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Particle Physics is nowadays experiencing a time that is surely going to be re-
membered in the years to follow, whatever will be the final outcome of the currently
running experiments. The first runs of the Large Hadron Collider (LHC) in Geneve
have shown that the theoretical framework to explain Particle Physics constructed
in the 60s and 70s, the Standard Model, enjoys good health since TeV scale Physics
is showing nothing new. On December 13 2011 tantalising hints [1] of a signal pos-
sibly compatible with the Standard Model Higgs boson were claimed by the two
larger collaborations at the LHC, CMS and ATLAS, and such a result later became
an observation [2–4] on July 4 2012. On top of that the LHCb collaboration, head-
ing for discoveries in flavour Physics, is slowly converging to the predictions of the
Standard Model, ruling out large regions of the parameter space for New Physics
models. Is this the dusk of Particle Physics as a Science on the front line? Have we
already discovered what was to be discovered?

Aside on the fact that believing the Standard Model as the ultimate theory of
Nature would be quite off the mindset of a scientist, whose aim should always be
to test theories open-mindedly in order to disprove them, there are some issues
that are still not explained in this framework, and some whose explanation is quite
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awkward. In order to construct a coherent theory to accomodate such issues, that
we will address in greater details later in this chapter, one has to go beyond the
Standard Model. In this chapter, after a short description of the Standard Model
theory, necessary to set some notations, we will directly focus on the motivations
for going beyond the latter framework. We will then introduce Supersymmetry as
a possible explanation to some of the issues raised focusing then on some topics
relevant for the rest of the thesis.

1.1 The Standard Model

The Standard Model (SM) [5–8] is the Quantum Field Theory (QFT) representing
the theoretical framework currently used to describe the fundamental interactions of
elementary particle physics1. It is a renormalizable Yang-Mills gauge theory based
on the symmetry group SU(3)C×SU(2)L×U(1)Y : the mediators of the interactions
are spin 1 vector bosons belonging to the adjoint representation of the gauge group.
The lagrangian density for the gauge fields can be written as

Lgauge = −1

4
Tr(GµνGµν) −

1

4
Tr(WµνW

µν) − 1

4
BµνB

µν (1.1)

where Gµν , Wµν and Bµν stand for the stress energy tensors of the gauge fields,

Gaµν = ∂µG
a
ν − ∂νG

a
µ + gs f

abcGbµG
c
ν

Wα
µν = ∂µW

α
ν − ∂νW

α
µ + g εαβγW β

µW
γ
ν

Bµν = ∂µBν − ∂νBµ ,

(1.2)

where fabc and εαβγ are the structure constants of the groups SU(3)C and SU(2)L
respectively.

Matter fields, known as quarks and leptons, belong to the spinorial representation
of the Lorentz group and they are conveniently charged under the gauge interactions.
The correct assignment of quantum numbers reproducing the physical characteristics
of the elementary particles are as follows2:

qi =

(
ui
di

)
→ (3,2)+1

6

, uci → (3,1)−2

3

dci → (3,1)1

3

li =

(
νi
ei

)
→ (1,2)−1

2

, eci → (1,1)1 .

(1.3)

Three different copies of the matter content just described exist in Nature, bringing
about families of different flavours. The flavour index was denoted by i in equation
1.3.

The lagrangian density describing the interaction of matter fields, that are de-
scribed by Weyl spinors, and gauge bosons is given by the usual Dirac term with

1Aside from gravity as we shall comment later.
2The notation is name of the field → (SU(3)C,SU(2)L)U(1)Y .
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minimal substitution:

Lferm = iψ†σµDµψ where Dµ = ∂µ − igaA
a
µτ

a , (1.4)

with a running over those gauge groups under which the ψ field under analysis has
no trivial behaviour and τa are the symmetry group generators.

Any field introduced until now happens to be massless. Experimental evidence
tells us that three of the four vector bosons of the electroweak (EW) symmetry
SU(2)L × U(1)Y are massive, along with the quarks and leptons. The issue of
providing a mass to the latter fields without explicitly breaking gauge symmetry
is addressed in the SM through the Higgs mechanism [9–12]. In order to break
spontaneously the EW symmetry one introduces a complex scalar field with non
trivial transformations under the gauge group. The easiest solution compatible
with experimental data3 envisages the introduction of the scalar field

h =

(
h1

h2

)
→ (1,2)1

2

, (1.5)

whose potential is the direct generalization to the non abelian group SU(2)L×U(1)Y
of the mexican hat shaped one,

Vh = µ2h†h+
λ

2
(h†h)2 with µ2 < 0 , λ > 0 . (1.6)

Under the condition µ2 < 0 the vacuum state is not unique since there is a full circle
of degenerate minima for the potential Vh and spontaneous symmetry breaking takes
place. One then chooses a particular vacuum state, which obviously has non trivial
transformations under the gauge group and in particular does not have the same
symmetries of the potential. In the specific case of the SM, working in the unitarity
gauge, one writes

〈h〉 =
1√
2

(
0

v =
√

−2µ2

λ

)
. (1.7)

Spontaneous symmetry breaking comes along with the presence of some massless
modes, known as Goldstone bosons, corresponding to excitations in the vacua man-
ifold. The latter become the longitudinal components of the gauge fields corre-
sponding to broken symmetries, which get mass through the coupling hidden in
the covariant derivative of the Higgs boson itself. From experiments one obtains
v ≈ 246GeV.

After EW symmetry breaking takes place only one of the four original EW bosons
remains massless, the one associated to U(1)em gauge group, which is identified as
the photon. The other EW gauge bosons, namely W+, W− and Z0, acquire mass
O(gv) ∼ O(100GeV).

3That is exactly the SM solution.
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As for the fermion fields, they get mass from the Yukawa interactions

LYukawa = −λijDqih†dcj − λijU qihu
c
j − λijE lih

†ecj + h.c. . (1.8)

We notice that in the original SM theory there is no mass term for neutrinos; a
simple extension accounting for massive neutrinos would be obtained through the
addition of a lagrangian term L = −λijN lihνcj , similar to that of up quarks. Yukawa
couplings are invariant under SM gauge symmetries and only after spontaneous EW
symmetry breaking quarks and leptons get non vanishing masses, whose values can
be obtained from the diagonalization of Yukawa matrices. The net effect of the
latter procedure resides in a misalignment between the mass and the interaction
fermionic eigenstates, giving rise to the phenomena of quark and lepton mixings.
The analysis of the structures of these mixings and their effects on particle physics
constitute the basis of flavour physics [13, 14].

1.2 Physics beyond the Standard Model: hints and mo-

tivations

High energy physics experiments have been teaching us that the SM4 works remark-
ably well as it is virtually in good agreement with all the experimental data from
accelerators. Still there are both direct and indirect hints that the SM will not turn
out to be the complete theory of Nature. A short not exhaustive list of these hints
should surely accounts that:

• The SM framework does not contain gravitational interactions, whose im-
plementation in the context of Quantum Field Theories (QFT) is still an open
issue;

• Cosmological observations require that 96% of the energy present in the uni-
verse is made of Dark Matter and Dark Energy [15, 16], which unfortu-
nately do not find their explanation in the SM theory;

• Again on the cosmological side the SM does not provide for any mechanism
accounting for matter-antimatter asymmetry [17] or inflation [15];

• The strong CP problem lacks of explanation [18];

• The 3.6σ discrepancy of the theoretical and experimental values of (g − 2)µ
[19, 20];

• Generally speaking there are a lot of flavour issues to be addressed: the
pattern of masses within the SM, the structure of the Yukawa couplings, . . .
[21] ;

4Eventually with the addition of Dirac right neutrino light fields in order to account for neutrino

oscillations, as explained before.
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• Neutrino Physics, that, despite being somehow connected to flavour physics,
deserves a certain priority on its own because of the large effort needed to be
fully understood [22].

Any of the issues just listed demands for New Physics to arise at higher energies,
paving the way for the appearance of a hierarchy problem [23], that we will
discuss in greater detail in the next section.

1.2.1 The hierarchy problem

The hierarchy (or naturalness) problem is usually stated as the fact that the mass of
the Higgs boson of the SM is much lower than its natural value. In few words QFT
tells us that being a spin zero particle its mass is not protected against quantum
corrections by any symmetry. In order to explain this statement we spell out some
of the underlying assumptions that are crucial for such a problem to arise.

After reading the list of hints for Physics Beyond the SM of the previous section
we should be aware that the latter cannot be a Theory of Everything. This means
that there will be a certain energy scale ΛNP, at which New Physics (new degrees of
freedom, new interactions, ...) enters the game. ΛNP has to be quite larger than v,
the scale of EWSB, since experimental results have shown that New Physics should
contribute very little to the SM framework at present collider energies. Moreover in
the SM a single fundamental Higgs field is assumed to exist up to ΛNP.

Under the previous three considerations the problem of naturalness is easily seen
to arise. As anticipated the SM is assumed to be valid with no modifications up to
the scale ΛNP. We can then calculate the one loop corrections to the Higgs boson
mass by cutting off the divergent unless integral ΛNP. Restricting for simplicity to
the most relevant contribution, the Yukawa coupling with the top quark depicted in
Figure 1.1a, after a straightforward calculation one obtains that

(m2
h)1 loop = (m2

h)bare − 3
|λt|2
8π2

Λ2
NP + O

(
m2
t ln
(ΛNP

mt

))
, (1.9)

where λt and mt are respectively the top quark Yukawa coupling and its mass. The
scale of New Physics enters quadratically the one loop corrections, and if it happens
to be large that would imply large corrections to the bare mass value.

In particular, taking into account the onset of gravity at MPlanck, one should
consider that some New Physics is needed to protect the Higgs boson mass against
radiative corrections without advocating finetuning. Two different approaches can
thus be considered. The first one consists of relieving the tension by making the
onset of gravity not so far from the EW scale, as in the context of Large Extra
Dimensions (ED) [24] or of ED with a warp factor [25,26]. Alternative possibilities
are feasible if gravity lied at MPlanckinstead: there might be a strong sector that is
the real responsible of the EWSB (Technicolor [27]) or the Higgs boson mass may
be protected by some extra symmetry (Strong Interacting Light Higgs [28], Little
Higgs [29], . . . ). Supersymmetry, that is going to be the main subject of this thesis,
belongs to the latter category.
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H

t

λt λt

(a)

H

S

λs

(b)

Figure 1.1: One loop contributions to Higgs boson two point function coming from: (a) SM like

Yukawa coupling to a fermion, (b) four boson interaction with a scalar particle S.

1.3 Supersymmetry

Supersymmetry (SUSY) [30–32] challenges the hierarchy problem5 through the in-
troduction of new particles that cancel the leading quadratic contribution to the
one loop correction to the Higgs boson mass. Suppose there was a complex scalar
particle S of mass ms coupling to the Higgs boson by means of a Lagrangian term
LH−S = −λs|S|2|H|2, then the diagram in figure 1.1b leads to a correction

∆m2
h = +

λ2
s

16π2
Λ2

NP + O
(
m2
s ln
(ΛNP

ms

))
. (1.10)

If the coupling λs were equal to λ2
t it is evident that the different statistics of

the particles running in the loops of Figures 1.1a and 1.1b would account for a
cancelation. To be specific if any SM fermionic (bosonic) degree of freedom coupling
to the Higgs boson had an associated bosonic (fermionic) one with appropriate
couplings the cancelation of quadratic divergencies can be made exact6.

Headed by this preliminary result one would be tempted by the possibility of
associating to any particle of the SM a partner of different statistics. In facts such
an approach would suggest the existence of a spacetime symmetry commuting with
the group of internal symmetries so that its generic generator Q acted as

Q|Boson〉 = |Fermion〉 , Q|Fermion〉 = |Boson〉 . (1.11)

What proves to be helpful in defining the algebra of such a symmetry are the Cole-
man Mandula [34] and Haag Lopuszanski Sohnius theorems [35]. We are not inter-
ested in giving a complete discussion of the SUSY algebra: we just remind that the
operator Q commutes with the squared-mass operator P 2.

The property of commutation of Q with Poincaré invariants, along with that
of commutation with internal symmetry groups, accounts for the possibility to cast

5There are actually also other hints and motivations for the introduction of SUSY, such as

the prediction of a very nice gauge coupling unification, the presence of plausible Dark Matter

candidates, a coherent framework for radiative EWSB.
6There still remain logarithmic divergences owed to SUSY breaking (implying ms 6= mt), as we

shall see later. This feature accounts for a little hierarchy problem [33], but we shall not discuss it

here.
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the fermionic and bosonic states related by Q itself in a single multiplet, known as
supermultiplet. In any supermultiplet in order to balance the number of fermionic
and bosonic degrees of freedom off-shell it is necessary to place also some auxiliary
fields. The latter are non dynamical fields, so they get integrated out through their
equations of motion. In the following we will not focus on explaining the techniques
of superfield formalism, even though they are going to be used often in this thesis.
For the latter purpose the reader will find a more exhaustive discussion in [36].
Here we just set some notation and give some practical equations in terms of the
component fields.

In the following we restrict to N = 1 globally supersymmetric theories, namely
to the presence of just one generator Q (and its adjoint Q†). We consider a theory
whose gauge group is G. Matter fields (fermions) ψi belong to chiral superfields
along with their bosonic partners (sfermions) φi and auxiliary fields Fi

Φi = (φi, ψi, Fi) , (1.12)

where the index i accounts for transformations under G. Obviously also Higgs fields
belong to chiral supermultiplets, with their partners known as the higgsinos. The
gauge bosons Aaµ, instead, belong to vector superfields, along with their spin 1/2

partner (gauginos) λa and the related auxiliary fields Da

Aa = (Aaµ, λ
a,Da) , (1.13)

where a is an index of G in the adjoint representation.
The kinetic lagrangian density for gauge supermultiplets can be written in terms

of the component fields as

Lgauge kin = −1

4
F aµνF

µν
a + i λ†aσ

µDµλ
a , (1.14)

where (Dµλ)a = ∂µλ
a + gfabcA

b
µλ

c is the covariant derivative for gauginos. The
kinetic lagrangian density for the components of the chiral superfields is

Lchiral kin = Dµφ∗iDµφ
i + i ψ†

i σ
µDµψ

i , (1.15)

where Dµφ
i = ∂µφ

i− igAaµ(T aφ)i and Dµψ
i = ∂µψ

i− igAaµ(T aψ)i are the covariant
derivatives of the scalar and fermion components respectively. SUSY also predicts
the existence of couplings between the gauginos and the components of chiral su-
perfields owed to the generalization in superfield formalism of covariant derivatives.
In particular one has the term

Lgaugino-fermion-sfermion = −
√

2g(φ∗T aψ)λa . (1.16)

For later convenience we introduce the superpotential W such that in terms of
superfields it reads7

W =
1

2
M ijΦiΦj +

1

3!
yijkΦiΦjΦk + LiΦi , (1.17)

7The linear term can be written only if Φi is a complete gauge singlet.
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whose derivatives are named F-terms and are denoted by F i = F ∗
i = −Wi = −∂W

∂φi .
Summing everything up one gets the interaction lagrangian density

Lint = −1

2

(
Mijψ

iψj + yijkφiψjψk + h.c.
)
−

√
2g(φ∗T aψ)λa + h.c. − V (φi, φ∗) .

(1.18)
where V (φi) = F ∗

kF
k + 1

2D
aDa is the scalar potential.

In this quick overview of SUSY formalism we now discuss the presence of SUSY
breaking. The necessity for SUSY to be broken will be discussed in a later section;
for now we just content ourselves with the notion that such a breaking has to be
"soft" in order not to lose the nice cancelation of quadratic divergencies [37]. The
soft breaking terms will make the different components of a supermultiplet to have
different masses. The soft terms that can be considered are

Lsoft = −
(

1

2
Maλ

aλa +
1

3!
aijkφiφjφk +

1

2
cijkφ∗iφjφk +

1

2
bijφiφj + tiφi

)
+ h.c.

−(m2)ijφ∗iφj , (1.19)

where just as argued before the terms proportional to ti and cijk are possible only
if φi belongs to a complete gauge singlet superfield, and will not play a role in
the following. The terms above clearly break SUSY since they involve only the
scalars and the gauginos and not their partners. Now that the ingredients for the
lagrangian density of a spontaneously broken SUSY theory have been spelt out it is
time to show the realization of the easiest SUSY extension of the SM, the Minimal
Supersymmetric Standard Model (MSSM).

1.3.1 The lagrangian of the MSSM

The MSSM is the minimal supersymmetric extension of the SM: it requires nothing
but the content of the SM extended to the SUSY partners. Actually, in order to
construct a feasible SUSY theory, because of the constraint of analiticity of the
superpotential, it is necessary to consider at least two Higgs doublets Hu and Hd,
thus one has to supersymmetryze a Two Higgs Doublet Model (2HDM) [38]. Here
we spell out some of the MSSM relevant features in order to set the notation for
later convenience.

The gauge group of the MSSM is the usual SU(3)C × SU(2)L × U(1)Y . The
fermions of the SM are described by the fermionic components of the chiral su-
perfields q, uc, dc, l, ec, while the Higgses are the scalar components of the chiral
superfields hu and hd. The gauge fields are the bosons of some vector superfields.
All in all the field content of the MSSM can be resumed in Table 1.1.

The kinetic lagrangian density for gauge and chiral superfields are described by
equations 1.14 and 1.15 respectively; interaction terms of the form gaugino-fermion-
sfermion, instead, are modeled over equation 1.16. The superpotential of the theory
is written in the superfield formalism as

WMSSM = λUu
cqhu + λDd

cqhd + λEe
clhd + µhuhd , (1.20)
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Superfield fermion component scalar component SU(3)C SU(2)L U(1)Y

qi qi q̃i 3 2 1
6

uci uci ũci 3 1 −2
3

dci dci d̃ci 3 1 1
3

li li l̃i 1 2 −1
2

eci eci ẽci 1 1 1

hu h̃u hu 1 2 1
2

hd h̃d hd 1 2 −1
2

B B̃ or λ1 Bµ 1 1 0

Wα W̃α or λα2 Wα
µ 1 3 0

Ga g̃a or λa3 ga 8 1 0

Table 1.1: MSSM field content and notation. The reader will notice a slight abuse of notation,

since the chiral superfields and some of their components are denoted by the same symbol. In

the following it will be usually apparent if we will be referring to the superfield or the specific

component. In situations in which confusion might arise the specific choice of notation will be

spelt out.

where λi are 3x3 Yukawa matrices in flavour space and µ is responsible for a super-
symmetric mass for the Higgs superfields.

The soft SUSY breaking terms that one has to consider because of SUSY break-
ing are contained in the lagrangian density

− Lsoft MSSM = AU ũ
cq̃hu +ADd̃

cq̃hd +AE ẽ
c l̃hd +Bhuhd + h.c.

+m2
hu
h†uhu +m2

hd
h†dhd + m̃2

q q̃
†q̃ + m̃2

uc ũc†ũc

+m̃2
l l̃

†l̃ + m̃2
dc d̃c†d̃c + m̃2

ec ẽc†ẽc

+
1

2
Maλaλa + h.c. , (1.21)

where Ai and m̃2
f̃

are 3x3 matrices in flavour space, B is the Bµ term and Ma are
the gaugino masses.

1.4 Supersymmetry breaking and its mediation

If SUSY were an exact symmetry of Nature then the fermion and sfermion mass
matrices would be the same. Nonetheless experimental evidence shows that the
mass of the sfermions has to be much larger than that of the corresponding fermions.
Thus SUSY, as anticipated, has to be broken and such a breaking has to be "soft"
to avoid the reappearance of quadratic divergencies in the theory.

The breaking of SUSY makes two relevant issues to pop up. The first one affects
the mechanism through which SUSY is effectively broken; the second one, more
phenomenological, concernes the effects of such a breaking on the low energy mass
spectrum of the theory itself. In the following discussion we will be mainly focused
on the second point.
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The necessary and sufficient condition for SUSY to be broken is given by the
fact that the vacuum energy of the ground state has to be larger than zero. Such a
statement, since V (φi) = F ∗

kF
k + 1

2D
aDa, can be translated to the condition that

SUSY is broken if the equations 〈Fi〉 = 0 and 〈Da〉 = 0 cannot be simultaneously
satisfied. The appearance of an F-term (or D-term) vev different from zero is a
sufficient condition for SUSY breaking.

One could naively expect that in the case of SUSY breaking the fact that all
the particles have a mass matrix equal with that of the corresponding antiparticle
gets completely lost. Actually in case of spontaneuos SUSY breaking the masses
of particles and antiparticles happen to be related by the supertrace formula [39].
The latter, valid at tree level for renormalizable theories for any set of conserved
quantum numbers, states that the weighted sum of the squared masses of particle
in the bosonic and fermionic sectors is

StrM2 ≡ 3TrM2
1 − 2TrM 1

2
M†

1
2

+ TrM2
0 = −2g〈Da〉TrT a = 0 , (1.22)

where M1, M 1
2
, M0 stand respectively for the mass matrices of spin 1, 1/2 and 0

particles and the last equality holds for any non-anomalous gauge symmetry. The
supertrace formula is crucial since it poses a strong phenomenological constraint:
when applied to the SM quantum numbers it is apparent that while from theory
one would get at tree level StrM2 = 0, experimentally it is known that StrM2 > 0.
It is important for any model of SUSY breaking and of its mediation to circumvent
this seeming threat and we will discuss about that later in more details.

As the vevs breaking SUSY cannot belong to the MSSM field content, SUSY
breaking should take place in a hidden sector. The hidden sector in which SUSY
breaking takes place has to share connections with the visible sector of observable
fields. Such connections, organized in what is named messenger sector, thus mediate
the communication of SUSY breaking and can give a rationale to the pattern of
soft terms observed. Different mechanisms of mediation have been proposed in
the literature, the most studied being the mediation through gauge interactions
[40–42], the mediation through gravity interactions [43, 44] and mediation in Extra
Dimensional (ED) scenarios [45–47]. We will focus on gauge mediation, that is
going to be the main topic of this thesis, in the next section. Now we just give some
remarks about gravity and anomaly mediation.

In gravity mediation [43,44] the hidden sector fields responsible for SUSY break-
ing couple to observable fields through gravitational interactions, giving rise to ef-
fects in the visible sector of order O

(
〈F 〉

MPlanck

)
. The constraint set by supertrace

formula 1.22 is evaded through non renormalizability of gravitational interactions,
and thus obtaining StrM2 > 0 poses no further problems. Such a scenario is min-
imal, in the sense that it requires no extra messengers fields or interactions since
gravity is already known to be an ingredient of Nature. However the main drawback
of this mechanism lies in the fact that gravitational interactions, unless some spe-
cific mechanism of protection is assumed, have no reason not to generate possibly
dangerous large contributions to flavour changing neutral currents (FCNC).
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Mediation in the context of ED frameworks is usually based on the presence of
a fifth compact dimension with two branes lying on its endpoints. The observable
MSSM fields live on one brane, while the SUSY breaking ones live on the other:
the separation of hidden and visible sectors becomes somehow geographical. In the
gaugino mediation scenario [45, 46] gauge interactions are responsible of communi-
cating SUSY breaking between the two branes, making the gauginos obtain a soft
mass term from direct interaction, and the sfermion gaining one through interac-
tions with gaugino themselves. Alternatively one can consider gauge interactions to
be confined on the visible brane and gravitational ones to play the game of medi-
ation, giving rise to the anomaly mediation framework [47]. The latter scenario is
not viable in its minimal realization because of tachyonic masses for the sleptons,
but the introduction of a universal scalar mass parameter can solve this issue. The
two scenarios indicated here share some common phenomenology: as an example
the sfermions tend to be lighter than the gauginos, in particular the lightest being
the sleptons. Nonetheless an interesting point is given by the absence (or at least
the suppression) of flavour violating sources giving rise to dangerous FCNC.

1.4.1 Gauge mediation

Gauge mediation [40–42] is a framework through which the effects of SUSY breaking
are mediated to the observable sector by means of gauge interactions. The delicate
issue of supertrace is circumvented by going to higher loop order: indeed in such a
scenario the contributions to sfermion masses arise at the two loop level, making it
possible to satisfy the phenomenological constraints.

In the following we will discuss in a simple model the main features of gauge
mediation [48]. Suppose to have a supersymmetric gauge theory based on the simple
group G. For what concernes SUSY breaking we just assume the presence of an
unknown mechanism so that a superfield X, singlet under G, and belonging to the
hidden sector takes a vev both in its scalar and F-term components:

〈X〉 = M + θ2F . (1.23)

The observable and the hidden sectors communicate through a messenger one that
is composed of chiral superfields Φ and Φ trasforming respectively under the funda-
mental and antifundamental representations of G. On top of that, such superfields
couple to X by means of a superpotential term of the form

W = λΦXΦ . (1.24)

The presence of the F-term vev for the superfield X is responsible for the spectrum
of the messenger superfields to be non supersymmetric, i.e. the fermion and scalar
components will not share the same mass anymore, but they will experience a split
O(

√
F ). The latter is the amount of SUSY breaking experienced by messenger

fields. We notice that positivity of messengers’ squared masses require F < M2.
The chiral messengers couple to the observable fields by means of gauge inter-

actions. In the visible sector SUSY breaking contributions are obtained by means
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of loop diagrams in which the chiral messenger components run: the effective soft
terms that are induced are O( α4πF/M), that can be considered as the amount of
SUSY breaking as felt by observable fields8.

At one loop gaugino masses will arise by means of graph with a direct coupling
to the messenger fields, as it is depicted in Figure 1.2 This contribution is given by

Mλ =
α

4π

F

M
, (1.25)

where α = g2

4π , g being the coupling constant of the gauge group G.

λ λ

φ̃

φ

Figure 1.2: One loop contribution to gaugino mass in gauge mediation. For chiral superfields the

tilde denotes the scalar component, for vector superfields the gaugino is denoted by λ.

Sfermion masses will arise at the two loop level: the interaction to messengers is
mediated by gauge fields or by scalar exchange induced from D-terms. The different
types of diagrams involved are shown in Figure 1.3. The total contribution, at the
messenger scale, is given by

m2
f̃

= 2C f̃
( α

4π

)2
(
F

M

)2

, (1.26)

where C f̃ is the quadratic Casimir of the f̃ sfermion.
Trilinears in this theory do not arise through one loop messenger contribution

and their principal contribution arise from the RG evolution proportional to gaugino
masses. This in turn accounts for the trilinears to be relatively small in gauge
mediation scenarios.

1.4.1.1 Pros and cons

The main advantage of the gauge mediation framework is provided by the safety
of the resulting theory with respect to flavour violation problems. Because of the
flavour diagonal structure of gauge interactions, indeed, the only sources to flavour
violation are those coming from the Yukawa interactions, just as in SM. In such
a context we happen to be in a Minimal Flavor Violation (MFV) scenario, and
one could even generalize the usual GIM mechanism to a supersymmetric extension
involving sparticles.

One of the drawbacks of gauge mediation is the µ and µ−Bµ problem, namely
the generation of an EW scale µ term and that of a Bµ term of comparable size [49].
In this framework, even if the solution of the µ problem can be quite easily obtained,

8It is usually assumed that F/M2 ≪ 1 in order to treat SUSY breaking effects as small per-

turbations of a SUSY preserving formalism. The latter assumptions will be of common use in the

whole thesis.
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f̃ f̃ f̃

V V

φ̃

f̃ f̃ f̃

V V
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f̃ f̃
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φ̃

f̃
f̃

f̃φ̃

φ̃

f̃ f̃

V V

φ̃

φ̃

f̃ f̃

V V

φ

φ

f̃ f̃ f̃

V V

φ
φ

f̃ f f̃

λ λ

φ
φ̃

Figure 1.3: Two loop contributions to sfermion mass in gauge mediation. For chiral superfields the

tilde denotes the scalar component, for vector superfields the gaugino is denoted by λ.

by neglecting the existence of a µ term at high scale and relating its generation to
the SUSY breaking scale, still the Bµ term is usually a loop factor larger than
preferred. Such a problem is actually absent in theories of gravity mediation where
generic Kähler interactions can solve the issue.

Finally concerning the most recent results at the LHC it is fair to say that gauge
mediation in its easiest realization has some difficulties in generating an Higgs mass
of order 125GeV. Since trilinears are usually suppressed in the scenario the only
possibility is that of raising the scale of SUSY breaking, but this accounts for an
augmented little hierarchy problem. However there are some possible modifications
slightly relaxing the issue as we shall see later on.

