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Introduction

The aim of this thesis is the study of a class of singular perturbations of the
Laplacian in L?(R3) .
Roughly speaking with singular perturbations of the Laplacian we mean Schrédinger
operators of the type —A + U(z) , where the potential U(z) is supported by a set
of Lebesgue measure zero.
More precisely a singular perturbation of the Laplacian supported by a given set
of Lebesgue measure zero can be characterized as a selfadjoint extension of the
Laplacian restricted to smooth functions vanishing on the chosen set.
In different fields these operators were referred to with different denominations
such as hamiltonians with §-interactions, zero- range potentials, contact poten-
tials etc..
In what follows we will give a description of such Schrédinger operators using a
quadratic form method based on a renormalization technique. We will consider
the cases in which the support of the potential is a discrete set of points, a regular
curve or a regular surface, with a special emphasis on the second case which is
not sufficiently studied in the literature.
Moreover we will study some applications of point interactions, i.e. interactions
supported by a discrete set of points, to the description of some models of random
media.

We start with some historical remarks.
The investigation of solid state physicists and nuclear physicists was focused, in
the early days of quantum mechanics, on the search of solvable and realistic mod-
els for short range interactions (as opposed to the Coulomb interaction which was
the only solvable, realistic long range interaction known).
The lack of a minimal length pushed toward the investigation of a zero-range
interaction as a general model for short range interactions at low energies (when
the wavelengths associated with the interacting particles are much bigger than
the range of the interaction among them).
The first appearance in the physical literature of a Schrédinger operator with
point interactions was due to Kronig and Penney ([43]), who considered a peri-



odic linear array of point interactions as a model for a one dimensional crystal.
The first applications of point interactions in three dimensions were due to Bethe
and Peierls ([16]), Thomas ([72]) and Fermi ([23]) who studied point interactions
as a realistic potential for the two-body nuclear interaction at low energy.

In subsequent works applications to the three-body problem in quantum me-
chanics, i.e. a three particle system with a two-body 6- interaction (see e.g.
[49],(29],[71]) and to the many-body problem in quantum statistical mechanics
(see e.g. [40]) were also studied.

As an aside it should be noticed that such N-body (IV > 3) problem is significantly
more complicated than the ones we will consider in this thesis. As a matter of
fact a general definition of a perturbation of the Laplacian in L*(R®*") supported
by the submanifold where the coordinates of at least two particles coincide is not
yet available.

Point interactions (often called Fermi pseudopotentials) are by now widely used
in many branches of physics (see e.g. [17],[20],[48],[64]).

Nevertheless it should be remarked that in almost all the applications one can find

in the physical textbooks the hamiltonian with point interactions is only formally
defined as

N1

—A+ Z _6:1;
i=1 %
where y; € R® , §,, is the Dirac measure in y; and —1/47m¢; has the meaning

of a scattering length.
As a consequence it is easily realized that all the computations (e.g. of the scat-
tering data) can be performed using only the first order perturbation theory, i.e
the Born approximation, since the subsequent orders give rise to divergent terms.
In particular there is the still persistent convinction in the physics community
that point interactions are only a useful trick which cannot give rise to a well
defined (i.e. selfadjoint) and non trivial (i.e. different from —A) hamiltonian (see
e.g. the remark in [40] pag. 282).
Nevertheless the difficulty arising from the above mentioned study of the three-
body problem stimulated some efforts to give a rigorous mathematical meaning
to such hamiltonians.
The first success was obtained in 1961 by Berezin and Faddeev ([15]).
They gave the rigorous definition of the Schrédinger operator with point interac-

tion in the origin using the Krein’s theory to characterize the selfadjoint extensions
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of the Laplacian restricted to a class of smooth functions vanishing in a neighbor-
hood of the origin.

By now many different techniques can be employed to give a rigorous defini-
tion, as selfadjoint operator in L?(R?), of the Schrddinger operator —A, y with
point interactions located at the set ¥ = {yy,...,yn} , y; € R® | with strength
o ={ay,...,an} , o; € R (see [7] for a complete account of the subject).
Perhaps the easiest way is to define it as the unique selfadjoint operator in L? (R?)

whose resolvent equals
N —
(=Bay = k)7 =Gr+ 3 [Tay (k)™ 13Gi(- — w)Ge(- — y5) (-1)
Ji=1

where k € C with Im k > 0 (C is the complex plane), I'y y (k) is the N x N

matrix

Tar (k)i = (o5~ +)63 — Gulys — ) (2)
and
Gy = (=A — k) (3)
giklo—s']

Ge(z—2) =(-A - k) (z~2) = il — 2] (4)

_ Gr(z) z#0
Gi(z) = (-5)

0 z=20

The real parameters oy, ..., oy are related to the scattering length a,y asso-
ciated to —A, y via the formula (see [7] pag. 136)
1 N

4r

[Tar(0) 7'

7,i=1

QoY =

So if the interparticle distances are sufficiently large we can consider —1/ 4o
as the scattering length associated to the point interaction placed in y;.
The resolvent given by (.1) is a simple expression (in fact a finite rank perturba-
tion of the free resolvent) and so it can be easily handled to get information on




the operator —A, y (e.g. action, domain, spectrum etc.).

First one can show that the action of the operator on functions vanishing on an
arbitrary neighborhood of Y reduces to the action of the Laplacian.

This means that —A, y really defines a hamiltonian with zero-range potentials
located at Y.

Moreover, looking at the singularities of the free Green’s function Gi(z — z') ap-
pearing in (.1), one can see that the domain D(—A,y) is not contained in the
form domain of the Laplacian H'(R®) (H™(R") indicates the standard Sobolev
space of order m in R").

As a consequence we have that point interactions in three dimensions cannot be
defined as small form perturbation of the Laplacian.

The same is true in two dimensions while in one dimension the situation is con-
siderably simplified by the fact that the free Green’s function belongs to H'(R).
In this last case the domain is made of elements of D(—A) satisfying a certain
boundary condition at the points where the interaction is located and in fact point
interactions can be defined as small form perturbation of the Laplacian.

In dimensions four the free Green’s function is not square integrable and this pre-
vents the construction of a non trivial perturbation of the Laplacian supported
by a discrete set of points.

We remark that the above considerations can be generalized to the case of a per-
turbation supported by a manifold in R".

In fact if the codimension is greater than three the é-interaction cannot be de-
fined, for codimensions three or two we have the genuine §- interaction (i.e. it
is not a small form perturbation of the Laplacian) and for codimension one the
d-interaction merely corresponds to a boundary condition (i.e. it is a small form
perturbation of the Laplacian).

In this thesis we always consider perturbations in L?(R?) since they are particu-
larly relevant in the physical applications.

Using the resolvent (.1) one can also investigate the spectral properties of —A, y.
It is found that the spectrum doesn’t exhibit pathologies: the non negative part
of the spectrum is purely absolutely continuous while in the negative part there
can be at most a finite number of eigenvalues of finite multiplicity.

