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ABSTRACT 

The marsupial South-American short-tailed opossum, Monodelphis domestica, is an 

appealing animal model for developmental studies on cortico-cerebral development, since 

the opossum cortex mainly develops after birth and newborns are particularly suitable for 

early ex-utero micro-surgical manipulations of this structure and the entire CNS. Opossum 

have been also largely employed as an ideal substrate for regenerative studies, since the 

pup is able to regenerate connections between neurons of the cerebral cortex and spinal 

cord upon experimental trauma. Moreover, branching from the common mammal ancestor 

about 180 My ago, Marsupials might provide a valuable tool for tracing evolutionary 

origins of key traits peculiar to the eutherian central nervous system (CNS).   

 Until recently, the cortico-cerebral marsupial development has been prevalently 

investigated by methods of classical histology, but several features of Monodelphis 

corticogenesis were still unknown. By taking advantage of molecular tools set up for 

developmental studies in Placentals and availability of Monodelphis domestica genomic 

sequence, we tried to fill gaps in our knowledge of opossum corticogenesis, studying in 

particular: origin of cortical neurons, their laminar differentiation and their migration 

profiles, from their birthplaces to their final layer positions.  

 We found many similarities between marsupial and placental corticogenesis, as for 

neuron generation, their laminar diversification and “inside-out” migration. This allowed 

us to establish a comparative time-table of mouse and opossum corticogenesis. One major 

difference emerged from our study. In the opossum, projection neurons are mainly born 

from apical progenitors and a basal proliferative compartment is hardly detectable.  
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INTRODUCTION 

1. ORGANIZATION AND DEVELOPMENT OF THE NERVOUS  SYSTEM  

The development of the nervous system is a complex process that begins during 

early embryogenesis with the induction of neural cells, then the formation of the neural plate 

and afterwards the establishment of the primordial nervous system of the embryo.  

The vertebrate nervous system has two anatomical distinct parts: the central nervous 

system (CNS) which consists of the brain and the spinal cord and the peripheral nervous 

system (PNS), which is composed of the sensory organs and of the autonomic and the enteric 

nervous system. 

 

1.1. From neural plate to neural tube  

The central nervous system (CNS) arises during early development from the neural 

plate, a cytologically homogeneous sheet of neuroepithelial cells (NE) (Fig. 1). The neural 

plate is induced from the underlying mesoderm. The neuroepithelial cells are thought to 

acquire distinct properties depending on the positions within the CNS primordium to yield 

enormously divergent neuronal cell types at specific locations. The neural plate is 

subdivided into molecularly distinct domains with characteristic locations.  

 

 

 

 

Figure 1 | Electro-scanning of E9.5 
mouse embryo showing the lumen 
and the neuroepithelium of the neural 
tube . (B) Magnification of boxed area in 
(A). The green asterisk identifies a 
mitotic cell at the apical surface. Images 
modified from www.med.unc.edu 
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During neurulation, the neural plate folds up at the margins and forms the neural tube (Fig. 2). 

 

 
 

Figure 2 | Schematic view of the neural tube format ion and the signaling sources involved . 
1) opened neural plate; 2) neural grove formation; 3) closed the neural tube; 4) delaminating neural 
crests. Image modified from Nicholls et al., 4th edition, 2001. 

 

Before the closure of the neural tube, the neural plate becomes subdivided along the 

anteroposterior axis, into three distinct domains, corresponding to the three primary vesicles: 

the prosencephalon (the forebrain), the mesencephalon (midbrain), and the 

rhombencephalon (the hindbrain) (Fig. 3A). These initial regions become further subdivided 

as development proceeds: the prosencephalon will give rise to diencephalon and 

telencephalon; the rhombencephalon to metencephalon and mylencephalon (Fig. 3B).  

 
Figure 3 |  Schematic view of the anterior neural tube . (A) three-vesicle stage; (B) five-vesicle 
stage. Image adapted from Nicholls et al., 4th edition, 2001.  
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  The telencephalic vesicles occupy the most rostral position of the neural tube and 

can be subdivided into a dorsal (pallial) and a ventral (subpallial) territory. The ventral 

telencephalon or subpallium is further subdivided into two main domains, called basal 

ganglia: the more ventrally located is the medial ganglionic eminence (MGE), precursors 

of the globus pallidum, the more dorsal is the lateral ganglionic eminence (LGE), which 

generates the striatum. A third eminence called caudal ganglionic eminence (CGE) 

supplies for the amygdala (Fig. 4).  

 

 

Figure 4 | (A) Schematic view of a coronal section through the developing mouse 
telencephalic vesicle at E12.  (B) Sagittal view of the embryonic vertebrate telencephalon as a 
transparent structure to reveal the ganglionic eminences CGE, caudal ganglionic eminence; CTX, 
cortex; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; OB, olfactory bulb. 
Images modified from Molyneaux et al., 2007 (A) and Corbin et al., 2001 (B). 

 

  The cerebral cortex originates from the dorsal pallium. It includes four components, 

termed medial, dorsal, lateral and ventral pallium and corresponding to the hippocampus, 

the neocortex, the olfactory cortex and the claustroamygdaloid complex (Puelles et al., 

2000).   

  In the mouse forebrain the telencephalic vesicle appears at E9.0 and the cerebral 

cortex can be distinguished from E9.5 The development of the telencephalic hemispheres 

does not proceed uniformly. Anterior-lateral regions are more advanced than posterior-

medial regions. Regional specification becomes visible after the telencephalic hemispheres 

are formed. 
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1.2. Organization of the adult mammalian cerebral cortex 

The mammalian cerebral cortex is a complex, highly organized structure, 

containing hundreds of different neuronal and glial cell types, which has undergone a 

dramatic expansion during evolution (Rakic, 2007; Abdel-Mannan et al., 2008). It is 

composed of a phylogenetically older region called allocortex and a younger region called 

isocortex or neocortex (NCx) that represents an evolutionary acquisition unique of 

mammals. The neocortex is the largest part of the mammalian brain and has a six-layer 

organization (Fig. 5). By contrast, the allocortex is a three-layered structure and is further 

subdivided into paleocortex (PCx), corresponding to the pirimiform cortex, and archicortex 

(ACx), corresponding to the hippocampus, dentate gyrus and cingulate cortex.  

 

Figure 5 | Cortical representation of the Neocortex  and the Allocortex . 

 

According to different functions and cytological architecture, it was divided into 

distinct areas (Brodmann, 1909). Each cortical layer contains two distinct neuronal types: 

glutamatergic and GABAergic neurons, using glutamate and gamma-aminobutyric acid 

(GABA) as neurotransmitters, respectively. Glutamatergic neurons mainly include neurons 

with pyramidal morphology. They project to close and/or distant targets and they account 

for 75 to 85% of the total neuronal population in diverse mammalian species. The 

remaining 15 to 25% of cortical neurons are GABAergic neurons. They display diverse 

non-pyramidal morphologies, make short inhibitory “local circuit” connections and are 

commonly referred to as interneurons (Meinecke and Peters, 1987; Hendry et al., 1987).  
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Cerebral cortical functions depend on the accurate construction of neural circuits, 

which begins very early during development in pallial progenitor cells. 

 

1.3. Determination of the pallial field  

In the mouse, the specification of the dorsal telencephalic field is progressively 

specified from E7.5 onward, thanks to a complex cascade of events involving secreted 

ligands released by specific signaling centers at the borders of the neural field and at 

specific positions within it, as well as transcription factors (TFs), gradually expressed 

within primary proliferative layers of the field itself. 

Signaling centers are formed by regionally restricted groups of cells releasing 

signaling molecules that specify different neuronal cell types at precise positions along the 

anterior–posterior (A/P) and dorsal–ventral (D/V) axes of the neural tube during 

development. Among signaling molecules, a special role is played by morphogens. A 

morphogen is a secreted factor form a localized source, that induce more than two different 

cell fates over a sheet of cells in a concentration-dependent manner, forming a 

concentration gradient across a developing tissue. Secreted ligands regulate the expression 

of cortical TFs encoding for positional information peculiar to distinctive region of the 

cortical field. 

Positional identities in the early cortical sheet are generally defined by the 

interaction of different signaling pathways in the patterning centers. Principal signaling 

molecules involved in antero-posterior patterning, as well as in regional specification of 

the dorsal, ventral and later telencephalon, are summarized in table 1.  

 

Signalling 
pathways Receptors 

Major intracellular 
effectors Antagonists 

Wnt Frizzeled 1-10, LRP β-Catenin, Tcf Dkk, Sfrp 

FGF FGFR1-4 MAPK, Ras Sprouty, Pyst 

BMP 
BMPR-type-I (Alk2, 

3&6) & type-II 
Smad1,5,8, Smad4, 

p38 
Smad6,7 
Bambi 

Shh Patched, smoothened Gli1-3 Gli3 

RA RAR, RXR CRABP Cyp26 

 

Table1 | Overview of the main signaling molecules a nd their effectors involved in the 
mammalian telecephalon’s patterning and regionaliza tion . 
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1.4. Antero-posterior patterning  

The first and most evident process occurring in the mouse developing nervous 

system from E8.5 is the regionalization along the antero-posterior axis (A/P). By E10.0 

forebrain midbrain, hindbrain and spinal cord domains are formed. The patterning of this 

region is associated with precise antero-posterior expression domains or gradients of 

several regulatory genes coding for transcription factors.  

The early patterning of anterior and posterior neural tissues is mediated trough 

signals released by the primitive node or organizer, known as Hensen’s node in chick, and 

Spemann organizer in frog. In general, the so called neural-plate organizers are signaling 

centers located in different positions and established to maintain and further refine 

positional cell identities along the A/P axis of the neural plate (Rhinn et al., 2006). They 

produce signals that influence cellular fate, histogenic organization and growth of adjacent 

tissue in a position-specific manner.  

Patterning starts when markers expressed throughout the early neural plate 

ultimately become restricted to anterior domains of the central nervous system and  

molecules, including the Wnts, fibroblast growth factors (FGFs) and retinoids (RA), start 

to function at this stage of development to induce posterior character in the neural plate 

(Gamse and Sive, 2000). Conversely, antagonists of Wnt factors, including Cerberus and 

Dickkopf, are expressed in the anterior visceral endoderm and act to maintain and stabilize 

the anterior neural plate character (Ciani and Salinas, 2005) (See Fig. 6).  

As a consequence of the Wnt signalling, two different domains are defined along 

the anteroposterior axis by the expression of two homeobox genes: Otx2 and Gbx2. The 

Otx-expressing region, rostrally located, will give rise to the forebrain and midbrain, 

whereas the Gbx2-expressing region, at caudal position, will develop into hindbrain and 

spinal cord. The boundary between them corresponds anatomically to the isthmus, a 

narrowing of the neural tube at the border between mesencephalon and metencephalon. 

Canonical Wnt signaling represses directly Otx2 expression, whereas it induces Gbx2 (Fig. 

7I). Wnts induce also the expression of other two genes, Irx3 and Six3, confining Six3 to 

the anteriormost neural territory and promoting posterior expression of Irx3, at levels 

caudal to the presumptive zona limitans intrathalamica (ZLI), subsequently placed between 

thalamus and prethalamus. 
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Figure 6 | Antero/posterior patterning of the early  mouse neural tube . Image adapted from 
Rallu et al., 2003  

 
 

Figure 7 | Schematic expression domains of the prin cipal transcription factors involved in 
the antero/posterior patterning of the mouse centra l nervous system at E10.5.  Images 
adapted from Mallamaci A., unpublished. 
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Upon anterior neural induction, two sources of Fgf molecules are established at the 

borders of the anterior neural field. One is at the junction between the anterior neural and 

non-neural ectoderm – that is the anterior neural ridge (ANR) or anterior neural boundary 

(ANB), the other at the boundary between midbrain and hindbrain fields, i.e. at the 

isthmus. Both are crucial to subsequent patterning of the anterior brain. The former 

stimulates the expression of Foxg1, a key transcription factor implicated in R/C 

specification of the telencephalic field, the latter promotes the expression of En2, in the 

anlage of mesencephalon and anterior rhombencephalon. 

 

 

Figure 8 |  Schematic view of antero/posterior boundaries along  the mouse neural tube.  
Abbreviations: Ptec, pre-tectum; Pth, pre-thalamus; Tel, telencephalon; Th, thalamus; ZLI, zona 
limitans intrathalamica. Modified from Kiecker and Lumsden, 2005. 

 
The ZLI, deriving from the collapse of the region between Six3 and Irx3 domains, 

releases molecules of the Sonic hedgehog (Shh) family (Fuccillo et al., 2006) and splits the 

anterior neural plate into two distinct domains, able to differentially respond to Fgf 

signaling, expressing either Foxg1 or En2 (Garcia-Lopez et al., 2004). Remarkably, signals 

coming from the ZLI induce expression of Gbx2 and Dlx2 in the thalamus and the 

prethalamus, respectively.  
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1.5. Dorso-ventral patterning  

Mechanisms responsible for the dorso-ventral (D/V) patterning are well 

characterized within posterior region of the neuraxis, but many similarities are also found 

in the telencephalic D/V patterning. 

A detailed analysis of molecular mechanisms by which secreted molecules of Shh 

(Sonic hedgehog), Wnt, RA and Fgf families and transcription factors Nkx2.1, Pax6 and 

Gsh2 and Emx1 sequentially and coordinately control DV regionalization of the rostral 

neural field was performed by Gunhaga and colleagues in the developing chick embryo 

(Gunhaga et al, 2000 and 2003; Marklund et al., 2004) (Fig. 9). Results of this analysis 

provide a valuable paradigm for the comprehension of the homologous process in 

mammals. 

Shh is the main signaling molecule involved in ventral patterning at all levels of the 

nervous system. In the spinal cord, Shh is released by the ventrally located floor plate, 

whereas at dorsal position the roof plate secretes BMP (bone morphogenetic protein) and 

proteins of the Wnt family. Corresponding signaling centers are found in the prospective 

forebrain: BMP molecules (BMP2, BMP4, BMP6, BMP7) and Wnts (Wnt3a, Wnt5a and 

Wnt2b) are released by the dorsal midline, (which later will give rise to the hippocampal 

primordium and the choroid plexus) and the paramedial neuroectoderm.  

  
 
Figure 9 |  Schematic view of early phases in dorso/ventral pat terning of the rostral neural 
plate in the chick embryo.  Image adapted from Mallamaci A, unpublished. 



                                                                                                                                                           Introduction 
 

 14

  

The initial subdivision that defines what will later become the dorsal and ventral 

telencephalon is regulated at least in part by the dorsalizing effect of Gli3 expression and 

ventralizing influence of Shh. The earliest site of Shh expression appears at E7.5; as 

neurulation progresses it is initially expressed by both prechordal plate and anterior 

mesoderm (Fig. 9A), then from the ventral hypothalamus and finally by the ventral 

telencephalon itself, from the medial ganglionic eminence together with the preoptic area 

(reviewed in Hoch et al., 2009). Shh specifies ventral identity in the telencephalon by the 

repression of Gli3, a zinc-finger transcription factor crucially involved in dorsal patterning 

(Rallu et al., 2002). Gli3 is induced by BMPs and is initially expressed broadly throughout 

the telencephalic anlagen and then is progressively downregulated in the ventral portion of 

it. Shh signaling neutralizes the repressive form of Gli3, blocking the conversion from the 

activator (Gli3) to the repressor (Gli3R) and, as a consequence, promoting Fgf expression. 

In absence of Gli3, the development of the dorsal telencephalon is disrupted (reviewed in 

Herbert and Fishell, 2008). Hence, Shh promotes ventral identity by preventing 

dorsalization of the telencephalon, rather than by directly promoting ventral cell character. 

Ventral specification also requires the inhibition of dorsal signals by BMP antagonists, 

such as noggin (NOG) and chordin (CHRD).  

