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Abstract

This thesis discusses several aspects of the implementation and testing of a new
general relativistic computer code based on the smoothed particle hydrodynamics (SPH)
method. The code, which has been called SPHINCS (SPH IN Curved Spacetime), is
still at the development stage and this is a progress report on some parts of the project.
SPHINCS is intended for use in studying various astrophysical applications concerning
accretion processes onto black holes (BHs) including: the tidal disruption of a star by
a BH; study of the collapsing interiors of massive, rapidly rotating stars within the so-
called collapsar scenario; and the interaction of a rotating BH with the inner parts of an
accretion disc around it.

In the first part of this thesis we present the mathematical formulation on which
SPHINCS is based. Using the language of the so-called 3+1 formalism, we show how
the numerical variables and the corresponding evolution equations used in SPHINCS
can be derived self-consistently from the Lagrangian of a perfect fluid. We then discuss
the implementation of SPHINCS in Kerr spacetime and give explicit expressions for the
acceleration terms due to the spacetime metric that enter into the evolution equations.

In the second part of the thesis, we introduce an analytic toy model which is intended
to be used as a test solution for benchmarking SPHINCS (and possibly other GR hydro
codes). This model describes the steady and axisymmetric flow of a rotating gas cloud
of non-interacting particles infalling towards a Kerr BH. We demonstrate the utility
of the model as a test solution by showing some results of comparing it with several
SPH simulations of an idealised collapsar-like setup that implement pseudo-Newtonian
potentials for mimicking the effects of Kerr and Schwarzschild spacetimes. Besides its
use as a test solution for numerical codes, we also demonstrate that this model is a useful
tool for highlighting purely general relativistic effects in hydrodynamic flows. Finally,
we discuss its potential use as a tool for exploring the parameter space in applications
where the assumptions of the model are approximately valid.
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Chapter 1

Introduction

1.1 Brief history of the concept of black hole

The origin of the concept of a black hole (BH) can be traced back to the end of the 18th
century when Michell (1784) and Laplace (1796), using Newtonian gravity, first theorised
the existence of a massive body with a gravitational field strong enough to prevent
light reaching infinity from its surface. Nevertheless, the formal study of these objects
had to wait until, using the recently formulated theory of general relativity (Einstein,
1915), Schwarzschild (1916) found a first analytic solution of Einstein’s field equations
describing the empty spacetime around a static and spherically symmetric point particle
of mass M . The solution given by Schwarzschild featured two singularities: one at the
origin of coordinates r = 0 (where r is a radial coordinate) and a second one located at
the so-called Schwarzschild radius rs = 2GM/c2 (where G is the gravitational constant
and c is the speed of light). The first one is a true physical singularity characterised
by infinite curvature of the spacetime, while Lemâıtre (1933) showed that the latter is
not a physical singularity but rather a coordinate one. For several decades, BHs were
considered mainly as theoretical entities rather than real physical objects that could
exist in nature.

From the point of view of theory, the first three major breakthroughs in the devel-
opment of the concept of a BH came with the discovery of an upper limit to the mass of
a (non-rotating) white dwarf (Chandrasekhar, 1931),(1) the postulation of the existence
of objects as compact as a neutron star (Baade & Zwicky, 1934), and the first sugges-
tion that the continued gravitational collapse of a spherically symmetric and sufficiently
massive body will inevitably lead to the formation of a BH (Oppenheimer & Volkoff,
1939; Oppenheimer & Snyder, 1939).

Nevertheless, the true revolution in the concept of BHs came after the continuing
progress with observational techniques gave the first hints that BHs could actually be
found in nature. The development of radio astronomy from the late 1940s onwards led
to the discovery and eventual identification of quasars and other active galactic nuclei

(1)This mass is known as the Chandrasekhar limit and is around 1.4M�, where M� = 1.99× 1033 g is
the solar mass.
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(AGN) as extremely powerful extragalactic sources (Schmidt, 1963), as well as to the
discovery of the first pulsars by Hewish, Bell et al. 1968 (which were identified as rapidly
rotating neutron stars by Gold, 1968). On the other hand, with the advent of X-ray and
gamma-ray astronomy in the 1960s, the first X-ray binary (Sco X-1) was discovered by
Shklovsky (1967) while the first observations of gamma-ray bursts (GRBs) were reported
by Klebesadel et al. (1973). The observed variability in the spectra of several of these
sources and the inferred spatial dimensions of the emitting regions led to the conclusion
that extremely compact sources had to be involved.

These discoveries triggered the beginning of a series of rapid developments in the
theoretical aspects of BHs. An important change in the physical interpretation of the
coordinate singularity at rs came with the concept of an event horizon introduced by
Finkelstein (1958). It was realised that the surface defined by this radius behaves as a
one-way membrane through which massive particles and photons can only pass inward.
In other words, the event horizon causally disconnects the region of spacetime in its
interior (including the true physical singularity) from the rest of the universe. Never-
theless, it was still expected that some kind of mechanism would be able to prevent the
formation of a physical singularity until Penrose (1965) showed that the result found
by Oppenheimer & Snyder (1939) was not only generic but also the necessary outcome
of continued gravitational collapse. In those years a more general solution to Einstein’s
field equations was found by Kerr (1963) and extended by Newman et al. (1965). The
so-called Kerr-Newman family of spacetimes are characterised by being axisymmetric
and depending on just three parameters describing the BH: the mass M , the specific
angular momentum a (also called spin parameter), and the electric charge q. More-
over, as followed from the results of Israel (1967); Carter (1971); Robinson (1975), it
constitutes the unique solution representing the spacetime external to the event horizon
for idealised stationary vacuum BHs which is consistent with the requirements that the
spacetime should be asymptotically-flat and have no singularities external to the event
horizon. The result that the solution depends on just three parameters is known as
the ‘no-hair’ theorem. The Kerr-Newman metrics only represent BHs, with the central
singularity hidden behind an event horizon, when the parameters satisfy the condition
a2 + q2 ≤M2.(2)

In recent years, the development of space-based X-ray observatories has allowed a
detailed measurement of the gravitational broadening of the Fe Kα emission line in the
spectra of AGN (as reviewed in Miller, 2007). Moreover, observations using infrared
techniques with extremely high resolution have made it possible to follow the proper
motion of individual stars, revealing the presence of a supermassive BH at the centre of
our galaxy (see e.g. Ghez et al., 2008; Gillessen et al., 2009). Another major breakthrough
in the study of BHs came with the association of (long) GRBs with the rather energetic
Type Ic (core-collapse) supernovae (see e.g. Galama et al., 1998). Now, dozens of strong
BH candidates have been discovered (see e.g. Narayan, 2005). The measured masses of
these objects are above (and, for several, well above) what is likely to be a secure upper

(2)Note that this inequality is expressed in geometric units for which c = G = 1. This same relation in
standard units is c2a2 +Gq2 ≤ G2M2 (with q measured in electrostatic units).
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limit to the mass of a neutron star, which is around 3M� (Rhoades & Ruffini, 1974).
Only in the last year, the first evidence of the tidal disruption of an ordinary star by a
supermassive BH was observed as a X-ray flare (see e.g. Burrows et al., 2011). In the near
future, it is expected that the first gravitational waves will start to be detected by one
of the several already operational gravitational wave ground-based interferometers (such
as LIGO, VIRGO, and others). In this context, merging BHs are expected to be among
the most copious sources of gravitational waves (see e.g. Hughes, 2009). The beginning
of gravitational wave astronomy should open up a whole new channel of information
that will be crucial for our understanding of general relativity and BH physics.

Thanks to this continuous progress on the theoretical and observational fronts, BHs
are now considered as fairly common objects related to some of the most powerful as-
trophysical phenomena in the universe (see e.g. Blandford, 1987; Celotti et al., 1999).

1.2 Astrophysical black holes

Due to the no-hair theorem, it is expected that relatively isolated BHs, independently
of how they were created, should eventually settle down as Kerr-Newman BHs. In
most of the astrophysical applications though, we can neglect the charge of the BH
since any significant net charge present at formation would be expected to be quickly
neutralised in practice. We cannot do the same with the spin parameter since, in any
realistic scenario, a physical BH will necessarily possess some amount of intrinsic angular
momentum, either because it was born with it or because it acquired it as a result of
matter with angular momentum that subsequently felt into it (Bardeen, 1970; Blandford,
1987). Therefore, for astrophysical BHs in an environment in which the mass of the
surrounding matter is negligible as compared to their own mass, the exterior spacetime
should be well approximated by the Kerr solution with |a| ≤M .

The masses of astrophysical BHs span a range that goes from the stellar mass BHs
(∼ 3-30M�) that originate from the death of massive stars in supernova explosions and
from the coalescence of stellar binaries (Shapiro & Teukolsky, 1983); passing through
intermediate mass BHs (103-104M�) that are thought to reside in the centre of globular
clusters, although there are still few observational candidates (e.g. Gebhardt et al.,
2005; Noyola et al., 2008); and up to the supermassive BHs (106-109M�) at the centre
of (possibly all) galaxies (King, 2003). The existence of primordial BHs with an even
broader mass range (from ∼ 1014 g upwards) was first hypothesised by Carr & Hawking
(1974) as a result of the gravitational collapse of over-density regions within the large-
scale density fluctuations present in the early stages of the expansion of the universe.
However, firm observational evidence of primordial BHs with masses M . M� is still
missing, while more massive ones might constitute the seeds of today’s supermassive
BHs.

Just as the BH masses are spread over many orders of magnitude, the radiation
that systems associated with them emit also spans a large range. For typical X-ray
binaries, energy is emitted mainly through photons in the X-ray part of the spectrum,
while the energy spectrum coming from AGN spans from the ultraviolet to gamma-ray
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frequencies. On the other hand, for phenomena such as supernova explosions and binary
star coalescence it is expected that, given the high temperatures and densities found in
the stellar interiors, in many cases the fluid will become optically thick to photons and
the only efficient cooling mechanism will be through neutrino emission.

1.3 Accretion discs

Given that no kind of information can come out from within the event horizon, we cannot
really make direct observations of a BH. However, the properties of the spacetime around
them are inferred from their effects on nearby matter. In particular, the process known
as accretion in which matter falls onto a BH has been a topic of intense research since
the pioneering work by Bondi (1952), and today it is considered as one of the most
efficient mechanisms for transforming rest mass energy into radiation (with an efficiency
factor of ∼ 10% of the rest mass energy of the accreted matter for astrophysical BHs),
second only to the process of matter-antimatter annihilation (see e.g. Frank et al., 2002).
Moreover, the study of accretion processes onto BHs (and also onto neutron stars) offers
a unique opportunity for testing and validating the theory of general relativity, since it
is only in the strong-field regime that prevails in the immediate vicinity of these objects
that we find the largest departures between the Einstein and the Newtonian descriptions
of gravity.

Even though accretion onto BHs can be highly efficient at extracting gravitational
potential energy, it is important to note that, due to the absence of a hard surface
at which to decelerate the infalling gas, purely radial infall onto a BH will not be an
efficient mechanism in general (Shapiro, 1974). Traditionally, rotation of the accreting
matter has been invoked as the means to provide centrifugal support to give time for
different dissipative processes to take place and release part of the potential energy. Gas
rotation can lead to the formation of a disc-like structure (Prendergast & Burbidge,
1968) in which centrifugally balanced material slowly spirals inwards under the action
of dissipative mechanisms. These transfer angular momentum outwards, drive the flow
of matter inwards, and transform the gravitational potential energy into kinetic energy,
heat, and, ultimately, radiation. Among the various different mechanisms for driving
accretion that have been considered in the literature for modelling accretion discs we
have, e.g.: viscous stresses originated by a turbulent flow, as proposed in the thin-disc
model of Shakura & Sunyaev (1973) and extended to the relativistic domain by Novikov
& Thorne (1973); cooling by advection of hot matter, as in the Polish-doughnut model
of Jaroszyński et al. (1980) and in the slim-disc model of Abramowicz et al. (1988);
extraction of angular momentum by large-scale magnetic fields, as in Blandford & Payne
(1982); transportation of angular momentum driven by the magnetorotational instability,
as modelled by Balbus & Hawley (1991); cooling dominated by neutrino emission, as
proposed by Popham et al. (1999); accretion driven by a purely relativistic effect in low
angular momentum flows, leading to the small-scale inviscid disc model of Beloborodov
& Illarionov (2001); and angular momentum transfer due to a dynamical instability
leading to the formation of spiral arms and related shock fronts in the accretion flow, as
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in the GRB model of Taylor et al. (2011) and references therein.

It is believed that, at least at some point in their evolution, many accretion disc sys-
tems are related to the existence of highly collimated jets in which plasma is accelerated
to relativistic speeds (with associated Lorentz factors Γ ∼ 10-1000). In the case of jets
coming from AGN, the degree of collimation is such that they can extend over several
kiloparsecs depositing huge amounts of thermal energy into the intergalactic medium.
Although the exact mechanism connecting the disc and the jet is not fully understood,
in the case of jets related to BHs, it is commonly believed that strong magnetic fields
and a rapidly rotating BH play a fundamental role in launching and accelerating the jet
via, e.g. the Blandford-Znajek mechanism (Blandford & Znajek, 1977).

Besides its role in connection with relativistic jets, any substantial value for the
angular momentum of the BH will significantly affect the innermost region of an accretion
disc around it, exactly where one expects to find the highest densities, temperatures and
luminosities in the flow. For instance, the inner radius of a Keplerian-like accretion disc
around a maximally rotating BH (defined as a BH for which |a| = M) is around six times
closer to the central accretor than it would be for a non-rotating BH (see e.g. Novikov &
Thorne, 1973), while the binding energy for the innermost stable circular orbit increases
from ∼ 5.7% of the rest-mass energy for a non-rotating BH up to ∼ 42% for a maximally
rotating one. This increase in both the surface area of the emitting disc and the binding
energy released can substantially boost the overall efficiency of the system. Moreover,
the BH angular momentum may exert a restoring torque on an accretion disc which
happens to be tilted with respect to the BH rotation axis (see e.g. Bardeen & Petterson,
1975; Lodato & Pringle, 2006).

The predictive power of the different accretion disc models has allowed us to interpret
most of the astrophysical phenomena that we have mentioned in Sections 1.1 and 1.2.
Accretion models form today the basis of our understanding of astrophysical systems
such as:

• AGN, which are thought to be powered by long-term accretion onto a supermassive
BH in the centre of the host galaxy (for a review see, e.g. Rees, 1984). Moreover,
they are thought to play a fundamental role in the cosmological evolution and
growth of galaxies, as is inferred from the strong correlations between the BH
mass and the mass of the central bulge of the hosting galaxy (see e.g. King, 2003).

• X-ray binaries, the emission from which is considered to originate in a hot accretion
disc around a neutron star or a BH. These discs are fed with material from a
companion ordinary star either via a stellar wind (wind-fed binaries) or when
the outer surface of the companion fills up the Roche-lobe and then loses matter
through the inner Lagrangian point (Roche-lobe overflow). For general reviews
see, e.g. King (1995); McClintock & Remillard (2006).

• X-ray flares, some of which (as the source Swift J1644+57 detected last year, see
e.g. Burrows et al., 2011) are thought to originate following the tidal disruption of
a star by a central BH (for a review see, e.g. Rees, 1988).
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• Long-duration GRBs, which are thought to originate when the core of a massive,
rapidly-rotating star exhausts its nuclear fuel and collapses to a BH. The subse-
quent infall of the rest of the deep stellar interior towards the newborn BH forms
a massive accretion disc which launches a pair of powerful relativistic jets (see e.g.
Woosley, 1993; Piran, 2004).

• Short-duration GRBs, some of which are expected to originate after the coalescence
of two neutron stars or, of a neutron star and a BH, in a close binary system. The
result of this merger is expected to be qualitatively similar to that in the case of
long GRBs (for a review see, e.g. Nakar, 2007).

We have seen that the process of accretion onto a BH is considered to be the funda-
mental mechanism behind some of the most powerful astrophysical phenomena. How-
ever, proper modelling of these systems requires input from almost all of the branches
of physics in order to account for: self-gravitating fluids in the presence of strong gravi-
tational and magnetic fields; spatial, temporal and density scales spanning many orders
of magnitude; hydrodynamic flows with complex geometries, in which turbulence and
strong shocks can develop; an accurate microphysical description of dissipative processes
such as physical viscosity and cooling by neutrino emission; radiative transfer (for both
photons and neutrinos); realistic equations of state describing in some cases matter at
nuclear densities; nuclear burning of matter; etc. It is clear, then, that a comprehensive
analysis of these systems requires full-scale numerical simulations. Nevertheless, given
that no numerical method can perform equally well at each of these requirements simul-
taneously, it is also clear that we need to decide which are the dominant effects that
we want to model in a particular problem and then choose the most suitable numerical
approach. In the following section we present the particular numerical tool with which
we intend to study some of these systems.

1.4 Numerical tool

The first assumption that we shall make in the present discussion is that the matter
surrounding the BH is well described by the fluid approximation. Within this description,
matter, which is composed of a large number of particles, is considered as a continuous
field and its properties are described in terms of various dynamic and thermodynamic
quantities (e.g. density, pressure, velocity, etc.). These variables are defined as local
averages over spatial volumes that are small as compared to a typical length scale of the
whole system but still large enough so as to contain a large number of particles. We
shall refer to these volumes as fluid elements and consider that the particles enclosed
within each of these are in local thermodynamic equilibrium.

The numerical techniques that exist for solving the hydrodynamic equations can be
divided broadly into two types of approach: the so-called Eulerian approach, in which
observers sitting in a fixed coordinate system describe the fluid as it passes by them; and
the so-called Lagrangian approach, in which the description is made in terms of observers
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that move along with the fluid.(3) Each of these approaches has its own advantages and
disadvantages. However, the built-in adaptivity of a Lagrangian approach makes it
particularly well-suited for studying physical scenarios without obvious symmetries or
with a complex and/or changing geometry, as we have seen is typically the case for many
astrophysical situations. In the present work we shall consider the Lagrangian technique
known as smoothed particle hydrodynamics (SPH) originally developed by Lucy (1977)
and Gingold & Monaghan (1977). General reviews of this method are given in Monaghan
(1992, 2005); Rosswog (2009); Springel (2010); Price (2012).

The core of the SPH method consists of sampling the fluid properties at a finite set
of interpolation points. These points are then moved according to the hydrodynamic
equations in such a way that their updated positions can be used to interpolate back
the properties of the fluid at any future time. Since each of these interpolation points is
assigned a fixed mass, they are usually referred to as SPH particles. The interpolation
in SPH is done in terms of weighted sums over the SPH particles in the vicinity of the
point of interest. The so-called smoothing kernel weights the relative contribution of
each neighbouring particle to the target point as a function of the distance between
them. The sort of kernels used in SPH typically have a compact support whose width
is characterised by the so-called smoothing length. Within this method, the derivatives
involved in the evolution equations are calculated as exact derivatives of the interpolated
values, i.e. derivatives are discretised as sums over particle properties, weighted now with
the gradient of the smoothing kernel.

Another important procedure in SPH is the implementation of an efficient algorithm
to search for the neighbours entering the kernel estimate. This procedure is closely
related to the techniques used in N-body simulations for calculating gravitational forces
in Newtonian and post-Newtonian simulations. Common approaches are the so-called
tree methods (particles are organised in a hierarchical structure of nested cells, see e.g.
Barnes & Hut, 1986; Hernquist & Katz, 1989) and particle-mesh methods (particles are
mapped onto a mesh, see e.g. Dubinski et al., 2004).

Modern formulations of the SPH method use a set of evolution equations derived
from a variational principle, as first proposed by Gingold & Monaghan (1982). This
approach ensures, in the absence of dissipative processes, exact conservation of momen-
tum (linear and angular), energy and entropy. Another important development is the
introduction of a time-varying smoothing length that adapts to the local density in such
a way that the total mass contained within the compact support of the kernel remains
approximately constant. This makes SPH fully adaptive and is much easier to imple-
ment in practice than the usual adaptive mesh refinement approach used in grid-based
methods. Nevertheless, if a varying smoothing length is used but the evolution equations
are not modified in a self consistent way, then exact conservation of physically conserved
quantities is no longer guaranteed (Nelson & Papaloizou, 1994). The necessary correc-
tive terms, usually referred to as ‘grad-h’ terms, can also be derived self consistently
from a Lagrangian (see e.g. Springel, 2010).

(3)There are also mixed approaches such as the so-called Adaptive Lagrangian Eulerian scheme, see
e.g. Margolin (1997); Loubère et al. (2010).
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The Lagrangian nature of the SPH approach makes it inherently adaptive, providing
higher resolutions in regions in which the fluid is densest, while computational resources
are not wasted on empty regions of space. This property makes SPH an ideal tool for
dealing with astrophysical scenarios in which temporal, spatial and density scales may
vary over many orders of magnitude. And, indeed, it has been extensively used for
studying many astrophysical problems such as: cosmological expansion of the universe
(see e.g. Springel et al., 2005b), galactic dynamics and galaxy mergers (see e.g. Springel
et al., 2005a), fragmentation of self-gravitating gas clouds and star formation (see e.g.
Price & Bate, 2009), tidal disruption of stars by BHs (see e.g. Kobayashi et al., 2004;
Rosswog et al., 2009), stellar mergers of white dwarfs (see e.g. Dan et al., 2012) and of
neutron stars (see e.g. Oechslin et al., 2002; Price & Rosswog, 2006), and the collapsing
interiors of massive stars as GRB progenitors (see e.g. Lee & Ramı́rez-Ruiz, 2006; López-
Cámara et al., 2009; Taylor et al., 2011).

Most of the astrophysical simulations using SPH are based on non-relativistic formu-
lations. Nevertheless, there have been several extensions of the method to the relativistic
context. Formulations within special relativity (relevant for the study of jets) have been
made by Mann (1993); Chow & Monaghan (1997); Siegler & Riffert (2000); Rosswog
(2010a). The SPH method has also been combined with different approximations to
general relativity such as pseudo-Newtonian potentials (López-Cámara et al., 2009; Tay-
lor et al., 2011), and the conformally flat approximation (Oechslin et al., 2002). Full
general relativistic formulations of SPH have also been proposed (see e.g. Kheyfets et al.,
1990; Laguna et al., 1993; Siegler & Riffert, 2000; Taylor, 2008) in which derivatives in
the evolution equations are approximated by using SPH interpolation. GR formulations
derived from a Lagrangian have been given by Monaghan & Price (2001); Aguiar et al.
(2001) and Rosswog (2010b). This last work in particular also considered the corrective
‘grad-h’ terms directly in its derivation.

The work presented in this thesis forms part of a larger collaboration dealing with the
development of a new general relativistic SPH code called SPHINCS: Smoothed Particle
Hydrodynamics IN Curved Spacetime (to be presented in Rosswog et al., 2012). The
code is still at the development stage and the following are the current elements of the
SPHINCS work-plan:

1. The special relativistic SPH code introduced in Rosswog (2010a). The code is
derived from a perfect-fluid Lagrangian and, in the absence of dissipative effects,
features exact conservation of mass, energy, linear and angular momentum. The
code has been successfully benchmarked against a series of standard tests for rel-
ativistic fluid dynamics such as supersonic advection, one and two-dimensional
relativistic shock tubes, ultra-relativistic wall shocks, and the relativistic simple
waves.

2. A new formulation of a density-balanced binary tree presented in Gafton & Ross-
wog (2011) which has proven to be highly efficient and accurate for the neighbour
search and gravitational force calculation involved in the SPH method.

3. The already mentioned new general relativistic SPH formulation given by Rosswog
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(2010b). Under appropriate symmetry conditions for the spacetime metric, this
formulation recovers exact conservation of physically conserved quantities.

4. Explicit expressions for the terms associated with the spacetime curvature in the
SPHINCS evolution equations for Schwarzschild and Kerr spacetimes. (This thesis)

5. An orbit catalogue of representative test particle trajectories in both Schwarzschild
and Kerr spacetimes for benchmarking the ability of the new code to recovering
geodesic motion. (This thesis)

6. An analytic toy model for the accretion flow of a rotating cloud of non-interacting
particles infalling towards a central BH recently introduced in Tejeda et al. (2012a)
for Schwarzschild spacetime and extended in Tejeda et al. (2012b) for Kerr space-
time. This analytic solution has already been used as a benchmark for testing
the accuracy of two distinct SPH codes (Lee & Ramı́rez-Ruiz, 2006; Taylor et al.,
2011) in dealing with purely general relativistic effects. (This thesis)

In principle, a full, general relativistic hydrodynamics code should solve simultane-
ously for the general relativistic hydrodynamic equations and the Einstein field equa-
tions. However, for applications in which it is safe to neglect the contribution of the
mass-energy content of the fluid to the overall spacetime curvature, we can consider the
spacetime metric as a fixed background and use the SPHINCS equations to evolve the
fluid configuration in time. This is the first step in our programme for the develop-
ment of SPHINCS, for which we shall also neglect the self-gravity of the fluid as well as
non-adiabatic processes such as viscosity or radiative transfer.

As we shall discuss in this thesis, the equations of motion in the SPHINCS formu-
lation not only reduce to the special relativistic ones in the flat spacetime limit, but
also they naturally split into two terms: a first one involving the gradient of the fluid
pressure (calculated via SPH interpolation), and a second one involving derivatives of
the metric tensor and depending only on the position of the target particle. Further-
more, we shall also show that, for a spacetime metric that allows the introduction of
Cartesian-like coordinates (as the Kerr metric does) and due to the particular kernel
estimate that we use here, the first term in the equations of motion is formally identical
to the special relativistic one. Given that the special relativistic version of SPHINCS
has already been tested, the first version of the new code (fixed metric + inviscid flow)
should be useful mainly for testing all of the different aspects of the implementation
that are specific to a curved spacetime. For this, it will be particularly relevant to test
for recovery of geodesic motion in the limit of vanishing hydrodynamic forces but other
useful tests should also be considered, e.g. the general relativistic extension of the Bondi
(1952) model given by Michel (1972) (which describes the steady spherical accretion of
a perfect fluid onto a Schwarzschild BH) and the Bondi-Hoyle accretion model (where
an initially homogeneous fluid is accreted onto a central object moving through it, Hoyle
& Lyttleton, 1939; Bondi & Hoyle, 1944) extended by Font et al. (1999) to consider a
Kerr BH as central accretor.
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Once these features of the code are well tested, in the second stage of the project we
will introduce a treatment of the fluid self-gravity as a small perturbation on top of the
underlying fixed metric. As a first approximation, we can model the fluid self-gravity
using a Newtonian approach, for which we will benefit from the binary tree of Gafton &
Rosswog (2011). Moreover, at this stage we will consider more general equations of state
and introduce the artificial viscosity prescription used by Rosswog (2010a) for handling
relativistic shocks. This code will be used to study several astrophysical applications such
as: the study of tidal disruptions of stars by BHs, the gravitational collapse of massive
stars within the collapsar scenario, the accretion flow feeding supermassive BHs, and the
numerical study of the effect of a rotating BH on the inner regions of an accretion disc
around it.

With further development, SPHINCS could also be used to study more general situ-
ations in which the effect of the mass-energy of the fluid on the spacetime metric must
be taken into account. In order to guarantee that the solution obtained is fully consis-
tent with the Einstein field equations, in this case the SPHINCS code should be coupled
with a metric solver (e.g. one of the several included in the publicly-available software
collection for numerical relativity called the Einstein Toolkit, Löffler et al., 2012) that,
at every time step, would take as input the mass-energy distribution coming from the
SPHINCS evolution and calculate numerically updated values for the components of the
spacetime metric.

1.5 Structure of the thesis

In this thesis we devote special attention to discussing the aspects of the project in which
we have contributed with original work up to now. This contribution has been mainly
focused on the points 4, 5 and 6 mentioned above, although we have also contributed
with a relatively simple scheme for recovering the physical variables from the numer-
ically evolved ones (which is a necessary procedure given the form of the SPHINCS
evolution equations). There is also an original contribution to point 3, for which we
have re-derived the SPHINCS evolution equations using the language of the so-called
3+1 formalism (Arnowitt et al., 1959). This formalism is particularly suitable for nu-
merical implementations solving an initial value problem in which a physical system is
evolved in time starting off from known initial data. The adoption of the 3+1 formalism
should be especially useful if, at a future stage of development, we couple SPHINCS
with a metric solver, since most of those codes are written in terms of this formalism.

This thesis is organised as follows:

In Chapter 2 we give a general review of general relativistic hydrodynamics as well
as of the 3+1 formalism. Based on these tools, we show how the SPHINCS equations
can be derived from the Lagrangian of a perfect fluid. We then show that, in the
flat spacetime limit, SPHINCS reduces to the special relativistic formulation given by
Rosswog (2010a). We also show that in the limit of vanishing hydrodynamic forces, the
SPHINCS equations naturally reproduce geodesic motion. Finally we discuss a simple
scheme for recovering the physical variables in terms of the numerically evolved ones.
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In Chapter 3 we discuss the implementation of the SPHINCS evolution equations
in Kerr spacetime. We start this chapter with a general overview of the Kerr metric,
introducing two different coordinate systems and discussing the relation between them
and their connection with the 3+1 formalism. At the end of this chapter we provide
explicit expressions for the acceleration terms due to the spacetime metric that enter in
the evolution equations.

In Chapter 4 we explore in detail the timelike geodesics of Kerr spacetime. This study
allows us to gain deeper insight into the dynamic properties of this spacetime and to
present a catalogue of representative test particle trajectories (included in Appendix A).
We show how the symmetries of the Kerr metric lead to the existence of four first integrals
of the motion that ultimately allow us to partially decouple the geodesic equations and
to reduce them to a system of first order, ordinary differential equations. We devote
special attention to the discussion of circular trajectories restricted to the equatorial
plane, since these play an important role in the context of accretion discs. Then we
discuss the more general case of trajectories off the equatorial plane. For this study
we introduce the concepts of radial and polar effective potentials and, in terms of these
tools, we analyse in detail the differential equations dictating the radial and latitudinal
motions.

In Chapter 5 we construct an analytic toy model for the accretion flow of a rotat-
ing gas cloud infalling towards a Kerr BH. The model is based on the assumptions of
stationarity, axisymmetry and ballistic trajectories of the gas particles, i.e. they follow
timelike geodesics of Kerr spacetime. We introduce a novel approach for solving the
radial and latitudinal parts of the motion in terms of a single analytic formula, which
also serves for describing all of the different streamlines of the model. Furthermore, we
show how the density field can be computed using a simple numerical scheme based on
finite differences. The main purpose of this analytic model is to use it as a test solution
for benchmarking general relativistic hydrodynamic codes. We show the results of the
comparisons of the toy model with several SPH numerical simulations of an idealised
collapsar-like setup that implement pseudo-Newtonian potentials for mimicking effects
of Kerr and Schwarzschild spacetimes. Besides its use as a test solution, we also argue
that the toy model constitutes a useful tool for highlighting purely general relativis-
tic effects in hydrodynamic flows. It should also be useful for exploring the parameter
space preceding the execution of full numerical simulations in applications in which the
stationarity and axisymmetry conditions are approximately valid.

Finally, in Chapter 6 we give a general discussion, prospects of future work and our
conclusions.

1.6 Notation, conventions and units

Unless otherwise stated, throughout the present work we use geometric units for which
G = c = 1. We adopt a signature (−1, 1, 1, 1) for the spacetime metric, using Greek
indices to denote spacetime components (running from 0 to 3) and Latin indices for
spatial components only (running from 1 to 3). We shall reserve Latin subscripts starting
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with the first letters of the alphabet (a, b, c) for labelling SPH particles. We follow
Einstein’s convention of summation over repeated spacetime indices but not over labels
of SPH particles. Four-vectors will be denoted with bold-faced symbols (e.g. v) while
an over-arrow will be used to distinguish three-vectors (e.g. ~v).



Chapter 2

Smoothed particle hydrodynamics
in a curved spacetime

In this chapter we present SPHINCS, a new formulation of the SPH method for solving
the general relativistic hydrodynamic equations. The spacetime metric is taken as a
known, but otherwise arbitrary function of the spatial coordinates (which can be given
either analytically or numerically). In other words, we are considering here a fixed
background metric and neglecting any kind of backreaction due to the motion of the
fluid. This formulation has its origins in a relativistic derivation of the SPH evolution
equations, starting from the Lagrangian of a perfect fluid, made by Monaghan & Price
(2001) and then extended by Rosswog (2010b) to account self-consistently for a varying
smoothing length.

We start this chapter with a brief review of some basic results of general relativistic
hydrodynamics which will be useful for the present discussion. Then we introduce the
so-called 3+1 decomposition of spacetime (Arnowitt et al., 1959), in which a global time
direction is singled out and its level sets are used to foliate the spacetime into a family
of three-dimensional, spatial hypersurfaces. Next we show how the SPHINCS numerical
variables and corresponding evolution equations can be derived from the Lagrangian
of a perfect fluid. Since the resulting evolution equations demand explicit knowledge
of both the numerical and the physical variables, we shall introduce a simple scheme
for recovering the primitive variables from the updated numerical ones after every time
step. Then, we consider the limit of vanishing hydrodynamic forces and show that
the SPHINCS formulation naturally reduces to the geodesic equations. Next we take
the special relativistic limit of the SPHINCS equations and show that this recovers the
expressions given in Rosswog (2010a), and finally, we show that in the non-relativistic
limit, the usual expressions for the evolution equations in standard SPH are recovered.

2.1 Basics of general relativistic hydrodynamics

In general relativity, gravity is considered as an intrinsic property of the spacetime
embodied in the curvature of its geometry. Within this framework, the geometry of the
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spacetime and its mass-energy content are mixed together as a dynamic four-dimensional
entity: on the one hand, the geometry of the spacetime sets the arena for the motion of
particles and the evolution of physical fields, while, on the other hand, the mass-energy
content in the spacetime determines the curvature.