In particular, exploiting the properties of the matrix T4,y (k), such eigenvalues
and the corresponding eigenfunctions, together with all the relevant scattering

quantities, can be explicitly computed.



Finally we mention that from (.1), for |k|/inf;a; < 1and inf; o infia ly;—w| >
1, one can explicitly derive a complete low energy, small scattering length expan-
sion which is free of divergences.

As we already mentioned, in the formal treatment of point interactions only the
first order term of such expansion is available.

In recent years some problems, like the analysis of some kind of §- shell inter-
actions in quantum mechanics ([33],[11] and references therein), the motion of a
quantum particle interacting with a polymer ([22]), the study of polymer measures
in quantum field theory ([3] and references therein), some models of antenna in
classical electrodynamics ([34],[74]), have motivated a certain interest in the rig-
orous construction of more general singular perturbations of the Laplacian.

In particular the existence of such operators has been proved, under some very
weak conditions on the support of the potential, with a great variety of techniques.
Using non-standard analysis, which is a natural framework for justifying the for-
mal manipulations usually involved by é function computations, in [5] a proof is
given for the existence of a perturbation of the Laplacian supported by a brownian
path. .

Other methods are used in [18], where the definition is obtained studying the
non trivial selfadjoint extensions of the Laplacian restricted to smooth functions
vanishing on the support of the perturbation, and in [4], where the singularly
perturbed hamiltonian is given by resolvent limit of smooth approximating oper-
ators.

The latter approach is rather general and allows to obtain, as particular cases,
. perturbations supported by points, submanifold of R” and brownian paths which
are particularly useful in applications.

The specific case of a local é-interaction (see discussion below) supported by a
smooth curve seems to be only treated in [46], where the operator is characterized,
via an application of embeddings theorems, in the space of Fourier transforms.
If the classical Dirichlet capacity of the support is different from zero then the
definition of the operator can be also achieved using standard techniques like
quadratic forms method or potential theory (see e.g. references given in [18]).

A more abstract result is given in [45], where the notion of singular bilinear form
defining a perturbation of a positive and selfadjoint operator in a Hilbert space
is introduced and conditions for the construction of the perturbed operator are
given.




Somehow related questions are discussed in [67], where sufficient conditions for
the existence of perturbations of a linear differential operator supported by sub-
manifold of codimension greater than zero are given, and in [59], where existence
and uniqueness of the solution of a Schrédinger type equation with a potential
given by a distribution are proved.

It should be emphasized that, except for some special case like point interactions
([7]) or 6-sphere interactions ([11]), starting from the above general definitions it
is difficult to get information about the properties of the operator, e.g. detailed
structure of the domain, action of the operator, analysis of the spectrum, scatter-
ing theory etc..

In some cases it can also happen that the defined interaction has a non local char-
acter, in the sense that it is defined by a sort of generalized boundary condition
connecting different points of the support of the interaction (see the discussion at
the end of section 1.3).

Let us now give a survey of the material exposed in this thesis.

In chapter 1 we develop a new unified approach, based on the theory of
quadratic forms and on a renormalization technique, for the description of Schrédinger
operators with é-like interactions supported by particular sets of Lebesgue mea-
sure zero in R3.

More precisely given a set & C R® , where £ can be a finite set of points, a regular
curve or a regular surface, we define a quadratic form Fj satisfying the following
properties :

i) it is closed and lower bounded,

ii) D(F¢) 2 D(Fp) , where D(Fp) = H'(R®) and Fy(u,u) = Jrs | Vu|?dz ,

iii) F¢(u,v) = Fy(u,v) for any u € D(F,) which vanishes in a neighborhood of &
and for any v € D(F).

When these conditions are satisfied we say that F¢ defines a perturbation of the
Laplacian supported by € (cfr. definition given in [3],[5]).

Once the quadratic form is defined we provide a complete characterization of the
domain and action of the selfadjoint operator associated to F¢ and also an explicit
formula for the resolvent.

Moreover it is clear from the construction that the interaction we are defining has
a local character, being completely specified by an assigned function on £ which



is a measure of the strength of the interaction.

In order to illustrate the idea of the construction of the quadratic form we start
with the case in which £ is a finite set of points (section 1.1).

As we have already mentioned, the domain of —A, y contains functions which do
not belong to H'(R?) and have singularities in yi,...,yy of the type |- —y;|™*, '
7=1,..,N.

Using the analogy with electrostatics we can define, for each u € D(—=A,y) , N
point charges ¢, = {¢l,...,¢} depending on the singularity of v in ¥ and the

corresponding potential
z\/‘Qu Zq -vy;) , for A>0.

Then each v € D(—A, y) has the property that u — éi\/;\qu has finite energy,
i.e. belongs to H'(R?).
This suggests that the quadratic form F,y , associated to —A,y , can be de-
composed into the sum F,y = 7 + @ay , where 7 is essentially the energy
associated to the regularized potential u — G’i\/;qu and @i’y is a sort of renormal-
ized energy of the system of the point charges ¢, located at Y.
In fact we will prove that F, y really defines a (local) perturbation of the Lapla-
cian supported by Y.
The same idea is then applied, in section 1.2, to the more interesting case of a
perturbation of the Laplacian supported by a regular curve C.
One has only to replace the point charges g, with a linear charge ¢, distributed
on C and consider the corresponding potential CV;‘.\/;Eu produced by &,.
Again, for a given strength § , the resulting quadratic form is essentially the sum
of the energy 72 associated to u — éiﬁﬁu and of an extra term ®} ; due to the
renormalized energy of &,.
The proof that Fjy defines a (local) perturbation of the Laplacian supported by
C requires some work due to the fact that the space of the possible linear charges
distributed on C is infinite dimensional. ,
Finally, in section 1.3, we will briefly consider the well known case of a perturba-
tion supported by a regular surface (in this case the é- interaction is shown to be
described by a boundary condition on the surface).
We will show, by simple algebraic manipulations, that the corresponding quadratic

form can be written in terms of a surface charge, in analogy with the previous




cases.
Moreover we discuss possible generalizations of our method in the direction of the
results of [4].

Chapter 2 is devoted to the study of the spectrum of the Schrédinger operator
—Ap,c with é-interaction of strength 8 supported by the smooth curve C in R®
of finite length.

Such analysis, at the best of our knowledge, have never been developed in the
literature.

The methods used and the results obtained are a direct generalization of the work
done for point interactions in [7].

Here the basic object of the analysis is the matrix I', y (k) appearing in (.1), which
completely characterizes the interaction.

In the case of a curve some technical complications arise from the fact that the
basic object characterizing the interaction is now an unbounded operator, acting
on the infinite dimensional space of the linear charges distributed on the curve.
In section 2.1 we show that the resolvent of —Apc is a smooth perturbation of
the free resolvent.

Then, using the Weyl theorem and the limiting absorption principle, we obtain
that the essential spectrum reduces to the absolutely continuous spectrum and
coincides with the non negative real axis.

In section 2.2 we prove the absence of positive embedded eigenvalues and charac-
terize the negative eigenvalues with the corresponding eigenfunctions. ‘
Moreover we show that if there is a ground state than it is non degenerate and
the corresponding eigenfunction is strictly positive.