The region that will become the telencephalon is defined by the expression of the 

forkhead box G1 (Foxg1) that promotes Fgf expression, necessary for forming all regions 

of the telencephalon. Disruption of Foxg1 expression results in a loss of ventral cell types 

(Martynoga et al., 2005). Following the Foxg1 expression the telencephalon becomes 

subdivided into several distinct territories. Wnt and BMP expression (promoted by Gli3) 

are required for Empty-spiracle expression (Emx1,2), confined to the primary proliferative 

layer of the cortex. Other transcription factors act subsequently to form specific 

subdivisions, such as Pax6, Gsh2 and Nkx2.1, crucial for the proper morphogenesis of the 

lateral cortex, striatum and anlage of globus pallidus respectively (Fig. 9, 10). In the 

absence of any of them, the corresponding morphogenetic field is shrunken and the 

adjacent ones substantially enlarged (Sussel et al.,1999, Toresson et al.,2000, Stoykova et 

al.,2000).   

Pax6 and Gsh2 play complementary roles reciprocally compartmentalizing and 

establishing pallial and subpallial identities. In Pax6 null mice, there is a dorsal expansion 

of markers of ventral progenitors, such as Mash1, Gsh2 and Dlx2, whereas in Gsh2-/- is the 

opposite (Yun et al., 2001).  
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Mash1 and Ngn1/Ngn2 are proneural genes, that play important roles in the 

development of the ventral and dorsal telencephalon, respectively,  However they do not act as 

“master genes”, but simply link regional patterning to activation of specific neuronogenetic 

pathways in these structures (Fode et al.,2000, and Yun et al., 2002).  

           

 

 

Retinoic acid (RA) has a crucial role in specifying telencephalic progenitor cells of 

intermediate character and in controlling lateral ganglionic eminence specification. Its 

action is opposed by FGF signaling, involved in maintaining ventral progenitor character 

and medial ganglionic eminence specification (Marklund et al., 2004). 

 

 

 

 

Figure 11 | Schematic representation of main genes expressed in the pallial domains of 
mouse telencephalon at E16 . Abbreviations: AEP, anterior entopeduncular area; DP, dorsal 
pallium; LP, lateral pallium; MP, medial pallium; dLGE, dorso-lateral ganglionic eminence; MGE, 
medial ganglionic eminence, POA, anterior preoptic area; vLGE ventro-lateral ganglionic eminence; 
VP, ventral pallium. 

 

Figure 10 | Schematic representation of main 
transcription factors involved in regionalization 
of the early cortical primordium . Coronal section 
of mouse telencephalon at E10. Image adapted 
from Lupo et al., 2006 
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Figure 12 | Schematic view of the main signaling ce nters and signaling proteins involved in 

mouse pallial patterning . ANR, anterior neural ridge; CP, commissural plate, DP, Dorsal pallium;  
LGE, lateral ganglionic eminence; LP, lateral pallium; MP, medial pallium; MGE, medial ganglionic 
eminence; RA, retinoic acid; VP, ventral pallium. Image taken from Medina and Abellan, 2009. 

 

In conclusion, the coordinate action of different signals including BMP/Wnt, RA, 

Fgf8 and Shh and the differential activation of their targets in space and time establish the 

side where the pallium will develop and regulates its size. Remarkably, as reported below, 

some of these signalling systems and their targets are subsequently involved in further 

subdivision of the pallial anlage, in a process termed cortical regionalisation and 

arealization.  

 

1.6. Specification of cortical area identities  

Arealization of the developing cortex is a very complex process beginning in the 

mouse at mid-gestational ages with areal commitment of neuronal progenitors and 

completed after birth. Form a functional point of view, the neocortex can be subdivided in 

subdomains, called areas. Mature cortical areas differ by their location within the cortex, 

molecular properties, histological organization, patterns of connectivity and function. 

Within adult the neocortex, rostral regions regulate motor and executive functions, whereas 

caudal regions process somatosensory, auditory, and visual inputs (Fig. 13A). These 

different cortical areas have a precise connectivity, particularly with nuclei within the 

dorsal thalamus, which provides some of the principal inputs to the cerebral cortex (Sur 

and Rubenstein, 2005). 
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Two models have been proposed to explain how cerebral cortex gets organized into 

distinct areas: the protocortex model (O’Leary. 1989) and the protomap model (Rakic. 

1988). The first model suggests that the early cortical primordium would be like a “tabula 

rasa” and each region composing it would not display any areal bias at all. In such a model, 

cortical arealization is primed by information born by afferents coming from different 

thalamic nuclei, each preferentially projecting to a different presumptive cortical area. 

According to the second model, the protomap model, cortical arealization would take place 

on the basis of information intrinsic to the early cortical primordium. Positional values 

would be encoded by the graded expression of specific genes within the cortical 

proliferative epithelium. This positional information would be epigenetically transferred 

from neuroblasts to neurons in distinct cortical regions, eventually leading to the activation 

of different areal morphogenetic programs.  

Presently, it is accepted that arealization is controlled by both intrinsic and extrinsic 

factors: early phases of the process occur before the axons coming from the thalamus reach 

the cortex, on the basis of cortex-autonomous cues (in accordance to the protomap model); 

late phases occur after the arrival of first thalamocortical afferences and are partially 

influenced by them (Ragsdale and Grove, 2001; O’Leary and Nakagawa, 2002).  

Genetic control of this process is very sophisticated and is based on a complex 

interplay among diffusible ligands, released by signalling centres at the perimeter of the 

cortical morphogenetic field, and transcription factors genes, expressed by periventricular 

neuronal progenitors, gradually along the main coordinate axes of this field. Diffusible 

ligands may spread a large distance through cortical field and generate concentration 

gradients, promoting graded expression of transcription factors genes, able to activate 

subsequently distinctive area-specific programs (O’Leary and Nakagawa, 2002).  

.  

1.6.1 Patterning centers involved in cortical arealization 

Three complex signalling centres at the borders of the cortical field are crucial for 

the arealization process (and previously for regionalization of the early forebrain):  

1)  the cortical hem, corresponding to the medial margin of the cortical primordium, 

between the cortical and the choroidal fields. It expresses multiple Wnt and Bmp genes 

(Grove et al.,1998) and disappears by the time of birth. Many evidences support the 

hypothesis that it is necessary for proper development of caudal-medial cortical areas, 
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in particular for hippocampal formation, presumably by expanding an already specified 

population of cells through proliferative signals (Grove and Fukuchi-Shimogori, 2003). 

In mice deficient of Wnt3a, one of Wnt genes expressed at the hem, the hippocampus is 

nearly absent, whereas neighboring neocortical areas appear grossly normal (Lee et 

al.,2000). The formation of the cortical hem is dependent on LIM-homeodomain 

factors, in particular Lhx2 and Lhx5; loss of Lhx2 expands dramatically the hem and 

choroid plexus at the expense of the cortex (Monuki et al., 2001), targeted deletion of 

Lhx5, leads to loss of choroid plexus and cortical hem, and impaired development of 

the hippocampus (Zhao et al., 1999). 

2) the commissural plate (CoP), placed at the rostromedial pole of telencephalon, is the 

derivate of the anterior neural ridge (ANR), formed by fusion of the neuralplate folds at 

the anterior margin of the forebrain. It is an anterior patterning center for arealization 

and is a source of FGF proteins, in particular Fgf8, previously shown to regulate early 

forebrain patterning, and Fgf17.  

3) the cortical antihem, which forms on the lateral side of the cortical field, at the pallial–

subpallial boundary. It releases members of the EGF family, Tgfα, Ngr1 and Ngr, and 

signaling molecules such as Fgf7, Fgf15 and sFrp2, antagonizing Wnt signaling 

coming from the hem (Assimacopoulos et al, 2003). These signals serve as guidepost 

signals for axons and interneurons migrating through this boundary.  

 

 

 

Figure 13 | Localization of signaling centers invol ved in cortical arealization.  Abbreviations: 
Ctx, cortex; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; CGE, caudal 
ganglionic eminence; OB, olfactory bulb. Adapted from Corbin et al, 2001. 
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1.6.2 Transcription factors involved in areal identities 

Before the onset of neurogenesis, transcription factors TFs in the cortical 

neuroephithelium function mainly to promote forebrain regionalization (establishment of 

distinctions and boundaries between dorsal and ventral telencephalon), areal patterning, 

and progenitor proliferation and suppress neuronal differentiation. Areal patterning 

depends on setting up rostrocaudal and mediolateral gradients of TF expression, which are 

modulated by diffusible signals released by patterning centers at the edges of the cortical 

field. By experimental perturbation of their gradients, some genes have been shown to be 

particularly important in areal pattering, and they are: Emx2, Emx1, Pax6, Lhx2, Foxg1, 

Coup-tf1 and Sp8 (Fig. 14).  

 

Figure 14 | Graded transcription factors genes expr ession in the early cortical primordium.  
Schematic representation of E10 mouse brains. Abbreviations: t, telencephalon; d, diencephalon; 
m, mesencephalon. Image taken from Mallamaci and Stoykova, 2006. 

 
The onset of neocortical neurogenesis is directed by a number of genes expressed 

across the dorsolateral wall of the telencephalon. These include LIM homeobox 2 (Lhx2), 

forkhead box G1 (Foxg1), empty spiracles homologue 2 (Emx2) and paired box 6 (Pax6), 

each of which has crucial roles in specifying the progenitors that give rise to the projection 

neurons of the neocortex. Together, these four genes establish the neocortical progenitor 

domain by repressing dorsal midline (Lhx2 and Foxg1) and ventral (Emx2 and Pax6) fates.  

Foxg1, expressed in the early telencephalon, is relevant for basal ganglia 

morphogenesis and cortical neuroblast differentiation. Loss of Foxg1 causes agenesis of 

the basal ganglia, elimination of neocortical progenitor domains and expansion of 

archicortical and cortical hem progenitors (Muzio and Mallamaci, 2005) (Fig. 15). 

Remarkably, Foxg1 removal as late as E13.5 from progenitors that already have a 

neocortical identity, results in the production of cells with characteristics of Cajal–Retzius 
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cells (Hanashima et al., 2004; Shen et al., 2006), indicating that the persistent expression 

of Foxg1 throughout neurogenesis is required for the maintenance of neocortical 

progenitor identity. 

Lhx2 is expressed in the whole telencephalic neuroepithelium except the cortical 

hem, it commits neuroblasts within the dorsal telencephalon to cortical fates and, within 

the cortical field, it promotes hippocampal vs neo- and paleocortical programs. In the 

absence of Lhx2, neocortical progenitors of medial cortex and the hippocampus are lost, 

whereas the cortical hem and choroid plexus (structures normally limited to the dorsal 

midline) are expanded (Monuki et al., 2001) (Fig. 15). 

 

 

Figure 15 | Mutant phenotypes of mice knock-out for  Lxh2 and Foxg1 transcription factors 
involved in cortical specification.  Abbreviations: CH, cortical hem; CR, choroidal roof; ChP, 
choroid plexus; Cx, cortex; Lge, lateral ganglionic eminence; Mge, medial ganglionic eminence; 
Pcx, paleocortex. Adapted from Molyneaux et al., 2007  

 
The two genes Emx2 and Pax6 are expressed in opposing and overlapping gradients 

along the A/P and D/V axes of the cortical primordium, and are key determinants of the 

proper development of cortical areas. Loss of both Emx2 and Pax6 results in ventralization 

of cortical progenitors and the loss of the neocortical domain (Ncx), archicortex (Acx), 

cortical hem (CH) and choroid plexus (CPl) by E14 (Muzio and Mallamaci, 2002). In 

particular, Emx2 is expressed in the primary proliferative layer of the cortex along 

rostral/lateral low-to-caudal/medial high gradients (Gulisano et al., 1996) (Fig. 16), being 

more expressed in V1 and less in frontal/motor areas. In Emx2 knockout mice, occipital 

cortex and hippocampus are shrunken and frontal cortex is enlarged (Fig. 17). Moreover, 

the areal distribution of the thalamo-cortical radiation is perturbed, coherently with such 

areal disproportions. Pax6 opposes the pattern of Emx2 expression, showing a low 

posterior-medial to high anterior-lateral gradient, mostly expresses in frontal/motor cortex 
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(Stoykova et al., 1994). As assessed by molecular profiling, in the absence of either Emx2 

or Pax6, the full repertoire of areal identities is still encoded. 

Within the neocortical field, Emx2, Pax6, COUP-TFI and Sp8 have a direct role in 

arealization determining size and position of cortical areas (Reviewed in O’Leary et al., 

2007) (Fig. 17). In general, TFs confer different area identities to cortical cells within 

distinct parts of the field, allowing for proper expression of axon guidance molecules that 

control the area specific targeting of thalamo-cortical afferents. 

 

Figure 16 | Key transcription factors involved in m ain repartitions of cortical field and loss-
of-function or gain-of-function mice mutant phenoty pes . Image taken from Mallamaci A., 
unpublished.  

 

Coup-Tf1 (Chick Ovalbumin Upstream Transcription Factor I), is expressed in the 

ventricular zone, subplate and cortical plate along a high-caudal to low-rostral graded 

expression across the neocortex (Liu et al., 2000) (Fig. 17). It acts downstream of Emx2 

and Pax6, being necessary to make the cortical field responsive to their patterning activity 

(Zhou et al., 2001). Recent analysis of conditional knockout mice reveals a massive 

expansion of frontal/motor area in the absence of this TF, paralleled by a reduction in size 

of the three primary sensory areas (Armentano et al., 2007) (Fig. 17).  
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Sp8 is expressed in a high anterior-medial to low posterio-lateral gradient by 

cortical progenitors. It is a direct transcriptional activator of Fgf8 expression within the 

CoP (Sahara et al., 2007). Analysis of conditional Sp8 knockout mice at late embryonic 

ages show an anterior shift of cortical markers, suggesting Sp8 preferentially specifies 

identities associated with frontal/motor areas (Zembrzycki et al., 2007) (Fig. 17).  

 

Figure 17 | Summary of area patterning and mutant p henotypes.  (A) Schematic diagram of 
anatomically and functionally distinct areas in the mouse. (B) Graded expression of transcriptor 
factors along the anterior-postirior and lateral-medial axes (C) Summary of all reports of loss-of-
function or gain-of-function mice mutant for TFs that regulate area patterning.  Image modified from 
O’Leary et al., 2007. 
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2. MOUSE CORTICAL DEVELOPMENT  

During mammalian cerebral cortical development, neural stem cells present within 

periventricular generative zones of the pallium first extensively proliferate, so allowing for 

an impressive tangential expansion of the structure, then give rise to successive waves of 

neurons and radial glia, followed by oligodendrocytes and astrocytes.  

Neural progenitors are initially generated in a proliferative layer adjacent to the 

lateral ventricles called the ventricular zone (VZ). The first postmitotic cortical neurons 

form a transient structure called the preplate (PP). The PP persists until embryonic day (E) 

13 in mice, when the earliest cortical plate cells reach the upper part of the neuroepithelium 

and divide the PP into two regions: the superficial marginal zone (MZ) (future layer 1) and 

the lower subplate (SP) (Marin-Padilla, 1971, 1972). The cortical plate (CP), which will 

become the mature six-layered neocortex, is formed between these two layers according to 

an “inside-out” neurogenetic gradient, with later generated neurons bypassing early-

generated cells to settle at the top of the cortical plate, forming the upper layers of the 

cerebral cortex. As cortical development proceeds, an additional proliferative zone, called 

the subventricular zone (SVZ), appears on top of the VZ. It will initially give rise to 

projection neurons and subsequently to glia (Baltman SA and Altman J, 1991).  

 
 

Figure 18 |  Mouse cortical neurogenesis . Abbreviations: CP, cortical plate; FL, intermediate zone, 
PP, preplate; MZ, marginal zone; SP, subplate; SVZ, subventricular zone; VZ, ventricular zone. 

