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Summary

Percolation was stated as a mathematical problem by Broadbendt and Hammer-
sley [1] back in the fifties and is considered by mathematicians [2, 3] a branch of
probability theory. Due to the large amount of its applications, percolation is a
popular subject of research also within the physicist community.1

In its simplest version one takes a regular lattice L and draws bonds connect-
ing neighboring sites with probability p. Connected sites form clusters of different
sizes. For p larger than a threshold value pc typical configurations contain a clus-
ter with an infinite number of sites, the so-called infinite cluster, which eventually
for p = 1 coincides with L itself. The occurrence of the infinite cluster separates
two different phases, the subcritical phase (p < pc) in which all the clusters are
finite from the supercritical phase (p > pc) in which one is infinite. The phase
transition is continuous and can be described applying concepts like scaling and
renormalization [4, 5], well known to theoretical physicists from the study of crit-
ical phenomena. Percolation theory [6] studies the properties of clusters, their
average number, their average size and the way in which sites can be distributed
among them (connectivities). It is relevant in the context of complex network
[7], polymer gelation [8], diffusion of a liquid in porous media, earthquakes and
damage spreading [9]. Percolation has also been applied in cosmology to model
star and galaxy formation [10] and in condensed matter problems like the cele-
brated quantum Hall effect [11] where the transition is related to the localization
of the electronic wavefunction.

1It is interesting to note that one of the purposes leading Broadbendt and Hammersley to the

introduction of percolation was to test the performance of the computers available at the time.

Nowdays numerical simulations are probably the most efficient way to investigate percolation

from a physicist point of view.
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SUMMARY

The peculiarity of the percolative phase transition is the absence of any sym-
metry breaking mechanism, a circumstance that prevents physicists from writing
an effective action for the relevant degrees of freedom in the spirit of Landau and
Ginzburg. It is however interesting to observe that also the paradigmatic exam-
ple of Landau-Ginzburg phase transition, i.e. the spontaneous magnetization of a
ferromagnet, can be cast in the language of percolation, if one focuses on clusters
of equally magnetized spins.

In this thesis we will study the percolative transition in two dimensions, con-
centrating on those aspects of the process which do not depend on the specific lat-
tice realization and are therefore termed universal. Universality is a consequence
of renormalization group theory. Near criticality, in a system with infinitely
many degrees of freedom, fluctuations of macroscopic observables are strongly
interacting and correlated on a dynamical length scale, the correlation length,
larger than the typical microscopic scale or cut-off. The large distance behavior
of the observables depends on the correlation length and is then unaffected by
the cut-off. At the critical point, where the correlation length diverges, conformal
invariance emerges and the critical behavior of a statistical mechanics model is
then described by a conformally invariant field theory.

In two dimensions [12, 13] conformal field theory (CFT) has been proved
extremely useful in providing the classification of the various types of critical
behaviors occurring in Nature, but even away from criticality the field theory
resulting from the perturbation of a CFT by a relevant operator may have re-
markable features. In particular it can possess an infinite number of conservation
laws which strongly constrain the particle dynamics and allow the exact solution
of the scattering problem. Such field theories are called integrable [14, 15].

In this thesis we show how conformal invariance and integrability 2 allow to
improve our understanding of the percolative phase transition and in particular

2During the days in which this thesis was written the 2011 ICTP Dirac medal has been

awarded to E. Brezin, J. Cardy and A. Zamolodchikov “for recognition of their independent

pioneering work on field theoretical methods to the study of critical phenomena and phase

transitions; in particular for their significant contributions to conformal field theories and inte-

grable systems. Their research and the physical implications of their formal developments have

had important consequences in classical and quantum condensed matter systems and in string

theory.”
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SUMMARY

to derive exact or extremely accurate results, which have been tested by high-
precision numerical simulations. The material presented in this thesis is based
on the research articles

• Potts q-color field theory and the scaling random cluster model [16];

• On the three-point connectivity in two-dimensional percolation [17];

• Universal amplitude ratios of two-dimensional percolation from field theory
[18];

• Crossing probability and number of crossing clusters in off-critical percola-
tion [19];

• Phase separation and interface structure in two dimensions from field theory
[20];

• Universal properties of Ising clusters and droplets near criticality [21].

In the first chapter we will introduce the q-color Potts model [22, 23], a
generalization of the well known Ising model invariant under color permutations.
After a brief overview of percolation theory, we describe how the percolative phase
transition can be studied formally analyzing the ferromagnetic phase transition of
the Potts model in the limit q → 1. We will also recall some basic elements of CFT
and will give the definition of percolative interface, a concept that mathematicians
[24] use to rigorously formulate the physicist notion of scaling limit and conformal
invariance.

The connection between percolation and the Potts model is based on the For-
tuin and Kasteleyn representation of the partition function [25], which provides
an analytic continuation of the Potts partition function to arbitrary real q, known
as the random cluster model3 [26]. The random cluster model (RCM) undergoes
a percolative transition for q less than a dimensionality dependent value qc and
the second chapter is devoted to investigate how its scaling limit can be described
by a field theory, which we call Potts field theory [16]. In particular we will find

3The random cluster model is a percolation model in which bonds are not independent

random variables.
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SUMMARY

a systematic way to express connectivities in the RCM as spin correlation func-
tions in the Potts field theory. Focusing on the bidimensional case we will also
introduce the concept of kink field: kinks are the lightest excitations interpo-
lating between vacua of different colors in the ordered ferromagnetic phase. The
chapter ends with the solution of Chim and Zamolodchikov [27] for the scattering
problem and with a brief discussion of how correlation functions can be computed
out of criticality through the form factor approach.

Chapter 3 is devoted to the three-point connectivity at criticality. In the lan-
guage of conformal field theory, percolation is a logarithmic theory, i.e. a theory
with vanishing central charge in which correlation functions may have logarithmic
singularities [28, 29]. We will argue how a formal use of permutational symmetry
allows to keep track of the right multiplicities of the kink fields as q → 1 and
to determine their operator product expansion (OPE). At criticality the bulk
three-point connectivity factorizes into the product of a constant R and of two-
point connectivities. The constant R is exactly the structure constant arising in
the OPE of the kink fields. We determined R exactly [17] also exploiting Al.
Zamolodchikov [30] analytic continuation of the structure constants of the con-
formal minimal models. Our theoretical result has been confirmed by a numerical
simulation [31].

In chapter 4 we present the computation based on the form factor approach of
all the independent universal amplitude ratios of percolation [18]. In particular
we obtain the ratio between the average size of finite clusters below and above
the percolation threshold pc. The numerical estimations for this quantity had
been controversial for thirty years.

The study of percolation on a finite domain of the plane has also an interesting
history, started by the observation of Langlands et al. [32] of the universality of
the vertical crossing probability in the scaling limit on a rectangular geometry and
further developed by the exact computation by Cardy at the critical point [33].
In chapter 5 we recall Cardy derivation of the crossing probability and present
an off-critical extension valid in the limit in which both sides of the rectangle
are large compared to the correlation length [19]. Our asymptotic formula agrees
with the numerical data of [34].

In chapter 6 we discuss the density profile of the spanning cluster starting

8



SUMMARY

from the more general perspective of phase separation [20].
As we observed at the beginning of this introduction a ferromagnetic transi-

tion is naturally associated to a percolative transition. Naively one would expect
that the existence of a spontaneous magnetization implies the presence of an in-
finite cluster of equally magnetized spins and viceversa. The relation between
magnetic and geometric degrees of freedom in a ferromagnet is however more
subtle and it is the subject of the final chapter of the thesis where universal
properties of correlated percolation in the Ising model are analyzed [21].

9



SUMMARY

10



Chapter 1

Potts model and percolation

In this chapter we introduce the q-color Potts model on arbitrary graphs G,
discussing the Fortuin-Kasteleyn and domain wall representations of the partition
function. After a brief overview of conformal field theories in two dimensions, we
introduce basic notions of percolation theory and state the connection with the
q → 1 limit of the Potts model.

1.1 Potts model: FK and domain wall expansions

Consider a planar connected graph L ≡ (V,E) of vertex set V and edge set
E and associate to any vertex x ∈ V a color variable s(x) = 1, . . . , q ∈ N. Two
vertices x, y are nearest neighbors if they are connected by an edge and a pair of
nearest neighboring vertices is denoted by 〈x, y〉. The Potts model Hamiltonian
[22, 23] is defined on L by

HPotts = −J
∑

〈x,y〉
δs(x),s(y) (1.1)

where δs(x),s(y) is the usual Kronecker symbol. The Hamiltonian (1.1) is invariant
under global permutations σ ∈ Sq, the symmetric group of q elements, acting on
the graph variables. The partition function is the sum

ZPotts(J, q) =
∑

{s(x)}
e−HPotts . (1.2)

11



CHAPTER 1. POTTS MODEL AND PERCOLATION

For J positive the model is ferromagnetic, antiferromagnetic otherwise.
We discuss two convenient ways of rewriting the Boltzmann weight in (1.2),

leading to different graph expansions for the partition function. Take

eJδs(x),s(y) =

{ [
eJ − 1

]
δs(x),s(y) + 1[

1− δs(x),s(y)

]
+ eJδs(x),s(y).

(1.3)

In both cases the partition function is a product of 2|E(L)| terms, where |E(L)| is
the number of edges in L. Consider the first case and define p = 1− e−J , v = eJ .
To any term in the product we associate a graph G ⊆ L, the edges of G coincide
with the edges 〈x, y〉 for which the term containing δs(x),s(y) has been selected in
the expansion, we have

ZPotts(J, q) = v|E(L)| ∑

{s(x)}

∑

G⊆L
p|E(G)|(1− p)|E(L)|−|E(G)|, (1.4)

where, due to the Kronecker delta, the variables s(x) are constrained to be equal
in any connected component1 (cluster) of G. Denoting with |C(G)| the number
of such connected components we obtain

ZPotts(J, q) = v|E(L)| ∑

G⊆L
p|E(G)|(1− p)|E(L)|−|E(G)|q|C(G)|, (1.5)

which is called the high temperature or Fortuin-Kasteleyn (FK) graph expansion
[25]. The FK expansion provides an analytic continuation of the Potts partition
function for q ∈ R; the statistical mechanics model defined by the (1.5) for q > 0
is the random cluster model. The graphs entering the FK representation are the
FK graphs; notice that two different FK clusters separated by a single edge can
have equal color. Such situation is forbidden by the second choice of rewriting the
Boltzmann weight in (1.3), which in turns leads to the domain wall expansion.

First define the dual graph L∗ = (V ∗, E∗) of L. The vertices of L∗ are the
centers of the faces (planar regions) of L and edges of L∗ cross the edges of L, see
Fig. 1.1. If the term

[
1−δs(x),s(y)

]
is chosen, the variables s(x) and s(y) must have

different colors and we draw an edge in the dual graph L∗, intersecting the edge
〈x, y〉 ∈ L, see Fig. 1.1. To any graph variable configurations is then associated

1Isolated vertices count as single connected components.
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CHAPTER 1. POTTS MODEL AND PERCOLATION

Figure 1.1: Left. A graph L and its dual L∗. The vertices of L are the blue dots,
the vertices of L∗ are the red circles. Right. A domain wall configuration on the
dual lattice L∗ of a square lattice. The graph H∗ contains domain walls enclosing
the clusters of equally colored lattice variables.

a graph H∗, the faces of H∗ are clusters of equally colored graph variables. The
sum over s(x) gives the chromatic polynomial2 πH(q) of H the dual graph of H∗
and we obtain the domain wall representation of the Potts model [35]

ZPotts(J, q) = v|E(L)|∑

H∗
πH(q)v−length(H∗), (1.6)

where length(H∗) is the total length of H∗ domain walls.
Assume J > 0. When v À 1 the formation of domain walls is suppressed in

(1.6) and typical configurations have uniform colorations. On the other hand for
v ¿ 1 and p→ 0 (1.5) shows that FK clusters with few sites are more probable.
The sum over their possible colors produces typically a permutational invariant
configuration. Let |V (L)| the number of vertices of L. In the thermodynamic
limit |V (L)| → ∞ one expects the existence of a graph dependent, and then
non-universal, value Jc such that for q smaller than a dimensionality dependent
value qc(d) the model has a continuous (second order) phase transition [23] and
the free energy

FPotts(J, q) = − log ZPotts(J, q), (1.7)

2The chromatic polynomial of a graph is the number of possible colorations of the vertices of

the graph such that each vertex may have q different colors and adjacent vertices have different

colors.
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CHAPTER 1. POTTS MODEL AND PERCOLATION
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Figure 1.2: Left. The graph G ⊂ L and its complementary graph G′ ⊂ L∗,
the edges of which are colored in green. Right. The duality transformation for
the four color Potts model. The intersection with the diagonal of the square
[0, 1] × [0, 1] identifies the critical value of the coupling Jc on a self-dual graph.
Notice that J∗(J∗(J)) = J .

is singular. The value Jc separates the order phase (J > Jc) with spontaneously
broken Sq symmetry from the disordered phase (J < Jc).

We conclude this section discussing the duality transformation of the Potts
partition function [23]; duality provides a simple way to locate Jc. Consider the
FK expansion (1.5) and recall the Euler relation for a planar graph G of |C(G)|
connected components

|C(G)| = |V (G)| − |E(G)|+ |L(G)|, (1.8)

where |V (G)| = |V (L)| is the number of vertices in G and |L(G)| is the number
of independent closed circuits. To any FK graph G with edge set E associate a
new graph G′ on the dual graph L∗. The edges of G′ are all the edges of L∗ that
do not intersect edges of G, see Fig. 2. We have

|L(G)| = |C(G′)| − 1 (1.9)

|E(G)|+ |E(G′)| = |E(L)|. (1.10)

Defining v∗ through the relation (v∗ − 1)(v − 1) = q the FK partition function

14



CHAPTER 1. POTTS MODEL AND PERCOLATION

(1.5) is3

ZPotts(J, q) = (v − 1)|E(L)|q1−|V (L∗)| ∑

G′⊆L∗
(v∗ − 1)|E(G′ )|q|C(G′ )|. (1.11)

Apart from a prefactor the partition function ZPotts(J, q) on the graph L coin-
cides with the partition function ZPotts(J∗, q) on the dual graph L∗. The duality
transformation J∗(J) is shown in Fig. 1.2 and maps the partition function on
L at small coupling J ¿ 1 into the partition function on L∗ at large coupling
J∗ À 1. If now L is a self-dual graph, for example a bidimensional square lattice,
the fixed point of the duality map J∗(Jc) = Jc is the value of the coupling for
which the model is critical. For q < qc, approaching Jc the variables s(x) become
correlated on larger and larger length scales and their fluctuations do not depend
on the lattice details. This feature, termed universality4, is a consequence of
the renormalization group on which we will come back in the next section and
chapters of the thesis.

1.2 Basic elements of conformal field theory

Figure 1.3: Three examples of conformal transformations in the complex plane.
From left to right are drawn in the z plane the curves Re(w) = const and Im(w) =
const for the mappings w(z) = 1

z ,
√

z and log z.

We recall some basic results of conformal field theory in two dimensions. Let L
be a regular lattice with lattice spacing a and H

({s(x)}, {J}) the Hamiltonian of

3We used |L(L)| = |V (L∗)| − 1 and |C(L)| = 1.
4More precisely, different statistical mechanics models share the same properties at large

distances on the critical surface identified by the irrelevant directions of the renormalization

group transformation.
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CHAPTER 1. POTTS MODEL AND PERCOLATION

a statistical mechanics model formulated in terms of variables s(x) and coupling
set {J}. The two-point correlation function is the average

〈s(x)s(0)〉 =
1
Z

∑

{s(x)}
e−Hs(x)s(0). (1.12)

Near the critical point the behavior of (1.12)

〈s(x)s(0)〉 = ξ−2XsF
(|x|/ξ

)
(1.13)

defines the correlation length ξ, the typical length scale of the fluctuations and Xs

the scaling dimension5 of s(x). ξ diverges at criticality and the region of validity of
(1.13) is the scaling region. In the scaling region the functional form (1.13) is not
affected6 by the specific details of the lattice L and we can identify renormalized
local densities (scaling fields), for example φ(x) ∼ a−Xss(x), whose conjugated
couplings transform multiplicatively under the linearized renormalization group
transformation [4, 5]. In the continuum limit a→ 0 the dynamics of the densities
is described by an Euclidean two-dimensional quantum field theory

〈φ(x)φ(0)〉S =
1
Z

∫
Dφ e−S[φ]φ(x)φ(0), (1.14)

with action S specified by the requirement that for |x| À a

〈s(x)s(0)〉 = K〈φ(x)φ(0)〉S , (1.15)

where K is an a-dependent normalization constant. The mass of the quantum
field theory m is the inverse of ξ. At the fixed point of the renormalization group
transformation ξ = ∞ and the densities φi(x) with scaling dimension Xφi obey
global scale invariance under x→ bx

φi(bx) = b−Xφi φ(x). (1.16)

The corresponding quantum field theory has action S∗ and it is massless, with
two-point function

〈φi(x)φi(0)〉S∗ =
1

|x|2Xφi

, (1.17)

5In d dimensions for a scalar order parameter 2Xs = d − 2 + η with η the usual anomalous

dimension.
6F (t) → e−t + const. in the infrared limit |x| À ξ and F (t) → t−2Xφ in the ultraviolet limit

|x| ¿ ξ.
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CHAPTER 1. POTTS MODEL AND PERCOLATION

which is a power-law. In writing (1.17) we also assumed rotational and trans-
lational invariance; if we further require the invariance of S∗ under local scale
transformations x → b(x)x the full group of symmetry is the conformal group
and S∗ is conformal invariant [36].

Restrict from now on to two dimensions [12]. Conformal transformations of
coordinates maintain local angles between vectors in the plane, see Fig. 1.3. For
convenience we introduce complex coordinates z = x1 + ix2 and z̄ = x1 − ix2,
the Euclidean metric g = 1

2

[
dz ⊗ dz̄ + dz̄ ⊗ dz

]
is off-diagonal in the coordinates

(z, z̄) and therefore the tangent vectors ∂ ≡ d
dz and ∂̄ ≡ d

dz̄ have zero norm. The
transformation of coordinates w(z, z̄) preserves the angles if

〈∂w, ∂w〉 = 〈∂̄w, ∂̄w〉 = 0, (1.18)

〈∂w, ∂̄w〉 =
1
2
Ω(w, w̄), (1.19)

where ∂w ≡ d
dw , ∂̄w ≡ d

dw̄ and the inner product 〈a, b〉 between two vectors a, b is
g(a, b). It is simple to prove that (1.18) and (1.19) are satisfied by the isogonal
mappings w(z, z̄) = w(z) and w(z, z̄) = w(z̄) giving Ω(w, w̄) =

∣∣ dz
dw

∣∣2. However
only analytic functions preserve the local angle orientation and define a conformal
mapping.

The scaling fields for which the requirement of conformal covariance analogous
to (1.19) naturally translates into

φi(w, w̄) =
∣∣∣∣
dz

dw

∣∣∣∣
Xφi

φi(z, z̄) (1.20)

are the primary fields of the conformal field theory. Conformal transformations
are analytic functions and it is useful to regard z and z̄ as independent variables
defining two different scaling dimensions hφi , h̄φi such that Xφi = hφi + h̄φi .
Under z → w(z), z̄ → w̄(z̄) a primary field transforms as

φi(w, w̄) =
(

dz

dw

)hφi
(

dz̄

dw̄

)h̄φi

φi(z, z̄). (1.21)

The real numbers hφi and h̄φi are equal for a scalar field and are called confor-
mal dimensions. An infinitesimal conformal transformation w(z) = z + ε(z) is
generated by the stress energy tensor Tµν(x), which is symmetric, traceless and

17



CHAPTER 1. POTTS MODEL AND PERCOLATION

Hout

inH

inH

Hout

1t

t2

1t
t2 zw

2 iπ
R

�
�
�
�

w
z=e

Figure 1.4: Radial quantization of a conformal field theory on the z plane is
obtained from the conformal mapping z = e−

2πiw
R , where w = x + iy is the

Euclidean coordinate on the cylinder. The asymptotic Hilbert spaces of massless
particles are denoted by Hin and Hout.

conserved. In complex coordinates Tµν has only two independent components
Tzz = T11 − 2iT12 − T22 ≡ T (z) and Tz̄z̄ = T11 + 2iT12 − T22 ≡ T̄ (z̄), which
are purely analytic and antianalytic as a consequence of the conservation law
∂µTµν = 0.

To quantize a conformal field theory we introduce light-cone coordinates w± =
x ± t and think the Minkowsky space-time as a cylinder of circumference7 R.
The asymptotic Hilbert spaces Hin and Hout are defined on the cylinder at time
t = ±∞. Operators of the quantum theory Φ(x, t) are of the factorized form
Φ+(w+)Φ−(w−) and inside correlation functions time-ordering T is understood

〈Φ1(x1, t1) . . .Φn(xn, tn)〉 ≡ 〈T {Φ1(x1, t1) . . .Φn(xn, tn)}〉, (1.22)

T {
Φ1(x1, t1) . . .Φn(xn, tn)

}
=

∑
σ∈Sn

∏n−1
i=1 θ(tσ(i)− tσ(i+1))Φσ(1) . . . Φσ(n). After

the analytic continuation t = iy to Euclidean space let w = x + iy. The quan-
tization prescription (radial quantization) on the complex plane of z is obtained
exploiting conformal covariance through the mapping z = e−

2iπ
R

w, see Fig. 1.4.
For example, suppose to compute on the z plane the equal times commutator

7This is necessary because a massless field theory on the line has not well defined asymptotic

states.
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CHAPTER 1. POTTS MODEL AND PERCOLATION

between two operators A(ζ), B(z). Time ordering on the cylinder translates into
radial ordering on the plane and we find

[A(ζ), B(z)] = lim
|ζ|→|z|

θ
(|ζ| − |z|)A(ζ)B(z)− θ

(|z| − |ζ|)B(z)A(ζ). (1.23)

If the operator A is expressed as a contour integral of some operator density Q(w)
at constant time |w| = |ζ|

A =
∮

|w|=|ζ|

dw

2πi
Q(w), (1.24)

the commutator reads

[A,B(z)] =
∮

Cz

dw

2πi
Q(w)B(z), (1.25)

where Cz is a contour encircling the point z. To evaluate (1.23) it is necessary to
know the singularities arising from the short distance expansion limw→z Q(w)B(z)
which are ruled by the Operator Product Expansion (OPE). Let us consider the
stress energy tensor T (z). By dimensional analysis

lim
w→z

T (w)T (z) =
c/2

(w − z)4
+

2T (z)
(w − z)2

+
∂T (z)
z − w

+ regular terms, (1.26)

the real parameter c is the central charge of the conformal field theory. As
operators A and B of the form (1.24) we take the Laurent modes defined as

Ln =
1

2πi

∮

CO

dz zn+1T (z), (1.27)

with CO a contour encircling the origin O. The combined use of (1.26) and (1.23)
gives the commutation rule

[Ln, Lm] = (n−m)Ln+m +
c

12
δn+m,0 n(n2 − 1), (1.28)

which defines the Virasoro algebra. Consider now a primary field8 φh(z) with
conformal dimension h. Assuming the OPE

lim
w→z

T (w)φh(z) =
hφh(z)

(w − z)2
+

∂φh(z)
w − z

+ regular terms (1.29)

8We only focus on the dependence from the coordinate z.
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from (1.23) the commutation relations with the Laurent modes

[Ln, φh(z)] = h(n + 1)znφh(z) + zn+1∂φ(z) (1.30)

follow. The study of the representation theory of the Virasoro algebra (1.28) is
equivalent to the characterization of the Hilbert space Hin and we summarize the
basic results [4, 13].

• The Hilbert space Hin is the vector space of an infinite dimensional rep-
resentation of the Virasoro algebra. Highest weights |h〉 are eigenvector of
L0 defined by the action of the primary φh(0) on the conformal invariant
vacuum |Ω〉. Form (1.30)

L0|h〉 = h|h〉. (1.31)

The vacuum |Ω〉 is the only highest weight with conformal weight h = 0.

• Descendant states of |h〉 are obtained applying the modes L−n, n > 0,
to |h〉. The descendant state L−n1 . . . L−nk

|h〉 has L0 eigenvalue h + N ,
N =

∑k
i=1 ni. N is the level of the descendant and the number of descen-

dant states of |h〉 at level N is P (N), the number of partitions of N into
positive, not necessarily distinct, integers. The set of states resulting from
the application of the L−n’s to the highest weight |h〉 is the Verma module
of |h〉. The Hilbert space Hin is a direct sum of Verma modules.

• The P (N) × P (N) matrix resulting from the scalar products of the de-
scendant states of |h〉 at level N is the Grahm matrix G(h, c,N). Virasoro
algebra representations are unitary if all the elements of G(h, c, N) are non-
negative and irreducible if they are non-vanishing. The classification of the
Virasoro algebra representations is based on the exact formula, found by
Kac, for the determinant of G(h, c, N). We summarize the conclusions.

– For c < 0 there are no unitary representations.

– For c > 1 all the representations are unitary and irreducible for every
value of h.

– For c = 1 there are infinite values of h for which the representations
are reducible but all of them are unitary.
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– For 0 < c < 1 unitary representations are obtained for

c = 1− 6
t(t + 1)

, hm,n =
[(t + 1)m− tn]2 − 1

4t(t + 1)
, (1.32)

where t, m and n are integers with t > 2 and m = 1, . . . , t − 1
n = 1, . . . ,m. The representations are reducible and irreducible rep-
resentations are obtained subtracting all the vectors with vanishing
norm (null vectors) from the Verma module. For a given t, the confor-
mal field theory defined by (1.32) is called the minimal modelMt

9. In
a minimal model the null norm condition for a vector generates a dif-
ferential equation for the primary correlation functions, which can be
solved exactly. The primary fields with conformal dimensions (1.32)
are also the generators of the OPE algebra.

1.3 Critical q-color Potts model

The critical Potts model for arbitrary values of q is described by a conformal field
theory10. The parameter t in (1.32) relates to q as [37, 38]

√
q = 2 sin

π(t− 1)
2(t + 1)

. (1.33)

The theory is minimal only for integer q < 4. The value q = 4 corresponds to c = 1
and for q > 4 the Potts phase transition is first order (qc(2) = 4). The maximum
number of colors allowing the existence of a second order phase transition in two
dimensions can be found by simple group theoretic considerations, as we will
show in sections 2.3 and 2.7. The conformal dimensions hε and hs for the Potts
thermal and spin fields can be conjectured for arbitrary q [37, 38]

hε = h2,1 =
t + 3
4t

, (1.34)

hs = h t+1
2

, t+1
2

=
(t + 3)(t− 1)

16t(t + 1)
. (1.35)

9For c < 0 also exist representations which are minimal, i.e. they contain a finite number of

primaries, but not unitary. The simplest example is the Lee-Yang model.
10When q is not integer we are referring to the random cluster model representation of the

partition function.
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We observe from (1.32) that for q 6= 2, 3 the Verma module of the Potts spin
field s does not contain null vectors and no differential equations are known to
be satisfied by its correlation functions.

As an example of conformal minimal model we discuss the critical three-color
Potts model. The Hamiltonian is

H = −J
∑

〈x,y〉

2
3

[
cos

(
ϕ(x)− ϕ(y)

)
+

1
2

]
, (1.36)

where ϕ(x) = 2π
3 s(x) and s(x) = 1, 2, 3. It is useful to consider the complex spin

variables σ(x) = eiϕ(x) and σ̄(x) = e−iϕ(x), in terms of which the Hamiltonian
(1.36) shows an explicit S3 = Z3 o Z2 symmetry11, the Z2 factor is associated
to the symmetry σ → σ̄. In the scaling limit the most relevant fields of the
continuum theory are the spin field s(x) = σ(x) + σ̄(x) and the energy field
ε(x). As discussed in section 1.1 the model is critical on a square lattice for
Jc = log(1 +

√
3). A comparison with the critical exponents of the exact lattice

solution due to Baxter [39] allows to identify the critical quantum theory as the
minimal modelM5 with central charge 4/5. The primary fields of theM5 theory
are collected with their conformal weights in the Kac table.

n = 4 1
8

3 1
15

2
3

2 1
40

21
40

13
8

1 0 2
5

7
5 3

m 1 2 3 4

Table 1.1: The Kac table for the minimal modelM5. The conformal dimensions
hm,n are indicated.

The spin field corresponds to φ3,3 and the energy field to φ2,1. The conformal
dimensions in the second row of the table do not have an interpretation in the
lattice solution and the corresponding fields decouple from the OPE algebra. The

11The presence of the semi-direct product o is due to the fact that Z2 is not a normal subgroup

of S3.
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Figure 1.5: Typical configurations in a bond percolation problem on a square
lattice. The bond occupation probabilities are 0.3, 0.5 and 0.7.

explanation of the decoupling involves the construction of the modular invariant
partition function on the torus [40, 41].

1.4 A short introduction to percolation

Consider the planar connected graph L defined in section 1.1. Bond percola-
tion on L is the random process12 in which the edges of L can be occupied with
probability p ∈ [0, 1]. The set of occupied edges defines a graph G ⊆ L, see Fig.
1.5, with probability measure Λ(G)

Λ(G) = p|E(G)|(1− p)|E(L)|−|E(G)|. (1.37)

The connected components of G are the percolative clusters. Two vertices x, y ∈
V are connected in the graph G if there exists a path of occupied edges starting
from x and ending at y. Connected vertices belong to the same cluster. The
probability Paa(x, y) that the vertices x and y belong to the same cluster a13

Paa(x, y) =
∑

G⊆L
Λ(G)θ(x, y|G), (1.38)

is the two-point connectivity in percolation. In (1.38) the function θ(x, y|G) = 1 if
x and y are connected and zero otherwise. In general, if the letters a1, . . . , an de-
note particular clusters we can define the n-point connectivity Pa1...an(x1, . . . , xn)

12We focus on bond percolation, but a site percolation problem can be also considered. Uni-

versal results in the scaling limit are identical for bond and site percolation.
13We used

P
G⊆L Λ(G) = 1.
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Figure 1.6: Left. Percolation problem on a Cayley tree with coordination number
σ = 3. A path of occupied edges connecting the origin O to the boundary of the
tree is colored in red. Right. The function P (p) obtained solving (1.40) for σ = 3.

as the probability that the vertex xi belongs to the cluster ai. The number of
n-point connectivities is the number of partitions of a set of n elements, the Bell
number Bn. Connectivities in the random cluster model will be analyzed in the
next chapter.

We introduce the percolative phase transition with an example. Take L a
Cayley tree with coordination number σ and N sites (vertices), Fig. 1.6, and
consider in the limit N →∞ the probability P (p) that the origin O is connected
to a point on the boundary. We have

P =
σ∑

k=1

(
σ

k

)
pk(1− p)σ−k(1−Qk), (1.39)

with P + Q = 1. The probability P satisfies the algebraic equation

P = 1− (1− pP )σ, (1.40)

which can be solved graphically. For p ≤ pc ≡ 1/σ the only solution is P = 0 and
a unique non-vanishing solution is obtained when p > pc. The threshold value
pc separates the subcritical phase (p < pc) from the supercritical phase (p > pc).
The critical exponent β is defined by

P (p) ∼ B(p− pc)β, p→ p+
c , (1.41)
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D

Figure 1.7: Left. Site percolation problem on a triangular lattice T at pc = 1/2.
The percolation interface ends on the right on the lattice. Right. The definition
of the interface γ with end points x1 and x2 in the continuum limit a → 0 on a
simply connected domain D ⊂ H.

and β = 1 in a Cayley tree, see Fig. 1.6. In the supercritical phase the cluster
containing the origin also contains an infinite number of sites in the thermo-
dynamic limit N → ∞ and it is called the infinite cluster. P (p) can be also
characterized as the average fraction of sites belonging to it. The average size
of finite14 clusters containing the origin S =

∑
x∈L Paa(x, 0) is another classical

observable in percolation theory. S diverges at pc and the critical exponent γ is
defined as

S ∼ Γ±|p− pc|−γ . (1.42)

The superscript ± on the critical amplitude Γ± refers to pc being approached
from below or above. In a Cayley tree γ = 1. The percolative transition on a
Cayley tree is actually an artifact due to the effective infinite dimensionality of
the graph. Connectivities are exponentially decaying with the distance also at
pc.

On the hypercubic lattice L = Zd (d ≥ 2) with lattice spacing a, the transition
is also signaled by the divergence of the correlation length ξ

ξ ∼ f±|p− pc|−ν , (1.43)

14In the supercritical phase all the clusters except the infinite one.
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defined from the behavior of the two-point connectivity in the scaling limit ξ À a

near pc

Paa(x, y) = ξ2−d−ηF
(|x− y|/ξ

)
. (1.44)

A critical exponent α is finally introduced for the singular part of the mean
number of clusters 〈Nc〉 with

〈Nc〉
N
∼ A±|p− pc|2−α, (1.45)

N being the total number of sites of L. Critical exponents α, β, γ and ν are
expected to be universal as well as suitable critical amplitude ratios15.

