) or equivalently the Lebesgue integral
of o (A) with respect to the counting measure v on I, i.e.

> ba(d) = [ ha(avie) = sup {: o ()}

acl 1 (a1,...an)CI  “k=
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Proof. It is immediate to verify that

N -
p(@) = sup { Lo, (@)} = sup 0=0.
(@1,eman)CI “Ek=1 (..)CI

Moreover the g-additivity of p follows from the Monotone Convergence Theorem; in fact,
if {Aj}je]N is a sequence of disjoint elements in M and v denotes the counting measure
on I, we have

s 45) = [ o (U4 avte) = [ (i o (45)) () =
=3/ nata (@) ) = iwm

j=1

We can now state the following

Definition 2.3. Let (X, M) be a measurable space, {fa },; a family of positive measures
on M and let p be defined by relation (2.2)(a). Then we term the measure u sum of the

family {pa}qer-

Comment 2.4. In the usual definition, a measure space {X, M, u} is the direct sum of a
family {X;, M, ui} (u; positive) when: X = U; X;, X;’s are disjoint, M is the collection
of all sets E C X s.t. ENX; € M; Vi and EN X; # O at most for a countable many of
the X;’s and p(E) = >, ui(E N X;) for every E in M. (See Segal Kunze [1; page 245].)
So it is evident that Definition 2.3 is quite different from the one just cited. However, if
our family of measures {ia},e; admits a collection {X,},¢; of elements of M such that:
i) XaNXe =0 VYa#do
i) pe(Xo) =bna ta(X) Va,o
iii) for every A in M, AN X, # O for an at most countable set of a’s in T,
then the two definitions essentially coincide; in this sense our definition can be considered
a generalization of the direct sum of measure spaces. Actually sums of measures that will
be considered in the sequel (see Corollary I1.2.11 and Proposition II1.1.2) do not admit
families of measurables satisfying conditions i)-iii) and this is the reason why we have
introduced a notion of sum which is a little more general.

Proposition 2.5. Let (X, M) be a measurable space, {fia}oe; @ family of positive mea-
sures on M and p the sum of the family {uq} Then, if f: X — [0,00] is a M-

measurable function,
fdp =
J ran=3

acl

acl”

(ferae)
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Proof. According to the definition of Lebesgue integral, [ x Jdp = sup; f x §du, the supre-
mum being taken over all simple M-measurable functions s such that 0 < s < f. So,
denoting by v the counting measure on I, we can write

/deu = sup iﬂi p(A;)) = sup Zﬁz (/uaA)dV( )>

s=xl 5 Bixa, i=1 E,{Y—_1ﬁiXA i=1
(2.5)(a)
N
= sup / (Z B; ,u,a(Ai)) dv(a) = sup / (/sdua> dv(a) .
BN Bixa, VT Ni=t s I NMWX

Writing concisely gs(a) for [, sdu, and g(a) for sup, gs(c), one has that

/Igs(a) dv(a) < /Ig(a) dv(e) implies sup /Igs(a) dv(a) < /Ig(a) dv(a) ;

S

so we can concludé that

IR Sl;p/I (/Xsdua) dl/(a)§/I<sup /Xsdﬂa> /(/fd%>d,, |

S

i.e. we have obtained the relation [y fdu < > ,c;([xfdua). To prove the opposite
inequality note firstly that

aej(/fchm) = ,aN>c1 k 1 </fd#ak>

(e,

= sup Z ( sup /sk d#%)}
0<sk<f VX

(ay,e.anN)CT “k=1

= sup sup (Z /sk duak>]
(a L 0<s1<F

Lyeean)CI . 0<sy<f k=1

Consider now a generic set {s1,..., sy} of simple functions in the last expression and let,
fork=1...N, s = Zyz"l BF x Ak (with BF positive real numbers and A* measurable
sets of X). Taking all possible intersections of A¥’s, one can construct a finite collection
of disjoint measurable sets, {Y7,...,Yn+}, such that forallk=1...N andj=1...N',
Sk]y,’s turn out to be constant functions.(") Setting m; = max {s1(Y;),...,sn(¥;)} (for

(") Symbol skjyj means: function s restricted to the domain Y.
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J=1...N'), we can then define a new simple function on X by relation:

m;, ifzeY; (j=1,...,N')
5(z) =
0, otherwise

This function is such that 0 < §(z) < f(z) for every z in X and

/sdﬂak ZmJ Loy (Y >Zsk ) Ba, (Y5) = /sk dpta, VE=1,...,N .
X

Therefore we can conclude that: 7Y Jxsk dppay, < SO0, Jx§ dita, and

sup (Z /skduak) < sup (Z/sdgak>.
X 0<s<f

0<5:<f ... 0<sn<f k=1 k=1

Thus:

S () -, o [ foon)

(@1, an)CI [0<sl<f . 0<sn<f k=1

< sup [ sup (Z/sduak

(a1, an)CT = 0<s<f k=1 X >}

< o { o [f(fsam) i)}

(ee1,.-san)CI

- o (o)

0<s<F

and, due to equation (2.5)(a), we obtain that Y ., ([ Fdua) < [y fdu. O

Measure theory on compact spaces

Throughout this subsection X denotes a compact Hausdorff topological space. We
firstly recall that the Borel o-algebra of X, Mpyrer, is the smallest o-algebra in X con-
taining all open (equivalently closed) sets of X. On the other hand, if C(X) is the space
of all continuous complex functions on X, one can also consider the smallest g-algebra
in X with respect to which all elements of C(X) are measurable; it is called the Baire
o-algebra of X; we shall denote it by Mpgire. (Equivalently Mpgire can be defined as
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the smallest o-algebra containing all compact G sets of X (8).) The elements of Mpggire
(resp. MBorel) are called Baire (tesp. Borel) sets.

Remark 2.6. From the definitions of these o-algebras one has that Mpgire € MBorer ;

furthermore, generally speaking, the inclusion is proper. Nevertheless, if the space X is
metrizable, every compact set is a G, so the Baire and the Borel sets are the same.

A positive measure p on Mpgire (resp. Mporer) is called a Baire (resp. Borel) measure if
in addition is finite (i.e. p(X) < o). If i is a positive Borel (Baire) measure on X, then
p is said to be regular iff, for every Y in Mporet (MBaire),

p(Y) =inf {p(0)| O DY, Oopen (and Baire)}

= sup {u(C)|C C Y, Ccompact (and Baire)}

Theorem 2.7. Let o be a positive Baire measure on X. Then p is reqular and can be
extended to a unique regular Borel measure on X.

Baire measures allow to characterize linear functionals on C(X).

Riesz Representation Theorem (for positive functionals). Let £ be a positive lin-
ear functional on C(X). Then there exists a unique positive Baire measure (equivalently,
regular Borel measure) pp on X such that

of) = /X f dus Vf € C(X)

The last result can be extended to give a complete description of the dual C(X)* of C(X).
Namely, if one defines a complez Baire measure as a finite linear complex combination of
positive Baire measures, a consequence of the previous theorem is the

Riesz Representation Theorem (for bounded functionals). The dual C(X)* of
C(X) can be identified with the space of all complez Baire measures on X .

Bibliographic note. About measure theory on compact spaces see Rao [1; Chapter 9] and
Folland [1; Section 7.3].

(8) A subset A of topological space X is called a G set if there exists a sequence of open
sets {On} of X such that A =2, O,.
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§3 Spectral theory for abelian C*-algebras

Gelfand-Naimark Theorem and functional calculus
Let A be an abelian C*-algebra. A character of A is a non-zero linear map ¢ from A
into € such that
¢(AB) = ¢(A) p(B) A,BeA.

Basic properties of these functionals are
a) Every character ¢ of A is bounded and ||y|| < 1.

b) If A is unital, ||¢|| = ¢(1) = 1.
c) If A denotes the set of characters of A, then 0(A) = {p(A) |p e A} (A€ A).

Due to point ¢) the set A of all characters of A is called the the > spectrum (or the Gelfand
spectrum) of A. For every A in A we can consider the function A on A defined by relation

Acp— Alp)=p(A) € C.

This map 421\( -) is usually called the Gelfand transform of A. The Gelfand topology for A
is the weakest topology on A under which all functions A are continuous (or equlvalently,
is the weak™* topology of the dual .4* restricted to A). More explicitly if ¢, € A, the
collection of subsets

N(pg; A1... Apse) = {90621\||QD(A1-)—900(A¢)|<6 izl...n} (A; e A,e > 0)

is a fundamental family of neighborhoods for ¢, in this topology. From now on, by “Gelfand
spectrum of a C*-algebra” we shall always mean its spectrum endowed with the Gelfand
topology. In spectral theory a central role is played by the following result.

Gelfand-Naimark Representation Theorem. If A is an abelian C*-algebra and A is
its Gelfand spectrum, then:
a) Aisa locally compact Hausdorﬁ space which 1s compact iff A is unital
b) the Gelfand transform A — A is an *-tsomorphism of A onto the algebra Co (A) of
continuous complex functions vanishing at infinity (9).

) Let X be a locally compact space and C(X) the algebra of continuous complex
functions on X. We recall that the set of continuous functions vanishing at infinity is

Co(X)={fec(X) |\/E> 0 3 a compact set D, C X s.t |f(z)|<eifz¢ D, } .

Furthermore Co, (X) becomes a commutative C*-algebra taking, for each f, g in Coo (X),

[fllc = sup |f(z) and (z) = f(z)

TEX
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Remark 3.1. Let A be a unital abelian C*-algebra generated by a finite number of
elements {Gi1,...,Gn} (i.e. there exists a finite collection {G1,...,Gn} of elements in
A such that the smallest C*-algebra containing 1 and {G1,...,Gn} is A). Then the
Gelfand spectrum A of Ais homeomorphic to a closed subset of the product space
0(G1) X ... X 0(G,); the homeomorphism is defined by relation

A3 — (Gi(9),---,Cnl) € X2y 0(Gi) C O .

In particular, if A is generated by a single element G, one has that: 4 = ¢(G), the
Gelfand-Naimark isomorphism maps A onto C(¢(G)) and G corresponds to the function
f(A) = A for every A in o(G). So the situation we are considering actually generalizes
the the standard spectral theorem (in the functional calculus form) for a single selfadjoint
operator.

Bibliographic note. The definition of Gelfand spectrum and the Gelfand-Naimark The-
orem can be found in Maurin [1; Chapter I]. See also Gelfand Raikov Shilov [1; Chapter IJ.

We are going now to examine some important consequences of the Gelfand-Naimark
theorem in the following case: let A be a unital commutative C*-algebra and (7, ) be a
representation of A. Due to the Gelfand-Naimark theorem, (#, ) can be considered as a

-~

representation of the C*-algebra C(A). Thus each pair z,y of vectors in H defines a linear

—~

functional on C(.A) given by relations
C(A) 3 A — (n(A)z,y) € C
Since |(7(A)x,y)] < || Alloo |lz]| |l , this functional is also bounded . Hence, due to Riesz

Representation Theorem, there exists a unique complex Baire measure, K(z,y) > O A such
that, for every A in C(A),

(W(A\)ﬂi,y) :/.:i\gd/l(:r,y) . (32)(0,)

The measure (g, is usually called spectral measure (associated to the vectors z,y ).(0)

Such measures allow to extend the map « to the C*-algebra, IB(E), of all complez-valued
bounded and Baire-measurable functions on A. In fact, for every g in IB(A), we have

fﬂ@mw
A

(with [lgll.o = sup { |g(¢)| | ¢ € A}).

-

< 9lleo 11w (A) < liglles Il Iyl nyeH ,

(10) From the definition of spectral measure follows that Plaz+by ,z) = @ lh(z,2) + bty )
and p(zy) =B (a,0€ C;z,y,z € H). In particular K(z,z) 18 @ positive measure.
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So relation (z,y) — [ gdp(s,y) actually defines (for every fixed g in ]B(.Z)) a bounded
quadratic form on # and (due to Riesz Lemma) a unique operator 7(g) of £(#) such that

(7(g)z,y) = /xg dpsz,y) T,y €H . (3.2)(b)

A comparison between equations (3.2)(a) and (3.2)(b) immediately shows that 7 is the
desired extension of w. Furthermore, for every f,g in IB(A) and a,b in C, we have:

2) 7of +bg) = aF(f) +bRg), () =F(7), Ffg) = F(H)F(g), e (H,7)isa
representation of the C*-algebra IB(A) in L(H).

b) B2y = f e

c) 7(IB (A)) C w(A); moreover, if {fn}isa sequence of elements of IB(A) such that
supy, || falloo < 00 and f,.(p) =+ F(i) for each  in A (f € IB(A)), then 7(fn) = 7(f)
with respect to the weak operator topology.

Notation. The characteristic function, xy, of every Baire set Y A belongs to IB(/T) and
relations xy = Xy = xv? imply 7T(xy) to be a projection of 7(.A)"; 7(xy) will be denoted
by Py.

Bibliographic note. About the extension of 7 from C(A4) to IB(4) see Loomis [1] or Davies
[[1; Lemma 2.3]].

Other properties of 7 are contained in the next propositions.

Proposition 3.3. If F' and G are positive operators belonging to the range of © with
0 < F < G, then there ezist two positive functions, f and g, in ]B(A) such that

F=7(f), G=7(9), IFllop = Iflles Gllop = llgllce and 0< f(p) <g(p) Veed.

Proof. Let us consider firstly a single positive operator G in the range of 7. Then there is a
function g, in IBB(A) such that 7(g,) = G and, for every measurable characteristic function
Xy, Jy 90db(ze) = [5XY 90 Abz,2) = (7(g0) Py z, Prz) > 0.
Hence the set N = A \ g,71[0, [|gollco ] is such that p; z)(N) = 0 for every z in . So
if we define g1(¢) = go(¢), if ¢ € N°, and g; = 0 otherwise, we have a positive element
of IB(.A) that satisfies relations J290dks,2) = fA 91dp(zz) ie. (Gz,z) = (7(g1)z, ) for
every z in H. Due to the polarization identity these relations imply G = 7(g;); in fact, for
an arbitrary pair z,y of vectors in H we can write
3
~ 1 . _ : .
(Flgn)e,v) =7 D i * (7(g1) (y+i*a), (y+i*a)) = Zz *(Gy+i*z), (y+iFz)) = (G, ).
k=0
According to Remark 1.3 one also has that ”G“op < llg1lleo- Assume now, to reach a
contradiction, that there is a vector z of # such that p 2 (97" (|Gllop. llg1llec] ) > 0
Writing
oo

16 o Norllo) = U 077 (161p + 12021 g ]

n=2
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we have that

_ . - 91lleo — [|Gllo
) (7 (1 o Ioile]) = i ey { 977 (16 + 2020w gy | )

(see Rudin [1; Theorem 1.19]). Hence there exists a positive constant k£ such that
1Gllop + 5 < l91llcc 200 igepy(Ye) > 0, with Vi = g7 (Gllop + ., lglls - S0 Priz s a
non-null vector of # (in fact || Py, z||* = (Py, =, Pr,%) = [3Xvi dli(z,0) = H(z,z)(Ye) > 0)
and ”GPkaHz = (%(91) Pkaa%(gl) Pykm) = fg% d/'l’(Pyk:E,Pykm) = fXYk g% d/»"(m,z)
> (IGlop+E)? ti(z.2)(Yx) = (|Gllop+k)? || Py, z||*. But this inequality contradicts the defi-
nition of ||G||op. In conclusion, the set M = g1 7 (||Glop, [|91]le0) is such that piez 5y (M) =0
for every z in H. Therefore, defining g(¢) = g1(p) if ¢ € M€ and g(p) = ||G|lop if ¢ € M,
we obtain a positive element of IB(A) such that ||g]jeo = |Gllop and 7(g) = G.

Finally let F,G be two elements in the range of # with 0 < F < G and let f,g € ]B(//l\)
be a pair of positive functions such that F' = 7(f), G = 7(g), ||Fllop = ||fll and
|Gllop = llgllcc. Denoting Y = (f — g)~%(0, ||f]lcc], we can proceed as in the case of g;
and prove that hypothesis G — F > 0 implies pi(z 5)(Y) = 0 for each z in . Then one
may define f' = f and ¢'(¢) = g(p) if ¢ € Y<, ¢'(¢) = f(p) if ¢ € Y to obtain relation
0< f'(¢) < g'(¢) for every ¢ in A. (Equivalently one could take ¢’ = g and f'(¢) = f(p)
ifpeYs fllo)=glp)ifpeY.) O

Proposition 3.4. If (H,n) is nondegenerate and w(A)" is o-finite, then %(IB(A\)) coin-
cides with w(A)". '

Proof. Due to point c, %(]B(.//l\)) C w(A)”. To prove the opposite inclusion we firstly
consider a monotone increasing sequence {F,} of positive operators in the unit ball of
m(A), weakly convergent to an element G of 7(A4)". Then, due to Proposition 3.3, there
exists a corresponding monotone increasing sequence {f,} of positive functions in B(A)
such that || frllee <1 and 7(f,) = F, Vn. Let g(v) =lim, f.(p). Due to Lebesgue’s
Dominated Convergence Theorem, g € IB(A) and

lim /Afn du(m,y) = /,\gd/-"(:z,y) T,y € H .
nJA A

But we also have (by definition of spectral measure and weak topology) that [ afndi@y) =

(Fpz,y) = (G z,y). So we can conclude that 7(g) = G, i.e. 7(IB(A)) contains (m(AL),,
the set of elements of £(#) which can be obtained as weak limits of increasing sequences
of positive operators in the unit ball of 7(A4). '

Let now {G,.} be a monotone decreasing sequence in (w(A)})_ weakly convergent to
the operator H of w(4)”. Due to Proposition 3.3 there exists a corresponding monotone
decreasing sequence {g,,} of positive functions in IB(4) such that || gmlloo < 1and 7(gm) =

G, for every m. So, repeating the previous procedure, one obtains that h(¢) = lim,, g (p)
is an element of IB(.A) and w(h) = H, i.e. 7(IB(A)) includes the set of all weak limits
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of monotone decreasmg sequences in (m(A)})_ . Then, if n(A)” is o-finite, the relation

m(A)" C 7(B(A )) follows from the Up-Down Theorem of Pedersen (see Takesaki [1; page
96]). O

Remark 38.5. Generally speaking, the C*-algebra 7(IB(4)) does not coincide with the
von Neumann algebra generated by w(A) (even if (H,7) is nondegenerate). This fact
can be seen with the following example. Consider the Hilbert space 12(0,1) of all square
integrable functions on [0,1] C IR with respect to the counting measure. Let 7 be the
representation of the C*-algebra C[0, 1] (of all continuous functions on [0, 1]) on 12(0, 1) by
multiplication, i.e. w(f) = f¢ (f € C[0,1],% € 12(0,1)). Then: A is the closed interval
[0,1] and #(IB(A4)) the space of bounded Borel-measurable functions on [0,1] (which act
multipicatively on 1(0,1)). On the other hand the weak closure of 7(.A) can be identified
with the algebra of all complex bounded functions on [0, 1].

Spectral representations

Throughout this subsection A denotes a fixed unital commutative C*-algebra. We
have Just seen that a representation (#,7) of A (can be identified with a representation
of C(A) and) can be extended to a representation (#,7) of IB(A). Now we want to stress
that, when (#, 7) is nondegenerate, (#,7) (and in particular, (#, 7)) is actually unitarily
equivalent to a representation of IB(A) (in particular, C(A)) as a multiplicative algebra on
a direct sum of spaces of square-integrable functions on the spectrum of .A. We introduce
this result in two steps.

1) Consider firstly a representation (#, ) of A which admits a cyclic vector z i.e. such

that the subspace {w(A4)z|A € A} is dense in H. Let u, be the positive Baire measure
associated to z, i.e.

(7(g)z,z) = /Ag dyiz g € B(A)

(see relation (3.2)(b)). Let D; be the linear manifold in # consisting of all vectors of
the form 7(g)z, g € IB(A). By hypothesis D; is dense in H. If 7(g)z = 7(f)z, then
[l = £12dus = (7(a — flz, 7 g — f)z) = I7(g)s — F(F)al = 0, therefore f = g pi-
almost everywhere. Hence we can define an operator U; from D; to L2 (.Z, Lz) by setting
U, 7?/\(9):1: = g. This map is linear and preserves inner products, in fact, for every f,g in

B(A),
(7(9)z, 7(f)z) = /Ag7 dpe = (U1 7(g)z, Uy 7(f)a)

Hence U; has a umque continuous extension to a unitary operator U, from D; = H onto
the L2-closure of IB(A4) i.e. onto L2(A, y5). Furthermore if ¥ is an arbitrary element in #
and { fn} is a sequence in IB(.4) such that 7( fn)z — y, we have

UZ W(g)y =U; "T(g) (hgn%(fn)x) = hrlln Uz %(g) %(fn)m = h}}l 9fn=9Uzy .
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In conclusion, if m(.A) admits a cyclic vector z, there exists a unitary operator U, from #
onto L?(A, p) such that U, 7(g) U7 = g, for each g in IB(A).

2) Let (#,n) be an arbitrary nondegenerate representation of A. Using the Transfinite
Induction Principle one proves that H can be regarded as a direct sum of subspaces (1)
®aer Ho so that, for every a in I, H, is 7(A)-invariant and there exists a vector z, in
Ho which is cyclic for the restricted algebra m(A)],, = {7(A) Py, | A € A}. In this way
one defines, for each « in I, a cyclic representation of A in £L(H,). (Denoting [r(A) z,4] =
{m(A)zo| A € A} = Ha, we can also write H = @aer [7(A) To)].) The procedure of the
previous point can now be repeated for each of these subrepresentations to yield a unitary
mapping U,_ between H, and Lz(./T, Pz, ). Thus one may define a unitary operator U
from H to @aer L2(A, Lz, ) setting

Uy = {U%ya}aef (where ¥ = {Uatyes € Bacr Ha) -

For every function g in IB(A) we also have that (UT(g) U™t Uy), (v) = g(v) (Uy),(¢).
In particular, for every A in A,

U (AU UY), (v) = A(p) (Uy),(») (yeHandael).

This map U is called a spectral representation (relative to w(A)).

Bibliographic note. The definition of spectral representation can be found in Dunford
Schwartz [2; Chapter X] (in the case of C*-algebras with a single generator); see also Segal
Kunze [1; Chapter IX].

§4 Multiplicity-free property and Gelfand spectrum

As we recalled in Section 1, a basic concept in the study of C*-algebras is the notion of
multiplicity-free representation (Definition 1.5). We want now to reconsider this property
in the case of abelian C*-algebras. Firstly we note the following equivalence.

Proposition 4.1. Let A be an abelian C*-algebra and (H, ) be a representation of A.
Then (M, ) is multiplicity-free if and only if the commutant w(A) is contained in w(A)"
or, equivalently, iff 7(A)" is mazimal abelian.(1?)

(11) The index set I may be non-countable.
(12) A commutative C*-algebra R in L(#) is called mazimal abelian iff it is not contained
in any larger commutative C*-algebra of L(H).
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Proof. Let (H, ) be a multiplicity-free representation. According to Proposition 1.6, this
means that 7(.A)’ is commutative; hence 7(A)" C w(A)”. Moreover, since A is abelian, one
also has 7(A) C 7(A)', so n(A)’ D n(A)"; therefore m(A)" = n(A) = w(A)" i.e. 7(A)" is
maximal abelian. Conversely, if 7(A4)” is maximal abelian, then 7(A)’ = n(A)" = w(A)"
and, in particular, 7(A)’ is commutative. ]

Secondly we point out that the notion of multiplicity-free representation of an abelian
C*-algebra is particularly useful for representations in separable Hilbert spaces. In this
case in fact one has the following remarkable property:

Proposition 4.2. Let A be a unital abelian C*-algebra and let (H, ) be a nondegenerate
representation of A with H separable Hilbert space. Then the following statements are
equivalent:

(4.2)(a) 7(A)" is mazimal abelian

(4.2)(b) w(A) is unitarily equivalent to the algebra C(.A) that acts multiplicatively on a
space L2(.A 1), 1 being a positive measure on the Baire o-algebra of A.

Proof. For the implication (4.2)(a) = (4.2)(b) see Maurin [1; Section 1.7]. Suppose now
that (#,7) satisfy condition (4.2)(b) and let U be a unitary map from H onto L2(A4, p)
such that Un(A) U~ = A(p)- for every A in A. The algebra 7(.A)” is maximal abelian in
L(H) if and only if U n(A)" U~ verifies the same property in E(Lz(./zl\, ).

Since H is separable, u is o-finite; furthermore, according to Proposition 3.4, we can write
m(A) = F(B(A), ie. Ur(A)'U?! = = UF(B(A)U~!. We will check now that, for
each g in IB(.Z) , UT(g) U™! is the operator of multiplication by g or, in other terms, that
U%(IB(.Z{)) U~! may be identified with the algebra L°°(¢21\, p) of all essentially bounded
Baire-measurable functions on .A.

By definition of 7, (7(g)z,z) = f;fg dpg, for every z in H (see relation (3.2)(b)); on the

other hand, denoting ¢, = Uz € Lz(.;(\, 1), relations
(r(A)e.) = URAU s p) = [ AWel?dn A€ A
A

show that the positive Baire measure, |1;|? p, is exactly the spectral measure associated
to z. Hence we have

(T(g)z,2) = (UT(9) U™ g ,9hg) = /29 dp, = /29 lWo2de . € L(A, p) .

So, due to polarization identity, (U 7(g) U~ 4 ,%y) = (g ¥z , ¥y for every pair of functions

in LZ(A p) e UT(g) U™l = gip.

To conclude the proof we shall see that, if u is o-finite, the multiplicative algebra L (.;4\, )

is maximal abelian in £(L2(A4, 1)). Since p is o-finite one can always define a countable

famlly {¥,.} of Baire subsets in A such that: u(Y,) < oo, Yo NY, =0 (m#n) and
UX.,Y, = A. Let T be a bounded linear operator on LZ(A p) which commutes with
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L (,zl\ p). Then fT xy, =T f xy, for each n in IN and f in L® (21\, p). Taking f = xv,,
it follows that xy, Txy, = T xv, i-e. T xy, vanishes p-almost everywhere outside of
Y. Now if g is an element of L2(A4, 1) N L (A, 1) which vanishes outside of Y, then
Tg=Tgxy, = 9T xy, = Tng, where T,, defines the operator of multiplication by the
‘function T xy, on the domain L2(A4, x)NL*® (A, 1). Obviously ||, al= 1T gl < IITl gl
for such g¢’s and, in particular, putting N = { (|T xv,|)"*(||T]] + 1,c00] N ¥, }, we obtain
that (71| + 1) VE@) < [Toxwll < 7] /u(W); this implies (V) = 0 ie. Ty, is
bounded p-almost everywhere by ||T']| + 1 on ¥,,.

Now let h =3 °7 | T xv, ; thus h is a Baire-measurable function, essentially bounded by
|T|l + 1 and such that, for every g in L2(A, ) N L (A4, 1) vanishing outside some Y,
hg =Txy,g9g=Tg. The last equation holds also if g vanishes outside of a union of a
finite number of Y;,,’s and thus holds for a set of functions dense in L2(.Z, ). Since T and
h- are bounded operators this implies that they are the same. O

In conclusion we have obtained that, if (#, 7) is a nondegenerate representation of a unital
commutative C*-algebra A on a separable Hilbert space, the multiplicity-free condition can
be reformulated in terms of a property of the spectrum of A: ('H m) is unitary equivalent
to a multiplicative representation of C (A) on a single copy of A (condition (4.2)(b)).(13)
However we note that, generally speaking (i.e. if % is non-separable), the property “w(A)"
maximal abelian” does not imply the (4.2)(b). This fact can be verified with the following
example.

Let H, = 12(0,1) (resp. H2 = L2(0,1)) be the Hilbert space of all square integrable
functions on [0, 1] with respect to the counting measure (resp. the Lebesgue measure). Let
7 be the representation of the C*-algebra C[0, 1] (of all continuous functions on [0,1]) on
the direct sum H = H; ® Hy by multiplication (i.e. 7(f){1, %2} = {ft1, f1)=2}, where
fecCo,1], ¢1 € 13(0,1), ¢ € L2(0,1)). Then it turns out that: 7(C[0,1])" is a maximal
abelian algebra, but (#;®Hz ,7) cannot be equivalent to any multiplicative representation
of C[0, 1] on a space L3([0, 1], ) (with p positive measure on the Borel o-algebra of [0, 1]).
(See Remark II.1.8 for the proof of these properties.)

Hence, in general, the concept of multiplicity-free nondegenerate representation is not
equivalent to the possibility of “constructing 7 ” on a single copy of A. These considerations
suggest to precise this notion of absence of multiplicity “in the spectral sense” introducing
the following definition.

Definition 4.3. A representation (?,7) of a unital commutative C*-algebra A is said to
be spectrally multiplicity-free if there exists a positive measure p on the Baire o-algebra of
the Gelfand spectrum A of A such that there is a unitary operator U from # onto L2 (A, 1)
and, for each element A of A, Un(A) U~! is the opefator of multiplication by the Gelfand
transform of A.

(13) Such algebras 7(.A) (or systems of their generators) are what in quantum mechanics
Dirac called a “complete commuting systems of observables”.
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Remark 4.4. Note that a spectrally multiplicity—free representation is always nonde-
generate. In fact, if 4 is a measurable function on A such that 0 < [+ i [¥|2dp < +oo,

there exist (by definition of Lebesgue integral) a Baire set ¥ and a constant k > 0 with
0 < u(Y) < +o0 and kxy < |¥|?% in particular xypu is a positive finite Baire mea-
sure on A. Due to Theorem 2. 7, Xyt is regular, so there is a compact Baire set C
such that C C Y and 0 < u(C). Since A is a (locally) compact Hausdorf space, due
to Urysohn Lemma, one can find a continuous function A such that 0 < Alp) < 1, if
¢ € A and A( ) =1,if ¢ € C. (Urysohn Lemma can be found in Rudin [1].) Therefore
1Ag|2 = [2A2 91> dp > [ |APR |2 de > k [, xv dp = kp(C) > 0. In conclusion, for
every non-null vector z of 7, there is an element A in A such that U(r(A)z) = Ay # 0.

Remark 4.5. From Proposition 4.2 it follows that, if # is separable, (#, 7) is nondegen-
erate and multiplicity-free if and only if it is spectrally multiplicity-free. Nevertheless, as
we are going to see, in the general case the second notion is stronger than the first one,
i.e. we have that

(H,7) nondegenerate and = (H, =) spectrally
multiplicity-free == multiplicity-free

In this part of the thesis we shall find some necessary and sufficient conditions for a
representation of an abelian C*-algebra to be spectrally multiplicity-free and we shall
compare this notion with the standard multiplicity-free property.



CHAPTER II

PROPERTIES OF THE SPECTRAL MEASURES

Summary. In order to obtain a better understanding of the “spectral content” of the
multiplicity-free property (for representations on arbitrary Hilbert spaces), we reconsider
in this chapter the notion of spectral measures.

In Section 1 we give a number of properties related to these set functions; in particular we
obtain equivalent conditions for the property “m(A)” maximal abelian” (see Proposition
1.6 and Corollary 1.7).

In Section 2 we consider the particular case in which the algebra m(A) coincides with its
weak closure or, more precisely, we discuss nondegenerate representations of commutative
W*-algebras. We shall see that, in this case, the Gelfand spectrum belongs to a special class
of topological spaces, hyperstonean spaces, and spectral measures satisfy additional proper-
ties; in particular the multiplicity-free implies the spectrally multiplicity-free property
(Corollary 2.11 and Comment 2.12).

§1 Spectral measures on compact spaces

The aim of this section is expressing the multiplicity-free property for an abelian
algebra in terms of conditions on the family of its spectral measures (Proposition 1.6).