 

In the mouse, cortical neurogenesis begins around E10.5 and last up to E17 

(Fig.18). First generated neurons are the Cajal-Retzius cells (CR), which secrete Reelin, an 

extracellular matrix protein that play a fundamental role for the formation of cortical layers 

during development and its maintenance in adulthood (Frotscher et al., 2009). CR neurons 

arise from restricted locations at the borders of the developing pallium, the hem, the anti-

hem and the septum (Takiguchi-Hayashi et al., 2004; Yoshida et al., 2006), and spread into 

the cortex by tangential migration. Subplate cells have a role in directing the first thalamic 

axons to the pallium (Allendoerfer and Shatz, 1994). 
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2.1. Cortical Progenitors in Rodents 

Different types of progenitors, characterized by the expression of different genes, 

contribute to cortical neurogenesis. Two principal classes have been identified on the basis 

of their nucleus position during the M-phase of the mitotic cycle:  

(1) apical progenitors, so called because dividing at the ventricular (apical) surface of the 

VZ and expressing Pax6 gene (Fig.20) (Englund et al., 2005). They include 

neuroepithelial cells (NE), radial glia cells (RGCs) and short neuronal precursors 

(SNPs) (Fig.19a) (Götz and Huttner, 2005; Gal et al., 2006).    

(2) basal or intermediate progenitors (IPC), that undergo division away from the 

ventricular surface, often at the VZ/SVZ border (Fig.19b) (Götz and Huttner, 2005; 

Kriegstein et al., 2006) and express the transcription factor Tbr2 (Fig.20) (Englund et 

al., 2005).  

 
 

Figure 19 |  Schematic overview on different types of mouse cort ical precursors . 
Abbreviations: IPCs, intermediate progenitor cells; RGCs, radial glia cells; SNP, short neural 
precursors. Image modified from Dehay and Kennedy, 2007.  

 

 

Figure 20 |  Pax6 and Tbr2 
protein expression in E14.5 
mouse coronal section . Tbr2+ 
cells are expressed throughout 
corticogenesis and detectable 
also in the VZ and in double 
positive Pax6/Tbr2 cells represent 
the transition from glia to IPC, 
where Pax6 is substantially 
downregulated Image adapted 
from Englund et al., 2005. 
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Neuroepithelial cells are the primary stem/progenitor cells, initially expanding via 

symmetric division and then undergoing asymmetrical divisions with the onset of 

neurogenesis, producing preplate neurons (reviewed in Götz and Huttner, 2005) and 

generating distinct types of secondary neural stem cells and progenitor cells.  

An important characteristic of apical progenitors is that they undergo interkinetic 

nuclear migration (INM), in which the nucleus moves along the apico-basal axis of the cell 

in concert with the cell cycle (Sidman and Rakic, 1973; Takahashi et al., 1993; Götz and 

Huttner, 2005). Cell nuclei migrate from the apical surface to a basal position during the 

G1 phase of cell cycle, replicate their DNA in S-phase far from the ventricle, and during 

G2 return to the apical surface, where mitosis finally takes place (Fig.21).  

 

 
 
 
 

 

 

 

After the closure of the neural tube, and in particular with the onset of 

neurogenesis, neuroepithelial cells start to express glial markers and transform into the 

related radial glial cells (RGCs). Like neuroepithelial cells, RGCs exhibit apical-basal 

polarity and span the entire cortical wall, with an apical end-foot (apical process) at the 

ventricular surface, and a basal end-foot (basal process) at the pial surface. RGCs not only 

act as migratory guides for newly generated neurons, but also give rise to the majority of 

cortical neurons (Noctor et al., 2001; Miyata et al., 2004). Imaging studies have shown 

that mouse RGCs undergo symmetrical and asymmetrical divisions, including self-

renewing and neurogenic divisions, producing either a neuron or a further type of neuronal 

progenitor (SNP or IPC) (Fig.19) (Noctor and Kriegstein, 2004).  

Short neuronal precursors (SNPs) are dedicated neuronal progenitors that posses a 

short basal process (not reaching the basal lamina), populate the VZ and SVZ zones, divide 

at the apical surface of the VZ and are molecularly identifiable by the specific firing of the 

α1-tubulin promoter (pTα1+ cells) (Gal et al., 2006; Ochiai et al., 2009).  

Basal progentors (BPs), also called non-surface or subventricular zone or 

intermediate progenitors (IPCs), constitute the second class of neural progenitors in rodents 

(Noctor et al., 2004; Götz and Huttner, 2005).  They derive from asymmetrical division of 

Figure 21 |  Schematic cartoon representing 
interkinetic nuclear migration.  Cell nuclei, in light 
blue, move during the cell cycle along the apico-basal 
axis. The apical surface corresponds to the red line.  
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RGCs, migrate basally and retract both apical and basal process, before division. IPCs do 

not exhibit interkinetic nuclear migration and mitosis are randomly located in the basal VZ 

and SVZ. Most IPCs divisions are symmetric, self-consuming, producing two to four 

neurons (Noctor et al., 2004; Miyata et al., 2004; Kriegstein et al., 2006; Noctor et al, 

2008). However, a small fraction of them (≈10%) appears to be capable of self-renewal, 

undergoing symmetrical proliferative divisions to expand the IPCs pool in the SVZ (see 

dotted circular arrow in Fig.19b), (Noctor et al, 2004; Wu et al., 2005). Basal progenitors 

produce only neurons and not glial cells. Until recently, it was thought that they would 

have given rise mostly to upper layer neurons (Zimmer et al., 2004). Presently, the 

reported prevalence of basal mitosis during early stages, before SVZ formation and the 

recent work of Kowalczy and collaborators (Kowalczyk et al., 2009) suggests that IPCs 

produce pyramidal projection neurons of all cortical layers and not specialized type of 

neurons. 

Hypotheses concerning the role of basal progenitors and the significance of having 

two distinct pathways for cortical neurogenesis support the idea that the indirect pathway 

may provide a mechanism to increase the number of neurons generated by a single radial 

stem cell, so contributing to the lateral expansion of the cerebral cortex (Fig.22) 

(Kriegstein et al., 2006; Cerdeño et al., 2006). The tendency in corticogenesis is 

amplifying the neuronal production by an increase in the rate of neurons per stem cell 

production and not by an increase in the frequency of differentiative divisions (Polleux et 

al., 1997). Moreover, the slowing down of neuron production during the later phases of 

corticogenesis is not mainly due to the slowing down of cell-cycle progression but rather 

reflects the exhaustion of the precursor pool (Dehay and Kennedy, 2007). So, a possible 

two step model of neurogenesis has been proposed: in the first step, asymmetric radial glial 

cell divisions generate neuronal diversity, in the second step, symmetric intermediate cell 

division produce large numbers of neurons of the same subtype.  

Temporally ordered changes in gene expression patterns have been observed in 

radial glia cells and in their progeny during stages of cortical layer formation. RGCs and 

IPCs make the commitment to neurogenesis during G1 phase (Haubensak et al., 2004) and 

laminar fates are selected around S/G2 transition (McConnell et al., 1991). Asymmetric 

division of RGCs allows genes governing cell identity to be differentially inherited in basal 

progenitor cells generated in different cell cycles. Symmetric division of IPCs produced in 

a given cell cycle permits a stable inheritance of identity genes by both of their progeny, 

producing large number of neurons of an identical subtype appropriate for that particular 
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stage of development, but different from those produced by basal progenitors cells that 

where generated in previous or subsequent cell cycles (Fig.22c).  

 

 
 

Figure 22  | Modalities of progenitors cells division observed i n the embryonic cortex during 
development . a) Symmetric progenitor divisions increase the number of radial cells. b) 
Asymmetric neurogenic divisions give rise to self-renewed radial glial cells and neurons (blue) 
destined for different layers in the cortical plate. c) Symmetric neurogenic divisions of intermediate 
progenitor cells (yellow) in the SVZ resulting in the amplification of cells of the same type that have 
the same birth dates and occupy the same cortical layer. Progenitors can undergo additional 
symmetric divisions in the SVZ before terminal neurogenic divisions (right panel). Abbreviations: 
CP, cortical plate; R, radial glia; SVZ, subventricular zone; VZ, ventricular zone. Image taken from 
Kriegstein et al., 2006. 
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A large number of transcription factors regulate the choice between proliferation 

and differentiation, inhibiting or promoting the exit from the cell cycle. In particular, Emx2 

and Tlx genes favor progenitor proliferation (Heins et al., 2001; Muzio et al., 2005; Roy et 

al., 2004), Pax6 promotes the maintenance of the size of the cortical progenitor pool 

(Quinn et al., 2007). Proneural genes (Ngn1 and Ngn2) promote neuronal fate 

commitment, whereas members of the Hes and Id families are important inhibitors of 

neurogenesis. RGCs cells are maintained in the proliferative state by the simultaneously 

action of different genes (such as Emx2, Hes1, Hes5, Id3, Id4) (Fig. 23). The direct 

transition from radial glia to newborn neurons is regulated by Ngn1 and Hes5 genes and 

correlates with downregulation of radial glia marker Pax6 and upregulation of postmitotic 

neuronal markers Tbr1, Math2, and neuroD2 (Englund et al., 2005; Schuurmans et al., 

2004; Schwab et al., 1998).  

 

 
 

 

Figure 23 | Model for TF regulation of direct and i ndirect pathways of cortical neurogenesis . 
Image taken from Hevner, 2006. 
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In the case of indirect neurogenesis, the transition from radial glia to basal 

progenitors involves upregulation of Tbr2 and downregulation of Pax6 (Englund et al., 

2005) (Fig.24). The subsequent transition from IPCs to neurons correlated with 

downregulation of Tbr2 and upregulation of Tbr1, Math2, and NeuroD2, NeuroD (which 

are all expressed by newborn cortical projection neurons, at least transiently). So, the 

following TF sequence Pax6 � Tbr2 � Tbr1 can be established in the transition from 

RGC � IPC � postmitotic neuron (Englund et al., 2005).  

In Pax6 -/- embryos, radial glial progenitors present defects in their mitotic cycle, 

molecular phenotype and morphology (Götz et al., 1998). Moreover, a loss of Tbr2+ cells 

corresponding to basal progenitors can be identified, indicating that Pax6 is necessary for 

the activation of Tbr2 expression (Quinn et al., 2007). The expression of Pax6 protein in 

cortical progenitors determines also the expression of the proneural gene Ngn2, providing 

evidence of a direct regulatory link between neural patterning and neurogenesis (Scardigli 

et al., 2003). 

 

Figure 24 |  Transcription factors implicated in regulating IPC production from radial glia.   A 
balance of TFs promotes (Ngn2, Pax6 and Tlx) or inhibits (Hes1, Id4) IPCs production from radial 
glia. Image taken from Hevner, 2006. 
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2.2. Neuronal subclass specification  

 
Neocortical neurons are organized in six layers and are generated sequentially over 

time. The pattern of projection of pyramidal neurons is layer-specific. Layers II–III contain 

pyramidal neurons which form cortico-cortical connections, including projections to the 

contralateral hemisphere across the corpus callosum. Layer VI neurons project to the 

thalamus. Layer V neurons mainly project to several subcortical targets including the 

spinal cord, pons and superior colliculus; a subset of layer V neurons contributes to 

cortico-cortical connections. The thalamocortical axons make direct synaptic contact 

neurons of layer IV.  

Once the commitment to neurogenesis is made by cortical precursors, additional 

transcription factors consolidate differentiation of projection neurons phenotype and begin 

to specify projection neurons subtypes related to the laminar fate. Laminar fate is tightly 

linked to cell birthday (Takahashi et al., 1999) and is determined in progenitor cells during 

their final mitotic cycle (McConnell and Kaznowski, 1991). They then continue as 

postmitotic neurons and migrate to their destination within the cortical plate. Birth-dating 

experiments in rodents coupled with manipulation of the cellular environment suggested 

that cell fate is determined prior to migration (Caviness, 1982). Both extrinsic and intrinsic 

factors cooperate in determining the fate of cortical precursors and different neuronal 

phenotypes. Lineage studies of isolated cortical precursors shown a cell-intrinsic program 

(mainly TFs) (Shen et al., 2006) that is influenced by extrinsic factors from neighboring 

cells (i.e. Notch signalling) (McConnell and Kaznowski, 1991; Frantz and McConnell, 

1996) .  

A series of neuronal sublineage genes, in particular  transcriptions factors, have 

been described that are expressed by subsets of neurons in specific cortical layers, as well 

as by neuronal precursor cells during the specific developmental periods when those 

neurons are generated. For example, Otx1 and Fezf2 are expressed early in cortical 

development by neuronal precursors cells in the VZ and SVZ and later, by subsets of deep 

cortical neurons (Molyneaux et al., 2007), whereas Cux2, Satb2, Nex and the non-coding 

RNA Svet1 (Zimmer et al., 2004; Nieto et al., 2004; Britanova et al., 2005; Tarabykin et 

al., 2001) are selectively expressed in both upper layer neurons and SVZ progenitors.  

A number of specific molecular markers for neurons of distinct cortical layers have 

been recently identified (Fig.25) and these represent a very useful tool for the elaboration 
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of a more comprehensive classification of the cortical neurons. Many of these genes are 

not expressed uniformly within a given layer, and often their expression demarcates 

boundaries between different cortical areas.  

 

 
 

Figure 25 |  Gene expression patterns in the developing mouse ce rebral cortex during mid-
neurogenesis and early postnatal life.  MZ, marginal zone; CP, cortical plate; SP, subplate; IZ, 
intermediate zone; SVZ, subventricular zone; VZ, ventricular zone. From Leone et al., 2008.  
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Fate determination of neurons generated later in time, might not only be a 

consequence of combinatorial patterns of gene expression, but can also depend on the 

suppression of early fate signals, as in the case of Foxg1, which suppress the fate of early 

born neurons (Cajal Retzius cells) in order to permit the generation of later born neurons 

(Hanashima et al., 2004).  

An example of how an elegant genetic mechanism can control the neuronal identity 

is represented by the specification of subcortical projection neurons versus corticocortical 

neurons, the two major classes of pyramidal neurons in the mammalian cerebral cortex. 

 The determination of subcortical neurons is linked to the expression of Fezf2 that 

acts upstream of Ctip2, whereas Satb2 is required for the development of callosal 

projection neurons (layers II-III), and represses the expression of Ctip2 in these cells 

(Fig.26). In the absence of Satb2, callosal projection neurons extend axons subcortically. 

Conversely, in the absence of Fezf2, Satb2 expression is derepressed, enabling cells to take 

on a callosal projection neuron fate (Leone et al., 2008).  

 

 

 

Figure 26 | A working model for the specification o f callosal versus subcortical projection 
neuron identity during the development of the cereb ral cortex . Image taken from Leone et al., 
2008 
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2.3. Migration in Rodents 

During development of the mammalian telencephalon, cells migrate via diverse 

pathways to reach their final destinations. Projection neurons of the developing cerebral 

cortex are generated in the cerebral proliferative layers and subsequently move to the 

developing cortical plate by radial migration. Conversely, the vast majority of inhibitory 

interneurons originate in the ventral telencephalon (almost entirely, in the case of Rodents), 

and invade the cortex by tangential migration.  

 

2.3.1 Radial migration  

Once excitatory projections neurons have been generated in the telencephalic 

proliferative zone, they radially migrate to the developing cerebral cortex, where they settle 

according to the “inside-out rule”: the earlier the deeper, the later the more superficial. 

Two principal modalities of radial migration can be distinguished.  

During early stages of cortical development, when the cerebral wall is relatively thin, 

neurons generated from RGC move from proliferative layers to the preplate as well as to 

the forming cortical plate by “somal translocation”. Later, when the cerebral wall is 

thicker, they proceed by “glia-guided locomotion” (Fig.27) (Nadarajan, 2003; Kriegstein 

and Noctor, 2004).   

