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Preface

The research for this dissertation was carried out in the International School for
Advanced Studies of Trieste under the supervision of Prof. Dennis W. Sciama and
Prof. Maurizio Martellini. It is original except where explicit reference is made to
the work of others.

Chapter 3 contains the results of the research about a new set of exact worm-
hole solutions done by me in collaboration with Dr. M. Miji¢ and with Prof. M.
Martellini. Chapter 4 (Sections 3, 5-8) is based on work done by me in collabora-
tion with Prof. M. Martellini about the 5-th time formalism for the stabilization
of the 4-D Euclidean gravity. Chapter 5 (Sections 4-8) finally presents the results
on the stability and the polarization of a stringy black hole, and is based on work
done in collaboration with Dr. F. Fucito, Prof. M. Martellini and Prof. A. Treves.

Part of the work for this dissertation (see, Refs. [50,51,64,83,84,86]) has been
published or has been submitted for publication, part is still in progress (see Ref.
166])-
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Chapter 1

Introduction

1.1 Quantum Gravity: an overview

Even though it is generally accepted that the large scale of the Universe is well
described by the Einstein’s theory of gravity, there are many reasons why General
Relativity (GR) can be seriously questioned as the true final theory which should
describe the Universe as a whole. In fact, GR provides a set of differential equa-
tions governing the interaction of matter and gravity, but it does not give the initial
conditions at the beginning of the Universe. Moreover, in some sense one could say
that canonical GR predicts its own demise. A series of well-known theorems by
Hawking aﬁd Penrose state that, starting with a ‘reasonable’ matter content, the
spacetime of any classical cosmological model or that inside the black-hole horizon
will show up singularities, at which both the spacetime curvature and the energy
density become divergent and the classical theory breaks down (see, for instance,
Ref. [1]). Adopting the point of view that a ‘well-behaved’ physics must be free of
such singularities, this suggests that, at short distances, GR should be superseded
by a more general theory. One of the possibilities is that this theory would result
from the unification of gravity and quantum mechanics. Like the puzzle of appar-

ent collapsing orbits of the clectrons which ‘classically orbit’ around the nuclei of
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the atoms was solved by quantum mechanics, there is some hope that the problem
of singularities would be solved by a theory of quantum gravity. Also consistency
criteria may be seen to ask for a quantum version of the gravitational force. If the
energy-momentum tensor of the matter T}y 1s fundamentally quantum mechani-
cal, a theory of quantum gravity should be able to decide, for instance, among the
various possible couplings to the Einstein tensor G, (through expectation values

< Ty >7)-

The approaches to quantum gravity can be divided into two main branches.
The first is to think of gravity as small perturbations on a background and to
quantize them. This is the ‘particle-physicist’ approach. The ‘particle’ transmit-
ting the ‘force’ is the spin-2 graviton. This approach leaves open the question of
the real causal structure of the theory. One of the main problemsis the well-known
result that Einstein gravity is not renormalizable (at two-loops, though finite at

one-loop, see Ref. [2]).

Recently, string theory has been looked at as one of the best promising arenas
for achieving a finite theory of gravity. In the low-energy limit, this theory should
reduce to the Einstein-Hilbert action with higher order (in the string tension pa-
rameter) corrections in the curvature tensor. Much of the initial enthusiasm about
strings was the prospect to find a unified theory of everything without free dimen-
sionless parameters. The idea is that at low energies (below the Planck scale), the
theory should be modelled by an effective Lagrangian which treats the string as
pointlike, though involving a lot of fields carrying different quantum numbers and
spins which are the “imprints’ of the ‘vibration’ of degenerate modes of the string.
One of the most serious difficulties of such a project has revealed in the presence of

a huge number of classical distinct vacua, to which the low energy effective theory
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is expected to be very sensitive. This has lead to devote a big effort in trying to
fully understand and classify the space of the so called two dimensional conformal
field theories [3].

The second approach may be referred to as the ‘relativist’ one. The idea
is to try to study gravity in a non-perturbative way, and to formulate a quan-
tum theory which fully incorporates the notion of spacetime, but without fixing
any predetermined background. A particular model of Quantum Gravity (QG) is
described by Quantum Cosmology (QQC). :Whereas quantum mechanics gives the
probability of finding a particle in a certain state at a given time, QC gives the
probability of finding a certain 3_surface with a certain matter configuration on it.
The spacetime is no longer a fundamental concept. The new arena for geometro-
dynamics becomes superspace. A frequently used representation of the quantum
dynamics of the universe is that in terms of (Euclidean) path integrals. Here the
wave functional is a weighted sum over all possible quantum histories of 4-metrics
and matter configurations on a manifold M. Among the basic ‘ingredients’ of QC
are the choice of an action principle giving, in the classical limit, the equations
of motion for the variables, an interpretation scheme which transforms the wave
function into a probability distribution comparable with observation, the choice of
the boundary conditions to select a particular wave functional for the universe. In
some sense, in QC the problem of dealing with the initial singularity is avoided,
but it is turned into the problem of the ‘initial conditions’ [4]. Usually, one restricts
the attention to a finite number of degrees of freedom (minisuperspace models),

and the problem of ponrenormalizability is not tackled.
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1.2 The formalism of Quantum Cosmology

In canonical classical cosmology, the spacetime (a 4-manifold M with metric guu)
is the trajectory or history of 3-space (hij), which becomes the new dynamical
variable along with the value of matter fields (for instance, scalars ¢) on 3-surfaces
of constant time.

The (Lorentzian) action for matter+gravity is

_ 1
© 167G

S / (R—2A)y/—gd'z +——1—(—;— KvVhdz + | Lav/—gd*z , (1.1)
M M

8rG Janr

the surface term being added 5] 1o obtain the Einstein’s equations under variations
of the metric such that §g,, = 0, but 6(V,g,,) # 0, on the boundary 8M (Las is
the matter Lagrangian).

Using the 3+1 splitting of the metric (with lapse N and shift N;) and intro-
ducing the momenta (II4,I1;;) conjugate to the dynamical variables (¢, hij), the

Hamiltonian form of the action turns out
S = /.(H,-j}.zij -+ H¢q‘3 —NH, — NiHi)d‘i:D . (1.2)

In order to choose the actual history of our universe, one must specify the dy-
namical equations and a set of initial conditions. The dynamical equations can be
obtained from the Hamiltonian and are the space part of the Einstein equations
and the classical equation for the fleld. Moreover, since the lapse and shift func-
tions act as Lagrangean multiplier for the action, from variations of S one obtains

the classical Hamiltonian and momentum constraints

Hy = + 167G - Giju N9 TH — Té%a,—hl/z(?’R —2A) + K2 (R gij + V()

1, -
+h TG =0, (1.3)
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H'= -2 + k7¢Il =0 , (1.4)

which are conserved by the classical evolution (Gijr = %h‘l/z(h,’khﬂ + hithjx —
hijhii) is the de Witt metric of superspace, with signature — + -+ + ++).

In the Schroedinger representation, the quantum state of the universe may be
described by a wave functional ¥(hij, ¢) on “superspace”, the space of all possible
h;; and ¢ that can be put on a three-surface S.

One possibility for quantizing the classical dynamics is to impose the con-
straints as quantum operators following the Dirac procedure. One turns classical

canonical variables into quantum operators, i.e.

Iy — —1:3% , (1.5)

The constraints become functional differential operators which annihilate the

wave functional of the Universe. Then ome has the functional differential

equations (6,7.8]
f{i &, hij, —iT 3 ‘If(h" (;3) =0 (1 i)
) 11 ‘2’55) 7’5} 1j 1.]:'7 H M
H® b, hij, —t=—, —i U(h;j,¢) =0 (1.8)
P8 Shyj 7 ) )

The only non trivial equation is the second one, the so called Wheeler-de Witt
(WdW) equation, governing the evolution of ¥ in superspace [6]. It describes the
invariance of the theory under time reparametrizations. | Naively speaking, if seen
as a Schroedinger equation, it says that U is not an explicit function of time; as

an eigenvalue equation, it suggests that the total energy of the universe is zero.
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There is a factor ordering ambiguity in the kinetic term for gravitation in
(1.8): the Hawking-Page choice 9] gives the covariant laplacian in the hyperbolic
superspace metric, with h3 playing the role of time [8]. The WdW equation is thus
hyperbolic and in general difficult to solve. Any solution of the WdW equation is
a possible quantum state of the universe.

Another and frequently used representation of quantum dynamics of the uni-
verse is that in terms of Euclidean path integrals (EPI). Here, the wave functional
is described by a path integral over a certain class O of Euclidean 4-metrics gpo

and matter configurations (histories) on a manifold M (>8]

W(his,6) = [ daialldsle” " (1.9)

I is the Buclidean action of the history g, (z”), ¢(z”), obtained by the Lorentzian
one just turning the lapse function into pure imaginary (N — —ilN). To select
one definite wave functional, one has to specify the boundary conditions for the
path integral. The most popular proposal is the Hartle-Hawking (HH) boundary
condition, which amounts taking the class C as the class of all compact Euclidean
4-metrics and regular matter configurations on a manifold M whose only boundary
is a compact 3-surface S with no boundary (7] (see fig. {1]).

An important point is to understand whether the EPI generated wave func-
tional satisfies, at least formally, the WdW equation and the momentum constraint
(see, e.g. Refs. [8,10] ). This has been done by the authors of Ref. [11] in the fol-
lowing way. In a large class of minisuperspace models, the action (1.2) can be

(formally) written as

1

tll
Slpir ', A% = / dtpid — Hy — A°Ta] (1.10)
t
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where A® are multipliers that enforce the constraints T, = 0. The constraints

satisfy the Poisson-bracket algebra
{To,Tg} = U;ﬂT,Y . (1.11)

For the case of GR, the ¢' represent the components of the three-metric, g ~
hij(x), the A\* represent the lapse and shift, A* ~ (N(x),N;(x)), and the Tq
represent (Ho(x), Hi(x))- H, is the physical Hamiltonian of the theory, which
for GR vanishes identically, and the structure coeflicients U;’ﬂ depend on g', but
not on the conjugate momenta p;. The Hamiltonian form of the action (1.10) is

invariant under canonical transformations generated by the constraints
6p;i = {pi,*Ta}, 80 = {gi,e*Ta} (1.12)
where €*(t) is a function of time. An elementary calculation shows that if
fA = & —US N - V5 (1.13)

then

?

aT, g ,
88 = [ea < o - Ta>} [ FLL . 1.14
S (114

The action is therefore invariant if €(¢') = €*(#""), uiiless the constraints are linear
in the momenta.
Using the notation z4 = (pi, q', A%), the EPI representation of the wave func-

tion has the form

1

w(g") = [ Dot siETIAG sl ()~ ") (1.15)

The sum is over the class of paths C, restricted by the explicit delta function to

end on the argument of the wave function. G are a set of gauge-fixing conditions,
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with associated Fadeev-Popov determinant Ag [12]. Suppose the theory has an
invariance under z* — z* 48z, where §z* depends linearly on €7, €%, and assume
that
§¢' = e*fi(pirg') - (1.16)

This is clearly satisfied for the constrained Hamiltonian of GR, by virtue of (1.12).
An invariant EPI construction would involve that under the tranformation (1.16),

1) the action changes by a surface term like (1.14), which does not depend on

A% and €%;

2) the class of paths C is invariant;

3) the EPI (1.15) is independent of the choice of G%;

4) the combination of the measure and gauge-fixing terms transforms as
Dz* Aglz?] - Dz* Ag.[z%], Gzt = Glz* + 6.2 (1.17)

5) integrals of the form (1.15) weighted by functions of p; and ¢* on the final

surface are equal to appropriately ordered operators acting on ‘P(q"”), or

(9 11 7!
o —i—,¢" |¥(¢") =
( Zf)qi” q ) (g )
=f DA0(mi(t"), ¢ (2")) 616%1Ag e S6(d' (") —¢") (118)
C

which is true in a time-slicing implementation of the path integral.
Conditions 1), 3) and 4) almost trivially hold. Condition 2) implies that the
Lagrange multipliers (in particular IV ) are integrated over an infinite range [11].
Now, the idea is to translate the integration variables in (1.15) by a symmetry
transformation for which €* is vanishing only close to t" (see Ref. [11]) and find

that

1

¥(q") Z/c Dz §(G°]Ag eSS Ds(g (1) + 8' (") —a7) - (119)
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Subtracting (1.15) from (1.19), using (1.14) and (1.16), expanding in the first order

in € and finally using (1.18), one can deduce that

0N a0 D] g
7. (~z—5;1—;,q) vift (—zaq,,,q) 2 ear=0. w20

For the case of the constrained Hamiltonian of GR, using (1.14), (1.16) and (1.12),
one finally finds the WdW equation (1.8)

T, (-i%,@) T(g')=0 . (1.21)

This derivation of the WdW (and the WdW itself) is actually independent of
whether one takes an Euclidean or Lorentzian theory as the starting point [11].
Since the EPI is not convergent from below (see Section 1.6), it is necessary
to integrate (1.9) along a complex contour in the space of complex 4-metrics and
matter fields. Additional criteria to single out physical wave functions should
be that [#: the wave function should predict classical spacetime on scales larger
than the Planck length (i.e., the contour may be deformed into a steepest-descent
contour for which the imaginary part of the action varies much more rapidly than
the real part), it should reproduce familiar quantum-field theory in the classical
limit, it should predict the vanishing of the cosmological constant. Halliwell, Louko
and others (13 started a program in which they apmplied this idea to a simple de
Sitter minisuperspace model (a FLRW metric with cosmological constant), which
is the simplest nontrivial and exactly soluble model. They determined all possible
contours yielding a convergent PI and solutions of the WdW equation, and found
that the proposal to sum over a given class C of manifolds (for instance the no-
boundary proposal of Ref. [7]) does not fix the contour uniquely. One of the
interesting consequences of a complex contour is also that there can be saddle

points in the PI which have neither Euclidean nor Lorentzian signature. The next
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and truly fundamental task is to implement all these models for more relevant

cases, including matter and going beyond the minisuperspace ansatz.

1.3 Topological fluctuations: the 4-D wormhole

An important and interesting question in QG and QC is that of possible topo-
logical transitions. The idea that one can find a wave functional for the universe
from a path integral over histories for the metric g is closely related to the idea
that spacetime topology can “Quctuate”, at least at the quantum level. This idea
was probably first suggested by Wheeler (14] and later developed by many people,
among which Hawking and some others 11318, Wheeler (14 quotes: “An oscillat-
ing drop of water goes under fission. The topology changes....Before the division,
the surface of the drop constituted a manifold. After the division, it’s again a
manifold....At the instant of division 1s not a manifold. But little attention does
the drop pay to this distinction. It divides, despite all definitions.” and “The field
equations of relativity are purely local in character. They make no statements at |
all about global topology” .

When do topology fluctuations become importantz Consider fluctuations of

the metric about its flat background value
Guv = Mpv + huv (1.22)

where h represents the graviton field. Dimensionally estimating the graviton prop-

agator with a momentum cutoff M, one finds for the fluctuations of the metric

o (gur) = (%—) , o
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(where M), is the Planck mass), telling us that the geometry undergoes significant
fuctuations only at distances of order of 10-33¢m. This is the central idea of the so
called foam-like structure described by Wheeler (14] and Hawking (%], where lots
of “ripples”, “bubbles” and “handles” in the spatial geometry would appear when
using an ideal quantum microscope of Planckian resolution. These strong quantum
fluctuations can also be seen as the consequence of the nonrenormalizability of

gravity.

One should mention that there are still nontrivial problems in mathematically
and clearly establishing many of such ideas. Omne difficulty is that of describing
topology change within the framework of canonical quantization [19]. Another is
the absence of compelling arguments for including topology-changing configura-
tions in a functional integral. There are various theorems stating that topology
change cannot occur in classical Lorentzian GR. In Ref. [20] it was shown that for
any time-orientable Lorentzian metric interpolating between two compact space-
like surfaces of different topology, there must exist either closed timelike curves
or singularities (for ex., a “trouser’s” topology must possess at least one crutch
singularity where the direction of time is ill-defined, see fig. [2]). Enforcing the Ein-
stein’s equations, with some additional local energy ciondition (such as T}, I#1" 2 0

for all null vectors I#), still implies the existence of singularities [21].

On the other hand, it has recently been shown that, in a first-order Lorentzian
formulation of GR (in terms of tetrads e}, and connections wgb), there exist smooth
solutions of GR on manifolds in which the topology of spacetime changes, where
the tetrad becomes degenerate on a set of measure zero, but the curvature re-
mains bounded [22]. This means that one can also have classical topology change,

over and above the standard Euclidean QG case where the process is viewed as a
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quantum tunnelling phenomenon. In this context, for instance, it was shown in
Ref. [23] that real tunnelling solutions of Finstein’s equations (compact Euclidean
geometries joined to a Lorentzian geometry across a minimal surface) with non-
negative Euclidean Ricci tensor can only nucleate a single connected Lorentzian
spacetime. Finally, the possibility of change of signature without tunnelling has

been recently discussed in Ref. [24].

On account of the Geroch no-go theorem [1,20,28] and passing from a classical
to a quantum theory of gravity allowing for topology changes, one usually prefers
to adopt the Euclidean analysis. No singularities are required when the spacetime

is Euclidean.

Therefore, in Euclidean quantum gravity, we can almost naturally speak about
fuctuations. One peculiar kind of these fluctuations is the so-called “wormbhole”

[14]. The literature then provides different kinds of definitions for a wormhole.

Loosely speaking, a 4-d wormhole may be seen as an Euclidean spacetime
where a “tube”, a little closed spatial geometry (a baby universe) splits off and re-
joins a unique large Lorentzian parent universe or links two otherwise disconnected
ones (see fig. [3, 4]). Quantum mechanically, it represents the topology-changing

fluctuation in the ground state of quantum gravity. .

Often, wormholes are more precisely regarded as gravitational instantons, ie.
exact, finite action, solutions (with a closed 3-geometry) of the Euclidean ver-
sion of the Einstein equations [26]. In this case, wormholes can be interpreted as
dominant contribution to the vacuum-to-vacuum tunneling amplitude in quantum
gravity. These instantons, symmetric about some minimum radius, may represent
tunneling events between: a) the same connected or two disconnected asymptoti-

cally flat Lorentzian manifolds; b) one asymptotically flat spacetime and a closed




132 INTRODUCTION

Friedmann-Lemaitre-Robertson-Walker (FLRW) universe; c) one large de Sitter
space at minimum radius and a small closed FLRW universe at maximum radius.
A lot of solutions of this kind have been found, such as that for gravity coupled

(28]

to an axionic field (7}, that for a charged massive minimally coupled scalar ™,

Yang-Mills (29] etc..

Some wormholes are not solutions of the Einstein equations (for instance, the
Tolman- Hawking conformally-flat wormbhole) or are just end points of the action

[30]. Pure gravity wormbholes also exist (31-33]

Much interest has also grown around the properties of the Lorentzian worm-
holes, in particular in the possible perspective of using them as time machines
[34]. Visser (35] stressed the distinction between transient structures (the above
ones) and permanent (i.e. formed ab initio) wormholes. The semiclassical tun-
nelling rate for the creation of a pair of oppositely charged Reissner-Nordstrom
black holes in an electromagnetic field (a Wheeler wormhole) has been studied in
Ref. [36]. Recently, an important result has been found in Ref. [37], ;vhich severely
constrains the analysis of such objects. Even allowing for the existence of closed
timelike curves, it is in fact impossible to construct interpolating spacetimes be-
tween the S° and §! x 52 boundaries of a manifold M which admits a spinorial
structure. In particular, (Lorentzian) wormholes should be created or destroyed

in pairs.

1.4 Wormbholes, black-hole evaporation and the constants of

nature

The first time the concept of a 4-d wormhole in linear Einstein gravity was intro-
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duced and explicitly used was in a paper by Hawking [38] and was related to the

problem of black hole evaporation.

One can think to form a black hole from the collapse of a star made of massive
barions, eventually conserved by a global symmetry. Then, using quantum field
theory (QFT) in curved spacetime, it was discovered [3®) that this black hole
should evaporate. Semiclassical, external-field calculations indicate that the hole
should emit thermal radiation, mainly in the form of zero rest-mass particles, such
as photons, gravitons and neutrinos. The energy carried by these particles out to
infinity will cause the hole to lose mass and get smaller, approaching the Planck
mass. Eventually, one expects that the hole will disappear completely. Even if
the hole can give out massive particles in the final stages, the (possible) massive

remnant which is left will contain only a small fraction of the original particles.

But what has happened to the rest of particles (baryons)? The original idea
(accepting the no-boundary proposal for spacetime [7]) was that they might have
gone off into a little closed universe of their own, i.e. a macroscopic wormhole (see
fig. [5]). Alternatively, the other end of the wormhole can appear as another black
hole, which evaporates giving off the ‘antiparticles’ of the radiation emitted by the

first black hole. .

As already remarked and as it will be discussed in more details in the following,
the possibility of branching off of little closed baby universes from their “parents”
opened a controversial debate upon the introduction of eventual and strange effects
such as an extra degree of uncertainty in quantum gravity (if not a real loss of
quantum coherence- as claimed in Refs. [40,41] -at least a reflection of our lack of
knowledge about the initial quantum state of the universe-as claimed in Ref. [42]),

and the possible final fate of the nonrenormalizability of gravity in whatever more
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general physical theory (such as superstrings).

A new and exciting period in the study of these topological features arose when
Coleman [*3, essentially developing a previous idea by Baum (44] and Hawking (81,
suggested a mechanism for the vanishing of the low-energy effective cosmological
constant (including the renormalizations from all interactions at all orders), a long

time outstanding and fundamental problem of cosmology and particle physics.

Coleman considered a multiuniverse theory where disconnected large smooth
universes may actually be connected by small wormholes, of typical size not much

greater than the Planck one.

The idea is to integrate out wormhole fluctuations to obtain an effective field
theory with a short-distance cutoff given by the wormbhole size. This effective the-
ory turns out as a superposition of “superselection” sectors not communicating
with each other through any local physics and labeled by an infinite set of param-
eters a (similar to the 8 vacua angle of QCD), each for any given wormbhole kind.
In each sector, both bare and renormalized couplings of the effective theory are
functions of o, and the superposition of a-dependent effective theories is described
by a probability distribution that is sharply peaked (exp (exp (s—i%‘"\:))) at A = 0.
In other words, the coupling constants of nature bécome dynamically determined
quantities and are affected by an intrinsic (statistical) indeterminacy; our universe
is chosen at random from an ensemble of possible universes (a priori with different
values of the couplings), but whose probability distribution is peaked at a fixed

set of the constants.

A lot of subsequent papers were therefore devoted to the effort of determining
or at least giving reasonable bounds to the other relevant physical couplings, such

as the gravitational constant @, the masses of the scalars, bosons and fermions
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presently known in particle physics (the so called “big fix”).

At present, a lot of issues appear stil unclear and debated. First of all,
in these theories one must carefully consider the problem of defining a conver-
gent measure in the path integral, and the existence of gauge simmetries ( BRST
conserved charge...). Another critical point is the nonexistence of a well-defined
Fuclidean theory of gravity; as it is well known the Euclidean gravitational action
is not bounded from below. Moreover, as pointed out in Ref. [45], in all these
theories there seems to be a bit of a confusion about the correct interpretation
and use of the concept of probabilities (a priori, conditional, weighted 7), the dis-
tinction between transition amplitudes (as Coleman’s path integral seems to be)
and expectation values for observables in our own universe etc.. Neither the so-
called giant wormhole puzzle, the fact the EPI derived peak for A also leads to
a catastrophic number of macroscopic or even cosmically large wormbholes, hard
to reconcile with the well-tested successes of local field theory in describing low ‘
energy physics, has yet been resolved [30], [46-48]. A lot of other problems still
remain, such as the normalization of the infrared divergent measure in the proba-
bility distribution, the effect of the addition of nonlinear terms in the gravitational
lagrangian, the actual existence of a path integral contour enclosing all wormhole
saddle points and the latter’s dominance in the path integral itself, the effect of
wormhole interactions, the claimed existence of an additional quantum prefactor
iP*? (in a D-dim spacetime) destroying the Coleman’s peak at A = 0 (9] and

finally the identification of the true ground state for the quantum gravity.




17 INTRODUCTION

1.5 A new set of wormhole solutions

A new interesting class of exact, semiclassical, asymptotically-flat instanton so-
lutions can be found considering the Finstein equations for a homogeneous and
isotropic model described by a perfect-fluid equation of state [50,51]. These worm-
holes may be understood as analytical continuation of closed expanding universes
at maximum radius, and they exist only if the matter source obeys the strong-
energy condition p+ 3P > 0, exactly complementary to the inflationary universes.
For every classical solution in standard cosmology with closed spatial geometry
and obeying this condition there is a wormhole solution. Wormbhole solutions of
Hawking (8 and Giddings and Strominger 17l can be recovered. By extending
these ideas to the case of a Quantum Field Theory (QFT), one can also construct
wormholes that are analytical continuation of closed expanding universes driven
by a minimally-coupled scalar field. It is possible to show that, for the wormhole
solutions to exist, one must analytically continue to the Buclidean regime either by -
an asymmetric Wick rotation of the lapse function in the matter and gravitational
part of the action (this was originally proposed in Ref. [52], in order to obtain the
tunnelling wave function as a possible initial state for the inflationary universe),
or by an asymmetric Wick rotation of both the lajpse and the scalar field (51}, In
the latter case, one finds that both the Euclidean and the Lorentzian fields appear
as real functions in their respective domains of definition. The wormbholes have a

nontrivial potential term (which can be explicitly calculated), do not possess any

conserved charge and, in general, the sign of their action is not positive-definite.
Periodicity of the wormhole metric in the Euclidean time is interpreted as an evi-
dence that wormboles of a size ag have a finite temperature T ~ 1 /ap. This may

be related to the Hawking’s idea about the role of wormholes in the evaporation
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of black holes. Finally, calculation of the one-loop approximation to the Euclidean
QG coupled to a scalar field around these classical wormhole solutions shows that
the Buclidean partition functional Zggc in the “little-wormhole” limit is real. It
is also possible to extend the wormhole solutions to the case where a bare cosmo-
logical constant is also included. The new solutions represent either the Euclidean
nucleation of closed expanding universes at the minimum radius (p + 3p < 0), or
Fuclidean instantons connecting a ‘baby’ universe at the maximum radius to a
large de Sitter sphere at its minimum radius (p + 3p > 0). Detailed study of the
case of a (p + p = 0) sphere S% can lead to the elimination of the destabilizing
effects of the scalar modes of gravity against those of the matter. In particu-
lar, in the asymptotic region of a large 4-sphere, one can recover the Coleman’s
exp (exp (;:};;)) peak at the effective cosmological constant Aers = 0, with no

phase ambiguities in Zgqg-

1.6 A way out of the conformal unboundedness: the 5-th.

time theory

One of the most important and not yet solved issues in QG and QC (together with
the need of a consistent regularization scheme, the fixing of the ‘right’ boundary
conditions and of a proper measure for the EPI) is the so called ‘conformal prob-
lem’. The Einstein-Hilbert action for gravity is unbounded from below, and the

EPI quantization is, at present, only a formal technique.

Gibbons, Hawking and Perry (53] first proposed to split the EPI into a sum
over conformal equivalence classes and a sum over conformal factors in each class.

If the integration over conformal factors is rotated to lie parallel to the imaginary
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axis, the EPI measure for pure gravity is normalizable. Unfortunately, one does
not know how to implement such a prescription when a general kind of matter s

included in the action.

The usual approach of QC is that based on the Hartle proposal (34 (see
Section 1.2), according to which the EPI should be calculated along the ‘steepest-
descent’ path in the space of complex 4-geometries and matter fields. It is then
generally assumed (but not proved ) that special complex contours exist along

which the conformal part of the action can be made convergent.

Further different approaches have been proposed. In Rel. (55] it was shown
that the EPI for both the linearized and perturbative gravity can be made conver-
gent when given in terms of the ‘physical’ degrees of freedom. On the other hand,
Mazur and Mottola 8] constructed the EPI measure generalizing the covariant
methods used for string theory, leading to a nonlocal field redefinition and to a
nontrivial Jacobian factor which renders the linearized conformal perturbations |
into non-propagating, constrained modes. Finally, various authors 7789 have
proposed to abandon the Euclidean point of view and to regard the Lorentzian
approach to the path integral as the more fundamental one. This policy is mainly
motivated by the observation that the interference effects (which are the most
significant features of a quantum theory) may not be evident in the Euclidean
context, and that the Lorentzian Path Integral (LPI) should not suffer (at least
formally) from the conformal divergence, because the effect on the measure e'S is
essentially independent of the sign of the kinetic terms [57]. Numerical approaches
(the so called ‘density of states reconstruction’ methods) of evaluating LPI from

Monte Carlo simulations have also been proposed [59].

Most recently, the ‘5-th time’ method has been proposed [61]. The basic idea
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is to construct a stabilized theory where the Boltzmann factor e™° is substituted
by a normalizable factor e~Ses1 which is the ground state of an underlying 5-
D quantum theory with the same classical limit as the starting 4-D theory. For
the case of scalar-field theories, the stabilized action has the same perturbative

expansion as the original (unbounded theory).

In the case of 4-D gravity, it is possible to show that the stabilized action
flips the sign of the conformal Kinetic mode and is nonlocal in the interaction
terms (similarly to Refs. [55,56] ). Moreover, Green functions of the 4-D theory
can be computed from a D=5 functional integral, whose 5-th time action (Ss)
is local, diffeomorphism invariant, bounded and directly suitable for numerical
simulations on discretized manifolds (contrarily to Refs. [55,56] ). By considering
a first order (Eins’cein—Cartan) formalism for gravity, it is also possible to show
that the stabilized theory is reflection positive and does not violate unitarity 12
It can also be shown that the 5-th time stabilized QG is actually equivalent to
a stochastic quantization with a Langevin evolution between fixed, non singular,

imitial and final states. This appears to fix also the EPI integration measure and

a particular operator ordering for the 5-th time QG [63].

An important result which helps explaining the physical meaning of the 5-
th time formalism has been recently found in Ref. [64]. In particular, one can
show that, at the semiclassical level (A — 0), one still has as a leading saddle
point the S§* solution and the Coleman peak [43] 4t gzero cosmological constant.
At the quantum (one-loop) level the scalar (conformal) gravitational modes give
a positive semidefinite Hessian contribution to the 5 D partition function, thus
removing the Polchinski ambiguity [49]. These results have also been confirmed in

the context of the 5-th time formulation for a first order gravity, both by numerical
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calculations on a discretized manifold [°%], and by explicit evaluation of 55 around
a §* sphere [65] (although in this case the Coleman peak appears as a quantum
one-loop effect). Finally, new interesting information has been found by the WKB
analysis of the Fokker-Planck (FP) functional equation (the analogue of the 4-D

WdW equation) which is naturally associated with the 5-th time action [66].

1.7 An exact theory of gravity: strings and black holes

Recently, an extremely interesting insight and probe into some of the fundamental
aspects of string-theoretical models and their relationship with the low-energy
QR effects has come from the detailed analysis of 2-D (approximate and exact)
cosmological and black-hole solutions and the construction of conformal theories
which describe propagating strings into 4-D (effective) cosmological and black-hole

backgrounds.

An exceptional ‘laboratory’ for testing some of the basic and yet unsolved
puzzles of the quantum theory of gravity is the physics of black holes. One might
have believed that, because of the short-distance (ultraviolet) behaviour, there

would be no classical singularities in string theory. Actually, the possibility of

forming spacetime singularities as strings propagate through gravitational shock
waves has been first discussed in (67]. More recently, Witten (08 constructed an
exact conformal theory, SL(2, R)/U(1), with a two-dimensional target space which
admits a Schwarzschild (S) black hole solution. The scattering of strings in the
background of the 2-D Witten hole has been studied in Ref. [69].

Classically, general relativists generally assume the existence of the so-called

‘cosmic-censorship’ hypothesis, according to which ‘naked’ singularities should
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never form from acceptable initial data. This hypothesis might be false for the
(classical) string black-hole vacua, since there is a duality in the conformal field

theory which might exchange the black hole with the naked singularity.

Quantum mechanically, the fundamental work by Hawking (39] showed that
an isolated black hole should radiate with a thermal spectrum until it reaches
a quantum ground state or it disappears completely. This might also imply non
unitary evolution. If initially the matter is in a pure quantum state and it collapses
to form a black hole, which then evaporates, in the process the pure state has
apparently evolved into a mixed state, described by the Hawking radiation B, A
key problem of the quantum mechanics of black holes is to describe this endpoint.
It is expected that such an issue can be addressed in more details in a simplified

(lower-dimensional) model, where one has to deal with fewer degrees of freedom.

Analysis of the 2-D black-hole sigma model of Witten showed that the possible
fnal state of the Hawking evaporation should be the flat space of Liouville theory
coupled to a linear scalar (dilaton) field. This induced to infer that the final
state of a corresponding 4-D black hole should be a degenerate, extreme Reissner-

Nordstrom (RN) solution (s8],

Simnilar arguments have been questioned in the dnsatz of 1+1-dimensional
models of QG coupled to conformal matter and a dilaton (7%, showing black-hole-
vacua solutions. The problem of Hawking’s radiation is treated semiclassically,
but taking into account the backreaction of the metric. Initial claims that the
black hole would completely evaporate without leaving any singularity have been
questioned by the discovery of a singularity produced by the dilaton field, which
should show up as the evaporation proceeds [71]. Recent work suggests either

that the black hole would end up with a naked singularity which should spread
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out to future infinity as a ‘thunderbolt’ , or that the semiclassical approxima-
tion should break down [72,73]. Other possibilities, such as that the Hawking
process leaves behind a stable massive remnant carrying the initial information
of the system, and thus preserving quantum coherence, have also been disputed
in Refs. [74,75] . The issues of information loss and the evaluation of the ther-
mal density matrix for the black-hole solutions of Ref. [70] have been discussed in
Refs. [74,76,77] and Ref. [78]. At present, the initial enthusiasm about the hope
of finally clarifying the ‘puzzles’ of black hole physics has slightly decreased, and

many aspects of the theory still appear uncertain and under an intense debate.