The stationary scattering theory, with the explicit calculation of the scattering
wave functions, the scattering amplitude and the scattering operator, is described
in section 2.3, where also the connection with the time dependent scattering the-
ory is outlined.

In section 2.4 we apply the preceding analysis to the special case of a perturbation
of constant strength supported by a circle.

Using the expansion in Fourier series the model can be explicitly solved and ad-
ditional information on the properties of the operator can be obtained (e.g. the

behaviour when the radius is going to zero, the occurrence of bound states etc.).



In chapter 3 we are concerned with the study of two different kinds of appli-
cations of point interactions to the analysis of models of random media.
By arandom medium we mean a macroscopic medium whose response to an exter-
nal field can be only statistically given because the precise microscopic structure
of the medium is not available.
Tipically such response is described by coefficients (e.g. thermal conductivity, di-
electric tensor etc.) and/or boundary conditions (e.g. electrostatic of conductors,
scattering of sound waves etc.) for the field equations.
As a consequence the description of the medium is naturally reduced, from a
mathematical point of view, to the study of some kind of p.d.e. with random
coefficients and/or with boundary conditions on randomly placed surfaces.
In the physical applications one is generally interested in the macroscopic be-
haviour of the medium. Then the main object of the mathematical theory is to
describe the conditions under which the solutions of the field equations exhibit
only a weak dependence on the specific microscopic realization of the medium
(deterministic behaviour of the medium).
A typical result in this direction is the derivation of an effective equation, i.e.
a deterministic equation which describes the behaviour of the system with high
probability.
Another interesting question is the investigation of the fluctuations around the
limit behaviour given by the effective equation, which are useful to estimate the
deviation of the real medium from the effective medium.
The first kind of application of point interactions to the study of a random
medium, given in sections 3.1, 3.2, concerns the low energy neutron scattering
from liquids or amorphous substances ([64,[48]).
The interaction between the neutrons and nuclei of the target can be described
with a good approximation by a point interaction with a prescribed scattering
length.
Since the positions of the nuclei are only statistically known then the problem is
reduced to the study of the following (formally written) Schrédinger equation

N
1

—Apy + ~ i) ¥ = B¢y
i=1 7

where —1/4me; is the scattering length of the nucleus in yj(w) and w is an
element of some probability space.




So we have a model of random medium whose response is taken into account
via the random coefficients (1/;)é,,(,) and one can ask under what conditions a
deterministic behaviour appears.

Our result is that if the nuclei are independently and identically distributed and
0 < e¢; <|aj|/N < ¢y < +o0o then in the limit N — +oo the solution of the above

equation converges to the solution of the effective equation

~AY+UY = By

where the effective potential U represents the scattering length per unit volume
of the system of the scatterers.
Moreover the fluctuations of ¥y around the limit i/ can also be characterized.
The result was well known since long time by the nuclear physicists ([64]) on the
basis of a Born approximation of the formal §-interaction and then neglecting the
multiple scattering effects.
The treatment we use here is not subject to these limitations since in the rigorous
definition of point interactions any order of approximation in the Neumann series
is properly taken into account and, in particular, the multiple scattering effects
are not neglected.
This fact seems to have some non trivial consequences on the physical theory (see
the discussion in section 3.2).
We observe that the convergence result can also be interpreted in the opposite
direction, in the sense that any given reasonable potential for the Schrédinger
equation can be reconstructed by many randomly distributed point interactions,
whose strength and distribution law are uniquely determined by the potential
itself.
In this sense point interactions can be considered as a sort of elementary potentials
in quantum mechanics.
In the last two sections of the chapter we study the connections between point
interactions and boundary value problems.
In particular in section 3.3 we consider the Schrodinger operator with é-interaction
supported by IV spheres centered in Y = {y1,...,yn} of strength v = {~,...,4V}.
As it is pointed out in section 1.3 such operator is nothing but the Laplacian
defined on functions satisfying a boundary condition of the type

10
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on the surface of each sphere, where 9/9n} (resp. 8/9n; ) indicates the deriva-
tive in the outward normal direction to the surface evaluated from the exterior
(resp. the interior) of the surface. .
When the radius r of the spheres goes to zero and if the strength is renormali
zed according to 4/(r) = —(r + 4me;r?)™! , we prove the resolvent convergence
to the Schrédinger operator with point interactions located at ¥ of strength
a={ay,....,an}.
We observe that such result can be taken as a new definition of point interactions.
The treatment is then generalized in section 3.4 for the analysis of another model
of random medium, in which randomness enters via boundary conditions imposed
on many randomly placed obstacles.
In fact we consider the Laplacian with boundary conditions of the above type on
the surface of N independently and identically distributed spheres with radius
N-1,
For N — 400 and fﬂ;, = —N(1+4na;)™! , 1+ 4we; # 0, we prove resolvent
convergence to —A + U , where again U is the scattering length per unit volume
of the system of the obstacles.
The key ingredient of the proof, following the idea of [25], is the use of point in-
teractions as a good approximation for the converging sequence of operators (see
the discussion at the end of section 3.4). V
In section 3.3, 3.4 it is also sketched how the above results can be extended to the
exterior Robin (or third kind) boundary value problem for the Laplacian.
We stress that the sequence of boundary value problems under consideration is
not uniformly bounded from below and moreover the effective limit potential can
also have a negative part.
At the best of our knowledge this seems to be the first result on the asymptotic

behaviour of such kind of boundary value problems.

Finally in the appendix we give the derivation of the time-dependent propa-
gator associated to the Schrédinger operator with one point interaction in R2.
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Chapter 1

Quadratic forms for singular perturbations
of the Laplacian

1.1 Point interactions

In the introduction we have defined the Schrédinger operator with point
interactions via its resolvent. Here we give an alternative definition via the
construction of the corresponding quadratic form.

Let Y = {y1,...,yn} be a set of N distinct points of R® and o =
{es,...,an}, with e; € R,j=1,...,N.
For each positive A let us define the following quadratic form in L*(R?)

D(Foy) ={u € L*(R%)| 3q. € R s.t. u—G, /50 € H'(R®)} (1.1)

Foy(u,u) = F2 (v, u) + ) v (qu, 0u) (1.2)

where
F(u,u) = /Ra IV(u—éi\/xqu)|2d:v+/\/;za(u—~é‘.\/;qu)2d:z——)\ /Ra u?dz (1.3)

@ Qua Qu Z [Fa Y ]l] ququ (14)

Li=1

and Gya , k € C with Im k > 0, indicates the potential in R® produced
by the charge distribution a

/ka—a: (z')p(dz') reR®
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Depending on the context, the measure p can be the sum of N Dirac
measures or the projection of the Lebesgue measure in R® on a smooth
curve or surface.