Notation. For a unital commutative C*-algebra A: A denotes the Gelfand spectrum
of A and A\(QD) the Gelfand transform of an element A of A. Moreover, if (#,7) is a
representation of .4 and z a vector in H: the closed cyclic and invariant subspace of H,
{m(A)z| A € A}, will be indicated by H, or [r(A)z], the projection on H, by P, and the
spectral measure associated to z by p;. Symbols | or |, will be used for the restriction
map 7(A) = L(Hz) (i.e. m(4)], = Prn(A) P = n(A) P, = P, w(A)).() We recall that
this map defines a cyclic representation of A (into £(#;)) which is unitarily equivalent

(see subsection “Spectral representations” in the previous chapter) to the representation
(L%(A, pz), ®;) such that

(22(4) ¥)(9) = A(0) ¥() ¥ € L3(A, )

() Since H, is 7(A)-invariant, P, € w(A)".
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where we have set

0,(A) ¥ U, r(4)], U Ac A
U, being the unitary operator from #, onto Lz(j, L) -

Proposition 1.1. Let A be a unital abelian C*-algebra and (H, ™) a representation of A.
Then, for every non-null vector z in H, we have:

a) ify € Ha, Hy < lg

b) foreachy in M,  priy < pg + py

¢) fy LHa, oty = piz+ py.
Proof. a) Denote by 1, the element of Lz(ﬁ, Uz) given by Ugy. Since f;{;{dﬂy =
(r(A)y,y) = [ 224: |1y |? dp for every AinC (.Z), the Riesz Representation Theorem implies
that py = |1, "4 . R
b) For every Baire set ¥ of A there is a projection Py in L£(#) such that (Pyz,y) =
Jy divz,y) (see Section 1.3). So for every z,y in H we can write

/1'111+y (Y) = (Py($+y),$+y) = (PY$7$)+ (PYyyy)'*‘QRe{(PYSU,y)}
< |Prall® + | Pryll* + 2 |(Pyz, Pry)| < ||Pyel® + || Pyyl® + 2 | Pyl || Pyyll

= ﬂz(y) + .U'y(Y) + 2y ﬂz(Y) \/ My(Y) <2 (/—"z(y) + .U'y(Y))

and the thesis follows.
¢) Relation y L %, implies (7(A)z,n(B)y) = (7(B*A)z,y) = 0 for every A, B in A; hence
Hy L Hg. Due to the w(A)-invariance of these subspaces, we can conclude that, for each

A in C(A),
/ZE Qaty = (T(A) (@ +1),5+1y) = (((A)z,2) + (r(A)y, y) = /XE Ay + /221‘ ey

e poty = Hz + py - O

Proposition 1.2. Let (H,w) be a nondegenerate representation of a unital abelian C*-
algebra A and let z be a non-null vector in H. Setting C; = {y € H | py < pz} and
Sz ={z€M|p, L u.}, one has that:

a) Cy and S, are two closed subspaces of H and H = Cy © S,

b) the projections on C; and S, belong to w(A)".

Proof. a) We begin showing that C, and S, are subspaces of H. If y,y’ € C,, then
Lay = |A|? py < pg for every X in € and, due to Proposition 1.1.b, Pyty K fy+ly < g
Similarly, if z,2" € Sz, paz = |a|?pz L ps and poqn < (1 + par) L g

In fact, let £, E' be two Baire sets such that p,(E)= p(E') = ,uz(ﬁ) and p,(F)=0=
pz(E'). Then pz(ENE') = g (A) and p,(ENE') + py (ENE) =0.

Consider now a Cauchy sequence {y.} in C, converging to the vector y of H. If Y is a
pz-null Baire set, then puy (Y) = (Pyy,y) =limp(Pyyn,yn) =0; thus y is in C,. Let {2,,}
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be a Cauchy sequence in S, that converges to z. If {E,_} is a countable collection of Baire
sets in A with pg (E.,) = g (A) and Lz, (Ez,)=0 for every n in IN, due to o-additivity of
by B2 = (en Bz, is 2 Baire set such that pg(E,) = ,um(ﬁ) but p, (E.) = 0 for every
n; therefore p,(E,) = (Pg.z,2) = lim,(Pg_2n,2,) = 0, i.e. p, L py. Hence both C,
and S, are closed subspaces. To prove their orthogonality let us suppose that there are y
in C; and z in S; for which (v, 2) # 0. Then, considering the orthogonal decomposition
z = 21+ 22, where z; 1 H, and z, € H,, one has, by Proposition 1.1, g, = p,, + 11, and
Pz, < phy < pig; on the other hand condition p, L p, implies p,, L gz, hence p,, = 0.
But this is impossible if (#,7) is nondegenerate, in fact, in such a case, there exists an
element A in A for which w(A)z; # 0, therefore (r(A)*n(A)z,22) = [ |A|? s, # 0.

Let w be an arbitrary vector in . According to the Radon-Nikodym Theorem, its spectral
measure, [, can be decomposed in the sum gy, = po+p1, where po < pz and gy L py;
moreover there is a Baire set, F,,, such that pg(Ey) = pg(A) and g (E,) = 0. From
relation xg, P+ XEe P = ploy = po+py follows that x g, pw = po and XEs P = [11- SO
we have that Uy, xg, and Uy xEge are two orthogonal vectors of H,,, contained respectively
in C; and Sy, with Uy, xE, + Uw XxE:, = Uy X 7= w- In conclusion, H = C: ®S;.

b) For every z in S; let F, be a fixed Baire set such that p,(F,)= . (.;-1\) and p,(E,)=0.
This implies in particular that: Pg z = 0 and Pg .y = y for every y in C;. To conclude
the proof we show that the family of operators

N
{P(zl...zN) = H PE;j }

=1

(z1...zn) being a finite set of elements in S, define a net ® in 7(A)" weakly convergent
to the projection on C,. Consider in fact a pair v,w in H. Let v = v, + v, and w =
w, + ws be the orthogonal decompositions of v and w with v., w. in C; and v,, w, in S;.
Then, denoting P¢ the projection on Cy, for every “index” (z1...zn) > (vs, ws) we have

(’U ’ (P(zl...zN)—PC) w) = (Uc+vs 3 (P(zl...zN)‘“PC) (wc+ws)) = (Uc ) (P(zl...z,\')_PC') wc) :07
i.e. w-lim P(z1---ZN) = Pc. O

Proposition 1.3. Let (H,7) be a nondegenerate representation of a unital abelian C*-
algebra A. Then, for each vector z of H (z # 0) we have that:

a) Hy = [r(A)a] = [r(A)"z]
b) m(A)" |5, = (w(A)]5.)"

c) (W(A)JHI)” is @ mazimal abelian and o-finite von Neumann algebra in L(H;) and

Us (m(A)]3,)" Uz = (U w(A) 5, UZ)" = LA, pg) . @

() Note that {(z1...2n) !zl, ...,ZN €Sz; N €N} is a directed set when it is ordered
by inclusion, i.e. (z1...25) < (z1-..2p) if (21...25) C (21...281)-
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Proof. a) See the proof of Proposition 1.4.2.

b) Consider an arbitrary element By of (7(A4)],)" and let {Aq},c; be a net in A such that
w-limg 7(Ag) |, = Bo. As we proved in the previous proposition, one can associate to  a
pair C; , Sg of closed subspaces such that C, ® S, = H. So, for every w inHand o,fin J,
we can write: [|((Aa) ~ 7(45)) Fo w|? = (A — Ag) well? = [2|Aa(e) — Ap(@)]? ditu,
Fc being the projection on. C;. According to the definition of C, and to Radon Nikodym
Theorem there is a positive function f in L'(A, y1z) such that [~ 2 |Aa(0) — Ag(0) |2 dppe, =
J2 | A ( Aﬁ(go)[z fduz = ||7(Aa— Ag) Uz /T||? . This equality allows to conclude that

{r(A )Pc} is a Cauchy net in 7(A)” with respect to the strong operator topology. So
there exists an operator B such that s-limg m(Aq) Pc = B; hence B € 7(A)” and B]_ =
s—limg m(Aa)], = Bo, ie. (w(A)],)" C m(A)"|_. The opposite inclusion, (r(A4)],)" 2
m(A)"], , is obvious.

c) Since (n(A)],)" and Uz (A)), Uz)" are von Neumann algebras with cyclic vectors z
and Uzzx respectively, then they are both o-finite and maximal abelian (see, for instance,
Li Bing-Ren [1; Proposition 5.3.15]). So (ﬂ(A)Jm)Il = (’/T(.A)Jz), and (U w(A)], U;)"

(Us m(A)), Uz)'. Moreover U, (n(A)],) Uz = (Up w(A)], Uz)'. In fact, if By € ((A)],)’
one has :

Uyr BoUzU, Ao Uy = Uz By Ao Uz = U, Ag BoU7 = Uy AgUiU, BoUz Ao € w(A)),
hence U, (w(A)],) Uz C (Uy7(A)], Uz)". Conversely if Fy € (Un(A )], Uz), then
Uz FoUs € (n(A)],) and U, (U; FoU,) Ux = F, ice. Uy (n(A)] ) Uz 2 (Upm(A)], Uz
Thus we can write:

Us (n(A)),)" Uz = Us (v(A)),) Uz = (U (A)), Uz) = Uan(4)], U)"

F ma.lly taking into account that L™ (A liz) 1S a maximal abelian multiplicative algebra on
L2(A, pg) (see proof of Proposition 1.4.2) and that L (A4, y;) C (Usm(A)], U;) , we have

(Uzm(A),U2) = (Usn(A4)), U2)" C (Lw(ﬁ,um))'zLOO(,Z,uz)g (U, m(A)], U2 . O

Remark 1.4. One should observe that, up to this point, no hypothesis on 7(A)" was
been assumed.

Proposition 1.5. Let (H,w) be a nondegenerate representation of a unital commutative
C*-algebra A such that w(.A)" is mazimal abelian in L(H). Let z,y be two non-null vectors
in H such that Hy L H,. Then:

a) Hapy = He & H,y

(3) The space L™ (.A, pz) will be identified with a C*-algebra of multiplication operators
on L2(A, pg).
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b) the restriction map _[I+y defines a cyclic representation, (Hq @ Hy, Jm+y om,T+7y),
of A unitarily equivalent to (Lz(.;-{, o+ py) , Ppty) and

Uz+y (W(A)”JH,@Hy) Ugpy = L™ (A, o+ fy) -

Proof. a) According to Proposition 1.3, [r(A)(z + y)] = [r(A)"(z + y)]. Since m(A)" is
maximal abelian projections P, and P, belong to 7(A)"; therefore we have [r(.A) (z+y)] =
[7(A)"(z + y)] 2 [7(A)"Pe(z +y)] = [7(A)"z] = [r(A)z] and similarly for P,. Hence
HzyHy C Hety. Finally, since He4y is a linear space, we have H, @® Hy € Hzty. The
opposite inclusion, Hgqy C H, & H, , is obvious.

b) This part follows from the previous one and from Proposition 1.3. 1

We conclude the section showing that the maximal abelianness property can actually be
characterized by suitable conditions on the set of spectral measures.

Proposition 1.6. Let (H,n) be a nondegenerate representation of a unital commutative
C*-algebra A. Then the following conditions are equivalent:
i) w(A)" is mazimal abelian
i) ifz,ye H and H, L Hy, then pg L p,
iii) if z,y € H and y = yo + yt, where Yo € My and y* L H,, then Ky = Hyo + Hyo 1S
Just the Lebesgue decomposition of Ky Telative to pg
iil) ifz,y € H and pg = Ly, then Hy = H,.

Proof. i) = ii). According to Proposition 1.5, if z,y € Hand Hy L H,,
(H:BGBH:W JHI@’}{yO T ) = (Lz("za u$+uy)7 q)g;—{—y) and W(A)”J’Hz@’}{y 2 L= (A) ﬂz+ﬂy) .
So there exist two Baire sets E, Ey in A such that

U:c+yPa:Uz*+y = XE. Ugy By U.':-{-y = XE,

and
to(Bz) + py(Bs) = (Po(z + ), 2+ 1) = (z,2) = pu(A)

pa(By) + 1y (By) = (Py(z +y) 5+ 9) = (y,9) = py (A)
po (B N Ey) + py(Ez N Ey) = (P Py(z+y),z+y) =0

Let us suppose, to reach a contradiction, that by(Eg) > 0. Then p.(E;) < /,Lm(jl\) ie.
Pa(supp pz\Ez) > 0. Setting R = supp g\ F,, due to regularity of Baire measures, there
exist a compact K and an open G (Baire sets) such that: K C R C G, pz(K) > 0 and
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pz(G\R) < p5(K)/2, py(G\R) < pz(K)/2. Since A is a compact Hausdorff space we can
apply Urysohn Lemma i.e. there exists a function f in C(A) such that

0< f(p) <1, foreverygo'mﬁ
flo)=1, ifpekK

f((,D):O, if‘10¢G'

Let A be the element of A whose Gelfand transform is f. Then

((A)Palz +1) 5+ ) Z/XXExfd(uz+My)=[Ezfduz+/EIfdl$y
< pe(Bz NG) + py(Ex NG) < pz(G\R) + py (G\R) < po(K).

On the other hand (Hz, |, 0 7) = (L2(A, piz), ®z); hence one also obtains

(Por(A) (@ + 1), 2 +v) = (x(A)z,z) = /ﬁfd#z > ua(K)

which contradicts the previous relation. Therefore we can conclude that u,(E;) = 0 and
similarly that pg(E,) =0 i.e.

pa(Ey) = /Lz(-f:{) py(Ey) = /—Ly(f/{) po(Ez NVEy) = py(Ez NEy) =0.

So E, = E\(EzNEy) and E_; = F,\(E; N E,) are two disjoint measurable sets on which
Lz and p, are respectively concentrated. ‘

il) = iil). Ify = yo + v+, where yo € H, and y* L H,, due to Proposition 1.1,
[y = fyo + fyr and pry, < po. Moreover from condition i) follows i, L p;. Uniqueness
of Lebesgue decomposition concludes this proof.

iii) = iiii). Let z,y be a pair of vectors in H such that p; = p,. Then the Lebesgue
decomposition of p, (resp. u,) relative to p, (resp. fiz) has no orthogonal component.
Thus according to iii), z € H, and y € H;; so Hy € Hy and Hy C H,.

iiii) = 1). Let H = Bper [7(A)za] (|lza]| = 1 for each a in I) be a decomposition of H
in a direct sum of cyclic and 7 (A)-invariant subspaces (see point 2 of subsection “Spectral
representations” in Chapter I). We divide this proof in two steps. In the first part we show
that 7(A)" is maximal abelian if (and only if) each projection P, belongs to w(A)"; in the

(1). Assume that all P,’s belong to w(A)" and let B be an arbitrary element of 7(.A)".
Since 7(A) = n(A)", B also commutes with every P, and B|, € (7(A)],)’; furthermore,
by Proposition 1.3, (w(A)],) = (7(A)],)" = n(A)"],- Hence for each o in I there is an

(4)  TInstead of He, | . P,_ we use here the simpler notations: H, ] o Fa-

T
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element of 7(A)", call it B(y), such that B, = BJ,. To conclude this part we shall
prove that the family of operators

N
{V(ﬁl...ﬂN) = Y B Pﬁj} (1.6)(a)

=1

(B1-..Bn) being a finite set of distinct indices in I, defines a net(® in w(A)"” weakly
convergent to B. We proceed as follows. Let w, z be a pair of vectors in H and € a positive
constant; consider the decomposition w = > v =1 Wa; s where w,; € He; for every j in IN.

Then there exists a natural number M such that ||w — Zﬁl Wa, || < Moy moreover, for

each j =1,... M, one can find an element A; of A such that ||7(4;)za, — wa;|| < K/Tﬁ;ﬂ )
So, if T € w(A), we can write:

(7w, 2)] = }( (wizw%),b)

M

< D (T way,2)| +¢|T]

Jj=1

waJ m(A; )iEaJ) ,z)

+e T
< Z [zl 7 (A3) T 2oy |l + Z 2T H[we,— 7(Az)Ta; || + € [T

M
< Sl AN IT a1l + 26T < kY [T o0, l| + 22|

where k = max {||z] || 4| !j = 1,...,M}. In conclusion we have found that, for every
w,z in H and € > 0, there exists a finite set (a;...anr) of distinct elements of I and a
positive constant k£ such that

. M
(1.6)(b) (Tw,z)] <k Z | Tzq, || +2€||T| for every T in m(A)’

Now it is easy to check that, for every oberator Vig....8x) of the net (1.6)(a), the norm of
(B —V(s,..5y)) is 10t greater than ||B||.(®) Hence, according to relation (1.6)(b), for every

G {(Br-..Bn)|B1y---Bn € I; B; # B; if i # 5; N € IN} is a directed set when it is

ordered by inclusion, i.e. (f1...8n8) < (B1-..Bum) if (B1-..Bn) C (B1---Bum)-
(6) For each finite set (B1...Bn) of distinct elements in I and each y in H, consider the
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w,z in H and € > 0, there exist a finite subset (o1 ...aa) of I and a real constant k such
that

M
|(Vigr..n) = B)w, 2)| < kD _|I(Vig,..o0) — B)Tarll +€ V(Bi-..0n) .
k=1

Property Zkle I(Vig,..8n) — B)Taxll =0 V(Bi...0n) = (a1...anr) allows now to infer
the desired conclusion.

(2). We want to prove that iiii) implies that P, € w(A)" foe every a in I. Firstly we
consider a pair o, 8 in I with a # 3; from relations

/XA dihzatas) = (’/T(A)(.’Ea t18),zq = 3:/3)

= (7(A)2a,2a) + (7(A)zg,78) = /A}l\dua '*'/,\A\d#ﬂ :
A A

for each A in A, follows that iz, yz; = fa + I3 = pea—zs- S0, due to condition iiii),
Hootag = Ha,—zs; in particular Hy, 40, contains vectors (24 + 23), (za — 2g) and zo =
(Tat+zp)+(2a—2p))/2, 25 = ((Ta+2s)— (Ta—25))/2. This implies [1(A) (zo+25)] =
Ho @ Hp 1) Therefore we can write

(Ha @Hﬁ7 J'HQ@’Hﬁ © T() £ (LQ(“Z? Ha +#ﬁ)7@$a+$ﬁ) :

If v is another index in I such that « # v # 3, with the same procedure we obtain that
H(m&-f—zg)—i—x., = Hz&-l-zg S 7'[1:7 = ch @D Hﬁ @ rH',' and

(Ha @ Hp ® Hy, Jnorpon, © ™) = (LA, o + 15 + y), Baptapta,) -

decomposition y = yo + y, where yo € (Hp, € ... @ Hp,) and y+ L (Hp, © ... O Hgy)-
Then:

1B = Vigy...o0)WII* = (B = Vig,..0:)) o + ¥™) . (B = Vig,..o0)) (w0 + ¥5)) =

= (B = Vig,..o0))05 (B = Vig,..on))¥0) + (B = Vigy.. )y s (B = Vig,. pu))y™) =

N ~

=0

= 1By I* < IBIP w1 < 1BIF lly)” -

(") In fact for every z in Hq and € > 0 there exists an A in 4 such that ||[r(A)zy —
z|| < €/2; as 24 € Hao4ay, we can find B in A for which ||7(B)(za + z8) — ol <
e/(2|[Al]). Hence ||m(AB)(za+xp) — 2|l < ||7(A)(7(B)(za+2p) — za)|| + [7(A)za — 2] <
Al [|7(B)(za+28) — zal| +€/2 = € . The same results holds obviously exchanging o and
8.
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By finite induction one can then conclude that: for every finite set (8;...8y) of distinct
elements in [

(Hﬁl D... @HﬁN7 JHﬂl@'“@HBN o] ’/T) = (LQ(A, s, + ...+ I“LﬁN)’(pIﬁl‘f'---'l'fEﬁN) .

Moreover, according to Proposition 1.3.c, (ﬂ(A)me@“@HﬂN )" is maximal abelian, so all

projections PﬁjJHgl@---@HﬁN (7=1,...,N) are contained in (ﬂ'(A)JHBl@“@HEN)". From
this fact we infer that, for each 7 = 1,..., N, there exists an element in A4, call it Af /131 )

that satisfies properties:

B; B;
(p1) A(él...ﬂx\') =20 and ”A(ﬂl--ﬁN)” <1

(p2) ” (W(A/(Bél__ﬂN)) - Pﬁj):ligil < %/-— 1=1,...,N.

To verify this we observe that, due to Kaplansky Density Theorem (see, for instance,
Stratila Zsidé [1]), there exists a B in A such that T(B)lg,..on 20 I7(B)lg, pull <1
and

H(W(B)Jﬁl...ﬁN - Pﬁj.lﬁl...ﬁN)Iﬁi” <1/N 1=1,...,N.

Hence C = /(B + B*) (B + B*)/2 is a positive element in A such that =(C)
m(B)lg, . py- In fact:

Ol = (VEEJELED)|

Jﬁl...ﬁN =

2

VEB) g, gy + 7B, 5y) (7(B)lg,. gy +7(B) g, p)
2

- W(B)Jﬁl BN

Let Afélm ) be the element of A whose Gelfand transform is defined by the relation

o~

A% 5y (@) = min {E(e), 1} ped.

Then Afélm Ax) satisfies condition (p:) and, for every vector y of Hg, @...®Hg, , one has

Uprow T(AQ, pr))¥ = A 51y (@) Up,..0)(0) = min {C(), 1} (Up,. 1) () =
C(e) (Up,...ony)(®) = Up,..on 7(C)y = Up, .y n(B)y. ©®)

So A/(aél_'_ py) Verifies condition (p2) as well.

(®) Note that C~1(1,400) is a (ig, +. . .+ gy )-null set of A; in fact, if this were not the
Ca'se’ ”UﬁlﬂN W(C)JHSI "'HHN UglﬁN ” Sh01ﬂd be > 1 a'nd Uﬁl---ﬁN W(C)J'Hﬁl ...’HﬁN UE1ﬁN
could not coincide with Ug, g, W(B)JHBI___HBN U, n-
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Using elements Af [131 ) OD€ can now construct, for every fixed « in I, the net:

{W(A?ﬁl...ﬁN_l a))} (1.6)(c)

where 81, ..., Bnv_1 are indices of I distinct and different from «; applying relation (1.6)(b)
and properties (p1) and (p2) we shall see that such a net weakly converges to P,. Consider
an € > 0 and a pair w,z in H. Let (o ...aar) be a set of elements in I and k a positive
constant satisfying (1.6)(b). If '/T(A‘(lﬂlm Br1 0[)) is a member of the net (1.6)(c) with “index”
(Br...Bn—1c) such that N > max{M,kM/e} and (a;...an) C (B1...Bn-12), We can

write

+ 4e

IUﬂAmMMﬂMw<&wual<k§§WﬂAamMﬁ@r<mn%

JZ

1 €
< k]\/f-]—v—+48 < k.Mk—M-i—4e = be

Since this inequality holds for every index (...a) > (61 ...0n-1c), we can conclude that
W-limw(A‘("_._a)) =P,.. O

Corollary 1.7. Let (#, ) be a nondegenerate representation of a unital commutative C*-
algebra A and let H = @qer [7(A) z4] be a decomposition of H in cyclic and w(A)-invariant
orthogonal subspaces. Then w(.A)" is mazimal abelian in L(H) if and only if

(1.7)(a) Pzg L pz, for every o, B in I (with a # () .

Proof. If w(A)" is maximal abelian, then the property (1.7)(a) follows form Proposition
1.6. Conversely, let ¥, z be two vectors in H such that H, L %, and let

o0 [0}
y:Zyn z = sz
n=1 m=1

be their orthogonal decompositions where y, € H,, and z, € Hg,, for each n,m in IN.
For every pair n, m € IN, the spectral measures pu,, and p,,  are orthogonal.

In fact, if n and m are such that o, # B, by Proposition 1.1.a and hypothesis (1.7)(a)
we can write py, < pg, L pz, > pg.. On the other hand, if o, = B, = o, one has
[(7(A) 3] = [7(A),, vn) € [7(A),, Tn), [1(A) 2m] = [7(A), 2] C [7(A)],, 2]
and [W(A)J% yn] L [7(A)],. zm]. Due to Proposition 1.3, (m(A)],.)" is maximal
abelian; so, according to the point ii) of Proposition 1.6, p,, L p, .

Hence there exists a countable collection {Sy ,} of Baire sets of A such that

-~

Loy (Sn,m) = ty, (A) bz, (Snm)=0 for every n,m in IN.
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So, taking S = U2, (N%_; Sn.m), one obtains a measurable set for which

Pyn (S) = tiy, (A4) Ez (S)=0 for every n,m in IN.
It is not difficult to generalize the result of Proposition 1.1.c writing
o0 o0
iu’)jzozlyn = Z Hy., and /,LE:.?:l:’ﬁ = Z 79
n=1 m=1
(see Definition 1.2.3). In conclusion one obtains that there exists a Baire set, S, such that
[e.0] ’ oo N N oo
py(S) =D 1y, (S) =Dty (A) = 1y (A) p(8) = D 2, (5) =0
n=1 n=1 m=1
le. py L p,. Point ii of Proposition 1.6 concludes the proof. O

Remark 1.8. We can now easily verify that there exist nondegenerate representations of
abelian C*-algebras .4 which are not spectrally multiplicity-free even if w(4)"” is maximal
abelian. Consider in fact the following example.

Let #; = 12(0,1) (resp. Ha = L2(0,1)) be the Hilbert space of all square integrable
functions on [0, 1] with respect to the counting measure (resp. the Lebesgue measure). Let
A be the C*-algebra C[0, 1] (of all continuous functions on [0, 1]) and 7 the representation of
C[0,1] on the direct sum H = H; & H by multiplication (i.e. w(f){t1, w2} = {fib1, feba},
where f € C[0,1], 41 €1%(0,1), %2 € L2(0,1)). Then: A can be identified with the interval
[0,1] and a decomposition of H in a direct sum of cyclic and 7m(A)-invariant subspaces is

H = @aeo,1] [T(A) Xa] ® [7(A) X[0,1]

Xa (resp. X[o,1) being the characteristic function of the point « in [0, 1] (resp. the charac-
teristic function of [0, 1]). The corresponding spectral measures are such that:

1, ifaecY
#xa(Y):{ no

0, otherwise
We shall denote p,,, by 6, and Exio.1; bY A. Using Corollary 1.7, one immediately concludes
that mw(A)” is maximal abelian. On the other hand suppose that there exists a positive
measure 1 on the Baire (i.e. Borel) o-algebra of [0,1] and a unitary operator U from H
onto L2([0, 1], ) such that, for each f in C[0,1], Un(f) U* is the operator of multiplication
by f. Then p should satisfy both these properties:

a’) (W(f)XcuXa):/[Ol]flUXa!2dU:f(a)

and Ix(o..; = the Lebesgue measure on [0, 1] .

for every f in C[0,1] and ain [0, 1]. Therefore, for each «, IUXalz,u = J4 ; hence ,u({a}») >0
for every a in [0,1]. '

b) (W(f) X[o0,1] 7X[o,1]) = / f IUX[OJ]]Z dp = / fdx
[0,1] [0,1]

for every f in C[0,1]. Therefore IUX[0,1]|2,U = A.
Obviously these two points are incompatible.
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§2 Spectral measures on hyperstonean spaces

Since an abelian von Neumann algebra contains a lot of projections (or in other
terms, since the space of continuous functions on its spectrum contains a lot of character-
istic functions) one expects its spectrum to have special topological properties, in general
not satisfied in the uniformly closed case. In effect spectra of weakly closed commutative
algebras belong to a particular class of topological spaces. In this section we shall examine
properties of this kind of algebras from the point of view of our discussion, i.e. we shall con-
sider multiplicity-free and spectrally multiplicity-free conditions in these particular cases.
To begin with, we need some preliminary results. '

Definition 2.1. A Hausdorff topological space is called extremely disconnected if the
closure of every open set is open. A compact extremely disconnected space is called
stonean.

Remark 2.2. Let Q be a topological space; we shall call clopen of Q) every set E C Q2
which is simultaneously closed and open for the topology of Q2. Note that every clopen of
a compact space is a Baire set.

Let Q be a compact Hausdorff space and Cr(€2) be the set of all real continuous functions
on §2. Then £ is stonean if and only if every bounded family {f;};.; in Cr(Q2) has a

least upper bound in Cr(2).(®) Moreover, if {f;} jes is a bounded family of continuous
functions on a stonean space, its Lu.b. in Cr(£2) coincides, except possibly on a subset of
the first category(1%), with the lower semicontinuous function given by g(w) = sup; fj(w)
(for every w in Q).

Definition 2.3. Let m be a measure associated, via Riesz Representation Theorem, to a
positive linear functional on the space C(2) of continuous complex functions on a stonean
space 2. Then m is called normal if for every bounded net {f;} jeq of continuous real-
valued functions on , sup,c y [q, fidm = [, f dm, f being the least upper bound in Cr(2)

of {f;} jeJ
Proposition 2.4. If m is a positive normal measure on a stonean space 2, then every
m-measurable set E coincides apart from a m-null difference with: its closure E, its interior

E°, the interior of E and the closure of E°. Therefore the support of m turns out to be a
clopen set of €.

Definition 2.5. A topological space (2 is called hyperstonean if it is stonean and for every
non-zero positive function f in Cr(f2) there is a positive normal measure m on {2 such that
fQ fdm # 0. A family {m;},.; of positive normal measures on a hyperstonean space is

) Cr(Q) is a partially ordered set by defining f > h to mean that f(w) > h(w) for
every w in 2.

(10) A subset N of a topological space is called nowhere dense iff its closure N has empty
interior; a countable union of nowhere dense sets is said to be of the first category.
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said to contain sufficiently many measures if for every non-zero positive f in Cr(f2) there
exists an i in I such that [, fdm; # 0. :

To relate these spaces to abelian algebras we note firstly that von Neumann algebras have
their abstract counterpart in W*-algebras; namely: a C*-algebra W is called a W*-algebra
if it admits a faithful representation (#,n) such that 7(W) is a von Neumann algebra in
#H.(1)) Then we can state the following

Theorem 2.6. Let W be an abelian W*-algebra and let (H, ) be a faithful representation
of W. Then: the Gelfand spectrum of W, W, 15 a hyperstonean space, each positive
spectral measure m; (z € H) on W is normal and the set of all positive spectral measures
{mgs |z € H} contains sufficiently many measures.(}?)

Bibliographic note. Concerning properties of hyperstonean spaces and their relations with
spectra of von Neumann algebras we refer to Takesaki [1; Chapter III, Section 1].

In what follows we want to point out that, due to the particular properties of the stonean
spaces, if a nondegenerate representation (#H, =) is such that (W) is maximal abelian then
there exists a unitary mapping U between 7{ and a space of square-integrable functions on
W such that UAU* = 4 for every A in W, i.e. (H, ) is spectrally multiplicity-free.

Lemma 2.7. Let (},7) be a nondegenerate representation of an abelian W*-algebra W,
mg the spectral measure relative to the vector  of H and 'y the support of my. Then the
continuous function xr, is the Gelfand transform of a projection, Pr_, in m(W) with a
range containing [x(W)z], i.e. such that Pp_ > P,.

Proof. For every A in W one has:

7(A) 2 — Brw(A) z|* = (w(A)(Ia — Pr,) &, m(A)(Iy - Pr,) z) = /VT)\P A2 dmy =0 |

that is Pr,m(A)z = 7(A)z. (Note that, since (#, ) is nondegenerate, (1) = 13 (see
Appendix A).) Due to continuity of Pr,, Pr_y = y for each vector y in [x(W)z], hence
Pr. > P,. O

Remark 2.8. We recall that in general P, is not an element of w(W) (see Proposition
1.6). :

Lemma 2.9. If the vectors z,y of H are such that supp mg N supp m, = @, then
corresponding cyclic subspaces are orthogonal, i.e. [r(W)z] L [x(W)y].

(1) These algebras are also characterized by the following property: a C*-algebra W is a
W*-algebra if and only if it is the dual of some Banach space (see, for instance, Takesaki
[1; Chapter 111, Section 3]). i S

(12)  We denote the spectral measures relative to W*-algebras by the Latin letter “m”
keeping the Greek character “4” for the case of generic C*-algebras.
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Proof. Hypothesis supp mg N supp m, = @ implies xr, xr, = 0ie. Pr, L Pr, and,
according to Lemma 2.7, P, < Pp_ L Pr, > P, O

Proposition 2.10. Let (#,n) be a nondegenerate representation of an abelian W*-algebra
W and let {z;}icr be a a family of non-null vectors in H which is mazimal with respect to
the property: supp mg, N supp Mg, = 0O Vi#j. Then m(W) is mazimal abelian if and
only if @ier[t(W)z;] =H

Proof. Firstly let us assume 7(W) to be maximal abelian. Suppose that there exists a
non-null vector y in H such that y L @ic; [7(W)z;] ie. [t(W)y] L @ier [r(W)z;]. Since
(H,n) is nondegenerate we also have y # z; for every % in I (in fact y = z; would imply
[rOW)z:] L [r(W)z;] ie. [r(W)z;] = 0). Hence, since the family {z;}ic; is maximal with
respect to the property supp m,, N supp mg. =@ Vi j, there is at least one index 7 in
I such that supp my N supp my, # @. On the other hand, according to Proposition 1.6,
[r(W)z;] L [x(W)y] implies mg, L m,,; thus, there are two disjoint Baire sets, E,, and
Ey, on which mz, and m, are respectively concentrated. So (according to Proposition 2.4)
we can write the following relations (13)

ESNES C E,NE,, =0

E_gﬂE’_‘z’: 2 supp my N supp my, # O

We claim that this two conditions are incompatible in an extremely disconnected space. In
fact if E' and F' are two open sets of an extremely disconnected space such that ENF = @,
then £ N F must be empty as well (because E N F' is open, so all points of it have a
neighborhood, E N F itself, such that (ENF)NE C FNE = @; therefore they could not
belong to the closure of E). For this reason: EY N E2. = O implies EE NE; = O which
implies EZ N ES, = O.