In two dimensions a rigorous definition of the scaling region for percolation is
possible and requires the notion of percolation interface γ. Mathematically the
percolation interface is defined starting from the critical (pc = 1/2) site percola-
tion problem on a triangular lattice T as follows. Consider the dual hexagonal
lattice H and color its faces in red or blue, see Fig. 1.7, according to the site
in the center being occupied or empty. Boundary conditions are chosen in such
a way that the sites on the bottom of T are half empty and half occupied. The
point in which boundary conditions change is O. The random curve γ is drawn
on the edges of H starting from O and separates a red colored region on its left
from a blue colored region on its right. It can be shown that in the limit in
which the lattice spacing a → 0, the random curve γ defines a random process
on a simply connected domain D of the upper half plane H which is known as
Schramm Lowener Evolution (SLE) [42, 43, 44]. If the end points of γ are fixed
on the boundary of D, see Fig. 1.7, a measure µ(γ; x1, x2, D) for the curves γ can
be defined16 directly in the continuum limit. The measure satisfies two properties

• Markov property. Divide the curve γ in two parts γ1 from x1 to x and γ2

from x to x2, then the conditional measure

µ(γ2|γ1; x1, x2, D) = µ(γ2;x, x2, D\γ1). (1.46)

15Universality in percolation and the existence of the scaling limit have been tested for many

years in numerical simulations and taken for granted by physicists.
16In the example of site percolation of Fig. (1.7) the probability to obtain the interface γ is

just 2−length(γ)
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• Conformal Invariance. Consider a conformal mapping Φ which maps the
interior of D into the interior of a new domain D′. The points x1 and x2

on the boundary are mapped into the points x′1 and x′2 on the boundary
of D′. The map Φ induces a new probability measure for the transformed
curve Φ(γ), Φ ∗ µ and it is required

Φ ∗ µ(γ; x1, x2, D) = µ(Φ(γ), x′1, x
′
2, D

′). (1.47)

The formalism of SLE allows a rigorous derivation17 of the critical exponents
for two-dimensional percolation that confirm the exact value obtained by
physicists through arguments that we recall in the next section.

1.5 Percolation as the q → 1 limit of the Potts model

Apart from an inessential prefactor the probability measure for a graph G in
the FK representation (1.5) coincides at q = 1 with (1.37). This simple obser-
vation identifies the FK clusters in the random cluster model at q = 1 with the
percolative clusters18. The geometric phase transition of percolation is mapped
onto the formal ferromagnetic phase transition of the Potts model with discrete
symmetry group Sq in the limit q → 1. To be more explicit, define at integer q

the Potts order parameter

σα(x) = qδs(x),α − 1, (1.48)

where α = 1, . . . , q and
∑q

α=1 σα = 0. Take a finite simply connected domain19

D ⊂ Rd and fix s(x) = α on the boundary of D. Correlation functions computed
with such a choice of boundary conditions are denoted with the subscript α. In
the FK representation 〈σα(x)〉α does not receive any contribution from graphs
in which the point x belongs to clusters which do not touch the boundary. If
instead x belongs to a cluster touching the boundary we simply obtain a factor

17On a triangular lattice, but universality is expected to hold.
18The connection is with bond percolation. We will not emphasize any more distinctions

between site and bond percolation since we will be interested in studying universal properties

in the scaling limit.
19These considerations directly apply in the continuum limit.
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Figure 1.8: Graphical representation of the FK expansion for the two-point func-
tion of the Potts order parameter σα. The boundary spins have fixed value α.

q − 1. It follows
〈σα〉α = (q − 1)Pq(x), (1.49)

where Pq(x) is the probability that x is connected to the boundary of D, computed
with the random cluster model measure (1.5). In the thermodynamic limit in
which D covers the whole plane R2 the expectation value 〈σα〉α is a constant. It
vanishes in the phase of unbroken Sq symmetry and defines the Potts spontaneous
magnetization20 in the broken phase with color α. The probability Pq(x) is
expected to be an analytic function of q and the limit

P ≡ lim
q→1

〈σα〉α
q − 1

(1.50)

is expected to exist and define the order parameter of percolation, introduced
in the previous section. Consider now the FK representation of the connected
two-point correlation function

Gαα(x, y) = 〈σα(x)σα(y)〉α − 〈σα〉2α, (1.51)

computed in the thermodynamic limit with boundary conditions α. The corre-
lation function (1.51) has non-vanishing contributions from graphs G in which
the two points are connected21 or in which the two points are connected to the

20Notice that the presence of an infinite FK cluster implies the presence of an infinite cluster

of α magnetized Potts spins (spin cluster). The viceversa is false.
21If the points are not connected to each other or are not connected to the boundary the sum

over the spin color
P

α σα factorizes and gives a vanishing result.
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boundary, see Fig. 1.8. In the thermodynamic limit in the broken phase of color
α the probability that the two points are connected to the boundary coincides
with the probability that both points belong to the infinite cluster Pi(x, y). We
obtain22

Gαα(x, y) =
q − 1

q
Paa(x, y) + (q − 1)2(Pi(x, y)− P 2) (1.52)

and the average size of finite clusters in percolation is

S = lim
q→1

∫
d2x Gαα(x, y)

q − 1
. (1.53)

The dependence on y in (1.53) can be eliminated by translational invariance.
Finally we observe that the singular part of the mean cluster number per site in
percolation can be computed directly from (1.5) as

〈Nc〉
N

= lim
q→1

f sing
q

q − 1
, (1.54)

where f sing
q is the singular part of the q-color Potts free energy density and we

have taken into account that f1 = 0. The validity of the relations (1.50), (1.53)
and (1.54) relies on the possibility to analytically continue the Potts partition
function for arbitrary q. Critical exponents of two-dimensional percolation are
then obtained from the basic scaling relations

α = 2− 2ν, ν =
1

2−Xε
, β = νXs, γ = 2ν(1−Xs), (1.55)

where Xε and Xs are twice the conformal dimensions hε and hs in (1.34), com-
puted at t = 2. Their values are

α = −2
3
, β =

5
36

, γ =
43
18

, ν =
4
3
. (1.56)

22Of course (1.52) is valid also in the unbroken phase.
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Chapter 2

Potts q-color field theory and

the scaling random cluster

model

In this chapter we study structural properties of the q-color Potts field theory
as a field theory able to capture for positive real q the scaling limit of the random
cluster model. The OPE of the spin fields and kink fields is analyzed, as well
as the duality transformation between their correlators in the two-dimensional
case. At the end of the chapter we briefly introduce the concept of integrable
field theory in 1 + 1 dimensions, discussing the peculiar features of factorized
scattering matrices. We present the specific example of the two-dimensional Sq

invariant Potts field theory perturbed away from criticality by the relevant energy
density field.

2.1 Introduction and general remarks

In chapter 1 we introduced the FK representation of the Potts model

ZPotts(J, q) = v|E(L)| ∑

G⊆L
p|E(G)|(1− p)|E(L)|−|E(G)|q|C(G)| (2.1)
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and commented that for non-integer values of q the partition function (2.1) defines
a generalized percolative problem which is called the random cluster model. In
the thermodynamic limit the random cluster model undergoes, for q continuous,
a percolative phase transition associated to the appearance, for p larger than a q-
dependent critical value pc, of a non-zero probability of finding an infinite cluster.
The transition is first order for q larger than a dimensionality-dependent value qc,
and second order otherwise; in particular, the limit q → 1, which eliminates the
factor q|C(G)| in (2.1), describes ordinary percolation as we discussed in section 1.5
When q is an integer larger than 1, the percolative transition of the random cluster
model contains, in a sense to be clarified below, the ferromagnetic transition of
the Potts model. For q ≤ qc, when a scaling limit exists, the problem admits a
field theoretical formulation. There must be a field theory, which we call Potts
field theory, that describes the scaling limit of the random cluster model for q real,
as well as that of the Potts ferromagnet for q integer1. This theory has the Potts
spin fields as fundamental fields (the FK mapping relates Potts spin correlators
and connectivities for the FK clusters) and is characterized by Sq-invariance. The
obvious question of the meaning of Sq symmetry for q non-integer arose at least
since the ε expansion treatment of [45], and appears to admit a general answer:
although one starts from expressions which are formally defined only for q integer,
formal use of the symmetry unambiguously leads to final expressions containing
q as a parameter which can be taken continuous.

The two-dimensional case allows for the most advanced, non-perturbative
results. The Potts field theory is integrable and the underlying scattering theory
was exactly solved in [27] for continuous q ≤ qc = 4. We will present some basic
features of integrable field theories in section 2.6.

In the next sections we will investigate instead, for q continuous, some struc-
tural properties of the Potts field theory as a theory characterized by Sq invariance
under color permutations and able to describe the scaling limit of the random
cluster model. We first of all observe that the issue of the content of the theory
is better addressed, in any dimension, focusing on linearly independent correla-
tion functions rather than on field multiplicities. For this purpose one needs to
have in mind the relation of spin correlators with cluster connectivities for q real,

1Potts field theory is described by the action (2.100) in two dimensions.
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rather than with magnetic properties for q integer. Just to make an example
already considered2 in [17], the correlator of three spin fields with the same color
is proportional to the probability that three points are in the same FK cluster.
This probability is well defined and non-vanishing for continuous values of q in
the random cluster model, in particular for the case q = 2 in which the spin
correlator has a zero enforcing Ising spin reversal symmetry; stripped of a trivial
factor q − 2, this spin correlator enters the description of cluster connectivity at
q = 2 as for generic real values of q. Similarly, a number nc ≤ n of different colors
enters the generic n-point spin correlator: a correlator with nc > q has no role in
the description of the Potts ferromagnet, but enters the determination of cluster
connectivities in the random cluster model.

One then realizes that the dimensionality Fn of the space of linearly indepen-
dent n-point spin correlators for real values of q is actually q-independent and
must coincide with that of the space of linearly independent n-point connectivi-
ties. We show that this is indeed the case and that Fn coincides with the number3

of partitions of a set of n elements into subsets each containing more than one ele-
ment; the relation between spin correlators and cluster connectivities is also given
and written down explicitly up to n = 4. Only a number Mn(q), smaller than
Fn for n large enough, of independent spin correlators enters the determination
of the magnetic properties at q integer, making clear that the magnetic theory
is embedded into the larger percolative theory4. Once the relevant correlation
functions have been identified, an essential tool for their study is the OPE of the
spin fields. Again, the existence of such an object for real values of q is made
a priori not obvious by the badly defined multiplicity of the fields. We show,
however, that its structure can be very naturally identified (equations (2.47) and
(2.48) below). The additional property we will study, duality, is specific of the
two-dimensional case. It is well known [22, 23] that spin correlators computed
in the symmetric phase of the square lattice Potts model coincide with disorder
correlators computed in the spontaneously broken phase. Here we study duality
directly in the continuum, for real values of q, and with the main purpose of clari-

2See chapter 3 of this thesis.
3We consider the symmetric phase, i.e. the case p ≤ pc.
4See [46] and [21] for detailed studies of this fact in the Ising model.
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fying the role of kink fields. These are the fields that in any two-dimensional field
theory with a discrete internal symmetry create the kink excitations interpolating
between two degenerate vacua of the spontaneously broken phase; in general, they
are linearly related to the usual disorder fields, which are mirror images of the
spin fields, in the sense that they carry the same representation of the symmetry.
In the Potts field theory, however, it appears that in many respects the use of
kink fields provides a simpler way of dealing with the symmetry for real values
of q. The duality between spin and kink field n-point correlators is a non-trivial
problem that we study in detail up to n = 4, both for bulk and boundary corre-
lations. The problem of correlation functions for points located on the boundary
of a simply connected domain is simplified by topological constraints which, in
the limit in which the boundary is moved to infinity, also account for non-trivial
relations among kink scattering amplitudes. In the next section we investigate
cluster connectivities and Potts spin correlators, their multiplicity and the rela-
tion between them. In section 2.3 we analyze OPE’s and obtain in particular that
for the Potts spin fields for real values of q. Duality between spin and kink field
correlators in two dimensions is studied in general in section 2.4 and specialized
to boundary correlations in section 2.5. Some technical remarks and details are
contained in the final appendices.

2.2 Counting correlation functions

2.2.1 Cluster connectivities

Correlations within the random cluster model (2.1) are expressed by the connec-
tivity functions giving the probability that n points x1, . . . , xn fall into a given
FK cluster configuration. In order to define the connectivities we associate to
a point xi a label ai, with the convention that two points xi and xj belong to
the same cluster if ai = aj , and to different clusters otherwise. We then use the
notation Pa1...an(x1, ..., xn) for the generic n-point connectivity function, within
the phase in which there is no infinite cluster, i.e. for p ≤ pc. The total number
of functions Pa1...an(x1, . . . , xn) is the number Bn of possible partitions (clusteri-
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zations) of the n points5; these Bn functions sum to one and form a set that we
call C(n).

It is not difficult to realize that the elements of C(n) can be rewritten as linear
combinations of “basic” k-point connectivities, with k = 2, . . . , n; we call Fk the
number of basic k-point connectivities, and P(k) ⊂ C(k) the set they form. There
is a simple procedure to build P(n) given the P(k)’s for k = 2, . . . , n − 1. Let us
start with n = 2: C(2) = {Paa, Pab}, but Paa +Pab = 1 implies F2 = 1 and we can
choose P(2) = {Paa}. Consider now n = 3: C(3) = {Paaa, Paab, Paba, Pbaa, Pabc},
however starting from Paaa and summing over the nonequivalent configurations
of the last point we have Paaa + Paab = Paa0, where Paa0 ≡ Paa(x1, x2) belongs,
we chose it on purpose, to P(2). We observe that only one linear combination of
connectivities in C(3) reproduces, taking into account the coordinate dependence,
the two-point connectivity in P(2); we obtain then the sum rules

Paaa + Paab = Paa0 ≡ Paa(x1, x2), (2.2)

Paaa + Paba = Pa0a ≡ Paa(x1, x3), (2.3)

Paaa + Pbaa = P0aa ≡ Paa(x2, x3), (2.4)

Paaa + Paab + Paba + Pbaa + Pabc = 1. (2.5)

This system of equations exhausts all the possible linear relations among the
elements of C(3); a reduction to a non-basic two-point connectivity (i.e. not
belonging to P(2), for example Pab0) will indeed produce an equation which is a
linear combination of those above. It follows, in particular, that the five elements
of C(3) can be written in terms of Paaa, Paa0, P0aa, Pa0a, so that F3 = 1 and we
can choose P(3) = {Paaa}.

In general, suppose we have chosen the Fk basic connectivities in P(k) for
k = 2 . . . n− 1. Given Pa1...an ∈ C(n), we can fix k of its n indices according to an
element of P(k); summing over the nonequivalent configurations of the remaining
n− k indices we obtain a linear relation for the connectivities of C(n). We can do
this for each of the Fk elements in P(k) and for

(
n
k

)
choices of k indices among n

indices. The number of independent sum rules for the elements of C(n) is then

En =
(

n

n− 1

)
Fn−1 +

(
n

n− 2

)
Fn−2 + ... +

(
n

2

)
F2 + 1 , (2.6)

5The Bn’s are known as Bell numbers and are discussed in Appendix A.
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n 1 2 3 4 5 6 7 8 9 10

Bn 1 2 5 15 52 203 877 4140 21147 115975
Fn 0 1 1 4 11 41 162 715 3425 17722

Mn(2) 0 1 0 1 0 1 0 1 0 1
Mn(3) 0 1 1 3 5 11 21 43 85 171
Mn(4) 0 1 1 4 10 31 91 274 820 2461

Table 2.1: The Bell numbers Bn give the number of partitions of n points. The
number Fn of linearly independent n-point spin correlators (2.11) coincides with
the number of partitions on n points into subsets containing at least two points. A
number Mn(q) of these correlators determines the n-point magnetic correlations
in the q-color Potts ferromagnet.

with the last term accounting for the fact that the n-point connectivities sum to
one. The number Fn of elements of P(n) is the minimum number of connectivities
in C(n) needed to solve the linear system of En equations in Bn unknowns, i.e.

Fn = Bn −
(

n

n− 1

)
Fn−1 −

(
n

n− 2

)
Fn−2 − ...−

(
n

2

)
F2 − 1 . (2.7)

Defining F0 ≡ 1 and knowing that F1 = 0, we rewrite (2.7) as

Bn =
n∑

k=0

(
n

k

)
Fk , ∀n ≥ 0. (2.8)

We show in Appendix A that (2.8) implies that Fn is the number of partitions of a
set of n points into subsets containing at least two points. We list in Table 2.1 the
first few Bn and Fn. The combinatorial interpretation of the Fn’s suggests that a
natural choice for the set P(n) of linearly independent n-points connectivities is to
consider clusterizations with no isolated points, i.e. P(2) = {Paa}, P(3) = {Paaa},
P(4) = {Paaaa, Paabb, Pabab, Pabba}, and so on.

2.2.2 Spin correlators

As we will see in a moment, it follows from the FK mapping that the Potts spin
correlators can be expressed as linear combinations of the cluster connectivities.
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Consistency of this statement requires that the number of linearly independent
spin correlators coincides with the number of linearly independent cluster con-
nectivities. The spin variables of the Potts model were defined in (1.48) as

σα(x) = qδs(x),α − 1 , α = 1, . . . , q , (2.9)

where s(x) is the color variable appearing in (1.1), and satisfy

q∑

α=1

σα(x) = 0 . (2.10)

The expectation value 〈σα〉 is the order parameter of the Potts transition, since
it differs from zero only in the spontaneously broken phase. More generally we
denote by

Gα1...αn(x1, . . . , xn) = 〈σα1(x1) . . . σαn(xn)〉J≤Jc (2.11)

the n-point spin correlators in the symmetric phase. We now show that, for
q real parameter, the number of linearly independent functions (2.11) coincides
with Fn.

Let the string (α1 . . . αn) identify the correlator (2.11), and suppose that αk

is isolated within this string, i.e. it is not fixed to coincide with any other index
within the string. We can then use (2.10) to sum over αk and obtain, exploiting
permutational symmetry, a linear relation among correlators involving a string
similar to the original one together with strings without isolated indices. The
simplest example,

0 =
∑

β

Gαβ = Gαα + (q − 1)Gαγ , γ 6= α , (2.12)

is sufficient to understand that (2.10) produces meaningful equations also if q is
non-integer, the only consequence being that some multiplicity factors in front
of the correlators become non-integer; also, the requirement γ 6= α should im-
ply q ≥ 2, but in the sense of analytic continuation to real values of q (2.12)
is equally valid for q < 2. Similarly, starting with a string with m isolated
indices αk1 , . . . , αkm , summing over αk1 and using permutational symmetry we
generate a linear relation involving the original string with the m isolated indices
αk1 , . . . , αkm together with strings in which αk1 is no more isolated, i.e. with at
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most6 m − 1 isolated indices. Iterating this procedure, any correlation function
(2.11) with isolated indices can be written as linear combination of correlation
functions without isolated indices. Recalling the meaning of Fn in terms of set
partitions, we then see that there are at most Fn Sq-nonequivalent, linearly in-
dependent correlation functions (2.11), i.e. those without isolated indices. On
the other hand, the constraint (2.10) does not generate any new linear relation
if we start with a string which does not contain any isolated index. The number
of linearly independent functions (2.11) is then exactly Fn.

Let us now detail the linear relation between cluster connectivities and spin
correlators. The latter admit the FK clusters expansion,

Gα1...αn(x1, . . . , xn) =
v|E(L)|

ZPotts

∑′

{s(x)}

∑

G⊆L
p|E(G)|(1− p)|E(L)−E(G)|

n∏

i=1

(
qδs(xi),αi

− 1
)
,

(2.13)
where the prime on the first sum means that sites belonging to the same FK
cluster are forced to have the same color s. Notice that, if one of the points xi

is isolated from the others in a cluster of a given graph G, then the sum over
its colors gives zero due to (2.10); hence, consistently with our previous analysis,
(2.13) receives a contribution only from partitions of the sites xi’s into clusters
containing at least two of these sites. If Pa1...an(x1, . . . , xn) is the probability of
such a partition, then the number of distinct clusters will be m < n, and to any
pair (xi, αi) we can associate one of the distinct letters c1, . . . , cm chosen among
the ai’s. The coefficient of Pa1...an in the expansion (2.13) is then7

1
qm

q∑

s1=1

∏
xi⊂c1

(
qδs1,αi − 1

) · · ·
q∑

sm=1

∏
xi⊂cm

(
qδsm,αi − 1

)
; (2.14)

the notation xi ⊂ c means that to the point xi is associated the letter c (x
belongs to the cluster c). For n = 2, 3 the dimensionality of correlation spaces is
F2 = F3 = 1 and (2.14) gives

Gαα = q1 Paa , (2.15)

Gααα = q1q2 Paaa , (2.16)
6We can have strings with m− 1 or m− 2 isolated indices.
7The prefactor 1/qm ensures the correct probability measure for the graph G.
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where we introduced the notation

qk ≡ q − k . (2.17)

The first relation with a matrix form appears at the four-point level (F4 = 4), for
which (2.14) leads to

Gαααα = q1(q2 − 3q + 3)Paaaa + q2
1(Paabb + Pabba + Pabab), (2.18)

Gααββ = (2q − 3)Paaaa + q2
1Paabb + Pabba + Pabab, (2.19)

Gαββα = (2q − 3)Paaaa + Paabb + q2
1Pabba + Pabab, (2.20)

Gαβαβ = (2q − 3)Paaaa + Paabb + Pabba + q2
1Pabab. (2.21)

The last set of equations, as well as those one obtains for n > 4, can be inverted
to express the connectivities in terms of the spin correlators, making clear that all
the Fn nonequivalent and independent spin correlators are necessary to determine
the connectivities of the random cluster model. On the other hand, a number
Mn(q) ≤ Fn of these spin correlators determine the magnetic correlations in the
Potts model at q integer. This is due to the fact that the spin correlators are
themselves the magnetic observables, and that for q integer some of them vanish
(e.g. Gαα...α(x1, . . . , xn) at q = 2, n odd, see (2.16)), those involving more than
q colors are meaningless in the magnetic context, and additional linear relations
may hold at specific values8 of q. The numerical sequences Mn(q) are determined
in Appendix B for q = 2, 3, 4 (the case q = 2 is of course trivial); the first few
values are given in Table 2.1 and plots are shown in Fig. 2.1. It is interesting, in

8For example the relation 3Gαααα = 2(Gαββα + Gαβαβ + Gααββ) holds specifically at q = 3

and the system of equations (19)–(22) is no longer invertible. More generally, we expect that

the Fn×Fn matrix Tn(q) giving the spin correlators in terms of the “basic” connectivities (given

explicitly by (2.15), (2.16) and (2.18)–(2.21) for n = 2, 3, 4) has determinant

det(Tn) = qan(q − 1)

n−1Y

k=2

(q − k)dn(k) , (2.22)

with dn(k) =
Pk

j=1 S̃(n, j) − Mn(k), S̃(n, j) being the generalized Stirling numbers discussed

in Appendix A, and an determined by the requirement that the total degree of the polynomial

(2.22) is Dn =
Pn

k=1(n−k)S̃(n, k), as follows examining (2.14). dn(k) is the difference between

the number of magnetically meaningful correlators at q = k and the number Mn(k) of those

which are linearly independent; it follows from (2.126) and (2.139) that dn(k) = 0 for k ≥ n.

We checked (2.22) up to n = 5.
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Figure 2.1: Plots of the first 20 values of the sequences Fn (number of independent
n-point spin correlators for q real) and Mn(q) (number of independent n-point
spin correlators in the magnetic sector) for q = 3, 4.

particular, to compare the large n behavior of the dimensionalities of the magnetic
and percolative correlation spaces. Defining

Mn(q) nÀ1∼ ensq(n), (2.23)

(2.133) and (2.138) give sq(n) = log(q − 1), a result which can be consistently
interpreted as a kind of entropy for the Potts spin σα and is expected to hold for
any integer q > 1. Fn exhibits instead the super-exponential growth [47]

Fn
nÀ1∼ ens(n) , (2.24)

s(n) = log n− log log n− 1 +
log log n

log n
+ O

(
1

log n

)
. (2.25)

2.2.3 Scaling limit and correlators of kink fields

For q ≤ qc, i.e. when the phase transition is continuous, the Potts field theory
describes the scaling limit J → Jc of the Potts model, with the spin variables
σα(x) playing the role of fundamental fields (x is now a point in Euclidean space).
In particular, the q degenerate ferromagnetic ground states which the Potts model
possesses above Jc correspond in the scaling limit to degenerate vacua of the
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Potts field theory. In the two-dimensional case the kinks interpolating between
a vacuum with color α and one with color β are topologically stable and provide
the elementary excitations of the spontaneously broken phase9; they are created
by the kink fields µαβ(x), which are non-local with respect to the spin fields σα.
The products of kink fields are subject to the adjacency condition µαβ(x)µβγ(y).
Duality relates, in a way to be investigated in the next sections, the kink field
correlators in the broken phase

G̃β1...βn(x1, . . . , xn) = 〈µβ1β2(x1)µβ2β3(x2) . . . µβnβ1(xn)〉J≥Jc (2.26)

to the spin correlators in the symmetric phase (2.11). Consistency of the duality
relation requires that the number of Sq-nonequivalent correlators (2.26) coincides
again with Fn. We now show that this is indeed the case.

Consider to start with the string of kink fields µβ1β2µβ2β3 . . . µβnβn+1 and
associate to it n + 1 points Pi, i = 1, . . . , n + 1, on a line. Each point Pi has
a color βi which must differ from those of the adjacent points. Let us show
first of all that the number Cn+1 of Sq-nonequivalent colorations of the points
Pi coincides with the Bell number Bn. If the adjacency condition is relaxed, the
number of nonequivalent colorations of the n + 1 points is Bn+1. The string will
consist of k + 1 substrings, each with a definite color different from those of the
adjacent substrings, that we can think to separate by placing k domain walls
between them; this can be done in

(
n
k

)
ways. The k +1 substrings can be colored

in Ck+1 Sq-nonequivalent ways and we have

Bn+1 =
n∑

k=0

(
n

k

)
Ck+1 ∀n ≥ 0. (2.27)

Since C1 = 1, the result Cn+1 = Bn then follows from (2.119) by induction.
The case we just discussed includes Ln+1 nonequivalent colorations in which

β1 = βn+1 (the case (2.26) we are actually interested in) and On+1 nonequivalent
colorations in which β1 6= βn+1, i.e. Ln+1 + On+1 = Cn+1. On the other hand,
if we start with n points having β1 6= βn and we add Pn+1 with βn+1 = β1, the
number of nonequivalent colorations does not change, i.e. Ln+1 = On. We then
see that

Ln+1 + Ln+2 = Cn+1 = Bn , ∀n ≥ 0 . (2.28)
9See [48] for a lattice study of Potts kinks.
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This relation, together with the initial condition L1 = 1, can be used to generate
the Ln’s from the Bn’s. Of course Ln+1 is the number of nonequivalent correlators
(2.26) we were looking for. Comparison of (2.28) with (2.124) then leads to the
final identification Ln+1 = Fn.

2.3 Operator product expansions

Generically the OPE of scalar fields Ai(x) with scaling dimension Xi takes the
form

lim
x1→x2

Ai(x1)Aj(x2) =
∑
m

Cm
ij

Am(x2)

x
Xi+Xj−Xm

12

, (2.29)

where we include for simplicity only scalar fields in the r.h.s. and use the notation
xij ≡ |xi − xj |; in the following we will replace (2.29) by the symbolic notation

Ai ·Aj =
∑
m

Cm
ij Am . (2.30)

The nature of the fields µαβ(x) naturally leads to the two-channel OPE [17]

µαβ · µβγ = δαγ Ĩ + (1− δαγ)(Cµµαγ + . . .) , (2.31)

where the neutral channel α = γ contains the expansion Ĩ = I +Cεε+ . . . over Sq-
invariant fields (identity I, energy ε, and so on), and the charged channel α 6= γ

the expansion over µαγ and less relevant kink fields; Cε and Cµ are simplified
notations for the OPE coefficients, for which exact expressions for continuous q

have been given in [17].
The fields µαβ(x) are expected to be related to the disorder fields µα(x) by

the linear transformation

µα(x) =
∑

σ

Cρσ
α µρσ(x) , (2.32)

where Cρσ
α ∈ C are coefficients10 to be investigated below, and ρ-independence

is a consequence of permutational symmetry. The field µα carries the same rep-
resentation of permutational symmetry as σα (in particular,

∑q
α=1 µα = 0) but,

10No confusion should arise with the OPE coefficients Cm
ij of (2.29).
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as µαβ, it is non-local with respect to σα. In other words, σα and µα are identi-
cal (dual) fields living in mutually non-local sectors of the theory; in particular
they share the same scaling dimension and the same OPE. Mutual non-locality
reflects in the fact that, while 〈σα〉 6= 0 for J > Jc, 〈µα〉 6= 0 for J < Jc. More
precisely, in view of the coinciding scaling dimension, it is sufficient to adopt the
same normalization of the fields to ensure that 〈σα〉J = 〈µα〉J∗ , where J∗ is the
dual11 of J . The duality extends to multi-point functions, in such a way that the
spin correlators (2.11) can also be written as

Gα1...αn(x1, . . . , xn) = 〈µα1(x1) . . . µαn(xn)〉J∗≥Jc . (2.33)

The rest of this section is devoted to investigate the relation (2.32) and to deter-
mine the structure of the OPE µα · µβ (or, equivalently, σα · σβ).

The q degenerate vacua of the Potts model above Jc can be associated to
the vertices of an hypertetrahedron in q − 1 dimensions whose q(q − 1) oriented
sides are associated to the kink fields µαβ . Permutational symmetry of the vacua
allows to group these fields into classes µ̃i, i = 1, . . . , q − 1, each containing q

kink fields starting from different vacua, in such a way that choosing a vacuum
amounts to select q−1 kink fields, one from each class, starting from that vacuum
and arriving at the other vacua (Fig. 2.2). Ignoring structure constants, the
OPE (31) has the form of a multiplication between elements of a finite group.
Independence from the choice of the starting vacuum of the kinks ensures that
the elements of this finite group are the classes µ̃i, i = 1, . . . , q− 1, together with
the topologically neutral class Ĩ. We denote then by Kq their fusion table as
prescribed by (31), as well as the finite group of order q it defines. The symmetry
also ensures that all the rows of the matrix Cα can be obtained from the first by
regular permutations12. The relation (2.32) (which we could equivalently write
as µα =

∑
ρ Cρσ

α µρσ) is effectively a sum over the q − 1 classes µ̃i, as we now
illustrate separately discussing the cases q = 2, 3, 4.