It easy to check that ‘I’i,y can be obtained as a renormalized energy of
the point charges ¢,

2

1 N
@ Qanu - un, lim Z ,fx y;p) __—q‘i**l] + Zal(QL)z

jz— yzl-*O 477’”’ - U =1

Moreover the point charges ¢’ corresponding to a given u € L*(R3) are
uniquely determined.
In fact for ¢, # ¢, , from the definition (1.1), one would have G waltu—a,) €
H(R?) , which is absurd.
In particular one has ¢, = 0 for any v € H*(R?).
It is also possible to give an explicit formula for the point charges ¢’ asso-

ciated to u
81 . r

¢, = —lim —— udz
3 7=0|B:(y;)] /B.(sy)

where |B,(y;)| is the volume of the sphere B,(y;) of radius r centered
‘in y;. The proof is easily obtained using the Holder inequality and the
continuous embedding of H'(R?) into L%(R?) (see e.g. [32]).

Remark. Notice that the domain D(F,y) is independent of A > 0.
Moreover for any A, \' > 0

7 (w,u) = 7 (u,u) =
= [“A(éi\/ﬁ% - éz\/iqu)}(zu - éi\/ﬁq“ - éiﬁqu)dx +

RS3

+ / [)‘(éi\/XqU)2 - )"(éi\/_'qtz)z - 2>‘u(é'\/"%) + 2>"u(é¢\/—'qu)]d$ =

= =) [ Gusa) Gumadiz = 3 dallGustu - ) — Covmlu — )] =

l,j=1

= _@a,Y(qanU) + (I)i‘z,Y(QU) Qu)

13




where we have used the equation —A(éi\ﬁ\—,qu - é,-\/;qu) = )\é’-\/;qu -
A’éi\/x;q.,, the resolvent identity and an integration by parts.
We conclude that F,y is in fact independent of the choice of A > 0; the
positive constant A has the only purpose to provide a regularization of the
behaviour of the Green’s function at infinity.

The following proposition shows that F,, y defines a perturbation of the
Laplacian supported by Y

Proposition 1.1.1 F, y is a quadratic form in L*(R?) closed and bounded
below. Moreover

D(F,y) D D(F) (1.5)
Foy(u,v) = Fy(u,v) (1.6)
for any u,v € D(F).

Proof. The existence of a lower bound is a consequence of the fact
that ([7] pag. 116) T,y (iv/A) is a symmetric matrix whose eigenvalues
are all strictly increasing in A, so that there exists A¢(,Y’) > 0 such that
oy (¢V/)) defines a scalar product in RV for all A > Ag(a,Y). To prove
.that the form is closed it is more convenient to consider

Fi’y(u’ u) - Fa,Y (u, u) + )\ fRs uzdx (1.7)

for any A > Ao(@,Y). For any sequence u, € D(F.y) converging to u
in L?(R?) and such that lim, ,, Fi‘,y(un — U,y Uy, — Up,) = O one has

lim [ — we rsgas) = O (1.8)

1,5,1,% @2,Y(qun ~ Quy s Qu, — Qum) =0 (1'9)

where w, = u, — (V}’,.\/;qun. Then there exist w € H!(R?) and ¢ € RY
such that

lirrln||w,, — w”Hl(R3) =0 (1.10)

14



lim ||G,y5u, — Gryxallz =0 (1.11)

By |l:llp » 6 <p< +oco, we indicate the LP-norm in R? ).
Formulas (1.10),(1.11) and the uniqueness of the strong limit give v =
w + G /50, i.e. uw € D(F}y), moreover

H,{nFé\,Y(u — Up, U —Up) =0 (1.12)

and the closure of F,y is proved. Finally the inclusion relation (1.5)
and the equality (1.6) can be easily checked.
Q.E.D.

As it is well known, each quadratic form in a Hilbert space which is
closed and bounded below uniquely defines a selfadjoint operator which is
bounded below (see e. g. [42]).

In the present case, using the explicit form of F,y, it is not hard to re-

construct the domain and the action of the associated selfadjoint operator
""Aa,Y

D(-Auy) = {u € D(Foy)| u— G, /59, € H(R%),
(v — Gi59u)ly = Doy (V) g} (1.13)

where f|4 indicates the restriction of the function f to the set 4 and

(=Aay +Nu = (=4 +2)(x - G, 50.) (1.14)

Moreover formula (.1) for the resolvent can be easily obtained. The
proof of (1.13), (1.14), (.1) can be carried out along the same line as the
proof of the propositions 1.2.4, 1.2.5 of the next section and is omitted here.

Remark. If one defines r; = |z — y;| ,Vz € R%,7 = 1,..., N, then it
can be verified that the boundary condition satisfied by u € D(—A,y) at

the points yi,...,yn can be written in the form extensively used in the
literature (see [7],[70])
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lim [—a(rj v)

r;—0 BTJ

—4na;(rju)] =0 j=1,...,N.

Remark. We finally observe that a perturbation of the Laplacian sup-
ported by points in dimension two can be constructed following exactly the
same line of the three dimensional case, the only difference being the loga-
rithmic singularity of the two dimensional Green’s function for —A + \.
Formulas for the domain, the action and the resolvent of the associated
operator can also be obtained.

The one dimensional case is quite easy in the sense that no renormalization
is required for the energy of the point charges.

An analogous situation will occur for perturbation of the Laplacian sup-
ported by a surface in R®.

16



1.2 Perturbations supported by curves

The construction of a perturbation of the Laplacian supported by a
curve is more delicate. The essential reason is that the space of the linear
charges distributed on the curve is infinite-dimensional, so that in the defi-
nition of the renormalized energy of the linear charge distribution one has
to face problems of domain and closure.

Let C be a curve in R® of class C! and, for a chosen initial point and
orientation, let y = y(s) , s € I, be a parametric representation of C', where
I can be a finite interval (closed curve) or the whole real line (infinite open
curve).

Typically s will be the arc-length of C relative to the chosen initial point.
Moreover we assume that there exists a positive constant €, such that the
following two conditions are satisfied

C-1
ly(s) —y(s')| = |s —&'|(1 —¢|s — §'|")  whenever |s—s'| < ¢
where T, ¢ are positive constants satisfying cep < 1.

C- 2

o
ly(s) — y(s')] > eo(1 — cel) + K log |_5_~E;_3__| whenever |s —s'| > ¢

where K 1s a positive constant.

Conditions C-1, C-2 guarantee in particular that the curve cannot have
multiple points; moreover one can verify that if C-1, C-2 are fulfilled then

SUPser /l-ewﬁly(s)"y(s')lds' < oo (1.15)

for A > K2,

As a preliminary step in the construction of the quadratic form we define
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aiﬁ(S) B _‘/ls——s’|>e G"\/X(y(s) - y(s'))ds' +
1 Y
i /| s’|<e{47r[.s o = Giz(y(s) —y()lds' = o—log2e  (1.16)
for any fixed A > 0 and € < €.