Conversely we have to show that, if # = ®;¢; [7#(W)z;], then (W) is maximal abelian. By
Lemma 2.7 we have that, setting I'; = supp my,, Py, < Pr, for each i in I. Suppose now,
to reach a contradiction, that there is an ¢ in I such that P, # Pp,. Then the subspace
Hy = (Pr; — Pg,;) " would be orthogonal to &;cr [r(W)z;]. (In fact: H, L [#(W)z;] by
definition and #, C Range Pr, 1 Range Pr, 2 [7(W)z;] Vj # i.) But this contradicts
the hypothesis; so P;, = Pr, for every 7 in I; in other words H can be decomposed in
a direct sum of cyclic w(W)-invariant subspaces and all projections on these subspaces
belong to m(W). This condition implies that =(W)", i.e. (W), is maximal abelian (see
point 1 of part iiii) = i) in the proof of Proposition 1.6). U

Corollary 2.11. Let (#,7) be a nondegenerate representation of an abelian W*-algebra
W. If 7(W) is mazimal abelian then there ezists a positive measure m on the Baire o-
algebra ofW and a unitary map U from H onto LZ(W, m) such that, for each A in W,
Un(A)U* is the operator of multiplication by the Gelfand transform of A.

(13)  For every set EE C W, E° denotes the interior of E and E° the closure of E°.
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Proof. We divide the proof in the following steps.
1) Let {z;}icr be a fixed set of vectors satisfying the conditions of Proposition 2.10. Using
the Definition I.2.3 of sum of measures, we introduce, on the Baire o-algebra of W, the

measure

"= Y

i€l
2) The space LZ(W, m) is unitary equivalent to the direct sum @®;ey LE(W, mg, ). In fact
by Proposition 1.2.5 we have fW [2dm = 3., fﬁ |¥|2dm,, < +oo, for every 9 in
L2(W,m). Thus the relation o
V(¢) = {wi:,lr/}}ie_z

defines a norm-preserving operator from L2(W, m) into ®;c; L2(W, myg, ). Let now {¢; }ier
be an arbitrary element of ®;¢r L?(W, my,). Since D ier fW |;]2 dmg, < +oo, theset Iy =

{i € I| fi3 [¥:]> dmy, # 0} is countable; so taking v = 3., xr;9; (T'j=supp ms;) one
obtains a m-measurable function. Moreover, since measures mg,'s have disjoint supports,

Jotam =3 [ wian., =5 [ (50 xexw Bty )ama =3 [ am,,

icl icl 5,3 €lp j€lo
ie. 9 € LW, m) and
2 2
V() — {bitierll® = D 1D xey b5 — || = > /,\ > xr; i — v | xr.dma,
iel Yjelp i€lp w j€lo
=> /,\ |9 — bi]*dmg, =0
iclp YW

In conclusion V is also surjective i.e. it is a unitary operator onto @;cy L2 ()//V\, Mg, ).
3) For each L? ()//V\, g, ) there is an isometric linear map Uy, : [7(W)z;] — L2(W, mg, ) such
that Uz, m(A) ]z wye, Us: = A(") (see point 1 in subsection “Spectral representations” of
Chapter D\ So one can construct a norm-preserving operator U from @;¢s [7(W)z;] onto
Bier L2(W, my,) setting N

U({yi}ier) = {Us,¥i ier

4) We define a unitary map U from ®;¢; [r(W)z;] onto L2(W, m) writing U = V*O_ﬁ. If
(W) is mazimal abelian the previous proposition implies ®;cr [7(W)z;] = H. Therefore U
turns out to be a norm preserving operator between # and L?(W, m) and, for each A in W
and ¢ in L?(W,m), one has: Un(A)U*y = V*Un(A)U*V ¢ = V*Un(A) {U} Y}ier =
V*{Us, 7(A) e owyes) Uni ¥ }icr = V{AW}ier = A% : o

Comment 2.12. The last corollary shows that, due to the special topological properties of
W, the condition “r(W) maximal abelian” is sufficient for a nondegenerate representation
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(#H,7) to be spectrally multiplicity-free (see Definition 1.4.3). (Actually the difference with
respect to the case of a uniformly closed algebra is made by the property of Proposition
2.10). However the Gelfand spectrum of a W*-algebra is, as a rule, a complex ob ject and
generally no “explicit representations” are known for it. So what we are really interested in
is constructing multiplicative representations on spectra of C*-algebras (and not necessarily
on spectra of their weak closures) i.e. we want to discuss the spectrally multiplicity-free
property for generic abelian C*-algebras.



CHAPTER II1

CHARACTERIZATION OF THE
SPECTRALLY MULTIPLICITY-FREE REPRESENTATIONS

Summary. In this chapter we find some necessary and sufficient conditions for a repre-
sentation of a unital abelian C*-algebra A to be spectrally multiplicity-free.

In Section 1 we express such conditions in terms of properties of the spectral measures of
the representation.

In Section 2 we introduce the notion of operator algebras closed under monotone weak
sequential limits. (Such algebras, named Baire*-algebras (see Definition 2.1), can be con-
sidered as the o-analogues of von Neumann algebras.) Then we characterize a spectrally

multiplicity-free representation (#, ) of A by requirements concerning the Baire*-algebra
generated by w(A).

Section 3 contains a synthetic comparison between the spectrally multiplicity-free and the
multiplicity-free property.

§1 Measure theoretic characterization

Let (H,n) be a nondegenerate representation of a unital abelian C*-algebra A. As
we showed in Proposition II1.1.6, the von Neumann algebra generated by n(A4) is maximal
abelian (i.e. (#,) is multiplicity-free) if and only if the spectral measures associated to
m(.A) satisfy any of a number of properties; in particular iff, for every z,y in # such that
He L Hy, one has pg L p, . We rewrite this condition in the equivalent form

VzeH and Vy L H, there exists a Baire set of A , 9Y, such that:
um(j\sg) =0 (1.‘1)(CL)
py(S%) =0

and we compare it with the following property

Vz € H there exists a Baire set of A4 , Sz, such that:-
po(A\ Sz) =0 (1.1)(b)
1y (82) = 0 Vy L H,



42 CHAPTER III

(it is a sort of “uniform orthogonality” requirement). Obviously (1.1)(b) implies (1.1)(a).
In the next proposition we shall see that (1.1)(b) actually characterizes representations
which are spectrally multiplicity-free.

Proposition 1.2. Let (H,n) be a nondegenerate representation of a unital commutative
C~-algebra A. Then (H, =) is spectrally multiplicity-free iff its spectral measures satisfy
property (1.1)(b).

Proof. (1.1)(b) == (H, ) spectrally multiplicity-free. According to the points discussed
in Section L.3, consider a decomposition of H in a direct sum of cyclic and «(.A)-invariant
subspaces, H = - Daer [7(A)za] (llzal|=1Va) and let U be the unitary operator from
onto @aEIL (A, piz, ) such that Un(A)U* {tho} = {Avs} for every A in A and {¥a} in
Dacs L2(A, i, ) . Hypothesis (1.1)(b) implies that there is a family {S4 }oecs of Baire sets
of A such that

fie (A\ Sg) = 0 and  f5,(Ss) =0 Va,B €l with a # 8

Using Definition 1.2.3 of sum of measures, we introduce on the Baire o-algebra of A the

measure .
B= § Haq
ac]

Then the Hilbert space L2(A4, p) is unitary equivalent to the dlrect sum @qer L2(A, Pz, ) -
To verify this property define, for every 1 in L2(A w), Vi(y) = {1/) XSQ}aEI' Then V;

is a norm-preserving linear mapping from Lz(.A, i) into EBQEI Lz(.;l\, kg, ). In fact, by
Proposition 1.2.5,

S / B2 X5, dpta, = 3 / )2 dpe, = /pr?du:llwlliz(m

acl acl

Conversely, for each element {1} of ®,er L? (,2[\, Uz, ) such that 1, = 0 for all but a finite
set, a1,...,an, of indices, we can write V({¢a}) = Z] 1 Yay XS, . Then V({wa}) is a

Baire-measurable function on A and, by the properties of S,’s, one has

/ V{gah) P dp = / V() sy =3 3 /Xa"ba_,.«z}ak X5a, XS0, bty

BEI Bel jk=1

=3 WP, = 0l e
=1

Therefore V({¢a}) ceL?(A4, /u) and V is a norm-preserving linear map from a dense subset
of @uer L2 (.A Uz, ) into Lz(.A ©); hence V extends to a unitary operator, Vs, defined on
the whole space @qer L2 (A tz, ). Now from the definitions of V; and V5 it follows that
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VooVi =112, and Vi o Vy = I, 12(ua) > OF in other terms that V) is actually a unitary
map from L2(A, p1) onto @ec; L2(A, 1g, ) and Vs = V;.

Let i = Vo oU. Then U is a norm-preserving operator from H onto LZ(.Z, ) such that,
for every A in A and 9 in Lz(./’l\, i,

Ur(AU* Y =V, Urn(A) U {Pxs.} = Va {A¥xs.})
= Vz(lim {E¢Xsal,---,2¢Xsan})

= lim ZAl/JXS = Ay

n—co

(H,7) spectrally multiplicity-free = (1.1)(b). By hypothesis there is a unitary operator
U between # and a space L2(A4, 1), where p is a positive measure defined on the Baire
o-algebra of A; moreover, for each A in A, U m(A)U* is the operator of multiplication by
A . For each vector y in H let 1), be the element of LZ(A i) corresponding to Uy. Then
= [%y> 1 and |gy| € [C(A) ] = U([r(A)y)).

In fact, |,|? 1 is a finite positive measure on the Baire o-algebra of A and it verifies
relations f;{]{\]zj)ylz dp = (n(A)y,y) = fxﬁ\duy for all A in C(A). So, due to Riesz
Representation Theorem, the spectral measure p, coincides with |t,|? p. Furthermore,
by the continuity of &, one has U([r(A)y]) = [Un(A)y] = [Un(AU*Uy] = [C(A),].
Finally we can write 1, = |1, ] &' ®v where &' ®v € L2(A4, |, |2 1) (see Rudin [1; Proposition
1.9]); since C(A) is dense in L2(A, [¥y|% 1), for every € > 0, there exists B in C(A) such
that f;{]E —et®v)? |y 12dp < e. So

J B = ffan = [1B-c®Ppfauce  and

o 2 % i ' R
[&\lB*wy - |’/’y” dp = /;{[B*e Ty 1|2|¢yl2 dp = /A|B_ et Fv|? [wylzd“ <E;

hence we have obtained that |1, |€ [C(A )wy} and [ (A )wy} =1C C(A) yl]-

Consider now an arbitrary vector z of 4 and let 7,[1m be a fixed Baire-measurable function
belonging to the equivalent class of 9. Setting S; = {p € A| ¥, (p) # 0} = 1| 71(0, 0],
one has

pa(52) = [ ape= [ poltan= [ el du= [ 0P au= )

ie. ﬂm(ﬁ \Sz) = 0. Moreover, if y is such that y 1 #, (hence ’r’-[ L #H.), since
[y € [C (A4) Yy] = (W(A)y) we also have, for every n in IN,

1
=l =0 = Dr dyu > — d - d
(el ) =0 = [liwalanz J [ wldns [ el
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So, if ?Z; is a fixed function in the equivalent class of v, for every n in IN, we have

/~ ly|dp =10 ie
[%=]71(1/n,00]

(70,000 0 [l -y 000) = g (12400, 00] 0 el (2 00]) = 0

Hence

Hy (I@:l—l(l/", o)) = /~ I?Tbvylgd,u =0 for every n in IN
f=|~1(1/n,00]
In conclusion: gy (Sz) = py (USZy ¥z |~1(1/n, 00]) = 0. O

One may observe that, in the first half of the previous proof, we used hypothesis (1.1)(b)
only to define the collection of sets {S4}aer. In other terms, as in the case of condition
(1.1)(a) (Corollary II.1.7), it is sufficient to verify property (1.1)(b) for a family of spectral
measures relative to a decomposition of # in cyclic subspaces, i.e. we can write the
following

Corollary 1.3. Let (#,n) be a nondegenerate representation of a unital commutative
C*-algebra A and let H = @nper [7(A) z4] be an orthogonal decomposition of H in cyclic
and w(A)-invariant subspaces. Then (H,r) is spectrally multiplicity-free iff for every @ in
I there exists a Baire set of .21\, S«, such that

uma(azl\\Sa)=0 and Bzs(Sa) =0 VBET with B# o .

§2 Baire®-algebras and operator algebraic characterization

One of the first properties we noted, introducing the concept of multiplicity-free repre-
sentation of a commutative algebra, was the possibility to express this notion in “operator
algebraic” terms; in particular we saw, in Proposition 1.4.1, that a representation (#,7)
of an abelian algebra A is multiplicity-free iff the commutant 7(A)’ is contained in the
von Neumann algebra m(.A)”. Furthermore, proving implication iiii) == i) of Proposition
I1.1.6, we pointed out that a nondegenerate representation (#, ) of a unital abelian C*-
algebra A is multiplicity-free when w(.A)" contains all projections P, on cyclic subspaces.
In this section we shall see that, as in the case of the measure theoretic condition (1.1)(a),
also these requirements have, so to say, a stronger version that characterizes the spectrally
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multiplicity-free representations. To formulate these new conditions we firstly introduce
the notion of monotone sequential weak closure of a C*-algebra.

Definition 2.1. A C*-algebra of bounded operators in a Hilbert space is called a
Baire* -algebra if it contains the limit of each of its (bounded) weakly convergent monotone
‘sequences (in other words, if it is closed under monotone weak sequential limits). If X is a
*-algebra of bounded operators in H, we term Baire*-algebra generated by X the smallest
Baire*-algebra in £(#) containing X and we denote it by ?;n

Bibliographic note. Concerning these algebras and their properties see: Kehlet [[1]], Ped-
ersen [[1]] and Kadison [[2]].

Remark 2.2. It can be proved (see Kadison [[1]] and Takesaki [1; Corollary 4.26 Ch. II})
that a nondegenerate C*-algebra of operator in a Hilbert space is a von Neumann algebra
if and only if it contains the limit of each of its bounded weakly convergent monotone nets.
So Baire*-algebras can be considered as o-analogues of von Neumann algebras.

As their name suggests, such algebras generalize the notion of Baire functions; in particular
we want to stress here the following property.

Proposition 2.3. Let (#, ) be a representation of a unital commutative C*-algebra A and
let (H,7) be the extension of (H, =) to the algebra B(A) (of all bounded Baire-measurable
functions on A) as defined in Section I.3. Then the C*-algebra 7(B(A)) coincides with
the Baire*-algebra generated by w(A) i.e. 7(B(A)) = 7(A),

Proof. To obtain inclusion #(IB(A)) C m(A), we shall just consider the self-adjoint parts
of the two C*-algebras, i.e. we shall prove that 'Tr(IBR(j)) - (T.A);n)s.a_, where Bg (A)
indicates the set of real bounded Baire functions on A and (7(A), )., the set of all self-
adjoint operators of m(.A), . It well-known that Bg (A) is the monotone sequential closure
of Cr(A), i.e. Br(A) is the smallest class of functions on A, containing the set Cr(A)
of real continuous functions on A, which is closed under sequential monotone pointwise
limits. So one can set up a correspondence between ordinals and a class of subsets of
Bg (A), each containing Cr(A), such that

1) if § > 0 corresponds to the subset Eﬁﬂ, then ap:ﬂ consists of all functions in By (A)

which are the pointwise limit of a monotone sequence in | J 5<p C]R6
2) Cr. = Cr(A).
From the definition of @ s it follows that, if E{{ = CR , then C]R = CR for all v > ,6

" and C]R must repeat before the cardinality of 8 exceeds that of the subsets of IB]R(.A)
Moreover, due to the properties of B (A4), we have Bg (A) = Up CR . (Compare Kadison
[[2; pages 316-317]].) , ,

So we can write %(]BR(.X)) = %(Uﬁ Egﬁ) = Ug %(@Eﬂ). The desired inclusion can now be
proved by transfinite induction. In fact:

1) %(EI—F-{—O) = W(As.a.) - (W)S'a'
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2) suppose that U5<[3 T(Cr ) - (71'(.»4)(7 )S‘a‘ and let f € @ﬁﬂ; then there exists a
monotone sequence {g,} of functions in J;4 Cr. such that lim, gn(¢) = f(y) for every

® in A. Due to the Dominated Convergence Theorem one has
lm (7o) 2) = lim [ gndia = [ fdue = R(P)z,2)  men.
n n A .A.

Hence {7(gn)} is a monotone sequence in (w(A4), )., weakly convergent to 7(f); this

s5.a.
means that 7(f) € (W(A):L)s.a. ie T CRBH) C (v(A),)
So, by transfinite induction we can conclude that %(@Eﬁ) C (7(A), ), for every f; then
- -~ ~ =0 —m

T(Br(A) =Ug 7(Cr") € (v(A), ), ,.-

Conversely, to see that 7(IB(A)) D m(A),, we shall show that 7(IB(.A)) is closed under
sequential monotone weak limits. Consider, to this aim, a fixed bounded monotone se-
quence {F,} in 7(IB(A)) weakly convergent to the operator F. By successive applications
of Proposition 1.3.3 we can find a bounded monotone sequence {f,} of functions in IB(.A)

such that 7(f,) = F, Vn. Since {f,} is monotone and bounded it is pointwise converging
to an element f of IB(A) and applying the Dominated Convergence Theorem we obtain

s.a.’

(Fa:,x)=lirrln(%(fn)z,x):lirzln/2fndgm:/Xfum:(%(f)a;x) ze

hence F' = 7(f). O

The announced characterizations of the spectrally multiplicity-free property can now be
stated as follows.

Proposition 2.4. Let (H,n) be a nondegenerate representation of a unital abelian C*-
algebra A and, for each vector z of H, let P, denote the projection on the cyclic and
7(A)-invariant subspace {r(A)z | A € A}. Then (H,n) is spectrally multiplicity-free if and
only if

for every z in H, P, belongs to W(.A):L . (2.4)(a)

Proof. (H,n) spectrally multiplicity-free = (2.4)(a) . If (H.7) is spectrally multiplicity-
free, by Proposition 1.2, for every z in H there exists a Baire set S, verifying condition
(1.1)(b). Let P = 7(xs,). According to Proposition II.1.1 we can write

o~

(Pz,z) = /;{XSI dp, = /;{XSI [0 > dps = /2 [z dpg = p2(A) = ||2]|?

for every z in {w(A)z | A € A}. On the other hand, if y L [x(A)z],

(Py,y) = AXSI dpy = py(Sz) =0
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In conclusion the operator P (which belongs to #(IB(A)) i.e. 7(A) , ) is the projection on
[7(A)z].

(2.4)(a) = (H,n) spectrally multiplicity-free. We shall prove that (2.4)(a) implies con-
dition (1.1)(b). Let z be an arbitrarily fixed vector in H and let f, be an element of
IB(A) such that 7(f,) = P,. Then we may write 7(f,) #(f.) = 7(f,); moreover, since
7 is a *-morphism of IB(A\), we have 7(f2 — f,) = 0 and 7(f2 - f) 7((f2 - f.)°) =
7(|f2 — f,|?) = 0. This means that, for every y in H,

#@(1f5 = fol*)y,v) Z/Zlff ~ fol?dpy =0 ie. py (175 = fol)73(0,00]) = 0.

Hence, defining

fo(()o)7 ifo¢ (lfg - f0|2)—1(07oo]
fle) =

0, otherwise

we obtaln a new Baire function such that
7 (Fyv) = /Zf Aty = /Xfo dpy = (F(fo)y ) for every y in #

ie. T(f) = 7(f,) = P,. Furthermore, for each ¢ in A, f2(p) — f(¢) = 0. Therefore f(y)
is the characteristic function of a Baire set in A4; let us call it S, . Then we can conclude
that

1o (Sa) = fzm, e = (7(f)z,7) = (Poz,z) = ||z = pe(A)  and
1y (Ss) = /XXS: dpy = F(Hy,9) = Pay,y) = 0 vy L [r(A)a]

O

Remark 2.5. Let # = @qer [7(A) z,] be an orthogonal decomposition of  in cyclic and
7 (A)-invariant subspaces. It is easy to check, using Corollary 1.3 and the previous proof,
that also Proposition 2.4 has its “direct sum” version, i.e.:

(H,m) is spectrally multiplicity-free iff, for every a in I, P,_ belongs to w(A)

™
o -

Obviously, if every cyclic projection P, belongs to w(.A) , also the Baire*-algebra generated
by P.’s belongs to m(.A)_ . Hence Proposition 2.4 has an immediate

Corollary 2.6. A nondegenerate representation (H,n) of a unital abelian C*-algebra A
-———m

is spectrally multiplicity-free if and only if the Baire*-algebra {FP; |z € H}, 1is contained

in W(A)T.
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We conclude this section considering the case of countably generated C*-algebras;
namely we want to stress that, if A admits a countable family of generators, the Baire*-
algebra {P; |z € #}, coincides with a particular subalgebra of the commutant w(A) (see
Proposition 2.8).

Lemma 2.7. Let A be a countably generated unital abelian C*-algebra and (H,n7) a
representation of A. Then each cyclic subspace {m(A)z|A € A} is separable.

Proof. Let {G1,G3,... Gg,...} be a countable family of generators for A. Then the
collection of all finite linear combinations like

AT

*TNk.1 * Mg 2 * Mgk nE,1 Nk,2 g,k
S A GITRIGE™RR L GLMeE G GIR G
k=1

where A, € C and (mg 1, ..., Mk, 81, ..., Nk k) € IN?* is dense in A. Since, for each &
in IN, the set IN?* is countable, we can conclude that

U {(G’{"‘“ CLGETRE QTR GRRR) g ‘ (Mp1, - ) € mzk}
keN

Is a countable base for {n(A)z|A € A}. O

Proposition 2.8. Let (H,w) be a nondegenerate representation of a countably generated
unital abelian C*-algebra A. Let w(A)" denote the subalgebra of all operators in w(A) with
separable range. Then w(A)., coincides with the Baire*-algebra generated by projections Py
on the cyclic subspaces, i.e. one has

{PrlzeH}, =x(A) . (2.8)(a)

Proof. According to Lemma 2.7, since A is generated by a countable family of elements,
each cyclic projection P, has a separable range; therefore for every vector z of H, P is
in w(A),. Hence, to prove inclusion {P, [z € H}, C w(A),, it is sufficient to show that
m(A); is closed under sequential monotone weak limits. Consider to this aim a bounded
monotone sequence {Ag}ren in 7(A)) and call B the weak limit of the sequence. Then
B € 7(A)"; moreover, denoting

B N
H= {Z)\kyk

y,; € Range(Ak)} ,
k=1

we have that, H is separable and, for every z 1 H, (BH,z) = limg (AxH,2) = 0,
ie. (H)L cC (Range(B))*; then, Range(B) C ((Range(B))1)L C (H)H)* = H. In
conclusion, the range of B, which is contained in a separable subspace of H, is separable
as well, i.e. B € w(A)..
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To verify the inverse inclusion we consider firstly an arbitrary projection Pin m(A)L. Tt
belongs in particular to the commutant of w(A), hence it defines a subrepresentation of
(H,m); let # be the range of P and H = ®ren|[m(A)zk] be an orthogonal decomposition
of H in cyclic 7(A)-invariant subspaces. (Note that (#, ) was assumed to be nondegen-
erate.) Then it is not difficult to check that {S°N ; Py, } Nen

e ~ =~ —————m ..

{P:z |z € H}, weakly convergent to P, i.e. P € {P;|z € #}_ . Secondly, if B is a positive
operator in w(.A). with ||B]|| < 1, there exists a sequence of projections {P,} belonging to
the von Neumann algebra generated by B, such that B =) > | 21,1 P,, and the series con-
verges in the norm topology (see Stratild Zsidé [1; Sect. 2.23]). Hence each P, is contained
in 7(A)" and has a separable range; so P, isin {P, |z € #}_ and {Zn 1 55 Pn }MEN turns

is a monotone sequence in

—m
out to be a monotone increasing sequence in {F, |z € H}_ converging to B in the norm

(and in particular in the weak) topology, ie. B € {P,|z € #}_ . Finally, since every
element of m(A)/ is a finite linear combination of positive operators in 7(A)!, we can

conclude that 7(A), C{P; |z € H}, . |

Relation (2.8)(a) allows to write Corollary 2.6 (in the case of countably generated algebras)
in the following form.

Corollary 2.9. Let (H,m) be a nondegenerate representation of a countably generated
unital abelian C*-algebra A. Then (M, ) is spectrally multiplicity-free iff #(A). C w(A)

o -

§3 Final considerations

Let us try to resume the main ideas we have expounded concerning the concepts
of multiplicity-free and spectrally multiplicity-free representations. These concepts were
introduced by Definitions 1.1.5 and 1.4.3 respectively. In Remark I1.1.8 we saw that the
first notion does not imply the second; conversely, in the present chapter, Proposition 1.2
and a comparison between conditions (1.1)(a) and (1.1)(b) show that, if a representation
is spectrally multiplicity-free, then it is multiplicity-free as well. We also pointed out (see
the beginning of Section 2) that a nondegenerate representation (#, ) of a unital abelian
C*-algebra A is multiplicity-free iff all projections P, on the cyclic subspaces belong to the
von Neumann algebra generated by w(A) or, equivalently, iff 7(A)” contains 7(A)’; these
properties may be compared with the stronger requirements stated in Proposition 2.4 and
Corollary 2.9 (in which n(A)” is substituted by the monotone sequential weak closure of
n(A) and 7(A)" by w(A)., the sub-C*-algebra of all operators in w(A)" with separable
range). The following table gives a “parallel view” of the cited results.



o0 CHAPTER III

(H, ) multiplicity-free

0

Vze H and Vy L H,
pa(A\ S¥)=0

357 such that
and - 4, (SY)=0

)

VzeH P, e n(A)

0

(A4) C n(A)

(H, ) spectrally multiplicity-free

v

Vze H 38; such that
pz(A\S:)=0 and py(S;)=0 VyLH,

Notes. In this table: (#,n) is assumed to be nondegenerate; symbol 7—_‘—(]—)% denotes the
weak closure of m(A) (which coincides with the von Neumann algebra generated by 7(.A));
the dashed line indicates that condition w(A), C w(A), is equivalent to the spectrally
multiplicity-free property if A is countably generated.

Remark 3.1. Previously we met two classes of nondegenerate representations of commuta-
tive C*-algebras for which the multiplicity-free and the spectrally multiplicity-free property
are equivalent; namely, representations in separable Hilbert spaces (see Remark 1.4.5) and
representations of W*-algebras (Comment I1.2.12). One can now observe that, in both of
these cases, W(A)ZL =7n(A) . (In fact, if # is separable, due to Propositions 2.3 and 1.3.4

we can write (A)ZL

= 7(B(A)) = n(A) . If (H,n) is a representation of a W*-algebra

W, one has (W) = n(W) ; therefore 7(W) = n(W) C #(IB(W)) = ’R'(W);n C W(W)w)
So the table immediately shows the cited equivalence.
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Introduction to Part 2

The C*-algebra of the Canonical Commutation Relations. In the algebraic approach to
quantum mechanics of point particles one defines as observables the elements of a C*-
algebra called the C*-algebra of the Canonical Commutation Relations or more concisely
the CCR-algebra. For a system with one degree of freedom this algebra is, by definition,
the C*-algebra generated by the abstract elements {W(a,b)|(a,b) € IR?} with product
rule given by _

W(a,b) W(c,d) = e~ 20347 W(a + ¢, b+ d)

and involution
(W(a,b))" = W(~a,-b)

(see Section IV.1 for more details). We shall denote this algebra by A,,,. Symbols W(a, b)’s,
called Weyl elements, are the “algebraic counterpart” of the standard quantum mechanical
unitary groups U(s) = 7% and V(t) = e"*P, generated by the self-adjoint operators

(G9)(z) = z9(z)
. LAY 2

(p¥)(@) = —ik (T )() % € LX(R, dr)
which describe respectively the position and the momentum of a one-dimensional particle.
In other terms, the ordinary quantum mechanics gives a particular representation of the
CCR-algebra, called the Schridinger representation. However this algebra also admits
many other (inequivalent) representations. Namely every normalized positive functional
on the linear combinations of the Weyl elements extends to a unique state of 4,, and
therefore it defines, according to the Gelfand-Naimark-Segal construction, a unique, up to
unitary equivalence, cyclic representation of the algebra.()

Stone-von Neumann uniqueness Theorem and non-regular representations . A fundamental
result in the study and classification of the representations of the CCR-algebra (equiva-
lently, of the unitary representations of the Heisenberg group) is the so-called Stone-von

(1) It is not difficult to verify that each representation of A, is also a unitary repre-
sentation of the Heisenberg group, defined as the set of pairs (t, (a, b)), where ¢ is a real
number and (a, b) a vector in IR?, together with the multiplication law '

(¢, (a,0)) - (¢, (a', b)) = (t +¢' — %(ab’ —a'b),(a+d,b+0)) .
Conversely each unitary representation of the Heisenberg group extends to a representation

of A, (see Remark IV.1.6). Hence the study of the representations of the CCR-algebra is
equivalent to the study of the unitary representations of the Heisenberg group.
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Neumann uniqueness Theorem: it states that, if (¥, 7) is a nondegenerate and irreducible
representation of A, such that the operator-valued functions

R >a— n(W(a,0)) € L(H) and R>b— ’/T.(W(O, b)) € L(H)

are strongly continuous, then (H, ) is unitary equivalent to the Schrédinger representation.
A strongly continuous representation is said to be regular. The class of the regular ones
does not exhaust all possible representations of 4,,. Consider, in this regard, the following
examples that are interesting also from a physical point of view.

1. The representations associated to the momentum states wy, , p € IR, defined by

0, ifb#£0

wp(W(a,b)) = {
etPr . ifp=0

These states are the “algebraic counterpart” of the plane waves of ordinary quantum
mechanics; in other words they describe the eigenstates of the momentum of the particle.
Since b = wp(W(0, b)) is discontinuous in b = 0, the cyclic representation associated to wp
via the G.N.S. construction is non-regular(?). Moreover one can prove that it is irreducible
and realized in a non-separable Hilbert space (see Beaume Manuceau Pellet Sirugue [[1;
Proposition (3.6)]]; about these states see also Fannes Verbeure Weder [[1]}).

2. The representations associated to the Zak states wey, ( €[0,27) and y€ [0, 1), defined
by

0, if (a,b) ¢ Z x 27Z
wey(W(a, b)) =

gitmn gint g2Tmy - if (g p) = (n,27m)

Zak states have the same relationship to the Zak k - ¢ representation of A,. that the
momentum states have to the usual p representation; in other terms they corresponds
to the “delta wave-functions™ in the Zak representation (see Beaume Manuceau Pellet
Sirugue [[1; page 42]] and Zak [[1; relation (23)]]). As in the previous case, the cyclic
representation associated to w¢, turns out to be non-regular, irreducible and realized in
a non-separable Hilbert space. Furthermore it is not unitarily equivalent to the cyclic
representation defined by momentum states. All these properties are proved in Beaume
Manuceau Pellet Sirugue [[1; Proposition (3.23)]].

(A non-regular representation of the Heisenberg group is also used to describe the motion
of a quantum particle on a circle; see Acerbi Morchio Strocchi [[1]].)