Given that the spacetime is a curved four-dimensional manifold, the language of
differential geometry is particularly suitable for describing its properties. Then, the
key ingredient for characterising the geometry of the spacetime is the metric tensor
gµν. Given two spacetime events separated by an infinitesimal coordinate displacement
dxµ, the metric tensor is used to define, in an invariant way (i.e. independently of any
coordinate system), the square of the length of the interval of spacetime between the
two events as

ds2 = gµν dxµ dxν. (2.1.1)

A spacetime interval is called spacelike if ds2 > 0, timelike if ds2 < 0 and null if ds2 = 0.
The inverse of the metric tensor gµν, is defined by

gµλ gλν = δµν , (2.1.2)

where δµν is a tensor whose elements are the Kronecker deltas. In addition to calculating
spacetime intervals, the metric tensor also allows us to introduce a scalar product be-
tween vectors. For instance, given two arbitrary four-vectors A and B, we define their
scalar product as

A ·B = gµνA
µBν = AνB

ν, (2.1.3)

where Aν = gµνA
µ are the covariant components of A.

We define a test particle as an ideal point particle whose rest mass m0 has a negligible
effect on the whole spacetime curvature. Its four-velocity U is defined as the vector
tangent to its worldline and normalised as U · U = −1, while its four-momentum is
defined as p = m0 U. The contravariant components of U are given as Uµ = dxµ/dτ ,
where dτ2 = −ds2 is the square of the proper time (i.e. time measured in the comoving
reference frame). Under the only action of the gravitational field, the motion of the
test particle is determined by the spacetime curvature through the so-called geodesic
equations

Uµ Uσ
;µ = 0, (2.1.4)

where a semicolon represents the covariant derivative which is defined in terms of the
ordinary partial differentiation Uσ

, µ ≡ ∂Uσ/∂xµ as

Uσ
;µ ≡ Uσ

, µ + Γσµν U
ν, (2.1.5)

and where Γσµν are the Christoffel symbols which can be expressed in terms of the metric
as

Γσµν =
1

2
gσλ (gµλ, ν + gνλ, µ − gµν, λ) . (2.1.6)

Using Eq. (2.1.5) together with the identity d/dτ = Uµ∂/∂xµ, we can rewrite the geodesic
equation in Eq. (2.1.4) as

dUσ

dτ
+ Γσµν U

µU ν = 0. (2.1.7)
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Note that the covariant derivative of an arbitrary mixed second rank tensor Aµ
ν is

given by

Aµ
ν;λ = Aµ

ν, λ + ΓµσλA
σ
ν − ΓσνλA

µ
σ, (2.1.8)

while the covariant derivative of a scalar reduces simply to partial differentiation,
i.e. f;µ = f, µ, where f is any arbitrary scalar function. Moreover, from the definition of
the Christoffel symbols in Eq. (2.1.6), it is easy to check that

gµν;λ = 0. (2.1.9)

In a general case, the spacetime under consideration will contain more than just test
particles, and so we need to introduce the stress-energy tensor T in order to describe the
distribution of mass-energy. This is a symmetric tensor that includes the contribution
of all of the physical fields present in the spacetime (e.g., matter field, electromagnetic
fields, etc.) and its component T µν gives the flux of four-momentum pµ in the direction of
xν. The stress-energy tensor acts as a source of spacetime curvature in the Einstein field
equations which consist of the following system of second order differential equations in
gµν

Rµν −
1

2
gµν R = 8π Tµν, (2.1.10)

where Rµν is the Ricci tensor and R ≡ Rµ
µ the Ricci scalar. The Ricci tensor is defined

as Rµν ≡ Rλ
µλν, where

Rλ
µσν = Γλµν, σ − Γλµσ, ν + ΓλασΓ

α
µν − ΓλανΓ

α
µσ (2.1.11)

is the Riemann tensor.

In the present chapter we shall assume that the only mass-energy of the spacetime
is coming from a perfect fluid of neutral matter which is characterised by zero viscosity
and no heat conduction. A thorough discussion of general relativistic hydrodynamics
involving more general fluids can be found in Font (2008). A local description of the
state of the fluid is given in terms of the fluid element velocity field U, the baryon
number density n, the specific internal energy u (or internal energy per unit rest mass),
the specific entropy s, and the pressure P . These last four variables represent scalar
quantities measured in a reference frame comoving with the fluid element. Introducing
the average baryonic rest mass m0 of the fluid, we can express the rest mass density of
the fluid as % = m0 n. As discussed in Chapter 1, we know that for a perfect fluid the
entropy of each fluid element is a conserved quantity along the worldline of the element,
although it can, in principle, be different for different fluid elements. The rest of the
thermodynamic variables are related through an equation of state (EoS) of the form
f(n, u, P ) = 0, which can be used to express any of them in terms of the other two,
e.g. P = P (n, u) or u = u(n, P ). Expressing all energies and the pressure P in units of
the baryonic rest mass m0, the stress-energy tensor for a perfect fluid is given by

T µν = nω Uµ U ν + P gµν, (2.1.12)
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where ω = 1 + u + P/n is the relativistic specific enthalpy. In general relativity local
conservation of energy-momentum is expressed by

T µν;µ = 0, (2.1.13)

and the conservation of baryon number is expressed as

(nUµ);µ = 0. (2.1.14)

This last result is also known as the continuity equation.
A further useful relation between the thermodynamic variables can be obtained by

calculating the scalar product of Eq. (2.1.13) with the four-velocity, i.e.

UνT
µν
;µ = −nUµ ω, µ − ω (nUµ)

;µ
+ nω Uν U

µ U ν
;µ + U ν P, ν = 0 (2.1.15)

where we have used the normalisation condition UνU
ν = −1 and Eq. (2.1.9). Note that

the second term in Eq. (2.1.15) vanishes by virtue of Eq. (2.1.14), while the third term
also vanishes since

Uν U
µ U ν

;µ =
1

2
Uµ (Uν U

ν)
;µ

= 0. (2.1.16)

Now, using the identity d/dτ = Uµ∂/∂xµ and substituting ω = 1 + u + P/n into
Eq. (2.1.15) we finally get

du

dτ
=
P

n2

dn

dτ
, (2.1.17)

or, in terms of total differentials,

du =
P

n2
dn, (2.1.18)

which is nothing more than the first law of thermodynamics when only adiabatic pro-
cesses are considered (consistent with the fact that in the perfect fluid description there
is no entropy generation).

Before exploring Eqs. (2.1.13) and (2.1.14) in further detail, we introduce in the next
section some useful concepts of the so-called 3+1 decomposition of the spacetime, which
is a practical tool for the numerical evolution of a fluid.

2.2 3+1 decomposition of the metric

In general relativity the four dimensions of spacetime are treated on an equal footing.
This allows for the use of a fully covariant language with which there is no need to make
any distinction between temporal and spatial coordinates. However, in several circum-
stances (and especially for numerical implementations), it becomes extremely useful to
identify a clear temporal direction along which one can evolve a given physical system
starting off from a known initial configuration. This is the spirit of the so-called 3+1
decomposition of spacetime or ADM formalism (Arnowitt et al., 1959; Alcubierre, 2008),
which consists of two basic steps: First, we need to choose a scalar function t(xµ) whose
level sets t(xµ) = const. serve to foliate the spacetime into hypersurfaces Σt. Provided
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that the spacetime is globally hyperbolic,(1) it is always possible to find a function t
such that each slice Σt is spacelike. Once a particular foliation has been chosen, the
second step is to introduce a spatial coordinate system (xi) for each slice Σt. In this
way, the coordinates of any given point of the spacetime are split as (xµ) = (t, xi). The
spatial coordinates (xi) can be introduced in a continuous fashion by setting them once
at an arbitrary slice Σt and then describing the way in which they should be propagated
to future (or past) slices. This description is usually made in terms of four auxiliary
functions, the lapse α and the shift βi, that can be freely designated due to the gauge
freedom of Einstein’s field equations. Using these auxiliary functions, the spacetime
metric gµν is split as

ds2 = gµν dxµ dxν

= −α2dt2 + γij (dxi + βi dt) (dxj + βj dt) ,
(2.2.1)

where γij is the induced spatial metric on each hypersurface Σt which is determined once
a particular time function t(xµ) is chosen. From Eq. (2.2.1) it is clear that the spatial
intervals within a given hypersurface Σt are calculated as

ds2
∣∣
Σt

= γij dxi dxj. (2.2.2)

We also use γij for lowering and raising indices and for calculating inner products of pure
spatial tensors living in the three dimensional hypersurfaces Σt. For instance, using the
three shift functions βi to define the contravariant components of a three-vector ~β ∈ Σt,
we can calculate its covariant components as βi ≡ γij βj while its magnitude is given by
‖~β‖2 ≡ ~β · ~β = γij β

i βj = βi β
i. Using this notation, we can read off from Eq. (2.2.1) the

components of the four-metric gµν as

(gµν) =

 −α2 + ‖~β‖2 βi

βj γij

 , (2.2.3)

and it is easy to check that the components of the inverse metric gµν are given by

(gµν) =

 −1/α2 βi/α2

βj/α2 γij − βiβj/α2

 , (2.2.4)

where the inverse of the spatial metric satisfies γikγkj = δij. The determinants of the
four- and three-metrics, g and γ, respectively, are related through the following identity

√
−g = α

√
γ. (2.2.5)

(1)A given spacetime is called globally hyperbolic if it admits the existence of a null or spacelike
hypersurface (Cauchy surface) such that, by fixing initial data on it, one can determine the whole past
and future history of the spacetime
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We note here the following basic result from the theory of determinants (see e.g.
Landau & Lifshitz, 1975) that will allow us to calculate derivatives of γ and g at several
points in the present discussion, i.e.

dg = g gµνdgµν, dγ = γ γijdγij. (2.2.6)

Once the spacetime has been foliated into spatial slices Σt, at every point of the
spacetime we can define two types of observer: one who moves along constant spatial
coordinate lines (xi = const.) and another one who remains at rest with respect to the
slices Σt. The former one is called a coordinate observer while the latter is called a local
Eulerian observer.(2) In the next subsection we discuss some special properties of these
observers.

2.2.1 Local Eulerian observers

Saying that a local Eulerian observer (LEO) remains at rest with respect to any given Σt,
means that, at any given point (xi) on a slice Σt, the LEO is moving along the normal
direction to Σt at (xi). Since the hypersurfaces Σt are spacelike, it then follows that the
LEO moves along a timelike trajectory (not necessarily geodesic). In other words, the
LEO corresponds to a physical observer (not necessarily an inertial one) with respect to
whom we can make local measurements to describe physical properties of, for instance,
a fluid passing by the LEO.

Both the coordinate observer and the LEO carry with them a set of tetrad vectors
spanning their local reference frames. We call {e(µ)} the set of basis vectors of the coor-
dinate observer frame and {e(µ)} the associated basis for the contravariant components
of the vectors. On the other hand, denoting with a bar coordinates referred to the
LEO, i.e. (x̄µ) = (t̄, x̄i), we call the corresponding bases for the covariant and contravari-
ant components of vectors {ē(µ)} and {ē(µ)}, respectively.(3) The transformation rule
between these two coordinate systems is given by

dt̄ = α dt, (2.2.7)

dx̄i = dxi + βi dt, (2.2.8)

from where we see that α can be interpreted as a measure of the difference between
the rates of the LEO and the coordinate times, while ~β measures the relative velocity
between the LEO and the lines of constant spatial coordinates. Using Eqs. (2.2.7) and
(2.2.8) it is simple to check that the two sets of basis vectors are related by

ē(t) = α e(t), ē(t) = (e(t) − βi e(i)) /α,

ē(i) = e(i) + βi e(t), ē(i) = e(i).

(2.2.9)

(2)Note that the coordinate observer does not necessarily correspond to a physical observer since, in
principle, the shift can be superluminal which would make the coordinates (xi) to change superluminally
from one slice to the next.

(3)It is important to note that the coordinate system associated with the LEO frame is a local one and,
in general, cannot be extended to cover a region of spacetime of finite extent.
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The Jacobian of the transformation law between the LEO and coordinate observer
frames is the matrix ∂x̄µ/∂xν, while ∂xµ/∂x̄ν is the Jacobian of the inverse transforma-
tion. From Eq. (2.2.9) we can immediately read off the components of the two Jacobian
matrices as

(
∂x̄µ

∂xν

)
=



α 0 0 0

β1 1 0 0

β2 0 1 0

β3 0 0 1


, (2.2.10)

and

(
∂xµ

∂x̄ν

)
=



1/α 0 0 0

−β1/α 1 0 0

−β2/α 0 1 0

−β3/α 0 0 1


. (2.2.11)

Using these Jacobian matrices, we can transform any vector or tensor back and forth
between the LEO and coordinate observer frames. For example, by applying Eq. (2.2.11)
twice to the metric tensor we obtain that its components in the LEO frame are given by

(ḡµν) =

 −1 0

0 γ̄ij

 , (2.2.12)

from where it follows that the differential line element in the LEO reference frame is
given by

ds2 = −dt̄2 + γ̄ij dx̄i dx̄j. (2.2.13)

Denoting by N the four-velocity of a LEO, it is clear that, referred to their own
coordinate system, the components of N are simply given by (N̄µ) = (1, 0, 0, 0) and
(N̄µ) = (−1, 0, 0, 0). Using the Jacobian tensors, we find that the components of N in
the global (i.e. unfoliated) coordinate system are given by

(Nµ) = (1/α,−βi/α), (2.2.14)

while its covariant components are

(Nµ) = (−α, 0, 0, 0). (2.2.15)
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Consider now a particle moving with four-velocity U. The covariant and contravari-
ant components of U in the LEO reference frame can be written as

(Ūµ) = (Γ,Γ V̄ i),

(Ūµ) = (−Γ,Γ V̄i),
(2.2.16)

where Γ ≡ −N ·U = Ū 0 is the Lorentz factor between the particle and the LEO, and
V̄ i = dx̄i/dt̄ is the i-th component of the three-velocity ~V of the particle relative to the
LEO. By using the normalisation condition U ·U = −1 in Eq. (2.2.16), it is simple to
check that Γ can also be expressed as

Γ = (1− ~V · ~V )−
1/2. (2.2.17)

Making use of the Jacobian matrices, it follows that the covariant and contravariant
components of U in the global coordinate system are given by

(Uµ) = (Γ/α,Γ [V i − βi/α])

= (Γ/α,Γ vi/α) ,

(Uµ) =
(
−Γ[α− ~β · ~V ],ΓVi

)
,

(2.2.18)

where vi = dxi/dt is the i-th component of the coordinate three-velocity ~v. From
Eq. (2.2.18), we see that the three-velocities ~v, ~V and ~β are related by

~V = (~v + ~β)/α. (2.2.19)

It is important to note that only ~V corresponds to a physical three-velocity, and thus it
satisfies ‖~V ‖2 < 1, while there is nothing to prevent ~v and ~β from being superluminal
under certain circumstances.

Finally, we note that the normal vector N can be used to introduce the projection
tensor

γµν = gµν +NµNν, (2.2.20)

that, when applied to any arbitrary four-tensor, removes the part of it which is normal
to Σt at any given point (xi). Note that from Eqs. (2.2.15) and (2.2.20) it follows that
the spatial metric γij corresponds to the spatial part of the projection tensor.

2.3 Conservation laws in the 3+1 formalism

As we saw in Section 2.1, the evolution of a fluid in general relativity is dictated by the
local conservation laws of stress-energy and baryon number given in Eqs. (2.1.13) and
(2.1.14), respectively. In this section we follow Laguna et al. (1993) and Siegler & Riffert
(2000) for splitting these two equations using the 3+1 formalism and recasting them in
a way suitable for a Lagrangian description (i.e. in terms of total time derivatives).

In this section we shall use some physical properties of the fluid as described by a
LEO. In particular, it is convenient to introduce at this point the baryon number density
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N , the mass-energy density ε, the three-momentum Si, and the spatial stress tensor σij.
These quantities are defined as (Arnowitt et al., 1959)

N = −Nµ(nUµ) = Γn, (2.3.1)

ε = NµN νTµν = nω Γ2 − P, (2.3.2)

Si = −NµγνiTµν/N = ω ΓV i, (2.3.3)

σij = γµi γνjTµν = nω Γ2V iV j + P γij . (2.3.4)

where γµν is the projection tensor defined in Eq. (2.2.20).

2.3.1 Continuity equation

Let us consider first the continuity equation as given in Eq. (2.1.14). Using the well-
known expression for the divergence of a four-vector (Landau & Lifshitz, 1975)

(Aµ);µ =
1√
−g

∂

∂xµ
(
√
−g Aµ), (2.3.5)

together with Eqs. (2.2.5), (2.2.18) and (2.3.1), we can split Eq. (2.1.14) as

∂

∂xµ
(α
√
γ nUµ) =

∂(
√
γ N)

∂t
+
∂(
√
γ N vi)

∂xi
= 0. (2.3.6)

Moreover, if we use the total time derivative

d

dt
=

∂

∂t
+

dxi

dt

∂

∂xi
, (2.3.7)

we can recast Eq. (2.3.6) as

dN

dt
= −N ∂vi

∂xi
− N
√
γ

d
√
γ

dt
. (2.3.8)

The first term on the right hand side of this equation tells us that the baryon number
density associated with a volume element dV will change as a result of the total flux of
baryons entering or leaving dV , while the second term tells us that the variation might
also be due to the expansion or contraction of the volume element. Note that, if instead
of N , we use the quantity

N∗ =
√
γ N, (2.3.9)

we can forget about this geometric factor and write

dN∗

dt
= −N∗ ∂v

i

∂xi
. (2.3.10)

We need to stress that, in general, N∗ does not necessarily have units of inverse volume
(as does N) since the dimensions of γ will depend on the particular definition of the
spatial coordinates (xi). Nevertheless, we shall assume that (xi) can be rescaled in such
a way that each component has units of length. Doing so, dV = dx3 will have units of
volume, while γ will be a dimensionless factor.
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2.3.2 Spatial part of the stress-energy equation

We consider now the spatial part of the local conservation law for the stress-energy
tensor T µν as given in Eq. (2.1.13). For a symmetric tensor such as T µν, we can use the
following identity for calculating its four-divergence and rewrite Eq. (2.1.13) as (Landau
& Lifshitz, 1975)

T µν;µ =
1√
−g

∂(
√
−g T µν )

∂xµ
− 1

2

∂gµσ
∂xν

T µσ = 0 (2.3.11)

In order to split the spatial part of Eq. (2.3.11) in terms of 3+1 quantities, we need the
mixed components

T 0
i =

nω Γ2 Vi
α

=
NSi
α

, (2.3.12)

T ji =
nω Γ2Viv

j

α
+ Pδji =

NSiv
j

α
+ Pδji . (2.3.13)

Taking the spatial part of Eq. (2.3.11) and using Eqs. (2.3.12) and (2.3.13), results in

∂(α
√
γ T µi )

∂xµ
=
∂(N∗Si)

∂t
+
∂(N∗Siv

j)

∂xj
+
∂(α
√
γ Pδji )

∂xj
=
α
√
γ

2

∂gµσ
∂xi

T µσ. (2.3.14)

Using Eqs. (2.3.7) and (2.3.10), we can rewrite Eq. (2.3.14) as

dSi
dt

= − 1

N∗
∂(α
√
γ P )

∂xi
+
α
√
γ

2N∗
∂gµσ
∂xi

T µσ, (2.3.15)

where we still need to expand the second term on the right hand side in terms of 3+1
quantities. To this end, let us note that the 3+1 decomposition of T µν is given by

T 00 =
nω Γ2 − P

α2
=

ε

α2
, (2.3.16)

T 0i =
nω Γ2

α2
(αV i − βi) +

Pβi

α2
=
NSi

α
− ε βi

α2
, (2.3.17)

T ij =
nω Γ2

α2
(αV i − βi) (αV j − βj)− Pβiβj

α2
+ Pγij

=
ε βiβj

α2
− N(Siβj + Sjβi)

α
+ σij. (2.3.18)

With the aid of Eqs. (2.3.16)-(2.3.18), the second term on the right hand side of Eq. (2.3.15)
can be rewritten as

α
√
γ

2N∗
∂gµσ
∂xi

T µσ = −
√
γ ε

N∗
∂α

∂xi
+ Sj

∂βj

∂xi
+
α
√
γ σjk

2N∗
∂γjk
∂xi

. (2.3.19)

By substituting this result back into Eq. (2.3.15), we finally get

dSi
dt

= − 1

N∗
∂(α
√
γ P )

∂xi
−
√
γ ε

N∗
∂α

∂xi
+ Sj

∂βj

∂xi
+
α
√
γ σjk

2N∗
∂γjk
∂xi

. (2.3.20)



2.3. CONSERVATION LAWS IN THE 3+1 FORMALISM 23

2.3.3 Temporal part of the stress-energy equation

Finally we consider the 3+1 decomposition of the time component of Eq. (2.3.11). In
this case we need the mixed components

T 0
0 = −nω Γ2

α
(α− ~V · ~β) + P = −Ne

α
(2.3.21)

T j0 = −nω Γ2

α
(α− ~V · ~β)vj = −Nev

j

α
− P vj, (2.3.22)

where

e = ω Γ(α− ~V · ~β)− αP

N
= ~S · ~v +

α(1 + u)

Γ
(2.3.23)

is the canonical energy associated with the three momentum ~S, as we shall show in
Section 2.4.3. Using Eqs. (2.3.21) and (2.3.22), we can rewrite the time component of
Eq. (2.3.11) as

∂(α
√
γ T µ0 )

∂xµ
= −∂(N∗e)

∂t
− ∂(N∗e vj)

∂xj
−
∂(α
√
γ P vj)

∂xj
=
α
√
γ

2

∂gµσ
∂t

T µσ. (2.3.24)

Using Eqs. (2.3.7), (2.3.10) and (2.3.19), this last equation transforms as

de

dt
= − 1

N∗
∂(α
√
γ P vj)

∂xj
+

√
γ ε

N∗
∂α

∂t
− Sj

∂βj

∂t
−
α
√
γ σjk

2N∗
∂γjk
∂t

. (2.3.25)

2.3.4 Non-relativistic limit

It is clear that for a flat spacetime and in the non-relativistic limit, the hydrodynamic
equations discussed in the previous section should reduce to the equivalent Newtonian
expressions. Using ordinary Cartesian coordinates (t, x, y, z) we have that in this limit
α = 1, ~β = 0, and γij = δij. Restoring standard units, in the non-relativistic limit we
have that v2/c2 ≡ ‖~v‖2/c2 � 1, u � c2 and P � % c2. Then, from the definitions in
Eqs. (2.2.17), (2.3.3), (2.3.9), and (2.3.23), we obtain the following expressions for the
fluid variables:

Γ =
√

1− v2/c2 → 1 + v2/(2c2), (2.3.26)

ω = c2 + u+ P/%, (2.3.27)

m0N
∗ = Γ %→ %, (2.3.28)

~S = (ω/c2)Γ~v → ~v, (2.3.29)

e = Γω − P/%→ c2 + ê, (2.3.30)



24 2. SPHINCS

where ê = u + v2/2 is the specific thermokinetic energy. The corresponding evolution
equations, as follow from Eqs. (2.3.9), (2.3.20) and (2.3.25), are given by

d%

dt
= −% ∂v

i

∂xi
(2.3.31)

dvi
dt

= −1

%

∂P

∂xi
, (2.3.32)

dê

dt
= −1

%

∂(P vi)

∂xi
. (2.3.33)

Here we see that Eqs. (2.3.31) and (2.3.32) are the well-known continuity equation and
Euler equations of non-relativistic hydrodynamics, respectively. We note that in the
Newtonian context, it is more common to use the variable u rather than ê for expressing
the energy equation. Using Eqs. (2.3.31)-(2.3.33) it is simple to obtain the following
evolution equation for u

du

dt
= −P

%

∂vi

∂xi
=
P

%2

d%

dt
, (2.3.34)

which is the first law of thermodynamics for adiabatic flows derived previously in Eq. (2.1.17).

2.4 SPHINCS

In this section we introduce a formalism for applying the SPH method to solve the gen-
eral relativistic hydrodynamic equations. For the present discussion we shall assume that
a fixed spacetime metric is given as a known function of the coordinates. As we mention
in Chapter 1, there exist in the literature several implementations of the SPH method in
general relativity (e.g. Kheyfets et al., 1990; Laguna et al., 1993; Siegler & Riffert, 2000;
Taylor, 2008) in which the evolution equations in Eqs. (2.3.20) and (2.3.25) are approx-
imated by using SPH interpolation. However, in these kinds of approach the symmetry
properties of the evolution equations, which are crucial to enforce conservation, are in
a way introduced ‘by hand’ and, moreover, they do not account self-consistently for an
adaptive resolution.(4) For this reason, we follow here the recent formulation by Rosswog
(2010b) which is derived from a variational principle from a relativistic Lagrangian and
accounts for the corrective terms coming from a varying smoothing length.

The evolution equations in this formulation are derived from three basic ingredients:
an interpolation formula for calculating the baryon number density, the Lagrangian for
a perfect fluid, and the first law of thermodynamics. The next step in this strategy is to
discretise the Lagrangian in a way suitable for SPH and then to use the Euler-Lagrange
equations as a guides for defining a canonical momentum and a canonical energy which
are used as numerical variables. Due to the symmetries of this Lagrangian, the resulting
evolution equations in the special relativistic case (flat spacetime) feature exact conser-
vation of linear momentum, angular momentum, and energy. However, for an arbitrary

(4)In Taylor (2008) a different approach was used in which the terms related with the spacetime curva-
ture were translated as an effective Newtonian force, and then it was used a non-relativistic Lagrangian
formulation of SPH.
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spacetime and in the absence of dissipative processes, the total energy will be conserved
only if the metric is time-independent, while the necessary condition for the total an-
gular momentum to be conserved is that the metric should be axisymmetric. Linear
momentum will not be conserved unless the field equations are solved simultaneously
with the hydrodynamic equations.

2.4.1 SPH interpolation and density estimate

We introduce here a suitable definition of the SPH estimate for the baryon number den-
sity. As discussed in Section 2.3.1, the quantity N∗ defined in Eq. (2.3.9) is a convenient
numerical variable for doing this since the continuity equation written in terms of it
acquires a simple form without the source term that appeared in Eq. (2.3.8).

In the SPH method, the density and other fluid properties are calculated by inter-
polation over a set of SPH particles. As mentioned in Section 1.4, this is done via a
weighted sum over the SPH particles in the vicinity of the point of interest. This pro-
cedure is referred to as smoothing and is achieved by introducing a window or kernel
function W (‖~r−~r ′‖, h), that weights the relative contribution of each neighbouring par-
ticle located at ~r ′ = (x′i) to the target point at ~r = (xi) as a function of the distance
between them ‖~r − ~r ′‖. The parameter h is called the smoothing length and it char-
acterises the, typically compact, spatial support of the kernel function. The value of a
quantity calculated via the smoothing procedure is called its SPH interpolation value or
kernel estimate. The error associated with this procedure will in general depend on the
particular kernel function that is being used, but also on the relative degree of order of
the SPH particles. Further discussion about how to determine the degree of accuracy
associated with a particular choice of kernel estimate can be found in, e.g. Monaghan
(2005).

Various approaches have been proposed for introducing a kernel estimate in the
relativistic context (see e.g. Laguna et al., 1993; Kheyfets et al., 1990). However, the
specific way in which this is done in practice has turned out to be a crucial factor that
limited the performance and stability of previous relativistic implementations of SPH
(see e.g. Siegler & Riffert, 2000; Rosswog, 2009, for a discussion). Here we follow Siegler &
Riffert (2000); Monaghan & Price (2001); Rosswog (2010b) and introduce a ‘computing’
frame which is taken to be locally flat; this frame is then used to compute all of the
kernel estimates involved in the SPH method. There are several advantages of defining
the smoothing procedure in this way: it simplifies some of the calculations; it allows
for the use of any kernel that is used in non-relativistic SPH; but, more importantly, it
enables one to avoid previous pitfalls that had limited earlier implementations in which
only mildly relativistic shocks could be treated without the appearance of numerical
instabilities. For instance, using this prescription in the ultra-relativistic wall shock test
presented by Rosswog (2010a), a strong shock with a Lorentz factor as high as Γ = 50000
was correctly captured. Nevertheless, this choice comes at the price that the quantities
estimated using the computing frame do not correspond to the physical quantities which,
as we shall see in the following, are required in the evaluation of the equations of motion.
This means that in practice, after every time step, an additional procedure is needed for
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recovering the physical variables in terms of the numerical variables. In Section 2.4.4
below we introduce a scheme for such a recovery strategy in the general relativistic case.

With this choice for calculating kernel estimates in a locally flat reference frame, we
can then define the interpolated value of a fluid quantity f as

f(~r) =

∫
f(~r )W (‖~r − ~r ′‖f, h) dV ′ +O(h2), (2.4.1)

where

‖~r − ~r ′‖f =
√
δij(xi − x′i)(xj − x′j) (2.4.2)

is the coordinate distance in a flat spacetime. We have denoted this explicitly with the
suffix ‘f’ to distinguish it from the physical distance calculated using the spatial metric
γij as defined in Eq. (2.2.2). A kernel function suitable for the SPH method should satisfy
the following conditions

• It should be spherically symmetric (already implicit in Eq. (2.4.1), where we wrote
it as depending only on the absolute value of the distance ‖~r − ~r ′‖f). This is a
key factor in guaranteeing the conservative features of the final set of evolution
equations.

• It should be differentiable at least once and its derivative should be continuous.

• It should be normalised as ∫
W (‖~r − ~r ′‖f, h) dV ′ = 1. (2.4.3)

• In the limit of a vanishing smoothing length, W should reduce to the delta function,
i.e.

lim
h→0

W (‖~r − ~r ′‖f, h) = δ(‖~r − ~r ′‖f). (2.4.4)

Several different kernels have been implemented in the non-relativistic SPH method.
They differ from each other in the accuracy of the interpolated values as well as in their
robustness against known pathological effects such as the so-called tensile instability
which leads to the pairing of SPH particles in the presence of shocks (see e.g. Price,
2004). As mentioned before, due to our choice of calculating the kernel interpolation
in a locally flat reference frame (computing frame), we can use here any suitable kernel
used in non-relativistic SPH. For a discussion of the performance of different kernels in
standard SPH see, e.g. Cabezón et al. (2008), while a detailed comparison of the use of
various kernels for special relativistic tests can be found in Rosswog (2010a).

The next step in the SPH method is to substitute the integration in Eq. (2.4.1) by a
finite summation over the interpolation points. For this, we note that in standard SPH
each particle carries a fixed mass m, but given that here we are using specific quantities,
we shall take each SPH particle to represent a fixed number of baryons ν. Denoting by
m0 the average baryonic rest mass, we have that these two quantities are simply related
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by m = m0 ν. It is clear that the total number of baryons enclosed within a differential
volume element dV is an invariant quantity given by

ν = N∗dV = Γn
√
γ dV. (2.4.5)

We can use this expression to estimate a finite volume element as ∆V ' ν/N∗ and then
discretise Eq. (2.4.1) as

fa = f(~ra) '
∑
b

νb fb
N∗b

W (rab, ha), (2.4.6)

where we have used the short-hand notation rab = ‖~ra−~rb‖f and the summation extends
over all of the SPH particles contained within the compact support of W .

From Eq. (2.4.6) we see that, in particular, the baryon number density in the com-
puting frame can be calculated as

N∗a =
∑
b

νbW (rab, ha). (2.4.7)

Note that calculating the baryon number density in this way together with Eq. (2.4.3)
automatically ensures that the total number of baryons is conserved since∫

N∗(~r) dV =
∑
b

νb = const. (2.4.8)

In other words, just as in standard SPH, there is no need to evolve the continuity equation
to recover the density value. However, in order to get full adaptivity, the smoothing
length ha in Eq. (2.4.7) should vary in such a way that the number of neighbours of each
particle remains approximately constant, i.e. the resolution of the method should adapt
to the local baryon number density. There have been many different implementations
for adapting ha but here we follow Gingold & Monaghan (1982) and adapt ha according
to

ha = η

(
νa
N∗a

)1/3

, (2.4.9)

where η is a dimensionless parameter which specifies the extent of the compact support
of the kernel as a function of the average particle spacing. For simulations in 3D, it is
typically taken in the range η ∈ (1.2, 1.5) (see e.g. Price, 2012). Note that the present
scheme for varying the smoothing length requires an iteration between Eqs. (2.4.7) and
(2.4.9) in order to reach consistency, since N∗a and ha are mutually dependent quantities.
As discussed by Price & Monaghan (2007), these equations can be solved self-consistently
by using a root-finding algorithm such as the Newton-Raphson method.

It is useful for us at this point to calculate appropriate expressions for the spatial
gradient and the time derivative of N∗ as given by Eq. (2.4.7) since they are used several
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times in the following sections. In order to do so, first we need to compute drab/dt and
∂rab/∂x

i
c. From Eq. (2.4.2) we have

drab
dt

=
1

2 rab

d(δij x
i
ab x

j

ab)

dt

=
δij x

i
ab

rab

(
dxja
dt
−

dxjb
dt

)
(2.4.10)

= (r̂j)ab v
j

ab

where viab = via−vib and r̂iab = xiab/rab is a unit vector in the direction joining the particles
a and b. On the other hand, its gradient is calculated as

∂rab
∂xic

=
δjk x

j

ab

rab

(
∂xka
∂xic
−
∂xkb
∂xic

)
= (r̂k)ab(δ

k
i δac − δki δbc) (2.4.11)

= (r̂i)ab(δac − δbc).