 

 

Figure 27 | Model illustrating the stage-dependent role of radial glia in the developing 
cerebral cortex.  During corticogenesis, radial glia generate daughter neurons and radial glial cells. 
In the early stages, the daughter neuron use somal translocation as their mode of migration. Later 
in development, neurons locomote along the radial fiber of the parent glia. 
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Cells that undergo somal translocation typically have a long, radially oriented basal 

process that terminates at the pial surface, and a short, transient trailing process. The 

migratory behavior is characterized by continuous advancement that results in a faster rate 

of migration. Translocation has been proposed to be the major mode of migration during 

the earliest stages of cortical development, (i.e. early-generated preplate neurons or deep 

layer neurons).  

By contrast, cells that adopt glia-guided locomotion have a shorter radial process 

that is not attached to the pial surface. Migration of these cells does not progress smoothly 

from ventricle to cortical plate, but is instead characterized by distinct migratory phases in 

which neurons change shape, direction and speed of movement (Kriegstein et al., 2004). In 

particular most of newborn neurons exhibit four distinct phases of migration, including a 

phase of retrograde movement toward the ventricle before migration to the cortical plate 

(Fig.28). During this kind of migration, neurons that arrest in the SVZ, acquire a 

multipolar morphology, pausing for approximately one day or more (Noctor et al., 2004). 

Multipolar daughter cells show dynamic behavior: they frequently change orientation, and 

extend and retract processes, while moving in the tangential plane.  

 

 

Figure 28 | Distinct phases of radial migration . CP neurons migrate by locomotion and follow 
different phase of migration: (1) rapid movement from the ventricle to the SVZ. (2)  migratory arrest 
in the SVZ (24 h), where neurons become multipolar. (3) retrograde migration toward the ventricle. 
(4) migration to the cortical plate. Many, but not all neurons exhibit phase 3, and some of them do 
not translocate the cell body toward the ventricle but only extend a process towards the ventricle. 
Images taken from Noctor et al., 2004.  

 

Numerous transcriptor factors and signaling molecules are implicated in correct 

cortical migration and lamination. In particular, the extracellular matrix molecule Reelin 

plays a crucial role in the correct positioning of neurons during the development of the 

cerebral cortex (D’Arcangelo et al., 1995; Frotsher 1998; Frotsher et al., 2009).  
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Reelin, synthesized and released by Cajal-Retzius cells, induces neurons to migrate 

bypassing their predecessors, but also provides a stop signal, which tells neurons to detach 

from their radial guide and prevents them from invading the marginal zone (Frotscher et 

al., 1998; Trommsdorff et al., 1999).  

Lack of Reelin in the mouse mutant reeler results in neuronal migration defects in 

the neocortex, hippocampus and cerebellum. The six-layered neocortical structure results 

disorganized: radially migrating neurons fail to split the subplate and get arranged 

inversely to wild-type, with late born neurons occupying the deep layers of the cortical 

plate (according to an outside-in gradient), giving rise to a grossly inverted cortex 

(Lambert de Rouvroit and Goffinet, 1998) (Fig.29).  

 

 
 
Figure 29 | Cortical layering in normal and reeler mutant mice. Wild-type mouse cortex (left 
panels) and reeler mutant cortex (right panels) at E14 (A) and E16 (B) respectively.  In reeler mice 
at E14, CP cells are not as densely packed and less strictly radial as in normal animals, preplate 
cells are sparse in the MZ. At E16, late generated neurons in reeler mice, do not follow the inside-
out rule, but migrate from outside to inside settling in the inner cortical plate. Abbreviations: CP, 
cortical plate; IZ, intermediate zone; ICP, inner cortical plate, MZ, marginal zone; SP, subplate; 
UCP, upper cortical plate; VZ, ventricular zone. Image adapted from Bar et al., 2000. 
 

 

Reelin signaling involves two lipoprotein receptors, the VLDLR (very low density 

lipoprotein receptor) or ApoER2 (apolipoprotein E receptor type-2) expressed by migrating 

neurons in the CP. Binding to this receptors results in the phosphorylation of the 

intracellular adaptor Dab1 (Disabled 1) that binds to the cytoplasmic tails of the lipoprotein 

receptors and initiates the signal transduction pathway that control the cytoskeleton 

reorganization (Reviewed by Bar et al., 2000). Recently, it has been shown that Reelin 

cascade leads to phosphorylation of cofilin (Chai et al., 2009), an actin-depolymerization 

protein that promotes the disassembly of F-actin, thereby stabilizing the cytoskeleton of 
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migrating neurons in their terminal phase of radial migration (Frotscher et al., 2009) 

(Fig.30). 

 

 

 
 

2.3.2 Tangential migration  

GABAergic interneurons (for a review see Marin and Rubistein, 2001) and 

oligodendrocytes are generated from progenitors in the subpallium and reach the cerebral 

cortex via tangential migration (Fig.31). Also glutamatergic subpopulation of neurons has 

been shown to tangentially migrate, as in the case of Cajal-Retzius cells and Satb2+ 

neurons, reaching the neocortex and the hippocampus, respectively (Bielle et al., 2005; 

Britanova et al., 2006).  

 
 

Figure 31 | Tangential migratory routes of GABAergi c, cholinergic and glutamatergic  
cortical neurons . Abbreviations: AEP, anterior entopeduncular area; Cx, ocortex; DP, dorsal 
pallium; H, hippocampus; LGE, lateral ganglionic eminence; LP, lateral pallium; MGE, medial 
ganglionic eminence; MP, medial pallium; Pir, piriform cortex; POa, anterior preoptic area; VP, 
ventral pallium.  

Fig. 30 | Schematic diagram summarizing 
the effects of Reelin (red) in wildtype 
animals (A) and in Reeler mouse (B ). 
Phoshorylation of cofilin in the leading 
processes of migratin neurons anchors them 
to the marginal zone containg Reelin. In reeler 
mouse, the apical dendrites of neurons are not 
fixed to the cortical surphace and as a 
consequence, they are dispersed in various 
directions. Image taken from Frotscher et al., 

2009. 
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Several ventrally expressed transcriptor factors are important for either the 

differentiation or the migratory capacity of ventrally derived neurons. Mice lacking ventral 

homeobox genes allow studying the contributions of distinct parts of the ganglionic 

eminence to the generation of cortical interneurons. In mice knock-out for Dlx1 and Dlx2, 

(both of them expressed throughout the early ventral telencephalon), tangential migration 

is dramatically impaired and only a quarter of neocortical GABAergic neurons can be 

found in the dorsal telencephalon (Anderson et al., 1997). In Nkx2.1-/- mice, lacking a 

functional MGE but displaying a normal LGE, the number of neocortical GABAergic 

neurons is roughly half of that found in wild type brains (Sussel et al., 1999). Conversely, 

in Gsh2-/- mice, the LGE is severely affected, but no change is detected in the neocortical 

interneuron complement (Corbin et al., 2000). All this suggests that the MGE is the main 

source of GABAergic interneurons. In particular, the MGE produces somatostatin and 

parvalbumin subclasses of GABAergic interneurons (as well as a population of 

neuropeptide Y expressing interneurons) that migrate laterally and spread throughout the 

cortex. The CGE primarily produces calretinin and vasoactive intestinal (VIP)-expressing 

neurons, that migrate predominantly towards the caudal telencephalon. By contrast, LGE 

produces a substantial population of interneurons that migrate rostrally to the olfactory 

bulbs (Fig.32), as well as inhibitory projection neurons that populate ventral regions 

(Metin et al., 2006).  

 

 

 
Figure 32  | Main migratory paths of interneurons derived from t he three subdivisions of the 
ganglionic eminences . Abbreiviations: CX, cerebral cortex; HI, hippocampus; OB, olfactory bulb. 
Adapted from Metin et al., 2006 
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In the mouse, three general and partially overlapping phases of migration can be 

distinguished (Fig.33). First, at E11.5, an early migration from MGE and anterior 

entopeduncular area (AEP) can be identified: neurons course superficially to the 

developing striatum and invade the cortical marginal zone and subplate. Second, at around 

mid-embryonic stages (E12.5-14.5), neurons from MGE migrate either deep or 

superficially to the developing striatum, and they populate both the SVZ, lower-

intermediate zone (IZ) and the SP, from where they move into the cortical plate. Third, at 

late stages of the development (E14.5-16.5), migrating cells derive from both the LGE and 

the MGE (Reviewed in Metin et al., 2006).  

 

 

Figure 33 |  Routes of tangential migration of interneurons from  the basal telencephalon to 
the cortex . At early stages interneurons arise from the MGE and AEP and they follow a superficial 
route. At E13.5, interneurons are primarily generated from the MGE and follow a deep route to the 
developing striatum; some interneurons also migrate superficially. (c) At later stages, cortical 
interneurons also arise from the LGE and follow a deep route. H, hippocampus; GP, globus 
pallidum, LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; NCx, neocortex; 
PCx, piriform cortex; VZ, ventricular zone; AEP, anterior entopeduncolar area; Str, striatum. 
(adapted from: Adapted from Metin et al., 2006).  
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2.4. Development of thalamo-cortical afferents 

Most sensory input to the cerebral cortex comes via the thalamus. During 

embryonic development, thalamic axons travel long distances to reach their target cortical 

areas. Thalamic input terminates principally in layer IV of the neocortex, although there 

are some terminations also in upper layers and layer VI. Only dorsal thalamic neurons send 

projections to the cerebral cortex; the epithalamus and the ventral thalamus do not. Layer 

VI neurons of primary cortical areas send corticofugal projections back to the thalamus, in 

correspondence of one of the four principal thalamic nuclei (Jones, 2007). To reach their 

targets, fibers coming from the thalamus or from the cortex have to cross several emerging 

boundary zones, including the diencephalic-telencephalic and the pallial-subpallial 

boundaries. Different cellular and molecular cues, distributed along the path followed by 

thalamocortical axons, guide thalamic growth cones to reach their cortical targets.  

The early formation of the thalamocortical pathway is achieved by the growth 

cones of thalamic neurons from the dorsal thalamus; they proceed initially ventrally and 

turn dorsolaterally at the boundary between the telencephalon and the diencephalon, where 

they enter the internal capsule by E13 in the mouse embryo (Fig.34). Thalamocortical and 

corticofugal fibers interact in the internal capsule and after that, they resume their advance, 

in association with each other, and proceed towards their targets (Molnàr et al., 1998).  

   

Figure 34 |   Early growth of thalamocortical afferents from the  dorsal thalamus to the cortex.  
At E13, thalamic axons (red lines) initially growth ventrally, then turn extending trough the medial 
and lateral ganglionic eminences. Contemporary, cortical fibers (blu lines) leave the cortex and 
after a pause at the pallial–subpallial boundary reach their final targets by E18, in a topographically 
organized manner. Abbreviations: DTB, diencepic-telencephalic border; PSPB, pallial-subpallial 
boundary. Image taken from Lopez-Bendito and Molnar, 2003.  
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First thalamic efferents reach the mouse cortex at E15 (Fig.35). The axons start to 

accumulate in subplate, although some axons and side branches penetrate the deep part of 

the cortical plate. During the early postnatal period (P0), most thalamic fibers invade the 

deep layers of the cortical plate, until reach layer IV (Reviewed in Lopez-Bendito and 

Molnar, 2003). Once the cortex is reached, activity dependent mechanisms become 

increasingly important in shaping topographic and feature maps (Katz and Shatz, 1996). 

Several transcription factors are required for the proper development of 

thalamocortical connections. Among them, Mash1, Pax6 and Gbx2 (Tuttle et al., 1999; 

Pratt et al., 2002; Hevner, 2002), expressed at distinct, strategic points along the forming 

axonal pathway: Gbx2 in the dorsal thalamus, Mash1 in ventral thalamus and ventral 

telencephalon, Pax6 not only in the thalamus, but also along the pathway taken by 

thalamocortical axons and in the cortex itself.  

 

 
 

Figure 35 | Ingrowth of thalamic fibres on schemati c coronal sections of mouse cortex 
during development . By E16, thalamocortical axons reach the cortex where they extend 
tangentially in the intermediate zone. Between E18 and P2, thalamocortical axons extend side 
branches into the more superficiall regions of the cortex, initially interacting with the subplate, then 
growing into layer 4. By P8, the mature arrangement of thalmocortical axons in established. 
Abbreviations: MZ, marginal zone; CP, cortical plate; SP, subplate; IZ, intermediate zone; SVZ, 
subventricular zone; VZ, ventricular zone. From Lopez-Bendito and Molnar. 2003.  
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3. COMPARATIVE ASPECTS OF CORTICO -CEREBRAL DEVELOPMENT  

3.1. Telencephalic organization in vertebrates  

Gene expression and function studies in different animal models provide evidence 

for a common organization of the developing telencephalon in vertebrates. In particular 

most parts of the brain are remarkably conserved across amniotes, a group including 

reptiles, birds and mammals.  

Amphibians have the simplest brain organization, with no large cell masses and 

little neuronal migration. Reptilian brains are slightly more complex, having a three-

layered cortex, but are still relatively small. A relevant change during evolution has been 

the appearance of a six-layered structure, called isocortex or neocortex, that has come with 

mammals. The neocortex is formed by an inside-out gradient, whereas the reptilian dorsal 

cortex develops from an outside-in gradient.  

Comparative studies in mammals, birds and reptiles (Smith-Fernandez et al., 1998, 

and Puelles et al., 2000) show a conserved pattern of gene expression, suggesting 

homologies between regions in distant species. The medial and dorsomedial regions of the 

reptilian brain are homologous to the mammalian hippocampus, the lateral cortex 

corresponds to the olfactory cortex, and the dorsal cortex is the homologue of the 

mammalian neocortex (Fig.36) (Aboitiz et al., 2002). The avian hyperpallium is also 

comparable to the neocortex. In mammals, both hippocampus and dentate gyrus are three-

layered structures, but only the dentate gyrus retains the ancestral outside-in gradient.  

A second unique feature of the mammalian neocortex is the tremendous increase in 

surface area it has undergone in the mammalian lineage, from lissencephalic brains to 

highly convoluted brain in humans. The evolution and expansion of the neocortex is 

associated with the intelligence and social complexity of mammals. For example, the 

surface area of the human cortex is 1000 fold greater than that of a mouse, but is only 3-5 

times as thick (Rakic, 1995). This pattern of morphological change indicates that brain size 

increases have resulted from a lateral, rather than radial, expansion of the neuroepithelium.  

In conclusion, a general strong conservation in cortical development is present 

among mammals, bird and reptiles, but important changes have occurred during evolution 

contributing to the formation of the mammals’ six-layered neocortex. Relevant differencies 

can be found at the level of the cortical proliferative zones, of the striatocortical junction 

(cortical hem in mammals) and in the amplification of the Reelin signals (Molnar et al., 
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2006). Comparative and genetic aspects of cortical development are important to 

understand how evolution works and which mechanisms and rules it operates through.  

 

 
 

 

Figure 36 |  Embryonic telencephalic territories based on regula tory gene expression data.  
Abbreviations: a, auditory pathway; AM, amygdala and ventral claustrum; ADVR, anterior dorsal 
ventricular ridge; Cx, cortex; DP, Dorsal pallium; DVR: Dorsal ventral ridge; H, Hippocampus; HV, 
hyperstriatum ventral; LP, Lateral pallium; MP, Medial pallium; N, neostriatum; SP, subpallium; vc, 
collicular and lemniscal pathways; vl, visual pathways. Image taken from Aboitiz et al., 2002 
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3.2. Class-specific areal restrictions of neurons with distinct 

laminar identities 

Even if homologous expression domains may be found at corresponding locations 

along the dorso-ventral axis of the mammalian, avian and reptilian telencephalon 

(Emx1/Pax6/Tbr1; Pax6/Tbr1; Dlx2), intriguingly, it has been reported that key molecular 

markers, specifically expressed by neurons belonging to different laminae of the 

mammalian neocortex, may harbor distinct regional restrictions in other amniotes. 

For example, Reln, a hallmark of Cajal-Retzius cells spread at the surface of the 

entire mammalian pallium, is missing in a large sector of the sauropsid marginal zone, 

being confined to the medial-most part of it (turtle, lizard, chicken). Moreover, as it 

happens in mammals, where Reln is further expressed by layers V and IV, extramarginal 

sources of this glycoprotein have been widely described even in other Amniota (Fig.37). 