We observe that a; ;(s) depends only on the geometry of C and it is a

constant in the particular cases of a straight line and of a circumference of
radius r

“/— 1(/z-Hogl_—-)

ctrc . /%[_]; _ eXp(-—-Z\/XT SiIlt)
T om

1
dt — —log 2
%3 sint ) or 84T

where « is the Euler’s constant. Moreover one can verify that a, /;(s)
is in fact independent of the choice of € < ¢; and it is a continuous and

bounded function of s € I for any A > 0. We shall need the following
technical lemma

Lemma 1.2.1

,\Em infeer a;/5(s) = +oo (1.17)

Proof. The first integral in the r.h.s. of (1.16) can be estimated through
C-2 ; one obtains the bound

(M e Y [ —VAly(s)=y(s")] 7.
/ls‘s,'xG,.\/;\-(y(s) y(s))ds” < 4meo(1l — cel) SPeer [ € ds

(1.18)
Moreover using condition C-1 one has

[ el ~ Gulalo) sl >
1 eplVAls - (1~ els — o)
> /I 1

- ds' =
a—sl|<e 47rls—.s’|{ 1—cls—d| yds

= J(VA)

(1.19)
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For A sufficiently large, the last integral is positive and satisfies

W), [ srtreang 5 L
— =2 s-aTde > — 1.20
dv/A 0 ¢ ¢ VA ( )
The proof of the lemma then follows from (1.15), (1.18) and (1.20).
Q.E.D.

We now introduce a class of admissible linear charge distributions on C
together with an expression for the (renormalized) energy for such charge
distributions.

For a given continuous, bounded from below and real valued function A
defined on C and for each positive number A let us define

D(®pc) ={¢ € L*(I)] 25,0(¢,€) < +o0} (1.21)
B5c(6,6) = % L (E() = &) Giynlu(s) - y(s"))dsds' +
+ [ (66 @uals) + Bs))ds (1.22)

The following proposition shows that, for A sufficiently large, (1.21) and
(1.22) define a positive and closed quadratic form in L*(I).

Proposition 1.2.2 There exists Ao(8,C) > 0 such that, for any A >
Xo(B6,C), D(S’DQ,C) is a Hilbert space w.r. to the scalar product @3 o(:,").

Proof. The existence of a Ao(8,C) > 0 such that @3 (-, -) defines a
positive definite scalar product for A > Ao(f, C) is a consequence of Lemma
1. In order to prove completeness one has only to mimic the Riesz-Fisher
proof of the completeness of L?. Given a Cauchy sequence £, in D(@g,o),
it is sufficient to prove convergence for a subsequence. Pick a subsequence,

still denoted by ¢, such that ®} o (&, — ént1, &n — €nt1) < 27" Then

®M=§%M~mwﬂ

is the monotone limit of
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- ﬁlmn(s) (o)

and by the monotone convergence theorem © € L*(I) and © < +oo
a.e.. Moreover (Oy(s) — On(s'))?G, /5(v(s) — y(s')) converges a.e. in I x I

o (8(s) — ©(s"))*G,yz(y(s) —y(s') and

‘I’,g c(@n,0y) < Z q?pc |€ns1 — §nl, |€ns1 — €n]) < const.

n=1

so by the Fatou lemma we get © € D(®} ;). Thus & + 52, (éns1 — &)
is absolutely convergent to a sum ¢ with |& — £1| < O, so that £ € D(®} ;).
It is now straightforward to show that lim, @ cl6—¢&,€-¢) =0.
Q.E.D.

By proposition 1.2.2 we get that ‘I’ﬁc , for A > Xo(B,C), defines a

positive and selfadjoint operator I'sc(iv/A), which acts on smooth ¢ as
follows

[Lac(ivVAEl(s) = [ [€() = £()]Guymlu(s) — y(s))ds'+ £($)B(5) + ay(s)]
(1.23)

Now we want to recall two useful properties of the potential
& yzé(z) = / £(5)Giyz(z — y(s))ds =z € R? (1.24)

produced by the linear charge ¢ € D(@ o)

We observe first that the map ¢ — G,fE y A > X(B,C), is a linear
bounded map from D(®} ;) to L?(R?), and its norm converges to zero for
A — +oo0.

The proof, based on an apphcatlon of Fubini theorem, is straightforward.
Next it can be shown that G i€ & H'Y(R®?) . We give here a sketch of the
proof.
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The regularity conditions C-1, C-2 allow us to define, for any § > 0 suffi-
ciently small, a neighborhood of C

Cs = {zeR%3 y(s;) € C s.t. z lies on the normal plane to C
in y(s,;) and |z —y(sz)| < 6} (1.25)

Then an integration by parts yields

VG, selda A [ G s(e) Gzl dn=
Jrone, IVCwatldm 3 [ E(e) &t do

=3 [ dsds'(€(s) - &()° fone, % VCovale = uls)) - VoGiale — u(s)) +

1 aéi\/g(gz) 1 1 aéiﬁ(gz)

E)sz -+ ‘2—7; 10g -g 5c, sz (1.26)
where Cv;'i\/xl(x) = J; G, /5(z—y(s))ds , z € R®. The second term in the

Lh.s. of (1.26) remains bounded in the limit § — 0 and the first two terms

in the r.h.s. of (1.26) converge to —®3 (¢, €) + [;(£(s))?B(s)ds, which is

finite by hypothesis.

The assertion is then proved, since the last term in (1.26) diverges loga-

-rithmically.

This procedure shows, in particular, that ‘1’2,0(& €) can be considered as a

renormalized energy of the linear charge distribution (cfr. introduction).

N 1
G, 51— —1
+ aoﬂ( iV 2 °8

Now we have all the ingredients to define, for A > X¢(8, C), the following
quadratic form in L?(R?®)

D(Fpc) = {v € L*(R®)| 3¢, € D(®} ;) st. u—G,5¢, € HY(R)} (1.27)

Fpo(u,u) = 7(?(“',“) + ‘1’3,0(&» £u) (1.28)
where

R(u,u) = /m |V (u— éiﬁfuﬂzda: + }\/RS (u — éiﬁfu)zdaa - /\/Ra uldz
(1.29)
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Given u € L%(R®) then the corresponding linear charge £, is uniquely
determined, in particular one has &, = 0 for v € H!(R®) (cfr. section 1.1).
Moreover reasoning as in remark at pag. 13 it is not hard to show that
Fp ¢ is in fact independent of the choice of A > 0.

The following proposition shows that Fj ¢ defines a perturbation of the
Laplacian supported by C

Proposition 1.2.3 Fs ¢ is a closed quadratic form in L*(R®) bounded
below; one has

D(Fp’c) D) D(FO) (130)
Fﬁ,C(‘U,,'U) = Fo(u,v) (131)

for any u,v € D(Fp).