11In the scaling limit we consider, J and J∗ are the points where the elementary excitations

of the symmetric phase and those of the spontaneously broken phase have the same mass m;

m = 0 at the self-dual point Jc.
12Permutations which do not leave any element invariant. It is not difficult to realize that

such permutations are elements of Kq.
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Figure 2.2: The vacua of the Potts field theory for q = 2, 3, 4 are labeled by
α = 1, . . . , q and denoted by dots (for q = 4 we use the Ashkin-Teller notation
α ≡ (α1, α2)). Fixing a specific vacuum (1 in this case) amounts to choose a
representative kink field within each class µ̃i (see the text).

q=2. Permutational symmetry S2 = Z2 implies the equivalence of the two kink
fields µ12 and µ21, which we collect in the class µ̃1; from (2.31) we derive K2 = Z2

(see Fig. 2.3). We can choose

µα = ωα
2 µ̃1, Cα =

(
0 ωα

2

ωα
2 0

)
, α = 1, 2 , (2.34)

with ωq = e2πi/q, in order to fulfill
∑

α µα = 0 and consistently derive

µα · µα = Ĩ , (2.35)

µα · µβ = −Ĩ , α 6= β . (2.36)

q=3. The OPE of the kink fields µαβ is equivalent to the fusion table of the
classes µ̃1, µ̃2 and Ĩ. Being Z3 the only discrete group of order three, full consis-
tency requires K3 = Z3, together with the identifications µ̃1 = {µ12, µ23, µ31}, µ̃2 =
{µ13, µ21, µ32}. Notice that Aut(Z3) = Z2, and the non-trivial automorphism13

corresponds to the charge conjugation operator C, with Cµ̃1 = µ̃2. Using µα(x) =
3δs̃(x),α − 1, the charge conjugated operators realizing the Z3 OPE are identified
with14 µ̃1 = e2πis̃(x)/3 and µ̃2 = e−2πis̃(x)/3, where s̃(x) is the dual color variable;

13Given a group G, φ : G → G is an automorphism if φ(ab) = φ(a)φ(b),∀a, b ∈ G. The set of

all the automorphisms with natural composition as a product form a group called Aut(G).
14The basis µ̃1, µ̃2 is that used in [49].
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· Ĩ µ̃1

Ĩ Ĩ µ̃1

µ̃1 µ̃1 Ĩ

· Ĩ µ̃1 µ̃2

Ĩ Ĩ µ̃1 µ̃2

µ̃1 µ̃1 µ̃2 Ĩ

µ̃2 µ̃2 Ĩ µ̃1

· Ĩ µ̃1 µ̃2 µ̃3

Ĩ Ĩ µ̃1 µ̃2 µ̃3

µ̃1 µ̃1 Ĩ µ̃3 µ̃2

µ̃2 µ̃2 µ̃3 Ĩ µ̃1

µ̃3 µ̃3 µ̃2 µ̃1 Ĩ

Figure 2.3: Fusion tables Kq at q = 2, 3, 4. They correspond to the groups Z2,
Z3 and D2, respectively.

using also δs̃,α = 1
3

∑3
β=1 e

2πi
3

(s̃−α)β one obtains

µα = ω−α
3 µ̃1 + ωα

3 µ̃2, Cα =




0 ω−α
3 ωα

3

ωα
3 0 ω−α

3

ω−α
3 ωα

3 0


 , α = 1, 2, 3 , (2.37)

and then

µα · µα = 2Ĩ + Cµ µα + . . . , (2.38)

µα · µβ = −Ĩ − Cµ(µα + µβ) + . . . , α 6= β ; (2.39)

the relation ωα
3 + ωβ

3 + ω
−(α+β)
3 = 0, α 6= β, is used.

q=4. The four-state Potts model can be seen as the case J = J4 of the Ashkin-
Teller model defined by the Hamiltonian

HAT = −
∑

〈x,y〉
{J [τ1(x)τ1(y) + τ2(x)τ2(y)] + J4 τ1(x)τ1(y)τ2(x)τ2(y)}, (2.40)

where τi = ±1, i = 1, 2, are Ising variables. Defining s = (τ1, τ2), α = (α1, α2),
with αi = ±1, and δs,α = δτ1,α1δτ2,α2 , the Potts spin (2.9) can be written as

σα = 4δs,α − 1 = α1τ1 + α2τ2 + α1α2τ1τ2. (2.41)

The kink fields µαβ interpolate between the four degenerate vacua of the two
coupled Ising models (see e.g. [50]); the classes µ̃1 = {µ12, µ21, µ34, µ43} and
µ̃2 = {µ14, µ41, µ23, µ32} are constructed in analogy to the case q = 2, the fields
in µ̃3 = {µ13, µ31, µ24, µ42} are instead obtained taking the OPE according to
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(2.31) (see also Fig. 2.2). We derive K4 = D2 = Z2×Z2, see Fig. 2.3; notice that
Aut(D2) = S3. We can also take

µα = α1µ̃1+α2µ̃2+α1α2µ̃3 , Cα =




0 α1 α1α2 α2

α1 0 α2 α1α2

α1α2 α2 0 α1

α2 α1α2 α1 0




, (2.42)

from which we obtain

µα · µα = 3Ĩ + 2Cµ µα + . . . , (2.43)

µα · µβ = −Ĩ − Cµ(µα + µβ) + . . . , α 6= β . (2.44)

It is interesting to remark some formal properties emerging from this analysis.
We see that, by construction, Kq at q = 2, 3, 4 is a finite abelian group of order
q, i.e. by Cayley theorem a regular abelian subgroup15 of Sq. Kq must also
be invariant under permutations of the q − 1 classes µ̃i, an operation which
corresponds to fix one vacuum and permute the remaining q − 1. Formally this
amounts to write Aut(Kq) = Sq−1, and we expect the full symmetry group of the
theory to be realized as16

Sq = Kq o Sq−1 . (2.45)

This in turn implies the possibility of writing Sq as a semidirect product of abelian
subgroups of the form

Sq = Kq oKq−1 o ...K2, K2 = Z2, (2.46)

a property which is equivalent to the solvability of the permutational group. More
precisely17, the solvability of Sq would imply the existence of the factorization
(2.46), as indeed remarkably happens at q = 2, 3, 4, with K2 = Z2, K3 = Z3,
K4 = D2 and Aut(Z3) = Z2, Aut(D2) = S3. It is well known [52], however,

15The classes µ̃i are associated to the regular permutations πi, i = 1, . . . , q − 1, of Sq as

µ̃i = {µ1πi(1), ..., µqπi(q)}. Without loss of generality one can assume πi(1) = i + 1.
16The presence of the semidirect product o is due to the fact that Sq−1 is not a normal

subgroup of Sq.
17We thank C. Casolo for this observation. Interesting remarks about solvable groups and

lattice duality can be found in [51].
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that for q > 4 Sq possesses no abelian normal subgroup, making impossible in
particular to realize the condition (2.45). Then Sq is not solvable for any q > 4, a
circumstance which is interesting to compare with the fact that qc = 4 is also the
upper bound for the existence of the Potts field theory in the two-dimensional
case, i.e. the only case for which kink fields exist and the above construction is
possible.

A remarkable feature appearing from (2.36), (2.39) and (2.44) is that µα ·µβ 6=α

is identical at q = 2, 3, 4 (recall that µ1 + µ2 = 0 at q = 2). It is then absolutely
natural to assume that this form actually holds unchanged for continuous values
of q, and to write

σα · σβ = −I − Cµ(σα + σβ) + . . . , α 6= β, (2.47)

where the dots correspond to less relevant fields and we switched to the equivalent
expression in terms of the spin fields for a reason to be made immediately clear.
On the other hand, the complementary relation

σα · σα = q1 I + q2Cµ σα + · · · (2.48)

follows observing that (2.10) and (2.47) give

0 = σα ·
∑

β

σβ = σα · σα +
∑

β 6=α

σα · σβ

= σα · σα +
∑

β 6=α

[−I − Cµ(σα + σβ) + . . .] ;

(2.48) is of course consistent with (2.35), (2.38) and (2.43). While the disorder
fields µα(x) are specific of the two-dimensional case, the spin fields σα(x) are
well defined in any dimension. It is then quite obvious to expect that (2.47) and
(2.48) hold for real values of q ≤ qc in any dimension.

The linear relation (2.10) among the spin fields induces a relation less direct
than usual between the OPE coefficients and the structure constants appearing
in the three-point functions. In general, the structure constants Cijk are defined
by the critical correlators

〈Ai(x1)Aj(x2)Ak(x3)〉 =
Cijk

x
Xi+Xj−Xk

12 x
Xi+Xk−Xj

13 x
Xj+Xk−Xi

23

; (2.49)
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taking the limits x12 → 0 and x23 → 0 and using (2.29), Cijk is expressed in term
of the OPE coefficients as

Cijk =
∑

Xm=Xk

Cm
ij CI

mk . (2.50)

We then find

Cσασασα = q2q1Cµ, (2.51)

Cσασασβ
= Cσασβσα = Cσβσασα = −q2Cµ, (2.52)

Cσασβσγ = 2Cµ , (2.53)

with different indices denoting different colors.

2.4 Duality relations

Equations (2.32) and (2.33) imply a linear relation between the spin correlators
(2.11) in the symmetric phase and the correlators (2.26) of kink fields in the
broken phase. This duality takes the form

Gα1...αn(x1, . . . , xn) =
∑

β1,...,βn

D̃β1...βn
α1...αn

G̃β1...βn(x1, . . . , xn)

=
∑′

β1,...,βn

(nc(β)−1∏

i=1

qi

)
Dβ1...βn

α1...αn
G̃β1...βn(x1, . . . , xn) , (2.54)

where the primed sum runs over all choices of β = {β1, . . . , βn} which are
nonequivalent under permutations, nc(β) is the number of different colors in
β, and the factors qi have been extracted for later convenience. The task is that
of determining the coefficients Dβ1...βn

α1...αn , for continuous values of q; of course it is
sufficient to consider a set of Fn linearly independent spin correlators. We will
discuss explicitly this problem up to the first case with Fn > 1, i.e. n = 4.
n=1. The trivial identity 〈σα〉 = 〈µαβ〉 = 0 simply reflects the fact that we
consider spin correlators in the symmetric phase18, and that µαβ is a kink field.

18Since this is understood, here and in the following we omit the subscripts J ≤ Jc for spin

correlators and J ≥ Jc for kink field correlators.
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Figure 2.4: Pictorial representation of the four-point correlation functions of kink
fields G̃β1β2β3β4(x1, . . . , x4). The two pinchings x1 → x2 and x2 → x3 used for
the study of the duality relation (2.57) are indicated.

n=2. F2 = 1 and we consider

〈σα(x1)σα(x2)〉 = q1D
αβ
αα 〈µαβ(x1)µβα(x2)〉 . (2.55)

We can take the limit x12 → 0 on both sides and equate the coefficients of
the leading singularity x−2Xσ

12 , which are obtained using (2.48) and (2.31). This
immediately yields Dαβ

αα = 1.

n=3. F3 = 1 and we consider

〈σα(x1)σα(x2)σα(x3)〉 = q1q2D
αβγ
ααα 〈µαβ(x1)µβγ(x2)µγα(x3)〉 . (2.56)

We can again use the OPE’s to take the limit x12 → 0 on both sides and reduce19

to (2.55); this leads to Dαβγ
ααα = 1.

n=4. We will consider the F4 = 4 linearly independent spin correlators (2.18–

19Notice that the OPE on the l.h.s. apparently produces singularities from the Sq-invariant

operators Ok in Ĩ which do not arise in the r.h.s., where α 6= γ. Everything is consistent,

however, since 〈Okσα〉 = 0 by symmetry.
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2.21), which expand as

〈σα1(x1)σα2(x2)σα3(x3)σα4(x4)〉 = q1q2q3D
αβγδ
α1α2α3α4

〈µαβ(x1)µβγ(x2)µγδ(x3)µδα(x4)〉
+q1q2D

αβγβ
α1α2α3α4

〈µαβ(x1)µβγ(x2)µγβ(x3)µβα(x4)〉
+q1q2D

αβαγ
α1α2α3α4

〈µαβ(x1)µβα(x2)µαγ(x3)µγα(x4)〉
+q1D

αβαβ
α1α2α3α4

〈µαβ(x1)µβα(x2)µαβ(x3)µβα(x4)〉 .

(2.57)

We start again equating the coefficients of the short distance singularities on the
two sides. However, an important difference with the cases n < 4 now appears.
Indeed, while the OPE in the l.h.s. can be taken for any pair of points xi and xj ,
the kink nature of the fields on the r.h.s. allows us to use (2.31) only for adjacent
fields. In other words, we can compare only the singularities arising for x12 → 0
and x23 → 0 (see Fig. 2.4; x34 → 0 and x14 → 0 add nothing new). Equating
the coefficients of the singularities in the “neutral” and “charged” channels, and
using the duality relations already obtained for n = 2, 3, leads to the following
sets of equations





Dαβαγ
αααα = Dαβγβ

αααα

q2 = q3D
αβγδ
αααα + Dαβγβ

αααα

q1 = q2D
αβγβ
αααα + Dαβαβ

αααα





Dαβαγ
αβαβ = Dαβγβ

αβαβ

2 = q1q3D
αβγδ
αβαβ + q1D

αβγβ
αβαβ

1 = q1q2D
αβγβ
αβαβ + q1D

αβαβ
αβαβ

(2.58)





1 = q1q2D
αβγβ
ααββ + q1D

αβαβ
ααββ

2 = q1q3D
αβγδ
ααββ + q1D

αβαγ
ααββ

q1 = q2D
αβαγ
ααββ + Dαβαβ

ααββ





1 = q1q2D
αβαγ
αββα + q1D

αβαβ
αββα

2 = q1q3D
αβγδ
αββα + q1D

αβγβ
αββα

q1 = q2D
αβγβ
αββα + Dαβαβ

αββα

(2.59)

where different indices denote different colors. Notice that the method produces
four equations for each correlation function (two per pinching and per channel),
but only three turn out to be independent. Since each duality relation (2.57)
involves four coefficients, the above equations are not sufficient to fix everything.
We now show how the duality for the correlators Gαααα, Gααββ, Gαββα can be
completely determined exploiting also the relations (2.32), (2.33).
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The matrices Cα defined in (2.32) are Hermitian, due to the presence of the
antilinear charge conjugation operator C, with C2 = I, CµρσC = µσρ, CµαC = µα

and CCρσ
α C = (Cρσ

α )∗. They also satisfy Cρρ
α = 0, ρ = 1, . . . , q, and

∑
α Cα = 0.

Other properties follow requiring the consistency of the OPE’s for the kink fields
and for the dual spin µα. For example,

µα · µα =
∑
σ,ω

Cρσ
α Cσω

α µρσ · µσω (2.60)

=
(∑

σ 6=ρ

Cρσ
α Cσρ

α

)
Ĩ +

∑

ω 6=ρ

( ∑

σ 6=ρ,ω

Cρσ
α Cσω

α

)[
Cµµρω + . . .

]
; (2.61)

comparing with (2.48) we obtain the matrix relation

C2
α = q1I + q2Cα . (2.62)

Analogously, from (2.47) we derive

CαCβ = −I − (Cα + Cβ) , α 6= β , (2.63)

which implies in particular [Cα, Cβ] = 0. Hence, the set of q Hermitian matrices
Cα can be simultaneously diagonalized by a unitary transformation U and put
in the form

Cρσ
α |diag = (qδαρ − 1)δρσ , (2.64)

which follows from the observation that the Cα’s are traceless, sum to zero and,
due to (2.62), have −1 and q1 as only eigenvalues. It is also simple to check that

〈µαµα〉 =
1
q
TrC2

α 〈µαβµβα〉 = q1〈µαβµβα〉 , (2.65)

〈µαµαµα〉 =
1
q
TrC3

α 〈µαβµβγµγα〉 = q2q1〈µαβµβγµγα〉 , (2.66)

in agreement with (2.55), (2.56). Starting from the diagonal form (2.64) and the
existence of the unitary matrix U it is possible to show (see Appendix C) that

Cρσ
α = ei(ϕασ−ϕαρ) − δρσ, (2.67)
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where the phases ϕαρ must satisfy the equation20

1
q

q∑

ρ=1

ei(ϕαρ−ϕβρ) = δαβ . (2.68)

We can now notice that (2.32), (2.33) and (2.54) imply

q1D
αβαβ
α1α2α3α4

=
1
q

∑
ρ,σ

Cρσ
α1

Cσρ
α2

Cρσ
α3

Cσρ
α4

; (2.69)

using |Cρσ
α | = 1−δρσ and hermiticity Cσρ

α = (Cρσ
α )∗ we obtain Dαβαβ

αααα = Dαβαβ
ααββ =

Dαβαβ
αββα = 1, independently of the phases ϕαβ . With this information, (2.58) and

(2.59) determine the remaining coefficients, giving

Gαααα = q1q2q3 G̃αβγδ + q1q2

(
Gαβγβ + G̃αβαγ

)
+ q1 G̃αβαβ, (2.70)

Gααββ = −q2q3 G̃αβγδ − q2 G̃αβγβ + q1q2 G̃αβαγ + q1 G̃αβαβ, (2.71)

Gαββα = −q2q3 G̃αβγδ + q1q2 G̃αβγβ − q2 G̃αβαγ + q1 G̃αβαβ, (2.72)

with different indices denoting different colors.
The problem with the remaining correlator Gαβαβ is that (2.69) does not help,

because the phases do not cancel, and we are left with the three equations coming
from the OPE for four unknowns.

2.5 The boundary case

Since the OPE’s for the kink and spin fields reflect local properties of the field
theory, the duality relations obtained in the previous section hold true also in
the case in which the points x1, . . . , xn in (2.54), instead of being located on the
infinite plane, lie inside a simply connected domain L ⊂ R2. Actually, the duality
relations continue to hold also in the case the points x1, . . . , xn are located on
the boundary of L, simply because the OPE’s (2.31), (2.47) and (2.48), whose
structure is completely determined by the symmetry, can be used also for points

20The properties of matrices Cα we obtain in this section do not refer to any specific value

of q. Of course they are satisfied by the matrices that we already determined in the previous

section for q = 2, 3, 4.
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Figure 2.5: Four-point boundary correlations on a simply connected domain L.
Left. Clusters connecting x1 to x3 and x2 to x4 necessarily cross and cannot be
distinct. Right. Dashed lines represent allowed clusters in the FK representation
on the dual lattice L∗; continuous lines correspond to clusters on L connecting
all the four points. In the continuum limit L, L∗ and L coincide.

on the boundary, provided bulk OPE coefficients and scaling dimensions are
replaced by boundary OPE coefficients and scaling dimensions. It is not difficult
to see, however, that having the points on the boundary rather than in the bulk
may reduce the number of linearly independent correlation functions. The first
interesting case, that we now discuss, arises for n = 4.

Let us order the points x1, . . . , x4 on the boundary as shown in Fig. 2.5. Since
in this boundary case a cluster containing x1 and x3 must necessarily cross a clus-
ter containing x2 and x4, the probability Pabab(x1, x2, x3, x4) that these two pairs
of points belong to two different clusters necessarily vanishes. This topological
constraint reduces to three the number of linearly independent boundary spin cor-
relators (we denote them with a superscript B); indeed, inverting (2.18)–(2.21)
and setting Pabab = 0 gives21

q1(q2 − 3q + 1)GB
αβαβ − (2q − 3)GB

αααα + q1(GB
ααββ + GB

αββα) = 0 . (2.73)

Using the duality relations (2.70), (2.71), (2.72) and the OPE equations (2.58)

21Different greek indices in eqs. (2.73–2.81) denote different colors.
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for Gαβαβ , (2.73) can be rewritten as

[
1 + q1(q2 − 3q + 1)Dαβαβ

αβαβ

](
G̃B

αβαβ + G̃B
αβγδ − G̃B

αβαγ − G̃B
αβγβ

)
= 0 , (2.74)

or, in view of the reduction in the number of independent correlators , as the
linear relation22

G̃B
αβαβ + G̃B

αβγδ = G̃B
αβαγ + G̃B

αβγβ. (2.75)

Using this equation to eliminate G̃B
αβαβ in (2.70), (2.71) and (2.72), the duality

for boundary correlators is fully determined as

GB
αααα = q1(q2q3 − 1)G̃B

αβγδ + q2
1(G̃

B
αβγβ + G̃B

αβαγ), (2.76)

GB
ααββ = (2q2 − q2

1)G̃
B
αβγδ + G̃B

αβγβ + q2
1G̃

B
αβαγ , (2.77)

GB
αββα = (2q2 − q2

1)G̃
B
αβγδ + q2

1G̃
B
αβγβ + G̃B

αβαγ . (2.78)

Substituting in (2.18)–(2.21) with Pabab = 0 one also obtains for the boundary
connectivities the simple relations

PB
aaaa = G̃B

αβγδ, (2.79)

PB
aabb = G̃B

αβαγ − G̃B
αβγδ, (2.80)

PB
abba = G̃B

αβγβ − G̃B
αβγδ. (2.81)

Equation (2.79) can be interpreted as follows in the language of lattice duality.
If we interpret the insertion of a kink field on the boundary as creating a domain
wall along the boundary of the dual lattice L∗, the correlator G̃B

αβγδ corresponds
to a partition of the boundary into four regions with different colors and will
receive contributions only from graphs on L∗ without FK clusters connecting
different regions. Equation (2.79) then means that these graphs are in one-to-
one correspondence with the graphs on L in which the four boundary points all
belong to the same FK cluster (see Fig. 2.5)). Similar reasoning can be used for
(2.80) and (2.81).

22Duality for boundary correlators of the q-color Potts model on the lattice was studied in

[53, 54, 55], where dual partition functions with domain wall boundary conditions correspond

to our kink field boundary correlators G̃B
α1α2,...; with this identification, the relation (2.75) is

contained in [55]. Potts partition functions on a non-simply connected domain have been studied

in [56]. An early investigation of Potts correlation functions is in [57].
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Figure 2.6: The elastic kink-kink scattering amplitudes Sβδ
αγ(s) (left) are related by

the LSZ formalism to the four-point correlation functions G̃B
αβγδ of the asymptotic

fields µB
αβ(x) (right).

We conclude this section observing that (2.75) leads to a linear relation among
the elastic kink-kink scattering amplitudes in the (1+1)-dimensional field theory
associated by Wick rotation to the Euclidean theory on the plane. In this case,
indeed, the boundary fields µB

αβ(x) entering (2.75) can be interpreted as the
asymptotic fields which create a kink excitation Kαβ at time t→ ±∞ (Fig. 2.6).
The kink-kink elastic amplitudes

Sβδ
αγ(s) = out〈Kαδ(p4)Kδγ(p3)|Kαβ(p1)Kβγ(p2)〉in , (2.82)

where the square of the center of mass energy s = (p1+p2)2µ is the only relativistic
invariant for this (1 + 1)-dimensional process23, can be written within the LSZ
formalism (see e.g. [58]) as

Sβδ
αγ(s) = lim

t1,t2→−∞
lim

t3,t4→+∞

∫
dx1 . . .

∫
dx4 eip4·x4eip3·x3e−ip1·x1e−ip2·x2

←→
∂t4

←→
∂t3

←→
∂t2

←→
∂t1 〈µB

αβ(x1, t1)µB
βγ(x2, t2)µB

γδ(x3, t3)µB
δα(x4, t4)〉 ,

(2.83)

where the integrals are taken along the one-dimensional space coordinate and
←→
∂t

is defined by A
←→
∂t B = A(∂tB)− (∂tA)B. Equation (2.75) then leads to

Sβδ
αγ(s) + Sββ

αα(s) = Sββ
αγ (s) + Sβγ

αα(s) , (2.84)

23The relativistic invariant s can be written as 2m2(1 + cosh(θ1 − θ2)) where θi, i = 1, 2 are

the rapidities we will introduce in section 2.6.
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where different indices denote different colors. This relation was already found in
[27] as a byproduct of the Yang-Baxter equations, i.e. of the integrability of the
scaling limit of the q-color Potts model. Here integrability, which is the subject of
the final sections of this chapter, does not appear to play a role, and then (2.84)
should hold also for non-minimal, non-integrable realizations of the symmetry, if
they exist. Ultimately, the vanishing of the probability that the trajectories of
two particles do not cross in the (1+1)-dimensional space-time relates amplitudes
which would be independent on the basis of color symmetry alone.

2.6 Integrable field theories in 1 + 1 dimensions

Consider the 1 + 1 dimensional Minkowsky space-time with coordinate (t, x) and
diagonal metric diag(1,−1). The proper Lorentz group L+ consists of boosts
along the x axis. A generic boost is an hyperbolic rotation Λ(η) with rapidity24

η. Since L+ is abelian its irreducible representations, labeled by an index s, are
one-dimensional. The characters25 χs(η) then coincide with the matrices of the
representation and must satisfy χs(η)χs(θ) = χs(η + θ), from which χs(η) =
esη. We require s rational to obtain only multi-valued26 representations of the
rotational group in two dimensions after the analytic continuation η → iφ. A
field Φs(x, t) transforming according to the s irreducible representation under the
boost Λ(η)

Φ′s(x
′, t′) = esηΦs(x, t) (2.85)

is a Lorentz tensor with spin s. For example the light cone momenta P± = E± p

are Lorentz tensors with spin ±1 respectively and the components T++, T−−, T+−
and T−+ of the stress energy tensor are Lorentz tensors with spin 2, -2 and zero.
Introduce the Euclidean time t = iy and the complex coordinates z = x + iy,

24For example for a particle at rest with two-momentum P = (m, 0), Λ(η)P =

(m cosh η, m sinh η).
25χs(η) is a shorthand notation for χs(Λ(η)).
26Irrational Lorentz spins would give infinite-valued representations of the two-dimensional

rotational group under the analytic continuation η → iφ.
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Figure 2.7: If we call B the area of the rectangle then by Stokes theorem∫
C Aµdxµ +

∫
C′ Aµdxµ =

∫
B d2x εµν∂µAν . Where we have assumed that the field

Aµ is vanishing at x = ±∞. Using complex coordinates and the conservation law
(2.86) one can show that the line integral in (2.87) is a constant.

z̄ = x− iy. Given the classical conservation law27

∂̄Ts−1 = ∂Θs+1, (2.86)

a classical conserved charge Qs of spin s is obtained as the line integral see Fig.
2.7

Qs =
∫

C

dz Ts−1 +
∫

C

dz̄ Θs+1. (2.87)

We will call a quantum field theory integrable [14, 15] if it possesses an infinite
number of conserved charges (operators on an Hilbert space) Qs which are local
and in involution, i.e. [Qs, Q

′
s′ ] = 0. Locality is encoded in the fact that charges

act diagonally on the one-particle states of the field theory. One-particle states
|θ〉a are labeled by their rapidity28 θ and by their internal quantum numbers a.

27In complex coordinate let Az = Ax + iAy and Az̄ = Ax − iAy be the components with spin

s = 1 and -1 of an irrotational current ∂µεµνAν = 0. Notice that the dual field Ãµ = εµνAν has

zero divergence. The irrotationality condition reads ∂Az = ∂̄Az̄. Lowering the indices we define

A ≡ Az = gzz̄Az̄, Ā ≡ Az̄ = gz̄zAz, with the off-diagonal matrix of section 1.2. The expression

(2.87) then follows from the application of Stokes theorem.
28The energy and momentum of a particle of mass m and rapidity θ are (E, p) =

(m cosh θ, m sinh θ)
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The states are normalized as

b〈θ′|θ〉a = 2πδabδ(θ − θ′). (2.88)

Lorentz invariance29 fixes also

Qs|θ〉a = esθρa
s |θ〉a, (2.89)

with ρa
s a constant. For example ρa

±1 = ma, the mass of the particle a for
Q±1 = P±. A massive30 quantum field theory is defined by its asymptotic Hilbert
spaces Hin and Hout. The asymptotic n-particle in states are collections of non-
interacting particles at t = −∞ of the form

|θ1θ2 . . . θn〉ina1...an
, θ1 > θ2 · · · > θn. (2.90)

The asymptotic n-particle out states are collections of non-interacting particles
at t =∞ of the form

|θ1θ2 . . . θn〉out
a1...an

, θ1 < θ2 · · · < θn. (2.91)

The n-particle asymptotic states are eigenvectors of the quantum field theory
conserved charges Qs

Qs|θ1θ2 . . . θn〉in,out
a1...an

=
( n∑

i=1

esθiρai
s

)
|θ1θ2 . . . θn〉in,out

a1...an
. (2.92)

The linear operator mapping the Hilbert space Hout into the Hilbert space Hin

is the S matrix
S : Hout → Hin. (2.93)

The S matrix is a Lorentz scalar. In an integrable quantum field theory (IQFT)
the dynamics of the scattering processes must conserve the additive charges Qs.
In particular

29Let Uη be the unitary operator representing the boost Λ(η) on the Hilbert space. Then

UηQsU
−1
η = e−sηQs. If we assume Qs|θ〉 = fs(θ)|θ〉, then fs(θ + η)e−sη = fs(θ) and the result

follows taking θ = 0.
30We avoid complications in the definition of the asymptotic Hilbert spaces for massless field

theories.
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Figure 2.8: Pictorial representation of the two-particle S matrix element
Sa′b′

ab (θ12). Time is flowing in the direction of the arrows.

• The number of particles in the in state before the scattering coincides with
the number of particles in the out state after the scattering. No particles
production is possible.

• The set of rapidities in the in state before the scattering coincides with
the set of rapidities in the out state after the scattering. Internal quantum
numbers between in and out states can be different.

• The scattering is factorized and multi-particle scattering processes can be
expressed as sequences of two-particle scattering processes.

In an IQFT, the solution of the scattering problem is reduced to the computation
of the two-particle S matrix elements, see Fig. 2.8

|θ1θ2〉inab =
∑

a′,b′
Sa′b′

ab (θ1 − θ2)|θ2θ1〉out
b′a′ . (2.94)

The two-particle S matrix element is a meromorphic function of the rapidity
difference θ12 = θ1 − θ2 and satisfies the requirements of

• Unitarity ∑

a′,b′
Sa′b′

ab (θ12)Sa′′b′′
a′b′ (−θ12) = δa′′

a δb′′
b . (2.95)
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• Crossing symmetry
Sa′b′

ab (θ12) = S b̄a′
b̄′a(iπ − θ), (2.96)

where b̄ is a set of quantum numbers obtained from the set b, applying the
charge conjugation operator C.

The S matrix is also invariant under parity Sa′b′
ab (θ12) = Sb′a′

ba (θ12) and time-
reverse Sa′b′

ab (θ12) = Sab
a′b′(θ12). Factorization of the scattering processes is encoded

in the Yang-Baxter relations
∑

a′,b′,c′
Sa′b′

ab (θ12)Sa′′c′
a′c (θ13)Sb′′c′′

b′c′ (θ23) =
∑

a′,b′,c′
Sb′c′

bc (θ23)Sa′c′′
ac′ (θ13)Sa′′b′′

a′b′ (θ12).

(2.97)
If the two-particle S matrix element Sa′b′

ab (θ12) has poles on the imaginary rapidity
axis, they are interpreted as bound states arising in the scattering of the a particle
with the b particle. Suppose

Sa′b′
ab (θ12) ∼

i
(
Γc

ab

)2

θ12 − iuc
ab

, Γc
ab ∈ R (2.98)

for θ12 → iuc
ab and uc

ab ∈ R. The particle c has mass fixed by the conservation of
the two-momentum and given by m2

c = m2
a+m2

b−2mamb cos ūc
ab, with the angle31

ūc
ab = π − uc

ab. The unitarity and crossing relations must then be supplemented
by the bootstrap equation

Γc
ab Sef

dc (θ) =
∑

i,j,h

Γf
hj Sih

da(θ − iūb̄
ac̄)S

ej
ib (θ + iūā

bc̄). (2.99)

2.7 Exact solution of the Potts q-color field theory in

two dimensions

The Euclidean action describing fluctuations of Potts observables out of crit-
icality in the scaling limit is

Ascaling = ACFT + τ

∫
d2x ε(x), (2.100)

31The masses ma, mb and mc can be visualized as sides of a triangle of external angles uc
ab,

ub
ac and ua

bc.
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γ
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α
δ

β

α

β
x

t

Figure 2.9: Left. In the phase of broken Sq symmetry the different vacua can
be visualized as the vertices of an hypertetrahedron in q − 1 dimensions. Kinks
correspond to the sides of the hypertetrahedron. Right. A pictorial representation
of the kink |Kαβ〉 interpolating between the vacuum |Ωβ〉 with color β and the
vacuum |Ωα〉 with color α.

where ACFT is the conformal invariant Potts action and τ ∼ J−Jc
Jc

. The scaling
action (2.100) describes the renormalization group trajectories generated by the
most relevant field invariant under Sq transformations, i.e. the energy density
ε(x). We will assume τ > 0 and consider the phase in which Sq symmetry is
spontaneously broken. The quantum field theory is massive and associated to
a finite correlation length. The field ε(x) is the field φ2,1 in the Kac notation
of chapter 1 and, as shown by Zamoldchikov counting argument [59], (2.100) is
integrable.

In the phase of broken Sq symmetry the field theory vacua set {|Ωα〉}, α =
1, . . . , q can be associated to the set of vertices of an hypertetrahedron in q − 1
dimensions, see Fig. 2.9. Lowest mass excitations32 are kinks |Kαβ〉 interpolating
between the vacua |Ωα〉 and |Ωβ〉 and they correspond to the oriented sides of the
hypertetrahedron. The kink |Kαβ〉 describes the propagation of a domain wall in
the statistical mechanics model separating the ferromagnetic phases33 α and β.

32It is understood that when discussing the scattering theory we work in the 1+1 dimensional

Minkowsky space-time.
33The phase α is the phase in which the symmetry is broken in the direction α. For J > Jc

the phase α is obtained fixing the boundary spins s(x) = α and then taking the thermodynamic
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Multiparticle asymptotic kink states are subject to adjacency rules. For example
an in n-kink state is of the form

|Kα1α2(θ1)Kα2α2(θ2) . . .Kαnαn+1(θn)〉 (2.101)

with the rapidities ordered in decreasing order and αi 6= αi+1. Kinks |Kαβ〉 are
interpolated by the kink fields µαβ(x, t) and the one-kink form factor

F
µαβ

βα = 〈Ωα|µαβ(0, 0)|Kβα(θ)〉 (2.102)

is non-zero34.
We will come back later on the properties of the two-kink form factors of a

neutral35 operator Φ(x, t). Before discussing the scattering theory of the action
(2.100) it is interesting to note that the existence of kink fields in two dimensions
is connected with the presence of invariant (normal) subgroups of the symmetry
group G of the field theory36. In the broken phase the group G acts on the
set of vacua V = {v1, v2, . . . , vn} through its permutation representation. The
number37 of disorder fields is the number of elements of the orbit38 of a vacuum
vi, |G(vi)|, and we can assume the action transitive i.e. G(vi) = V . Kink fields
are associated, in principle not uniquely, to some group elements hi

α such that G

can be decomposed into the left cosets39

G = Gvi ∪ hi
1 Gvi ∪ · · · ∪ hi

n−1 Gvi ∀i = 1 . . . n, (2.103)

limit.
34By Lorentz invariance (2.102) does not depend on θ.
35An operator is neutral if it does not carry a topological charge. In this case it couples with

n-kink states such that the color of the initial and final vacua are equal.
36This completes the discussion in section 2.3 of the previous chapter where we argued that

the symmetry group Sq acting on the vacua of the q-color Potts model in the broken phase

factorizes in presence of kink fields as KqoSq−1. The finite group of q elements Kq corresponds

to the invariant group H, describing the composition rules of the kinks and Sq−1 is the stabilizer

of a given vacuum.
37The idea of associating kink (disorder) fields in two dimensions to elements of the symmetry

group G is also present in [49] .
38The orbit G(vi) is the set of elements of V which can be obtained from vi applying trans-

formations g ∈ G.
39This is the content of the orbit-stabilizer theorem [52] and the elements hi

α are elements of

G such that hi
α(vi) = vi′ , i 6= i′.
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Figure 2.10: The four permutational nonequivalent two-kink S matrix ampli-
tudes.

where Gvi is the stabilizer40 of vi under the action of G. Since there exists g ∈ G

such that Gvj = g−1 Gvi g we also have

g−1 G g = Gvj ∪ (g−1hi
1 g)Gvj ∪ · · · ∪ (g−1 hi

n−1 g) Gvj . (2.104)

Requiring independence of the hi
α from the vacuum indices in (2.103) and (2.104),

amounts to the condition g−1hi
α g = hj

β. This is satisfied in particular if all
the elements hi

α can be chosen in an invariant subgroup H ⊂ G of n elements
including the identity.