Aims and contents of Part 2. The above examples suggest to reconsider the Stone-von
Neumann uniqueness Theorem in order to get a more general classification theorem which

() The representation of 4, associated to the positive linear functional w is regular
if and only if the complex functions R 3 a — w(W(a,0)) and R > b — w(W(0,b)) are
continuous.
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include non-regular representations. In our strategy to face this problem a central role
is played by a commutative C*-sub-algebra of 4,,, denoted by .A,. The reasons why
we shall consider this sub-algebra are the following: it is maximal abelian and finitely
generated (hence its Gelfand spectrum is a topological space particularly simple, namely
the two dimensional torus Tz). Moreover the fact that a regular representation of A, is
nondegenerate and irreducible if and only if it is spectrally multiplicity-free as a represen-
tation of A4,. (See Part 1 for the definition of spectrally multiplicity-free representation
of a commutative C*-algebra). Taking these properties into account, we shall substitute,
firstly, the hypothesis “(#, 7) nondegenerate and irreducible” by the condition
i) (H, ) is spectrally multiplicity-free as a representation of A,

so that the representation space is isomorphic to a space L?'(T2 , 1t). However the class of
representations selected by this condition is actually too wide since it contains, for instance,
representations defined by non-measurable functions (see Example V.3.2). To avoid this
kind of “pathological behaviors” a second requirement is needed. Roughly speaking the
idea is to replace strong continuity of Weyl operators by a condition which reduces to it in
the separable case but it generalizes it in the non-separable one. Now, for representations
in separable Hilbert spaces, strong continuity is equivalent to the strong measurability
(see von Neumann [[1]]) of the Weyl operators as functions from IR?, or equivalently from
T2, to E(Lz(Tz, u)) However, if the measure g of the representation space L2(T?, ) is
not o-finite, a notion of strong measurability with respect to p requires to make reference
to finite restrictions of u. We are thus led to the condition of strong measurability with
respect to every positive spectral measure associated to the representation: namely we
substitute strong continuity by the requirement

it) (H, =) is such that the operator-valued function
T3 (a,b) — n(W(a,b)) € L(H)

is strongly measurable w.r.t. every positive spectral measure L, , y € H, associated to
the representation.
The content of requirement %i), in terms of regularity properties of the representation,
can be better understood by considering the following result due to B. J. Pettis (see Hille
Phillips [1; Theorems 3.5.3 and 3.5.5]).
An operator-valued function X > a — U(a) € L(H) is strongly measurable w.r.t. the
measure ;1 on X if and only if (1) it is weakly measurable (i.e. for every z,y in H,
the complez-valued function X 5 a — (U(a)z,y) is p-measurable) (2) U(a)z is p-almost
separably-valued for every x in H (i.e. there is a p-null measurable subset N of X such
that {U(a)z |a € X\N} is separable).
Note in particular that the Hilbert space of a non-regular representation of A4, is, in
general, non-separable; but, according to the quoted theorem of Pettis, hypothesis 77)
implies “local separability” of the representation. This will allow, in the proof of our
theorem, to use “locally” standard results of analysis, which hold only in separable Hilbert
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spaces (or for o-finite measures), even if the whole Hilbert space of the representation is
non-separable. ,
In conclusion the statement of our theorem is the following.
Let (M, m) be a representation of the CCR-algebra A, satisfying the hypotheses:

i) (H,m) is spectrally multiplicity-free as a representation of the abelian subalgebra A,
1) the operator-valued function

[0,1)x[0,27) 3 (a,b) — 7(W(a,b)) € L(H)

15 strongly measurable with respect to every positive spectral measure Ly (y€H).
Then: (M, m) is an irreducible representation of A,, and there ezist a positive measure p
on the Borel o-algebra of the torus T and a unitary map U from H onto L2(T?, 1) such
that, for every a,b in IR and every ¢ in LQ(TQ, L),

U T(W(a,0) U* ¢ )(a,B) = eletald 4((a+ a) mod1, B) .
U =(W(0,0)) U* ) (a,B) = e % t(a, (B + b) mod 2)

(where [ + a] denotes the integer part of a + a). Moreover u is translation-invariant and
there ezist a disjoint collection, {I';}jes, of Borel subsets of T? and a corresponding family
of positive Borel measures. {u;};cs, such that 0 < pi () = ,uj(TZ) < +oc, for each j in
Jyoand p=73 " ; pj.

Hypotheses i) and 4i) characterize the representations, up to unitary equivalence, in the
sense that all representations satisfying ¢) and 44) are unitary equivalent to a representation
defined by relations (x) and by a measure y. Hence different (i.e. inequivalent) represen-
tations correspond to different translation-invariant measures on T2. In particular:

— the Schrodinger representation correspoilds to the two-dimensional Lebesgue measure

— the representations defined by momentum states correspond to the measure woo=

> j€[0,2m) da; (where do; denotes, for each 7 in [0, 27), the one-dimensional Lebesgue
measure concentrated on the segment {(c, j) | € [0,1)} C T?)

— the representations defined by Zak states correspond to the counting measure on T2.
Summarizing, Part 2 consists of two chapters. Chapter IV collects some preliminary defini-
tions and properties concerning the algebras A, and A,. Chapter V contains the effective
discussion of the theorem: motivations (Sections V.1, V.2 and V.3), statement (Section
V.3), proof (Section V.4) and some comments (Section V.5).



CHAPTER IV

PROPERTIES OF THE C*-ALGEBRA
OF THE CANONICAL COMMUTATION RELATIONS

Summary. This chapter contains some properties concerning the C*-algebra of the
Canonical Commutation Relations A,, (for a system with one degree of freedom). Such
properties will be the starting point for the discussion of the next chapter.

Section 1 introduces this algebra and its Weyl elements W(a,b). Among other things,
we shall see that, if (a,b) # (0,0), the spectrum of W (a,b) coincides with the set of all
complex numbers of modulus 1.

Section 2 is devoted to a commutative sub-algebra of A, denoted by A,. We shall
examine in particular properties of the Gelfand spectrum of A, obtaining that it can be
identified with the two-dimensional torus TZ.

In Section 3 we shall consider the spectral measures on T?2; more precisely, given an
arbitrary representation (#,w) of A, , we shall obtain an explicit relation between p, and

Hr (W (a,b))z-

§1 The C~-algebra of the Canonical Commutation Relations A,

In this section we give the definition and fix some notations and properties of the
so-called C*-algebra of the Canonical Commutation Relations (in the case of one degree
of freedom).

Bibliographic note. About this algebra see: Bratteli Robinson [2; Section 5.2], Petz [1],
Manuceau [[1]].

Let A(IR?) be the free vector space generated by symbols W (a,b), where (a,b) € R?,
i.e. A(IR®) consists of formal finite linear combinations like Zf;l AiWiai, b)) (A € ©C).
Symbols W(a,b) are usually called Weyl elements. One also endows A(IR?) with a *-
algebra structure setting, for every (a,b), (c,d) in R?,

(1.1)(a) W(a,b) W(c,d) = e 5% W(a+ ¢, b+ d)
(1.1)(d) (W(a,b))" = W(-a,~b)
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Remark 1.2. Relations (1.1)(a) and (1.1)(b) imply that: A(IR?) is an algebra with
identity 1=W(0,0), each Weyl element is invertible and W (a,b)~* = W (a, b)*.

Let F be the set of “normalized” positive forms on A(R?), i.e. f € Fifit is a complex
function on A(IR?) such that

F(MA+ A2B) = A1 f(A) + A2 f(B)

f(A*4) >0

F(W(0,0)) =

for every A, B in A(IR?) and Ay, A» in C.

Proposition 1.3. Every f in F verifies the inequality lf —1 2 Wi(a;, b I< Zl 1 Al
In particular, for each A in A(IR?), supser | f(A)] < +oc.

Proof. By the Cauchy-Schwarz inequality one has that, for each W{(a,b), |f (W(a W2 =
|f(W(a,b) W(0,0))]* < f(W(0,0)*W(0,0)) f(W(a,b)*W(a,b)) = (f(W(0,0))) =1 ie
|f(£V(a,b))| < 1. Hence lf(zf\;l NWi)| = |Zfi1 M f(WR)| < Zz]\;l Al |[f (V)] <
D iz Al . D

By Proposition 1.3, the relation

All = sup /f(4*A) A e A(RY
feFr
defines a map || - || from A(IR?) into R™; moreover one can prove that such a map is

actually a norm for A(IR?) (called the minimal regular norm). The completion, denoted
by A,,, of A(IR?) with respect to this norm turns out to be a C*-algebra. (See Gelfand
Raikov Shilov [1; Section 48].)

Definition 1.4. The algebra A,, is called the C*-algebra of the Canonical Commutation
Relations or more concisely CCR-algebra.

Remark 1.5. One of the elements of F is the functional f defined by relations

_ . 0, if (a,b)#(0,0)
F(W(a, b)) = {1, if (a,b) = (0,0)

Then, since [ (3,0, M Wy Sis, MWa) = 8 A F (Wi ;) = SN [Af?, one can

infer that szlil A W,“ > \/Zf\il |Ai]2. In particular “Zi:l A W,II = 0 if and only if
Ai=0 VYi=1,... N.

Remark 1.6. Let U be a Weyl system, i.e. a mapping of IR? into a group of unitary
operators on a Hilbert space H such that

U(a,b) Ule,d) = e~ 524 U(a + ¢, b+ d)
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Then the map
Al def al
ﬂ(Z)\iW(ai,b,—)> = > X U(ai, by)
=1 i=1

extends to a representation of A,,. (See Manuceau Sirugue Testard Verbeure [[1; Propo-
sition (3.4)]].)

Since the elements W (a,b)’s of A, are unitary (i.e. WW* = 1 = W*W), their spectra
are contained in {A € C||A] = 1} (see Section I.1). Moreover, as we shall see in the next
proposition, if (a,b) # (0,0), c(W(a, b)) actually coincides with {A € C||A] = 1}.

Proposition 1.7. Let W{(a,b) be a Weyl element of A, with (a,b) # (0,0). Then
o(W(a,b) = {A € C|]A = 1}.

Proof. It is sufficient to show that {\ € C||A| =1} C o(W(a,b)). To this aim we introduce,
for a fixed (a,b) # (0,0), two one-parameter groups, U(s) and V(t), of unitary operators
in L?(IR, dz) defined by:

(U(s)¢)(z) = etV T s (1) se€R, ¥ € LR, dz)
V(©) ) (z) = ¢(z— Ve + 02 1) teR, ¢ € LR, dz)

One can verify that the expression

i(a2+b?) _ 7

Ue,d) = e = St U(3) V(1)

with § and ¢ such that (¢, d) = 5(a, b) + t(~b, a) , is a Weyl system. So, according to Remark
1.6, this defines a representation of A, . (It is the so-called Schrodinger representation.
Compare Bratteli Robinson [2; Example 5.2.16].) In conclusion we have obtained that,
for every (a,b) # (0,0), there exists a nondegenerate representation, (L?(IR,dz), ), of
A, such that 7(W(a,b)) is the operator multiplication by the function z — e~* Ve’ +0* 2,
Since the essential range of z — e~*Va*+Y*% coincides with {A € C||A| = 1}, we can

conclude, according to some elementary spectral properties stressed in Appendix A, that
{Ae C| Al =1} = o(7(W(a,b))) C (W (a,b)). O

§2 The commutative sub-algebra A,

In this section we introduce a commutative sub-C*-algebra of A4, that will have a
central role in the discussion of the next chapter.
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Let A(Z x 27Z) be the sub-*-algebra of A(IR?) generated by the elements: W(1,0) and
W(0,2r). Relation (1.1)(a) implies that A(Z x 27Z) is an abelian * -algebra with identity.
Considering the set Fp of all “normalized” positive forms on A(Z x 2nZ), we can follow
the procedure of the previous section and define the norm

[Allo = sup +/fo(A*4) Aec AZ x 2rZ) .
fo€Fo

Then the closure, A,, of A(Z x 2rZ) with respect to this norm turns out to be an abelian
unital C*-algebra.

Proposition 2.1. The norms || - ||o and | - | coincide on A(Z x 277Z).

Proof. Tt is enough to show that Fy coincides with the set of restrictions of elements of
F to A(Z x 2nZ). Clearly the restriction of every element of F is in Fp. Conversely,
if fo € Fo, we extend it to a linear functional f on A(IR?) by setting f(W(a,b)) = 0 if
(a,b) & Z x 27Z. We only need to verify that the extended functional is positive. Let
B = Zz 1 Ai W(ai, b;) be an element of A(IR*). We partition the set {1,..., N} into M
equivalence classes 7y, k = 1,..., M, by means of the equivalence relation

1~ 7 iff (G,i—aj,bi-—bj)EZXZ/TZ.

Then B = 3"il; ez, MiWi(as, b) = Y0, By Hence f(B*B) = S (B q) We
claim that f(By By) = 0 if p # ¢ and, if p = ¢, there exists an element Ap € A(Z x 27Z)
such that f(B; Bp) = f(A; A,) > 0. Thus the thesis follows. To prove the claim we
observe that

FByBy) = >0 Nidje b f(1W(a; — a;,b; — b))

i€T,, jeT,

Ifp # q, then (a;—a;, b b)¢2x27rZandf(B* ¢) = 0. If p = g, then (a;—a;, b;—b;) €
Z x 2nZ and f(B} B ) 2ijer, Mg e (@b =a5) £, (W (a; — a,,bj—bz)). We pick an
element 7 in 7, and we set

v = /\j eé(bqak—ajbk), (Tl,j, Qﬂ'mj) = (aj — Qg ,bj - bk) and Ap = z vy VV(nj, 27rmj) .
J€Lp

Thus (a; — a;, b5 — b;) = (nj — n;, 2rm; — 2mm;) and a straightforward computation shows
that f(B; B,) = f(A2 Ay). 0

Corollary 2.2. The algebra A, can be zdentzﬁed with the sub-C*-algebra of A,, generated
by W(1,0) and W (0, 27).

Proof. It is a consequence of Proposition 2.1. O
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Now we investigate the spectral properties of A, .

Proposition 2.3. The Gelfand spectrum of A, is homeomorphic to the two-dimensional

torus
T = {(A,2) € C | ] =[] =1}

Proof. Relation ¢ — (o(W (0, 2m)), (W (1,0))), where ¢ represents a generic character of
A, , defines an homeomorphism between the Gelfand spectrum of A, and a closed subset
of the product topological space o(W(0,27)) x o(W(1,0)) (see Remark 1.3.1); moreover
in Proposition 1.7 we saw that (W (0,27)) and o(W(1,0)) coincide with the set of all
complex numbers of modulus 1. Then, to conclude the proof, it is sufficient to show
that, for every pair a,b in IR, there exists a multiplicative functional ¢ on A, such that
0(W(0,27)) = €' and (W (1,0)) = e®. To this aim consider, for arbitrary a and b in IR,
the linear complex function, f, on A(Z x 27Z) defined by relations

F(W(n,2rm)) = ™™™ et gima (n,meZ).

It is not difficult to verify that f is also multiplicative (i.e. f(AB) = f(A) f(B) for all A, B

in A(Zx2nZ)) and such that f(A*) = f(A); hence, in particular, f(A*A) = f(A*) f(A) =
|f(A)]> > 0, so f € Fy. Finally, using Proposition 2.1 we obtain that

|7(A)l =V f(A*A) < sup +/fo(4A*A4) = [ Allo = || A] VA€ AZ x21Z) .

fo€Fo
Then f can be extended by continuity to a multiplicative functional ¢ on A, and, obviously,
©(W(0,27)) = et® (W(1,0)) = e®. O

Notation. According to Proposition 2.3, from now on we shall denote the Gelfand spectrum
of A, by T2 and we shall identify T2 with the product space R/ZxR/2rZ . In particular
we shall adopt the following convention: the point (e, 3) of R/Z x R/2xZ corresponds
to the character ¢,g such that

{%@(W(O,Qw)) — g—i2ra

vap(W(1,0)) = €*f
Using such notations, the Gelfand transform of an element A of .4, is a continuous function,
A(a, B), on R/Z x IR /2rZ; more precisely, if A =372 Ax W(ng, 2rmy),

(2.4)(a)

—~ N
A, B) = wap(A) = @ap <Nh—r+noo Zx\k W (ng, 27rmk)> =
© k=1
(2.4)(0)
N

oo
: 1 —12 X z
= ]\}1_1;%0 kg_l)\k (Paﬂ(W(nk,zﬂ'mk)) = kg—l A €T MR gTi2TmE O o ng 8
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§3 Translation property of the spectral measures on T?>

Let (7, ) be a representation of the CCR-algebra A, . According to the general
spectral theory for abelian C*-algebras (see Section 1.3), one has that, for every vector z
in #, there exists a unique positive Borel measure, p;, on the spectrum T2 of A, such
that

Ale, B)dpy = (n(A)z, ) Ac A, .
T2 .
In this section we shall obtain an interesting property of these measures, namely a simple
relation between the spectral measures associated to the vectors z and = (W (a, b))z.
Since, for all (a,b) in R, W(a,b) is invertible and its inverse is W (a,b)*, the map 74
defined by 744(A) = W(a,b)* A W(a,b), A€ A,, , is an inner *-automorphism of A, .

Proposition 3.1. For every (a,b) in IR?, the restriction of 74 to A, is a*-automorphism
of this sub-algebra.

Proof. It is immediate to check that A(Z x 27Z) is T,-invariant for every (a,b) in R2
Therefore A, is also 74p-invariant for every (a,b) in IR?, because A(Z x 27 Z) is dense in
A, and every *-automorphism is norm preserving. O

Denote by 6 the action of IR? on T?, considered as the quotient group IRZ/Z x2nZ. Thus,
for every (a,b) in IR? and every (o, B) in T?,

Oapy(a,8) = ((a+ a)modl, (B + b) mod 2m)

If f is a function on T2, denote by f(*?) its translate, i.e. flab) = fo O(—a,—by - If ptis a
positive measure defined on the Borel o-algebra of T2, its translate, p{e®) is the measure
defined by p(@®)(f) = p(f(=2=), for every Borel-measurable function f on T2.

The following proposition relates the Gelfand transform of A to the transform and 7,5(A),
forall Ain A,.

—— —~

Proposition 3.2. Let A be an element of A,. Then T,5(A) = Al

Proof. By linearity and density it is enough to prove the identity for the generators of the
algebra A(Z x 27Z). Thus let A = W(n,2wm), (n,m) € Z2, be one of the generators.
Then 7,(4) = e!?7ma-nbly 4ng

(TQZ(\A))(CX,,B) — ei(Zn’ma—n b) A\(Ct,ﬁ)

_ ez(27rma—nb) eitmn ,—i2rma e'znﬁ

e

= Ala:b) (o, B) .

The property concerning the spectral measures can now be formulated as follows.
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Proposition 3.3. Let (#,7) be a representation of A,, and, for each vector = in H, let
pz denote the spectral measure on T2 associated to ©. Then, for every (a,b) in R2, the
spectral measure associated to the vector m(W(a,b))z is the translated measure p& * ™.

Proof. For each A in A, one has, by definition of spectral measure,

(’/T(A) W(W(a, b))x . W(Wf(a, b)):l:) = /;_2 E(a, ,3) d/jﬂ(W(a,b))z

On the other hand

(W(A) (W (a, b))z, = (W ) (71' (W*(a,b) A W(a, b))z, z)
/ Tap(A)) (@, B) dps -
+2
By Proposition 3.2 the latter integral is equal to ng A du({a"b). So we have obtained

that firw(a,p))z(f) = u&‘” _b)(f), for all f in C(T?). Regularity of the spectral measures

concludes the proof. ]



CHAPTER V

CHARACTERIZATION THEOREM FOR
NON-REGULAR REPRESENTATIONS OF THE CCR-ALGEBRA

Summary. In this chapter we shall introduce and prove a theorem which characterizes,
up to unitary equivalence, a class of representations of the C*-algebra A, ; such a class
contains the Schrodinger representation, but also a number of non-regular representations
of physical interest.

In Section 1 the notion of regular representation and the Stone-von Neumann uniqueness
theorem are recalled. Moreover we shall obtain the explicit form of an isometry between the
Hilbert space of the Schrédinger representation and the space of square-integrable functions
on the torus T2 (w.r.t. the normalized two-dimensional Lebesgue measure) and we shall
show that the Schrodinger representation is spectrally multiplicity-free as a representation
of the commutative sub-algebra A, .

Section 2 contains two examples of non-regular representations of physical interest: repre-
sentations defined by “momentum states” and by “Zak states”.

Section 3 introduces the theorem: its hypotheses are discussed and its statement is given.
Section 4 is devoted to the proof of the theorem.

Section 5 contains some comments; in particular we shall verify that the representations
considered in Section 2 satisfy the hypotheses of the theorem.

§1 Stone-von Neumann uniqueness Theorem and regular representations .

A representation (#,7) of the CCR-algebra A, is said to be regular if the operator-
valued functions, R 3 a — 7(W(a,0)) and R > b — «(¥W(0,b)), are strongly continu-
ous.() A fundamental result in the study and classification of the representations of A,
is the so-called Stone-von Neumann uniqueness Theorem: it states that every nondegen-
erate and regular representation of A, is unitary equivalent to a direct sum of copies of
the Schrodinger representation (see, for instance, Bratteli Robinson [2; Corollary 5.2.15]).

() If H is an Hilbert space and R > ¢ — V(t) is an operator-valued function in L(H),
then V' is called strongly continuousiff, Vy € # and to € IR, lim;_4, ||V (¢)y — V (to)y|| = 0.
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Recalling the definition of Schrodinger representation (given in the proof of Proposition
IV.1.7), we can reformulate this result as follows.

Stone-von Neumann uniqueness Theorem. Let (H,n) be a representation of A,
satisfying hypotheses:

a) (H,n) is nondegenerate and irreducible(?

b) the operator-valued functions

R >a— 7(W(a,0)) and R2b— x(W(0,b))

are strongly continuous.
Then (M, =) is unitary equivalent to the representation (L2(R,dz),s:) such that

(mse(W(a,0))¥)(z) = e7*% €7 y(z + a) (a,b) € R?, ¥ € L*(RR, dz)

(the Schridinger representation).

The next remark points out a property concerning the Schrédinger representation and the
notion of spectrally multiplicity-free representation introduced in the first part of the thesis
(see Definition 1.4.3).

Remark 1.1. The Schrodinger representation (L2(IR,dz), 7s.) (and therefore, every non-
degenerate irreducible and regular representation of A, ) is spectrally multiplicity-free as
a representation of the commutative sub-algebra A, .

More explicitly, one can define a unitary map Us, from L?(IR, dz) onto the Hilbert space,
L2(T? L L dadp), of square-integrable functions on the torus T* = {0,1) x [0,27) w.r.t.
the normalized two-dimensional Lebesgue measure, —da dg; furthermore Uy, is such that
Use m5.(W(1,0)) Us" and Ug. ws(W(0,27)) Ug." are the operators of multiplication by
the functions e*# and e~*>" @ respectively.

To verify these properties consider firstly an element ¢(c, 8) of L2(T?, z—lgda dpB). By the
Fubini Theorem we have that, for almost every « in [0,1), the function 8 — ¢(c, 8) is
in L? ([0,27r),d,8) and, for each integer n, ¥,(a) = 51; 027r ¢(c, B) €™ dpB, defined for
almost every « in [0,1), belongs to L2([0,1),da). Note that {wn(a)}nez are the Fourier

coefficients of the function 8 — ¢(«, 8). Hence, setting

1 27

b(@) = d(Emodl) = - | plzmodl,f) e’ dp

where z € IR and [z] = integer part of z, one obtains a Lebesgue measurable function on R
and the Parseval’s identity implies that f T)|*dz = fo do f |é(a, B)|? dB. Thus

() (M, ) is an irreducible representation of A, if the only subspaces of H which are
7 (A, )-invariant are {0} and #; equivalently a nondegenerate representation (#, ) of A,
is irreducible iff every non-null vector = of # is cyclic for (#, ).
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the relation (Us* ¢)(z) = o 027r¢($ mod1,8) €®1Fdg, ¢ € L2(T? £dadp), defines a
norm-preserving linear map, Us", from L2(T?, ;tdadf) into L3(RR, dz).

Conversely let 1(z) be in L*(IR, dz). From the square-integrability of % it follows that the
series 3 7%° _1h(n+a) e~ "8 absolutely converges for almost every («, £) in [0,1) x [0, 27);
moreover the equation (ngcw) (a,8) = I_:O " o ¥(n+ a) e7i™P defines a norm-preserving
map, Us., from L2(IR,dz) into L2(T?, =dadf). Finally a brief computation allows to
check that Us."Us. = ly2(y2) and Us. Us” = Ig2(r)- Summarizing we can define the

isometry Ug. and its inverse by relations:

Use ) (e, B) =3 cpb(n+ ) e7iP ¥ € L%(IR, dz)
(1.1)(a)

(Us” 6)(z) = & [T p(zmod 1, B) eil=)F 43 ¢ € L2(T?, kdadp)

where [z] denotes the integer part of z.
Now, if ¥ € L2(IR, dz), according to relations (1.1)(a) and to the definition of 7., we have
that

(Use mse(W (@, 0))9) (e, 8) = Y (rse(W(e,0)9)(n+a) e =" p(n+ata) eI

nez nezZ

Noting that n+a+a = [n+a+a] + (n+a+a)modl = n+[a+a] + (@ +a)mod1
and substituting this identity in the previous equation, we obtain

(Use mse(W(a,0))0) (e, 8) = > Y(n+a+a) e

ncZ

= > 4(n+le+al+(a+a)modl) e~
nez

= Z Y(n+ (¢ +a)modl) e™* (n—[a+a])B
nczZ

= ¢+ Us.p) (@ + a) mod 1, ) .
Hence, for every ¢(c, 8) in L*(T?, ;2da dg),
(1.1)(b) (Use 7s:(W (a,0)) Us" ¢) (e, B) = €'[2+318 ¢((o + a) mod 1, 8) .
A similar procedure allows to obtain the relation
(1.1)(c) (Use mss(W (0, ) Us.” $) (@, B) = =% (e, (B+ b)mod 2r) .

Relations (1.1)(b) and (c) imply in particular the desired form for Us, ws.(W(1,0)) Us®
and Z/{Sc WSC(W(O, 271')) Z/{Sc*-
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§2 Non-regular representations: two remarkable examples

The class of the strongly continuous ones does not exhaust all possible representations
of A, ; in fact this algebra also admits many non-regular (inequivalent and irreducible)
representations. This section contains two remarkable examples of such representations
that are interesting also from a physical point of view.

Note that a cyclic representation of 4, can be defined, up to unitary equivalence, by
giving the set of values

{w(W(a,b)) € C | (a,b) € IRZ}

w being a normalized linear positive functional on A(IR?), the free vector space generated
by the Weyl elements.

[In fact, according to the Gelfand-Naimark-Segal construction (see, for instance, Bratteli
Robinson [1; Theorem 2.3.16]), every state(3) & over a C*-algebra A defines a unique,
up to unitary equivalence, cyclic representation (He,7s,zs) of A such that ®(4) =
(re(A)ze ,x8) for every A in A . Moreover, in our case, every positive linear normalized
functional on A(IR?) is continuous with respect to the minimal regular norm (see Section
IV.1); therefore it extends to a unique state of A, .]

Moreover it is not difficult to see that the cyclic representation of 4,,. associated to the
positive linear functional w is regular if and only if the complex functions

R 3 a— w(W(a,0)) and R3b— w(W(0,b))

are continuous (see Bratteli Robinson [2; pages 24-25]).
Then we can introduce the examples as follows.

Example 2.1. Momentum states. These representations are defined by states, w, , p € IR,
such that

0, ib#£0
(2.1)(a) wp(W(a,b)):{ |
ere | ifh=0

They are called momentum states. These states are the “algebraic counterpart” of the
plane waves of ordinary quantum mechanics; in other words they describe the eigenstates
of the momentum of the particle. Since b — w,(W(0,b)) is discontinuous in b = 0, the
cyclic representation associated to w, via the G.N.S. construction is non-regular. Moreover
one can prove that it is irreducible and realized in a non-separable Hilbert space (see

Beaume Manuceau Pellet Sirugue [[1; Proposition (3.6)]] ; about these states see also Fannes
Verbeure Weder [[1]]).

(3) A state ® over a C*-algebra A is a linear functional over A such that ®(A4*A4) > 0 for
all Ain A and sup{|®(4)|| |4l =1} =1.
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Example 2.2. Zak states. We call Zak state a state of A,,, we,, with ¢ € [0,27) and
v € [0,1), such that

0, if (a,b) € Z x 27Z
)@  waW@={
eI ginG Gi2TmY - if (g b) = (n, 2wm)

Zak states have the same relationship to the Zak k - g representation of .4, that the
momentum states have to the usual p representation; in other terms they corresponds
to the “delta wave-functions” in the Zak representation (see Beaume Manuceau Pellet
Sirugue [[1; page 42]] and Zak [[1; relation (23)]]). As in the previous case, the cyclic
representation associated to w¢, turns out to be non-regular, irreducible and realized in
a non-separable Hilbert space. Furthermore it is not unitarily equivalent to the cyclic
representation defined by momentum states. All these properties are proved in Beaume
Manuceau Pellet Sirugue [[1; Proposition (3.23)]].

§3 Weakening of Stone-von Neumann’s hypotheses
and statement of the theorem

The examples of the previous section suggest to search for a classification of rep-
resentations of the CCR algebra more general than the Stone-von Neumann uniqueness
Theorem. More precisely the problem we shall consider is replacing the hypotheses of the
Stone-von Neumann uniqueness Theorem by new conditions such that:

1) they are satisfied by a class of representations wider than the regular one (and containing
the representations of the previous section)

2) “informations” which these requirements contain are anyway enough to obtain an ex-
plicit characterization of the representations (as in the case of the Stone-von Neumann
Theorem).

In our strategy to face this problem a central role is played by the commutative sub-
algebra A,. The reasons why we shall consider this sub-algebra are the following: it is a
maximal abelian sub-algebra of A, , it is finitely generated (hence its Gelfand spectrum is a
topological space particularly simple, namely the two dimensional torus T2) and finally the
fact that the Schrodinger representation is spectrally multiplicity-free as a representation
of A, (see Remark 1.1). Actually one can easily prove that if (7, 7) is strongly continuous
then irreducibility is equivalent to the spectrally multiplicity-free property, i.e.

Proposition 3.1. A regular representation of A,, is nondegenerate and irreducible if and
only if 1t is spectrally multiplicity-free as a representation of A,,.
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Proof. In Remark 1.1 we saw that a nondegenerate and irreducible regular representation
of A, is spectrally multiplicity-free for .A,. So it remains to check the opposite impli-
cation. To this aim note first of all that, if (7, ) is spectrally multiplicity-free for A,
it is in particular nondegenerate for A, (see Remark 1.4.4) and therefore nondegenerate
for A,,. Thus, due to the Stone-von Neumann Theorem, (#,7) is unitary equivalent to
a direct sum of copies of the Schrodinger representation and, according to Remark 1.1, it
is equivalent to a direct sum ®;es (L2 (T2j, El;r—daj dB;), Us: ms. Us"). Observe now that,
if i,j € J, the two vectors 72 (as, ;) and xy2(aj, 8;), contained in L2(T?;, s=do; df;)
and L2(T2j, %daj dp;) respectively, have the same spectral measure on T2, ie. %;da dg.
Thus, since (H, ) is spectrally multiplicity-free and, in particular, multiplicity-free, due
to Proposition II.1.6, the subspaces L2(T?%;, s~ do; dB;) and L2(T?;, -t de; dB;) must co-

1 27 13 2
incide; in other words J contains only one index, i.e. (#,) is unitary equivalent to the
Schrodinger representation, hence it is irreducible. [

Taking these properties into account we shall substitute the hypothesis “(#, 7) nondegen-
erate and irreducible” by the requirement

i) (H, ) is spectrally multiplicity-free as a representation of A, .

However the class of representations selected by this condition is actually too wide since it
contains, for instance, representations defined by non-measurable functions. In this regard
consider the following example.

Example 3.2. A “non-measurable” representation. Let £ : IR = {z € C||z| =1} be a
function verifying the following properties:

—Yf(k)=1 VkeZ

=) f(a+b)=1£(a)£(d) Va,belR

—) £ is not Lebesgue-measurable.

(Existence of such functions is proved in Appendix B.) Then it is easy to check that,
setting, for instance,

(7(W(a,0))¢ )(a, B) = £(a) el*Tf ¢((a + a) mod 1, )
(7(W(0,8))8 ) (e, B) = e™*** ¢(a, (B + b) mod 2n)
7(W(a,b)) = e*®® (W (a,0)) (W (0,b))

where ¢ € L?(T?, ;- dadf), one obtains a representation of A, in L2(T?, s=dadf).

(In fact the previous relations define a mapping = of IR? into a group of unitary operators
in L2(T2, +da df) verifying the Weyl commutation relations IV.(1.1)(a); hence, according
to Remark IV.1.6, 7 extends to a representation of A4,,.)

Moreover 7 is, by definition, spectrally multiplicity-free as a representation of .A4,. Finally

it is non-regular, in fact

Roa — (ﬂ'(W(a,O))XTz ,XTz) = f(a) (%/9 oila+alB dadﬁ)
T2
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is a non-measurable function.

Note. This is also an example of non-regular representation realized in a separable Hilbert
space.