The analysis of (effective) string black-hole solutions in 4-D has also shown a
new, unexpected, behaviour with respect to the standard GR models. One of the
conceptual (unresolved) tensions between different aspects of the (classical) black

hole physics is the following.

On the one hand, ‘no-hair’ theorems in GR essentially indicate that black
holes have no degeneracy at the classical level: for each value of the mMacroscopic
mass (M), charge (@) and angular momentum (J) there is a unique classical hole
configuration (for a review of GR no-hair theorems for nonrotating and rotating
holes and the case of the coupling with an Abelian U(1) field, the minimal coupling

to massless scalars, massive bosons and fermions, see Ref. [79]).

On the other hand, their response to external perturbations is dissipative.
The extreme (@ = M) RN black holes have zero temperature but finite entropy,
apparently representing a (large) number of internal degrees of freedom, which

could be excited by the scattering of an external probe.

Another tension is between the theoretical description of elementary particles

and black holes. If the former can have a lot of internal quantum numbers and
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have a quantum-mechanical, unitary, evolution, the latter are constrained by the
‘no-hair’ theorems and essentially have a thermodynamical description. Yet, a

sufficiently heavy particle (m > M) should be at the same time a black hole.

Effective (4-D) string theory provides a large set of new black-hole solutions
where such issues are seen in a different perspective. Black-hole solutions with a
non-trivial, long-range axion, dilaton and electromagnetic field coupled to grav-
ity have been discovered (see Section 5.2) , thus drastically weakening the limits
enforced by thé ‘no-hair’ theorems of GR. Moreover, it has been shown that a
thermal description may be inadequate for extremal black holes®%l. In particular,
extreme holes of the dilaton family can have zero entropy but nonzero (or even
divergent) temperature. This also leaves open the question whether the extreme
black hole is really the final stable state of the quantum evaporation or if the hole
gctuaﬂy decays towards lower-energy states. Perturbative analysis around the ex-
treme solutions shows that these holes are in fact protected by ‘mass gaps’, which
remove them from thermal contact with the external world. These holes would

seem to do their best to behave like normal elementary particles [81],

1.8 Stability and thermodynamics of a WZW model

A lot of 4-D stringy black-hole solutions can be found now in the literature. For

a more detailed review, I refer to Section 5.2.

A new interesting 4-D black-hole solution has been recently found by gauging
an exact conformal quantum WZW model built on a coset manifold [82]. The
black hole carries an axion charge @, and has mass M. For Q. < M it has a

curvature singularity at the origin of (radial) coordinates, r = 0, an outer horizon
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at 7 = M and an inner horizon at r = %, but, contrarily to the standard RN
solution of GR, it is timelike and lightlike geodesically complete. In the extremal
limit Q, = M the hole has zero temperature and entropy, while the standard
gravity solution has zero temperature and finite entropy. It is possible to show
that the thermodynamical and semiclassical description break down for extremal
holes independently of the mass, again in contrast with the RN case. If one studies
the stability of the solution under perturbations of the metric, the result is that
the black hole is stable only in the extremal limit Q, = M [83]. Analysis of the

scattering of an external (scalar) field also shows that these extremal holes actually

develop a finite mass gap, since the modes impinging the horizon with an energy

below a critical threshold are completely reflected to infinity.

Ome can then consider the effect of vacuum polarization around these axionic
holes [84]. In the extreme limit (Qqa = M) the lower limit on the hole mass to avoid
polarization of the surrounding medium is M > (1071 + 10~ )m,, according to -
the assumed value of the axion mass (m; is the proton mass). This limit is by far
much weaker than the usual bounds for charged GR-holes [85]. In this case there
are no upper bounds on the mass due to the absence of the thermal radiation
by the hole. In the nondegenerate (classically unstable) limit, the hole always
polarizes the vacuum, unless the effective cosmological constant of the stringy

action diverges.

All these results further support the intriguing conjecture that the extremal
stringy black holes actually behave like elementary particles and might be the
stable quantum ground state of the underlying theory (and the endpoint of the .

Hawking radiation).
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1.9 Summary of chapters’ content

The main arguments of the thesis will be discussed and organized in the following
way.

In the second Chapter I give a brief review of some of the main features of the
wormhole theory, recalling classical and quantum solutions, existence theorems,
the arguments for the solution of the ‘cosmological constant problem’ and the
possibility of fixing the couplings of nature (Sections 2.1 and 2.2). Sections 2.3
and 2.4 briefly outline some of the major difficulties related to the wormhole theory
(the conformal unboundedness, the giant wormholes, the infrared divergence in the
a—meas‘ure, etc..), the construction of the wormhole effective-vertex and, finally,

the generalization to the 37¢_quantization models.

Chapter 3 is original and contains the results of the research about a new
set of exact wormhole solutions (50,51,86] | T first outline the main ingredients which
lead to the existence of the wormhole solutions driven by the bulk matter and
construct the geometry for the case of a simple minisuperspace ansatz (Section
3.2). Then I show how to extend these solutions to the case of a QFT with
a scalar-matter content, and I discuss two possible proposals for the analytical
continuation to the Euclidean region which is necessary to have the wormholes
(Section 3.3). Sections 3.4 and 3.5 are devoted to the explicit construction of
the scalar-field-driven wormholes in a Robertson-Walker ansatz and introduce the
notion of their finite temperature. Generalization to the case when a cosmological-
constant term is included in the action is discussed in Section 3.6 Finally, I describe
the one-loop results which support the quantum consistency of these wormbhole
solutions (Sections 3.7 and 3.8) and show how to recover the Coleman’s peak at

zero cosmological constant without phase ambiguities in the EPI (Section 3.9).
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The first Section of Chapter 4 gives a short description of the problem of the
conformal unboundedness for gravity and of some of the possible ways out proposed
in the literature (but see also Section 1.6). In Section 4.2 I review the formalism
of the ‘5-th time’ for stabilizing bottomless Fuclidean theories, summarizing the
main properties for the case of a simple scalar-field model and giving the basic
formulas for the case of Einstein-Hilbert gravity. The following Sections (with
the exception of Section 4.4, where I mainly review the results on the claimed
equivalence between the ¢5_th time’ and the stochastic-quantization theory) are
original [64,66] ] first describe the case of a simple minisuperspace ansatz for
the Einstein -Hilbert gravity and show how the ‘5-th time’ prescription effectively
stabilizes the theory at one-loop against the quantum-field fluctuations (Section
4.3). Similar methods are extended to the case of the Coleman ansatz for the
solution to the cosmological-constant problem and show that the peak at A =0
survives in the ‘5-th time’ stabilized gravity, but without the phase ambiguities due
to the metric Weyl modes at one-loop (Section 4.5). Finally, in Sections 4.6-+4.8,
1 discuss the main features of the FP wave functional equation associated with
the ‘5-th time’ formalism and its possible solutions, specializing to the case of
a simple minisuperspace ansatz and by looking at the Fourier decomposition of
the wave operator and at WKB results. In parti¢ular, in Section 4.8 I construct
the Legendre transform of the WKB, effective, ‘5-th time’ action and study its

properties in the one-loop approximation.

Then, in the first Section of Chapter 3 I present a short introduction to some
of the main features in the (super)string theory of gravity, by focusing on the
construction of the effective, 4-D models which replace the standard Einstein GR.

In particular, in Section 5.2 1 briefly describe some of the main black-hole solutions
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which can be derived from these effective string theories. The following Section
is intended to review some basic results about the thermodynamics of the stringy
black holes, by focusing on the existence of new kinds of classical and quantum
hair, the breakdown of the statistical description for extreme black holes, and the
intriguing possibility that extreme holes actually behave as elementary particles.
The remaining Sections are again original (83.84] Tn section 5.4 I introduce the
WZW model leading to the charged axi-dilaton black hole and discuss its main
properties, with attention to the thermodynamical behaviour, and writing down
the equations for the linear perturbations around the classical solution. In Sections
55 and 5.6 I examine the axial and polar perturbations, and show that the WZW
4-D black hole is stable only in the extremal limit. Analysis of the scattering by a
test field (Section 5.7) reveals the existence of finite mass gaps around the black
hole. I conclude the Chapter by discussing the polarization effects caused by the
black hole on the surrounding vacuum.

A brief discussion about the possible prospects of the main themes tackled in

this thesis is finally given in Chapter 6.




Chapter 2

Wormbholes: a survey

2.1 Existence theorems and main solutions

Some theorems have been quoted about the conditions for the existence of gravi-
tational instantons. It is known that there are no asymptotically-flat solutions of
the Einstein equations with zero energy or Ricci flat except flat space (Shoen and
Yau, 87). This theorem excludes, for example, processes such as that from flat
R3 to any connected but topologically nontrivial 3-manifold N, or the tunnelling -
R® — R3.

(27]

An important theorem was then stated by Giddings and Strominger using

the result of a previous work by Cheeger and Grommol (2%

Th.: Given an asymptotically-flat 4—geometr§,r with n > 1 compact interior
boundaries with vanishing extrinsic curvature, the Ricci tensor always has some
negative eigenvalue somewhere.

One may now think of an instanton describing a tunnelling from R? to the
disconnected R® @ S° (see fig. [6]). Since the 5% boundary is a minimal surface
(i.e. it has vanishing extrinsic curvature), this rules out, then, such instantons in

theories for a pure-gravity case or for gravity minimally coupled to a scalar field,

for which Ry, = V,¢V,¢. However, for instantons provided by antisymmetric
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tensor fields, such as the axion and the electromagnetic ones, or for a complex

matter content, a solution is expected to exist (27,89,90].

Another interesting paper by Jungman and Wald (°% states some nonexistence
results for Euclidean instantons with gravity and matter fields satisfying appro-
priate fall-off conditions (matter fields going to zero at infinity at a sufficient rate
to ensure that the matter action is finite and the boundary term of matter action
asymptotically vanishes). With these assumptions, it is shown that no instanton
solutions exist for conformally- or scale-invariant matter fields. Moreover, also for
nonconformally invariant cases, the matter equations alone rule out solutions for
a scalar field ¢ with potential V satisfying the condition qﬁ%% > 0, such as a free

massless minimally coupled Klein-Gordon field.

Historically, the first known examples of 4-D asymptotically Euclidean grav-
‘tational instanton solutions can be found in the papers by Horowitz, Perry and
Strominger [°?! and by Strominger (93], They considered the kmodel of a con-
formally invariant quantum theory of gravity and for which a set of nontrivial
topological configurations was recovered.

However, the first papers introducing an explicit wormhole solution in “canon-
ical” Einstein gravity are due to Hawking (38] and Giddings and Strominger (271,
In the last years, then, new papers dealing with new solutions or slight mod-
{fications of old ones have been published. Semiclassical gravitational instan-
tons have been found, in minisuperspace models, joining two asymptotically-flat
manifolds (27:2838] [94=97 ap asymptotically-flat space with a closed FLRW
universe [50,98,99] and a de Sitter space with a closed FLRW or another de Sitter

space [20] [31—33] [100-105]

The Hawking solution (38] represents an asymptotically-flat wormbhole solution
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for a metric that does not satisfy the Einstein equations and whose relevance

in quantum gravity (i.e., in the evaluation of the EPI) is still not so clear (see

also Section 3.2). The Hawking wormhole has been reproduced by Gonzales-
Diaz 33, but in a slightly different context. The interesting idea is to comsider
pure gravity with a cutoff in the scale factor, essentially motivated by the expected
impossibility of measuring the position or size of any object with infinite precision
in a quantum context [106]. In Chapter 3, I will show how one can reproduce the

same wormhole from a simple classical solution in standard cosmology with the

closed spatial geometry and equation of state p = £.

Other wormhole solutions have been found for different matter contents. Gid-

dings and Strominger (27] and Myers [104] for example, studied the case of gravity

minimally coupled to an antisymmetric tensor field representing an axiom. The

7],

case of a minimally-coupled charged scalar feld has been considered by Lee

Coleman and Lee (28], Abbott and Wise [94] and Midorikawa [19%. Hosoya and .

Ogura 1*°] and Rey [105] described the case of a SU(2) Yang-Mills field and Hal-
liwell and Laflamme 192 that of a conformally-coupled scalar field. Dowker (8]
studied the case of a wormhole driven by an electromagnetic field. Non lin-
ear gravity wormhole instantons have been studied by Fukutaka, Ghoroku and
Tanaka [*2], Bertolami (31] and, by Coule and Maeda (100] in the context of a theory
also containing scalar and axion fields. String wormhole solutions can be found in
Refs. [100,107] . Other authors have described instanton solutions for a combina-
tion of the previous cases (see, for example, the very interesting and cosmologically
relevant papers by Lavrelashvili, Rubakov and Tinyakov (98] and Rubakov and

Tinyakov (®°, for gravity coupled to an axion and a scalar field). More recently,

Hawking and Page (°* and Campbell and Garay [108] gtarted a detailed inves-
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tigation about the existence and properties of full quantum wormbhole solutions
subject to some asymptotic boundary conditions. For a detailed review of the ba-
sic properties of the most significative classical and quantum wormhole solutions

that have been described in the literature, I refer to my M.Sc. thesis [109].

One of the most striking features shared by almost all of these works quite
evidently appears to be the following: the presence of some (global) conservation
law (i.e. a current, a charge) seems to be crucial for the existence of such instanton
solutions. For instance, in the axion model presented by Ref. [27], the existence
of & conserved axion current flowing down the wormhole which locally defines a
pseudoscalar field is essential to give a stress tensor with negative eigenvalues. In
particular, in order to get the “appropriate” Euclidean equations of motion, one
must a priori properly fix the sign of the axion field strength in the action and,
only after continuation to the Euclidean space, substitute it by the pseudoscalar

feld. If one does the opposite, the instanton solution does not exist.

Also for the case of the charged scalar field treated in Ref. (97] and Ref. [28] the
existence of a conserved charge is determinant for the existence (and the stability)
of the wormhole solution. While in Ref. [97] this is used directly in the variational
principle, in Ref. [28] it is used to project the transition amplitude given by the
EPI on states of definite charge and to fix appropriate boundary conditions. In
Ref. [28], moreover, in order to get a real stationary point in the EPI, the phase of
the field is rotated into an imaginary value (this should be related to the problem
of choosing a good contour of integration for the determination of the EPI). In
both cases, however, the conservation equation leads once again to a change in
a relative sign in the Euclidean action, which is fundamental to get a solvable

Euclidean classical equation. In effect, it has also been shown that the instantons
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found in Ref. [28] represent nothing but a more general class of wormhole solutions

which includes the axion model of Ref. [27].

Essentially, the same conditions (a proper a priori choice of the initial sign of
the kinetic term in the Euclidean action, the existence of a conservation equation
for the gauge field) ensure the existence of the Yang-Mills wormholes. All these
models show in addition the presence of a stress-energy tensor with at least one
negative eigenvalue, and therefore satisfy the condition stated by Ref. [88] for the
existence of wormhole instantons. This also holds for the nonlinear gravity and

conformal scalar-field theories.

A lot of these papers (with perhaps the exception of Ref. [27] and Ref. [102)),

appear not to pay a detailed attention to the problems connected with the analytic

continuation of the equations for the wormhole instantons into the Lorentzian
space. As I will show in the next chapter, devoted to the discussion of a new,
more general, class of solutions which I recently found (50,51]  this is actually noE
a simple task, and might be connected in the end with the problem of giving a
correct definition of the Euclidean formalism and of the methods of integration for
the EPL In the same context, I will also show that the set of wormhole solutions
found so far should be easily reproduced without the need of any global conserved
charge and the imposition of the related boundary conditions. In this sense, these

solutions might appear more general.

To complete the set of new interesting solutions, I just include Ref. [110],
whose authors considered the case of a coupling between gravity and a scalar field
of the type £R¢*, with a non-trivial coupling ¢ # 1/6. The existence of such
solutions is guaranteed by the negative-eigenvalue theorem (88] provided £¢* > 1,

if ¢ is real, or £4? > —1 (and for any reasonable, also negative, value of £),if ¢ is
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purely imaginary. In the first case wormhole solutions exist for any ¢ > 0, provided
one adds an extra potential term V(¢) with a negative coupling constant in order to
avoid large regions where the effective gravitational constant, Gess = G(1-¢£¢%)7 1,
may become negative. Another set of conformal wormholes (with SU(2) gauge

fields and ordinary conformal scalars) has been studied in Ref. [111].

Wormholes have been found also in a 1/N expansion scheme of higher-

derivative gravity, where loop corrections from a large number () of matter fields

are included in the action [112].

Wormhole solutions in a local scale-invariant theory of gravity coupled to
a scalar and a scale gauge field, in Lovelock gravity and in gravity coupled to

Yang-Mills and axion fields can be found, respectively, in Refs. [113-115].

New quantum wormhole states have also been considered in Refs. [116,117] ,
and in a locally supersymmetric theory in Ref. [118]. These might be interesting -
in the respect that supersymmetry may eliminate the Planckian effective masses

induced in a non-supersymmetric theory due to wormbholes.

Finally, a new set of scalar-field-driven solutions without any global conserved
charge has been recently discussed in Refs. [119,120] and Ref. [121]. In Ref. [120]
an explicit solution was found for a single real massive scalar field. The unusual
feature of the wormhole is that the scalar field is imaginary in the Euclidean
region. The initial and final states of the field at the two ends of the wormhole are
eigenstates of its momentum, which is no longer a conserved charge. Extension to
the case of a self-interacting scalar field with no global conserved charges has been
analytically treated in Ref. [121]. Numerical wormhole solutions of similar kind,
for an imaginary (Euclidean) scalar having a quartic potential, with and without

a quadratic mass term, are due to Page and Twamley (1191, Such solutions may




35 WORMHOLES: A SURVEY

have negative action and thus dispel a conjecture of Ref. [122] concerning the sign
of the action for wormholes with Re /g > 0. This might also seriously undermine
current proposals to solve the ‘large-wormhole’ problem (see below). I will consider

these points in the next Chapter.

2.2 Do wormholes fix the low-energy couplings 7

When Einstein first tried to apply GR to cosmology (123] not yet aware of the
Hubble expansion law of the Universe, he did look for a static model. However,
this assumption was not compatible with his original equations, and he was obliged
to introduce an extra free parameter A, the cosmological constant. This enters the

Einstein-Hilbert action functional as

v R
4
= - - - matter 3 1
I /dm\/ g( e A+ Lomatt ) (2.1)
and gives the equation of motion
1
R,, — j?-g“,,R = 87 G(Tyy + Aguy) (2.2)

where T}, is the stress tensor, R, the Ricci curvature tensor, G the gravitational
constant, g, the 4-metric and g its determinant. This also admits static solutions,
though they are unstable, as firstly shown in Ref. T124]. Even if the cosmological
constant was no longer necessary after Hubble’s fundamental discovery, and even if
after it was rejected by Einstein himself, it was not easy to drop the A term, because
anything contributing to the energy density of the vacuum acts as a cosmological
constant {125].

From Lorentz invariance, the vacuum expectation formula for T}, of the vac-
wum should be, in fact,

< Tuu >: - < p > guy 3 (2-3)
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where < p > is the vacuum mass density. Putting this into eq. (2.2), it has the

same effect as introducing an effective cosmological constant or vacuum energy
Aess =M+ <p>=pv . (2.4)

Assuming the hypothesis of homogeneity and isotropy of the Universe (supported,
e.g., by the observation of the cosmic-microwave background and the spatial
galaxy-correlation function), the time-time component of the Einstein equation

now becomes

N 2
a k. 8rG
-] ==t A) . 2.5
(8) =-5+ 50+ (25)
Therefore, estimating the present expansion rate as, %‘o = H, ~ (50 —

100)kmsec‘1Mpc“1 , since one does not see strong effects of the spatial curvature

(EI% < H?), and assuming that the total mass density p is not much different than

2
H,
g

%), from eq. (2.4) one obtains the upper

its critical value (Jp— < p>|<p < g
bound
H? , .
|Aess] < é}'é ~ 1074 GeV* . (2.6)
However, this immediately appears to be in conflict with the usual expectations

of Quantum Field Theory. For example, if one considers a free massive (m) scalar

field (¢) theory with Lagrangian
1 1
L= —2—(8¢)2 - imzéz , (2.7)

it is easy to find out that the zero-point energy summed over all normal modes,
introducing a wave-number cutoff M, ~ 101°@eV (if one believes GR up to the

Planck scale), is

My Ank? M,
<p>= / dk Vi +m? ~ —2 ~107GeV* . (2.8)
0 (2m)? 167
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Therefore, the two terms in eq. (2.4) must cancel each other to better than 121
significant places to satisfy the observational bound of eq. (2.6)! Moreover, one
has also to add infinite corrections to < p > coming from the field interactions, and
the bare constant A would have to be fine-tuned at each order of the perturbation
theory. This is the well-known problem of fine-tuning for A: it seems a miracle that
microphysics should be fine-tuned so precisely throughout all the phase transitions
in the cosmological history, so that now the Universe can be big and flat and the
macroscopical Aggp = 0. Symmetries are of no help, since they are all expected to

be broken at low energy (for a nice review, see Ref. [126]).

A way out of the problem of the cosmological constant within the formalism
of QG was suggested in a paper by Hawking (18] who studied the saddle-point
approximation (dominated by large 4-spheres) in EPI gravity where A is a positive
effective dynamical variable. He showed (explicitly using an ad-hoc 3-form field)

that the probability of a given configuration is exponentially peaked at A = 0, like

exp (2%).

A similar method was used by Baum (441 to recover the same peak at
A = 0, but he did not mention the role of topological fluctuations and studied

a minimally-coupled scalar field to make A dynamical.

However, the first detailed study and theory about the effects of wormbholes on
gravity, A and the other coupling constants is due to Coleman [(*3. The analysis
is essentially semiclassical and, assuming that the EPI is correctly represented by
the HH wave function, it shows that our universe should be selected out from a
probability distribution which is peaked at A = 0. The argument is constructed,
however, on a certain number of (semiclassical) hypothesis which appear, if not

debatable, at least unclear.
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Therefore, to be specific I follow the more general approach by Banks,
Klebanov and Susskind (!?7) (another interesting discussion can be found in
Refs. [29,128] ). The main assumptions of the analysis are the same as in Ref. [43]:
use of the EPI for QG; integration over all compact topologies, focusing on large
spherical universes, eventually connected by tiny wormholes; use of the “dilute ap-
proximation” (wormholes’ average space-time separation much greater than their
size, Ly ~ M 1); wormholes have no characteristic length, and those much thicker
than M, ! are neglected. Moreover, one neglects the possibility that a wormhole
can divide into two or more and assumes no interactions among them, but only
with the low-energy fields in the large regions.

At first one can focus on a single universe with no wormbholes. For the expec-
tation value of some local gauge-invariant observable M in a single universe, one
can tentatively assume

fdgewf(g,f\)M
f dge“I(Q;’\) ’

< M >i= (2.9)

where all the couplings are collectively indicated by ), and g represents the metric
and the other local fields. I is the action functional.

If one lets ¢i(z) be a basis for local operators at an event z, in an effective
theory at L > L., the effect of a wormhole connecting two points z,z’ of a single
universe can be assumed to be represented by the insertion of the bilocal action

(see Section 2.3.2)
> Cispi(z)¢(') (2.10)
ij

in the integrand of the path integral (e.g., the numerator of eq. (2.9)), where
Cij ~ ¢S is the amplitude for a wormhole insertion, and S, is the wormhole

action. C;; does not depend on spacetime, at least when the two points = and
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' are far enough: this is because of the assumption that wormholes short-circuit

spacetime and have no characteristic length. Thus, the numerator of eq. (2.10)

would be replaced by
fdg ]er_j(g"\)% / dede’ Z Cijgbi(m)gbj(m’) . “ (2.11)
ij

This process can be represented by a picture in which a line connects z and @’

(see fig. [7]). The integrations on z and z' are to take into account all possible

locations of the wormhole ends on spacetime.
Now consider the sum over any number of wormbholes, as in fig. [8]. If the
wormholes are considered independent of one another (because of the dilute ap-

proximation ), it is easy to see that a N wormhole contribution factorizes in the

integrand of eq. (2.11) as

[ dode' T, Cyi(2)oi()
( i ) , (2.12)

where the N! compensates for overcounting identical wormholes. For an arbitrary

wormhole configuration one has to sum over N, and eq. (2.12) exponentiates

giving
RNELED Cijbi(z)¢ifz") (2.13)

One can make use of the identity
G%C;ﬂﬂ-‘} ~ /deake—*%Dumaje——sz , (2_14)

(where the a are arbitrary parameters and Di; = Ci? is the inverse of Cj;) and

obtain for the matrix element

/deake—%D""a‘"a" /dg Me”I(g’A)e"a‘fdw'(x) . (2.15)
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If the ); are the coefficients of [ dzg; in the Lagrangian, one can write eq. (2.15)

as

/deake”%D“a"o‘j fdgMe“I(g’A+a) , (2.16)

where

I(g,A\+a)= (A + a;) ] deg; +I'(g) - (2.17)

Similarly, one can consider to take into account processes involving additional
closed universes (see fig. [9]). Each additional universe is expected to give a factor
f dge~1(9:2+) in the a-integrand (but note that the o’s of different universes need
not to be the same). Summing over any possible number of such universes (which
have to be considered the same and independent of each other), once again turns

into an exponential giving
<M >:—}\f /‘dae“"%p“"o"’a" /-dgMe‘I(g’)‘+a)
- exp (/ dg' exp(—I(g', A+ a))) , (2.18)’

where N is a normalization factor. Comparing this equation with eq. (2.9), one

can write

<M >= fdap(a) <M >rta (2.19)

where

1 o -
pla) = —N—e'%D”a‘O‘JXe‘X, X = /dge”f(g’M'a) . (2.20)

The functional integral in eq. (2.20) is intended over geometries with no worm-
holes. Egs. (2.19) and (2.20) say that any expectation value computed in our
universe is a weighted average over expectation values in universes without worm-
holes and couplings A + . This can be seen as the formula for an ensemble of

worlds with a statistical distribution of coupling constants. An observer in one of
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the members of the ensemble would have no way to deduce the existence of the
others. One has “superselection” sectors labelled by the a’s, not communicating
through any local physics, with a-dependent coupling constants. The number of
independent o’s is in principle the same as that of the gauge invariant local op-
erators, i.e. infinite. Because the integration variables are not functions of the
position, the effects of wormholes is to equalize the couplings in all the regions of
spacetime.

The next task is to compute the probability distribution p . A simple way to do
this is to consider only large, smooth, spherical topologies and to assume that the |
leading approximation to X is the contribution from the classical stationary point
associated with Fuclidean de Sitter space. One can calculate the effective action
for gravity at a scale L > Ly, integrating over all fluctuations including matter

and gauge fields. The result can be then expanded in powers of the curvature

tensor and its derivatives as

1
Sepr = / NZ] (A - Teght aRapcaR*% + bRy R™ + cR? + ) . (2.21)

Loop corrections are small (suppressed by powers of %ﬂ—) and the massive fields
(heavier than L") have been integrated out and light fields set equal to values
minimizing T'. A, G, a etc. are the fully renormalized couplings, including all
effects of all interactions; they depend on the shifted fundamental parameters
X + a, due to the integration of wormholes and loop fluctuations. Approximating
S. s by Einstein gravity in a small-curvature limit (i.e., initially neglecting a, b,c),
the variational equation derived from eq. (2.21) is

R,, =87GAgu, . (2.22)

For A > 0, one has a space of maximum volume, the 4-sphere whose radius becomes

large as A — 0, while for A <0 there is no known maximum volume. Therefore,
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restricting to large 4-spheres of radius r, one can write
1
Ravea = —5(Gacgsa = Gaadve) - (2.23)
Substituting this back in eq. (2.21) one finds
pp=om (At ——r? At ) 2.24
Sefs 37r<r 4Gr+1+r+> (2.24)

The stationary point of S¢sy can easily be seen to occur (for large ™ or small A)

at 7 o /m. This gives

3
Sefr = *m (2.25)
Then, from eq. (2.20) one has
2 [+ 2 Fi S s
Inp = {O(es/SG (M) A — 0F (2.26)
— 0 A— 07

This shows the fundamental infrared divergence as A — 0T, or better a peak at
G a)A(a) = 0.
To properly normalize the probability distribution, one can introduce a vol-

ume cutoff, restricting the EPI to 4-spheres with radius less than rmaz. In this

-

case, the minimum of Sess (for A > 0) occurs at 7% = iz for A 2 mi—g“, and
at r2 =12, for A < g;“@%‘f‘“ (see fig. [10]). Therefore, the stationary action is
3 3
S =] A2 e (2.27)
efflT) = 3 sxGATE, . STGATL 4o \2 3 ’
TBGIA {2( 3 ) - ( 3 ) 0 < As 8nGri ..

If one chooses r = L, not only fluctuations at wavelengths less than r are absorbed
in the renormalized T', but also those of larger wavelengths are absent because

the volume acts as an infrared cutoff. The typical value in the distribution is
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A « —*—5. Normalizing in a and removing the cutoff (rmax — o), p(a) becomes

highly concentrated on that submanifold of a-space (if it exists) on which Ala)=10

mazx

Essentially, the solution to the cosmological-constant problem works like this

wormholes say that, on extremely small scales, our universe is in contact with

other universes governed by the “same” physics; even if one imagined to live in

the inflationary epoch (), with our universe small and hot, the other universes

would be large and cool, and see A = 0: prearrangement is turned in precognition.

It is interesting to note that more recently, Hawking (129] has given a differ-

ent interpretation of the a-parameters introduced by the wormhole theory. I will

not reproduce here the details (which are in some part similar to those usually
presented in the context of 37%-quantized models, see Section 2.3.3), but just give

the main results. Using a simple one-dimensional (particle-theory) example, for

instance, one can argue that the ‘parent-baby’ interactions can be described in

terms of second-quantized fields, where the ‘parent’ forms closed loops connected

by ‘baby’-particle lines. The idea that one could measure all the a-parameters
is not well defined, since that would define a classical background ‘baby’-particle
field, which would violate the uncertainty principle. Instead of regarding the a’s as
coupling constants, with classical values, one should think of them as the Fourier
components of a quantum field in the 4-D space of coordinates, which is the super-

space of the one dimensional wormholes. In the higher (4-D) dimensional cases,

the superspace will be infinite dimensional, but the a-field can be transformed
(by dimensional reduction) into an infinite tower of felds in minisuperspace. It is
then possible to show that also offshell-wormhole metrics (which are not solutions

of the WdW equation), should contribute nontrivially to the effective interactions

induced by the wormholes (see below). Moreover, integrating over all possible

4
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values of the a-field will introduce an extra degree of uncertainty into physics.
These results also suggest another approach to the problem (see below) of defining
a cut-off for the (divergent) measure over the a-fields.

The interesting and fundamental idea that wormholes might fix most, if not
all, the constants of nature which appear in an effective Lagrangian theory was
first introduced by Coleman [**!, who gave it the name of the “big fix”. Later on,
a lot of papers [46,48,127]  [130-136] {5 kled the problem, in the context of di;fferent
and more or less complicated models for gravity coupled to matter fields, but no
unique, certain and, sometimes, reasonable physical results have been found so
far.

In his original paper, Coleman defines a nonlinear change of variables in the
a-space, @, = %GZA, while the other a ’s are denoted by &; in this way, the
stationary value of S.;y, including higher-order curvature operators, is expected

to have an expansion of the kind (see also Ref. [137])

1 R )
Sepr = ——+ So(&) + aoS1(&) - (2.28)
One can compute
In P(QO,AOAf,) — el/a(, (e—so(d)+.. - e—sogdl)-f-..) , (2.29)
P(ama )
which is the same as
bp(c) -5
=¢e “¢I1§5, . 2.30
o(0) 1 (2.30)

These equations say that, for A — 0%, a small correction to Sepy will have a big
effect on the probability, which then would be concentrated also on the submanifold
where S, is minimum (if it has a minimum for finite a!); similarly, p(a) would be

concentrated at the minimum of the minimum of the higher-order coeflicients in
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the S.fs expansion. This would lead to an infinite number of conditions on th
o’s, and it is hoped that these can cause p(a) to collapse at a single fixed valu

of all the a’s and, as a consequence, of the couplings of nature which should 2

depend on the a’s (see eq. (2.17)). This is the “big fix”.

Obviously, to find out such condition on the a’s (i.e., minimize S5, 51 etc..)
another problem. For example, the addition of a term like the Euler density, whic
is assumed to have no effects in the low-energy effective theory, might require
detailed knowledge of the wormhole physics. Moreover, renorm;ﬂization effects
will cause most of the couplings (such as G) to depend in a complicated way on
all couplings at the Planck scale. At present, a lot of models have been proposed,

but most of them either do not agree or present serious difficulties.

A mechanism for fixing the effective couplings has been proposed by
Preskill #8. The main idea derives from the observation that, if the dominant
term in Sesy is “5’(%1'7 the probability distribution of eq. (2.26), should be peaked
at G2A = 0, i.e. not only at A(a) = 0, but also at G(a) = 0. However, since on
knows that G(a) # 0, because one observes gravity, there should be a peak a
some minimum value of G(a) on the surface A(a) = 0. One might hope tha
this minimum would occur at an isolated point in a-space, where all the a’s ar
fixed, and therefore determine all the constants of nature, since all contribute to G
through renormalization effects (everything couples to gravity). The only problem
would be to compute the exact dependence of G and of the constants on the o’s.
Going beyond the “dilute approximation” and considering instanton interactions,k
one can argue that G has a non-zero minimum which will be stable only if the

light mass-scales are determined dynamically [48].

On the other hand, Grinstein (132] guggested a “bootstrap” condition: to con-
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sistently consider the case of a particle with mass m?(a) > M2 (where My, is the
wormhole mass scale), one has to integrate the field before the wormbholes, pre-
sumably implying a renormalization giving m ~ My Therefore, unless protected
by a symmetry (unbroken by wormbholes), the particle masses should be driven
to the wormbhole scale, giving finite renormalizations to G~1. Once again, to be
consistent with experimental measures, dynamical generation is required.

Then, Klebanov, Susskind and Banks 127 tried to determine some Emitsﬂ on
the pion mass. They considered the action (2.21), minimized it with respect to 7

and found
3 82

Sefs = ~3C7h + —;Al + O(GA) . (2.31)
They assumed that the maximization of p(a) (eq. (2.20)) is achieved by the
conditions GZA = 0 and 4; to be at its minimum. Since A; is dimensionless, it
will be generally logarithmically divergent in the ultraviolet, and it will depend on
the short-distance physics. Unfortunately, for the case of the Lagrangian of a free
minimally coupled pion 7 it is found that A; is minimized for m, = 0!