Adopting the short-hand notation Wab = W (rab, ha), from Eq. (2.4.11) we get the fol-
lowing expression for the gradient of Wab

∂Wab

∂xic
=
∂Wab

∂rab

∂rab
∂xic

=
∂Wab

∂rab
(r̂i)ab(δac − δbc), (2.4.12)

from where we get the important identity

∂Wab

∂xia
= −∂Wab

∂xib
, (2.4.13)

which guarantees a symmetric interaction between pairs of SPH particles.
Using Eqs. (2.4.7) and (2.4.12), we calculate the gradient of N∗a as

∂N∗a
∂xic

=
∑
b

νb
∂Wab

∂rab
(r̂i)ab(δac − δbc), (2.4.14)

while from Eq. (2.4.10) its time derivative is given by

dN∗a
dt

=
∑
b

νb

[
∂Wab(ha)

∂rab

drab
dt

+
∂Wab(ha)

∂ha

dha
dt

]
=
∑
b

νb v
j

ab (r̂j)ab
∂Wab

∂rab
+
∑
b

νb
∂Wab(ha)

∂ha

∂ha
∂N∗a

dN∗a
dt

=
∑
b

νb v
j

ab (r̂j)ab
∂Wab

∂rab
+
∂ha
∂N∗a

dN∗a
dt

∑
b

νb
∂Wab(ha)

∂ha
.

(2.4.15)

Collecting the terms with dN∗a/dt we get

dN∗a
dt

=
1

Ωa

∑
b

νb v
j

ab (r̂j)ab
∂Wab

∂rab
, (2.4.16)
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where

Ωa = 1− ∂ha
∂N∗a

∑
b

νb
∂Wab(ha)

∂ha
, (2.4.17)

is the so-called ‘grad-h’ term that accounts, in a self-consistent way, for a varying smooth-
ing length.

The next step in the strategy followed by Rosswog (2010b) is to introduce a suitable
Lagrangian and use it as a guide for defining the numerical three-momentum and energy
that are going to be dynamically evolved. In the next section we start by considering
the former.

2.4.2 Canonical momentum

A convenient Lagrangian of a perfect fluid in general relativity is given by (e.g. Fock,
1964)

L = −
∫
T µνUµUν

√
−g dV

= −
∫
αn(1 + u)

√
γ dV,

(2.4.18)

where we have used Eq. (2.2.5) and the definition of T µν for a perfect fluid given in
Eq. (2.1.12). If we now use Eq. (2.4.5) to estimate a differential volume element as
dV ' ν/(

√
γ Γn) we can approximate the Lagrangian in Eq. (2.4.18) by the following

discrete sum

L = −
∫
αn(1 + u)

√
γ dV ' −

∑
b

[αν
Γ

(1 + u)
]
b
. (2.4.19)

As is well-known, the result of varying the action associated with L, while keeping the
spacetime metric fixed, is the Euler-Lagrange equations given by

d

dt

(
∂L

∂vi

)
− ∂L

∂xi
= 0. (2.4.20)

The canonical momentum (pi)a of a particle a is defined in terms of the Lagrangian
as

(pi)a ≡
∂L

∂via
. (2.4.21)

Substituting the discretised Lagrangian in Eq. (2.4.19) into Eq. (2.4.21) we get

(pi)a =
∂L

∂via
= −

∑
b

αb νb

[
−1 + ub

Γ2
b

∂ Γb
∂via

+
1

Γb

∂ub
∂via

]
. (2.4.22)

From the definition of Γ in Eq. (2.2.17), we calculate the partial derivative in the first
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term of Eq. (2.4.22) as

∂ Γb
∂via

=

(
Γ3γjk

2

)
b

∂(V j

b V
k
b )

∂via

=

(
Γ3γjk

2

)
b

[
2V j

b

∂

∂via

(
vk + βk

α

)
b

]
=

(
Γ3γjkV

j

α

)
b

∂vkb
∂via

=

(
Γ3Vk
α

)
b

δki δab

=

(
Γ3Vi
α

)
b

δab,

(2.4.23)

while, using the first law of thermodynamics for a perfect fluid as given in Eq. (2.1.13),
we can calculate the partial derivative of ub as

∂ub
∂via

=
∂ub
∂nb

∣∣∣∣
s

∂nb
∂via

=
Pb
n2
b

∂nb
∂via

=
Pb
n2
b

∂

∂via

(
N∗
√
γ Γ

)
b

=

(
P N∗
√
γ n2

)
b

∂(1/Γb)

∂via
= −

(
P Γ2Vi
αn

)
b

δab,

(2.4.24)

where we have used the relation between baryon number densities given in Eq. (2.3.9).
Bringing together the results in Eqs. (2.4.22)-(2.4.24), we get

(pi)a = −
∑
b

νb

{
− [(1 + u)ΓVi]b −

(
P ΓVi
n

)
b

}
δab

= [ν(1 + u+ P/n)ΓVi]a = (ν ω ΓVi)a,

(2.4.25)

where we have used the Kronecker delta symbol to get rid of the summation over nearest
neighbours. Note that the canonical momentum per baryon given as

~Sa = (~p/ν)a = (ω Γ ~V )a, (2.4.26)

had already been introduced in Eq. (2.3.3), where we defined it as the three-momentum
measured in the LEO reference frame.

Since in the present formulation the baryon number is a fixed quantity, it is convenient
for us to use ~Sa as numerical variable. According to the Euler-Lagrange equations in
Eq. (2.4.20), the time evolution of ~Sa is given by

d(Si)a
dt

=
1

νa

∂L

∂xia
= −

∑
b

νb
νa

[
1 + ub

Γb

∂αb
∂xia

δab −
αb (1 + ub)

Γ2
b

∂Γb
∂xia

+
αb
Γb

∂ub
∂xia

]
. (2.4.27)

From the definition of Γ in Eq. (2.2.17), we calculate its gradient as

∂ Γb
∂xia

=
Γ3
b

2

∂(γjkV
jV k)b

∂xia

=
Γ3
b

2

[
2 (γjkV

j)b
∂

∂xia

(
vk + βk

α

)
b

+ V j

b V
k
b

∂(γjk)b
∂xia

δab

]
= Γ3

b

[
−
(
VjV

j

α

)
b

∂αb
∂xia

+

(
Vj
α

)
b

∂βjb
∂xia

+
V j

b V
k
b

2

∂(γjk)b
∂xia

]
δab.

(2.4.28)
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On the other hand, using once again the first law of thermodynamics in Eq. (2.1.13), we
calculate the gradient of the specific internal energy as

∂ub
∂xia

=
∂ub
∂nb

∣∣∣∣
s

∂nb
∂xia

=
Pb
n2
b

∂

∂xia

(
N∗
√
γ Γ

)
b

=
Pb
n2
b

[
1

√
γ
b
Γ
b

∂N∗b
∂xia

−
N∗b√
γ
b
Γ2
b

∂ Γb
∂xia

−
N∗b

2 γ
3/2
b Γb

∂γb
∂xia

]
.

(2.4.29)

We have already calculated the gradients of N∗b and Γb in Eqs. (2.4.14) and (2.4.28),
respectively, while by using Eq. (2.2.6) we can calculate the gradient of γb as

∂γb
∂xia

= (γ γjk)b
∂(γjk)b
∂xia

δab. (2.4.30)

Substituting Eqs. (2.4.14) and (2.4.28)-(2.4.30) into Eq. (2.4.27) results in

d(Si)a
dt

=−
∑
b

νb
νa

[(
αP

√
γ Γ2n2

)
b

∂N∗b
∂xia

+ αb

(
1 + u+

P

n

)
b

∂(1/Γb)

∂xia

+
1 + ub

Γb

∂αb
∂xia

δab −
(
αPγjk

2 Γn

)
b

∂(γjk)b
∂xia

δab

]

=−
∑
b

νb
νa

[(
α
√
γ P

ΩN∗2

)
b

∑
c

νc
Ωb

∂Wbc(hb)

∂xib
(δba − δca)

]

+
∑
b

νb
νa

{
ωb Γb

[
−(VjV

j)b
∂αb
∂xka

+ (Vj)b
∂βjb
∂xka

+
αb V

i
b V

j

b

2

∂(γij)b
∂xka

]
+

− 1 + ub
Γb

∂αb
∂xia

+

(
αPγjk

2 Γn

)
b

∂(γjk)b
∂xia

}
δab

=−
∑
b

νb

[(
α
√
γ P

ΩN∗2

)
a

∂Wab(ha)

∂xia
+

(
α
√
γ P

ΩN∗2

)
b

∂Wab(hb)

∂xia

]

−

[(
Γω −

√
γ P

N∗

)
∂α

∂xi
− ω ΓVj

∂βj

∂xi

− α

2

(
ω ΓV iV j +

√
γ Pγjk

N∗

)
∂(γjk)

∂xi

]
a

,

(2.4.31)

where in the last step we have used the Kronecker delta symbols to get rid of one
summation over nearest neighbours, then we have relabelled dummy indices (c → b),
and finally used

∂Wab

∂xib
= −∂Wab

∂xia
,

1 + u = ω − P/n,
VjV

j = 1− 1/Γ2.
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Using the definitions in Eqs. (2.3.1)-(2.3.4) we can rewrite Eq. (2.4.31) as

d(Si)a
dt

=−
∑
b

νb

[(
α
√
γ P

ΩN∗2

)
a

∂Wab(ha)

∂xia
+

(
α
√
γ P

ΩN∗2

)
b

∂Wab(hb)

∂xia

]
−
[√

γ ε

N∗
∂α

∂xi
− Sj

∂βj

∂xi
−
α
√
γ σjk

2N∗
∂γjk
∂xi

]
a

≡
[

d(Si)a
dt

]
h

+

[
d(Si)a

dt

]
g

,

(2.4.32)

where we have split dSi/dt in two parts: a first one, that we shall refer to as the h-
term (or ‘hydro’ term), that involves an SPH kernel estimate and that dictates how the
neighbours of the target particle a contribute to the total force acting over it; and a
second one, that we shall refer to as the g-term (or ‘gravity’ term), that depends only
on the position of the target particle a, and that can be interpreted as an effective
contribution from the curvature of the spacetime to the total force acting on the particle
a.

Let us now compare the result in Eq. (2.4.32) with the equation of motion for ~S that
was obtained before from the conservation of the stress-energy tensor in Eq. (2.3.20).
The g-term in Eq. (2.4.32) is exactly the same as the last three terms on the right hand
side of Eq. (2.3.20). Additionally, it is apparent that the h-term represents the SPH
estimate of the gradient of the pressure that appears in the first term on the right hand
side of Eq. (2.3.20). In order to see this, let us forget for the moment about the varying
smoothing length (i.e. considering temporarily the case of h = const., Ω = 1), and use
the following standard result of SPH for estimating the gradient of a scalar f as (see e.g.
Monaghan, 2005)

∂fa
∂xia

=
∑
b

νb fb
N∗b

∂Wab

∂xia
, (2.4.33)

in such a way that[
d(Si)a

dt

]
h

= −
(
α
√
γ P

N∗2

)
a

∑
b

νb
∂Wab

∂xia
−
∑
b

νb

[(
α
√
γ P

N∗2

)
b

∂Wab

∂xia

]
= −

[
α
√
γ P

N∗2
∂N∗

∂xi
+

∂

∂xi

(
α
√
γ P

N∗

)]
a

= −
[

1

N∗
∂(α
√
γ P )

∂xi

]
a

,

(2.4.34)

which exactly recapitulates the first term on the right hand side of Eq. (2.3.20). We
also note that the result in Eq. (2.4.32) is exactly the same as the one given by Rosswog
(2010b) with the only difference that here dS/dt is written in terms of the 3+1 formalism.

2.4.3 Canonical energy

Since the discretised Lagrangian given in Eq. (2.4.19) does not depend explicitly on the
coordinate time t, we know that the associated total canonical energy E is a conserved
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quantity, i.e.

E =
∑
b

∂L

∂vib
vib − L

=
∑
b

νb

[
Si v

i +
α(1 + u)

Γ

]
b

=
∑
b

νb eb,

(2.4.35)

where e = Si v
i + α(1 + u)/Γ is the canonical energy per baryon carried by each SPH

particle. This quantity had been introduced before in Eq. (2.3.23), when we discussed the
time component of the stress-energy conservation equation. Following Rosswog (2010b),
we take e as a numerical variable. Its evolution equation is given by

dea
dt

=

[
vi

dSi
dt

+ Si
dvi

dt
+

1 + u

Γ

dα

dt
+
α

Γ

du

dt
− α(1 + u)

Γ2

dΓ

dt

]
a

. (2.4.36)

Using again the first law of thermodynamics in Eq. (2.1.13), the time derivative of the
specific internal energy ua is given by

dua
dt

=
Pa
n2
a

d

dt

(
N∗
√
γ Γ

)
a

=
Pa
n2
a

[
1
√
γ Γ

dN∗

dt
− N∗
√
γ Γ2

d Γ

dt
− N∗

2 γ3/2 Γ

dγ

dt

]
a

,

(2.4.37)

and substituting this result back into Eq. (2.4.36) leads to

dea
dt

=

[
vi

dSi
dt

+ Si
dvi

dt
+

1 + u

Γ

dα

dt

+
α
√
γ P

N∗2
dN∗

dt
− αω

Γ2

dΓ

dt
− αP

2
√
γ N∗

dγ

dt

]
a

.

(2.4.38)

If we use the expression for dSi/dt found in Eq. (2.4.32), we can rewrite Eq. (2.4.38) as

dea
dt

=

[
vi
(

dSi
dt

)
h

+
α
√
γ P

N∗2
dN∗

dt

]
a

+

[
vi
(

dSi
dt

)
g

+ Si
dvi

dt
+

1 + u

Γ

dα

dt
− αω

Γ2

dΓ

dt
− αP

2
√
γ N∗

dγ

dt

]
a

≡
(

dea
dt

)
h

+

(
dea
dt

)
g

,

(2.4.39)

where, similarly as in the canonical momentum case, we have split de/dt into an h-term
that involves an SPH interpolation, and a g-term that depends only on the position of
the target particle. Now we consider each term separately. Substituting dN∗/dt from
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Eq. (2.4.16) we get that the h-term is given by(
dea
dt

)
h

=

[
vi
(

dSi
dt

)
h

+
α
√
γ P

N∗2
dN∗

dt

]
a

= −
∑
b

νb

[(
α
√
γ P

ΩN∗2

)
a

∂Wab(ha)

∂xia
+

(
α
√
γ P

ΩN∗2

)
b

∂Wab(hb)

∂xia

]
via

+

(
α
√
γ P

ΩN∗2

)
a

∑
b

νb
Ωb

(via − vib)
∂Wab(hb)

∂xia

= −
∑
b

νb

[(
α
√
γ P

ΩN∗2

)
a

vib
∂Wab(ha)

∂xia
+

(
α
√
γ P

ΩN∗2

)
b

via
∂Wab(hb)

∂xia

]
.

(2.4.40)

On the other hand, for calculating the g-term we need the derivatives dΓ/dt and dγ/dt.
From the definition of the Lorentz factor in Eq. (2.2.17), we calculate its time derivative
as

d Γa
dt

= Γ3
a

[
−VjV

j

α

dα

dt
+
Vj
α

(
dvj

dt
+

dβj

dt

)
+
V jV k

2

dγjk
dt

]
a

, (2.4.41)

while we use Eq. (2.2.6) for calculating the time derivative of the determinant γ as

dγa
dt

= (γ γjk)a
d(γjk)a

dt
. (2.4.42)

Substituting Eqs. (2.4.41) and (2.4.42) back into Eq. (2.4.39), the g-term transforms as(
dea
dt

)
g

=

[
vi
(

dSi
dt

)
g

+ Si
dvi

dt
+

1 + u

Γ

dα

dt
− αω

Γ2

dΓ

dt
− αP

2
√
γ N∗

dγ

dt

]
a

=

[
−
(

Γω −
√
γ P

N∗

)
∂α

∂xi
via + ω ΓVj

∂βj

∂xi
via

+
α

2

(
ω ΓV jV k +

√
γ Pγjk

N∗

)
∂γjk
∂xi

via + Si
dvi

dt
+

1 + u

Γ

dα

dt

− ω Γ

(
−VjV j dα

dt
+ Vj

dvj

dt
+ Vj

dβj

dt
+
αV jV k

2

dγjk
dt

)
−
α
√
γ P γjk

2N∗
dγjk
dt

]
a

=

[(
Γω −

√
γ P

N∗

)(
dα

dt
− via

∂α

∂xi

)
− ω ΓVj

(
dβj

dt
− via

∂βj

∂xi

)

− α

2

(
ω ΓV jV k +

√
γ Pγjk

N∗

)(
dγjk
dt
− via

∂γjk
∂xi

)]
a

=

[√
γ ε

N∗
∂α

∂t
− Sj

∂βj

∂t
−
α
√
γ σjk

2N∗
∂γjk
∂t

]
a

,

(2.4.43)
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where for the last step we have used Eqs. (2.3.1)-(2.3.4) and (2.3.7). Bringing together
the results from Eqs. (2.4.40) and (2.4.43), we finally get

dea
dt

=−
∑
b

νb

[(
α
√
γ P

ΩN∗2

)
a

vib
∂Wab(ha)

∂xia
+

(
α
√
γ P

ΩN∗2

)
b

via
∂Wab(hb)

∂xia

]
+

[√
γ ε

N∗
∂α

∂t
− Sj

∂βj

∂t
−
α
√
γ σjk

2N∗
∂γjk
∂t

]
a

.

(2.4.44)

This expressions is the same as that given in Rosswog (2010b) but rewritten in terms
of 3+1 quantities. Finally, we can compare this result with Eq. (2.3.25), the evolution
equation for de/dt that we had found before. Here we see that the last three terms on
the right hand side of the two equations coincide. Regarding the first term: ignoring
the ‘grad-h’ correction terms, we can use the following expression for estimating the
divergence of a vector in standard SPH (see e.g Monaghan, 2005):

∂f ia
∂xia

=
∑
b

νb
N∗b

f ib
∂Wab

∂xia
, (2.4.45)

and see that(
dea
dt

)
h

=−
∑
b

νb

[(
α
√
γ P

N∗2

)
a

vib
∂Wab

∂xia
+

(
α
√
γ P

N∗2

)
b

via
∂Wab

∂xia

]
=−

(
α
√
γ P

N∗2

)
a

∑
b

νb v
i
b

∂Wab

∂xia
− via

∑
b

νb

[(
α
√
γ P

N∗2

)
b

∂Wab

∂xia

]
=−

(
α
√
γ P

N∗2

)
a

∂(N∗vi)a
∂xia

− via
∂

∂xia

(
α
√
γ P

N∗

)
a

=−
[

1

N∗
∂(α
√
γ P vi)

∂xi

]
a

(2.4.46)

indeed corresponds to the first term on the right hand side of Eq. (2.3.25).

2.4.4 Recovery of primitive variables

The SPHINCS formulation consists of five equations (one SPH interpolation and four
differential equations) for evolving a set of five numerical variables (e, N∗, ~S ) in time.
However, the right hand side of the evolution equations (see Eqs. 2.4.32 and 2.4.44)
involves explicitly the primitive variables (n, u, P , ~v). We are then faced with the
necessity of recovering the primitive variables after every time step as a function of the
updated values of the numerical variables. What this means in practice is that we need
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to invert the following non-linear system of equations:

N∗ =
√
γ Γn, (2.4.47)

~S = Γω
~v + ~β

α
= Γω ~V , (2.4.48)

e = ~S · ~v +
α(1 + u)

Γ
, (2.4.49)

Γ =
(

1− ~V · ~V
)−1/2

. (2.4.50)

This can be done by using the following recovery scheme:

i) Use the EoS f(n, u, P ) = 0 to solve for the enthalpy as

ω = ω(n, P ), (2.4.51)

ii) Express n, P and ~v as functions of ω and the updated numerical variables.
This is easily done by using Eqs. (2.3.23) and (2.4.47)-(2.4.49), the result is

n(ω) =
N∗

√
γ Γ(ω)

(2.4.52)

P (ω) =
N∗

α
√
γ

[
ωΓ(ω)− e− ~S · ~β

]
, (2.4.53)

~v(ω) =
α ~S

ωΓ(ω)
− ~β, (2.4.54)

where Γ(ω) can be calculated by taking the square of Eq. (2.4.48) which
results in

Γ(ω) =

√
1 + ~S · ~S/ω2. (2.4.55)

iii) Choose a trial value for the enthalpy ω′. This value could be, for instance,
the value of ω at the previous time step.

iv) Update the values of n′ and P ′ according to Eqs. (2.4.52) and (2.4.53).

v) The updated values for n′ and P ′ will, in general, fail to satisfy the EoS
in Eq. (2.4.51), i.e. ω′ − ω(n′, P ′) 6= 0. From this last condition, a better
trial value for ω′ should be produced (e.g. using a standard root-finding
algorithm) with which one repeats the procedure until a given convergence
criterion is satisfied.
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2.4.5 Geodesic motion limit

In the preceding sections, we have derived equations for the evolution of a set of SPH
quantities in a general curved spacetime. In this section we consider the limit of vanish-
ing hydrodynamic forces, i.e. the limit in which the matter content of the spacetime is
composed of non-interacting particles. It is clear that in this limit the SPHINCS equa-
tions should reduce to the geodesic equations. We can effectively zero the hydrodynamic
interaction between SPH particles by taking an EoS for which u = P = 0. Substituting
these values into Eqs. (2.4.32) and (2.4.44) we get that the evolution equations are given
by

dSi
dt

= −
√
γ ε

N∗
∂α

∂xi
+ Sj

∂βj

∂xi
+
α
√
γ σjk

2N∗
∂γjk
∂xi

=
α
√
γ

2N∗
∂gµν
∂xi

T µν, (2.4.56)

de

dt
=

√
γ ε

N∗
∂α

∂t
− Sj

∂βj

∂t
−
α
√
γ σjk

2N∗
∂γjk
∂t

= −
α
√
γ

2N∗
∂gµν
∂t

T µν, (2.4.57)

where we have dropped the now unnecessary particle label and used Eqs. (2.3.19) and
(2.3.25). Also note that in this case the numerical variables are simply

Si = ΓVi = Ui, (2.4.58)

e = Siv
i + α/Γ = Γ(α− Viβi) = −U0, (2.4.59)

while
T µν = nUµU ν. (2.4.60)

With the aid of Eqs. (2.4.58)-(2.4.60) we can combine Eqs. (2.4.56) and (2.4.57) into a
single equation, i.e.

dUλ
dt

=
α
√
γ n

2N∗
∂gµν
∂xλ

UµU ν =
α

2 Γ

∂gµν
∂xλ

UµU ν. (2.4.61)

Using the identity dt = (dt/dτ)dτ = (Γ/α)dτ , we can rewrite Eq. (2.4.61) as

d(gλµU
µ)

dτ
= gλµ

dUµ

dτ
+ Uµ dgλµ

dτ
=

1

2

∂gµν
∂xλ

UµU ν. (2.4.62)

On the other hand, using the identity d/dτ = Uµ∂/∂xµ and relabelling dummy indices,
we have

Uµ dgλµ
dτ

= UµU ν ∂gλµ
∂xν

=
1

2

(
∂gλµ
∂xν

+
∂gλν
∂xµ

)
UµU ν. (2.4.63)

Using this result allows us to rewrite Eq. (2.4.62) as

gλµ
dUµ

dτ
= −1

2

(
∂gλµ
∂xν

+
∂gλν
∂xµ

− ∂gµν
∂xλ

)
UµU ν. (2.4.64)

Finally, using Eq. (2.1.6) and multiplying both sides of Eq. (2.4.64) by the inverse gσλ

results in

dUσ

dτ
= −g

σλ

2

(
∂gλσ
∂xν

+
∂gλν
∂xσ

− ∂gµν
∂xλ

)
UµU ν = −ΓσµνU

µU ν, (2.4.65)

which is indeed the geodesic equation as given in Eq. (2.1.7).
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2.4.6 Special relativistic limit

We consider now the special relativistic limit in which the background metric is simply
given by that for flat spacetime, i.e. gµν = diag(−1, 1, 1, 1). It is clear that in this case
α = 1, ~β = 0 and γij = δij, while the numerical variables are now given by

N∗ = N = Γn, (2.4.66)

~S = Γω~v, (2.4.67)

e = ~S · ~v +
1 + u

Γ
= Γω − P

N
, (2.4.68)

where Γ = (1− ~v · ~v)−
1/2. Additionally, the evolution equations in this case simplify as

d(Si)a
dt

= −
∑
b

νb

[(
P

ΩN2

)
a

∂Wab(ha)

∂xia
+

(
P

ΩN2

)
b

∂Wab(hb)

∂xia

]
, (2.4.69)

dea
dt

= −
∑
b

νb

[(
P

ΩN2

)
a

vib
∂Wab(ha)

∂xia
+

(
P

ΩN2

)
b

via
∂Wab(hb)

∂xia

]
, (2.4.70)

and the

Ωa = 1− ∂ha
∂Na

∑
b

νb
∂Wab(ha)

∂ha
, (2.4.71)

This set of equations (without the ‘grad-h’ terms) was first derived by Monaghan &
Price (2001), while the corrective terms were included in Rosswog (2010a) together
with an artificial viscosity prescription to handle relativistic shocks. The numerical
code introduced in Rosswog (2010a) was presented along with an extensive suite of
benchmark tests, including: supersonic advection, one and two-dimensional relativistic
shock tubes, ultra-relativistic wall shock, and the relativistic simple wave. We use this
special relativistic code as the starting point for numerically implementing the SPHINCS
equations.

2.4.7 Non-relativistic limit

Finally, in this section we consider the non-relativistic limit of the SPHINCS formulation.
It is clear that in this limit the usual variables and associated equations of motion of
standard SPH should be recovered. Just as in Section 2.4.6, here the components of the
metric are clearly given as gµν = diag(−1, 1, 1, 1), while N∗ = N . Additionally, restoring
standard units and using the results given in Eqs. (2.3.28)-(2.3.30), we have that, within
this limit, the numerical variables reduce as

N → n = %/m0, (2.4.72)

~S → ~v, (2.4.73)

e→ c2 + ê (2.4.74)
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where m0 is the average baryonic mass and ê = v2/2 + u is the specific thermokinetic
energy. As in Section 2.4.1, we here call mb = m0 νb the fixed mass carried by a general
particle b. Using Eq. (2.4.7) we have that the mass density at the position of a target
particle a can be calculated as

%a =
∑
b

mbW (rab, ha), (2.4.75)

which is the usual way of computing the kernel estimate of the density % in non-relativistic
SPH. On the other hand, using Eqs. (2.4.69)-(2.4.70), it is straightforward to obtain the
following expressions for the evolution equations of ~v and ê:

d(vi)a
dt

= −
∑
b

mb

[(
P

Ω %2

)
a

∂Wab(ha)

∂xia
+

(
P

Ω %2

)
b

∂Wab(hb)

∂xia

]
, (2.4.76)

dêa
dt

= −
∑
b

mb

[(
P

Ω %2

)
a

vib
∂Wab(ha)

∂xia
+

(
P

Ω %2

)
b

via
∂Wab(hb)

∂xia

]
, (2.4.77)

while the ‘grad-h’ term transforms as

Ωa = 1− ∂ha
∂%a

∑
b

mb
∂Wab(ha)

∂ha
. (2.4.78)

As an alternative to the specific thermokinetic energy, we can give an evolution equation
for the specific internal energy u by using the definition of ê together with Eqs. (2.4.76)
and (2.4.77). After some algebra, we get

dua
dt

=

(
P

Ω %2

)
a

∑
b

mb (via − vib)
∂Wab(ha)

∂xia
. (2.4.79)

Similarly to what was done in Sections 2.4.2 and 2.4.3, by using the expressions for
the SPH estimate of the gradient of a scalar in Eq. (2.4.33) and for the divergence of a
vector in Eq. (2.4.45), it is simple to check that Eqs. (2.4.76), (2.4.77) and (2.4.79) are
nothing more than the SPH discretisation of the Newtonian hydrodynamic equations as
given in Eqs. (2.3.32)-(2.3.34).

2.5 Summary

In this chapter we have given a review of the basic elements of general relativistic hy-
drodynamics using the language of the 3+1 formalism. Based on these tools, we have
discussed an extension of the SPH method to a general relativistic context in which
a perfect fluid is evolved numerically within a given curved spacetime. This particular
formulation, for which we have adopted the acronym SPHINCS, was derived by Rosswog
(2010b) from the Lagrangian of a perfect fluid accounting, in a self-consistent way, for
the corrective terms that arise when a varying smoothing length is used. The numerical
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variables in SPHINCS are the baryon number density in the computing frame N∗, the
canonical three-momentum per baryon ~S, and the canonical energy per baryon e which
were defined in Eqs. (2.3.9), (2.4.26) and (2.4.35) in terms of the primitive variables n,
u, P and ~v as

N∗ =
√
γ Γn, (2.5.80)

~S = Γω ~V , (2.5.81)

e = ~S · ~v +
α(1 + u)

Γ
, (2.5.82)

where ~V = (~v + ~β)/α is the physical three-velocity as measured by a LEO and Γ =(
1− ~V · ~V

)−1/2
is the associated Lorentz factor. Using an SPH interpolation, N∗ was

calculated in Eq. (2.4.7) as

N∗a =
∑
b

νbW (rab, ha), (2.5.83)

where W can be any kernel for a flat spacetime used in standard non-relativistic SPH.
On the other hand, the evolution equations for ~S and e were given in Eqs. (2.4.32) and
(2.4.44) as

d(Si)a
dt

=−
∑
b

νb

[(
α
√
γ P

ΩN∗2

)
a

∂Wab(ha)

∂xia
+

(
α
√
γ P

ΩN∗2

)
b

∂Wab(hb)

∂xia

]
−
[√

γ ε

N∗
∂α

∂xi
− Sj

∂βj

∂xi
−
α
√
γ σjk

2N∗
∂γjk
∂xi

]
a

,

(2.5.84)

and

dea
dt

=−
∑
b

νb

[(
α
√
γ P

ΩN∗2

)
a

vib
∂Wab(ha)

∂xia
+

(
α
√
γ P

ΩN∗2

)
b

via
∂Wab(hb)

∂xia

]
+

[√
γ ε

N∗
∂α

∂t
− Sj

∂βj

∂t
−
α
√
γ σjk

2N∗
∂γjk
∂t

]
a

,

(2.5.85)

where ε and σjk are part of the 3+1 decomposition of the stress-energy tensor as defined
in Eqs. (2.3.2) and (2.3.4), respectively, and

Ωa = 1− ∂ha
∂N∗a

∑
b

νb
∂Wab(ha)

∂ha
, (2.5.86)

is the relativistic ‘grad-h’ term.
Our original contribution here has been to recast the evolution equations of SPHINCS

into the 3+1 formalism, to introduce a simple strategy for recovering the primitive vari-
ables from the numerically evolved ones, and to show that geodesic motion is recovered
from the SPHINCS equations in the limit of vanishing hydrodynamic forces. In our
opinion, adopting the 3+1 formalism allows for a more transparent notation in which
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there is a clear distinction between four and three-dimensional objects. Moreover, using
the 3+1 formalism in the SPHINCS equations is also advantageous if at a future stage we
want to couple SPHINCS with a metric solver, since most of those are written in terms
of this formalism. Nevertheless, it is clear that a fixed, time-independent metric is the
obvious choice for a first implementation of the SPHINCS equations. If, in addition, this
metric is a known analytic solution of general relativity, we can benchmark the actual
numerical implementation against well-studied scenarios, as discussed in Section 1.4. In
the next chapter we give appropriate expressions for the implementation of SPHINCS
in a rotating BH spacetime.





Chapter 3

SPHINCS implementation for
Kerr spacetime

In the previous chapter we gave a general formulation of the SPHINCS equations and
mentioned that a first obvious implementation of them would be for a time-independent
and analytically known metric. Moreover, since our main motivation for developing a
numerical tool like SPHINCS is to study accretion flows onto BHs, it is clear that a
BH spacetime would be a good first candidate. As we discussed in Section 1.2, for
astrophysical applications in which the mass-energy of the fluid has a negligible effect
on the spacetime curvature, the exterior metric around a physical BH should be well
approximated by the Kerr solution.

An important point that we need to consider before the actual implementation of
the SPHINCS equations is that several procedures inherent to the SPH method (e.g.
neighbour search, tree walk, force calculation, etc.), are easier to do if one adopts a set
of Cartesian coordinates. In addition, the starting point of the SPHINCS code is the
special relativistic SPH code developed by Rosswog (2010a), which is written in terms of
Cartesian coordinates (as is the case, as far as we know, for all of the other existing multi-
dimensional SPH codes, both Newtonian and relativistic). Since we want to modify this
code only where strictly necessary, it is clear that it would be advantageous if we provided
a formulation of the SPHINCS equations using a Cartesian coordinate system. However,
for an arbitrary curved spacetime, it is not possible to define global Cartesian coordinates
in the classical sense. Nonetheless, we can instead introduce a system of coordinates that
locally is as close as possible to a Cartesian one. In other words, we want to define a
reference system for which local volume elements look like unit cubes, i.e. for which the
determinant of the metric is simply g = −1. Moreover, for asymptotically flat spacetimes
(such as the Kerr spacetime), it is always possible to define a set of coordinates that,
asymptotically far away from the central mass, converges to the usual set of Cartesian
coordinates. In the following, we call such a system a ‘Cartesian-like’ coordinate system.
Finally, we note that adopting this set of coordinates automatically guarantees that the
numerical variable N∗ (defined in Eq. 2.3.9) has appropriate units of a baryon number
density (units of inverse volume).
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In this chapter we discuss the SPHINCS implementation for a Kerr spacetime. We
start by giving a general review of the Kerr metric based on Chandrasekhar (1983);
Frolov & Novikov (1998); Wiltshire et al. (2009). Along the way we introduce two
systems of coordinates, the Boyer-Lindquist and Kerr-Schild coordinates, and discuss
the advantages and disadvantages associated with each of them. We introduce the
Cartesian-like form of each of these coordinate systems, as well as showing their relation
with the 3+1 formalism, for which we introduce the associated families of local Eulerian
observers (LEOs). In the final part of this chapter we give appropriate expressions for
the gravity terms in the SPHINCS equations of motion for the Kerr and Schwarzschild
spacetimes.