Coming back to the discussion of the scattering theory, Sq symmetry restricts
to four the number of independent two-kink S matrix amplitudes defined as

|Kαβ(θ1)Kβγ(θ2)〉in =
∑

δ

Sβδ
αγ(θ1 − θ2)|Kαδ(θ2)Kδγ(θ1)〉out. (2.105)

They are shown in Fig. 2.10. Below we reproduce their analytic form, found by
Chim and Zamoldchikov [27] solving the unitarity, crossing and boostrap con-
straints. Let q be parameterized as

√
q = 2 sin πλ

3 and introduce

Π
(λθ

iπ

)
=

sinλ(θ + iπ/3)
sinλ(θ − iπ)

eA(θ), (2.106)

with the integral representation for A(θ)

A(θ) =

∞∫

0

dx

x

sinh x
2

(
1− 1

λ

)− sinh x
2

(
1
λ − 5

3

)

sinh x
2λ cosh x

2

. (2.107)

40The stabilizer of vi Gvi = {g ∈ G s.t. g(vi) = vi}.
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The four two-kink S matrix amplitudes are given by41

Sβδ
αγ(θ) =

sinhλθ sinhλ(θ − iπ)
sinhλ

(
θ − 2πi

3

)
sinhλ

(
θ − iπ

3

) Π
(λθ

iπ

)
(2.108)

Sββ
αγ (θ) =

sin 2πλ
3 sinhλ(θ − iπ)

sin πλ
3 sinhλ

(
θ − 2πi

3

) Π
(λθ

iπ

)
(2.109)

Sβγ
αα(θ) =

sin 2πλ
3 sinhλθ

sin πλ
3 sinλ

(
θ − iπ

3

) Π
(λθ

iπ

)
(2.110)

Sββ
αα(θ) =

sinπλ

sin πλ
3

Π
(λθ

iπ

)
. (2.111)

The final part of this section is a brief review of the properties of the two-kink
form factors

〈Ωα|Φ(0, 0)|Kαβ(θ1)Kβγ(θ2)〉 ≡ FΦ
αβγ(θ2 − θ1). (2.112)

Form factors [60, 61] arise in the Kallen-Lehmann spectral representation of cor-
relation functions in field theory. The two-point function of the neutral operator
Φ in the q-color Potts field theory decomposes as

〈Ωα|Φ(x, t)Φ(0, 0)|Ωα〉 = (2.113)
∞∑

n=0

∑
α1,...,αn−1

∫

θ1>θ2>···>θn

dθ1

2π
. . .

dθn

2π
emit

Pn
j=0 cosh θj−mix

Pn
j=0 sinh θj |FΦ

α...αn−1α|2,

(2.114)

where

FΦ
α...αn−1α(θ1, . . . , θn) = 〈Ωα|Φ(0, 0)|Kαα1(θ1) . . . Kαn−1α(θn)〉. (2.115)

The two-kink form factors of a neutral operator Φ satisfy the functional relations
[62]

FΦ
αβα(θ) =

∑
γ

Sβγ
αα(θ)FΦ

αγβ(−θ) (2.116)

FΦ
αβα(θ) = FΦ

βαβ(2iπ − θ) (2.117)

41Different indices denote different vacua.
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supplemented by the normalization condition of the residue

Resθ=iπFΦ
αβα(θ) = i

(〈Φ〉α − 〈Φ〉β
)
. (2.118)

Two-kink form factors are known at arbitrary q ∈ (0, 4] for the thermal operator
ε and for integer q = 1, 2, 3, 4 for the order parameter σα in (1.48), see [62] and
[18].

Appendix A

Given a set S of n elements the number of partitions of the elements of S is the
Bell number Bn (see Table 2.1 for n ≤ 10). The most straightforward way to
compute the Bell numbers is through the recursive relation

Bn =
n−1∑

k=0

(
n− 1

k

)
Bk, B0 ≡ 1, (2.119)

which is easily proved observing that we can fix one element of the set S and
consider the partitions in which this element appears with k other elements,
k = 0, . . . , n− 1. The number of such partitions will be

(
n− 1

k

)
Bn−1−k ; (2.120)

then summing over k and using
(
n−1

k

)
=

(
n−1

n−1−k

)
we obtain (2.119).

We similarly define the numbers Fn as

Bn =
n∑

k=0

(
n

k

)
Fk, F0 ≡ 1. (2.121)

Fn is the number of partitions of S whose blocks contain at least two elements.
The proof is again elementary (see e.g. [63]). We divide all the Bn partitions
of S into those containing exactly k = 0, 1, . . . , n isolated elements, and then we
take partitions of the remaining n − k elements in such way that no element is
isolated. It is clear that we end up with (2.121).

Recalling the combinatorial identity
(
n+1

k

)
=

(
n
k

)
+

(
n

k−1

)
, expression (87)

implies

Bn+1 −Bn =
n∑

k=0

(
n

k

)
Fk+1 . (2.122)
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On the other hand, (2.119) gives Bn+1 =
∑n

k=0

(
n
k

)
Bk, and using (2.121) we

derive
n∑

k=0

(
n

k

)
(Fk+1 + Fk −Bk) = 0 ∀n ≥ 0 . (2.123)

By induction we finally obtain42

Bn = Fn + Fn+1 . (2.124)

The number of k-partitions (partitions into k non-empty subsets) of a set of
n elements is the Stirling number S(n, k). It satisfies Bn =

∑n
k=1 S(n, k) from

its definition, as well as the recursive equation

S(n, k) = k S(n− 1, k) + S(n− 1, k − 1), n ≥ k, k ≥ 1 , (2.125)

from the fact that we can obtain a k-partition of the set {x1, . . . , xn} adding xn

to one of the k blocks of a k-partition of the elements {x1, . . . , xn−1}, or joining
xn as a single block to a (k − 1)-partition of {x1, . . . , xn−1} . The exponential
generating function Sk(x) =

∑
n≥k S(n, k)xn

n! satisfies S ′k(x) = kSk(x) + Sk−1(x),
and is given by Sk(x) = 1

k!(e
x − 1)k. We also introduce the generalized Stirling

number S̃(n, k) as the number of k-partitions of a set of n elements whose blocks
contain at least two elements (non-singleton k-partition); the relation

Fn =
n−1∑

k=1

S̃(n, k) (2.126)

then expresses the decomposition of the total number of independent n-point spin
correlation functions (which we take without isolated indices) into subsets with
indices of k different colors. Non-singleton k-partitions of the set {x1, . . . , xn}
are obtained adding xn to one of the k blocks of a non-singleton k-partition of
{x1, . . . , xn−1}, or by joining the block {xn, xj}, for j = 1, . . . , n − 1, to a non-
singleton (k − 1)-partition of {x1, . . . , xj−1, xj+1, . . . , xn−1}. We have then

S̃(n, k) = kS̃(n− 1, k) + (n− 1)S̃(n− 2, k − 1), n ≥ k, k ≥ 1. (2.127)

The exponential generating function is S̃k(x) = 1
k!(e

x−1−x)k and solves S̃ ′k(x) =
kS̃k(x) + xS̃k−1(x). The first few S̃(n, k) are collected in Table 2.2.

42Alternatively, one can recover (2.124) introducing the exponential generating functions

B(x) =
P

n
Bn
n!

xn = eex−1 and F(x) =
P

n
Fn
n!

xn = eex−1−x; the result then follows from

B(x) = F(x) + F ′(x).
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n 1 2 3 4 5 6 7 8 9 10

Fn 0 1 1 4 11 41 162 715 3425 17722
S̃(n, 1) 0 1 1 1 1 1 1 1 1 1
S̃(n, 2) 0 0 0 3 10 25 56 119 246 501
S̃(n, 3) 0 0 0 0 0 15 105 490 1918 6825
S̃(n, 4) 0 0 0 0 0 0 0 105 1260 9450
S̃(n, 5) 0 0 0 0 0 0 0 0 0 945

Table 2.2: The Fn independent n-point spin correlators without isolated indices
decompose into subsets containing S̃(n, k) correlators with indices of k different
colors.

Appendix B

In this Appendix we determine the number Mn(q) of Sq-nonequivalent, linearly in-
dependent n-point spin correlators (2.11) which determine magnetic correlations
in the Potts model at q = 2, 3, 4. We exploit the fact, discussed in section 2.3,
that at q = 2, 3, 4 the symmetric group factorizes as

Sq = Kq o Sq−1 , (2.128)

with K4 = D2, K3 = Z3, K2 = Z2, and that the Potts model is described by
q−1 independent spin variables t1, . . . , tq−1 charged under the abelian group Kq.
Non vanishing correlation functions are neutral under Kq and invariant under
permutations of the q − 1 operators ti.

At q = 2, the only independent variable is t1 with charge +1 under Z2. The
neutrality condition for the n-point correlation functions is

n ≡ 0 mod 2, (2.129)

giving M2k(2) = 1, M2k+1(2) = 0.

At q = 3, the independent spin variables are t1 and t2 with Z3 charge +1 and
−1, respectively. Given a n-point correlation function containing n1 variables t1
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and n2 variables t2 we require

n1 + n2 = n, (2.130)

n1 − n2 ≡ 0 mod 3, (2.131)

or equivalently n1 + n ≡ 0 mod 3, with n1 = 0, . . . , n. Assigned the couple of
integers {n1, n2} = {n1, n−n1} satisfying the constraint (2.131), the total number
of distinct correlation functions we can construct is the binomial coefficient

(
n
n1

)
.

The charge conjugation operation, however, exchanges n1 with n2, and correlation
functions obtained by n1 → n − n1 are equal; notice indeed that

(
n
n1

)
=

(
n

n−n1

)
.

It follows43

Mn(3) =
1
2

n∑

n=0
n1+n≡0

mod 3

(
n

n1

)
. (2.132)

The elements of the sequence (2.132) (see the first few of them in Table 2.1)
coincide with the Jacobsthal numbers [64] and satisfy the recursive relation

Mn+1(3) = Mn(3) + 2Mn−1(3) , (2.133)

with M1(3) = 0, M2(3) = 1. We will not prove (2.133) directly but we will
justify it through the following observation. Consider an hypertetrahedron with
q vertices labeled by the numbers 1, . . . , q. The number y(n) of closed n-step
paths starting from a given vertex, say 1, of the hyperterahedron satisfies the
recursive relation (see Appendix C)

y(n) = (q − 2)y(n−1) + (q − 1)y(n−2) , (2.134)

with y(1) = 0, y(2) = q−1. The closed n-step paths γ(n) in (2.134) are considered
distinct even when they differ by a permutation π ∈ Sq−1 of the q − 1 vertices
2, . . . , q. At q = 3 there is only one possible permutation π, and it exchanges the
vertices 2 and 3. The application of π to a path γ(n) generates the path reflected
along the symmetry axis containing the vertex 1 of an equilateral triangle. The
number of closed paths nonequivalent under permutations at q = 3 is then just

43If n is even and n1 = n/2 the factor 1/2 in (95) avoids the double counting of the correlation

functions obtained exchanging in block the positions of the n1 operators t1 with the n2 = n1

operators t2.
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half of the total number of closed paths y(n), and in particular satisfies (2.134)
with q = 3. Finally notice that closed n-step paths γ(n) nonequivalent under
permutations are in one to one correspondence with independent n-point kink
fields correlation functions44 (2.26), whose number is Mn(q). Consistency requires
that Mn(3) satisfies the recursive equation (2.134) with q = 3, which indeed
coincides with (2.133).

For q = 4 we consider correlation functions of the three variables t1, t2 and t3

with D2 = Z2 × Z2 charges (1, 0), (0, 1) and (1, 1), respectively. A non-vanishing
n-point correlation function with n1 variables t1, n2 variables t2 and n3 variables
t3 satisfies

n1 + n2 + n3 = n, (2.135)

(n1 + n3, n2 + n3) ≡ (0, 0) mod 2 , (2.136)

or, more symmetrically, ni ≡ n mod 2, i = 1, 2, 3. The number of distinct
n-point correlation functions associated to the solution {n1, n2, n3} of (2.135)
and (2.136) is n!

n1!n2!n3! . Correlation functions obtained by permutations of the
integers ni are identified and we must therefore choose a definite order for them,
for example n1 ≤ n2 ≤ n3; ni = 0, . . . , n. When two positive integers n1 and
n2 coincide, the two correlation functions obtained by exchanging in block the
positions of the n1 operators t1 with the n2 operators t2 are also equal and
counted twice among the n!

n1!n2!n3!
correlation functions. Similarly, if n1 = n2 = n3

permutational symmetry does not distinguish among the 3! correlation functions
obtained exchanging in block the positions of the ni variables ti for i = 1, 2, 3.
The final result is then

Mn(4) =
∑

n1+n2+n3=n
ni≡n mod 2

n!
n1!n2!n3!

1
ne(n1, n2, n3)!

, (2.137)

where the ni are ordered, ni ≤ ni+1, and ne(n1, n2, n3) is the number of non-
zero equal integers in the tern {n1, n2, n3}. The integer sequence (2.137) (see

44Any path γ(n) can be represented as the sequence of n+1 vertices {1, v2, . . . , vn, 1} with vi 6=
vi+1 and vi = 1 . . . q. The associated kink fields correlation function is 〈µ1v2(x1) . . . µvn1(xn)〉.
Alternatively γ(n) can be thought as a particular coloration of n points on a circle. See again

Appendix C.
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Table 2.1) is also known [65], and is solution of the recursive equation

Mn+1(4) = 2Mn(4) + 3Mn−1(4)− 1 , (2.138)

with M1(4) = 0, M2(4) = 1. Again we will not prove (2.138) directly, but
will explain why a proper counting of closed paths γ(n) nonequivalent under
permutations of the vertices on a tetrahedron is obtained subtracting 1 to the
r.h.s. of (2.134) with q = 4. It is convenient to represent γ(n) as the sequence
γ(n) = {1, v2, . . . , vn, 1} with vi = 1, . . . , 4 and vi 6= vi+1, which is also a particular
coloration of n points on a circle. The way an (n + 1)-step closed path γ(n+1) =
{1, v2, . . . , vn, vn+1, 1} is constructed by adding a new point vn+1 and taking care
of permutational symmetry is the following45. First we identify the largest vi,
i = 2, . . . , n, and then generate all the paths γ(n+1) for which vn+1 6= vn, 1, with
vn+1 = 2, . . . , min{max{vi}+ 1, 4}. The recursion (97) fails only if max{vi} = 2
and then vn = 1, 2. In this case the closed paths γ(n+1) with vn+1 = 3, 4 are
identified by permutational symmetry and the choice vn+1 = 4 must be discarded;
this leads to (101).

We conclude noticing that n distinct vertices are sufficient (and necessary)
to enumerate all closed n-step paths nonequivalent under permutations of the
vertices on an hypertetrahedron. In particular the number Mn(q) of closed n-step
paths nonequivalent under permutations on an hypertetrahedron with q vertices
is constant for any q ≥ n, and we have already shown in section 2.2 that, when
no restriction is assumed on the number of available vertices so that all closed
nonequivalent paths are counted, this number coincides with Fn:

Mn(q) = Fn for q ≥ n . (2.139)

45Notice that there are two cases corresponding to vn = 1 or vn 6= 1. In the first case the new

point vn+1 is added to some closed (n − 1)-step path γ(n−1); in the second case the new point

is added to an (n− 1)-step open path. The number of (n− 1)-step open paths is however equal

to the number of closed n-step paths γ(n)
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Appendix C

Given the diagonal form (2.64) and the unitary matrix U , we have

Cρσ
α =

∑

λ,ν

U †
ρλ(qδαν − 1)δλνUνσ (2.140)

= qU †
ραUασ − δρσ. (2.141)

Requiring Cρρ
α = 0 for ρ, α = 1 . . . q, gives

Uαρ =
1√
q
eiϕαρ ; (2.142)

the equation (2.68) for the phases is then the self-consistent condition of unitarity
of the matrix U . Substituting (2.142) back into (2.141) we obtain (2.67). The
matrices Cα in (2.34) and (2.37) for q = 2, 3 are reproduced by the solution

ϕαρ = ±2π

q
αρ (2.143)

of the phase equation (2.68). For q = 4, the matrix (2.42) corresponds instead46

to the solution
ϕαρ = ±π(α1ρ1 + α2ρ2), (2.144)

with α = (α1, α2), ρ = (ρ1, ρ2), αi, ρi = 1, 2.
We conclude this appendix giving a simple geometrical interpretation of the

relation (2.62). Without loss of generality we can choose the phases so that one
of the matrices Cα, say Cq, is real, i.e.

Cq =




0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0




. (2.145)

This is the adjacency matrix of a fully connected graph with q sites, i.e. the
projection on the plane of a hypertetrahedron with q vertices. We can then use

46Of course (2.143) solves (2.68) also for q = 4. This solution, however, would lead to a matrix

Cα associated to K4 = Z4, inconsistent with our general discussion of section 2.3 (in particular,

Aut(Z4) = Z2).
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the formula (2.62) to compute powers of Cq and obtain

Cn
q = y(n)I + x(n)Cq, (2.146)

with the integers x(n) and y(n) satisfying the recursive equations

y(n+1) = q1x
(n), (2.147)

x(n+1) = q2x
(n) + y(n). (2.148)

It is now simple to realize that y(n) and x(n) are, respectively, the number of
closed paths of length n starting from a vertex v1 of the hypertetrahedron and
the number of open paths of length n from v1 to vk. Indeed, if we consider such
an open path and we add the link (vk, v1) we obtain a closed path of length n+1;
however, by permutational symmetry, all the locations of vk 6= v1 are equivalent,
and we obtain (2.147). Suppose instead to remove from the original open path
the last link (vj , vk); this gives a path of length n − 1 from v1 to vj that can
be open with multiplicity q2 (j 6= 1, k), or closed with multiplicity one (j = 1),
reproducing (2.148). The recursions (2.147) and (2.148) give for y(n) equation
(2.134), whose solution is

y(n) =
1
q

[
(−1)nq1 + qn

1

]
, (2.149)

which is q−1 times the chromatic polynomial πCn(q) for the the cyclic graph
Cn, i.e. the graph obtained putting n points on a circle. We conclude that the
decompositions over kink fields of the correlator 〈µα(x1)µα(x2) . . . µα(xn)〉 can
be associated to closed n-step paths on a fully connected graph with q vertices,
or to colorations of a ring of n points with q colors.
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Chapter 3

Universality at criticality. The

three-point connectivity

In this chapter we argue how the three-point connectivity Paaa for critical
random percolation can be related to Al. Zamolodchikov analytic continuation
of the structure constants of the conformal minimal models. In particular we
determine the value for the universal ratio Paaa(x1,x2,x3)√

Paa(x1,x2)Paa(x2,x3)Paa(x1,x3)
. At the

end of the chapter we also discuss Paaa away from criticality.

3.1 Critical three-point connectivity

As we have seen in the previous chapter the connectivity functions Pa...a(x1, . . . , xn),
i.e. the probabilities that n points belong to the same finite cluster a, play a fun-
damental role in percolation theory. In particular, their scaling limit determines
the universal properties that clusters exhibit near the percolation threshold pc.
Although most quantitative studies focus on the two-point connectivity, which
determines observables as the mean cluster size S =

∑
x Paa(x, 0), also the con-

nectivities with n > 2 carry essential information about the structure of the
theory. In this chapter we consider the case n = 3 for clusters in random perco-
lation and in the q-color Potts model (q ≤ 4) in two dimensions, in the scaling
limit on the infinite plane. In particular, we will determine exactly the universal
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quantity

R(x1, x2, x3) =
Paaa(x1, x2, x3)√

Paa(x1, x2)Paa(x1, x3)Paa(x2, x3)
(3.1)

at pc, as well as some of its features below pc. The connectivity combination (3.1)
was studied in [66, 67] for the case in which two of the three points are located
on the boundary of the half-plane, it was shown to be a constant at pc and
determined numerically and also analytically, exploiting the fact that points on
the boundary yield linear differential equations for the connectivities at criticality
[33]. It is not known how to write differential equations for random percolation
connectivities if all the points are in the bulk.

Thanks to the FK mapping, see in particular the relation (2.14), the con-
nectivity functions can be related to the correlation functions of the Potts order
parameter σα(x) = qδs(x),α− 1, α = 1, . . . , q; for p ≤ pc, namely when the proba-
bility of finding an infinite cluster is zero, the relation for the two- and three-point
functions reads

Paa(x1, x2) =
1

q − 1
〈σα(x1)σα(x2)〉 , (3.2)

Paaa(x1, x2, x3) =
1

(q − 1)(q − 2)
〈σα(x1)σα(x2)σα(x3)〉 , (3.3)

where for random percolation the limit q → 1 is understood in the r.h.s. The
relations (3.2) and (3.3), evaluated for a generic q, give the connectivities in the
random cluster model. The duality transformations (2.55) and (2.56) for the
q-color Potts model allow also to rewrite

〈σα(x1)σα(x2)〉J≤Jc = (q − 1) 〈µαβ(x1)µβα(x2)〉J∗ , (3.4)

〈σα(x1)σα(x2)σα(x3)〉J≤Jc = (q − 1)(q − 2) 〈µαβ(x1)µβγ(x2)µγα(x3)〉J∗ . (3.5)

Comparison with (3.2), (3.3) shows that Paa and Paaa are related to the kink
field correlators without any q-dependent prefactor1.

In the scaling limit (q ≤ qc, J → Jc, distances |xi − xj | ≡ rij much larger
than the lattice spacing) that we consider from now on, the lattice variables
become fields of the Potts field theory. Up to overall constants depending on the

1For the case of points lying on the boundary of a simply connected domain of the plane we

gave a geometrical explanation of (3.4) and (3.5) in the previous chapter.
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arbitrary normalization of the field σα(x), the correlators in (3.2-3.3) are universal
functions of the distances rij measured in units of the connectivity length. The
normalization constants cancel in the combination (3.1), which is then completely
universal.

At criticality, conformal invariance implies that the two- and three-point cor-
relators of scalar fields Ai(x) with scaling dimension Xi have the form [36]

〈A1(x1)A2(x2)〉 = δX1,X2C12 r−2X1
12 , (3.6)

〈A1(x1)A2(x2)A3(x3)〉 = C123 rX3−X1−X2
12 rX2−X1−X3

13 rX1−X2−X3
23 . (3.7)

If the fields are chosen and normalized in such a way that Cij = δij , the constants
Cijk, which are invariant under permutations of their indices, coincide with the
coefficients Ck

ij of the operator product expansion (OPE)

Ai(x1)Aj(x2) = Ck
ij r

Xk−Xi−Xj

12 Ak(x2) + . . . . (3.8)

Denoting Xs the scaling dimension of the Potts spin field σα(x), we see re-
calling (3.2-3.3) that Paa ∝ r−2Xs , Paaa ∝ (r12r13r23)−Xs , and

R(x1, x2, x3) ≡ Rc =
1

(q − 1)(q − 2)
Cσασασα , p = pc , (3.9)

where we have chosen according to the general discussion of section 2.4

Cσασα = q − 1. (3.10)

As briefly discussed at the beginning of section 1.3, in the Potts model, the
fields σα have in the Kac notation scaling dimension [37, 38]

Xs = X(t+1)/2,(t+1)/2 (3.11)

and multiplicity2 q − 1 (
∑

α σα = 0). The field is degenerate only for q = 2
(Ising model, t = 3) and q = 3 (t = 5). Correlation functions of degenerate fields
are solution of differential equations and in [68] this peculiarity was exploited to
compute the OPE coefficients Ck

ij for the “diagonal” series of minimal models, in

2The non-integer multiplicity of the fields σα for q generic of course signals the unconventional

nature of the field theoretical problem we deal with. The relevant point is that Sq invariance

allows to treat q as a parameter which does not need to be integer, see below.
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which all the primaries appear with multiplicity one. The Potts model belongs
to this class for q = 2, but even for this case the results for the minimal OPE
are not sufficient to determine Rc. Indeed, it is clear from (3.9) that a finite Rc

requires Cσασασα = 0 at q = 2, and this is trivially ensured by the spin reversal
symmetry of the Ising model. Hence, even the determination of Rc at q = 2
requires the computation of the OPE coefficient for continuous values of q; even
forgetting the problem with the multiplicity of the fields, the formulae of [68] can
be evaluated only for the discrete values of t corresponding to minimal models.

Few years ago Al. Zamolodchikov [30] approached the problem of the deriva-
tion of the OPE coefficients of c < 1 minimal models within a conformal bootstrap
method based on the use of correlators of four scalar fields, one of which being the
degenerate primary with dimension X1,2 or X2,1. The other three fields are simply
required to appear with multiplicity one; the mathematical treatment does not
put any constraint on their scaling dimensions Xi, i = 1, 2, 3. The method leads
to functional equations for the OPE coefficients which are related by analytic
continuation to the functional equations arising in Liouville theory (c ≥ 25) [69].
The solution for c < 1, however, is not an analytic continuation of the Liouville
solution, and reads [30]

CX3
X1,X2

= CX1,X2,X3 = (3.12)

A Υ(a1 + a2 − a3 + β)Υ(a2 + a3 − a1 + β)Υ(a3 + a1 − a2 + β)
[Υ(2a1 + β)Υ(2a1 + 2β − β−1)Υ(2a2 + β)Υ(2a2 + 2β − β−1)]1/2

×

× Υ(2β − β−1 + a1 + a2 + a3)
[Υ(2a3 + β)Υ(2a3 + 2β − β−1)]1/2

,

with

β =
√

t/(t + 1) , (3.13)

Xi = 2ai(ai + β − β−1) , (3.14)

A =
ββ−2−β2−1[γ(β2)γ(β−2 − 1)]1/2

Υ(β)
, γ(x) ≡ Γ(x)

Γ(1− x)
, (3.15)

Υ(x) = exp





∞∫

0

dt

t




(
Q

2
− x

)2

e−t −
sinh2

[(
Q
2 − x

)
t
2

]

sinh βt
2 sinh t

2β






 , Q = β+β−1.

(3.16)
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q 1 2 3 4

Rc 1.0220.. 1.0524.. 1.0923.. 1.1892..

R̃c − 1.3767.. 1.3107.. 1.1892..

ΓK
KK 1.0450.. 1.1547.. 1.3160.. 1.8612..

Table 3.1: Rc and ΓK
KK are the values of the quantities (3.9) and (3.27) for FK

clusters; q = 1 corresponds to random percolation. R̃c is obtained from (3.24)
with Xσ replaced by Xσ̃, the scaling dimension associated to spin clusters.

The integral in (3.16) is convergent for 0 < x < Q; outside this range Υ(x) can
be computed using the relations

Υ(x + β) = γ(βx)β1−2βxΥ(x) , (3.17)

Υ(x + 1/β) = γ(x/β)β2x/β−1Υ(x) . (3.18)

The function (3.12) can be evaluated for continuous values of t and of the Xi’s.
Taken literally, it would give the OPE coefficients for a theory with arbitrary
c < 1 and with a continuous spectrum of fields having multiplicity one. It is
remarked in [30] that the consistency of such a theory, in particular from the
point of view of modular invariance [40, 41], is an open question. Concerning
the values of c corresponding to minimal models, (3.14) gives twice the scaling
dimensions hn,m as in (1.32) for ai equal to

am,n =
(n− 1)β

2
− (m− 1)β−1

2
. (3.19)

Although a general proof is not available, checks case by case show that (3.12)
reproduces the OPE coefficients of minimal models obtained in [68], at least
when these differ from zero. In some cases for which the minimal OPE prescribes
vanishing coefficients, (3.12) gives instead finite numbers whose interpretation is
considered “mysterious” in [30]. As an example, (3.12) evaluated for X1 = X2 =
X3 = X2,2 at t = 3 does not vanish, despite the fact that the spin three-point
function is zero in the Ising model. Recall now from the previous chapter that
the two-dimensional Potts model contains also kink fields, dual to the spin fields
and with the same scaling dimension Xσ. They satisfy the OPE

µαβ µβγ = δαγ(I + Cε ε + . . .) + (1− δαγ)(Cµ µαγ + . . .) , (3.20)
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where we omit the coordinate dependence for simplicity and the coefficient in
front of the identity is fixed to 1 by (3.4) and (3.10). Use of (3.4-3.5) at the
self-dual point then leads to the result Rc = Cµ. Sq-invariance gives to (3.20) a
two-channel structure (α = γ or α 6= γ) equivalent to that produced by two fields
µ and µ̄ satisfying3

µ µ̄ = I + Cε ε + . . . , (3.21)

µµ + µ̄ µ̄ = Cµ(µ + µ̄) + . . . . (3.22)

The field φ ≡ (µ + µ̄)/
√

2 then satisfies

φ φ = I + Cε ε +
Cµ√

2
φ + . . . , (3.23)

namely a “neutral” OPE for fields with multiplicity one, as the one assumed in
the derivation of (3.12). Notice also that, due to the neutrality of the fields in
(3.23), Cµ has no reason to vanish for any value of q; in particular, this is not in
conflict with the symmetries of the Ising model, because the absence for q = 2 of
the vertex with three kink fields in (3.20) is enforced by the factor 1− δαγ . These
observations may suggest the following interpretation for the function (3.12): it
encodes the “dynamical” information about the OPE of conformal field theory
for c < 1, and knows nothing about internal symmetries, which, on the other
hand, are not uniquely determined by the value of c; symmetry considerations
have to be developed separately and produce a dressing of (3.12) by factors which
may vanish, suppressing the vertices not compatible with the given symmetry.
Letting aside the general validity of this interpretation, the OPE’s (3.20) and
(3.23) make it plausible for the case we are discussing, and lead us to take

Rc =
√

2CXs,Xs,Xs , (3.24)

3The two- and three-point kink correlators (the only ones we are concerned with in this

chapter) are expressed in terms of the correlators of µ and µ̄ as

〈µαβ(x1)µβα(x2)〉 = 〈µ(x1)µ̄(x2)〉 ,
〈µαβ(x1)µβγ(x2)µγα(x3)〉 = (1/2) 〈(µ + µ̄)(x1)(µ + µ̄)(x2)(µ + µ̄)(x3)〉 .
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Figure 3.1: Montecarlo determination of the universal ratio Rc (called R in the
figure, [31]). Simulations are performed on a L×L lattice with periodic boundary
conditions, for the values of L listed on the right. The three points are taken at
the vertices of an equilateral triangle of side ∆. Data clearly converge towards
the theoretical result 1.022 . . . as L increases.

with Xs given in (3.11). The results for the integer values of q are given in
Table 3.1. The value for q = 4 is obtained in the limit t → ∞; Cµ is known to
coincide with the r.h.s. of (3.24) for q = 3 (see e.g. [49] and [70]).

The result obtained for Rc at q = 1 has been checked numerically in [31].
The authors considered a a percolation problem defined on L × L lattice with
periodic boundary conditions and put the points x1, x2 and x3 at the vertices of
an equilateral triangle of length-side ∆. Increasing L and for ∆ in a range where
lattice and finite size effects are negligible, Rc approaches the value predicted by
(3.24), see Fig. 3.1.

The result (3.24) refers to FK clusters. Concerning the ordinary spin clusters,
i.e. those obtained connecting nearest neighbors with the same value of the spin,
they are also critical at Jc in two dimensions [71], with connectivities related to
the correlation functions of the field with scaling dimension Xs̃ = Xt/2,t/2 [72, 48].
For the Ising case, the best understood field theoretically [46, 21], the ratio (3.1)
is expected to be given by (3.24) with Xs replaced by Xs̃. We give this value
R̃c in Table 3.1; those obtained in the same way at q = 3, 4 are also quoted, but
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Figure 3.2: Triangle identified by the points x1, x2, x3. The lines joining the
vertices of the triangle to the Fermat (or Steiner) point Y form 2π/3 angles.

these cases are less clear.
The OPE between σα and µβγ produces parafermionic fields. An analysis

similar to that of [73] suggests that they have spin X1,3/2; this is certainly the
case for q = 2, 3 [49].