A suggested possible way out of this unphysical result is to abandon the dilute
approximation for the wormbholes and introduce a nonlinear dependence on «a in
the couplings. The idea is that in c-space the surfaces A(a) = 0 and mg(a) =0
have no particular reasons to intersect (see fig. [11]) [127].

A detailed analysis of the renormalization-group equation for the model of an
effective action with a scalar field interacting with itself and coupled to a high-
derivative gravity is due to Grinstein and Wise (123, The result is that if the
minimization of G does not fix all the ’s, then, in the i‘egion of a-space with
m < M,, p(a) is peaked for m? very small, i.e. one may have naturally small

scalars. The renormalization group for the effective action of asymptotically-free
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(or finite) GUT’s in curved space has been studied in Ref. [138], and the result is

that wormholes apparently drive both A and G to zero.

Another interesting issue has been tackled by Preskill, Trivedi and Wise (135]

and by Choi and Holman (139]  who used wormbhole effects to calculate the de-
pendence of M, on the § angle of QCD (which, fortunately, can be computed in
terms of the low-energy physics alone). They showed that 8 should be fixed at ,

which is in apparent contradiction with recent experimental results based on chiral
perturbation-theory calculations (which give 6 = 0). An opposite result has been
claimed, however, in Ref. [139]. The fundamental idea is that, if the wormhole pa-
rameter oy corresponds to the stable structure of the universe, then the potential
energy for gravity (for a fixed matter distribution) is minimized if the Newton’s
constant G(a) achieves its highest possible value on the surface A(a) = 0. This

condition should fix the parameter of QCD at § = 0.

Finally, the basis of the wormhole big-fix idea have been posed under severe
constraints in Ref. [140]. The interesting argument is that, if in the standard model
the top-quark mass is larger than a critical value depending on the Higgs mass,
we should live in an unstable vacuum corresponding to 2 local minimum of the
effective potential. Unless the lifetime of the unstable vacuum is larger than the
age of the universe, an experimental discovery of an overcritical quark mass would
invalidate the wormhole theory, according to which the vacuum energy should be

zero at the absolute minimum of the effective potential.

As it is easy to see from the analysis of all these works, we are at the moment
far away from a well-defined and unique theory about the “big fix”, and the actual
results appear still rather controversial if not, sometimes, in contradiction with

well-known experimental facts. This is one of the tasks of the future work for a
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deeper understanding of the wormhole theory.

2.3 Wormbholes and all that

In this Section I will try to present a brief review of some of the main questions
associated with the wormhole theory (for a more detailed analysis, I refer to my

M.Sc. thesis [109]).

2.3.1 Difficulties

First of all, the models presented so far are based on a not yet existent, well-
defined, formulation of gravity in terms of the EPI. This is related to the problem
of finding a contour of integration for which the EPI is made convergent (see
Section 1.6 and Chapter 4).

The contour problem apparently clashes with the wormhole theory in this
sense. It appears, in particular, that Coleman’s mechanism for the vanishing of A
heavily relies on the apparent instability with respect to nucleating an arbitrarily
large number of Euclidean 4-spheres, each contributiI}g exp(——éz}j) to the action
(A= 3—6—3%22—, see Ref. [45]). Neither the mathematical prescriptions for eliminating
these instabilities seem to work univocally. For example, the EPI for spherical
conformally-flat geometries, with metric gij = $%8;;, includes the functional inte-

gral (for the Einstein gravity, eq. (2.1), with Lnr = 0)

j[dqs] exp (/ d*z (BEG(aqs)z - A¢‘*>) : (2.32)

The Gibbons-Hawking-Perry (53] prescription for the rotation of the conformal
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factor (¢ — i¢), would give the result

f [de] exp (— f d'z (-8-;;?’—@-(%)2 = A(/»*)) : (2.33‘:

This corresponds to the stable ¢* theory. It may define a comsistent theory o

gravity, but is also expected to eliminate any divergence as A — 0 (which coul
be just the reflection of the unboundedness of gravity, see Ref. [8]). Polchin
ski 49 studying the modes of fluctuation around the saddle points associate
with wormhole-connected 4-spheres, reached the conclusion that, in front of th
Hawking exp(Z) amplitude, there should also be an additional prefactor (¢)P*?
depending on the dimension D of spacetime. 1t is clear that, in 4 dimensions
this prefactor would transform the Coleman’s double exponential into the dis-
appointing exp (— exp(Z)), not at all peaked at A = 0 (but see Section 3.9).‘
Mazur and Mottola [3¢], however, do not confirm this result, claiming that use
of the correct measure in the EPI should lead to a completely real one-loop par-
tition function. A similar result has also been obtained in Ref. [86] in the con-
text of the one-loop calculations around the scalar-field wormbhole solutions of
Refs. [51,50] . A different approach to the conformal problem of the Euclidean
[57-60]

QG will be discussed in Chapter 4. Alternatively, some people proposed

to adopt the Lorentzian point of view. One of the results is that the e¥ peak
turns into a smooth e"%, which renders the Coleman mechanism very question-
able [58]. It can be instead argued that the cosmological constant may be small
due to stationary phase arguments [60].

There are, then, other unresolved issues, such as the identification of the true,
dominant saddle points in S.ss (only large smooth’ geometries 7), the problem
of finding a contour, even in the semiclassical approximation, passing through

all these stationary points, the extension beyond minisuperspace models (inho-
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mogeneities and anisotropies might be important particularly in the first stages
of the cosmic evolution). Moreover, in the discussion of the A theory, one ap-
pears to confuse properties of a single universe theory and possible effects coming
from universes interactions. One has also to properly take into account the in-
teractions among the wormbholes themselves, and in this sense, the approach to a

3rd.quantized theory (as described in Section 2.3.3) appears essential.

Another fundamental and debatable assumption for the whole Coleman’s
mechanism is that about the definition of probabilities and transition amplitudes
in the EPI formalism. How actually determine the “right” wave function of the
multiuniverse theory ? Given the wave function, what are the observables? In
particular, one should be interested not in a “meta-observer” magically able to
couple to all the universes, but rather in the probability that our own universe has
some given properties, i.e. in looking for single-universe observables. Moreover,
in general, path integrals represent transition amplitudes: only if the Hamilto-
nian of the theory is “time” independent, the initial and final (ground) states are
the same, and these amplitudes become (ground state) expectation values. The;
problem is to realize whether Coleman’s theory effectively describes a probability
distribution (p()), i.e. if its initial and final states may actually both be a sort of

ground state for the theory. Finally, is flat space the true ground state for QG ?

Another problem is connected with the necessity of normalizing the o measure
and regularizing the infrared divergence at A = 0 in the EPI (see Rels. (137,141} ).
Since the bilocal action readable from eq. (2.13) is negative definite, the path inte-
gral does not converge: if one calculates the wormhole vertex for a conformally- or
minimally-coupled scalar field (see below), the action (2.13) becomes o ( J drze*)?,

which gives ¢ an effective potential unbounded from below, and the functional in-
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tegration over ¢ diverges. In particular, if there is a direct wormbhole contribution

to A.ff, the EPI would be
— / [dg[d¢] e, (2.34)

with

I= /(L dz) — CV? (2.35)
where L is the bare Lagrangian, V is the volume of spacetime and C is a constant
If C is negative, the integral over « would diverge, but if positive, the EPI would

diverge.

Another crucial point is that of the regularization of the o measure (see

Ref. [137])

pla) = P(e)Z(a) (2.36)
where P(a) = e=%°" and Z(a) = exp(exp(—T(a))). For the S* saddle point,
with I' = "'52:%".&’ the total measure in a-space is clearly infinite. A way to
correctly define (mathematically) u(a) might be to impose a cutoff to p(a), but
then the problem is that the peak in p(a) will also crucially depend on the choice
of the cutoff itself. Other possible interpretations of the problem can be found in
Ref. [142].

Finally, one of the major and not yet solved issues in the wormhole theory is
that about the eventual presence and effects of the so-called “giant” wormbholes,
i.e. wormbholes of size > M, or even cosmologically large. As I have already noted,
these macroscopic wormholes might be of great use in the context of a mechanism
explaining the “evaporation” of black holes as suggested by Hawking (143] but
also lead to a catastrophic result if they are free to join into an arbitrary region of
spacetime. In the last case, in fact, they might violate the well tested successes of

local field theory in describing low-energy physics.
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Fischler and Susskind [47] showed that the main assumptions leading to the
Coleman’s wormhole solution to the A problem are mutually inconsistent or give
rise to wormbholes of every size materializing in the vacuum with the maximum
density allowed by kinematics.

A way out of the problem of large wormholes was first suggested by
Preskill 48], The idea is that interactions between instantons may be responsible
for the suppression of large ones. The large instantons are completely crowded out
by small ones, but apparently at the high cost of a violation of the principle that
short-distance physics is effectively decoupled from long-distance physics.
Alternatively, Coleman and Lee [46] assumed to do systematic semiclassical
computations, considering only stationary points of the EPI and a discrete set of
wormbhole types carrying a conserved global charge. The idea is to assume that
small wormholes can destabilize large ones (they “bleed” them). Small wormholes
induce charge-nonconserving interactions. As charge flows into the throat of a
large wormbhole, it can be diverted into small wormholes, until there is too little
charge left to support the large one.

A different approach has been proposed in Ref. [144]. Theidea is to introduce
a set of collective coordinates for the size of the wormhole and then to study the
‘constrained’ wormholes. It is found that giant wormholes suffer from large quan-
tum fluctuations and that the (assumed) semiclassical hypothesis breaks down.
This is used to infer that either the large wormholes do not contribute signifi-

cantly to the path integral, or that they cannot be replaced by local operators.
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2.3.2 Wormbhole vertex

One of the main goals in the study of the wormhole theory is to explicitly find
out the effective-interaction vertices induced by the presence of these topological

features in the low-energy physical effective Lagrangian (see eq. (2.10)).

A simple way to understand the effect of wormholes is the following. One
of the basic ideas about wormholes is that they can work as a sort of “tunnels”
in spacetime, through which particles can reach far regions in an efficient way.
Since one has to integrate over all possible positions for a wormhole to join into
spacetime (or, more simply, since the ‘;babies” are closed universes), energy will
be conserved at each junction point. This means, for example, that an electron-
positron pair could not just fall into a wormhole and disappear leaving nothing.
However, a single electron could go into a wormhole which would in its turn emit
the antiparticle to the ’positron, that is, another electron. Similarly, one can think{

about wormholes containing 4 fermions etc. (see fig. [12]).

Wormhole vertices have been studied in details in a series of papers.
Hawking [(137145:148] worked in the ansatz of conformally-flat wormbhole solutions,
neglecting wormhole interactions. The matter fields propagating down the worm-
hole are taken conformally invariant, with the effect of masses eventually included
as a perturbation. To estimate the effect on low-energy physics of a small worm-
hole, the idea is to calculate the n-point Green function between a wormbhole
(whose quantum state is described by a wave function ¥ obeying the WdW equa-
tion and appropriate asymptotic boundary conditions [90]) and an asymptotically
Euclidean space. The result (for the details, see Ref. [145]) is the same as that ob-

tained in flat space with an effective interaction of the form (for the homogeneous
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scalar-field modes of the wormhole)
F(m)M;~™¢™ (com + ), (2.37)

where F(m) ~ O(1) and ¢o,m (c} ) are the annihilation (creation) operators for

a closed universe containing m scalar particles in the n = 0 homogeneous mode.
Similarly, one can calculate vertices for wormholes containing higher excited

particles and higher particle numbers. For spin«% particles, one may have the

effective interaction (see Ref. [147])
MEm DY dy + hee. (2.38)

where ™ is some Lorentz invariant combination of m spinor fields and d,, is the
annihilation operator for “babies”.
For spin-1 gauge particles (F,y field), the effective interaction is expected to

be of the kind (see Ref. [89])
M2 [(F )™ (g + 90 - (2.39)

From these results one might expect that wormholes containing gravitons would
give effective interactions of the form “curvature to the nth-power” [148].
Further explicit computations of the wormhole induced vertex for the theory
of a charged scalar field ¢ stabilized by a conserved charge can be found in Coleman
and Lee 28], Abbott and Wise (°¢] and in Grinstein [132) For instance, in Ref. [94]
it is shown that the effect of a single wormhole of charge n is equivalent to the
insertion, in the transition amplitude Z between states of definite charge (n), of

the operator

gn/d4y¢n('y> ) (2'40)
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where the coefficients g, essentially depends on the size and the charge of th

wormhole. A generalization of the calculation of the vertex operators for ax

ionic wormholes, to all orders in the size of the wormhole, has been also given in

Ref. [149]. The effective vertex for wormholes in string theory has been studied in

Ref. [150].

2.3.3 Towards a 3"¢-quantized theory

I conclude this Section by just mentioning the existence of other open issues i
the context of the wormhole theory, such as those of nonlocality, the possible los
of coherence in QG, causal properties and wormhole interactions, and finally th
problem of a possible dynamical (temporal) evolution of the cosmological constan

For a more detailed reference, I again refer to my M.Sc. thesis [109].

Finally, a very interesting and more general approach to the problem of worzh-

hole and topological transitions in QG has been given in the context of the so
called 37%-quantization theories for the universe [45,98,151]. In these theories,

the “universe” becomes in fact a “multiuniverse”, where disconnected pieces can

o

be created or annihilated by appropriate operators, and there can be interac-
tions between them as well (read: 3rd_quantized topological couplings, vertices

propagators etc.) The new arena for the quantum dynamics of the multiunivers

theory is superspace. The 3rd_quantized field operators act on the “void”, th
37d_quantized state with no universes, and create 2"%-quantized states in the field .

theory of a single universe. In the absence of interactions, these operators obey
the WdW equation; interactions generalize it to a non-linear form, which is seen

as a dynamical equation for spacetime couplings.
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The Euclidean theories predict the Coleman’s singular peak at the effective
A equal to zero. Once again, one finds a superselection rule dividing the a-sectors
and the existence, out of the semiclassical limit, of a 3"¢-quantized uncertainty
principle, saying that the relations among the spacetime couplings cannot be fixed
to arbit'rary accuracy.

As already stressed more than once, because of the difficulties of the Euclidean
formulation of quantum gravity, Fishler, Klebanov, Polchinski and Susskind [#°]
started a new program, cousisting in the construction of the Minkowskian version
of a 37%-quantized theory for interacting universes: the quantum mechanics of the
Googolplexus (for a nice review, see also Ref. [152]).

This theory is essentially the Lorentzian analogue of the Euclidean ones, but
since the 37¢-quantized Hamiltonian is explicitly time dependent, the path integral
with operator insertions does not give expectation values, but transition ampli-
tudes. This leads to define a kind of inclusive probabilities, sensitive to an observer
confined to our own universe, and evoking a sort of anthropic principle: proba-
bilities should be weighted by the number of universes which resemble our own.
Unfortunately, the first estimated results appear to give a probability distribution
for a given A which is flat with no peak at zero and, even if the mean number of
universes is exponentially peaked at A =0, all these appear to be cold and unin-
teresting [45]. The inclusion of inhomogeneities (see Ref. [153]) seems not enough

to radically change these conclusions.



Chapter 3

Scalar-field-driven wormholes:

a2 new set of exact solutions

3.1 Preliminaries

Geometrically, the spva,cetime wormhole 12738 is an Euclidean-signature 4-
geometry that joins the two spatial sections of some Lorentzian-signature space-
time. Quantum mechanically, it is the topology-changing fluctuation in the ground
state of quantum gravity. Often, but not always, one demands that wormbhole
spacetime is also a gravitational instanton, a solution of the Buclidean version of
the Einstein equations. Such wormhole may be interpreted as a dominant contri-
bution to the vacuum to vacuum tunneling amplitude in quantum gravity. Finally,
one most often considers the flat spacetime as the ground state. In this case worm-
hole solutions are asymptotically-flat Euclidean-signature spacetimes, symmetric
around some minimum radius (volume).

As 1 already stressed in Section 2.2, recent interest in wormholes is due to
the fact that such topological fluctuations are expected to modify the effective
coupling constants (43,127] 3nd might provide a mechanism for the evaporation of

black holes [38]. At present these conclusions are challenged both by the major
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unsolved problems in quantum gravity, such as the contour problem and the mea-
surement problem, and by the different results and points of view in some model

computations or within the different formalism [8,45,49,55, 56,141].

My goal here is to concentrate on wormholes that are classical solutions. 1
will first consider asymptotically-flat gravitational instantons (AFGIs), relevant
for the vacuum to vacuum tunneling in the flat spacetime, but the other cases
may be considered as well (for instance, by including a cosmological constant).
The solutions that have been considered so far are usually presented in the form
that seems to suggest that wormhole spacetimes and the field-theoretical models
in which they occur are rather exotic. By contrast, one can demonstrate that

wormbholes are no more exotic than Friedmann solutions.

The method that I use is very simple: wormholes are analytic continuation of
closed expanding solutions in GR. First, in Section 2, I consider the general case
with bulk-matter sources, and work out the simple conclusion: wormholes are
driven by the matter sources that obey the strong-energy condition. Thus, every
solution in classical cosmology representing a closed expanding universe is analyt-
ically continued to a wormhole solution. This may be considered more explicitly
in the case of an isotropic and homogeneous geometry. I recover the solutions
originally found by Hawking (28] and Giddings and Strominger (27, and many
similar ones. As it has already been stressed, these solutions are not yet relevant
for the quantum theory. They are however important geometrically, just as any
solution of standard GR. The idea is to construct wormhole geometries from the
known Lorentzian-signature solutions in GR. Since gravity sees the stress tensor
regardless of its particular realization, this means that one can try to construct

the field-theoretical models that have the same wormhole solutions as the bulk
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matter with the same equation of state. Such models should be relevant for QG

The prescription for the matter-field content which is necessary to drive the
Fuclidean wormhole solution is an issue which has been debated by many authors

(87,88,91], the matter-energy tensor must possess at least one

»

in the literature

negative eigenvalue. More recently, Page and others (119] considered the case of an
interacting, imaginary (Euclidean) scalar field. They assumed a quartic potential
(with and without a mass term) for the scalar field, but they were only able to give

a numerical, asymptotic behaviour of their wormbhole solutions. Their wormholes

have no conserved charge and can have negative action.

In Section 3 I attempt to construct field-theoretical models that lead to worm
hole solutions. Omne can show, for a fairly general case of a spatially-homogeneous
minimally-coupled, real-valued scalar field, that this is not possible if the analytic
continuation is done in the usual way. Despite of this apparent difficulty, it can be
shown that an infinite class of ezact wormhole solutions can indeed be found (at
least in a homogeneous and isotropic RW ansatz). To see this, one can essentially
assume two different approaches to the problem. The first (which I will describe
in its main lines, without entering into specific details) is that one should perform
an asymmetric transition to the Euclidean regi;ne: N = +iN, in the gravita-
tional sector, but N = FilN, in the matter field sector, where N, N, are lapse
functions in the two regimes. This is just the trick that has been introduced by
Linde [*2] in essentially complementary case, to obtain the “tunneling” amplitude
as the amplitude for the quantum creation of an inflationary universe. The second
possibility (which I will then consider for explicit calculations) is to Wick rotate
to the Euclidean region both the lapse and the scalar field. What I propose is an

asymmetric continuation to the Euclidean regime: N = =£iN, for the lapse and
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é = Fip, for the scalar field, where N, N., ¢ and ¢, are the lapse and scalar fields
in the two regimes. Both these prescriptions are consistent with the reality of the
Euclidean partition function at one-loop (see Section 3.8). Moreover, it can be
easily seen that both prescriptions lead to the same effects on the relative signs of
gravity and matter parts of the Euclidean action and on the equations of motion.
The only relevant changes for the two approaches are in the sign of the (nontrivial)
potential for the scalar field and in the structure of the equations of state for the
matter in the two sectors. In the first case (asymmetric continuation of the lapse),
the Euclidean and Lorentzian equations of state are different. This leads to the
interesting possibility of having also self creation of RW closed universes by worm-
holes. In the second case (asymmetric rotation of both the lapse and the scalar
field), the equations stay the same. This comes from the requirement that the
potential and the kinetic energy of the scalar field have no discontinuities at the
junction point. Both ¢ and @, appear as real functions, contrarily to Ref. [119],
and moreover their energy momentum tensor satisfies the eigenvalue condition of

Ref. [88].

In Section 3.4 I explicitly construct a number of wormhole solutions in a RW
ansatz. All solutions have a nontrivial potential termi and no conserved charge
is necessary to stabilize them. In Section 3.5, I show that the spacetime worm-
holes in fact have a S* x 5% topology. The periodicity in the Euclidean time is
interpreted as that wormholes have a finite temperature, inversely proportional to
their size. In Section 3.6 I generalize the results to the case when a bare cosmo-
Jogical constant is included in the action. Even though it is not possible to give
exact analytic formulas for most of the nontrivial (V # 0) cases, it is still pos-

sible to use classical energy methods to describe the general features of the new

i
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wormhole geometries. In particular, for the case v > 2/3, these can be seen to
connect a small RW ‘baby’ (at its maximum size) with a large de Sitter univers
(at its minimum size). Moreover, it is still possible to find perturbative solution
if one expands the equations of motion for small values of the cosmological con
stant. Finally, in Sections 3.7, 3.8 I give a proof of the quantum consistency o
both the analytic continuation prescriptions to the Euclidean regime, at least i
the one-loop approximation to the background expansion around these classica
wormhole solutions. What I find is that, for “little” wormholes, the Euclidean
QG partition function Zpge € R+. It is important to determine whether Z EQGZ
is a real number or if it shows a phase ambiguity, since a complex Zgqa would‘
give rise to a free energy Fpog ~ —In(Zggc) which is also complex, and this
would be the signal of a quantum instability (in other words, there would not be
a stable ground state for the quantum theory). This problem is also particularly
important for the physics of wormholes (see, e.g., the Coleman’s mechanism for
the suppression of the cosmological constant A), since one has to compute a prob-
ability distribution of the kind ~ exp (ZEpqg), where Zgqg is the Euclidean QG
partition function. In this scheme, at the level of a tree-expansion approximation
for Zggg, one can have various “types” of saddle points. Even if the four sphere
S* is usually taken as the dominant saddle point, in a theory of interacting worm-
holes one can easily imagine that the wormhole solutions also give a contribution
to Zpga. Considering the extension of the solutions by the inclusion of a bare
cosmological constant, and assuming that the ground state is given by a 4-sphere
5% with matter included, also leads to the persistence of the Coleman double ex-
ponential peak at the effective cosmological constant equal to zero, with no phase

ambiguities in Zggg, contrarily to what claimed by Ref. [49] (Section 3.9).
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3.2 Existence of wormholes driven by the bulk matter

The basic idea is as follows. Consider the general case of an anisotropic and
inhomogeneous spacetime with bulk matter sources, characterized by some stress
tensor T},. This is the typical case considered in GR. Let 745 be the intrinsic
geometry on a family of spacelike hypersurfaces, N the lapse function, Kqp and K
corresponding extrinsic curvature and its trace, oqp is the shear, and R; the scalar
curvature for the geometry 7as [25]. By the usual substitution that changes the
signature of the metric, N = i, (the sign in the front of 4 is not important here),
one may evaluate these quantities also for the Euclidean signature spacetime. 1 will
distinguish that regime by the subscript e. Then, an asymptotically-flat Euclidean

spacetime is characterized by the following asymptotic behaviour

ds? — di? 412403 (3.1)
or, in more detail,

N.dt. — dt. (3.2)

Yead ~ tgﬂab ) (3.3)

Keap — iteQas (3 4)

K. — ?—Z— , (3.5)

Teab — 0 ? (3 6)

1
R3 s R3(S3) ~ %—2* B (37)

[

The Euclidean version of the constraint equation is (see, e.g. Ref. [25])

K2

e

I

%Ra + ?’2—03 — 247GTy . (3.8)
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From egs. (3.2) and (3.8) one can easily see that for AFGI to exist, the energy
density p. (= TJ ) must decay in the asymptotic regime faster than t=2. Moreover
the energy conservation law in the asymptotic regime is

Pe _ .
5 = "3Herepe 7 =1 +Pe/pe (3.9)
€

(where p, is the pressure) which admits the well known solution (for v, = const)

Po_| (3.10)

Pe = as"/c

Then, one can conclude that asymptotically ve > 2/3, or pe + 3p. > 0. This is
the strong-energy condition, usually automatically assumed for the bulk matter.
Although in this case one needs this condition to hold only in the asymptotic
regime, normally one expects it to be true everywhere. Thus, for every classical
solution of the Einstein equations with the closed spatial geometry and with the
bulk matter source that obeys the strong-energy condition, its continuation to the
Fuclidean domain can be shown to represent a wormhole. This is because with
these conditions the GR solution has a maximal radius (see the next Section).
The wormhole solution is just the analytic continuation of that solution above the
maximal radius, see fig. [13].

I should comment here that the strong-enermgy condition that assures the ex-
istence of wormbholes is exactly complementary to the condition for the existence
of an inflationary phase.

Finally, what is the significance of wormhole solutions obtained in this way?
Certainly one is not trying to construct the Euclidean theory with the bulk-matter-
driven tunneling solutions. As they stand, these solutions are not yet relevant for
the quantum theory. They are however important geometrically, just as any solu-

tion of standard GR. It has been observed in Refs. [27,145] that their wormbholes ‘
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have analytic continuation to the collapsing Lorentzian universes. What I propose
to do is to look at this from the other end, and to construct wormbhole geometries
from the known Lorentzian signature solutions in GR. In this way one can obtain
infinitely many wormholes. Since gravity sees the stress tensor regardless of its
particular realization, the idea is to continue with this inversion, and try to con-
struct the field-theoretical models that have the same wormhole solutions as the
bulk matter with the same equation of state. Such models should be relevant for
QG. As I will show in Section 3.3, the complete construction will require further
specification of the analytic continuation. To see all this explicitly, from now on 1

will work under the restriction to the FLRW geometries.

To be simpler, assume to work under the restriction of the Robertson-Walker
geometries without cosmological constant. Consider the Friedmann constraint

equation for the closed universe together with the conservation equation

1
H =p—— , p=-—3Hvp . (3.11)

a2
Their Buclidean signature versions are

1 )
H? = = —p. pe = —3HeYepe » (3.12)

[ a’g
with

Vo) =1+ P/ P (3:13)

The corresponding line elements are related as
ds? = o2[—dt® + a*(1)dQ5] — ds? = o?[dt? + a?(t.)d03] , (3.14)

where H = d/(t)/a(t) , He = ae' (te)/ae(te), ol = dp./dte, o? = %—g and dQ2 is the

line element on the three-sphere.
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One knows from the standard GR for many closed universe solutions with
some maximum radius ay, covering the interval [0, ao]. If such a solution obeys eq.
(3.11), its analytic continuation for a > ao obeys eq. (3.12). The two solutions
together cover a € [0,00]. The imposed asymptotic condition, a?(t.) — t. at
t, — o0, ensures that the wormhole joins two nearly flat sections (see fig. [13]).

Common sources in classical cosmology are with v. = const., and in this case

solutions may be written down explicitly. The energy density decays as

pe = Ca*7 . (3.15)

Then, from eq. (3.12), one has that AFGIs exist only for fluids with energy density
p. that decays faster than a;?, which implies ye > 2/3, or pe+3pe > 0, ay(te) > 0.
Putting eq. (3.15) inside the Euclidean constraint equation and defining a new

time variable as

dt = Noal*=37)/2dr (3.16)

(in the gauge N, = 0) one finds

a]i("/e"'l) dae

TG N.dr . (3.17)

This can be easily integrated and gives
; 1/(373“‘2)

a(r) = |C+ (3-1"-2—:’1> NJ} +d . (3.18)

Setting the constant of integration d equal to zero, and imposing that the throat
of the wormhole -a,- is at ¢ = 0, fixes C = a3772. Therefore, one can express the
wormhole solution as

45t = o*(NZad—5dr + o2d8?)

1/(37e—2)
2 — 3%)2 N2 | (3.19)

- 3v.—2
ae(Te) = |ay tl—5
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This solution passes through the minimum radius ay at 7. = 0, which is the
maximum radius for the corresponding Robertson—Walker universe, and 1t can
also be written in the form that is conformally equivalent to the asymptotically-

flat metric

ds? = Q3(r) [dr® +77d3] . (3.20)

Comparing eq. (3.19) and (3.20), one finds the two constraints
Qr)dr = ae(n)(*”?’%)/zdn , (3.21)

Q(r)r = ae(Te) - (3.22)
Dividing eq. (3.21) by (3.22) and then integrating, assuming to start with 7 = a,
at T, = 0, one can easily find the evolution of the wormbhole size 7

2 . 3 e 2 - o=
7(te) = ap €Xp {m Arecsinh (“l‘é'“"“ao (v 2)/27‘3)} . (3.23)

Putting back this result in eq. (3.22), the conformal factor is found to be

Qr) = 9—2/(37.=2) {1 + (%) (3.24)

T

3%_.2}2/(3%“2)

-

One has the asymptotic behaviour for r:

r—a, forme=0 (3.25)

{r—%oc for T, — +0o0
r—0 forTe— —00

The regions with 7 > a9 and 7 < ap are equivalent asymptotically-flat spaces, as it
may be seen in this form from the invariance of the metric under the transformation
r — 7' = a2 /r. To be sure that one has really found a general class of wormbhole

solutions, one has also to check that the “baby” universe branches off at the
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minimum radius of the wormbhole, i.e. one has to look for the sign of the secon

derivative of a.(r.) at 7. = 0. It is easy to find (for N, = 1) that

d*a.(Te) (37e - 2) 3 2 2-3 3{(1—7e)
dTez = 9 1+ 5(1 - 78)(376 - 2)7’5 Qe K Qe K . (32&

As we knew, one can have a wormhole solution only if he considers values
Yo > % This wormhole joins two asymptotically-flat regions and creates, as it |

easy to see from eq. (3.19), a closed universe branching off at maximum radit
and collapsing in a finite time 7, = 20,5,37"'~2)/2/(3'yfz — 2) (the limiting case 7.
has the only analytically-continuable solution 4, = ar, = 0, which clearly does n
represent any wormhole). From a cosmological point of view, it is also interestin
to comsider these solutions as corresponding to a possible mechanism generati

the wormholes from an expanding closed FRLW universe.

The AFGIs that are analytic continuation of the most common solutions

classical cosmology are,

(i) pe = 0, 7e = 1, the matter dominated closed Friedmann universe;

(ii) pe = pe/3, ve = 4/3, the radiation dominated closed Friedmann universe
ds? = o [NZdr} + (a2 + N272)d03)

This is the wormhole introduced by Hawking (38], The original motivation migk
have been different, however, as Hawking does not mention the source term, an

he seems to attach some significance to this solution in the context of the contou

problem. But the metric is the same.
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(iil) pe = Pes Ve = 2, the stiff matter driven Tolman universe;
ds? = o [N2(a} + 4N272) 2 dr? + (ag + AN2r2VR2403) . (3.29)
This is the bulk matter driven Giddings-Strominger instanton [27].

In the case 7. < %, the analytic form of the solution (3.19) is still valid, but
now it corresponds to the Euclidean aucleation of a Lorentzian expanding universe
in the inflationary phase, at its minimum radius ag. In particular, for e = 0 one
has p, = const., which is equivalent to introduce an effective cosmological constant
in the equations of motion. This solution is interpreted, as in the standard QC,
as the Euclidean nucleation of a de Sitter universe from a S* sphere.

The gravitational part of the action for the wormhole solutions in the

Lorentzian regime is

Sg = SR + Sbt_q
1 . 1
=— d*z /—gR+ —5 &’z VAK . 3.30

To pass to the Euclidean regime, i.e., to describe the trajectory for a > ay, one
adopts the standard procedure: (i) substitute the real parameter (coordinate)
+ with the real parameter (coordinate) Te, and all derivatives d/dr with d/dre;
(i) make the substitution N = +iN,, N. € R; (iii)-define the Euclidean action
S, as S(£iN.) = i5., so that exp[iS] leads to exp|—S.); (iv) finally, regularize
the Euclideanized boundary term for gravity by subtracting from it the same

expression evaluated for the flat Euclidean metric, eq. (3.30) with a = t,

1 3 1 2 '
B SherKey = =t - 3.31
B &z flref = gre ( )

Thus, one finds for the gravitational Euclidean action

=2
Se:,q = 5eR+ST'ebig = i% {\/ d’re ("—‘?E— - ai_378> Neag37e~2)/2 + ti} : (3‘32)
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The integrals are to be evaluated between the two boundaries at some radius a.,
on the two sides of the throat. For wormhole solutions the integrands are even
functions, so the integrals may be taken on half-wormhole only, times the factor
of 2. The solutions, eq. (3.19), may conveniently be parametrized through the

hyperbolic angle 8 € (—o0,00), introduced as

2 _
ae = ag|cosh 9]2/(375—2) : o = ﬁagavc 2)/2 sinh @
Ye —

while the flat space time variable is

2 b .
te = ——-?E—Q—f df [cosh g)2/(37e=2)
0

finds (restoring G factors and fixing N, = 1)

4
Sop = +on?p2a2 e =2 f 45 [cosh 6)(5=67)/(37-2)
37e —2 Jo

2~ 3y,
Sr‘ebt_g = i87('2,u,2 [(—-————2——1—) Tea'::(z'—ve)/z + ti}

To calculate it in the asymptotic limit || — co, one can approximately write eq
(3.16) as
(4=37¢)/(37v.—2)
3ve — 2
dt, ~ {(—lb————> Te:i dr. . (3.37
This can be integrated to give
. '&/(B’Yc"'z)
to[(22)-
2
9 2
za§24/(2"3%)e*9/(3“”2) {1 R 26"29] ) (3.38

Expanding also the first term on the right hand side of eq. (3.33) for large 7. on

obtains
[“’2%/2“16] = af 2*/(2797) 20/ 37 =2) [1 + §:_6_'fie—29} , (3.39)

ﬂ.e>>0.() 373 - 2
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so the total regularized boundary term (for both boundaries) is

e T 2 B 8 - 6 .
Srebtg =& 37‘_2#2@2) (L—_—-> 2(976’10)/(37‘2 2) exp {“"‘"“lgj“

3v. — 2 3v. — 2
+ 0 (exp 12(1 = 7) 6 . (3.40)
3ve — 2

Summing all these terms, the result is (for a. > ao)

— g _ _
Seg == ézr‘“g (M> / dé [cosh@](s”s%)/(hfz)

97 Yo =2\ o - 8 — 67
+ g —= ]2 +/(37e=2) -————~——9] . 341
g™ (376 — 2) P 3ve — 2 ( )

Note that for the Hawking wormhole (v, = 4/3), one has the finite action due to
the boundary term, S = +3ra?/(4G). This is supposed to be the full action for
this purely gravitational wormhole [38]. For the case 7e = 9 boundary term for
gravity has no contribution, and from the first term one recovers the half of the
action for the Giddings-Strominger instanton, §, = £3r%a2/(8G) [27]. Note that

for a given convention those two come out with the opposite signs.