Reelin expression has been detected in cortical plate of turtle and lizard, in subplate of 

lizard and in periventricular proliferative layers of chicken and crocodile (Caviness, 1982; 

Bayer et al., 1991; Bernier et al., 1999; Goffinet et al., 1999; Bernier et al., 2000; Tissir et 

al., 2003; Nomura et al., 2008; Yoshida et al., 2005).  
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Figure 37  | Comparison of reelin mRNA expression . Frontal sections in the embryonic cortex of 
mouse (a-b), turtle (c-d), lizard (e-f) and chick (g-h). Expression patterns of reelin mRNA are shown 
in darkfield views in left panels. Right panles represent reelin-positive zones: ovals represent cells 
in marginal zone (MZ) and dark gray areas represent the more-diffuse expression in cortical plate 
or subcortex. In turtles (c-d), reelin-positive cells are dispersed in the MZ of the medial cortex and 
dorsal cortex and to a lesser extent in the lateral cortex and dorsal ventricular ridge (DVR). The CP 
in MC and DC is weakly. (e-f) show the lizard MC and DC in which reelin-positive neurons (arrows) 
are abundant in the MZ, and there is a second layer of reelin expression in the subplate [dark gray 
area in (f)], whereas the cortical plate is reelin-negative. The dorsal component of the lateral cortex 
expresses reelin (dark gray area in f). (g-h) show the chick in which subpial reelin-positive cells 
(arrows) are found only in the diminutive MC (hippocampus) and DC (parahippocampus), whereas 
the CP is negative. There is diffuse reelin expression in the LC. Abbreviations: V, ventricle; MC, 
medial cortex; DC, dorsal cortex; LC, lateral cortex. Image adapted from Bar et al., 2000. 
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Another example is Er81. This gene, active in deep layers of the entire mammalian 

cortex as well as in the striatum, is not expressed by the avian hyperpallium (somehow 

corresponding to our neocortex), being confined to hippocampus/area parahippocampalis 

and arcopallium, on the medial and lateral sides of it, respectively (Nomura et al., 2008) 

(Fig.38). 

Finally, Brn2, expressed by a subset of layers II-III in the mammalian neo- and 

paleocortex, is absent in the avian hyperpallium, being specifically on in the 

mesopallium/nidopallium, on the latero-ventral side of it (Nomura et al., 2008). 

 
 

 
 

Figure 38 | Differences in neuronal specification a nd migration patterns between the 
mammalian and avian pallium . In the developing mammalian telencephalon, Reelin-positive 
neurons are derived from several origins including ventral pallium, and Er81 and Brn2- positive 
neurons are generated from entire pallial regions. In contrast, in the developing avian 
telencephalon, Reelin-positive neurons are not derived from the ventral pallium, and Er81 and 
Brn2-positive neurons are generated from distinct pallial regions (from Nomura et al., 2008). 
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3.3. Evolutionary increase in the SVZ  

In all amniotes, neurogenesis occurs in the so called ventricular zone (VZ), lying 

next to the lateral ventricle. In mammals, cortical neurons are also generated in the dorsal 

cortex by a mitotic compartment called the subventricular zone (SVZ), located above the 

VZ (Sturrock & Smart, 1980; Bayer & Altman, 1991). The progenitor cells of the 

mammalian SVZ and of abventricular regions differ from progenitors in the VZ.  

The SVZ is non-existent in lizards (Goffinet 1983) and turtles (Martinez-Cerdeno et 

al., 2006), but it can be identified in the dorsal ventricular ridge of chick (Molnar et al., 

2006). In mammals, the expanded size of the SVZ correlates with brain size, a trend that is 

particularly evident in primates, where two distinct SVZ regions can be identified: an inner 

SVZ (ISVZ) and a outer SVZ (OSVZ) (Smart et al., 2002), (Fig.39C). The OSVZ is 

histologically similar to the VZ and shows a compact radial organization. Contrary to what 

is observed in rodents, where the VZ is the main germinal compartment throughout 

corticogenesis, the primate VZ declines rapidly and is paralleled by the appearance of the 

SVZ followed by the OSVZ. 

 

 
 

Figure 39 | Comparative relationship between SVZ de nsity and cortical thickness and 
complexity of cerebral wall.  The images represent the germinal layers during mid-neurogenesis 
(left panels) and the cortical layers of an adult brain (right panels). Image from Molnar et al., 2006.  
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The laminar expansion from a three- to a six-layered cortex that occurred in the 

common ancestor of all mammals, and the tangential expansion of the cortex that has 

occurred within several mammalian orders, has to be correlated with the appearance of the 

cortical SVZ. In conclusion, neurogenesis in the SVZ could have increased neural 

production during embryonic development and may have been an important contributor to 

brain size evolution, leading to neocortical mammalian expansion. 

 
 
 

3.4. Evolutionary increase in cortical interneurons  

An increasing trend in the number of GABAergic neurons is evident during 

evolution. In Xenopus, GABAergic cells represent 3-11% of all pallial neurons, 10-12% in 

the pigeon, 15-20% in the mouse and 15-30% in humans.   

Tangential migration to the pallium of GABAergic cells originating in the 

subpallium is widely conserved across species and has been observed also during 

development of lower vertebrates, such as chick and Xenopus, (Coboset al., 2001; Moreno 

et al., 2008). However, tangential migration within pallial territories has been also 

described in turtles as well as in chick, (Tomioka et al., 2000; Cobos et al., 2001; Metin et 

al., 2007) although the identity of the migrating neurons has not been fully characterized, 

but also in mouse, (about 5% of cortical interneurons) (Letinic et al., 2002) and in humans, 

where 65% of GABAergic interneurons appear to be produced inside the pallium (Letinic 

et al., 2001) (Fig.40), similarly to other primates (Petanjek et al., 2009). GABAergic cells 

of the human neocortex born inside the pallium are produced from Mash1 progenitor cells 

of the VZ and SVZ, a gene typically expressed in the subpallium and responsible for the 

differentiation of GABAergic neurons (Letinic et al., 2002).  
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Figure 40 - Comparative tangential migration routes  of GABAergic neurons from subpallium 
to the cortex.  In humans and other primates, noumerous interneurons are produced also inside 
the dorsal telencephalon and migrate radially toi reach their final laminar position. Abbreviations: 
CTX, cortex; DVR, dorsal ventricular ridge; sPA, subpallium.  
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4. MARSUPIALS 

Marsupials represent one of the three subclasses of mammals that include 

prototherians (monotremes), metatherians (marsupials), and eutherians (placentals). Like 

placental mammals, marsupials are a highly diverse group that have adapted to a number 

of different habitats and lifestyles. Extant marsupials have been subdivided into seven 

different orders and over 270 species have been identified (Karlen and Krubitzer, 2007) 

(Fig.41).  

 

 
 

Figure 41 | A phylogenetic tree illustrating the br anching among Monotremes, Marsupials 
and Placentals and major marsupial lineages.  Image taken from Karlen and Krubitzer, 2007 

 

Marsupials are important for understanding larger issues of cortical evolution and 

development. First, because marsupials occupy a wide range of habitats and have evolved 

a large array of unique adaptations, they make excellent models for studying animal 

ecology and the relationship between brain and behavior. Second, since they have retained 

a number of features of cortical organization from their ancient ancestor, radiated from 
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stem mammals over 180 million years ago (My), many of them are considered to reflect 

the ancestral mammalian state more than most other present day mammals. Moreover, 

because of the extremely immature state at birth, marsupials can be easily micro-surgically 

manipulated and serve as important models for studying neural development and 

regeneration. A large amount of regenerative studies have been carried out in the South-

American short-tailed opossum, Monodelphis domestica, an animal model particularly 

suitable for laboratory studies since it is small, has a short gestational period (two weeks) 

and is highly prolific throughout the year (Fig.42) (Saunders et al., 1989). Opossum 

nervous system can be dissected out in its entirety and maintained in culture for long 

period (weeks). Spinal cord damaged by experimental trauma in the cervical region, 

exhibits successful axon regeneration if the lesion is done before P9. By contrast, 12-day-

old preparations show no regeneration (Reviewed in Mladinic et al., 2009). 

Another precious tool, to help on working with the opossum, is that its complete 

genome has been recently sequenced (Mikkelsen et al., 2007), facilitating molecular 

studies on this model.  

 

 
 

Figure 42 | Litter of short-tailed opossum on the d ay of birth (P0).  Image taken from Karlen 
and Krubitzer, 2007. 
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5. AIMS OF THE THESIS  

 
The aims of this thesis were to study in details key aspects of cortical histogenesis in 

marsupials trying to fill gaps in our knowledge of opossum corticogenesis. Monodelphis 

domestica does not only represent an interesting animal model for neurobiological aspects 

and regenerative studies, but also could give insight into evolutionary mechanisms that had 

occurred at the level of central nervous system from the common mammal ancestor of first 

placentals.  

Taking advantage of the large body of molecular tools and methodologies nowadays used 

for developmental studies on placental’s cortex and the availability of M. domestica 

genomic sequence data, we focused our attention on investigating in particular:  

- the origin of cortical neurons (projection neurons and interneurons) 

- laminar differentiation and conservation of cortical laminar markers 

- neural migration profiles 

- proliferative compartments  

A more detailed knowledge of basic aspects of the system could provide a solid framework 

for more advanced developmental studies on marsupial corticogenesis. 
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MATHERIALS AND METHODS   

 
 
1. ANIMALS  

Opossums (Monodelphis domestica) at different postnatal ages were obtained from 

the colony maintained at the animal house facility of the University of Trieste, Italy. Mice 

(Mus musculus, strain CD1) were purchased from Harlan-Italy. Opossums were staged by 

systematic daily inspection of the colony for newborn litters, P0 corresponding to the day 

of birth. Mice were staged by timed breeding and vaginal plug inspection. Animals 

handling and subsequent procedures were in accordance with European laws [European 

Communities Council Directive of November 24, 1986 (86/609/EEC)] and with National 

Institutes of Health guidelines. In particular, to harvest opossum brains (from P1-P40), 

young animals were killed by decapitation, after hypothermia. When the entire CNS had to 

be recovered, the animals were alternatively killed by aorta resection, again after 

hypothermia. In the case of P60 animals, they were terminally anesthetized by urethane 

and transcardially perfused with 4% paformaldehyde. As for mouse embryos (E10.5-

E18.5), they were harvested from pregnant dames killed by cervical dislocation. 

 

  

2. BROMODEOXYURIDINE ADMINISTRATION  

Bromodeoxyuridine (BrdU) was administered to P1-P18 opossum pups at the dose 

of 200 µg/g of body weight in 0,9% NaCl, by subcutaneous injections. During 

administration, pups were left attached to the mother, previously anesthetized with 

isofluorane. All injected animals were sacrificed at the age of P30 and their brains used for 

kinetic studies.  

 

 

3. ORGANOTYPIC CULTURES  

Floating organotypic brain cultures were used for this study. Opossum CNSs were 

dissected from anaesthetized P10 young placed a small, Sylgard-filled Petri dish with tiny pins 

(Minuten Nadelen) placed through the paws and repeatedly washed in DMEM-F12-Glutamax/ 
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0.6%Glucose/ Fungizone/ Pen/ Strept, paying particular attention to avoid any damages. 

After further manipulations (DNA injection and electroporation), CNSs were transferred to 

50 mL Falcon tubes (one per tube), each containing 15 mL of DMEM-F12-Glutamax/ 

0.6%Glucose/ N2/1% FBS/ Fungizone/ Pen/ Strept. Cultures were maintained at 32°C for 

two days, in the presence of bubbling 95%O2–5%CO2. To verify brain vitality, a final 

pulse of BrdU (5µg per ml of medium) was given 90 min before explants’ fixation. 

 

 

4. BRAINS ELECTROPORATION  

Electroporation was performed on acutely dissected P10 opossum CNSs, put in a 

petri dish filled with 0,6% Glucose/1X PBS. 1 µl of an aqueous 1 µg/µl solution of plasmid 

DNA (containing 0,01% of fast green dye) was injected into a lateral ventricle, using glass 

capillaries (Biological Instruments, 1B100-3) prepared by the micropipette puller P-97 

(Sutter Instrument Co.). Two parallel, 5cm-spaced, rectangular electrode plates (4cm x 

6cm) were placed on both sides of the telencephalon and three 100 V pulses (each 100 ms 

long, interval between consecutive pulses 450 ms) were delivered, using an electro-square-

porator (BTX 830). Plasmids pTα1-EGFP (kindly provided by E. Ruthazer) and pDsRed2-

N1 (Clontech) were used for electroporation.  

 

 

5. HISTOLOGY  

CNS specimens (both mouse and opossum, both whole brains and explants) were 

fixed in 4% paraformaldehyde-PBS overnight at +4°C, cryoprotected in 30% Sucrose/PBS 

and cut coronally at 10 µm. Cryosections were mounted on Fischer SuperFrost Plus slides, 

and subsequently processed for in situ hybridization or immunohistochemistry.  

 To accurately determine the fraction of Tbr2+ cells also expressing β-tubulin, 6 

freshly dissected P10 opossum cortices were pooled and dissociated to single cells by 

gentle trituration.  Cells were resuspended in DMEM-F12/1% Serum, plated onto slides 

previously covered with 20 µg/ml poly-D-lysine, and left to attach for 1 hour at RT. Slides 

were processed for immunofluorescence, as elsewhere described. 
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6. IMMUNOFLUORESCENCE   

6.1. Immunofluorescence protocol   

    Immunofluorescence was performed after drying sections for at least one hour. 

They were post-fixed 5 minutes in 4% praformaldeyde, followed by three washes in PBS. 

Generally, sections were then boiled for 5’ in 10 mM pH=6 citrate buffer. This step was 

omitted in the case of β-tubulin, β-tubulin/GFP and GABA stainings. In case of BrdU 

detection, sections were also treated for DNA depurination (2 M HCl, for 15’ min a RT) 

and then neutralized (in 0.1 M borate buffer, pH 8.5, for 15 min at RT). In case of other 

combined immunofluorescences (BrdU/Tle4, BrdU/Cux1, BrdU/Tbr2 and IdU/GABA), 

HCl concentration was reduced to 0,2 M. Sections were incubated for 1 h at RT under 

blocking mix (1X PBS;10% FBS; 1mg/ml BSA; 0.1% Triton X100) and then incubated at 

4°C overnight with primary antibody in blocking mix. The following day sections were 

washed in PBS for 5 minutes, three times, and incubated for two hours with secondary 

antibodies diluted in blocking mix. Slides were washed three times in PBS for 5 minutes, 

stained with DAPI and mounted in VECTASHIELD Mounting Medium (Vector).  

 

6.2. Antibodies used  

Primary antibodies used were as follows: mouse monoclonal anti-BrdU (clone B44, 

Becton Dickinson), 1:50; rat anti-BrdU (clone ICR1, Abcam), 1:500; goat anti-Brn1 (Santa 

Cruz), 1:30; mouse monoclonal anti-Calretinin (clone M7245, Dako), 1:50;  rabbit anti-

Cux1 (Santa Cruz), 1:30; rabbit anti-Foxp2 (Abcam), 1:1500;  rabbit anti-Gaba (Sigma), 

1:10000; rabbit anti-GAD (Sigma), 1:1000; rabbit anti-Gfap (Dako), 1:500; chicken anti-

GFP (Abcam), 1:800; mouse monoclonal anti-O4 (clone O4 R&D systems), 1:600; rabbit 

anti-Pax6 (Abcam); 1:300; rabbit anti-pH3 (Upstate), 1:600; rabbit anti-S100β (Dako), 

1:200; rabbit anti-Tbr1 (kindly provided by Robert Hevner), rabbit anti-Tbr2 (Abcam), 

1:500; Rabbit anti-Tle4 (Santa Cruz), 1:30; mouse anti-neuron-specific class III β-tubulin 

(clone Tuj1, Covance), 1:500. Finally, immunoreactivity was revealed after 2h incubation 

with secondary Alexa antibodies, 488 and 594 (Molecular Probes), 1:400. A table with 

Placental-vs-Marsupial conservation of epitopes recognized by a selection of these 

antibodies is provided in the Supplementary Material section (Table 1). 
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7. IN SITU HYBRIDIZATION PROTOCOL  

7.1.  Preparation of Dig-labelled RNA probe  

Non-radioactive in situ hybridization was performed to study Reln mRNA 

expression. The probe used corresponded to exons 1-12 of M. domestica Reln coding 

region (Ensembl mdo-chr.8: nt 155064879-154744337).  