1.5 Outline

In this thesis we will study two models of gauge mediation and the phenomenology
related to them, keeping the eyes wide open on the possible outcomes for such models
at colliders. The first model is a model of Tree Level Gauge Mediation that was
firstly proposed in 2009 [50,51] and then extended and more deeply studied recently.
In chapter 2 we will discuss the model in its general theoretical realization, while
we will devote chapter 3 to the phenomenological realization of its simplest SO(10)

realization at the LHC [52] and chapter 4 to the extension of the model to the
exceptional symmetry groups case [53]. Then in chapter 5 we will discuss a brand
new model of Yukawa-Gauge Mediation analyzing both the theoretical features of
the framework and its phenomenology [54]. We will conclude this work through
summary and conclusions in chapter 6

The original contribution of the thesis is contained in chapters 3, 4 and 5.
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In the previous chapter we introduced SUSY through both theoretical and ex-
perimental hints as a beyond the SM framework and identified the necessity for its
breaking. In this chapter we will briefly review a particular mechanism of SUSY
breaking mediation following the discussion given in [51]. This fairly recent mecha-
nism, Tree Level Gauge Mediation (TGM), is quite interesting because it makes it
possible to get sfermion masses at the tree level, while in usual Loop Gauge Medi-
ation (LGM) scenarios, as the model proposed in section 1.4.1, they are obtained
at the two loop level through the graphs of figure 1.3. In the next sections we will
show how it is possible to circumvent the supertrace constraints, devising the gen-
eral theory of the mechanism underlying TGM; then we will focus on the soft terms
arising both at the tree level and at the one loop level, and mention some relevant
issues about model building.
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2.1 Tree Level Gauge Mediation: Why not?

For our purposes the net effect of SUSY breaking is the fact that some superfield
takes an F-term vev in a hidden sector. One might wonder what kind of effective
operator could transfer the information about such a breaking to the observable
sector giving mass to the sfermions. The answer is of disarming easiness, the effective
operator being ∫

d4θ
Z†ZQ†Q

M2
, (2.1)

where Z is the superfield getting F-term vev, Q is an observable superfield and M

is the mass scale of the mediating messengers: it is apparent that if 〈Z〉 = θ2F then
the scalar component of Q gets a mass. Directly from equation 2.1 one could try
to guess how to draw a Feynman diagram responsible for the appearance of this
operator. The answer is fairly simple: a tree level diagram in which a messenger
field is exchanged, as in figure 2.1a.

Unfortunately the story is not over yet. In the previous chapter we introduced
supertrace formula, equation 1.22, and argued that it holds at the tree level for
renormalizable interactions: in usual LGM it can be circumvented since the effects
of SUSY breaking are felt through diagrams with at least one loop. Tree level gauge
mediation, instead, seems destined to a daunting failure because of the supertrace
constraint. However in contexts inspired by supersymmetric Grand Unified Theories
(GUTs) it can be revived quite easily.

If we restricted the supertrace formula to those superfields belonging to the
MSSM it is apparent from experimental evidence that StrM2

MSSM > 0. But in
GUTs there can easily arise many additional extra heavy fields, whose quantum
numbers are the same as those of the MSSM fields, that can compensate the super-
trace constraint, namely StrM2

extra < 0, so that StrM2
MSSM + StrM2

extra = 0. No
phenomenological threat (i.e. tachyons) is posed by the extra fields since supertrace
is just sensitive to the mass splitting between superpartners and not to their ab-
solute mass values: indeed the negative SUSY breaking contribution adds up to a
much larger supersymmetric mass1.

Even though the presence of extra heavy fields can suggest us the path to a
tree level realization of gauge mediation, another crucial point is still hidden in the
supertrace formula. Since the latter holds for any set of conserved quantum numbers
it can be easily reasoned that one has to consider an extension of the gauge group.
Suppose we restricted ourselves to the fields with quantum numbers of the lightest
down and up quark mass eigenstates. Then equation 1.22 would imply

m2
lightest d̃

≤ m2
d −

1

3
g′DY m2

lightest ũ ≤ m2
u +

2

3
g′DY , (2.2)

1One could observe that if gaugino masses were very heavy, even if the latter would be a quite

troublesome situation for naturalness, the direction of the previous inequalities would be reversed

and no phenomenological threats were to appear. In facts what proves to be crucial in this case

is the vanishing of the supertrace for any set of conserved quantum numbers, as explained in the

next paragraph.
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that cannot be solved simultaneously. Adding extra massive fields does not change
the conclusions obtained: it is apparent that at least an extra U(1) factor, con-
tributing with a D-term of the same sign for both the equations 2.2, is needed.

It is quite evident that, to circumvent the troubles hidden behind the curtain
of the supertrace formula and construct a TGM framework, an extension of both
the gauge group and of the matter content of the theory is required. These, as
we will see, can be easily obtained in the context of GUTs with a gauge group of
Rank ≥ 5 by means of non standard matter embeddings. Anyway, before devoting
to the phenomenological construction of a viable theory, we will at first build a well
defined theoretical framework.

2.2 Tree Level soft terms: A formal approach

We consider a N = 1 globally supersymmetric gauge theory in four dimensions,
whose gauge symmetry group is denoted by G. To be definite let g be the cou-
pling constant of the gauge symmetry group and the orthonormalized generators
be denoted as Ta’s. The chiral content of the theory is composed of the superfields
Φ ≡ (Φ1, . . . ,Φn) belonging to suitable representations of the symmetry group G.
The lagrangian density is made up of a canonical Kähler potential K = Φ†e2gV Φ

for chiral superfields, the standard gauge kinetic function for the vector superfields
associated to the generators of G and a superpotential W (Φ), analytic function of
the various chiral superfields and obviously invariant under gauge transformations.

The gauge group G gets broken by the vev in the scalar component of some of the
chiral superfields, φ0 = 〈φ〉. Such a mechanism takes place at a scale much higher
than the EW one, g|φ0| ≫ MZ , and leaves the subgroup H ⊂ G unbroken. We
obviously assume that H ⊃ GSM. After gauge symmetry breaking the generators of
G will group into two sets, namely T la ∈ H : T laφ0 = 0 and T ha ∈ G/H : T ha φ0 6= 0.
The vector superfields associated to those generators belonging to the coset G/H
become massive, their masses given by

(M2
V0

)ab = g2φ†0{T ha , T hb }φ0 = M2
Va
δab , (2.3)

where the last equality holds if one chooses a basis of the generators T ha in which the
mass matrix is diagonal. For later convenience it proves useful to recast the chiral
superfields as

Φ = φ0 + Φ′ + ΦG, ΦG =
√

2 g
ΦG
a

MVa

T ha φ0, Φ′ = Φ′
ibi , (2.4)

where ΦG are a collection of the Goldstone superfields, Φ′ are the "physical" chiral
superfields (b†iTaφ0 = 0, with i = 1, . . . , n − dim(G/H)), and φ0 is the vev scalar
component. Incidentally we notice that up to now we have just given some notation
while discussing the supersymmetric Goldstone mechanism at play [55]: the theory
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is still perfectly supersymmetric, all the components of a specific heavy gauge vector
superfield sharing the same mass. The same happens for the different components
of the physical chiral superfields Φ′, whose supersymmetric masses are given by

M0
ij =

∂2W

∂Φ′
i∂Φ′

j

(φ0) = Miδij Mi ≥ 0 , (2.5)

where the second equality and the positiveness condition on the Mi might be ob-
tained through a suitable choice of the bi’s.

2.2.1 Supersymmetry breaking

In order for SUSY to be broken some of the Φ′ superfields should get an F-term
vev, namely 〈Φ′〉 = F0θ

2, where |F0| ≪ M2
Va

. The latter assumption is true in
most realistic cases, as already discussed in section 1.4.1, and makes it possible
to calculate SUSY breaking effects using an explicitely supersymmetric formalism,
treating them as small perturbations in the effective field theory for the observable
superfields [48, 56]. In the end we can thus decompose the chiral superfields Φ′ as

Φ′ = (Z,Q,Φh) , (2.6)

where Z represents the field taking F-term vev (〈Z〉 = F0θ
2), Φh are a set of heavy

superfields obtaining a large mass along with the breaking of G and Q are the
observable light superfields. In equation 2.5 we respectively have MΦh ≫

√
|F0|

and MQ .
√

|F0|.
Gauge invariance of the superpotential (δgaugeW = F †

i T
ij
a φj = 0) along with the

stationary condition for the scalar potential at the minimum (〈∂V/∂φi〉 = 0) show
that the F-term vevs induce D-term vevs for the heavy vector superfields. More in
details we write

0 =
∂

∂φk
F †
i T

ij
a φj =

∂2W

∂φk∂φi
(Taφ)i +

∂W

∂φi
T ika (2.7a)

0 = 〈Fj〉
〈

∂2W

∂φj∂φi

〉
〈Tbφ〉i − g 〈Da〉

〈
φ†TaTbφ

〉
, (2.7b)

from which at the minimum and by means of equation 2.3 we obtain

〈
Dh
a

〉
= −2g

F †
0T

h
a F0

M2
Va

(2.8a)

〈
Dl
a

〉
= 0 . (2.8b)

The induced D-terms determined so far give rise to tree level soft masses for the
scalar components of the Φ′ superfields. These contributions, along with the collec-
tion of all the other soft terms arising from the F-term vevs, can be formally derived
through the effective theory obtained integrating out the heavy vector superfields
and the Goldstone chiral superfields that have been eaten up.
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2.2.2 Integrating out heavy superfields

The procedure of integrating out heavy superfields can be performed through the
solution of the equations of motion. Here we shall briefly discuss the algorithm
to perform such a calculation referring the interested reader to [51, 57] for greater
detail.

In our framework it is important to preserve a manifestely supersymmetric for-
malism, thus it proves very useful to integrate heavy superfields directly at the
superspace level. Unfortunately the usual truncation on the number of derivatives
performed in non supersymmetric QFTs to obtain effective field theories would not
preserve SUSY itself: indeed supersymmetric transformations would intertwine fields
with different spin and different number of derivatives. The generalization of the
common expansion order given by the number of derivatives n∂ is given in super-
symmetric theories by

n = n∂ +
1

2
nψ + nF +

3

2
nλ + 2nD , (2.9)

where nψ is the number of fermions, nF the number of chiral auxiliary fields, nλ the
number of gauginos and nD the number of vector auxiliary fields. At superspace level
chiral and vector superfields have n = 0, while any dθ integration or supercovariant
derivative has n = 1/2. Putting the pieces together one has that n = 2 for the
chiral lagrangian density and n = 4 for the gauge kinetic term. In general, when
integrating out heavy superfields, contributions with different value of n arise; from
the previous considerations, anyway, it is apparent that when seeking for threshold
effects on the chiral lagrangian density (gauge kinetic function) we shall discard
terms with n ≥ 3 (n ≥ 5).

The integration of heavy superfields out can be performed by calculating the
equations of motion both for chiral and vector heavy superfields,

∂W

∂Φ
(Φh

0) = 0 and
∂K

∂V
(V h

0 ) = 0 , (2.10)

the latter two determining the values Φh
0 and V h

0 at which heavy superfields are
stabilized. Inverting equations 2.10 we get

Φh = Φh
0(Φl) and V h = V h

0 (Φl, V l) , (2.11)

through which we algebraically determine the heavy superfields as a function of
the light ones. The effective theory in terms of the light superfields only is then
described by Keff and Weff given by

Keff(Φl, V l) = K(Φl,Φh
0(Φl), V h

0 (Φl))

Weff(Φl) = W (Φl,Φh
0(Φl)) .

(2.12)

As already anticipated we discard terms with n ≥ 3 for both Keff(Φl, V l) and
Weff(Φl).



20 Chapter 2. Tree Level Gauge Mediation
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Figure 2.1: Soft supersymmetry breaking contributions to sfermion masses. (a) Tree Level Gauge

Mediation supergraph generating the operator in equation 2.16 when integrating out the heavy

vector superfield messengers. (b1) S-channel tree level contribution, as in first term of equation

2.19. (b2) T-channel tree level contribution as in second term of equation 2.19

2.2.3 Tree Level soft terms from an effective operator

After the short excursus on the procedure of integrating heavy superfields out we
are ready to turn back to TGM theory. In the effective theory below the scale MV h

we will be interested only in operators that are suppressed by at most two power of
MV h , i.e. with dimension up to 6. We can thus use the equations of motion 2.10 to
express V h in terms of the light superfields

V h
a (M2

V )ab = −1

2

∂

∂V h
b

Φ′†e2gV Φ′ , (2.13)

where

(M2
V )ab =

1

2

∂2

∂V h
a ∂V

h
b

(
φ†0e

2gV φ0

) ∣∣∣∣
V h=0

. (2.14)

The total effective contribution to the Kähler potential is then

Keff = −(M2
V )abV

h
a V

h
b ; (2.15)

we are interested in the lowest order term given by the effective operator

δKeff = − g2

M2
Va

(Φ′†T ha Φ′)(Φ′†T ha Φ′) , (2.16)

where we are considering a basis for the heavy generators T ha in which the mass
matrix is diagonal.

The operator in equation 2.16 is sketched in figure 2.1a. The latter diagram
shows that the extra contribution given by integrating out the heavy vector super-
fields can result in soft SUSY breaking terms arising at tree level. In particular
when some of the chiral physical superfields Φ′ take F-term vevs2 the soft terms

2We incidentally note that the Φ′’s taking F-term vev should belong to non trivial representation

of the original symmetry group G in order for them to couple to the heavy vector messengers and

thus give a contribution through TGM mechanism.
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that are generated at tree level are

−Ltree
soft = − F0i

∂Ŵ

∂Φi
− 2g2 (F †

0T
h
a ψ

′)(φ′†T ha ψ
′)

M2
Va

+ h.c.

+ 2g2 (F †
0T

h
a F0 )(φ′†T ha φ

′)

M2
Va

+ 2g2 (φ†T ha F0 )(F †
0T

h
a φ

′)

M2
Va

− F †
0F0 , (2.17)

where Ŵ is the superpotential in the effective theory,

Ŵ (Φ′) = W (φ0 + Φ′) , (2.18)

choosing a gauge were the Goldstone superfields have been explicitely eaten up, so
that ΦG = 0.

It is quite instructive to analyze the different terms in equation 2.17. The first
term is connected to the presence of possible couplings among the SUSY breaking
F-term vevs and the heavy chiral superfields Φh: such couplings will be crucial for
the generation of gaugino masses at the one loop level. The possibility of couplings
between the F-term vevs and the observable superfields is neglected, as we will
comment in greater detail later.

The second term is of particular interest since it gives rise to Yukawa interactions
whose size is particularly small, namely O(|F0|/M2

V h). Such Yukawa couplings are
of phenomenological relevance since they might be suitable for generating naturally
tiny masses for neutrinos.

Finally the terms in the second line contribute to soft scalar mass terms. Sum-
ming up we have

m̃2
ij = 2g2

[
(T ha )ij

F †
0T

h
a F0

M2
Va

+
(T ha F0)

∗
i (T

h
a F0)j

M2
Va

]
, (2.19)

with the first and second terms respectively corresponding to the S-channel and
T-channel contributions in figure 2.1b1 and 2.1b2 respectively. The T-channel con-
tribution obviously happens to be relevant only for those superfields that are gauge
partners of the Goldstino superfields Z, not disregarding the fact that the interaction
vertex ZQ†V has to be invariant under the unbroken gauge group H ∈ G.

2.2.3.1 Additional properties of the superpotential

In phenomenological applications the superfields taking F-term vev should be sin-
glets under the SM gauge interactions. This consideration easily translates to the
fact that there is no GSM interaction through which the observable superfields and
the SUSY breaking ones can feel each other. This can be easily extended to super-
potential interactions3 requiring that

∂2Ŵ

∂Zj∂Qi
(Z,Q,Φh = 0) = 0 . (2.20)

3In the following we consider the case of renormalizable superpotentials and unbroken EW

symmetry.
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Fair enough we might say that the F-term vevs are hidden to the observable super-
fields.

Still we should care about the possible presence of a superpotential term of the
form ZiQjΦ

h
k , which would be quite interesting, potentially being source for tree

level generated A-terms. The chiral superfields Φh are heavy taking mass along
with the breaking of the originary gauge symmetry group G. Thus in order to
recover the effective field theory at lower energies we wish to integrate them out
in a manifestely supersymmetric way by means of the chiral superfield equations of
motion ∂W/∂Φh = 0. Suppose we write the superpotential Ŵ as

Ŵ = ŴΦh=0 +
Mh
ij

2
Φh
i Φ

h
j +W3(Z,Q,Φ

h) , (2.21)

then through the equations of motion we obtain

Φh
i = −(Mh

ij)
−1∂W3

∂Φh
j

(Z,Q) + O
(
(Mh)−2

)
. (2.22)

The effective superpotential for Z and Q superfields is therefore

Ŵeff(Z,Q) = ŴΦh=0 −
(Mh

ik)
−1

2

∂W3

∂Φh
k

∂W3

∂Φh
i

+ O
(
(Mh)−2

)
, (2.23)

and an effective extra contribution to the Kähler potential is also obtained

δKeff(Z,Q) =

[
(Mh

ij)
−1∂W3

∂Φh
j

][
(Mh

ik)
−1 ∂W3

∂Φh
k

]†
+ O

(
(Mh)−3

)
. (2.24)

All in all integrating out the chiral heavy superfields accounts for tree level generated
A-terms from Ŵeff and some extra negative contribution to the soft scalar masses
from δKeff. In particular the latter can be the origin of phenomenological troubles
since they are of the same order of magnitude (m̃ ∼ F/Mh) of the tree level ones,
equation 2.19, and consequently they should be subleading. Such a feature can be
easily obtained by imposing

∂3Ŵ

∂Z∂Q∂Φh
= 0 . (2.25)

The latter equation, that at first impact might seem to give a weird ad hoc solution,
is actually automatically fulfilled in the minimal case we are going to discuss in
chapter 3. Even in the next to minimal case of E6, that will be the subject of
chapter 4, equation 2.25 is satisfied with fairly minimal assumptions (see section 4.2).
Incidentally we note that the condition in equation 2.25 forbids also the presence of
tree level A-terms.
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Figure 2.2: One loop contributions to light gaugino masses from the exchange of heavy vector (a)

and chiral (b) degrees of freedom.

2.3 One Loop Soft terms

In the previous section we showed how tree level soft masses arise, but still we did not
discuss about the generation of other soft terms, apart from the possible generation
of trilinears at the tree level, that had to be dismissed because of phenomenological
troubles. Other SUSY breaking contributions enter the game in TGM theories at the
one loop level; obviously one should also not forget the possibly relevant contribution
to soft scalar masses arising at the two loop level.

2.3.1 Gaugino masses

Gaugino masses arise from one loop corrections to the wave kinetic function. In
particular they are generated through graphs in which heavy vectors or heavy chiral
messengers do circulate as shown in figure 2.2: thus we easily see that

Mg
ab = (Mg

ab)V + (Mg
ab)Φ . (2.26)

One can notice the existence of a suppression for gaugino masses with respect to
sfermion masses which is given by the extra loop factor in the diagram generating the
former. The latter suppression could be the origin of some phenomenological issues,
possibly pushing the sfermion masses to multi TeV values in order to satisfy the
experimental bounds. Actually some numerical factors owed to the gauge structure
of the theory will show of great help in reducing such a hierarchy.

In order to calculate the threshold corrections on gaugino masses coming from
the exchange of heavy vector superfields we notice that after SUSY breaking the
scalar φGa and fermion ψGa components of the Goldstone superfields are split by the
mass term

− ∂2W

∂ΦG
a ∂ΦG

b

(φ0)ψ
G
a ψ

G
b = −mabψ

G
a ψ

G
b . (2.27)

The latter is non vanishing when a suitable F-term, non singlet under T ha , gets
vev, since the gauge invariance condition for W applied to the broken generators,
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0 = δgaugeW = F †
i (T

h
a )ijφj , yields

mab = g2F
†
0 {T ha , T hb }φ0

MVaMVb

. (2.28)

We can write this equation more fruitfully in a block diagonal form, recalling that
the heavy vector representations are reducible under the unbroken group H to a set
of irreducible components belonging to the representation r of mass M̂Vr . If T ha and
T hb belong to the same representation we have

g2φ†0{T ha , T hb }F0 = m∗
abM̂Vr ≡ ∂M̂Vr

∂Z
|F0|δab . (2.29)

In the limit we are interested into, F0 ≪ M2
V , the mass term mab can be treated

as a perturbation in the loop calculation of gaugino masses, yielding a threshold
contribution at the scale where the heavy vector superfields live given by

(Mg
ab)V = −2

g2

(4π)2

∑

r

Sab(r)
|F0|
M̂2
Vr

∂M̂2
Vr

∂Z
, (2.30)

where Sab(r) = Tr
(
r(T la)r(T

l
b)
)

is the Dynkin index of the representation r : T →
r(T ) of the generator T .

The chiral contribution to gaugino masses is usually dominant over the vector one
and arises from one loop graphs analogous to those in LGM: the scalar and fermion
components of the heavy chiral superfields couple to gauginos and, since they are
split by SUSY breaking, they will induce a contribution (Mg

ab)Φ, as in figure 2.2b.
The heavy chiral superfields have a supersymmetric mass term Mh

ijΦ
h
i Φ

h
j due to the

spontaneous breaking of the gauge symmetry group G and they can be casted into
irreducible representations under H of mass M̂r. When SUSY is broken the scalar
components acquire an extra contribution Fijφ

h
i φ

h
j given by

Fij = − ∂3Ŵ

∂Φh
i ∂Φh

j ∂Z
|F0| ≡

∂M̂r

∂Z
|F0|δij , (2.31)

that under our assumptions can be assumed to be subleading with respect to the
supersymmetric term M̂r. Thus at leading order the total chiral contribution to
gaugino masses is

(Mg
ab)Φ =

g2

(4π)2

∑

r

Sab(r)
|F0|
M̂r

∂M̂r

∂Z
. (2.32)

These contribution are obviously a sum of different terms arising at the scale at
which the corresponding heavy chiral superfield gets integrated out.
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2.3.2 Kähler contributions

We now turn to the other soft terms arising from the one loop exchange of heavy
vector and chiral superfields: the Kähler potential gets a one loop correction given
by [58]

δ1-loopK = − 1

32π2
Tr

[
M †

ΦMΦ

(
log

M †
ΦMΦ

Λ2
− 1

)]
+

+
2

32π2
Tr

[
M2
V

(
log

M2
V

Λ2
− 1

)]
, (2.33)

where

(MΦ)ij =
∂2W

∂Φi∂Φj
(Φ) , (M2

V )ab =
∂2K

∂Va∂Vb
(Φ, V = 0) , (2.34)

K = Φ†e2gV Φ is the canonical Kähler and the indices effectively run over the heavy
superfields. Expanding the previous relations around φ0 and spelling out the depen-
dence on the Z superfield taking F-term vev we obtain the relevant contributions

δ1-loopK =

(
α

(1)
ij ZQ

†
iQj +

β
(1)
ij

2
Z†QiQj + h.c.

)
+

+ α
(2)
ij Z

†ZQi
†Qj +

(
β

(2)
ij

2
Z†ZQiQj + h.c.

)
+ . . . , (2.35)

where we remind that Q represent the observable superfields4.

We now turn to the analysis of the different contributions, which is quite straight-
forward taking into account the number of θ’s and θ̄’s present in each term. The
first term α(1) is responsible for the presence of the one-loop A-terms,

LA1-loop = −Aijqi
∂Ŵ

∂Qj
(q) with Aij = |F0|α(1) , (2.36)

where qi is the scalar component of the Qi superfield.
We wish to comment about this contribution, that is absent in LGM. In that

case the trilinears are essentially generated by means of the interplay between the
RGEs of gauginos and trilinear terms while running from the messengers’ scale to
the EW one. In TGM, instead, sizeable contribution can arise by means of one loop
graphs in which the chiral heavy superfields get integrated out, as depicted in figure
2.3a. As one can easily spot from the graph the crucial term is the messenger matter
mixing Yukawa interaction of the form λQQΦhQiQjΦ

h
k [49, 56].

4Terms with dependence Z†Qi have been omitted since they could destabilize the hierarchy [59]:

their absence can be easily justified by stating that there are no light chiral superfields with the

same quantum numbers of Z.
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Figure 2.3: Additional contributions to SUSY breaking terms owed to messenger matter mixing:

(a) one loop trilinear terms and (b) two loop scalar masses.

The second term β(1) evidently contributes to the µ-term in the superpotential

W µ
1-loop =

Mij

2
QiQj , with µij = |F0|β(1), (2.37)

while β(2) accounts for a contribution to the term qiqj

LBµ

1-loop = −bij
2
qiqj, with (Bµ)ij = −|F0|2β(2) , (2.38)

thus being relevant for the Bµ term. Finally

Lm̃1-loop = δm̃2
ijq

†
i qj, with δm̃2

ij = −|F0|2α(2)
ij , (2.39)

is a one loop contribution to soft scalar masses that does not play an effective role
since its F/M leading term vanishes because of an accidental cancelation [49, 60].

In this framework two loop contribution to scalar soft masses arises from two
different sources. The first one is common to LGM and directly comes from gauge
interactions: its importance depends on the size of gaugino masses, since they share
a common origin. In particular in the case in which the latter are enhanced, so
that the hierarchy between tree level soft masses and one loop gaugino ones is not
severe, two loop soft terms will be sizeable and possibly even dominant over the
peculiar contribution of TGM, driving the theory to a LGM scenario. On top of
this contribution there is another one owed to the presence of the messenger matter
mixing term λQQΦhQiQjΦ

h
k [49, 56]. Such a term is originated by two loop graphs

like the one depicted in figure 2.3b and its importance is obviously dependent on
the size of the Yukawa coupling λQQΦh .

2.4 Model Building: Guidelines

We wish to conclude this chapter pointing out some general considerations about
the construction of a TGM phenomenologically viable theory. We will address then
the explicit realization of the guidelines pointed out here in the next section, which
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will be dedicated to the analysis of the simplest realization of the TGM mechanism
in GUT context.

Two obvious remarks are in order. First of all in a phenomenologically viable
realization of the scenario the unbroken gauge group H should contain all the SM
factors, namely GSM ⊆ H. Moreover the light matter content of the theory should
contain the MSSM superfields, namely (qi, u

c
i , d

c
i , li, e

c
i ) ⊆ Q for i = 1, 2, 3, and no

tachyons are expected.
Focusing on the first point and assuming the gauge group G to be simple we

notice that there are a few possibilities to be taken into account. As we already
pointed out in section 2.1 we wish to consider a gauge group whose rank is larger
than that of the Standard Model, so Rank(G) ≥ 5. This consideration leads us
to identify as plausible candidates in a GUT implementation of the framework the
groups SU(N), for N > 5, SO(4n + 2), for n ≥ 2, and special groups, such as E6.
Still the assumption of G being a simple group is not compulsory: thus in principle
one could consider any group G′ ⊆ G with G′ ≡ GSM × U(1)X .

The effective prediction required to obtain a physically viable spectrum is that
we expect the MSSM sfermions5 to get a positive mass through the tree level dia-
gram of figure 2.1. Such a positiveness condition divides the superfields with SM
quantum numbers that arise from the decomposition of the GUT supermultiplets
after the breaking G→ H in two different categories. Those superfields whose scalar
component gets a positive soft mass term can play the role of the MSSM sfermions,
while the others should have a heavy supersymmetric mass exceeding the negative
soft contribution and preventing them to become tachyonic.

Incidentally we will see that the latter constraint on the positiveness of soft terms
will heavily drive model building: in particular in the simplest SO(10) model it will
make the usual matter embedding with a whole family in a single 16 representation
unphysical, paving the way for an interesting non standard embedding that we are
going to analyze in full details in the next chapter.

2.5 Invitation: SU(5) invariant theory

The simplest possibility to embed the TGM framework in a GUT context, as we
have just seen, requires the presence of the gauge group SO(10)6. Under the break-
ing chain SO(10) → SU(5) × U(1)X the two lightest representations of SO(10)

decompose as

16 → 1016
1 + 5

16

−3 + 116
5 10 → 5

10

2 + 510
−2 , (2.40)

where, for any SU(5) representation on the right hand side, the subscript is the
charge under the generator of U(1)X (X charge), while the superscript keeps track
of the SO(10) representation it originates from.