3.3 Wormbholes driven by a scalar field: two proposals

-

1 consider the case of a spatially-homogeneous, real-valued, minimally-coupled

scalar field ®. The matter field action in the Lorentzian sector will be taken as
1 , _
Sm = /Ad“}a}«/_—_—-g(ﬁn@aﬁ"’@ L7 (3.42)

If one defines

p=V2ma® , (3.43)

v=onistV (3.44)
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then the total (Lorentzian) action for matter and gravity becomes

1 -2 12 .2 ’ :
= _2./617- Ng®r=2/2 »]‘{7—5 —~ QSNZ +a* (@Y - 1), (3.45)

where ¢ = d¢/dr. I work in the gauge N =0 (N € R). The energy density and

the pressure are

;2
p= %a“'* +V()y=T+V , (3.46)
B %“3”’* -V()=T-V . (34?)‘

By varying the action (3.45), the relevant equations are now the constraint

equation
1 a
2 _ - = g3(v-2)/2 2 .
H*=(T+V) el H=a" v (3.48)
the Raychaudhuri equation
1d?a H . 1
228 GBI g = S (p+3p)=—[2T - V] ; 3.49
PR + 5(p+3p) =~ I ( )
the energy-conservation equation
P (=12 _ _3p _ 2T
and, finally, the scalar-field equation of motion )
1 d 1 d
04(37-10)/2 —_ . (3v-+2)/2 = V! =0 . )
a I\ ° N i ¢+ V'(p)=0 (3.51)

Let us now check when the Lorentzian signature solution has maximal radius
From (3.49) it follows that the trajectory is convex for p + 3p > 0, equivalently
9T >V, or v > 2/3. Then, from (3.50), it follows that p decays faster than a2
Thus, for every solution that has finite p; at some finite a; there is a maximum

radius ao (> a;), such that H?(ap) = 0 (eq. (3.48)).
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Now I would like to find the analytic continuation of these solutions to the
domain a > ay. Continued solutions are expected to be described by the Euclidean

version of eq.’s (3.48)-(3.51), obtained by setting N = £iN,, N, € R. One has

1 e
S = 5/}17 N,al37e=2)/2 -—]-ﬁ "5N e pat e (alV = 1) (3.52)
qb. 2
pe = ]\;2 @ V(ge)=-Te+V (3.53)
¢; 2
Pe = _"-]\;2 Bt V() = —(Te +V) (3.54)

[

where ¢, = d¢/dr.. The sign in the front of 4 is normally chosen in such a way
that the resulting Euclidean action for a scalar field is positive-definite. By varying

the action, the corresponding equations are then

1 e
H=(T.-V)+— , He= a?;("“e*”/z% ; (3.55)
1 d%a, H., . 1
e il A V/2 4 HE = 45 (pe +3pe) = ~2Te + V] (3.56)
e e €
Pe (3ve-9)/2 — _ H = _—?-f-l:?——— : 3.57
Ne ae 3 e’fePe 3 75 Tg . V 3 ( ’ )
1 d 1 d ]
2 (37.—10) /2~ = (37e+2)/2 e — V’ e) = 0 . 3.5
e N, dr. N, dr. Z (q5) ( 8)

These equations are the same as what one would get by the substitution
N = +iN, directly in equations (3.48)-(3.51).

One can see immediately that there is a problem with these equations if they
are to describe wormhole solutions. These solutions are expected to be concave,
while from (3.56) it follows that the solution is concave only if p. + 3pe > 0, or
V < —9T, < 0. This is in conflict with Eq. (3.55), which says that the left hand
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side may vanish only if ¥; > 0 at the matching point. To see various possibilities
one can introduce T, = (1/2)|d¢/dal?, so that T' = a®H?T,, and, T, = a?H?T,

From (3.48) one finds

V —1/d?
i e T 3.5
H 1—a?T, ’ (3.59)
and from (3.55)
1/a2 -V
2 e
= (3.60)

At the matching point, the condition H?(a¢) = 0 implies either,

(i) a®T,, ~ finite # 1, with Vg = 1/a2, or,

(ii) a2T,, ~ divergent, with Vy < 1/a2.
On the other side, H2(ag) = 0 implies either,

(iii) aZTs, ~ finite # 1, with Vo = 1/a2, same as (i), or,

(iv) a2T,, ~ divergent, with Vy > 1/d2.

The analytic continuation is possible whenever these conditions combine con-
sistently.

Suppose first that (i) and (iii) are true. Then T'(ap) = a2H%*(ap)To, = 0,
and, from egs. (3.46)-(3.47) or (3.53)-(3.54), (p + 3p)o = —2Vp < 0. This violates
the starting condition for the existence of the maximal radius for the Lorentzian
trajectory. Thus, the continuation to wormbhole solution is not possible, but, if
one imagines to invert the temporal sequence of the two trajectories (i.e., first
the Euclidean one and then the Lorentzian one), this case can describe quantum
creation of an expanding inflationary universe, a Lorentzian de Sitter space, at a,.

Suppose now that (ii) is true. It is clea,rlyv incompatible with (iii), and to
agree with (iv) one needs to have a potential with a finite discontinuity at the

matching point. This case is unattractive, as ag is determined by the initial data,
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independent of the shape of V(#), and the position of the possible discontinuity. In
particular, it does not allow for the solutions in the V = 0 case, which corresponds
to the Giddings—Strominger wormhole, (see next Section).

Thus, one concludes that the standard analytic continuation for the scalar-
feld-driven solutions is possible between the Euclidean solutions and the infla-
tionary solutions; and that it is not possible between the expanding Lorentzian
solutions and wormhole solutions, unless the potential has a finite discontinuity at
the right place. The problem for the Euclidean wormbhole solutions, as it is well
known, is with the sign of the eigenvalues of the Ricci or the energy-momentum
tensor [88].

Since I have shown in the last Section that geometrically wormhole solutions
exist, what I will do is to redefine the procedure of analytic continuation in field
theory so that it allows for wormhole solutions driven by scalar flelds. There are

two ways to do this. As the first possibility, one can proceed as follows:

(a) analytic continuation is an extension of a spatially-closed Lorentzian-
signature solution from the finite i'ange (0,a0), to the Fuclidean-signature tra-
jectories at a > ag;

(b) each parameter of the theory is replaced by its Euclidean counterpart (for
instance, 7 — 7e), and for simplicity Iset 7 =7 (sumch that all the information
about the change of signature in the metric is in the lapses N, Ne);

(c) lapse functions in the two regions are related as N? — —N? but the actual

transition from one region to another is to be accomplished by the substitution
N = +iN, , (3.61)
in the gravitational part of the Lorentzian action, and

N = FiN. , (3.62)
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in the scalar-field part of the Lorentzian action.

A similar asymmetric rotation for the Eucliaean metric has been introduce
by Linde [*2! to obtain the “tunneling” wave function as the initial state for a.
inflationary universe [154,155]. As in Ref. [52], one is tempted here to choose th
sign in front of i adapted to the convention that the total FEuclidean action i
positive definite. I will briefly discuss this and other prescriptions in the followin
Sections and in Chapter 6.

(d) all expressions in the Euclidean sector should follow by operating on th

Euclidean action obtained in the manner above, not by the continuation of th

corresponding equations.

There is, however, another (perhaps more physical and promising) possibilit
This amounts to prescriptions (a), (b) and (d) as before, but with prescription (¢
changed as,

c1) lapse functions and scalar fields in the two regions are related as
g
N — £iN,

QS(N — £ilNe, v — 76) — tige

(Nea¢e ER)? :

scalar field induced by this prescription is defined as
U'B(T?Nea'ﬁ):a(T:N“*j:iNe)'Y“*"/E) 3 (

Ve(¢e;7e) =V(¢*+ii¢e,“/*’>7e) . (

Let us list the consequences of these rules. For the second set of prescriptions (1

will briefly mention about the first case in the end of the Section), combining the
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matter and gravity contributions (egs. (3.30), (3.42)), the Euclidean action comes
out as

.9 ;2 1
S, = i—;—/dr N,aP7:—2/2 {~ Gy _ Pe g2 2 4 gt (a2 Ve —1)} -t2 . (3.67)

N2 N, N2
One can see that the relative sign between the gravitational and matter parts has

been changed. The energy density and the pressure come out as

. ]

pe = & ;\‘}; 2 Vo(ge)| = FT AT (3.68)
L .
g ]

pe =+ e a2 4 Vi(ge)| = F(Te = Ve) - (3.69)
L o

The conservation equation remains the same as in the standard Euclidean case:

Pe [(37=D/2 = _3H,vepe 5 Ve = 2T,

= 3.70
Ne [ Te+Ve ( 7)

By varying the action (3.67), the Fuclidean equations of motion become

working in the gauge N.=0
gaug

1 - e
B2 = (T +V)+ = » H=al D2z (3.71)
€ . €
1 d%a.  He (3, 1
;J__ dtz — _J_V_:__a(a3’)’a 4)/2 _l__ Hez — :F,i(pe + BPG) B [QTE — VB} H (3.72)
-~ 1 d 1 4
% (3% 10)/2 _* i - ( (3ve+2)/2 _—_ o d'r) be +V!(ge) =0 . (3.73)

Tt is manifest now that wormhole solutions are possible, as

~V +1/d?
H? = ————F .74
€ 1+azTa‘ ¥ (3 )

allows for the matching when a3T,, ~ divergent, T(ay) = 0, ap ~ finite, consis-

tent with (i) if Vo € [—1/a%,+1/a}], or when a2T,, ~ finite # 1and Vo = 1/a2,
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consistent with (i). (In contrast, now the complementary possibility does not de
scribe the creation of an inflationary universe.) The Euclidean solution is concave
provided V, < 27T, (eq. (3.72)), which is consistent with the existence of a mini
mal radius with H2 = 0 (eq.(3.71)). In order to have a maximum radius for thy

Lorentzian solution one needs (from (3.48)-(3.50))

alim Y= >2/3 , (3.75
~rdg

while, in order for the Euclidean solution to be asymptotically flat, one need

(from (3.70)-(3.71))
Bm e = Yeoo > 2/3 - (3.76

Since now, in principle one can still allow for the possibiﬁfy that v # 7., i.e. fo
different equations of state for the Euclidean and the Lorentzian sectors. It ca
be easily shown that the sign of the potential in the Euclidean region is actuall
reversed for the two prescriptions, V,(2"¢prescr.) — —V.(1*'prescr.). This is th
only relevant difference between the two proposals. Yet it has nontrivial conse
quences on the form of the equations of state. In fact, using the first prescriptio:
(c), one can see that parameters v and 7. need not to be the same, and both ar

constrained. Demanding vanishing expansion rates at the throat one finds
To — Teo + 2V =0 (3.77

and using the relations

the following matching condition for the gamma parameters can be derived:

Yo + Yeo = 4
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Therefore, in general, the equation of state has to change under the analytic con-
tinuation, the only exception being the Giddings-Strominger case (7 = Ve = 2).
In the case of v = const. solutions driven by a scalar field, the requirement of con-
tinuing a closed RW expanding universe at its maximum radius (i.e. conditions
(3.75)-(3.77) restrict parameters 7,7, to be in the range [2/3,10/3]. It is then
possible to see that, in the case v < %, ie. a Lorentzian inflationary solution, the
corresponding Fuclidean solution still exists, provided that v. > 1—30—, and it is once
again of wormbhole type. This case appears very interesting, since it means that
we are also able to generate (finite time) Lorentzian inflation from the analytical
continuation of an AFGI solution driven by a scalar field (a sort of self-creation
mechanism for RW closed universes, see, e.g., Ref. [156] and figs. [14-15]). These
solutions are not present in the second approach for the Euclidean continuation

prescription.

3.4 Explicit solutions

Now 1 will show how scalar-field-driven solutions may be actually built [50,51].
From now on, 1 will adopt the prescription of rotating both N and ¢ as the right
one. There are two ways to tackle the problem. First, one can easily check that,
using eq. (3.68) and (3.70) to eliminate T + V. in eq. (3.71), leads to the same
Friedmann equation for the geometry as in the bulk matter case (that is, just eq.
(3.105) below, for the case . = @, and A = 0). From this one concludes that the
scalar-field matter with the prescription (3.63)-(3.64) drives the same wormbhole
geometry as the bulk matter, eq. (3.19). Moreover, reversing the point of view, one

can now combine the constraint equation (3.71) and the Raychaudhuri equation
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(3.72), to express the kinetic and potential terms for a scalar field through the
geometry as [137]

1 He (3ye—9yj2 , 1

Te = 3 dee + ;‘g ;
1| He (5. 2
Ve(ge) = —3 ‘ﬁ"“gm 0% 1387 - =

As it can easily be seen, the asymptotic behaviour of the wormhole solution re

quires for a, — co that

2 =0, Vilde)—0 . - (3.82

e

Given the wormhole solution, one can determine with no difficulty both th
trajectory of ¢, and the potential. For the 4. = const. solutions, using the know

form for a. (eq. (3.19)) and setting N, = 1, one finds from eq. (3.80):

. a376_2 1/2

3 e —

b=+ | 22 —o a,‘Z‘ 37
2

This equation can easily be integrated to obtain

1 (37, — 2
gbe(r) = im\/ 2"/3 arctan WT + d)O,e . (384
0

On the other hand, from the relation (3.81) and eliminating the time dependenc

with the aid of eq. (3.84), one can also obtain the explicit expression for the
potential V, as a function of the scalar field ¢.:

e (3'76"2)
(2-7) [ (Br=2) ol ~
Ve e) & TS e QP — e . 3.8
(QS ) 2“8 cos \/276‘ (¢ ¢’0, ) ( 5)
At the throat ¢, = ¢o ¢, and the potential has a maximum. Both V; and 7 are

periodic functions of ¢.. The importance of this peculiar ¢, dependence will be
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discussed in the next Section. The corresponding solutions for the analytically
continued FLRW closed universe are described by the same explicit structure for
V and ¢, the only changes being in the value of v (but see below) and in the
substitution of trigonometric functions by their hyperbolic analogues.

Tt is easy to see that, for the prescription (cl-c2), the requirement of a smooth
analytical continuation at the throat of the wormbhole, i.e. the condition of having

no discontinuitites in the potential and kinetic energy of the scalar field:
To(¢) = To.e($ — Eide, N = £ilNe,7 = Ye) (3.86)

VO((;S) - VD,6(¢ -7 ii¢e7]\r - :}:iNea’}l - '}/e) 9 (3.87)

implies the invariance of the equation of state in the FEuclidean and Lorentzian

regions, or that

Y= (3.88)

Note that this requirement does not affect the behaviour of the scale factor, which
is itself well behaved at the junction point, since a(r = 0) = a.(r = 0) = ao.
Moreover, if one fixes ¢g = ¢o,e = 0, both scalar fields ¢ and ¢. behave as real
functions in their respective sectors. 1 will assume these two results in the rest of
the paper. .

Up to now, one is still left free to fix the relative sign in the prescription for
the analytical continuation of the lapse and scalar fields. What I propose is to

make the asymmetric rotation

N — 1N, )
(3.89)

¢ — Fide
This choice will be motivated by the one-loop calculations described in Sections

3.6, 3.7. In some sense, these prescriptions could be seen as the extension of
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the proposal of Ref. [53] for the conformal degrees of freedom of the gravitational
metric, where I have just added a rule for the case where also a matter contribution
is present in the action. One can expect that it is just the quantum theory that
makes this difference between gravity and matter.

I now calculate the action for this class of scalar-field wormholes. Its general

form is
ge = Se + Sebtm 5 (390)
where Septm is a possible boundary term for the scalar field. It is zero if the fleld

is held fixed on the boundary, and it is

Septm = + j’;_%_vq_sia(eii—y»}ﬂ)/z 3 (391)
e Ib

+(¢e/N,)al®7+2)/2 is fixed on the boundary. The mat-

if the momentum Iy, =

ter contribution may now be computed using explicit expressions for T, and

V, (egs. (3.80)-(3.81)), and the total action becomes (reinserting G factors,

see Refs. [50,51] )

- . 2 “+ o . _
§omx T2 (222 / df [cosh 6?1737/

3w , 274 (37=2) 4— 3y 2 —
+ el -2 2——4 3—_4§ 92
2oy =2 (3572550) e (355750) | 090

One can also check that the introduction of a boundary term for the scalar field
does not change any equation of motion (such as (3.71)-(3.73) ), provided ome
makes variations of the action at IIs, and N. fixed on the boundary. These
expressions have Some interesting consequences. Consider first the case V = 0,

v = 2, the Giddings-Strominger wormhole. Only the matter-field boundary term

may contribute, and one obtains

S.[2]=0, (3.93)
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if the scalar field is fixed on the boundary, and

2
~ 3re 4

58[2] = isebtmp] = :{’.I-/Ié“(lo ) (394)

if the momentum of a scalar field is held fixed on the boundary. One has a positive
action, and the expected form of the semiclassical amplitude, ¥ ~ exp[—ad/G],
for the sign choice that makes the startingA (total) action (3.67) apparently mani-
festly unbounded from below. The finite value of the action is entirely due to the
boundary term for a scalar field. Similarly, for v = 4/3, and neglecting Sem, one
recovers the action for the Hawking wormhole, Se [4/3) = F3wa3/(4G).

In general, when one deals with wormholes that are solutions to analytically-
continued classical equations, the naive semiclassical amplitude is finite for
~ > 2. However, the sign is as in the Giddings—Strominger case: wormholes have
amplitudes that exponentially damp large values for ag only when the starting
Euclidean action is unbounded from below.

Another remark can be made, on the other hand, on a previous work by
Jungman and Wald (1], which demonstrated a theorem about the conditions for
the existence of some kinds of asymptotically-flat euclidean instanton solutions
(see Section 2.1). In particular, they showed that the rhatter equation alone should
suffice to rule out solutions for scalar fields satisfying the condition gb% > 0, such
as a free, massless, minimally-coupled Klein-Gordon feld. However, both these
results hold only for a particular assumption about the asymptotic behaviour of
the matter felds which ensures the vanishing of the matter boundary term in the
action, but which is not satisfied here. For the solutions presented here, the form

of the potential is fixed a posteriori by the Euclidean equation of motion for ¢ and

the equation of state.



83 SCALAR-FIELD-DRIVEN WORMHOLES: A NEW SET OF EXACT SOLUTIONS

3.5 Finite temperature of wormholes

One striking feature is apparent in the solutions introduced above: in all of the;
the scalar field is restricted to a finite range, or rather, the wormhole is travell
from one end to another while the scalar field evolves for a finite amount.
is straightforward to check that this is a general feature of all scalar-field-driv,

wormhole solutions. In fact, expression (3.83) may be integrated to give

te \/T S

The integrand is never negative, from the positive definiteness of T.. It vanishe:
in the asymptotic regime in order for wormhole to join the asymptotically-fla
background. Now one only has to check that it decays sufficiently fast for t
integral to be finite and not divergent. For this one can keep next to the leading

order in the asymptotic behaviour of the metric:

B
aervte%—;—ﬁ , p>0 , B =const. ,
€

from which it is easy to obtain

! 1  plp+3)B
HEN——'(‘I‘E—{—W . (3.97

Thus, ¢. changes for a finite amount whenever (p+3)/2 > 1, which is automaticall
satisfied.

Now, the kinetic term is invariant under any constant shift in ¢, while ther:
are no other constraints on the potential term apart from eq. (3.81). Given
wormbhole solution, this equation determines the potential in the range (@eo, deo

P), where P is the finite, maximal value of the integral (3.95). Thus, one may no
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take the same solution and define the potential on the interval (@eo + P, Peo + 2P),
etc..

One way to understand this 1s to say that the field ¢. may always be inter-
preted as a phase. Indeed, this is the explicit realization of the wormbhole driving
field in some models [28]. But one is not forced to think that way only. Some of
our potentials may be naturally realized in some theory where ¢, has a completely
different physical or geometrical interpretation, (see, e.g., Ref. [158]). On the other
hand, wormhole geometry is completely determined by the evolution of a field ¢,
through the classical equations. In particular, one may always choose a gauge
such that ¢, plays a role of the Euclidean time coordinate (suitably rescaled for
the proper dimension). The wormhole geometry will appear periodic in the time
coordinate. (A better way to say it is that due to wormholes the ground state
in quantum gravity has a periodic structure.) In analogy with other gravitational
and non-gravitational systems one may interpret this as the finite temperature
of wormhole spacetime. Since there is only one parameter that characterizes the
wormhole, its size, one expects the wormhole temperature to be inversely propbr-
tional to the size of the wormhole.

All this may be explicitly checked for the family of the explicit solutions with
v = const., (see also Rel. [158]). For this one can ué:e the line element r, egs.
(3.21)-(3.23)). From egs. (3.23) and (3.83) one can write

doe = »\/—gagh"z)/zag—?’“’dn = p£a837_2)/201“37/2r”3"/2 dr . (3.98)

Introducing the auxiliary mass parameter

VK (3.99)




85 SCALAR-FIELD-DRIVEN WORMHOLES: A NEW SET OF EXACT SOLUTIONS

and integrating eq. (3.98), the solution may be written as

(]5 2/(3v—2)
t re . 3.100}
an (ﬂ/f) (

T = Ay

Therefore, it can be easily shown that, for the family of the explicit solutions wit
~ = const., one can rewrite the line element as

) ~6v/(37-2) [ o

. e
ds* = o?a? |sin (2-——— -
v

has the temperature

Of course, this interpretation needs to be supported by further, more detailed con-
siderations. If confirmed, thermal properties of wormholes should be interesting
on at least two counts. One is Hawking’s idea about the role of wormholes in the
evaporation of black holes. Trapped particles, that ultimately reduce the mass o
the black hole to zero, are supposed to travel through the wormhole away from
our universe. It would be very interesting to further develop thermodynamics o
wormholes and to see if there is any direct connection to the thermal properties o
black holes and some gain in the understanding of the evaporation process. The
second area of interest could be in explicit computations of the effective action on
the wormhole background, in order to examine in some details how coupling con
stants become statistical parameters. One expects that the thermal nature of th
background should be of some help to carry on and understand such calculation
(e.g., in the determination of Green functions, which become subject to periodi

conditions, etc..). Finally, possible thermal nature of the ground state may play an



INCLUSION OF A BARE COSMOLOGICAL CONSTANT 86

important role in the context of a general discussion about the quantum coherence

or decoherence in quantum gravity.

3.6 Inclusion of a bare cosmological constant

Let us try to generalize the previous results to the case in which a bare cosmological
constant ) is included into the action 3.67 (besides, for instance, the “effective”
contribution eventually given by the potential term V., in the case v = 0). The
strategy I will adopt is very simple: I tentatively assume that the geometry which
solves the new equations of motion is the wormhole geometry in the absence of
)\ plus a small perturbation which I expand in Aa?. To be explicit, 1 will only
consider the problem in the Euclidean region (the continuation to the Lorentzian
sector is straightforward), and I will assume that the modified scale factor is given
by

B (N =a(0)1 + A2 f(z)]  , Agp <1, (3.103)

where 1 have defined

r==

3y -2
2

o @rD /2,

(3.104)

?

o

and a.(0) is the unperturbed solution given by equation (3.19).
Generalizing the Friedmann equation (3.71) for the case a. = a.()) and using

the energy-conservation equation (3.70), it is easy to obtain (N, = 1)
W2 = [ae (W27 + oy e (AP + Ma(NPEY =0 . (3.105)

I now substitute the expression (3.19) for a.(0) and solve (3.105) by expanding in

the powers of Aaj. At the zero order one consistently finds the expected result
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that a.(0) is the solution of the unperturbed equation of motion (3.71). At th

first order one finds, instead, a differential equation for f:

df (2% —1) (1+ mz)z/(37—2)

2 =0 . 3.1
dz * (1+2?) 3(3y - 2)z (3.106)

f+

Fixing boundary conditions, for instance, with f(1) = b (b < o0), the general

integral of (3.106) is

2% 1 = 1+ y?)37/(31=2) !
= | | d .
A 1O ) A 317

whose asymptotic behaviour is

2:-L/(S'y--2)
F= 5@y o
1
f — +m 5 as  —

as ¢ — +00 ‘
’ (3.108)
It is then possible, following the same methods described in Section 3.4, to give
also the explicit expressions for the potential and kinetic energy of the scalar field

for these new solutions, and I obtain

7)) = 5’-75(1 +22)"3/ @I _ 390a2 f(2)] (3.109)
@y

(0 = %:;’-1(1 + 22)3 T 322 f(2)] (3.110)
Gy

The solution for v = 0 (and b = —1/12), which- corresponds to the topology of a

4-sphere S* with the matter contribution included, is

o) = —2(1+2%)7

6
T.(A) =0, (3.111
Ve(A) = a5

This explicit expression will be used to show (Section 3.9) that, in the ansatz o

the (c) prescription (or, equivalently, the (c1-c2) prescription), one can still hav



INCLUSION OF A BARE COSMOLOGICAL CONSTANT 88

the double Coleman exponential peak [43] as a saddle-point in the Euclidean path
integral at the effective cosmological constant equal to zero (Aefs = V(M) +2 = 0),
without the extra phase ambiguities claimed in Ref. [49] (I incidentally note that,
just for the case v = 0, the ezact solution to (3.1053) is given by eq. (3.19) with ag
replaced by (A + az?)"1/?).

In general, expressions (3.107)-(3.108) are not convergent for large z and for
v > %, which is the case one is interested in. This actually reflects the fact that
the modified wormhole solution cannot be extended to arbitrarily large values of
the scale factor @., as I will show in the next paragraph. More explicitly, for
the perturbation expansion (3.103) to be still valid, one can still impose that
Xal f(z) < 1, for large z. Using (3.104), this gives an approximate estimate of
the maximum value for &, (for v =1, one finds Timaz < 2 (15:3—)1/4, while for v = :é-,
rmes <3(3)"7).

A clearer geometrical interpretation of the A-extended solutions can be seen by
direct inspection of eq. (3.105), which can be interpreted as the energy equation for

-2 .. .
a classical particle of unit mass and kinetic energy d. (A) moving in the potential

a1 4+ a2+ a)? el (3.112)

e e

U=

B

with total energy zero. The BEuclidean motion is allowed in the region where
U < 0. For v < £, the potential remains negative in the range Ge € [0, @maz), and
then increases without bound: this represents the nucleation of a closed expanding
universe at the minimum radius (for v =0, @maz = (A«}—ao"z)“l/z). For v > %, the
potential can become negative (provided Aa? is small enough) for a finite range
of G, (@, € [@min, Gmaz] ~ [ag,)\“l/z]), and then blows up to plus infinity for
&, — +oo. This behaviour represents an Euclidean instanton connecting a ‘baby’

RW universe at the maximum radius to a large de Sitter sphere at its minimum
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radius. It is then also possible to glue these instantonic solutions in different wa
such as to obtain tunneling between either two ‘baby’ RW universes or two larg,
de Sitter universes (see figs. [16-17]). Similar geometries have been described,
instance, in Refs. [29,102,104] and Ref. [100] (though by considering a differen

matter content).

3.7 Quantization: the ‘background-field’ expansion

The partition function for Euclidean QG minimally-coupled to matter (Zgqgg) i

usually defined as a functional integral:

dglld ® _o s
ZEQc;:ﬂ V{’i[c ]e S[g,%®] ,

S =8¢+ Sy ,

where S is the Euclidean gravitational part of the action (with bare cosmologic

constant A)

1 , 1 :
- d* 2 l 3 h K - o . 5}
Sa BRG] [\A z /g(R — 2A) §7C Jou dz \/—( K,) (3.115 :

(K is the trace of the second fundamental form on the boundary of the manifold
M, regularized by a similar term evaluated on flat spacetime, K,). The coordinate

group volume Vo compensates for the general coordinate overcounting:
Vio = Appe™ " (3.116)

where Sgr is a gauge-fixing term and App its consequent Fadeev-Popov determi-
nant (see, e.g. Ref. [49]). Sps represents the matter part of the action for a generic

field P.
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The quantum theory at the one-loop order is studied in the “background-
field approximation” by the expansion of the quantum fields around some classical
field configuration (see, for instance, Refs. [159,160] ). Namely, one expands the

gravitational and matter fields as
9 (2) = Bun(@) + 2bhi () (3.117)

d(z) = ¢(z) + 8(x) , (3.118)

(k? = 87G) where a " denotes a quantity evaluated on the classical backgrounds
(Guv, $) and h,,(z) and 6(z) are the quantum fluctuations (of order O(%)). There-

fore, the path integral in eq. (3.113) becomes
Zpge =N f{d h)[d 8] App e SliThorel (3.119)

where N is a normalization factor.
One then expands the action in a functional Taylor series about the classical

background (see also Ref. [160]):

. . . 68 85
Slg+h,d+ 8]~ S,[3, +f diz | ———| hu(e)+ (z
{g ] [g QIS} ™ 591‘“/(%) g,qS ® ( ) 5@($) i ( )
1 628
-+ = d‘*ibdiy i:h v h oY
2L J m ol )59w(w)59po(y) i )
828 628 }
+ 2k, (2)— |  Oy) + () s 6 + . 3.120

Now, the terms linear in the quantum Auctuations are zero because of the equations

of motion

L 65 =0 . (3.121)

60(2) |y 9un(2) g0 -
The terms of the second order in the fluctuations (the Hessian of S) give the

quantum one-loop correction to the semiclassical theory (3.67).
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The basic problem here is to investigate the reality of Zpgg. Then, usin
standard “tricks’ in the evaluation of the functional integral, this amounts in stud:
ing only the phases coming from the Fredholm functional determinants due to tl
“fyll propagators” for h,, and §. Now, if one momentarily ignores the matter flu
tuations, the critical fact (observed in Ref. [49]) is that the determinant comin,
from the Gaussian integral around the saddle-point of the action will, in gener
contain factors of i because the action S of Euclidean gravity is unbounded from
below. Polchinski explicitly considered the Coleman’s model [#3] for the solution

of the cosmological-constant problem. Coleman’s saddle-point for A > 0 is a larg

4 sphere of radius r = 4/ —X%g, and has action

3

~555 (3.122

iR

So(9)

The sum over disconnected spheres, at semiclassical level, is given by a probabiﬁtk
distribution exp (Zpgg) > exp (exp (—é—é’—g—x)) , which appears to be infinitely peake
at A = 0 (actually here A is the effective fully-renormalized cosmological constant
which has become a dynamical variable due to the effects of wormholes, see Sectio
2.2).

However, at quantum level, one has also to take into account the corrections

given by the field fluctuations, i.e. by the Hessian M of eq. (3.120):
/[d hle " " h ~ N (Det H)™V/? . (3.123)

In particular, if the Hessian has some negative eigenvalues, one should rotate each
corresponding eigenfunction in the complex plane by a factor of i, introducing a
phase in Zggg at one-loop level. Since H is almost completely negative-definite
around Coleman’s saddle-point, the prescription suggested in Ref. [49] is to globally

rotate the Weyl parts of the gravitational fluctuations as ¢ — 1¢ (which gives a
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Jacobian J = 1) and then to rotate back the eigenfunctions corresponding to the
positive and zero eigenvalues of H (in the number of Ny and Ny). Furthermore,
Polchinski has shown that there is no phase ambiguity coming from the Fadeev-
Popov App. This turns out as a global phase in front of Zggg of the kind, in

four dimensions,

Vet = 8 = 1 (3.124)

which, therefore, would destroy Coleman’s argument. I incidentally note that the
request of dropping out the negative (and zero) eigenvalues of H also corresponds to

the standard procedure for the (- function regularization of Det H (see Ref. [159]).

3.8 The one-loop approximation

Let us now specialize the formalism introduced in the previous Section to the case
of our wormhole solutions. One expands the total action, eq. (3.67) with the
plus sign, around the wormhole background fields §u,,(w),q§(m) accorc}ing to egs.
(3.117)-(3.118) and (3.120), and then decomposes the gravitational fluctuations
into a symmetric, traceless tensorial part and a trace (Weyl) scalar part (see
Ref. [161]) as .

huv = buv + G ' (3.125)

where §*’¢,, = 0 and §*"hy, = h = 4¢.

One first calculates the Hessian of the total action (3.114) with respect to the
metric fluctuations A,,. The second-order variation of the gravitational part of
the action (given by eq. (3.115), with A = 0) turns out as

1 625

Sa2 =ghuy =
27" 8uv89p7 1.6

3

- |1 s o
hpoe = d*z \/5; {_Q_h‘“’ <~g#pgwm+2Rﬂpg”"+




93 SCALAR-FIELD-DRIVEN WORMHOLES: A NEW SET OF EXACT SOLUTIONS
, P . . . 1. ;
— QRMW> Ko — Ph,, VORE — 2RHP (RPJ - ngdR> h;} , (3.123

where one has defined (see Ref. [160])

= 1
hp,v - huu - ‘z‘guvh . (312?

One therefore adds a de Donder gauge-fixing term [162]
Ser = | d*z \/E ﬁ’”ﬁpu‘@”ﬁg , (3.128)

for which eq. (3.126) becomes

1 : - i po o v
Saa+Ser =5 [ d'z \/5 (—@polIp? + 4plld — 20" R\ p )

2
— 20" Ry puod® + ¢ Ré,,) . (3.129

As for the Fadeev-Popov determinant App (see eq. (3.119)) coming from the
gauge-fixing, one can follow Ref. [49] in accepting that it is the modulus of this
determinant which appearsin Zggg, and therefore App does not affect the glob%l
phase of Zgog.