The following PCR primers, containing appropriate restriction sites, 5’-

GAGAAGTGCTCATTTCCCTGCACATTG-3’ and 5’-CCACATTCATTGCCAATGACAGCTCC-3’, 

were designed to amplify 1,2kb of the Reln transcript that was cloned into pBluescript 

KS(-) (Stratagene) E. coli expression vector, which contains specific RNA polymerase 

promoter sites.  

All basic DNA standard methods (extraction, purification, ligation) as well as 

bacterial cultures, transformation, media and buffer preparations and agarose gel 

electrophoresis were performed according to Maniatis et al.,1989. DNAs were transformed 

in E.coli TOP10 strain (Invitrogen). 

Ligation reactions were performed with LigaFast Rapid DNA Ligation System (Promega). 

DNA fragments were purified from agarose gel with the Qiaex II DNA purification system 

(Qiagen). Small-scale plasmid preparations (mini-preps) from transformants were made by 

purification on Sigma columns (Mini prep Kit, Sigma). Large scale preparations (maxi-

preps) were done by purification on Qiagen columns (Plasmid Maxi Kit, Qiagen). 

Plasmids for use in transcription reactions were linearized with appropriately placed 

restriction enzymes, purified by phenol/chloroform precipitation and finally resuspended in 

deionized water. 

According to the manufacturers’ instructions, the following reagents were 

assembled on ice in an eppendorf tube: 1 µg linearized DNA; 4µl Transcription 5x Buffer 

(Promega); 2µl 0,1M DTT (Invitrogen); 2µl 10x Dig labelling mix (Roche); 2µl 20U/µl 

RNAseOUT (Invitrogen); 1µl 20U/µl RNA polymerase (either  T3 or T7, Promega); 

deionized water to 20µl. The reaction was incubated at room temperature overnight. The 

following day RNA transcript was precipitated and resuspended in 20 µl of sterile 

deionized water, 2 µl of RNA probe were run on denaturing agarose gel against known 

weight markers for quantification. Probes were diluted and then stored at –80°C. 
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7.2. Pretreatment of sections 

In order to improve signal and reduce the background, sections were subjected to 

several pre-treatment steps. The following protocol, adapted for cryostat-cut sections, was 

applied. Slides were left to dry for at not less than 1 hour, then immersed in 4% 

paraformaldeyde in PBS for 10 minutes and then washed with PBS, twice for 5 minutes. 

Slides were immersed in HCl 0.2 M for 5 minutes, then washed in PBS, three times for 2 

minutes, and incubated in 0,5 µg/ml of proteinase-K (Roche) in 50 mM Tris-HCl pH 

8,5mM EDTA, at 30°C for 15 minutes. The proteinase K reaction was stopped by washing 

slides in Glycine 4 mg/ml in PBS for 5 minutes, twice. Slides were washed in PBS for 5 

minutes, twice, then immersed in 4% paraformaldeyde in PBS for 10 minutes and 

subsequently washed in PBS, for 4 minutes, twice. The slides were rinsed in distilled water 

and finally placed in a container with 0,1 M Triethanolamine-HCl pH 8 set up with a 

rotating stir bar for 5 minutes. 0,4 ml of acetic anhydride were added twice for 5 minutes 

each, then slides were washed in deionized water twice for 2 minutes. Finally, the slides 

were left to dry for not less than 1 hour and immediately used for hybridization. 

 

7.3. Hybridization and washing of sections 

The hybridization mix (Denhardts Salts 1X, DTT 50mM, Polyadenylic acid 500 

µg/ml, Ribonucleic acid transfer 53,5 µg/ml, Dextran sulphate 10 %, Formamide 50%) was 

additioned with either 30 µl probe/slide, then heated to 80°C for 10 minutes and applied to 

the slides. Clean glass coverslips were applied to increase the uniform spreading of the 

hybridization mix over the sections. Slides were placed horizontally in a sealed plastic 

slide box, together with paper soaked in 50% formamide, 5X SSC and incubated overnight 

at 60°C. The following day, slides were removed and placed in a slide rack in a solution of 

5X SSC, 0.15% β-mercaptoethanol at room temperature for 30 minutes, in order to remove 

the coverslips. Slides were incubated in stringent buffer (50% formamide, 2X SSC, 0.15% 

β-mercaptoethanol) at 60°C for 30 minutes. Then, they were washed with NTE buffer 

(0.5M NaCl; 10 mM Tris-HCl pH 8; 5 mM EDTA) two times for 15 minutes each. Finally, 

slides were sequentially incubated with 2X SSC, and 0.2X SSC, for 15 minutes each. 

 



                                                                                                                                            Material and Methods 
 
 

 57

7.4. Digoxigenin revelation 

After pre-treatement and washing, slides were incubated in B1 solution (0.1 M Tris-

HCl pH 7.4; NaCl 0.15 M) for 5 minutes, and then blocked in B1 solution containing 10% 

of heat inactivated fetal bovin serum (FBS, Gibco) for 1 hour at room temperature. Slides 

were next incubated in B1 containing 0.5% FBS and the anti-Digoxigenin antibody 

conjugated with alkaline phosphatase enzyme (Dig-AP, Roche) at the concentration of 

1:2000, overnight at +4°C. The following day sections were washed three times in B1 

solution before incubation in B2 buffer (0.1 M Tris-HCl pH 9.5; 0.1 M NaCl; 50 mM 

MgCl2) containing the chromogenic substrates: 3.5 µl of NBT (Nitro blue tetrazolium 

chloride, Roche) and 3.5 µl BCIP (5-Bromo-4-chloro-3-indolyl phosphate, toluidine salt, 

Roche) for each ml. The ongoing development of these sections was followed using a 

bright field Olympus CHT microscope. 

 

 

8. IMAGING AND CONFOCAL MICROSCOPY  

Fluorescent labeled sections were imaged and analyzed using a fluorescent Nikon 

(Tokyo, Japan) Eclipse 80i microscope and a DS-2MBWC digital microscope camera. 

Confocal photos were taken by a TCS SP2 Leica confocal microscope; they were generally 

collected as 1.0 µm-thick Z-stacks and as 3.0 µm-thick Z-stacks, in the case of pTα1-EGFP 

electroporated cells. All images were processed by Adobe Photoshop CS3 software. 

 

 

9. SAMPLE SIZING  

Unless otherwise stated, each experiment was performed at least in triplicate. In 

cases of laminar birthdating, per each BrdU pulsing time, 3 mid-frontal 800 µm-wide 

neocortical sectors, from 4 cortices were profiled. pH3+ cells countings were performed in 

similar ways, but throughout the neocortical field. The same applies to Tbr2+, Tbr2+/BrdU+ 

and Pax6+ cells countings, conversely restricted to 200 µm-wide parietal sectors. Error bars 

represent standard deviations. 
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RESULTS 

1. MOLECULAR DIVERSIFICATION OF NEURONS BELONGING TO DIFFERENT 

NEOCORTICAL LAMINAE AND THEIR RADIAL MIGRATION  

The placental neocortex is formed of six layers, each expressing a well defined set 

of molecular markers (reviewed in Molyneaux et al., 2007). To assay possible 

conservation of the neocortical laminar profile between Placentals and Marsupials, we 

looked at the distribution of a selection of these markers in the opossum neocortex at 

postnatal day 30 (P30), a developmental age at which radial neuronal migration seems to 

be largely completed (Fig. 1A). Tbr1, expressed by mouse subplate, marginal zone and 

layer VI (as well as, to a lesser extent, by layers III and II) (Hevner et al., 2001), was 

detectable in the opossum in two stripes of cells. The deeper, corresponding to layer VI, 

included stronger labeled neurons; the more superficial, corresponding to layers II and III, 

displayed less intense immunoreactivity. Only a few weakly labelled Tbr1+ cells were 

found in layer I, if any. Foxp2 and Tle4, markers of deep layers in Placentals, were both 

confined to the deep grey matter of the opossum. As expected, Tle4, expressed by mouse 

layers VI and V, displayed a wider radial domain as compared to Foxp2, restricted to 

murine layer VI only (reviewed in Molyneaux et al., 2007). Conversely, Cux1 and Brn1, 

markers of upper layers in Placentals, were both confined to the superficial grey matter. 

Again as expected, Brn1, also labeling a subset of layer V neurons in the mouse (McEvilly 

et al., 2002), displayed a wider radial domain as compared to Cux1, a marker of layers II-

IV only (Nieto et al., 2004). 

 Next, to reconstruct the temporal order of layers generation, we followed two 

complementary approaches. First, we assayed the time-course of expression of selected 

laminar markers, Tle4, Foxp2, and Cux1 for cortical plate (CP) as well as Calretinin and 

Reelin (Reln) mRNA for preplate (PPL). Second, we performed systematic 

bromodeoxyuridine (BrdU) pulse-chase birthdating analysis.  

 Time-course analysis of laminar markers gave results similar to the mouse. There 

were, however some differences. As for Foxp2, no neocortical signal was detectable at P0, 

when a few strongly labeled cells were conversely present in basal ganglia (data not 

shown). A Foxp2 signal appeared in lateral neocortex by P4. At P8, this signal spread to 

the entire cortical plate, getting progressively confined to the deepest part of it at later 

developmental ages (Fig. 1B).  
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Figure 1 | Expression profiles of layer-specific ma rkers in the opossum neocortex.  (A) DAPI 
staining and Tbr1, Foxp2, Tle4, Brn1 and Cux1 immunofluorescence, on adjacent P30 mid-frontal 
neocortical sections. (B-D) Time course immunoprofiling of Foxp2, Tle4 and Cux1 on mid-frontal 
neocortical sections from P4 to P25 ages. Abbreviations: cp, cortical plate; e, ependyma; mz, 
marginal zone; ppl, preplate; se, subependymal zone; sp, subplate; iz, intermediate zone; vz, 
ventricular zone; wz, white matter; I, II, III, IV, V, VI are cortical layers. Scale bars: 100µm. 

 

A similar profile was displayed by the deep cortical plate marker Tle4 (data not shown and 

Fig. 1C). As for Cux1 (Fig. 1D), two weak and hardly detectable signals were found at 

P10, in periventricular layers and in a few cells in the upper cortical plate. These signals 

were stronger at P12, and, by P18, the abventricular expression domain became wider than 
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the periventricular one. By P25 Cux1+ cells were tightly clustered in the most superficial 

cortical plate and no more Cux1 was detectable near the ventricle. Calretinin (Calb2), 

expressed by mouse subplate and Cajal Retzius cells, was detectable in the opossum 

telencephalon throughout neuronogenesis (Fig. 2A). At P1, Calretinin+ cells were mainly 

localized in the ventral telencephalon and, within the cortex, restricted to the most 

marginal-lateral part of it (Fig. 2Aa,a’, arrowheads). At P4, positive cells were throughout 

the cortical plexiform layer (PPL), including the hippocampus; within the lateral cortex, 

the Calretinin+ domain was split in two stripes, the more superficial including the marginal 

zone (MZ), the deeper corresponding to the subplate (SP). (Fig. 2Ab,b’). This SP domain, 

relatively wider as compared to the mouse one (Fig. 2Ac,c’,d,d’), persisted up to P18 (Fig. 

S1A), disappearing around P20 (Fig. S1B,C). 

 

 

Figure 2A | Dynamics of Calretinin expression in th e developing opossum telencephalon.  
(Aa-d) Time course immunoprofiling of Calretinin (Calb2), from P1 to P12. (Aa’-d’) Magnifications of 
boxed areas in (Aa-d). (Ae-f) Comparisons among distributions of Calretinin, Pax6 (Ae,e’) and Tle4 
(Af). Abbreviations: cp, cortical plate; mz, marginal zone; ppl, preplate; sp, subplate; iz, 
intermediate zone; vz, ventricular zone. Scale bars: 100µm.  
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Such SP domain was separated from the ventricular Pax6 domain by the interposed 

intermediate zone (IZ) (Fig. 2Ae,e’) and abutted the layer VI-V Tle4 domain on its 

marginal side (Fig. 2Af). However, Calretinin was not restricted to PPL and its derivatives. 

From P4 until P18, weaker labelled Calretinin+ cells were detectable within the outmost 

cortical plate, where the last generated neurons settle (Fig. 2Ab,c’,d’; Fig. S1A). Starting 

from P20 and, better, at P30, a distinct, areally restricted, strong Calretinin expression 

domain was evident a few cell rows deeper to the MZ (Fig. S1B-F).  

As for Reelin, this glycoprotein is a hallmark of Cajal-Retzius cells in the mouse, 

where additional Reln+ cells can also be found in layers IV-V of the late cortical plate 

(D’Arcangelo et al., 1995; Yoshida et al., 2005). We studied Reln expression in the 

opossum by a riboprobe corresponding to exons 1-12 and found a spatio-temporal profile 

similar to the mouse one (Fig. 2B). No Reln signal was detectable in the pallium at P3, i.e. 

just before the appearance of the CP (Fig. 2Ba,a’). Three days later, however, at P6, 

numerous Reln+ cells were found in the neocortical MZ (Fig. 2Bc,c’), as well as in the 

marginal cingulate cortex (Fig. 2Bb,b’) and in the stratum lacunosum-moleculare of the 

hippocampus (Fig. 2Bc,c’’), i.e. near two of the main birthplaces of Cajal-Retzius cells 

described in Placentals (Takiguchi-Hayashi et al., 2004; Bielle et al., 2005).  

 

 

Figure 2B | Dynamics of Reln expression in the developing opossum telencephalon . In situ 
hybridization of Reln mRNA on coronal sections of P3, P6 and P15 opossum telencephalons. (Ba’-
d’’) are magnifications of boxed areas in (Ba-d). Abbreviations: cp, cortical plate; mz, marginal 
zone; sp, subplate; iz, intermediate zone; vz, ventricular zone; II-IV, V, VI are cortical layers. Scale 
bars: 100µm.  
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This expression pattern was retained at least up to P15. At this age Reln+ cells 

within the neocortical MZ were much more sparse and additional Reln+ elements were 

detectable within the developing neocortical CP (Fig. 2Bd-d’’ ). 

 

 To reconstruct the temporal order of layer generation, we also performed systematic 

BrdU pulse-chase birthdating analysis. By this approach, cells which were in S-phase at 

the time of BrdU injection and exited the cell cycle immediately afterwards, remained 

heavily labeled and as such, easily traceable upon completion of their radial migration. We 

injected opossum pups at different developmental ages (P1; P4; P6; P8; P10; P12; P14; 

P16; P18) with a single pulse of saturating BrdU and left them to develop until the age of 

P30, when all neurons have reached their final laminar position (as shown in Fig. 1 e Fig. 

2). We recovered their brains and analyzed the cortices by BrdU immunofluorescence (Fig. 

3A).  