5We discard the possibility that the Z superfield taking F-term vev lies in the same supermul-

tiplet with the light superfields Q.
6The other Rank 5 possibility, SU(6), turns out not to be phenomenologically viable.
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The breaking of the gauge group SO(10) → SU(5), restricting to representations
of dimension d < 126, can be obtained through the vevs in the SM singlet direction
of a 16 and a 16, respectively N and N , namely

〈N〉 = M
〈
N
〉

= M . (2.41)

SUSY breaking is achieved through the F-term vev of a 16 representation in its SM
singlet direction, named Z. Gauge invariance, equations 2.7, and more specifically
the fact that F †

i T
h
ijφj = 0 tells us that it is not possible to embed both the SO(10)

breaking vev and the SUSY breaking one in the same superfield. It is then crucial
to introduce a 16′ superfield such that

〈Z〉 = Fθ2 . (2.42)

We assume that matter is embedded in three copies of the smallest represen-
tations of SO(10), thus 16i and 10i. The rules to define such an embedding have
been sketched in section 2.4. The F-term vev induces a D-term vev that can give
rise to the tree level sfermion masses in equation 2.19. In particular, restricting to
the case in which matter does not belong to the 16′ superfield, and thus the only
S-channel in figure 2.1 is available, one obtains that

m̃2
Q =

XQ

2XZ

∣∣∣∣
F

M

∣∣∣∣
2

, (2.43)

where XQ and XZ = 5 are respectively the X charges of the chiral superfield Q

under analysis and of the F-term taking vev: depending on the relative sign of
XQ and XZ the soft mass term can be either positive or negative. From equation
2.40 we notice that 1016 and 5

10 get a positive soft term, while 5
16 and 510 get a

negative one. Since light sfermions should have positive soft masses the only possible
embedding for matter is7

(qi, u
c
i , e

c
i ) ⊂ (1016)i and (dci , li) ⊂ (5

10
)i . (2.44)

We notice that this embedding is different from the one usually considered in SO(10)

GUT, where a whole fermion family finds place in a single 16i representation [61]:
the latter, indeed, would be non physical in TGM framework. On top of that we
stress the very nice prediction on the ratio of sfermion masses

m̃2
q,uc,ec

m̃2
dc,l

=
1

2
. (2.45)

Those fields getting a negative soft mass will get a heavy supersymmetric mass term
by means of superpotential trilinear interactions in equation 2.47, solving possible
phenomenological issues.

7We only consider pure embeddings, meaning that each SM fermion multiplet can be embedded

into a single irreducible representation of the gauge group, and the representation is the same (or

equivalent) for the three families. This assumption of pure embeddings is crucial to obtain flavour

universal sfermion masses and can be easily achieved [51].
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Before showing how this is effectively accomplished we firstly discuss the Higgs
superfields embedding. If one restricts to the smallest SO(10) representations, it
turns out that 10, 16 and 16 representations have the correct quantum numbers
to accomodate hu and hd. In particular we shall call cos2θu (cos2θd) the portion
of the hu (hd) superfield in the 10 (16) representation and correspondingly sin2 θu
(sin2 θd) the portion of hu (hd) superfield in 16 (16) representation. It is very
tempting, in order to have the smallest number of superfields at play, to embed
the Higgs superfields in the same superfields were already the SO(10) and SUSY
breaking vevs are. The Higgs superfields also get a soft mass term through the TGM
mechanism: in particular one has

m2
hu

=
−2 cos2 θu + 3 sin2 θu

10

∣∣∣∣
F

M

∣∣∣∣
2

m2
hd

=
2cos2 θd − 3 sin2 θd

10

∣∣∣∣
F

M

∣∣∣∣
2

. (2.46)

In this case the possibly negative soft term causes no phenomenological threats since
one (or even both) the Higgs masses are expected to run negative in order to reach
a successful EWSB.

The superpotential of the theory reads

W = hij16i10j16 + h′ij16i10j16
′ + yij16i16j10 +Wextra , (2.47)

where 16i and 10i are the matter fields, 16 contains both the SO(10) breaking vev
and part of hd, 16′ contains both the SUSY breaking F-term vev and another part
of hd, 10 contains portions of both hu and hd and finally Wextra takes care of the
vevs and possibly other issues that for now we are not going to deal with. This
superpotential accounts for flavour Yukawa interactions: the term proportional to
yij is responsible for the top Yukawa coupling, while those proportional to hij and
h′ij are responsible for the bottom and the tau Yukawas.

After SO(10) breaking, the superpotential 2.47 gives those superfields with neg-
ative soft mass terms (516 and 510) a large positive supersymmetric mass, i.e.

5
16

i 510

j 〈N〉 = hijM5
16

i 510

j , (2.48)

solving phenomenological issues and, along with the term h′ij16i10j16
′, promoting

them to the role of chiral messengers. The h′ trilinear interactions, indeed, are
responsible for chiral contributions to gaugino masses, as explained in section 2.3.1.
The heavy chiral superfields 5

16 and 510 are exchanged at scale hM and give rise
to the term

M =
α

4π
Tr
(
h′h−1

) F
M

, (2.49)

where α is the SU(5) coupling. The latter superpotential terms are also responsible
for one loop trilinears, as explained in section 2.3.2. Moreover the presence of the
superpotential mixing terms among matter, Higgs and chiral messenger superfields
give rise to two loop contributions to soft scalar masses that adds up to the usual
LGM contributions owed to gauge interactions.
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In this chapter we will analyze in full detail the easiest implementation in a simple
group G of a phenomenologically viable TGM theory. The gauge group should have
at least Rank(G) = 5, as explained in section 2.4: considering the SO(2n) family,
this leads us to the case of SO(10), whose analysis has been sketched in section
2.5. There we disregarded most of the subtleties connected to an effective physically
viable implementation of the scenario, that we will deal with in this chapter, turning
out to relate the gaugino mass ratios and more in general the soft terms to the flavour
structure of the SM fermions. Then we will explore the phenomenology of the model
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Field SO(10) SU(3)C SU(2)L U(1)Y U(1)X RP

qi 16i 3 2 1
6 1 -1

uci 16i 3 1 −2
3 1 -1

dci 10i 3 1 1
3 2 -1

li 10i 1 2 −1
2 2 -1

eci 16i 1 1 1 1 -1
Si 16i 1 1 0 5 -1
Dc
i 16i 3 1 −1

3 -3 -1
Dc
i 10i 3 1 1

3 -2 -1
Li 16i 1 2 −1

2 -3 -1
Li 10i 1 2 1

2 -2 -1
hu 10, 16, 16

′
1 2 1

2 — +1
hd 10, 16, 16′ 1 2 −1

2 — +1

Table 3.1: TGM field content. The various superfields are shown along with the SO(10) GUT

representation they belong to. The last column shows the R-parity of the corresponding superfield.

and focus on the possible experimental hints that could be looked for at the LHC in
order to discriminate the peculiarities of TGM models from other models of SUSY
breaking mediation.

3.1 Fields and lagrangian

In order to study the TeV phenomenology of the model we only need to consider the
lagrangian below the SO(10) breaking scale. The matter (RP = −1) field content
consists of three 16i+10i, whose SM decomposition is given in table 3.1. The lower
case fields are (in first approximation) the light ones. The Si are SM singlets, they
may get mass at the non renormalizable level. The other capital letter fields get mass
through SO(10) breaking. We assume that only the light doublet components hu, hd
of the Higgs fields (RP = 1) survive below the GUT scale (see [51,62] for an example
of how to achieve that). If the SO(10) Higgs sector contains only representations
with dimension d < 120 (10, 16 + 16, 45, 54), the doublets can only belong to 10,
16, 16 representations. To be general, we allow them to be superpositions of the
doublets in those representations. That is why their X charge is not specified in
table 3.1.

The goldstino superfield is also lighter than the SO(10) breaking scale, but it
contributes to the lagrangian at the TeV scale only through the soft terms induced
by its SUSY breaking vev, we therefore do not include it.

Whatever is the dynamics above the SO(10) breaking (GUT) scale, the la-
grangian below that scale is described by the most general SM and R-parity in-
variant one. We first give a general parameterization of the latter, which is useful to
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incorporate radiative corrections through RGEs, then we show how that lagrangian
is determined by the few relevant parameters of the model through the boundary
conditions at the GUT scale.

The lagrangian below the GUT scale involves terms corresponding to the usual
MSSM interactions and terms involving the extra heavy fields. Correspondingly,
the superpotential is

W = WMSSM +WTGM +WS , (3.1)

where WS depends on the singlet fields Si and is not relevant for our purposes (as
long as R-parity is not spontaneously broken), and

WMSSM = λUu
cqhu + λDd

cqhd + λEe
clhd + µhuhd

WTGM = λ̂DD
cqhd + λ̂Ee

cLhd +MDDcDc +MDdDcdc +MLLL+MLlLl .
(3.2)

The terms lL or dcDc are supposed to be absent at the GUT scale but arise in the
RGE running (see appendix A.2.4). The SUSY breaking lagrangian is

LSB = LAMSSM + LATGM + LmMSSM + LmTGM + LgMSSM , (3.3)

with

−LAMSSM = AU ũ
cq̃hu +ADd̃

cq̃hd +AE ẽ
c l̃hd +Bhuhd + h.c.

−LATGM = ÂDD̃
cq̃hd + ÂE ẽ

cL̃hd +BDD̃cD̃c +BDdD̃cd̃c +BLL̃L̃+BLlL̃l̃ + h.c.

−LmMSSM = m2
hu
h†uhu +m2

hd
h†dhd + m̃2

q q̃
†q̃ + m̃2

uc ũc†ũc + m̃2
l l̃

† l̃ + m̃2
dc d̃c†d̃c + m̃2

ec ẽc†ẽc

−LmTGM = m2
DcD̃c†D̃c +m2

DcD̃c
†
D̃c +m2

LL̃
†
L̃+m2

L
L̃
†
L̃+ (m2

DdD̃
c†d̃c +m2

LlL̃
†
l̃ + h.c.)

−LgMSSM =
1

2
Maλaλa + h.c. .

(3.4)
In the above equations we have suppressed the flavour indexes. The terms including
the field breaking SUSY have also been omitted, but will discuss them in the next
section.

3.2 Generation of the soft terms

In the following sections we will describe how the SUSY breaking terms arise in
the minimal framework under analysis and their relations to the unbroken SO(10)

superpotential discussed in appendix A.1, namely

W2 = hij16i10j16 + h′ij16i10j16
′ +

yij
2

16i16j10 +WNR
2 . (3.5)

The discussion will follow the general structure presented in section 2.5.
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3.2.1 Tree level generated boundary conditions

Tree level diagram of figure 2.1b1 induces soft mass terms for the sfermions when, as
in section 2.5, an F-term vev in the SM singlet direction of a spinorial representation
breaks SUSY. The parameter m10 is the common mass of the MSSM sfermions
belonging to the 10 representation of SU(5) (q̃, ũc, ẽc) at the GUT scale. All
sfermion masses are determined (at the tree level) by equation 2.43:

m̃q
2 = m̃uc

2 = m̃ec
2 =

1

10

∣∣∣∣
F

M

∣∣∣∣
2

= m10
2 , m̃l

2 = m̃dc
2 = 2m10

2 . (3.6)

The factor 2 is a prediction of the minimal unified realization of TGM, as already
seen in section 2.5. It arises because the squared sfermion masses are proportional
to their charges under the U(1)X mediating SUSY breaking (see table 3.1).

The Dc, Dc, L and L soft masses are subdominant with respect to the much
larger supersymmetric masses MD, ML in the superpotential1 and, as the parame-
ters m2

Dd, m
2
Ll, are not relevant in our results. For completeness, they are given at

the GUT scale by

m2
Dc

= m2
L = −3m2

10, m2
Dc

= m2
L

= −2m2
10 , m2

Dd = m2
Ll = 0. (3.7)

The angles 0 ≤ θu, θd ≤ π/2 account for the possibility that the light MSSM
Higgs hu and hd are superpositions of doublets in different SO(10) representations.
Given the embedding of MSSM fields in table 3.1 (and up to non renormalizable con-
tributions), the up and down Yukawa couplings λUucqhu and λDd

cqhd in equation
3.2 must come from SO(10) interactions 16 16 10H and 10 16 16H respectively2, as
in equation 2.47. Therefore, hu must have a component in 10H and hd must have
a component in 16H . The simplest possibility is that this is it. On the other hand,
to be general, we can consider the possibility that hu has also a component in a
16 and hd in a 10 (there are no further possibilities as we only consider SO(10)

representations with dimension d < 120). In such a case, we use the angles θu and
θd to measure the size of the Higgs components in the different representations:

10H ⊃ cos θuhu + . . . 16H ⊃ sin θdhd + . . . . (3.8)

In the pure case3 in which the light Higgs are contained in the 10H and 16H only,
their X charges are defined: Xhu = −(Xq +Xuc) = −2, Xhd

= −(Xq +Xdc) = −3.
The charges are negative because the MSSM Yukawas must be U(1)X invariant and
the sfermions must have positive charges. Their soft masses are therefore negative
at the tree level. In the general case, we have instead, reassessing equation 2.46,

m2
hu

= (−2 cos2 θu + 3 sin2 θu)m
2
10 and m2

hd
= (2 cos2 θd − 3 sin2 θd)m

2
10 (3.9)

and the soft masses can both be positive or negative at the tree level.
1We will see in the next section how such masses arise in the framework.
2We can assume without loss of generality that 10H is the only 10 representation of SO(10)

containing hu and 16H is the only 16 representation of SO(10) containing hd.
3We remind here that by pure embedding we mean that each SM fermion multiplet can be

embedded into a single irreducible representation of the gauge group, and the representation is the

same (or equivalent) for the three families
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3.2.2 Heavy chiral messengers and their masses

The specification of the low energy lagrangian involves the determination of the
detailed form of the masses of the heavy Dc, Dc, L and L superfields in table 3.1
and of their couplings to SUSY breaking. Indeed, as briefly seen in section 2.5, they
behave as chiral messengers being responsible for the generation at the one loop level
of gaugino masses and trilinear terms and at the two loop level of contributions to
soft masses. On top of that they also affect the low energy lagrangian through the
RGE evolution from the GUT scale: it is therefore necessary to specify the masses
MD and ML in equation 3.2 in order to determine the scale, tipically below the
GUT scale, at which their contribution should be switched off.

Since the Dc, Dc, L and L fields belong to different SO(10) representations they
acquire masses through SO(10) breaking, specifically through the vev of the SM
singlet components of a 16 + 16, denoted by M > 04, as already anticipated in
section 2.5. It is therefore convenient to write the mass terms in equation 3.2 as

MDijDc
iD

c
j +MLijLiLj = hDijMDc

iD
c
j + hLijMLiLj . (3.10)

Analyzing the superpotential of the theory as specified in equation 3.5 the mixing
parameters MdD and MlL in equation 3.2 are predicted to vanish at the GUT scale
at the renormalizable level, namely

MdD = 0 MlL = 0 . (3.11)

Non vanishing values are generated by the RGE running between the GUT and the
messenger scales, as no unbroken quantum number distinguishes the dc, l fields from
the Dc, L ones.

SUSY breaking is provided by the F-term vev of the SM singlet component
of spinorial representations of SO(10), which are forced by gauge invariance not
to coincide with 16, 16 (see the discussion in section 2.5) and will therefore be
denoted by 16′, 16

′. In order to obtain positive tree level sfermion masses, the F -
term of the 16′ must be larger than the one of the 16

′ [51]. We will then assume for
simplicity that only the SM singlet component of the 16′ field, Z, gets an F-term
vev F . As |F | ≪ M2, the field Z should be included in the effective lagrangian
below the GUT scale defined by equations 3.1, 3.2, 3.3, 3.4. The relevant terms are
the superpotential couplings

WZ = h′DijZD
c
iD

c
j + h′LijZLiLj . (3.12)

As a further simplification, we will neglect the flavour structure of the above cou-
plings hD, hL, h′D, h′L and consider only the diagonal elements, assuming that, as
in the case of the SM Yukawa couplings, the deviation from the diagonal form, i.e.
the breaking of the individual flavour numbers, is small. In such a case, the flavour

4The D-term condition for the U(1)X forces the two vevs to be equal in absolute value, up to

negligible SUSY breaking effects. M can be taken positive without loss of generality.
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structure we are neglecting does not significantly affect the collider observables we
are interested in. Equations 3.10 and 3.12 involve six new parameters each. The lat-
ter are related to the Yukawa flavour structure, as detailedly discussed in appendix
A.1.

To sum up, in this section we have specified the GUT scale boundary conditions
for all the parameters in equation 3.2. The Yukawas λU , λD, λE are determined at
low energy by the SM fermion masses, and λ̂D, λ̂E from GUT scale relations. The
messenger masses MD,L are specified by equations 3.10, while the parameters MdD,
MlL are set to zero at the GUT scale. The µ parameter is determined by the EWSB
condition and the specification of its sign.

3.2.3 One loop level generated boundary conditions: Gaugino

masses

Gaugino masses are generated, as in LGM, at the one loop level because of the cou-
pling of the field Z taking F-term vev to the heavy Dc, Dc, L and L, which play the
role of chiral messengers of SUSY breaking. Nicely enough, in the SO(10) model
the latter coupling turns out to be automatically allowed by the gauge symmetry.
Unlike LGM, in fact, the field Z (here the singlet component of the 16′) is charged
under the gauge group and in particular under the U(1)X subgroup mediating SUSY
breaking at the tree level, so that the possibility of a coupling to the chiral mes-
sengers is not a priori guaranteed. On the other hand, gauge invariance prevents
the possibility of an explicit mass term for the messengers. The mass term must
come from the vev of a field breaking the U(1)X . Such a field must have the same
quantum numbers as Z, but with independent couplings to the messenger fields,
as discussed in section 2.5. In turn, this opens the possibility to enhance gaugino
masses by means of the ratio of the coupling to SUSY breaking and the coupling
to U(1)X breaking. In this section we show how such features are implemented in
the SO(10) model under consideration, and we point out a possible source of non
minimality of gaugino masses.

Before proceeding further with the computation of gaugino masses we introduce
some useful notation. The couplings to SUSY breaking h′Di

and h′Li
are conveniently

traded for the parameters γDi and γLi defined by

γDi ≡
(
h′Di
hDi

)

hDiM

γLi ≡
(
h′Li
hLi

)

hLiM

, (3.13)

where the couplings are supposed to be evaluated at the corresponding heavy
field mass scale. Now we can introduce the averages γD ≡ (

∑3
i=1 γDi)/3, γL ≡

(
∑3

i=1 γLi)/3 and

r =

∑3
i=1 γLi∑3
i=1 γDi

, γ =
1

6

( 3∑

i=1

γDi +
3∑

i=1

γLi

)
. (3.14)
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Therefore, in order to specify the six parameters in equations 3.13 is equivalent to
specify γD, γL and the four ratios

rDi = γDi/γD , rLi = γLi/γL , i = 1, 2 . (3.15)

Gaugino masses can be expressed in terms of the messenger masses and couplings
to SUSY breaking in equations 3.10 and 3.12. The six vectorlike chiral messengers,
Dc

i +Dc
i and Li + Li, i = 1, 2, 3, have masses hDiM and hLiM respectively. Their

scalar components get SUSY breaking mass terms given by h′DiF and h′LiF . The
contributions of the i-th family of messengers to the gaugino masses Ma, a = 1, 2, 3,
are then

MDi
a =

αa
4π
bDa γDi

F

M
(scale hDiM) MLi

a =
αa
4π
bLa γLi

F

M
(scale hLiM),

(3.16)
where bL = (3/5, 1, 1), bD = (2/5, 1, 1) and the parameters γDi, γLi have just been
defined in equation 3.13. Each of those contributions arise at the scale of the cor-
responding messenger and the gauge couplings in equations 3.16 are supposed to
be evaluated at that scale, which is different for each contribution. The individual
contributions in equations 3.16 can be formally obtained from the one loop running
from the GUT scale of the hypothetical values

MDi
a =

αa
4π
bDa γDi

F

M
MLi
a =

αa
4π
bLa γLi

F

M
(GUT scale), (3.17)

where now the gauge couplings are supposed to be evaluated at the GUT scale with
γD and γL evaluated as in 3.13. At the GUT scale, the individual contributions in
equations 3.17 can be summed to give

Ma = 3
αa
4π

(
2
bDa + rbLa

1 + r

)
γ
F

M
(GUT scale), (3.18)

where and r a ratio and γ is the average of the six parameters defined in equation
3.14. We can conveniently trade the parameter γ in terms of the more useful5

M1/2 ≡ 3
αGUT

4π
γ
F

M
, (3.19)

and thus obtain the parameterization of gaugino masses in terms of M1/2 and r in
equations 3.27. As stressed above, those relations are valid at the GUT scale only in
the sense that the gaugino masses at the scales at which they are actually generated
and below can be obtained by running the formal GUT scale values with one loop
RGEs.

Let us notice that M1/2 can well be of the order of the tree level stop mass m10,
despite it is generated at the one loop level [50]. This is in part due to the fact that
F/M =

√
10m10, giving a factor 3

√
10 enhancement of the loop suppressed value

M1/2 ≡ αGUT

4π
(3
√

10 γ)m10 . (3.20)

5If gauge couplings do not unify one should use (α2 + α3)/2 instead of αGUT.
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And it is in part due to the fact that the unknown factor γ, being essentially a ratio
of presumably hierarchical Yukawa couplings, can easily be larger (or smaller) than
1.

The gaugino masses obtained in this way are potentially non universal at the
GUT scale, even in the case of precise gauge coupling unification, when the param-
eter r is different from 1. We note that small values of r can make the wino lighter
than the bino. On top of that the measurement of non universal gaugino masses
satisfying the sum rule 3.28 can be considered as another smoking gun of minimal
unified TGM on top of the prediction on sfermion masses.

Let us close this section by discussing how concrete is such a possibility. The
SU(5) gauge symmetry, if unbroken, would force γDi = γLi and r = 1. On the
other hand, the r 6= 1 possibility is plausible because SU(5) is broken and the same
SU(5) breaking corrections needed to make λD 6= λE can as well make hD 6= hL
and h′D 6= h′L, so that γDi 6= γLi and r 6= 1. Note that even in the limit in which
the SU(5) breaking effects are small and only affect significantly the small Yukawa
couplings of the first families, the effect on r can be sizeable. In fact, the ratio of
the small Yukawa couplings, potentially significantly different from 1, enters the r
parameter with the same weight as the ratio of the third family Yukawas.

3.2.4 One loop level generated boundary conditions: Trilinear

terms

The MSSM trilinear terms in equation 3.4 are generated through one loop graphs
as the one sketched in figure 2.3a at the scale at which the heavy Dc, Dc, L and L
get integrated out. In particular, directly from equation 2.36, they have the form

AU = AucλU + λUAq + λUAhu ,

AD = AdcλD + λDAq + λDAhd
,

AE = AecλE + λEAl + λEAhd
.

(3.21)

To be explicit the contributions induced by the coloured messengers Dc and Dc are

Aq(MDi) = − 1

(4π)2
γDiλ̂D

2

i

F

M
, (3.22a)

Ahd
(MDi) = − 3

(4π)2
γDiλ̂D

2

i

F

M
, (3.22b)

Al(MDi) = Adc(MDi) = Auc(MDi) = Aec(MDi) = Ahu(MDi) = 0 , (3.22c)

while the one induced by L and L are

Aec(MLi) = − 2

(4π)2
γLiλ̂E

2
i

F

M
, (3.23a)

Ahd
(MLi) = − 1

(4π)2
γLiλ̂E

2

i

F

M
, (3.23b)

Al(MLi) = Adc(MLi) = Auc(MLi) = Aq(MLi) = Ahu(MLi) = 0 , (3.23c)
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Q qi uci dci li eci hu hd

c1Q 1/60 4/15 1/15 3/20 3/5 3/20 3/20

c2Q 3/4 0 0 3/4 0 3/4 3/4

c3Q 4/3 4/3 4/3 0 0 0 0

Table 3.2: Quadratic Casimirs for the low energy superfields.

Note that only the third family A-terms are non negligible, as the first and second
family ones are suppressed by powers of small Yukawa couplings.

3.2.5 Two loop level generated boundary conditions: soft terms

The coupling of the chiral messengers Dc, Dc, L and L to SUSY breaking, equation
3.12, gives rise to the well known two loop contributions to sfermion masses. In this
section we give their expressions in our model. Given that the chiral messengers
have masses hDi M and hLi M and SUSY breaking mass terms given by h′DiF and
h′LiF , the contributions to sfermion masses, as the ones to gaugino masses, depend
on the parameters γDi and γLi. We have in fact

(m̃2
Q)LGM =

∑

i

(m̃2
Q)LGM(MDi) + (m̃2

Q)LGM(MLi)

= 2

[(
c3Q
α2

3(MDi)

(4π)2
+

2

5
c1Q
α2

1(MDi)

(4π)2

)
γD

2
i

+

(
c2Q
α2

2(MLi)

(4π)2
+

3

5
c1Q
α2

1(MLi)

(4π)2

)
γL

2
i

] ∣∣∣∣
F

M

∣∣∣∣
2

,

(3.24)

where caQ is the quadratic Casimir of the sfermion Q̃ (or Higgs Q) relative to the
gauge interaction a, as in table 3.2. The parameters γDi,LiF/M are determined by
the parameters M1/2, r, rDi, rLi, i = 1, 2 through equations 3.15, 3.14 and 3.19.

On top of the usual LGM contributions, soft masses receive also two loop contri-
butions because of messenger matter mixing, as discussed in section 2.3.2. Working
in the third family approximation, that accounts for all the relevant contributions
in our framework [63], one finds that extra sizeable corrections arise only for third
family sfermions (and Higgses), while they are negligible for the first to families. All
in all the corrections are

(4π)4δm̃2
q3 =

(
7

30
g2
1 +

3

2
g2
2 +

8

3
g2
3 − 3λ̂2

D3
− 1

2
(λ2
E3

+ λ̂2
E3

)

)
λ̂2
D3
γ2
D3

∣∣∣∣
F

M

∣∣∣∣
2

+
1

2
λ2
D3
λ̂2
E3
γ2
E3

∣∣∣∣
F

M

∣∣∣∣
2

(3.25a)

(4π)4δm̃2
l3 =

(
3

2
λ̂2
D3
λ2
E3
γ2
D3

+ 2λ2
E3
λ̂2
E3
γ2
E3

) ∣∣∣∣
F

M

∣∣∣∣
2

(3.25b)
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(4π)4δm̃2
d =

(
6λ̂2

D3
λ2
D3
γ2
D3

+ λ̂2
E3
λ2
D3
γ2
E3

) ∣∣∣∣
F

M

∣∣∣∣
2

(3.25c)

(4π)4δm̃2
e3 =

(
9

5
g2
1 + 3g2

2 − 4λ̂2
E3

− 3(λ2
D3

+ λ̂2
D3

)

)
λ̂2
E3
γ2
E3

∣∣∣∣
F

M

∣∣∣∣
2

+ 3λ2
E3
λ̂2
D3
γ2
D3

∣∣∣∣
F

M

∣∣∣∣
2

(3.25d)

(4π)4δm̃2
u3

=
(
λ2
U3
λ̂2
D3
γ2
D3

) ∣∣∣∣
F

M

∣∣∣∣
2

(3.25e)

(4π)4δm̃2
hd

=

(
7

10
g2
1 +

9

2
g2
2 + 8g2

3 − 9λ̂2
D3

− 3

2
(λ̂2
E3

+ λ2
U3

)

)
λ̂2
D3
γ2
D3

∣∣∣∣
F

M

∣∣∣∣
2

+

(
9

10
g2
1 +

3

2
g2
2 − 2λ̂2

E3
− 3

2
λ̂2
D3

)
λ̂2
E3
γ2
E3

∣∣∣∣
F

M

∣∣∣∣
2

(3.25f)

(4π)4δm̃2
hu

=
3

2
λ̂2
D3
λ2
U3
γ2
D3

∣∣∣∣
F

M

∣∣∣∣
2

. (3.25g)

3.3 Relevance of the various parameters

The specification of the boundary conditions for the soft terms given in the previous
section accounts for all the parameters in our lagrangian terms 3.1 and 3.3 at the
GUT or messenger scales. In order to obtain the sparticle spectrum and their
couplings we use the RGE equations provided in appendix A.2.

Running down to the TeV scale we notice that not all the superpotential cou-
plings have the same relevance on the final spectrum, but they do classify in two
different sets: there will be parameters giving an O (1) impact on the theory, on
which we will focus in the next section, and parameters having only a marginal
(logarithmic) impact on it, that we will present in section 3.3.2.

3.3.1 Relevant parameters

The relevant parameters of the model are

m10 , M1/2 , r , tan β , sign(µ) , θu , θd . (3.26)

In the following subsections we will analyze them discussing the relevant boundary
conditions.

The parameter m10 was introduced in section 3.2.1 and represents the tree level
soft mass of the q̃, ũc and ẽc sfermions. The hu and hd embedding, instead, defines
θu and θd as already discussed in that section.

The parameters M1/2 and r determine the gaugino masses M1, M2 and M3 at
the GUT scale. M1/2 and r can also be traded for M2 and M3,

M1/2 =
M2 +M3

2
, r =

M2

M3
(GUT scale), (3.27)
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Figure 3.1: Dependence of the gaugino mass parameter ratios M2/M1 and M3/M2 evaluated at

TeV scale on the parameter r. The wino mass term M2 is lighter than the bino mass term M1 for

r . 0.3.

with M1 given by the sum rule

M1 =
3

5
M2 +

2

5
M3 (GUT scale). (3.28)

The value r = 1 corresponds to universal gaugino masses. Largely non universal
masses can arise for r 6= 1, despite SO(10) unification, as already discussed in section
3.2.2 along with the subtleties connected to considering 3.27 and 3.28 to hold at the
GUT scale. The dependence of the gaugino mass parameter ratios M2/M1 and
M3/M2 on r at TeV scale is shown in figure 3.1.