3.1 Boyer-Lindquist coordinates (t, r, θ, φ)

The Boyer-Lindquist (BL) system of coordinates was introduced by Boyer & Lindquist
(1967) for studying the Kerr metric, and it is one of the most commonly used in the
literature. These coordinates are particularly convenient for describing the spacetime far
away from the central BH since the BL coordinate time approaches asymptotically that
of a family of observers situated at rest at infinity. However, they are ill-behaved in the
vicinity of the BH (coordinate singularity), and, for this reason, they are not the best
suited for implementing the SPHINCS equations. Nevertheless, in what follows we give
a brief review of these coordinates in order to facilitate future reference to other works.
Using BL coordinates, the Kerr metric line element has the following form (Misner et al.,
1973)

ds2 = gµν dxµ dxν

= −
(

1− 2Mr

ρ2

)
dt2 − 4 aMr sin2 θ

ρ2
dtdφ

+
ρ2

∆
dr2 + ρ2dθ2 +

Σ sin2 θ

ρ2
dφ2,

(3.1.1)

where

ρ2 = r2 + a2 cos2 θ, (3.1.2)

∆ = r2 − 2Mr + a2, (3.1.3)

Σ =
(
r2 + a2

)2 − a2∆ sin2 θ. (3.1.4)

The components of the inverse metric gµν are easily calculated from Eq. (3.1.1) as

gtt = − Σ

∆ ρ2
, gtφ = −2 aMr

∆ ρ2
,

grr =
∆

ρ2
, gθθ =

1

ρ2
, gφφ =

∆− a2 sin2 θ

∆ ρ2 sin2 θ
,

(3.1.5)

while the determinant of the metric in these coordinates is given by g = −ρ4 sin2 θ.
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In Kerr spacetime, we must distinguish some special values for the radial coordinate:
the outer and inner ergosurfaces rs±, and the outer and inner event horizons r±.(1) The
first two correspond to the roots of the quadratic equation obtained by setting the metric
coefficient gtt = 0, i.e.

rs± = M ±
√
M2 − a2 cos2 θ. (3.1.6)

The outer ergosurface is also known as the static limit and it determines the boundary
within which all physical reference frames are compelled to co-rotate with the central
object. The phenomenon of local inertial frames being pulled round by a rotating object
is known as the frame-dragging or Lense-Thirring effect (Lense & Thirring, 1918). On
the other hand, the two event horizons are defined as the roots of the equation ∆ = 0,
i.e.

r± = M ±
√
M2 − a2. (3.1.7)

The two event horizons act as one-way membranes in the sense that null and time-
like trajectories can cross them just in one direction. From the metric expression in
Eq. (3.1.1), it follows that the grr metric component diverges at these two locations.
This behaviour is just a coordinate singularity related with the choice of reference frame
in which Eq. (3.1.1) has been written and may not be present for a different choice, as is
for instance the case of Kerr-Schild coordinates as we shall show later on. Nevertheless,
a true spacetime singularity is hidden within the two event horizons and it is given by
ρ = 0, i.e.

r = 0 and θ = π/2. (3.1.8)

This singularity is not a single point of the Kerr spacetime but rather a one-dimensional
object which is often referred to as a ring singularity. It is best seen using the Cartesian-
like form of the spatial BL coordinates (x, y, z), defined as

x =
√
r2 + a2 sin θ cosφ,

y =
√
r2 + a2 sin θ sinφ, (3.1.9)

z = r cos θ,

and the associated cylindrical radius given by

R =
√
x2 + y2 =

√
r2 + a2 sin θ. (3.1.10)

In terms of these coordinates, the ring singularity is located at

R = a, z = 0. (3.1.11)

In Figure 3.1 we show the intersection of the four surfaces r±, rs± with the R-z plane
of a Kerr spacetime with a = 0.98M . Note that r+ < rs+ and r− > rs− everywhere
except at the poles (θ = 0, π), where they coincide. Also note that the surface rs− has
a cusp at the ring singularity.

(1)Note, however, that only the outer horizon and outer ergosurface come within the region to which
the uniqueness theorems apply; it is unclear whether the parts of the Kerr solution inside the outer event
horizon have any physical relevance.
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Figure 3.1: Location of the ergosurfaces, horizons and ring singularity of Kerr space-
time projected onto the R-z plane. In this particular example we have taken a = 0.98M .
The ergoregion is the region of spacetime delimited between the outer ergosurface and
the outer event horizon.

Using the cylindrical coordinates, we can see that the condition r = const. defines
the two-dimensional surface

R2

r2 + a2
+
z2

r2
= 1, (3.1.12)

which corresponds to an ellipsoid of revolution with its rotation axis coinciding with the
polar axis of the BH. On the other hand, the condition θ = const. defines the surface

R2

a2 sin2 θ
− z2

a2 cos2 θ
= 1, (3.1.13)

which corresponds to a hyperboloid of revolution with the same rotation axis as the
ellipsoid r = const. The foci of both surfaces coincide and are located on the R-z plane
at (a, 0) and (−a, 0).

In Figure 3.2 we plot the constant-r and constant-θ coordinate surfaces as projected
onto the R-z plane. From Eq. (3.1.12) we see that varying the constant radius r as a
continuous parameter defines a family of co-focal ellipses, while doing the same with the
polar angle θ in Eq. (3.1.13) defines a family of co-focal hyperbolae. In the first case,
the ellipsoid corresponding to r = 0 degenerates as the circular section of the equatorial
plane interior to the ring singularity. On the other hand, the hyperbola corresponding
to θ = π/2 also degenerates into the equatorial plane but now for the section exterior
to the ring singularity. Note that there is also a degeneracy for θ = 0, π, but that it
corresponds instead to the polar axis.
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Figure 3.2: This figure shows a spatial projection of the coordinate surfaces r = const.
and θ = const. onto the R-z plane of a Kerr spacetime with a = 0.98M . In this
projection, the lines r = const. represent a family of co-focal ellipses (blue lines) while
the lines θ = const. constitute a family of co-focal hyperbolae (green lines). For both
families, the foci (red points) coincide with the intersections of the ring singularity with
the R-z plane, i.e. (a, 0), (−a, 0). The ellipse corresponding to r = r+ is highlighted
with a red line.
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3.2 Locally non-rotating frames

Here we use the machinery developed in Section 2.2.1 to define local Eulerian observers
(LEOs). We start by noting that, in BL coordinates, the hypersurfaces defined by the
condition t = const. are spacelike for all r > r+. For this reason, we can use the
BL coordinates as a particular 3+1 decomposition of the Kerr metric but only for the
section of spacetime exterior to the BH horizon. In order to do so, we start by rewriting
Eq. (3.1.1) as

ds2 = −
(

∆

Σ

)
ρ2dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

Σ sin2 θ

ρ2
(dφ− ω dt)2 , (3.2.1)

where ω = 2 aMr/Σ. By comparing this expression with Eq. (2.2.1), we can immediately
see that the lapse α, the shift βi and the spatial metric γij corresponding to the 3+1
decomposition of BL coordinates, are given by

α =

√
∆

Σ
ρ, (3.2.2)

(βi) = (0, 0,−ω), (3.2.3)

(γij) = diag

(
ρ2

∆
, ρ2,

Σ sin2 θ

ρ2

)
. (3.2.4)

Using these expressions, we can introduce the LEOs associated with the BL coordi-
nates as described in Section 2.2.1. Note that in the context of Kerr spacetime, members
of this family of observers are more commonly referred to as zero angular momentum
observers (ZAMOs). For this reason, in the present work we reserve the name ZAMO
to refer to the Eulerian observers associated with the BL coordinates.

From Eq. (3.2.4) we see that the spatial metric in this case is diagonal; it follows then
that the basis vectors carried along by each ZAMO are orthogonal to each other and
can, in principle, be normalised to be of unit length (and the same for the associated
base for the covariant components of a vector). Such a family of orthonormal tetrads
was introduced by Bardeen et al. (1972) with the name of locally non-rotating frames
(LNRFs). They are given this name because they rotate with the spacetime geometry
in such a way that, locally, they actually determine to be non-rotating.

Following the notation that was introduced in Section 2.2.1, we here call {e(µ)} and
{e(µ)} the bases for vectors associated with a BL observer; while we call {ē(µ)} and
{ē(µ)} the corresponding (normalised) bases for vectors associated with the ZAMO. By
substituting Eqs. (3.2.2)-(3.2.4) into Eqs. (2.2.9), it follows that these sets of bases are
related through
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ē(t) =
√

Σ
∆

1
ρ (e(t) + ω e(φ)) , ē(t) =

√
∆
Σ ρ e(t),

ē(r) =
√

∆
ρ e(r), ē(r) = ρ√

∆
e(r),

ē(θ) = 1
ρ e(θ), ē(θ) = ρ e(θ),

ē(φ) = ρ√
Σ sin θ

e(φ), ēφ =
√

Σ sin θ
ρ (e(φ) − ω e(t)) .

(3.2.5)

From Eq. (3.2.5), it is immediate to read off the components of the Jacobian tensors which
dictate the transformation of tensors between the LNRF and the BL frame. For instance,
we can check that the metric tensor in the LNRF is simply given by ḡµν = diag(−1, 1, 1, 1)
(as one would have expected, given that the LNRF is a local orthonormal reference
frame).

3.3 Kerr-Schild coordinates (T , r, θ, ψ)

We consider now the Kerr-Schild (KS) coordinate system for which the metric is regular
all the way through the two event horizons. This system of coordinates was the original
one used by Kerr (1963) when he first presented the Kerr metric. In this reference
system, the radial and polar coordinates (r and θ) coincide with the BL ones while the
temporal coordinate T and the azimuthal angle ψ are defined in terms of t, r and φ
according to the following transformation rules

dT = dt+
2Mr

∆
dr,

dψ = dφ+
a

∆
dr.

(3.3.1)

Using a tilde to denote general KS coordinates, i.e. (x̃µ) = (T, r, θ, ψ), from
Eq. (3.3.1) it is straightforward to get the components of the Jacobian matrices of the
direct and inverse transformations (i.e. ∂x̃µ/∂xν and ∂xµ/∂x̃ν, respectively). Using these
two matrices, we can transform any vector or tensor back and forth between the BL and
KS reference frames. For instance, from the transformation of the metric tensor, we get
that the differential line element in KS coordinates is given by

ds2 =−
(

1− 2Mr

ρ2

)
dT 2 +

(
1 +

2Mr

ρ2

)
dr2 +

4Mr

ρ2
dr dT − 4Mar

ρ2
sin2 θ dψ dT

− 2 a

(
1 +

2Mr

ρ2

)
sin2 θ dr dψ + ρ2 dθ2 +

Σ sin2 θ

ρ2
dψ2,

(3.3.2)
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while the non-vanishing components of the inverse metric are given by

gTT = −
(

1 +
2Mr

ρ2

)
, gTr =

2Mr

ρ2
, grψ =

a

ρ2
,

grr =
∆

ρ2
, gθθ =

1

ρ2
, gψψ =

1

ρ2 sin2 θ
.

(3.3.3)

For the determinant of the metric in KS coordinates, given that the r and θ coordinates
remained untouched, it is found that the result given for the BL case applies also for
KS, i.e. g̃ = g = −ρ4 sin2 θ. From Eq. (3.3.2) we also note that the components of the
metric in KS coordinates are regular everywhere except at the ring singularity (where
ρ = 0).

We consider now the 3+1 decomposition of Kerr spacetime using KS coordinates.
In this case, the hypersurfaces of constant T are spacelike for every r > 0 and can be
extended past the horizons and down to the ring singularity. Appropriate definitions for
the lapse α, shift βi and spatial metric γij in this case, are given by

α =
ρ√

ρ2 + 2Mr
, (3.3.4)

(βi) =

(
2Mr

ρ2 + 2Mr
, 0, 0

)
, (3.3.5)

(γij) =


1 + 2Mr

ρ2
0 −a sin2 θ

(
1 + 2Mr

ρ2

)
0 ρ2 0

−a sin2 θ
(

1 + 2Mr
ρ2

)
0 Σ sin2 θ

ρ2

 . (3.3.6)

From this we see that the frames carried by the LEOs associated with this particular 3+1
splitting of Kerr spacetime are not orthonormal tetrads as in the BL case. Expressions
for the set of vector bases in this case follow immediately from substituting Eqs. (3.3.4)-
(3.3.6) into Eq. (2.2.9).

At this point we could wonder about the practical issue of which coordinate system
should be used to tackle a given problem in Kerr spacetime using the SPHINCS method.
It is clear that the KS system is more suitable than the BL one for describing physical
processes nearby the BH horizon or even past it. On the other hand, the description
made in terms of BL coordinates has the advantage of corresponding to that made by
physical observers located at infinity with respect to the BH (essentially our location
with respect to any astrophysical BH).

As we have already discussed, the transformation of vectors and tensors between
the BL and the KS systems is a trivial operation mediated by the Jacobian matrices.
However, before applying this transformation to the components of any given tensor,
we need to know the coordinates of the point at which the tensor is located in both
reference systems.
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For instance, let us assume that we know explicitly the time evolution of a given
SPH particle in KS coordinates, i.e. its world line (x̃µ) = (T, x̃i(T )) is known. At every
point along this we will have recorded several different scalar and tensorial quantities
(P , T̃ µν, Ũµ, Ṽ i etc.) but, before being able to transform any of these from the KS to
the BL system, we need to know the description of the particle’s world line in terms
of BL coordinates.(2) This can be done by picking up a reference or ‘synchronisation’
point (x̃µ0 ) = (T0, r0, θ0, ψ0) on the particle’s world line, for which the corresponding BL
coordinates (xµ0 ) = (t0, r0, θ0, φ0) are also known. This point can be taken, for instance,
at the initial-condition hypersurface T = T0. Once the reference point has been defined,
we can directly integrate the transformation rules in Eq. (3.3.1) and get

t− t0 = T − T0 +
M√

M2 − a2

[
r+ ln

(
r − r+
r0 − r+

)
− r− ln

(
r − r−
r0 − r−

)]
,

φ− φ0 = ψ − ψ0 +
1

2

a√
M2 − a2

ln

(
r − r+
r − r−

r0 − r−
r0 − r+

)
.

(3.3.7)

From this we can then express the world line of the given particle in BL coordinates as
(xµ) = (t, xi(t)). Therefore, it does not matter which coordinates we choose for solving
a given problem, since we can always transform the results back and forth between these
two coordinate systems. For this reason, given that the KS coordinates are well-behaved
in the proximity of the BH horizon, they seem to be the better choice for implementing
the SPHINCS equations.

3.4 Cartesian-like form of the KS coordinates (T, x̃, ỹ, z̃)

The set of Cartesian-like coordinates (x̃, ỹ, z̃) associated to the spatial KS coordinates
(r, θ, ψ) is defined as

x̃ = sin θ(r cosψ − a sinψ),

ỹ = sin θ(a cosψ + r sinψ), (3.4.1)

z̃ = r cos θ,

while the time coordinate T is taken to be the same in both systems. From Eqs. (3.1.9)
and (3.4.1), it is clear that z̃ = z, while the cylindrical radius is also the same as in the
BL case, i.e.

R̃ =
√
x̃2 + ỹ2 =

√
r2 + a2 sin θ = R. (3.4.2)

In order to ease the notation, whenever it is unambiguous that we are referring only to
Cartesian-like KS coordinates, we will drop the tilde. From Eq. (3.4.1) we get that the

(2)Clearly, for scalar quantities such as P , no further transformation is needed once we know the
coordinates of a given point in the two coordinate systems.
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Jacobian corresponding to this transformation is given by

(
∂x̌µ

∂xν

)
=



1 0 0 0

0 sin θ cosψ cos θ(r cosψ − a sinψ) − sin θ(a cosψ + r sinψ)

0 sin θ sinψ cos θ(a cosψ + r sinψ) sin θ(r cosψ − a sinψ)

0 cos θ −r sin θ 0


,

(3.4.3)
where (x̌µ) = (T, x, y, z) and (xµ) = (T, r, θ, ψ). On the other hand, it is simple to invert
Eq. (3.4.1) and get the following expressions for the inverse transformation

r =

√
1

2
(x2 + y2 + z2 − a2) +

1

2

√
(x2 + y2 + z2 − a2)2 + 4 a2z2,

θ = cos−1
(z
r

)
, (3.4.4)

ψ = tan−1

(
r y − a x
r x+ a y

)
,

from which we get the following Jacobian for the inverse transformation:

(
∂xµ

∂x̌ν

)
=



1 0 0 0

0 r x
ρ2

r y
ρ2

z(r2+a2)
r ρ2

0 x z
r ρ2

√
r2+a2

x2+y2
y z
r ρ2

√
r2+a2

x2+y2
z2−r2
r ρ2

√
r2+a2

x2+y2

0 a r x
ρ2(r2+a2)

− y
x2+y2

a r y
ρ2(r2+a2)

+ x
x2+y2

a z
rρ2

0 −y r2ρ2+a r x(r2−ρ2)
r2ρ2(x2+y2)

x r2ρ2−a r y(r2−ρ2)
r2ρ2(x2+y2)

a z
r ρ2


, (3.4.5)

where r and ρ should be considered as implicit functions of (x, y, z) that satisfy

r4 − r2(x2 + y2 + z2 − a2)− a2z2 = 0, (3.4.6)

ρ2 = r2 +
a2z2

r2
=

√
(x2 + y2 + z2 − a2)2 + 4 a2z2 . (3.4.7)

In terms of these coordinates, the differential line element is

ds2 =− dT 2 + dx2 + dy2 + dz2

+
2Mr

ρ2

[
r(x dx+ y dy)− a(x dy − y dx)

r2 + a2
+
z dz

r
+ dT

]2

,
(3.4.8)
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or, in terms of the metric components

gTT = −1 +
2Mr

ρ2
, gxx = 1 +

2Mr

ρ2

(
r x+ a y

r2 + a2

)2

,

gyy = 1 +
2Mr

ρ2

(
r y − a x
r2 + a2

)2

, gzz = 1 +
2Mz2

r ρ2
,

gTx =
2Mr

ρ2

(
r x+ a y

r2 + a2

)
, gTy =

2Mr

ρ2

(
r y − a x
r2 + a2

)
, gTz =

2Mz

ρ2
, (3.4.9)

gxz =
2Mz

ρ2

(
r x+ a y

r2 + a2

)
, gyz =

2Mz

ρ2

(
r y − a x
r2 + a2

)
,

gxy =
2Mr

ρ2

(r x+ a y)(r y − a x)

(r2 + a2)2 .

The inverse metric components are given by

gTT = −1− 2Mr

ρ2
, gxx = 1− 2Mr

ρ2

(
r x+ a y

r2 + a2

)2

,

gyy = 1− 2Mr

ρ2

(
r y − a x
r2 + a2

)2

, gzz = 1− 2Mz2

r ρ2
,

gTx =
2Mr

ρ2

(
r x+ a y

r2 + a2

)
, gTy =

2Mr

ρ2

(
r y − a x
r2 + a2

)
, gTz =

2Mz

ρ2
, (3.4.10)

gxz = −2Mz

ρ2

(
r x+ a y

r2 + a2

)
, gyz = −2Mz

ρ2

(
r y − a x
r2 + a2

)
,

gxy = −2Mr

ρ2

(r x+ a y)(r y − a x)

(r2 + a2)2 .

Note that in Eq. (3.4.8) we have explicitly split the Kerr metric into a flat spacetime in
Cartesian coordinates (flat spacetime metric) plus a term that, for r � M , asymptoti-
cally vanishes as O(M/r).

The corresponding 3+1 decomposition is given by

α =
ρ√

ρ2 + 2Mr
, (3.4.11)

(βi) =
2Mr

ρ2 + 2Mr

(
r x+ a y

r2 + a2
,
r y − a x
r2 + a2

,
z

r

)
, (3.4.12)

(βi) =
2Mr

ρ2

(
r x+ a y

r2 + a2
,
r y − a x
r2 + a2

,
z

r

)
, (3.4.13)

γij = δij +
ρ2

2Mr
βi βj (3.4.14)

γij = δij − ρ2 + 2Mr

2Mr
βi βj. (3.4.15)

where δij is the Kronecker delta and βi = γij β
j = βi/α2. In this case the shift satisfies

‖~β‖2 = βi β
i = α2(2Mr/ρ2)2.
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3.5 SPHINCS in Kerr spacetime

In Chapter 2 we derived, for an arbitrary spacetime, the SPHINCS evolution equations
for the canonical momentum ~S and the canonical energy e as given in Eqs. (2.5.84) and
(2.5.85), respectively. As we have already discussed, these two equations can be split as

d~Sa
dT

=

(
d~Sa
dT

)
h

+

(
d~Sa
dT

)
g

, (3.5.1)

dea
dT

=

(
dea
dT

)
h

+

(
dea
dT

)
g

, (3.5.2)

where a term with the label h represents the ‘hydrodynamic’ contribution to the force
acting on a given SPH particle, while a term with the label g represents the ‘gravity’
contribution. The h-terms involve smoothed averages over the closest neighbours of the
particle a and, due to our choice of a kernel W defined in flat spacetime, their only
dependence on the metric tensor comes through the geometric factor

√
−g = α

√
γ.

However, since we have adopted Cartesian-like coordinates, we have that
√
−g = 1, and

so we only need to consider the g-terms. In the following we give explicit expressions for
these in the particular case of Kerr spacetime using Cartesian-like KS coordinates.

According to Eqs. (2.5.84) and (2.5.85), the g-terms are given by

(
d(Si)a

dT

)
g

= −
[√

γ ε

N∗
∂α

∂xi
− Sj

∂βj

∂xi
−
α
√
γ σjk

2N∗
∂γjk
∂xi

]
a

, (3.5.3)(
dea
dT

)
g

=

[√
γ ε

N∗
∂α

∂T
− Sj

∂βj

∂T
−
α
√
γ σjk

2N∗
∂γjk
∂T

]
a

, (3.5.4)

where ε and σjk were defined in Eqs. (2.3.2) and (2.3.4), respectively. From Eqs. (3.5.3)
and (3.5.4) we see that they depend only on the position of the target particle (xia)
and on the value of the derivatives of the metric components at that position. In other
words, the g-terms are independent of any kernel estimate and can be viewed as giving
an effective ‘gravitational acceleration’.

Also note that for the present choice of coordinates, the components of the metric
tensor are independent of the time coordinate, and so it follows from Eq. (3.5.4) that
(de/dT )g = 0. Therefore, we only need to provide expressions for the (dSi/dT )g terms.
Using the Cartesian-like form of the KS coordinates, and after some algebra, it is found
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that the g-terms in Eq. (3.5.3) are given by(
dSx
dT

)
g

=
ωMΓ2(ρ2 + 2Mr)

r ρ8N∗ (r2 + a2)3

[(
r2 + a2

)
(r + z vz) + r vx(a y + r x) + r vy(r y − a x)

]
{
x
(
r2 + a2

)2 [
r
(
3 ρ2 − 4 r2

)
+ z vz

(
ρ2 − 4 r2

)]
+

x a r (x vy − y vx)
[
ρ2
(
r2 − 3 a2

)
+ 4 r2

(
r2 + a2

)]
+

x r2 (x vx + y vy)
[
ρ2
(
r2 + 5 a2

)
− 4 r2

(
r2 + a2

)]
+

2 rρ4 (r vx − a vy)
(
r2 + a2

)}
,

(3.5.5)(
dSy
dT

)
g

=
ωMΓ2(ρ2 + 2Mr)

r ρ8N∗ (r2 + a2)3

[(
r2 + a2

)
(r + z vz) + r vx(a y + r x) + r vy(r y − a x)

]
{
y
(
r2 + a2

)2 [
r
(
3 ρ2 − 4 r2

)
+ z vz

(
ρ2 − 4 r2

)]
+

y a r (x vy − y vx)
[
ρ2
(
r2 − 3 a2

)
+ 4 r2

(
r2 + a2

)]
+

y r2 (x vx + y vy)
[
ρ2
(
r2 + 5 a2

)
− 4 r2

(
r2 + a2

)]
+

2 rρ4 (r vy + a vx)
(
r2 + a2

)}
,

(3.5.6)(
dSz
dT

)
g

=
ωMΓ2(ρ2 + 2Mr)

r3 ρ8N∗ (r2 + a2)2

[(
r2 + a2

)
(r + z vz) + r vx(a y + r x) + r vy(r y − a x)

]
{
z r
(
r2 + a2

) [
2 r2ρ2 −

(
r2 + a2

) (
4 r2 − ρ2

)]
+

vz
(
r2 + a2

) [
r2ρ2

(
z2 + 2 ρ2

)
− a2z2

(
4 r2 + ρ2

)
− 4 r4z2

]
+

z a r (x vy − y vx)
[
ρ2
(
r2 − a2

)
+ 4 r2

(
r2 + a2

)]
+

z r2 (x vx + y vy)
[
ρ2
(
r2 + 3 a2

)
− 4 r2

(
r2 + a2

)] }
.

(3.5.7)

3.6 SPHINCS in Schwarzschild spacetime

It is clear that appropriate expressions for the SPHINCS implementation in a Schwarz-
schild spacetime should follow immediately after substituting a = 0 into the results
derived in the previous section. Nevertheless, the results obtained from that procedure
correspond to the so-called Eddington-Finkelstein coordinate system which is not the
most commonly-used one in the context of the Schwarzschild metric. In what follows, we
give the expressions corresponding to the Cartesian-like form of the usual Schwarzschild
coordinates (t, r, θ, φ). These coordinates are defined as

x = r sin θ cosφ,

y = r sin θ sinφ, (3.6.1)

z = r cos θ,
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while the inverse transformation is simply given by

r =
√
x2 + y2 + z2,

θ = arctan

√
x2 + y2

z
, (3.6.2)

φ = arctan
y

x
.

On the other hand, using the transformation law in Eq. (3.6.1), one finds that the
differential line element takes the form

ds2 = −dt2 + dx2 + dy2 + dz2

+
2M

r2(r − 2M)

[
r(r − 2M)dt2 + (x dx+ y dy + zdz)2

]
,

(3.6.3)

from where we can obtain the metric coefficients gµν and also calculate the components
of the inverse metric as being

gtt = −
(

1− 2M

r

)−1

,

gxx = 1− 2Mx2

r3
, gyy = 1− 2My2

r3
, gzz = 1− 2Mz2

r3
, (3.6.4)

gxy = −2Mxy

r3
, gyz = −2My z

r3
, gxz = −2Mxz

r3
.

Using these coordinates the gravity terms in Eq. (3.5.1) are then given by(
dSi
dt

)
g

=
ωMΓ2

r3N∗ (r − 2M)3

[
2 vir2 (r − 2M) (x vx + y vy + z vz)

− xir (r − 2M)2 − xi (3 r − 4M) (x vx + y vy + z vz)2
] (3.6.5)

where (xi) = (x, y, z).

3.7 Summary

In this chapter we have discussed several aspects concerning the implementation of
SPHINCS in Kerr spacetime. We started by giving a brief review of some general char-
acteristics of the Kerr metric using both the BL and KS systems of coordinates. We have
presented the Cartesian-like coordinates associated to each of them, as well as rewritten
them in terms of the 3+1 formalism. We have also shown the relation between the BL
and KS coordinates as well as appropriate expressions for transforming in practice any
given vectorial or tensorial quantity back and forth between these two systems. Given
that the KS coordinates are well-behaved in the vicinity of the BH and regular across
the horizon, we have argued that they are the best suited for a practical implementation
of SPHINCS.
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We have seen that using a Cartesian-like set of coordinates represents several advan-
tages for our present purpose. First, their adoption facilitates the direct use of previous
Newtonian and special relativistic codes as seeds for the new code. And second, the fact
that the determinant of the metric in this coordinates is identically equal to (minus)
one has the important consequence that the h-terms in the equations of motion formally
reduce to the form that they had in the special relativistic case. This should further
simplify the code development. We have also seen that for stationary metrics, such as
the Kerr one, the g-terms entering the energy equation identically vanish. We have then
calculated and given explicit expressions for the g-terms that are needed in the momen-
tum equation using the Cartesian-like form of the KS coordinates for the Kerr metric.
Additionally, for the non-rotating case we have given alternative expressions for these
terms using the Cartesian-like form of the usual Schwarzschild coordinates.





Chapter 4

Timelike geodesics in Kerr
spacetime

In this chapter we give a general review of the geodesic motion of test particles in
Kerr spacetime based on the extensive literature on this subject (e.g. Wilkins, 1972;
Bardeen, 1973; Sharp, 1979; Chandrasekhar, 1983; Dymnikova, 1986). The study of
geodesics constitutes a fundamental tool for exploring and gaining intuition concerning
the geometric and dynamic properties of a given spacetime. Moreover, based on the
material introduced in this chapter, we have compiled a catalogue of representative
timelike geodesics which is intended to be used as test suite for benchmarking the ability
of the SPHINCS code to recover geodesic motion in the limit in which hydrodynamic
forces are zeroed. Additionally, the tools presented here are used in the next chapter
to construct an analytic toy model for relativistic accretion, that constitutes a more
compelling test solution.

We start this chapter by showing how the isometries intrinsic to the Kerr metric
lead to the existence of four first integrals of motion that allow us to recast the geodesic
equations as a quadrature problem. We give special emphasis to the discussion of circu-
lar orbits in the equatorial plane as well as to the study of radial and latitudinal motion
for general trajectories (see e.g. de Felice & Calvani, 1972; Bičák & Stuchĺık, 1976a, for
an in-depth analysis on these kind of motions). Introducing the concepts of radial and
polar effective potentials, we provide a broad classification of the different types of orbit.
See Bardeen (1973) for a classification of trajectories in the equatorial plane in terms
of the physical three-velocity measured by the ZAMOs and Levin & Perez-Giz (2008);
Grossman et al. (2012) for a thorough classification of bound orbits based on geomet-
ric considerations. The presentation given here is accompanied by examples of actual
numerical integrations of test particle trajectories which are given in the Appendix A
(orbit catalogue).
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4.1 Constants of motion

Consider a test particle freely-falling in a Kerr spacetime with four-velocity U and rest
mass m0. Its four-momentum is defined as p = m0 U. In general, for a test particle
moving in a given spacetime, one has that m0 is a trivially conserved quantity directly
connected with the invariance of the modulus of the four-momentum, i.e. p·p = −m2

0 . On
the other hand, the stationarity and axisymmetry of Kerr spacetime lead to two further
conserved quantities along the trajectory of the particle, namely, the total energy E, as
measured by an observer at spatial infinity, and the component of the angular momentum
along the rotation axis of the BH Lz. These two symmetries of Kerr spacetime are
connected with the existence of two linearly independent solutions of the Killing equation
ξ(µ; ν) = 0, where a semicolon represents the covariant derivative and round parentheses
indicate symmetrisation over the enclosed indices. Any vector ξ satisfying this is called
a Killing vector. For a stationary and axisymmetric spacetime, it is customary to single
out two of these vectors, ξ(t) and ξ(φ), by taking them to be orthogonal to each other and
by requiring that, at spatial infinity, the former is timelike while the latter is spacelike,
i.e.

ξ(t) · ξ(φ) = 0,

ξ(t) · ξ(t)

∣∣
r→∞ = −1, (4.1.1)

ξ(φ) · ξ(φ)

∣∣
r→∞ = 1.

Using BL coordinates, the components of the two Killing vectors are simply given by

ξµ(t) = δµt , ξµ(φ) = δµφ . (4.1.2)

An extra fourth integral of motion Q, was originally obtained by Carter (1968)
by considering the separability of the Hamilton-Jacobi equations associated with the
geodesic motion. It was shown by Walker & Penrose (1970); Hughston et al. (1972)
that this extra integral of motion is associated with the existence of a quadratic Killing
tensor satisfying the equation ξ(µν;λ) = 0. In BL coordinates this Killing tensor is given
by (Stewart & Walker, 1973)

ξµν = 2 ρ2n(µlν) + r2gµν (4.1.3)

where lµ and nµ, together with mµ, constitute the repeated principal null vectors of Kerr
spacetime given by

(lµ) =
1

2 ρ2

(
r2 + a2,∆, 0, a

)
,

(nµ) =
1

∆

(
r2 + a2,−∆, 0, a

)
, (4.1.4)

(mµ) =
1√
2 ρ

(i a sin θ, 0, 1, i csc θ) .
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These vectors are connected with the metric tensor in the following way

gµν = −2n(µlν) + 2m(µm
∗
ν), (4.1.5)

where an asterisk denotes a complex conjugate. Exploiting this identity, we can rewrite
ξµν as

ξµν = 2 ρ2m(µm
∗
ν) − a2 cos2 θ gµν. (4.1.6)

For convenience, in the following we shall employ only the specific values of the
conserved quantities, defined as:

E = E/m0, `z = Lz/m0, Q = Q/m2
0 .

Note that in geometric units, E is a dimensionless quantity while `z and Q have units of
length and length squared, respectively.