To avoid this kind of “pathological behaviors” a second requirement is needed. Obviously
this condition must be weaker than the strong continuity of Weyl operators (otherwise one
would re-obtain the Stone-von Neumann's result). Roughly speaking the idea is replacing
strong continuity of Weyl operators by “strong measurability”. To be more precise it is
useful to recall firstly some standard definitions and properties regarding the notion of
measurability for operator-valued functions. (See Hille Phillips [1; Section 3.5] for more
details.)

Definition 3.3. Let (X, M, 1) be a positive and o-finite measure space, let B be a Banach
space and [’ be a function from X into B (i.e. a vector-valued function). Then: (1) F
is said to be countably-valued if it assumes at most a countable set of values in B, each
value being taken on a measurable set. (2) F is called weakly measurable (with respect
to ) if the complex-valued functions X 3 a — y*(F(a)) are p-measurable for each y* in
B*. (3) F is called strongly measurable (with respect to ) if there exists a sequence of
countably-valued functions {F;(a)} converging p-almost everywhere to F(a) (i.e. if there
is a prnull set N in M such that limp_,o || F(a) — Fy(a)|| = 0 for each a in X\N).

Weak and strong measurability for vector-valued functions are connected by the following
theorem due to B. J. Pettis.

Theorem. (Hille Phillips [1; Theorem 3.5.3]). A wvector-valued function F is strongly
measurable (w.r.t. ) if and only if it is weakly measurable and there ezists a p-null set N
in M such that {F(a)|a € X\N} is separable (i.e. if F is p-almost separably-valued).

In particular one has that strong and weak measurability are equivalent notions only if B is
separable. The above considerations also apply to the case in which F' is an operator-valued
function; however in this case a new set of conventions is more appropriate.

Definition 3.4. Let (X, M, ) be a positive and o-finite measure space, let H be an
Hilbert space and U : X — L(#) an operator-valued function. Then: (1) U is called
strongly measurable (with respect to p) if, for every = in #, the vector-valued function
X 3 a— Ula)z € H is strongly measurable in the sense of Definition 3.3. (2) U is called
weakly measurable (with respect to p) if, for every =,y in H, the complex-valued function
X 3a— (U(a)z,y) is u-measurable.

Theorem. (Hille Phillips [1; Theorem 3.5.5]). U(a) is strongly measurable (w.r.t. p) if
and only if it is weakly measurable and U(a)z is p-almost separably-valued for every x in

H.

From these properties it follows in particular that, especially when % is non-separable, the
strong measurability of U(a) is strictly related to the measure defined on the domain of
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U. So, to require strong measurability for Weyl operators, it is necessary to make precise
to which measures this property refers. Now, since we decided to focus our attention on
the spectral properties of the commutative sub-algebra A, a “natural” assumption seems
to be: strong measurability with respect to the family of positive spectral measures on T2
defined by vectors of the Hilbert space of the representation; namely we substitute strong
continuity by requirement

it) (#H,m) is such that the operator-valued function
[0,1)x[0,27) > (a,b) — 7(W(a,b)) € L(H)

is strongly measurable w.r.t. every positive spectral measure p, , y € H, associated
to the representation.
According to the quoted theorem Hille Phillips [1; Theorem 3.5.5], hypothesis i7) means
that, for every z, z in H,

[0,1)%[0,27) 3 (a,b) — (7(W(a,b))z,2) € C

is a Borel measurable complex function and, for every z,y in #, there exists a Borel subset
N of T? such that pu,(N) = 0 and {x(W(a, b))z ] (a,b) € T>\ N} is a separable subset of
H.

Remark 3.5. Hence this condition requires in particular “local separability” of the repre-
sentation, i.e. it implies (#, ) to be “u,-almost everywhere strongly separable” for each
spectral measure p, (y € H). This will allow, in the proof of our theorem, to use “locally”
standard results of analysis, which hold only in separable Hilbert spaces (or for o-finite
measures), even if the whole Hilbert space of the representation is non-separable.

Comment 3.6. One could observe that other measurability conditions, more simple than
the requirement 44), could be: (a,b) — m(W(a,b)) strongly measurable w.r.t. the two-
dimensional Lebesgue measure gl;da df (or w.r.t. every positive Borel measure on Tz).
But these conditions would imply ﬂ'(W(CL, b)):c to be %;da df-almost separably valued and
this property is actually very restrictive, in the sense that it is not satisfied, for instance,
by the representations of Section 2.

As a further argument to justify assumption i) consider the following

Proposition 3.7. If (H,w) is a regular representation of A,,, then the operator-valued
function [0,1)x[0,27) 5 (a,b) — n#(W(a,b)) is strongly measurable w.r.t. every spectral
measure py (y € H). Conversely, if (H,n) is a representation of A,, with H separable,
then strong measurability of [0,1)x[0,2x) 3 (a,b) — w(W (a,b)) implies regularity of the
representation.

Proof. Assume that (#, ) is regular, i.e. that the two one-parameter group of operators,
R > a— 7(W(a,0)) and R 5 b — n(W(0,b)), are strongly continuous. From the group
. properties of the Weyl elements it follows that also the operator-valued function

R? 5 (a,b) = n(W(a,b))
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is a strongly continuous. In fact, for every = in H, we have that

lm (W (a, b))z — z|| < ||x(W (a,b))z — 7(W(0,b))z]| + [|x(W (0, b))z — |
= |lm(W(0,5))(e™#*n(W (a, 0))z — z)|| + (W (0, b))z — z|
= |le™2 (W (a,0))z — z|| + |7(W (0, b))z — g
< [lw(W(a,0)z — x| + [le™ 2%z — z|| + |x(W(0,))z — z|| ;

hence lim(q ) (0,0) ||7(W(a, b))z — z|| = 0 for all z in H. This implies in particular that
T? 3 (a,b) — 7(W(a,b)) is weakly measurable (w.r.t. the Borel o-algebra of T?). Due
to the Stone-von Neumann uniqueness Theorem, for each z in 7, the set of vectors
{r(W(a,b))z | (a,b) € R?} is contained in the Hilbert space of a Schrodinger represen-
tation, hence is separable. Thus, according to the cited theorem Hille Phillips [1; Theorem
3.5.5], the function T? 3 (a,b) — 7(W(a, b)) is also strongly measurable with respect to
every o-finite measure defined on the Borel sets of T2.

Conversely, if [0,1) x [0,27) 3 (a,b) — 7(W (a, b)) is strongly measurable with respect to
every spectral measure, then [0,1) x [0,27) 3 (a,b) = (#(W(a,b))z,y) € C, z,y € H, are
Borel functions. This also implies Borel measurability of

R>a— (7(W(a,0))z,y) and R3b— (w(W(0,0))z,y) T,y €M .

Then the proof can be concluded noting that, due to a theorem of von Neumann (see von
Neumann [[1]]), if a one-parameter group U; (¢ € IR) of unitary operators in a separable
Hilbert space is weakly measurable (w.r.t. the Borel o-algebra of IR), then U, is necessarily
strongly continuous. O

We can now state our theorem.

Theorem 3.8. Let (H,m) be a representation of the CCR-algebra A, satisfying the
following hypotheses: '

i) (M, m) is spectrally multiplicity-free as a representation of the abelian subalgebra A,
i1) the operator-valued function

[0,1)x[0,27) 5 (a,b) — 7(W(a,b)) € L(H)

is strongly measurable with respect to every positive spectral measure Ly (Y €H).
Then: (M, ) is an irreducible representation of A, and there exist a positive measure p
on the Borel o-algebra of the torus T? and a unitary map U from H onto L2(T?, ) such
that, for every a,b in R and every v in L2(T?, p),

(W (W (0,0)) U* ) (e f) = €=+ ((a+a) mod1,f)
(3.8)(a)

(U W (0,0) U* %) (e, B) = e~ (a, (B + b) mod 27)
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(where [+ a] denotes the integer part of @+ a). Moreover u is translation-invariant and
there exist a disjoint collection, {Ij};es, of Borel subsets of T? and a corresponding family
2

of positive Borel measures, {p;}jec, such that 0 < p;(I;) = p;(T°) <400, for each j in
J,and p=73 s pj-

Comment 3.9. As one can see, hypotheses i) and 47) imply, in particular, (H, ) to be
irreducible; furthermore they allow to characterize representations, up to unitary equiva-
lence, in the sense that all representations satisfying ¢) and i) are unitary equivalent to
a representation defined by relations (3.8)(a) and by a measure p. Hence different (i.e.
inequivalent) representations correspond to different translation-invariant measures on T?;
in particular the Schrodinger representation corresponds to the two-dimensional Lebesgue
measure. (See also Section 5.)

We shall prove this theorem in the next section.

§4 Proof of the theorem

This section is devoted to the proof of Theorem 3.8; for the sake of clarity we divide
the proof in a number of steps. 7

Notation. In steps 1,2,4 and 5, to simplify our formulas, points of T? will be indicated by
an overlined (Greek or Latin) letter; so we shall write, for instance, W (@) instead of W (a, b)
or ¥ (@) instead of ¥(a, B). Furthermore we shall use, @ + @, in place of, (& + @)mod , to
indicate a translation on T2. The “two-character” notation, W(a,b) and ¥ (e, 8), will be
used in steps 3 and 6.

Step 1. Irreducibility of the representation.

In this step we shall prove that, if a representation of A,, verifies hypotheses 7) and
it), it is irreducible. We begin the discussion pointing out some preliminary properties.

Lemma 4.1. Let H. be a separable subset of an Hilbert space H. Then there exists a
countable subset of H. dense in H..

Proof. If H. is a separable set of #, there exists, by definition, a sequence {z,},en of
vectors of 7 dense in H.. Let Chm = {y € Hellly — zn|l < L}, for each n,m in
IN. From the density of {z,}new it follows that U, Cp m = H, for every fixed m. Let
{y”am}n,mEN be a subset of vectors obtained by choosing an element from each non-
empty Cp.m. Then {y"wm}n,mEN is a countable set of vectors in H,. dense in H.. In
fact, if y is an arbitrary element of H. and k£ € IN, since U, Chok = He, there is a p



74 CHAPTER V

in IN such that y € Cp o and, obviously, Cp,2k is non-empty. So there exists y, o and
9p,26 = Ul < llyp,26 — zpll + llzp — 7l < % L]

Lemma 4.2. Let (H,w) be a representation of A, , y be a vector of H and Y be a Borel set
in [0,1) x [0,27). If {w(W(a))y|@ € Y} is a separable subset of H, then {m(W(-a))y|a e
Y} is also separable.

Proof. According to the Lemma 4.1 there is a sequence {@,} in ¥ s.t. {7 (W (@))v} nen
is dense in {7(W(@))y|a € Y} i.e., for each element @ of Y and every positive constant
€, there exists an 7 in IN such that ||7(W (@,))y — 7(W(@))y||* < €2. On the other hand,
due to the properties of Weyl elements,

("W @)y, (W (@a))y) = (y,7(W(-a) W(@))y) = 7 (a(W(~an)y, n(W(-a))y) ,

v being a suitable real constant. Hence we can write

Finally, since each bounded operator is also continuous, ||7(W (~@y,)) (¢*% — e 7)y|| — 0 if
0 — 7; so there is a rational constant g such that ||7(W(~a,)) (¢*? — ' 7)y|| < e. Hence

(W (=an)) (' %) — =(W (—2))yl|
= [7(W(=8n)) (e"%y) — 7(W(-a))y £ (W (-ax))(e"y)|| < 2¢ ,

Le. {m(W(-an)) (eiqy)}nel\’.qEQ is a countable dense set in {7(W(—a))y|a e Y}. O

Lemma 4.3. Let (H,7) be a representation of A,, satisfying hypotheses i) and i) of the
theorem and let H. be a separable subspace of H. Then the set of vectors

{m(W(-a))y |y e Hc, ae(0,1) x[0,27)}

is pi5(@)-a.e. separable, with respect to every positive spectral measure g (z € H).

Proof. Let {yn},cp be a dense set in H., and let u, be a fixed spectral measure. According
to hypothesis 4¢), for each n in IN, there is a Borel subset N, of [0,1) x [0, 27) such that
pz(Nn) = 0 and {7(W(@))yn | @€ [0,1)x[0,27) \ N,,} is separable. Then, due to Lemma
4.2, {m(W(-2))ya | @€ [0,1)x[0,27) \ N,,} is also separable. This implies that the subset

U {7 (=) | ae{0,1)x[0,20) \ (Un Na)} }

nelN
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is still separable and, by Lemma 4.1, there is a sequence {m(W(—ax))yr}, where a; €
[0,1)x[0,27) \ (Un Ny) and yg € {yn},cp > dense in it.

Let z be a vector in #H,, let @ be a point in [0,1) x[0,27) \ (U, N,) and € be a positive
constant. Then there exists n in IN such that ||y, — z|| < €; moreover there is a k for which
|l (W (=ax))yr — 7(W(—a))yn|| < &. Hence

(W (=@))z—m(W (—ax)) x|l
< Nlwe(W(=a))z — 7(W(=2))yall + Im(W(=a))yn — m(W (=ax)) el < 2¢ .

In conclusion {m (W (—=@x))yx } en is dense in {n (W (—a))H. | @€ [0, 1)x[0, 27) \ (Un Nn)},
Le. it is dense in {m(W(-a))H. |a€ [0,1)x[0,2m)} p,-almost everywhere. O

Given a representation (H,w) of A, that verifies hypotheses i) and %), consider
a decomposition of H in a direct sum of cyclic and W(AZ)—invariant subspaces, H =
DPier [W(AZ)CEJ = @;e Hz, (where z; £ 0 for every 7).
Due to the spectrally multiplicity-free property we know that #H = L2(T?, p), with p =
> ier Mz, (see Proposition II1.1.2). Let U be a unitary map from # onto L2?(T?, ) such
that, for each A in A,, Un(A)U! is the operator of multiplication by the Gelfand
transform of A. Moreover, for each 7 in I, let S; be a Borel subset of T2 such that
11z, (S:) = piz, (T?) and 1y, (S;) = 0 for all y L Ho,.
The next proposition contains a property of the spectral measures p,,. This property
actually concerns the product measures p;; ® pz; in the product space T? x T2.® Each

(4) We recall some basic definitions and results, regarding the product measures, we shall
use in this section. (About the theory of measure in product spaces we refer to the book
of Rudin [1; Chapter 8]).

If X and Y are two sets, their cartesian product, X x Y, is the set of all ordered pairs
(z,y), where z € X and y € Y.

If (94,35, p;), with 7 = 1,2, are two positive and o-finite measure spaces, the product
o-algebra, ¥1 ® Yo, is the smallest o-algebra in 2 x 25 which contains every set of the
form A x B, where A € X; and B € 2,.

IfECQ xQy, 7€ Q,y €y, it is customary to call z-section (resp. y-section) of E
the set |, = {y € Q2| (z,y) € E} (resp. E|l, ={ZT € Q1| (Z,y) € E} ).

Theorem. Let E € ¥; ® 5. Then E|; € ¥y and E|, € L1 for every z in Q1 and y in
Q2. Moreover functions defined by relations  — po(E|z) and y — p1(Ely) are gy and
p2-measurable respectively and le po(Flz) dpr = sz pa2(Ey) dus.

Definition. For every F in 33; ® ¥, one defines

(1@ pa)(B) = |

pa(Ble) i = | pia(Bly) da
Ql ﬂz

It is not difficult to verify that pu; ® uo is a measure, i.e. that it is o-additive on X1 ® 2.
This measure is called (Cartesian) product of the measures p1 and ps.
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pz; is, by definition, a positive Borel measure on T2 so, denoting by By: the Borel o-
algebra of T2, one can consider, for each ordered pair, (i, 7), of indices in I, the product
measure fig; ® fiz; defined on the product o-algebra By2 ® Byz of T? x T2

Remark 4.4. By: ® B2 coincides with the Borel o-algebra, Brzxy2, of the product
topological space T2 x T2, In fact, By2 ® By contains each open set of T2 x T2, hence
By2xt2 C By2 ® By2. Conversely, if E,F € By, then E x T? and T2 x F are Borel
sets of T2 x T2, therefore also E x F = (E x T?) N (T? x F) belongs to Brz2yqe, ie.
By2 @ By2 C By XT2-

Notation. For every @ € R”, define W(@) = Un(W(a))U*. Then W(a) is a unitary
operator on L2(T?, ). '

Proposition 4.5. Let (4,5) be an ordered pair of indices in I and let A be an element of
the o-algebra B> ® Bye such that (pi, ® iz, )(A) >0 (and A C S; xS;). Then there exists
k in I such that

(o, ® pa, ) (ANSE) > 0, with S = {(@,a) € T’ xT?|xs,(@+a) =1} .

Proof. Note firstly that S € By2 ® Byz. In fact, if 7 denotes the homeomorphism of
T? x T? such that T>xT? 3 (z,a) — (@, —a) € T>x T2, $y turns out to be the T-
image of the Borel set T®x Sy ,i.e. Sy = '7'(T2 x Sy). Hence, since By2 ®By= contains every
Borel set of T2 x T2, also Sy, belongs to By2 @ Br2. Let us consider now the measurable set
A. Relation (g, ® pz; )(A) = [12 pta; (Alz) dpse, (@) > 0 implies that pg, (A7) > 0 for every
@ belonging to a suitable measurable Y4 (C S;) with pg, (Y4) > 0. Moreover, for each @
in Yy, Alg is included in S; , hence Xa-(@) € L2(T?, 1) and U*xalz € Hz,. Therefore we
have that

{r(W(=a))Uxa |@€Ya} C {n(W(~0)Ha, | G € Ya}

Using Lemma 4.3 one can now conclude that, removing at most a pz -null set from Yy,
{r(W(-a)U*xa_|T€ Y4} is separable. This allows to infer that the family

I= {A el ‘ Mo, £ 7(W(-a)) U x4 forsomeae YA}

is countable. 1

In fact, due to the Lemma 4.1, there is a sequence {W(VV(~E,1))LI*XA;E“ |a, € YA}nE]N
dense in {W(W(—E))M*XA'E I @€ Yu}. Since the subspaces H,, (k € I) are mutually
orthogonal, each vector = (W (—a,)) U*x Az can have non-null projection only on a count-
able number of H, ’s; therefore, if I is non-countable, there exists a & in I such that Haz, 1s
orthogonal to 7(W(—a,)) U xal,, foreveryninIN, but Hy, L n(W(—a)) U*x 4. for some

@ in Y. This is incompatible with the density property of {W(W(——En)) U xap, }n N’
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To conclude the proof suppose, seeking a contradiction, that (uz, ® pe;)(ANSE) =0, for
every k in I. This means that

[ @ [ ahe,(@) xay (@) xs.(@+9) =0.
T2 T2

Hence, [r.dus, (@) x41:(@) x5, (@ + @) = [.dp(@) xa(@) xs,(@+a) =0 p,(a)-
a.e.. So one obtains that, for every k € I there is a Borel subset Gj of T* such that
iz, (T2 \ G%) = 0 and, for each @ in Gy,

(W@ Bxs. xair) = | (V@) Bs,) @) xan (@) dut@
(4.5)(a)

:/FQ()’V(E) BXS}:)(E) Xsk(‘&+‘a‘) XA[E(_Q_’) d'u,(a“) =0 VE € C(T2)

(Note. For every @, (W(a) Bxs, )@ = (W(@) Bxs, )(@) xs, (@ + @) almost everywhere
w.r.t. p(@). In fact, according to Proposition IV.3.3, one has the following identity of
measures

~ — NANRE) B (-3) _ 1B12(=_ = — =\ (%)
Hy(@ Bs, = V(@) Bxs, (@) n= Hoe. = 1BU@+3) xs.(@+a) w0

Hence: Xs,(@ +a) [W(a) Bxs, (@) 4= W(@) Bxs, (@) u.)

Equation (4.5)(a) implies that, for every k in I, T(W(=a))U*xa- L Haz, pe,(@)-ae..
Since I is countable, one also has that, (W (—a)) U x4 L O 7 Her Mz, (@)-a.e.. Then,
according to definition of I, we can conclude that 7(W(—a)) U*x ). L Srer Hz, iz, (3)-

almost everywhere, i.e. #(W(-@))U x4, =0 pz,(@)-a.e.. But this means x4, = 0 ie.
pz;(Alg) =0 pg, (@)-almost everywhere that contradicts the fact that u,, (Ya) > 0. O

At last we can prove the announced property of the representation.

Proposition 4.6. Let (H,m) be a representation of A, that verifies hypotheses i) and ii)
of the theorem. Then (#H,w) is irreducible.

Proof. Let £; be an arbitrary non-null vector of H and let H; = [ﬂ' (Aw):}:l]. Suppose
that H # #; i.e. that there is a non-null vector z5 in H such that zo L H;. Then,
writing He = [7r (.Aw)xz], one can consider the subrepresentation (7 & 72, H1 & Hs) .
Obviously it satisfies hypotheses i) and ); furthermore, if H; = ®mer, [71(A,)z1,m]
and Hy = @mer, [7r2 (.Az)mz,m] are two decomposition of #; and 7, respectively in
cyclic and A -invariant subspaces, one obtains for H; @& Hs the relation H,; & Ha =
®_7 1,2 mel; ]: (A )J:Jm] @J =1,2 mel; %z]m-

~ Let now S; (] = 1,2, m € I;) be Borel subsets of T* such that /LT,J (T2 \SJ m) = 0 and
Ly (Sjm) =0 Vy LH Consider a product measure on T?® T given by bz, ® g, .

Ij,m -
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(with ! in I; and m in I5). Due to Proposition 4.5 there should exist an index (4, k) such
that (ug, , ® pz, . )(S5%) >0 (and $ \sJ r={(@a e T2xT? | xs,.(@+a@)=1}). If j =1,
for every k£ in I, we can write .

(ons ® pizy, ) (S1p) = / d iz, (@) / d fhas. . (3) X, (- (@) -
T2 T2 '

For every @, we have z3,, € Hy L H13 (W (a@))z1;. This implies that(®), for every @,
lzy . (S1 £ )) = 0; then (um“ ® fz, . )(Sjk) = 0. Similarly, if j = 2 and k € I, writing

(s s ® iz )(S2p) = /

d iz . (@) / d e, (@) x5, (= (@) |
T2 T? ‘

we can infer that (pg, , ® tg, . )(S2,4) = 0. In conclusion, H must coincide with H;, i.e.
(H, ) is irreducible. O

Step 2. Properties of the measure p.

Let (H, ) be a representation of A, that satisfies hypotheses 1) and 44) of the theorem.
In this step we shall prove that the measure i, which defines the space L2(T2, p) = H of
the spectrally multiplicity-free construction, can be always written into the following form

=2 xs 1) (4.7)(a)

iel

where: 7;’s are points of T2, Wz, 1s a spectral measure of an arbitrarily fixed non-null
vector £o in H and {S;};c; is a disjoint collection of Borel subsets of T? (such that

pd )(S) <400 Viel).
To obtain this result we firstly note that

Proposition 4.8. If (H, 7r) satisfies hypotheses i) and i1), then u can be written into the
Jorm: p=73 . (xv; ,uzo)( , {Yi}ier being a suitable family of Borel sets of T2 (and pg,
a spectral measure of an arbztmry non-null vector of H ).

() Let (H,n) be a representation of A, which is spectrally multiplicity-free as a repre-
sentation of A,. If z is in H and S, is a Borel subset of T? such that x(T?\ Sg) = 0 and
1y (Sz) =0 Vy L M, then Sz~ verifies the same properties with respect to the vector
©(W(a))z.

In fact, according to Proposmlon IV.3.3, tr(w @)z (Sz (-2 ) = ﬂm(—a)(sz(—a)) = pz(Sz) =
po(T?) = paw@)e(T). Xy L Hewaye e if (rn(B)r(W(@))z,y) = 0 for ev-
ery B in A,, then (n(B)z,n(W(-a))y) = 0 VB, ie. 7(W(-a@))y L Hy. Therefore

B (—a))y (Sz) = 0 = 1y @ (Sg) = py (S:P).
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Proof. Let z¢ be an arbitrarily fixed non-null vector of H. According to Proposition 4.6,
(H,7) is an irreducible representation of A,,, so zg is cyclic for 7. Consider now the
following family of vectors: zyz = m(W(F)) Pyzo, where ¥ is a Borel set of T> and
7 € IR2. (Py denotes the projection defined by the characteristic function xy (see Section
I1.3).) Then it is not difficult to verify (using Proposition IV.3.3) that oy = (Xv uzo)(—r).
Let J be the collection of all subsets V' of non-null vectors zy 7 such that

—) V contains zg

=) ifzys Ty 7 €V, then Boyr L Bay o
Ordering J by inclusion one obtains a non-empty partially ordered set; moreover every
totally ordered subset, X, of 7 has an upper bound (i.e. {zyr|zyr€ V for some V €
K}). Then, according to the Zorn's Lemma, there exists a maximal element in 7, that
we call I = {zy7,...,Zv, 7 ,...}. From the orthogonality of the spectral measures it
follows that the subspaces [7(A,)zy, 7], ¢ € I, are mutually orthogonal. We claim that
®icr[m(A,)z;] actually coincides with H. Assuming this claim the thesis follows; in fact
the spectrally multiplicity-free property implies that # is unitary equivalent to a space
L2(T?, p) with p = Yier Mz = ) ier (Xv; ,Ll,mo)(——ﬂ) (see Proposition I11.1.2). [Note. Each
7; can obviously considered to be contained in [0,1) x [0, 27).]

It remains to prove the claim. Seeking for a contradiction, suppose that there is a non-null
vector z in H such that z L [w(A,)z;] for every 7 in I. Since 7 is spectrally multiplicity-
free, there is a Borel set Y, of T2 such that p,(Y:) = p,(T?) and pg, (V) = 0 for every
7 in I. On the other hand, since zq is cyclic, for every positive constant € there exists
a finite sum Ejvzl A;j (W (T;)) such that || Zj\f__l Ajm(W(T5))z0 — z|| < €. From the
commutation relations of Weyl operators it follows that Py, n(W(7;)) = n(W(7;)) Py(;j)

(see Lemma 4.13 in step 3). Then we have that £ > || Py, (Zjvzl A (W (T;))zo — z)[] =

I Zj\f__l A; (W (75)) PY:GJ.) zo — z|| . In particular there exists a ¥ for which

|7 (W (@) Py zoll >0 but Ba(W@)P, 570 = XY. pS” L opg, Viel

and this contradicts the maximality of I. J

Remark 4.9. Let (#, ) be a representation of A, as in Proposition 4.8 and let zy, =
m(W(r)) Pyzo. If Yo C T? is a Borel set such that pg, (Yo) = g, (T?) and Ly (Yo) =0 for
every y L Hz,, then (Y N YO)(—T) verifies the same properties with respect to zy, (i.e.
Loy, (YN Yo)(—r)) = gy, (T?) and py (Y N YO)(nr)) = 0if y L Hz,, ). To prove this
property note first of all that the Borel set Y NYj is such that pp, ., (Y NYy) = ppy 2, (Yo) =
LPy zo (Tz), moreover (Y NYy) =0 Vz Ll Hp,q,.

[In fact, if z 1 Hzy, p(Y NYy) < p(Yo) = 0. If z € Hy, but 2z L Hp, 4., according to
the spectral multiplicity-free property, one can consider a unitary map &/ from # onto a
space L2(T27 i) and define ¢, = Uz )y, = Uzp. Then the relation z L H Pyz, implies
that (see the second part of the proof of Proposition III1.1.2): (|?,bz! s Ixy T/’mol) =0 =



80 CHAPTER V

f 2 Xy |1/)21 [’1,-/’330] d/j, Z L fhbrol—l(%’oo]xy I,‘pbzl d,U: + fl"bxol—l(oa}_l{]xy !wzol lwzl d[L Vn € IN.
Hence, for every n,

p (1920 ™ (/0] VY 1 (121720, 00]) = g (It |11/, 00] N Y 1 (12]) (0, 00] ) = 0.

So p (Y N 577/}1‘0’_1(1/”700]) = fw,zo|—1(1/n’oo]Xy !¢y12d# =0 VneN and p,(Y NYp) =

p=(UnZe (Y N [ |77 (1/n, 00])) = 0.]
The desired property for (Y N Yo)(_r) follows now from the footnote of Proposition 4.6.

Secondly we stress a general property of the spectrally multiplicity-free representations of
commutative algebras concerning a “natural” extension of the measure p.

Proposition 4.10. Let (H,n) be a spectrally multiplicity-free representation of a unital
commutative C*-algebra A and let M be the o-algebra of all Baire sets in the Gelfand
spectrum, ,:1\, of A. For each = in H let M, denote the Lz -completion of M) and,
finally, let M = ﬂmgﬁ M. Then:
a) the o-algebra M~ contains M
b) if {a:a}a€I 5 a famzly of non-null vectors in H such that H = @acr [7(A)zy], then
Naer M, =M
Furthermore. if H = GBQEI [7(A)za] and 1L, denotes the completion of Uz, , the measure
= ZaEI Uz, , originally defined on M, can be “naturally” extended to M setting i =
Zag Bz, - In this way one obtains a measure which verifies the following properties:
c) It is complete and has the finite subset property”); moreover for each E € M with
B(E) < +co there is a Baire set B such that B C E and u(B) = T(FE); hence the
Hilbert spaces Lz(.;l\, M, p) and L%ﬁ,ﬂﬁ,'ﬂ) coincide.

Proof. Point a) is obvious. To prove point b) we observe that, by definition of M, M~ C
Naer Me.: so we have only to verify the opposite inclusion. Let y be an arbitrary vector
in # and E be an element of (),.; Mg,. Ify = 300y, with y,, € [7(A)zs,], then
By = 3oooy Bya, = oy ho iz, , where h, € LY(A4, pz, ) Vn € IN (see Proposition
I1.1.1). Now, for each a,, there are: a Baire set S,, C A s.t. Pz, (le\\Sn) = 0 and

6)  Let (X, M, 1) be a positive measure space, let M be the collection of all subsets
FE of X for which there exist two elements, A and B, of M such that A ¢ E C B and

p(B\A) = 0 and define g(E) = p(A) in this situation. Then M is a o-algebra and % is
a measure on M (Rudin [1; Theorem 1. 36]). The measure 7 is called the completion of p
and M is called the completion of M with respect to u (or the u-completion of M).

(") A positive measure , defined on the o-algebra M, is called complete if it coincides
with its completion (i.e. if B € M, A C B and p(B) = 0 imply that A € M (and
p(A) = 0)). Moreover p is said to have the finite subset property if for each A in M with
#(A) > 0 there exists a B C A, B€ M, such that 0< u(B) <+oo (see, for instance, Rao

[1; pg. 68]).
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pz(Sn) =0 Vz L Hg, (due to the spectrally multiplicity-free property) and two Baire
sets, An and Bp, s.t. A,NS, CENS, C B,NS, and pg, ((Br\An) NS,) = 0. Then,
denoting U2 ; (Ap N'S,) by A and (US2; (B, N S,)) U (U, S, ) by B, we have that
ACEC B and

JB\A) = 3 i, ((U5s (Bor 1 50) U Uy 8))\ A)

= Zhn Mz (Bn,\A4) < Zh” Yz, (Ba\ Ap) = 0

n=1 n=1

hence, if & € ﬂael M., E is also contained in ﬂy for each y in 7, i.e. ﬂael f/{_za C M.
Point ¢). For each p,, @ € I, let S, C A be a Baire set defined as usual (i.e. such
that gy, (A\S,) = 0 and p:(Se) =0 Vz L Hg ). If Y is a subset of A for which there
exist A, B in M such that A C ¥ C B and #(B\A4) = 0, then, by definition of %,
oa(B\A) =0 Vael, ie YeM,, Vacl; henceY €(\,ef Mz, =M, therefore
7 is complete. If A € M and H(A) > 0, then there exists a Jip. with Tz (4) > 0; so
ANSe C Aand i(ANSe) = 3 pe; Tzp (ANSa) = Tz, (ANSe) = Tz, (4) € (0, +00), hence
T has the finite subset property. Finally, if E € M~ and E(E) <-+oco, then Lz (E) > 0 for
an at most countable set I’ of o’s in I. Moreover for each o € I’ there is a Baire set , Y,
such that Y, C F and pg,_ (Ys) = Iz, (F). Thus Uaser (Yo N S,) is a Baire set, contained
in £, and p(Uger (Yo N Sa)) = Zﬁe] Hzg (Uaer (Yo N S,)) = ZQEI’ pz, (Yo N Sa) =
> aer Haa (Vo) = > acr Bz (E) = [(E). O

Let us return to the algebra A, and consider a measure p = Dier (X} umo)( '),
defined as in Proposition 4.8. We want to prove that u, extended to the o-algebra BT-
(according to the procedure of Proposition 4.10), is a localizable measure.(®) In the proof
of this property we shall use a sort of generalization of Lemma 4.3, namely

Lemma 4.11. Let (H,n) be a representation of A,, satisfying hypotheses 1) and i) of the
theorem. Then for every separable subset H. of H and every vector zo in H, there eTists
a Borel set Yy C [0,1) x [0,27) such that o (T?\Yo) = 0, p,(¥o) =0 Vy L H,, and
{r(W(@—0b))H.|a,be Yy} is separable.