As usual, tan β can be traded for the Bµ parameter in equation 3.4 and sign(µ),
together with the EWSB condition, determine the µ parameter.

3.3.2 Marginal parameters

Additional parameters are also needed in order to specify the detailed flavour struc-
ture of the lagrangian in equations 3.2, 3.3 and 3.4, but they have a marginal effect
on the TeV spectrum.

We have checked that a O (1) variations of the four parameters rDi and rLi ,
defined in equation 3.15, have only a very mild (logarithmic) effect on our TeV scale
predictions. This in turn happens because the gaugino masses are mostly affected
by the total ratio r = γL/γD and the most relevant trilinears are those belonging to
the third family.

We have also checked that our TeV scale predictions have a very mild (logarith-
mic) dependence on O (1) variations of the parameters cDi,Li and c′Di,Li

, defined in
equation A.4.
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3.4 Analysis of the parameter space

Let us now discuss the parameter space of the model. As pointed out in section 3.3,
the relevant parameters to be specified are m10, M1/2, r, tan β, sign(µ), θu and θd.
Let us begin from a discussion of the allowed range for the angles θu and θd.

3.4.1 Allowed ranges of θu and θd

Two constraints have to be taken into account: reproducing the SM fermion masses
and EWSB. Since the top Yukawa coupling is essentially given by λt = y3 cos θu, see
appendix A.1, we should have cos θu = O (1), if y3 has to be kept perturbative and
possibly of order one, as λt. Which means that the angle θu should be sizeable, with
the maximal value θu also allowed. Similarly, as the bottom Yukawa coupling is
λb . sin θd×O (1) (see appendix A.1), we should have sin θd & λb = mb/(cos βv) ∼
10−2 tan β. Summarizing, we have

θu ∼ O (1)

θd & 10−2 tan β
(3.29)

from the requirement of perturbativity of the couplings leading to the SM fermion
masses.

The angles θu and θd also enter the EWSB conditions through the tree level
expression for the Higgs soft masses. In order for EWSB to take place for a given
value of tan β (and MZ), the following two conditions have to be satisfied:

m2
hd

−m2
hu

tan2 β

tan2 β − 1
≥M2

Z/2

(m2
hd

−m2
hu

)
tan2 β + 1

tan2 β − 1
+M2

Z > 0 .

(3.30)

For moderately large values of tan β and in the typical fine tuned situation in which
|m2

hu
| ≫ M2

Z , the latter conditions become m2
hu

. 0 and m2
hd

− m2
hu

& 0. The
corresponding constraints on θu and θd (taking into account the approximate ana-
lytical running of the Higgs mass parameters in appendix A.3) can be obtained in
analytical form in the limit in which equations A.16 hold:

cos2 θd +
(
1 − ρ

2

)
cos2 θu &

6

5
− ρ

2
cos2 θu &

3/5 − ρ/2

1 − ρ/2
. (3.31)

For example, a typical value ρ = 0.7 gives

cos2 θd + 0.65 cos2 θu & 0.85 cos2 θu & 0.4 . (3.32)

Again, the explicit form of the constraints above holds only in a typical fine tuned
scenario with moderately large tan β and sfermions heavier than gauginos. Finally,
some values of cos θu and cos θd may not be allowed because the constraints in
equation 3.30 hold, but proper EWSB does not take place, for example because
some particle becomes tachyonic.
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Figure 3.2: Constraints on θu and θd from proper breaking of the EW symmetry. The figure has

been obtained for tan β = 10, m10 = 1.8 TeV, M1/2 = 600 GeV, rLD = 1. Also shown are the

approximate constraints in equation 3.31 (dotted lines).

The constraints on θu and θd from proper EWSB should be merged with the ones
from fermion masses (equations 3.29). The constraint θu = O (1) is automatically
satisfied once equations 3.30 hold, while the constraint on θd in equations 3.29 cuts
an additional thin stripe of parameter space close to the cos2 θd = 1 axis. The
overall constrain one gets in the cos2 θu–cos2 θd plane is shown (for fixed values of
the other parameters) in figure 3.2. The allowed points with cos2 θu near the left
vertical bound (where m2

hu
changes sign) correspond to smaller |m2

hu
| and therefore

relatively smaller fine-tuning. We see from the figure that a pure embedding of the
MSSM up Higgs in the 10H (with no component in 16H , cos θu = 1) is allowed,
while the down Higgs must have a mixed embedding, with components in both the
16H and 10H . A component in the 16H is needed to obtain non vanishing down
quark masses (at the tree, renormalizable level), while a component in the 16H is
necessary for a correct EWSB.

3.4.2 A 125GeV Higgs

In standard gauge mediation it is not easy to accommodate a rather heavy Higgs
boson with a mass of about 125GeV, as indicated by the recent discovery [3,4]. Such
a mass needs in fact moderately large tan β and a rather heavy SUSY scale or large
trilinear couplings, see, e.g. [66]. In standard gauge mediation it is usually assumed
that the messengers have only gauge interactions with the SM fields and hence the
trilinear couplings are strongly suppressed at the messenger scale. Sizeable trilinear
terms can be generated by introducing superpotential messenger matter interactions.
However, the latter potentially spoil the flavour universality of the soft terms, one
of the main motivations for gauge mediation models [48] (see however [54, 67, 68]).

Things are different in our setup. Sizeable trilinears are generated because the
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Figure 3.3: The SUSY spectrum of a point with a Higgs mass of 125 GeV calculated with our

modified version of the softSUSY package [64]. The decays are depicted by the dashed grey arrows,

which are scaled with the respective BR calculated via SUSY-HIT [65]: only BRs greater than 0.1

are shown. The parameters for the point under analysis are: m10 = 1.5 TeV, cos θu = 0.95,

cos θd = 0.9, γ = 16.7, r = 1, rD1,2 = rL1,2 = 0.3, tan β = 10, sign(µ) = +

messengers unavoidably have Yukawa couplings to the MSSM fields, as we discussed
in section 3.2.4. Such trilinears arise at the one loop level but they turn out to
enjoy a potential enhancement by the same parameter γ enhancing gaugino masses.
Moreover, because of the SO(10) relations between them, the flavour structure of
the messenger matter couplings is dictacted by the SM Yukawas. As a consequence,
they do not spoil the solution of the supersymmetric flavour problem offered by our
framework. The spectrum for a light Higgs of 125 GeV, thus compatible with the
recent discovery, is shown in figure 3.7.

Alternatively the Higgs mass can be increased above the MSSM values in the
presence of a mixing with a SM singlet chiral field S, as in the NMSSM [69]. In
LGM, such a SM singlet would have vanishing soft mass at the messenger scale,
as it does not couple to SM gauge interactions. This is not necessarily the case in
TGM, as the soft masses are generated by U(1)X gauge interactions. Depending
on the SO(10) embedding of the Shuhd interaction lifting the Higgs mass, such a
singlet could acquire a positive, vanishing, or negative soft mass, with the latter
case leading to a vev for the S field and therefore to a solution for the µ problem.
For this reason, we can also take into account the possibility of a NMSSM like
extra contribution to the Higgs mass. We will not enter the model building details
associated to the possible presence of a NMSSM singlet in the TeV scale spectrum,
leaving the latter to forthcoming studies.
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3.4.3 NLSP

In TGM models, the Lightest Supersymmetric Particle (LSP) is the gravitino. The
cosmology of the model is therefore determined first of all by the nature of the
Next to LSP (NLSP) [50, 70]. The NLSP turns out to be a neutralino or the stau,
depending on the region of the parameter space. Whether the lightest neutralino is
bino like or wino like is essentially determined by the parameter r, as illustrated by
figure 3.1. When r & 0.3, the NLSP is either a bino like neutralino or a stau, while
when r . 0.3 the NLSP is either a wino like neutralino or a stau. Figure 3.4 shows
the part of the parameter space in which the NLSP is a neutralino (violet) or stau
(light blue). On the left panel, r = 1 and the neutralino is bino like, while on the
right panel r = 0.2 and the neutralino is wino like. The remaining parameters are
tan β = 10, cos θu = 0.8, cos θd = 0.8, sign(µ) = 1. The figure shows that the NLSP
is a neutralino in most of the parameter space. On the other hand, a stau stripe is
present in both cases. In fact, the upper left boundary of the parameter space is due
to the stau becoming tachyonic. A stau NLSP can therefore be obtained in a region
close enough to that boundary. Also shown in figure are the regions (separated
by a dotted line) in which the lightest coloured particle is the lightest stop or the
gluino. Finally, the ratio of left and right handed squared selectron masses is also
shown (dashed yellow lines). As a peculiar prediction of the minimal SO(10) TGM
scenario, that ratio is predicted to be 2 at the tree level. A deviation from two is
induced by loop corrections due to SM gauge mediation effects. The figure shows
that the deviation is small enough not to spoil the tree level prediction. The ratios
of squark masses are affected by larger corrections.

In the light of the discussion above, we will consider three representative points
in the parameter space in which the NLSP is a bino like neutralino, a wino like
neutralino or a stau.

3.4.4 Three benchmark points

For the following phenomenological analysis we consider three benchmark points
with different NLSP. Here we shall see their main features before devoting to collider
searches for them.

3.4.4.1 Bino NLSP benchmark point

The case in which a bino like neutralino is the NLSP of the framework is probably
the most promising from a phenomenological point of view. In turn it is a situation
in which the TGM ratio can be easily obtained without many interferences from
two loop contributions to soft masses and still get a reasonably light spectrum.

When the spectrum of figure 3.5 is considered one would expect that at the LHC
collider the typical final states are characterized by a large presence of b-enriched
final states accompanied by multileptonic signals. The produced b’s come from
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Figure 3.4: Nature of the NLSP in the allowed m10–M1/2 parameter space for tanβ = 10, cos θu =

0.8, cos θd = 0.8, sign(µ) = 1, for r = 1 (a) and r = 0.2 (b). The NLSP is a neutralino in the violet

region and a stau in the light blue region. The violet region corresponds to a bion like neutralino

in the left panel (a) and to a wino like neutralino in the right panel (b). The regions in which the

lightest coloured particle is a stop or a gluino are separated by a black dotted line. Also shown is

the ratio m2
ẽL

/m2
ẽR

of left and right handed squared selectron masses (dashed yellow lines).

electroweak decays. In particular it is very interesting the situation in which, as
in our benchmark point, along with the usual W and Z channels, also the Higgs
boson can be produced in the cascade6, making the situation even more intriguing,
because of the large branching fraction H → bb. Because of the large MET owed
to the χ0

1, the characteristic feature of such models would be the presence of both
SUSY traces and the Higgs boson in the same event. The latter situation makes it
profitable to consider such a scenario both with inclusive and exclusive dedicated
searches.

3.4.4.2 Wino NLSP benchmark point

The case in which a wino like neutralino is the NLSP of the framework is not
as promising as the one previously discussed, but it still yields some interesting
phenomenology. It is a perfect benchmark for an inclusive analysis, and it is again
characterized by a quite clear evidence of the soft mass ratios since the two loop
contributions do not spoil too much the tree level prediction. In this case the
inversion of the hierarchy between the two lightest gauginos comes along with the
presence of a compression of the mass spectrum of the lightest neutralinos, thus
making the decay χ0

2 → χ0
1H kinematically forbidden. In this respect it is then

comparatively more profitable to look at this situation with semi- and full-leptonic

6This is possible if the decay χ0
2 → χ0

1H is kinematically allowed.
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Figure 3.5: The SUSY spectrum of the benchmark point with bino NLSP calculated with our

modified version of the softSUSY package [64]. The decays are depicted by the dashed grey arrows,

which are scaled with the respective BR calculated via SUSY-HIT [65]: only BRs greater than

0.1 are shown. The parameters for the point under analysis are: m10 = 1.0 TeV, cos θu = 0.9,

cos θd = 0.9, γ = 15, r = 1, rD1,2 = rL1,2 = 1, tan β = 10, sign(µ) = +

channels.

3.4.4.3 Stau NLSP benchmark point

The case in which the stau is the NLSP of the theory is probably the less interesting
from the TGM point of view. In those regions of parameter space characterized
by a stau NLSP the tree level and the two loop contributions to coloured sfermion
masses are comparable. In this situation one can use searches for heavy charged
stable particles, on top of inclusive ones. The stau indeed is not expected to decay
to the gravitino within the collider as such a decay is very slow since mediated by
gravitational interactions.

3.5 Razor and TGM smoking gun

The study of unbalanced events allows to probe the production of SUSY events at
the LHC. The ATLAS and CMS experiments have collected so far ∼ 5 fb−1 at 7
TeV and are expected to collect ∼ 20 fb−1 at 8 TeV. The current limits are pushing
the masses of the coloured superpartners above the 1 TeV threshold for generic MFV
models [71, 72], while lower masses are allowed for stop and sbottom in the case of
models with large mass splitting among the third family and the others [73,74]. So
far, the possibility of light charginos and neutralinos has been tested only through
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Figure 3.6: The SUSY spectrum of the benchmark point with wino NLSP calculated with our

modified version of the softSUSY package [64]. The decays are depicted by the dashed grey arrows,

which are scaled with the respective BR calculated via SUSY-HIT [65]: only BRs greater than 0.1

are shown. The parameters for the point under analysis are: m10 = 550 GeV, cos θu = 0.9,

cos θd = 0.9, γ = 20, r = 0.2, rD1,2 = rL1,2 = 1, tanβ = 10, sign(µ) = +

multi lepton final states [75, 76], which suffer from the suppression coming from
Z → ℓℓ and W → ℓν branching ratios. The increase in the center of mass energy
will be beneficial to push the mass limits on squarks and gluino above the TeV
scale, while the search for light EW gauginos will be pushed by the larger collected
luminosity.

In this scenario, a possible hint of new physics could emerge by the end of
2012, but even in this situation the mission would be far from being accomplished.
The search for SUSY would be completed by the characterization of a possible
excess in terms of a specific SUSY model, to possibly underline the nature of the
SUSY breaking mechanism and of its mediation. Accomplishing this goal, sometimes
referred to as the inverse LHC problem [77], would imply the use of kinematic
variables sensitive to the mass of the produced particles in as many final states as
possible.

The TGM class of models offers a very reach phenomenology at the LHC, chal-
lenging the experiments on several fronts at the same time (e.g. high mass searches,
compressed gaugino spectra, . . . ) and producing many interesting scenarios, such as
Higgs production in SUSY cascades. In this respect, TGM is an interesting play-
ground on which the performances of different searches (e.g. hadronic vs. leptonic
searches) could be compared, and, on top of that, it comes with a specific prediction
on the ratio of sfermion masses, which should be tested by experiments in case an
excess is found.

Keeping in mind the latter consideration we think that the razor inclusive anal-
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Figure 3.7: The SUSY spectrum of the benchmark point with stau NLSP calculated with our

modified version of the softSUSY package [64]. The decays are depicted by the dashed grey arrows,

which are scaled with the respective BR calculated via SUSY-HIT [65]: only BRs greater than 0.1

are shown. The parameters for the point under analysis are: m10 = 800 GeV, cos θu = 0.9,

cos θd = 0.9, γ = 35, r = 1, rD1,2 = rL1,2 = 1, tan β = 35, sign(µ) = +

ysis by CMS [74,78] would be an ideal tool to highlight the smoking gun of minimal
TGM. From the general discussion in appendix A.4 we see that as far as our spectrum
is characterized by two well defined mass scales, namely corresponding to q̃, ũc, ẽc

and d̃c, l̃ sfermions, the distribution of the MR variable will identify the latter as two
different peaks of definite mass. More specifically such peaks will occur for those
values of M∆, see equation A.19, corresponding to the decays of the squarks towards
the NLSP. The peculiar phenomenological prediction of TGM, the ratio in equation
3.6, would then be translated to a ratio between the position of the two peaks in
the distribution of MR given by

Mdc,l
∆

M q,uc,ec

∆

=
√

2

(
1 +

m2
NLSP

2m̃2
10

+ . . .

)
. (3.33)

Unfortunately the situation just depicted is too simplistic as many different effects
tend to broaden the MR distribution, causing a partial or total overlap of the dif-
ferent peaks. Anyway, with high luminosity and sufficient separation (& 30% of the
peak position) one could distinguish the peaks even in presence of detector effects.

The main issue connected with the use of razor, just as any other inclusive
analysis tool, is the lack of probes for light gauginos directly hitting the detector,
since the trigger is based on the detection of jets (or jet + one lepton) with broad
cuts. Since in our scenario, along with many others, there is a large presence of such
superpartners coming from direct production channels, this represents a possible
phenomenological issue.
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In this respect, the comparison of the leptonic vs. hadronic razor boxes could be
used to disentangle the EW part of the SUSY spectrum from the tipically heavier
coloured one. To this purpose one could improve the framework adapting the razor
strategy to the current dilepton and multi lepton analyses. For instance, the low MR

region of the razor plane could be investigated using the dilepton triggers, applying
cuts on MR at the level of roughly 100 GeV, and thus making it possible to spot
the peaks owed to the decays of light gauginos. The obvious drawback of the latter
procedure, represented by large SM backgrounds, could be easily circumvented by
means of tight cuts on R. It is quite obvious then that a specific dilepton razor
analysis performed for large integrated luminosity could complement the search for
coloured particles in events with jets.

To sum up the razor analysis, eventually upgraded with dileptonic trigger, would
certainly be a perfect tool for analyzing TGM scenarios. While a detailed analysis
of the TGM parameter space would imply a CPU need that goes beyond our possi-
bilities, we show here what our TGM benchmark points, introduced in section 3.4.4,
would look like in a razor search. We also associate to each benchmark point an
upper limit on the SUSY cross section, derived following the instructions provided
by the CMS collaboration [79].

3.5.1 Analysis of the benchmark points

We start by computing the SUSY spectrum evolving the parameters of equations
3.2 and 3.3 with the RGEs described in appendix A.2 down to low energies using a
modified version of softSUSY package [64]; knowing the spectrum we calculate the
branching ratios via SUSY-HIT [65]. Then we generate a sample of SUSY events at
the center of mass energy of 7 TeV using PYTHIA8 [80]. We cluster jets from the
stable particles in the event, ignoring neutrinos and the NLSP, with the anti-Kt jet
algorithm [81] as implemented in FASTJET [82,83]. The energy of the generator level
jets is then modified in order to take into account the detector resolution of the CMS
detector [84]. The resolution is modeled according to a Gaussian response function
both for the jet transverse momenta and the missing transverse energy (MET).

The CMS collaboration provides the information to reinterpret the razor analy-
sis, limited to the hadronic box: our simulation of the jet and MET reconstruction
would then be sufficient to the scope. Nevertheless we decided to show the distribu-
tion of MR and R2 also in other boxes, obtained considering muons and electrons at
the generator level. This simplification is good enough to reconstruct the kinematic
properties of the event, but it overestimates the signal yield, since no inefficiency is
associated to the lepton reconstruction. These plots should then be interpreted as a
qualitative illustration of the sensitivity to TGM in the leptonic boxes, waiting for
more information being released by the CMS collaboration.

We show in figure 3.8 the MR and R2 projections for the hadronic, leptonic, and
semileptonic boxes in the benchmark points under analysis. One could notice that
the different decay chains produce different distributions, even within one model.
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Figure 3.8: MR (left) and R2 (right) distributions for a set of TGM benchmark points, as obtained

for the CMS razor hadronic (top), leptonic (center), and dileptonic (bottom) boxes.

The presence of two competitive decay chains in one model generates a multimodal
distribution, each local maximum corresponding to a different mass split between
the produced sparticle and the NLSP. One should notice that we further assume the
stable staus to be too slow to be detected with the ordinary event reconstruction7.

In the MR distribution for two of the benchmark models two peaks arise, which
are associated to the decays of the squarks and of the Next to NLSP to the NLSP
itself. On top of that the broad peak one observes for the squarks extends beyond
the width expected from the experimental resolution, showing how such a peak is
best fitted by two overlapping bells. It is also interesting to stress the fact that

7Recently, it was also pointed out that these particles could receive a boost if produced in

the cascade decay of heavier particles. In this case they should be detected as ordinary muons,

with no missing energy in the event. In this sense, any conclusion we obtain neglecting this effect

overestimates the sensitivity of the razor analysis to these models, since a misidentification of the

stau as a muon would reduce the value of R2 and consequently the efficiency of the analysis.
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the relative composition changes in different boxes. This illustrates how one could
obtain extra handles for model discrimination in this analysis.

The majority of the squark events happen to be at MR ∼ 1 TeV, meaning that
the benchmark models considered are characterized by an energy scale higher than
what was tested with 7 TeV collisions. In this respect, the update of the razor search
to the 8 TeV data could give interesting results. Following the instructions given
by CMS [79] we compute the excluded cross section for each benchmark model and
compare it to the next to leading order (NLO) value, obtained from PROSPINO [85].
Such a limit is obtained only from the hadronic box; a more stringent one could
be obtained with the information related to the leptonic boxes that still have to
be released by the CMS collaboration. In the case of the stau benchmark point
one would need a more detailed detector simulation to correctly take into account
the fraction of events in which the two staus actually contribute to the missing
transverse energy in the event. If this fraction is small, the limit would be much
weaker than what quoted in table 3.3.

Model NLO SUSY cross section [pb] excluded cross section [pb]

TGM bino 0.008 0.082
TGM wino 0.006 0.053
TGM stau 0.021 0.21

Table 3.3: Theoretical NLO SUSY cross section for the three benchmark points obtained from

PROSPINO [85] compared to the excluded cross section calculated following the indications of the

CMS collaboration [79].

Keeping these warnings in mind, one could then compare the predicted and
excluded cross sections, showing that the benchmark poits are still not ruled out by
the experiments. A much higher luminosity (and more inclusive triggers) would be
needed to test this kind of scenarios, which can be obtained from considering also
the collisions at 8 TeV in the center of mass that are currently run.

Finally, in the case in which the NLSP is the stau some bounds on its mass can be
set from the searches on the heavy charged stable particles, as anticipated in section
3.4.4.3: the stau, indeed, decays to the gravitino outside the detector. Such limits
in the TGM framework are in general less restrictive than those in LGM since the
additive tree level contribution to stau soft mass term accounts for a comparably
smaller production cross section. As shown in figure 3.9 the recent experimental
results accounts for a TGM stau mass larger than 220 ÷ 250 GeV.
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Figure 3.9: In order to set some limits on the NLSP stau mass we calculated the predicted the-

oretical cross section and then compared the latter with the observed 95% CL upper limit [86].

The black line represent the experimental bound on the cross section taking into account only

the selection based on the tracker, while the red line is based also on the time of flight (TOF).

The green line the theoretical direct production cross sections for stau on which we added the

subleading contribution of the indirect stau production owed to the squark and gluino channels,

all of these contribution computed through PROSPINO. All in all we can give a mass bound for the

stau of 220 ÷ 250 GeV.
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In this chapter we extend the TGM framework to the case of E6, which, besides
being independently well motivated and widely studied in the literature [87–90], is
strongly motivated by TGM. As we have seen in chapter 3, in the context of SO(10)

the chiral superfield spectrum needed for TGM to work contains three families of
16 + 10 representations, which, together with an SO(10) singlet, form precisely
the fundamental of E6: 27 = 16 + 10 + 1. The E6 vector spectrum contains four
new SM singlets and thus allows for a variety of possibilities for combining the
corresponding D-terms. To be general, we will consider the possibility that part of
E6 is broken by boundary conditions in the context of Extra Dimensions [91, 92],
so that we will deal with an effective theory below the compactification scale with
a gauge group that is a Rank 5 or Rank 6 subgroup G of E6. Despite the large
number of possible E6 subgroups containing GSM, we will see that there are only
three different cases corresponding to the number of vector messengers. As far as
the tree level sfermion mass prediction is concerned, what matter are the structure
and the breaking of the SM singlet generators by scalar and F-term vevs, inducing
D-terms for the corresponding vector superfields. Their number is either one, two or
four and we will study the three cases in sections 4.2, 4.3 and 4.4 respectively. As a
robust prediction we will find that sfermion masses are SU(5) invariant at the GUT
scale, even if the gauge group does not contain SU(5) itself. We notice that some
of the notations of this chapter will differ from those presented up to now since we
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believe that in this way the discussion is clearer in some crucial points. With the
help of the tables in appendix B.2, anyway, there will be no troubles for the reader.

4.1 General Framework

Let us determine the possible TGM SUSY breaking messengers. The gauge group
we want to consider is a subgroup G of E6 (including E6) containing the SM group
GSM. The messengers are a subset of the SM singlet E6 vectors. In order to identify
the latter, let us decompose the E6 adjoint with respect to GSM and consider the
embedding of the SM group GSM in E6 through the maximal subgroup SO(10) ×
U(1)10. The relevant subgroup chain is

E6 → SO(10) × U(1)10 → SU(5) × U(1)5 × U(1)10 → GSM × U(1)5 × U(1)10 ,

(4.1)

and the corresponding decomposition of the E6 adjoint 78 is (we illustrate the
decompositions of the fundamental and adjoint representation of E6 in tables B.2
and B.3 at the end of appendix B.2)

78 → 450 + 16−3 + 163 + 10 (4.2a)

450 → 240,0 + 10−4,0 + 104,0 + 10,0 10 → 1′
0,0

16−3 → 5−3,−3 + 101,−3 + 15,−3 163 → 53,3 + 10−1,3 + 1−5,3 .
(4.2b)

Therefore the new four SM singlets contained in E6 are the fields
10,0,1

′
0,0,15,−3,1−5,3, the first two corresponding to the U(1) factors U(1)5 and

U(1)10. Since all these generators commute with SU(5) the sfermion masses from
TGM will be SU(5) invariant (provided the embedding of MSSM fields is in full
SU(5) multiplets1). This constitutes one of the main phenomenological predictions
of TGM.

As for the SM matter, we will consider an embedding in irreps of G that arises
from the fundamental representation 27 of E6. Under the subgroup chain in equa-
tion 4.1 the 27 decomposes as

27 → 161 + 10−2 + 14 (4.2c)

161 → 5−3,1 + 101,1 + 15,1 10−2 → 52,−2 + 5−2,−2 14 → 10,4 . (4.2d)

We therefore have some freedom to embed the SM fields, namely we can choose
whether to embed dc, l into 5−3,1 or 52,−2 (or a linear superposition of both). The
choice will be dictated by the requirement that the sfermion masses from TGM are
positive. Moreover we only want to consider pure embeddings of the MSSM matter
fields in the 27 of E6. By pure embedding we mean that each SM fermion multiplet
can be embedded into a single irreducible representation of the gauge group, and the
representation is the same (or equivalent) for the three families. This assumption of

1We will see that this is a well motivated assumption, even if G does not contain SU(5).
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pure embeddings is crucial to obtain flavour universal sfermion masses (since there
is no flavour problem with Higgs soft masses we allow mixed embeddings for the
MSSM Higgs multiplets).

In order to break gauge symmetry and SUSY we will need scalar and F-term
vevs of SM singlet fields. For this purpose we introduce a certain number of Higgs
fields, which are distinguished from the matter fields by means of a symmetry like
matter or R-parity. The SM components of the matter will be denoted by small
letters and the components of higgs fields by capital letters. We will consider only
singlets contained in the 27,27 and 78 of E6, which are 10,4,15,1,1−5,3 + conjugated
= N c′, N c, S′

+,N
c′
,N

c
, S′

−.

As a gauge group we will consider not only E6 but also a generic Rank 5 or
Rank 6 subgroup G of E6 which contains GSM. This is because we want to consider
the possibility that part of E6 is broken (to G) through boundary conditions in
the context of Extra Dimensional GUT models [91, 92]. The model is in this case
supposed to describe the effective theory below the compactification scale. Without
loss of generality we can assume that G ⊇ GSM×U(1)X ≡ Gmin, where the U(1)X is
a generic linear combination of the two U(1)’s that appear in the subgroup chain in
equation 4.1. The SM singlet generators contained in G can be either just the linear
combination U(1)X , both U(1)5 and U(1)10 or all four singlets 10,0,1

′
0,0,15,−3,1−5,3

(which form a U(1)′×SU(2)′ subgroup of E6). We now analyze the three possibilities
in this order.