For the classical background of the wormhole solutions, one can express the

curvature tensor K, ,,, in the following form:

~

A R, . . L N N A
Rupua = ‘é’(gpfrgpu"'guugpa)’*""(Ruugpg +Rpag“y—Rng,,-—Rp,,gw) . (3130)

[N

For simplicity of calculations (and comparison with standard formulae in pertur-
bative gravity), from now on I will work in the classical (wormhole) ansatz (3.19)
with o2 = 1 (this is also the original ansatz studied in Ref. [50]). In this ansatz,

one can therefore write the Ricci scalar R as

R=3(4—37)d® %% | (3.131)



THE ONE-LOOP APPROXIMATION 94

Substitution of these explicit saddle-point solutions into eq. (3.129) gives

A

O
Sez2+ ScF Z/d‘*w Va {qﬁ‘” —5 (4= 3m)a) T )
”‘75@4 ~ (3.132)
Let us now consider the Euclidean matter part of the total action. This will be

i
su=- [ aeyi (22 4v) (8129
M

where the scalar field ® is held fixed on the boundary OM. Notice that the choice

taken as

(3.133) is equivalent to the Fuclidean version of the action (3.42), provided one
redefines V, of Section 3.3 as V, — —2V. Moreover, one can expand around the
homogeneous classical solution ¢ = $o(7) of Section 3.3. In the new ansatz ol =1,
this can be easily found to be given by eq. (3.128) with /27 replaced by 24/37/k,
and by eq. (3.129) replaced by

8~

V(ge) = wl-2) {cos <(37 = 2)@)] e (3.134)

2aj 27k

It is easy to show that the Gaussian fluctuations of Syr with respect to g,, are
given by

+ 2

1

1. 88 p :
Sara =—hy, —— hg:kZ\/d*m A{‘W —— + V(¢ v
M2 2 14 ‘Sg;“}agpg g’q;) 14 \/—g— Qb QNZG,?;”B’Y (¢) qsll‘

[:4

— 44V ()¢ ~ 2«150”9;‘324253} : (3.135)

The same result can be obtained in the case where the momentum of the scalar

field is held fixed on the boundary dM [50,51].
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Obviously, the only contribution to the Hessian of the total action S with

respect to the matter-field fuctuations comes from Sps, and one can write it as

1 625 1 n - . 52V

Then one can use the explicit expressions for the wormhole solutions given i

Section 3.4 for ¢, and V($). 1 first note that, according to eq. (3.85), th
classical value V:V(gg) of the potential V' can be expanded as a power series in b

If one assumes that the unknown potential V(®) can also be expanded as a powe

series in @, one is allowed to make the substitution

eV | _ V()
§BP5D 4.9 6069 144

From eq. (3.85) one finds
?..K@\ _ 3 { z(.i*‘r_/_;?ﬂ)_ - }
5350 1o QMZV(qﬁ) (3y +2)tan Q#ﬁcé (3vy —2)

An explicit calculation of the phase coming from the determinants of the Hessian

for the gravitational- and matter-field quantum fluctuations can be made in two
different regions of the classical wormbhole solutions.

T will first consider the asymptotically-flat region of the wormbhole, i.e. I will
specialize to the limit

.
NEEERIP >1 (3.13%)

This bound can be achieved in particular for small a,, which is the “little
n. In this region, one can reasonably approximate the

classical values of —&?——2:3—; (egs. (3.83) and (3.19), V (eq. (3.85)), %}2— (eq.

wormhole” approximatio

(3.138)), the curvature tensor and the second term in eq. (3.132) by zero. There-

fore, in this limit, the second order variation of Sar with respect to g, (eq. (3.135))
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vanishes, and one is left with the following final formula for the one-loop contri-

bution to Zgga:

~

, . N
Srora =~ | diw /G (" |~ | uw T 2000 F 5600
= f(ﬁbWA%u + B +0C8) Vi d'z . (3.140)

Let us better clarify this last result. It comes out from the discussion of Section
3.3 that one has the freedom to choose the global sign in front of the Euclidean
action (3.114). The choice (3.140), which corresponds to define an Euclidean
negative-definite matter action, suggests that, for the wormhole, matter behaves
like the conformal degrees of freedom in the metric field. But this is actually
the consequence of two facts: first, the necessity of the nonstandard choice in the
relative sign of the matter and gravitational sectors of the Euclidean action for
the existence of the wormholes (see Section 3.3) and, second, the adoption of the
usual normalization prescription for the complex rotation of the conformal factor
of gravity. Despite this unusual definition, the (negative) Fuclidean matter action
evaluated at the classical (instantonic) level is well behaved, in particular it is
bounded from below, at least in the parameter range 7y > %

For our purpose, the next step is to determine the sg)ectrum of the Hermitian

differential operators 4, B,C acting on G uv, ¢ and 8, since one has formally
/[d Fluctle™5T0T2 ~ (Det A - Det B - Det C’)_% : (3.141)

Of course, the above functional determinant must be regularized in some way.
To determine the eigenvalues of the background Laplacian operator in a four-
dimensional Riemannian manifold, one should remember that the action of this

operator on a symmetric second-rank tensor T, in the above limit of vanishing
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curvature, is the same as (see Ref. [161])

[jTu,, s —~[A:1LT“,, ’
where [Jr, is the generalized Laplacian introduced by Lichnerowicz (163],

well known (see, for instance, Ref. [164]) that the spectrum of [z on a comp

manifold is positive semi-definite. Since the background of wormbhole solution

for the contraction of T),, into a scalar, one can conclude that

spectrum (4) > 0

IA

spectrum (B) <0

0

(A

spectrum (C)

Therefore, in order to avoid problems connected with the evaluation of Zggg an
for the consistency of the saddle-point method used here, it is necessary to dro
out the eigenfunctions of the operators corresponding to the zero and negativ
eigenvalues. Let us first take care of the negative eigenspace. The operator 4 ha
no troubles with the negative eigenvalues. To deal with the B and C operators, o
the contrary, one follows Ref. [49] in rotating the entire integration over both ¢ an
8 in the EPI by a factor of i (whose corresponding Jacobians can be neglected
Then one rotates back the eigenfunctions corresponding to zero eigenvalues (whic
are of finite number Ny(B) = Ny(C) and depend on the choice of the topolog
of the spacetime). If one strictly followed this prescription, i.e. if one rotate
¢ — +ip and 6§ — +if (with the same relative sign), he would obtain for the

global phase in Zgqg the following result:

i(No(B)+N0(C)) — (___1)N0(B) =-1, (3144)
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where for a closed manifold (as the Euclidean-continued wormbholes) Ny(B) =
Ny(C) = 1, corresponding to the constant eigenfunctions [5]. This would give the
same distressing result as in Ref. [49].

Therefore, the fundamental attitude is to define the prescription for the Wick

rotation of the scalar terms in the one-loop expansion of Zgqg as

¢ — +id (3.145)
§ — —i8 , (3.146)

which, therefore, gives a global real phase
(+3)NoB) (—g)Nol) = 41 (3.147)

After dropping out the zero modes following the standard way (%%, the Euclidean
QG partition function obtained in this way is real with no phase ambiguities.

Let us note that the assumption of a negative-definite Euclidean matter action
is not in contradiction with the claims made in Ref. [49]. The key point is that the
ansatz considered in Ref. [49] is that of a 5% sphere, which is radically diﬁerént
from the ansatz of the scalar-field-driven wormholes, where one has a different
topology (R x %), and a different Euclidean action.

It is also interesting to note that, in this new context, the classical prescrip-
tions of Section 3.3, in particular the proposal (c1-c2), might receive a more serious
motivation and justification. In a certain sense, one could say that this prescrip-
tion can be seen as the extension of that proposed by Ref. [53] for the conformal
degrees of freedom of the gravitational metric, where one has just added a rule for
the case where also a matter contribution is present in the action. One can expect
that it is just the quantum theory that makes this difference between gravity and

matter.

-
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To conclude this Section, I briefly mention about another possible appr
mation around the classical background of the wormhole solutions. The appr
mation is to work in the background spacetime region near the wormhole “nec

1.e. at
-

—_—— K1 .
ag?w—?)/?-

Again, the above bound for fixed T can be achieved for large ao, i.e. in the “gian
wormbhole” limit. In this case, using egs. (3.132), (3.135), and (3.136), it is alm
straightforward to see that eq. (3.140) is substituted by

Stora= | d*z \/§ (¢ A'¢i + ¢B'¢ + 600+ ¢°7D'¢,) (3.1

where one has set

0 1
,—'——-__._..— PR
A= 2+a(2, ’
- -2
BI:2<D~3(72 )) ,
aO
p 1~ 3(3y —2)(v - 2)
C"2<D+ 4q?2 ’
O (1-6v)
, RN
D = 5 22 .

Unfortunately, the spectrum of these operators is not as easy to be found as in
the previous case. This is not surprising, since in this large a, approximation
the dynamical role of matter couplings affects the small-scale structure (i.e. the
one-loop approximation) by a sort of a “classical” gravitational dressing induce&

by these “giant wormholes”.

3
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3.9 The Coleman’s peak at \ =0 revisited (1)

Now, it would be interesting to extend the discussion to the case corresponding
to the Coleman ansatz for the suppression of the cosmological constant A. This
would imply assuming that the ground state of the Fuclidean theory is given
by a 4-sphere S* including the matter contributions. For the Euclidean classical
solutions of Section 3.4, this corresponds taking v = 0.

Recently, the Coleman’s theory has been questioned by Unruh and Hawk-
ing [141,143]  which pointed out that the peak at )\ = 0 might be the obvious
consequence of the unboundedness of the Euclidean gravitational action , and by
Polchinski #° who claimed the existence of a complex phase in front of Zrqa-
I will demonstrate that, also in this case, adoption of the definition (3.67) of the
Fuclidean path integral can lead to the “annihilation” of the destabilizing effects
of the gravitational field modes against the matter modes.

I have already shown in Section 3.6 that the classical wormhole solutions can
be extended to the case when a bare cosmological constant A is included in the
gravitational action. In the approximation a2 < 1, one can generalize the scale
factor according to egs. (3.103)-(3.104) for the case v = 0, which corresponds to
the topology of a 4-sphere §% with matter contribution included. The ‘perturba-
tion’ f and the classical kinetic term 7. turn out as in eq. (3.111). In the ansatz

c?=1,V. = 92V, the expression (3.111) for the classical potential is replaced by

V(A ~ -ﬁ‘; +0(X%) , (3.154)

@y
and one can define an effective cosmological constant as

Xefp=h — —3—1"/(;\) : (3.155)

L2
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From egs. (3.103) and (3.155), it is then possible to explicitly compute the classi
value of the action (3.114), which now becomes
~ ,u,z ,LL2
S, =2 [ d'z v/g(}) [——-5(1 +2?)(1 — 2Xal f(z)) + —é-Aeff : (3.1
a4y
Repeating a similar kind of calculations as those made in Section 3.8, it is easy

show that the (generalized) Gaussian fluctuations of the total action (3.114),

the one-loop approximation and v = 0 case, come out as

.~ O Op) 4
Store = | d*z /§(\) [QW “"“g‘l ;‘2“')‘61’1’ Puv

0
+2¢ ([‘](,\) + 2,\€ff>¢ + -;-9{:"3(,\)9}

= /(«#‘”A"gb,w +¢B"$+0C"8) +/3()) d*z

and, for the scaling behaviour, one has

Ye=0
where V2 is the 3-D Laplacian for S°. Now, again one can assume to work i
the asymptotic limit  — oo, which is the case, for instance, if 7 is large. In t
limit, using eq. (3.158), one can easily check that the spectrum of the differenti
operators 4’ and C” remains the same as that of the operators A and C (e
(3.140)), while B" can have at most one positive (or zero) eigenvalue, if one wor

in the range

1
0< Aesr < 5(1+2%) . (3.15¢
ay

Therefore, if one just assumes A;; € RT (which is the same as in Ref. [43]
and follows the same discussion as in Section 3.8, it can be seen that the

classical solutions of Section 3.6 give, in the one-loop approximation, Zpgg € R
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Moreover, for z — oo, now one has f(z) — —1/6z% and A.py — 3/aj. From eq.
(3.156) one then obtains the classical action
2

G, -t (3.160)
Aesf

As a consequence, the Coleman double exponential peak at A.;; = 0 survives in
the ansatz of these A-enlarged solutions for a large S* sphere with the inclusion
of a non-trivial matter content, without the extra phase in Zggg, found by

Polchinski 91,




Chapter 4

Stabilizing the gravitational

action: the 5-th time formalism

4.1 The conformal problem in Quantum Gravity

As I have already stressed in Section 1.6, but as it also cléarly came out from
the explicit calculations made in the previous Chapter for the case of Wormhol§
solutions, one of the fundamental problems of a ‘yet to be constructed’ path in-
tegral formulation of gravity is the clear definition of the correct Lorentzian and
FEuclidean measure and the related analytic continuation procedures. Among the
other things, this is certainly one of the prioritary and fundamental tasks which
have to be achieved before one can seriously make physically reasonable conjec-
tures about the behaviour of wave functionals in QC, and especially about the
claimed peaks at certain values of the couplings of nature as a consequence of theﬁ
topological wormhole effects.

In particular, it is well known that the EPI suffers from severe troubles because
the action for gravity is unbounded from below, due to the conformal degrees of
freedom, The theory is unstable against large field fluctuations and at zero order

in the weak-field expansion.



THE CONFORMAL PROBLEM IN QUANTUM GRAVITY 104

In order to deal with this problem, various proposals have been made. In
Ref. [53] the conformal-rotation technique was advocated as a possible way out.
This essentially requires a splitting of the sum over paths into a sum first over
conformal equivalence classes, followed by a sum over all possible conformal factors,
but with the sign in the action for these conformal modes reversed to provide
convergence. Unfortunately, this evidently appears as an ad-hoc procedure, whose
physical meaning remains obscure, and it does not illuminate as to whether a
sensible, stable ground-state actually exists in QG. Technically, it is difficult to
implement such a prescription both in explicit numerical simulations and for the
case when some extra matter content is added to the action (in particular, a naive
conformal rotation, while correcting the sign of the conformal kinetic modes, also

gives the wrong sign for the matter kinetic term !).

The standard approach of QC is to evaluate the EPI in the space of complex
geometries [54]. Unfortunately, so far there have been no explicit proofs abbut
the actual existence of such convergent paths for the conformal degree of freedom
in the general case, and most of the calculations in QC may be really built on
‘quicksand’. More importantly, it has also been pointed out in Ref. [166] that con-
tour deformations in the functional integral can lead to complex nonperturbative

correlators.

The idea of the authors of Ref. [55] is to construct physical quantities as mani-
festly convergent EPIs from the fundamental formulation of the quantum theory in
terms of its physical degrees of freedom. EPI’s are shown to be convergent for both
linearized and perturbative (around asymptotically-flat spacetimes) gravity when
given in the physical variables. Inserting additional integrals over the redundant

variables leads to a (bounded) Euclidean action which is diffeomorphism-invariant
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but nonlocal beyond the linearized level. Other approaches, which either comp

ify [*67] the field space, or add higher-derivative terms (168] 5 stabilize the acti

may introduce unitarity-violating ghosts.

The idea that the correct approach to the conformal problem in QG sho
be traced back to the LPI formalism has been advocated by many people.
instance, Mazur and Mottola et al. [56,169] constructed the Gaussian meas
in the LPI by imposing ultralocality and covariance, obtaining a Jacobian fa
which just transforms the linearized conformal modes (o) of Ricci-flat backgrou
into non-propagating, constrained modes. The effect of the Jacobian is equival
to the nonlocal field redefinition x = v/— V20, and the Euclidean continuatio
the potential term generated by x leads to a convergent EPI and to the infra
stability of flat spacetime. The strategy of Ref. [57] is that the EPI should 1
defined so that it adjusts to the Lorentzian results. Calculation of the transitic
amplitude for a simple mode by means of the LPI results in an Euclideanizatic
prescription which is a purely algebraic operation. The semiclassical limit of% \
convergent EPI measure for a simple minisuperspace QC model is the product 0{
(stabilized) determinant coming from the one-loop fluctuations times the stanéa;é:

e (see also Section 4.8).

4.2 Stabilizing bottomless action theories

However, the Euclidean formulation might be desirable for many applications, su
as the wormhole physics, numerical lattice simulations and path-integral represe

tations of the ‘wave function of the universe’.

In this context, a different and interesting approach has been recently pr
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posed in Ref. [61]. This is the so called ‘5-th time’ formalism, which appears as
a generalization of the stochastic-quantization methods [63]. The main idea is to
construct a stabilized theory where the Boltzmann factor exp(—JS ) in the EPI is
substituted by a normalizable factor exp(—S.zs) which has the same classical limit
as that of the bottomless theory. In particular, for the wrong-sign —A¢* theory
and for the large N-field expansion, the two actions 5 and S.ss have the same
perturbative expansion, but this is not the case for gravity [62].

These results can be achieved because the instabilities of the bottomless theory
appear to be nonperturbative effects. The basic idea is to imagine that the starting
D-dimensional theory is, in fact, due to an underlying D+1-dimensional quantum
theory. Recently, this “D-+1-th time” formalism has been used in order to provide a
truly non-perturbative definition of 2-D quantum gravity [170]. The starting point
of the authors of Ref. [61] is to consider the vacuum expectation-value < Q@ > of
an operator @ (depending on a set of fields $) as the expectation value in the

ground state (GS) ¥y of the D+1-dimensional theory

_ 1 ~5/h = _ ! g~ S/2h
<@>= [ s Qe =< wolQIE >, Wold] = = (1)

The D-+1-dimensional theory is defined by the Hamiltonian H for which ¥ is the
GS. The Hamiltonian is
16 1 [(65\* 188
H ={ dP e k= — )
b f * [ 254°  8h? (5¢> 4R 5¢2}

1 .
-2-/ d°z R"R >0 , (4.2)

i

where R = z;s% + —235 %ﬁi— Now, since ¥, given by eq. (4.1) is well-defined (normaliz-
able) only for bounded theories, while Hp41 is positive semi-definite (and then it
has a well-defined GS for any §), the strategy is to assume the D+1-dimensional

theory with Hp.; as the more fundamental theory.
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The general method is to look for the GS of the Fokker-Planck (FP) equatio

1 _
HpUy = Ey¥y \yozﬁe Sers/2h (4.3)

and to redefine eq. (4.1) with this new ¥y (Seys is the effective D+1-action defined
through Hpyi). It is obvious that, if the starting action is bounded, S.r5 = S
and E, = 0. But for a bottomless action one will have, in general, Sess # S and
E, > 0, and the new theory is normalizable and stable. Since, in most cases, it
will be extremely difficult to analytically solve eq. (4.3), one can define the theory

in terms of a path-integral formulation, where one has (in D=4)

1

<@Q>= 7 dé(z,z5) Qlp(z,z5 = Ts5)] - exp[—5s] (4.4)
with ,
, 1 1 [6S 1 628
55 frnd / d‘iwd.’l:,s '2“(65(,5)2 ‘l” é‘;{é‘ (“gg) - ‘4’5‘5&5 5 (45)

and one computes expectation values on 5 = const slices of the extra dimension
variable z5. Egs. (4.4)+(4.5) immediately says that, in the i — 0 limit, the
classical equation of motion for the bottomless action is recovered (enforced), as
it is required.

Moreover, the O(A)™! term helps stabilizing the theory. This can be easily
seen in the case of the ‘wrong sing’ —A¢* theory, where the last term in eq. (4.5)
is simply + 5 A6*(0)¢?, which provides a restoring force in the bottomless region
of the potential (damping out the classical solutions involving ¢(z4) — co in the ‘k
EPI). This singular term is well defined at the nonperturbative level only after
introducing a (lattice-cutoff) regulator.

For the perturbative expansion, one first verifies for the free theory that

< ¢(z,0)¢(y,0) > is just the usual propagator for the D-dimensional theory (this
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assumes that the kinetic term of S is bounded from below, which is not the case
for QG). Then one observes that the perturbative expansion of (4.4) necessarily
reproduces the perturbative expansion of any stable S. Since the perturbative
expansion (4.4) is insensitive to the stability of §, this should also reproduce the
formal perturbative expansién of the unstable theory.

A nontrivial problem for the theory with a scalar field case is that the second
term in Ss, (65/8¢)?, contains higher-derivative terms like (8%¢)* which make it
difficult to prove reflection-positivity in the D-spatial dimensions at equal 5.

The natural extension of eq. (4.5) to the Euclidean gravity leads to the action

s, invariant under ({;-independent) 4-D diffeomorphisms [62],
k* ., 85¢ 85g
8h uvof 59;11/ 59&5

, 1
5 :/ dtsd*z {zkéG“”aﬁﬁagW&,gaﬂ+

- -"iG*l & SG} (4.6)

4h #P 69,8908 | oraer ’
where g, is the 4-D metric (which then substitutes ¢ as the func-
tional integration field in eq. (4.4)), Sg 1is the 4-D gravitational
action given by eq. (3.115) of Section 3.7, and k2 = 167G.

[...)|order Teflects the arbitrariness in the possible choice of the operator ordering of

the supermetric and functional derivatives, and G#¥°P is the De Witt supermetric

1 N
Grvel — §f(g”°‘g”’3+g“ﬁ vo +cguvgaﬁ> , (4.7)
C
Gp,va,@ 2\/- Guadvi Jr‘g,u,ﬂguoe - 1+ 2 ——Guvfcp ) (48)

where ¢ is an arbitrary parameter (¢ > -% for the positivity of G#v*8 and for the

stability of S5). For the standard (Z”d-order) Einstein-Hilbert action, one obtains

1 Ak?

_ 5 vaf -1 Vo —g"” ——g"
S -—/ d’z [Zk“iau O59uv059a8 + 213 8h2 prof (R“ h 29“ B+ 2 g )
Ak?

.(Raﬂ ; IR+ g a) ~~—\§(ﬂR+aA)} , (4.9)
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where the ordering ambiguity has been absorbed in the (singular) constants @ an

B, which contribute only at loop level.

4.3 A simple minisuperspace example

A set of important results can be established in the context of the 5-th tim
stabilized gravity. As a first example, one can introduce the 5-D metric [64]
ds? = dt? + ds? (4.10)

ds? = N?dr® + a?dQ? (4.11)

where t5 is the ‘fictitious’ extra dimensional variable. For simplicity one can as-
sume to work in the gauge N = 1 (the “proper-time” gauge for a closed syn-
chronous minisuperspace ansatz), since the gauge-fixing is actually unnecessary
for perturbative calculations in the S5 approach [61]- which is a sort of stochastic
quantization [171] (see below). In other words, one is left with the problem of
fixing, at most, the four-dimensional diffeomorphisms.
Performing the functional derivatives in eq. (4.6) for the simple case ¢ = 0
(which should not restrict the generality of the results), and assuming the order

written, one ends with the following expression for the 5-D action:

2
Ss =272 | drdts -6—5‘5 Oa + ! 19(a2a% + a* + 1 — 242 + 4a’a — ad
k* \ Oty 8ah?

+ 60k (aa® + a2a® — a?) + A2k*at] + %a3)\k*5fm(0) , (4.12)

where 6%

% is the 4-D diffeomorphism-invariant delta.

Now one can consider the effect, on such an action, of the quantum fluctuation

6 of the field a around a background classical configuration a:

a(ts,) = a(ts,7) + () a = const . (4.13)
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Here I take the quantum fluctuations ¢(7) depending on T only, which is a sort
of “crude” notation for the idea that the gauge group in the stabilized gravity
theory is formed only by ts-independent diffeomorphisms. For simplicity (but
this assumption does not restrict the generality of the one-loop results ), one can
consider the case where @ = const and therefore expand the action (4.12) in k?

around @ as
S5 = (2%2)/ dtsdr [A(R) + kE*RB(R)¢ + E*R*oM(R)o + O(ks)] . (4.14)

The first term on the right hand side of this equation is just the classical contri-
bution to Ss, and the second term can be put equal to zero by means of a suitable
redefinition of ¢. Then, in the one-loop approximation, the only important quan-
tum contribution to Ss (as it is well known, see, e.g., Ref. [165]) is the third,

Gaussian term of eq. (4.14). Its explicit expression is

3kta [ [ & ? &2 v |
REM = : P (2}7 + %) + 2)\14:2;—1—73 £ OAKE(A +8REE,,(0)] - (415)

As it is well known, the Gaussian fluctuation in the quantum field ¢ gives Tise

to a one-loop determinant of the effective theory:
/ dp e ¥ W OMé o [Det (KRZM)) T (4.16)

The theory is well behaved if the M operator has no negative or zero eigenvalues

[53]. To the lowest order in h, the spectrum of K%M is given by

R2M —

dr? = a2

k*a [ 42 2
3;( +—1—> S0, if M2o0. (4.17)

So, in this simple case I have shown that the prescription of considering the 5-
D effective action is really a working ‘trick’ which allows to stabilize the theory

against the quantum-field fluctuations.
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4.4 5-th time versus stochastic quantization

Similar results can be also obtained in a more general context. Recently, it wa
shown in Ref. [63] that the 5-th time prescription is in fact equivalent to stochasti
quantization.

The basic idea of the stochastic-quantization methods (for a nice review, se
Ref. [172]) is to similarly introduce a 5-th time 7 and to postulate a stochast

Léngevin evolution for the field ¢ (here I consider the case of a scalar-field theor

with 4-D action §):
0¢ §5()
'5‘;(12,7‘) = _._...6.(;._

where 7 is a Gaussian random variable such that < n(z,7) >p=

+n(z, 1) ,

< n(z,7) n(e', ') >,=26*(z — ')§(r — 7'), where the angular brackets denote
connected average with respect to 7 [171].
Tt is then possible to prove, at least perturbatively [171], that the quantu

theory is reproduced by the equilibrium limit

L Jeeoan T e"s
im < @1(@1,T1)emenen $i(zr, 1) Sq= [ D¢ W’} 11)15 e_¢5( 1]

T =00

governing the evolution of the probability P(¢,7) of having the system in the

configuration ¢ at time T, i.e.

P 82 P ) 58

= | 4P | — —

5= {5452 59 (Paqs)}
This can be rewritten as

%? = 2HY , (4.21)

o

where H is given by the right-hand side of eq. (4.2), and ¥=P €5/2, The solution
of eq. (4.21) is
U = S, Upe 287 (4.22)
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where the ¥,,’s ( E, > 0) are the eigenstates (eigenvalues) of H, c, are normal-
ization constants, and for the ground state Ey = 0 and ¥, = e~ 5/2. Therefore,

since one can also write

and, in the limit 7 — co, one has that

im P = lim e”S/ZEcn\I’ne"?‘E"T =cpe” " (4.24)

T 00 T OO

it is then easy to show that eq. (4.19) holds.
The FP partition functional which reproduces the correlators in the stochastic

quantization is given by (63]

< Q>=1lim = [ Dye,~T < ts <T) Q[#(x,0)]

T—oo 4s

T
- eXp ——/ &z n?/4h| . (4.25)
_T

The Langevin equation (4.18) is usually solved by assuming an initial (regular)
field configuration ¢;(z) at t5 = —7', and that as T — co the thermal average
should be independent of it. )

Obviously, such an hypothesis cannot work naively for bottomless actioms,
since the EPI is not even defined. Even if the initial field configuration ¢; is a
local minimum of the action, for large ¢5 the field has a high chance to evolve
into the bottomless region of the action and to become singular. The proposal,
therefore, is to implement the sthochastic prescription by the condition that the

Langevin evolution is described by a noise term which drives the field between

fixed, non-singular, initial and final states ¢i 5(z) at t5 = =T [63,173].




113 STABILIZING THE GRAVITATIONAL ACTION: THE 5-TH TIME FORMALISM‘:‘

Generalizing to the case of gravity (03] (actually, a first attempt to the
‘stochastic’ quantization of Lorentzian gravity can be found in Ref. [174]), de
noting the fields (metric, tetrad or spin connection) by g'¥, the supermetric by
G~y and the supervielbein by Exd (Gun = E3 E3), the Langevin equation

becomes

. 68
asg!\ GZ\IN(S = +E1U ,

with < n2(z,ts5) 7P (2, t5) >»= 264864 (x — 2')8(t5 — t5).

The new partition functional becomes

T
5 .—:fDn §[gN (=, T) ——g?f(:z:)] exp —/Tdaa: n?/4h

én 1 Mg N mun 85 65
/Dg Det [6 }exp [—/dsm i (GMNasgj Os9" +G 59 T A 59

oS ) =S (4.27

Inverting eq. (4.26) for %, one evaluates the Jacobian
bnt(z,t .
Det [M} =Det[05|Det[E] exp{TT In [5“54(33 —z")§(ts — t3)

L(z!,ty)
o [ ar ot ﬂ(ﬁéﬁﬁ@“’”@”)ﬁm
5EM(.'L‘ 7) (z T)>}} (4.28

 Sgk(z, t’
where the meaning of |, is to carry out 4-D functional variations, and then
replace g™¥(z) by ¢~ (z,7). Since only the first term survives in the expansion o
the Trln (the other terms in (4.28) vanish due to the time ordering enforced by 4
see Ref. [175]), setting 6(0) = 1/2 and adopting the Ito calculus [176}(where EY i
independent of 7, see Ref. [63]), one finds that

628
6g™M(y)6a™ (y) |,

Det B—g} = Det[05]Det[E] exp %/dsyGMN(y) (4.29)

4
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Inserting this result in eq. (4.27) and rescaling 5 — t5/2h, one finally obtains the

fifth-time action formulation [61]
1
<Q>=- /DgN Det[E]Q[gN (2, 0)]e~ 5", (4.30)
with
[, 12 o v, Loan 65 88 houn_ 85
S5 = /d z {ZGAIN&SQK 659 +_£:1:G wm - ‘2—G W . (431)

This is exactly the 5-th time formula (4.6), where the functional integration mea-
sure is automatically defined as the de Witt measure +/G, and the condition on the
supervielbein E3; has determined the ordering of the supermetric and functional
derivatives as the written one.

It is possible to show that < Q > 1s independent of the initial and final states,
since
Zmn nlgr] < ¥n|Q¥m > ‘I’:n[gi]em(Emdl—E")T/h

Em@m[gf]@*m[gi]e—QEmT/h
= < \IlolQ“I’o >, (432)

=l
<Q> T—{)noo

where ¥, ( E,) are the eigenstates (eigenvalues) of the Hamiltonian (4.2). This
is true provided that the initial and final conﬁgurationsm are not singular, or that
Uylgi ] # 0 [63].

By expanding the 4-D metric around flat space (linearized space) as
Guv == buy + khyy, from egs. (4.30)-(4.31) it is then possible to perturbatively
evaluate the stabilized action S.fs [62]. For the Einstein-Hilbert gravity, at the
Linearized level, one gets

S0 lgur] = P g o)pt | SP® g TP (- (4.33)
eff Guv| = (271.)4 I"V(p)p 4 + 9 p 0‘/3( p) ’ :
pro
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where P(®=%) and P(?) are transverse spin-2 and spin-0 operators [62]. ngf
transverse, has the sign of the conformal (P(O‘s)) mode flipped, and does n
depend on c. It can be shown that the full S.sy is diffeomorphism invariant and
is nonlocal beyond zero order. The result is very similar to that of Ref. [56], b
with the nontrivial advantage that now the S5 from which one calculates Sery is

explicit, local, and suitable to numerical simulations.

Similar results can also be obtained by using a first-order, Einstein-Carta
formulation of gravity in terms of tetrads and spin connections. One of the advan
tages of this approach is that unconstrained functional integrals over the tetra;
(ef,) guarantee Det g = Det? e > 0 automatically. Moreover, if one explicitly
discretizes manifolds, by standard arguments it is also possible to show that S5,
and therefore S,yy, is reflection-positive for the Einstein-Cartan gravity: this is
because S5 is both bounded and contains no more than products of first-derivative

terms [62].

4.5 Coleman’s mechanism revisited (2)

A nontrivial test of the 5-th time formalism and which might help in better un-
derstanding the underlying physics is to reinterpretate the Coleman’s solution

to the cosmological-constant problem. The fundamental interest in this discus-

[49] (143],

sion is motivated by the observations made by Polchinski , Hawking
Unruh [1#1 and Veneziano [!*2]. Polchinski claimed that the double exponential
in the Coleman (C) partition function (P ~ exp (exp (+))), describing an infinite

set of wormhole-connected universes, is not peaked at A = 0 (see Sections 2.3.1

and 3.7). Actually, this observation is tightly correlated to the more general in-
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terpretation of Refs. [141,143] , which consider the C-divergence at A = 0 as the
indirect reflection (a ‘reminiscence’) of the unboundedness of the Euclidean action
for gravity, and not necessarily due to topological effects.

Using the method of the 5-th time action, I will show below the interesting
fact that the claimed peak at A = 0 is still present in the stabilized effective the-
ory, in the classical limit, with no ‘disrupting’ effects due to the one-loop quantum
fluctuations. The conclusion is that one should revalue Coleman results as some-
thing more intrinsic and fundamental in their own. This is possible since, at the
semiclassical level (i.e. A — 0), the effective action of the stabilized theory is the
same as that one coming from the standard bottomless 4.D gravity action. Thus
one still has as a leading saddle-point the S* ansatz solution and the Coleman
peak at the vanishing cosmological constant, for a given choice of the De Witt
supermetric (see below). Moreover, already in the one-loop approximation, the
stabilizing term starts to contribute so that the Weyl (scalar) modes of the gravi-
tational (metric) field give now a positive semi-definite Hessian contribution to the
partition function of the stabilized theory. Remember that the phase ambiguity
in the path integral of the bottomless Finstein action is just due to these scalar
modes [49].