() The notion of localizability was introduced by Segal (see Segal [[1]]) and plays an
important role in many contexts (for instance, it allows to prove the Radon-Nikodym
theorem in the non-o-finite case). This concept can be defined as follows (see Rao [1]).

Definition. Let (2, X, 1) be a positive measure space (with the finite subset property).
Then p is said to be localizable if for every (not necessarily countable) collection G C
of sets of finite measure there exists a set B in X, called the supremum, that satisfies the
following conditions:

(1) for each Fin G, u(F\B) =0

(2) if B is another element of ¥ such that u(E\B) =0 for every F in G, then p(B\B) = 0.
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Proof. Firstly we shall prove the thesis in the case in which #. consists of a single vec-
tor. Let z be a fixed vector and let Y, be a Borel subset of [0,1) x [0, 27) such that
fzo (T?\Y;) = 0 and {x(W(a))z|a € Y.} is separable. Due to the Lemma 4.1 there is a
set {m(W(@,))z|@, € Y.,n € N} dense in {n(W(@))z|a € Y,}.

For every n in IN let Y,  be a Borel set for which {r(W (b)) #(W (@,))z|b € Y, } is sep-
arable and piz,(T?\Yz,) = 0. By Lemma 4.2, sets {r(W(=b)) (W (@,))z|b € Y;,} are
also separable. Thus {7 (W (-b)) n(W( an )z | nelN, b€Ny,Y,m} is still separable (be-
ing contained in U, {m(W(=b)) #(W (a,))z | be Yz’n} and therefore it admits a countable
dense subset, {w(W(=b;)) 7(W(a;))z| bj € Nim Ya m}jen.

Let Yo, = Ny Yz, NYy; it is a Borel subset of [0,1) x [0,2x) such that 7 (TQ\YO,Z) =
tao (T30 (U, Y UYS) =0and {n(W(@-1))z|a,be Y.} is separable.

[In fact, Va,b € Yy, and € > 0 there exists n € IN s.t. || 7(W(@,))z — (W (a))z| < &
moreover, given @y, there is a j with || W(W(—-bj)) (W (g;))z — T(‘(W(—@) T(W(a,))z|| <
e. Hence |[n(W(~b,)) m(W (a;))z — n(W(=5)) x(W(@)z | < | =(W(~b;)) n(W @)z —
7r(W(—b))7F(W(an))zll + [ 7 (W (=) n(W(@n))z — n(W(=D)) (W (@)z|| < 2, ie. the
set {m(W (=b;)) (W (@;))2} jen is dense in {x(W (=b)) #(W(a))z|@,b € Yy z}. Observing
now that {m(W(a—b))z|a@,b € Yo, } C {en(W(-b)) n(W(a))z|a, beYO,z,'yelR},one
can conclude (see proof of Lemma 4.2) that {7- W(a— b))z | a,be Yo,z} is separable.]

We can now consider the case in which 7. is a generic separable subset of #. Let
{#zm}mew be a sequence dense in H. and let S,, C [0,1) x [0,27) be a Borel set such
that fig, (T?\Sz,) = 0 and p,(S,,) =0 Vy L Hz,- We have seen that, for every m in
IN, there is a Borel set Yy, for which {W(T/V (@-— b) Zm ] a,b ey, m} is separable and
fhgy (T2 \Yo,m) = 0. Thus, setting Yo = My, Yo m N Sgy, We obtam that pg, (T*\Yp) = 0,
ty (Yo) < p1y(Szo) =0 Vy L H, and {7r W(@—b))zn, f melN a, bEYo} is separable. Since

{7(W(@—0))zm |m € N @,be Yy} is dense in {n(W(a—b))z|z € H. a,b € Yy}, the thesis
follows. 0

Proposition 4.12. Let (#,w) be a representation of A, satzsfymg hypotheses i) and 1)
of the theorem, zo a non- null vector in H and p = ) icr (Xv: ,umo) ") 4 measure (on the
Borel o-algebra of T? ) defined as in Proposition 4.8. Then p, estended to the o-algebra
B2 (accordmg to the procedure of Proposition 4.10) is localizable.

Proof. Let Yy be a Borel set of [0,1) x [0,27) that verifies the properties of the Lemma
4.11, taking as H. the subspace Mg, = [7(A,)zo]. Let 7 be a fixed index in I and let

= {ier]i#imd (%N¥)™ 0 %NY)™) £ 0)

Then, for each j in I, there is at least one point ¢ such that ¢ € ((YonY;)™) N (YonY;) ),
l.e. there exists a pair of points, @ € (Yo NY;) and b € (Yo NY;), that satisfy the relation
a+T; =C= b+7;. So, for every j in I, there are @, b in Yy for which T; =T;+b—aand
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we can write the following relations:

{r(W (7)) Hao |j € T'}
{r(W(-Fi+a—b)) Ha, | T, b € Yo}
{r(W (7)) m(W(a— b)) Hao | T, b E Yo}

T(W(=7:)) {n(W(@—0b)) Hao | T, b€ Yo} .

{m(W(~73)) Pr,zo | j € '} ©
C

I

™

Hence, due to the Lemma 4.11, {7(W(—7;)) Py,zo|j € I'} is separable. On the other
hand {m(W(—7;)) Py,z0|j € I'} is also a set of non-null mutually orthogonal vectors;
therefore I’ must be countable.

Since for each j # i the set ((YoNnY;)™) N (YonY;) D) is (xv, umo)(ﬁ)—mﬂl (see Remark
4.9), then

# ((Yin)(ﬂ) N (Ujzi (YoﬂYj)(Fj)))
= (xv; Nzo)(Fi)((Yoin)(Fi) N (Ujpi (YoﬂYj)(Fi))>

= o #20) ™ (N V)T 1 (Ujer (N Y3,)0))) = 0.

According to the definition of localizability, consider now a collection {F,} of elements
in Byz" with p(Eq) < +oo V. (We denote the extended measure on By still by p.)
We have to prove that {E,} admits a p-supremum in By2 . By definition of B2, each
E, belongs in particular to the completion of By2 with respect to every pi.w(—7,)) Py, zo-
Since every finite measure is localizable (see Rao [1; Exercise 5(a) pg. 79]), then, for
each 7 in I, there exists the supremum, with respect to p,w (7)) Py, 50> of the family
{Ea N (YoN Yi)(F")}; call it B;. Obviously we can assume that each B; is included in
(Yo Yi)(m. It is not difficult to see that every B; belongs to B—TzTr

In fact, B; belongs by definition to the (xy; ymo)(F‘)—compIetion of By2 and, if j # ¢,
Bin(YonY;) ™) € (¥on ) n (Yo n ;)T which is (xv; ao) 72 -null.

Furthermore ZS’—TzTr also contains U;cr B;; in fact, for every j in I, U;erB; is contained in
the (xy; pmo)(Fj )_completion of B2 since

UsB = Bju (Ui;éjBi n (Y()ﬂYJ')(Fj)) u (ui;éjBi N ((Yoﬂyj)(Fj))c)
i€l N -~ N — : ’

C Uig; (YonY:) ) N (Yony;) s (xv; Bzg)T)-null

Finally we shall check that Ujcr B; is the p-supremum of {E.}. (1) For every E,,
H(Ba\Uj Bj) = Tier (xvi #20)" ) (Ba\ Us By) < Vg (xwi bao) ™ (Ba\By) = 0. (2) If
BeBr: and 3, (xv: piz) TV (E\B) =0 Va, then, for every i, (xy, ty)" (E\ B) =
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(xv, ,uxo)(F‘)((E N(YoN Yi)(F")) \E) = 0 Va. Therefore (xy, uzo)(F")(Bi \E) =0 Viand

1 (UjerB;\ B) = Z(XY; prag) T (UjeIBj\E)

el
= > (cxi #20)™ ((B:\ B) U (Uj:B;\ B)
iel
< 2 v eo) ™ ((Bi\ B) U (UjiBy)) = 0
i€l
O
To complete this part and obtain for x the form (4.7)(a), we use the following result due

to McShane.

Theorem. (McShane [[1]]). Let (22,5, i) be a localizable complete measure space with the
finite subset property. If there exists a mazimal family € = {Y;|i € I} of p-a.e. disjoint
measurable sets, with 0 < u(Y;) < +oo, and the cardinality of I is not greater than that
of continuum, then there is a disjoint family &' = {X;|j € I'} of measurable sets, with
0 < p(Xj) < +oo, such that: Ujep X; = Q and, for each E in ¥ with u(E) > 0, there
ezists a j in I' such that p(EN X;) > 0.9

In our case we know that u = ZiEI Xy, ) ,ugf), defined as in Proposition 4.8 and extended
to the o-algebra B—T;W, is localizable complete and with the finite subset property. Further-
more £ = {(Yo N Yi)(m 1€ I} is a maximal family of p-a.e. disjoint Borel set of T2 with
0< u(( o N }’i)(;i)) < +0oo (as usual Yj denotes a Borel set such that p, (TQ\YO) = (0 and
ty(Yo) = Vy L Hg,). Let us examine the cardinality of I. For every subset J of I there ex-
ists, by the localizability of i, a measurable By € FT:W such that By = sup;c ; (Yo N Yi)(Fi).
Moreover J # J' implies By # By/; hence the cardinality of the set { By|J subset of I }
coincides with the cardinality of all possible subsets of I, i.e. Card {B;} = 2¢%7¢1  Then
the cardinality of I cannot be greater than that of continuum; in fact, if this were not the
case, Card {Bs} would be greater than the cardinality of all subsets of T2. :
In conclusion p1 =3, ; Xy, &) u:(,;zi) verifies all the conditions of the theorem of McShane.
Finally we show that, due to this theorem, one can define a disjoint family {S; }ier of Borel
subsets of T2 such that, for each i € I, S; C Y;(F") and ug")(Si) = yg‘)(Yi(F‘)); hence p
can be written in the form (4.7)(a).

To this aim consider a disjoint family &’ = {X; € By: |j € I'} of measurable sets, with
0 < u(X;) < +oo, such that: Ujep X; = T? and, for each E in By with p(E) > 0,
there exists a j in I’ such that u(E N X;) > 0. Denoting, for each 7 € I’,

1G)={ie I [ i (in%)™nX;) >0},

(®)  Existence of a collection satisfying the properties of £’ is, in general, a condition
stronger than localizability; namely a measure space that admits such a family of measur-
able sets is called strictly localizable.
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one has that I(j) is a countable subset of I (since p(X;) < 4+00). So defining, for each j
in I” and ¢ in I(j), :

X = (Gn@wn)™)\ (U (0™ nxnFnn)™) )
k,mel(j), k#m

o

-~

p-null

we obtain a collection, {X (j’,-)} of disjoint measurable sets such that

Jjeliel(s)’

(5 GV Y0) ™ N X)) = uf (10 Y™ N X5) Viel iel(j).
Now, for every i in I, Xy, 45 is finite, hence also the set I'(:) = {j € I'|i € I(j)} =
{jer| ,ug)‘) (¥;n YO)(Ff) N X;) > 0} is countable; moreover

s (4N \ (Usere X)) = 0 -

(In fact, if this were not the case, due to the properties of the family &', there would
exist a k € I’ such that ug") (Xk N (Y; ﬂYD)(?") \ (Ujep(i) X(j,i))) > 0; in particular
i) (v;n Yo)™) n Xk) >0, i.e. k€ I'(i). Then one would obtain the relation

0< U:(cii)(Xk N (Y; N Yy) ™ \ (Yjera X(j,z’))) < #gi)<(YiﬂY0)(Fi) N Xi \ X(k,z‘)>

that contradicts the property () of X ;.)
In conclusion, setting, for each i in I, S} = Ujers) X(j,5), we have a collection of disjoint
measurable sets such that S/ C (V; N Yp)™ and p?(S!) = p&(¥;). Finally, since

every S; belongs to the Xy, 7 u:(,;,")—completion of Byz, there always exists a Borel set S;

contained in S; and such that xy. (=) ;Lg;?)(S;) = Xy, pi(S;). So the proof of the
equation (4.7)(a) is completed.

Step 3. The commutative group T'(a,b) “associated” to the representation.

Let (#,7) be a representation of A,, satisfying the hypothesis ) of the theorem (i.e.
spectrally multiplicity-free, as a representation of the commutative sub-algebra A,) and
let U be a unitary map from H onto L2(T?, 1) (with g positive measure on the Borel o-
algebra of T?) such that, for every A4 in A,, Um(A)U™? is the operator of multiplication
by the Gelfand transform of A. In this step we shall see that one can then define, in a
“canonical” manner, a set {T'(a,b)}, ,jcy> of unitary operators in L2(T?, 1) such that

T(a,b)T(c,d) = T(a+ c,b+ d) for every (a,b),(c,d) in T>.



86 : CHAPTER V

Before introducing these operators we give a lemma that generalizes, in a sense, Proposition
Iv.3.2.

Notation. If f is a complex-valued Borel-measurable function on T2, M; denotes the
operator in L2(T?, u) of multiplication by f. Moreover, for every (a,b) in IR? f(ab)
denotes the translate of f (see Section IV.3) and W(a, b) the operator U «(W (a, b)) U*.

Lemma 4.13. Let f('a, B) be a complez-valued bounded Borel-measurable function on T2.
Thus, for every a,b in IR, one has:

W(a, b) Mf W(a,b)* = Mf(—a,—b) . (4.13)(a)

Proof. Since a complex-valued bounded Borel function can be written as a sum of two
real functions, it is sufficient to prove relation (4.13)(a) for a generic real-valued bounded
Borel function. The set Bgr(T?) of the real bounded Borel functions on T2 is the monotone
sequential closure of the family Cg (T?) of all real continuous functions on T2, i.e. Br(T?)
is the smallest class of functions on T? containing Cr(T?) and closed under sequential
monotone pointwise limits. So one can set up a correspondence between ordinals and a
class of subsets of Bgr(T?), each containing Cg (T?), such that

1) if ¥ > 0 corresponds to the subset Cg ', then Cr ' consists of all functions in Bg(T?)
which are the pointwise limit of a monotone sequence in Us <y Ré

2) Cr~ = Cr(T?).
(Compare Kadison [[2; pages 316-317]].) From the definition of Cg s it follows that, if

T’“ = Cr , then @ﬁ =Cg  forall ¥ > v and Cgr | must repeat before the cardinality

of v exceeds that of the subsets of Bg(T?). Moreover, due to the properties of By (T?),
we have Br(T?) = U, Cr .

According to Proposition IV.3.2, we have that every f in 51;0 satisfies relation (4.13)(a).
Assume now this property to hold also for every f in | J <y EE(S and let g € Cr "1 Then

. . — .. i .
there exists a monotone sequence { fn}ne]N in | 5<y Cr pointwise converging to g. This
implies that M is the weak limit of the sequence {My, },, p (see Section 1.3). Thus, for
every ¥ in L2(T?, i), we can write (by the Monotone Convergence Theorem)

(W(a,b) My W(a,b)"$,9) = lim (W(a,b) My, W(a,b)"¥,%) = lim ("D p, )

=lim | fm* " duy = / L9 duy
T

k] T2
= (9" Dy, p)
hence W(a,b) My W(a,b)* = M(-a,-». Then, by transfinite induction, we obtain that
relation (4.13)(a) holds for each f in Bgr(T?). ]

In Remark 1.1 we have seen that the Schrédinger representation satisfies hypothesis ) of the
theorem; in particular, we have found that, if (L?(IR, dz), ms.) denotes the representation
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a

of A, such that (rms(W(a,b))vs)(z) = e™i% 7% g (z + a), Yg € L2(RR,dz), then
there exists a unitary map Us. from L2(IR,dz) onto L2(T?, %da df) and, for each a,b in
IR, one has

(Use 7(W(a,0)) ¥se) (e, B) = €' (Ug 9ps)((o + a) mod1, B)
(Use Ts(W(0,0)) ¥a) (e, B) = e7*** (Us. ) (e, (B + b)mod 2)

H

(see relations (1.1)(b) and (c)). According to these results we introduce, returning to our
generic representation (#, ), the following relations:

(T(a,0)¥) (e, B) = gilatals (W(a,0) ¥)(a, B)
(T(0,b)¥) (e, B) = €*** (W(a,0)9)(c,B)

for a,b in R and % in L?(T?, ). They define a family of operators in L2(T?, ) that
verifies the following properties.

—) For each a,b in IR, T(a,0) and T(0,b) are unitary.

In fact T(a,0)* T(a,0)t = W(a,0)* etlatalf e=ilatalf W(q 0)9) = ¢, for each 7 in
L2(T?, 1), and similarly for T(0, b). '

—) For every n,m in Z, T(n,0) = T(0,27m) = Ig2(y2 ).

In fact, for every ¢ in L2(T?, 1), T(n, 0)y = e~ * @78 Wi(n, 0)yp = e=*"F " ¢) = 4 and
T(O, I m)d) — ei 27 na W(O, 2 m)¢ — ei 2T ma 6—12271' mao d) — ’L/J

—) For every ay,as in R, T'(a1,0) T(az2,0) = T(a1 + asz, 0).

To prove this property note firstly that, by Lemma 4.13, we can write, for each 1,

(4.14)(a)

T(a1,0) T(az,0) 1 = e letalB Wia,,0) e tl@te218 Wia,, 0) ¢
— e—i[a—i—al]ﬁ e—i [(e+a1) mod 1+az]B W(a1 + a270) ’lﬁ .

Hence, since [(a+ a1) mod1+as] = (@ +a;)mod1+az — ((+a1)mod1+az)modl and
((a¢+ a1)mod1 + az)mod1 = (a + a; + az)mod 1, we have:

T(a]_, 0) T(az, O) v = e—iﬁ{[a+a1]+(a+a1)mod 14+as—((a+a1)mod 14a2)mod 1} W(al + as, 0) ")
_ e—iﬁ{a+a1+ag—(ag+a+a1)mod 1} W((Z1 + ao, 0) w

= gtlotartalB Wig, 4 g, 0)) 9 = T(ar + 2,009 .

—) For all b1, be in IR, T(0,b1) T(0,b2) = T(0, by + b2).
As in the previous point, we write

T(0,by) T(0,b2) 9 = €21 W(0,b;) e*%2® W(0,b2) 9 .

Since €*?2¢ is B-independent, W(0, b;) €*%2* W(0,b1) ¢ = *%2® and the property immedi-
ately follows.
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~) For every a,b in R, T'(a,0) T(0,b) = T(0,b) T(a, 0).
In fact:

T(@,0) T(0,8) ¥ = e~ W(a,0) &** W(0,0)

—ila+alf giblata)modl vy g () W(0,8) ¥
—z[a+a]ﬁ g=itletal giblata) g=iab (0 b) W(a, 0) 1)
g~ilatal (B+b)mod2m giba Yy 1) W(a, 0) 4

— e'I. ba W(O’ b) e"z [a+a B8 W(a7 O) fe=r T(O, b) T(ag O) dj -

These points allow to conclude that the family of operators
(4.14)(b) {T(a, b) © T(a,0) T(0,5) | (a,b) € R/Z x IR/ZWZZ}

gives a unitary representation of the additive group T2 = R/Z x R/27Z.

Note. One can immediately verify that, in the case of the Schrédinger representation.
operators T'(a, b) act as “pure translators” on L2(T?, =dadf), i

' 21

(7ol UYg, me (W (a,0)) Uz, UsPse) (e, B) = (Use ¥se) (@ + a) mod 1, B)
(67 Use mse(W(0,0)) Us, Usethse) (@, ) = (Use ) (@, (8 + b)mod 2r)

In the following steps we shall see that, if (#, ) also satisfies the “measurability” condi-
tion 41), then there always exists a suitable choice i for the measure on T? and for the
unitary map U : H — L2(T?,71), with respect to which the operators T'(a,b) act, as in
the Schrodinger case, like “pure translators”; namely, & and U are such that, for every
¥ € L2(T?, 1i), one has

(4.15)(a) (e7tletalf 74 w(W(a,0)) U* ¥ ) (e, B) = %((e + a) mod 1, )

(4.15)(b) (ef* U n(W(0,b) U ¥ )(a, B) = 9(a, (B + b) mod 2r)

These relations obviously imply the desired property for the Weyl operators of the repre-
sentation.

Step 4. Operators T (@) and jointly measurable functions on T2 x T2

Throughout this step: (#,7) denotes a representation of A, that satisfies hypotheses
i) and %) of the theorem, I/ is a unitary map from H onto L2(T?, 1) (according to the
. 1 ltinlicity. . . ) .
pectrally multiplicity-free construction) and u = 3 J;c; Xs; Hzo = ) ;c; Mi iS & measure



CHARACTERIZATION THEOREM FOR NON-REGULAR REPRESENTATIONS ... 89

of the form (4.7)(a). Moreover {T(a@)}zc2 is the commutative group associated to 7 by
relations (4.14)(a) and (b). )
In this step we shall prove that there exists a function f : T>x T? — C which is measurable

with respect to the o-algebra ) B2 @ By and such that, for every @ in T2,

7':.761 P’i@l"’j

(T@94)(@ = f(@ @) d(@+a) v y(a@) € L(T%, p)

Note. The o-algebra (), ;; B2 ® B2 pi®u; is defined according to the notation intro-
duced in the previous steps, i.e. B2 is the Borel o-algebra of T2, B2 @ B2 the product
o-algebra and By: ® B2 the completion of By2 @ By2 with respect to the product
measure p; @ [t;.

pi®pj

A preliminary property for our discussion is the strong measurability of the group T'(a)

Proposition 4.16. The operator-valued function T> 3@ — T(a@) € L(LZ(TQ,,U) is
strongly measurable with respect to every positive spectral measure p, (z € H).

Proof. By definition of operators T'(@), to prove their strong measurability (w.r.t. a spectral
measure f;) it is sufficient to verify that, if T2 3@ — U(a,a@) € L2(T? p) is a pg-
measurable vector-valued function and g(@, @) is a bounded complex-valued Borel function
on T? x T?, then the vector-valued function T?> 3@ — g(@,a) ¥(g, @) € L2(T?,p) is
still p.-measurable. To this aim observed that, since ¥(a@, @) is p,-measurable, there
exists a sequence, {s,(a) = Zjoil XY;. (@) ¢j’”}new (with ¥;, C T2 Borel set and 9 ,
fixed vectors in L2(T?, 1)), of countably-valued p.-measurable functions converging pig-
a.e. to ¥(a,-). Now, for every n,j in IN, ¢(@,-) xy; (@) ¥;n € [C(Tz)zpj,n} vz € T2,
ie. t};e vector function g(@,-) xy;, . (@) ¥;n is separably-valued; moreover, for each ¢(@) in
L2(T%, p),

(608, X7, (2) ¥30@)  9(@) = | 0@8) 15, (@) iy 10(6)

= 206 (@) [ 9@8) 1(8) Aty ot 12,)(3)

where b € LY(T?, py, + p,) (in fact [i(;.n) 18 & complex Borel measure which is ab-
solutely continuous with respect to iy .+ f, (see Proposition II.1.1)). Hence, by Fubini
Theorem, the complex function @ — (9(@, @) xv;,. (@) ¥;n(@) , ©(@)) is Borel measurable.
Then we can conclude that the vector-valued functions @ — ¢(a,-) xy; . (@) %;» and
@ — 9(@,") 22521 X¥;..(@) ¥jn = 9(@, ) 5n(@) are py-measurable. Finally

lim [l9(a, ) 5x(@) ~ 9(a,) ¥(@, )| = lim /T 19(@,3) 5n(a) - (3, 2)* du(@)

< supgzlg(@,@)® lim | |s,(@) — ¥(g,@)? du(a) =0
k13 T'_)
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pz(@)-a.e., ie. g(a,-)¥(z,-) is the limit p,(@)-a.e. of a sequence of vector-valued mea-
surable functions; this implies (@, -) ¥(a, -) to be p,-measurable too (see Hille Phiilips [1;
Th. 3.5.4)). 0

We shall use also the following result.

Theorem. (Dunford Schwartz [1; Th. II1.11.17]). Let (Q1,%1, 1) and (Q2, 0, u2) be
measurable spaces which are both positive and o-finite and let () x Q2,31 ® Lo, p1 ® p2)
be their product. Let F : Q1 — L2(Qy, X, 12) be a py-integrable vector-valued function.(10)
‘Then there is a 1 ® Yo-measurable function f : 21 x Qy — C, which is uniquely defined
except for a set of 1 ® pup-measure zero, and such that f(wi,-) = F(w;) pi(wi)-almost
everywhere.

Let us begin now our proof.

—) Firstly consider a fixed set {i, 5, k} of three indices in I and define the vector-valued
function F: T? — L2(T?, Xs; ) such that

T°3a — F(@) = xs, T(@)xs, € L2(T% xs, 1) -

Due to the properties of T(a@), F(@) turns out to be y;(a@)-measurable; moreover, since the
operators T'(@) are unitary , F'(a) is also u;(@)-integrable. So, according to the quoted
theorem, there exists a function f: T> x T2 — C, B2 ®By2-measurable, uniquely defined
except for a p; ®p;-null set, such that f(a,-) = F(a) p;(@)-almost everywhere. On the
other hand, calling N; the set of points @ of T2 for which f(a@, ') # F(a), we can consider

the new function
f(a,a), ifag N;

xs;(@) (T(a)xs,)(@), ifaeN;

where (T'(@)xs, )(@) is a fixed function in the equivalence class of T'(@)xs,. Then ]7(5, Q)
is By2 @ Byz g, Measurable (in fact, for every Borel subset Y of C, one has

) =)@ x TH) U (FHY) N x T

. /7 ~ -y

g i XT?2 S BT_’Z ®BT2

and N; x T? is a p1;® y;-null element of By2 ® Byz). Moreover f(zz, -y = F(a), for every @
in T2
—) Denote now f(@,a) = £ (a,@) and define
fE(@, @), if (@,a)e S;xS;, i,jel
fPaw =
(T(@)xs,)(@), otherwise

(19) A p-measurable vector-valued function F is u-integrable iff Jo IF W) dp(w) < +oc.
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Note. Sets of the family {S; x S;}, jer are mutually disjoint.

One can check that f*)(a,a) is ), ;¢; By> ® Bye

Borel subset Y of € and for every pair 4,7 in I,
)7 @) = (U)W nsix8)) U ()7 1) n(six 5)°)
= ()T nsixs)) v ()70 0 (Six5)°)

~ v - S/
T v

€ BTQ ®BT2 € BTZ ®BT2

B ~-measurable; in fact, for every

-1

bi®p; Bi@uj

Moreover f*)(g, ) = T(@)xs, Va e I (i.e., for every @ in I, the function () (g, @) is an
element of the equivalence class of T(@)xs, € L2(T?, p)).

[In fact, if @ & Ujer Si, then f*)(a,@) = (T(@)xs, ) (@) by definition. If @ € S;, then, for
each 7 in I, we have

s; T(@) xs, = f5@,2) = xs,(@) xs,(@) L@ a) = xs,(@) fF@a) .
Therefore

IT(@) xs, — FP (@ )IP=)_ / xs; (@) (T(@) xs,) (@) — xs, (@) ¥ (@ @) dp;(@)=0 ]
jer YT?

From the commutation relations of Weyl operators it follows that (U n(W (@)) U*xs, ) (@) =
xs, @+ a) (U (W (@) U*xs, ) (&) (see proof of Proposition 4.5); hence, since T(@) =
e! ) Um(W (@) U*, we also have (T'(a)xs, ) (@) = f*¥)(a,@) = xs, (@+a) (T(@)xs, ) (@) =
xs,(@+a) f*)(a,@) Vae T?. In other terms, each function f*) (g, @) can be considered
such that f*)(a,@) = 0if (7,@) ¢ {(@,@) € T*xT?| xs,(@+7) = 1}.

—) Finally let

{f(k)(a,a), if (@, @) €Sy, kel
(@a) =
0

, otherwise

Note that each set 3y is contained in Byz ® By2 (see proof of Proposition 4.5). Moreover,
since the family {Sg}.; is mutually disjoint, also the sets {Sy} xer are mutually disjoint.
We want to prove that f(a,@) is (), jo; B2 ® By uiop;-measurable. Let ¥ be a Borel
subset of C and ¢, j a pairin I. Since f~1(Y) = (f‘l(Y)ﬂ(S xS U (F71()N(Si x 55)°)
and (f~1(Y) N (S; x S;)°) € Byz ® By2 ., it Temains to consider f~*(Y) N (S; x ;).
Defining I' = {k € I'| (1 ® 115)(S%) > 0}, one has that I’ must be a countable set (in fact
i ® pj is a finite measure and sets Sy are mutually disjoint). Then, if 0 € Y, we can write

P nExs) = J(ED) @) ns) ) 8ixS) =

:[kUI,((f(kn)) (¥) N S, ) ((8: %5 )] U [}g( (F®)7) n s ((5: % 85)] -
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The set A is a countable union of measurable sets, hence it is measurable. With regard
to B, it is contained in (Ug,er %kn)c N (S; x 8;); but this set belongs to By2 ® B2 and
(5 ® p3) ((Ukper Si,)" N (Si x S5)) =0.

[In fact (s ® ;) ((Uk,er Skn)cﬂ (S;xS;)) > 0 implies, according to Proposition 4.5, that
there exists an Sy, such that (u; ® ,uj)((ukﬂep i‘skn)c N %ko) > 0; hence, in particular,
(Ukner S&)°N Sk, # O ie. ko & I', but, in this case, one has (u; ® £5)(Sky) = 0.]

Therefore B € By2 ® By . Finally, if 0 € Y, we have

Li®uj

f—l(Y)ﬂ(S;_ X SJ) = AU B U ((UkeI %k)cﬂ (Sz X SJ))

- e
-~

c
C (UknE!’ %kn> N (5ixS5;)

hence, also in this case, f~H(Y) N (S; x S;) is Byz ® By pi@p, -measurable.

Summarizing, f(a, @) is a (i jer Bre ® Bye -measurable function and, for every & in

. Hi®pj
I and every @ in T, one has

(T(E)ng)(a) = XS (&——%— E) f(k) (aa a) = XS (Zi, 5.’) f(k) (57 EY) = XS (Ef—l— E) f(av @—)
—) In the last point of this proof we show that (T'(a)y)(a) = f(a, @) ¢¥(a + @) for every ¢
in L2(T? p). Let k € T and A € A, ; then, by definition of T(a) and according to Lemma

4.13, we can write

T'(a) A\XS;C =T

E/I
Py
~
o

)* T(@)xs, = ) W@ 4 W@)* e ) T(a)xs,
a+a) (T(@)xs,)(@ = A(@+73) xs,(@+a) f(a, )
= f@a) (Axs,)(@+7) .

Moreover, if 1y, is an arbitrary element of [C(T?) xs,] = U [r(A,)zx] and {A,xs,} (A, €
C(T?)) is a sequence converging to 1, we have

@ +a) xs,@+3) - vn(@+ o) 1/(@ 3)* du(a)

Au@+7) xs,@+3) —(@+a)|" 1@ a) xs,@+a) du@)

2

)

n(@+3) x5, (@+73) — Y@ +3)|” dur@ys, @

2

I

NAn@+3) xs,(@+0) - @ +3)] dus (@)

n—o0

An(@) x5,(@) — 4 @] dpn(@ —— 0

2
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Hence (T'(@)yx) (@) = lim, T(a) Anxs. = f(@ @) ¥x(@+a). Finally, since an arbitrary 1
in L2(T?, 1) can be written as (@) = Yoo 1Yk, (@), with ¢, € [C(Tz)xgkn] (kn € 1),
we have (T(@)i) (@) = Y0, (T(@)w, ) (@) = Yo, £(@, ) b, (6-+3) = 1(@.3) d(@-+a).
We conclude this step pointing out other properties of f(@,@) (Corollary 4.18) that will
be used in the sequel.

Proposition 4.17. For every @ in T2, the measure p and its translation, p®, are equiv-
alent, i.e., for each Borel subset Y of T2, u(Y) =0 if and only if p®(¥) = 0.0

Proof. By definition p = ). ; xs; ug") = D ier Mz » With z; = 7(W(-7;)) Psg_;,»)xg,

and the set {z;};.; is such that H = @.¢s[n(A,)z;] (see Proposition 4.8). Let @ be a fixed
point in T?; then, due to the properties of the Weyl elements (see Proposition IV.3.1), one
also has that H = @zer[n(A,) (W (-a))z;].