4.2 One Messenger Case: G ⊃ U(1)X

We will start with the simplest case in which there is only one SM singlet generator
in G, corresponding to a U(1)X subgroup. We assume that one can choose suitable
boundary conditions such that this generator is given as general linear combination
of the normalized generators t̂5 and t̂10

t̂X ≡ sin θX t̂5 + cos θX t̂10 θX ∈ [0, π] . (4.3)

Sfermion masses arise from the breaking of this generator by scalar and F-term vevs
according to the first term of equation 2.19. The dependence on these vevs can be
parametrized by a single real parameter m2

X , whose expression in terms of the vevs
can be found in appendix B.1. We obtain for the sfermion mass of the sfermion f

with X-charge Xf

m2
f = Xfm

2
X , (4.4)

so that the sfermion masses of the candidate matter fields in the 101,1,5−3,1,52,−2

are given by

m2(5−3,1) = (−3ŝX + ĉX)m2
X (4.4a)

m2(101,1) = (ŝX + ĉX)m2
X (4.4b)

m2(52,−2) = 2(ŝX − ĉX)m2
X , (4.4c)
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where ŝX ≡ 1/
√

40 sin θX and ĉX ≡ 1/
√

24 cos θX . These masses satisfy the useful
tree level identity

m2(5−3,1) +m2(52,−2) +m2(101,1) = 0 . (4.5)

We now show that if we assume pure embeddings of MSSM matter and require
sfermion masses to be positive, then the embeddings and therefore sfermion masses
are also SU(5) invariant. First note that the embedding of ucSM, qSM, ecSM in the 27

is unique and SU(5) invariant, namely all fields must reside in the 101,1. As for dcSM

and lSM, in principle we have two possibilities for each of them: dcSM = dc ⊂ 5−3,1

or dcSM = d′c ⊂ 52,−2 and lSM = l ⊂ 5−3,1 or lSM = l′ ⊂ 52,−2. But the relation 4.5
implies that at least one of the soft terms m2(101,1),m

2(5−3,1),m
2(52,−2) must be

negative. Since we require that m2(101,1) is positive, either m2(5−3,1) or m2(52,−2)

can be positive. This means that dcSM and lSM must be embedded in the same 5,
which is 5−3,1 if m2(5−3,1) > 0 and 52,−2 if m2(52,−2) > 0. Therefore we have
the tree level prediction that sfermion soft masses are SU(5) invariant and flavour
universal:

(m̃2
dc)ij = (m̃2

l )ij = m̃2
5
δij (m̃2

uc)ij = (m̃2
q)ij = (m̃2

ec)ij = m̃2
10δij , (4.6)

with generic m̃2
5

and m̃2
10 depending only on θX and m2

X .

We can consider the two simplifying cases in which either U(1)X = U(1)5 or
U(1)X = U(1)10. In the first case we have ŝX = 1/

√
40, ĉX = 0, which implies that

we need m2
X > 0 and the light sfermions are dc′, l′ in 52,−2. The ratio m̃2

10/m̃
2
52,−2

is

fixed to be 1/2 and we merely reproduced the SO(10) model already described in
full detail in chapter 3.

In the second case ĉX = 1/
√

24, ŝX = 0 we need again m2
X > 0, but now the

light sfermions are dc, l in 5−3,1. We have m̃2
10 = m̃2

5−3,1
and therefore obtain SO(10)

invariant sfermion masses, which follows immediately from the fact that U(1)10
commutes with SO(10) (and the SM fermions are embedded in a single SO(10)

representation). Note that in this way we can reproduce the popular boundary
conditions of Constrained MSSM (CMSSM) for sfermion masses at the scale where
U(1)X is broken (except for the Higgs masses). In this scenario they are naturally
flavour-universal since they arise from (extra) gauge interactions which are universal
for pure embeddings.

What regards the MSSM higgs soft masses we can have in principle a mixed
embedding of hu and hd in the 27,27 and 78 higgs fields. That is, hd and hu can in

general be a linear combination of the fields L27, L′27, L27, L78 and L
27
, L′27, L

27
, L

78
,

respectively. The only requirement is that the coefficient of that field that actually
couples to the light MSSM matter fields is sizable, i.e. L

27
for hu and L27 (L′27) for

hd if the light fields dcSM , lSM are in 52,−2 (5−3,1). The Higgs soft masses depend
on the precise embedding but can range only in certain intervals that are set by the
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soft masses of L27, L′27, L27, L78 and L
27
, L′27, L

27
, L

78
. We find that

m2
hd

∈
[
min{−3m̃2

10,−m̃2
5
− m̃2

10},max{2m̃2
10, m̃

2
5
}
]

(4.7)

m2
hu

∈
[
min{−2m̃2

10,−m̃2
5
},max{3m̃2

10, m̃
2
5
+ m̃2

10}
]
, (4.8)

In order to discuss gaugino masses we have to specify, at least in part, the
superpotential. Let us start from identifying the relevant fields. We first have the
chiral matter fields (defined by an appropriate assignment of a negative matter or R
parity) associated to subrepresentations of three E6 fundamentals, 27i, i = 1, 2, 3,
and grouped of course in a set of full G representations. Besides the fields of a whole
SM family and two singlets, the 27 of E6 contains additional 10 degrees of freedom.
We have in fact two copies of the down quark and lepton fields, dc, dc′, l, l′ and
one copy of fields with conjugate quantum numbers, dc, l. This is welcome, as such
extra degrees of freedom need to be (and can be easily made) heavy and, as such,
they can play the role of the chiral messenger responsible of gaugino masses, as in
ordinary LGM2. Let us see how they get heavy.

As the candidate chiral messengers have different charges under U(1)X , a mass
term for them can only come from the vev of a SM singlet breaking U(1)X . In
particular, the only possibility is to use the N c, N c′ and N c, N c′ contained in Higgs
27 and 27. Without loss of generality, we can choose a basis in the flavour space
of each of such singlets in which only one of them, say N c

M , N c′
M , N c

M , or N c′
M ,

gets a vev. Mass terms for the chiral messengers then arise from the following
superpotential interactions

(hlM )ij liljN
c
M + (hdM )ijdcid

c
jN

c
M + (hl

′

M )ij l
′
iljN

c′
M + (hd′M )ijd

′c
i d

c
jN

c′
M . (4.9)

The couplings in the superpotential terms above can be related to each other and
to other superpotential couplings by gauge invariance, depending on the choice of
G.

Assuming that all the couplings are non vanishing, we need a scalar vev either
for N c

M or N c′
M , but not for both, in order to avoid mixed embeddings. In order to

generate gaugino masses, the fields that get a heavy mass term must also couple to
SUSY breaking (but not the light ones, in order to avoid negative contributions to
sfermion masses). This can again be achieved only by coupling them to N c, N c′,
N c, N c′ singlets getting an F-term vev. The relevant superpotential interactions
have the same form as above,

(hlF )ij liljN
c
F + (hdF )ijdcid

c
jN

c
F + (hl′F )ij l

′
iljN

c′
F + (hd′F )ijd

′c
i d

c
jN

c′
F . (4.10)

Gauge invariance (see section 2.2.1) is automatically satisfied if the field getting
F-term vev is different from the field getting scalar vev.

In summary we can distinguish two cases depending on the embedding of the
light fields dcSM , lSM

2If the gauge group is not E6, or it does not contain SU(2)′ (see below), those extra components

could actually be absent. We are obviously not interested in such a case.
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A) N c′
M = 0, N c′

F = 0, N c
M = M , N c

F = Fθ2 (dcSM , lSM are dc′, l′ in 52,−2)

B) N c
M = 0, N c

F = 0, N c′
M = M , N c′

F = Fθ2 (dcSM , lSM are dc, l in 5−3,1) .

This gives rise to one loop gaugino masses Mi given by

M3 =
g2
3

16π2

F

M
Tr

[
hdF

(
hdM

)−1
]

(4.11a)

M2 =
g2
2

16π2

F

M
Tr

[
hlF

(
hlM

)−1
]

(4.11b)

M1 =
g2
1

16π2

F

M
Tr

[
3

5
hlF

(
hlM

)−1
+

2

5
hdF

(
hdM

)−1
]

(4.11c)

for case A, and for case B with the replacements hdF,M → hd′F,M and hlF,M → hl′F,M .
Note that the dc and l contributions to gaugino masses can be split into three

contributions each, corresponding to the three messenger mass eigenstates that are
related to the three eigenvalues of (hdM )ijM and (hlM )ijM . Each of these contribu-
tions should be evaluated at the corresponding mass scale. If G ⊃ SU(5), one gets
universal gaugino masses, up to corrections from non renormalizable operators, as
discussed in chapter 3.

4.3 Two Messengers Case: G ⊃ U(1)5× U(1)10

We now consider the case with two SM singlet generators corresponding to the
U(1)5 × U(1)10 subgroup. Since the discussion of gaugino masses and Higgs soft
masses is exactly same as before we will not repeat it again and restrict to tree level
sfermion masses.

The sfermion masses of the candidate matter fields in the 101,1,5−3,1,52,−2

depend only on their charges under U(1)5 ×U(1)10 and the two parameters m2
5 and

m2
10 that are calculated in appendix B.1. We get

m2(5−3,1) = −3m2
5 +m2

10 (4.11d)

m2(101,1) = m2
5 +m2

10 (4.11e)

m2(52,−2) = 2m2
5 − 2m2

10 , (4.11f)

with the tree level identity

m2(5−3,1) +m2(52,−2) +m2(101,1) = 0 . (4.12)

As in the previous section we can use this identity to show that for pure embeddings
of the matter fields and positive sfermion masses we get SU(5) invariant sfermion
masses. Therefore we have the tree level prediction that sfermion soft masses are
SU(5) invariant and flavour universal:

(m̃2
dc)ij = (m̃2

l )ij = m̃2
5
δij (m̃2

uc)ij = (m̃2
q)ij = (m̃2

ec)ij = m̃2
10δij , (4.13)
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with generic m̃2
5

and m̃2
10 that depend on the scalar and F-term vevs according to

the formulae given in appendix B.1. We did not find simplifying limits with definite
predictions for sfermion mass ratios other than m̃2

5
/m̃2

10 = 1/2, which was considered
already in [50]. The ranges for the Higgs masses are the same as in section 4.2.

4.4 Four Messenger Case: G ⊃ U(1)′ × SU(2)′

Let us now consider the case in which all the four E6 candidate SUSY breaking
messengers belong to G. The four messengers correspond to the E6 subgroup U(1)′×
SU(2)′. The SU(2)′ is the one appearing in the E6 maximal subgroup E6 ⊃ SU(6)×
SU(2)′ and the U(1)′ is the subgroup of SU(6) that commutes with SU(5), as shown
in appendix B.2. We denote the corresponding generators as t′ and t′a, a = 1, 2, 3.
The two additional generators, with respect to the previous section, are t′1 and t′2,
which can be combined into two complex generators t′± = (t′1 ± it′2)/

√
2, while

t′3 and t′ are linear combinations of t5 and t10 given by t′3 = (t10 − t5)/8 and
t′ = (3t5 + 5t10)/4.

The role of the SU(2)′ symmetry is to make the two 5 and the two singlets
of SU(5) in the 27 of E6 equivalent, i.e. belonging to the same SU(2)′ doublet.
Denoting by (a, b)q the representation which transforms as (a, b) under SU(5) ×
SU(2)′ and has t′ = q, we have in fact

5−3,1 + 52,−2 = (5,2)−1 10,4 + 15,1 = (1,2)5 , (4.14)

while the 10 and 5 of SU(5) in the 27 are SU(2)′ singlets and have charge t′ = 2,−4

respectively. This makes a qualitative difference in the way sfermion masses are
generated but will not alter the conclusion in equation 4.17.

The masses of the SUSY breaking messengers and the breaking of U(1)′×SU(2)′

are due to the vevs of the singlets N c′, N c,N c′,N c, S′
+, S′

−, as before, which are
now grouped into doublets and triplets of SU(2)′×U(1)′. As shown in appendix
B.1, in the presence of an arbitrary number of such representations, the masses for
the sfermions in the case of the SU(2)′ singlets in the 27 are given by

m2((10,1)2) = 2m2
1 (4.15a)

m2((5,1)−4) = −4m2
1 . (4.15b)

Note that the need for non negative tree level soft terms for the sfermions embedded
in the 10 of SU(5) requires m2

1 ≥ 0. The SU(2)′ doublets in the 27 can mix, and
their mass matrices are given by

m2((5,2)−1) =




m2
3

2
−m2

1

m2
+√
2

m2
−√
2

−m
2
3

2
−m2

1


 (4.16a)
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m2((1,2)5) =




m2
3

2
+ 5m2

1

m2
+√
2

m2
−√
2

−m
2
3

2
+ 5m2

1


 . (4.16b)

The four parameters m2
3, m

2
1, m

2
± correspond to the four messengers. The first two

are real, while m2
+ = (m2

−)∗.
The MSSM masses of the sfermions that can be embedded in a 10 of SU(5) are

universal and given by 2m2
1 at the tree level. In order to identify the masses of the

MSSM sfermions that can be embedded in a 5 of SU(5), we have to identify the
light dcSM and lSM in the multiplets (5,2)−1. In principle, the three light leptons
liSM could be superpositions of the three t′3 = 1/2 lepton doublets li and of the three
t′3 = −1/2 lepton doublets l′i contained in three (5,2)−1. On the other hand, it can
be shown that the natural solution of the flavour problem requires that it must be
possible to identify the three light leptons with, for example, the t′3 = 1/2 lepton
doublets li: liSM = li, up to an SU(2)′ rotation. This is indeed what is obtained in
simple models, as shown below. The three leptons turn then out to have universal
soft terms proportional to m2

5
= m2

3/2 −m2
1.

If the gauge group contains SU(5), the same results hold in the dc sector. If not,
the three light dcSM are also aligned in SU(2) space, but they could in principle be
oriented in a different direction. We will see that, under plausible hypotheses, this
is not the case, so that we get again the prediction that the sfermion soft masses
are SU(5) invariant and flavour universal at the tree level:

(m̃2
dc)ij = (m̃2

l )ij = m̃2
5
δij (m̃2

uc)ij = (m̃2
q)ij = (m̃2

ec)ij = m̃2
10δij , (4.17)

with generic m̃2
5

and m̃2
10.

The discussion of MSSM Higgs soft masses is similar as before. Now hd and hu
can in general be a linear combination of the doublets in (5,2)−1,(5,1)−6, (5,1)4 and
(5,2)1, (5,1)6, (5,1)−4 respectively. The range for the Higgs masses (for simplicity
we consider the case m2

+ = 0) is

m2
hd

∈
[
min{−6m2

1,
m2

3

2
−m2

1,−
m2

3

2
−m2

1},max{m
2
3

2
−m2

1,−
m2

3

2
−m2

1, 4m
2
1}
]

m2
hu

∈
[
min{−m

2
3

2
+m2

1,
m2

3

2
+m2

1,−4m2
1},max{6m2

1,−
m2

3

2
+m2

1,
m2

3

2
+m2

1}
]
.

The presence of the SU(2)′ guarantees that the MSSM lSM = li and dcSM = dci
(and the singlets N c needed to generate masses) come together with SU(2)′ partners
l′i and dc′i (and N c′), which need to be heavy and, as such, can play the role of the
chiral SUSY breaking messengers responsible for one loop gaugino masses through
ordinary LGM mechanism. Since they must get heavy with their conjugates, the
presence of the li, dci from the 27i is also guaranteed.
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Let us see how they get heavy. First, let us denote the three SU(2)′ doublets
containing the light fields as li = (li, l

′
i)
T , dc

i = (dci , d
′c
i )
T . Mass terms for the extra

charged matter fields can only come from superpotential interactions

(hlM )ij liljN
c
M + (hdM )ijdcid

c
jN

c
M , (4.18)

where we have assumed for simplicity that only one doublet Nc
M = (N c′, N c)T gets

a vev in the scalar component. If G ⊂ SU(5), hlM = (hdM )T , up to corrections from
non renormalizable operators, as discussed in chapter 3. We can rotate without
loss of generality the vev in the N c component: 〈Nc

M 〉 = (0,M)T . Then, the li
and dci fields automatically end up being also massless, and the flavour problem is
naturally solved. Note also that this represents an improvement with respect to the
SO(10) theory studied in [50, 51] and with respect to the one and two messenger
cases studied in the previous sections. In those cases, in fact, the possible presence
of a bare mass term µijlilj could give rise to a non pure embedding and to flavour
non universal soft masses. In this case, such a bare mass term is forbidden by the
SU(2)′ symmetry.

If more than one Nc gets a vev coupled to the light fields, the flavour problem
is automatically solved if, in an appropriate SU(2)′ basis, all those vevs lie in the
N c component only. If that is the case, we can use a basis in the Nc flavour space
such that only one of them gets a vev, and we can still use equation 4.18. In order
to avoid negative, tree level contributions to sfermion masses from chiral superfield
exchange, we need the N c′ components not to get an F-term either. In order to
generate gaugino masses, one of the N c must however take an F-term vev. Gauge
invariance (see section 2.2.1) is automatically satisfied if the field getting the F-term
vev, Nc

F , with 〈Nc
F 〉 = (0, Fθ2)T , is different from the one getting the scalar vev,

Nc
M . Let

(hlF )ijliljN
c
F + (hdF )ijdcid

c
jN

c
F (4.19)

be its coupling to the chiral messengers. The gaugino masses are then given by

M3 =
g2
3

16π2

F

M
Tr
[
hdF (hdM )−1

]
(4.20a)

M2 =
g2
2

16π2

F

M
Tr
[
hlF (hlM )−1

]
(4.20b)

M1 =
g2
1

16π2

F

M
Tr

[
3

5
hdF (hdM )−1 +

2

5
hdF (hdM )−1

]
. (4.20c)

The dc and l contributions to gaugino masses can be split into three contributions
each, corresponding to the three messenger mass eigenstates, namely to the three
eigenvalues of Mdc and Ml. Each of the three contributions should be evaluated at
the corresponding mass scale.

4.5 Phenomenology

In this section we briefly comment on some general aspects of TGM phenomenology
in the setup we considered. In TGM models sfermion masses arise at tree level, while
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gaugino masses arise at one loop. As mentioned, the hierarchy between gaugino and
sfermion masses that one might naively expect, potentially leading to sfermions
outside the reach of the LHC and to a serious fine tuning problem, turns out to be
reduced by various effects down to a mild hierarchy. The hierarchy could actually
easily be fully eliminated, but a mild hierarchy is actually welcome, as it makes the
ordinary two loop gauge mediated pollution of tree level sfermion masses subleading,
and will be assumed in the following.

The Higgs sector parameters are not tightly related to sfermion and gaugino
masses. The µ and Bµ parameters are highly model dependent3, and the Higgs soft
masses depend on the Higgs embedding, which is allowed to be mixed in different
representation of the gauge group, as discussed above equations 4.7. The coefficients
Xeff will be conveniently taken in their ranges, while µ and Bµ will be treated as
free parameters and as usual traded for MZ and tan β.

Trilinear A-terms arise typically at one loop as they are generated by the ex-
change of heavy chiral messengers that couple directly to MSSM fields in the super-
potential. Their value is model dependent, as it is controlled by unknown superpo-
tential parameters, but it can safely neglected in a sizeable part of the parameter
space [50–52].

In the following we present two representative low energy spectra that can be
obtained in the present framework. As a result of the previous sections we found
that the main phenomenological prediction of extended TGM is that the tree level
contribution to the sfermion masses is SU(5) invariant and flavour universal, and
thus parametrized by two parameters m̃2

5̄
, m̃2

10 which are independent in the general
case. These tree level predictions for sfermion masses hold at the messenger scale
where the soft terms are generated. In order to recover the low energy spectra we
have to keep into account both the finite two loop contributions from LGM and the
RG effects. Since sfermion masses are in our example heavier than gaugino masses,
the predictions for the sfermion mass patterns are approximately preserved at low
energy. One therefore expects two separated sets of sfermions grouped according to
their SU(5) representation. In figure 4.1 we show two illustrative spectra, one in
the case m̃2

5̄
> m̃2

10 and the other in the case m̃2
5̄
< m̃2

10. In the specific case where
m̃2

5̄
= m̃2

10 as in section 4.2 the spectrum we obtain is analogue to the CMSSM
case with non universal Higgs masses [93–98]. The remarkable point is that, in
contrast to the CMSSM case, in which universality of sfermion masses is an ad

hoc phenomenological assumption, in our extended TGM setup it follows from the
fact that SUSY breaking is mediated by a heavy U(1) gauge field which universally
couples to the MSSM fields.

Finally, we comment about the gravitino. A general feature of TGM is the fact
that the gravitino is the LSP, just as in ordinary gauge mediation. Its mass is given
by

m3/2 =
F0√
3MP

, (4.21)

3For some possible implementations see [51].
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Figure 4.1: Overall parameters: m = F/M = 4.5TeV, m2
hu

= −1/5 m2, m2
hd

= 3/40 m2, tanβ =

30. Case A: m2
5̄ = 1/5 m2, m2

5̄ = 2 m2
10 ; Case B: m2

5̄ = 1/14 m2, m2
5̄ = 1/2 m2

10.

where MP = (8πGN )−1/2 = 2.4 × 1018 GeV is the reduced Planck mass and F 2
0 =∑

i |Fi|2, where the sum runs over all the fields taking F-term vevs.

We note that, contrary to the minimal case, the ratios of gravitino mass and
other superpartners masses are not fixed, since they depend on the specific pattern
of F-term vevs. This happens because the F-terms vevs of different fields enter the
gravitino mass through F 2

0 =
∑

i |Fi|2, while they enter the expression for sfermion
masses weighted by their charges. A lower bound for the ratio is obtained when just
one F-term vev is switched on. For example, in the one messenger case discussed in
section 4.2 one obtains

m2
3/2

m2
ef

&
XF

Xf

√
3

M2

M2
P

= 4 × 10−5XF

Xf

(
M

2 × 1016 GeV

)2

, (4.22)

where Xf (XF ) is the charge of the sfermion (singlet breaking SUSY), and M is
the scalar vev responsible for U(1) breaking. On the other hand, the gravitino mass
cannot be made arbitrarily large. While gauge contributions to sfermion masses are
flavour universal, gravitational ones are expected not to be. Their typical size is set
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by the gravitino mass, thus one has to require that (for m2
ef

around TeV scale)

m2
3/2

m2
ef

∼
(
m2

ef

)
i6=j(

m2
ef

)
i=j

. 10−4 (4.23)

in order to avoid flavour problems [99].
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In the last months LHC SUSY searches have pushed the lower bounds on
coloured sparticles up to the TeV scale. ATLAS [71] and CMS [72] most recent
results have shown that both squarks and gluinos must be relevantly heavier than
what expected in the pre LHC era. Even if such analyses have been performed
in specific frameworks, such as the Constrained MSSM (CMSSM), and under spe-
cific hypothesis, doubtless at present we do not expect coloured superpartners much
lighter than 1TeV. What SUSY searches have not specifically excluded so far is
the possible presence of low energy neutralinos or gravitino, for which the strictest
bounds arise from direct and indirect detection of Dark Matter (DM) [100–103].

The most recent analysis on LHC data have shown that the preferred hypothet-
ical SUSY spectrum is quite peculiar and points in the direction of a scenario close
to split SUSY [104, 105] or high scale SUSY [106]. Indeed these frameworks may
accomodate heavy coloured sparticles, relatively light neutralinos and a quite large
Higgs boson mass, as it has been already noticed in some recent papers [107, 108].
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What at the moment seems quite clear is that if SUSY exists the low scale masses
are obtained by a quite large tuning of the parameters. This means that the fine
tuning principle has to be reassessed if taken as a guideline in model building.

In this chapter we present a new SUSY breaking framework in which the spec-
trum sketched so far is easily achieved. In our scenario SUSY breaking is com-
municated via the combined effect of Yukawa and Gauge Mediation: in particu-
lar we revisit in a minimal version the old idea of Yukawa-Gauge Mediation (Y-
GM) [109–111]. In section 5.1 we will describe the mechanism of SUSY breaking
mediation firstly with a toy model and then in the MSSM context. Then in section
5.2 we will show how the soft terms arise and we will focus on the phenomenological
predictions of the model. We will discuss in detail the sparticle spectrum, the Higgs
boson mass and EW Precision Tests (EWPT). We will also show that the model
is safe with respect to FCNC processes and then conclude the chapter giving some
cosmological considerations.

5.1 The model

As anticipated the model we are going to propose is a simpler version of Y-GM
scenarios already present in literature [109–111]. As we will see it is simpler because
we do not ask for a GUT completion and we use the MSSM Higgs doublets to act
as SUSY breaking messengers. In this way we avoid the use of large representations
and the number of new superfields added to the MSSM ones is really basical.

5.1.1 General implant: a toy model

In this section we use a toy model to introduce our SUSY breaking mechanism. Let
us consider a SUSY gauge theory based on the simple group G. Matter superfields
are charged under G and denoted by Qi. Here we do not address the origin of SUSY
breaking, assuming it happens because of an unknown mechanism in a secluded
sector. For our purposes we just consider that the net effect of such a breaking
can be parametrized by a gauge singlet chiral superfield1 X = X + ψXθ + FXθ

2

developing vev in its scalar 〈X〉 = M/k and auxiliary 〈FX〉 = F/k components; we
define Bφ = F/M . The coupling constant k, whose meaning will soon be apparent,
is introduced in the vev definition for later convenience. Such a chiral superfield
cannot mediate SUSY breaking, thus we have to couple it to a charged superfield
sector that effectively communicates SUSY breaking to matter. At this level the
scenario is similar to LGM [48]: the field that develops a SUSY breaking vev does
not couple directly to MSSM fields. However, contrary to LGM,X couples only to an
additional gauge singlet Φ, and the latter interacts with charged superfields, thus our
mechanism works through two messenger sectors and therefore in two different steps.

1As anticipated in caption to table 1.1 we will make use of a slight abuse of notation by referring

with the same letter to the whole superfield and to its scalar component (fermion component in

the case of SM matter fields). In cases in which confusion might arise the precise choice of notation

will be spelt out explicitely.
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The superfield Φ is identified as first messenger: it couples to charged superfields,
Hi (and their partners with opposite charge H i), that effectively perform the SUSY
breaking mediation. The superpotential that implements the two step mechanism
just sketched has the form

Wmessengers = kXΦΦ + λijΦHiHj. (5.1)

The toy model superpotential contains also the mass term for the second messengers

Wmass = µijHiHj . (5.2)

While the first messenger, Φ, is typically thought quite heavy and decouples from
the low energy spectra, the Hi superfields could be decoupled or not according to
the structure of µij. In practice we will see that in our realization a subset of the
Hi fields becomes part of the low energy spectrum.

The Hi superfields are the effective mediators of SUSY breaking to the MSSM
superfields. Gaugino masses are given by two loop graphs in which a gaugino couples
through gauge interactions to Hi and then the latter couples to the Φ superfield
loop, as shown in figure 5.1. The effects of SUSY breaking to the matter sector are
mediated by means of superpotential trilinear interactions

Wmatter = hijkQiQjHk + hlmnQlQmHn , (5.3)

where the indices (ijk) and (lmn) are contracted to give gauge invariants. In this
scenario the SUSY breaking trilinears are induced at one loop level, figure 5.1b,
while sfermion masses arise at two loops as shown in figure 5.1c.

λ λ

ψH ψH

H H

φ

φ
Bφ

(a)

H
Q

Q

H

φ φBφ

(b)

Q QψH ψH

ψQ

ψφ

φ
φ

φ

BφBφ
(c)

Figure 5.1: Loop graphs giving rise to the different soft terms: (a) gaugino masses, (b) trilinear

terms, (c) sfermion masses. The dashed (full) lines stand for scalar (fermionic) fields propagating.
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Superfield fermion component scalar component SU(3)C SU(2)L U(1)Y

qi qi q̃i 3 2 1
6

uci uci ũci 3 1 −2
3

dci dci d̃ci 3 1 1
3

li li l̃i 1 2 −1
2

eci eci ẽci 1 1 1

hu h̃u hu 1 2 1
2

hd h̃d hd 1 2 −1
2

T ψt t 3 1 1
3

T ψt t 3 1 −1
3

Φ ψφ φ 1 1 0

Table 5.1: Superfield matter content of the theory.

5.1.2 General implant: explicit construction of the model

We now show how the scenario proposed can be implemented in a physically viable
theory. The ingredients are essentially those anticipated in the toy model.

The effect of the secluded sector where SUSY breaking effectively takes place is
parametrized by the presence of the gauge singlet chiral superfield X = X +ψXθ+

FXθ
2 that develops a vev both in its scalar and auxiliary components, M/k and

F/k respectively. X couples to a gauge chiral singlet Φ through a superpotential
term kXΦΦ. The gauge group G is the SM gauge group and we identify the second
messenger sector (Hi,H i) with the MSSM Higgs superfields. In order to prevent
too heavily suppressed gluino masses we should add an extra heavy coloured triplet
with the quantum numbers of the down quark superfield, that does not couple
dangerously to MSSM fields by means of a Z2 discrete symmetry. Thus the second
messengers of the framework happen to be (Hi,H i) = (hu ⊕ T, hd ⊕ T ). In this
way all the three gauginos receive mass at the same loop level. Clearly the matter
fields Qi are the MSSM matter superfields. The model field content is summarized
in table 5.1.

The extra triplets must be heavy, but not necessarily of order the GUT scale.
Dangerous operators mediating the proton decay are actually forbidden by the un-
broken Z2 symmetry. In order to correctly mediate SUSY breaking the triplets have
not to be decoupled at the scale where X gets vev. We can set a lower bound on
MT asking for gauge coupling unification to be achievable in the scenario.