Proof. The existence of a lower bound for Fp ¢ is a consequence of the
positivity of @3,0 for A > Xo(B,C) . In order to prove that it is closed we
~ consider '

Fﬂ"’c(u,u) = Fgo(u,u) + A o uldz (1.32)
for any A > Xo(8,C). For any sequence u, € D(F} ;) converging to
v € L*(R®) and such that lim, Fé\,c (4n — Um, Un — Um) = 0, one has
lim ||zn — zm||g1(re) = 0 (1.33)
E‘%l Qg,c(gun - é-um’ fuu - Sum) = O (1'34)

where z, = u, — G, /5&.,. Thus there exist z € H'(R®) and ¢ € D(®; )
such that

li'{n ||zn — z]|H1(R3) =0 (1.35)

lim ®) 6 (€ — €u,r € — £4,) =0 (1.36)
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By the continuity of the potentlal of a linear charge and the uniqueness
of the strong limit we get v = z + éﬂ/—ﬁ, which means u € D(Fﬂc)
Moreover by (1.35),(1.36) we have lim, Fﬁ c(u — tp,u — u,) = 0 and the
closure of Fj. is proved. Finally the inclusion relation (1.30) and the

equality (1. 31) can be easily verified.
Q.E.D.

The selfadjoint operator —Ap ¢ associated to Fp ¢ is by definition the
Schrodinger operator with é-interaction supported by C of strength §; its
domain and action are completely characterized as follows

Proposition 1.2.4
D(-Apc) = {u€D(Fse)| & € D(Tsc(iVX) , u— G, 56, € HY(R®),
(u - é,\/}&u)lc = I‘ﬁ,C(i\/X) Eu} (1'37)

(=Bpc +Nu = (A +A)(u ~ G,y56.) (1.38)

Proof. Let uw € D(—Ap ) then, by definition, there exists g € L*(R?)
such that

Fpc(u,v) = (v,9) (1.39)

for any v € D(Fp,c). (By (.,.) we indicate the scalar product in L?(R?)).
In particular for v € H'(R?) one has ¢, = 0 and (1.39) becomes

Vo V(u—&b)do ) [ o(u-&, Jdz = [ u)dz (1.40
[ Vo= xde+r [ o(u=8,56)ds = [ vig+Iu)ds (140
which gives u — é,-\/xfu € H*(R®). Thus an integration by parts yields

(A + X (u— Gy56s) = (Ao + Nu (1.41)

For an arbitrary v € D(Fj ) equality (1.39) can be written as

ff 6u(s) (u = Gryz6) (u(s)) = @3 60(60, 6) - (1.42)
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where (1.40), (1.41) have been used and orders of integration have
been interchanged. Equation (1.42) gives now &, € D(I's¢(¢v/A)) and
To.c(iVA)E)(s) = (u — éiﬁfu) (y(s)). Conversely given u belonging to
the r.h.s. of (1.37) it is easily checked, following the same line of reasoning,
that v € D(—Ap ) proving (1.38).
Q.E.D.

Remark. For u € D(—Apc), with a smooth £,, let us denote by
@(y(s),6) the mean value of u over the circle of (a sufficiently small) radius
6, centered in y(s) € C and orthogonal to C in y(s); then one can define
two continuous function on C

$o(s) = 2 lim -———ﬁl(:;’g(i)/’:) (1.43)
$1(6) = imla(y(s),8) ~ 220D 1og ] (1.44)

and it can be verified that the boundary condition (u — é{ﬁgu) (y(s)) =
(Ts,c(1v/A)€,)(s) is equivalent to

$1(s) = afs)do(s) (1.45)
We remark that the last equation, for a fixed s € I, essentially coincides

with the boundary condition defining a point interaction in dimension two
(see [7] pag. 98).

It is also possible to give explicitly the resolvent of AVR,

Proposition 1.2.5 For A > Xo(8,C) and g € L*(R®) we have

(=Ap0 + ) 7' = G50 + G, 5[T5.0(1VA) ™ (Gyz9l0)] (1.46)

Proof. The r.h.s. of (1.46) defines a bounded linear operator from
L*(R®) onto D(—Ap); using (1.38) one immediately proves the proposi-
tion.

Q.E.D.
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In conclusion we observe that, starting from (1.46), one can investigate
spectral properties of —Ag ¢ (such as the location of the point spectrum and
the absence of the singular continuous spectrum) and study the scattering
theory for the pair (—Apgc,—A). We will come back to these questions in
the next chapter.
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1.3 Perturbations supported by surfaces
and generalizations

We start describing how the idea of the preceding sections can be applied
to a simpler situation.
It is well known that a perturbation of the Laplacian supported by a regular
closed surface S can be defined by the following quadratic form

D(F,s) = HY(R?) (1.47)
Py s(u,u) = /R | Vul*dz - /S yuk dF (1.48)

where « is a smooth, real valued function defined on S and ug denotes
the trace of v on S. If one defines the surface charge o, associated to

v € H'(R?)

Ou = YUg (1.49)

and, for any A > 0, the potential produced by o,
G /30u(z) = Lau(g)Giﬁ(x —¢)dE(¢) z€R? (1.50)
then a simple calculation shows that F, s can be written in a form

analogous to the previous cases

Fos(u,u) = 73 (u,u) + ®) 5(0u,04) (1.51)
where
FMu,u) = /R IV (u — & 50) 2z + A/ — &0tz — A [ uldz
R3
(1.52)
2
ol v
®s(u00) = [ 2248~ [ 0u(Gy50)48 (1.53)
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®) 5 is clearly a bounded quadratic form in L?(S), thus it defines a
bounded selfadjoint operator Ty s(iv/A) in L*(S).
Using the methods of the preceding sections one can reconstruct the domain
and the action of the selfadjoint operator —A, s defined by F, s and one
can calculate the resolvent. The results are summarized below

D(=A,s) = {u € HY(R®)| u - G, 50. € H(R?),

du/dn™ — du/dn” =0, on S} (1.54)
(—Ays + Nu = (—A + A)(u — G, /500) (1.55)
(=Ays +2) 79 = Gizg + GoalTa,s (V) 7 (Giymgls)] (1.56)

for any g € L*(R?).
It is a simple exercise to show that, when S is a sphere, (1.56) reduces to
the resolvent given in [11].

In conclusion we want to compare our method for constructing singular
perturbations of the Laplacian with a more general one developed in [4] and
essentially based on resolvent limits of smooth approximating operators.
The claim is that our results can be generalized, with only minor changes,
to the cases treated in [4], i.e. even in this more general situation we can
explicitly write the quadratic form and characterize the domain and the
action of the associated operator.

Following [4] we consider a Radon probability measure p in R® (the gen-
eralization to arbitrary dimension is straightforward) and a positive u-
measurable function v , bounded and bounded away of zero.

Moreover we assume

/fGi\/;(x — y)u(dz)u(dy) < +o0 (1.57)

7 (z) — [ Guslo— vIldy) > 5 =€ suppu (1.58)
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for some 6 and A positive.
Then (see propositions 2.3, 2.6 in [4]) the formulas

(&,/50) (@) / Gis(z — v)o(y)u(dy) (1.59)

(Cyu(iVX)0) (@) = 77 ()o () = [ Gulo—v)onldy)  (1.60)

respectively define a continuous map from L®(u) to L?(R?) and a con-
tinuous map from L*(u) onto L'(u), whose inverse exists and is continuous
with norm less than 6§71
We observe that if 4 is the restriction of the Lebesgue measure in R2 to a
regular surface S then the conditions (1.59),(1.60) are certainly satisfied.
Using (1.59),(1.60) we can now define the quadratic form in L?(R?)