To analize in details the C-mechanism, I will consider a metric of the form
ds? = di2 +ds? (4.34)

ds? =r2dQ5 (4.35)

where r is the radius of the 4 sphere S*. The action for gravity is

Sa(r) = —/ d*z /g1 (% — A) = %i (Ar‘* - 6%) : (4.36)
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and the Ricci scalar curvature is B = }—f— Thus, using the previous formulas, on

gets that the 5-D effective action is given by

8 8(1+2¢c) , [ Or )2 kt ( 6 )2 X
s = | dt | —— el [ —A
%= [ B \as) T 8h2(1 + 2¢) \r2k? ’

Ak* (4+9¢) 4y

‘Zl};—(l +2C)r inv(o):]

Already at a first naive inspection, this formula suggests that the classical

C-solution 72 = <%, which is enforced in the A — 0 limit by the ef

3

25
fective action (4.37), and for which the starting 4-D action is unbounded

from below (Sg =~ ——j\—?’,;; —x_0 —00), is actually stabilized by the term

2 ; . ’
~ %55 = X{ihs —am Foo (fore>—3).

To see how this mechanism works in a more precise way, one first needs t
know which are the classical solutions (7) for the effective action 55. To study

these solutions, one can once again assume to work in the ansatz 7 = const, and

then one easily finds the following equation of motion:

655 8r2 Ak , (1 6 \ ‘;
_ 10 . - 4.
e T Rk [ 5 (A kw) +h(4+9c)6”w(0)} =0, (438)

which admits the classical (i — 0) solutions

6 2472 (4 4 9¢) 6% ,(0)
AR = — P S Mt s AN .
7 2 Ss R (1T 20). dts ;) , (4.39)
F=0, S5=0 (triwvial) . (4.40)

It is then evident that the 4-D C-solution (eq. (4.39) survives also in this “en-
larged” theory, and it maintains its singular character (S5 — —o0), provided
A — 0" and one chooses ¢ € (——%,—-%), or A — 07 and ¢ > -—-3.

One can now study the behaviour of the quantum fluctuations around these

classical solutions. If one puts

r(ts, ) = 7 + k*RO(7) , (4.41)



COLEMAN’S MECHANISM REVISITED (2) 118

it is found that S5 can be expanded (to the second order in 8) as

2
Ss = §—g~ dis [A' + k*AB'O + E*R26OM'0 + o(%)] , (4.42)
where A' = A'(h,7), B' = B'(h,7) and M' = M'(h,7). As before, the interesting

contribution in the one-loop approximation comes from the Gaussian term.:

th'-_:?’_ AR? P
2

2 ,
— i 72 : : 4.4
120 |2 ()\7' kz) + RF(4 + 9¢)8:,,(0) (4.43)

In particular, one finds that, for the classical solution corresponding to the C-model

"= 3\%5)’ k8
, 32 , 6
h M’ ~ m >0 R fOT AP = 'Ez‘ y (444.)

(to the lowest order in k) which gives a well-defined stable partition function,
with no phases at all. This result suggests that the Coleman solution to the
cosmological-constant problem should survive in the context of the “ﬁfth—time”
Finstein action and that it should not be the mere consequence of the fact that the
4-D gravitational action for the § 4 gphere is negative-definite and hence unbounded
from below [141,143].

Tt is extremely interesting to note that similar results have also been obtained
in the context of a first-order formulation of gravity, in+the 5-th time formalism. In
particular, the results of numerical simulations of stabilized, latticized Einstein-
Cartan theory (6% have shown that, for a large range of positive and negative
cosmological constants A, the system is always in the ‘broken’ phase < Det e ># 0,
and that the negative free-energy is large, possibly singular, at A = 0%. The result
is confirmed by analytical expansion of the stabilized, Einstein-Cartan S5 action
around the same Coleman S* saddle-point [65]. The main differences of Ref. [65]

from the previous Einstein-Hilbert analysis (64] are in that the classical Ss| =0,
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and that the peak at A = 07 comes about due to quantum (one-loop) fluctuation
rather that as a zeroth-order semiclassical effect. This may be related, howeve
to the particular choices of the ordering and regularization prescriptions used

the 274 and 1%**-order formalisms.

4.6 Fokker-Planck wave equation

Another important issue of the 5-th time proposal is to try to identify the true
ground state of the theory by direct inspection of the FP equation (4.3). From
a technical point of view, this should amount to solving the WdW functional
equation associated to the FP Hamiltonian for ¢ replaced by the 4-D metric g,,
(without fixing any gauge), concentrating, at least, on the existence of semiclassical
states. Unfortunately, the result is a nontrivial (covariant) combination of the
Ricci tensor, scalar and of the de Witt supermetric [62]. Moreover, apart from the
ordering problems (common to the standard WDW equation) a notrivial measure
appears to factorize the superspace Laplacian operator. As a consequence, it is
difficult to find exact analytical solutions of the FP equation for this general case.
Similar difficulties are known to obstacle a full analytic treatment of the WDW

equation in superspace in the standard QC (see, for instance, Ref. [177]).

Proceeding with this parallel further on, the idea is to restrict the analysis
to the simpler (though still general enough) case of a minisuperspace ansatz. The
strategy is to first fix the gauge in the 4-D action (S54(FG)), and then to look for
the eigenfunctions of the 5-D Hamiltonian (H5) obtained by functionally deriving
Sy(FG). Unfortunately, apart from the case with no kinetic terms in S4(FG), it is

not easy to find an exact expression for the wave functionals, due to the nontrivial ‘7
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Laplacian in Hs.

Nevertheless, interesting results can still be obtained by analyzing approx-
imate solutions of the FP equation in the case of a simple de Sitter ansatz for
$4(FG). Making a Fourier expansion of the scale factor g of the 4-D metric in
the FP Hamiltonian, it is possible to find the behaviour of the zero-mode wave
functional. In the semiclassical limit, this is related to the dependence of the wave
functional on the (linear) distance covered by the scale factor.

Further information can be obtained by the semiclassical WKB methods. By
careful inspection of the WKB expansion in the powers of %, it is possible to show
that there exists a nontrivial Legendre transform of S,ss which is the combination
of minus the Finstein-Hilbert 4-D classical action (at the order O(R°)), plus a
positive quantum Hessian contribution (at the order O(h%)). Actually, there is
also another, formally infinite, contribution at O(hz), but it can be regulated
by introducing a small distance cutoff in the theory. Moreover, the ’Legendre
transform of S,;; shows a classical peak at A = 07 (for the choice ¢ = ~1/3 in
the supermetric (4.7)- (4.8)), and is stabilized at the one-loop level agaihst large
quantum fluctuations.

Let us go into more details. To calculate the effective Hamiltonian Hs which
corresponds to the 5-D action (4.6), first one has to find :Dut the covariant momen-

tum P,, in the 5-D superspace, which is classically defined as

prY = 6Ls — ,E_

-l (445
1137

Then, to quantize the system, one makes the usual substitution

6

pPHY — —
6Guv

(4.46)




121  STABILIZING THE GRAVITATIONAL ACTION: THE 5-TH TIME FORMALIS)

The Hamiltonian can be obtained by standard formulas as
ﬁ5:':/d423 P‘“’@sg,“, — £5

Using eqs. (4.45) and (4.46) in the expression (4.6) for S5, and reversing the sig
in eq. (4.47) by defining Hs= — H;, the final result is

/ kt e kt 6S5c 6S¢
H;:, = d‘i —-*—-G—l { :} G—l . —
/ ? ( 2 wvab 59uv59aﬂ * 8h* uvef 0guy 09ap

k»'_{ 1 52
- 55| i 50) *

This expression is characterized by the ambiguities related to the factor orderin

of the functional derivatives in the superspace Laplacian (as for the standa
WDW equation) and of derivatives of S¢ (see Section 4.2). In principle, fixing
a prescribed order and performing derivatives of S¢ (but without fixing the 4-D
gauge), one can find a covariant form for Hs. For the order written in eq. (4.48

the result is

ké / 2 2
Hs =— fm[ oy ’ -+V@[};(2RW?QU— K )+

2 o wed 89uvbgap  8R? | E* ‘T+2c
AR (V2] (d+9N _
~92 2 ' 49
k2(1 + 26) + 1+2¢ * 27},(1 + ZCP) \/g—‘smv(o) (4 49)

(where 6},

(0) is the 4-D diffeomorphism-invariant delta).

The analogous of the 4-D WDW equation which one has to solve in the *
th time’ formalism is then read from eq. (4.3) (with D=4). It is easy to check
that U.rr = exp (——“2?%) is an eigenfunction of (4.3) with Ey = 0. Conversely, the
nontriviality of the eigenvalue problem in the case Fy > 0 already appears at a
first inspection of eq. (4.49): in fact Hs is a polynomial in R,,, R and g,,. In

a superspace gauge this will amount to look for a covariant expression for ¥.¢y,
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which I have not been able to isolate. In general, this is clearly not a simple task
at all.

Therefore, what I propose is to first drop the assumption about the superspace
ansatz and to restrict the attention to the (less general, but simpler) minisuper-
space geometry. In doing that one is following the most common procedure used
in QC. Moreover, to further simplify the calculations, one also assumes to first fix
the gauge in S¢ and then calculate Hs by functionally deriving Su(FG) in (4.48).

In details, one can introduce the (closed) 4-D metric
ds? = o?[N2g*dr® + ¢7d03] | (4.50)

where o? = %-g, and for simplicity I work in the gauge N, = 0, with N, = 1
(the “proper-time” gauge for a closed, synchronous, minisuperspace ansatz). It is
also assumed that only the scale factor g is a function of the fictitious variable s
(¢ = g(7,t5)), while the angular variables remain independent of both 7 and 5.
With the fixed-gauge metric (4.50), the 4-D action (3.115) (Section 3.7) becomes

1 atss [ B2 ¢* 1
Si(FG) = — /JT e {'qu 5= (4.51)

(where A=22G2)). .
The new operatorial expression of Hj is

a+38

2 )
(76 = [ ar ¢ {” (A<a,a,c>q2%;+s<a,ﬁ,c>ng-)

1 - 1 o
gﬁ'c(% Q7Q:a7ﬁ7/\7c) + %D(%%q’aaﬁ)A)c)} ’ (4'52)

where the expressions for 4, B, C, D are too long to be shown here. Unfortunately,

one can see directly from eq. (4.52) that the difficulties to solve the eigenvalue

equation (4.3) have been reduced, but not completely eliminated. The nontriviality
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of the problem is the direct consequence of the nontrivial Laplacian operator in.
the minisuperspace or, in other words, of the factor g~ (@+38)/2 in front of the ﬁrst‘k
two terms of eq. (4.52). These terms essentially come out from the (,/g)”" factor
present in the de Witt supermetric G;j A"

The only case in which I have been able to find an exact solution to (4.3)
is that corresponding to the (trivial) ansatz (4.50) with o = —4, 8 = 0. This
has a 4-D action Sy(FG) = -—(—1——;—1\2 [ drg™?, which has no kinetic terms and is

unbounded for A < 1. Classically, it corresponds to an FEinstein-static universe,

with A = A, = 1 and Sy s = 0. The explicit FP Hamiltonian for this ansatz is

187%(2 + 3c) s .6 (A=1)
Hs(F e —q*— -5 T B
(FG) = (1+ 2¢) T [ 1 5q? 1 §q 4k% g2
(A =1)(35(0) — 5)
2k
The nontrivial solution of eq. (4.3) is
: 2+
b=, BT (T =) (1= )(a6(0) - 9 [ar . @sy

which has Ey > 0 for ¢ > ——g—. As one can easily see, the ‘normalized’ wave
functional (which is the square of W,yy, see eq. (4.1)) is the exponential of minus
the standard 4-D Euclidean action. Unfortunately, in the more general (and more
significative) cases where Sy(FG) also contains the ¢® term, it turns out that the
only change in the global sign in front of S5, is not enough to obtain an exact

eigenfunction of Hs with Ey > 0.

4.7 Expansion in Fourier modes

An alternative method to look at the eigenvalue problem (4.3) is by means o

a Fourier analysis (for an application of the method on functional differential
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equations in a different context, see for instance Ref. [178]). The idea is to expand

functional operators ¢ and 3—% in the form

Q(T) “'*/dw 5«iwr‘1w 7

§ - 5
—  dw e T — . 4.55
59(7) / 6Qw ( )

The easiest example corresponds to the 4-D ‘harmonic oscillator’ (4.50) with

a = —1,8 = 1, which has the action

1 2
This geometry classically corresponds to a de Sitter sphere S*, with ‘true’ scale
factor a = ¢*/2 = ﬁ sin(v/Ar') and conformal time 7' = —Jﬁarcos(\/}_'r —-1). If

one chooses ¢ = —3, Hs(FG) simplifies as

2 1 (g ? )

Now, one can also assume the following regularization scheme for the delta func-

tion: ,
§(r)= tim, 2
)= lim ,
0t /e ,. (4.58)
dz
=160 =0,
which is equivalent to say that ’—;; = —% as 7 — 0.

Substituting expressions (4.55) in the definition of Hs(F@G), and expanding

the wave functional as ¥.5s = I, ¥, one finds

62 1 2
fdwcw {”qw—w' 69,69 + 64h2“’2w’ Juwdw' §—w—u!

Saa i) + (35 - E) s()ow)] - Telad =0, (459)

T 16RK2
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where E=E,/34567°. Considering a particular solution for the zero mode is equi
alent to set the integrand of eq. (4.59) equal to zero and to put w =w’ = 0. Th

particular solution is a combination of Whittaker functions (179]

Wolgo] = A Wy 1/2[90] + B M, 1/20q0] (4.60

-—————2Efi\5(o). However, it is easy to see from (4.59) that the equations de

where p=
termining eigenfunctionals with nonzero k rapidly become too complicated to be

solved in analytic form.

4.8 WKB results

The most interesting results probably come out from the analysis of the so-
lutions of the FP equation with the WKB method. For simplicity of calculations
(but analogous results can be obtained also for more complicated cases), I will as
sume to fix the 4-D ‘harmonic’ gauge a = —1,0 = 1, for which the FP Hamiltonian
is given by eq. (4.57).

Looking for a WKB approximation to the FP wave functional, one must
carefully take into account the problem of the A expansion for the Schréedinger-

like equation

62 N
“6‘(;2‘ +Ulgl| «¥ =0 , (4.61)
with the ‘effective’ potential
. 1 /§ 2 E§(r)
Ulg] = 4+ A - 4.62
A= (240) - 22 (4.62)

The main point is the following: standard asymptotic-WKB formulas (see

Ref. [180]) are rigorously valid only for an equation which is ezactly of the
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Schroedinger type, i.e.

4 -
~h23~$—5 +(V(e)-E)|¥=0, (4.63)

where the potential V does not depend on k. This is just the case for the standard
WDW equation, but it is definitely not for the ‘5-th time’ FP equation.

Let us see in details what happens in our case. Continue to assume to work

in the harmonic gauge @ = —1,8 =1, and expand Serr as
Seff ~ 8+ hS: + hZSz -+ O(?Ls) . (464)

Using the form (4.3) of the wave functional Weyy and substituting the expansion
(4.64) into the FP equation (4.61), one can easily find the following conditions to

the various orders in h:

/ dr gl(SL — (SO =0 , O™ , (4.65)
[ ar aisy - sisi - sl =0, 007 . (4.66)
/dT 9[2511 - (51)2 - 25(,)5;] = Ea 3 O(ho) 3 (467)

where E = -s—é%";g and a ' denotes functional differentiation with respect to g.

An obvious solution to eq. (4.65) is
(S0)7 =(54)° - (4.68)
This result could also have been obtained in the more general framework of eq.

(4.31), which can easily be checked to imply, to the lowest order in 7, that

5570 65es 10 55, 654
Ghsi ! 2 e Gy —— — . 4.69
MN 5 et MN San 5901 (4.69)
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In general, one apparently has a certain freedom in the choice of the exact rela.
tionship between the gradients %ﬁ and g%, since eq. (4.69) just provides
constraint on their modulus. A possible choice, which I will show to be nontrivial
in the sense that it leads to an apparently well-defined (stabilized) effective actio

(in the sense explained below), is equivalent to take
Sl =-8, , (4.70

and, therefore

Sy = -84+ CL(S(O) , (471

where the (singular) constant term can be regularized by standard techniques, an
will be dropped in the following.

The next conceptual step is to formally introduce a Legendre transform o
S.ts. In order to do that, one has to implement the (would be) classical equatio

of motion for Sy by introducing the current J such that
Si=1J . (4.72

Then, from the O(A™") condition given by eq. (4.66), one can find the following

solution for Sy: -

S =2/d'r In(S%) :2/dr InJ , (4.73)

where again I have dropped a possible singular constant term.

Similarly, from eq. (4.67), and assuming to make an expansion around smaﬂ?
values of F (in fact, this is motivated by the nontrivial difficulties in finding an
exact solution of the functional differential equation (4.67)), one can easily obtain
for 95:

[ |
S = —2 / dr 23+ O(B) . (4.74)
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Then, one can introduce the Legendre transform I'.sp of Seys as follows:

Tu = Seps(7) — /dT a7 . (4.75)

In order to eliminate the explicit J dependence coming from the second term on
the right hand side and the implicit dependence coming from the various orders
of the expansion of Sess (see eq. (4.64)), one must solve (invert) the functional

equation

ESeff
= i 4.
1= 757 (4.76)

The method is to solve this functional differential equation for J order by order
in a h expansion for Sefs, g and J. To the zeroth-order one puts Sers = — 54 and

finds
1
qo = 7 (4.77)

Then, at the first order in h, one expands
g1 =¢q +hé , (4.78)
Sesr = -84 + thdT InJ , (4:.79)
and finds (by dropping possible constant terms)

g ==+ 2hlnlJ) . (4.80)

i

Inverting this equation for J, and again expanding in A, one has

Jo = (4.81)

|

Ji=~=(1—2klng) . (4.82)

Wy |-

4
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Proceeding in a similar way, to the second order in % one can show that

1 ‘

J:z 1—2hlngq — 2K% (21111;———3—)} . (4.83)

q q ~

Substituting this value in the definition of the Legendre transform (4.75), one
finally finds

1 .
Depp ~ —84 — 6(0) — 24% fdr - (4.84)

The idea is, now, to expand this expression around a classical solution of the scale
factor, ¢ = go + R, where 8 is a quantum fluctuation. The classical equation of
motion (now with J = 0) which is enforced by the 5-th time action (4.31) in the
gauge (4.56) is

el

GHA=0, (4.85)

and it is well known that one of its first integrals is the (0, 0) Einstein equation

q-z

(this equation could also have been obtained directly from the 5-th time action if
one had not constrained himself to work in a gauge where the lapse IV is fixed).

The exact, classical, solution of eqs. (4.85)-(4.86) is the de Sitter sphere

-

get = T(2— AT) . (4.87)

Taking the complete S* (ie,, 7 € [0,2/]]), corresponding to the Coleman

ansatz (**) and substituting in (4.84), one obtains the one-loop expansion
2 A a2 2/ dr ‘
Defpy oo+ — [ dr | ——= | 6 —2K° - . .88)
TERTEST ( dfz) /0 % (45

The main conclusion of this analysis appears the following: if one takes the Legen-

dre transform as the basic feature of the 5-th time path-integral formalism, there
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is a (classical) peak at A = 07 and the theory is stabilized against large field
fuctuations to the one-loop order. Moreover, this result is not in contradiction
with the outcome of Ref. [64] (and possibly of Refs. [63,65] ), since in this case
¢ = —1/3 > —4/3 (see the discussion after eq. (4.40)).

To avoid eventual (one-loop) divergences coming from the last term of eq.
(4.88), one has to introduce a cutoff for small scale factors. This is not an unex-
pected feature in the high-energy limit of a well-defined quantum theory of gravity
[181,106].

Although more difficult to be solved, an important and independent check of
the results, especially the apparent dependence of the cosmological constant peak
at A = OF on the choice of the de Witt supermetric (4.7), is expected to come

from the analysis of similar WKB-FP Hamiltonians with different values of c.




Chapter 5

String theory and black holes

5.1 Why strings 7 An overview

One of the most ambitious challenges in the contemporary physical research is
that for a well-defined quantum theory of gravity and a possible grand~u1n'ﬁcaticxﬁ
model for all known forces governing the world: the ‘Theory of Everything’. There
are many reasons to believe that under conditions of extreme energy or curvature
the adequate treatment of the physics will require that the gravitational field be
considered inextricably mixed together with other matter fields.

At present, on of the most promising and consistent view point along these
lines is that given by (super)string theories. The test of such a theory is that it can
give rise to an effective theory of ‘point particle;’ which resembles the standard
model at weak-scale energies. The main idea is that, at energies below the Planck
scale, the theory is modelled by an effective Lagrangian which treats the string
as pointlike. However, this effective theory also involves a large number of fields
with different quantum numbers and spins, which can be thought as the remnan
of the original (lowest energy level) degenerate modes of vibration of the string
Unfortunately, although there is a small number of distinct string theories, there

is also a huge number of distinct classical vacua (the space of two-dimensional
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conformal field theories), and this seriously undermines (so far) the project of
building a unified theory without free parameters (for a nice review and a more
comprehensive reference, see Refs. (3,182] ).

In string theory, a perturbative (ﬁrst-quantized) approach has been formu-
lated before a complete (unperturbative, second-quantized) realization of the the-
ory has been achieved. The theory of a propagating first-quantized string is de-

scribed by the action

S = [ grdo VA h2B(1,0)guw(z )0z gz’ . (5.1)

ma!

This action represents the surface area swept out by the string, ' is the (inverse)
string tension expansion parameter, z* (u = 1,...D) labels the position of the
string in a D-dimensional spacetime with metric g, and hop is the two metric on
the world sheet parametrized by o, 7. This action can also be seen as describing
a 2"%.quantized field theory in 1 + 1-dimensions. Form this point of view, the
coordinates z# are simply D scalar fields, with playing the role of an internal
symmetry index.

One way to quantize the theory (5.1) is to use the path integral formulation:

S Top. / Dm/Dh e, (5.2)

where ¢; denote the wave functionals of the external string states, and the sum
over topologies is a sum over (inequivalent) two-manifolds which are specified by
the number of handles (loops) they contain, or genus g. There is thus precisely
one such manifold at each order in the string loop expansion.

It is interesting to note that there is no Lorentz-invariant notion of when

strings interact. Since the UV divergences of point-particle theory are just due to
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such interaction singularities, this is why superstring theory is also a very promis
ing ansatz where QG is expected to be finite and renormalizable [182].

Moreover, the condition that neither particles nor strings are spontaneousl
created out of the vacuum can be shown to constrain actions to be conformall

invariant. A conformally-invariant quantum field theory is one which is invarian

under the local rescaling
hog(T,0) — e? "V hog(r,0) . (5.3

It is not a pure coincidence that in 2-D the action (5.1) is invariant under (5.3
for any choice of g,,. Then, by making use of conformal rescalings, one can ma
incoming and outgoing strings to ‘punctures’ on the (compactified) worldsheet, an
therefore replace v¥; by local vertex operators Vi(k;) = f drdoV;(k;i,7,0) (where k:
is the momentum of the :** external string) which carry the information regarding:
the external states [3]. \

Now, it is well known that the true vacuum expectation value of a given field:
theory can be identified by requiring that all one-point functions of the quantum
field should vanish [182]. In string field theory, the analogous statement is that
< V: > should vanish. Viewing string tree-level processes as two-dimensional

theories on the sphere, one can use scale invariance of V (under coordinate rescaling

by a constant A) to write
<V(0)>=2"2<V(0) > , (5.4)

and therefore < V(0) >= 0. Thus, conformal invariance (in 2-D) may be used to

prove that one has a (classical) string vacuum and a consistent string theory, at

least at the tree level.
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Since a detailed analysis of the main properties of conformal field theories is
well beyond the goal of this Section, I will just briefly comment on a few basic
points (for a more comprehensive discussion, see Ref. [182]).

It is known that the group of conformal transformations in 2-D is infinite di-
mensional (see, however, Ref. [183]). It can be represented in terms of infinitesimal
generators L, which, at the quantum level, are associated to the modes of the 2-D

energy momentum tensor and satisfy the Virasoro algebra

[
ﬁ(n?’ — Tl)5n+m,0 . (55)

[LmyLn] = (n — m)Lmyn +
The second term is a (quantum ) anomaly which (mildly) violates the (classi-
cal) conformal invariance. It is parametrized by the central charge (number) ¢,
which depends on the number of degrees of freedom of the underlying theory. One
can show that ¢ = 1 (¢ = 1/2) for a free boson (fermion). Taking into account
the world sheet reparametrization invariance of the theory, one therefore includes
gauge averaging terms and the corresponding Fadeev-Popov ghosts, which them-
selves contribute to the conformal anomaly with ¢ = —26. For a consistent string
theory one must impose that the global charge ctor = 0. For the bosonic string,
this requires that the spacetime is 26 dimensional.

One can then construct the spectrum of the strixfg. The use of conformal
invariance restricts the only physical states to be those with positive semidefinite
norm, to preserve unitarity. For the bosonic string, the lowest (negative) mass
state is a tachyon, while the next heaviest states are the massless (spin-2) graviton,
(spin-1) antisymmetric field and (spin-0) dilaton field.

More realistic generalizations of string theory include additional fermionic

degrees of freedom. From the world-sheet point of view, these theories possess

1+1 dimensional supersymmetry. For the superstring, the action (5.1) is modified
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by adding the term

f drdo (" b+ BhO-br u)

where ¥* (+) 2T€ the world sheet right- (left-) moving fermions, the superpartners
of z#. Since additional ghosts contribute with ¢ = 11, the critical dimension for
the superstring is D=10. For the heterotic string, the left-moving fermions are not
superpartners of the z#. The ¢ = 11 contribution must be counted only in thé
right-moving sector, while the ¢ = _96 in the left-moving sector is cancelled with
10 bosons and 32 left-moving fermions. The lightest modes of the heterotic string
are massless, and fill out an Eg x Eg supergravity theory in 10 dimensions. k

The earliest and most intuitive constructions of string vacua are those which
have a geometrical spacetime interpretation in the spirit of the Kaluza-Klein th
ory. The idea is to obtain an effective 4-D string theory by compactifying th
excess dimensions. For instance, the part of the heterotic string action (5.1) can
be interpreted as the universe being of the form M x K, with g the metric on th
compact 6-D space K. This action is known as the (2-D) nonlinear sigma mode
with target manifold K. More generally, the idea is to try to formulate string per
turbation theory in a background field, which consists of the spacetime manifol
together with the background matter fields in it. Consistency of string dynamics
requires that the quantum string theory maintains its classical conformal invari-
ance, and this can be shown to imply the background-field equations of motion.
In the closed bosonic string case, the generalized (renormalizable) nonlinear sigma

model which describes its propagation in a nontrivial background is found:

1
S =8+ —— | dodr [¢*P B, (2)BaztBpz” + o/ VRRPO(2)] ,  (5.7)

2ral

where S is given by (5.1), guw, Buy and @ are the background graviton, antisym-

metric and dilaton fields, R(?) and ¢*# are the scalar curvature and Levi-Civita
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tensor in the world sheet metric h.

For string consistency, one imposes that the sigma model is locally scale-
invariant. This is equivalent to requiring that the 2-D stress-energy tensor is
traceless, which is true if the beta functionals for the fields are set to zero. By
using standard dimensional regularization techniques, one finds at one-loop in

o [184,185]

D —26 . o
4872 1672

3 1
0= g% = 4VE): - 4V?@ - R+ —H?| +0(a”)

1
0= :z'l/ = RHV — ZH;\GHV/\O' 4+ 2vuvy@ + O(al) , (58)

0=p8) = VAH,, - 2(V,@)H), +0(a)

where Hy,n = 3V, B, is the B field strength and R, is the background Ricci
tensor. By recasting the first three of these equations in the form (to lowest order
in ')

3

I5} 1
0 = gl/ + 87‘(’29“” al = Ruy - é‘guyR - TILV 3
(5.9)

0—825@ ! 9 =2(Ve)? -V L
= om _a';"i"’éguvﬁ#u"‘ ( ) - "12 3
with T,,, = 3 [H2, - 39 H?] =2V, V., @ + 29, V2® — 2g,,(V®)?, one can rec-

ognize the Einstein and matter field equations which ¢an be derived by varying

the effective action
1
Sefr = dew \/§e”2‘1’ {R—%— 4(V<I>)2 - EHZ . (5.10)

This also shows that e??, in fact, can be seen as the siring loop-expansion pa-
rameter (for n handles, e~2(1=m)®) " Moreover, it can be shown (184,183] that, at
the string tree-level, conformal invariance also implies that the sigma model is a

solution of the string equations of motion.
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By following similar steps, one can also find that the equations of motion (a,t
two-loops in «') for the heterotic string sigma model can be derived from an actio

of the kind
1 1
D _ \v} 2 -—8‘1’/(D-—2)H2
/d”‘@R PRI ETS :

+ %aie——étb/(D—-Z)(R,u,w\o'R“w\o_ — Ty FZ) ,

where F,, is the Yang-Mills field strength appropriate to the gauge group of thé
model [184].

Therefore, if one seriously takes into account string theory as the most promis
ing theory for quantizing gravity and unifying all fundamental forces of nature, in
view of the discussion made at the beginning of this Section, one arrives at the
following conclusion. Since eq. (5.10) (or (5.11)) describes the (effective) long
wavelength limit of the interacting massless modes of the string itself, one should
generalize the standard Einstein equations of GR by including the appropriate

string corrections, as given, for instance, by eq. (5.9).

5.2 Strings and black holes: semiclassical 4-D solutions

An exceptional laboratory for testing the consis{ency and the physical relevanc
of the string-theoretical models may come from the analysis of the related cosmo
logical and black hole solutions (here I will not discuss the vast literature abou
the former).

As an extension of Einstein gravity, one hopes that string gravity will lead to
new features which are not present in GR. One instance where string gravity lead
to new and unexpected results is in the structure of black holes.

If string theory can provide a consistent quantum theory of gravity, it is
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certainly important to investigate what happens to it around singular backgrounds
and how such backgrounds are generated. Addressing the first issue has led the
authors of Ref. [67] to the conclusion that in certain cases the propagation of
strings through backgrounds which are singular in the sense of classical gravity,
is followed by the excitation of an infinite number of modes of the string itself.
As far as the second problem is concerned, black hole type singularities were first
obtained by satisfying the equations of motion arising from the four-dimensional
low-energy Lagrangian derived from string theory, which describe the coupling of
gravitational, dilatonic, Maxwell and antisymmetric fields {186,187] (see Section
5.2). ' ‘.

Moreover, a lot of interesting results have been obtained by considering
black holes from 2-D exact conformal or effective nonlinear sigma models (see
Refs. [68,69,70] and the Refs. quoted in Section 1.7). The advantage of working in
2-D is that, due to the simplified and more tractable mathematics, one can hope to
have a more detailed understanding of some of the unresolved issues of black-hole
physics, such as the endpoint of the Hawking evaporation process, the validity
of the cosmic-censorship hypothesis etc.. However, as I have already stressed in
Section 1.7, at present there is not much agreement orl many of the results, and
the initial hope to find a complete and definite description of quantum black holes

has partly decreased.

As far as I will be concerned in this Section, I will therefore concentrate on a

review of the main 4-D (effective) black-string solutions.

The case of nonrotating, uncharged, black holes in 4-D has been first analyzed

in Ref. [187]. These authors studied the field equations arising from the effective
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action (to order o')
1 f d*z /=g |R—2(V®)® + L2\ Rypog ROV (5
167G I 2 wbe ! ‘

' 14',0 for bosonic, heterotic and supersymmetric strings (in t

where A = %a ,%
conformal gauge, the gravitational and inertial mass of the black hole turn ot
the same). As long as the curvature is small compared to 517 ~ ]VI;, string solx
tions approximate those of (vacuum) Einstein equations, but large differences m
appear for strong curvature.

The idea is then to solve the equations of motion which one obtains from (5.1
by expanding around a static Schwarzschild background, with @ = const, in §
(small) parameter A. The perturbed solution lias a nontrivial dilaton hair whic

is locally deviated from its asymptotic value at infinity, and it is classically stabl

Moreover, the dilaton black hole has the same temperature as Schwarzschild:

1

= 87GM (5.1

T

independent of A. Going at the order (&')?, it is found that the température f
the heterotic and supersymmetric string is lowered with respect to that of th
standard GR solution. This is just a reflection of the existence of the long wa

excitations produced by the dilaton [187].

Similarly, Einstein-Maxwell black hole solutions from the bosonic sector d
the superstring or the heterotic string have been studied in Ref. [186]. The O(a’ ‘
gauge kinetic terms in string theory set up a dilaton hair around charged black
holes. A general set of solutions has been given by the authors of Ref. [81], Wh‘

considered the general action

I= / £z Tg—R +2(VE) + e ¥ F? (5.14
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where F,, is the Maxwell field. In the string case, a = 1 and F can be associated,
for instance, with a U(1) subgroup of Es x Eg or Spin(32)/Z>.
The static, spherically symmetric, electrically charged, dilaton black hole (so-

lution of the equations of motion corresponding to the action (5.14)) is found

as:

ds? = 22t + A"2dr? + deQ‘Z‘, ,

2a
2% T\ i4a?
e = ( - ) ’ (5.15)
Q

Fi?‘ = ;E ?

where

l——a2

(-2 05 -

al

R:r(l——f—:)m ,
7.

and the two parameters 74 are related to the physical ADM mass M and dilaton

1—a?
2M = — -
T++(1+a2>T

1/2
Q _ T4
(%)

When a = 0, this solution reduces to the standard Reissner-Nordstrom solution

"

of GR. However, for a # 0 (in particular the string case a = 1), the solution is

charge @ by

(5.17)

qualitatively different. For all a’s, the surface 7 = 74 is an event horizon. For
a = 0, the physical radius R of the horizon is finite. For a > 0, the physical radius
of the horizon vanishes and the geometry is singular there. But the surface r = 7
(because K =0 there) is a curvature singularity (except for a =0, when it is an
inner horizon). This is consistent with the idea that the inner horizon is unstable
in the Einstein-Maxwell theory. Therefore, these solutions describe black holes

only for r4 > r_ (or M? > Q%/(1 +d*)). Asin the RN solutions (a = 0), for
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r_>ry (or @ > (1+ a?)M?) and a # 0 one has a naked singularity. In all cases
the extremal holes occur when ry = r_ (or M? = Q*/(1 + a?)).