At the GUT scale the superpotential is given by two contributions

W = WMSSM +WΦ , (5.4)

with

WMSSM = λU q hu u
c − λD q hd d

c − λE l hd e
c + µhu hd ,

WΦ = h0 hu hd Φ +
1

3
ηΦ Φ Φ + kX Φ Φ +MT T T + ht T T Φ. (5.5)
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As anticipated the extra Z2 discrete symmetry prevents the triplets to couple with
matter fields. When X develops its vev and breaks SUSY, Φ communicates such a
breaking to the MSSM fields giving rise to the standard MSSM soft potential

− Lsoft MSSM = AU ũ
cq̃hu +ADd̃

cq̃hd +AE ẽ
c l̃hd +Bhuhd + h.c.

+m2
hu
h†uhu +m2

hd
h†dhd + m̃2

q q̃
†q̃ + m̃2

uc ũc†ũc

+m̃2
l l̃

†l̃ + m̃2
dc d̃c†d̃c + m̃2

ec ẽc†ẽc

+
1

2
Maλaλa + h.c. , (5.6)

that is summed to the SUSY invariant scalar potential

VSUSY =

∣∣∣∣∣

(
∂WMSSM

∂Ωj

∣∣∣∣
Ωj=Ω̃j

)∣∣∣∣∣

2

+
∑

a

∣∣∣Ω̃†
jTaΩ̃j

∣∣∣
2
, (5.7)

where Ωj are the various superfields of the theory. Below the scale M (MT ) Φ

(T, T ) decouple and we are left with the standard MSSM. For this reason we have
not included terms involving these fields in equation 5.6. We neglect threshold
effects arising from the decoupling of these heavy fields. The soft terms structure
is strongly correlated to all the superpotential parameters, because of the Y-GM
mechanism. This in turn gives rise to a novel spectrum, that is the subject of next
sections.

5.2 Phenomenological predictions

This section is devoted to the phenomenological predictions of our model. The mass
spectrum is peculiar to this singlet Yukawa-gauge mediation realization and quite
different from that obtained in LGM frameworks.

5.2.1 Spectrum

We have already anticipated that the spectrum of the theory is quite uncommon:
indeed the third family sfermions are in general heavier than those of the first two
families, a feature owed to the role played by the Yukawa interactions in the SUSY
breaking mediation mechanism. A similar hierarchy has been recently considered
in [112]. The structure of the low energy spectrum is determined by the RG evolution
of the boundary contributions generated when integrating out the first messenger,
Φ, at its scale M . In the following sections we will show that in order to be phe-
nomenologically acceptable our model requires M . 1014. Thus for simplicity in the
following we assume that M ∼MT < MGUT and leave the possibility of a low energy
SUSY breaking realization to further studies. In particular it could be interesting
to connect the superfield Φ to the generation of neutrino masses, see section 5.3. In
addition we will assume that the democratic contribution to sfermion mass matrices
arising because of the gravitino is negligible. We will comment on this assumption
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in section 5.2.6. Moreover we consider anomaly mediation contributions [47] to be
subleading.

To deeper analyze the implant of the theory and the differences with respect
to standard scenarios we should remember that the MSSM fields couple in a quite
peculiar way to the SUSY breaking vev. In particular at one loop level no soft
mass terms are generated. The first contributions appear at two loops, where both
gauginos and sfermions get a mass term. The structure of the two terms (see section
C.3) is

Mgaugino = Lp2Ai,jg2
i h

2
jBφ , m2

sfermion = Lp2BrYrh2
0B

2
φ , (5.8)

where Bφ = F/M ≪M , Lp = (4π)−2 is a loop factor, Yu(d) = Y †
u(d)Yu(d), Yu(d)Y

†
u(d)

for right and left up (down) quark respectively and hj = h0, ht. With respect to
LGM there is an effective extra loop factor in gaugino masses, keeping them smaller
than third family sfermions. Indeed sfermion masses are proportional to the Yukawa
couplings and thus they result heavily suppressed in the case of the first two families.
Anyway the contribution of LGM coming from three loop graphs become competing
or even more important of the Yukawa mediated two loop one in this case. Such a
contribution yields terms of the form

m2
sfermion = Lp3

(
Ci,j,k1 r2i r

2
j r

2
k + Ci,j,k2 r2i r

2
jYk +Ci,j,k3 r2iYjYk

)
B2
φ , (5.9)

where ri = gj=1,2,3, h0, ht, η. The three loop contributions happen to be competing
with the two loop one only in the case of third family down and lepton sfermions,
that are characterized by small Yukawa couplings compared to the top one. On the
contrary they are dominant in the case of the first two families for all the flavours,
since in that case the Yukawa couplings give rise to negligible terms. Consequently
the first two families are essentially degenerate in mass, a feature preserved even
after the evolution to low energies. For what concerns the first two families the
hierarchy with respect to gaugino masses is milded because of the extra loop factor,
but still present.

Below the scale M we are left with the particle content of the MSSM, thus the
evolution of soft terms can be simply obtained using the beta functions reported
in [113].

Since our theory predicts the presence of a split spectrum in which sfermions and
higgsinos are much heavier than gauginos, we improved the calculation of gaugino
masses by integrating out sfermions and higgsinos at their mass scales and then de-
termining new evolution equations. Such a procedure is explained in details in next
subsection to show that gauge coupling unification predictions are not affected by
this spectrum. In figure 5.2 we report an example of low energy spectrum obtained
within our framework.

5.2.2 Gauge coupling unification

In this section we briefly discuss how gauge coupling unification is realized in our
scenario. Notice that in our model unification is not mandatory.



5.2. Phenomenological predictions 73

6

102

103

104

105

GeV

h0

H0 A0
H±

χ0
1

χ0
2

χ0
3

χ0
4

χ±
1

χ±
2

g̃

τL

τR

bR

bL, tL

e1,2L

e1,2R

tR

u1,2
R

d1,2
R

q1,2L

Figure 5.2: Typical spectrum arising in the framework. The superpotential parameters are h0 =

0.80, ht = 1.25, Bφ = 6.6 × 106 GeV, η = 0.1.
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Figure 5.3: Gauge coupling evolution.

We take into account the one loop RGEs with a series of intermediate scales
dictated by the spectrum shown in figure 5.2. Here we just report the main results
while all the detailed calculations can be found in appendix C.1.

Neglecting the EW scale, characterized by the SM degrees of freedom, in the
spectra of figure 5.2 we identify four SUSY scales: the lower one, M (4)

SUSY ∼ hundreds

of GeV, is that of SU(2)L × U(1)Y gauginos. Then follow the gluino scale, M (3)
SUSY,

that LHC constraints fix around the TeV, and the light sfermions one M (2)
SUSY. The

first scale, M (1)
SUSY, corresponds to the the heavy third family sfermions, higgsinos

and heavy scalars. Finally we have to consider the scale of the heavy triplets MT .
The evolution is then computed taking as inputs the low energy gauge coupling
values and the result is shown in figure 5.3a. In order to test gauge coupling unifi-
cation we show in figure 5.3b a plot at energies around unification scale under the
magnifying glass. The red strip represents the region for the strong coupling within
three sigmas of the experimental value: thus we can easily see that it is compatible
with unification.

5.2.3 EWSB and the Higgs boson

We already commented that the spectrum is essentially divided in two different sets.
While the gauginos are expected to lie at lower energy (M (4,3)

SUSY & 100GeV ÷ TeV),
all the other sparticles (namely the sfermions and the higgsinos) are pushed up to
multi-TeV energies, M (2,1)

SUSY. Such a spectrum might be easily confused with a split
SUSY one, but it actually differs from that because in our picture the higgsinos are
heavy and the lightest neutralino is essentially a bino or wino.

The light Higgs boson mass is obtained by the standard procedure used in SUSY
scenarios, by decoupling heavy particles in turn and computing their threshold ef-
fects as the energy decreases. Discussing gauge coupling unification we identified
four scales at which sequentially heavy particles decouple. At the highest scale be-
low GUT scale, M (1)

SUSY, we decouple third family sfermions, higgsinos and heavy
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Higgs scalars. Indeed only one linear combination of hu and hd

h = hd cosα+ iσ2h
∗
u sinα, (5.10)

remains part of the theory, corresponding to the light Higgs boson. The orthogonal
combination

H = −hd sinα+ iσ2h
∗
u cosα, (5.11)

corresponds to an SU(2)L heavy doublet, whose mass is roughly fixed by the soft
terms. The two masses are given at M (1)

SUSY by

m2
h,H(M

(1)
SUSY) =

1

2

[
m2
hu

+m2
hd

+ 2|µ|2 ± (m2
hd

−m2
hu

)/ cos 2α
]
. (5.12)

It is clear that m2
h is the quadratic term of the Higgs scalar potential that has to

run to negative values at the EW scale to induce EWSB. On the contrary m2
H has

to be greater than zero being the mass of the heavy doublet. The parameter α in
equations 5.10, 5.11 and 5.12 is meant to be the mixing angle between the light and
heavy states before EWSB, defined by

tan 2α = − 2B

(m2
hu

−m2
hd

)
. (5.13)

The light state coincides roughly with the SM Higgs boson and it is responsible of
EWSB. Its mixing with H induces a negligible vev vH , thus the mixing angle α
and the ratio β = vu/vd do essentially coincide. In our framework Bµ is tightly
connected to µ and to the soft m2

Hu,d
, but this can lead to some inconsistencies

in obtaining a successful EWSB in the model. The difficulties can be reasoned by
means of a contemporary solution to the µ−Bµ problem: an example can be given
by eliminating in the superpotential the explicit µ term and adding an extra part
inspired by [114]. One can easily see that, by means of a suitable choice of the
parameters, it is possible to make the framework viable.

The effective theory below M
(1,2)
SUSY contains the SM matter content and the three

gauginos. The doublet h is nothing but the usual SM Higgs field whose scalar
potential, V (h), is characterized by the quartic coupling λ. As usual λ is given by
the SUSY tree level contributions

λSUSY =
1

4

(
g2
2(M

(1)
SUSY) +

3

5
g2
1(M

(1)
SUSY)

)
cos2 2β(M

(1)
SUSY), (5.14)

and the one-loop threshold contribution obtained integrating out heavy sfermions
via box and triangle one-loop diagrams [115]. The dominant contribution arises from
diagrams involving the stop, even if in our case the stop is the heaviest sfermion,
and it is given by

δλ =
3λ4

t (M
(1)
SUSY)

16π2


2

X2
t

M
(1)
SUSY

2 − X4
t

6M
(1)
SUSY

4


 , (5.15)
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where Xt = At(M
(1)
SUSY) + µ(M

(1)
SUSY) cot β(M

(1)
SUSY).

The quartic coupling λ is then evolved through the RGEs given in appendix C.2
up to the EW scale, where the one loop effective Coleman Weinberg potential [116]
is computed

V (h) = m2
h|h|2 +

1

2
λ|h|4 +

1

16π2

5∑

k=1

akM4
k

(
ln

M2
k

µ2
+ bk

)

where

M2
1 = m2

h +
λ

2
h2 , M2

2 = m2
h +

λ

6
h2 , M2

3 =
1

4
g2
2h

2 ,

M2
4 =

1

4

(
g2
2 +

3

5
g2
1

)
h2 , M2

5 = m2
h +

λ2
t

2
h2 ,

and

a1 =
1

4
, a2 =

3

4
, a3 = −3 , a4 =

3

2
, a5 =

3

4
,

b1 = b2 = b3 = −3

2
, b4 = b5 = −5

6
.

The procedure used to find the minimum of the Higgs potential is the one de-
picted in [117]. The running mass of the Higgs boson is defined as the second
derivative of the potential evaluated at the minimum, namely

m̂2
h =

∂2V (h)

∂2h

∣∣∣∣∣
〈h〉=vW

, (5.16)

where vW is the EW scale. Finally the physical Higgs boson mass is obtained by
computing the pole mass. The relation between the Higgs running mass and the
pole one can be evaluated as follows. We can write

M2
h = m̂2

h + ∆Π , (5.17)

where M2
h is the pole propagator mass, m̂2

h is the running Higgs mass defined in 5.16
and ∆Π is the difference of the renormalized self energy calculated at the pole mass
and at zero momentum: ∆Π ≡ Π(p2 = M2

h)−Π(p2 = 0). ∆Π receives contribution
from many sources, the top contribution being the most relevant.

In the parameter point corresponding to figure 5.2 the pole mass of the light
Higgs boson is

M2
h = 132GeV , (5.18)

that is too large taking into account the recent Higgs boson discovery [3,4]. Generally
speaking, the minimal model presented here faces the problem of a Higgs boson
mass heavier than what expected, lying in the range 129 ÷ 135GeV in most of
the parameter space. A tempting solution to such phenomenological issue is the
extension of the framework by means of an extra light singlet, going to a NMSSN
like scenario. In this case the prediction on the Higgs boson mass can be clearly
slightly lowered, thus satisfying the recent experimental results.
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5.2.4 EWPT

As in any theory providing a SM extension we have to check the consistence of our
model through the oblique corrections classified [118–122] by means of the three pa-
rameters T, S,U , written in terms of the physical gauge boson vacuum polarizations
as [123]

T =
4π

e2c2Wm
2
Z

[
AWW (0) − c2WAZZ(0)

]
,

S = 16π
s2W c

2
W

e2

[
AZZ(m2

Z) −AZZ(0)

m2
Z

−A′
γγ(0) −

(c2W − s2W )

cW sW
A′
γZ(0)

]
,

U = −16π
s2W
e2

[
AWW (m2

W ) −AWW (0)

m2
W

− c2W
AZZ(m2

Z) −AZZ(0)

m2
Z

+

−s2WA′
γγ(0) − 2sW cWA

′
γZ(0)

]
, (5.19)

where sW , cW are sine and cosine of θW and e is the electric charge. Roughly
speaking for any SU(2)L doublet T, S,U are sensitive to the mass splitting of the
doublet components and thus vanish in the limit of degenerate masses [124]. As
it can be easily checked by looking at the spectra shown in figure 5.2 the SUSY
breaking scale is so high that the components of the SU(2)L doublets happen to be
still almost degenerate after the EWSB, and right and left sfermion mixing is thus
completely negligible. Contemporaneously at the EW scale the wino and the light
chargino form a degenerate doublet, so the EW parameters do not receive any new
contribution arising from new particles, the unique contribution being that of the
SM like Higgs, which, given the new experimental evidence, is in perfect agreement
with the data [125].

5.2.5 Flavour constraints

A detailed analysis of flavour processes is beyond the purposes of this work. Intu-
itively such processes should not further constrain the model because of the very
heavy sparticle spectrum, but we should take care of them because of the Yukawa
structure of the SUSY breaking mediation mechanism. Being the third family the
heaviest and the first two lighter and almost degenerate, we are in presence of a hier-
archical squark spectrum inverted with respect to the discussion developed in [126].
However we may use their formalism to estimate the contribution to ∆F = 1, 2

processes.

As an example we may consider the gluino loop contributions in the down sector.
The latter in the case of dLi → dLj (∆F = 1) and dLi ↔ dLj (∆F = 2) may be
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parametrized as

A(∆F = 1) = WdL
i d̃I

f

(
m̃2
dI

M2
3

)
W∗
dL

j d̃I

A(∆F = 2) = WdL
i d̃I

WdL
i d̃J

g

(
m̃2
dI

M2
3

,
m̃2
dJ

M2
3

)
W∗
dL

j d̃I
W∗
dL

j d̃J
,

(5.20)

where f and g are loop functions, in particular g(x, y) = g(x) − g(y)/(x − y). W
diagonalizes the full 6× 6 down squark mass matrix in the basis in which the down
quarks are diagonal, namely M2

D. In our specific framework W is very simple
and block diagonal because the soft terms are so heavy that we can neglect left-
right squark mixing2. In particular this means that gluino loops cannot mediate
∆F = 1 processes, like b → sγ, and in the following we will concentrate only on
∆F = 2 processes. If we assume that λU and λD have a Froggatt Nielsen symmetric
structure [127] – thus implying that V u

L ∼ V d
L ∼ V u

R ∼ V d
R ∼ O(VCKM) – the

structure of M2
DL,R

at M in our specific framework is roughly given by

M2
DL,R

=

[
Lp2BrYrh2

0 + Lp3
(
Ci,j,k1 r2i r

2
j r

2
k + Ci,j,k2 r2i r

2
jYk + Ci,j,k3 r2iYjYk

)]
B2
φ

(5.21)
where the notation is the same of equations 5.8 and 5.9. Equation 5.21 may be
rewritten as

M2
DL,R

=
M2

3

Lp2

[
Y h2

0

g4
3h

4
t

+ Lp

(
Ci,j,k1

r2i r
2
j r

2
k

g4
3h

4
t

+Ci,j,k2

r2i r
2
j

g4
3h

4
t

Yk + Ci,j,k3

r2i
g4
3h

4
t

YjYk
)]

,

where Y = BrYr. Among the terms that arise at three loop level the dominant one
is that proportional to C1. The diagonal two loop entries dominate over the three
loop ones if

(Y)ii > LpCi,j,k1

r2i r
2
j r

2
k

h2
0

∼ Lp cg g4 ∼ 10−1 , (5.22)

where cg ∼ O(10), that clearly is realized only for the third family. Thus the two
loop term controls the heavy third familiy squark masses and the off diagonal entries,
while the first three loop term dominates the degenerate two lightest families. For

2The order of magnitude of the various terms in the squark mass matrix M2
D is M2

DL
∼ M2

DR
∼

em2 while M2
DLR

∼ vW em, where em = Lp Bφ. Thus the mixing between left and right down squarks

is roughly given by vW /BφLp ≪ 1 and may be neglected.
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the following discussion we are interested in the ratios

∆L,R
12 =

(M2
DL,R

)12

(M2
DL,R

)22
∼ 1

cgLp
(Y)12
g4

∼ 10λ5
C

m2
b

m2
t

tan β2

g4
∼ 10−3 ÷ 10−2 ,

∆L,R
23 =

(M2
DL,R

)23

(M2
DL,R

)33
∼ (Y)23

(Y)33
∼ λ2

C ∼ 10−2 , (5.23)

∆L,R
13 =

(M2
DL,R

)13

(M2
DL,R

)33
∼ (Y)13

(Y)33
∼ λ3

C ∼ 10−3 .

In equations 5.23 mt (mb) are the top (bottom) quark mass, λC ≈ 0.2 the Cabibbo
angle and as usual tan β = vu/vd. According to our considerations W has the
structure

W =

(
WL 0

0 WR

)
. (5.24)

with

WL,R ≃




cos θL12 sin θL12 ∆L
13

− sinL θ12 cos θL12 ∆L
23

∆L
23 sin θL12 − ∆L

13 cos θL12 −∆L
23 cos θL12 − ∆L

13 sin θL12 1


 ,(5.25)

where

tan 2θ12 = 2
(MDL

)22∆
L
12

(MDL
)22 − (MDL

)11
∼ (Y)12

(Y)22
. (5.26)

The generalization to up squarks and charged sleptons is trivial.
Following [126] in our model we have

A(∆F = 2) ∼ g(1)(x)(δ̂LLij )2 +
x2

3!
g(3)(x)(δLLij )2 , (5.27)

with x = m̃2
L/M

2
3 and we can set m̃2

dL,R
∼ m̃2

sL,R
∼ m̃2

L,R because of their approxi-
mate degeneracy. The δ parameters are defined as

δ̂LLij = WL
did̃

WL∗
dj d̃

+ WL
dis̃W

L∗
dj s̃ = δij −WL

di b̃
WL∗
dj b̃

≃ δij − δ33 −
[
(δikδj3 + δjkδi3)∆

L
k3

]
k=1,2

,

δLLij = (δi2δj3 + δj2δi3)∆
L
12 . (5.28)

Clearly the term that depends on δ̂LLij controls Bd,s−Bd,s oscillation, while that on
δLLij controls K−K. In the limit x≫ 1 it turns out that g(1)(x), g(3)(x) ∼ 1/x, 1/x3

respectively [128], and we get

A(∆F = 2) = FLL
ij ∼ αsCq

(
M2

3

m̃2

)[
(δ̂LLij )2 +

1

6
(δLLij )2

]
, (5.29)

where Cq is a colour factor. From [129] we have

∆MF = MF f
2
FBF

8

3M2
3

FLL
ij , (5.30)



80 Chapter 5. Minimal Yukawa-Gauge Mediation

BF MF (GeV) fF (GeV) BF

Bd 5.2795 0.1928 ± 0.0099 1.26 ± 0.11

Bs 5.3664 0.2388 ± 0.0095 1.33 ± 0.06

K 0.497614 0.1558 ± 0.0017 0.725 ± 0.026

Table 5.2: Properties of neutral mesons [130]: in the table the values for parameters in equation

5.30 are given.

where BF is a parameter of order 1, fF is the decay constant of the meson
F = K,Bd, Bs and ij the transition responsible of its oscillations. By combining
equations 5.28, 5.29 and 5.30 we get

∆MK = Cqα
2
sMKf

2
KBK

4

9m̃2
(∆L

12)
2 ∼MK

(
f2
K

GeV2

)
BK(10−14 ÷ 10−16) ,

∆MBd
= Cqα

2
sMBd

f2
Bd
BBd

8

3m̃2
(∆L

13)
2 ∼MBd

(
f2
Bd

GeV2

)
BBd

10−15 .

∆MBs = Cqα
2
sMBsf

2
Bs
BBs

8

3m̃2
(∆L

23)
2 ∼MBs

(
f2
Bs

GeV2

)
BBs10

−13 .

By comparing our results and the experimental bounds as reported in table 5.2
we see that the flavour processes mediated by the sfermions are a few orders of
magnitude below the experimental bounds. Similar results are expected in the case
of loops in which circulate other superpartners.

We also briefly comment about the possibility of gravity mediated flavour chang-
ing processes. The latter are generated by the complete democracy of gravity me-
diated interactions in flavour space and thus can be neglected only if they are sub-
leading with respect to the other contributions. Such a constraint imposes bounds
on the mass of the gravitino that will be taken into account in Section 5.2.6.

BF |∆Mexp
F | (GeV) |∆M res

F | (GeV)

Bd (3.337 ± 0.006) × 10−13 < 10−16

Bs (1.170 ± 0.008) × 10−11 < 10−14

K (3.500 ± 0.006) × 10−11 < 10−16

Table 5.3: Properties of neutral mesons [130] and the model predictions. The last column report

our rough estimation of the meson oscillation mass splitting ∆Mres
F taking as reference values the

spectrum given in figure 5.2.
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5.2.6 Cosmology

In LGM the LSP is usually the gravitino [48]. Here we discuss if our framework
behaves as the minimal case or not, allowing the bino or the wino to be the LSP.

The gravitino takes mass through gravitational interactions: their coupling
strenght is given by the inverse reduced Planck mass and, assuming a vanishing
cosmological constant, the mass m3/2 is

m3/2 =
F0√
3MP

, (5.31)

where MP = (8πGN )−1/2 is the reduced Planck mass, F0 is the total contribution of
the F-term SUSY breaking vev to the vacuum energy, thus V = F 2

0 in the minimum.
Actually the effective F-term vev felt by the messenger Φ is related to F0 by means
of the superpotential interaction kXΦΦ, thus being F0 = F/k. The ratio among the
two quantities directly reflects the way in which SUSY breaking is mediated, and in
our case it is simply given by the coupling constant k . 1 to preserve perturbativity
at high energy scale. The gravitino mass can thus be rewritten as

m3/2 =
BφM

k
√

3MP

. (5.32)

To point out the nature of the LSP it turns useful rewriting the gravitino mass in
terms of the wino one. Reminding that

M2 = Lp2g2
2h

2
0Bφ , (5.33)

we get

m3/2 =
( M2(M)

250GeV

)( 0.7

g2(M)

)2 1

h2
0(M)

0.9

k(M)
3.4 × 10−12M, (5.34)

where M is the Φ superfield mass scale and thus gives rise to the SUSY breaking
boundary conditions. As one can easily see from the formula above the gravitino is
the LSP if a relatively low energy SUSY breaking takes place. If the scale of SUSY
breaking is of order M & 1014 GeV than the relative weight of the adimensional
parameter entering into equation 5.34 establishes whether the LSP is the gravitino
or neutralino, while for larger values of M , such as the GUT scale, the gravitino
is surely not the LSP of the framework. At first let us briefly comment on this
possibility.

lf R-parity is conserved and the neutralino (wino or bino) is the LSP of the model
the decay of the gravitino must happen before Big Bang Nucleosynthesis (BBN) in
order not to destroy the successful predictions of BBN itself [131]. In particular if
gravitino decays have to be completed before BBN at t ∼ 1s we must have

m3/2 & 10TeV =⇒M & 1015 ÷ 1016 GeV , Bφ . 107 ÷ 108 GeV . (5.35)

Such a large gravitino mass would give rise to a very large contribution to sfermion
mass matrices that would induce dangerous FCNC and our hypothesis to neglect
gravitino contribution to sfermion masses would fail.
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Consequently in our scenario the gravitino has to be the LSP, condition that can
be rephrased as M . 1014 GeV. On the other side bounds on gluino mass impose
Bφ > 106 GeV and then the perturbativity of the ratio F/M asks at least for
M > 107 GeV implying m3/2 & 1 keV. Light gravitino DM scenarios are therefore
not realizable in our framework, while the possibility of a superWIMP DM is left
open [16]. The analysis of the gravitino as superWIMP candidate is left for further
studies.

5.3 R-parity breaking and neutrino masses

In section 5.2.6 we deduced that the allowed range for M is 107 GeV < M .

1014 GeV in order not to affect FCNC processes and gluino mass bounds. One very
interesting possibility is promoting Φ to be both the SUSY breaking messenger and
the source of light neutrino masses, through its fermionic component. This picture
shares features both with the νGMSB model [132] and the bilinear R-parity breaking
scenarios [133–140], since Φ is a singlet superfield. As in [132] light neutrinos receive
type I seesaw like mass contribution arising from the explicit R-parity breaking term
– the coupling yilihuΦ – yielding

mI
ν ∼ v2

u

M
yi · yTi , (5.36)

where the yi are thought as three dimensional vector columns. When sneutrinos and
the scalar component of Φ acquire a tiny vev a further contribution to left handed
neutrino masses is generated. This contribution is nothing but that presents in
models with explicit linear R-parity breaking term and discussed in details in [133].
Using their notation and assuming a spectrum similar to that given in figure 5.2 the
second contribution to neutrino masses is given by

mRbr
ν ∼ g2

2 + 3/5g2
1

4µ2M0
Λi · ΛTi , (5.37)

where we have approximated M1 ∼M2 ∼M0 ≪ µ and Λi is defined as

Λi = µvi + yivdvφ , (5.38)

with vi (vφ) is the sneutrino (Φ) vev. As long as vi and yi are disaligned3, neglecting
the one loop contributions, the effective light neutrino mass matrix has two non
vanishing eigenvalues and lepton mixing is completely determined.

This scenario is quite appealing for its predictivity in neutrino sector and we
leave a detailed analysis to a a forthcoming analysis. Notice that in this case a late
decaying gravitino should be the DM candidate [141].

3This may be realized because of the sneutrino soft mass terms that are not aligned to yiy
T
i .

Indeed the soft sneutrino masses receive a contribution both proportional to yi from yilihuΦ and

to λ†
EλE from (λE)ij lihdec

j .



6
Conclusions

In this thesis we analyzed two models of gauge mediation and the related phe-
nomenology, focusing on the possibilities of detecting their predictions at colliders.

Chapters 2, 3 and 4 were devoted to the analysis of the Tree Level Gauge Me-
diation (TGM) framework. In chapter 2 we reviewed the general mechanism, that
generates sfermion masses at the tree level which are naturally flavour universal
since they arise from gauge interactions, and in chapter 3 we focused on its im-
plementation in the simplest situation, based on the SO(10) gauge group. We
discussed the embedding of the various MSSM superfields and the generated soft
terms, identifying a minimal set of relevant parameters for the phenomenology. The
most striking phenomenological features of the full analysis happen to be a nice
prediction on the ratio of the sfermion masses, namely m̃2

10/m̃
2
5 = 1/2, and the

possibility of non universal gaugino masses, which anyway satisfy the GUT scale
sum rule 5M1 = 3M2 + 2M3. The most important outcome of the non universality
of gaugino masses lies in the possibility of the NLSP of the framework to be a bino
like neutralino, a wino like neutralino or the stau, leading to quite different phe-
nomenologies. We then detailedly described the possible searches to be set at the
LHC in order to spot the relevant features of the TGM framework and distinguish
it from other models of gauge mediation. In particular we do believe that inclusive
searches conducted with the CMS razor analysis, eventually upgraded with dilepton
searches to fully consider EW gauginos, are a perfect tool for spotting both the pre-
diction on the ratio of sfermion masses and the low energy consequences of the GUT
scale sum rule for gauginos. In the case of the stau NLSP, on top of that, one can
also combine the razor analysis with the search for heavy charged particles because
of the slow decay of the stau to the gravitino. We ended chapter 3 by showing the
application of such tools to a set of benchmark points with different type of NLSP.