(In fact, for every A in A,,

(r(A) 7 (W (=@, w(W (~3)a5) = (x (W(-2)" AW (~a))i,35) =0,

EA

so [m(A,)m(W(—a))z;] L [r(A,)w(W(-a))z;] Vi # j. Moreover, for every y in
H and € > 0, there is a sum Zfil Aj w(Aj)zi, A;j € A, , such that HW(W(E))y -
Zfil Aj W(Aj)a:jI]2 < €; so we also have the relation

<e ]

E ZA ~(W (<)) 4; W(@)) =(W (~a))a,

€A,

Since (#, 7) is spectrally multiplicity-free, due to Proposition I11.1.2, we know that measure
Sier ey (<me, = Sir i) = p® is such that L(T?, @) = % = L2(T?, ). This
allows to conclude that there exists a unitary map, V, from L?(T?, 1) onto L3(T?, p(®)
such that V A(@) V* = A@) VA e C(T?). Suppose, to reach a contradiction, that
there is a Borel set ¥ C T2 such that x(Y) = 0 and p®(Y) > 0. Then there exists
an ¢ in I for which pir(w(—a))z,(Y) = frw(—a)z: (¥ N Si(a)) > 0. On the other hand
Kr(W (~3))z; 1S & Tegular Borel measure, hence there is a compact K C ¥ N S’i(a) with
fh(w (—a))z: (K) = p@(K) = ¢ > 0 (and p(K) = 0). So xx is a non-null vector in
L2(T?, u®). Let ¢ = V*xx € L2(T?, ). Since py(K) = (9| 1)(K) = 0, due to the
regularity of p, there is an open G containing K and such that p,,l,(G) < ¢/2. Now, by
Urysohn Lemma, we know that there exists A € C(T?) such that: 0 < A < 1 ,Af@) =1,

ifae K and A(@) =0, ifa ¥ ¢ G. Therefore we can write: (Axx ,xx) = ,u(a)(K) =c=
(AVV*xk,VV*xk) = (V* AV, ) = (Ay,9) < oy (G) < ¢/2 which is a contradiction.
Analogously one proves that x(®)(Y) = 0 implies p(Y) = 0. O

(11)  Gee Section IV.3 for the definition of translafed measure.
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Corollary 4.18. For every @ in T2, one has that:
a) @ — f(@, @) is a Byz -measurable function
b) Sets {@e T? | If@ )| = +o0} and {@ e T? | f(@ &) =0} are p-null.

Proof. a) Let @ be a fixed point in T2. Since Bye" = \ier BT- . (see Proposition 4.10), t
verify that f(@,-) is BT- —measurable it is sufficient to show that for every Borel subset

Y of € and every j in I, (f(@,)) (Y) N S, € Bz, . On the other hand, due to
Proposition 4.17, for each j in I there exists a countable subset I (7) of I such that S; =

Ubner) (S50 8{Y) U N (where S&) = {B|B=a+a, @e S} and p(IV) =0.)

[In fact, setting I(j) = {k € I|,u(.5’j N S,(ca)) > 0}, one has that I(j) is countable, since
p(S;) < +oo. Moreover u(® (Sj \ Uk, ez0) S}(j))) eer M (.S’ \ (U, EI(])S ))
Zk@(j) /L,(SE)(S]-) = 0; hence, due to Proposition 4.17, also p(S; \ (Uk,er(s) S )) =0.]

Thus (£(a,-)) " (Y) N S; € Brs L i (F@) () ns;ns®e Byz, for each k in I.
Now, according to the previous construction, we can write

(F@)) M NS nSP = (f9@ ) (v)n s n @

(fh@ ) "M ns;ns®, ifaes

ij
(T@)xs,)  (Y)NS; n 8@, ifags, Viel

hence (f(a, -))hl(Y) NnS; NS™ e Bpe.

b) Let E = {@ € T? t |f(@,@)| = +oo} and suppose that there is an index i in I such
that pgz, (E) > 0. Then one can always consider a Borel set Y of E with ; (Y) > 0
and, due to Proposition 4.17, p((Y N S,)®) = u(-2) (Y NS;) > 0 (since p(¥Y nS;) >
pz; (Y) > 0). So, according to the finite subset property of p, there exists a Borel set
F included in (Y N S;)® with 0 < 1(F) < co. Then xr(@) turns out to be a non-null
element of L2(T?, 1) such that (T@)xr)@) = f@ &) xr@+a) = £(@a) xpn (@). On
the other hand F(=® C ¥NS; C E, so the previous relation would imply IT(@)xF|| = +o0
contradicting the fact that T'(@) is unitary. Similarly one proves that also {a | f(@,a) = O}
is p-null. 0

Step 5. Factorization of f(a,q).

Let (#, ) be a representation of 4, which satisfies hypotheses i) and ) of the
theorem and pu = },.; xs; pi) = ZzGI pa; (with z; = 7(W(-7;)) Py-=)zo) be a
measure of the form (4.7)(a); furthermore let I{ be a ﬁnitary map from H O];to L2(T?, )

such that Un(A) U* = A VA€ A, . We have seen in the previous step that {T'(@)};c 2,
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the commutative group of operators in L2(T?, 1) defined by relations (4.14)(a) and (b), is
such that

(T(@)y)(@) = f(a@,a) y(@+a) V(@) € L*(T?, 1) and Vae T2

f(a@,@) being a suitable complex function on T2 x T2, measurable with respect to the o-
algebra (; ;o5 By2 ® Byz , 6 u;+ I this step we shall show that_f)f_i can deﬁne_zi— complex
function, £(@), on T?, measurable with respect to the o-algebra Byz = (), oy Br ., such
that |£(@)| € (0,+00) p(@)-a.e. and, for each @ in T2,

{(@a+a) _

(4.19)(a) f(@,a) = @ p(@)-ae. .

To obtain this result we shall consider a number of functions, on the product spaces T2xT?
and T? x T? x T2, which will be defined by using suitable homeomorphisms.

—) We begin fixing notations and proving some properties concerning o-algebras and mea-
sures on product spaces. In step 2 we pomted out how the measure y = Eze 1 M, originally
defined on the Borel o-algebra of T2, By2, can be extended to Byz = = Nyen Br2 py =

(MNier Br vz, Dy considering the sum Ezel 1i; (compare Proposition 4.10).

Note. We write here y; instead of p,, and we denote 7z; the completion of p;.

The same procedure can be applied to the cases of the product topological spaces T2xT?
and T2 x T2 x T?; more precisely, consider measures 2 i ser bi®pg and 3o, oy r 1i®ui®uy,
defined on the product o-algebras Bz ® By2 and Btz @ B2 ® By2 respectively.(1?) Extend
now -, ser Bi®uj to [\ ;er Bye ®BT2}H®#3’ by defining

pe = Ri®p;
i,7€l

and, similarly, extend 37, ; pcr i®pi®pui t0 (; ; per Bre ®Br2 @By setting

LiQu; Quk

Z Hi @ Q Lk
i.J,k€l

Remark 4.20. Note that Bz ® By2 and By: ® By: ® Bye coincide with the Borel
o-algebras of T2 x T2 and T2 x T2 x T? respectively (see Remark 4.4). Moreover, if

(12) 1f (Q4, %5, i), © = 1,2, 3, are positive and o-finite measure spaces, then the product
o-algebras, (£; ®%;) ® X3 and 31 ® (52 ®T3), and the product measures, (1 ® p2) ® pia
and p; ® (g2 ® ps), are the same (see Rao [1; Ex. 10 pg. 324] or Folland [1; Sect. 2.5)).
So the product of the three measure spaces can be defined unambiguously by setting:
2105053 =(5:95:)®¥3 =1 ® (22 ®23) and pq @ pi2 ® piz = (11 ® p2) ® ps =
p1® (Mz by /is)-
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E € erBr ®By2 .5, and we define F = {(a,@) € T® x T?|(&,a) € E}, then also
F E ﬂl,]EI BT2 ®BT2,U~,®[LJ' *

[In fact this property holds if £ = A x B with A, B € By2, since, in such a case, F =
B x A; then it holds for each open of T2 x T2 and, by transfinite induction, for each

Borel set in T2 x T2. Finally, if E is an arbitrary element of (), jer Br2®Brz, o u, and

F = {(a,a)]| (&, a) € E}, then, for every pair (i, 5) of indices in I , one can consider two
Borel sets Y7, Y5 such that ¥; C EN (S5 x S;) €Y, C S xS, a,nd (1j®p:)(Y2\Y1) = 0.
So, taking Y, = {@2)|(@a) € 1} and Y5 = = {(3,@) | (a @) € Y3}, we have relations:
Y1 S FN(8x8;) CY2 C SixS; and (.“1.®/‘J)(Y2\Y1 = [dpi(@) [ dp; (@) x5\ 5 (@ @) =
Jdni(@) [ dp; (@) x5 (@ @) = [dw(@) [ dp; (@) xvawn (@@) = (10 m)(¥2\Yh) = 0;
hence F € [, ;c; mu'®“1 ]

This means that, if H(a@,@) is a pp-measurable function and we define, V (z, @) € T2 x T2,
H(a, @) = H(@,a), then H is up-measurable too.

Let 9 denote the homeomorphism of T2 x T? such that

T’xT?2 (@a) — J¥(@a)=(a+aa cT>xT?
With regard to 9 we stress the following properties.
Lemma 4.21. For every pair i,j in I, the set 9(S;x S;) is puy-o-finite.

Proof. We note firstly that ¥(S;xS;) € By2®By2, being the ¥-image of the Borel set SixS;.
According to the definition of 2 and using the properties of our representation, we have

p2 (9(S;x 5;)) = Z /_duj a)/ dps (@) Xo(sixs;) (@, @)

i, '€l

- Z / dluj'(a)/ d/"'i'(a) (XSiXSjoﬂ—l)(aﬁa)
i jer TP T?

= Z dp; (@) _dpar (@) Xxsixs, (@~ @, @)

el T2 T2
':E / dp; a)/ Xsixs; (@, @) d/‘(_ (@)
i'el
=>" / dps; a)/ X5:x8; (@, @) dpir(w (@))a, (@)
el

—E / dp; a)/ Xs:xs,; (@, @) l Uﬂ’ ):Ez a)l du(a)

L vel
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=2 /Tzd”i(a) /Tzf(U7T(VV(67))U"‘XS,,,)(a)l2 dp; (@)

i'el
= (@ L(@@+a) |f(@,a)? dula
,.,ze;/ﬂd’”( ) [ xs.@+a) (@) duia)
=3 [ [ eam @D wne

(In the last expression we have exchanged names of variables.) Since sets {Sy},c; are
mutually disjoint (see step 4) and measure p;®p; is finite, then (p;®u;:)(Sy) > 0 only for
a countable set of indices 7' in I. So we write

+co
w@Sx5) = 3 [ xe @) @@ duew)@s)

n=1

and, setting Enm = {(@,@) | |xg,(a,@) f(@a)|? € (m,m+ 1] }, we obtain a countable
disjoint family of us-measurable sets such that

+oo +oo

w@Exs) =3 3 [ xe @) 1fEDE dwew)@a)

n=1 m=1 v

< +oo

(Note. The set M = {(a,@)| |f(a, @) =0 or +oo} is pp-null. In fact we can write
p2 (M) = 37 (mi®ui) (M) = 3, (i ®p;)(Mo), My being a suitable Borel set, (i, j)-
dependent, such that My C M. Then py(M) = Z” Jdui(a) [dp;(a) xm,(a, @) = 0,
since, due to Corollary 4.18, [dp;(@) xum, (@, @) < [du; (@) xm(@ @) =0 for every @ in
T2)

Moreover, since all sets E,, ,, belong to the p;®u;-completion of By2®Byz, for every Epnm
there is a Borel set Y}, o, such that Y, , C Ey, 5 and (2 Q1) (Frm\Ynm) = 0. So, if we
define X, ., = {(,@) | (&, @) € Ya,m}, we obtain a family of disjoint Borel sets of T? x T2
such that

M2 (ﬁ(SiXSj) N 19(Xn,m)) = iy (ﬁ(SiXSj n Xn,m))
=2 / dp;(@) / XXom(@T) x5,(@+3) | F@a)? dw @)

i'el T

=5 [ 455@ [ xx,n@) xs,03+3) 1F(@BP aui)
ier JT? T

=3 [, 00,68 x,@®) U@ dwew) @)
ier YTXT?

:/ X%in(aaa—) lf(ﬁ,b?)lz d(/"'.’f®”i)(aaa) < +0

n,m
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and po (Un,m(ﬁ(s X S) N 19(‘Xn m))) = Zn m fY X\r,n(_d a) [f(a a—)|2 (/Jj ®ui) =
Yonm e, xs.,.@a) |f@ @) d(pj®m) = p2 (19(5’ x.S;)); this proves 9(S; x S;) to be
po-o-finite. O]

Lemma 4.22. For each Borel subset Y of T2 x T2, one has p2(Y) =0 iff ua(9(Y)) = 0.

Proof. Let Y C T2 x T2 be a Borel set. Then, for every pair ¢, in I, one has

(@) (00) = | @) [ (@ xoen (@)

T

(@) | (@ (o 007 (a3)

T

dpj(@) [ dpi(@) xv(@-a,a)
T2 T2

= [ du;(@ | dp(a) xv(@,a) dp{ ™™ (@)
T? T

= [ @ | w@a) |@sv@)e)@f @
= [w@ | X [ xr@® s @e) @ an@

kel

Since m(W(@))z; is a vector-valued p;(@)-measurable function, there exists a measurable
subset X of T? such that pj(T?\X) = 0 and {x(W(a))z;:|@ € X} is separable; then
the set of indices {k € I | Jr2lU (W (@))z:)(@)|* dux(@) > 0 for some @ € X} must be
countable. Hence we can write, using the Monotone Convergence Theorem,

(0 m)(00) = [as@ | 2 [ xr@m [@r @)@ am, @

= Z /dﬂj(a) /I_ZXY(E,E) |(L{7F(W(E))$i)(a")l2 dus, (@)
(4.22)(a) =y /dyj [r:’XY(U:,E) (U (W (@)2:) @) du(@)

kel

=2 / |(Ur(W(@)z:) @)|° xv(@a) duwen,) (@ a)
kel YT2xT?

Now, if .u2(Y) = 0, szxTz xy (@, @) d(”k®#j)(aaa) = (ﬂk®/~l’j)(y) =0 Vkjel; so
relations (4.22)(a) imply 13(9(¥)) = 3, o BBE (OF)) = Ys sop 1@y (9(Y)) = 0.
Conversely, if p2(Y’) > 0, then there is a pair of indices, ig , jo, for which (us,®pj,)(Y) > 0
and, by Proposition 4.5, there also exists a kg in I such that (p;, ®5,)(Y N Sk,) > 0. On
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the other hand relations (4.22)(a) show that, for every pair 7,7 in I, (u; ® p;)(9(Y)) =
Yoker Jroxr2 1F(@ @) xs{@, @) xv (@, @) d(ux®p;)(@,@). Then one can write

p2(9(Y)) 2 (ko ® 1) (B(Y)) => / 1f(@a) xs,,(@@) xv(@a) d(ux®pu;,) (@, a)
ker YT2xT?

2 /2 lf(a_,f],—)]z ngo(a’a) XY(a7a) d(iu'io®:u‘jo)(ava) > 0.
TZxT? ~ d

~

non-null measure

(Note. Since |f(a,@)|€(0,+c0) pa(a, @)-a.e., then also |f(@,a@)| € (0, +o0) pa(@, @)-a.e.;
in fact, if N = {(a,@) | f(a,&) =0 or |f(&,@)| = +o0} and M = {(g,a) | (@,@) € N}, then
pi®upi(M) = p;®p;(N)=0 Vi,jel)

So we have found that p2(Y) > 0 implies p2(9(Y)) > 0 and the proof is completed. [

Corollary 4.23. For every pair,j in I, the set 97(S; x S;) is pg-o-finite.

Proof. Suppose the Borel set 971(S; x S;) not to be ps-o-finite. Then there exists a non-
countable set J of pairs (¢’ j') for which py((Syr x Sj» N 97(S; x S;)) > 0. So, due to
the Lemma 4.22, ,LL2(19( (Sil X Sj/ N ’1.9—1(5,; X SJ) )) = ,LLQ(’&(SZ'/ X Sj/) n.Ss; x S]) > 0 for
all (¢/,5') € J. But this contradicts the fact that p2(S; x S;) < co. O

Let tz be the homeomorphism of T? x T2 defined by
T’xT’5 (@,a) — t(@a) = (@+ca) T xT?

€ being a fixed point of T2. We shall see that ¢z verifies the same properties of 1.

Lemma 4.24. For every pairi,j in I, the set tz(S; X S;) is po-o-finite.

Proof. By definition, t.(S; x S;) = S{¥x S}, where S{% = {@' € T?|@ =a+¢ with g€ S;}.
Let I' = {i’ € Ilu(Si(a N Si) > 0}; then, due to Proposition 4.17, for every ¢’ in I’,
0< u(z)(Si(a NSy ) = u(SiﬂSi(,_a) = ui(.S'i(,_E)) ; hence, since p; is a finite measure, I’ must
be countable. So po(te(S; % S;)) = Zi’,j’eI(”i'®l"‘j')(Si(E) X S5) = er uir(Si(E)) 1 (S;) =
2o (pi, ®p13) (8(Si x S5)). O

Lemma 4.25. For each Borel subset Y of T? x T?, we have that p2(Y) = 0 implies
pa(tz(Y)) =0.

Proof. Let Y be a Borel set such that p3(Y) = 0. Then, for every pair 4,7 in I, one has
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(compare proof of Lemma 4.22),
(50 1) (1)) = [ i@ [ dw(@) xi (3.3
T2 T2

= [ @ | S [ @) @@ @ (@ |

kel

I
T

o,

5

3
8
T

3 (@3) | UV @)e) @) dys, (a)]

-

null measure

|

Finally we want to point out that analogous properties hold for the following homeomor-
phisms of T? x T2 x T o0, given by

and 7, defined by
T’xT’xT? 3 (b,a,a) — 71(b,8,a) = (@+5,5,7 cT2xT2x T2

Lemma 4.26. For every set (i, ], k) of three indices in I, (S, x 8% Sk) s uz-o-finite.

Proof. Using the same procedure of the Lemma 4.21, we write

p3(0(Six Sjx Sy)) = Z /d#i'@) dﬂj’(a)/ dpgr (@) Xsix8,x5, (b:@ — b, @)
i, kel T? T2 T2

= (50 Y [ dm(® | 415 @ x5, (.-

j'el

- /lk(Sk) Z ,/ng‘u'i(g)/rzxsixsj (_1 5) d:ugfv—l;)(a)

j'el

=) Y [ @) [ |r W @rey)@f ani@

J'el

=l(5) Y [ xa, 6,0 56,2 dpmer)6.a)
jel T2x712
+o0 +oo 3 B _
=5 Y Y [ 0,60 6P dmon)6,3)

n=1 m=1 N

-~

< +co
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Then, if Yy ;m € B2 ®By2, Yom € Enm and (1@ p5)(Enm\Yn,m) = 0, one has that
{0(SixS;xSk) N o (Ynm X Sk)}n men 1S @ countable family of p3-finite Borel sets with

U3 (Un’m (Q (SiXSj XSk-) No (Yn)m X Sk))) = Mg(g (SiXSj XSk)). O

Lemma 4.27. For every Borel subset Y of T2 x T? x T2, we have that p3(Y) =0 iff
ps(e(Y)) = 0.

Proof. Let Y € T? x T? x T2 be a Borel set. Then, for every set i, j, k of three indices in
I, one has

(L:®@p;@ur) (0 (Y)) = /T dus (b) /T Adu;(@) /T duk(@) xv(b,a—b,@)

(@27 - [aw® |3 [ 260 [rtv @)@ au, (a)}

If u3(Y) = 0, then, for every (7, p, k),

/T v (5,8,8) d(s®uy@ ) (b,3,3) =

2><T2 XT2

) [ dp(@ | (@) x0r (B3.3)

so relations (4.27)(a) imply ps(e(Y)) = Dk (hi®p;®uk)(e(Y)) = 0. Conversely, if
p3(Y) > 0, there exist 4, jo, ko in I such that (/140@“_70 ®tr,)(Y) > 0 and, due to relations
(4.27)(a), we can also write

(oo, (0() =% [ |UrW @)@ %60 dmen)Ga)  Vijel
pel T°xT )

with 24(b,@) = f . dig, (@) xv(b,a@,@). Now, setting Yo = {(b,@)|20(h,@) > 0}, one
has (pi, ®,u30)(Yo) > 0 and, due to Proposition 4.5, there is an index pg in I such that
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(Bio ® 155 ) (Yo N Spy) > 0. In conclusion

/'1’3(Q (Y)) = (:u’i0®iupo®/iko)( (Y))
=3 [, MO x0,6,0) %(B.3) (s @),

pel YT2xT?

> / £, 0) xa,,(5,3) 20(5,3) d(us, ®113,) (5,3) > 0
T2xT12 ~ o

non-null measure

O

Corollary 4.28. For every set (i, 7, k) of three indices in I, 07 (S xS;xS%) is pa-o-finite.
Proof. See proof of Corollary 4.23. U

Proofs of the properties, 7 (SixS;xSk) and n~1(S;xS;xSk) ps-o-finite and us (7) (Y)) =
if and only if p3(Y’) = 0, are analogous to the previous ones and we drop them.

—) Let us return to the function f (@,@). From the group property of operators 7'(a@) it
follows that(!® for every @,b in T2

(4.29)(a) f(@+b,@) = f(b,a+a) f(a,a) p(@)-a.e. .

To prove relation (4.29)(a) consider the set E = {a| f(@+ b,@) — f(b,a+3a) f(a@, @) # 0}
and suppose p(E) > 0. Due to Proposition 4.17, also p(E(@*b)) > 0, hence there is a Borel
set Y included in E(@+®) with 0 < u(Y) < +oo. Then we have that xy (@) € L2(T?, x)
and, using the group property of T(a@)’s,

~—

(T@+b)xy)(@ = fl@a+b,a xv(@+a+ T+b5,3) Xy-an (@
= (T(a) ( ) fb,@+a) xy(@+a+b)
= f(@a) fb,2+8) xp3 (52) :

But Y(-2-%) C E, so for each @ in Y(~%-9) the previous equation should be false, i.e. we
have reached a contradiction.

We define now the function, g : T?2xT? — C, given by

9(@a) = (fov ) (g,a) = f@a—a,a) V(@@ e T’xT?.

(13) Note that, for every g, bin T2, @ — f(b,@+a) is Byz -measurable, since &@ — £(b, @)
is a Byz -measurable functlon (see Corollary 4.18) and the o-algebra Byz is translation-
invariant. In fact Byz = MNier BTz ;80if B € (;; BT- ., then E@ en, el BT'z @ and,

due to Proposition 4.17, Nier BTZ[_L,' = BTz =icr BTz @ -
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The next proposition shows that properties of 9 (stressed in Lemmas 4.21 and 4.22 and
Corollary 4.23) imply g to be pz-measurable.
Proposition 4.30. Let F(a,@) be a po-measurable function and define

Fi(@a) = (Fod ™ Y)(a,@) = Fl@a—a,a) .

Then Fy is pa-measurable too.

Proof. We have to show that, for every 4,7 in I and each Borel set Y of C,

FTH(Y) N (Si x S;) € Byz ® By

Bi®p; °

To this aim we observe that, by Corollary 4.23, 971(S; x S;) is pus-o-finite, hence there is a

sequence {(in, jn)}new such that (,ui/®,u,jr)(19“1(5i X Sj)) =0 iff (¢,7) & {(%n;In) tnen,
l.e.

Mo (19_1(51 XSj) N (U S XS Z ,U'zn®/1:]n (Sz XSj) N (U:.o=1 Sinxs _n)c) =0.

Since F' is pup-measurable, for every n in IN there are two Borel subsets A,, B,, such that
Ap CFHY) N7 (SixS5) N (Si, xS;.) € Bn N (S, xS;,) and (u;, ®u;i, ) (B \ An) =
p2(Bn\ An) = 0. Thus, setting A = U2, A, and B = U2_, B, one obtains two Borel sets
such that

AC FHY)NnI97H S x S;) N (US4(S;, xS;.)) € B

and pa(B\A) = T2, (s, ©p5,) (B\ A) = S22 (i, ®,)(Ba \ An) = 0. So we can
write the following relations

FIHY) N (Six 8;) = 9(F 1Y) N (Si x S;) = 9(FHY) n97(S; x S)) =

= J(FHY) N 9718 x 85) N (U, Si, x55,)) U

X3

U 9(F 1Y) n 9718 xS;) N (U2, S, x8S;,)° )
X,
where 9(4) C X1 € 9(B) and X, C 9 (971(SixS;) N (UL, S;,xS;,)°). Hence, applying
Lemma 4.22 to the Borel sets 971(S; x S;) N (US2; S;, x5;,)¢ and B\ A4, we can conclude
that p (9 (9 1(5 X S;) N (U, S; xS;. ) )) = 0and 2 (9(B)\F(4)) = p2 (I(B\ 4)) =
Therefore F{1(Y) N (S; x S;) € BTz ® By2

O

Hi®u;
By definition of g, one has f(@,®) = g(@+ & @) Y(@a) € T>xT?; so, replacing f with ¢
in relation (4.29)(a), one obtains, for every @,b in T2,

(4.31)(a) g@+bv+a,a) =g@+b+aa+a) g@+aa) p(@)-ae. .
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Proposition 4.32. For every b in T2, the functions (a,@) — f(@+b, a)=g(a+b+a,a)
and (G, @) = f(b,a+a) = g(@+ b+ @ a+a) are po-measurable functions.

Proof. According to the definition of homeomorphism ¢z, one has f(@+b, &) = (fotr ) (@ @);
thus measurability of (@,@) — f(@ + b, &) can be obtained just repeating the proof of
Proposition 4.30 (and writing ¢; instead of 971).

To prove that (g,@) — f (b,a+ a) is pip-measurable, consider a function @ — F(@), Byz -
measurable, and define F(a, @) = F(a) V(a @) € T2XT2 Then F(a, @) is po- measurable
[In fact, for each Borel subset ¥ of C, F~ YY) = F~Y(Y)x T2 Since F~'(Y) € By2 , for
each ¢ in I there are two Borel sets A;, B; such that A; C F~}(Y) C B; and p:(B; \ A;) = 0.
Then AXT? € F~Y(Y) C BxT? and pu@u; (BxT?) \ (AxT?)) = pu; (B \ A:)XT?)) =
1i(Bi \ A;) pj(T?) = 0 for every j in I.]

Hence (ﬁ" 09)(a,@) = F@+a,a) = F(@ + @) is po-measurable (see Proposition 4.30).
Since f(b,-) is a By2 -measurable function, this completes the proof. O

Proposition 4.32 implies that function

G(b,a,@) = g@+b+a,@) —g@+b+a,a+a) g@@a+o,n)

is pp-measurable for each fixed b in T2. Moreover, if we set Ny = {(a,@) | G(b,a, &) # 0},
due to relation (4.31)(a);

W) = 3 meu) W) = 3 [ du(@ / 45 (@) 0, (3,)

i€l i,jel v 1”

=3 [ dw@-0 =0 s
1,561
hence G(b,@,@) =0 p» (@,@)-a.e. for each b in T2. Then, according to Proposition 4.30,

(G(b,-,-) oY) (@, @) = G(b,a—a,a)

is p2(@, @)-measurable and, by definition, G(b,a—a, @) = 0iff (@, a) & 9 (IV; 7). Furthermore
it is easy to see that s (9 (Ng)) =0 Vb € T2 (In fact pa (9 (Ng)) > 0 implies that there is
a Borel set Y C 9 (IV;) with pa(Y) > 0; so, due to the Lemma 4.22, us(971(Y)) > 0 and
this contradicts the fact that ¥~1(Y) C N;.) In conclusion we can write

(4.33)(a) g@+b,a@) = g(@+b,a) g(@,a) p2(@, @)-a.e., for each b in T2 .

Proposition 4.34. The three functions (b8, @) — g(b+a,a), (5,a,a) — g(b+a,a) and
(b,a,@) — g(@,a) are ps-measurable.

Proof. Observe firstly that, if F'(a,@) is a ps-measurable function, then ﬁ‘(E, a,q) =
F(a,@) V(b,a,@) € T?xT>xT? is ys-measurable.
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[In fact, for each Borel subset ¥ of €, F~ YY) =T?xF~1(Y). Since F is po-measurable,
F~1(Y) belongs to ), jer Br> ® Bz wom, ; so for every pair 7,k in I there are two Borel
sets Ajk,Bjx such that A;r C F~1(Y) C B, and (,u,3®uk)( B;r\Ajxr) = 0. Hence
T’ x A;, C F7YY) C T2 x Bj and (u,®uJ ® mk) (T2 x Bip) \ (T> x 4;)) =
(ks © 15 ® pg) (T*x (B;, k\Aj k) = pi(T?) (150 pe)(B; &\ Ajx) =0 for every i in I.]
Thus one infers that (b,3,@) — g(a,a@) and (5,a,@) — (go9)(,a) = g(b+1a,a) are
p3-measurable. Finally measurability of (b, @, @) — g(b+3, @) can be obtained noting that
gb+a,a) = (90 0)(b,@,@) (where §(b, 3, @) = g(a@,@)) and using the same arguments of
Proposition 4.30 to prove that g o p is puz-measurable. - O

Finally we repeat the previous procedure observing that: due to Proposition 4.34, function
G(b,a,@) = g(@a+b,a —g(@+b5,a) ¢(a,a)
is p3-measurable and the set N = {(b,3,@)| é(g, G, ) # 0} is p3-null. Moreover
(Gon™)(b,a,a) = G(b—a,a,a)

is still gz-measurable and (é on~!)(b,@,@) # 0 iff (b,@,a@) € n(N), with uz (n (]V)) =
Hence

(4.35)(a) g(b,@) = g(b,a) g(a,a) p3(b, @, @) -ae. .

Proposition 4.36. From the properties offunctzon g it follows that there ezists a Borel
subset Yy of T2 such that oo (Yo) = pigy (T?) and

(4.36)(a) 9(b,@) = g(b,2") g(@, ) (Bao @bty (b, @)-a.e., VT € Yy
(4.36)(b) l9(@, @) € (0, +c0) Lo (G)-a.e., VT €Y,
(4.36)(c) Ig(‘a‘,ﬁ')[ € (0,400) Ugo (G)-a.e., V& €Yy .

Proof. From relations (4.35)(a) it follows in particular that g(b,@) = g(b,a) ¢(z,a)
(120 ® iz ® tizy ) (b, @, @)-almost everywhere.

[In fact p3 = Do j.kel Bz @pa; ® g, and the seb {:1:1 =m(W(-7;)) PS( 7. )3:0} ;e contains,
by definition, the vector zg itself (see the proof of Proposition 4.8 and the discussion in
the last part of step 2).]