3.2 Three-point connectivity away from criticality

Away from criticality the Potts field theory is solved exactly in the framework
of the factorized S-matrix, from which large distance expansions can be obtained
for the correlation functions [62, 18]. The Sq symmetry is more transparently
implemented working in the ordered phase (J > Jc), where the elementary exci-
tations (kinks) are interpolated by the kink fields of section 2.7; the results for
the disordered phase are obtained by duality. If x1, x2, x3 are the vertices of a
triangle whose internal angles are all smaller than 2π/3, the asymptotic behavior
of the correlator (3.5) when all the distances between the vertices become large
reads [27] ([74] for a derivation)

〈µαβ(x1)µβγ(x2)µγα(x3)〉J>Jc =
F 3

µ

π
ΓK

KK K0(rY /ξ) + O(e−ρ/ξ) . (3.25)

Here Fµ is a shorthand notation for the one-kink form factor of the kink field,
K0(x) =

∫∞
0 dy e−x cosh y is a Bessell function, and rY ≡ r1 + r2 + r3 is the
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sum of the distances of the vertices of the triangle from the Fermat (or Steiner)
point Y , which has the property of minimizing such a sum (Fig. 3.2); rY < ρ ≡
min{r12 +r13, r12 +r23, r13 +r23}. ξ is the connectivity length (inverse of the kink
mass), also determined by the large distance decay of the two-point function

〈µαβ(x1)µβα(x2)〉J>Jc =
F 2

µ

π
K0(r12/ξ) + O(e−2r12/ξ) , (3.26)

and ΓK
KK is the three-kink vertex given by [27]

ΓK
KK =

√
1
λ

sin
2πλ

3
g(λ) , (3.27)

g(λ) = exp



∞∫

0

dt sinh
(

t

3

)
sinh

[
t
2

(
1− 1

λ

)]− sinh
[

t
2

(
1
λ − 5

3

)]

t sinh t
2λ cosh t

2


 ,(3.28)

with q = 2 sin πλ
3 , λ ∈ (0, 3/2). It follows from (3.4-3.5) that (3.25-3.26) are

precisely the asymptotics for large separations of the connectivities (3.2-3.3) for
KF clusters below pc. It follows

R(x1, x2, x3) '
√

π ΓK
KK

K0(rY /ξ)√
K0(r12/ξ)K0(r13/ξ)K0(r23/ξ)

, rij À ξ, p→ p−c .

(3.29)
The dynamical information is entirely contained in the three-kink vertex, whose
values for q integer are given4 in Table 3.1. In the opposite limit, in which all the
distances rij are much smaller than ξ (always remaining much larger than the
lattice spacing), the function R tends to its constant critical value Rc.

Finally, consider the ordinary spin clusters for the Ising model. It was argued
in [46] that in this case the scaling limit for p→ p−c (in zero magnetic field) cor-
responds to a renormalization group trajectory with infinite connectivity length
ending into a random percolation fixed point at large distances. Then one expects
(3.1) to interpolate from R̃c|q=2, when all the distances between the points are
small, to Rc|q=1, when all of them are large. Although universal, this crossover
could be easier to observe on the triangular lattice, which has pc = 1/2 for site
percolation and is expected to minimize the corrections to scaling [46]. If instead

4The value ΓK
KK |q=1 quoted in [27] is affected by a typo in the formula corresponding to our

(3.28).
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we work at the Ising critical temperature and add a magnetic field H, the con-
nectivity length is finite and the large separation behavior of (3.1) for clusters
of positive spins and H → 0− has again the form (3.29), with ΓK

KK = 5.7675..
given by (3.27) evaluated at λ = 5/2 [21]. Since the integral in (3.28) diverges
for λ ≥ 3/2, one uses the analytic continuation

g(λ) =
Γ

(
1− 2λ

3

)
Γ(1 + λ)

Γ
(
1 + λ

3

) × (3.30)

× exp



∞∫

0

dt sinh
(

t

3

)
sinh

[
t
2

(
1− 1

λ

)]− e−t sinh
[

t
2

(
1
3 + 1

λ

)]

t sinh t
2λ cosh t

2




for 3/2 ≤ λ < 3.
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Chapter 4

Universality close to criticality.

Amplitude ratios

In this chapter we describe the theoretical computation of universal amplitude
ratios for random two-dimensional percolation. The two-kink form factors of the
spin field at q = 1 are obtained exploiting integrability of the perturbed Potts field
theory and then used to derive the results of Tab. 4.2. In particular we determine
the ratio Γ+/Γ− of cluster size amplitudes below and above the critical threshold
pc. The numerical value of this quantity had been controversial for thirty years.

4.1 Introduction

Universal combinations of critical amplitudes represent the canonical way of
encoding the universal information about the approach to criticality in statistical
mechanics [75]. While critical exponents can be determined working at criticality,
amplitude ratios characterize the scaling region around the critical point. They
carry independent information about the universality class and their determi-
nation is in general theoretically more demanding. Field theory is the natural
framework in which to address the problem, but the usual perturbative approach
is not helpful if one has to work far below the upper critical dimension dc.

For the best-known example of a geometric phase transition, namely isotropic
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percolation (dc = 6), it was shown in [62] how the field theoretical computation of
universal amplitude ratios in two dimensions can be addressed non-perturbatively
exploiting the fact that percolation can be seen as the q → 1 limit of the q-color
Potts model, see section 1.5, and that the latter is integrable even away from
criticality, in the scaling limit for q ≤ 4 as discussed in section 2.7. Starting from
the exact S-matrix one can compute the Potts correlation functions, and from
them the amplitude ratios, using the form factor approach. For example consider
the ratio of the cluster size amplitudes Γ+ and Γ− we introduced in section 1.5.
This is expressed as the ratio of Potts susceptibilities in the limit q → 1

Γ+

Γ−
= lim

q→1

∫
d2x〈Ω|σα(x)σα(0)|Ω〉∫

d2x〈Ωα|σα(x)σα(0)|Ωα〉c
, (4.1)

where |Ωα〉 is the Potts vacuum in the spontaneously broken phase of color α

and |Ω〉 is the Potts Sq invariant vacuum. The correlation function in the broken
phase is the connected one. The scattering theory of the q-color Potts model is
formulated in the ordered phase where lightest mass excitations are kinks. The
computation of the numerator in (4.1) is then possible exploiting the duality
transformation discussed in chapter 2

〈Ω|σα(x)σα(0)|Ω〉 = (q − 1)〈Ωα|µαβ(x)µβα(0)|Ωα〉, (4.2)

and within the two-kink form factor approximation the correlation functions are1

〈Ωα|σα(x)σα(0)|Ωα〉c =
q − 1
2π2

∞∫

0

dθ K0

(
2m|x| cosh θ/2

)|F σα
αβα(θ)|2 + o

(
e−2m|x|)

(4.3)

〈Ωα|µαβ(x)µβα(0)|Ωα〉 =
K0(m|x|)

π
|Fµαβ

βα |2 (4.4)

+
q − 2
2π2

∞∫

0

dθ K0

(
2m|x| cosh θ/2

)|Fµαβ

βγα (θ)|2 + o
(
e−2m|x|),

(4.5)

1By rotational invariance the Euclidean point x has been taken (|x|, 0).
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with K0(x) =
∫∞
0 dξ e−x cosh ξ a modified Bessel function. The notation for the

two-kink form factor is that of section 2.7, i.e.

FΦ
α1α2α3

(θ) = 〈Ωα1 |Φ(0, 0)|Kα1α2(θ)Kα2α3(0)〉 (4.6)

and the functional equations solved by the matrix element (4.6) are briefly quoted
in (2.116), (2.117) and (2.118) for the case of a neutral field. For more details we
refer to [62]. In the next section we will discuss the computation of the two-kink
spin field and kink field form factors in the Potts model and in particular in the
limit q → 1.

4.2 Two-kink form factors for the spin and kink field

Parameterizing
√

q = 2 sin(πλ/3), the two-kink form factor of the spin field
has the following analytic form, [62]

F σα
αβα(θ) = FΛ(θ)Ωq(θ), (4.7)

with the integral representation for function FΛ(θ)

FΛ(θ) = −i sinh θ/2 exp



∞∫

0

dx

x

g1(x) + gε(x)
sinhx

sin2 (iπ − θ)x
2π


 (4.8)

and

ga(x) = 2
sinh

(
1
2λ − a

)
x

sinh x
2λ

, (4.9)

gε = 2
sinh x

3 cosh
(

1
3 − 1

λ

)
x
2

sinh x
2λ cosh x

2

. (4.10)

The function Ωq(θ) is characterized by the following properties:

i) is a meromorphic function of θ whose only singularity in the strip Im θ ∈
(0, 2π) is a simple pole at θ = iπ with residue

Resθ=iπΩq(θ) = i
1

q − 1
〈σα〉α, (4.11)

where 〈σα〉α denotes the Potts spontaneous magnetization;
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ii) is solution of the functional equations

Ωq(θ) = Ωq(−θ), (4.12)

2 cos
πλ

3
sinhλθ Ωq(θ) = sinhλ(iπ + θ) Ωq(2iπ − θ)− sinhλ(iπ − θ) Ωq(2iπ + θ) ,

(4.13)
with the asymptotic behavior

Ωq(θ) ∼ exp
[(

2
3
λ− 1

)
θ

]
, θ → +∞. (4.14)

For q ≤ 3, where the Potts scattering theory possesses no bound states, the
properties i) and ii) uniquely identify Ωq(θ), and then the spin field of the scaling
Potts model2.

In [62] Ωq(θ) was determined only for q = 2, 3, 4, where it takes a simple form.
We now show that Ω1(θ) can be obtained taking a mathematical detour in the
sine-Gordon model. For the latter, which is defined by the action

ASG =
∫

d2x
1
2

(∂νϕ)2 + µ cosβϕ, (4.15)

Lukyanov computed in [77] the soliton-antisoliton form factors

F a
ε1ε2

(θ) = 〈0|eiaβϕ(0)|Aε1(θ1)Aε2(θ2)〉, εi = ±1, ε1ε2 = −1, (4.16)

obtaining a result that in our notations3 reads

F a
±∓(θ) = −〈eiaβϕ〉 F0(θ)

F0(iπ)
Aa
±(θ), (4.17)

Aa
±(θ) = e

∓ π
2ξ

(iπ−θ)[e∓2iπaIa(−θ) + Ia(θ − 2iπ)], (4.18)

where ξ = πβ2/(8π − β2), F0(θ) is a function on which we comment below, and
Ia(θ) is specified for real values of θ and a ∈ (−1

2 − π
ξ , 1

2) as

Ia(θ) = C
+∞∫

−∞

dx

2π
W

(
−x− θ

2
+ iπ

)
W

(
−x +

θ

2
+ iπ

)
e
−
“

π
ξ
+2a

”
x
, (4.19)

2See [76, 73] for the correspondence between fields and solutions of the form factor equations

in integrable field theory.
3In particular, switching from Lukyanov’s notations to ours involves the replacements θ →

−θ, ξ → ξ/π, a → βa.
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with

W (θ) = − 2
cosh θ

exp


−2

∞∫

0

dt

t

sinh t
2

(
1− ξ

π

)

sinh t sinh ξt
2π

sin2 t

2π
(iπ − θ)


 , (4.20)

and

C =
1
4

exp


−4

∞∫

0

dt

t

sinh2 t
4 sinh t

2

(
1− ξ

π

)

sinh t sinh ξt
2π


 . (4.21)

These results were presented in [77] within a framework known as free field
representation, which differs from the usual approach to form factors based on
functional relations. Of course, this latter approach can be adopted also for the
matrix elements (4.17), using as input the sine-Gordon S-matrix and the fact
that the soliton is semi-local with respect to eiaβϕ, with a semi-locality phase
e2iπa. The corresponding functional equations then read [78]

F a
ε1ε2

(θ) = ST (θ)F a
ε2ε1

(−θ) + SR(θ)F a
ε1ε2

(−θ), (4.22)

F a
ε1ε2

(θ + 2iπ) = e2iπaε2 F a
ε2ε1

(−θ), (4.23)

where

ST (θ) = −
sinh πθ

ξ

sinh π
ξ (θ − iπ)

S(θ), (4.24)

SR(θ) = −
sinh iπ2

ξ

sinh π
ξ (θ − iπ)

S(θ), (4.25)

are the transmission and reflection amplitudes; the explicit form in the present
notations of S(θ) and F0(θ) can be found for example in [50], but here we only
need to know that

F0(θ) = S(θ)F0(−θ), F0(θ + 2iπ) = F0(−θ). (4.26)

This implies in particular that (4.23) is automatically satisfied by (4.17). Since
Aa± are meromorphic functions of θ, also Ia, as a linear combination of Aa

+ and
Aa− with entire coefficients, is meromorphic. It particular, analyticity implies that
the property

Ia(θ) = Ia(−θ), (4.27)
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which for real θ is apparent in (4.19), extends to the whole complex plane. Re-
quiring (4.22) leads now to the equation

2 cos
(

π2

ξ
+ 2πa

)
sinh

πθ

ξ
Ia(θ) = sinh

π

ξ
(iπ − ηθ) Ia(2iπ − θ)+

− sinh
π

ξ
(iπ + ηθ) Ia(2iπ + θ) , (4.28)

with η = 1. Making the identifications

ξ =
π

λ
, a = −λ

2

(
1± 1

3

)
+ k, k ∈ Z (4.29)

we rewrite (4.28) as

2 cos
πλ

3
sinhλθ Ia(θ) = sinhλ(iπ − ηθ) Ia(2iπ − θ)− sinhλ(iπ + ηθ) Ia(2iπ + θ) ,

(4.30)
always with η = 1. On the other hand, this equation coincides with (4.13) when
η = −1. At q = 1 (i.e. λ = 1/2), however, the sign of η becomes immaterial
and (4.30) exactly coincides with the equation satisfied by Ω1. The functional
equation (4.30) has infinitely many solutions (a solution multiplied by a 2iπ-
periodic function of θ is a new solution) and it remains to be seen whether (4.19)
with the identifications (4.29) and λ = 1/2 can yield the function Ω1 relevant for
the percolation problem. From the known asymptotic behavior (see e.g. [78]) of
the form factors (4.17) one deduces that Ia(θ) behaves as exp

[(
a− 1

2

)
θ
]

as θ →
+∞, a result which is not obvious from (4.19) but can be checked numerically.
Comparing with (4.14) we see that Ia behaves asymptotically as Ω1 provided
we take a = −1/6, corresponding to the lower sign and k = 0 in (4.29) with
λ = 1/2. The value ξ = 2π (i.e. λ = 1/2) falls in the repulsive regime of the
sine-Gordon model in which the only singularity of the form factors (4.17) within
the strip Im θ ∈ (0, 2π) is the annihilation pole at θ = iπ. Since F0(θ) is free of
poles in the strip, the annihilation pole must be carried by Aa±, and then by Ia.
Any other pole of Ia in the strip could not cancel simultaneously in Aa

+ and Aa−,
and then Ia(θ)|ξ=2π possesses a single pole at θ = iπ in the strip Im θ ∈ (0, 2π),
exactly as it is the case for Ωq(θ) in the Potts model. Summarizing, the functions
I−1/6(θ)

∣∣
ξ=2π

and Ω1(θ) satisfy the same functional relations, have the same
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asymptotic behavior and the same singularity structure; then we conclude that
they coincide up to a normalization. Since we know that [78]

Resθ=iπF a
+−(θ) = i(1− e−2iπa)〈eiaβϕ〉, (4.31)

we read from (4.17), (4.18) and (4.27) that Ia(θ) has residue i on the pole. Know-
ing also that the percolative order parameter P (probability that a site belongs
to an infinite cluster) is related to the Potts magnetization as in (1.50)

P = lim
q→1

〈σα〉α
q − 1

, (4.32)

and recalling (4.11), we conclude that Ω1(θ) has residue iP on the pole, and
therefore

Ω1(θ) = P I−1/6(θ)
∣∣
ξ=2π

. (4.33)

The values ξ = 2π, a = −1/6 fall in the range where (4.19) can be used to
compute Ω1(θ) for real values of θ, which is sufficient for our purposes.

The two-kink form factor of the kink field µαβ was derived in [62] and it has
the form

F
µαβ

αβγ = −
√

3ΓK
KK

4FΣ(2πi/3)
F

µαβ

βα

FΣ(θ)
sinh 1

2

(
θ + 2πi

3

)
sinh 1

2

(
θ − 2πi

3

) , (4.34)

with FΣ and ΓK
KK defined by

FΣ(θ) = −i sinh θ/2 exp



∞∫

0

dx

x

g 2
3
(x) + gε(x)

sinhx
sin2 (iπ − θ)x

2π


 , (4.35)

ΓK
KK =

[ 1
λ

sin
2πλ

3
eA(iπ/3)

]1/2
, (4.36)

A(θ) was considered in (2.107).

Form factors of the spin field σα and of the kink field µαβ are computed
independently even tough they must be consistent with (4.2). The relative nor-
malization is fixed by the asymptotic factorization property [79]

lim
θ→∞

F σα
αβα(θ) =

q − 1
〈σα〉α |F

µαβ

βα |2, (4.37)
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Triangular Square

A+ −4.37a -
Γ+ 0.0720b 0.102b

B 0.780b 0.910b

2f+
2nd 0.520b 0.520b

Table 4.1: Lattice estimates of critical amplitudes for site percolation on triangu-
lar and square lattice. The superscripts a, b indicate Refs. [81, 82], respectively.

which in the limit q → 1 reads

lim
θ→∞

F σα
αβα(θ)|q=1 =

1
P
|Fµαβ

βα |2q=1. (4.38)

We observe that the factors (q − 1) can be explicitly isolated and cancel in the
computation of the ratio (4.1). The same can be shown for the other amplitudes.

4.3 The universal amplitude ratios of random perco-

lation

Near the percolation threshold the relations

S ' Γ±|p− pc|−γ , (4.39)

ξ ' f±|p− pc|−ν , (4.40)

P ' B(p− pc)β, (4.41)
〈Nc〉
N
' A±|p− pc|2−α. (4.42)

define the critical amplitudes for the mean cluster size, the correlation length,
the order parameter and the mean cluster number per site, respectively; the
superscripts ± refer to pc being approached from below or from above. Below we
consider both the second moment correlation length

ξ2
2nd =

1
4

∫
d2x |x|2Paa(x)∫

d2x Paa(x)
, (4.43)

and the true correlation length ξt defined by

Paa(x) ∼ e−|x|/ξt , |x| → ∞, (4.44)
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Figure 4.1: Numerical estimations for the amplitude size ratio Γ+/Γ−, obtained
since 1976. See [86] for references.

where Paa(x) is the probability that x and the origin belong to the same finite
cluster. It was shown in [62] that, in terms of the Potts kink mass m, ξt is 1/m

at p < pc and 1/2m at p > pc, and that

A± = − 1
2
√

3 (f+
t )2

. (4.45)

Defining the amplitude combinations

R+
ξ =

[
α(1− α)(2− α)A+

]1/2
f+, U = 4

B2(f+
2nd)

2

Γ+
, (4.46)

which are universal due to the scaling relations 2 − α = 2ν and 2ν = 2β + γ,
(4.45) together with α = −2/3 imply in particular

R+
ξt

=
[

40
27
√

3

]1/2

= 0.9248.., (4.47)

a result recovered from a lattice computation in [80]. The result for R+
ξ2nd

in the
two-kink approximation was computed in [62] and compares quite well with the
lattice estimate obtained from the combination of the data collected in Table 1.
The result (4.33) allows us to complete the two-kink computation of the universal
ratios involving the amplitudes f−2nd, Γ−, B. The field theoretical results for
the complete list of independent4 ratios involving the amplitudes (4.39–4.42) are

4In [62] the ratio Rc = 4(R+
ξ2nd

)2/U was considered instead of U . The result Rc= 1.56 we

obtain should be compared with ≈ 1.53 following from Table 4.1.
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Field Theory Lattice

A+/A− 1 1a

f+
t /f−t 2 -

f+
2nd/f+

t 1.001 -
f+
2nd/f−2nd 3.73 4.0± 0.5c

Γ+/Γ− 160.2 162.5± 2d

U 2.22 2.23± 0.10e

R+
ξ2nd

0.926 ≈ 0.93a+b

Table 4.2: Universal amplitude ratios in two-dimensional percolation. The field
theory results in the first two lines are exact, the others are obtained in the two-
kink approximation. The superscripts a, b, c, d, e indicate Refs. [81, 82, 83, 84,
85], respectively.

summarized in Table 4.2 together with the most accurate lattice estimates. As
remarked above, the comparison confirms in particular the effectiveness of the
two-particle approximated form factor results in integrable field theory. The
value 160.2 for the finite cluster size amplitude ratio is particularly interesting
since the status of numerical results obtained in the past decades for this quantity
was particularly controversial, see Fig. 4.1. Our theoretical result agrees with
the last very accurate lattice determination by Jensen and Ziff [84].
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Chapter 5

Crossing probability and

number of crossing clusters

away from criticality

In this chapter we discuss another classical observable of two-dimensional
percolation, the vertical crossing probability Pv, i.e. the probability that on a
rectangular geometry there exits at least a cluster connecting the horizontal sides.
We reproduce in section 5.1 the result by Cardy at criticality. In the rest of the
chapter we provide asymptotic formulae for Pv in the scaling limit above and
below pc, for the case in which both sides of the rectangle are much larger than
the correlation length ξ. Our result agrees with available numerical data.

5.1 Cardy formula for the critical case

Consider a bond percolation problem defined on a regular two-dimensional lattice
where bonds are occupied with probability p and focus on a rectangular window
L of width L and height R. Configurations will contain or not at least one cluster
of occupied bonds spanning between the two horizontal sides of the rectangle, see
Fig. 5.1. The probability to generate a configuration with a vertical crossing
(vertical crossing probability) is Pv(L,R, p)|L. Clearly if Ph is the horizontal
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Figure 5.1: Critical site percolation problem on a square. The underlying lattice
is triangular. Percolative clusters are red hexagons on the dual hexagonal lattice
and the configuration on the right contains a vertically spanning cluster.

crossing probability,

Pv(L,R, p)|L = 1− Ph(L,R, p∗)|L∗ (5.1)

and Pv(L,R, p) = Ph(R, L, p), see Fig. 5.2. In (5.1) the duality transformation
for percolation1 corresponds to the replacement p → p∗ = 1 − p in the partition
function ∑

G⊆L
p|E(G)|(1− p)|E(L)|−|E(G)|, (5.2)

where we recall that |E(L)| = |E(L∗)| and |E(G′)| + |E(G)| = |E(L)|, G′ being
the complementary graph of G defined in section 1.1.

It is well known, since the numerical work of Langlands et al. [32], that in the
scaling limit Pv is universal, i.e. its value does not dependent on the lattice and on
the type of random percolation problem (site or bond) considered. In 1992 Cardy
[33] determined the function Pv(L,R, pc) at the critical point with techniques of
conformal field theory2. The derivation is a classic and simple example of the
power of conformal invariance in two dimensions and we will present it now.

As we have seen many times in this thesis, an efficient theoretical approach to
random percolation is to see it as a limiting case of the q-color Potts model. Con-
sider the Potts partition function Z lr

ud on the rectangle with boundary conditions

1We do not consider subtleties with the boundary of L.
2See [87] for the probability of simultaneous horizontal and vertical crossing.
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L

R

p

Figure 5.2: A particular configuration in a bond percolation problem on a square
lattice. The graph G is shown in the figure (in black) together with its comple-
mentary graph G′ ( in blue). The edges of G′ are all the edges of L∗ which do
not intersect the edges of G. Clearly a vertical crossing in G forbids an horizontal
crossing in G′.

u, d, l and r on the upper, lower, left and right side, respectively. The boundary
lattice spins can be fixed to have color α (α) or free (f). In the FK expansion of
the Potts partition function, FK clusters touching a boundary with fixed bound-
ary conditions carry one color, while FK clusters connected to a free boundary
carry q colors. In particular if the spins on the upper side of the rectangle are
fixed to have color β with β 6= α, Zff

αβ cannot contain vertically spanning clusters
and we conclude

Pv = 1− Zff
αβ |q=1. (5.3)

We observe for later purposes that the mean number of vertically spanning
clusters N̄v can be also computed starting from the FK representations

Zff
αα =

∑

G
p|E(G)|(1− p)|E(L)|−|E(G)|qNb , (5.4)

Zff
ff =

∑

G
p|E(G)|(1− p)|E(L)|−|E(G)|qNb+Nv+Nu+Nd , (5.5)

Zff
αf =

∑

G
p|E(G)|(1− p)|E(L)|−|E(G)|qNb+Nd , (5.6)

Zff
fα =

∑

G
p|E(G)|(1− p)|E(L)|−|E(G)|qNb+Nu , (5.7)
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Figure 5.3: The different types of clusters which, depending on boundary condi-
tions, determine the q-dependence of the Potts partition functions (5.4-5.7).

where Nb is the number of clusters which do not touch the horizontal bound-
aries, Nu (Nd) the number of clusters which touch the upper (lower) but not the
lower (upper) boundary, and Nv the number of those touching both horizontal
boundaries (see Fig. 5.3). It follows

N̄v = lim
q→1

∂q log
Zff

ff Zff
αα

Zff
αf Zff

fα

. (5.8)

We are now ready to derive the vertical crossing probability at criticality, where
by scale invariance it is a function of the aspect ratio r = R/L of the rectangle
only.

In a conformal field theory the change of boundary conditions from a to b

in the point x of the boundary is implemented by a local operator φab(x), the
so-called boundary condition changing operator, according to the general theory
developed in [88]. The partition function Zff

αβ is then a correlation function of
four boundary conditions changing operators φαf inserted at the vertices of the
rectangle x1, x2, x3 and x4, Fig. 5.3

〈φfα(x1)φαf (x2)φfβ(x3)φβf (x4)〉. (5.9)

The crucial point is the identification of the boundary condition changing operator
φαf . The argument is the following. Consider the boundary condition changing
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operator φαβ, i.e. the kink field in the broken phase of the q-color Potts model.
At the self dual point, its insertion at the boundary is equivalent to the insertion
of the Potts order parameter σα with free boundary conditions. Such operator
corresponds to the degenerate field φ1,3 for q = 2 and q = 3. Assuming that such
identification also holds at q = 1 the field φαf must satisfy the OPE

φαf · φfβ ∼ δαβ + φαβ + . . . (5.10)

In particular φ1,2 obeys φ1,2 ·φ1,2 ∼ I +φ1,3 and we conjecture that φαf coincides
with φ1,2 also at q = 1. The Verma module of φ1,2 contains a null vector at level
two expressed as the linear combination of Laurent modes

[ 3
2(1 + 2h1,2)

L2
−1 − L−2

]
|h1,2〉, (5.11)

leading to the differential equation in the complex plane

 3

2(1 + 2h1,2)
∂2

z1
+

4∑

p=2

1
z1 − zp

∂zp


 〈φ1,2(z1)φ1,2(z2)φ1,2(z3)φ1,2(z4)〉 = 0 (5.12)

for the four-point correlation function. From the Riemann mapping theorem we
can suppose the zi’s with zi < zi+1 images on the real axis of the vertices of the
rectangle. The conformal weight3 h1,2 vanishes at q = 1 and as a consequence
the correlation function of the field φ1,2 is a function F (η) of the harmonic ratio
η = z12z34

z13z24
only. The points zi, i = 1, . . . , 4 can be fixed on the real axis to

be z1 = η, z2 = 0, z3 = ∞ and z4 = 1 by a Moebius transformation and the
differential equation (5.12) simplifies to the hypergeometric equation

[
η(1− η)

d2

dη2
+

(2
3
− 4

3
η
) d

dη

]
F (η) = 0. (5.13)

There are two independent solutions of this equation

F1(η) = 1, (5.14)

F2(η) = 3
Γ
(

2
3

)

Γ
(

1
3

)2 (1− η)1/3
2F1(

1
3
,
2
3
,
4
3
, 1− η) (5.15)

3This can be checked from the formulae (1.32) substituting t = 2 which yields c = 0.
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Figure 5.4: The vertical critical crossing probability Pv(r) as a function of the
aspect ratio r of the rectangle. Notice that Pv(1) = 1/2 as a consequence of the
duality Pv(r) + Ph(r) = 1.

and we must establish to which linear combination of them Zff
αβ corresponds. This

is easily seen taking the limit z2 → z3 corresponding to η → 1. In this limit the
OPE φαf (z2) ·φfβ(z3) produces the field φαβ and must therefore be singular. We
conclude Zff

αβ = F2(η), the other solution is the partition function Zff
αα correctly

normalized to one. The numerical prefactor in (5.15) ensures Zff
αβ(0) = 1 and the

final result for the vertical crossing probability is then

Pv(η) = 1− 3
Γ
(

2
3

)

Γ
(

1
3

)2 (1− η)1/3
2F1(

1
3
,
2
3
,
4
3
, 1− η) (5.16)

= 3
Γ
(

2
3

)

Γ
(

1
3

)2 η1/3
2F1(

1
3
,
2
3
,
4
3
, η). (5.17)

The points on the real axis z1 = −k−1, z2 = −1, z3 = 1 and z4 = k−1 are the
images under the Schwarz-Christoffel transformation of the vertices of rectangle
with aspect ratio r = K(1−k2)

2K(k2)
where K(u) is the complete elliptic integral of the

first kind

K(u) =

1∫

0

dt√
(1− t2)(1− ut2)

. (5.18)

The prediction is then that the crossing probability is given by (5.16) with η =
(
(
1− k)/(1 + k)

)2. A plot of Pv(r) is given in Fig. 5.4.
We conclude noticing that the result for the crossing probability (5.16) has
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been proved rigorously by SLE methods in [42]. Cardy also determined the mean
number N̄v of crossing clusters [89, 90] at pc.

5.2 Off-critical percolation on the rectangle

5.2.1 Introduction

In the rest of this chapter we consider crossing probability and mean number
of crossing clusters in the scaling limit close to pc, where, due to the presence of a
finite correlation length ξ (much larger than the lattice spacing), they separately
depend on L/ξ and R/ξ. We consider the limit L À ξ and use boundary inte-
grable field theory to determine the mean number of vertically crossing clusters,
i.e. the clusters which span between the sides of the rectangle separated by the
distance R, in the limit RÀ ξ. The result we obtain below pc is given in (5.63),
(5.62). On the other hand, we can observe that for R→∞ below pc vertical cross-
ing becomes extremely rare, so that Pv ≡ Prob(Nv > 0) ∼ Prob(Nv = 1) ∼ N̄v;
from the leading term in (5.62) we then obtain for the vertical crossing probability
in the scaling limit below pc the universal result

Pv(L,R) ∼ A
L

ξ
e−R/ξ , LÀ ξ , R & L , (5.19)

where
A =

1
2

(3−
√

3) . (5.20)

The correlation length ξ we refer to is defined by the decay of the probability
Paa(r) that two points separated by a distance r are in the same finite cluster:

Paa(r) ∝ r−a e−r/ξ , r →∞ , (5.21)

with a = 1/2 below pc and a = 2 above pc [18]; ξ is related to the mass m

appearing in (5.62) and throughout the chapter as

ξ =

{
1/m , p < pc ,

1/2m, p > pc .
(5.22)

We will also give a direct derivation of (5.19) which also yields the next term,
given by (5.65), in the large R expansion. The corresponding results in the scaling
limit above pc are given in (5.61) and (5.66).
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It has been previously known [91, 92] that for R = L À ξ the crossing
probability is a function of L|p − pc|ν which decays exponentially to zero below
pc and to one above, a feature investigated numerically in [92, 93, 94, 95].

5.2.2 Field theory and massive boundary states

Let us begin our field theoretical considerations for the scaling limit considering
an infinitely long horizontal strip of height R. With imaginary time running
upwards, the partition functions on the strip can be written as

Z lr
ud = 〈Bu|e−RH |Bd〉l,r , (5.23)

where H is the Hamiltonian of the quantum system living in the infinite horizon-
tal dimension, |Bd,u〉 are boundary states specifying initial and final conditions,
and the vertical boundary conditions at infinity have the role of selecting the
states which can propagate between the horizontal boundaries. Integrability of
the scaling Potts model [27] allows us to work in the framework of integrable
field theories for which the bulk dynamics is entirely specified by the Faddeev-
Zamolodchikov commutation rules (see e.g. [60])

A†i (θ1)A
†
j(θ2) = Si′j′

ij (θ1 − θ2)A
†
j′(θ2)A

†
i′(θ1) , (5.24)

Ai(θ1)A
†
j(θ2) = Sj′i

ji′ (θ2 − θ1)A
†
j′(θ2)Ai′(θ1) + 2πδi

jδ(θ1 − θ2) , (5.25)

where A†i (θ) and Ai(θ) are creation and annihilation operators for a particle
of species i with rapidity4 θ, and Si′j′

ij (θ) are two-body scattering amplitudes
satisfying, in particular, unitarity

Si′j′
ij (θ)Si′′j′′

i′j′ (−θ) = δi′′
i δj′′

j (5.26)

and crossing symmetry

Si′j′
ij (θ) = Sj′ ī

jī′ (iπ − θ). (5.27)

Generic boundary states |Ba〉 can be written as superpositions of asymptotic
states of the particles created by A†i , with vanishing total momentum in order
to preserve horizontal translation invariance. The additional constraints coming

4Energy and momentum of a particle with mass m are given by (e, p) = (m cosh θ, m sinh θ).
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from the requirement that a boundary condition preserves integrability were dis-
covered in [96]. In particular, particles carrying momentum can only appear in
pairs with vanishing total momentum. On the other hand, for the case of our
interest of a theory satisfying

Si′j′
ij (0) = (−1) δj′

i δi′
j , (5.28)

states containing k ≥ 2 particles of zero momentum are forbidden by (5.24).
Finally |Ba〉 takes the form

|Ba〉 = Sa exp
[1
2

∞∫

−∞

dθ

2π
Pa(θ)

]
|Ω〉 , (5.29)

where |Ω〉 is the vacuum state and

Sa = 1 + g̃i
aA

†
i (0) , (5.30)

Pa(θ) = Kij
a (θ)A†i (−θ)A†j(θ) . (5.31)

The boundary pair emission amplitudes Kij
a (θ) satisfy equations involving the

bulk amplitudes Si′j′
ij (θ), and the constants g̃i

a follow from the relations5

2i Resθ=0K
ij
a (θ) = gi

ag
j
a , (5.32)

g̃i
a =

gi
a

2
. (5.33)

The exponential form of the boundary state is a consequence of the boundary
Yang-Baxter equations, which give in particular [Pa(θ),Pa(θ′)] = [Pa(θ),Sa] = 0
[96].