In chapter 4 we have extended the framework of TGM to the case of extensions
of the SM gauge group derived from E6, a unified group that, besides its interest for
other reasons, is strongly motivated by TGM. To be general, we have allowed for the
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possibility that part of E6 is broken by boundary conditions in extra dimensions,
so that we performed our analysis for an effective theory with a gauge group that
is a Rank 5 or Rank 6 subgroup of E6. Despite the large number of possible gauge
groups, we needed to study only three cases, depending on the number of vector
messengers that could be one, two or four. As a result we have found that for
pure embeddings of MSSM fields we obtain SU(5) invariant (and flavour universal)
sfermion masses provided that they are positive: this feature is a pretty robust
prediction of TGM. In the case of a Rank 6 subgroup the ratio m̃2

10/m̃
2
5 remains

undetermined in the general case but can be fixed by considering special limits in the
parameter space of scalar and F-term vevs to be 1/2, which is the same prediction
obtained in the minimal SO(10) case. In the case of Rank 5 subgroup the ratio is
fixed and depends only on the specific form of the U(1) factor orthogonal to the
SU(5) embedding the SM. If this is the U(1) subgroup of E6 that commutes with
SO(10) we can obtain SO(10) invariant sfermion masses. Therefore TGM offers an
interesting possibility to reproduce the popular CMSSM boundary conditions for
sfermion masses in a novel scenario.

Finally in chapter 5 we focused on the idea of Yukawa gauge mediation in what
we may define its minimal version. The minimality resides in the small number of
extra degrees of freedom with respect to those of the MSSM. A chiral superfield Φ̂,
coupling to a F-term vev, is the first messenger of SUSY breaking and due to its
singlet nature SUSY breaking happen to be communicated to the MSSM fields in two
sequential steps, after the subsequent coupling to a charged superfield sector. Such
second messengers are identified with the MSSM Higgs fields with the addition of
extra colour triplets that ensure a large enough gluino mass. This framework gives
rise to a novel split spectrum that is consistent with the indication arising from
the most recent LHC data. The peculiarities of such a spectrum are an inverted
hierarchy among the sfermions of the third family and those of the first two and an
almost complete pureness of the gaugino components in the lightest neutralinos and
chargino. On top of that we have shown that a successful EWSB takes place and
that the model poses no threats for both EWPT and flavour Physics constraints.
The mass scale of the scalar superpartners is fairly heavy, above few TeVs, and only
the gauginos will be soon in the range of LHC searches. We did not analyze the
specific signatures of the model presented, but from the features of the predicted
spectrum we may easily deduce that few processes could be testable at the LHC,
such as excesses in the monojet channel owed to initial state radiation combined
with the production of two gluinos.
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Appendix for Chapter 3.

In this appendix we will present some relevant formulae connected to the discussion
tackled in chapter 3 about the minimal model of TGM in GUTs.

A.1 Flavour structure of the superpotential

As we have seen in section 3.2.2, the breaking of SO(10) and SUSY must involve
spinorial representations. In particular, the 16, 16 fields acquire a vev M in the
scalar, SM singlet component and 16′, 16

′ acquire an a vev in the F-term SM
singlet component. As in section 3.2.2, we will actually assume for simplicity that
only 16′ gets an F-term and we further assume that they are the only spinorial
representations coupling to matter bilinears. The most general R-parity invariant
superpotential bilinear in the matter fields 16i + 10i and involving the above fields
is then

W2 = hij16i10j16 + h′ij16i10j16
′ +

yij
2

16i16j10 +WNR
2 , (A.1)

up to a mass term µij10i10j, assumed to be absent to obtain a pure embedding
of the SM fields in SO(10) representations and to avoid reintroducing the flavour
problem [51]. The non renormalizable part is not specified and takes care of fixing
the fermion mass ratios to the phenomenologically correct values.

In order to identify the light Yukawa couplings we need to specify better the
embedding of the light Higgs fields, deepening the discussion in section 3.2.1. Under
the hypothesis of minimal Higgs embedding, 16H = 16, the light hd can thus
be contained in the doublet component of the 16, h16

d , in the doublet of the 16′,
h16′

d or in a 10, with the size of the total component in spinorial representations
given by sin θd. The field hd could be in principle also be embedded in a spinorial
representation different from 16 and 16′ and not coupling to the matter bilinears,
but we assume that this is not the case. We can use an angle α to measure how hd
is shared by the two spinorial representations:

h16
d = sin θd cosαhd , h16′

d = sin θd sinαhd . (A.2)
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From equations A.1 and A.2 we can recover the SM Yukawa couplings λU,D,E and
λ̂D,E in equation 3.2 as follows:

λU = cos θu y + λNR
U

λE = sin θd(cosαh+ sinαh′) + λNR
E λD = sin θd(cosαh+ sinαh′) + λNR

D

λ̂E = cos θd y + λ̂NR
E λ̂D = cos θd y + λ̂NR

D

(A.3)

where the superscript "NR" denotes a correction vanishing in the limit WNR
2 → 0.

Following the previous considerations the simplest possible prediction for the
messenger mass parameters hD,L is that they are proportional to the corresponding
SM Yukawa couplings: in order to be general we introduce the new parameters cDi,
cLi, i = 1, 2, 3

hDi = cDiλDi/ sin θd hLi = cLiλLi/ sin θd

h′Di = c′DiλDi/ sin θd h′Li = c′LiλLi/ sin θd .
(A.4)

The cDi,Li and c′Di,Li
coefficients can be written as functions of the parameters in

equations A.3:

cLi =
1

cosα+ sinα γLi
+ (cLi)NR, cDi =

1

cosα+ sinαγDi
+ (cDi)NR

c′Li
=

γLi
cosα+ sinαγLi

+ (cLi)NR, c′Di
=

γDi
cosα+ sinα γDi

+ (cDi)NR .
(A.5)

The equations above allow to set an appropriate range for these coefficients. In the
limit in which hd lies in the 16 only (α = 0), cDi,Li = 1 at the renormalizable level.
In the limit in which hd lies in the 16′ only (α = π/2), on the other hand, the
parameters cDi,Li can be smaller, especially if the parameters γD,L in 3.13 enhance
gaugino masses.

A.2 One-loop RGE equations

In this section we shall present the RGEs for the full theory below the GUT scale
[113]. In all of the following equations we will use the common definition t ≡ lnµ

where µ is the renormalization scale.

A.2.1 Gauge couplings

The RGEs for the gauge couplings are

(4π)2
dga
dt

= β(1)ga , (A.6)

where
β(1)ga = g3

a

∑

R

Ba(R) (A.7)
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and

B3 =
∑

R

B3(R) = −3 +
NDc +ND

2
, (A.8a)

B2 =
∑

R

B2(R) = 1 +
NL +NLc

2
, (A.8b)

B1 =
∑

R

B1(R) =
33

5
+

3

5

(1

3
NDc +

1

3
ND +

1

2
NL +

1

2
NLc

)
. (A.8c)

We notice that integrating out the chiral messengers accounts for an obvious modi-
fication for the running of the gauge couplings.

A.2.2 Gaugino masses

The running of gaugino masses is straightforward. In terms of the results obtained
for the gauge couplings one has

(4π)2
dMa

dt
= 2g2

aBaMa . (A.9)

A.2.3 Yukawa couplings

When some of the flavours of the heavy chiral messengers get integrated out at
their mass scale we simply consider that the corresponding entries of the Yukawa
matrices become zero. We note that the part proportional to the gauge coupling
does not depend on the number of flavours that are switched on since it is directly
related to the specific λ parameter under study. Incidentally we note that if some
of the flavours are frozen out this will also act on the meaning of the various traces
appearing in the equations.

(4π)2
dλU
dt

= λU

[
Tr(3λ†UλU ) + 3λ†UλU + λ†DλD + λ̂D

†
λ̂D − 16

3
g2
3 − 3g2

2 − 13

15
g2
1

]

(A.10a)

(4π)2
dλD
dt

= λD

[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) + 3λ†DλD + 3λ̂D

†
λ̂D + λ†UλU

]

− λD

[16
3
g2
3 + 3g2

2 +
7

15
g2
1

]
(A.10b)

(4π2)
dλE
dt

=
[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) + 3λEλ

†
E + 3λ̂E λ̂

†
E

]
λE

−
[
3g2

2 +
9

5
g2
1

]
λE (A.10c)

(4π2)
dλ̂D
dt

= λ̂D

[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) + 3λ̂D

†
λ̂D + 3λ†DλD + λ†UλU

]

− λ̂D

[16
3
g2
3 + 3g2

2 +
7

15
g2
1

]
(A.10d)

(4π2)
dλ̂E
dt

=
[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) + 3λEλ

†
E + 3λ̂E λ̂

†
E

− 3g2
2 − 9

5
g2
1

]
λ̂E (A.10e)
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A.2.4 The µ parameter and other bilinear terms in the superpo-

tential

In this section we consider the running of the bilinear parameters. Again if a field
has been integrated out it should not enter the running anymore, which can be im-
plemented by setting to zero the corresponding term (essentially its matrix elements
in flavour space).

(4π)2
dµ
dt

= µ
[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + 3λ†UλU + λ†EλE + λ̂E

†
λ̂E) − 3g2

2 − 3

5
g2
1

]

(A.11a)

(4π)2
dMD

dt
= 2λ̂D

(
λ̂D

†
MD + λD

†MdD

)
−
(16

3
g2
3 +

4

15
g2
1

)
MD (A.11b)

(4π)2
dMdD

dt
= 2λD

(
λ̂D

†
MD + λD

†MdD

)
−
(16

3
g2
3 +

4

15
g2
1

)
MdD (A.11c)

(4π)2
dML

dt
= λ̂TE

(
λ∗EMlL + λ̂∗EML

)
−
(
3g2

2 +
3

5
g2
1

)
ML (A.11d)

(4π)2
dMlL

dt
= λTE

(
λ∗EMlL + λ̂∗EML

)
−
(
3g2

2 +
3

5
g2
1

)
MlL (A.11e)

A.2.5 Trilinear SUSY breaking interactions

Now we turn to the study of the SUSY breaking interaction terms of the Lagrangian.

(4π)2
dAU
dt

= AU

[
Tr(3λ†UλU ) + 5λ†UλU + λ†DλD + λ̂D

†
λ̂D − 16

3
g2
3 − 3g2

2 − 13

15
g2
1

]

+ 2λU

[
Tr(3λ†UAU ) + 2λ†UAU + λ†DAD + λ̂D

†
ÂD

+
16

3
M3g

2
3 + 3M2g

2
2 +

13

15
M1g

2
1

]
(A.12a)

(4π)2
dAD
dt

= AD

[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) + 5λ†DλD + 5λ̂D

†
λ̂D

+ λ†UλU − 16

3
g2
3 − 3g2

2 − 7

15
g2
1

]

+ 2λD

[
Tr(3λ†DAD + 3λ̂D

†
ÂD + λ†EAE + λ̂E

†
ÂE) + 2λ†DAD + 2λ̂D

†
ÂD

+ λ†UAU +
16

3
M3g

2
3 + 3M2g

2
2 +

7

15
M1g

2
1

]
(A.12b)

(4π)2
dAE
dt

= AE

[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) + 5λ†EλE − 3g2

2 − 9

5
g2
1

]

+ 2λE

[
Tr(3λ†DAD + 3λ̂D

†
ÂD + λ†EAE + λ̂E

†
ÂE) + 2λ†EAE

+ 3M2g
2
2 +

9

5
M1g

2
1

]
+ 5ÂE λ̂E

†
λE + 4λ̂E λ̂E

†
AE (A.12c)

(4π)2
dÂD
dt

= ÂD

[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) + 5λ†DλD + 5λ̂D

†
λ̂D

+ λ†UλU − 16

3
g2
3 − 3g2

2 − 7

15
g2
1

]



A.2. One-loop RGE equations 89

+ 2λ̂D

[
Tr(3λ†DAD + 3λ̂D

†
ÂD + λ†EAE + λ̂E

†
ÂE) + 2λ†DAD + 2λ̂D

†
ÂD

+ λ†UAU +
16

3
M3g

2
3 + 3M2g

2
2 +

7

15
M1g

2
1

]
(A.12d)

(4π)2
dÂE
dt

= ÂE

[
Tr(3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) + 5λ̂E

†
λ̂E − 3g2

2 − 9

5
g2
1

]

+ 2λ̂E

[
Tr(3λ†DAD + 3λ̂D

†
ÂD + λ†EAE + λ̂E

†
ÂE) + 2λ̂E

†
ÂE

+ 3M2g
2
2 +

9

5
M1g

2
1

]
+ 5AEλE

†λ̂E + 4λEλE
†ÂE (A.12e)

A.2.6 The Bµ term and other bilinear SUSY breaking parameters

For what concernes trilinear SUSY breaking interactions we get

(4π)2
dB
dt

= B
[
Tr(3λ†UλU + 3λ†DλD + 3λ̂D

†
λ̂D + λ†EλE + λ̂E

†
λ̂E) − 3g2

2 − 3

5
g2
1

]

+ 2µ
[
Tr(3λ†UAU + 3λ†DAD + 3λ̂D

†
ÂD + λ†EAE + λ̂E

†
ÂE)

+ 3M2g
2
2 +

3

5
M1g

2
1

]
(A.13a)

(4π)2
dBD
dt

= 2λ̂D

(
λ̂D

†
BD + λ†DBdD

)
+ 4ÂD

(
λ̂D

†
MD + λ†DMdD

)

−BD

(16

3
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4

15
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1

)
+MD

(32
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M3g
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15
M1g
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(A.13b)

(4π)2
dBdD
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λ̂D

†
BD + λ†DBdD
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+ 4AD
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MD + λ†DMdD
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+MdD
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M1g

2
1

)
(A.13c)

(4π)2
dBL
dt

= λ̂TE

(
λ∗EBlL + λ̂∗EBL

)
+ 2ÂTE

(
λ∗EMlL + λ̂∗EML

)

−BL

(
3g2

2 +
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1

)
+ML

(
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2
2 +

6
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M1g
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)
(A.13d)

(4π)2
dBlL
dt

= λTE

(
λ∗EBlL + λ̂∗EBL

)
+ 2ATE

(
λ∗EMlL + λ̂∗EML

)

−BlL

(
3g2

2 +
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)
+MlL

(
6M2g
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M1g
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)
. (A.13e)

A.2.7 Soft scalar masses

Finally we study the running of the masses parameters for sfermions and higgsinos.
It is convenient to define the quantity

S = m2
hu

−m2
hd

+Tr(m2
q−2m2

uc +m2
dc−m2

l +m
2
ec +m2

Dc −m2
Dc−m2

L+m2
L
) . (A.14)
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As usual, if some of the degrees of freedom happen to be integrated out the corre-
sponding m2 parameter in S will vanish. The RGE equations are then

(4π)2
dm2

hu

dt
= 6Tr

(
(m2

hu
+m2

q)λ
†
UλU + λ†Um

2
ucλU +A†

UAU

)

− 6|M2|2g2
2 − 6

5
|M1|2g2

1 +
3

5
g2
1S (A.15a)

(4π)2
dm2

hd

dt
= Tr

(
6(m2

hd
+m2

q)λ
†
DλD + 6(m2

hd
+m2

q)λ̂D
†
λ̂D + 2(m2

hd
+m2

l )λE
†λE

+ 2(m2
hd

+m2
L)λ̂E

†
λ̂E + 2λ†E λ̂Em
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lL + 2λ̂E

†
λEm

2
lL

†
+ 6λ†Dm

2
dDλ̂D

+ 6λ̂D
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dD

†
λD + 6λ†Dm

2
dcλD + 6λ̂D
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Dc λ̂D + 2λ†Em
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†
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ec λ̂E
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3A†

DAD + 3ÂD
†
ÂD +A†

EAE + ÂE
†
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)
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5
|M1|2g2

1 − 3

5
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1S (A.15b)

(4π)2
dm2

q

dt
= (m2

q + 2m2
hu

)λ†UλU + (m2
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hd
)(λ†DλD + λ̂D
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λ̂D)
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λ̂D)m2
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†
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2
lL

+ 2λ†Em
2
ecλE + 2A†

EAE − 6|M2|2g2
2 − 6

5
|M1|2g2

1 − 3

5
g2
1S (A.15d)
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†
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A.3 Approximate analytical running of Higgs mass pa-

rameters

A sometimes useful simple approximation for the solutions of the RGEs for the soft
mass terms is obtained in the limit in which tan β is moderate, so that only the top
Yukawa coupling is relevant in the equations above, and the squared gaugino masses
and A-terms are negligible compared to m2

10. In such a case, the only soft terms
that run significantly are m2

hu
and the stop squared mass parameters m̃2

q3 and m̃2
uc
3
,

for which we have

m2
hu

(M2
Z) = m2

hu
(MGUT) − 1

2
m2
U ρ = −1

2
m2

10 (4 + 5(−2 + ρ) sin2 θu)

m̃2
q3(M

2
Z) = m̃2

q3(MGUT) − 1

6
m2
U ρ = m2

10

(
1 − 5

6
ρ sin2 θu

)

m̃2
uc
3
(M2

Z) = m̃2
uc
3
(MGUT) − 1

3
m2
U ρ,= m2

10

(
1 − 5

3
ρ sin2 θu

)
,

(A.16)

where m2
U = (m2

hu
+ m̃2

q3 + m̃2
uc
3
)MGUT

= 5 sin2 θum
2
10, m

2
hu

(MGUT) = (−2 cos2 θu +

3 sin2 θu)m
2
10, m̃

2
q3(MGUT) = m̃2

uc
3
(MGUT) = m2

10 and

ρ = 1 − e
12

∫
dt

(4π)2
λ2
t (t)

, 0 < ρ < 1 . (A.17)

A typical value of ρ is ρ ∼ 0.7.

A.4 Razor

The razor analysis [78] is a fairly recent approach that has been introduced by CMS
collaboration to discriminate New Physics signals over SM backgrounds in situations
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in which there is a large presence of Emiss
T . The framework is designed to perfectly

fit to a situation in which from parton collision two heavy particles (G1, G2), whose
mass is significantly larger than those of SM particles, are produced. The decades of
the Gi’s are then forced to be described in a dijet topology, in which any of the Gi
decades to a massive unseen particle χi, contributing to Emiss

T , and a massless seen
particle Qi, being detected as a jet. In SUSY theories the benchmark scenario for
such this approach would thus be the case in which two heavy squarks are produced
and then decay to a quark and a neutralino:

pp→ G1G2 → Q1χ1 +Q2χ2 =⇒ pp→ q̃q̃ → 2j + MET . (A.18)

For any of the decay chains Gi → Qi + χi one can define the variable

M∆i =
M2
Gi

−M2
χi

MGi

, (A.19)

which, in the approximation where the heavy Gi’s are produced at threshold and
the Qi’s are massless, corresponds to twice the energy of the Qi’s in the center of
mass (CM) frame.

The reconstruction of the CM frame in events with two undetected particles is
not conceivable, but still it is possible to perform an event by event reconstruction
of the specific reference frame in which the three-momenta of the observed jets
coincide. This reference frame, named R-frame, is an estimator of the CM frame
itself: working in it one can construct a transverse mass MR

T ,

MR
T ≡

√
EmissT (pj1T + pj1T ) −−→

Emiss
T (−→p j1T + −→p j1T )

2
, (A.20)

whose distribution would have an edge at M∆ corresponding to the case in which
CM and R frame coincide, and

MR ≡
√

(Ej1 + Ej2)
2 − (pj1z + pj1z )2 , (A.21)

which peaks at M∆ for signal events.
Given the tools described one could easily discriminate between background and

signal events by means of the razor variable, defined as

R ≡ MR
T

MR
. (A.22)

For signal events the distribution of R peaks around 1/2, while for any SM back-
ground it is quite lower: this allows to discriminate between the two by means of
smart cuts on the value of R.



B
Appendix for Chapter 4.

In this appendix we will present some relevant formulae connected to the discussion
tackled in chapter 4 about the E6 inspired models of TGM.

B.1 Expressions of Sfermion Masses

In the presence of n SUSY breaking vector messengers associated to broken gener-
ators T ha , a = 1 . . . n, sfermion masses are given by the general expression

m̃2
ij = 2g2(T ha )ij(M

2
V )−1

ab F
†
0k(T

h
b )klF0l , (B.1)

where the indices ijkl denote the chiral superfields, F0i are the corresponding F-
term vevs, and M2

V is the n × n messenger vector mass matrix. No matter how
complicated is the Higgs mechanism giving rise to M2

V and F0i, the sfermion masses
effectively depend only on the n real parameters m2

a ≡ 2g2(M2
V )−1

ab F
†
0k(T

h
b )klF0l:

m̃2
ij = (T ha )ijm

2
a . (B.2)

The real parameters can be of course combined in complex parameters corresponding
to complex generators, if needed. In each of the three cases considered in this paper,
the parameters m2

a can be recovered as functions of the parameters of the model.
In the case of one and two messengers sfermion masses arise from scalar and

F-term vevs of the SM singlets

N c′, N c, S′
+,N

c′
,N

c
, S′

− (B.3)

which are understood as vectors in flavour space. We denote (x, y) =
∑

i x
∗
i yi,

|x|2 = (x, x), where i runs over the flavour indices and introduce the shorthand
notation

x ≡ |N c|2 + |N c|2 y ≡ |N c′|2 + |N c′|2 z ≡ |S′
+|2 + |S′

−|2

fx = |FNc |2 − |FNc |2 fy = |FNc′ |2 − |FNc′ |2 fz = |FS′
+
|2 − |FS′

−
|2 , (B.4)
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where we have denoted the vevs by the same symbol used for the fields and called
FNc′ , FNc , FNc′ , FNc , FS′

+
, FS′

−
the F-term vevs of N c′, N c,N c′,N c, S′

+, S′
− , respec-

tively.
In the one messenger case sfermion masses depend on these parameters only

through a single parameter m2
X given by

m2
X ≡ (5ŝX + ĉX)fx + 4ĉXfy + (−5ŝX + 3ĉX)fz

(5ŝX + ĉX)2x+ 16ĉX2y + (−5ŝX + 3ĉX)2z
, (B.5)

where ŝX ≡ 1/
√

40 sin θX and ĉX ≡ 1/
√

24 cos θX .
In the two messenger case we have two parameters m2

5 and m2
10 for which we get

(
m2

5

m2
10

)
=

1

20(xy + xz + yz)

(
fx(4y + 3z) + fy(3z − x) − fz(x+ 4y)

5fxz + 5fy(x+ z) + 5fzx

)
. (B.6)

Note that at least two among x, y, z must be non vanishing in order to completely
break U(1)5 ×U(1)10, since a single vev would leave a linear combination of the two
U(1) factors unbroken.

In the four messenger case sfermion masses are generated by the scalar and
F-term vevs of n flavours of doublets and antidoublets and m flavours of triplets

(1,2)5 =

(
N c′

N c

)
(1,2)−5 =

(
N
c′

N
c

)
(1,3)0 =



S′

+

S′
0

S′
−


 . (B.7)

In addition to equations B.4 we define

w ≡ |S′
0|2, α ≡ (N c′, N c) + (N

c
,N

c′
), β ≡ (S′

+, S
′
0) + (S′

0, S
′
−), γ ≡ (S′

+, S
′
−),

where α, β, γ ∈ C, and |α| ≤ √
xy, |β| ≤

√
2zw, |γ| ≤ z/2. We use the same notation

as before for the F-term vevs and further denote by FS′
0

the F-term of S′
0.

The sfermion masses depend on the above vevs through four parameters
m2

+,m
2
−,m

2
3,m

2
1 given by




m2
+

m2
−

m2
3

m2
1


 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1/
√

60


 2g2(M̂2

V )−1




F 2
+

F 2
−

F 2
3

F 2
1


 , (B.8)

where

F 2
+ ≡ F †

0 T̂
′
+F0 =

fα√
2
− fβ F 2

− ≡ F †
0 T̂

′
−F0 =

(
F 2

+

)∗

F 2
3 ≡ F †

0 T̂
′
3F0 = fz +

fy − fx
2

F 2
1 ≡ F †

0 T̂
′F0 =

5√
60

(fx + fy)

(B.9)
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M̂2
V = g2
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−β

√
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α
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√
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√
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√
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(B.10)

B.2 Rank 6 Subgroups of E6 containing GSM

We now provide a complete list of the Rank 6 subalgebras g of the E6 Lie algeba
containing the SM algebra. We distinguish the two (t′± /∈ g) and four (t′± ∈ g)
messenger cases. We will write the subalgebras as direct sums of the decomposition
of the E6 Lie algebra with respect to Gmin = GSM × U(1)10 × U(1)5 and G′

min =

GSM × U(1)′ × SU(2)′ respectively.
The 78 decomposes as in equation 4.1. TheGmin irreducible subalgebras (besides

the ones in gmin) can be labelled as follows:

240,0 + 10,0 + 1′
0,0 = gmin + V0,0 + V 0,0

10−4,0 = q−3,1/2 + uc−3,1/2 + ec−3,1/2 104,0 = q3,−1/2 + uc3,−1/2 + ec3,−1/2

101,−3 = q−3,−1/2 + uc−3,−1/2 + ec−3,−1/2 10−1,3 = q3,1/2 + uc3,1/2 + ec3,1/2

5−3,−3 = l−6,0 + dc−6,0 53,3 = l6,0 + dc6,0

15,−3 = s′0,−1 1−5,3 = s′0,1 .
(B.11)

where ra,b denotes the subalgebra with the quantum numbers of the SM representa-
tion r and with t′ = a, t′3 = b (we use t′ and t′3 instead of t5, t10 here because it makes
easier to compute commutators). V denotes the (3,2,−5/6) SM representation that
describes the heavy SU(5)/GSM vectors.

The Rank 6 subalgebras g of the E6 Lie algeba containing the SM algebra, but
not t′±, are then

su(5) + u(1)5 + u(1)10 = gmin + V0,0 + V 0,0 (B.12a)

su(5)f + u(1)5f + u(1)10 = gmin + q−3,1/2 + q3,−1/2 (B.12b)

su(4)c + su(2)L + u(1)3R + u(1)10 = gmin + uc−3,1/2 + uc3,−1/2 (B.12c)

su(3)c + su(2)L + su(2)R + u(1)B−L + u(1)10 = gmin + ec−3,1/2 + ec3,−1/2 (B.12d)

su(3)c + su(3)L + u(1)′8 + u(1)′3 = gmin + l−6,0 + l6,0 (B.12e)

su(4)cf + su(2)L + u(1)′3 + u(1)10f = gmin + dc−6,0 + dc6,0 (B.12f)

so(10) + u(1)10 = gmin + (V0,0 + q−3,1/2 + uc−3,1/2 + ec−3,1/2 + conj) (B.12g)

su(6) + u(1)′3 = gmin + (V0,0 + l−6,0 + dc−6,0 + conj) (B.12h)

su(6)f + u(1)′3R = gmin + (q−3,1/2 + uc−3,−1/2 + l−6,0 + conj) (B.12i)
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su(5)f + su(2)′R + u(1)′f = gmin + (q−3,1/2 + ec−3,−1/2 + conj) (B.12j)

su(6)f + su(2)′R = gmin + (q−3,1/2 + uc−3,−1/2 + l−6,0 + ec−3,−1/2 + conj) (B.12k)

su(4)c + su(2)L + su(2)R + u(1)10 = gmin + (uc−3,1/2 + ec−3,1/2 + conj) (B.12l)

su(5)′fR + su(2)L + u(1)′fR = gmin + (uc−3,1/2 + ec−3,−1/2 + dc−6,0 + conj) (B.12m)

su(3)c + su(3)L + su(2)R + u(1)R = gmin + (ec−3,1/2 + l−6,0 + conj) , (B.12n)

besides of course su(3)c + su(2)L + u(1)Y + u(1)5 + u(1)10 = gmin. For the definition
of the U(1) factors see table B.1.

Generator Definition

U(1)5f t5f (t5 + 24y)/5

U(1)3R t3R (t5 − 6y)/10

U(1)B−L tB−L (t5 + 4y)/5

U(1)′8 y′ (−3t5 + 48y − 5t10)/60

U(1)′3 t′3 (t10 − t5)/8

U(1)10f t10f (3t5 + 5t10 + 72y)/20

U(1)′3R t′3R (t5 − 5t10 + 24y)/40

U(1)′f t′f (3t5 + 25t10 + 72y)/20

U(1)′fR t′fR (−3t5 + 5t10 + 18y)/5

U(1)R tR (−3t5 − 12y + 5t10)/30

U(1)′ t′ (5t10 + 3t5)/4

U(1)′10f t′10f (3t5 + 5t10 + 72y)/20

U(1)′c t′c (−3t5 − 5t10 + 18y)/5

U(1)8L yL (−3t5 − 5t10 − 12y)/30

Table B.1: Definition of U(1) factors

Some comments are in order. All the subgroup factors in equations B.12 are
orthogonal. Adding a subalgebra with opposite values of t′3 leads to an equiva-
lent embedding that can be obtained from the original one by means of a SU(2)′

rotation flipping the sign of t′3. The subalgebra su(5)f gives the flipped embed-
ding of SU(5) in SO(10) ⊂ E6 with the flipped U(1) generator t5f . The “flipped
SU(4)c” subalgebra su(4)cf can be seen as the SU(4) subgroup of SU(6) generated
by su(3)c + dc−6,0 + dc6,0 and the “flipped B−L" generator tfB−L ≡ (t′ − 2y)/5. The
flipped su(6)f subalgebra is spanned by su(5)f +5−3,−3 +53,3 +u(1)′f . The SU(5)′fR
subgroup is the one obtained from the unification of SU(3)c and SU(2)′R instead of
SU(2)L.