For the Hawking temperature and entropy one finds [81]

1 1—--a2
Ty — T\ 1+t
T = *+ ,
47FT'+ T4
‘232
Tial
P — T \ te
S =mrk (_11.....)
T4

The extremal holes (r4 = r_) have finite entropy for a = 0 but zero otherwis
and zero temperature for a < 1, finite and equal to é—f—}ﬁ for @ = 1 (the same
Schwarzschild) and formally infinite for a > 1.

Magnetically charged solutions can be obtained by the duality transformation
F,, = %e’za‘l’ew’\pF,\p, ® = -9,

Then, Shapere, Trivedi and Wilczek (188] ave related the dilaton and axion
hair for nonrotating holes with electric and magnetic charges. The ‘dyon’ solutions
are recovered by generalizing those of Ref. [186], using a duality rotation which
treats the axion and dilaton fields as the real and imaginary part of a single
complex field. The metric is the same as (5.15), but with Q? — Q% + Qfmg. Also
the temperature is the same as in Ref. [186]. However, it is shown that the causa.
structure of the solution may globally differ for diﬁ’grent test particles (for instance
some particles see singularities that others do not). Both versions [188] and [186
of extremal ‘dyon’ black holes have zero entropy but finite temperature. Moreover
the existence of nontrivial dilaton (and axion) fields outside the dyons of Ref. [188]
(and Ref. [186]) violates the GR ‘no hair’ theorems stating that stationary (static
black holes must be in the Kerr-Newman (Schwarzschild) family.

Lee and Weinberg [18°) Campbell et al. (190] and Bowick [1°Y considered

static dyonic black-hole solutions arising from Finstein gravity coupled to electro-
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magnetism and an axion-like scalar feld. They carry both electric and magnetic
charge, possess a nontrivial long-range monopole axion strength and appear to be
classically stable. The authors of Refs. [192,193] proved a uniqueness theorem
about Schwarzschild axionic black holes, whose nonvanishing axion potential can
be detected by means of the Aharonov-Bohm effect. An axisymmetric, stationary
4-D stringy black hole can be found in Ref. [194].

Rotating black-hole solutions have been found in Ref. [195] for a nonminimal
gravitational coupling of a Lorentz Chern-Simons axion, which shows as a long-
range dipole hair related to the black-hole angular momentum. Other stringy
solutions for the case of a slowly-rotating dilaton black hole, a rotating axi-dilaton
black hole and a rotating charged hole in the heterotic-string theory are given in
Refs. [196,197] and Ref. [198]. The axionic Kerr black hole has been shown (197]
to be the unique stationary solution, for the minimal coupling between gravity
and the axion, which is regular at the horizon and asymptotically flat.

Finally, Campbell, Kaloper and Olive (1991 have considered the general case

of a gravitational multiplet (axion, dilaton, graviton) in string gravity consistently

to O(c’). The most general solution is shown to reduce to the Kerr-Newman

metric. The exterior field is a classical ‘secondary’ hair generafced by a nonminimal
coupling to a primary field strength (gravitational or electromagnetic) forced by
gauge invariance. Yet it might have detectable, macroscopic effects and represent
a potentiaﬂy and experimentally testable prediction of string theory. Moreover,
additional higher-dimensional efective interactions from quantum corrections are

expected to produce a further variety of semiclassical secondary hair.
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5.3 Thermodynamics of black holes: new perspectives

As I have already remarked in the previous Sections, black holes provide an inter

esting test for exploring the quantum mechanics in strong gravitational fields.

One of the well-known problems in the black hole physics is that related witl
Hawking radiation. As it was proved in Ref. [39], while classically standard Gl
black holes appear stable objects (25] at the semiclassical level they are expected t

emit a thermal spectrum of radiation. As the black hole radiates, the temperatur

rises (GR black holes have negative heat capacity) and the mass decreases unti
either the black hole vanishes or, for some reason, the radiation turns off. If th

black hole disappears, apparently the information about the wave function tha

flowed through the horizon seems to have disappeared completely, and that a pur

state has evolved into a mixed state (39],

Several possibilities have been avoked to overcome this conceptual problem

macroscopic black-hole quantum mechanics.
One possibility is that the Hawking radiation is not accurately thermal, fo :

instance because of the backreaction effects due to the temporal changes in 7' and

M.

-

Another possibility is that the radiation tux;ns off due to the existence of a
maximum temperature enforced by the underlying theory of gravity: this might be
the case for (super)strings, whose spectrum is limited by the Hagedorn temperature
[182,187].

A further chance is that, in some sense, there is no physical singularity. It is
possible, for instance (as for the extremal stringy dilaton black holes with a > 1, see

Ref. [81]) that the singularity becomes timelike and naked, and that appropriately

choosing the boundary conditions at the singularity will maintain unitarity [200]
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An interesting option might be then to deny that information is truly lost
down the singularity. This would be the case, for instance, if the black hole
is actually continued to a nonsingular ‘baby’ universe through a wormbhole (see

Section 1.4).

Finally, the radiation might be sufficiently correlated to be a pure quantum
state itself. This would require that the black hole is capable of storing a stable
record of how it was formed and how it radiated. Either, the black hole might
not evaporate completely, but leave a stable remnant whose internal state could

be correlated with the emitted radiation (7s],

Both these hypothesis require that the black hole is capable of supporting a
lot of ‘hair’. Yet, in GR it has been shown that at the classical level there are
limited possibilities for hair, and these are related to the existence of massless

gauge fields (7).

However, recent results seems to have radically changed the situation. I have
already shown in the previous Section how one can introduce in string theory
nontrivial, additional (semi)classical secondary hair. Further kinds of classical
and quantum hair have been discussed by Refs. [201-203]. For instance, if one has
a gauge theory which is in the Higgs phase, classical electric fields are screened, but
quantum hair associated with a discrete (Zn) symmetry can névertheless reside
in the black hole. This quantum hair generates a nonperturbative electric field
outside the event horizon which has calculable effects on the thermodynamical
behaviour of the hole (it changes the T — M relation). Alternatively, if the gauge
theory is in a confining phase, classical (Zy) magnetic hair can reside on the black

hole and support a stable remnant [201].

Another fundamental problem of black-hole physics is the actual relationship
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with the concept of elementary particles [80,81,192]. It is known that extre
black holes in GR have finite entropy and their response to external perturbation,
is dissipative [204]. But the ‘no hair’ theorems severely constrain their internal
structure, and the thermodynamical approach appears more fundamental. On th
other hand, the elementary particles may have a lot of internal quantum numbers
and the (unitary) quantum-mechanics approach is more fundamental. Yet, it i
easy to see that a sufficiently heavy elementary particle (m > M,) has a Compt(}‘l
wavelength which is much smaller than its Schwarzschild radius, and is therefor
expected to be a (mini) black hole. The results on the new stringy classical an:f
quantum hair described above appear to significantly reduce these tensions.

An important result is that the thermodynamic description of a black hole
might actually become ill-defined as the black hole approaches the extreme hmﬁ
[80]. To show this, one should bear in mind that the standard semiclassical treat.
ment of the Hawking radiation, which neglects the backreaction effects, is selfcon
sistent only if the typical emitted quantum does not change the temperature b

an amount comparable to the temperature itself, or

T (%) < T (5.19
Q.J )

(if the quantum does not carry charge or angula;c momentum, but similar condi

tions can be imposed also taking into account the effects of discharge of the hole

by vacuum polarization and its spinning down due to superradiant modes). From

the point of view of thermodynamics, the condition (5.19) can be restated as

i)
r(2)51,

which means that the available entropy S of the hole, or the number of distinct

states available to it within its thermal-energy interval, should be large. If the
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system involves only a few degrees of freedom, the statistical treatment of the
radiation clearly becomes inappropriate.
Moreover, from standard thermodynamic arguments (205]  the fluctuations in

the temperature and entropy are
< (AT > /T? =[< (AS)? >t =1/C (5.21)

ﬁhere C is the total specific heat capacity of the hole. In these terms, the statistical
description of black holes may become inappropriate as ¢ — 0 or C — 0.

Now, let us consider the general set of solutions given by egs. (5.14)- (5.18),
in the extremé limit 7+ —r_ — 0. It is easy to show that, except in the case a = 1,
-g% diverges as Q% — (1 + a?)M?, and the condition (5.19) is not satisfied.

For a = 0 (the RN hole of GR), the extreme black hole has a finite entropy,
gero temperature and heat capacity (it cools as it radiates). These holes have a
large massive unresolved degeneracy, and the thermodynamical description fails
because of large temperature fluctuations and of small thermal intervals between
nearby states as T — 0. Moreover, as T approaches zero, the mismatch between
the wavelength of the quantum (with energy T) and the size of the hole favours the
emission of more energetic quanta and the condition (5.19) is even strengthened.
These results, in fact, should not be very surprising, sir;ce it is known on general
grounds (third law of thermodynamics) that as the heat capacity of any finile
system vanishes when T' goes to zero, its thermal description becomes inadequate
(for arbitrarily large bodies, one could have more and more low-energy states, and
thermal states with lower and lower temperature would become meaningful: but
this is not for the black holes, which have a finite size).

A similar behaviour is shared by the family of extreme black holes with

0 < a < 1, which have zero temperature and entropy- Both sets of solutions may
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be expected to be the asymptotic state of the Hawking radiation, which, due t
the vanishing temperature, should switch off there. Since the time delay for re
emission of absorbed quanta plausibly remains long (80] this final state might b
described as an extended object, similar to a liquid drop (though for the 0 < a <

holes, it could be a unique, nondegenerate ground state).

The extremal (superstring) black holes for a = 1 are quite interesting, since
they have zero entropy and a finite temperature. This can be interpreted as if
there were an effective finite mass gap of the order T = 1/8wM (see Section 5.2},
splitting the hole ground state from its lowest excitation, or, in other words, as if?
the hole behaved like a normal ‘elementary particle’. For instance, the scattering of
soft quanta is expected to produce a final state of the quantum plus the hole, a,ndk
not additional hole states (this can also be understood since the horizon area and
the classical cross section of the extreme hole vanish): the extreme stringy holes
effectively repel the low energy perturbations. This finite mass gap is expected
to reduce the radiation, but probably is not enough to stop it and to avoid the‘“
formation of a naked singularity. In this case, the thermal breakdown in the

extreme limit is related to the occurence of large fluctuations of the entropy, since

AS ~ (—=C)? ~ 1/T [80].

-

For the extreme holes with a > 1, the entropy still vanishes but the temper-
ature (formally) blows up. In this case one expects to have infinite mass gaps
which cannot be excited by external probes. Though the temperature is formally
infinite, one can still show that (vanishing) grey-body factors kill all the radiation
below a critical energy (which is always larger than the temperature, and therefore
infinite), and thus shut off the radiation. Moreover, under the scattering of exter-

nal probes there is no time delay, and the outgoing radiation should be strongly



STABILITY OF A WZW 4-D BLACK HOLE 148

correlated with the incoming one.

The authors of Ref. [81] explicitly considered the (classical) perturbations
around these families of extreme holes and their response under the scattering of
an external (scalar) test field. The results essentially confirm the picture described
above. In particular, it is found that the a = 1 holes develop a (test field) potential
barrier which is infinitely wide. This again indicates the presence of a finite mass
gap, since excitations with less than a critical energy are reflected with certainty.
Similarly, the potential of a > 1 holes diverges at the horizon, thus developing an
infinite mass gap. Analogous results come from the inspection of the axial and

polar potentials (see Section 5.4) for the perturbed solutions.

The presence of such mass gaps, which remove the a > 1 solutions from con-
tact with the external world (together with the break down of the thermal descrip-
tion) strongly support the intriguing conjecture that these extreme holes effectively
behave like (nondegenerate) states in the spectrum of elementary particles (1), Ob-
viously, to really understand the exact behaviour of such objects (in particular the
true final stages in the Hawking evaporation process), one should fully and con-

sistently include gravitational and quantum back-reaction effects.

5.4 Stability of a WZW 4-D black hole

Recently, a new way to generate 9.D black-hole backgrounds has been devised (68!

gauging a WZW model built on a coset manifold. The WZW model was histori-
cally introduced in Ref. [206], in order to provide a model for the bosonization of
fermionic degrees of freedom in the context of non-Abelian theories. The WZIW

action is built so as to be invariant under the transformations of the a group G and
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quantum-mechanical object. It can be shown that the equ

appears as a purely
[206,2

tions of motion derived from this action generate a Kac-Moody algebra

for bosonic currents which are bilinear in the group elements g. For instance,

G = SO(N), it can be shown that the theory is equivalent to that of N massle

free fermions (this is the non-Abelian bosonization). It has recently been argu

that gauged WZW models are a natural framework for giving a Lagrangian

alization of coset models [68]. More generally, the WZW models appear as

example of a conformally-invariant ( exact) theory in two dimensions.

The interesting idea is to try to generalize the solution of Ref. [68] to a 4

static black hole by the addition of extra fields into the original conformal theor

an axisymmetric version of this black hole

and this was done in Ref. [82] (

been recently given in Ref. [208]). My purpose is to analyze the behaviour of ¢

stringy 4-D black hole solution.
an study how it behaves under geometrical perturbations and descri

One ¢

its thermodynamical properties which turn out (in the extremal case) to be di

ferent both from those of black holes obtained from GR and those of Ref. [8

The study of perturbations of stringy black holes in four dimensions has be

carried out in Refs. [81,82,209]. The results which I will show below are differe

from those of Ref. [82]: the black hole under study is stable under perturbatio

of the metric only in the eztremal case, thus supporting the conjecture that

tremal black holes might be stable “quantum” ground states for the underlyin

theory. Note that the requirement about the classical stability is a fundamentj‘

prerequisite in order to sensibly speak of more complicated processes such as thos

connected with the Hawking radiation. But let us proceed with order, and deriv

the four-dimensional black hole following Refs. [82,210] .
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The starting point of the analysis is the WZW action

kT'r _ _
Lig) = Uz o (g7 0r990-9)
dgy —1 -1 -1
~ 37(9 dgAg tdgAgTidg)| - (5.22)

Here do? is the two-volume over the world sheet &, B is a three-manifold whose
boundary is &, and g : X — G is the field variable of the model for a group
G. Moreover, T'r is the trace in the 9-D representation of G, k is a positive, real
constant (related to the central charge of the conformal theory), and the action
(5.22) has a global G X G symmetry corresponding to g — agh™', with g,a,b € G.

One now gauges a one-dimensional subgroup H of the symmetry group, with

action ¢ — hgh™*', and introduces the gauge field A4;, whose gauge transformations

are
§a = 2ea ,
§b = —2¢b ,
fu=6v="0, (5.23)
dz; = 2ec; ,
§A; = —0ie .

The proposal of Raiten (82] follows by adding two free bosons 21 and zp to the
9D black hole of Ref. [68], that is by letting G = SL(2,R) x R x R, and by

modding out, besides the above H subgroup, the translations in both z; and z2.

g——-(fv z) : (5.24)

the gauged WZW action which is invariant under (5.23) becomes

Parametrizing SL(2, R) as

4e;
L(g,A) = L(g) + ;7; / oAy (ba_a —af_b—ub_v+v0-u-+ -—;-6-50,)
k 9 de;
+ o PoA_ | b0ya — adib+udiv — vO4u + ——Ig—5+:ci

2k 2¢?
+ — fdzaA+A, (1 + —;— — uv) , (5.25)
i
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where

L{g)=— g—; /d20(8+u8_v + O_ubyv + 04ad_b + 0_alyb)

+ ;;r / d®olnu(0yad-b— 0_adib) + %/dza&rmi@__m" . (5.2

A sum over 7 = 1,2 is assumed, and c;, ¢z are constants such that
F=c+c . (5.2

One then fixes the gauge by setting a = +b, depending on the sign of 1 — uv, and

integrates out the gauge fields. If one chooses to work in the ansatz

C1 = €y =

G

and makes the transformation of variables
u =eV2/VEAFN ET1 L),
v = — e VEIVEUEN 1)

the WZW action finally turns out

(5.29

. 202
where A = =,

1 ,
L= fd2cr Guv Ozt 0pz” +—2-B“V(8-m”8+m"~8+m“8_m”) , (5.30

ES

|

where g,, is the 4-D metric of the line element

14+ A .
ds? = — (1 - ~]: ) dt? + (1 — 3:) dz'dz’
7 2r

kd? 1+A\¢ AN\
+ (1— i ) (1-—) dzlde? | (5.31

872 7 7 7

B, the antisymmetric tensor field

A 14+ A
By =4 —— (1~ _
b 2(1+ ) (1 7 ) ’ (5.32
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and z# = (t,z1,22,7). It is then almost straightforward to show that requiring

the fields to be an extremum of the low-energy effective action from string theory,
. > H? 8
§= [ dtzy—get |[R+(VE}? ——5+ 7| > (5.33)
12k
(where now k is seen to play the role of a cosmological constant term) leads to
the condition ® = In# + a. It can be shown (210] that the arbitrary constant

parameters a and A are in fact related to the axionic mass (charge) per unity area

through the formulae

Qu = & 2>\(1k+ A) ,
(5.34)
2
M == 8”’(1 -+ A) —}; .
Therefore, redefining z1,z2,7 coordinates as
(= +9)
] = —— ,
1 \/§ Y
(2 ) 5.35
2y = —(z — 1Y), )
. _. |k
Fo= -
re 5
it easily comes out that the final form of the fields is
M Q? k dr?
ds? = — |1 - — }dt? — = 2 4 dy? (5.3
2= (1= )ar o )%+ s g
Qa
Hypp = gl (5.37)
1 k
® =1In(r) + 5 In 5) o (5.38)

where the axionic field is H=d B. The field equations coming from the effective

action (5.33) are

V(e HM) =0 , (5.39)
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2 8
—.%—Jrv?@ju(v«p)z-g:o ,

Fond
<

1 8 H? H?,
szv,‘vv@+-2-gw (v2<1>+(v@)2____"___>+ n

dH = Hyuuxp — Huspu + Hppo = Hoppra =0 .

(respectively from variations of H, @, g,, and from the Bianchi identity for the
three-form H).

Let us now summarize the global structure of the above metric:

1) Qs < M. The solution has a curvature singularity and two Killing horizons:
it is a black hole with an outer horizon at » = 74 = M and an inner horizon a
r=r_ = A 2. Opposed to the general relativity black hole, the generator of tim
translations remains space-like also for » < 7_. As a consequence the manifold i
time-like and light-like geodesically complete. This can be seen by noting that th
affine geodesics must satisfy

7;2 47,2 5 > 2 5 E2Q2 2

|
G- ) (- )

where E = ——{-5%, P = 558;, R = f;—% are the conserved quantities, £ is the
geodesic tangent, and o = 0(1) for null (timelike) geodesics. Eq. (5.43) represents
a particle of unitary mass and zero energy moving in minus the right-hand side
potential. This potential becomes asymptotically repulsive as 7 — 0 for both nuﬁ‘
and timelike geodesics, which then cannot reach the singularity.

2) @, = M. This is the extremal case in which ry = r_. With respect to

the general relativity solution, one notices that the metric is boosted along the z
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direction. Actually, it is inappropriate to consider values 7 < M, since geodesics
no longer intersect the horizon (see (5.43), with Qa = M). By a suitable change of
coordinates, one can see the horizon as separating two asymptotically-flat regions.

3) Qo > M. In this regime the metric changes sign at » = %’:—, but this
region can be removed by redefining coordinates as e % [82]. One has
neither a horizon nor, contrary to the charged black holes of general relativity, a
curvature singularity (naked singularity). The conical singularity left at 7 = 0 can
be removed by assuming z to be periodic.

Let us now discuss the thermodynamics. The temperature of the black hole
can be obtained by analytically continuing ? = ir and imposing regularity at the
Euclidean horizon, and is

T 1 M? - @2
T oM 2k

(5.44)

By standard arguments, the entropy is then calculated as
g4 :L<1~L> , (5.45)

where the coordinates z,y are now periodic: & € [0,27], ¥y € [0,7] and A is the
horizon area. One here should remark the difference with the other stringy black
hole of Ref. [186] which has a temperature T = 5—7;17\7, independent of the charge.

In the extremal case the black hole under study has zero entropy and tem-

perature while the classical gravity (string) solution has zero (8733 ;) temperature
and finite (zero) entropy (the authors of Ref. [81] consider also a model with a
parameter a which interpolates between the dassical gravity case (a = 0) and the
string case (a = 1): the thermodynamical properties of the black hole under study

are thus equivalent to the case 0 <a < 1).
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Let us now investigate the range of validity of the thermal description of th
black hole defined by (5.36). According to Ref. [80], the condition for the therma
description to be self-consistent, assuming that during the Hawking radiation pré
cess the typical quantum carries energy but no charge, is given by eq. (5.19). Fo
the WZW black hole, one has |

or, Q2
OM |~ mv/2kM2(M? — Q2)!/?

H

and the thermal description breaks down in the case of the extremal hole wher
Q. —> M. This is true independently of the value of the mass similarly t
what happens to the black hole of Ref. [186], but in contrast with the extrem
Reissner-Nordstrém solution. Following Ref. [211] one can now discuss the domai
of validity of the semi-classical approximation. This approximation breaks dow:

when

1 oM

ORI g )

M Ot

This is because the black hole would be shrinking at a rate which is comparabl
with the frequency of the thermal radiation. In this limit, both the notion of th
thermal equilibrium and that of a fixed background spacetime are no longer we
defined. Using the Stefan-Boltzmann radiation law, this implies T'M = AT*. 1
the extremal limit T +— 0, and the previous formula is satisfied independently o
the value of the mass.

Let us now study the perturbations of the metric field. One can rewrite th

metric (5.36) as

—g2fo 0 0 0
0 e2f1 0 0
Guv = 0 0 e2f2 0 5 (5.48
0 0 0 e2fs
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such that "
1 1
S =—Inl1l——
fU 2 I’l( 7‘) H
1 2
e ,
h=3 n( Mr) (5.49)

1 M 2
fo= 3 (1" 7) (1" M?«) :

fo=0

By following Ref. [212], the idea is to consider as an ansatz for the perturbations a

sufficiently general definition consistent with time-dependence and axial symmetry:

—26 foetfe —xoeft 0 0
2f1 2f1 2fi 2f1
oA P _ —Xo€ 26 fre —Xz2¢€ Xs€
6guv = 5gm, + 59;11/ - 0 —-Xzezfl 25f282f7 0
0 —xse? 0 263>
+ O(Xz) , (5-50)

with z#* = (t,2,7,9). In view of this choice, the first-order perturbations 8fuy X
are z-independent.

The form (5.50) of the metric has the effect of dividing the perturbations into
two classes, known as polar and axial. Polar perturbations are those which leave
the sign of the metric unchanged upon a reversal of sign (they preserve spherical
symmetry), while axial perturbations are those for which one must accompany
such a reversal with the change ¢ — — to0 keep the metric invariant.

Now one has to compute the first-order variation of the equations of mo-
tion (5.39)-(5.42). Following Ref. [212] the method is to compute the variation of
the geometry and of the energy-momentum tensor in the tetrad formalism. One
thus rewrites the metric as: guv = e&a)egfb)n(a)(b), where eEf) = ¢fe, a = p and
N(a)(b) = diag(—1,1, 1,1). Roman indices refer to components in the tetrad basis,

while Greek indices refer to components in the coordinate basis. The transforma-

tion between tensor components in the tetrad and coordinate basis is achieved by
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Ty = T(a)(b)egf)eg,b). The variations of the tetrads are

56?0) = (_"5f08~f07 XOe—f07 Oa O) 3
Sefyy = (0, _§fie”r, 0, 0),
56‘&) = (0, Xze”f"", ~6fze"f2, 0) ,

562‘3) = (0, Xge—fa, 0, ——6fge”f3) .

The (linearized) variations of the components of the energy-momentum tensor

the tetrad frame are

6T(1y2) =0

~2f2
: {€~2f°—f1~Q—i (5H320 + %Xa + €f1X23] , (5.5

8Ty = —3, .
—2fo—2f1—2Ff Qa Qi
§Tyoy) = €2 I 2h1 22 [;—2-511012 -~ Ze(6fo+ 5+ ER)| +
) ‘
— 722 <f0,25‘1>,z + f:’2> - A, (5.5
2
8Ty = %e“”"“zfi*zfz(afo 4 6fy +6f2) +e P f1,262 2+

6 80,
+ f1’2>— 355012+A )

T

2 e—ng
§T(2)(2) = %e“zfo—zfl—zfz(afo +6f1+6f2)) + —5—[28f2(1+ 7 f22)+
8Qa
- Efz,z’l' + 7“2(5@1272 - f2’25@,2)] — C]g §H012 -+ A y

e—2f2-2fa

§T(3)(3) = §fspte 6B+ A,
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e_fO"fZ
6Ty (2) = ———(bf2,0 T T‘fo,ztsg’,o) , (5.58)

r

5T<o><z)~2Q e o225 gy (5.59)
§T — Qo —2fo—2f1—f2 5.60
(2)(3) = ~5,7° ) (5.60)
where
1 4p? 4 oM
Az — —e~20§B oo + ——e2fF2II6® 35 + 5@33+—’i 3 —+
2 & k T
202 Q2 4r 8 . -
S, 5 )5@ & A st 5y 4 8y~ 8o+ Of)a - O
8 8
Q +5f1)+~9——5H012 : (5.61)

k

The components of the Ricci tensor in the tetrad frame for the axially-symmetric
ansatz of the metric perturbations have already been computed in Ref. [212], and 1
do not report them here. Their linearized version can be easily computed by using
the expressions (5.49) for f,. Therefore, after defining Xag=Xa,s — Xg,a, O0€ CaL

now explicitly write all the nontrivial perturbation equations at first order as

X23,3 — e oxa00=0 , (5.62)
e—-zfr-fo—‘fz [(63f1+f0~fzxz3) \ 4+ (e3f1‘fo+f2X30)70} =
1 a a —2f -
P {e”?‘f"—f‘ ——~—Q (65320 + ,.__Qz X3> + 6f1X23} e 2N , (0,63)
™ T T
_ 8T2 4 a
e 205 fy oo — —— e PTG fL 5y — 8f1 a5 zv?k 27 (6f2 — 6fs — 8fo) 2t
8r Q2 3¢2 8Qz [, 2M SQa Qa
s _%a a — 5
k (H st " 2 ) ST T R 62 = Tz (Gfo

4 8r
+5f1+5f2)“55012} é,?]: 2006 5 + — k 2f‘ﬁbzﬁlsfl ; (5.64)
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e 208 fs 5o — §—’-'-2-ez-f”’zfl(5f L 8f1 +6fs3)22 — 8f2 33 — (- ~§——+
2,00 0 1 3/,22 2,33 k IMr
M Q: 4M Q: 2Q2 4r M
M Xag o _ Z%a _ o=
2r 7‘2> Jort g k ( M? Mr>5f2’2 k 2 r *
Q> 8r M Q> QZ 8]\/ Q3
. Fae g - {1 == & 1
Mr fa k or | 2Mr 2 §f1 o+ +M*+
n 5Q3 o 3Q% _ Qar _ 4Q, _ 4Q3 e~2fo—2f15f, =
M2 M M2r2  M3?  M3r  Mr

2
=89 S, o)+ (-7- T ) ora - $Hoa | +

72 r Mr

M 2
* 'S’IéteszHf‘(T‘S@,zz —8f25) + T (2 R zgla > 822 ,

e 2o (8f1 +68fs+6f3) 00+ ;; g2fot2fig g, o - (1+§_+
3Q3 4AM SM M
- 2632)5f072+5f0,33+732f1(5f1 ‘T‘Sf2+5f3),2+-—*<1~—-7:—+

kr
2Q%  2Q%\ _ay, 8
— M,r. -+ 7.2 )e 5f2 = ?g— Qa [éﬂol

L8+ 613)} +

M
_ pe2fot2fy [?e"zh&@,z + 6 fo 2H ’

'

87’2 8r 2
_”___e2fo+2f15f3’2 (5f0+5f1+6f2) 33——-;—c“<1“‘g“> f3 o+
8r

e”2f°5f3’00 — ___62f0+2f15f3’2 + 6D 33

Q2 - 0 1
—re (5f1-’r'5f3)02+2M Y6fa 0t 7 2o ef1 85 o+

2 M ‘
-+ (1 §2> f15f1 0} = —et [‘5f2,0 + ‘2'7,'5””05@,0} ) (5.68 ;

) Y
eI (8Fs + 6 f2)0 = ff 5 His
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1M
— el <T€f°(5fo +6f1)23 + §7€—f°5f0,3> +

1 202 Q2\M _ 0%
Ze N _ e ®a VT —fo _ Xa fo —
Taf [(1 T ML Il TR

— —ef°+f15f2,3 _ 92__38—fo-f155013 , (5.70)

k
gfzfo‘zh 6Hpiz3 + th(?How + Qa(6fs + 02+

ﬁﬁh—6h~6hﬂ =0 , (5.71)

2

€2f05H123,3 - [EH(HQ -+ Qg(ﬁfs + 6P — 5]‘1) - {5f1 - 5](‘2):& =0 , (572)

,0

M
5H013,D -+ _8£_er0+2]"1 [7’8sz6le3,2 + (2 —_ —;—) 5H123] =0 s (573)

(55320 - %X;}) =0 , (5.74)
0

(5H320 + %‘Xs) =0 ; (575)
3

Qa 1 Q%N 25 Qa
(53320 + X , + - 2= 30 )¢ §Hazo + —3X3 | = 0, (5.76)

§Hy3,0 + 0Hota2 — 6Hp123 =0, (5.77)

A=0 . (5.78)

They respectively represent , in the order written, the (1)(2), (1)(3), (1)(1), (2)(2),
(0)(0), (3)(3), (0)(2), (0)(3), (2)(8) components of the Einstein equations (5.41),




161 STRING THEORY AND BLACK HOLES

the (u,v) =(0, 1), (1, 2), (1, 3), (2, 3), (0, 2), (0, 3) components of the H equation
(5.39), the H equation (5.42) and the dilaton equation (5.40).

Following the ansatz (5.50) for the perturbations of the metric, oné
can divide the equations (5.62)-(5.78) into two sets which I will call “as;;
ial’ and “polar”. The equations for the axial (polar) perturbations will
contain only 0Hiag,X0,X2,X3 (515[320,5f0,5f1,6f2,5f3,5<§). Unfortunately
unlike the well known (RN and S) cases of standard GR, and the re
cently discovered family of stringy, charged, dilaton-black holes 181209 th
axial and polar perturbatioﬁs do not automatically decouple in the per
turbation equations, as one can easily check by inspection of egs.
(5.62)-(5.78). Neither it is easy to find out an explicit and well defined algo
rithm which effectively decouples such equations. A nontrivial possibility is tha
the true symmetry of the theory is not actually coded in the standard axial/polar
separation ansatz. The most reasonable assumption, at least as a preliminary trial,
is to separate ‘by hands’ the two sets of perturbations, by alternatively setting the
polar (axial) ones equal to zero and studying the dynamics generated by the axial
(polar) ones.

Finally, the behaviour of the perturbations which is consistent with the sim-

E

metries of the previous ansatz reflects in the separation of variables

6f(7'7t7 y) ’-—‘-(Sf("l‘) ) eth : eipy’

5x(r,t,y) =6x(r) - giwt . giry

(5.79)

5.5 Axial perturbations

Let us now consider the equations for the axial perturbations only. These are

A
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obtained by setting §Haa0,6f0,6f1,6f2,6f3,6® equal to zero. From (5.76) one
easily gets
g 9_2_ -2f1 (5 80)
X3 = e € . .
Deriving (5.62)-(5.63) with respect to y,7, using xz0,02 = w?x23 + X20,03 and

summing, one finally obtains

Q25420
M?r? 2

8 v )
E (e‘ifl'i*?fo,r)’i%)’z e*2f1+2f07,+7,e4f0+2f1>223+

= —w’%as + 07 K (5.81)

The standard procedure is now to climinate first-order derivatives by introduc-
ing an integrating factor for %23 and changing the independent variable 7. The

complete transformation is
X23 = r'le**flﬁzf‘)e'% Jar 3y ) (582)

where Xi= 8,2fo+fi — 38,+(f1) and one defines the “tortoise” coordinate
%

ddr: = \/’!gt %e”zfo"f . This coordinate is particularly useful when one wants to
study processes such as scattering and, in general, wave equations on black hole
backgrounds (see also Section 5.7), since the horizon is shifted to r* — —oo . Since
the physically interesting region is just outside the horgzon, the infinite range of

»* allows one to impose standard boundary conditions for the wave functions at

infinity [213]. Substituting into (5.81), finally gives

(82 +w?)Y =V(r,Qu, M)Y +J(r,Qa, M) , (5.83)

o (. 3M , 3Q% s 92 5Q
Vel2f1- 28 e o 2 a —2fi 2| 2o 5 84
\ik ( T i Mr 4M272 2 + A M3 € piie , ( 8 )
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and

8Q3 3M Q2 2Q2 2f0~3/2f,
’]“kaz,,.:}/z (2“ r ~NIT+ 72 ¢

In general, the effective potential (5.84) has not a definite sign and become
negative in a region outside the external horizon, » € (M,r1). It is positiv

definite only for @, = M and it is plotted in fig. [18]. In this limit one has

p* = -‘;5 [m {(ﬁ’;—[-)l/z (1 +ef°)] -—‘e_f"} ,

k
TPy e | as r— M7T |

2

N \/E 1 4r 4 +
— 4 - — ] — —
7 s\ 37 o0 as 00
In the extremal case the differential equation (5.83) becomes
(82 +w?)Y = 1 [4r3 —~9M2r + 5M3 42 (1 M v
T K 2r3 P r

16 M3 (r — M)°/*
Lpls/4

(5.88

This has an essential singularity at » = M and a regular singularity at +oc0, comin
from the potential V, and Y could be singular only in this two points. On th
other hand, the current term J is regular all along the physical region external t
the horizon.
By studying the dominant behaviour of the solutions around the two singu

larities, one easily finds
- oo Y cle“—iv’;i’lzr* + cze+—i~/%?r* + ce“”z‘/—gr*,

(5.89)

. * v ™
o —o0: Yo eget™T ooueTT 4 d(r*)_s/z ,

with

v = /4 + 2k(p? —w?) . (5.90)
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Fven if the J term destroys the superposition principle, the finiteness of the so-

lution with respect to the time evolution can still be proved along the lines of

Refs. [212,214] . The main idea is the following. Let us not impose any particular

time dependence for Y. Then, one can multiply the time dependent version of
oy

eq. (5.83) (with w? replaced by —-—(%27) by —%r (where now a * means complex

conjugation), and integrating in dr* one gets, after an integration by parts,

+ VY + (5.91)

51 012 | Or* or*ot ot ot

f . {8}"* 82y 8y 6°Yy* gy* oY* }
r € Ji =20

Finally, by adding to eq. (5.91) its complex conjugate, one obtains the following

conservation law

2 2
fd"”* 20 A e :c.«z/ it JRe(Y) . (5.92)
ot or*

For a positive V, C is a positive constant, given the behaviour of J which goes
to zero for r* + Hoo. Moreover the ¥ function is everywhere well behaved as it
follows from Fuch’s theorems on the solution of this type of differential equation
and from the asymptotic analysis I have done earlier. The behaviour of ¥ around
#* — +oo is the same as that of the wavefunction coming from the homogeneous
Schréedinger equation with J = 0. From these congﬁderations it follows that
%]2 :s bounded by the integral (5.92), which excludes in particular exponential
growth of an initially well-behaved data at 4 = 0 on a compact support in r*. The
conclusion is that the Qo = M black hole is stable under the metric perturbations
(5.50) (while Qa < M black holes are unstable for similar arguments). These

arguments can be made more rigorous by following the same lines of Ref. [214].
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5.6 Polar perturbations

I now turn to the polar perturbations. They are obtained by setting 6 Hiag, Xp = 0
Since I have just shown that only the extremal case is stable under the axial
perturbations, one is allowed to simplify the problem for the polar perturbation;
by also limiting to the case Q, = M. Thus, the relevant polar equations, by

introducing the tortoise coordinate »* as before, turn out to be

-1
(5ﬁ)=(?§\§“'1> (1+'§ﬁ:f‘> 5)E2 ?