 

Figure 3(A/B) | BrdU-birthdating of opossum neocort ical neurons . (A) BrdU immunoprofiling of 
mid-frontal neocortical sections, from opossums injected with a single pulse of BrdU at the ages of 
P1, P4, P6, P8, P10, P12, P14, P16 and P18, and fixed at P30. (B) Diagramatic representation of 
BrdU+ cells sampled in (A): the cortical wall is divided into 20 equally spaced bins, numbered from 
ventricular to marginal; radial extension of cortical laminae is indicated by white/grey shading; plots 
representing percentages of BrdU+ cells falling into each bin, for each injection time, are 
superimposed. Abbreviations: e, ependyma; se, subependymal zone; wz, white matter; I, II, III, IV, 
V, VI are cortical layers. Scale bar: 100µm in (A). 
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To compare radial distribution and laminar identities of BrdU+ cells in distinct brains, we 

divided the cortical wall into 20 equally spaced bins, numbered from ventricular to 

marginal, and on this framework reported the approximative radial extension of distinct 

cortical laminae: layer I (evaluated by loose DAPI staining), layers II-IV (by Cux1 

immunofluorescence), layers V-VI (by Tle4 immunofluorescence). Then, for each 

injection time, we counted BrdU+ cells, calculated the percentage of them falling into each 

bin and plotted the data. Finally, we superimposed the resulting curves, so obtaining a 

synopsis of the whole radial migration process (Fig. 3B). We found that neocortical 

neurons were generated in a wide temporal window, mainly from P1 to P14. Cells born at 

P16 reached superficial layers only to a limited extent, suggesting that at that age 

neurogenesis was over, and P18 cells prevalently remained beneath the CP. Deep cortical 

plate neurons were prevalently born between P1 and P6, upper cortical plate neurons 

between P8 and P14. Colocalization of Tle4 and Cux1 with BrdU in P30 animals injected 

at P4 and P12, respectively, confirmed this conclusion (Fig. 3C,D).  

 

 

Figure 3(C/H) | BrdU-birthdating of opossum neocort ical neurons . C-H) Colocalization of 
layer-specific markers, Tle4 (C), Cux1 (D), Calb2 (E-H), with BrdU injected at P4 (C), P12 (D) and 
P7 (E-H), respectively. Solid arrowheads in (E-H) point to Calb2+/BrdU+ cells; empty arrowheads in 
(F,H) point to Calb2-/BrdU+ cells. Abbreviations: e, ependyma; se, subependymal zone; wz, white 
matter; I, II, III, IV, V, VI are cortical layers. Scale bar: 40µm in (C-H). 
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Concerning the subplate (SP), as this structure is not anymore distinguishable at 

P30, we assayed the date of birth of its neurons in distinct, dedicated experiments. By 

administering P1 pups with BrdU and recovering their brains at P7 and P12, 

BrdU+/Calretinin+ cells were detectable beneath the CP, especially in lateral cortex (Fig. 

3E and data not shown), suggesting that the SP is mainly generated around birth. Finally, 

consistently with Reln data, P1-BrdU-pulsed/Calretinin+ cells, corresponding to 

presumptive Cajal-Retzius cells (Alcántara et al., 1998), were also detectable at P7 in the 

neocortical MZ (Fig. 3F), the marginal cingulate cortex (Fig. 3G) and the hippocampal 

stratum lacunosum-moleculare (Fig. 3H). 

 

In conclusion: (1) in the opossum, neocortical neuronogenesis begins at the time of 

birth and ends up two weeks later, at P14 – P16, and radial migration is completed by P25; 

(2) the molecular laminar profile is very similar in Marsupials and Placentals; (3) after 

preplate splitting, cortical plate neurons are laid down in both mammalian subclasses 

according to the same “inside-out” rule.   
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2. DOES A BASAL PROGENITORS COMPARTMENT EXIST IN THE OPOSSUM ?  

In Placentals, neocortical projection neurons are prevalently generated by basal 

progenitors (BPs) or intermediate progenitor cells (IPCs), which lie around the pallial 

subventricular zone/ventricular zone (SVZ/VZ) border and divide far from the ventricular 

surface (Sessa et al., 2009, Kowalczyk et al., 2009). In the developing opossum cortex, a 

subventricular zone is not morphologically distinguishable (Saunders et al., 1989) and, 

based on the distribution of mitotic elements, a true basal progenitor compartment seems to 

be absent as well (Abdel-Mannan et al., 2008). The mitoses survey by Abdel-Mannan et 

al., (2008) - however - was restricted to the P8-P16 window; moreover, no basal molecular 

marker was assayed. So, we readdressed this issue, extending the mitosis survey to a wider 

developmental window and scoring molecular markers peculiar to neuronogenic 

progenitors, including kinetics of their expression.  

 First, we systematically studied the distribution of progenitors undergoing mitosis 

at distinct radial positions, starting from P1 up to P25, by scoring the mitotic marker 

phospo-Histone 3 (pH3) (Fig. 4A). For each developmental age, we divided the cortical 

wall into four unequally spaced bins, l (luminal, including the two ventricular most cell 

rows), p (periventricular, corresponding to the densely packed zone over the ventricle 

minus the l belt), i (intermediate, corresponding to the region between p and MZ), m 

(marginal, corresponding to the MZ), and plotted the percentages of pH3+ cells falling in 

each of them (Fig. 4B).  We observed that the vast majority of pH3+ cells were aligned 

along the ventricular surface, as proper apical progenitors, whereas only a few of them 

were scattered elsewhere. Specifically at P4-P6 a few mitoses could be found in bin p 

(prevalently in its rostro-lateral part), corresponding to the main zone where basal 

progenitors divide in Placentals (Fig. 4Ab, Fig. 4B and data not shown). Abventricular 

mitoses could also be found in bins i and m, mainly after neuronogenesis completion (Fig. 

4Af, Fig. 4B), as described for placental MZ glial progenitors (Costa et al., 2007). As a 

complementary approach, we looked for cortical expression of the T-box transcription 

factor Tbr2, a hallmark of basal progenitors in Placentals (Englund et al., 2005). We found 

numerous Tbr2+ cells at all stages under examination, from P1 to P18 and later (Fig. 4C 

and data not shown). On 10µm-thick sections, their linear frequency gradually arose from 

37±2 cells/100 µm, at P1, to 97±14 cells/100 µm, at P8 (P1-P8 is the time window when 

PPL, deep CP and part of superficial CP are generated), subsequently declining to 45±3 

cells/100 µm at P15 (that is just after the end of neuronogenesis) and even less at P18 (Fig. 
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4D). Remarkably, this time course mimed that of murine Tbr2+ cells (Fig. 4E), which - 

however - were more numerous and reached their peak linear density slightly later, close to 

the end of neuronogenesis. Finally, as for radial distribution, modal distance between 

Tbr2+ cells and ventricular surface varied in the opossum from about 120-140 µm at P1-

P8, to 60 µm at P15. In synthesis, Tbr2+ cells were detectable throughout the 

neuronogenetic window, prevalently clustered at around the border between VZ and IZ, 

but also scattered within the VZ, exactly like Placentals basal progenitors (Englund et al., 

2005) (Fig. 4F). 

 So, based on pH3 data, a basal proliferative compartment does not seem to exist 

throughout the cortical field and at all developmental stages (except – maybe, in the early 

rostral-lateral pallium). Based on Tbr2 expression, a compartment molecularly similar to 

the basal one of Placentals can be distinguished, interposed between ventricular precursors 

and abventricular neurons. How to solve this conundrum? Rather than being due to 

absence of proliferative activity, paucity of abventricular pH3+ cells might reflect a very 

slow cell cycle progression in front of a short duration of M-phase (Takahashi et al., 1993 

and 1995; our unpublished observations), possibly leading to an underestimation of 

proliferative population. To rule out this possibility, we looked for presumptive basal cells 

in S-phase, reasonably several times more frequent than the corresponding M-phase ones 

(Takahashi et al., 1993 and 1995). So, we pulsed P4 - P10 opossum pups with BrdU, fixed 

their brains and looked for cortical Tbr2+/BrdU+ cells. Such cells were extremely rare, if 

any, and the vast majority of Tbr2+ cells lay above BrdU+ ones (data not shown and Fig. 

4Ga). This suggests that, in Marsupials, Tbr2+ cells are not proper basal progenitors, but 

represent a subventricular postmitotic compartment, interposed between intermitotic apical 

progenitors and postmitotic abventricular neurons. 

To corroborate this interpretation, we further investigated the origin and fate of 

Tbr2+ cells. In rodents, Tbr2+ cells are generated by a subset of neuronally committed 

apical progenitors, called “pin-like” cells or short neural precursors (SNPs), which, facing 

the ventricular cavity and not contacting the pial surface, can be distinguished from radial 

glial cells (RGCs) for specific firing of the α1-tubulin promoter (pTα1+ cells) (Gal et al., 

2006; Ochiai et al., 2009). We electroporated a pTα1-EGFP construct into the P10 

opossum cortex and fixed electroporated brains 2 days later, after a final pulse (60 min) of 

BrdU. Once verified their vitality and cytoarchitectonic integrity (by scoring radial 

distribution of BrdU+ and Tbr2+ cells, Fig. S2), we finally looked for GFP+/Tbr2+ cells 

(Fig. 4J). Many of them were found (Fig. 4Jb-b’’ ), confirming that opossum Tbr2+ cells 
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derive from apical progenitors, as in rodents. We then compared the distribution of Tbr2 

and the neuronal marker β-tubulin on coronal slices of P10 opossum brains (Fig. 4K). 

Tbr2+ cells lay below the main β-tubulin domain, but a substantial overlap between the two 

antigens was detectable as well (Fig. 4Ka,b): in particular, around 30% of acutely 

dissociated neocortical cells expressing Tbr2 were also positive for β-tubulin (Fig. 4Kc-h), 

consistently with the hypothesis that Tbr2 is transiently expressed before the activation of 

neuron-specific markers.  

 Finally, to get a better temporal resolution of the developmental process under 

examination, we pulsed P6 pups with BrdU, fixed their brains after different times, (from 

6h up to 72h), and immunoprofiled BrdU+ cells, performing time-course analysis of their 

radial distribution (Fig. 4G and Fig. 4H). Comparing profiles got at different times, BrdU+ 

cells seemed to move along a wave, from the ventricular side towards the marginal aspect 

of the cortical wall. In particular, up to 12h, all BrdU+ cells lay deep to the Tbr2+ belt (Fig. 

4Gb); starting from 24h, some of them were detectable within this belt (Fig. 4Gc); at 48h, 

about 1/3 of them were over it (Fig. 4Gd); finally, at 72h, the majority had overcome the 

Tbr2+ belt, so that only a few remained near the ventricle (Fig. 4Ge). Remarkably, the 

percentage of Tbr2 cells also immunoreactive for BrdU displayed a biphasic trend, arising 

from about 0% at 12h up 46% at 24h and subsequently declining to less than 10% at 3 days 

(Fig. 4I). In synthesis, neural progenitors exiting the cell cycle leave the VZ and activate 

Tbr2 18±6 hours after the last DNA synthesis; one day later, the same cells massively 

move to more marginal positions, where they downregulate Tbr2, while activating neuron-

specific markers (Fig. 4Kc-h).  
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Figure 4 | Dynamics of phospho-histone3 (pH3) and T br2 expression in the developing 
opossum cortex.  (A) pH3 immunoprofiling of mid-frontal neocortical sections of P1-P25 
opossums. Immunopositive cells are prevalently aligned near the ventricle, solid arrowheads point 
to rare abventricular pH3+ mitotic cells. (B) Diagramatic representation of pH3+ cells sampled in (A), 
classified in: l (luminal, including the two ventricular most cells rows), p (periventricular, 
corresponding to the densely packed zone over the ventricle minus the l belt), i (intermediate, 
corresponding to the region between p and marginal zone), m (marginal, corresponding to the 
marginal zone). (C) Tbr2 immunoprofiling of mid-frontal neocortical sections of P1-P18 opossums. 
(D,F). Linear densities (D) and radial distributions (F) of Tbr2+ cells sampled in (C). (E) Linear 
densities of Tbr2+ cells in the mouse. Grey, pink and green shading in (D) and (E) demarkate peak 
neuronogenesis windows for  primordial plexiform layer (ppl), inner cortical plate (i-cp) and outer 
cortical plate (o-cp), respectively. (G) Confocal Tbr2/BrdU immunoprofiling of neocortical coronal 
sections from opossum pups, pulsed with BrdU at P6 and sacrificed after different times: 1h, 12h, 
24h, 48h and 72h. Arrowheads in (Gc-e) point to cells immunoreactive for both BrdU and Tbr2. (H) 
Relative radial distribution of BrdU+ cells sampled in (G) compared to the Tbr2+ belt. (I) Time 
course of percentages of Tbr2+cells sampled in (G) also immunoreactive for BrdU. (J,K) Confocal 
Tbr2/EGFP (Ja-b’’) and Tbr2/β-tubulin (Ka,b) immunoprofiling of opossum cerebral cortex, 
dissected out at P10, acutely electroporated with a pTα1-EGFP plasmid and kept in vitro culture for 
48 hours. Magnifications of boxed areas in (Ja) and (Ka) are shown in (Jb-b’’) and (Kb), 
respectively. (Kc-h) Colocalization of Tbr2 and β-tubulin on acutely dissociated cells from P10 
opossum cortex. Abbreviations: cp, cortical plate; e, ependyma; iz, intermediate zone; mz, marginal 
zone; ppl, preplate; sp, subplate; se, subependymal zone; vz, ventricular zone; wm, white matter; 
II-IV, V, VI are cortical layers. Scale bars: 100µm in (A,C,G,J,K), 20µm in (Jb, Kb,c). 
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3. THE APICAL PROLIFERATIVE COMPARTMENT AND ITS DYNAMICS  

It stems from previous results that the apical progenitor compartment is the place where 

pallial projection neurons are generated. To reconstruct its dynamics, we performed time-

course analysis of its hallmark Pax6 (Englund et al., 2005). As in Placentals, this 

homeoprotein was specifically expressed in the pallial ventricular zone, throughout 

neuronogenesis (Fig. 5A). On 10µm-thick sections, linear frequencies of Pax6+ cells were 

160±16 cells/100 µm at P4,  132±4 cells/100 µm at P8, 92±8 cells/100 µm at P10, 66±11 

cells/100 µm at P15 (Fig. 5B). These values were slightly lower than the corresponding 

mouse ones (185±16 cells/100 µm at E12.5, 156±13 at E14.5 and 96±13 cells/100 µm at 

E16.5; data not shown), however the two temporal progressions were basically very 

similar. All that suggests that decreased neuronal density and reduced thickness of the 

opossum cortex (Saunders et al., 1989), rather than reflecting a change of the apical 

proliferative compartment size, mainly originates from the absence of a basal, transient 

amplifying population.   

 

 

Figure 5 | Analysis of the apical progenitors compa rtment.  (A) Pax6 immunoprofiling of a 
selection of coronal sections from P4-P15 opossum telencephalons. (B) Linear densities of Pax6+ 
cells sampled in (A). (C) EGFP/β-tubulin immunoprofiling of opossum cerebral cortex, dissected out 
at P10, acutely electroporated with a pTα1-EGFP plasmid and kept in vitro culture for 48 hours. 
Magnifications of the boxed area in (Ca) are shown in (Cb-b’’). Arrowheads in (Cb-b’’) point to pial 
processes of electroporated cells, immunoreactive for EGFP, but not for β-tubulin. Scale bars, 
400µm in (A), 100µm in (C). 
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Moreover, in placental neocortex, the Pax6+ compartment is not homogeneous. It includes 

neural stem cells with morphology of radial glial cells (RGCs) and pTα1+ neuronally 

committed progenitors, having lost their contact with pial surface. It is noteworthy that, 

upon electroporation of the pTα1-EGFP transgene into the opossum cortex, fluorescent 

cells displayed morphology of proper RGCs, extending from the ventricular edge to the 

pial surface (Fig. 5Ca). Moreover, despite of the time elapsed after electroporation, pial 

processes and end-feet of many of these cells were still not immunoreactive for neuron-

specific β-tubulin, ruling out that they were neurons (Fig. 5Cb-b’’ ). All that means that in 

Marsupials, either pTα1 fires in RGCs, or retraction of the pial process by neuronally 

committed progenitors is delayed as compared to rodents.  
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4. DISTRIBUTION AND GENERATION OF CORTICAL GABAERGIC CELLS  

In the mouse, GABAergic neurons are generated within ventral forebrain and reach 

the cortex by tangential migration, according to a well characterized spatio-temporal 

pattern (reviewed in Marin and Rubenstein, 2001; López-Bendito et al., 2004). First 

interneurons enter the cortex at around E12.5, the migratory wave reaches the mid-

neocortex at E13.5, the same gets into the hippocampus by E15.5. Early migration is 

mainly superficial, by E13.5 a robust periventricular migratory route appears, becoming 

predominant at later stages. In order to establish developmental correspondences between 

mouse and opossum, we systematically scored the distribution of GABA immunoreactive 

cells in the developing post-natal telencephalon of the marsupial. Since P1 and up to P14, a 

huge number of GABA+ cells were detected within the ventral telencephalon. Here, they 

were early confined to abventricular layers, and later also detectable near the ventricle 

(Fig. 6Aa-d).  