In the case in which the gauge group contains SU(2)′ (i.e. t′± ∈ g), it is convenient
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to decompose the E6 adjoint with respect to G′
min. One has

78 → (24,1)0 + (5,1)6 + (5,1)−6 + (1,1)0 + (1,3) + (10,2)−3 + (10,2)3

(24,1)0 + (1,1)0 + (1,3)0 = g
′
min + (V, 1)0 + (V , 1)0

(10,2)−3 = (q, 2)−3 + (uc, 2)−3 + (ec, 2)−3 (10,2)3 = (q, 2)3 + (uc, 2)3 + (ec, 2)3

(5,1)−6 = (l, 1)−6 + (dc, 1)−6 (5,1)6 = (l, 1)6 + (dc, 1)6 ,
(B.13)

where (a, b)q denotes a subalgebra with quantum numbers a under SU(5) (first line)
of GSM (other lines), b under SU(2)′, and t′ = q.

The Rank 6 subalgebras g of the E6 Lie algebra containing the SM algebra and
t′±, are then

su(5) + u(1)′ + su(2)′ = g
′
min + [(V, 1)0 + conj] (B.14a)

su(6) + su(2)′ = g
′
min + [(V, 1)0 + (l, 1)−6 + (dc, 1)−6 + conj] (B.14b)

so(10)′f + u(1)′10f = g
′
min + [(q, 2)−3 + (dc, 1)−6 + conj] (B.14c)

su(5)c + su(2)L + u(1)′c = g
′
min + [(uc, 2)−3 + conj] (B.14d)

su(6)c + su(2)L = g
′
min + [(uc, 2)−3 + (ec, 2)−3 + (dc, 1)−6 + conj] (B.14e)

su(3)c + su(2)L + su(3)′ + u(1)8L = g
′
min + [(ec, 2)−3 + conj] (B.14f)

su(3)c + su(3)L + su(3)′ = g
′
min + [(ec, 2)−3 + (l, 1)−6 + conj] (B.14g)

su(3)c + su(3)L + su(2)′ + u(1)′8 = g
′
min + [l−6,0 + conj] (B.14h)

su(4)cf + su(2)L + su(2)′ + u(1)10f = g
′
min + [dc−6,0 + conj] , (B.14i)

besides of course e6 itself.



98 Appendix B. Appendix for Chapter 4.

Table B.2: Decomposition of 27

SU(6) × SU(2)′ SU(5) × SU(2)′ × U(1)′ SU(5) × U(1)5 × U(1)10 SM SO(10) × U(1)10
(15,1) (10,1)2 101,1 q, uc, ec 161

(5,1)−4 5−2,−2 dc, l 10−2

(6,2) 5−3,1 (5,2)−1 dc, l 161

52,−2 d′c, l′ 10−2

(1,2)5 10,4 νc′ 14

15,1 νc 161

Table B.3: Decomposition of 78

SU(6) × SU(2)′ SU(5) × SU(2)′ × U(1)′ SU(5) × U(1)5 × U(1)10 SM SO(10) × U(1)10
(35,1) (24,1)0 240,0 450

(5,1)6 53,3 163

(5,1)−6 5−3,−3 16−3

(1,1)0 10,0 s′ (10,450)

(20,2) (10,2)−3 10−4,0 450

101,−3 16−3

(10,2)3 10−1,3 163

104,0 450

(1,3) (1,3)0 1−5,3 s′+ 163

10,0 s′0 (10,450)

15,−3 s′− 16−3



C
Appendix for Chapter 5

In this appendix we will present some relevant formulae connected to the discussion
tackled in chapter 5 about the Minimal Yukawa-Gauge Mediation model.

C.1 Gauge coupling unification

In this appendix we discuss the details of gauge coupling evolution, whose results
are reported in section 5.2.2; in particular we show that unification is easily realized
in our framework.

The one loop evolution of the gauge couplings is given by

(4π)2
dgi
dt

= g3
i bi , (C.1)

where the bi’s have to be calculated considering all the fields that are charged under
the i-th interaction. For a generic theory the different contributions owed to scalars
and fermions may be obtained as in [142–145]. Thus we calculate the various bi’s
considering only those fields present in the effective field theory at a given scale:
indeed at scale µ all the fields heavier than µ decouple and do not contribute to the
running.

Our framework is characterized by the presence of five scales:

- winos and bino, M (4)
SUSY ∼ 100 ÷ 300GeV;

- gluinos, M (3)
SUSY ∼ 1 ÷ 1.5TeV;

- light sfermions, M (2)
SUSY ∼ 4 ÷ 7TeV;

- heavy sfermions, heavy Higgs and higgsinos, M (1)
SUSY ∼ 30 ÷ 50TeV;

- extra triplets, MT ∼ 1014 ÷ 1015 GeV.

The different bi’s at the energy scale µ are:

• µ < M
(4)
SUSY: the theory coincides with the SM thus bi =

{
41
10 ,−19

6 ,−7
}
;
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• M
(3)
SUSY < µ < M

(4)
SUSY: the theory is SM + winos + bino thus bi ={

41
10 ,−11

6 ,−7
}
;

• M
(2)
SUSY < µ < M

(3)
SUSY: the theory is SM + winos + bino + gluino thus

bi =
{

41
10 ,−11

6 ,−5
}
;

• M
(2)
SUSY < µ < M

(1)
SUSY: the theory is SM + winos + bino + gluino + first two

family sfermions thus bi =
{

163
30 ,−1

2 ,−11
3

}
;

• M
(1)
SUSY < µ < MT , the theory is MSSM thus bi =

{
33
5 , 1,−3

}
;

• µ > MT , the theory is MSSM + heavy triplets thus bi = {7, 1,−2}.
We can check the compatibility of gauge unification with the observables at the EW
scale as follows. The low energy values at MZ , the Z boson mass scale, of α, sin2 θW
and αs – in the MS renormalization scheme – are given by [125]

MZ = 91.1876 ± 0.0021GeV ,

α(MZ)−1 = 127.916 ± 0.015 ,

sin2 θW (MZ) = 0.23150 ± 0.00016 ,

αs(MZ) = 0.1184 ± 0.0012 .

We notice that the observable with the biggest uncertainties is αs. We evolve g1
and g2 to high energies and we determine a tentative unification scale. Then we run
back the strong coupling and check if it is compatible with the experimental value.
We find that for the typical scales corresponding to the spectrum shown in figure 5.2
the strong coupling calculated with this procedure falls always within three sigmas
of the experimental value.

C.2 RG evolution of the effective theory for calculation

of Higgs mass

In section 5.2.3 we have seen that below M
(1)
SUSY the heavy fields start to decouple

from the theory. In the following we write down the evolution equations for the
parameters involved to get the Higgs running mass at the minimum of the poten-
tial. As already anticipated in appendix C.1 we spotted the presence of different
intermediate scales to consider. Not to be redundant we do not re-write the gauge
coupling RGEs, that can be found in appendix C.1.

Between M
(1)
SUSY

and M
(2)
SUSY

In this region the heavy third family sfermions, the higgsinos and the heavy Higgs
doublet have decoupled. The relevant equations needed for the evolution of the
various parameters are the following. The couplings evolve through

(4π)2
dξ
dt

= βξ. (C.2)
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We considered the various βξ and γh, the anomalous dimensions, in the third family
approximation, where only the top Yukawa coupling is relevant:

βM1 = 8g2
1M1 , (C.3)

βM2 = −4g2
2M2 , (C.4)

βM3 = −10g2
3M3 , (C.5)

βλt = λt

(
9

2
λ2
t −

17

20
g2
1 − 9

4
g2
2 − 8g2

3

)
, (C.6)

βλ = 12λ2 + λ

(
12λ2

t −
9

5
g2
1 − 9g2

2

)
+

9

2

(
3

50
g4
1 +

g4
2

2
+
g2
1g

2
2

5

)
− 12λ4

t ,(C.7)

βm2
h

= m2
h(6λ+ 6λ2

t −
9

2
g2
2 − 9

10
g2
1) , (C.8)

γh = 3λ2
t −

9

4
g2
2 − 9

20
g2
1 . (C.9)

Between M
(2)
SUSY

and M
(3)
SUSY

At scale M (3)
SUSY the light sfermions (namely those of the first two families) decouple.

The various βξ and γh in the third family approximation are now:

βM1 = 0 , (C.10)

βM2 = −12g2
2M2 , (C.11)

βM3 = −18g2
3M3 , (C.12)

βλt = λt

(
9

2
λ2
t −

17

20
g2
1 − 9

4
g2
2 − 8g2

3

)
, (C.13)

βλ = 12λ2 + λ

(
12λ2

t −
9

5
g2
1 − 9g2

2

)
+

9

2

(
3

50
g4
1 +

g4
2

2
+
g2
1g

2
2

5

)
− 12λ4

t ,(C.14)

βm2
h

= m2(6λ+ 6λ2
t −

9

2
g2
2 − 9

10
g2
1) , (C.15)

γh = 3λ2
t −

9

4
g2
2 − 9

20
g2
1 . (C.16)

Between M
(3)
SUSY

and M
(4)
SUSY

Below M
(3)
SUSY also the gluinos cease to be part of the theory. βξ and γh are now

given by

βM1 = 0 , (C.17)

βM2 = −12g2
2M2 , (C.18)

βλt = λt

(
9

2
λ2
t −

17

20
g2
1 − 9

4
g2
2 − 8g2

3

)
, (C.19)

βλ = 12λ2 + λ

(
12λ2

t −
9

5
g2
1 − 9g2

2

)
+

9

2

(
3

50
g4
1 +

g4
2

2
+
g2
1g

2
2

5

)
− 12λ4

t ,(C.20)

βm2
h

= m2
h(6λ+ 6λ2

t −
9

2
g2
2 − 9

10
g2
1) , (C.21)
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γh = 3λ2
t −

9

4
g2
2 − 9

20
g2
1 . (C.22)

Below M
(4)
SUSY

Below M
(4)
SUSY the theory is nothing but the SM. The evolution can be obtained as

in [146]. For the sake of completeness we report the relevant βξ’s:

βλt = λt

(
9

2
λ2
t −

17

20
g2
1 − 9

4
g2
2 − 8g2

3

)
, (C.23)

βλ = 12λ2 + λ

(
12λ2

t −
9

5
g2
1 − 9g2

2

)
+

9

2

(
3

50
g4
1 +

g4
2

2
+
g2
1g

2
2

5

)
− 12λ4

t ,(C.24)

βm2
h

= m2
h(6λ+ 6λ2

t −
9

2
g2
2 − 9

10
g2
1) , (C.25)

γh = 3λ2
t −

9

4
g2
2 − 9

20
g2
1 . (C.26)

C.3 Calculation of the SUSY breaking terms

In this appendix we derive the SUSY breaking terms in our theory. In general such
terms can be derived by means of diagrammatic loop calculation in which the SUSY
breaking F-term vev enters. In our scenario such a calculation is quite involved, as it
would require to consider graphs up to three loops. It is far more convenient to use an
approach based on the properties of SUSY theories renormalization. Following the
seminal paper [56,147] we review this method and its realization in our framework.

General theory

As already discussed in section 5.1 we parametrize the breaking of SUSY through
the presence of a single chiral superfield X taking vev both in its scalar and auxiliary
components, 〈X〉 = M/k + θ2F/k, where k is a coupling constant that has been
reabsorbed in the vevs for later convenience. The only source for the appearance
of soft terms is the vev F . Thus the SUSY breaking contributions can be casted
in an expansion in terms of powers of F , or to be more precise, in terms of the
dimensionless parameter F/M2. If interested in the regime F ≪ M2, one can
keep track of the SUSY breaking effects in a manifestly supersymmetric framework,
considering soft terms just as small modifications of the latter. Being a bit sloppy
we can explain the procedure as follows. Let us consider a SUSY gauge theory based
on the gauge group G. It is well known that in SUSY theories the renormalization
effects are owed to the renormalization of the kinetic terms of gauge and matter,
while the superpotential does not renormalize. Thus one can calculate the evolution
of the matter wave functions and of the gauge couplings in the SUSY limit from
the high cutoff scale ΛUV down to low energies across the scale M using the RGEs
and then substitute M →

√
XX† into the gauge real couplings R(M,µ)1 and in the

1The real coupling is the gauge coupling defined for canonically normalized fields and it is

different from the holomorphic coupling. The relation among the two is given in equation C.37.
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wave function renormalizations Zr(M,µ). Since the X superfield takes both scalar
and F-term vevs, such a procedure implies the appearance of SUSY breaking terms
in the lagrangian of the theory. Extracting them is then simply a matter of knowing
the dependence on F of the various R and Zr’s.

To be definite we start by considering the high energy theory defined by the
lagrangian

L =

∫
d4θ

[
Z>MΦ†eV (Φ)Φ +

∑

r

Z>r Q
†
re
V (Qr)Qr

]

+

∫
d2θ

1

2
S> Tr

(
WαWα

)
+ h.c.

+

∫
d2θ(λXΦΦ + µrsQrQs + λrstQrQsQt) + h.c. (C.27)

where Φ is a chiral messenger (to be general we assume it charged under G) and the
Qr are the matter superfields, X is the chiral superfield taking vevs and µrs, λrst are
the SUSY superpotential mass terms and Yukawa interactions respectively. Finally
Z>M , Z

>
r , S

> are the renormalization wave functions above the scale M . At this scale
the messenger superfield Φ takes mass and decouples, thus at lower energies one gets

L =

∫
d4θ

∑

r

Z<r Q
†
re
V (Qr)Qr +

∫
d2θ

1

2
S< Tr

(
WαWα

)
+ h.c.

+

∫
d2θ(µrsQrQs + λrstQrQsQt) + h.c. . (C.28)

The above equations C.27 and C.28 define the theory in which the RG evolution
takes place. Once one knows the γ’s of the superfields and the β functions of the
couplings involved it is possible to determine the R(M,µ)’s and the Zr(M,µ)’s (Zr
is defined as Z>r above M and Z<r below it). By substituting M →

√
XX† and

redefining

Qr → Z1/2
r

(
1 +

1

2

∂ lnZr(X,X
†, µ)

∂ ln |X|
F

M
θ2

)
Q′
r (C.29)

the soft SUSY breaking terms, defined by

Lsoft = −1

2
(Mλλλ+ h.c.) − m̃2

Qr
Q̃†
rQ̃r −

(∑

r

ArQ̃r∂Q̃r
W (Q̃) + h.c.

)
(C.30)

can be easily extracted:

Mλ(µ) = −1

2

∂ lnR(X,µ)

∂ ln |X|

∣∣∣∣
X=M

F

M
, (C.31)

m̃2
Qr

(µ) = −1

4

∂2 lnZr(X,X
†, µ)

(∂ ln |X|)2
∣∣∣∣
X=M

FF †

MM †
, (C.32)

The reason for the presence of two different couplings is well explained in [148,149]. In particular

while the holomorphic coupling has the nice property of renormalizing just at one loop, the real

coupling is the canonically normalized one that actually couples to matter, thus giving the strenght

of the interaction.
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Ar(µ) =
∂ lnZr(X,X

†, µ)

∂ ln |X|

∣∣∣∣
X=M

F

M
. (C.33)

In the following sections we compute explicitly the wave function RG evolutions and
extract the soft terms.

Coupling evolutions

As seen in equation C.31 the fundamental ingredient to compute gaugino masses M
is the knowledge of the X dependence of the real coupling R. The latter can be
easily obtained once the evolution of the holomorphic coupling S is known.

Since we wish to calculate the X dependence of the holomorphic coupling at low
energies we have to calculate its RG evolution from the high energy scale ΛUV down
to the scale µ accross the threshold µX of the physical messenger scale [149,150],

µ2
X =

XX†

Z2
M (µX)

. (C.34)

The evolution can be split in two different regions, namely above (where quantities
are denoted with the superscript >) and below (where quantities are denoted with
the superscript <) the scale µX . The coupling at µX is related to the high energy
one by the simple formula

S>(µX) = S>(Λ) +
b>

16π2
ln
µX
Λ
, (C.35)

where b = 3TG −∑φ Tφ and φ runs over all the matter fields present in the theory
at a certain scale; Tφ is the Dynkin index of the representation φ (the subscript G
refers as usual to the adjoint representation). Writing the equivalent formula below
µX one obtains the low energy value of the holomorphic coupling after applying
matching conditions at µX scale,

S(µ) = S>(Λ) +
b>

16π2
ln
µX
Λ

+
b<

16π2
ln

µ

µX
. (C.36)

The relation between the holomorphic coupling and the interaction one is given
by [148,149]

R(µ) = Re
(
S(µ)

)
+
TG
8π2

lnRe
(
S(µ)

)
−
∑

r

Tr
8π2

lnZr(µ) , (C.37)

where by Re(S) we mean the real part of S and the Zr’s are the wave functions of
the matter fields. From the previous considerations on S we can easily obtain the
matching condition

R>(µX) = R>(Λ) +
b>

16π2
ln
µ2
X

Λ2
+
TG
8π2

ln
Re
(
S>(µX)

)

Re
(
S>(Λ)

)

−
∑

r

Tr
8π2

ln
Z>r (µX)

Z>r (Λ)
− TM

8π2
ln
ZM (µX)

ZM (Λ)
, (C.38)
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that yields for the low energy real coupling

R(µ) = R>(µX) +
b<i

16π2
ln
µ2

µ2
X

+
TG
8π2

ln
Re
(
S<(µ)

)

Re(S<
(
µX)

) −
∑

r

Tr
8π2

ln
Z<r (µ)

Z<r (µX)
.

(C.39)

Zr evolution

The calculation of soft terms is just a step away: we still have to calculate the wave
function renormalization dependence on X. Once we will have done that the whole
determination of the SUSY breaking parameters will be straightforward.

The RG evolution of the matter fields is strictly connected to the knowledge of
the γ functions of the fields under consideration. In particular it is governed by the
well known differential equation

d lnZr
dt

= γr . (C.40)

The integration of such a differential equation across the scale µX is the simple task
to obtain the wave function Z of the field r: indeed one gets

lnZr(µ) =

∫ µX

Λ
dt γ>r (t) +

∫ µ

µX

dt γ<r (t, µX) . (C.41)

Soft terms

All the ingredients for the determination of the soft SUSY breaking terms are now
at our disposal, thus it is easy to perform the needed calculations.

Gaugino masses

As we saw in equation C.31 gaugino masses are given by

Mλ(µ) = −1

2

∂ lnR(µ)

∂ ln |X|
F

M
.

It is easy to recast the derivation with respect to ln |X| in the following way:

∂

∂ ln |X| =
∂ lnµX
∂ ln |X|

∂

∂ lnµX
.

As we saw in equation (C.34) the scale µX is given by

µ2
X =

XX†

Z2
M (µX)

, (C.42)

so that

∂ lnµX
∂ ln |X| = 1 − ∂ lnZM (µX)

∂ ln |X| ∼ 1 − ∂ lnZM (µX)

∂ lnµX
= 1 − γ>M .
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Calculating the gaugino mass is now just a matter of bookkeeping:

Mλ = − 1

2

∂ lnµX
∂ ln |X|

∂ lnR(µ)

∂ lnµX

F

M
= − 1

2R(µX)

(
1 − γ>M

)[b> − b<

8π2

+
TG
8π2

1

Re
(
S(µX)

)
(
b> − b<

8π2

)
−
∑

r

Tr
8π2

(
γ>r − γ<r

)
− TM

8π2
γ>M

]
. (C.43)

Sfermion masses

The soft masses for the low energy fields of the theory are given by equation C.32

m̃2
Qr

(µ) = −1

4

∂2 lnZr(µ)

∂ ln |X|2
FF †

MM †
,

thus we just have to deal with the derivatives of Zr as calculated in equation C.41.
The first derivative with respect to µX is

∂ lnZr(µ)

∂ lnµX
=

∂

∂ lnµX

[∫ µX

Λ
dt γ>r (t) +

∫ µ

µX

dt γ<r (t, µX)

]

= γ>r (µX) − γ<r (µX) +

∫ µ

µX

dt
∂ γ<r (t, µX)

∂ lnµX
, (C.44)

and the second one is

∂2 lnZr(µ)

∂ lnµ2
X

=
∂

∂ lnµX

(
γ>r (µX) − γ<r (µX)

)
− ∂ γ<r (t, µX)

∂ lnµX

∣∣∣∣∣
µX

. (C.45)

Suppose we now consider the generic coupling λ. Its RG evolution is controlled by
the βλ function defined through

dλ
dt

= βλ . (C.46)

The formal solution of equation C.46 from the high scale ΛUV down to low energies
across the scale µX is

λ(µ) = λ(ΛUV) +

∫ µX

Λ
dt β>λ (t) +

∫ µ

µX

dt β<λ (t, µX) . (C.47)

By means of the above equations we can easily translate the derivation with respect
to the scale µX to the one with respect to the running couplings of the theory using
the known β functions. In particular we obtain

m̃2
Qr

= −1

4

(
1 − γ>M

)2
(
∂∆γr
∂λ

β>λ − ∂γ<r
∂λ

∆βλ

)
FF †

MM †
, (C.48)

where ∆γr = γ>r − γ<r and ∆βλ = β>λ − β<λ are defined to be the difference of the
shown quantities above and below the µX scale.
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Trilinears

In order to complete the computation of the soft SUSY breaking terms we have to
focus on the trilinears terms Arst of equation C.28. In general the computation of
the latter can be obtained through the summation over the vertex corrections owed
to the different fields involved in the interaction. In particular one obtains that for
any of the field of the interaction it is possible to write, as shown in C.33,

Ai(µ) =
∂ lnZi(µ)

∂ ln |X|
F

M
, (C.49)

that following the same procedure of the previos subsection yields

Ai(µ) =
(
1 − γ>M

)
∆γi

F

M
. (C.50)

The trilinear soft term entering the lagrangian can now be easily obtained by sum-
ming the contribution coming from any of the vertices entering the diagram, thus
the resulting SUSY breaking lagrangian term will be

ArstQ̃rQ̃sQ̃t =
(
1 − γ>M

)( ∑

i=r,s,t

∆γi Q̃i∂Q̃i
W (Q̃)

)
F

M
. (C.51)

SUSY breaking contributions in our model

In the following we write all the SUSY breaking soft terms in our framework calcu-
lated using the formulae just calculated. To easily spot the numbers of loop factors
at which any of the following terms arise we use Lp = (4π)−2.

Trilinears

AU = Lp h2
0 λU Bφ (C.52a)

AD = Lp h2
0 λD Bφ (C.52b)

AE = Lp h2
0 λE Bφ (C.52c)

Bilinear terms

B = Lp h2
0 µBφ (C.53)

Gaugino masses

M1 = Lp2 g2
1

(
3

5
h2

0 +
2

5
h2
t

)
Bφ (C.54a)

M2 = Lp2 g2
2 h

2
0Bφ (C.54b)

M3 = Lp2 g2
3 h

2
t Bφ (C.54c)
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Soft squared masses: two loop contributions

m2
q
(2)

=
Lp2

2
h2

0

(
λ†DλD + λ†UλU

)
B2
φ (C.55a)

m2
l
(2)

=
Lp2

2
h2

0 λ
†
EλE B

2
φ (C.55b)

m2
uc

(2)
= Lp2 h2

0 λUλ
†
U B

2
φ (C.55c)

m2
dc

(2)
= Lp2 h2

0 λDλ
†
D B

2
φ (C.55d)

m2
ec

(2)
= Lp2 h2

0 λEλ
†
E B

2
φ (C.55e)

m2
Hu

(2)
=

Lp2

2
h2

0

[
3g2

1

5
+ 3g2

2 − 4h2
0 − 3h2

t − Tr
(
λ†EλE + 3λ†DλD

)
− 2η2

]
B2
φ

(C.55f)

m2
Hd

(2)
=

Lp2

2
h2

0

[
3g2

1

5
+ 3g2

2 − 4h2
0 − 3h2

t − 3Tr
(
λ†UλU

)
− 2η2

]
B2
φ (C.55g)

Soft squared masses: three loop contributions

m2
q
(3)

= Lp3

{
h2

0

[
1

50
g4
1 +

3

2
g4
2 − 2

(
λ†DλDλ

†
DλD + λ†UλUλ

†
UλU

)

−
(1

3
g2
1 + 3g2

2 +
8

3
g2
3 − 3h2

0 − 3h2
t − 2η2

)(
λ†UλU + λ†DλD

)]

+
( 1

75
g4
1 +

8

3
g4
3

)
h2
t

}
B2
φ (C.56a)

m2
l
(3)

= Lp3

{
h2

0

[
9

50
g4
1 +

3

2
g4
2 − 2λ†EλEλ

†
EλE

−
(3

5
g2
1 + 3g2

2 − 3h2
0 − 3h2

t − 2η2
)
λ†EλE

]
+

3

25
g4
1h

2
t

}
B2
φ (C.56b)

m2
uc

(3)
= Lp3

{
h2

0

[
8

25
g4
1 + 2

(
λDλ

†
D + λUλ

†
U

)
λUλ

†
U

−
(5

3
g2
1 + 3g2

2 +
16

3
g2
3 − 6h2

0 − 6h2
t − 4η2

)
λUλ

†
U

]

+ h2
t

(16

75
g4
1 +

8

3
g4
3

)}
B2
φ (C.56c)

m2
dc

(3)
= Lp3

{
h2

0

[
2

25
g4
1 − 2

(
λUλ

†
U + λDλ

†
D

)
λDλ

†
D
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−
(13

15
g2
1 + 3g2

2 +
16

3
g2
3 − 6h2

0 − 6h2
t − 4η2

)
λDλ

†
D

]

+ h2
t

( 4

75
g4
1 +

8

3
g4
3

)}
B2
φ (C.56d)

m2
ec

(3)
= Lp3

{
h2

0

[
18

25
g4
1 − 2h2

0λEλ
†
EλEλ

†
E

−
(
3g2

1 + 3g2
2 − 6h2

0 − 6h2
t − 4η2

)
λEλ

†
E

]
+

12

25
g4
1h

2
t

}
B2
φ (C.56e)

m2
Hu

(3)
= Lp3

{
h2

0

[
− 201

100
g4
1 − 9

10
g2
1g

2
2 − 9

4
g4
2 − 6

5
g2
1h

2
0 − 6g2

2h
2
0 + 9h4

0

−
(7

5
g2
1 + 9g2

2 + 6g2
3 − 15h2

0 − 9Tr(λ†DλD) − 3Tr(λ†EλE)
)

Tr(λ†DλD)

−
(9

5
g2
1 + 3g2

2 − 5h2
0 + h2

0 Tr(λ†EλE)
)

Tr(λ†EλE) + 9h2
0 Tr(λ†UλU )

− 3Tr(λ†EλEλ
†
EλE) + 3Tr(λ†EλEλ

†
DλD) + 9Tr(λ†DλDλ

†
DλD)

− 9Tr(λ†UλUλ
†
UλU ) + h2

t

( 1

10
g2
1 +

9

2
g2
2 − 16g2

3 + 3h2
0 + 6h2

t + 12η2
)

+ η2
(3

5
g2
1 + 3g2

2 + 10h2
0 + 8η2

)]
+

3

25
g4
1h

2
t

}
(C.56f)

m2
Hd

(3)
= Lp3

{
h2

0

[
− 201

100
g4
1 − 9

10
g2
1g

2
2 − 9

4
g4
2 − 6

5
g2
1h

2
0 − 6g2

2h
2
0 + 9h4

0

−
(13

5
g2
1 + 9g2

2 + 16g2
3 − 15h2

0 − Tr(λ†UλU )
)

Tr(λ†UλU )

+ 9Tr(λ†UλUλ
†
UλU ) − 9Tr(λ†DλDλ

†
DλD) − 3Tr(λ†EλEλ

†
EλE)

+ 9h2
0 Tr(λ†DλD) + 3h2

0 Tr(λ†EλE) + h2
t

( 1

10
g2
1 +

9

2
g2
2 − 16g2

3 + 3h2
0

+ 6h2
t

)
+

3

5
g2
1η

2 + 3g2
2η

2 + 10h2
0η

2 + 12h2
t η

2 + 8η4

]
+

3

25
g4
1ht

2

}

(C.56g)
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