671*(5@) = ~\/§;¥€f"(5]€0 - 5.f2) H

R N C R G LI

(8% +w?)(6®) + i— (1 — gf) 08, (6&) = [pzééJr

M M - -
+ _8___. [<1+ ___) 5f0 _}_ezfogfz}}e&fo ,
kr r i

(8% +wh)(6fo) + }8; (1 - g—) /08, (6f,) = {Pz(&:ﬁ +6f0)+

M M\ _:
L2 (1 + ———) 5fo}ezf° :
kr r

T

(8% +w?)(6fo — 62) + \/% (1 —~ g’{) /08, (6 — 6@) =

= p*e* (6@ + 6fo) ,
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(8&—%&)(5&”@(1—-2{—) e (6f2) Hz_ﬁ}f(%
3M>}5f2 4M25f0}e . (5.99)

They are obtained, respectively, from eq. (5.65) minus (5.64) and (5.69), (5.69)
minus (5.68), (5.69), (5.78) and (5.69), (5.78) plus (5.66) and (5.68) and (5.69),
(5.67), (5.64) and (5.69).

1

It is easy to see that the only consistent solution of such a system of equations
is 6f; = §& =0,i=0,---,3. For instance, one can proceed by eliminating §fo by
(5.93), then eliminate &,-(§®) and 0, (8 f2) by (5.94) and (5.95) and finally find,
respectively from eq. (5.96) and (5.99), that

4 8M  15M?
2 2 o obia  Auie
(O +w )(6f2) = {p + e 1 <1+ . 2 +
M3 MY =
- ;@“ﬂ (1 - 7) 6f2 (5.100)
(1— A1) ( o4 9 4 M? _seAr® 531*)
(@ +o?)Ef) = | p——
T k ( . ﬂ[) (1 + AI ?
_3M _ M?
+p° -4 7 rz)}éfz , (5.101)
(t+3) :

which are clearly incompatible unless & f = 0. These results are likely pointing out
that this WZW black hole system has some extra dynamical symmetries provided
by a gauge invariance of the ansatz (5.50) or by the underlying integrability of the
system of the Chandrasekhar-like perturbation equations (5.62)-(5.78).
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5.7 Scattering by a test field

To conclude the black-hole analysis one can consider the effect on the perturbed
geometry due to an external test field. In particular, one can compute the effective
potential of a spinless test-boson $ in the background of the black-hole geometry.
This should be nontrivially related to, and possibly mimic, the conformal per;k
turbations around the black-hole metric background itself. One thus studies the

equation

1
Ve

In the stringy black hole ansatz, the equation is separable and leads to

Vi = 8,(v/—g9""8,0) =10 . (5.102)

b(r,t,y,z) = Pp(r)X(2)Y (y)T() = z,b(r)eiklxeikweikat . (5.103)

Following the previous arguments, one can restrict to studying the extremal case

Q. = M, for which one gets

2 r 2 _ L2
2 + [;—:27\3 - ‘i‘} Orp — {(7_ —ZCZJVIP - ((:C:: ];)13) P =0 . (5.104)

This equation has two regular points (at 7 = 0,400 and one irregular point at

r = M). Using the “tortoise” coordinate of the previous Sections and the inte

grating factor ¢ = e~1/2f0 7 one finally gets the Scﬁréedinger-ﬁke equation
(82 + k)2 =VZ , (5.105)

with the effective potential

~ M M 11M
VEw T2 T - 2+ k)| kDR (5.106)

This effective potential has not a definite sign. It asymptotically behaves as

V — k? 4+ k2 > 0 when r* — 400, and as V — k? > 0 when 7* — —oo, but it may
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become negative in the intermediate region, depending on the values of M,k and
ko. In general V has a local maximum and a local minimum (but for ki =0 and
k% > XL they both disappear and 0 < V < K2).

In particular, there are three main possibilities for the scattering behaviour
of ¢, depending on the value of the incident energy ks. If the incident energy is
sufficiently high, say k% > kZ + k3, one can see that the Schroedinger eq. (5.105)
has a continuum degenerate spectrum with (convergent) asymptotic eigenfunctions

given by

- -
P* — d+oo: Zoce R

(5.107)

p* s —00: 4 cae+wr* + cg;:e“iﬂr*
with a = 1/k2 — k% — kZ and B = k2 —k%. If one has k2 < k% < k2 + k2, the
spectrum of (5.105) is continuum and nondegenerate, with (convergent ) asymp-

totic eigenfunctions

* . —iIm ar’
r* o +oo: 4 ce ,

(5.108)

- .
¥ — —00: Z:c;;e"“’gr + cqe ifr

Finally, for k2 < kf, one has a nondegenerate discrete spectrum, with eigenvalues

given by the standard formula: .

7‘+ 1
f (k2 — V]Y/2dr* = (n + §> T, (5.109)

where V(ry) = kZ.

In particular, if k2 = 0, a particle coming from infinity sees a potential barrier
which is infinitely wide and prevents it from reaching the horizon. This may be
interpreted along the lines of Ref. [81], and one can say that there is a finite mass

gap for the extremely charged black hole. Fxcitations with less than a critical

e
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frequency are reflected with certainty. In addition, if V' becomes negative in
region outside the horizon, one also recovers the standard super-radiant behavior
[25].

In conclusion, both the thermodynamical and the scatiering results show
above appear to strongly suggest that these extreme WZW stringy black holes 4
their best to behave like normal elementary particles (cf. Section 5.3 and the Ref:

therein).

5.8 Vacuum polarization around the stringy black hole

In order to have a clearer and deeper understanding of the main physical properti
underlying a stringy black-hole solution, and to make a comparison with the be
haviour of the standard black-hole solutions of GR, it would be interesting to take
into account the effects induced by the quantum thermal emission, in particular

the so-called vacuum-polarization phenomena.

As I have shown in the Section 5.4, the WZW black holes have a nonzer
temperature for Q, # M, and are therefore expected to emit a thermal spectrum o
quantum radiation with the same temperature. In other words, the vacuum in th
gravitational field of the black hole is unstable. One can euristically understand th
Hawking process in terms of a continuous, spontaneous creation of virtual particle
antiparticle pairs around the black hole. A portion of the virtual vacuum pai
particles achieve sufficient energy under the gravitational field action to become
real and to reach infinity, where they produce the Hawking emission (actually, on
should note that the use of the particle concept is not so correct: this is because;

the average wavelength of the emitted quanta (A ~ T-1) is comparable with the
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size of the hole itself, and therefore it is meaningless to ‘localize’ the ‘particles’-
whose concept is global - somewhere near the horizon). The state of the virtual
particles that do not become real also changes under the gravitational action and
results in the vacuum-polarization effect. This effect is manifest as the dependence
of the vacuum averages of the true local observables, such as < Tlﬁ,EN >, on the
gravitational field properties. The local approach in terms of < Tﬁ,‘g N > also leads
to the interpretation of the Hawking flux of radiation at infinity and the consequent
loss of mass by the black hole as due to an actual flux of negative energy crossing
the event horizon [211]. The problem of calculating the quantum averages of the
(renormalized) energy momentum tensor for the case of an arbitrary massless and
massive field content in the background of charged, rotating, GR black holes is an
issue which has been largely investigated in the literature, and for a good review

I refer to Frolov (218]

In GR, a particularly interesting example is that of the vacuum polarization
around an electrically-charged (RN) black hole. Here the (thermal) creation of
charged particles is complicated by the presence of the electric field of the hole.
A detailed analysis of this problem has been given in Ref. [85]. The main re-
sult is that the electromagnetic field of the hole encourages the pair production,
which can occur even for very massive black holes with low temperatures. Only
for M > 10°My the process is suppressed, while for M < 10*%g the (thermal)
gravitational processes become dominant (see fig. [19]). In the large intermediate
range 101%g < M < 10° Mg, therefore, the charged black holes of GR are expected
to spontaneously lose almost all their initial charge by polarizing the surrounding

vacuuin.

In the previous Section I have shown that the axionic black strings (ABS)

e
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are classically and thermodynamically stable only in the extreme degenerate limi

Q. = M, where Q, (M) is the axionic charge (mass).

The purpose of this Section is to investigate under what circumstances
degenerate 4-D ABS is stable against particle production from the surrounding
vacuum. The motivations of the analysis are clearly seen to be both conceptu
and astrophysical. The former is related to a better understanding of particle
production processes in strong gravitational fields in the context of string theor
the latter concerns the eventual possibility of detecting such ABSs by dlrecﬂk;
or undirectly measuring the effects [192,200] jnduced by the presence of a non-
negligible axionic charge hair Q, (this, for instance, would be also interesting f
primordial, small mass, degenerate black holes, which are expected to behave like

elementary particles, and whose scattering properties should depend on Qa)-

The method employed is a generalization of the effective-action approach o
Ref. [216] developed for the semiclassical quantum electrodynamics. The unex:
pected result is that the degenerate ABS is ‘almost’ stable for a wide range oéi
black hole masses. The lower bound which one finds crucially depends on the €
perimental and astrophysical-cosmological estimates of the axion mass coupling
One can also perform a similar calculation for the non-degenerate ABS solution
(Qa < M). In this case, it is found that the black hole always polarizes the sur

rounding vacuum, losing its axion charge. This can be seen as the semiclassica

counterpart of the classical instability shown in Section 5.5.

At the leading order in the string-tension expansion o', the ABS solution i
characterized by egs. (5.36)-(5.38). In this context, the strategy is to study th
vacuum-polarization phenomena by treating the dilaton, the axion and the ge

ometry in the external-field approximation. In particular, one wants to find th
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probability amplitude for the decay processes of the axion field itself in a region
close to the horizon, where one expects that the vacuum-polarization effects are
dominant. In the effective 4-D string theory, the leading decay process is dic-
tated by the coupling of the axion to the electromagnetic (quantum) field Fuv,
which appears to the order o. F,, is associated with a U(1) subgroup of Eg X Eg
(Spin(32)/Z2) of the superstring or coming from some kind of string compacti-
fication. At this string order, there are also vertices involving couplings of the
graviton and the Kalb-Ramond field By (299] but in this semiclassical approxi-
mation for gravity such couplings give only a ‘dressing’ of the basic ABS solutions
(5.36)-(5.38).

Since one is interested in the vacuum polarization effects around the ABS
horizon at r = M, the idea is to assume for the dilaton the constant value:
d ~ Oopr = In(M)=% (see eq. (5.38)). This turns out to imply that the
H-equation of motion at the leading order in o' becomes V#H‘“’)‘ = 0, and then

one can write

H#A = MY, (5.110)

where 8 is the axion-pseudoscalar field.

Therefore, the low-energy string action relevant for this problem has the form

o

(see also eq. (5.33) with H? = —6(V8)? and V& = 0)

v ® 8 1 !
S = jd‘iw«/——geh’ {R+ = §(V9)2 + % (—=F?+X6F *F)| , (5.111)
where A = 24—, Mg (my) is the axion (pion) mass, fr is the pion decay constant,

% is the cosmological constant term corresponding to the central ‘charge deficit’ for
the superstring ?!7) (in the case of the (SUSY) string coset-model G/K, where
G = SL(2,R) x R x Rand K = U(1) of Ref. [82] one has that (k = 14/3)

k= 25/11), and "F#*” = %E’J‘VpanG, with €*,; the covariant Levi-Civita symbol.
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Following the Schwinger approach, the probability for the vacuum decay of

the axion into photons is
Py o 2 o (5.112)

where T'! is the one-loop effective action coming from the external field approxi

mation (in g,, and 6) of eq. (5.111) , namely

| \? Az H?\?
1_ 4 - el
2T -—/ d m\/~g{—~32ﬁ2 log(:v“:z:“-ze)< 1 ( 2 )

1 2o a?
- EHWUVZH"W") L3 (———)} . (5.113)

82 (zhz, +1€) \ 6

This equation can be obtained by the covariant generalization of Ref. [218] after
a rescaling of H and F' by ¢®0/2 and having reabsorbed o in the definition of F
as, H — e®0/2H, F — (o/e¢®°)*/2F. Notice that, in eq. (5.113), in virtue of the
ABS ansatz, one has H,,\V2H** = 0.
In the extremal limit Q, = M, where the ABS is classically stable, using thé
classical background for H#** and g,, (egs. (5.37) and (5.36)) and exploiting th

mathematical identities log(z,z* — ie) = log(e#z,) — 2mns , n=0,1,....
m =P (mﬂlxp> ~ wi8(x,z"), one finds (reintroducing dimensional factors o
M)

2 2
2Im I :{%/d*m%é(gwm“m”)
8k M, T

A XM /4 1
t— [ Ifz—
vV 8k3mwM,

} (5.114)
TD ] -
roz M /A2

It is important to stress the fact that one could equally have calculated the
Schwinger effective amplitude for the vacuum polarization by using a different

conformally-rescaled classical metric g,, = e’®q,,, with s arbitrary. In this case,
gp Guvs Y

however, the new effective action (5.113) would correspond to a different quantum
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theory (21 (it is not Weyl invariant by construction), and would not be trivially

related to eq. (5.110).

Tt is convenient to perform the integral over ¢ in the first term of the right-hand
side of (5.114) using the delta-function expansion
51411+ 22 + 4211/2

(1- 25

_[F1 (M e
8 M, M2y ’

P

S(guvzta”) =

where I have defined

I

(5.116)

fe )
i

9

( ]VI )-—‘1/2
1~
Mgr

A reasonable estimate of the three-volume near the ABS horizon may be obtained

w2,
Il
™l w8

by putting the black hole in a box of linear dimension M /M 5 and by assuming a
thermal interaction interval AT ~ lg, where lg is the Compton wavelength of the

axion pseudoscalar. In this way one gets

M2
~ g 5.117
f dt / dzdy =~ lg i ( )

Moreover, using (5.115)-(5.116) in the first term of the right-hand side of (5.114)

one can evaluate the double integral
8 )
[ e [t s g (5.118)
- e

which may be a fairly good approximation, since

. M 8 M\
mr:M/Mg‘“E E\ T r

. M /8 M
’erzz\I/Mg - j/"j; I 1= T

~0 ,
reeM /M2

(5.119)
~0 .

roe2M /M E
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and for small values of ¢ and 4 one has that

B N A
/ d3[1 + 3?72 = gresinh S ~ 6 .
0

Therefore, reinserting back all relevant dimensional parameters (m, = 135 MeV
and fr = 93 MeV), and considering the following recent (astrophysical
cosmological) bounds for the axion mass, m, = (1072 +107%) eV (see Ref. [219])‘
the final result for the Schwinger effective action is kk

1 ; M \?
2Im I ~— [1.2 (10%° + 10%9) (1 — ) El/?
k3/2 Mir roeM /D2

, v M\
2 143 - 134
+6.2 (10 10 )} (-——M®>

Now, the condition for avoiding the ABS discharge due to the vacuum polar-
ization can be directly read by (5.112) , i.e. one should have 2ImI > 1. Then,
from (5.121) , discarding the first term, this condition implies a lower bound for

the ABS mass (for n % 0):

3/4 ;
M > (1.6 107%° + 4.8 107 ym,, (5.122)

ni/2

where m, is the proton mass. In the case of the extreme ABS solution, the
temperature T' = 0 (see Section 5.4 ), and therefore one does not expect a thermal
production of (virtual) particles around the horizon. Therefore, the lower bound
for M which is given by (5.122) is the only relevant condition on the mass in
order to avoid vacuum polarization of the mediuzﬁ surrounding the extreme ABS
solution. The condition given by eq. (5.122) is by far much weaker than the usual
bounds on the general relativity black-hole masses described in the literature (see

Ref. [85]).
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In the non-degenerate (Qq < M) case of ABS, one can repeat similar cal-
culations starting from eq. (5.113), and it is quite straightforward to obtain the

following estimate for the one-loop effective action:

1/2
- Q% M? \
2ImI (g, <ar) =k 3/217 (10%° +10") | 1 - ———-——~—sz Kt/
Mo\’
+8.4 (107° +107) nQ, (-—ﬂ;l—,‘i) } : (5.123)

i ) , 2a2N1/2
For this set of ABS solutions, the temperature T' = -—\j‘%ﬁ; (1 - QI‘{_?Q” > is differ-
ent from zero, and one must also take into account for the possible polarization of
the vacuum by ‘thermal’ effects. The condition for avoiding thermal polarization
may be approximately written as T' < 2m,, while the Schwinger probability for
the ‘decay’ of the axion into photons is suppressed for ImP%Qa<M) > 1. These
two conditions combine to the following bound on the ABS mass:

1/2

Q2 \"

e < TVE(107 £107%) . (5.124)

14k (10721 +1079¥) < | 1=

This condition in general cannot be satisfied by any value of M (unless k =~ 0,
which is equivalent to having an infinite effective cosmological constant in the low-
energy stringy action (5.110)). Therefore, the non-dege;era‘ce ABS’s seem to be
unstable under classical perturbations (see Section 5.5), to polarize the vacuum

surrounding their horizon and to rapidly lose their initial axion charge.




Chapter 6

Conclusions

In this thesis I have tackled three of the major issues in the QG and QC.

The wormhole theory has recently aroused great interest because of its pecu#
liar capability in providing a non-trivial connection between the physics at la,rgei
and little energy scales, but it is currently under debate due to various difficulties.
Among the objections to the theory is that wormbhole solutions apparently rely on

the existence of special kinds of matter content in the universe (and so appear as

rather peculiar objects), and the non-existence of a well-defined, unique Euclidean

(path integral) formulation of gravity.

In Chapter 3 I considered a new set of wormhole solutions and showed that
at least the first difficulty may be actually alleviated. In fact, I have shown that
spacetime wormholes may be understood as analytic continuation of closed ex-

£

panding universes. For every classical solution in standard cosmology with the
closed spatial geometry and with a real scalar field that obeys the strong-energy k‘
condition p + 3p > 0, there is a wormhole solution. At least in the RW case, one
may use the trick from Ref. [157] to construct the field-theoretical models that may
drive such wormholes. In doing that one is reversing the usual procedure that has
been used so far in the literature to find wormhole solutions (which is to first

fix the matter content and then look for the related geometry), but this should

be absolutely legitimate. The wormholes all have a mon trivial potential term
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and no conserved charge is necessary to stabilize them. This can have non trivial
consequences on the standard arguments which have been proposed to avoid the
‘giant-wormhole’ problem [30,48,46,144] The fact that the classical wormhole action
can be negative for a set of equations of state may also undermine the conjecture
of Ref. [122], according to which wormholes with Re,/g > 0 should be suppressed
in the saddle-point evaluation of the EPL This would require a generalization of
the criteria for the evaluation of the EPI along a complex contour of integration,

which should include the effects of both the matter and the gravitational fields.

Since the equations of GR are deterministic, one would claim that appropriate
field theoretical models exist also in the cases of anisotropic and inhomogeneous
wormhole solutions, even if they cannot be explicitly constructed. Similarly, in-
stead of using the scalar field, one may represent the stress tensor through some
higher-spin classical field. Again, in principle there exists a configuration which
drives a given wormhole. Wormholes driven by an antisymmetric tensor field, or
by the electromagnetic field should be found or recovered in this way. And using
the powerful techniques of conformal transformation these results might be ex;
tended to the induced gravity, higher-derivative gravity or non-minimally coupled

scalar fields (see, for instance, Ref. [100]). .

The existence of all these solutions is interesting not only from the point of
view of GR, but also from the point of view of the fundamental particle theory. In
such a theory the Lagrangian is considered fixed, so only some of all the possible
solutions might be important. But as it appears from the previous Sections, Worﬁl—
holes might be rather ordinary objects. Apparently, there is no need to rely on a
very particular field content or special values for the coupling constants in order

to have wormhole solutions (contrarily, for instance, to Ref. [119] and Ref. [100}).
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Their existence is solely based on the two properties of the theory: the equa

of state that obeys the strong-energy condition, and the analytical continuatio

For wormhole solutions to exist, I have shown that it is necessary to an
lytically continue to the Euclidean regime both the lapse and the scalar field bs
means of a Wick rotation, or to asymmetrically rotate the lapse in the matter anc

gravity sectors.

In the first case, what I have proposed is to perform an asymmetric rota,tioﬁ
of the lapse function and the scalar field. Both prescriptions appear consisten:
with the result of the one-loop calculations of Ref. [86], which showed that the
Euclidean partition function built out of the action (3.67) is real (and thus th;
quantum theory stable). This prescription, in some sense, could be seen as th;
extension of the proposal of Ref. [53] for the conformal degrees of freedom of the
gravitational metric, where I have just added a rule for the case where also a

mastter contribution is present in the action.

Finally, I would like to stress that the right prescription to extend the
Lorentzian interactive QG to the Euclidean sector in a Hamiltonian formalism
is highly non-trivial, as a direct consequence of the unboundedness of the Einstein
action and the non-existence of the “reconstruction:’ theorems as in the no-gravity
case [220]. As yet there is no treatment of the conformal rotation in a non—trivial
model involving both gravity and matter fields. The existence of the conformal
rotation that leads to the well defined Euclidean path integral has been explicitly

(35:221] ' where one may work with the true

shown only for the linearized gravity
physical degrees of freedom, and for the pure gravity in the minisuperspace 13,
in which case there are no clashing signs in the action. It still remains to be seen

if it is possible to define the Euclidean QG with the non-trivial matter fields by a
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straightforward contour integration.

The continuation rule here proposed makes a difference between the matter
and gravity, and it should be of some comfort the fact that the quantum theory
certainly makes such a difference. The fact that I am starting from the different
Fuclidean path integral than the usual one, may have its natural explanation in
the different boundary conditions (here I am assuming the existence of the flat
spacetime as the ground state, while in QC with the standard path integral one

assumes that there is nothing [7]).

I am not questioning here the necessity of extending the (3.67) definition of
the Fuclidean action to every matter coupled to the Einstein gravity. Rather, I
am simply pointing out that, in the absence of a set of “reconstruction axioms” for
the interacting QG, one is actually left free to define different Fuclidean theories.
Obviously, these possible different theories will also imply, in principle, different

dynamics.

As a possible next step, it would be interesting to look for the existence of
the corresponding quantum wormholes which are a solution of the WDW equa-
tion. In particular, one would have to follow the methods of Ref. [13] and try to
compute the EPI first for a massless, minimally coupled, scalar field model, and
then moving to the case of a nontrivial potential. The idea is to carefully look
for wormhole solutions by classifying them according to boundary conditions and
their asymptotic behaviour (also by use of the Laplace transform methods). One
might expect that the prescription for having wormhole solutions will finally and

naturally come out from imposing the correct boundary conditions in the EPL

Many of the results in the Euclidean QG and QC (and therefore the wormhole

theory itself) are seriously undermined by the necessity of defining a normalizable
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measure in the EPI formulation of QG. This argument has been analized in Cha

ter 4.

There, the 5-th time theory has been proposed as a possible ansatz for remo
ing the conformal-unboundedness problem. In this context, I have shown that
is possible to preserve (at the semiclassical level) the S* sphere saddle-point and
the Coleman [*3] peak at zero cosmological constant (A = 07), but without the
phase ambiguities claimed by Polchinski [#9] This is because, at one-loop, thé
scalar (Weyl) modes of gravity give a positive semidefinite Hessian contributioﬁ

to the 4-D effective partition function.

Further consideration of the differential, functional FP equation which is nat-
urally associated to the 5-th time action has revealed non-trivial difficulties, mainly
due to the presence of a determinant of the de Witt supermetric factorizing the

superspace Laplacian.

Working in a minisuperspace ansatz, it is possible to find an exact (nontrivial)
ground state wave functional for the case when no kinetic (conformal) modes are
present in the 4-D action, and to study the behaviour of the zero mode in the

Fourier decomposition of the wave functional.

Then, by using semiclassical WKB methods, I have shown that it is possible
to define a non trivial Legendre transform of S.;; which is the combination of
minus the 4-D classical action of gravity and plus a positive quantum Hessian
contribution at one-loop. The WKB wave functional has a peak at A = 07 and
is stabilized against large quantum fluctuations of the scale factor of the universe
provided this has a cutoff at small length-scales. The one-loop expansions around
Ss and S, 5y actually should not be inconsistent, since they correspond to different

values of the arbitrary parameter ¢ in the de Witt supermetric.
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Obviously, in principle one can look at the FP equation by different methods.
Various attempts have been made in order to reduce the FP eqguation to an or-
dinary differential equation, for instance by discretizing the functional derivatives
as 3‘% — 217'6% (with At small), but unfortunately there appear to be nontrivial
difficulties and ambiguities. Such ambiguities are not unexpected in treating the

functional formalism in a second-order differential theory.

One of the main open questions is to understand whether the 5-th time for-
malism is just a ‘natural’ and formal ansatz where one can work with the correctly
‘pormalized’ Einstein Hilbert action and perform numerical simulations, or rather
if it corresponds to a different theory for the QG. This problem arises, for instance,
when one looks at the examples in lower dimensions (see Ref. [222]), where it has
been shown that a ‘3-rd time’ solution is also a solution of the loop equations of
string theory only at a semiclassical level, but not at a full quantum level. Simi-
larly, one could ask himself if a full quantum solution of the 5-D FP equation is
still a solution of the 4-D WDW equation, at least for a particular set of boundary
conditions. This might not be in contrast with the 2-D results, since the 4-D WDW
corresponds only to a subset of the loop equations (see Ref. [222]). A possible way
out might be to enlarge the diffeomnorphism group relevant to the 5-th time action,
for instance including some kind of reparametrization invariance for the 5-th time
t5. This would imply in its turn that one should impose an extra constraint at the

quantum level, which will have to be solved together with the FP constraint.

An interesting possibility would consist in fully ‘unfreezing’ the degree of free-
dom of the lapse function N, which should be assumed from the beginning as a
‘dynamical’ field depending also on i3, and which should be functionally integrated

over as the scale factor g. The idea is to try to construct, from the 5-th time gravity
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action, a Hamiltonian evolution operator (analogous to the WdW Hamiltoni;
for the ordinary 4-th time. The eigenstates of this operator would be functional
fields in three-space and the t5 coordinate (treated as an extra space dimensio
By doing this in the second-order (Einstein-Hilbert) formalism, one finds ag
nontrivial difficulties related to the definition of conjugate momenta and it is
straightforward to find a clear answer. Probably, this means that one should re
consider the first-order (Einstein-Cartan) formalism, where many of such diffic
ties are expected to be strongly reduced. As an immediate, nontrivial, outp
one would expect that, if the WdW Hamiltonian described above exists and
bounded from below, it would nail down reflection positivity and the existence k
the theory in Minkowski space. There might even be some more insight into t

‘problem of time’ in quantum gravity.

Finally, I would like to point out the following remark. As it has been show:
the 5-th time action can be actually derived by a Langevin equation with prescribé
boundary conditions: working with a (first-order) Langevin formalism, which
well studied in different contexts, is expected to be much easier and hopefull
fruitful to be treated in a functional ansatz with respect to the second-order FP
equation. In particular, one could exploit the equivalence between the 5-th tim
formalism and the stochastic-quantization theories (see Section 4.4), and ma
use of the powerful techniques of the latter to work out perturbative expansion:
without the requirement of gauge fixing, etc.. This equivalence (together with !
dynamical mechanism for setting A = 0) might turn out as an interesting test in
order to have a better understanding of the true physical meaning of the 5-th time
theory, and it should be investigated in more details. Since calculations are still

in progress on such and other related points, most of these conclusions (especially
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those of Sections 4.5-4.7) should be taken at present with much caution.

Ultimately, in Chapter 5 I outlined some of the main results of the recent
work on black-hole solutions in the context of string theories. If string theory 1is
really hoped to be the ‘right’ theory for QG, the investigation of the properties of
stringy black holes and of the propagation of strings through singular backgrounds
may turn out as an interesting and important probe to understand some of the
basic and unresolved issues in the behaviour of gravity at small length-scales (or

high curvature) and reveal new features that are not present in GR.

Recently, a lot of works describing 9D and 4-D stringy black hole geome-
iries have appeared in the literature (see Sections 1.7 and 5.2). The discovery of
many new classical and quantum hair (see Sections 5.2-5.3), which are in principle
detectable, appear to sensibly weaken the constraints imposed by the so-called ‘no-
hair’ theorems of GR. Moreover, the thermodynamical description may turn out
to be inadequate for the extremal stringy black holes, and such holes appear to be
protected by mass gaps which remove them from the contact with external probes.
In fact, this seems to suggest that extreme stringy black holes might actually be-
have more like elementary particles, rather than extended objects. These results
open new interesting possibilities (for instance, extreme holes might appear as the
final stable state of the Hawking evaporation) and possibly clarify some intriguing

issues (such as the loss of coherence and unitarity down the hole).

As a specific example, 1 considered the case of a 4-D black-hole solution found
by gauging an exact conformal WZW model. This hole has non-trivial axion and
dilaton field strength outside the horizon, and its thermodynamical description
appears to break down in the extreme limit independently of the mass of the

hole (in contrast with the RN solution of GR). The solution shows to be stable
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against the classical perturbations in the metric, axion and dilaton fields only in

the extremal case @, = M, in the gauge where the axial and polar perturbation

are selected by separately setting one of them equal to zero. These extreme hole

appear to develop a finite mass gap (in the scattering of a test scalar field) and to

be stable with respect to the polarization of the surrounding vacuum for a much

larger range of black hole masses than in the RN case (while they rapidly lose

their axion charge in the non extremal cases). It is also very interesting to note

that the stability condition against the vacuum polarization, combined with the

classical and thermodynamical stability arguments of the previous Sections, lead

to the intriguing possibility that the extreme ABS holes might appear as a stable

(particle) ground state. Further information and check of these results should b§

obtained from the identification of the true underlying symmetry of the solution

(eventually not the standard ansatz of Ref. [212]) and a fully consistent analysis

of the classical perturbations.

Obviously, a decisive improvement in our understanding of the physics of such

(and similar) black holes is expected to come only from a full quantum treatment

(including back-reaction effects) of the solutions: this is at present one of the most

interesting and ambitious challenges in the string theory.
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Figure captions

Fig. 1. The amplitude or wavefunction U[hs;¢] is given by integrating over all
4-geometries and matter field configurations belonging to the class C,

which are bounded by the 3.surface S and which agree with the given

3-tmetric hij and matter field configuration ¢ on S.

Fig. 2. On the trousers topology, the direction of time cannot be chosen smoothly.
There must be a singularity at least at one point. Arrows show a

particular choice of a time-like vector which is ill defined at point A.

Fig. 3. The process of creation and absorption of a baby universe is called

a wormbole.
Fig. 4. The birth of a baby universe.

Fig. 5. The particles of a black hole go off into a little closed universe which

branches off from our region of spacetime.
Fig. 6. A truncated wormhole representing a topology change from R® to R®* ® §°.

Fig. 7. A large universe with one wormhole.




Fig. 8.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

A large universe with multiple wormholes.
Large universes connected by wormholes.

The action S for a 4-sphere of radius R, with A > 0. the minimum S,
is indicated (a) for A > 3R;;%2_ and (b) for A < 3R;2 .
Schematic drawing of A = 0 and m, = 0 surfaces in the space of

wormbhole variables.

(a) An electron goes into the wormhole, which emits the antiparticle
to the positron, that is another electron. (b) A wormhole containing 4

fermions gives a 4-fermion effective interaction.

Wormbhole as analytic continuation of a closed expanding universe
The strong energy condition for matter sources ensures both the
existence of the maximal radius for the Lorentzian branch,and the

asymptotically flat behaviour for the Fuclidean one.
(a) An instanton whose analytic continuation is a contracting
small universe. (b) An instanton whose analytic continuation is

an expanding small universe.

After the decay, new universes can again create expanding baby



Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

universes by the same instantons.

The instanton with A >0 covered by a single 7 coordinate patch.
Near Tmaz, A dominates the curvature, while at Tmin the axion is the

chief source of curvature. (D-2) dimensions are suppressed.

Examples of instantons constructed by sewing together a numer of
copies of the instanton of fig. (12). Such instantons may describe
tunneling between a) de Sitter space and a baby universe, b) two baby

universes, or ¢) two de Sitter spaces.
The effective potential in the extremal case for p> = 0.

A diagram of @ against M for RN black holes. All black holes lie below
the lines @ = M (otherwise there would be no event horizon) and above
Q = e (since charge is quantized). Above Q="1itis energetically
favourable to form pairs. Above Q = ﬁ?ﬁ this is a rapid process .

To make a sensible diagram, the magnitude of Z* is much greater

than its physical value.
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