The contraction of the four-momentum of the test particle with each Killing vector
and the Killing tensor leads to a conserved quantity along its trajectory. Using BL
coordinates, we have

E = −ξµ(t)Uµ =

(
1− 2Mr

ρ2

)
ṫ+

2 aMr sin2 θ

ρ2
φ̇, (4.1.7)

`z = ξµ(φ)U
µ = −2 aMr sin2 θ

ρ2
ṫ+

Σ sin2 θ

ρ2
φ̇, (4.1.8)

`2 = ξµνU
µU ν = ρ4θ̇2 +

[(
r2 + a2

)
φ̇− a ṫ

]2
sin2 θ + a2 cos2 θ

= −ρ
4

∆
ṙ2 + ∆(ṫ− a sin2 θ φ̇)2 − r2, (4.1.9)

while in KS coordinates, using the transformation rule in Eq. (3.3.1), the expressions for
these quantities are

E =

(
1− 2Mr

ρ2

)
Ṫ +

2 aMr sin2 θ

ρ2
ψ̇ − 2Mr

ρ2
ṙ, (4.1.10)

`z = −2 aMr sin2 θ

ρ2
Ṫ +

Σ sin2 θ

ρ2
ψ̇ − a

(
1 +

2Mr

ρ2

)
sin2 θ ṙ, (4.1.11)

`2 = ρ4θ̇2 +
[(
r2 + a2

)
ψ̇ − a

(
Ṫ + ṙ

)]2
sin2 θ + a2 cos2 θ

= −ρ
4

∆
ṙ2 + ∆

[
Ṫ − a sin2 θ ψ̇ +

(
a2 sin2 θ − 2Mr

∆

)
ṙ

]2

− r2. (4.1.12)

The constants of motion E , `z and `2 are connected with the Carter constant Q through
the following identity(1)

Q = `2 − (`z − a E)2. (4.1.13)

(1)The quantity ξµνU
µUν is usually denoted as K in the literature. We have called it `2 here instead

because, although an unconventional choice, it helps us to ease subsequent notation.
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Substituting Eqs. (4.1.7)-(4.1.9) into Eq. (4.1.13) gives an alternative way of calculating
Q, i.e.

Q = ρ4θ̇2 + `2z cot2 θ − ε a2 cos2 θ, (4.1.14)

where we have used the shorthand notation ε = E2 − 1. From Eq. (4.1.9) we see that `2

is a positive quantity by definition, while the constants ε, `z and Q can have either sign.
Now, if we consider the non-rotating limit, and substitute a = 0 into Eq. (4.1.9), we get

`2 = Q+ `2z = r4(θ̇2 + sin2 θ φ̇2), (4.1.15)

which is just the square of the total magnitude of the angular momentum of a test particle
in Schwarzschild spacetime. Nevertheless, in the general case a 6= 0, the interpretation
of `2 is not as straightforward since its definition includes terms that couple, in a non-
trivial way, the energy of the test particle and the spin of the BH (see de Felice & Preti,
1999, for a discussion about the physical interpretation of `2).

4.2 Equations of motion

As we saw in Section 2.1, the evolution with respect to the proper time of the coordinates
of a given test particle freely falling in a general spacetime is determined by the geodesic
equations (2.1.7). These equations constitute a system of second order, coupled ordinary
differential equations. Nevertheless, the four first integrals of motion introduced in the
previous section allow us to partially decouple them and to reduce them to a set of
first-order ordinary differential equations. Using BL coordinates, the inversion of the
system of Eqs. (4.1.7)-(4.1.10) leads to

ρ2 dr

dτ
= ±

√
R(r), (4.2.1)

ρ2 dθ

dτ
= ±

√
Θ(θ), (4.2.2)

ρ2 dφ

dτ
=
A(θ)

sin2 θ
+
a

∆
B(r), (4.2.3)

ρ2 dt

dτ
= aA(θ) +

r2 + a2

∆
B(r), (4.2.4)

with

R(r) = B2(r)− (r2 + `2)∆, (4.2.5)

Θ(θ) = Q+ ε a2 cos2 θ − `2z cot2 θ, (4.2.6)

A(θ) = `z − a E sin2 θ, (4.2.7)

B(r) =
(
r2 + a2

)
E − a `z. (4.2.8)
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Adopting KS coordinates instead, Eqs. (4.2.3) and (4.2.4) need to be changed to

ρ2 dψ

dτ
=
A(θ)

sin2 θ
+
a

∆
B(r)± 2Mr

∆

√
R, (4.2.9)

ρ2 dT

dτ
= aA(θ) +

r2 + a2

∆
B(r)± a

∆

√
R. (4.2.10)

The signs in Eqs. (4.2.1) and (4.2.2) are independent of each other and change whenever
the test particle reaches a radial or a polar turning point, respectively, in its trajectory.
The sign in each of the last terms of Eqs. (4.2.9) and (4.2.10) should change in the same
way as that of Eq. (4.2.1).

It is clear that the trajectory followed by a test particle is completely determined
once a set of initial conditions

(xµ0 ) = (t0, r0, θ0, φ0), (ẋµ0 ) = (ṫ0, ṙ0, θ̇0, φ̇0) (4.2.11)

is given. Note that the stationarity and axisymmetry of the Kerr metric allow us to take
t0 = 0 and φ0 = 0 without loss of generality while, by using the normalisation condition
UµUµ = −1, we can express ṫ0 as a function of the other three initial velocities. In
this way we are left with five degrees of freedom for specifying an individual trajectory.
Finally note that we can also characterise an individual timelike geodesic by giving the
initial position in terms of r0 and θ0, and then fixing three of the constants of motion
E , `z, ` and Q (these constants are related through Eq. (4.1.13)). The initial velocities
then follow by substituting these values into Eqs. (4.2.1)-(4.2.4).

As mentioned in Section 3.3, when solving the geodesic equation for a particular
case, one can choose to work either with BL or KS coordinates and, if necessary, relate
back the results through Eq. (3.3.3). The actual choice is irrelevant as long as the test
particle under consideration does not plunge into the black hole horizon. If it does do
that, one should use the KS description since that coordinate system is well-behaved at
the horizons as we discussed in Section 3.3.

Before proceeding with a more detailed analysis of the system of differential equations
in Eqs. (4.2.1)-(4.2.4), we note here that they can be easily recast as the following system
of integral equations (Chandrasekhar, 1983)∫ r

r0

dr′√
R(r′)

= ±
∫ θ

θ0

dθ′√
Θ(θ′)

, (4.2.12)

φ =

∫ r

r0

`zr
′2 + 2Mr′ (a E − `z)

∆
√
R(r′)

dr′ +

∫ θ

θ0

`z cot2 θ′√
Θ(θ′)

dθ′, (4.2.13)

t =

∫ r

r0

r′2(r′2 + a2)E + 2 aMr′ (a E − `z)
∆
√
R(r′)

dr′ +

∫ θ

θ0

E a2 cos2 θ′√
Θ(θ′)

dθ′, (4.2.14)

τ =

∫ r

r0

r′2√
R(r′)

dr′ +

∫ θ

θ0

a2 cos2 θ′√
Θ(θ′)

dθ′. (4.2.15)
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As discussed by Chandrasekhar (1983), each of these integrals is solvable in terms of
Jacobi elliptic functions. In particular, in Chapter 5 we show in detail how to solve the
two integrals in Eq. (4.2.12), since the resulting analytic expression will be used as the
basic building block for the toy model which we intend to use as a benchmark for the
SPHINCS code. The solutions for the rest of the integrals can be found in, e.g. Kraniotis
(2004); Fujita & Hikida (2009).

4.3 Circular orbits in the equatorial plane

Before studying in general the different possible trajectories of test particles, here we
briefly review some results concerning circular orbits in the equatorial plane that will be
useful for the subsequent sections. We follow here the exposition given in Bardeen et al.
(1972). This kind of motion also plays a prominent role in the context of thin accretion
discs, where the fluid in the disc moves, to a first approximation, along circular orbits
with a slow secular inspiralling motion driven by viscous stresses acting on time scales
that are typically much longer than the orbital period (see e.g. Shakura & Sunyaev,
1973; Pringle, 1981).

A necessary condition for the motion of a test particle to be restricted to the equa-
torial plane comes from substituting θ = π/2 and θ̇ = 0 into Eq. (4.1.14), which results
in Q = 0. This condition, together with Eq. (4.1.13), implies that `2 = (`z − a E)2.
However, in order to have circular motion we must also require that both ṙ and r̈ are
identically zero. From Eq. (4.2.1), these two conditions translate as

R(r) = 0,
∂R(r)

∂r
= 0, (4.3.1)

giving a coupled system of quadratic expressions involving E and `z. After some algebra,
the solution to this system is found to be

E =
r3/2 − 2Mr1/2 + aM 1/2

r3/4(r3/2 − 3Mr1/2 + 2 aM 1/2)1/2
, (4.3.2)

`z =
M 1/2(r2 − 2 aM 1/2r1/2 + a2)

r3/4(r3/2 − 3Mr1/2 + 2 aM 1/2)1/2
. (4.3.3)

In these expression we have assumed that `z > 0. Whether the particle is in co-rotation
or counter-rotation with the spin of the BH is then determined by the sign of a, i.e. a > 0
for a co-rotating orbit and a < 0 for counter-rotating one.

In Figure 4.1 we plot E and `z as functions of r for a = 0 and ±0.98. From Eqs. (4.3.2)
and (4.3.3), it is clear that the spin of the BH in a Kerr spacetime plays an important role
through a non-trivial coupling with the energy and angular momentum of the test par-
ticle. Indeed, for a 6= 0 one has that, in order to remain in a circular orbit at a constant
radius r, a co-rotating particle needs less angular momentum than the corresponding
counter-rotating one, whereas the former particle is more tightly bound than the latter
at the same radius. Note that in the non-rotating case (i.e. Schwarzschild spacetime) it
is irrelevant to make any distinction between co-rotating and counter-rotating motion.
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The fact that co-rotating circular orbits around a rotating BH are more tightly
bound has important implications for the study of accretion discs. This opens the
possibility of extracting more binding energy for conversion into thermal or neutrino
emission before the fluid particles ultimately disappear inside the BH horizon (see e.g.
Novikov & Thorne, 1973). Moreover, co-rotating orbits are expected to occur more
frequently in astrophysical systems in which the accreting matter and the central BH
share a common origin (e.g. the outer layers of a star falling onto a collapsing stellar
core Woosley, 1993).

Now, going back to Eqs. (4.3.2) and (4.3.3), we note that the common denominator
becomes singular when

r
3/2 − 3Mr

1/2 + 2 aM
1/2 = 0. (4.3.4)

This cubic polynomial in r1/2 has only one real root which is given by

rph
2M

= 1 + cos

[
2

3
cos−1

(
−a
M

)]
. (4.3.5)

The circular orbit corresponding to this radius is characterised by infinite energy and
angular momentum, which means that it can only be reached by particles moving at
the speed of light. In other words, rph corresponds to the radial location of a photon
moving along this circular orbit. We can also see that the denominator in Eqs. (4.3.2)
and (4.3.3) is real only for r > rph, i.e. circular orbits can only exist for radii larger than
rph.

Now we need to note that, contrary to the Newtonian case, not all of the circular
orbits in Kerr (or Schwarzschild) spacetime are necessarily stable. Stability requires
that, in addition to Eq. (4.3.1), the condition

∂2R(r)

∂r2
< 0 (4.3.6)

should also be satisfied. Eq. (4.3.6) translates into

r2 − 6Mr + 8 a(Mr)
1/2 − 3 a2 ≥ 0. (4.3.7)

The equality in this expression defines the location of a marginally stable (ms) circular
orbit (also known as innermost stable circular orbit). This equation can be viewed as a
fourth order polynomial in r1/2 whose only root larger than r+ is given by

rms = 3M + Z2 − Sign(a)[(3M − Z1)(3M + Z1 + 2Z2)]
1/2,

Z1 = M + (M2 − a2)
1/3
[
(M + a)

1/3 + (M − a)
1/3
]
, (4.3.8)

Z2 = (3 a2 + Z2
1 )

1/2.

We can then conclude that stable circular motion occurs for r > rms. For a radius r
between rph and rms we find circular orbits which are unstable since any small perturba-
tion of a test particle at that position, will lead it to either fall into the BH horizon or
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Figure 4.1: The energy E and the axial component of the angular momentum `z are
plotted as functions of the radius of circular orbits for a = 0 and ±0.98. Note how the
curves for both energy and angular momentum split into two branches for a 6= 0 as
a result of the spin-orbit coupling effect described in Eqs. (4.3.2) and (4.3.3). Given a
fixed radius, the values of E and `z are smaller for a co-rotating particle with a 6= 0 than
the corresponding values in the a = 0 case, while the opposite happens for a counter-
rotating particle. Also note that co-rotating circular orbits can extend to smaller radii
than the counter-rotating ones.
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Figure 4.2: The radii of various circular orbits in the equatorial plane of a Kerr
spacetime are plotted as functions of the spin parameter a. Cases with a > 0 correspond
to orbits co-rotating with the BH, while counter-rotating orbits correspond to a < 0.
The locations of the outer event horizon r+ and of the static limit rs+ are also indicated.
Note that all of the radii r+, rph, rmb and rms converge into r = M for a = M . This is a
misleading effect related to the fact that the BL r coordinate is not well-behaved for this
extreme value of a. All these radii are, in fact, seen to be distinct when measurements
are made in terms of proper radial distance.

escape to infinity. Note that this second possibility is only possible for orbits with E > 1,
since unstable circular orbits with E < 1 are inevitably bound to fall into the BH. For
this reason, the unstable circular orbit corresponding to E = 1 is called the marginally
bound (mb) circular orbit. Solving for r in Eq. (4.3.2), the position of this orbit is given
by

rmb = 2M − a+ 2M
1/2(M − a)

1/2. (4.3.9)

In Figure 4.2 we plot the radii of all of the circular orbits discussed in this section
as a function of the spin parameter a. As already noted, unstable and unbound circular
orbits are found for rph < r < rmb, unstable and bound circular orbits correspond to
rmb < r < rms, while stable circular orbits exist only for r > rms.

4.4 Radial motion

We study here the radial motion as determined by Eq. (4.2.1), i.e.

ρ2 dr

dτ
= ±

√
R(r). (4.4.1)
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From the definition of R(r) in Eq. (4.2.5), we can expand it as the following fourth order
polynomial in r

R(r) = ε r4 + 2Mr3 +
(
ε a2 − `2z −Q

)
r2 + 2M`2 r − a2Q. (4.4.2)

From Eq. (4.4.1), it is clear that the radial coordinate is constrained to vary within
an interval in which the condition R(r) ≥ 0 is fulfilled. It follows then that, whenever
the roots of R(r) are real and greater than r+, they constitute turning points at which ṙ
vanishes and the radial motion reverses direction. Moreover, a simple consequence that
can be drawn from the coefficient accompanying the leading power of r in Eq. (4.4.2) is
that a necessary condition for a trajectory to extend to infinity is ε ≥ 0 (E ≥ 1). Hence,
bound orbits can exist only for ε < 0 (E < 1). By inspecting the rest of the coefficients
in Eq. (4.4.2), it is possible to show (see e.g. Dymnikova, 1986) that, whenever ε > 0,
there can exist at most two turning points (i.e. there are only two roots larger than r+).
Instead for a particle with ε < 0, there cannot be more than three turning points.

In order to study in further detail the different types of radial motion, it is con-
venient to introduce a pair of radial effective potentials V±(r). This approach is very
common in the context of Newtonian gravity as well as for the Schwarzschild spacetime.
Different implementations of radial effective potentials for the Kerr spacetime exist (see
e.g. Krivenko et al., 1976; Frolov & Novikov, 1998), although they have been of limited
use. This is in part due to their definition not being unique but, more importantly, also
because R involves both quadratic and linear terms in E , which means that in Kerr
spacetime two radial effective potentials are needed rather than a single one as in the
Newtonian and Schwarzschild cases.

Just as in Newtonian mechanics, a radial effective potential should involve the source
of the gravitational field (in this case both M and a) and the angular momentum of the
test particle, but should be independent of E . The technical issue that arises for the
Kerr spacetime is that we have three quantities related to the angular momentum of
the particle (Q, `, `z) which, at the same time, are coupled in a non-trivial way with a
and E (see Eq. 4.1.13). Moreover, out of these three quantities, just two can be chosen
independently, and different combinations of them lead to different definitions of V±(r).
For example, Krivenko et al. (1976) defined a pair of radial effective potentials in terms
of `z and `, while Frolov & Novikov (1998) defined another pair in terms of `z and
Q. Instead, we have found that defining them in terms of ` and Q gives the following
relatively simple expression

V±(r) =
a
√
`2 −Q±

√
(`2 + r2)∆

r2
. (4.4.3)

As far as we know, this particular definition has not been used in the literature before.
We can now rewrite R(r) in terms of V±(r) as

R(r) =
(
r2E − a

√
`2 −Q

)2
− (`2 + r2)∆

= r4 [E − V+(r)] [E − V−(r)] , (4.4.4)
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with which Eq. (4.4.4) then becomes(ρ
r

)2 dr

dτ
= ±

√
[E − V+(r)] [E − V−(r)]. (4.4.5)

Note that in the non-rotating case (a = 0), we have that V− = −V+ and so Eq. (4.4.5)
reduces to

dr

dτ
= ±

√
E2 − VS(r). (4.4.6)

where VS(r) = V2
+ = V2

− is the radial effective potential for Schwarzschild spacetime given
by

VS(r) = 1− 2M

r
+
`2

r2
− 2M`2

r3
. (4.4.7)

The following are some relevant properties of V±(r)

V+(r) > V−(r), (for r > r+) (4.4.8)

V+(r+) = V−(r+), (4.4.9)

∂V+

∂r
(r+) =

∂V−

∂r
(r+) =∞, (4.4.10)

lim
r→∞

V+(r) = 1, (4.4.11)

lim
r→∞

V−(r) = −1. (4.4.12)

From Eqs.(4.4.5) and (4.4.8) it follows that the radial motion is restricted by

E ≥ V+(r) or E ≤ V−(r). (4.4.13)

In Figure 4.3 we plot the radial effective potentials as functions of r for typical
values of the parameters Q and ` that lead to generic, non-equatorial orbits. In this
figure we see that each potential has two extreme points: a global maximum and a
local minimum (these extremes are highlighted in the figure using red and green points,
respectively). The former corresponds to an unstable constant-radius trajectory while
the latter corresponds to a stable constant-radius trajectory. When Q = 0, these two
trajectories reduce to the stable and unstable circular orbits discussed in Section 4.3. In
the general case of non-equatorial motion, these trajectories are not restricted to move in
a circle but rather on the surface of a sphere between two fixed latitudes. For this reason,
stable constant-radius trajectories are usually referred to as ‘spherical’ trajectories. This
kind of motion is due to the fact that in a Kerr spacetime, in addition to the pericentre
precession, the frame-dragging effect forces the orbital plane to precess latitudinally as
well. See Figures A.14 and A.18 for examples of these two types of trajectory.

We can also see in this figure that most of the energy levels that satisfy E ≤ V−(r) are
negative, while the few which are positive correspond to short-lived trajectories that are
always trapped inside the BH horizon. The study of this type of trajectory is relevant
in the context of energy extraction from a rotating BH by the mechanism known as
Penrose process (Penrose, 1969). But besides this phenomenon, trajectories associated
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Figure 4.3: The two radial effective potentials V±(r) are plotted for a Kerr spacetime
with spin parameter a = 0.98M and for fixed values of the constants of motion ` = 6M
and Q = M . The shaded region represents the forbidden set of trajectories for which
R(r) < 0. The red and green dots indicate the location of unstable and stable spherical
orbits, respectively.

with V−(r) have limited importance for observations made far away from the BH. For this
reason, in the present work we further consider only energy levels satisfying E ≥ V+(r).

In Figure 4.4 we show the behaviour of V+(r) as the parameter ` is decreased from
` = 3M to ` = M while holding fixed the ratio Q/`2 = 0.8. Here we again take
a = 0.98M . From this figure we see that, for a large enough value of `, the curve
V+(r) presents the two extreme points described in the previous paragraph. In the case
with the largest ` depicted in this figure, we have that the unstable spherical orbit is
energetically unbound (E > 1), while the stable one is energetically bound (E < 1).
As the value of ` is decreased, the two extreme points start approaching each other.
Eventually, a first critical value ` = `mb is reached when the unstable spherical orbit
becomes marginally bound (E = 1). The trajectory located at this radius rmb, represents
the generalisation of the marginally bound circular orbit discussed in Section 4.3. As we
keep decreasing the value of `, a second critical value ` = `ms is reached when the two
extreme points merge into a single saddle point. This kind of trajectory, located at rms,
generalises the marginally stable circular orbit discussed in Section 4.3. For values of
` < `ms, V+(r) has no extremum at all, becoming a monotonically increasing function of
r.

Let us now go back to the differential equation in Eq. (4.4.5). This equation can
be identified as a dynamical system which is almost autonomous in r since the only
dependence on θ comes through the term ρ2 on the left hand side of the equation,
while all of the important information about the qualitative behaviour of ṙ is encoded
on the right hand side. Following Krivenko et al. (1976), we consider the mapping of
the original phase-space r-ṙ into the equivalent dynamical system r-(ρ/r)2ṙ. Since the
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Figure 4.4: The radial effective potential V+(r) in a Kerr spacetime with a = 0.98M
is plotted for different decreasing values of ` while the ratio Q/`2 = 0.8 is kept fixed.

factor (ρ/r)2 ≈ 1, we see that this is a trivial mapping which is unique, continuous, and
non-singular for r > 0.

In Figure 4.5 we show some representative examples of non-equatorial trajectories
with ` = 3M and Q = 8.5M2 in a Kerr spacetime with a = 0.98M . In the top panel of
the figure, we plot the radial effective potential for these parameter values and highlight
six E = const. levels. In the bottom panel we show the corresponding trajectories as
seen in the equivalent phase-space r-(ρ/r)2ṙ. The results of the numerical integration of
these trajectories are presented in Section A.3.

As is clear from Figure 4.5, an energy level that does not intersect the curve V+(r)
corresponds to a trajectory that plunges inside r+. On the other hand, for every level
E = const. that intersects V+(r), there are two possible trajectories: one above rmb

and the other below it. Trajectories of the latter type are restricted to a narrow radial
domain and, eventually, end up trapped inside the BH horizon. As mentioned before,
the physical relevance of this type of trajectory is rather limited and, for this reason, in
the following we shall only consider trajectories that can extend to r > rmb. In general,
the trajectories of this type can be classified as:

Stable spherical trajectories (see purple trajectory in Figure 4.5 and Figure A.14).
As already mentioned, this type of trajectory is characterised by a constant radius.
On the other hand, as we discuss in the next section, the polar motion in this case is
restricted between two fixed latitudes which are symmetric with respect to the equatorial
plane.

Elliptic-like trajectories (see blue trajectory in Figure 4.5 and Figure A.15). In
this case we have that the radial coordinate oscillates periodically between the turning
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Figure 4.5: This figure shows the radial component of a set of representative off-
equatorial orbits in a Kerr spacetime with a = 0.98M . Fixed values for the specific
angular momentum parameters are taken as ` = 3M and Q = 8.5M2. The top panel
shows the radial effective potential V+(r) with the highlighted energy levels plotted as
E = const. lines. Radial turning points are also highlighted, while the dashed segment
on each of the energy levels represents points which are physically inaccessible since for
them R(r) < 0. The bottom panel shows the trajectories as seen in the phase-space of
the equivalent dynamical system r-(ρ/r)2ṙ.

points. The actual period of r(τ) is a non-trivial combination of the radial and polar
epicyclic frequencies (see e.g. Mino, 2003; Drasco & Hughes, 2004; Schmidt, 2002).

Parabolic-like trajectories (see green trajectory in Figure 4.5 and Figure A.16).
This type of trajectory is the degenerate case of an elliptic-like trajectory in which the
apocentre (turning point farthest from the centre) diverges to infinity. In this case we
have that the test particle asymptotically approaches spatial infinity with a vanishing
radial velocity, i.e. ṙ∞ = 0.
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Hyperbolic-like trajectories (see yellow trajectory in Figure 4.5 and Figure A.17).
Similarly to parabolic-like trajectory, here there is no upper bound to the radial motion
but in this case the asymptotic value of ṙ∞ is a finite quantity.

Unstable spherical trajectories (see orange trajectory in Figure 4.5 and Figure A.18).
As already discussed, this kind of trajectory represents an example of unstable motion.
Note that the necessary initial conditions leading to one of these trajectories need to be
very finely-tuned. For this reason, these trajectories are actually part of a set of measure
zero.

Plunging trajectories (see red trajectory in Figure 4.5 and Figure A.19). A test
particle on this type of trajectory never encounters the centrifugal barrier of the effective
potential (no lower turning points) and, if it is initially moving inwards, it will end up
plunging into the BH horizon.

4.5 Polar motion

We study now the polar motion as determined by Eq. (4.2.2), i.e.

ρ2 dθ

dτ
= ±

√
Θ(θ), (4.5.1)

with Θ(θ) as given in Eq. (4.2.6). In order to analyse the different possible types of polar
motion, we introduce a polar effective potential H(θ) defined by

H(θ) = `2z cot2 θ − ε a2 cos2 θ, (4.5.2)

and then recast Eq. (4.5.1) in terms of H(θ) as

ρ2 dθ

dτ
= ±

√
Q−H(θ). (4.5.3)

As in the radial case, we can identify this equation as a dynamical system which is almost
decoupled from the radial coordinate. Indeed, all of the relevant qualitative features of
θ̇ are determined by the right hand side of Eq. (4.5.3) which depends just on θ.

Note that a trivial solution for Eq. (4.5.3) arises when Q = `z = ε = 0, since then
θ̇ ≡ 0. In this case, the polar angle θ can take any constant value. This special set of
trajectories is discussed in detail in Bičák & Stuchĺık (1976b).

From Eq. (4.5.3), we see that the constant of motion Q now plays the role that E
played for the radial effective potential, i.e. given a constant value of Q, the polar angle
θ is allowed to vary within a range such that

Q ≥ H(θ). (4.5.4)

For each root of the equation H(θ) = Q one has that θ̇ = 0 and so these values of θ
represent turning points in the polar motion. It then follows that the polar solution is
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bracketed between two consecutive real roots of the equation H(θ) = Q (to be found
within the natural domain of θ, i.e. θ ∈ [0, π]). Another simple consequence that can
be drawn from Eq. (4.5.2), is that the real roots of H(θ) = Q come in pairs which are
symmetric with respect to θ = π/2. In other words, if θa is a root of H(θ) = Q, then
θa′ = π − θa will also be a root. Provided that ε 6= 0, the equation H(θ) = Q can be
further simplified to the following quadratic expression in Y = sin2 θ

Y 2 − 2B Y + C = 0, (4.5.5)

with

B =
Q+ `2z + ε a2

2 ε a2
and C =

`2z
ε a2

.

From Eq. (4.5.5), explicit expressions for the roots follow immediately as

θa, b = sin−1
[
B ∓ Sign(ε)

√
B2 − C

]1/2
,

θa′, b′ = π − θa, b.
(4.5.6)

On the other hand, if ε = 0 then there are only two real roots of the equation H(θ) = Q
given by

θa, a′ = tan−1

(
± `z√
Q

)
. (4.5.7)
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Figure 4.6: The polar effective potential H(θ) is plotted for different combinations
of the ratio ε a2/`2z. From top to bottom, the blue curves correspond to ε a2/`2z =
−20, 1, 20, while the horizontal red lines correspond to Q = const. levels. A dashed
segment in these levels indicates a set of forbidden orbits since for them Θ(θ) < 0.
Turning points of the polar motion are indicated by red dots.

In order to proceed with the study of the qualitative features of the polar motion,
we consider first the case when `z 6= 0. In Figure 4.6 we show H(θ) for representative
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values of the constants of motion in this case. As is clear from Eq. (4.5.3), here the polar
effective potential diverges as θ approaches either 0 or π. In other words, a test particle
with `z 6= 0 cannot cross the polar axis. Moreover, it also follows from Eq. (4.5.3) that
the ratio ε a2/`2z is the key parameter combination determining the overall shape ofH(θ).
Let us examine the following cases:

i) ε a2 ≤ `2z. Here we have that H(θ) is characterised by a single global minimum
located at θ = π/2. In this case, Eq. (4.5.6) leads to only two real roots (θa and
θa′). If, in addition, Q = 0, then these two roots merge as θa = θa′ = π/2 and the
solution is simply θ ≡ π/2. This case represents an equilibrium solution for the
polar motion. Instead, for Q > 0 the multiplicity is broken and we get trajectories
off the equatorial plane that oscillate symmetrically about it (θ ∈ [θa, θa′ ]).

ii) ε a2 > `2z. Clearly this kind of motion is accessible just for test particles with ε > 0,
i.e. for unbound energy levels. In this case we have that the point θ = π/2 becomes
a local maximum (the motion in the equatorial plane is no longer stable) and that
two minima appear located symmetrically on either side of the equator at

θm = sin−1

√
|`z/a|√

ε
and θm′ = π − θm. (4.5.8)

For Q > 0, Eq. (4.5.6) leads again to only two real roots (θa and θa′). Instead, for
Q ≤ 0, the four roots in Eq. (4.5.6) are real and ordered as θa < θb ≤ π/2 ≤ θb′ < θa′ .
In this last case we have that the motion is confined to a single hemisphere and
θ ∈ [θa, θb] (or θ ∈ [θb′ , θa′ ]). Note that whenQ = 0 there is a degeneracy of the roots
since θb = θb′ = π/2. On the other hand, when Q reaches its minimum possible
value, i.e. Q = H(θm) = −(`z − a

√
ε)2, we have θa = θb = θm and θa′ = θb′ = θm′ .

In this last case the polar solution is simply θ ≡ θm.

In Figure 4.7 we show some representative polar orbits for different combinations
of the parameters ε, `z and Q. First, we locate these orbits as Q = const. levels on a
plot of H(θ), and then show the corresponding trajectories on the trivial mapping of the
phase-space θ-θ̇ 7→ θ-ρ2θ̇. In Sections A.4 and A.5, we show examples of the numerical
integration of some of these trajectories.

For the sake of completeness, we consider now the case `z = 0. In Figure 4.8 we
show generic forms of H(θ) in this case as well as some representative trajectories in the
phase-space of the equivalent dynamical system θ-ρ2θ̇. A special characteristic of this
case, is that now there are trajectories that can cross the polar axis where the polar
coordinate is singular. From Eq. (4.5.6) it follows that

θa = 0, θa′ = π,

θb, b′ = cos−1

(
±
√
−Q
ε a2

)
.

(4.5.9)

Note that, even though θa and θa′ are not roots of Eq. (4.5.5), they do constitute for-
mal turning points since, at these angles, the polar coordinate reverses direction and θ̇
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Figure 4.7: The figure shows the polar component of a set of representative orbits in
a Kerr spacetime with a = 0.98M . Fixed values for the specific angular momentum
parameters are taken as ` = 4M and `z = M . The top panel shows the polar effective
potential H(θ) with highlighted Q = const. levels. Polar turning points are also high-
lighted, while the dashed segment on each of the Q = const. levels represents points
which are physically inaccessible since for them Θ(θ) < 0. The bottom panel shows a
phase-space of the equivalent dynamical system θ-ρ2θ̇.

changes sign discontinuously. This effect is clearly seen in the phase-space diagrams in
the bottom panels of Figure 4.8.

From Eq. (4.5.9) we see that, a sufficient condition for θb to be real is that, if ε > 0
then Q < 0, or if ε ≤ 0 then Q ≤ |ε|a2. In any other case there will be no real roots for
the equation Θ(θ) = 0 which implies that the polar coordinate can in principle sweep
across the whole polar domain and repeatedly cross the polar axis.

4.6 Summary

In this chapter we have given a general review of timelike geodesics in a Kerr spacetime.
We have shown how the symmetries of the Kerr metric lead to the existence of four first
integrals of motion that effectively reduce the geodesic equations to a system of first-
order ordinary differential equations. This system can be further recast as a problem
of quadratures. Moreover, we have also seen that the differential equations determining
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Figure 4.8: The same as Figure 4.7 but now for the case `z = 0. The panels on the
left hand side correspond to ε = −10 while those on the right hand side correspond to
ε = 10. Note that in this case the test particle can reach the polar axis and every time
that it does so, θ̇ changes sign discontinuously.

the radial and latitudinal motion are almost completely decoupled. This allowed us
to analyse each of these components of the motion as quasi-autonomous dynamical
systems. As part of these analyses, we introduced a pair of effective potentials, in
terms of which we were able to classify the different possible types of trajectory that
are relevant for physical processes taking place outside the BH horizon. This chapter is
accompanied with several examples of numerically integrated trajectories in Appendix A.
In the following we summarise some results concerning the constants of motion which
have been demonstrated in this chapter:

• Q = 0 is a necessary condition for a test particle to stay in the equatorial plane.

• Q > 0 is a necessary condition for a test particle to cross the equatorial plane.

• Q < 0 confines the motion of a test particle to a single hemisphere.

• `z = 0 is a necessary condition for a test particle to cross the polar axis.

• E ≥ 1 is a necessary condition for a test particle to be radially unbound.





Chapter 5

Toy model for relativistic
accretion

In this chapter we construct a toy model for the accretion of a rotating gas cloud of non-
interacting particles infalling towards a Kerr BH. This model was introduced in Tejeda
et al. (2012b) (referred to in the following as Paper III), and it represents a generalisation
of the models introduced in Mendoza et al. (2009) and Tejeda et al. (2012a) (that we
shall refer to as Paper I and II, respectively). In Paper I the toy model was introduced
within a Newtonian framework. The model was then extended to a general relativistic
context in Paper II, in which the central accretor was a Schwarzschild BH. The aim in
this series of papers has been to construct a toy model for the infall feeding an accretion
disc around a massive object based solely on the two leading ingredients determining
the fluid bulk motion: gravity and rotation.

The present toy model is based on the assumptions of stationarity, axisymmetry and
ballistic motion, that is, we assume that the gas particles follow geodesic lines and neglect
any deviation from their free-falling trajectories due to pressure gradients, magnetic
fields, self-gravity, radiative processes, etc. It is clear that these assumptions constitute
an oversimplification of a real situation, but they allow us to give a useful analytic
description of the streamlines and velocity field of the resulting flow. In addition, this
permits us to highlight signatures of pure relativistic effects on the accretion dynamics
either due to the strong gravitational field regime or to the frame dragging effect that
might be otherwise masked in a full-hydrodynamic treatment.