We are now ready to use this formalism to evaluate the Potts partition func-
tions entering (5.8). The Potts field theory, i.e. the integrable field theory which
describes the scaling limit of the Potts model in two dimensions, was solved ex-
actly in [27] in the language of the spontaneously broken phase above Jc, in which
the elementary excitations are kinks A†βα(θ)|Ωα〉 interpolating between degener-
ate ferromagnetic vacua |Ωα〉 and |Ωβ〉 with different color. The vacua satisfy
〈Ωα|Ωβ〉 = δαβ and the admissible multi-kink states have the form

A†αn+1αn
(θn) . . . A†α3α2

(θ2)A†α2α1
(θ1)|Ωα1〉 . (5.34)

5See [97, 98] for the factor 1/2 in (5.33).
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For these topological excitations the Faddeev-Zamolodchikov commutation rela-
tions take the form,

A†αβ(θ1)A
†
βγ(θ2) =

∑

δ

Sβδ
αγ(θ1 − θ2)A

†
αδ(θ2)A

†
δγ(θ1) , (5.35)

Aαβ(θ1)A
†
βγ(θ2) =

∑

δ

Sγα
βδ (θ2 − θ1)A

†
αδ(θ2)Aδγ(θ1) + 2πδαγδ(θ1 − θ2) , (5.36)

where invariance of the theory under permutations of the colors allows for the
four nonequivalent scattering amplitudes; they are given explicitly in section 2.7
and obey (5.28) in the form

Sβδ
αγ(0) = (−1) δβδ . (5.37)

Both fixed (to a color α) and free (f) boundary conditions are integrable
and the corresponding pair emission amplitudes were determined in [99]. They
determine the boundary states |Bα〉 and |Bf 〉 in the form that we now specify;
in the following q will be parameterized as q = 4 sin2

(
πλ
3

)
, so that λ → 1/2

corresponds to the percolation limit. For fixed boundary conditions we have

|Bα〉 = exp
[1
2

∞∫

−∞

dθ

2π
Pα(θ)

]
|Ωα〉 , (5.38)

with

Pα(θ) = K0(θ)
∑

β 6=α

A†αβ(−θ)A†βα(θ) , (5.39)

K0(θ) = i tanh
(θ

2

)
exp

[
−

∞∫

0

dt

t

nλ(t)
2 cosh t

sinh
(
t− 2θt

iπ

)]
, (5.40)

nλ(t) =
sinh

(
t
6 + t

2λ

)− sinh
(

3t
2 − t

2λ

)

sinh
(

t
2λ

)
cosh

(
t
2

) ; (5.41)

the integral in (5.40) is convergent for 1/2 ≤ λ < 1. K0(θ) satisfies the boundary
“cross-unitarity” relation

K0(θ) =
[
Sββ

αα(2θ) + (q − 2)Sβγ
αα(2θ)

]
K0(−θ) , (5.42)
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which together with (5.37) implies K0(0) = 0, as already apparent from (5.40);
the absence of a pole at θ = 0 explains Sα = 1.

For free boundary conditions we have instead

|Bf 〉 =
∑
α

Sα
f exp

[1
2

∞∫

−∞

dθ

2π
Pα

f (θ)
]
|Ωα〉 , (5.43)

with

Pα
f (θ) =

∑

β 6=α


K1(θ) A†αβ(−θ)A†βα(θ) + K2(θ)

∑

γ 6=α,β

A†γβ(−θ)A†βα(θ)


 , (5.44)

K1(θ) = (q − 3)
sinh

[
λ(4iπ/3− 2θ)

]

sinh
(
2λθ

) Γ
(−4λ/3 + 2θ̂ + 1

)
Γ
(
7λ/3− 2θ̂

)

Γ
(
2λ/3− 2θ̂ + 1

)
Γ
(
λ/3 + 2θ̂

) Q(θ) ,

(5.45)

K2(θ) =
sin 2πλ

3

sin πλ
3

sinh
[
λ(iπ − 2θ)

]

sinh
(
2λθ

) sinh
[
λ(4iπ/3− 2θ)

]

sinh
[
λ(−2iπ/3 + 2θ)

]×

× Γ
(−4λ/3 + 2θ̂ + 1

)
Γ
(
7λ/3− 2θ̂

)

Γ
(
2λ/3− 2θ̂ + 1

)
Γ
(
λ/3 + 2θ̂

) Q(θ) , (5.46)

Q(θ) = exp

[
−

∞∫

0

dt

t

e−2t sinh
(

5t
6 − t

2λ

)− sinh
(

3t
2 − t

2λ

)

2 cosh t sinh
(

t
2λ

)
cosh

(
t
2

) sinh
(
t− 2θt

iπ

)]
, (5.47)

where θ̂ ≡ λθ
iπ ; the integral in (5.47) is again convergent for 1/2 ≤ λ < 1. In this

case the residue at θ = 0 is non-zero and gives6

g̃2
f =

i

2
Resθ=0K1(θ) =

i

2
Resθ=0K2(θ) =

(3− q)
4

sin 4πλ
3

λ

Γ
(
1− 4λ

3

)
Γ
(

7λ
3

)

Γ
(
1 + 2λ

3

)
Γ
(

λ
3

) Q(0) ,

(5.48)
Sα

f = 1 + g̃f

∑

β 6=α

A†βα(0) . (5.49)

We also quote the boundary cross-unitarity conditions

K1(θ) =
[
Sββ

αα(2θ) + (q − 2)Sβγ
αα(2θ)

]
K1(−θ), (5.50)

K2(θ) =
[
Sββ

αγ (2θ) + (q − 3)Sβδ
αγ(2θ)

]
K2(−θ). (5.51)

6There appears to be a typo in eq. (48) of [99]. In particular it does not reproduce g̃2
f

`
3
4

´
= 1

for the Ising model (q=2).
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5.2.3 Partition functions and final results

In principle, the knowledge of the bulk and boundary amplitudes should allow the
study of partition functions on the strip for any R through the boundary version
[100] of the thermodynamic Bethe ansatz (TBA) [101]. In practice, however, the
very non-trivial structure of Potts field theory seriously complicates the task7.
More pragmatically, here we plug the explicit expressions for |Bα〉 and |Bf 〉 into
(5.23) and exploit the fact that the states (5.34) are eigenstates of the Hamiltonian
H with eigenvalues m

∑n
i=1 cosh θi, m being the mass of the kinks. This leads to

a large R expansion for the partition functions for which we compute below the
terms coming from one- and two-kink states.

Since we work in the kink basis, the partition functions we obtain in this way
are those above Jc, that we denote Z̃ lr

ud, keeping the notation Z lr
ud for those below

Jc. As an illustration, for Z̃ff
αα expansion of the boundary state leads to

Z̃ff
αα(R) = 1+

1
4

∞∫

−∞

dθdθ′

(2π)2
K∗

0 (θ′)K0(θ)e−2mR cosh θ
∑

β,γ 6=α

Mαβγα(θ, θ′)+O(e−4mR) ,

(5.52)

Mαβγα(θ, θ′) ≡ 〈Ωα|Aαβ(θ′)Aβα(−θ′)A†αγ(−θ)A†γα(θ)|Ωα〉
= (2π)2

[
δ(θ′ − θ)

]2
δβγ + (2π)2

[
δ(θ′ + θ)

]2
Sγβ

αα(2θ′) ; (5.53)

the last equality follows from formal use of (5.36) and can be associated to the
diagrams shown in Fig. 5.5. If L→∞ denotes the horizontal size of the system,
the squared delta functions in (5.53) admit the usual regularization8

[
δ(θ′ ± θ)

]2 → δ(θ′ ± θ)
mL

2π
cosh θ ; (5.54)

free vertical boundary conditions have been imposed making no selection on
the kink states which propagate between the horizontal boundaries. Exploit-
ing boundary cross-unitarity (5.42) and real analiticity K0(−θ) = K∗

0 (θ), θ ∈ R,
we then obtain

7See [102] for the state of the art of TBA in the Potts model.
8It is important to stress that, as observed for other models in [100] (see also [103]), contri-

butions to (5.23) coming from states with more than two particles produce singularities whose

regularization depends in general on the interaction. This is what makes difficult the determi-

nation of additional terms in the large R expansion within the approach we are following.
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β

γ
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K∗

0

+ Sγβ
αα

Figure 5.5: Diagrammatic interpretation of the two contributions entering the
matrix element (5.53).

Z̃ff
αα(L,R) = 1 + (q − 1) mLFαα(R) + O(e−4mR) , mLÀ 1 , (5.55)

Fαα(R) =

∞∫

0

dθ

2π
cosh θ |K0(θ)|2 e−2mR cosh θ . (5.56)

Similarly one finds for mLÀ 1

Z̃ff
ff (L,R) = q

[
1 + (q − 1)mL

(
g̃2
f e−mR + Fff (R)

)]
+ O(e−3mR), (5.57)

Fff (R) =

∞∫

0

dθ

2π
cosh θ

(
|K1(θ)|2 + (q − 2)|K2(θ)|2

)
e−2mR cosh θ , (5.58)

Z̃ff
αf (L,R) = 1 + (q − 1)mLFαf (R) + O(e−4mR), (5.59)

Fαf (R) =

∞∫

0

dθ

2π
cosh θ Re

[
K∗

0 (θ)K1(θ)
]

e−2mR cosh θ , (5.60)

and Z̃ff
fα = Z̃ff

αf . The partition functions Z̃βα
ud with fixed vertical boundary con-

ditions are obtained taking off from Z̃ff
ud the contribution of the states which are

not of the form (5.34) with α1 = α and αn+1 = β.
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From these results we obtain for the mean number of crossing clusters in the
scaling limit above pc the universal result

˜̄Nv(L, R) = lim
q→1

∂q log
Z̃ff

αα Z̃ff
ff

Z̃ff
fα Z̃ff

αf

∼ 1 + mL
[
Φ(R) + O(e−3mR)

]
, mLÀ 1 ,

(5.61)
Φ(R) = A e−mR + [Fff (R) + Fαα(R)− 2Fαf (R)]q=1 , (5.62)

where A = g̃2
f |q=1 reduces to (5.20). The additive term 1 in (5.61) is produced

by the overall factor q in (5.57) and accounts for the contribution of the infinite
cluster in the limit R→∞. Notice that any normalization of the boundary states
other than the one we used would anyway cancel in the combination of partition
functions in (5.61).

In order to determine the mean number of crossing clusters below pc we have
to use the duality [22] of the Potts model to connect the partition functions (5.4-
5.7) below Jc to the partition functions Z̃ lr

ud above Jc we have computed. Duality
maps free boundary conditions into fixed boundary conditions and viceversa (see
e.g. [53]). For our present purpose of counting the vertically crossing clusters,
it is useful to observe that fixing the spins to the color α on both vertical sides,
rather than leaving them free, has the only effect that the clusters touching at
least one vertical side are not counted. Below pc, where all clusters are finite
with a mean linear extension of order ξ, such a boundary term does not affect
N̄v, which is extensive in L in the limit L/ξ →∞ we are considering. So we can
use (5.8) with the replacement ff → αα in the vertical boundary conditions, and
use duality9 to obtain in the scaling limit below pc

N̄v(L,R) ∼
[
lim
q→1

∂q log
Z̃ff

αα Z̃ff
ff

Z̃ff
fα Z̃ff

αf

]

extensive part

= mL
[
Φ(R) + O(e−3mR)

]
, mLÀ 1 .

(5.63)
A different derivation of this result is given in the Appendix.

The functions Fff (R)|q=1 and Fαf (R)|q=1 in (5.62) are well defined in spite of
the poles at θ = 0 in the amplitudes K1(θ) and K2(θ) contained in the integrands

9In principle Zαα
ff could be mapped into a linear combination of Z̃ff

αα and Z̃ff
αβ , α 6= β.

However, it follows from (5.38) that the latter partition function vanishes identically on the

infinitely long strip; at large L it is suppressed as e−mL.
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0.5 1.0 1.5 2.0 2.5 3.0
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ΦHRL
mR Φ(R)

0.5 0.63684
1 0.27929
1.5 0.15304
2 0.08910
2.5 0.05304
3 0.03188

Figure 5.6: Plot of the function (5.62); few values are given in the table.

in (5.58) and (5.60). If the convergence of (5.60) simply follows from K0(0) = 0,
the case of Fff is more subtle. Consider indeed the Laurent expansions Ki(θ) =
a−1/θ + a

(i)
0 + a

(i)
1 θ + . . . , i = 1, 2. If θ ∈ R, due to the relation K∗

i (θ) = Ki(−θ)
the coefficients a

(i)
2k−1 are purely imaginary and the coefficients a

(i)
2k are instead

real for all non-negative integers k; this in turn implies that the combination
|K1(θ)|2 − |K2(θ)|2 entering Fff (R)|q=1 does not contain any double or single
pole at θ = 0.

The function (5.62) is plotted in Fig. 5.6, where some numerical values are
also listed. Since (5.63) is extensive in L for any R, it is tempting to check
what our large R result gives in the conformal limit mR → 0, for which the
result N̄v ∼ (

√
3/4)L/R = (0.433..)L/R, L À R, is known from [89]. Using the

large θ limits K0 → eiπ/3, K1 → −2eiπ/3 and K2 → −
√

3eiπ/6 at q = 1, (5.63)
gives10 3/(2π)(L/R) = (0.477..)L/R, with a 10% deviation from the exact result
suggesting that (5.62) may still provide a good approximation for mR of order 1.

We already explained how (5.19) follows from (5.63). The same result also
follows from (5.2) which in the scaling limit leads to

Pv = 1− P̃h = lim
q→1

Z̃αβ
ff . (5.64)

The partition function Z̃αβ
ff is obtained picking up in (5.57) only the contributions

of the states compatible with the vertical boundary conditions αβ. In particular,
10Given F (y) =

R∞
0

dx cosh x e−y cosh xf(x), with limx→∞ f(x) = α, we have F (y) → α/y for

y → 0.
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since we are no longer summing over α and β, the one-kink contribution in e−mR

now appears with multiplicity one rather than q(q − 1), and this gives (5.19)
back11. Concerning the two-kink contribution, only the term containing |K2|2
survives now, again without the prefactor q(q−1); |K2|2 contains a singularity of
the form 4g̃4

f/θ2 at θ = 0 which has to be subtracted12 because produced by the
propagation of states created by A†αγ(0)A†γβ(0) which, as already observed, are
not compatible with (5.35) and (5.37). Hence, the contribution of order e−2R/ξ

to be added to (4.32) is

U(L,R) = −mL

∞∫

0

dθ

2π
cosh θ

(
|K2(θ)|2q=1 e−2mR cosh θ − 4A2

sinh2 θ
e−2mR

)
. (5.65)

The replacement 1/θ2 → 1/ sinh2 θ, relevant for the convergence of the integral,
comes from the fact that m

∫
dθ cosh θ =

∫
dp, and in the momentum variable p

the function |K2|2 diverges as 1/p2.
The vertical crossing probability above pc is P̃v = 1− limq→1 Z̃ff

αβ . We already
observed that Z̃ff

αβ vanishes exponentially at large L, in agreement with the ex-
pectation that, due to the presence of an infinite cluster, above pc the crossing
probability tends to 1 as we enlarge the window. More precisely, duality gives

P̃v(L, R) = 1− Ph(L, R)

∼ 1−A
R

2ξ
e−L/2ξ − U(R, L) , RÀ ξ , L & R , (5.66)

where the last line takes (5.22) into account and holds at order e−L/ξ.
A scaling analysis of Monte Carlo data for Pv(L,R) in terms of a single scaling

variable was performed in [34] and further discussed in [104, 105]. It is relevant
that the data of [34] allow a comparison with our results. The inset of Fig. 5.7
shows the data of [34] for the crossing probability in bond percolation on the
square lattice of size L = R = 256 lattice units; they satisfy the duality relation
(5.64) for the crossing probability above and below pc (which for R = L specializes

11Notice that our normalization of the boundary states ensures the conditions limq→1 Z̃ff
ff =

limq→1 Z̃αα
αα = 1 required for percolation.

12The result obtained in [103] for simpler models (with purely transmissive scattering) by a

TBA analysis amounts to such a subtraction.
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to Pv = 1−P̃v) up to discrepancies to be ascribed to a mixing of finite size effects,
corrections to scaling and statistical errors. In principle comparison of the data to
(4.32), (5.20) and (5.66) allows to fit the value of the only unknown parameter,
i.e. the non-universal amplitude m0 entering the relation m = m0|p − pc|ν ,
ν = 4/3. We fit m0 ≈ 5.7 from the tail of the crossing probability below pc,
and m0 ≈ 5.9 from the tail above pc; consider that for R = 256 and mR around
10, ξ is around 25 below pc and around 12 above, so that the analysis is almost
certainly affected by non-negligible corrections to scaling. On the other hand, the
value 2ξ0

2nd ≈ 0.37 was measured in [85] for the amplitude of the second moment
correlation length in bond percolation on the square lattice below pc, and it is
known from [18] that m0 = a/ξ0

2nd ≈ 5.4 a, with a equal 1 up to corrections
that are not expected to exceed few percents. A comparison between the data
for the tails and (4.32), (5.20) is given in Fig. 5.7; the subleading term (5.65) is
always very small and totally negligible in the range of mR shown in the figure.
Putting all together, our conclusion is that the data13 of [34] are consistent with
the results of this chapter within the numerical uncertainties; an unambiguous
verification will require simulations expressly targeting the tails on larger lattices.

Appendix

Let us denote by φab(x) the field [88] whose insertion at point x on the boundary
changes the boundary condition from a to b; of course φaa coincides with the
identity I. If x1, . . . , x4 are the coordinates of the corners of the rectangle starting
from the left upper corner and moving clockwise, we have14

Glurd ≡ 〈φlu(x1)φur(x2)φrd(x3)φdl(x4)〉J≤Jc = Z lr
ud/Z

ll
ll , (5.67)

G̃lurd ≡ 〈φlu(x1)φur(x2)φrd(x3)φdl(x4)〉J∗≥Jc = Z̃ lr
ud/Z̃ ll

ll . (5.68)

The fields φab obey the natural operator product expansion [33]

φαf · φfβ = δαβ I + c (1− δαβ)µαβ + · · · , (5.69)

13Aspect ratios L/R > 1 were also analyzed in [34], but for these cases the range of mL

covered by the data is not large enough to allow comparison with (5.66).
14At Jc analogous relations were used in [33, 89].
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Figure 5.7: The inset shows Monte Carlo data from [34] for the crossing probabil-
ity below pc (diamonds) and for the complement to 1 of the crossing probability
above pc (circles); the data refer to bond percolation on the square lattice with
L = R = 256. The tails are plotted against mR using m = m0|p − pc|4/3,
with m0 = 5.8. The continuous curve is the result (4.32), (5.20), (5.66), i.e.
AmR e−mR.

that we write symbolically omitting the coordinate dependence, and using the
notation µαβ = φαβ for the kink field which switches between fixed boundary
conditions with different colors. The field µαβ(x) is dual to the Potts spin field
σα(x) = qδs(x),α − 1, and the relation

〈σα(x)σβ(y)〉J≤Jc = (qδαβ − 1) 〈µγδ(x)µδγ(y)〉J∗≥Jc (5.70)

holds (see [16]). Since duality exchanges fixed and free boundary conditions, we
then write the dual of (5.69) as

φfα · φαf = I + c′ σα + · · · , (5.71)

with c′ a new structure constant. For the boundary correlators Glurd, we have
simple duality relations like Gfffα = G̃αααf , but also non-trivial ones like

Gfαfα = a1 G̃αfαf + a2 G̃αfβf , (5.72)

Gfαfβ = a3 G̃αfαf + a4 G̃αfβf , (5.73)
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where α 6= β. In order to determine the coefficients a1, . . . , a4 we use (5.69) and
(5.71) to take the limits x1 → x2 and x3 → x4 on both sides, take (5.70) into
account to equate the coefficients of the two-point functions we are left with, and
obtain

a1 = a3 = 1 , a2 = (q − 1)(c′/c)2 , a4 = −(c′/c)2 . (5.74)

Since Pv = 1 − limq→1 Zff
αβ = 1 − limq→1

[
a3 + a4Z̃

αβ
ff

]
, comparison with (5.64)

and (5.74) gives (c′/c)2 = 1 at q = 1. Putting all together, the combination of
partition functions in (5.8) can be written as

R =
Zff

ff Zff
αα

Zff
αf Zff

fα

=
Gfαfα

Gfαff Gfffα
=

G̃αfαf + a2 G̃αfβf

G̃αfαα G̃αααf

=
Z̃αα

αα

[
Z̃αα

ff + a2 Z̃αβ
ff

]

Z̃αα
fα Z̃αα

αf

,

(5.75)
with a2 = q−1+O((q−1)2). Now it is not difficult to use our expressions for the
partition functions Z̃ lr

ud to check that limq→1 ∂q log R gives the r.h.s. of (5.63).
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Chapter 6

Density profile of the spanning

cluster

In this chapter we determine the density profile of the spanning cluster for a
percolation problem defined on a strip above pc. Our result can be derived as a
byproduct of the study of the magnetization profile in the q-color Potts model
when boundary conditions generate a phase separation.

6.1 Statement of the problem and final result

Consider a percolation problem defined in the scaling limit for p > pc on a rect-
angle of width R and length L. We restrict to configurations such that clusters
connected to the left half of the boundary cannot be connected to the right half
of the boundary. In the limit L→∞ and RÀ ξ, where ξ is the percolative cor-
relation length, consider the probability Ps(x) that a cluster s spanning between
the negative part of the edges of the strip contains the point x of the horizontal
axis, see Fig. 6.1. We will show that the following result holds

Ps(x, 0) =
P

2

[
1− erf

(√
2m

R
x
)
− γ

√
2

πmR
e−2mx2/R + . . .

]
, (6.1)

where P is the probability that a site belongs to the infinite cluster on the infinite
plane, and the parameter m is related to the exponential correlation length above
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x0

s

Figure 6.1: For percolation on the strip of width R, consider only the configu-
rations without clusters connecting the part of the edges with x < 0 to the part
with x > 0. Eq. (6.1) gives the probability that a point on the x axis belongs to
a cluster s spanning between the negative part of the edges, in the scaling limit
above pc and for RÀ ξ = 1/2m.

pc as ξ = 1/2m (see [18]); the constant γ is not known because as we will
describe in the next sections the two-kink form factor of the Potts spin σα is
available only for real rapidities [18]. The error function in (6.1) is defined by
erf(x) = 2√

π

∫ x
0 dη e−η2

.
We will derive (6.1) in a more general context, studying the physics of phase

separation in two dimensions.

6.2 Derivation. Phase separation in two dimensions

6.2.1 Introduction

Boundary conditions notoriously play an important role in the theory of phase
transitions. For a system of ferromagnetic spins taking discrete values, a pure
phase of type a with translation invariant spontaneous magnetization below the
critical temperature Tc can be selected fixing all boundary spins to the value a

and then sending the boundary to infinity. On the other hand, if the spins are
fixed to a value a on the left half of the boundary and to a different value b on
the right half, a pattern of phase separation between phases of type a and type b

is expected in the large volume limit below Tc, at least away from an interfacial
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region anchored to the points of the boundary where boundary conditions change
from a to b. The properties of the phase separation and the notion of interface
have been extensively studied both in two and three dimensions through rigorous
[106], exact [107] and approximate [108] methods. The most advanced analytic
results are available in two dimensions, where the exact asymptotic magnetiza-
tion profile has been obtained for the Ising model [109, 110] exploiting its lattice
solvability at any temperature. This result shows in particular that in two dimen-
sions the Ising interface has middle point fluctuations which diverge as the square
root of the volume, a property previously proved for low temperatures in [111].
The result for the Ising magnetization profile also admits a simple interpretation
in terms of passage probability of the interface through a point [112]. No exact
result for the magnetization profile is available in three dimensions.

In the rest of this chapter we use field theory as a general framework for the
study of phase separation in the scaling limit below Tc, for any two-dimensional
model possessing a discrete set of ordered phases and undergoing a continuous
phase transition. For a strip of width R we derive the large R asymptotics for the
magnetization profiles along the longitudinal axis in the middle of the strip and
show that a generalization of the Ising result holds whenever the surface tension
between the phases a and b cannot be decomposed into the sum of smaller surface
tensions. The formalism explicitly illustrates the role played by the topological
nature of the elementary excitations (domain walls), which for a discrete set of
ground states is peculiar of the two-dimensional case. The interpretation in terms
of passage probability holds in general, with subsequent terms in the large R

expansion accounting for the emergence of an interfacial region with finite width
in a way that can be understood through renormalization group considerations.

The trajectories on the plane of the domain wall excitations of the field theory
are naturally interpreted as the continuum limit of the boundaries of clusters
made of nearest neighbors with the same value of the spin. In the last years the
scaling properties of cluster boundaries have been extensively studied at criticality
in the framework of Schramm-Loewner evolution (SLE, see e.g. [43] for a review);
the application of SLE methods to the off-critical case, on the other hand, is up to
now much more limited (see [113, 114]). The renormalization group interpretation
of our results below Tc is that the cluster boundary connecting the two boundary
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changing points on the edges and the interfacial curve between the two phases
coincide as R→∞, and then have the same Gaussian passage probability density;
when R decreases, the interfacial region with finite width emerges via branching
of the interface and formation of intermediate clusters. We write down the leading
term associated to branching and determine its coefficient for the q-color Potts
model.

The rest of the chapter is organized as follows. In the next subsection we
introduce the field theoretical formalism and derive the large R results for the
magnetization profiles. Section 6.2.3 is then devoted to the interpretation of the
results and to the discussion of the interface structure. The specific cases of q-
color Potts and an application to percolation are finally discussed in section 6.2.4
where we derive the result (6.1) for the density profile of the spanning cluster.

6.2.2 Field theoretical formalism

Consider a ferromagnetic spin model of two-dimensional classical statistical me-
chanics in which each spin can take n discrete values that we label by an inte-
ger a = 1, 2, . . . , n. To be definite we refer to the case in which the energy of
the system is invariant under global transformations of the spins according to
a symmetry group; the spontaneous breaking of the symmetry below a critical
temperature Tc is responsible for the presence on the infinite plane of n transla-
tion invariant pure phases; the phase of type a can be selected starting with the
system on a finite domain with boundary spins fixed to the value a, and then
removing the boundary to infinity. We denote by Za and 〈· · · 〉a the partition
function and the statistical averages, respectively, in the phase a.

We consider the scaling limit below Tc, described by a Euclidean field theory
defined on the plane with coordinates (x, y); it corresponds to the analytic con-
tinuation to imaginary time of a (1+1)-dimensional relativistic field theory with
space coordinate x and time coordinate t = iy. This theory possesses degenerate
vacua |Ωa〉 associated to the pure phases of the system. In 1+1 dimensions the el-
ementary excitations will correspond to stable kink (domain wall) states |Kab(θ)〉
which interpolate between different vacua |Ωa〉 and |Ωb〉; the rapidity θ parame-
terizes the energy and momentum of the kinks as (e, p) = (mab cosh θ, mab sinh θ),
mab being the kink mass. In general, connecting |Ωa〉 and |Ωb〉 requires a multi-
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L/2

R/2

x

y

0

Figure 6.2: The scaling limit below Tc of a ferromagnet is considered on a rectan-
gle with boundary spins fixed to take the value a for x < 0 and a different value
b for x > 0. The case L→∞ and RÀ ξ is considered throughout the chapter.

kink state |Kaa1(θ1)Ka1a2(θ2) . . . Kan−1b(θn)〉 passing through other vacua; we call
adjacent vacua two vacua that can be connected through a single-kink excitation.
There can be kinks with different masses connecting two adjacent vacua |Ωa〉 and
|Ωb〉; in such a case the notations |Kab(θ)〉 and mab refer to the kink with the
lowest mass, which is leading in the large distance limits we will consider.

Consider now the scaling limit on a rectangle (Fig. 6.2) with horizontal sides
of length L and vertical sides of length R (the origin of the coordinates is taken
in the center of the rectangle), with the following choice of boundary conditions
(boundary conditions of type ab): the boundary spins are fixed to a value a for
x < 0, and to a different value b for x > 0. Let us denote by Zab and 〈· · · 〉ab the
partition function and the statistical averages for the system with this choice of
boundary conditions. We consider the limit L→∞ and want to study properties
of the system as a function of the width R of the resulting infinite strip, focusing
on the asymptotic limit in which R is much larger than the correlation length ξ.

Within the field theoretical formalism the boundary condition at time t switch-
ing from a to b at a point x0 is realized by a boundary state that we denote by
|Bab(x0; t)〉. This state can be expanded over the basis of asymptotic parti-
cle states of the relativistic theory. The change of boundary conditions at the
point x0 requires that kink excitations interpolating between |Ωa〉 and |Ωb〉 are
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emitted/absorbed at that point. Then, if |Ωa〉 and |Ωb〉 are adjacent vacua, the
boundary state has the form

|Bab(x0; t)〉 = e−itH+ix0P




∞∫

−∞

dθ

2π
fab(θ)|Kab(θ)〉+ . . .


 , (6.2)

where H and P are the energy and momentum operators of the (1+1)-dimensional
theory, fab(θ) is the amplitude1 for the kink to be emitted at the boundary
changing point, and the dots correspond to states with total mass larger than
mab. The partition function we are considering can be written as

Zab(R) = 〈Bab(x0; iR/2)|Bab(x0;−iR/2)〉 = 〈Bab(0; 0)|e−RH |Bab(0; 0)〉 (6.3)

and, as a consequence of (6.2), has the large R asymptotics

Zab(R) ∼
∞∫

−∞

dθ

2π
e−mabR cosh θ|fab(θ)|2 ∼ |fab(0)|2√

2πmabR
e−mabR. (6.4)

The specific interfacial free energy, or surface tension, is given by

Σab = − lim
R→∞

1
R

ln
Zab(R)
Za(R)

, (6.5)

where Za(R) is the partition function for uniform boundary conditions of type a

on the strip. Since the lowest mass state entering the expansion of the boundary
state |Ba(t)〉 for uniform boundary condition is the vacuum |Ωa〉, Za(R) tends to
〈Ωa|Ωa〉 = 1 as R→∞, so that

Σab = mab . (6.6)

If |Ωa〉 and |Ωb〉 are not adjacent vacua the expansion of the boundary state
|Bab(x0; t)〉 starts with a multi-kink state, and the corresponding surface tension
is a sum of surface tensions between adjacent vacua, see [20].

Let us denote by σ a generic component of the spin field, omitting for the
time being the index which in general labels the different components. The

1We use the normalization 〈Kab(θ)|Ka′b′(θ
′)〉 = 2πδaa′δbb′δ(θ − θ′).
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magnetization profile along the horizontal axis in the middle of the strip for ab

boundary conditions and a and b adjacent phases is

〈σ(x, 0)〉ab =
1

Zab
〈Bab(0; 0)|e−HR/2+ixP σ(0, 0)e−HR/2−ixP |Bab(0; 0)〉 (6.7)

∼ 1
Zab

∫
dθ

2π

dθ′

2π
f∗(θ)f(θ′)〈Kab(θ)|σ(0, 0)|Kab(θ′)〉×

× emab[−(cosh θ+cosh θ′)R/2+i(sinh θ−sinh θ′)x] ,

the last line being the large R limit obtained from (6.2). The matrix element of
the spin field it contains is related by the crossing relation

〈Kab(θ)|σ(0, 0)|Kab(θ′)〉 = F σ
aba(θ − θ′ + iπ) + 2πδ(θ − θ′)〈σ〉a , (6.8)

to the form factor

F σ
aba(θ1 − θ2) ≡ 〈Ωa|σ(0, 0)|Kab(θ1)Kba(θ2)〉 , (6.9)

where the vacuum expectation value 〈σ〉a appearing in the disconnected part
is the spontaneous magnetization in the phase a on the infinite plane. When
θ1 − θ2 = iπ the kink and the anti-kink in (6.9) have opposite energy and mo-
mentum and can annihilate each other. In 1+1 dimensions these annihilation
configurations produce in general simple poles that have been characterized for
general k-particle form factors in integrable field theories (see in particular [60]).
For k = 2, however, integrability plays no role in the determination of the residue,
which for the case of kink excitations reads [62]

Resθ=iπF σ
aba(θ) = i

[〈σ〉a − 〈σ〉b
]
. (6.10)

For R→∞ the integral in (6.7) is dominated by small rapidities and the leading
contribution can be written as

〈σ(x, 0)〉ab ∼ 〈σ〉a +
i

2π

[〈σ〉a − 〈σ〉b
] ∞∫

−∞
dθ−

1
θ−

e−mabRθ2
−/8+imabxθ− , (6.11)

where we used (6.4), (6.8) and (6.10), θ− ≡ θ − θ′, and we integrated over θ+ ≡
θ + θ′. The last integral is regularized moving the pole slightly above the real
axis, so that the usual relation (x− i0)−1 = iπδ(x) + p.v.x−1 finally gives

〈σ(x, 0)〉ab ∼ 1
2
[〈σ〉a + 〈σ〉b

]− 1
2
[〈σ〉a − 〈σ〉b

]
erf

(√
2mab

R
x
)

, (6.12)
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where the principal value of the integral in (6.11) has been expressed in terms of
the error function (see e.g. [115]). The same result can be obtained differentiating
(6.11) with respect to x in order to get rid of the pole, and then integrating the
result of the integral over θ− with the condition 〈σ(+∞, 0)〉ab = 〈σ〉b.