Cortical distribution was more complex. At P1 only a diffuse and light 

immunoreactivity was detectable throughout the marginal pallium (Fig. 6Aa’), and rare 

GABA+ somata were localized in presumptive paleocortex (Fig. 6Aa and data not shown). 

At P4 a substantial number of GABA+ cells were present in the abventricular half of both 

paleo- and neocortex, but not in the archicortex (Fig. 6Ab,b’). At P8, abventricular 

GABA+ cells were present throughout the cortex, including the marginal hippocampus, 

ventricular GABA+ cells were conversely limited to paleo- and neocortex (Fig. 6Ac,c’). 

Finally, at P14, GABA+ cells were detectable throughout the cortex, clustered in a narrow 

periventricular belt and more loosely distributed elsewhere (Fig. 6Ad,d’). Remarkably, 

spatio-temporal distribution of immunoreactivity against glutamate-decarboxylases 65 and 

67 (GAD65 and GAD67) was consistent with the GABA pattern (Fig. 6B). 
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Figure 6 | Distribution of GABA and GAD immunoreact ivity in developing opossum cortices.  
(Aa-d) Distribution of GABA+ cells on frontal sections of P1-P14 cortices. (Aa’-d’) Magnifications of 
boxed regions in (Aa-d). (Ba-c) Distribution of GAD+ cells on frontal sections of P4, P8 and P10 
cortices. (Ba’-c’) Magnifications of boxed regions in (Ba-c). GAD+ cells are evident in the MZ and 
the SP since P4 (Ba’-b’, solid arrowheads). At P8, an additional reactivity is detectable in 
proliferative layers (Bb’, empty arrowheads). Finally, at P10, both MZ and periventricular GAD 
signals are strengthened (Bc’,c’’) and additional GAD+ cells are present throughout the cortical 
plate (Bc’). Abbreviations: cp, cortical plate; iz, intermediate zone; mz, marginal zone; sp, subplate; 
vz, ventricular zone. Scale bars: 400µm in (Aa-d; Ba-c), 50µm in (Aa’-d’; Ba’-c’’). 
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5.  POST-NEURONAL HISTOGENESIS : GENERATION OF ASTROCYTES AND 

OLIGODENDROCYTES  

In rodents gliogenesis follows neuronogenesis and that happens in the developing 

opossum cortex as well. To assess astrocytogenesis progression, we looked at the 

distribution of the Glial Fibrillary Acid Protein antigen (Gfap), from P8 (i.e. the middle of 

the neuronogenic window) onward. A periventricular signal was detected from the 

beginning, restricted to hippocampus at P8 (Fig. 7Aa), spread throughout the cortical field 

at P12 (Fig. 7Ab). This signal presumptively corresponds to the soma of radial glial cells, 

which - in primates - share this marker with true astrocytes (Levitt and Rakic, 1980; 

Sancho-Tello et al., 1995). An abventricular Gfap signal associated to cells with 

morphology of astrocytes, could be found only later, starting from P18-P20 (data not 

shown and Fig. 7Ac-f). These cells were detectable in the MZ, the grey matter and white 

matter. A subset of them coexpressed the mature astrocyte marker S100β. (Fig. 7Bg-i’’ ). 

The differentiation of oligodendrocytes was studied by monitoring immunoreactivity for 

the marker O4 (Sommer and Schachner, 1981). A strong signal was found at both analyzed 

ages, P40 and P60, restricted to white matter (wm), internal capsule (ic) and hippocampal 

commissure (hc) (Fig. 7Ca,b). [Monodelphis has no corpus callosum (Abbie et al., 1939)].  

 

 

Figure 7 (A)  | Gliogenesis in the opossum cortex . (Aa-f) Gfap immunoprofiling of coronal 
sections from P8-P60 cortices. Arrowheads in (a) and in (b) point to Gfap+ presumptive radial glial 
cells, within P8 hippocampus and P12 cortical periventricular layers, respectively. Arrows in (c-f) 
indicate Gfap+ cells with astrocyte morphology. Scale bar: 100 µm.  
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Figure 7 (B/C)  | Gliogenesis in the opossum cortex . (Bg-i’’) Combined Gfap/S100β 
immunoprofiling of P20-P30 cortices, showing specific colocalisation of these two antigens within 
more mature astrocytes, in cortical plate (CP) and marginal zone (MZ). (Ca,b) Immunoprofiling of 
P40-P60 mid-frontal cortical sections for the oligodendrocyte-specific marker O4: an intense 
staining may be found in white matter (WM), internal capsule (ic) and hippocampal commissure 
(hc). Scale bars: 100 µm in (Aa-f), 50 µm in (Bg-i), 200 µm in (B). 
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DISCUSSION   

In the present study we found that the cortico-cerebral neuronal complement is 

generated in the opossum pup between P1 and P16, molecular diversification of neurons 

belonging to distinct laminae largely resembles that of Placentals, migration of cortical 

plate neurons follows the “inside-out” rule. We demonstrated that opossum cortico-

cerebral neurons are almost entirely generated by apical progenitors, and that Tbr2, the 

hallmark of placental basal progenitors, is only transiently expressed by opossum post-

mitotic elements, prior to the activation of neuron-specific genes. Moreover, we showed 

that such absence of a basal transient amplifying population is the main reason for reduced 

thickness and decreased neuronal density, peculiar to the Marsupials cortex (Saunders et 

al., 1989; see also http://brainmaps.org/). As for GABAergic neurons, we found that they 

are mainly generated in the subpallium, like in rodents (reviewed in Marin and Rubenstein, 

2001), and invade the cortex by P4. Finally, like in Placentals, cortical histogenesis 

continues with astrocytogenesis (from P18 onward) and ends up with 

oligodentrocytogenesis (around P40 and later).  

 We found that molecular diversification of the cortical plate is highly conserved 

between Marsupials and Placentals, with Foxp2 and Tle4 restricted to deeper layers and 

Brn1 and Cux1 mainly confined to upper layers. This suggests that the neocortical 

hexalaminar profile arose before the branching between these two subclasses, about 180 

My ago (Murphy et al., 2004). Minor differences were observed in derivatives of preplate, 

namely the phylogenetically most ancient component of our cortex (Marin Padilla, 1998). 

Based on Calretinin immunostaining, the opossum subplate appeared quite prominent, as 

previously assessed by simple histological inspection (Saunders et al., 1989), far thicker 

than in rodents (Mallamaci et al., 2000). Cells expressing Reln, a hallmark of Cajal Retzius 

(CR) neurons, were detectable beneath the pia mater, in both neo-and archicortex, like in 

Placentals. However their appearance did not predate the splitting of the preplate, as it 

happens in rodents (Mallamaci et al., 2000). We reconstructed rules governing marsupial 

neocortical lamination, by following two complementary experimental approaches. First, 

we compared the mature distribution of neocortical laminar markers with the radial settling 

profile of neurons generated at different developmental times, as assessed by BrdU pulse-

chase analysis. Second, we performed systematic time-course expression analysis of a 

selection of these markers, from their appearance to the end of the lamination process. 
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Both approaches indicated that, in M. domestica, radial neuronal migration takes place in a 

way similar to Placentals. Like in rodents (D’Arcangelo et al., 1995; Yoshida et al., 2005), 

such process is reasonably promoted by the glycoprotein Reelin, released by Cajal-Retzius 

cells and, later, by some CP neurons. This protein seems - however - dispensable for 

preplate splitting, which apparently occurs in the absence of detectable expression of its 

mRNA. 

 Beyond the study of laminar differentiation and radial migration, we paid special 

attention to the origin of cortical neurons, both glutamatergic and gabaergic. In Placentals 

glutamatergic neurons are generated within the dorsal telencephalon by two periventricular  

proliferative compartments, the apical and the basal, the former confined to the ventricular 

zone, the latter mainly lying in the subventricular zone (reviewed in Guillemot, 2005). It 

was previously reported that, whereas an apical compartment is present in the dorsal 

telencephalon of all vertebrates, the basal one seems to specifically emerge in Placentals 

(Saunders et al., 1989, Abdel-Mannan et al., 2008). We readdressed this issue by a variety 

of approaches, including scoring of pH3+ mitoses and Tbr2+ cells, immunoprofiling of 

acutely administrated BrdU and pTα1-driven EGFP, as well as BrdU pulse-chase analysis. 

It resulted that, in the opossum, cells lying at the VZ/IZ border and expressing Tbr2 do not 

form a transient amplifying population, but represent a postmitotic transitional 

compartment, passed through by neuroblasts in the process of switching Pax6 off and 

activating neuron-specific β-tubulin. Remarkably, such absence of a tight linkage between 

Tbr2 expression and basal progenitor identity is not surprising, as this transcription factor 

is also expressed in the pallium of other vertebrates missing a basal proliferative 

compartment, such as Anamnia and birds (Brox et al., 2004; Mueller et al., 2008, Bulfone 

et al., 1999). Anyway, it has to be recalled that a few abventricular pH3+ mitoses may be 

actually found in the lateral most opossum pallium, mainly at P4 – P6. It is tempting to 

speculate that such basal proliferative activity may selectively increase the final neuronal 

output of the small ventricular sector inbetween neopallial and striatal fields, in charge of 

generating paleocortex and other latero-ventral derivatives of the amniote telencephalon 

(Fernandez et al., 1998).  
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CONCLUSIONS 

Our analysis shows that three key aspects of cortico-cerebral histogenesis are 

conserved among mouse and opossum: 

• in both system models, glutamatergic and gabaergic neurons are generated by 

progenitors within dorsal and ventral telencephalic periventricular layers, respectively;  

• such neurons reach the cortical plate following shared patterns of radial and tangential 

migration, respectively; 

• molecular differentiation of neurons belonging to different laminae takes place 

according to similar profiles; 

So, based on temporal progression of morphogenetic subroutines subject of our analysis, 

we can sketch a scheme with presumptive correspondences among cortico-cerebral 

developmental ages of mouse and opossum (Fig. 8). 

 

One main difference between mouse and opossum emerged from our study: this is the 

structure of proliferative compartments of the cortical primordium. In the opossum, only an 

apical proliferative compartment exists. A Tbr2+ compartment, reminiscent of the murine 

basal compartment, can be found in between apical intermitotic progenitors and mature 

neurons, however it includes only postmitotic elements.  

 

These findings suggest that, whereas the general blueprint of neocortex emerged before 

the branching between Eutherians and Methaterians, the development of a basal 

proliferative compartment is a subsequent acquisition of the Eutherians lineage, paving the 

way to the thickening of their cortical grey matter.  
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Figure 8 | Opossum and mouse cortico-cerebral histo genesis: a comparison.  (A) Radial 
distribution and approximate temporal generation windows of neurons, astrocytes and 
oligodendrocytes in the opossum and mouse cerebral cortex. (B) Peak generation times for 
primordial plexiform layer, deep cortical plate and superficial cortical plate in opossum and mouse. 
(C) Temporal profile of interneurons spreading in the developing cerebral cortex of opossum and 
mouse. Abbreviations: e, ependyma; cp, cortical plate; ppl, preplate; se, subependymal zone; wm, 
white matter; I, II-VI are cortical layers.  
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SUPPLEMENTARY MATERIAL   

SUPPLEMENTARY TABLE 1 
 
 
Table 1 | Placental-vs-Marsupial immunogens conservation.  
 
antibody immunogen used 

to raise the 
antibody 

opossum immunogen 
ortholog 

aa % identity 

anti-Brn1, 
goat 
polyclonal  

 
hsa- Brn1:         
C- terminal           
aa 421-500 
(ENSP000003550
01)  

mdo-Brn1 
(ENSMODP00000022595) 
aa 402 -462  

97.5% identity in 
80 residues 
overlap 
 

anti-Calb2 
(Calretinin)
mouse 
monoclonal 

hsa-Calb2:  
all 
ENSP0000030750
8), 271 aa  

mdo-Calb2-1 
(ENSMODP00000017822)
264 aa 

85.2% 
in 271 aa overlap 

mdo-Calb2-2 
(ENSMODP00000028132) 
273 aa 

85.0% 
in 274 aa overlap 

anti-Cux1 

mmu-Cux1:  
aa 1111-1332 
(ENSMODP000000
16992 ) 

mdo-Cux1 
(ENSMUSP00000106740)  
aa 1035-1254 

97.2%  
in 214 aa overlap 
 

anti-Foxp2, 
rabbit 
polyclonal 

has-Foxp2:  
aa 700-715 
[EDDREIEEEPLSE
DLE] 

mdo-Foxp2 
(ENSMODP00000019790) 
aa 678-694  

100% 
in 16 aa overlap 
 

anti-
GAD65/67, 
rabbit 
polyclonal 

hsa-Gad65:  
aa 570-585; 
hsa-gad67:  
aa 579-594 
[DIDFLIEEIERLG
QDL] 

mdo-Gad65 
(ENSMODP00000010945) 
aa 568-583;   
mdo-Gad67 
(ENSMODP00000010606)
aa 577-592 

100% 
in 16 aa overlap 
 

anti-Pax6, 
rabbit 
polyclonal 

mmu-Pax6:                
aa 267-285 
(ENSMUSP000001
06716 ) 

mdo-Pax6 
(ENSMODP00000012008)  
aa 251 – 269  

100% 
in 18 aa overlap 
 

anti-Tbr2, 
rabbit 
polyclonal 

mmu-Tbr2:  
aa 650-688  
[TPSNGNSPPIKCE
DINTEEYSKDTSKG
MGAYYAFYTSP] 

not available 
(seq available only 
for the first 402 
aa: Ensembl 
ENSMODP00000018828) 

not applicable 
(72.9% mouse-
opossum identity, 
in 410 aa, limited 
to the available 
opossum 402 first 
aa) 

anti-Tle4, 
rabbit 
polyclonal 

mmu-Tle4:  
aa 273-473 
(ENSMUSP000000
57527 )  

mdo-Tle4 
(ENSMODP00000011926) 
aa 132-332 

98.5%  
in 200 aa overlap 
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 FIGURE S1 

 

 

Figure S1 |  Late expression of Calretinin in the opossum cortex . (A-F) Calretinin (Calb2) 
immunoprofiling of coronal sections from P18-P30 opossum cortex. Solid arrowheads point to 
immuno-positive cells in the outer cortical plate at P18 (A), double arrowheads demarcate the 
deeper, areally restricted expression domain visible starting from P20 onward (C-F). Empty 
arrowheads highlight the absence of Calb2+ cells in more superficial rows of the CP at P20 and 
later (B,C,F). Abbreviations: e, ependyma; hi, hippocampus; mz, marginal zone; se, subependymal 
zone; wm, white matter; II, III, IV, V, VI are cortical layers. Scale bar: 100µm.  
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FIGURE S2 
 

 
 

Figure S2 | Distribution of BrdU and Tbr2 immunorea ctivity in the opossum cortex explanted 
at P10, electroporated by pT α1-EGFP, kept in floating culture for 48h and termin ally 
administered with a 60’ pulse of BrdU.  Scale bar: 100µm.  
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