The present solution is based on the results introduced in the previous chapter in
which we gave a general review of the extensive body of work on geodesic motion that
exists in the literature. Here we construct an analytic description of the streamlines of
the toy model in terms of Jacobi elliptic functions. By using some standard identities for
these functions, we provide a novel approach for describing the projection onto the r-θ
plane of all possible trajectories of test particles in a Kerr spacetime by means of a single
analytic expression. Moreover, we also discuss the simple numerical scheme introduced
in Paper II for calculating the density field.

For the derivation of the expressions describing the accretion flow we adopt BL
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coordinates while a local description of the velocity field is also given in terms of the
ZAMO reference frame. However, note that, given the symmetries of the problem, only
the radial and polar coordinates have non-trivial solutions and, therefore, the final results
are equally useful for describing the flow in the KS coordinate system.

One of the main motivations for extending the toy model to a Kerr spacetime is to use
it as a test solution for benchmarking general relativistic numerical hydrodynamics codes
and, in particular, the future SPHINCS code. We demonstrate the use of the model
as a benchmark by comparing it against a series of numerical simulations made with
two different SPH codes that use pseudo-Newtonian potentials for mimicking general
relativistic effects. First, we show the results presented in Paper II for the comparisons
of the analytic toy model with a roughly equivalent 2D SPH simulation from Lee &
Ramı́rez-Ruiz (2006) (referred to as LR in the following). Next we show the results
of the comparisons presented in Paper III against a series of 3D simulations performed
using a version of the SPH code Gadget-2 (Springel, 2005) modified by Taylor, Miller &
Podsiadlowski (2011) (referred to as TMP in the following). In LR and TMP, the authors
explored numerically the infall of rotating gas towards a newborn BH, with the aim of
gaining insight into the formation of progenitors for long GRBs by means of collapse of
the interior regions of massive rotating stars. LR neglected rotational effects of the BH
itself, approximating its gravitational field by means of the pseudo-Newtonian potential
introduced by Paczyńsky & Wiita (1980), whereas TMP also included rotational effects
of the BH, as found in the Kerr metric, by using the second-order expansion pseudo-
Newtonian potential developed by Mukhopadhyay & Misra (2003). Note that, among
the several different pseudo-Newtonian potentials that exist for mimicking effects of Kerr
spacetime, the choice of the one used by TMP was meant to minimise the errors in the
approximation of various dynamic properties such as location of the inner most stable
circular orbit, epicyclic frequencies and radial acceleration.

The simulations presented at the end of this chapter are specifically designed to
show the usefulness of the toy model as a simple, practical test for numerical codes
which include dynamical effects of general relativity. With this, we are able to make a
detailed comparison by gradually implementing the different aspects of the code that we
are interested in testing. At a first stage, the simulations are performed for a ballistic
flow (with zero pressure) and then for a hydrodynamical one where we measure the
effects of pressure gradients on the infall, thus exploring the extent of applicability of
the ballistic approximation.

5.1 Model description and boundary conditions

We are interested here in modelling a rotating gas cloud falling towards a central BH
with mass M and specific angular momentum a, whose exterior gravitational field is
described by the Kerr metric. We assume that the flow has reached a stationary state
characterised by a constant accretion rate Ṁ . Moreover, we restrict our analysis to
axisymmetric distributions of the gas where the rotation axis of the cloud is parallel to
the spin of the BH (either aligned or anti-aligned with it). For describing the dynamics
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Figure 5.1: Schematic illustration of the toy model. Boundary conditions are fixed
at a shell with radius r0 and fluid elements then move along ballistic trajectories. For
this figure we take the distribution of angular momentum on the initial shell to be
increasing monotonically in magnitude towards the equator. The streamlines can be
divided into three groups: (i) ones with low angular momentum that accrete directly
into the BH; (ii) ones with intermediate angular momentum which arrive at the equator
but do not find a circularisation radius; (iii) ones with large enough angular momentum
to be incorporated into an equatorial Keplerian-type accretion disc.

of the infall, we assume that the gravitational field of the BH plays the dominant role,
and therefore neglect the effects of fluid self gravity, pressure gradients, fluid viscosity,
radiation pressure, neutrino emission, etc. This in practice means that we are performing
a ballistic treatment of the accretion flow and, therefore, that flow streamlines correspond
to timelike geodesics of the Kerr spacetime. Furthermore, we assume that infalling gas
particles end up being either incorporated into an infinitesimally thin equatorial disc or
directly accreted inside the BH horizon. The analytic description of the infall does not
include the disc itself where clearly a ballistic treatment is no longer valid; we shall just
consider both disc and BH as passive sinks of particles and energy. Figure 5.1 shows a
schematic diagram of the accretion scenario.

Under the ballistic approximation, it is convenient to describe the whole gas cloud
as a collection of equal mass test particles which we shall refer to as fluid elements. As
in the previous chapters, we call % the matter density and n the baryon number density,
both measured in a comoving reference frame. We also introduce the average baryonic
rest mass m0, such that % = m0 n. For the boundary conditions of the model, we assume
that gas particles are continuously injected from a shell at r = r0 where the particle
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properties are given by specified distribution functions:

n0 = n (r0, θ0) , (5.1.1)

ṙ0 = ṙ (r0, θ0) , (5.1.2)

θ̇0 = θ̇ (r0, θ0) , (5.1.3)

φ̇0 = φ̇ (r0, θ0) . (5.1.4)

We require these four distribution functions to be differentiable and symmetric with
respect to the equatorial plane. Additionally, in order to avoid streamlines intersecting
before they reach the equatorial plane, two further conditions need to be fulfilled. First,
we require that the test particles do not have turning points in their polar or radial
motion as they descend towards the equatorial plane. Second, we require that(

∂θ

∂θ0

)∣∣∣∣
r

> 0. (5.1.5)

These conditions allow us to use the initial polar angle θ0 as a label of the individual
streamlines and, moreover, to use the streamlines as a mapping θ0 7→ θ (for every given
r). The condition in Eq. (5.1.5) assures us that the mapping will be non-singular.

Since for the present model each streamline corresponds to a timelike geodesic, ac-
cording to the results discussed in Section 4.1, we have that the integrals of motion E ,
`z, `, and Q are conserved quantities along individual streamlines. Clearly, their actual
values will depend on the initial polar angle θ0 and, hence, will vary from streamline to
streamline. Once the boundary conditions in Eqs. (5.1.1)-(5.1.4) have been fixed, we can
substitute them into Eqs. (4.1.7)-(4.1.9) and (4.1.14) so as to obtain the values of the
conserved quantities on each streamline:

E(θ0) =

(
1− 2Mr0

ρ2
0

)
ṫ0 +

2 aMr0 sin2 θ0
ρ2
0

φ̇0, (5.1.6)

`z(θ0) = −2 aMr0 sin2 θ0
ρ2
0

ṫ0 +
Σ0 sin2 θ0

ρ2
0

φ̇0, (5.1.7)

`2(θ0) = ρ4
0 θ̇

2
0 +

[(
r2
0 + a2

)
φ̇0 − a ṫ0

]2
sin2 θ0 + a2 cos2 θ0, (5.1.8)

Q(θ0) = ρ4
0 θ̇

2
0 + `2z(θ0) cot2 θ0 − ε(θ0)a2 cos2 θ0, (5.1.9)

where ε = E2 − 1 and ṫ0 is an implicit function of ṙ0, θ̇0, φ̇0 which can be directly
calculated from the normalisation of the four-velocity, i.e. UµUµ = −1.

As we saw in Section 4.4, test particles freely falling in a Kerr spacetime can be
captured by the central BH even for a non-vanishing angular momentum. This general
relativistic feature led LR to classify the streamlines into three groups depending on
the value of their specific angular momentum (see Figure 5.1): (i) streamlines with
low angular momentum, which cross the BH horizon before reaching the equatorial
plane; (ii) streamlines with intermediate angular momentum, which form a small disc
within which accretion proceeds on a free-fall time scale; (iii) streamlines with larger
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angular momentum, which have sufficient centrifugal support on their arrival at the
equator so that subsequent accretion would occur on a viscous time scale in a Keplerian-
type accretion disc. The streamlines of type (ii) correspond to the accretion regime
discussed by Beloborodov & Illarionov (2001) for a Schwarzschild BH and by Zalamea
& Beloborodov (2009) for a Kerr BH. In the former work, the authors introduced the
concept of a ‘small-scale inviscid disc’ in which the mechanism driving accretion is a
purely relativistic one related to the existence of an innermost stable circular orbit.

Note that when streamlines of type (ii) and (iii) reach the equatorial plane, they
encounter there a mirror symmetric streamline coming from π − θ0. In a real physical
situation one expects that if these two streamlines were to collide supersonically then
two shock fronts would appear above and below the equatorial plane, with the fluid be-
ing incorporated into a disc-like structure. Provided that there is an efficient dissipation
mechanism, the shock fronts will remain pinned down to the equator and the disc will
remain thin. It is clear that the study of the disc dynamics requires a full hydrody-
namical treatment, in which redistribution of angular momentum and energy losses are
self consistently taken into account, but such an analysis lies beyond the scope of the
present toy model. Instead, we assume here that an efficient mechanism dissipates all
of the kinetic energy associated with the vertical component of the velocity, in such a
way that an infinitesimally thin disc forms in the equatorial plane which is then taken
to act as a passive energy sink. In Section 5.6 we show some idealised collapsar-like
simulations made with the TMP code in which first this zero-pressure (ballistic) flow is
simulated, as well as a non-zero temperature hydrodynamic flow (with a simple cooling
mechanism), in which this behaviour is observed. Also see López-Cámara et al. (2009)
for a full hydrodynamical simulation of a collapsar in which they show that an isothermal
disc does indeed remain thin.

In principle one could relax the condition of symmetry with respect the equatorial
plane. However, in that case we would not have the symmetric collision of streamlines
described above. This would lead to the formation of a warped disc, making the situation
much more complicated (see e.g. Bardeen & Petterson, 1975).

Now consider the situation in which two neighbouring streamlines start approaching
each other in such a way that they would intersect. This type of encounter is qualitatively
different from the head-on collision described above since, with a full hydrodynamical
treatment, the two approaching streamlines would here be prevented from intersecting
by the smooth action of pressure forces. It is clear, however, that this cannot be handled
within the ballistic approximation and this is why we have restricted our analysis to
distribution functions for which streamlines do not have crossings before reaching the
equator.

5.2 Velocity field

As already discussed, due to the ballistic approximation, the streamlines of the toy
model correspond to timelike geodesics of Kerr spacetime. In Section 4.2 we saw that
the symmetries of this spacetime allow us to write the four-velocity components of a
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test particle as a function of its position and of the constants of motion as given by
Eqs. (5.1.6)-(5.1.9). According to Eqs. (4.2.1)-(4.2.4), the BL components of the velocity
field are

U r = −
√
R
ρ2

, (5.2.1)

U θ = ±
√

Θ

ρ2
, (5.2.2)

Uφ =
A+ aB sin2 θ

ρ2 sin2 θ
, (5.2.3)

U t =
aA+ B

(
r2 + a2

)
ρ2

. (5.2.4)

whereR, Θ, A and B were defined in Eqs. (4.2.5)-(4.2.8). In Eq. (5.2.1) we take the minus
sign because, for the present scenario, the radial coordinate decreases monotonically as
the particle approaches the equator. On the other hand, in Eq. (5.2.2) the upper sign
corresponds to a particle starting to fall-in from the northern hemisphere while the lower
one corresponds to a particle starting off from the southern hemisphere since, in either
case, the polar coordinate should go from θ0 to π/2.

We can also give a local description of the velocity field in terms of the ZAMOs
introduced in Section 3.2. The physical three-velocity field as described by local ZAMOs
is given by

V̄ r = −
√
R/∆
Γ ρ

, (5.2.5)

V̄ θ = ±
√

Θ

Γ ρ
, (5.2.6)

V̄ φ =
ρ `z

Γ
√

Σ sin θ
, (5.2.7)

where Γ is the Lorentz factor between the local ZAMO and the test particle passing by,
and is given by

Γ =

√
1 +

R
∆ ρ2

+
Θ

ρ2
+

ρ2 h2
z

Σ sin2 θ
. (5.2.8)

Note that the expressions for the velocity field (both Eqs. 5.2.1 - 5.2.4 and Eqs. 5.2.5
- 5.2.7) are functions of position (r, θ) but also of the conserved quantities along each
streamline, and hence of (r0, θ0). Therefore, to use them in practice we need to provide
an explicit mapping (r0, θ0) 7→ (r, θ). Such a mapping is given in the next section in
terms of an analytic expression for the streamlines.

5.3 Streamlines

In this section we give an analytic expression for the streamlines of the toy model. Given
the assumptions of stationarity and axisymmetry, all that is needed for this description
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is to consider the solutions for the radial and latitudinal motion of a test particle freely
falling in Kerr spacetime, i.e. the projection of an arbitrary timelike geodesic onto the
r-θ plane. For doing this, it is sufficient to consider Eq. (4.2.12), i.e.∫ r

r0

dr′√
R(r′)

= ∓
∫ θ

θ0

dθ′√
Θ(θ′)

, (5.3.1)

where the upper sign corresponds to a particle in the northern hemisphere and the
lower sign corresponds to a particle in the southern hemisphere. We now introduce the
following definitions

Φ(r) ≡
∫ r

ra

dr′√
R(r′)

, (5.3.2)

Ψ(θ) ≡
∫ θ

θa

dθ′√
Θ(θ′)

, (5.3.3)

where ra and θa are as yet unspecified reference points in the particle trajectory. With
these definitions we can rewrite Eq. (5.3.1) as

Φ(r)− Φ(r0) = ∓ [Ψ(θ)−Ψ(θ0)] . (5.3.4)

In the following subsections we show how to solve Eqs. (5.3.2) and (5.3.3) in terms of
elliptic integrals. Based on the extensive literature on elliptic integrals and Jacobi elliptic
functions (e.g. Hancock, 1917; Byrd & Friedman, 1954; Cayley, 1961), we provide explicit
analytic expressions for Φ(r) and Ψ(θ). In Appendix B we give a brief review of these
integrals, discuss their connection with Jacobi elliptic functions and list some of their
properties which will be relevant for the present discussion.

Elliptic integrals have been used extensively in the literature in the context of geodesic
motion in Kerr spacetime (see e.g. Chandrasekhar, 1983; Kraniotis, 2004; Fujita &
Hikida, 2009). It has been customary to split the solution into different analytical ex-
pressions corresponding to different types of trajectory (bound orbits, unbound orbits,
trapped orbits, etc.). Instead, we follow a different strategy and, by integrating directly
Eqs. (5.3.2) and (5.3.3), we show that all of these different expressions can be reduced
to a single one. Based on this proof, in the present work we are able to describe the
projection onto the r-θ plane of all of the different types of trajectory by means of a
single analytical formula.

5.3.1 Radial solution

Consider first Eq. (5.3.2). From the theory of elliptic functions we know that, given
that R(r) is a fourth order polynomial in r, the solution for the radial integral can be
given in terms of elliptic integrals. The actual functional form of the solution depends
on the nature of the roots of R(r). The physical interpretation of these roots was
given in Section 4.4, where we saw that, whenever they are real and greater than r+,
they constitute radial turning points at which ṙ changes sign and thus, the direction
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of integration for the radial integral should reverse. It is clear that the roots of R(r)
should satisfy one of the following possibilities: all four roots are real; two are real while
the other two form a complex conjugate pair; there are two pairs of complex conjugates.
The first two cases include the possibility of multiplicity of the real roots. Although
one can express the roots analytically in terms of the parameters of the orbit (E , `z and
`) (see e.g. Abramowitz & Stegun, 1970), we do not give the final expressions coming
from this here because we do not find them particularly useful in practice. Instead, we
assume that we have already found the four roots, either analytically or by means of a
root finding algorithm, and write R(r) as

R(r) = ε(r − ra)(r − rb)(r − rc)(r − rd). (5.3.5)

Let us now consider these cases one at a time.

Case I: Four real roots.

As was discussed in Section 4.4, from the different possibilities of sign alternation
of the coefficients of R(r), it is found that, whenever ε > 0, there cannot exist more
than two roots greater than r+, while for ε < 0, there cannot be more than three roots
greater than r+. Then, we have that in order to satisfy the condition R(r) > 0, there
are two possibilities: either r is bracketed in between two non-negative consecutive roots
of R(r) or r is unbounded above. The elliptic-like type of trajectory that we discussed
in Section 4.4, represents an example of the former case. On the other hand, the latter
case represents an unbound trajectory (hyperbolic-like type) with the largest positive
root being the only turning point. In the first case, we call the roots bracketing r, ra
and rb (with ra < rb). Instead, in the second case, we again take ra as the lower bound
for r and let rb be the negative root with the largest absolute value. In both cases the
two remaining roots are denoted as rc and rd (with |rc| < |rd|). From these definitions
it follows that, either

ra ≤ rb ≤ rc < |rd| or rc ≤ rd ≤ ra < |rb|. (5.3.6)

Having labelled the roots in the above described fashion, we can now write the solution
to Eq. (5.3.2) as (Byrd & Friedman, 1954)

Φ(r) =
2√

ε(ra − rc)(rd − rb)
cn−1

[√
(rd − ra)(rb − r)
(rb − ra)(rd − r)

, kr

]
, (5.3.7)

where cn−1(x, kr) is the inverse of the elliptic function cn(u, kr) as defined in Eq. (B.8).
The constant kr is called the modulus and it is given by

k2
r =

(rb − ra)(rd − rc)
(rd − rb)(rc − ra)

. (5.3.8)

The relations in Eq. (5.3.6) ensure that the product ε(ra− rc)(rd− rb) is always positive
and that 0 < kr < 1.
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Case II: Two real roots and a complex conjugate pair.

This case corresponds to various different types of plunging trajectories. Here we
take ra and rd (with |ra| < |rd|) to be the real roots while rb and rc form the complex
conjugate pair. With this choice, the solution for Φ(r) given in Eq. (5.3.7) can be used
without any further modification, and we obtain a real quantity as the final result.
Nevertheless, intermediate steps in the evaluation involve the use of complex quantities.
In what follows we show how to rewrite Φ(r) as an explicitly real function of r by using
standard identities for Jacobi elliptic functions.

We start by combining the four roots into the following real constants:

α = Sign(ε)
√

(rd − rb)(rd − rc), (5.3.9)

β =
√

(ra − rb)(ra − rc), (5.3.10)

k̃2
r =

(α+ β)2 − (rd − ra)2

4αβ
. (5.3.11)

From the definition of kr in Eq. (5.3.7), it is easy to check that k̃r and kr are related by

k̃2
r =

(1 + kr)
2

4kr
. (5.3.12)

We now invoke the identities for Jacobi elliptic functions given in Eqs. (B.32) and
(B.42), and combine them into

cn

(
2
√
k u,

1 + k

2
√
k

)
=

1− k sn2(u, k)

1 + k sn2(u, k)
, (5.3.13)

where sn(u, k) is the elliptic function defined in Eq. (B.6). Calling x = cn(u, k) and
inverting Eq. (5.3.13) results in

cn−1(x, k) =
1

2
√
k

cn−1

[
1− k(1− x2)

1 + k(1− x2)
,

1 + k

2
√
k

]
. (5.3.14)

Then, we substitute in this expression

x =

√
(rd − ra)(rb − r)
(rb − ra)(rd − r)

, and k = kr

and, after some simple manipulation, we are now able to rewrite Φ(r) as

Φ(r) =
1√
εαβ

cn−1

[
β rd − α ra + (α− β)r

β rd + α ra − (α+ β)r
, k̃r

]
. (5.3.15)

Note that this alternative expression for Φ(r) involves just explicitly real quantities. This
same result also follows from direct integration of Eq. (5.3.2) as in Byrd & Friedman
(1954).
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Case III: Two complex conjugate pairs

This case also represents a particular type of plunging trajectory and is a possibility
for Kerr spacetime that is not present for Schwarzschild spacetime, for which one of the
roots of R(r) is always zero and, therefore, there is at least one other real root. Now
we take ra = r∗d and rb = r∗c , with Re(ra) < Re(rb). Note that in this case, the function
Φ(r), as defined in Eq. (5.3.2), is a complex function of r since it is defined in terms of
an integral with ra as its lower limit. Nevertheless, the combination Φ(r) − Φ(r0) is a
real function of r and still represents a formal solution to the radial integral on the right
hand side of Eq. (5.3.1).

In order to prove this, we start by noting that α and β, as defined in Eqs. (5.3.9)
and (5.3.10), now form a complex conjugate pair, i.e. α = β∗. We then introduce the
following real constants:

µ =
ra + rd

2
, ν =

ra − rd
2 i

,

ζ =
α+ β

2
, η =

α− β
2 i

. (5.3.16)

Using these definitions, it is simple to check that k̃r, as defined in Eq. (5.3.11), can also
be expressed as

k̃2
r =

ζ2 + ν2

ζ2 + η2
, (5.3.17)

from which it is clear that k̃r is still a real quantity. On the other hand, from Eq. (5.3.15)
and the definitions in Eq. (5.3.16), it is simple to check that

β rd − α ra + (α− β)r

β rd + α ra − (α+ β)r
= i

ζ ν − η(r − µ)

η ν + ζ(r − µ)
. (5.3.18)

In other words, the argument of the function cn−1(x, k̃r) in Eq. (5.3.15) is a purely
imaginary number. Moreover, from Eqs. (5.3.16) and (5.3.17), it simple to check that√

εαβ k̃r =
√
ε (ζ2 + ν2). (5.3.19)

We now consider the identities for Jacobi elliptic functions given in Eqs. (B.46) and
(B.47). Taking their quotient, substituting appropriate values from Eqs. (B.18) and
(B.28)-(B.30), and finally using Eq. (B.33), results in

cn(u, k) = i cs

[
k u+ iK

(
1 +

1

k

)
,

1

k

]
, (5.3.20)

where cs(u, k) = cn(u, k)/sn(u, k) and K is the complete elliptic integral of the first
kind as defined in Eq. (B.4). Once again, we invert this identity by defining x = cn(u, k)
and solving for u, which results in

cn−1(x, k) =
1

k

[
cs−1

(
−i x, 1

k

)
− iK

(
1 +

1

k

)]
. (5.3.21)
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Finally, substituting

x =
β rd − α ra + (α− β)r

β rd + α ra − (α+ β)r
and k = k̃r,

into Eq. (5.3.21), together with Eqs. (5.3.18) and (5.3.19), allows us to split Φ(r) into a
real function of r and an imaginary constant, i.e.

Φ(r) = Φ̃(r)−
iK

(
1 + 1

k̃r

)
√
ε (ζ2 + ν2)

, (5.3.22)

where

Φ̃(r) =
1√

ε (ζ2 + ν2)
cs−1

[
ζ ν − η(r − µ)

η ν + ζ(r − µ)
,

1

k̃r

]
. (5.3.23)

From Eq. (5.3.22), it follows that

Φ(r)− Φ(r0) = Φ̃(r)− Φ̃(r0) (5.3.24)

is a real function of r.

Case IV: ε = 0

In this case, we have that one of the roots of R(r) diverges to infinity, so that it
reduces to a third order polynomial. For this reason, there are now two possibilities for
the roots: either the three of them are all real, or one is real and the other two form
a complex conjugate pair. Appropriate expressions for each case are straightforward to
obtain from Eqs. (5.3.7) and (5.3.15) after taking the appropriate limit.

5.3.2 Polar angle solution

We next consider the polar integral in Eq. (5.3.3). In Section 4.5 we saw that the lat-
itudinal motion is restricted to values of θ such that Θ(θ) ≥ 0, and so, in general, θ
is bracketed between two consecutive real roots of the equation Θ(θ) = 0. These roots
correspond to turning points of the polar motion and explicit expressions for them were
given in Eq. (4.5.5). Just as in Section 4.5, we denote as θa the turning point of the polar
motion which is closest to the polar axis. Since we have assumed symmetry with respect
to the equatorial plane, we can consider, without loss of generality, that the streamline
on which we are focusing starts from, say, the northern hemisphere, i.e. θa ≤ θ0 ≤ π/2.
For `z 6= 0, θa corresponds to the smallest positive root of the equation Θ(θ) = 0, and
in this case we can use Eq. (5.1.9) to rewrite Q in terms of θa as

Q = `2z cot2 θa − ε a2 cos2 θa. (5.3.25)

As was discussed in Section 4.5, we know that the polar equation Θ(θ) = 0 can have
zero, two or four real roots in the interval θ ∈ [0, π]. The first case arises when `z = 0
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and Q > −εa2, corresponding to a test particle that can sweep the whole polar domain
and repeatedly cross the polar axis.(1) The second case corresponds to bounded polar
motion, with θ ∈ [θa, π − θa], where the test particle repeatedly crosses the equatorial
plane. The third case corresponds to a test particle restricted to move within a single
hemisphere (in this case the northern one) as θ ∈ [θa, θb], where θb ≤ π/2 is the second
turning point of the polar motion.

If we return to the polar integral in Eq. (5.3.3) and consider the change of variable
ξ = cos θ/ cos θa, the integral transforms as

Ψ(θ) =

∫ θ

θa

dθ′√
Θ(θ′)

= cos θa

∫ 1

ξ

dξ′√
P(ξ′)

, (5.3.26)

where

P(ξ) = Q(1− ξ2)
(
1− k2

θ ξ
2
)
, (5.3.27)

k2
θ = −(ε a2/Q) cos4 θa. (5.3.28)

Note that, when real, the angles θa and θb satisfy

cos θa = kθ cos θb. (5.3.29)

It is clear that P(ξ) is a fourth order polynomial in ξ and, as such, the solution to
Eq. (5.3.26) can be given in terms of an elliptic integral. We now proceed with the
integration of Eq. (5.3.26) by considering the following cases:

Case I: ε ≤ 0

In this case, we have that Q ≥ 0 and that kθ is a real number. We can then write
the solution to Eq. (5.3.26) as (Byrd & Friedman, 1954)

Ψ(θ) =
cos θa√
Q

cd−1

(
cos θ

cos θa
, kθ

)
, (5.3.30)

where cd−1(x, kr) is the inverse of the elliptic function cd(u, kr) = cn(u, kr)/dn(u, kr) as
defined in Eq. (B.17). Note that Ψ(θa) = 0, while for θ = π/2

Ψ(π/2) =
cos θa√
Q

K(kθ). (5.3.31)

Also note that when ε = 0, one gets kθ = 0 from Eq. (5.3.28). According to Eq. (B.13),
for a null value of the modulus, one has that cd(u, 0) = cos(u), and so Eq. (5.3.30) can
be simplified as

Ψ(θ) =
cos θa√
Q

cos−1

(
cos θ

cos θa

)
. (5.3.32)

This same result also follows in the non-rotating BH case (a = 0), that is, Eq. (5.3.32)
is the expression to use in Schwarzschild spacetime.

(1)Even though in this case the angles θ = 0, π do not satisfy Θ(θ) = 0, they still represent turning
points since at those locations the polar velocity changes sign discontinuously, as discussed in Section 4.5.
When this happens, we take θa = 0.
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Case II: ε > 0 and Q > 0

Here one has that kθ is a purely imaginary number. Nevertheless, we can still use
the solution given in Eq. (5.3.30) and get a resulting real quantity. Just as in the radial
case, it is possible to rewrite Ψ(θ) as an explicitly real function of θ. In order to do so,
we invoke the identity for Jacobi elliptic functions in Eq. (B.29), and invert it as

cd−1(ξ, k) =
√

1− k2 cn−1

(
ξ,

√
−k2

1− k2

)
. (5.3.33)

By substituting ξ = cos θ/ cos θa and k = kθ into the previous result together with
Eq. (5.3.30), we get

Ψ(θ) =
cos θa√

Q+ ε a2 cos4 θa
cn−1

(
cos θ

cos θa
, k̃θ

)
, (5.3.34)

with

k̃θ =

√
−k2

θ

1− k2
θ

=

√
ε a2 cos4 θa

Q+ ε a2 cos4 θa
, (5.3.35)

which is now a real number.

Case III: ε > 0 and Q ≤ 0

Here, again, we have that the expression for Ψ(θ) given in Eq. (5.3.30) can be used
without any further modification, even though some intermediate steps involve the use
of complex quantities. An alternative, explicitly real expression for Ψ(θ) in this case
follows from using the identity in Eq. (B.32). If we invert this identity, we get

cn−1(ξ, k) =
1

k
dn−1

(
ξ,

1

k

)
. (5.3.36)

Substituting ξ = cos θ/ cos θa and k = k̃θ into this result, we get that Ψ(θ) can be
rewritten as

Ψ(θ) =
1√

ε a cos θa
dn−1

(
cos θ

cos θa
,

1

k̃θ

)
. (5.3.37)

Note that when Q = 0 then k̃θ = 1 and, since dn(u, 1) = sech(u), Eq. (5.3.37) can be
simplified as

Ψ(θ) =
1√

ε a cos θa
sech−1

(
cos θ

cos θa

)
. (5.3.38)



92 5. TOY MODEL FOR RELATIVISTIC ACCRETION

Case IV: `z = 0

In this case, the expressions in Eqs. (5.3.30), (5.3.34) and (5.3.37) can be used without
further modification, but note that here one has the possibility of reaching the polar axis
where the polar coordinate is singular. As was discussed in Section 5.3.2, this happens
when `z = 0 and Q > −εa2, and in this case one should take θa = 0 which, although
it is not a formal root of the equation Θ(θ) = 0, does constitute a turning point of the
polar motion since here one has that the polar velocity changes sign discontinuously
every time that the particle crosses the polar axis. In the following equation we collect
all of the alternative expressions for the different possible combinations of ε and Q in
this case:

Ψ(θ) =



1√
Q cd−1

(
cos θ,

√
−ε a2
Q

)
for ε < 0, Q > −ε a2, θ ∈ [0, π]

1√
−ε a cd−1

(√
−ε a2
Q cos θ,

√
Q
−ε a2

)
for ε < 0, Q < −ε a2, θ ∈ [θa, θa′ ]

1√
ε a2+Q cn−1

(
cos θ,

√
ε a2

ε a2+Q

)
for ε > 0, Q > 0, θ ∈ [0, π]

1√
ε a

dn−1

(
cos θ,

√
ε a2+Q
ε a2

)
for ε > 0, Q < 0, θ ∈ [0, θb].

5.3.3 Timelike geodesics in the r-θ plane

Let us summarise the results obtained up to now for the radial and latitudinal motion
for general timelike geodesics in a Kerr spacetime. In Section 5.3.1 we showed that the
radial integral on the left hand side of Eq. (5.3.1) has as its solution∫ r

r0

dr′√
R(r′)

= Φ(r)− Φ(r0),

Φ(r) =
2√

ε(ra − rc)(rd − rb)
cn−1

[√
(rd − ra)(rb − r)
(rb − ra)(rd − r)

, kr

]
. (5.3.39)

On the other hand, in Section 5.3.2 we proved that the polar integral on the right hand
side of Eq. (5.3.1) has as its solution∫ θ

θ0

dθ′√
Θ(θ′)

= Ψ(θ)−Ψ(θ0),

Ψ(θ) =
cos θa√
Q

cd−1

(
cos θ

cos θa
, kθ

)
. (5.3.40)

Combining Eqs. (5.3.39) and (5.3.40) we can express r as function of θ as

r(θ) =
rb(rd − ra)− rd(rb − ra)cn2 (u(θ), kr)

rd − ra − (rb − ra)cn2 (u(θ), kr)
,

u(θ) =

√
ε(ra − rc)(rd − rb)

2
[Φ(r0) + Ψ(θ0)−Ψ(θ)] , (5.3.41)
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Figure 5.2: Schematic illustration of the construction of a regular grid in (r, θ0) for
calculating the density field. The highlighted region constitutes one of the streamline
tubes involved in the derivation of Eq. (5.4.5).

or, conversely, θ as function of r as

θ(r) = cos−1 [cos θa cd(v(r), kθ)] ,

v(r) =

√
Q

cos θa
[Ψ(θ0) + Φ(r0)− Φ(r)] . (5.3.42)

Both Eqs. (5.3.41) and (5.3.42) constitute general expressions for the streamlines of the
present accretion model.

5.4 Density field

In this section we derive a numerical scheme for calculating the density field based on
the continuity equation:

∇ · (nU) = (nUµ)
;µ

= 0. (5.4.1)

We integrate the above expression over a four-volume element S, consisting of a stream-
line tube extending for an infinitesimal interval of coordinate time dt. We take the spatial
cross-section of this streamline tube to be the collection of all of the streamlines starting
to fall-in from a differential area element dx2|r0 at the initial shell and ending up at a
second sphere with arbitrary radius r < r0. In Figure 5.2 we illustrate the projection of
such a streamline tube onto the R-z plane. Denoting by ∂S the hypersurface delimiting
the integrating volume and invoking the Gauss theorem, we have that∫

S

(nUµ)
;µ

√
−g d4x =

∮
∂S

nUµNµ

√
|γ|d3x = 0, (5.4.2)

where Nµ is a unit vector normal to ∂S and γ is the determinant of the induced metric on
this hypersurface. Since we have assumed stationarity, it is clear that the net particle flux
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through any closed spatial hypersurface at a given time t equals zero. Moreover, for the
remaining mixed time-space parts of ∂S, the contraction UµNµ will be, by construction,
different from zero just for a hypersurface oriented perpendicularly to the radial direction.
Hence, we have that Eq. (5.4.2) reduces to

nUµN (r)
µ

√
|γ(r)|dt dθ dφ

∣∣∣∣r0
r

= 0. (5.4.3)

Substituting into this equation that N (r)
µ = δrµ/

√
grr where grr = ∆/ρ2, together with

γ(r) = ∆ρ2 sin2 θ, we arrive at

nU rρ2 sin θ dtdθ dφ
∣∣r0
r

= 0. (5.4.4)

Invoking once again the stationarity and axisymmetry conditions, it follows that

dt0 dφ0 = dt dφ.