D(F,,) ={u e L}R®) |Jo, € L™ () s.t. u— G, /50, € H'(R®)} (1.61)

Fyu(u,u) = 72 (u,u) + @) ,(0u,0) (1.62)

where
(0, u) = /R IV (u — &, 50.)[2dz + A/ - Gpo)tda—A [ 1Z2d:c |
1.63

®}4(06,00) = [ 0u(@) (L (V) 0) () (da) (1.64)

Clearly (1.64) defines a norm in L®(u) so that, following the line of
reasoning of the preceding sections, it is not hard to see that F, , defines a

perturbation of the Laplacian supported by supp p of strength 4. Moreover
the associated operator is given by

D(-A,u) ={uve D(F,,) |u- ‘\/—auEHZ(R?’)
(u— éiﬁ"ﬂ)lsuppu =Tuld \/_)Uu} (1.65)
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(—Aqpu+Au = (A + A)(u — G, /504) (1.66)

If one wants to define a perturbation of the Laplacian supported by sets
of lower codimension, e.g. points, regular curves or even very irregular sets
like brownian paths, one has to introduce a weaker condition on pu

] / [ / Go/5(z — 2)Gy5(z — y)delu(dz)u(dy) < +oo (1.67)

Again we observe that if u is the restriction of the Lebesgue measure
in R® to a regular curve C or if it is the Dirac measure supported by a
discrete set then the condition (1.67) is certainly satisfied.
Under the assumption (1.67) it is still true that

(Gi38)(2) = [ Gugle — V)EWA(AY) (1.68)

defines a continuous map from L*®(u) to L?*(R3?) (proposition 2.3 of
[4]). In order to obtain a continuous and invertible operator analogous to
(1.60) now one has to compensate the singular behaviour of the electrostatic
potential of a charge distributed on supp u.
"This can be done by introducing a suitable non local interaction, i.e. given
a positive, bounded and bounded away of zero y-measurable function a, it
can be proved that

(Cau(1VN)€)(z) = a(2)é(2) +/[G’f($ —v) = Gyalz —y)|€(v)n(dy) (1.69)

defines a continuous map from L*®(u) onto L'(u) whose inverse exists
and it is continuous (proposition 3.2 in [4]).
Proceding as in the previous case the quadratic form defining a perturbation
of the Laplacian supported by supp u can now be constructed and the
corresponding operator characterized.

Remark. It should be emphasized that the above construction leads to

a non local é-interaction.
If i is the Dirac measure supported by a discrete set or if it is the restriction
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of the Lebesgue measure in R? to the smooth curve considered in section
1.2, such non locality means that different points of the set are connected
by the boundary condition defining the operator domain and this can be
unsatisfactory from the physical point of view.

Such difficulty can be avoided for regular sets using our renormalization
technique but for irregular sets like brownian paths, which are nowhere
differentiable and recurrent, our method cannot be applied and the problem
of finding an interaction which is local in a reasonable sense is still open.
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Chapter 2

Spectral analysis for the Schrodinger operator
with an interaction supported by a curve

2.1 The continuous spectrum

Throughout this chapter we will consider perturbations of the Laplacian

in L?(R®) supported by a curve C satisfying the conditions imposed in
section 1.2 and, moreover, of finite length L (the case of infinite length
with a sufficiently fast decaying of the interaction at infinity requires some
additional technical complications).
We will find that, in spite of its rather intricate construction, the operator is
well behaved, i.e. the non negative part of the spectrum is purely absolutely
continuous while in the negative part there can be at most a finite number
~of eigenvalues of finite multiplicity.

Moreover it has a non trivial scattering theory which can be explicitly
described.

We start with some preliminaries.
It is convenient for later use to introduce the analytic continuation of the
operator g c(iv/)) defined in section 1.2

Ipc(k) = FB.C(";\/X) + (G — Gi) =
= [1+ (Giyx = G)Tp,0(1VA) M Tp,0(1vV/A) (2.1)

where k € C , A > X(6,C) and éi\/; — Gy, is an integral operator of
Hilbert-Schimdt type in L*(I) with kernel given by

e~ VAlu(s)=u(e")] _ gikly(e)=(s")]
4rly(s) — y(s")]

(Giyz — Gi)(s,6) = (2.2)
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It is easly seen that the definition (2.1) is independent of the choice of
A > Xo(B,C) 5 moreover D(I's ¢ (k)) = D(T's0 (1v/2)) , Tp,o(k) is closed and
satisfies Fﬂ'c(k)* = rﬁ,c(—k).

Now following the proposition 1.2.4 we can characterize the Schréodinger
operator —Ag ¢ in L*(R®) with é-interaction supported by C of strength S
in terms of a complex &

D(—8p¢) = {u € L*R%)| 3¢, € D(Tpc) , u— Giéy € HX(R?) ,
(v — Gréu)lec = Tp (k) €} (2.3)

(—Apc — k)u = (—A — k?)(u — Gity) (2.4)
where Im k > 0.

Since we know that I's (k) is invertible at least for Re k = 0 and

Im k > 1/Xo(B,C) then a direct application of the Fredholm alternative
([55] pag 201) gives us that I's ¢ (k) has a bounded inverse in L%(I) for each
k € C\A , where A is a discrete set.

"Moreover the points of A in the upper half complex plane can lie only on
the imaginary axis, between 0 and 1/Ao(8,C) , otherwise, reasoning as for
iii) of proposition 2.2.1 of the next section, we could exhibit a complex
eigenvalue of —Ag .

Using the invertibility of I's ¢ (k) it is also possible to write the resolvent of
—Ap ¢ as function defined in the complex plane

(—Apc — k*)7'g = Gig + Gi[Tpc (k) (Grylo)) (2.5)
where k% € p(—Apc) , Imk >0 and g € L*(R3).

Now we turn to the study of the continuous spectrum which is based,
via the Weyl theorem and the limiting absorption principle, on the analysis
of the resolvent.

- The key result, given by the following proposition, shows that the resolvent
of —Ag ¢ is a smooth perturbation of the free resolvent
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Proposition 2.1.1 The bounded operator in L*(R?) defined by

Ric=(-lpc+ M) =(-A+A)7" (2.6)
is a trace class operator for A > Xo(B,C).