Hence, if N = {(b,3,a) | 9(b,@) # 9(b,3) g(a,@) }, there exists a Borel set N; such that
"N C N; and

(”Io QL ®.“:vo) (N) = (.UZO Q g ®ﬂzob) (V1)
= / iy (5) /T e, (3) /T sy (@) x, (5,3,)

— / Qe (@) [ Aoy (B) / dpey (@) X3 (B,7,3) = 0.
T2 T2 T2
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Then [r2 dpiay (b) f12 Az (@) x1v, (b, @, @) = O puy,(@)-almost everywhere, ie. there is
a Borel set Y1 such that pi,(T?\Y1) = 0 and [ dpize (B) [r2 dite, (@) xm, (5,T, @) = 0
V@' € Y;. In conclusion, for each @’ in Y7, (5 a) =g(0,@) g(@,a) (Loo®lz,) (b, T)-a.e..
Corollary 4.18 implies the set M = {(a,@ ] |f(@,@)| =0 or +oo} to be pg-null (see
the “Note” in the proof of Lemma 4.21); hence |g(a,@)| = |(f o 97)(g, a)[ € (0,+o00)
V(a,a@) € 9(M). Now, since pz(9(M)) = 0 (see discussion before the relation (4.33)(a)),
we have that |g(@,@)| € (0,+c0) p2(@,@)-a.e. and, in particular, almost everywhere with
respect to the measure p1,,®uz,. Then, repeating the previous arguments, we can infer that
there exist two Borel sets of T2, Y3 and Yz, such that: p., (T2 \Ys) = pg, (T2 \Y;) =0,
lg(@,@)| € (0,+00) pg,(@)-a.e. for every @’ in Y2 and |g(a@, @')| € (0, +00) pg,(@)-a-e. for
every @ in Ys. In conclusion, defining Yy = Y3 N Y3 N Y3, one obtains a Borel set which
verifies relations (4.36)(a), (b) and (c) and such that pg, (T?\ Yp) = 0. O

—) We shall use now Proposition 4.36 and relation (4.33)(a) to obtain the desired fac-
torization of f(a@,@). Let Yy be a Borel subset of T which satisfies the relation of
Proposition 4.36. We observe that g(a@,@) is measurable with respect to the o-algebra
By2 ® By png® g’ then, due to Fubini Theorem (in the version concerning the comple-
tion of product measures (see Rudin [1; Th. 8.12])), one has that function @ — g(a,@)
is fiz, (@)-measurable, u,,(@)-almost everywhere, or, in other terms, there exists a Borel
subset E of T2 with p, (T?\ E) = 0 and such that, for every @ in E, (@, @) is pz, ()-
measurable. Let € be a fixed point in Yo N E.*) Then the integral de lg(c,@)| dpg, (@) is
well-defined and relation (4.36)(b) implies that 0 < [, |9(,@)| dpig, (c). Moreover, since
pu2({@||g(e, @) =+o0}) = 0, there is a Borel set X such that 0 < [ |9(, @) dps, (@) <
+o0o. Finally, setting

X1 = Xn{a|Re(g(
X; = Xn{a|Im(g(

>0} X, =Xn{a|Re(g(ca)) <0}
>0} X4e=Xn{a|Im(g(cm)<0} ,

we have that there is at least one j in {1,2, 3,4} for which

/ l9(e, @)| dps, (@) < +00 .

‘J

0<l/ (¢, @) dpg, (@) <

Denote this X; by Xo. Then, according to relation (4.36)(a), one can write:

o(52)| /X 19(2,3)| dpiay (@) = /X 19(5,2) 9(2,3)| dpae (@)
(4.37)(a) = /X 19(5,3)| dpseo (3) tiao (B)-ae

(14) Y3 N F is non-empty; in fact pz, (Yo N E) = ﬂzo (T > 0.
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By relation (4.36)(c), we have that 0 < [ x, 19( b, 62)[ dptzy (@) < 400 iz, (b)-a.e.; this means
that the integral [ Xo 9(b, @) dpg, (@) is well-defined pg, (b)-a.e.. Slightly modlfymcr relation
(4.37)(a) one also obtains

l9(,2)]

= / 9(8,2) 9(2,) djiay (3)
Xo

/X 9(2,8) duey8)

(437)0) - [ [ 96:8) dh (@) o (B2

In conclusion, one has that the relation

0 < { /9.8 i@

l9(b,@)| dpg, (@) < +oo
Xo

is well-defined and verified i, (b)-a.e.. Now we consider an arbitrarily fixed point d in T2
and we repeat the previous procedure using relation (4.33)(a) instead of (4.36)(a); namely
we write

105 +1,5) [{ 195, 3)] dpay (@) = [ 19F+3,5) 9(b,3)] dpsa, ()

Xo

(4.38)(a) = Xlg(5+dﬁ)lduzo(5) | Hao (b)-2ce.

that implies 0 < [ |g(b+d, @) dpg, (@) < +00, i, (b)-a.e., since lg(b+d,b)| = |£(d,b)] €
(0, +c0), p(b)-a.e., for each d in T2 (see Corollary 4.18). Moreover

g(b+ 35['/}{0 (6, @) dpg, (@)

,/X (b+d,b) g(b, @) dpia, (@)

(4.38)(b) = I/X g(b+d, @) dp,, (&) o (D)-ace. .

Then one has that, for each d in T2, there is a Borel set Y5 such that p,, (T?\ Y5 5) = 0 and,
for every b in Y3, the integral [ X, g(b +d,@) dug, (@) is Well—deﬁned and satisfies relation

0 < ’/};g(b+d o) dug, (@) <

/ l9(b+ d, @)] dpgy (@) < +o0 .

In other terms, for each d in T2, the Borel set Y(d) = {b € T?| b =5+ d, be Y5} is

such that u(d) (Y(d) ) = oo (Y5) = pigg (T?) = ,uzo) (Tz) and, for every b in Y( 2 , the integral
Jx, 9(b,@) dpig, (@) is well-defined and

(4.38)(c) 0 < l/Xo (6, @) dpg, (@)| <

/ 19(5,3)] dita, (@) < 400 .
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Since p = ) ;o1 Xs; p_&;‘), we can conclude that relation (4.38)(c) holds almost every-
where with respect to measure p. Hence, if F is the subset of all b in T? for which
/ Xo g(b,@) dps, (@) is well-defined and the relation (4.38)(c) is verified, then F' belongs to

_BT_:» and p(T?\ F) = 0. Finally we set, for each b in T?,
on (b, @) dpg, (@), ifbeF

£6) =

0, otherwise

Then £(B) is a complex function on T2, measurable with respect to the o-algebra Bz .
T

[In fact, for each u; = xs, u(zo ) there exists a Borel function, §(b, @), such that §(b, @) =

g(b, @), (ﬂ¢®ﬂmo)(b @)-a.e. (see Rudin {1; Lemma 1 pg. 169]); hence fX (b, @) dpz, (@) =
fX (b, @) dpg, (@), pi(b)-a.e.. Now, due to Fubini Theorem, b — fX (b, @) dpiz, (@) is
a u; (b)-almost-everywhere-defined Borel function; this implies § O to be measurable with
respect to the p;-completion of By2. Thus ¢ (E) is measurable with respect to {),; B—T_Q—,i,. =
By ]

Moreover, by definition, |£(b)| € (0,+00) ,u(b) -almost everywhere So, using relation
(4.33)(a), we can conclude that, for each d in T?,

g(b+d,b) £(b) = [ g(b+d,b) g(b, )d,umo(a)-—/ g(b+d, @) dug, (@) = £(b+d)
Yo XO
1(b)-almost everywhere. (Note that u(T?\ F) =0 implies u((T2 \ F)@) = 0.) Then, for
every d in T2, f(d,b) = g(b+d,b) = £(b+d)/&(b), u(b)-ae., and relation (4.19)(a) is
proved.

Step 6. Conclusions.

Let (#,7) be a representation of A, which satisfies hypotheses %) and i) of the
theorem. In the previous steps we have seen that these hypotheses imply the following
properties:

— (H,n) is an irreducible representation of A,, (step 1).

— the measure p, which defines the space L2(T2, 1) = U(H) of the spectrally multlphmty—
free construction, can be written into the form p = Zie[ Xs; Mg’ , Where T; eT?, Pz, 18
the spectral measure of an arbitrarily fixed non-null vector zg in H and {S; }ze ; a disjoint

collection of Borel subsets of TZ:such that u(r‘)(Si) < +co Vi€ I (step 2).

— the equations

T(a,0) = e~tle+ddf 1 x(W(a,0)) U*
T(0,b) = etb> Y n(W(0,b)) U*

T(a,b) = T(a,0) T(0,b) a,be R
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define a unitary representation in [,(Lz(Tz, p)) of the abelian group T>=R/ZxR/2rZ
(see step 3). Moreover there exists a function, £(a, B), on T? which is measurable with
respect to the o-algebra Bz = [,y Byz,_, such that |¢(a, B)] € (0,+00) p(a, B)-ae.
and, for each ¢ in R/Z and b in R/27Z,

((a+a)mod1, B)
£(a, B)

(T(a,0) ¥) (e, B) = (@ +a)mod1, )

¢(a, (B + b)mod 2m)
(e, B)

(T(0,8) %) (e, B) = V(e (B + b) mod 2r) v € L2(T?, )

(see steps 4 and 5).

To complete the proof of the theorem we define now a new measure on By2> by relation
~ -2
=g p

Le, foreach Y in By2, i(Y) = [, xy (e, B) |€(e, B)|72 du(a, B). (The properties of func-
tion ¢ assure that fi is well-defined.) We also consider the linear map, =, from L2(T?, 1)
to L2(T?, i) given by

(E@)) (e, 8) = &(e, B) (e, B) Vi € L2(T2, ) .

It is not difficult to verify that = is a unitary operator from L2(T?, 1) onto L(T?, i) and
E* = &(a, B)7 1. Furthermore, for every ¢ in L?(T?, %) and each a in R/Z,

(5 7(a,0) 5" §)(, ) = (£ T(a,0) €'9)(cr, ) =
. — £((a+ a)mod 1, 8)

(4.39)(a) —€~( , ) £, B)

= Y((a+a)mod1,f)

£ (e + a)mod 1, 8) J((a-!— a)mod1, ) =

and similarly, for each b in IR/27Z,

(4.39)(b) (£ T(0,5) E* ¢) (e, ) = ¥(a, (B + b)mod 27)) .

Remark 4.40. We observe that the measure /i can be written as a sum of a family of
positive finite measures on T2 mutually disjoint.

In fact |£(e, B)| 72 € (0, +00) almost everywhere with respect to p(c, B). Then, if we set, for
each positive integer n, R, = {(o, B8) | 1¢]7%(c.8) € (n — 1,n]}, we have that, for every Y
in Bra", B(Y) = Ties fre xv €172 x5, duly) = T 12, 2 XY XR. 16172 x5, dull? .
Hence ;z = ZiEInEN XS:NR, |€|~2 U:(::Foi) and

(Xsian |€]72 ,LL:(;"))(TZ) :/ €2 d,ugo") < n ug")(Si) < 4o Viel andn € IN.
S;:NR,
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Since each R, belongs to the xs, ;L_gi')-completion of By2, thus, for each 7 in I and n in
IN, there exists a Borel set I 5, included in S; N R, such that (XS nr, |72 /1'220 ))(Tz)

(xs:nr. 1€]72 umo )) (I3,n)- In conclusion, with a little change in the notation, we can write

= > xr; €77 ul)

jed
{1y }JEJ being a disjoint collection of Borel subsets of T2 such that fp |€]~2 d,u(”) < +00.

Note. 1 = ZJ crxr €~ 2/.L:,;0]) can now be considered as a measure defined on the Borel

o-algebra of T? and each xr; 1€~ —2 umo’ ™) can be identified with the spectral measure p; of

the element xp, of L2(T? 7).

Proposition 4.41. Since & T(a,b) =* are unitary operators in L2(T? [i), equations
(4.39)(a) and (b) imply measure i to be translation-invariant, i.e., for each Borel subset
Y of T? and every (a,b) in T2, one has that a(Y) = a(y(ep).

Proof. If 0 < L(Y) < +oo, then xy € L?(T? ) and p(Y(®d) = Jre xy@n dii =
|Z T(=a,-b) E*xv|® = lxv||* = G(Y). If G(Y) = 4oco, then there exists a sequence
{Yjtren of Borel sets such that ¥j, C Iy, (js € J), UpY;, C Y and [(ULY;,) =

~ a a ~ a ~ a, a,b

>y A(Y5,) =+oo. Then Uy Y{*” C ¥ and f(Y@) > (U, v*) = 3, ¥ {*Y) =
>k B(Yj,) = 4o00. Moreover, since we have just seen how (Y (*®) > 0 implies (Y > 0,
one can also conclude that z(Y) = 0 implies z(Y(*?) = 0. O

Finally, setting U=5o U, one has a unitary map from H onto LQ(TZ,/]) such that,
according to equations (4.39)(a) and (b),

(e~¥1e+l8 {7 r (W (a, oj) U 9) (e, B) =

)
= (S P U(W(0,0) U) Z* ) (e ) = $((e+ a) mod 1, )

-

—

T(a,0)

and (e*b@ U (W (0,b)) U 1;)( B) = ... = Pla, (B+ b) mod 27), i.e. one obtains the
relations (4.15)(a) and (b) and the proof of Theorem 3.8 is completed.
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§5 Comments and examples

This section contains some properties concerning Theorem 3.8; among other things,
we verify that the representations considered in Section 2 satisfy the hypotheses of our
theorem.

Firstly we stress that inequivalent representations correspond to inequivalent measures.

Proposition 5.1. Let (H1,m1) and (Ho,73) be two representations of A, which sat-
isfy hypotheses of Theorem 8.8 and let p; = ZjEJl pij (resp. pa = Y ey H2k) be a
translation-invariant measure on the Borel o-algebra of T? associated to (M1, m1) (resp.
(Hz2,m2)) according to the Theorem 3.8. Then (Hy,m) is unitarily equivalent to (Ha, 7o)
if and only if, for every Borel subset Y ofT p1(Y) =0 & pua(Y) = 0; more concisely:

(H1,m1) = (Ha,m2) if and only of  p1 = po
Proof. Let By2 ' = Njes, By, , and Bz = Nies, By, (About the definition of
these o-algebras see Proposition 4.10 and relative discussion.) Moreover denote {I1 ;};jes,
(resp. {I%;};ez,) a disjoint collection of Borel subsets of T2 associated by the Theorem
3.8 to the family of measures {p1 ;};es (resp. {m2;}ics)-
Assume that, for every Borel subset ¥ of T2, 41 (Y) = 0iff pp(Y) = 0. Then the o-algebras
By: ' and By ~ coincide.
To verify this property define, for every index j in Ji, the set

Jz’j = {k € Jy l ,u,g(Fl’j M FQ’}C) > 0} .

Since the relation pa (I ;NI x) > 0 implies py (I1,; NI %) > 0 and {I7 ;N szk}kEJn s
<7

a disjoint family of Borel sets contained in I j, one has that J; ; must be countable. So,

for every E in By> , we can write

E =(Enl; u (ENIY;)
= (Uker, (ENI1;NTok)) U (BENT1;N (Ukenl2p)®) U (ENTT))

-~

Ag B C

The set C'is contained, by definition, in the 1,5-null borelian, Iy ;; hence C € BT- ;- The
set B is contained in I' ;N (Ure s, I2,x)¢ which is pp-null; therefore B is py1-null as Well so it
belongs in particular to BTz _. Finally, for each kin J3 ;, Ax = ENIy ;NI5 i is contained

in BT2“ , i.e. there exist two Borel sets F,G such that FF C ENIi NIy, € GNIyy
and pa k(GﬂFg E\F)=p2(GNI2,\F)=0. Thus p (GNIy \F) = 0 and in particular
Ay € BTz . In conclusion -B;w - BT- Vj € Jq, ie. BT- - B—;{m. Obviously the
opposite mclusmn can be proved by a snmlar procedure.

As the measures p; and pg, extended to the o-algebra Byz ° = By2 ', are localizable
(actually, strictly localizable, see footnote (9) in Section 4), one can apply the Radon-
Nikodym Theorem (see Rao [1; Section 5.4, Theorem 5]). So, from hypothesis pu; = po,
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it follows that there exists a Bz -measurable function h : T2 — IR™ such that p,(E) =
Jg M, B) dp1 VE € Bz and h(a, B) € (0, +00) almost everywhere with respect to ul
(and pz). Moreover, since p1 and py are translation-invariant, one has, for each E in B—rz

and (a,b) in IR?,

pa(E) = /T2 xe(e, B) h(a, B) dpr = pa(E@D) = /;2 Xp@y (@, ) Mo, B) du

/T XE((CY —a)mod1, (8 — b) mod27r) h(a,B) dus

XE(o h((a+ a) mod1, (8 + b) mod 2m) d,ug_a’_b)

xe(a,B8) h((a+a)modl, (B+b)mod2r) dps

/.
/.

hence, for every E in By: = and (a,b) in IR?,
(5.1)(a) / h(a, B) dp :/ h((e+ a)mod1, (8 +b) mod 2r) dps
E E

Now it is easy to verify that the linear map L2 (Tz,,ul) 3P — ﬁ U € Lz(TQ, [2) is a
unitary operator and (ﬁ-)“1 = Vh- . Finally, for each v in L?(T?, u3) and (a, b) in R,

1

ﬁ(ul (W (a,6)) Uy )V 5 =

GOG) = (ﬁ Vi((@ + @) mod 1, (B+ ) mod27r)> (v w7 (0, ) U5 ).
So, if we define Y+ = {( eT? | (e, B) — h((a+ a) mod 1, (B + b) mod 27) > 0} and
Y™ = {(a,8) € T? | h(c, B) — h{(e + @) mod 1, (8 + b) mod 27) < 0}, relation (5.1)(a)
implies

/ (h(a,B) — A((e+ a) mod1, (B +b)mod 2m)) dpyy = 0 and
Y+
/Y_ (h(a, B) = h((a + a) mod 1, (8 + b) mod 27)) dpy = 0

Le. h(a,f) — h((a+ a)mod1l, (8 + b) mod2r) = 0 almost everywhere with respect to x;
(and p2). Hence, for each (a,b) in R?, v/A((a+a)mod1, (B + b) mod 27) / A{e, B) = 1
pe-a.e. and, due to equation (5.1)(b), (H1, 1) & (Ha, m2).

Conversely suppose that (#1,71) is equivalent to (Ha,72) and let V be a corresponding
unitary map from L2(T?, u;) onto L3(T?, us). Consider an arbitrary Borel subset B of
T? such that pu;(B) > 0 and let A be a Borel set such that A C B and 0 < py(A4) < +oco.
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Then x4 € L3(T?, p1) and the spectral measure associated to x4, Xxa 1, coincides with
[Vxal? 2 in fact one can write

(Fxa,xa) = (VFV*Vxa,Vxa) ie / fxadm =/ FIVxal?dpe  VfeC(T?).
T2 T2

Thus the relation p;(A4) > 0 implies (|[Vxa|® #2)(4) > 0 and, in particular, p2(A4) > 0. In
conclusion, for every Borel set B such that p;(B) > 0, we have that pa(B) > pa(A) > 0
ie., if ua(B) = 0, then p1(B) = 0. Exchanging indices 1 and 2 one also obtains that
p1(B) = 0 implies p2(B) = 0; hence p1 = . O

Secondly we note that it is sufficient to verify hypothesis i7) for a family of spectral mea-
sures relative to a decomposition of # in cyclic and 7 (A, )-invariant orthogonal subspaces;
namely one has that

Proposition 5.2. Let (#H, ) be a representation of A, , nondegenerate as a representation
of subalgebra A,. Let H = @;cr[n(A,)yi] be a decomposition of H in cyclic and w(A,)-
invariant orthogonal subspaces (see Section 1.3). Then the operator-valued function

T2 53 (¢,b) — w(W(a,b))

15 strongly measurable w.r.t. every positive spectral measure p, (z € H) if and only if it
15 strongly measurable w.r.t. each spectral measure of the family {“yi}iel'
Proof. To prove this property we have only to verify that, if 7#(W (a,b)) is strongly mea-
surable w.r.t. each measure of the family {u,, }icr, then, for every pair of vectors z, z in
H, there exists a Borel set ¥ such that p,(Y) = p.(T?) and {x(W(a,b))z|(a,b) € Y} is
separable. To this aim write 2 = )\ 20, With 2, € [1(A,)y:,]. Then p, = Y fiz,
(see proof of Corollary 11.1.7) and p,, < py;. Vn € IN (see Proposition I1.1.1). Now, if
m(W(a, b)) is strongly measurable with respect to each measure of the family {u,, }new,
for every z in H there exists a sequence {Y,,} of Borel sets such that p,, (¥,) = py, (T?)
and {7 (W (a,b))z|(a,b) € Y, } is separable (Vn € IN). Then, setting ¥ = U,enYn, one
has that 5:(¥) = 3o e (V) = Ten o (T2) = 12(T%) and {m(W (6, )5 | (a,5) €
Y} = Unew {#(W(a, b))z | (a,b) € Y} is separable. O

Finally we show that the representations of Section 2 satisfy the hypotheses of our theorem.

Example 5.3. Momentum states. We shall see that representations defined by momentum
states (2.1)(a) satisfy hypotheses of Theorem 3.8 and, more precisely, they correspond to
the translation-invariant measure

p=y, do

j€lo,2)
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where daj, 7 € [0,27), denotes the one-dimensional Lebesgue measure concentrated
on segment {(c,j)|a € [0,1)} C T?. Let m be the representation of A, defined in
L*(T?, > jepo,2x) d) = Djep,2mL2(T?, da;) by relations (3.8)(a), i.e

{(W(W(a,o))zﬁ)(a, B) = eileteld y((a+a)mod1, B)
(m(W(0,0))¢) (e, B) = e7*** t(ex, (B + b) mod 27) (¥ € L3(T%, X c0,2m des)) -

5

Then = is, by definition, spectrally multiplicity-free as a representation of the commutative
sub-algebra A, ; moreover it satisfies hypothesis 1) too.
[In fact a generic element ¥(c, B) of L2(T?, > jelo,2m) daj) can be written into the form

V(e B) = 3 en 8. (0) fu(e), where fn(c) is a Borel function on [0,1), s, (8) denotes
the Kronecker symbol and 8, € [0,27). So, if ¥(a, 8) = 3, cn 95, (B) fn(c) and ¢(e, B) =
> men 081 (B) gm(c) are two functions in L2(T?, Zje[o,g,,) daj), we can write

(r(W(a,0))¥, ¢) = e (n(W(a,0))m(W(0,5))%, )

ghab Z ila+alf ,—~ib(a+a)mod 1 6, (B + b)mod 27) fn((e + a)mod 1) , 6a: (B) gm(er)).
m,nclN

Thus (m(W(a, b))y, ¢) is different from zero only for a countable set of b in IR and, for
such b’s, one has

. 1 . -
(7(W{a, b)), ¢) = e%“bZA ellatalf gibatamodl ¢ () 4 0)mod 1) gm(a) de

where n, m belong to a suitable countable set. Hence n(W(a,b)) is weakly measurable
(w.r.t. the Borel o-algebra of IR?). Now, to verify strong measurability, note that a generic
function 9; of the separable cyclic subspace L?(T?, doj), 7 € [0,27), can be written into
the form 9;(a, B) = 6;(8) f(«); this implies, due to the definition of operators (W (a, b)),
that

{7(W(a,b))d5]ae0,1) b=3j'} C L*(T? dag_jymoazs)  for each fixed j' in [0, 2r).

Thus, according to the theorem Hille Phillips [1; Theorem 3.5.5] (and to Proposition 5.2), it
follows that (W (a, b)) is strongly measurable with respect to all positive spectral measures
associated to the elements of L2(T?, > icfo,2m) )]
Finally we can check that, defining, for each p in IR,

":bp(a;ﬁ) = pmod27r(,B) eipa

one obtains an element of L2(T?, Y jelo,2x) dej) such that

((W (2,5 , ) = wp(W(a, 1)) ¥(a,b) € R?
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wp being the state defined by relation (2.1)(a). In fact:

1
=) iyl = sz WJpIZ dp = sz Opmod2x(B) dp = Zﬁé[o’h) fo 0pmod 2 () da=1.
=) (7(W(a,0))¢p) (e, B) =

— i[a-i—a]ﬁ 5 mod Zw(ﬂ) ip(ata)modl __ ei [a+a](p mod 27) eip(a+a)m0d1 5pm0d 27-(,3>
[a+a]p 1p(a+a)m0d1 51’ mod 27 (/8) - ei (e+a)p 617 mod 2w (ﬁ) = eiap Ipp(CE,ﬁ) *
Hence (7(W (a,0))¥p, ¥p) = €7 ||¢h,||* = et P.
=) (m(W (0, 8))p) (@ ) = e~ ®=P« 6, 00 (8 -+ b)mod 2r); thus

(mr(W(0,0))%p,¥p) = / e io-p)e 6pmod 2x ((B + b)mod 2m) emipe dpmod2x(0) du
T2

/ 0§ mod 2 (B 4 b)mod 21) 8y mod 2 (8) dp
T
3

M

Z / fk(b Of) p mod 2#((.8 + b)monTf‘) 5pmod27r(18)
T2

k=0
3
=3 / Fi(0, @) Spmoann (6 + D)mod 21) 6y moazx(6) da
k=0  Bel0,2x)
0, ifb£2mn neZ
S0 i fol fx(2mn,a)da = fol e?"nedy =0, ifb=27rn neZ

where we have set e %@ = Zzzo i* fi, with fi > 0, to apply Proposition 1.2.5.
—) Finally:
(7 (W (a,0)vp, p) = e2°(w(W(a,0)) x(W (0, )y, )
= e (n(W(0,0))¢p, 7(W(=a,0))p)
= e3P (n(W(0,0))p,¥p) = 0
Example 5.4. Zak states. Representations defined by Zak states (2 2)(a) satisfy hypothe-
ses of Theorem 3.8 and correspond to the counting measure on T2, i.e. H = 12(T?).
In fact, in this case, each element ¥(a, 8) of 12 (T2) is a function dlfferent from zero only
on a countable set of points; so the Borel measurability of (#(W(a,b))®, #) and the strong
measurability of 7(W(a, b)) for each spectral measure can be easily proved.
Finally it is not difficult to verify that, if ¢ € [0,27) and v € [0, 1), the equation
Y@, B) = 6-4(a) 6¢(B)

defines a function in 12(T?) such that

(m(W (@, D).y, ¥e.v) = we (W (as b)) ¥(a,b) € R
where w¢ - is the state given by the relation (2.2)(a).
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Appendix A. Two elementary spectral properties

This appendix points out two elementary spectral properties used in the proof of
Proposition IV.1.7.

Lemma. Let (H,n) be a nondegenerate representation of a unital C*-algebra A. Then
7(1) is the identity operator in H and, for each element A of A, o(w(A)) C o(A).

Proof. Note firstly that, since (#, ) is nondegenerate, H can be decomposed in a direct
sum of cyclic subspaces, &, Hao = Bo [7(A)z4s], and, for each o, one has n(1)(m(A)zs) =
m(14)z, = 7(A)z, VA € A. Hence w(1) acts as the identity operator on a dense set of
Ho and, by continuity, on Hy. So (1) = 1. If the complex number A belongs to the
resolvent set, r(A), of A, i.e. if there exists B € A such that (A\1—- A)B = B(A1-A) =1,
then

7((Al = A)B) = a(A1— A) 7(B) = (A — n(A)) =(B)
= 7(BO\L- 4)) = n(B) (A - n(4))
=x(1) =1y
Hence (A —m(A)) is invertible, i.e. A is also contained in the resolvent set r(7(A4)) of 7(A);
therefore r(A) C r(n(A)). Thus o(A) = C\r(4) 2 C\r(n(4)) = o(n(4)). -

Lemma. Let (X, M, u) be a positive o-finite measure space. Let F' be a bounded complez-
valued measurable function on X and Mp denote the operator on L?(X,p) given by
(Mpi) = Fvp, ¢ € L23(X,n). Then o(MF) coincides with the essential range of F.)

Proof. If A is in the essential range of F, then, Vn € IN, p({z € X | |F(z) — A| < £}) > 0.
So, for every n, we can choose a measurable subset Y, of the set {z € X ||F(z) — A| < 1}
such that 0 < p(Y,) < +o0. Define ¢, (z) the characteristic function of ¥, normalized in
L?(X,p). Then

1 1
[ 0= M)enPdu< 5 [ JenPdu= o nen.
X n®Jx n

Hence the sequence of norms {|| (A—Mp) gonH} tends to zero. Suppose now that there exists

an operator B such that B(A— Mp) = Iy2(x ). Then B (”Ei:ﬁigz:”) = ”(/\_M}F)%“ ©On

for each n, so B should be necessarily unbounded; thus A € o(MF).

(1) A complex number A belongs to the essential range of F iff, for every € > 0, one has
that p({z € X ||F(z)— A <e}) >0.
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Conversely, if A is not in the essential range of F', there exists an € > 0 for which ,u({x €
X ||F(z) — Al < €}) = 0. Then it is easy to check that the bounded measurable function

G(z) = »
1, otherwise
verifies equalities Mg (A — MFr) = (A — Mp) Mg = Iy2(x ) So A € o(MF). O

Appendix B. Non-measurable additive functions

In this appendix we shall prove the existence of functions £ : R — {z € (Dl |z| = 1}
verifying the following properties:
—)f(k)=1 VkeZ
—) f(a+b) =£(a)£(b) Va,belR
—) £ is not Lebesgue-measurable
(see Example V.3.2). First of all we partition the set IRg = IR\{0} into equlvalence classes
by means of the equivalence relation

a~b iff %e@ (a,b € Ry) .
Let 7 be the collection of all subsets S of IRg/~ such that: (1) S contains the equivalence

class [Q], (2) if {[b], ..., [bn]} is a finite set of elements of S and 377, ¢;b; =0 (g; € Q),
theng; =0 Vj=1,...n

Note. In this appendix, if b is a real number, [b] denotes the set of all numbers &' in IRg
such that &' ~ b and intb denotes the integer part of b.

The set 7 is non-empty and partially ordered by inclusion; moreover every totally ordered
subset of 7 has an upper bound. Thus, due to the Zorn’s Lemma, Z contains a maximal
element; call it Spr. According to the Axiom of Choice, there exists a mapping ¥ from
Syr into IRg such that ¥ ([a]) € [a] for every [a] in Spr. Writing

L if [a] = [Q]
4 3 ¥([a
V() = { i il #(Q) and Rl € (3.1]
2% ([a . T(la
ol iffa)#[Q) and 2D € (0,4]
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we obtain a new mapping ¥’ : Sy — Ro which still satisfies the property ¥’ ([a]) € [a] for
every [a] in Sps, but which is also such that ¥/([Q]) = 1 and #'([a]) € (3,1] for all [a] in
S M- Let

A= {II/'([a]) e IRI [a] € SM}

Due to the maximality of Sps, each real number can be univocally written as a finite
rational linear combination of elements of A. Hence the relation

£(g1a1 + ...+ gnan) = e2T@ttam)

for ai,...,a, in A and ¢1,...,¢, in @, define a function f from IR into the set of complex
numbers of modulus 1. It is not difficult to check that the function f satisfies relations
£(k) = 1 for each k in Z and £(a + b) = £(a) £(b) for every a,b in IR. To prove that f is
not Lebesgue-measurable denote, for each rational number g, the set £~1(e**"?) N (0, 1]
by Y, ; moreover let ¢Y; = {qg I be Yl}. We claim that, for every ¢ in Q N (0,1], the
following relations are true

(*) g1 € Y, € (¢-1)Y1UgYi U (¢g+1)1

Assuming this claim for the moment we complete our proof by contradiction. Suppose in
fact that f is Lebesgue-measurable; then sets ¥, and ¢Y; are measurable. Since (0,1] =
quQn(o,l]Yq and Y;’s are mutually disjoint, denoting by A the one-dimensional Lebesgue
measure, we have

(%) A((0,1]) = Z MYy =1
7€ Qn(o,1]

On the other hand, according to a general property of the Lebesgue measure (see Rudin
[1; Theorem 2.20 (€)]), A(gY1) = g A(Y1) for every q. Hence relations (x) imply

MYy < M@a-1)%) + Agh) + Mg +1) 1)
= (g=1)AMN) + ¢A(Y1) + (¢ + 1) A(Y1) = 3gA(Ys) .

So the equation (**) requires A(Y7) to be greater than zero; but in this case, using relation
(%) again, one obtains

+co
SOAMT) 2 Y A@H) = Y aA®) > AM)Y - = 4o

7€ Qn(o,1] 7€ Qn(o,1] 7€ Qn(o,1] n=1

which contradicts (). It remains now to prove the claim. Note firstly that the set Y3,
defined by relation Y1 = £71(1) N (0,1], is actually included in (1,1]. Moreover each
equivalence class of IRg/~ has an element contained in Y3.
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In fact pick a real number b. Without loss of generality we can assume that b > 0. Setting
b=qa1+...+ gna, (where a1,...,a, € A and ¢1,...,9, € Q), by definition of £ we
have f(q’ b) = €279 (@1++4n) for every ¢’ in Q. Hence a rational number q is such that
£(gb) = 1iff g = k/(q1 + -+ + ¢n) with k in Z. Moreover, since each element a; of A
belongs to (—%—, 1], the following inequalities are true

k k
L — a1 +...+gpa,) < k
e L Gn On)

(for k=0,1,2,...). In conclusion there exists one and only one 7 in @ such that §b € Y3,
namely ¢ =1/(¢1 + - -+ + ¢») and, in this case, gb € (%, 1].

Letb €Y, and b= gyay + ...+ G, a,. Then £(gb) = e2ma(@+an) = ¢i27a  Therefore,
for every g in @ N (0, 1], we have that ¢ Y; C Y, ; furthermore each other rational number
¢’ such that ¢'b € Y, must satisfy the relation ¢ — ¢ € Z, i.e. ¢'b = qb+ k'b for some
non-null integer number k’. Since b is contained in (%, 1] and ¢ b and gb are in (0,1], the
previous equation cannot be satisfied if £’ is different from —1,0 and +1. This completes
the proof.
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