Using this result in Eq. (5.4.4) allows us to solve for n, getting

n =
n0 U

r
0 ρ

2
0 sin θ0

U rρ2 sin θ

(
∂θ

∂θ0

)−1

. (5.4.5)

Evaluating analytically the partial derivative which appears here would require a compli-
cated calculation involving derivatives of an elliptic integral with respect its argument,
modulus and integration limit. However, it is straightforward to evaluate it numerically
and so it does not seem worth searching further for a full analytic expression.

We construct a suitable grid for calculating ∂θ/∂θ0 in the following way: we start
with a homogeneous partition of the initial polar angle θ0, and then follow the fluid lines
down to the equator in regular radial steps. At every grid point (r, θ0), we store the
values of θ and U r, and then approximate ∂θ/∂θ0 by means of standard finite differences.
Figure 5.2 illustrates the construction of such a grid.

We recall here that in Section 5.1 we limited the boundary conditions to distributions
of the velocity field that prevented the existence of radial turning points before the
equatorial plane had been reached, i.e. U r 6= 0 for the whole radial domain of interest.
Moreover, we also required the mapping θ 7→ θ0 to be non-singular. For these two
reasons, we can conclude that the expression for the density field given in Eq. (5.4.5) is
a well-defined function.

Finally, note that the expressions for the velocity field and the streamlines given in
Sections 5.2 and 5.3 are independent of the value of the density at the boundary and
hence the scale for the density (n0) can be set arbitrarily.
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5.5 Applications of the analytic model

We now illustrate our analytic model by applying it to an example scenario with bound-
ary conditions consisting of matter in uniform rotation on a uniform shell, i.e.:

n0 = const., (5.5.1)

ṙ0 = const., (5.5.2)

φ̇0 = const., (5.5.3)

θ̇0 = 0. (5.5.4)

The condition in Eq. (5.5.4) implies that, for every streamline, θa = θ0.
Figure 5.3 shows six panels with the streamlines, velocity field and density contours

for six different combinations of the flow parameters. The panels consist of spatial projec-
tions onto the R-z plane, where R and z (together with θ) are the cylindrical coordinates
defined in Eq. (3.1.10). For specifying the set of model parameters in each case, we have
used a, r0, V̄

r
e and V̄ φ

e , where the subscript e indicates that the corresponding quantity
is being evaluated at the equator of the shell. Note that, for the present boundary con-
ditions, the set of parameters (a, r0, V̄

r
e , V̄ φ

e ) has a one-to-one correspondence with (a,
r0, ṙ0, φ̇0) given by the inversion of the system of Eqs. (5.2.5)-(5.2.7). Also note that
fixing this set of parameters specifies a family of models rather than a single one, since
both length and density scales can still be arbitrarily and independently chosen.

The radius of the outer edge of the disc formed as matter reaches the equatorial
plane, rD, can be calculated from Eq. (5.3.40), taking first θ = π/2 and then θ0 = π/2,
giving

ξD =

√
ε(ra − rc)(rd − rb)

2

[
Φ(r0)−

π

2
√
`2e − ε a2

]
, (5.5.5)

and then substituting the result into Eq. (5.3.41).
In Figure 5.4, we have plotted rD, first as a function of the BH spin a and then as

a function of the specific angular momentum at the equator of the shell `e = `z(π/2).
Here we have assumed V̄ φ

e > 0, and so a negative value of a implies a counter-rotating
disc. From this figure we can clearly see how the BH spin couples with the angular
momentum of the disc (through the frame-dragging effect), giving rise to a larger rD for
a co-rotating disc and a smaller rD for a counter-rotating one. It is also clear that, as
intuitively expected, rD is a monotonically increasing function of both V̄ φ

e and V̄ r
e .

Working with the LNRF velocities V̄ r
e and V̄ φ

e , makes the exploration of the parameter
space easier since, being physical velocities, they are naturally bounded as V̄ r

e ∈ (−1, 0]
and V̄ φ

e ∈ [0, 1). Furthermore, for fixed values of r0 and a, a pair of velocities in the
V̄ r
e -V̄ φ

e plane is also restricted by the condition that the resulting rD should satisfy
rD ∈ (r+, r0). In Figure 5.5 we have plotted the regions on the velocity space which lead
to an outer radius of the disc satisfying this criterion. The plot has been constructed for
a fixed value of r0 = 10M and three different values of a. From this figure we observe
that the domain of values in the velocity space leading to physically relevant accretion
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Figure 5.3: Streamlines, velocity field and density contours for six different combi-
nations of the flow parameters. The values of the parameters used in each case are
indicated above each panel. Each panel shows the spatial projection onto the R-z plane
and the colour coding corresponds to the value of the logarithm of the particle number
density Log(n/n0), with the scale being indicated by the colour-coding bar at the left
of each row. The arrows correspond to the V̄ r and V̄ θ components of the velocity field.
The magnitude of the largest arrow is indicated at the bottom right of each panel.
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BH spin couples with the angular momentum of the infalling matter and leads to a
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Figure 5.5: The pairs of velocity values V̄ r
e -V̄ φ

e leading to a disc radius such that
rD ∈ [r+, r0] are plotted for a fixed value of r0 = 10M and for a/M = 0, 0.5, 1. The
upper boundary for each value of a represents the points (V̄ r

e , V̄
φ
e ) such that rD = r0,

while the lower one represents those such that rD = r+. Note how the domain of values
in the velocity space leading to physically relevant accretion models shifts to smaller
values of V̄ φ

e as a increases because of the frame-dragging effect.

models shifts to smaller values of V̄ φ
e as a increases. This behaviour is a consequence

of the frame-dragging effect: for a given test particle with fixed azimuthal velocity V̄ φ
e ,

its associated angular momentum is an increasing function of a, and hence points in the
V̄ r
e -V̄ φ

e plane which, in the low-a case, did not have large enough angular momentum to
keep the outer edge of the disc outside the event horizon are able to do so for a larger
value of a. Conversely, low-a models with an angular momentum only just small enough
to form any disc inside their initial shell would have discs entirely outside of their initial
shell when a is increased (thus becoming excluded from the parameter domain). Also
note that this parameter-space effect is greater on the lower boundary of V̄ φ

e than on the
upper one, which is simply due to the fact that the frame-dragging increases as r → r+.

5.6 Comparison with numerical simulations

In this section we compare the analytic solution derived above against one of the sim-
ulations in LR and a series of simulations performed with the modified version of the
code Gadget 2 (Springel, 2005) presented and used by TMP. The first comparison was
presented in Paper II, while the second one forms part of Paper III.

In both LR and TMP, the authors studied numerically the production of the progeni-
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tors for long-duration GRBs as the aftermath of the collapse of a massive star. In LR, the
authors investigated the formation of a small-scale accretion disc around a Schwarzschild
BH by using 2D SPH simulations starting off from idealised initial conditions. They in-
cluded an analytic approximation for neutrino cooling and considered an equation of
state (EoS) with contributions from radiation, e± pairs, α particles and free nucleons.
In their work relativistic gravitational effects are mimicked with the pseudo-Newtonian
potential defined by Paczyńsky & Wiita (1980) (PW):

ΦPW(r) = − M

r − 2M
. (5.6.1)

TMP, instead, presented 3D simulations for a rotating BH starting off from realistic
initial conditions (a pre-supernova model coming from stellar evolution codes), using
tabulated values for neutrino cooling (by plasma processes, pair annihilation and non-
degenerate bremsstrahlung scattering) and including a rough treatment of general rel-
ativistic effects in the Kerr metric by using the modification to the Newtonian radial
acceleration given by Mukhopadhyay & Misra (2003) (MM):

aMM(r) = −M
r2

[
1−

(rms

r

)
+
(rms

r

)2
]
, (5.6.2)

where rms is the radius of the marginally stable circular orbit defined in Eq. (4.3.8). MM
called the associated pseudo-Newtonian potential the ‘second-order expansion potential’.
From direct integration of Eq. (5.6.2), the gravitational potential corresponding to this
is given by

ΦMM(r) = −M
r

+
Mrms

2 r2
− Mr2

ms

3 r3
. (5.6.3)

In addition to these two pseudo-Newtonian potentials, in this section we also compare
our ballistic toy model with results obtained using the classical Newtonian potential

ΦN(r) = −M
r
. (5.6.4)

We should stress that the two pseudo-Newtonian potentials used in the simulations
presented in this section have been previously designed for capturing relevant relativis-
tic features of importance for accretion discs, including getting correct locations for the
marginally stable circular orbit in Schwarzschild and Kerr spacetimes. This does not
at all guarantee that they would be good for other purposes such as the infall calcula-
tions being discussed here (and particularly for motion away from the equatorial plane).
However, they have been widely used in more general contexts and simulations and so
it is relevant for us to test them against the toy model.

It is clear that in a full hydrodynamic simulation, the final accretion flow is de-
termined by a combination of all of the physical processes that have been included:
gravitational field of the central object, self gravity of the fluid, hydrodynamic forces,
and microphysical processes such as neutrino cooling and physical viscosity. Since in the
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final outcome of the simulation, all of these effects are mixed together, it is not com-
pletely straightforward to know how to interpret the results of a comparison with the
toy model. Therefore, the aim of this study is to start by analysing what we consider to
be two dominant effects on the flow, those of hydrodynamics and gravitation. In order
to perform a systematic analysis to distinguish between these, we have used the TMP
code to consider two kinds of simulation (with the physical conditions chosen to be those
of a possible model GRB):

(i) Ballistic free-fall, with the SPH particles being automatically removed when they
reach either the equatorial plane or the BH horizon. Here we consider an EoS for which
the fluid pressure P = 0, effectively ‘turning off’ the hydrodynamical forces. The aim
of this kind of simulation is to highlight the differences in the flow dynamics coming
from both the use of different gravity descriptions (full general relativity, Newtonian
gravity, and the MM and PW pseudo-Newtonian potentials) and the different numerical
implementations of the equations of motion for the particles.

(ii) Full-hydrodynamical simulations, including back reaction from a growing equa-
torial disc and cooling in regions where the gas gets very hot (≥ 109K). Here we do
not remove SPH particles when they reach the equatorial plane but rather let them
settle down by themselves into a disc structure. In this case we employ a polytropic
EoS of the form P = (γ − 1)nu, where n is the baryon number density, u the in-
ternal energy per baryon and γ is the adiabatic index.(2) We take γ = 4/3, and the
value of the internal energy (taken to be constant in the initial shell) is set at an ar-
bitrary but non-negligible value of one tenth of the sum of kinetic energy and absolute
value of the Newtonian potential energy of an SPH particle at the equator of the shell,

i.e. u = 0.1
(
ṙ2
0/2 + r2

0 φ̇
2
0/2 +M/r0

)
.

For both types of simulation, we take stationary boundary conditions with SPH
particles being continuously injected with constant density and velocity distributions
from a fixed injection radius r0. We treat the BH horizon as an inner boundary at which
particles are extracted from the simulation. For a fair comparison with the toy model,
we report here late-time snapshots of the simulations in which the system has evolved
to a quasi-stationary situation (at least in the region away from the disc). As mentioned
above, the number of particles being used in these simulations was continuously changing
but was consistently around 2.5× 105 at the time shown. Moreover, in order to reduce
the noise level (and exploiting the axisymmetry of the system), the results presented in
the following were obtained after averaging over 24 cross-sectional φ = const. slices of
the 3D simulations.

(2)We note that the adiabatic index γ is only used in this section and should not be confused with the
determinant of the three-metric that we have denoted with the same symbol.
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5.6.1 Schwarzschild case

First, we consider a set of boundary conditions corresponding to infall of a rotating
gas cloud onto a non-rotating black hole, similar to those used by LR in their numerical
calculations. We have made comparisons for several of their models, finding a qualitative
good agreement in all cases. For illustration, we show the results for the simulation in
LR with the following set of parameter values

a = 0, (5.6.5)

M = 4M�, (5.6.6)

Ṁ = 0.01M�/s, (5.6.7)

r0 = 100M, (5.6.8)

ṙ0 = −1/
√

50, (5.6.9)

r0 φ̇0 = 0.038, (5.6.10)

θ̇0 = 0. (5.6.11)

Note that, for convenience, we have used standard (non-geometrized) units to express
the total accretion rate in Eq. (5.6.7).

Using the results from Section 4.3, it is simple to check that for a = 0, the minimum
necessary angular momentum that a test particle must possess in order to be in a stable
circular orbit is `ms = 4M . However, for the present boundary conditions, the fluid
particle with the largest angular momentum (i.e. one that starts from the equator of the
initial shell) has ` = 3.8M . Therefore, in this case one expects that none of the matter
arriving at the equatorial plane would possess enough angular momentum to maintain
a stable orbit around the central BH and, hence, that all of the infalling material should
be accreted into the BH on a dynamical time-scale. This kind of accretion corresponds
to the ‘small-scale inviscid disc’ regime discussed by Beloborodov & Illarionov (2001)
and, indeed, is what we observe in the LR simulation.

The top left panel in Figure 5.6 shows the accretion flow as calculated from the
analytic model, while the top right panel shows a late-time snapshot of the LR simula-
tion, taken when a quasi-stationary state had been reached. There is an overall good
agreement between them, even though it is not completely clear how to differentiate
pure hydrodynamic effects from the ones related to the different descriptions of gravity.
The other four panels present a detailed comparison of the spatial components of the
velocity and the density at four spherical cuts. Here, we see a good agreement between
the analytical and numerical results for U θ and Uφ. For U r and %, there is quite good
qualitative agreement, although the numerical results for % suffer from numerical noise
inherent in the interpolation scheme at low particle number densities, and the numerical
results for U r show larger radial infall velocities. This last discrepancy can be attributed
to the use of the PW pseudo-Newtonian potential there, which artificially enhances the
radial acceleration.

In order to analyse this in more detail and to disentangle hydrodynamic effects from
free-fall motion, we consider here a series of ballistic simulations performed with the



102 5. TOY MODEL FOR RELATIVISTIC ACCRETION

Figure 5.6: Comparison between the analytic model and one of the LR simulations.
The plots are for an accretion flow towards a Schwarzschild BH with mass M = 4M�,
starting from a spherical shell at r0 = 100M . The rest of the boundary conditions are
given in Eqs. (5.6.7)-(5.6.11). The top panels show a projection of the accretion flow
onto the R-z plane, together with isodensity contours, for the analytic solution (left)
and the LR numerical simulation (right). The remaining four panels show the velocity
components and the density at the radial cuts r/M = 40, 30, 20, 10 with the analytic
and numerical results being represented by solid and dashed lines respectively.
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Figure 5.7: Streamlines corresponding to the analytic solution and to the three bal-
listic SPH simulations for a non-rotating BH (a = 0) with the remaining boundary
conditions being as in Eqs. (5.6.6)-(5.6.11). The figure shows a zoom-in of the first
quadrant of the R-z plane. The BH horizon (located at r+ and which represents the
inner boundary) is indicated with the dashed-line quarter-circle.

TMP code for the same boundary conditions. Moreover, to clarify the role played by
the PW potential in approximating general relativistic features, we consider simula-
tions using three different potentials: the usual Newtonian one, and the PW and MM
pseudo-Newtonian potentials (this last one with a = 0). In Figure 5.7 we compare the
streamlines coming from each of these simulations against the streamlines from the toy
model. Since hydrodynamical effects are absent in these ballistic simulations, the differ-
ences between the numerical simulations and the toy model can reasonably be attributed
mainly to the different descriptions of gravity (although, some very small differences may
be attributed to the finite stepping of the discrete method, etc.). In this figure we ob-
serve that the different streamlines start to deviate importantly from each other just for
r . 20M and that far away from the central BH the differences between the different
descriptions of gravity become negligible (bear in mind that the streamlines originate
from r = 100M). In the vicinity of the equatorial plane, the streamlines obtained with
the Newtonian potential are closer to the general relativity solution than those obtained
with the pseudo-Newtonian potentials. In this figure we can also see that the PW
streamlines arrive at the equatorial plane at smaller radii than the analytic relativistic
ones, while the Newtonian and MM ones arrive at larger radii. This suggests that equiv-
alent hydrodynamical simulations implementing the PW potential would underestimate
the extension of any resulting disc while those implementing the Newtonian and MM
potentials would overestimate it.

We now investigate the inclusion of hydrodynamic properties of the flow by consid-
ering polytropic simulations made with the three potentials employed in the previous
ballistic runs. In Figure 5.8 we show the comparison of the ballistic streamlines in Fig-
ure 5.7 with the fluid streamlines for each of the three potentials. When comparing
these two sets of streamlines, it is important to bear in mind that in the polytropic sim-
ulations, unlike in the ballistic one, SPH particles are not removed from the simulation
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at the equatorial plane and, therefore, the build-up of a disc can take place. From this
figure we can see that an important feature characterising the polytropic simulations is
the existence of a shock front around the disc, marking the boundary between two dif-
ferent flow regimes. In the pre-shock region, a clear stationary regime is rapidly reached
where the flow moves supersonically and is highly laminar. In this region, which we
shall refer to as the infall region, we find that the polytropic simulations produce quite
similar results to the ballistic ones, and hence also to the toy model. On the other hand,
in the post-shock region the hydrodynamic effects become dominant, causing the flow to
decelerate and deviating the streamlines away from the ballistic paths towards the equa-
torial plane. In this way, the action of pressure gradients prevent the streamlines from
having a ‘head-on’ collision with their symmetric counterparts coming from the opposite
hemisphere. Clearly, the full hydrodynamical evolution in this region depends on the
particular EoS being used as well as on the particular mechanism driving the accretion
(e.g. viscosity, dynamical instabilities, etc.) and also on the cooling prescription, but
again, the details of this post-shock region are outside the scope of the present study.

From Figure 5.8 we also note a crucial difference in terms of the long term evolution
of the disc resulting from the use of different potentials. In this figure we see that only
the simulation using the PW potential (top panel of Figure 5.8) captures correctly the
‘small-scale inviscid disc’ regime that is expected for the present boundary conditions.
For the other two potentials (middle and bottom panels of Figure 5.8), we observe a
growing ring of matter with enough angular momentum to avoid direct accretion onto
the BH. As a consequence, the resulting disc in each of these cases evolves on a viscous
time-scale rather than the much shorter dynamical time-scale that characterises the
‘small-scale inviscid disc’ regime.

From these comparisons we can conclude that, even though the ballistic streamlines
for the Newtonian potential appear to give the best match to those of the analytic
relativistic solution in Figure 5.7, as far as the hydrodynamic long-term evolution of the
resulting disc is concerned, among the the three potentials studied here, only the PW
potential leads to the expected ‘small-scale inviscid disc’ regime which is an important
relativistic feature of this system.

5.6.2 Kerr case

Here we consider the same boundary conditions as in Eqs. (5.6.6)-(5.6.11) but now for
a rotating BH with spin parameter a = 0.5M . Since the MM potential is the only one
specifically devised to approximate relativistic effects for a rotating BH, in what follows
here we only consider simulations that implement the MM potential.

For this set of boundary conditions, we present in Figure 5.9 the analytic solution
alongside the results of both the ballistic and polytropic simulations. The figure shows
a spatial projection onto the R-z plane of isodensity contours, streamlines and velocity
fields for each case. Let us focus first on the ballistic simulation result (middle panel),
which rapidly reached a stationary state. In this figure we see an overall satisfactory
agreement with the analytic solution, although a closer inspection of the streamlines
reveals some quantitative differences. As in Figure 5.6, here we also note that the
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Figure 5.8: This figure compares the streamlines from simulations performed with
the TMP code for ballistic motion against those for a polytropic fluid. Note that only
for the run using the PW potential does the resulting flow correspond to a ‘small-scale
inviscid disc’. In the other two cases, the infalling matter keeps accumulating in a ring
around the BH. This effect is more evident in the case with the Newtonian potential.
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simulation isodensity contours are somewhat ‘noisy’ compared with the analytic results.
Nevertheless, this level of fluctuation is consistent with the effects of discretisation and
interpolation within SPH simulations.

Figure 5.10 shows a closer comparison of the streamlines of the analytic solution
with the ones of the ballistic simulation. Similarly as in Figure 5.7, here we see that the
ballistic streamlines deviate significantly from the analytic ones only for r . 10M and
that far away from the central BH the differences between them become negligible.

Once more we analyse the role of pressure gradients on the infall by comparing the
polytropic SPH simulation shown in the bottom panel of Figure 5.9 with the correspond-
ing ballistic flow shown in the middle one. In the polytropic simulation we observe the
formation of a disc that keeps growing in mass and expanding horizontally. The material
in this disc corresponds to the fraction of the infalling matter which possesses enough
angular momentum to remain in a stable orbit around the BH. Since it is not within the
scope of the present work to study the evolution of such a disc, we show here a snapshot
at a time at which any kind of initial transient related to the initial conditions has faded
away, but, at the same time, neither the mass nor the extension of the disc have grown
importantly (additionally, the presence of cooling in the simulation aids in limiting the
disc height). In Figure 5.11 we present a direct comparison of the streamlines for these
two cases. In this figure we see a quite good match between the two sets of streamlines in
the infall region while the effects of the pressure gradients become significant only in the
high density region near to the equatorial plane. Again, in this region we observe that
a shock front develops around the disc where the incoming streamlines decelerate and
deviate from the corresponding ballistic trajectories. From Figure 5.9 we also note that
the isodensity contours of the polytropic simulation in the infall region are less noisy
than those of the ballistic simulation. This is due to the action of pressure forces that
smooth out the particle distribution and so reduce discretisation fluctuations.

Note that, in comparing Figures 5.10 and 5.11, the departure of the ballistic stream-
lines from the analytic solution occurs earlier and for a larger fraction of the simulation
domain than the differences between the ballistic and polytropic streamlines. In other
words we see that here, adopting an improved description for the gravitational field of
the BH has a greater effect on the infall part of the simulation than including pressure.

Finally we note that, with respect to the a = 0 case discussed in Section 5.6.1, the
change in the spin parameter of the BH does not lead to significant qualitative differences
in either the velocity field or the density field of the accretion flow in the infall region.

5.7 Summary and discussion

In this chapter we have presented an analytic toy model for the relativistic accretion
of non-interacting particles onto a Kerr BH. Taking the assumptions of stationarity,
axisymmetry and ballistic motion, we have given analytic expressions for the streamlines
and the velocity fields as well as a simple numerical scheme for calculating the density
field. This model is a generalisation of the one presented in Paper II for Schwarzschild
spacetime, and it has been demonstrated how the earlier results are easily recovered
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Figure 5.9: This figure shows isodensity contours, streamlines and velocity fields
for the analytic solution and for the ballistic and polytropic SPH simulations, for an
accretion flow onto a rotating BH with a = 0.5M . The other model parameters are as
given in Eqs. (5.6.6)-(5.6.11). The common scale for the density colour coding is shown
at the bottom of the figure. The velocity field in each panel is represented by the two-
vectors (V̄ R, V̄ z); the length scale for these vectors is given at the bottom right corner
of each panel. The SPH simulations used a varying total particle number, but typically
this was around 2.5×105 at the times shown (mass per SPH particle ≈ 3.6×10−10M�).
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Figure 5.10: Streamlines corresponding to the analytic solution and to the ballistic
SPH simulation presented in the top and middle panels of Figure 5.9. The figure shows
the first quadrant of the R-z plane with the BH horizon (located at r+) indicated with
a black dashed-line quarter-circle.
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Figure 5.11: Streamlines corresponding to the ballistic and polytropic SPH simula-
tions presented in the middle and bottom panels of Figure 5.9. The figure shows a
zoom-in of the first quadrant of the R-z plane. The BH horizon (located at r+) is
indicated with the dashed-line quarter-circle.
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from the present solution in the non-rotating limit.

Using a single analytic expression for describing the streamlines constitutes a novel
way of expressing the solution to the latitudinal and radial motion of timelike geodesics
in Kerr spacetime. The generality of this expression has been shown by using standard
identities of the Jacobi elliptic functions.

We have explored the effect of frame-dragging on the resulting accretion flow and
found that an effective coupling occurs between the BH spin and the angular momentum
of the infall, leading to more extended discs if the flow is co-rotating with the BH and
smaller discs in the counter-rotating case.

Given the analytic nature of the present model, it provides a very practical tool
for use in benchmarking general relativistic hydrodynamics codes as we have demon-
strated here by comparing it against several SPH simulations (both with P = 0 and
for a polytropic EoS). Also, this toy model allows simple and direct comparisons be-
tween approximate methods for including general relativistic effects in simulations on a
case-by-case basis. We have used it here to test the performance of SPH simulations im-
plementing two pseudo-Newtonian potentials (MM and PW) and found an overall good
qualitative agreement between the toy model and the simulations, although we have
also seen that apparently small quantitative discrepancies in the flows can eventually
lead to rather different long-term evolutions (see e.g. Figure 5.8). In the purely ballistic
comparisons, we found a good agreement between the trajectories coming from different
gravity descriptions in the regions far away from the BH. However, as the test particles
approach the inner region, the different trajectories start to deviate significantly form
each other (see e.g. Figure 5.7). How important these discrepancies are in practice will
certainly depend on the particular application; nonetheless, from the present results we
can conclude that neither of the two pseudo-Newtonian potentials considered here is
particularly well-suited for reproducing off-equatorial motion of test particles.

Besides the utility of the toy model as a test solution, its flexibility for setting a
fairly wide range of boundary conditions makes it an ideal tool for exploring the effect of
different flow parameters (accretion rates, angular momentum and density distributions,
etc.) in applications where the approximations of steady-state and axisymmetry are
reasonable ones. These assumptions are often met in some interesting astrophysical
scenarios such as under-luminous accretion towards supermassive BHs, wind-fed X-ray
binaries and collapsars in which the accretion disc remains thin either due to efficient
cooling or because it evolves within the ‘small-scale inviscid’ regime. In this chapter
we have shown a series of comparisons between the toy model and full-hydrodynamic,
numerical simulations for a collapsar-like setup. Rather good agreement was obtained
between the simulations and the toy model, under circumstances where one might expect
to have agreement. The main discrepancies between the resulting accretion flows in
the infall region have been shown to be related more to the different treatments of
the gravitational field produced by the BH rather than to the ballistic description of
the infall. Indeed, we observed that the effects of pressure gradients tend to become
important just in the immediate proximity of the disc, where a shock front develops and
decelerates the incoming flow. A new kind of exploratory simulation can be envisaged in
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which simple but general boundary conditions are set far away from the central object
and then, by using the toy model, the flow is transported down to the region in which
pressure gradients become dominant where a proper hydrodynamical study can then
be performed. This kind of approach would greatly reduce the spatial domain of the
simulation, allowing greater resolution and reducing the computing time.



Chapter 6

Final remarks and conclusions

The work presented in this thesis is framed within a collaborative project concerning the
development of the new SPHINCS code, which is intended for studying astrophysical
phenomena involving the accretion flow of fluids towards a rotating BH. In the applica-
tions we want to investigate, special and general relativistic effects coming from a strong
gravitational field with frame-dragging are key factors for determining the fluid motion.

SPHINCS is conceived as a natural extension of the special relativistic code intro-
duced and successfully tested by Rosswog (2010a), and will also benefit from the new
density-balanced binary tree developed by Gafton & Rosswog (2011) which allows an
efficient and accurate neighbour search and (Newtonian) gravitational force calculation.
The mathematical framework on which SPHINCS is based consists of a recent general
relativistic formulation of SPH (Monaghan & Price, 2001; as extended by Rosswog,
2010b), which is derived self-consistently from a perfect-fluid Lagrangian and includes
corrective terms that account for time-varying adaptivity. We feel that SPHINCS should
constitute a substantial advance with respect to previous implementations of the SPH
method in the context of general relativity.

In Chapter 2 of this thesis, we have rederived the evolution equations used in
SPHINCS in terms of the 3+1 formalism. The adoption of this formalism has proven to
be very useful for handling the three reference systems involved in this set of equations:
the comoving reference frame in which the physical properties of the fluid are defined,
the reference frame of the Eulerian observers in which the numerical variables are de-
fined, and the locally flat computing frame in which the SPH interpolation is carried
out. This formalism has also allowed us to introduce a simple scheme for recovering the
physical variables from the numerical ones. Additionally, we have demonstrated that
in a flat spacetime, SPHINCS reduces to the special relativistic formulation of Rosswog
(2010a), that the geodesic equations are recovered in the limit of vanishing hydrody-
namical forces, and that the usual expressions of standard SPH are recovered in the
non-relativistic limit.

The first step in our development programme is to implement the SPHINCS equa-
tions in Kerr spacetime. Several aspects concerning this were discussed in Chapter 3.
There, we have given a general review of the Kerr metric in terms of the two most com-
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monly used coordinate systems: Boyer-Lindquist (BL) and Kerr-Schild (KS). The first
of these corresponds to observers located at infinity and, for this reason, these coordi-
nates are relevant for making connections to observations. However, given that these
coordinates become singular at the horizon, they are not the most convenient choice for
describing processes in the vicinity of the BH. The KS coordinates, on the other hand,
are regular everywhere except at the ring singularity, and because of this they are well
suited for the implementation of our numerical code. In Chapter 3 we have also dis-
cussed the transformation of vectorial and tensorial quantities back and forth between
these two coordinate systems, as well as expressing them in terms of the 3+1 formalism.
Finally, using the Cartesian-like form of the KS coordinates, we have provided explicit
expressions for the acceleration terms due to the spacetime curvature that enter into the
SPHINCS evolution equations. A key feature of this discussion is that, due to our choice
of coordinates and kernel estimate, the acceleration terms in the evolution equations
formally reduce to those in the special relativistic set of equations.

An important aspect in the development of any numerical code is the process of
calibration and testing. In this thesis we have introduced a number of tools which are
intended to be used for testing the features of SPHINCS which are directly related to
its implementation in a curved spacetime. Based on the detailed analysis of the time-
like geodesics of Kerr spacetime given in Chapter 4, we have prepared a catalogue of
representative test particle trajectories that will be used for benchmarking the ability
of the new code in recovering geodesic motion. A more complex test was presented in
Chapter 5 consisting of a toy model for the relativistic accretion of a rotating gas cloud
towards a Kerr BH. In Section 5.6 we demonstrated the use of the toy model as a test
solution by comparing it with two distinct SPH codes that implement pseudo-Newtonian
potentials for mimicking general relativistic effects of Schwarzschild and Kerr spacetimes.
From these results we saw that, even though the outcome of two simulations might be
qualitatively similar, small discrepancies between the streamlines in the vicinity of the
BH might lead to drastically different long-term evolutions. We also concluded that nei-
ther of the two potentials considered in that section correctly reproduced off-equatorial
motion. This is not surprising if we consider that these potentials were not designed to
reproduce this kind of motion, however they are frequently used in applications in which
correctly reproducing these types of trajectory might be of crucial importance (e.g. suc-
cessive passages of a star orbiting a BH before becoming tidally disrupted). Moreover,
there are many other important dynamical features of the Kerr spacetime that should
be taken into account (e.g. correct location of the innermost stable circular orbit, radial
acceleration, epicyclic frequencies), and no pseudo-Newtonian potential can accurately
approximate all of these simultaneously. This is one of the reasons why we consider that
having a numerical tool such as SPHINCS, which by construction should reproduce all of
these effects exactly, will represent important progress with respect to previous studies
using different pseudo-Newtonian potentials to mimic general relativistic effects.

In addition to geodesic motion, there are other relevant general relativistic effects that
the new code should reproduce. Further test solutions that we will consider are: the
extension of the Bondi model for spherical accretion onto a Schwarzschild BH given by
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Michel (1972); the Bondi-Hoyle model for wind accretion onto a Kerr BH, as considered
in Font et al. (1999); the pressure-balanced fat-disc model of Jaroszyński et al. (1980).

Once we have considered all of these tests and are confident that the new code is
correctly calibrated, we will have arrived at a working implementation of SPHINCS in
Kerr spacetime with a Newtonian treatment of the fluid self-gravity. This research tool
will then be used for studying several interesting astrophysical phenomena in which the
main contribution to the spacetime curvature is given by the central BH, such as:

• The early stages of long GRB progenitors, in the model where these arise from the
collapse of a rather rapidly rotating core of a massive star to form a black hole plus
an encircling disc of high density matter. In the simulations presented by Taylor
et al. (2011), the authors found a dynamical instability in the disc leading to the
formation of spiral arms that drastically increased the accretion rate of matter
flowing onto the central BH. Key features determining the onset of this instability
were modelled in that work by means of a pseudo-Newtonian potential. It would
be interesting to know if the same result holds with a more accurate description
of the gravitational field of the BH.

• The interaction of the BH spin with the inner parts of an accretion disc around it.
Various mechanisms can exert a torque on the accreting matter in the disc leading
to the formation of a warp (see e.g. Bardeen & Petterson, 1975). The dynamics of a
warped disc can strongly affect the spin history of a BH, and, conversely, the frame-
dragging due to a rapidly rotating BH can enhance or suppress the formation and
propagation of warps. SPHINCS can be useful for revisiting a number of previous
investigations of these systems (see e.g. Lodato & Pringle, 2006; Perego et al., 2009;
Lodato & Price, 2010).

• The tidal disruption of a star by a central BH. These systems are considered to
be the engine behind some X-ray flares (see e.g. Burrows et al., 2011). In recent
work, using a pseudo-Newtonian potential, Rosswog et al. (2009) suggested that
the tidal disruption of a white dwarf by an intermediate mass BH may be observed
as a particular type of thermonuclear supernova. It would be worth exploring this
same system with an accurate modelling of the strong gravity and frame-dragging
effects induced by the BH.