For the Ising model (〈σ〉a = −〈σ〉b) the result (6.12) coincides with the scaling
limit of that obtained from the lattice in [109, 110]. Even in our more general
setting, it shows that for R → ∞ 〈σ(α(mabR)β/mab, 0)〉ab tends to the pure
values 〈σ〉a or 〈σ〉b for β > 1/2 and α negative or positive, respectively, and to
the average value (〈σ〉a + 〈σ〉b)/2 for β < 1/2.

The result (6.12) is produced by the leading term in the small rapidity ex-
pansion of the emission amplitude in (6.2) and of the matrix element (6.8). More
generally, for the latter we write

F σ
aba(θ + iπ) =

∞∑

k=−1

c
(k)
ab θk , (6.13)

with c
(−1)
ab given by (6.10). As for the emission amplitude, it satisfies fab(θ) =

fba(−θ) as a consequence of reflection symmetry about the vertical axis. In any
model in which a and b play a symmetric role we will have fab(θ) = fba(θ) and
fab(θ) = fab(0) + O(θ2). Then it is easy to check that the next contribution to
〈σ(x, 0)〉ab produced by the small rapidity expansion is

c
(0)
ab

√
2

πmabR
e−2mabx

2/R . (6.14)

Notice that the error function in (6.12) is leading with respect to (6.14) as R→∞
for x ∼ (mabR)β/mab with β > 0; the two terms are of the same order for β = 0.

6.2.3 Passage probability and interface structure

The results of the previous subsection allow an interpretation based on renormal-
ization group and probabilistic considerations. It is clear that the problem has
two length scales: the correlation length ξ, proportional to the inverse of the kink
masses, which is the scale of the fluctuations within the pure phases, and the
width R of the strip, which sets the scale at which we observe the system with ab

boundary conditions. In an expansion around R/ξ = ∞ the leading term corre-
sponds to the crudest description of phase separation in which all short distance
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(a) (b) (c) (d) (e)

Figure 6.3: Some configurations of the interfacial region. Lines correspond to
domain walls between different phases.

features are washed out and one is left with two pure phases sharply separated by
a simple curve connecting the two boundary changing points (Fig. 6.3a). Hence,
the notion of curvilinear interface naturally arises in this limit and can be for-
mulated directly in the continuum. It is clear, however, that this picture cannot
hold true for finite values of R/ξ, and that one needs to switch from the notion
of sharp separation and curvilinear interface to that of an interfacial region (or
thick interface) with a width which diverges as the correlation length when the
critical point is approached: such a divergence simply reflects the fact that phase
separation disappears at criticality. Within the large R/ξ expansion the leading
deviations from the simple curvilinear picture are expected from effects such as
branching and recombination as well as self-intersection of the curve2 (Fig. 6.3b-
d). These effects appear in the expansion through insertions (delta functions)
localized on the curve separating the two pure phases.

According to this discussion the large R/ξ expansion for the magnetization
at a point x on the axis y = 0 when the interface passes through a point u on
this axis can be expected to start as

σab(x|u) = θ(u−x)〈σ〉a+θ(x−u)〈σ〉b+A
(0)
ab δ(x−u)+A

(1)
ab δ′(x−u)+ . . . , (6.15)

2At a later stage in the expansion thickness is generated also by multi-kink terms in the

boundary state (6.2), which will produce a bundle of thin interfaces rather than just one

(Fig. 6.3e). Multi-kink contributions to Zab are suppressed at large R as e−MR, M being

the total mass.
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where θ(x) is the step function equal to 1 for x > 0 and zero for x < 0, and
the prime denotes differentiation. If pab(u)du is the probability that the curve
intersects the axis y = 0 in the interval [u, u + du], with pab(u) = pab(−u) and∫∞
−∞ du pab(u) = 1, then the average magnetization is

〈σ(x, 0)〉ab =

∞∫

−∞
du pab(u) σab(x|u) + . . .

= 〈σ〉a
∞∫

x

du pab(u) + 〈σ〉b
x∫

−∞
du pab(u) + A

(0)
ab pab(x)

−A
(1)
ab p′ab(x) + . . . , (6.16)

where the dots in the first line stay for the contribution of multi-kink states.
Comparison with (6.12) and (6.14), as it is easily seen, shows correspondence
between the two expansions and determines

pab(u) =

√
2mab

πR
e−2mabu

2/R , (6.17)

A
(0)
ab = c

(0)
ab /mab . (6.18)

The last as well as additional terms in (6.16) should be compared with those
produced in (6.7) by further expansion around θ = θ′ = 0. The Gaussian form
of pab(u) is model independent and of course coincides with the scaling limit of
that deduced in [112] for the Ising model3. As shown in the previous subsection
the integral, non-local terms in (6.16) are entirely due to the pole term in (6.13),
which in turn is produced by the non-locality of the kinks with respect to the
spin field4.

3The Gaussian probability density (6.17) indicates an effective Brownian behavior of the

interface. The convergence of the interface to a Brownian bridge for all subcritical temperatures

has been proved in [116] for the Ising model and in [117] for the q-color Potts model. We thank

Y. Velenik for bringing these references to our attention.
4If we consider the form factor of the energy density ε, the residue at iπ is given by (6.10)

with σ replaced by ε, and vanishes because the expectation value of ε is the same in all stable

phases. This reflects the fact that even for a domain wall excitation the energy density is

spatially localized (on the wall).
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For any lattice configuration there is a cluster (let us call it the left cluster)
formed by nearest neighboring spins with value (color) a and whose external
perimeter is formed by the left half of the boundary of the strip together with a
path connecting the two boundary changing points. This path, whose identifica-
tion may be ambiguous and require some lattice dependent prescription, becomes
a simple curve in the continuum limit. A second curve connecting the two bound-
ary changing points completes the perimeter of the cluster of color b anchored to
the right half of the boundary (the right cluster). In general the two curves, which
can touch but not intersect, enclose other clusters in between them. Among these
intermediate clusters, those adjacent to the left (right) cluster have color different
from a (b). The first few terms in (6.15) and (6.16) are compatible with a picture
in which a uniform magnetization 〈σ〉a (〈σ〉b) is assigned to the region enclosed
by the perimeter of the left (right) cluster: the two curves become coincident as
R/ξ →∞, with asymptotic passage probability density given by (6.17); the first
deviation from this situation as R/ξ decreases is expected to happen via bifurca-
tion and recombination around a cluster of color c 6= a, b (Fig. 6.3b), and to be
associated to the term containing A

(0)
ab . We will see in the next subsection that

this term is indeed absent in the Ising model, where bifurcation is not allowed5.

6.2.4 Potts model and percolation

Potts model. The lattice Hamiltonian [23]

HPotts = −J
∑

〈x1,x2〉
δs(x1),s(x2), s(x) = 1, . . . , q , (6.19)

is invariant under global permutations of the values of the spins s(x). For J > 0
in two dimensions the phase transition is continuous for q ≤ 4 and above Jc

there are q degenerate vacua located at the vertices of a hypertetrahedron in the
(q-1)-dimensional order parameter space. Kinks with equal masses run along the
edges of the hypertetrahedron and all the vacua are adjacent according to the
definition given in section 6.2.2. The results we obtained for the magnetization
profile apply to each component σc(x) ≡ δs(x),c − 1/q, c = 1, . . . , q, of the spin

5Splitting into an odd number of paths (Fig. 6.3c), however, is allowed and encoded by

subsequent terms in the expansion.
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field; taking into account that
∑q

c=1 σc = 0 and 〈σa〉b = qδab−1
q−1 〈σa〉a, one obtains

〈σc(x, 0)〉ab =
〈σa〉a

2


q(δca + δcb)− 2

q − 1
− 2q(δca − δcb)

q − 1

x∫

0

du p(u)

+ [2− q(δca + δcb)]
B

m
p(x)

]
+ . . . , (6.20)

where p(u) is (6.17) with mab = m. Potts field theory is integrable [27] and from
the known form factors [62] we obtain

B =
1

2
√

3
,

2
3
√

3
(6.21)

for q = 3, 4, respectively. For c 6= a, b the integral term in (6.20) is absent and
the x-dependence of the magnetization profile is entirely due to the structure of
the interface. The Gaussian term in (6.20) is produced by the leading deviation
from the picture of the interface as a simple curve separating the phases a and b,
which was argued in the previous subsection to correspond to the appearance of an
island of the phase c via bifurcation and recombination of the curve. Bifurcation
is not allowed in the Ising model, and indeed the coefficient of p(x) vanishes at
q = 2, where c necessarily coincides with a or b. Directly at q = 2, the same
conclusion is obtained from the explicit form F σ

aba(θ) = i〈σ〉a tanh(θ/2) of the
spin form factor, implying that (6.13) contains only the terms with k odd.

Percolation. If we consider the Potts model with boundary conditions of type
ab on the strip, the probability 〈δs(x,0),a〉ab that the spin s(x, 0) has color a is given
by the probability P (x, 0) that it belongs to an FK cluster touching the part of
the boundary with x < 0 (which has color a), plus 1/q times the probability
1−P (x, 0)−P (−x, 0) that it belongs to a bulk FK cluster. This can be rewritten
as

〈σa(x, 0)〉ab =
q − 1

q
P (x, 0)− 1

q
P (−x, 0) . (6.22)

The FK expansion of Zab does not contain configurations with clusters connecting
the boundary regions with x < 0 and x > 0; this restriction is inherited by the
percolation problem we consider. When the occupation probability p for the sites
is above the percolation threshold pc (this corresponds to our case J > Jc in the
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Potts model), even for R→∞ there is a positive probability of having a spanning
cluster which connects the upper and lower parts of the boundary with x < 0
(Fig. 6.1). Then the probability P (x, 0)|q=1 that the site (x, 0) is connected to
the left part of the boundary is given by the probability Ps(x, 0) that it belongs
to such spanning cluster plus the probability Pns(x, 0) that it belongs to a cluster
touching only the upper or lower edge. Since the clusters of the latter type have
an average linear extension of order 1/m, Pns(x, 0) vanishes exponentially when
mR → ∞. Hence in this limit we have Ps(x, 0) ∼ P (x, 0)|q=1, and from (6.20),
(6.22) we obtain (6.1) with P = limq→1

q
q−1 〈σa〉a and γ ≡ Resq=1B(q).

Although not related to percolation, we find interesting to finish this chapter
mentioning how the theory of phase separation described above applies to the
Ashkin-Teller model. This corresponds to two Ising spins σ1(x), σ2(x) = ±1 on
each site interacting as specified by the Hamiltonian

HAT = −
∑

〈x1,x2〉
{J [σ1(x1)σ1(x2) + σ2(x1)σ2(x2)] + J4 σ1(x1)σ1(x2)σ2(x1)σ2(x2)} .

(6.23)
Each site can be in one of four states (σ1, σ2) that we label a = 1, 2, 3, 4, cor-
responding to (+, +), (+,−), (−,−), (−, +), respectively. The model, that we
consider for J > 0, is well known to possess a line of critical points parameter-
ized by J4 [39]. In the scaling limit close to this line it renormalizes onto the
sine-Gordon field theory (see [118, 50]), where a parameter β2 plays the role of
J4; β2 = 4π describes a free fermionic theory and corresponds to the decoupling
point J4 = 0. Below critical temperature the model possesses four degenerate
vacua |Ωa〉 and for any value of β2 there are kinks |Ka,a±1(mod 4)〉 with the same
mass m.

For β2 < 4π the interaction among these kinks (which correspond to sine-
Gordon solitons) is attractive and produces bound states, the lightest of which
have mass m′ = 2m sin πβ2

2(8π−β2)
and are kinks |Ka,a±2(mod 4)〉. Hence, in this

regime any pair of vacua is connected by a single-kink excitation, all the vacua
are adjacent and the boundary state |Bab〉 has in any case the form (6.2). The
results of the previous sections apply with surface tensions Σa,a±1(mod 4) = m and
Σa,a±2(mod 4) = m′; the bifurcation coefficients (6.18) can be obtained from the
form factors computed in [118, 50]. For β2 = 2π the masses m and m′ coincide
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and one recovers the q = 4 Potts model.
For β2 ≥ 4π there are no bound states and the vacua with indices differing

by two units are not adjacent, with surface tension Σa,a±2(mod 4) = 2m. In this
case (6.2) is replaced by

|Ba,a±2(x0; t)〉 = e−itH+ix0P

[ ∑

c=a±1

∫
dθ1

2π

dθ2

2π
fa,c,a±2(θ1, θ2) |Kac(θ1)Kc,a±2(θ2)〉+ . . .

]
,

(6.24)
(indices are intended mod 4) and (6.15) has to be replaced by a description in
terms of two interfaces (Fig. 6.3e).

Let us conclude this section mentioning that studies of cluster boundaries
at criticality can be found in particular in [119, 48] for the Potts model and in
[120, 121, 122] for the Ashkin-Teller model; we refer the reader to [123] for results
on cluster densities in critical percolation.
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Chapter 7

Correlated percolation. Ising

clusters and droplets

In this final chapter we will adapt the analysis of chapter 4 for random per-
colation to the case of the Ising model. The percolative transition of the spin
clusters in the Ising model can be mapped into the spontaneous breaking of the
permutational symmetry Sq in the q-color dilute Potts model when q → 1. In
the scaling limit near the critical temperature in zero magnetic field the dilute
Potts field theory is integrable and several universal amplitude ratios can be
computed.

7.1 Introduction

The simplest observable one can think of within the lattice modelization of a
ferromagnet is the average value of the spin at a given site. On an infinite regular
lattice this gives the magnetization per site M , which serves as order parameter
of the ferromagnetic transition. It is also natural, however, to look at extended
(non-local) objects like the clusters formed by neighboring spins with the same
value. Then the probability P that a given site belongs to an infinite cluster
provides the order parameter of a percolative phase transition. The relation
between the magnetic and percolative transitions within the ferromagnet is far
from trivial and has been the subject of many studies [6], first of all for the basic
case of the Ising ferromagnet which is also the subject of this chapter.
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The coincidence of the two transitions (concerning both the location of the
critical point and the critical exponents) was the requirement of the droplet model
for ferromagnetism [124]. It is not fulfilled by the ordinary clusters defined above,
but is satisfied by special clusters whose mass is suitably reduced as the temper-
ature increases [125]; these particular clusters are then called droplets. On usual
lattices in two-dimensions also the ordinary clusters percolate at the Curie tem-
perature Tc at which the magnetic transition takes place [126], although in this
case the percolative and magnetic critical exponents do not coincide [127]. As
a result, Tc is simultaneously the location of the ferromagnetic transition and of
the percolative transition for both clusters and droplets.

A formulation of the problem suitable for theoretical study, for both clusters
and droplets, is obtained coupling the Ising spins to auxiliary color variables
whose expectation value becomes the percolative order parameter P [25, 128].
In this way also the cluster properties are related to correlation functions of
local variables and can be studied using the renormalization group [125] and field
theory [129, 130]. In particular, the exact results of two-dimensional conformal
field theory [12] allowed the identification of the critical exponents also for clusters
[131].

In this respect, it is worth recalling that in recent years the role of non-local
observables within spin models has been much emphasized in connection with
Schramm-Loewner evolution (SLE) (see e.g. [43, 44] for reviews). Indeed, the
latter provides an approach to two-dimensional critical behavior based on the
study of conformally invariant random curves which may be thought as cluster
boundaries. Some exponents and other critical properties have been derived in
this way within an approach alternative to conformal field theory. On the other
hand, moving away from the critical point in the SLE framework still appears a
difficult task, and very few steps have been done in this sense (see e.g. [113, 114]).

Moving away from criticality within field theory is, on the contrary, very
natural and, in many cases, can be done preserving integrability [132]. It was
shown in [46] how Ising clusters and droplets near criticality can be described
using perturbed conformal field theory and, in particular, how the second order
transition that clusters undergo above Tc in an external field becomes integrable
in the scaling limit. In this chapter we use the field theoretical setting of [46]
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to quantitatively characterize the universal properties of clusters and droplets
in their approach to criticality. This is done exploiting integrability to compute
universal combinations of critical amplitudes of the main percolative observables,
namely the order parameter, the connectivity length, the mean cluster number
and the mean cluster size.

We obtain new results for clusters, but also for droplets. This may appear
surprising in consideration of the fact that droplets provide the percolative de-
scription of the magnetic transition, for which all canonical universal ratios are
known exactly [133, 134]. The point is that, while the critical exponents are de-
termined by the singularities of correlation functions at distances much shorter
than the correlation length ξ (in the scaling limit T → Tc, where ξ is anyway
very large), the amplitude ratios are also sensitive to correlations at larger dis-
tances. The spin-spin correlator and the connectivity within finite droplets have
the same singular behavior at short distances but, due to the contribution of
infinite droplets, differ at larger distances below Tc. As a result, magnetic and
percolative exponents coincide, while some amplitude ratios differ.

A similar characterization of cluster properties has been done for the case
of random percolation in chapter 4. Of course the important physical difference
with respect to that case is that in Ising percolation cluster criticality is deter-
mined by the ferromagnetic interaction. The site occupation probability is not an
independent parameter to be tuned towards its critical value, as in the random
case, but is instead a function of temperature and magnetic field. One visible
manifestation of this difference within the formalism arise in the evaluation of
correlation functions through the spectral decomposition over intermediate par-
ticle states. While in random percolation all degrees of freedom, and then all
particles, are auxiliary, in Ising percolation the particles associated to the mag-
netic degrees of freedom are also part of the game. This leads us to formulate
selection rules which identify the particle states actually contributing to the per-
colative properties. The picture which emerges is that of a sharp separation
between states contributing to magnetic correlations and states contributing to
cluster connectivity. For the mean cluster number, which is related to the free
energy, the presence of the magnetic interaction results into the appearance of
logarithmic terms which are absent in the random case. Altogether, our analysis
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produces a number of universal field theoretical predictions for both clusters and
droplets, and for different directions in parameter space, that will be interesting
to compare with lattice estimates when these will become available.

The chapter is organized as follows. In the next section we recall how percola-
tive observables are described in terms of auxiliary color variables before turning
to the characterization of their behavior near criticality in section 7.3. Section 7.4
is devoted to the field theory description, while universal amplitude combinations
are discussed in section 7.5. Two appendices complete the chapter.

7.2 Fortuin-Kasteleyn representation

We consider the ferromagnetic Ising model defined by the reduced Hamiltonian

−HIsing =
1
T

∑

〈x,y〉
σ(x)σ(y) + H

∑
x

σ(x) , (7.1)

where σ(x) = ±1 is a spin variable located at the site x of an infinite regular
lattice L, T ≥ 0 and H are couplings that we call temperature and magnetic
field, respectively, and the first sum is restricted to nearest-neighbor spins.

Correlated percolation in the Ising model can be conveniently studied by
coupling Ising spins to auxiliary Potts variables taking the values (colors) s(x) =
1, . . . , q. Replacing Ising spins with lattice gas variables t(x) = 1

2(σ(x)+1) = 0, 1,
the resulting model is a ferromagnetic dilute q-color Potts model with Hamilto-
nian

−Hq =
4
T

∑
<x,y>

t(x)t(y) + ∆
∑

x

t(x) + J
∑

<x,y>

t(x)t(y)
(
δs(x),s(y) − 1

)
+

+ h̃
∑

x

(
δs(x),1 −

1
q

)
t(x),

(7.2)

where ∆ = 2H − a/T , with a a lattice-dependent constant, and we allow for the
presence of a field h̃ which explicitly breaks the Sq invariance under permutations
of the q colors. The Potts spins1

σk(x) ≡
(

δs(x),k −
1
q

)
t(x), k = 1, . . . , q, (7.3)

1The definition of the Potts spin differs by a factor q from that used in the previous chapters.
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effectively live only on the restricted lattice L0 formed by the sites of L with
positive Ising spin (i.e. with t(x) = 1).

The partition function Zq associated to the Hamiltonian (7.2) admits the
following Fortuin-Kasteleyn (FK) representation [25, 128]

Zq =
∑

{t(x)}

∑

{s(x)}
e−Hq

=
∑

L0⊆L
e−HIsingqNe

∑

G
Λ(G)

∏
c

[
eh̃
“
1− 1

q

”
sc + (q − 1)e−h̃ sc

q

]
, (7.4)

where Ne is the number of “empty” sites (i.e. having t(x) = 0 and then not
belonging to L0). For any lattice gas configuration {t(x)}, the sum over the
Potts variables s(x) is transformed into a sum over all possible graphs G obtained
drawing bonds between nearest neighbors belonging to L0. The weight associated
to each such a bond is p = 1 − e−J (bond occupation probability), so that the
weight of a graph G is Λ(G) = p|E(G)|(1−p)|E(L0)|−|E(G)|, with the same notations
of chapter 1. Connected components of G are called FK clusters and sc is the
number of sites in the c-th cluster2.

For h̃ = 0 the product over clusters in (7.4) reduces to qNc , Nc ≡ |C(G)| being
the number of FK clusters in G. The factor qNe+Nc disappears in the limit q → 1,
so that (7.4) defines a percolative average for FK clusters living on Ising clusters.
In particular, the FK clusters become the Ising clusters when p = 1, i.e. when
J → +∞. In this section we refer to the general case of FK clusters.

Standard definitions for percolative observables apply. The percolative order
parameter P is the probability that the site in the origin belongs to an infinite
cluster, namely the average fraction of sites of L belonging to infinite clusters.
The average size of finite clusters containing the origin is

S =
1
N
〈
∑

c

′s2
c〉 , (7.5)

where the primed sum runs over finite clusters only and N is the number of sites in
L, which diverges in the thermodynamic limit we are considering. The probability
Pf (x) that the origin and x belong to the same finite cluster defines the ‘true’

2Unconnected sites on L0 also counts as clusters with sc = 1.
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and ‘second moment’ connectivity lengths ξt and ξ2nd through the relations3

Pf (x) ∼ e−|x|/ξt , |x| → ∞ , (7.6)

ξ2
2nd =

∑
x |x|2Pf (x)

4
∑

x Pf (x)
. (7.7)

The observables P and S are related to the dilute Potts magnetization and sus-
ceptibility, respectively. Indeed the Potts spontaneous magnetization is

〈σ1(x)〉 =
1
N

∂ lnZq

∂h̃

∣∣∣∣
h̃=0+

= lim
h̃→0+

〈
∑

c

F (sc, h̃, q)〉, (7.8)

where

F (sc, h̃, q) =
(

1− 1
q

)
sc

N

eh̃
“
1− 1

q

”
sc − e−

h̃
q
sc

eh̃
“
1− 1

q

”
sc + e−

h̃
q
sc(q − 1)

. (7.9)

In the limit h̃ → 0+, (7.9) vanishes for any finite cluster, so that only infinite
clusters contribute to

∑
c F a term (1−1/q) times the fraction of the lattice they

occupy; hence we have the relation

P = lim
q→1

〈σ1(x)〉
q − 1

, (7.10)

showing that the percolative transition of clusters maps onto the spontaneous
breaking of Sq symmetry in the auxiliary Potts variables. The Potts longitudinal
susceptibility ∂2 ln Zq

N∂h̃2

∣∣∣
h̃=0+

can be expressed through the spin-spin correlator or

differentiating the cluster expansion (7.4); this leads to the relation4

S = lim
q→1

1
q − 1

∑
x

〈σ1(x)σ1(0)〉c . (7.11)

It also follows from (7.4) that the mean cluster number per site is given by

〈Nc〉
N

=
1
N

(
lim
q→1

∂q ln Zq|h̃=0 − 〈Ne〉
)

= − ∂qfq|q=1 −
1
2
(1−M) , (7.12)

3In the previous chapters we denoted Pf (x) as Paa(x).
4Throughout the chapter we denote connected correlators attaching a subscript c to the

average symbol.
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where fq = −(1/N) lnZq|h̃=0 is the dilute Potts free energy per site and M is the
Ising magnetization per site.

We conclude this section observing that (7.10) and (7.11) can also be derived
as follows. Take h̃ = 0+ and denote by ν the average fraction of sites belonging
to L0, and by νf the fraction of sites belonging to finite clusters. We have

〈t(x)〉 = ν = P + νf , (7.13)

〈δs(x),1t(x)〉 = P +
1
q
νf , (7.14)

where we use the fact that a site has color 1 with probability 1/q if it belongs to a
finite cluster, and with probability 1 if it belongs to an infinite cluster5; equation
(7.10) then follows recalling (7.3). Considering instead two sites x and y, we call
Pαβ(x− y) the probability that x is of type α and y of type β, with the following
specifications: α and β take the value f if the corresponding site belongs to a
finite cluster, i if it belongs to an infinite cluster, and e if it does not belong to
a cluster (i.e. it is empty); more precisely, Pff is the probability that the two
sites belong to different finite clusters, while we call Pf the probability that they
belong to the same finite cluster and Pi the probability that they both belong to
infinite clusters. Introducing also the probability Poo that the sites both belong
to some cluster, we can write the relations

Poo + Pie + Pfe = ν, (7.15)

Poo + 2(Pie + Pfe) + Pee = 1, (7.16)

Pi + 2Pif + Pf + Pff = Poo, (7.17)

Pi + Pif + Pie = P. (7.18)

These leave four independent two-point probabilities that we choose to be Pi, Pif , Pf

and Pff . Through them we can express the four independent two-point spin cor-

5Infinite clusters contribute only to the first term inside the product in (7.4) for h̃ → 0+. In

turn, only sites with color 1 contribute to this term.
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relators in the dilute Potts model as

〈t(x)t(0)〉 = Pi + 2Pif + Pf + Pff , (7.19)

〈δs(x),1t(x) t(0)〉 = Pi +
(

1 +
1
q

)
Pif +

1
q

(Pf + Pff ) , (7.20)

〈δs(x),1t(x) δs(0),1t(0)〉 = Pi +
2
q
Pif +

1
q
Pf +

1
q2

Pff , (7.21)

〈δs(x),kt(x) δs(0),kt(0)〉 =
1
q
Pf +

1
q2

Pff , k 6= 1. (7.22)

These equations give in particular

G(x) ≡ 〈σ1(x)σ1(0)〉c =
(

1− 1
q

)2

(Pi − P 2) +
1
q

(
1− 1

q

)
Pf , (7.23)

〈σk(x)σk(0)〉c =
1
q2

[(Pi − P 2) + (q − 1)Pf ], k 6= 1, (7.24)

and (7.11) follows from the fact that S = limq→1
∑

x Pf (x).

7.3 Clusters and droplets near criticality

The critical properties of FK clusters within the Ising model are ruled by the
renormalization group fixed points of the dilute Potts Hamiltonian (7.2) with
h̃ = 0 and q → 1. Since the percolative properties do not affect the magnetic
ones, we need to be at the magnetic fixed point (T, H) = (Tc, 0) to start with,
and are left with the problem of finding fixed points of the coupling J . It was
first argued in [125] that for the case J > 0 of interest here there are two such
fixed points, with a renormalization group pattern shown in Fig. 7.1. The critical
properties of the Ising clusters (the FK clusters with p = 1, i.e. J = +∞)
renormalize onto those of the fixed point with the larger value of J , that we call
J∗. This corresponds to the tricritical point of the dilute Potts model with q → 1.

The second fixed point, located at J = 2/Tc, follows from the identity [125]

−Hq|h̃=0, J=2/T =
2
T

∑
<x,y>

(δν(x),ν(y)−1)+(ln q−2H)
∑

x

δν(x),0, ν(x) = 0, 1, . . . , q,

(7.25)
showing that for J = 2/T the Ising and color variables can be combined into a
single (q + 1)-state Potts variable ν(x) taking the value 0 on sites with negative
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0 2/T c J* J

Figure 7.1: Renormalization group flows in the coupling J for the Hamiltonian
(7.2) with q → 1, T = Tc, H = 0. While J = 0 is just the Ising magnetic
fixed point, 2/Tc and J∗ are percolation fixed points for Ising droplets and Ising
clusters, respectively.

Ising spin, and the values 1, . . . , q on sites with positive Ising spin; for 2H = ln q,
(7.25) exhibits a Sq+1 invariance whose spontaneous breaking yields the fixed
point at T = Tc, H = 0, in the limit q → 1. It is natural to associate to the
(q + 1)-color Potts model (7.25) the spin variables

ωα(x) = δν(x),α −
1

q + 1
, α = 0, 1, . . . , q, (7.26)

whose average provides the order parameter of the phase transition. Using ν(x) =
t(x)s(x) and

∑q
α=0 ωα =

∑q
k=1 σk = 0, it is easy to check that the Ising site

variable and the dilute Potts spin (7.3) can be written as

t(x) = −ω0(x) +
q

q + 1
, (7.27)

σk(x) = ωk(x) +
ω0(x)

q
, k = 1, . . . , q . (7.28)

Denoting 〈· · · 〉β the average in the phase where the spontaneous breaking of Sq+1

permutational symmetry selects the direction β, we have

〈ωα〉β = [(q + 1)δαβ − 1]
Mq+1

q
, (7.29)

and, using (7.28),

〈σ1〉β =

{
0 , β = 0
q2−1

q2 Mq+1 , β = 1 .
(7.30)

At this point (7.10) implies P = 0 in the phase β = 0, and P = M in the
phase β = 1, where M = 2M2 is the Ising spontaneous magnetization, as implied
by (7.27) and (7.29). This amounts to say that there is a first order percolative
transition along the segment T < Tc, H = 0, where the limit H → 0∓ is described

135



CHAPTER 7. CORRELATED PERCOLATION. ISING CLUSTERS
AND DROPLETS

��
��
��
��

c
0

T T

H

Figure 7.2: Phase diagrams for Ising clusters and droplets in two dimensions. The
first order transition (dashed line) is common to clusters and droplets. Above
Tc there is a second order transition along the continuous line for clusters, and
along the Kertész line (dotted) for droplets.

by the phases β = 0, 1, respectively, of (7.25) with q → 1. Hence, for H = 0,
the magnetic and percolative transitions have the same nature and location, and,
due to the identity P = M at H = 0+, the same critical exponents. Since these
are the requirements of the droplet model [124] aimed at describing the magnetic
transition as a percolation transition, the FK clusters with p = 1 − e−2/T are
called droplets.

In two dimensions also the Ising clusters undergo a first order transition for
H = 0, T < Tc [126, 127]. Above Tc they exhibit instead a second order transition
going from (T, H) = (Tc, 0) to a non-negative value of H at infinite temperature,
where, due to the vanishing of the ferromagnetic interaction, a random percola-
tion fixed point is located. The first and second order transition lines determine
a curve in the T -H plane above which P > 0 (Fig. 7.2).

Droplets cannot percolate at infinite temperature since they have p = 0 there.
There is however a second order transition line, the Kertész line [135], going from
the Curie point to a value of T at H = +∞, where again a random percolation
fixed point is located; P > 0 to the left of the Kertész line (Fig. 7.2).

The Curie point (T,H) = (Tc, 0) is a fixed point for both Ising clusters and
droplets. We consider the critical behavior of the percolative observables intro-
duced in the previous section when this point is approached both at H = 0 and
at T = Tc. Denoting by g the deviation from criticality, i.e. |T − Tc| in the first
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case and |H| in the second, we have for g → 0

P = B gβ , (7.31)

S = Γ g−γ , (7.32)

ξ = f g−ν , (7.33)(〈Nc〉
N
− M

2

)

sing

=
(

A−1

2
ln2 g −A0 ln g + δA−1,0 A1

)
gµ . (7.34)

Critical exponents6 and critical amplitudes depend on the direction along which
the critical point is approached. We distinguish the following cases:

(a) T → T+
c , H = 0 : we attach a subscript a to amplitudes and exponents.

As discussed in the next section, we will consider this limit only for droplets;
(b) T → T−c , H = 0± : we attach a subscript b to amplitudes and exponents

and a superscript ± to the amplitudes. Droplet exponents are the same as in
case (a);

(c) T = Tc, H → 0± : we attach a subscript c to amplitudes and exponents
and a superscript ± to the amplitudes.

The form of (7.34) needs to be explained. Since the approach to criticality
of the Ising magnetization M is known (see [134]), the most interesting part of
(7.12) is the contribution coming from the dilute Potts free energy fq. This is
the sum of a regular part containing non-negative powers of g, and of a singular
part,

f sing
q (g) = Fq gµq , g → 0 , (7.35)

that we need to consider in the limit q → 1. If µ1 happens to coincide with a
non-negative integer, the resonance with the regular part is signalled by a pole
in the amplitude Fq. The latter can be expanded around q = 1 in the form

Fq =
∞∑

k=−1

ak [∆µq]
k , (7.36)

with ∆µq ≡ −(µq − µ1). Evaluation of (7.35) for q → 1 then leads to

f sing
Ising(g) = (−a−1 ln g + δa−1,0 a0) gµ , µ ≡ µ1 , (7.37)

6Notice that for convenience the critical exponent µ has been defined instead of the more

conventional notation 2− α.
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while ∂qf
sing
q |q=1 yields (7.34) with

Ak = ∂qµq|q=1 ak , k = −1, 0, 1 . (7.38)

When µ is an integer, i.e. when a−1 6= 0, the term coming from A1 in (7.34) and
that coming from a0 in (7.37) contribute to the regular part. Notice that in the
case of random percolation7 f sing

1 (g) = 0, so that (7.36) starts from k = 1 and
(7.34) holds with M = A−1 = A0 = 0.