Future developments of the code may also involve a post-Kerr approximation in
which self-gravity is modelled as a small perturbation of the background metric and then
treated as an effective force in the evolution equations. However, for applications in which
the self gravity of the fluid cannot be considered as giving only a small perturbation to
the spacetime, SPHINCS could be made fully general-relativistic by coupling it with a
metric solver (e.g. Löffler et al., 2012). Since metric solvers are usually written in terms
of the 3+1 formalism, having rewritten the SPHINCS evolution equations in a 3+1 form
will be advantageous for this.
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Appendix A

Catalogue of test particle orbits

In this appendix we present a catalogue of representative timelike geodesics in Kerr
spacetime. The results are reported for both the Boyer-Lindquist (BL) coordinates (t,
r, θ, φ) and the Kerr-Schild (KS) coordinates (T , r, θ, ψ) as introduced in Chapter 3.
The results presented here were obtained by direct numerical integration of the system
of differential equations in Eqs. (4.2.1), (4.2.2), (4.2.9) and (4.2.10), that describe the
proper time evolution of the particle coordinates in the KS system. As discussed in
Sections 3.3, the use of KS coordinates allows us to follow trajectories that plunge into
the event horizon, without encountering a coordinate singularity. We map the resulting
trajectories into BL coordinates by using the transformation rules in Eq. (3.3.1).

The purpose of the present orbit catalogue is two-fold. First, it contributes with
practical examples to the general discussion of timelike geodesics given in Chapter 4.
And second, it provides a basic test suite for benchmarking the ability of the SPHINCS
code at recovering geodesic motion in the limit in which hydrodynamic forces are zeroed.

In what follows we report results for the motion of some representative examples of
test particles freely falling in a Kerr spacetime. We also show spatial projections of the
resulting trajectories. We consider first the case of trajectories in the equatorial plane for
co-rotating and counter-rotating motion, and then the more general case of trajectories
off the equatorial plane.

A.1 Orbits in the equatorial plane I: co-rotating case

Here we consider a family of trajectories in the equatorial plane (θ̇ = 0 and Q = 0)
characterised by a common value of ` = 3.7M . For the spin parameter of the BH we
take a = 0.5M . The radial effective potential V+(r) corresponding to these parameters
is plotted as a function of r in Figure A.1. In this case V+(r) has two stationary points
at

ruc ≈ 2.77M and rsc ≈ 10.84M.

The first value corresponds to the radius of an unstable circular orbit (maximum of
V+), while the second value corresponds to the radius of a stable circular orbit (local
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minimum of V+). In Figure A.1 we have highlighted six energy levels that correspond to
six qualitatively different types of trajectory. The energy levels are

• E1 = V+(rsc) ≈ 0.957, stable circular trajectory,

• E2 = 0.98, elliptical-like trajectory,

• E3 = 1.0, parabolic-like trajectory,

• E4 = 1.03, hyperbolic-like trajectory,

• E5 = V+(ruc) ≈ 1.054, unstable circular trajectory,

• E6 = 1.07, plunging trajectory.
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Figure A.1: The radial effective potential V+(r) is plotted for a = 0.5M , ` = 3.7M
and Q = 0. The energy levels of the six representative trajectories considered in this
section are highlighted with coloured lines while the starting points for the numerical
integration are indicated by the intersections with the vertical line r0 ≈ 42.69.

The intersections between the energy levels and the vertical line r0 ≈ 42.69 in Fig-
ure A.1 indicate the starting point of each of the six trajectories considered here. The
test particle in the stable circular orbit describes a trajectory with constant radius rsc.
For the other five orbits, we take a common initial radius of r0 ≈ 42.69M which was
chosen to coincide with the apocentre (radius of maximum distance from the origin)
of the elliptical-like orbit. In the last four cases, we have considered a negative value
for the initial radial velocity ṙ0. The initial values for ṙ0 and ψ̇0 were obtained from
Eqs. (4.2.1) and (4.2.10) after substituting r = r0 and the conserved quantities E , ` and
Q in each case. Concerning the transformation from KS to BL coordinates: in each case
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we take the initial point of the trajectory as the synchronisation point, i.e. T0 = t0 = 0
and ψ0 = φ0 = 0.

Figures A.2, A.3 and A.4 show, respectively, the results of the numerical integration
of the elliptical-like, parabolic-like, and hyperbolic-like trajectories considered in this
case. In the first panel of each of these figures we plot r as a function of τ . The second
row of the figures is divided into two panels, in the panel on the right hand side we plot
φ(τ) and ψ(τ), while in the panel on the left hand side we plot the difference between
these two azimuthal angles. From this panel we see that φ(τ) and ψ(τ) increase at a
faster pace (steeper slope) at the pericentre and at a slower pace as the particle recedes
from the BH. We also see that the difference φ(τ) − ψ(τ) vanishes at r0 (since we use
this as the synchronisation radius) and that becomes maximum at the pericentre. The
third row is again divided into two panels. On the left we plot t(τ) and T (τ), and on
the right we plot the difference t(τ) − T (τ). Just as for the azimuthal coordinate, here
we see that the pace of growth of t(τ) and T (τ), as well as of the difference t(τ)− T (τ)
is maximum at the pericentre. In the last panel we show the spatial projection of the
trajectory on the x-y plane.

The results for the unstable circular trajectory are shown in Figure A.5. This figure
is organised in panels in the same way as Figure A.2. From this figure we note that due
to round-off error, the actual energy level in this case was slightly below the real V+(ruc)
value. As a consequence of this, after one or two nearly circular orbits the test particle
finally reaches a turning point and then goes away again towards infinity.

The results for the plunging trajectory are shown in Figure A.6. Here we have that
the energy level of the trajectory is above the centrifugal barrier of the radial effective
potential, i.e. E6 > V+(ruc), and therefore the test particle ends up plunging into the
BH. In the first three panels of Figure A.6, we show the proper time evolution of the
particle’s radial, azimuthal and time coordinates, respectively. The bottom row of the
figure consists of two panels with the spatial projection of the trajectory onto the x-
y plane. The panel on the left hand side shows the resulting trajectory in the KS
description, while the panel on the right hand side shows the same trajectory in the BL
description. As discussed in Section 3.1, the t and φ BL coordinates diverge as r → r+
and, as a result, the trajectory in this description actually never crosses the outer event
horizon. On the other hand, in the KS description the test particle reaches the ring
singularity after a finite amount of both proper time τ and KS coordinate time T .
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Figure A.2: Elliptical-like trajectory for the parameter values a = 0.5M , E2 = 0.98,
` = 3.7M and Q = 0. The first five panels show the proper time evolution of r(τ),
ψ(τ), φ(τ), t(τ) and T (τ), as well as the differences φ(τ)− ψ(τ) and t(τ)− T (τ). The
last panel shows the spatial projection of the trajectory in the x-y plane. In this last
panel (and in all of the following plots with spatial projections) the outer event horizon
r+, is indicated with a dashed black line.
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Figure A.3: Parabolic-like trajectory for the parameter values a = 0.5M , E3 = 1, ` =
3.7M and Q = 0. The panels in the figure follow the same structure as in Figure A.2.
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Figure A.4: Hyperbolic-like trajectory with parameter values a = 0.5M , E4 = 1.03,
` = 3.7M and Q = 0. The panels in the figure follow the same structure as in Fig-
ure A.2.
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Figure A.5: Unstable circular trajectory with parameter values a = 0.5M , E5 =
V+(ruc) ≈ 1.054, ` = 3.7M and Q = 0. The panels in the figure follow the same
structure as in Figure A.2.
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Figure A.6: Plunging trajectory with parameter values a = 0.5M , E6 = 1.07, ` =
3.7M and Q = 0. The first three panels show the proper time evolution of the radial,
azimuthal and time coordinates, respectively. The panel at the bottom left shows the
trajectory in the KS description projected onto the x-y plane. The bottom right panel
shows the same projection but for the BL description.
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A.2 Orbits in the equatorial plane II: counter-rotating case

We consider now a family of trajectories in the equatorial plane with a common value of
` = 4.7M . In this case the trajectories counter-rotate around a BH with spin parameter
a = −0.5M . The radial effective potential in this case has been plotted in Figure A.7.
The radial effective potential V+(r) has two stationary points at

ruc ≈ 4.69M and rsc ≈ 17.49M,

that correspond to unstable and stable circular orbits, respectively. The energy levels
(highlighted in Figure A.7) for the test particle trajectories considered in this case are

• E1 = V+(rsc) ≈ 0.97, stable circular trajectory,

• E2 = 0.98, elliptical-like trajectory,

• E3 = 1.0, parabolic-like trajectory,

• E4 = 1.01, hyperbolic-like trajectory,

• E5 = V+(ruc) ≈ 1.025, unstable circular trajectory,

• E6 = 1.03, plunging trajectory.
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Figure A.7: The effective potential V+(r) is plotted for a = −0.5M , ` = 4.7M and
Q = 0. Six different energy levels are indicated by coloured lines while the intersections
with the vertical line r0 ≈ 36.1 represent the starting points for the numerical integration
of the trajectories considered in this section.

Except for the stable circular orbit, the starting radius of all the other trajectories
is taken to be at the apocentre of the elliptical-like orbit, r0 ≈ 36.1M . The rest of
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the initial conditions are taken as in Section A.1. Figures A.8, A.9 and A.10 show,
respectively, the results of the numerical integration of the elliptical-like, parabolic-like,
and hyperbolic-like trajectories considered in this case. These figures are organised in
panels in the same way as Figure A.2.

The results for the unstable circular trajectory are shown in Figure A.11. This figure
is organised in panels as in Figure A.6. In this case the rounded-off energy level was
slightly above the real V+(ruc) value and so, after performing a succession of nearly
circular orbits, the test particle finally plunges into the BH and ends up at the ring
singularity after a finite amount of proper time τ , and KS coordinate time T . In contrast,
the BL coordinates t and φ diverge at r = r+. Therefore, in the BL description, the
particle never crosses the outer event horizon. We also note in this figure that, due to
the frame dragging effect, the BL azimuthal coordinate φ ceases to be monotonically
increasing in the vicinity of r+.

The results for the plunging trajectory are shown in Figure A.12 that is again organ-
ised in the same way as Figure A.6. Just as in the previous case, in this figure we notice
how the trajectory in the BL description is trapped in an infinite loop around the outer
event horizon and is forced to co-rotate with the black hole in the vicinity of r+.



A.2. ORBITS IN THE EQUATORIAL PLANE II 125

0 500 1000 1500

15

20

25

30

35

Τ�M

r�
M

0 500 1000 1500

0

5

10

15

Τ�M

A
zi
m
u
th
al
an
g
le

Φ

Ψ

0 500 1000 1500

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Τ�M

Φ
-
Ψ

0 500 1000 1500

0

20

40

60

80

100

120

Τ�M

HT
im

e
-
Τ
L
�
M

t

T

0 500 1000 1500

0.0

0.5

1.0

1.5

2.0

2.5

Τ�M

Ht
-
T
L�
M

-30 -20 -10 0 10 20 30

-20

-10

0

10

20

30

x
�

�M

y�
�M

Figure A.8: Elliptical-like trajectory with parameter values a = −0.5M , E = 0.98,
` = 4.7M and Q = 0.
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Figure A.9: Parabolic-like trajectory with parameter values a = −0.5M , E = 1,
` = 4.7M and Q = 0.
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Figure A.10: Hyperbolic-like trajectory with parameter values a = −0.5M , E = 1.01,
` = 4.7M and Q = 0.
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Figure A.11: Unstable circular trajectory with parameter values a = −0.5M , E =
V+(ruc) ≈ 1.025, ` = 4.7M and Q = 0.
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Figure A.12: Plunging trajectory with parameter values a = −0.5M , E = 1.03,
` = 4.7M and Q = 0.
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A.3 Orbits off the equatorial plane I

In this section we examine the six representative trajectories associated with the energy
levels highlighted in Figure A.13, where the radial effective potential V+(r) has been
plotted for a = 0.98M , ` = 3M and Q = 8.5M2. In this case the two stationary points
of V+(r) are at

ruc ≈ 1.99 M, and rsc ≈ 8.23M.

The highlighted energy levels in Figure A.13 correspond to

• E1 = V+(rsc) ≈ 0.94, stable spherical trajectory,

• E2 = 0.97, elliptical-like trajectory,

• E3 = 1.0, parabolic-like trajectory,

• E4 = 1.03, hyperbolic-like trajectory,

• E5 = V+(ruc) ≈ 1.05, unstable spherical trajectory,

• E6 = 1.08, plunging trajectory.

r+
r01 2 5 10 20 50 100

0.95

1.00

1.05

1.10

r�M

V
+

Figure A.13: The effective potential V+(r) is plotted for a = 0.98M , ` = 3M and
Q = 8.5M2.

All of the trajectories considered in this section start from a common polar angle
θ0 = π/3, with a negative value of θ̇0, and co-rotate with the black hole (ψ̇0 > 0). Besides
the stable spherical orbit, the initial common radius for all of the other trajectories
corresponds to the apocentre of the elliptical-like orbit, r0 ≈ 27.2M . As in the previous
sections, we have considered in the last four cases a negative value for the initial radial
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velocity ṙ0, while the initial values for ṙ0, θ̇0 and ψ̇0 were obtained from Eqs. (4.2.1),
(4.2.2) and (4.2.10), respectively. We have also taken the initial point of each trajectory
(intersections with the dashed vertical line in Figure A.13) as the synchronisation point
for the transformation from KS to BL coordinates.

Figure A.14 shows the results of the numerical integration of the stable spherical or-
bit. The first four panels in this figure show the proper time evolution of the coordinates
of the particle, while the other three panels show show a three-dimensional plot of the
trajectory and two spatial projections of it on the R-z and x̃-ỹ planes. It is interesting
to notice that in this case, as opposed to that for an equatorial stable circular orbit,
the azimuthal coordinate is not a linear function of the proper time and present slight
undulations, being steeper when the particle is closer to a turning point in its polar
motion. Also note that in this case, given that r = const., from Eq. (3.3.1) it follows
that T (τ) = t(τ) and ψ(τ) = φ(τ).

Figures A.15, A.16, A.17 and A.18 show, respectively, the results for the elliptical-
like, parabolic-like, hyperbolic-like and unstable spherical trajectories. The first row of
each of these figures shows two panels with r(τ) and θ(τ). The second row shows φ(τ),
ψ(τ) and φ(τ) − ψ(τ), while the third row shows t(τ), T (τ) and t(τ) − T (τ). The last
three panels of each of these figures show the same spatial projections as in Figure A.14.

The results for the plunging trajectory are shown in Figure A.19. As in Figure A.14,
the first four panels of this figure show the proper time evolution of the coordinates of
the particle. The remaining panels show three spatial projections of the trajectory on
the R-z, x-y and x̃-ỹ planes. We note in this case the interesting effect that, in general,
an off-equatorial orbit with an energy high enough to plunge into the event horizon
does not necessarily end up at the singularity as it is in Schwarzschild spacetime or for
trajectories in the equatorial plane in Kerr spacetime. In the present case, the trajectory
reaches a turning point in its radial motion for a radius 0 < r < r+, but, since the r
coordinate becomes timelike inside the event horizon it cannot become non-monotonic,
and the particle is trapped on a circular orbit slightly outside the ring singularity. Finally
note that this effect is only visible in the KS representation, while, as before, in the BL
representation the particle apparently never crosses the outer event horizon.
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Figure A.14: Stable spherical orbit for the parameters a = 0.98M , E = V+(rsc) ≈
0.94, ` = 3M and Q = 8.5M2. The black spheroid in the three-dimensional plot
corresponds to the outer event horizon r+.
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Figure A.15: Elliptical-like trajectory for the parameter values a = 0.98M , E = 0.97,
` = 3M and Q = 8.5M2.
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Figure A.16: Parabolic-like trajectory for the parameter values a = 0.98M , E = 1,
` = 3M and Q = 8.5M2.
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Figure A.17: Hyperbolic-like trajectory for the parameter values a = 0.98M , E =
1.03, ` = 3M and Q = 8.5M2.



136 A. CATALOGUE OF TEST PARTICLE ORBITS

0 20 40 60 80 100 120 140

5

10

15

20

25

Τ�M

r�
M

0 20 40 60 80 100 120 140
0.5

1.0

1.5

2.0

2.5

Τ�M

Θ

0 20 40 60 80 100 120 140

0

10

20

30

Τ�M

A
zi

m
ut

ha
la

ng
le

Φ

Ψ

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

Τ�M

Φ
-

Ψ

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

Τ�M

HT
im

e
-

Τ
L�M

t

T

0 20 40 60 80 100 120 140

0

2

4

6

8

Τ�M

Ht-
T

L�M

0 5 10 15 20

0

5

10

15

20

R�M

z�
M

0 5 10 15 20

-4

-2

0

2

4

6

8

10

x��M

y� �M

0

10

20

x
�

�M

0510

y
�

�M

0

10

20

z
�

�M

Figure A.18: Unstable spherical orbit for the parameter values a = 0.98M , E =
V+(ruc) ≈ 1.05, ` = 3M and Q = 8.5M2.



A.3. ORBITS OFF THE EQUATORIAL PLANE I 137

0 10 20 30 40 50
0

5

10

15

20

25

Τ�M

r�
M

0 10 20 30 40 50
0.5

1.0

1.5

2.0

2.5

Τ�M
Θ

0 10 20 30 40 50

0

20

40

60

Τ�M

A
zi

m
ut

ha
la

ng
le

Φ

Ψ

0 10 20 30 40 50

0

20

40

60

80

100

120

140

Τ�M

HT
im

e
-

Τ
L�M

t

T

0 5 10 15 20

0

5

10

R�M

z�
M

0 5 10 15 20

-2
-1

0
1
2
3

x��M

y� �M

0 5 10 15 20

-2
-1

0
1
2
3

x�M

y�
M

Figure A.19: Plunging trajectory for the parameter values a = 0.98M , E = 1.08,
` = 3M and Q = 8.5M2. A black dot in the R-z projection represents the ring
singularity.
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A.4 Orbits off the equatorial plane II

All of the cases analysed in this and the following section correspond to trajectories
plunging into the black hole. The aim of this study is to explore a unique characteristic
of Kerr spacetime in that, for suitable values of a, E and `z, the polar effective potential
H(θ) (defined in Eq. 4.5.2) has two local minima symmetrically located about the equator
as opposed to the Schwarzschild and Newtonian cases in which it has just one minimum
located at θ = π/2. This possibility was discussed in further detail in Section 4.5 and
the locations of the minima, θm and θm′ , were given in Eq. (4.5.8). The condition that
a, E and `z must satisfy for having two minima is(

E2 − 1
)
a2 > `2z, (A.4.1)

from which it follows that E2 > 1, that is, this feature occurs only for unbound orbits.
In this section we consider the trajectories highlighted in Figure A.20, where the polar
effective potential H(θ) has been plotted for a = 0.9M , `z = 0.05M and E = 1.6.

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Θ�Π

H

Figure A.20: The polar effective potential H(θ) is plotted for a = 0.9M , `z = 0.05M
and E = 1.6. The four horizontal dashed lines correspond to (bottom to top) Q/M2 ≈
−1.154, −1, 0, 1

All of the trajectories considered in this section have a common initial polar angle
θ0 = θm ≈ 0.212, begin from r0 = 20M and co-rotate with the black hole, ψ̇0 > 0. The
corresponding value of Q in each case is
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• Q = H(θm) ≈ −1.15M2, red orbit

• Q = −M2, green orbit

• Q = 0, blue orbit

• Q = M2, yellow orbit

For each of the last three cases we are actually considering two trajectories, one with
θ̇0 > 0 (solid line) and the other with θ̇0 < 0 (dashed line).

0 2 4 6 8 10 12 14

0.0

0.5

1.0

1.5

Τ�M

Θ

Figure A.21: Proper time evolution of the polar angle coordinate for the seven tra-
jectories mentioned above (corresponding to the four values of Q/M2 represented in
Figure A.20).
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Figure A.22: Spatial projection onto the R-z plane for the same seven trajectories as
in Figure A.21. Note that the R and z axes have not the same scale.
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Figure A.23: Projection onto the x-y and x̃-ỹ planes. In the BL description (left)
the trajectory never crosses the outer event horizon and stays there, going infinitely
around a circular orbit. In the x-y projection the radius of this circle is given by
r = r+ sin θ+, where θ+ is the polar angle at which the trajectory reaches r+. Note
that in the KS representation (right) we have followed the trajectories until the point
at which r becomes negative and the particle crosses into another asymptotically flat
spacetime.



A.5. ORBITS OFF THE EQUATORIAL PLANE III 141

A.5 Orbits off the equatorial plane III

In this section we consider the trajectories highlighted in Figure A.24. As in the previous
case, here we take the following parameter values a = 0.9M , `z = 0.05M and E = 1.6.
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Figure A.24: The polar effective potential H(θ) is plotted for a = 0.9M , `z = 0.05M
and E = 1.6. The horizontal dashed line corresponds to a constant value of Q =
−0.5M2.

The six trajectories considered in this section are co-rotating, have a common value
of Q = −0.5M2 and begin from r0 = 20M . Again, a solid line represents an orbit with
θ̇0 > 0 and a dashed line one with θ̇0 < 0.(1) The initial polar angles being considered
are

• θ0 ≈ 0.06 (first root of H(θ0) = Q), yellow trajectory,

• θ0 = 0.25, red trajectory,

• θ0 = 0.5, purple trajectory,

• θ0 = 0.75, blue trajectory,

• θ0 ≈ 0.89 (second root of H(θ0) = Q), green trajectory.

(1)We only consider these two orbits for the trajectory starting at θ0 = 0.5 as a way of exemplifying
the dependence on the sign of θ̇0 but without oversaturating with curves the figures in this section.
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Figure A.25: Proper time evolution of the polar angle coordinate for the six trajecto-
ries mentioned above (corresponding to the five values of θ0 represented in Figure A.24).
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Figure A.26: Spatial projections onto the R-z, x-y and x̃-ỹ planes of the same six
trajectories as in Figure (A.25).



Appendix B

Jacobi elliptic functions

In this appendix, we introduce the elliptic integral of the first kind and, in terms of
it, we define the Jacobi elliptic functions. A rigorous mathematical definition of these
functions is given in Hancock (1917), Cayley (1961) and Lawden (1989), while useful
formulae can be found in Abramowitz & Stegun (1970). In what follows, we restrict
ourselves to presenting some basic identities for these functions that are relevant for the
present study.

In general, elliptic integrals are defined as functions that can be expressed in the
form

f(x) =

∫ x

0
R(x′,

√
P (x′)) dx′, (B.1)

where R is a rational function of its arguments, and P (x) is a third or fourth order
polynomial in x. In particular, the elliptic integral of the first kind is defined as

F (x, k) =

∫ x

0

dx′√
(1− x′2)(1− k2x′2)

, (B.2)

where k = const. is the so-called modulus. An alternative expression for F (x, k) is
obtained after substituting x = sinϕ in the previous equation, which results in

F (sinϕ, k) =

∫ ϕ

0

dϕ′√
1− k2 sin2 ϕ′

. (B.3)

The new variable ϕ is called the Jacobi amplitude. An elliptic integral is said to be
complete when ϕ = π/2, i.e.

K(k) = F (1, k) =

∫ π/2

0

dϕ′√
1− k2 sin2 ϕ′

. (B.4)

The function K(k) is called a complete elliptic integral of the first kind.
The Jacobi elliptic functions can be considered as a natural extension of the trigono-

metric functions. Just as the inverse of the sine function can be defined by the expression

sin−1(x) =

∫ x

0

dx′√
1− x′2

, (B.5)
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the inverse of the Jacobi elliptic function sn(u, k) is defined as

sn−1(x, k) = F (x, k) =

∫ x

0

dx′√
(1− x′2)(1− k2x′2)

. (B.6)

From Eqs. (B.3)-(B.6) we have that

sn(u, k) = sin[F−1(u, k)] = sinϕ. (B.7)

Similarly, two further Jacobi elliptic functions are defined as

cn(u, k) = cosϕ, (B.8)

dn(u, k) =

√
1− k2 sin2 ϕ. (B.9)

From Eqs. (B.7)-(B.9) it follows that the functions sn(u, k), cn(u, k) and dn(u, k) satisfy

sn2u+ cn2u = 1, (B.10)

dn2u+ k2sn2u = 1, (B.11)

dn2u− k2cn2u = k′2, (B.12)

where, for simplicity, we have dropped k from the notation and where k′ =
√

1− k2 is
called the complementary modulus.

From Eq. (B.6), it is simple to see that the Jacobi elliptic functions are related to
both trigonometric and hyperbolic functions through

sn (u, 0) = sinu, sn (u, 1) = tanhu,

cn (u, 0) = cosu, cn (u, 1) = sechu, (B.13)

dn (u, 0) = 1, dn (u, 1) = sechu.

The Jacobi elliptic functions are periodic in K(k) and K ′(k) = K(k′) according to

sn (u+ 2mK + 2n iK ′, k) = (−1)msn (u, k), (B.14)

cn (u+ 2mK + 2n iK ′, k) = (−1)m+ncn (u, k), (B.15)

dn (u+ 2mK + 2n iK ′, k) = (−1)ndn (u, k). (B.16)

Nine further elliptic functions are obtained after taking quotients or reciprocals of
the already defined ones

nsu =
1

snu
, ncu =

1

cnu
, ndu =

1

dnu
,

scu =
snu

cnu
, cdu =

cnu

dnu
, dsu =

dnu

snu
, (B.17)

csu =
cnu

snu
, dcu =

dnu

cnu
, sdu =

snu

dnu
.
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Some special values of these functions are

cn(0) = 1, sn(0) = 0, dn(0) = 1,

cn(K) = 0, sn(K) = 1, dn(K) = k′,

cn(2K) = −1, sn(2K) = 0, dn(2K) = 1, (B.18)

cn(u+K) = −k′sd(u), sn(u+K) = cd(u), dn(u+K) = k′nd(u),

cn(u+ 2K) = −cn(u), sn(u+ 2K) = −sn(u), dn(u+ 2K) = dn(u).

The Jacobi elliptic functions satisfy the following addition theorems

sn (u+ v) =
snu cn v dn v + sn v cnudnu

1− k2sn2u sn2v
, (B.19)

cn (u+ v) =
cnu cn v − snu sn v dnudn v

1− k2sn2u sn2v
, (B.20)

dn (u+ v) =
dnudn v − k2snu sn v cnu cn v

1− k2sn2u sn2v
, (B.21)

from where it is simple to get the following identities for double arguments

sn 2u =
2 snu cnu dnu

1− k2sn4u
, (B.22)

cn 2u =
cn2u− sn2udn2u

1− k2sn4u
, (B.23)

dn 2u =
dn2u− k2sn2u cn2u

1− k2sn4u
. (B.24)

These equations can be inverted as

sn2u =
1− cn 2u

1 + dn 2u
, (B.25)

cn2u =
cn 2u+ dn 2u

1 + dn 2u
, (B.26)

dn2u =
dn 2u+ k2cn 2u+ k′2

1 + dn 2u
. (B.27)

In general, the modulus k of the elliptic functions can be either a pure real number
or a pure imaginary number and can have any magnitude. Nevertheless, it is always
possible to transform an elliptic function with an arbitrary modulus into an equiva-
lent combination of elliptic functions with a modulus k̃ ∈ [0, 1]. For example, given a
non-negative real number k and defining ũ =

√
1 + k2 u, k̃ = k/

√
1 + k2, we have the

following transformations

k sn(u, i k) = k̃ sd(ũ, k̃), (B.28)

cn(u, i k) = cd(ũ, k̃), (B.29)

dn(u, i k) = nd(ũ, k̃), (B.30)
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while for a modulus k > 1, with the definitions ũ = k u, k̃ = 1/k, we have

sn(u, k) = k̃ sn(ũ, k̃), (B.31)

cn(u, k) = dn(ũ, k̃), (B.32)

dn(u, k) = cn(ũ, k̃). (B.33)

Moreover, it is possible to increase or decrease the magnitude of the modulus by means of
the so-called, ascending and descending Landen transformations. Defining ũ = (1+k)u/2
and k̃ = 2

√
k/(1 + k), the Landen ascending transformations are given by

sn(u, k) =
2

1 + k̃

sn(ũ, k̃) cn(ũ, k̃)

dn(ũ, k̃)
, (B.34)

cn(u, k) =
1 + k̃

2 k̃

dn2(ũ, k̃)− 1−k
1+k

dn(ũ, k̃)
, (B.35)

dn(u, k) =
1 + k̃

2

dn2(ũ, k̃) + 1−k
1+k

dn(ũ, k̃)
, (B.36)

and, if we define ũ = (1 + k)u/2 and k̃ = (1 − k)/(1 + k), the Landen descending
transformations are given by

sn(u, k) =
(1 + k̃) sn(ũ, k̃)

1 + k̃ sn2(ũ, k̃)
, (B.37)

cn(u, k) =
cn(ũ, k̃) dn(ũ, k̃)

1 + k̃ sn2(ũ, k̃)
, (B.38)

dn(u, k) =
dn2(ũ, k̃)− (1− k̃)

(1 + k̃)− dn2(ũ, k̃)
. (B.39)

An alternative way of expressing the Landen ascending transformations is obtained by
combining Eqs. (B.22)-(B.24) and (B.34)-(B.36), which results in

sn

[
(1 + k)u,

2
√
k

1 + k

]
=

(1 + k)sn(u, k)

1 + k sn2(u, k)
, (B.40)

cn

[
(1 + k)u,

2
√
k

1 + k

]
=

cn(u, k)dn(u, k)

1 + k sn2(u, k)
, (B.41)

dn

[
(1 + k)u,

2
√
k

1 + k

]
=

1− k sn2(u, k)

1 + k sn2(u, k)
. (B.42)

The argument of the elliptic functions can be any arbitrary complex number. In the
case of a pure imaginary number, we have

sn(i u, k) = i sc(u, k′), (B.43)

cn(i u, k) = nc(u, k′), (B.44)

dn(i u, k) = dc(u, k′), (B.45)
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where u ∈ R and k′ =
√

1− k2. Bringing together the results in Eqs. (B.19)-(B.21) and
Eqs. (B.43)-(B.45), we have that, in the general case,

sn(u+ i v, k) =
sn(u, k) dn(v, k′) + i cn(u, k) dn(u, k) sn(v, k′) cn(v, k′)

cn2(v, k′) + k2sn2(u, k) sn2(v, k′)
, (B.46)

cn(u+ i v, k) =
cn(u, k) cn(v, k′)− i sn(u, k) dn(u, k) sn(v, k′) dn(v, k′)

cn2(v, k′) + k2sn2(u, k) sn2(v, k′)
, (B.47)

dn(u+ i v, k) =
dn(u, k) cn(v, k′) dn(v, k′)− i k2sn(u, k) cn(u, k) sn(v, k′)

cn2(v, k′) + k2sn2(u, k) sn2(v, k′)
. (B.48)
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Paczyńsky, B. & Wiita, P. J., 1980. Thick accretion disks and supercritical lumi-
nosities. Astronomy and Astrophysics, 88, 23–31.

Penrose, R., 1965. Gravitational Collapse and Space-Time Singularities. Physical
Review Letters, 14, 57–59.

Penrose, R., 1969. Gravitational Collapse: the Role of General Relativity. Rivista del
Nuovo Cimento, 1, 252.

Perego, A., Dotti, M., Colpi, M. & Volonteri, M., 2009. Mass and spin co-
evolution during the alignment of a black hole in a warped accretion disc. Monthly
Notices of the Royal Astronomical Society , 399, 2249–2263.

Piran, T., 2004. The physics of gamma-ray bursts. Reviews of Modern Physics, 76,
1143–1210.

Popham, R., Woosley, S. E. & Fryer, C., 1999. Hyperaccreting Black Holes and
Gamma-Ray Bursts. Astrophysical Journal , 518, 356–374.

Prendergast, K. H. & Burbidge, G. R., 1968. On the Nature of Some Galactic
X-Ray Sources. Astrophysical Journal , 151, L83+.

Price, D. J., 2004. Magnetic fields in Astrophysics. Ph.D. thesis, Institute of Astron-
omy, Cambridge, UK.

Price, D. J., 2012. Smoothed particle hydrodynamics and magnetohydrodynamics.
Journal of Computational Physics, 231, 759–794.



BIBLIOGRAPHY 157

Price, D. J. & Bate, M. R., 2009. Inefficient star formation: the combined effects
of magnetic fields and radiative feedback. Monthly Notices of the Royal Astronomical
Society , 398, 33–46.

Price, D. J. & Monaghan, J. J., 2007. An energy-conserving formalism for adaptive
gravitational force softening in smoothed particle hydrodynamics and N-body codes.
Monthly Notices of the Royal Astronomical Society , 374, 1347–1358.

Price, D. J. & Rosswog, S., 2006. Producing Ultrastrong Magnetic Fields in Neutron
Star Mergers. Science, 312, 719–722.

Pringle, J. E., 1981. Accretion discs in astrophysics. Annual Review of Astronomy
and Astrophysics, 19, 137–162.

Rees, M. J., 1984. Black Hole Models for Active Galactic Nuclei. Annual Review of
Astronomy and Astrophysics, 22, 471–506.

Rees, M. J., 1988. Tidal disruption of stars by black holes of 10 to the 6th-10 to the
8th solar masses in nearby galaxies. Nature, 333, 523–528.

Rhoades, C. E. & Ruffini, R., 1974. Maximum Mass of a Neutron Star. Physical
Review Letters, 32, 324–327.

Robinson, D. C., 1975. Uniqueness of the Kerr black hole. Physical Review Letters,
34, 905.

Rosswog, S., 2009. Astrophysical smooth particle hydrodynamics. New Astronomy
Reviews, 53, 78–104.

Rosswog, S., 2010a. Conservative, special-relativistic smoothed particle hydrodynam-
ics. Journal of Computational Physics, 229, 8591–8612.

Rosswog, S., 2010b. Relativistic smooth particle hydrodynamics on a given background
spacetime. Classical and Quantum Gravity , 27(11), 114108.
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