7.4 Field theory

As shown in [46], in the scaling limit towards the Curie point, each of the two
phase diagrams of Fig. 7.2 (one for clusters, one for droplets) can be seen as the
q → 1 projection of a phase diagram living in a three-dimensional space with
coordinates (g1, g2, q), where g1 and g2 are couplings which become τ ∼ T − Tc

and h ∼ H, respectively, at q = 1. This three-dimensional phase diagram is
associated to the field theory with action

A = ACFT − g1

∫
d2xφ1(x)− g2

∫
d2x φ2(x) , (7.39)

where ACFT is the conformal action describing the pertinent critical line (param-
eterized by q) within the scaling limit of the dilute Potts model (7.2), and φ1,
φ2 are Sq-invariant relevant fields in this conformal theory. Recalling that two-
dimensional conformal field theories, see chapter 1, characterized by a central
charge

c = 1− 6
t(t + 1)

(7.40)

contain scalar primary fields ϕm,n with scaling dimension

Xm,n =
[(t + 1)m− tn]2 − 1

2t(t + 1)
, (7.41)

7In random percolation g = |p− pc| measures the deviation from the critical site occupation

probability.
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νb βb γb µb νc βc γc µc

clusters 1 5/96 91/48 2 8/15 1/36 91/90 16/15
droplets 1 1/8 7/4 2 8/15 1/15 14/15 16/15

Table 7.1: Critical exponents for Ising percolation.

the action (7.39) that for q → 1 describes the scaling limit for clusters and droplets
is specified as follows [46]

clusters:
√

q = 2 sin
π(t + 2)

2t
, φ1 = ϕ1,3, φ2 = ϕ1,2 ;

droplets:
√

q + 1 = 2 sin
π(t− 1)
2(t + 1)

, φ1 = ϕ2,1, φ2 = ϕ(t+1)/2,(t+1)/2 .

In the cluster case ACFT corresponds to the tricritical line of the dilute q-color
Potts model, and φ1, φ2 are the dilution and energy fields along this line. In
the droplet case ACFT corresponds to the critical line of the pure (q + 1)-state
Potts model (7.25), φ1 is the energy field on this line and φ2 the spin field ω0.
In both cases q = 1 corresponds to t = 3 and, as expected, c = 1/2, the central
charge of the critical Ising model. The Potts spin has dimension Xs given by
Xt/2,t/2 for clusters [131] and X(t+1)/2,(p+1)/2 for droplets. The critical exponents
in (7.31)-(7.34) are given by

ν =
1

2−X
, β = Xs|q=1ν, γ = 2(1−Xs|q=1)ν, µ = 2ν, (7.42)

with X = 1 in cases (a) and (b), and X = 1/8 in case (c). The exponents are
collected in Table 7.1.

The percolative transitions in the scaling Ising model are the q → 1 limit
of transitions associated to spontaneous breaking of Sq symmetry in (7.39). For
both clusters and droplets, the first order part of the transition corresponds to
g2 = 0 and g1 < 0. The second order part corresponds to g2 = 0 and g1 > 0
for clusters, while for droplets it maps onto a renormalization group trajectory
with g1 and g2 both non-zero [46]. In particular, this implies that the deviation
from H = 0 of the transition above Tc for clusters is entirely due to corrections to
scaling, namely that the behavior associated to the limit (a) for clusters is non-
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universal8 and, in general, is not determined by the scaling theory (7.39). This
is why the limit (a) for clusters is excluded in our study of universal amplitude
ratios.

7.4.1 Integrability

It is known from [132] that deformations of conformal field theories with c < 1
through a single field of type ϕ1,2, ϕ2,1 or ϕ1,3 are integrable. This means that
cases (b),(c) for clusters and cases (a),(b) for droplets all are q → 1 limits of
integrable cases of (7.39). Integrable field theories are solved in the S-matrix
framework [14], and we now recall the solutions for the scaling pure and dilute
Potts model.

ϕ2,1 and ϕ1,2 deformations. Consider a (1+1)-dimensional integrable field
theory with spontaneously broken SQ symmetry [27]. The elementary excitations
are kinks Kij(θ), i 6= j, with mass m and energy-momentum (m cosh θ,m sinh θ),
interpolating between pairs of degenerate vacua |Ωi〉, i = 1, . . . , Q. Integrability
ensures that any scattering process reduces to a sequence of elastic two-kink
collisions of type

|Kik(θ1)Kkj(θ2)〉 =
∑

l

Skl
ij (θ1 − θ2) |Kil(θ2)Klj(θ1)〉 , (7.43)

where “in” (“out”) asymptotic states correspond to θ1 larger (smaller) than θ2.
Permutational symmetry implies that there are only four different two-kink scat-
tering amplitudes Skl

ij (θ): indeed, there are two scattering channels (i = j and
i 6= j) and in each of them the central vacuum can preserve its color (l = k)
or change it (l 6= k). The minimal solution for these amplitudes, satisfying the
constraints of unitarity, crossing symmetry, factorization and bootstrap, was de-
termined in [27] and contains a parameter λ which is related to Q as

√
Q = 2 sin

πλ

3
. (7.44)

8In particular, the second order percolative transition is expected to stay at H = 0 for

the triangular lattice, while it develops as in Fig. 7.2 for the square lattice (see [46]). As a

consequence, the connectivity length for clusters at T > Tc, H = 0 is infinite in the first case,

and finite in the second.
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We discussed the solution to the scattering problem in an SQ invariant field
theory in section 2.7. For Q ∈ (0, 4), it corresponds to the ϕ2,1 deformation of
the Q-state Potts critical line when λ ∈ (0, 3/2), and to the ϕ1,2 deformation of
the Q-state Potts tricritical line when λ ∈ (3/2, 3). The critical and tricritical
lines meet at Q = 4 and have central charge (7.40) with

λ =





3(t−1)
2(t+1) , critical line

3(t+2)
2t , tricritical line .

(7.45)

The spontaneously broken phase we are discussing corresponds to a specific sign
of the coupling g conjugated to the field responsible for the deformation; the
unbroken phase corresponds to the other sign and is related to the broken phase
by duality.

The full particle spectrum is determined investigating the pole structure of
the amplitudes and going through the bootstrap procedure [27, 102]. For our
purposes it is enough to know that the two lightest topologically neutral bound
states Bj , j = 1, 2, appear for λ > j as poles of the kink-antikink amplitudes Skl

ii ;
they have mass mj = 2m sin jπ

2λ .
Integrability allows in particular the exact determination of the singular part

of the free energy per unit area. For the ϕ1,2 deformation it reads [136]

f sing(g, t) = −
sin

(
πt

3t+6

)

4
√

3 sin
(

π(2t+2)
3t+6

) m2 , (7.46)

where the kink mass is related to the coupling g as

m =
2

t+5
3t+6
√

3Γ
(

1
3

)
Γ

(
t

3t+6

)

π Γ
(

2t+2
3t+6

)

π2 g2 Γ2

(
3t+4
4t+4

)
Γ

(
1
2 + 1

t+1

)

Γ2
(

t
4t+4

)
Γ

(
1
2 − 1

t+1

)



t+1
3t+6

. (7.47)

Comparison with (7.35) gives

µ(t) =
4(t + 1)
3(t + 2)

. (7.48)

The corresponding results for the ϕ2,1 deformation are obtained through the
replacement t→ −t− 1 into the last three equations [136].
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ϕ1,3 deformation. Consider a SQ-invariant theory on the first order tran-
sition point where the ordered vacua |Ωi〉, i = 1, . . . , Q, are degenerate with the
disordered vacuum |Ω0〉. The elementary excitations are kinks K0i with mass
m, going from the disordered to the i-th ordered vacuum, together with their
antikinks Ki0. There are again four different two-kink amplitudes which in the
notation (7.43) read Skl

00, S00
kl , where the cases k = l and k 6= l have to be distin-

guished. The minimal integrable solution was given in [137] and corresponds to
the ϕ1,3 deformation of the Q-state Potts tricritical line. In this case the interac-
tion among the kinks does not produce bound states. Again we refer to a specific
sign (positive) of the coupling g conjugated to ϕ1,3, the other sign corresponding
to the massless flow from the tricritical to the critical line.

For the free energy we now have [138, 139]

f sing(g, t) = − sin2 πt
2

2 sin πt
m2 , (7.49)

m =
2Γ

(
t
2

)
√

π Γ
(

t+1
2

)


π g (t− 1)(2t− 1)

(1 + t)2

√√√√√
Γ

(
1

1+t

)
Γ

(
1−2t
1+t

)

Γ
(

t
1+t

)
Γ

(
3t

1+t

)




1+t
4

, (7.50)

µ(t) =
t + 1

2
. (7.51)

7.4.2 Connectivity

Within our formalism based on factorized scattering among kinks, correlators are
expressed as spectral sums

〈Φ(x)Φ(0)〉c =
∞∑

n=1

∑
γ1,...,γn−1

∫

θ1>...>θn

dθ1

2π
. . .

dθn

2π
|FΦ

αγ1...γn−1β(θ1, . . . , θn)|2e−m|x|Pn
k=1 cosh θk ,

(7.52)
where the form factors

FΦ
αγ1...γn−1β(θ1, . . . , θn) = 〈Ωα|Φ(0)|Kαγ1(θ1)Kγ1γ2(θ2) . . . Kγn−1β(θn)〉 (7.53)

can be computed exactly relying on the knowledge of the S-matrix (see the form
factor equations in Appendix A). The greek vacuum indices in (7.53) take the
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color value k = 1, . . . , q, and also the value 0 when q + 1 phases coexist; it is
understood that adjacent vacuum indices cannot coincide. We included in (7.52)
only the states made of elementary kink excitations; it is understood that if
there are stable bound states they also contribute to the spectral sum. It is well
known that spectral series in integrable field theory converge very rapidly and
that truncation of the series to the first (lightest) contribution is sufficient to
provide accurate results upon integration in d2x (see in [18]) the results obtained
in this way for random percolation). This is the approximation we are going to
adopt also in this chapter.

It follows from (7.23) that the problem of determining the connectivity func-
tion Pf (x) reduces to the study of the Potts connected correlator G(x) in the
limit q → 1. This correlator vanishes at q = 1 (no Potts degrees of freedom), and
(7.23) shows that it vanishes linearly in q − 1:

Pf (x) = lim
q→1

G(x)
q − 1

. (7.54)

The S-matrix does not force itself the form factors to vanish at q = 1; the
vanishing of form factors can instead be induced by the color structure of the fields
and by their normalization conditions. The constraint

∑
k σk = 0 can induce a

linear vanishing of the form factors of σ1 on some states; the contribution of these
states then vanishes quadratically in the spectral decomposition of G(x), and can
be ignored for q → 1. This means that the leading (linear) contribution in q − 1
to G(x) comes entirely from the sum over color indices in the spectral sum, i.e.
from the multiplicity of form factors identified by color symmetry.

Notice that this symmetry can identify form factors of σ1 only through per-
mutations of the vacuum indices γi = 2, . . . , q, because color 1 is carried by the
field itself9. It follows in particular that the states whose vacuum indices take
only the values 0 and 1 (i.e. the states which are well defined at q = 1 and
that, for this reason, we call Ising states) cannot contribute to the multiplicity
factor q−1, and then are among those giving a subleading contribution as q → 1.
Finally we conclude that the leading contribution to G(x) for |x| → ∞, q → 1,
comes from the states with minimal total mass which are not Ising states. It

9In the cases we consider the external indices α, β in (7.53) take values 0 or 1.
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follows from (7.6) that this minimal total mass coincides with the inverse true
connectivity length ξt.

We now discuss the correlator G(x), first for clusters and then for droplets, in
the cases (a), (b) and (c) defined in the previous section, recalling that these are
cases of (7.39) with q → 1: (a) (for droplets only) and (b) correspond to g2 = 0,
while (c) corresponds to g1 = 0; the sign of T − Tc and H coincides with that of
g1 and g2, respectively.

Clusters. In the case (b) we are within the φ1,3 deformation of the Potts
tricritical line, with degenerate vacua |Ωα〉, α = 0, 1, . . . , q. For H = 0+, the
color symmetry is spontaneously broken and P = ∂q〈Ω1|σ1|Ω1〉|q=1 6= 0. The
form factors entering the spectral sum for G(x) are of type F σ1

10k0j···01, and the
lightest non-Ising contribution comes from the four-kink term

∑q
k=2 |F σ1

10k01|2 =
(q − 1)|F σ1

10201|2. It follows, in particular, that ξt = 1/4m. For H = 0− we are
in the Potts disordered vacuum and P = 〈Ω0|σ1|Ω0〉 = 0. G(x) decomposes on
the form factors F σ1

0k0i···j0 and the lightest non-Ising contribution comes from the
two-kink term

∑q
k=2 |F σ1

0k0|2 = (q − 1)|F σ1
020|2; ξt = 1/2m. It is interesting to

compare the true connectivity length with the magnetic true correlation length
ξ̂t defined from the decay of the Ising spin-spin correlator,

〈σ(x)σ(0)〉c ∼ e−|x|/ξ̂t , |x| → ∞ . (7.55)

This is now determined by the lightest Ising states in the topologically neutral
sector, i.e. ξ̂t = 1/2m for H = 0±.

Case (c) corresponds to the ϕ1,2 deformation of the Potts tricritical line. For
H → 0+ we are in the spontaneously broken phase with degenerate vacua |Ωk〉,
k = 1, . . . , q, and P = ∂q〈Ω1|σ1|Ω1〉|q=1 6= 0. It follows from what we said
about this deformation and from (7.44) that q → 1 amounts to λ→ 5/2, so that
the theory possesses, in particular, also the stable topologically neutral bound
states Bj . However, the states |Bj〉 are Ising states, and the lightest non-Ising
contribution to G(x) comes from the term

∑q
k=2 |F σ1

1k1|2 = (q − 1)|F σ1
121|2, which

implies ξt = 1/2m. For H → 0− there is instead a single, disordered vacuum,
and the excitations are not kinks. This phase, however, is related to the previous
one by duality [62], so that G(x) at H → 0− coincides with 〈µj(x)µj(0)〉 at
H → 0+, where µj(x) is the Potts disorder field which interpolates the kink
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K1j . The lightest contribution to G(x) comes then from the single one-kink
term |Fµj

1j (θ)|2. The latter, however, coincides [62] with 〈Ω1|σ1|Ω1〉|F σ1
1j1(∞, 0)|,

and then is proportional to q − 1, as required. It also follows that ξt = 1/m.
Concerning the magnetic correlation length, the lightest topologically neutral
Ising state is |B1〉, so that ξ̂t = 1/m1 = 1/(2m sin π

5 ) for H → 0±.

Droplets. Case (b) corresponds to the ϕ2,1 deformation of the (q + 1)-state
Potts critical line, with Sq+1 permutational symmetry, degenerate vacua |Ωα〉 and
kinks Kαβ , α, β = 0, 1, . . . , q, which are the only particles for q ≤ 2. For H = 0+

the Sq+1 symmetry is spontaneously broken in the direction 1, and 〈Ω1|σ1|Ω1〉 is
given by the second line of (7.30). The lightest non-Ising contribution to G(x) is∑q

k=2 |F σ1
1k1|2 = (q − 1)|F σ1

121|2. For H = 0− the Sq+1 symmetry is spontaneously
broken in the direction 0, so that the Sq color symmetry is unbroken and P =
〈Ω0|σ1|Ω0〉 = 0, as in the first line of (7.30). The lightest non-Ising contribution
to G(x) is

∑q
k=2 |F σ1

0k0|2 = (q − 1)|F σ1
020|2. We have ξt = ξ̂t = 1/2m for H = 0±.

Case (a) corresponds to the same deformation as case (b), but with the Sq+1

symmetry unbroken and a single vacuum. Relation (7.28) and use of Sq+1 invari-
ance give G(x) = [(q2−1)/q2]〈ω0(x)ω0(0)〉, which already contains the factor q−1.
Again duality identifies 〈ω0(x)ω0(0)〉 of the unbroken phase with the correlator
〈Ω1|ω̃j(x)ω̃j(0)|Ω1〉 of the disorder field computed in the broken phase, which
receives its lightest contribution from the one-kink term |F ω̃j

1j |2. Notice that, as
in case (c) for clusters, this term can be rewritten as 〈Ω1|ω1|Ω1〉|Fω1

1j1(∞, 0)|, but
this time 〈Ω1|ω1|Ω1〉 does not vanish for q → 1, because we are in a (q + 1)-state
Potts model, and this agrees with the fact that the necessary q−1 factor in G(x)
has already been obtained. For the correlation lengths we have ξt = ξ̂t = 1/m.
Droplet connectivity at H = 0 is further discussed in appendix B.

In case (c) the theory is not integrable for q > 1, and this eventually does not
allow the computation of the form factors. We can however discuss some essential
features. We deal with a (q +1)-state Potts model in presence of a field ω0 which
explicitly breaks the symmetry down to the Sq color symmetry. We see from the
phase diagram of Fig. 7.2 that for H → 0+ we are inside the region with P > 0,
where the color symmetry is spontaneously broken, so that there are q degenerate
vacua |Ωk〉 and elementary kink excitations Kij interpolating among them. The
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lightest non-Ising contribution to G(x) is
∑q

k=2 |F σ1
1k1|2 = (q − 1)|F σ1

121|2, which
implies ξt = 1/2m. For H → 0− the color symmetry is unbroken and the vacuum
is unique, but this time we are not able to use duality to make contact with the
broken phase.

7.5 Universal ratios

The connections with integrable field theory discussed in the previous section
allows us to compute many of the critical amplitudes defined by (7.31)-(7.34),
both for clusters and droplets. The amplitudes are not universal, but universal
combinations can be made out of them in which metric factors cancel [75].

As we saw, the amplitudes Γ and f for mean cluster size and connectivity
lengths follow from the study of the Potts spin correlator G(x), which determines
the connectivity function Pf (x). The known effectiveness of the large |x| approx-
imation, as well as the use of duality, allowed us to reduce the problem to that
of the determination of some n-kink form factors of the Potts spin field. We saw
that n = 2 in most cases, while one case requires n = 4. Four-kink form factors of
the Potts spin for generic q have not been studied in the literature, and we make
no attempt to discuss them here. Concerning the two-kink form factors of the
Potts spin field, complete results were obtained in [137] for the ϕ1,3 deformation;
the ϕ2,1 and ϕ1,2 deformations are more complicated and only partial results are
available [62, 18]. In appendix B we give an approximate form factor solution
that we use for the evaluation of some droplets amplitudes at H = 0.

The amplitudes B of the percolative order parameter are also related to the
Potts spin two-kink form factors. Indeed eq. (7.60) of appendix A with n = 0 and
Φ = σ1 relates these matrix elements to the vacuum expectation value in (7.10).

The amplitudes Ak entering (7.34) follow from the t → 3 limit of the free
energies (7.46), (7.49), through (7.38). Phases coexisting at a first order transition
point have the same free energy, as well as phases related by duality. Since µ = µ1

is an integer in the case of the ϕ1,3 and ϕ2,1 deformations, f sing(g, p) has a pole
at t = 3 (i.e. a−1 6= 0, see Table 7.2), in agreement with the discussion at the end
of section 7.3. These deformations both give the scaling Ising model with H = 0
when p→ 3, and the fact that they yield the same coefficients a−1 and a0 is then
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Deformation a−1 a0 a1 ∂qµq|q=1

φ13 −π π(γ + ln π) - 9
4π
√

3

φ12 0 −1.1977.. 2.7929.. 6
25π

√
3

φ21 −π π(γ + ln π) - − 4
3π

Table 7.2: Results determining the amplitudes (7.38) for the different integrable
directions. γ is the Euler-Mascheroni constant.

expected from (7.37).
The results for the universal combinations of critical amplitudes that we ob-

tain exploiting all these pieces of information are collected in Table 7.3. They
include the combinations

U ≡ 4B2(f−2nd)
2

Γ−
, R ≡ A−0 (f−t )2 , (7.56)

whose universality follows from the scaling relations 2β + γ = 2ν = µ.
In Table 7.3 the results involving only the amplitudes10 ft, f̂t and Ak are

exact. The results which involve the amplitudes f2nd and Γ, whose evaluation
requires the integration of the connectivity function, are instead approximated,
with the following exceptions for the droplet case. As shown in appendix B,
droplet connectivity is the same for H = 0±, and this is why we quote that
Γ+

b /Γ−b and f+
2nd,b/f−2nd,b are exactly equal to 1; moreover, (7.68) determines the

droplet connectivity in case (a) in terms of the Ising spin-spin correlator, which
is exactly known [133] and gives the exact result for f2nd,a/ft,a.

The approximated results are of two types. Those involving the truncation of
the spectral series as the only approximation are expected to be very accurate,
with an error that, as in other similar computations (see e.g. [18]), is hardly
expected to exceed 1%. Those droplet results (signalled by a dagger) which
instead also rely on the use of the approximate two-kink form factor (7.76) could
have larger errors.

We close this section discussing the issue of the correspondence between mag-
netic and droplet universal properties at H = 0+. As we saw in section 7.3 there

10We denote f̂t the amplitudes of the magnetic correlation length defined by (7.55).
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clusters droplets

Γa/Γ+
b non-universal 40.3†

f2nd,a/ft,a ” 0.99959..
ft,a/f+

t,b ” 2
ft,a/f̂t,a ” 1
Ak,a/A

+
k,b; k = 0,−1 ” 1

Γ+
b /Γ−b - 1

f+
t,b/f−t,b 1/2 1

f−2nd,b/f−t,b 0.6799 0.61†

f+
2nd,b/f−2nd,b - 1

f+
t,b/f̂±t,b 1/2 1

Ub 24.72 15.2†

A+
k,b/A

−
k,b; k = 0,−1 1 1

A±0,b/A
±
−1,b −γ − lnπ = −1.7219.. −γ − lnπ = −1.7219..

Rb
3
√

3(γ + ln π)
64π2

= 0.014165.. −γ + ln π

12π2
= −0.014539..

f+
t,c/f−t,c 1/2 -

f−2nd,c/f−t,c 1.002 -

f+
t,c/f̂±t,c sin

π

5
= 0.58778.. -

A+
k,c/A

−
k,c; k = 0, 1 1 -

A±0,c/A
±
1,c −0.42883.. -

Rc −3.7624..× 10−3 -

Table 7.3: Results for amplitude ratios in Ising correlated percolation. Those
quoted without decimal digits or followed by dots are exact, the others are com-
puted in the two-kink approximation; the dagger signals the use of the approxi-
mate form factor (7.76). Empty cases are due to ignorance of some form factors
in integrable cases or, in direction (c) for droplets, to lack of integrability; ratios
involving amplitudes for clusters in direction (a) are non-universal. γ = 0.5772..
is the Euler-Mascheroni constant.
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is in the case an identification of the order parameters: P = M . This is at the
origin of the fact that the magnetic correlator 〈σ(x)σ(0)〉c and the droplet con-
nectivity Pf (x) both diverge as |x|−1/4 when |x|/ξ → 0. In turn, this implies that
the magnetic susceptibility χ and the mean droplet size S, which are the integrals
over x of these two functions, diverge with the same exponent γ = 7/4 as T → Tc.
Equation (7.68) shows that the magnetic correlator actually coincides with 2Pf

at all distances above Tc; the two functions, however, differ below Tc due to the
presence of infinite droplets. It follows that the ratio of droplet size amplitudes
above and below Tc does not coincide with the corresponding susceptibility ratio,
a fact already pointed out in [140]. Actually, (7.68) implies that the size ratio is
larger than the susceptibility ratio. Our computation shows that the difference
between the two ratios is not very large: our approximated result for the first,
close to 40, has to be compared with the susceptibility result 37.7 [133]. Similar
remarks apply to any ratio involving integrated correlations below Tc.
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Appendix A

The n-kink form factors (7.53) satisfy functional equations similar to those well
known for form factors on non-topological excitations [61, 60]. For n = 2 the
kink form factor equations where considered in [62]; here we write them for any
n:

FΦ
...γi−1γiγi+1...(. . . , θi, θi+1, . . .) =

∑

δ

Sγiδ
γi−1γi+1

(θi − θi+1)FΦ
...γi−1δγi+1...(. . . , θi+1, θi, . . .) ,

(7.57)

− iResθ1−θ2=iua
KK

Fαγ1γ2...(θ1, θ2, . . .) =

(1− δαγ2)Γ
K
KKFΦ

αγ2...(θa, θ3, . . .) + δαγ2Γ
B
KKFΦ

ααγ3...(θa, θ3, . . .) ,

(7.58)

FΦ
αβγ1...γn−2α(θ′, θ, θ1, . . . , θn−2) = FΦ

βγ1...γn−2αβ(θ, θ1, . . . , θn−2, θ
′ − 2iπ) , (7.59)

− iResθ′=θ+iπFΦ
αβγ1...γn−2α(θ′, θ, θ1, . . . , θn−2) = δαγ1 [F

Φ
αγ2...γn−2α(θ1, . . . , θn−2)+

(7.60)

−
∑

δ1...δn−3

Sγ1δ1
βγ2

(θ − θ1) . . . S
γn−3δn−3

δn−4γn−2
(θ − θn−3)S

γn−2β
δn−3α (θ − θn−2)FΦ

βδ1...δn−3β(θ1, . . . , θn−2)] .

Equation (7.57) immediately follows from the commutation relations (7.43). Equa-
tion (7.58) is the statement that the form factor inherits from the S-matrix the
bound state poles corresponding to kinks (K) or topologically neutral particles
(B); the residue of the scattering amplitudes on these poles determines also the
three-particle couplings Γa

KK .

Equations (7.59) and (7.60), that we wrote for the case of a topologically
neutral field Φ, can be derived adapting to the kink case an argument of [60].
Consider the set of rapidities θ′ ≥ θ > θ1 > . . . > θn−2, and recall that particles
ordered with decreasing (increasing) rapidities form an “in” (“out”) state. The
relations

〈Kαβ(θ′)|Φ|Kβγ1(θ)Kγ1γ2(θ1) . . .Kγn−2α(θn−2)〉 = FΦ
αβγ1...γn−2α(θ′ + iπ, θ, θ1, . . . , θn−2)

+ 2πδ(θ′ − θ)δαγ1F
Φ
αγ2...γn−2α(θ1, . . . , θn−2) ,

(7.61)
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〈Kαβ(θ′)|Φ|Kβδ1(θn−2) . . .Kδn−3δn−2(θ1)Kδn−2α(θ)〉 = FΦ
βδ1...δn−2αβ(θn−2, . . . , θ1, θ, θ

′ − iπ)

+ 2πδ(θ′ − θ)δβδn−2F
Φ
βδ1...δn−3β(θn−2, . . . , θ1) ,

(7.62)

are pictorially shown in Fig. 7.3 and correspond to the crossing of the kink with
rapidity θ′ into an “in” or an “out” state, respectively. The term containing
the delta function is a disconnected part associated to kink-antikink annihila-
tion. We can now use (7.43) to reverse the ordering of the kinks with rapidities
θn−2, . . . , θ1, θ in (7.62), with the result

∑
ε1...εn−2

S
δn−2εn−2

δn−3α (θn−2 − θ)Sδn−3εn−3

δn−4εn−2
(θn−3 − θ) . . . Sδ1ε1

βε2
(θ1 − θ)×

[
〈Kαβ(θ′)|Φ|Kβε1(θ)...Kεn−2α(θn−2)〉 − FΦ

βε1...εn−2αβ(θ, θ1, ..., θn−2, θ
′ − iπ)

]

= 2πδ(θ′ − θ)δβδn−2F
Φ
βδ1...δn−3β(θ1, ..., θn−2). (7.63)

The relation (see Fig. 7.3)
∑

δ1...δn−2

[
Sσ1δ1

βσ2
(θ − θ1) . . . S

σn−3δn−3

δn−4σn−2
(θ − θn−3)S

σn−2δn−2

δn−3α (θ − θn−2)×

S
δn−2εn−2

δn−3α (θn−2 − θ)Sδn−3εn−3

δn−4εn−2
(θn−3 − θ) . . . Sδ1ε1

βε2
(θ1 − θ)

]
= δε1

σ1
. . . δεn−2

σn−2
,

(7.64)

allows to rewrite (7.63) as

〈Kαβ(θ′)|Φ|Kβγ1(θ)Kγ1γ2(θ1)...Kγn−2α(θn−2)〉 = FΦ
βγ1...γn−2αβ(θ, θ1, ..., θn−2, θ

′−iπ)+

2πδ(θ′ − θ)
∑

δ1...δn−3

Sγ1δ1
βγ2

(θ − θ1) . . . S
γn−2β
δn−3α (θ − θn−2)FΦ

βδ1...δn−3β(θ1, ..., θn−2).

(7.65)

Comparison of (7.61) and (7.65) for θ 6= θ′ and θ = θ′ leads to (7.59) and (7.60),
respectively.

Appendix B

We saw in section 7.4 that the droplet connectivity in case (b) is related to
G(x) = 〈Ωα|σ1(x)σ1(0)|Ωα〉c in the (q + 1)-state Potts model, with α = 0, 1 for
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Figure 7.3: Graphical representations of the crossing patterns in (7.61) and (7.62),
and of the amplitude product in (7.64).

H = 0∓, respectively. Using (7.28),
∑q

k=0 ωk = 0 and permutational symmetry
one easily obtains

G(x) =
q∑

j,k=2

〈Ωα|ωj(x)ωk(0)|Ωα〉c + O((q − 1)2)

= (q − 1)[〈Ωα|ω3(x)ω3(0)− ω2(x)ω3(0)|Ωα〉c] + O((q − 1)2) ,(7.66)

which is the same for the two values of α. On the other hand, (7.24), (7.28)
and permutational symmetry give for the connectivity within infinite droplets at
H = 0+

Pi(x)− P 2 = lim
q→1
〈σk 6=1(x)σk 6=1(0)〉c = 2 lim

q→1
〈Ω1|ω0(x)ω0(0) + ω2(x)ω0(0)|Ω1〉c .

(7.67)
Repeating the computation at H = 0−, namely on the vacuum |Ω0〉, gives 0, as
expected. Since for α = 1 we are free to permute 3 → 0 in (7.66), comparison
with the last equation together with (7.54) give for the magnetic correlator

〈σ(x)σ(0)〉c = 2Pf (x) + Pi(x)− P 2, H = 0+, (7.68)

where we also used σ = −2ω0 + O(q− 1), a consequence of (7.27). Actually, it is
easy to see computing G(x) for unbroken Sq+1 symmetry that (7.68) holds also
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for T > Tc, where of course Pi = P = 0.
Expanding (7.66) over kink states one recovers the result of section 7.4 for

the droplet connectivity in case (b), namely

Pf (x) =
∫

θ1>θ2

dθ1

2π

dθ2

2π
|F (θ1, θ2)|2e−m|x|(cosh θ1+cosh θ2) + O(e−3m|x|) , (7.69)

with
F = F σ1

α2α|q=1 = (Fω
1 + Fω

3 )|q=1 (7.70)

as a consequence of (7.28) and

Fωα
γβγ ≡ δαγFω

1 + δαβFω
2 + (1− δαγ)(1− δαβ)Fω

3 , (7.71)

Fω
1 + Fω

2 + (q − 1)Fω
3 = 0 . (7.72)

The form factors (7.71) were studied in [62]. For q + 1 = 2, Fω
1 (θ1, θ2) is simply

given by iM2 tanh(θ/2), where M2 = P/2 is defined in (7.29) and θ = θ1 − θ2;
Fω

3 (θ1, θ2) ≡ iM2f3(θ) is the solution of the constraints11

f3(θ) = −
√

2 sinh 3θ
4

sinh
[

3
4

(
θ − iπ

3

)] tanh
θ

2
+

[ √
2 sinh 3θ

4

sinh
[

3
4

(
θ − iπ

3

)] − 1

]
f3(−θ) , (7.73)

f3(θ + 2iπ) = f3(−θ) , (7.74)

Resθ=iπf3(θ) = 0 , (7.75)

with the mildest asymptotic behavior as θ → +∞. Here we content ourselves
with an approximate solution to this analytic problem. Notice first of all that
(7.73) and (7.74) yield in particular f3(0) = 0 and f3(+∞) = −i; a solution of
(7.73) is easily checked to be −i tanh 3θ

4 tanh θ
2 . If we take instead

f̃3(θ) = −i tanh θ tanh
θ

2
, (7.76)

we satisfy (7.74) and (7.75) at the price of badly approximating f3(θ) near θ = 0,
where in any case this function is vanishing and can be expected to give a small
contribution to the rapidity integral in the spectral sum. The quality of the
approximation is illustrated in Table 7.4.

11Equations (7.73), (7.74), (7.75) are the specialization of (7.57), (7.59), (7.60), respectively.
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rhs/lhs θ

0.5 0
0.763 + 0.150i 1
0.933 + 0.061i 2
0.983 + 0.017i 3
0.996 + 0.004i 4
0.999 + 0.001i 5

Table 7.4: The ratio between the rhs and the lhs of (7.73) with (7.76) in place of
f3, for some values of θ.
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