Proof. The action of the operator Ré,c is explicitly given, for any ¢ €
L*(R®), by

Rjo 9= GilTso(iVA) ™ (Gyyzglc)] (2.7)
Then the first step of the proof is to consider the approximating operator

(1R3¢ 15)g = LiG[Ts.0(1VA) " (Giyx(Ls9)) o] (2:8)

where 1; is, for 6 > 0 sufficiently small, the characteristic function of a
small neighborhood C; of the curve C (see section 1.2).
Clearly one has

Rjc=s—lim1;R5 0l (2.9)

An application of the Fubini theorem shows that 16R/’3\,015 is an integral
operator in L?(R®) with integral kernel explicitly given by

(laRQ,Clg)(x,x') = 15(:1:)/IdsGiﬁ(x—y(s)){I‘ﬂ,C(i\/i)”l(ld(m’)Giﬁ(x’_.))]
(2.10)

Our next point is to show that (2.10) defines the integral kernel of a
trace class operator. The proof is based on the application of a standard
criterion which is recalled here for the convenience of the reader (see e.g.
the lemma in [57] , pag. 65)

Let 1 be a Baire measure on a locally compact Hausdorff space X and
let K be a continuous function on X x X . Suppose that

[ #(=)6() K (2, 5) du(z)du(y) > 0
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for any ¢ continuous with compact support and
/K(x,x)d,u,(a:) < 400

Then there is a trace class operator A on L*(X,du) with integral kernel
K . Moreover

Tr(A) = ] K(z,z)du(z)

Using the explicit expression (2.10) it is easy to check continuity of the
kernel in R® x R® and positivity of the corresponding operator; furthermore
we have the following uniform bound for the trace

[, ds(1sBY o15) (2,2 < fllrﬁc(nf e (211)

Applying the above criterion, we conclude that lgRg,Clg is a trace class
operator.
Moreover, due to the uniform bound (2.11), there exists a subsequence of
15R3,015 weakly convergent as § — 0 in the topology of the trace and this,
‘together with (1.9), implies our thesis.
Q.E.D.

We are now in position to characterize the continuous spectrum of
~Dpe

Proposition 2.1.2

Oess(—Ap,0) = Oac(—Apc) = [0,+00) (2.12)

osing(—Aﬂ,C) = Q (213)

Proof. The Weyl theorem on the stability of the essential spectrum (see
e.g. [58] pag. 112) asserts that if A and B are selfadjoint operators and
the difference of their resolvents is compact than o,,,(4) = 0.,,(B).

In our case, taking A = —Ap ¢ , B = —A and using the proposition 2.1.1,
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we get Oues(—Apc) = 0.5 (—A) = [0, +00).

The basic tool for proving the absence of the singular continuous spectrum
is the limiting absorption principle.

A simplified version of the principle is the following (see e.g. [58] pag. 139)

Let A be a selfadjoint operator and (a,b) a bounded interval of R. If
(¢, (A — E)7'¢) is bounded, as function of E € C ,on M = {z+iec| e e
(0,1) , z € (a,b)} for each ¢ in a dense set than A has purely absolutely
continuous spectrum in (a,b).

Using the explicit expression of the resolvent (2.5) and the above prin-
ciple one immediately proves that oyin,(—Ag,c) = @ and this completes the
proof.

Q.E.D.
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2.2 The point spectrum

The result of the analysis of the point spectrum, summarized in the
proposition below, shows a strict analogy with the corresponding charac-
terization of eigenvalues and eigenfunctions of the Schrodinger operator
with point interactions (see 7] pag 116).

Nevertheless in the present case the proofs cannot be carried out along the
same line since, now, the basic object of the analysis, i.e. the operator I'g ¢,
acts on an infinite-dimensional space and is unbounded.

Proposition 2.2.1

i) 0p(—Ap,c) C (—00,0)

11) — Apc has a finite number of eigenvalues counting multiplicity and
for Im k > 0 1t results

k* € 0,(—Ap ) iff zero is an eigenvalue of Ty o (k)

and the multiplicity of the eigenvalue k* equals the multiplicity of the
eigenvalue zero of I'g o (k).

111) If Eg = k% < 0 is an eigenvalue of —Ag ¢ then the corresponding
etgenfunctions Yy are of the form

Yo = Gréo , Imky>0 (2.14)
where & is an eigenfunction of T'g ¢ (ko) corresponding to the eigenvalue

zZero.

w) If —Apgc has a ground state it is non degenerate and the correspond
ing etgenfunction can be chosen to be strictly positive.

Proof. Assertion 7) means that —Ay ¢ cannot have positive eigenvalues
and the proof is essentially based on a unique continuation theorem for the
Schrédinger equation (see e.g. the proof of theorem XIIL57 of [58]).
Suppose there exists E > 0 and ¢ € D(—Apc) such that —Ag oy = Ev.
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Enclose C in a large ball B, = {z € R® | |z| <r}, r > 0. Then in R®\ B,
the eigenvalue equation reads —Avy = E1.

Expanding 1 in spherical harmonics and reasoning as in [58] pag 225 one
obtains ¥ =0 in R®\ B,.

Now fix 2o € R*\ B,, y € B, \ C and a smooth curve ~ of length L. joining
zo and y and such that dist (v,C) > 0.

Choose an integer n and ro, 0 < ry < % dist (v,C), so that %ron >L,>
sro(n — 1) and z1,...,Z, = y on 7 ; then the length of « between z; and
Tic1,1=1,.,n—1,is < iry. In particular |z; — z;_4| < 0.

If we cover v with balls B,,(z;) of radius ry centered in z; , { = 0,...,n ,
then the proof of assertion ¢) follows from the following fact (see [58] pag
243): ¥ = 0 in a small neighborhood of z; and |Ay| < El¢| in B, (z;)
imply 9 =0 in B, (z;)-

‘We now prove assertions 71) and #11). Let & € D(I's¢) be a solution of

Tpo(ko)éo =0 (2.15)

for some E = k3 <0, Imky > 0.
Then one has ¢ = G, & € D(—Ag ) ; moreover

—DpcGry o= (—A - k) (G b0 — Grbo) + k2CGréo =
= EoGr, o (2.16)

where k? € p(—Agc) , Im k > 0.
Hence 1y is an eigenfunction of —Ag ¢ corresponding to the eigenvalue Ej.
On the other hand let Ey = kj < 0, Im ko > 0, be an eigenvalue of —Ag ¢
and 1, a corresponding eigenfunction. Then there exists & € D(T's ) such
that

w=1—Gr& €HY R, k'e p(—Apc) , Imk>0 (2.17)

wle =Tp,0(k)éo (2.18)
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Using (2.4) and the eigenvalue equation we obtain

(—A — E)w = (k2 — k*)q (2.19)
Solving (2.19) for w and then applying —A — kZ we get

(=A — kD)w = (k2 — k*) Gy & (2.20)
From the above equation and (2.17) we find that

tho = G, o (2.21)

Moreover using (2.18) and (2.21) we finally get

Tsc(ko)éo =0 (2.22)

Assertions 77) and #:7) are then proved if we observe that, by the Fred-
holm theorem, there exists only a finite multiplicity of solutions of I's ¢ (k)¢ =

Oforeachk € Aand AN{k€C|Rek=0, 0<Imk<+/X(5,C)}is
finite.

In order to prove assertion 7v) concerning the properties of the ground
state it is useful to recall the following notions

A bounded operator A in L?*(M,du) (where (M, ) is a o-finite mea-
sure space) is called positivity preserving if Af is positive whenever f €
L*(M,dpu) is positive.

A is called positivity improving if Af is strictly positive whenever f is pos-
itive ( see e.g. [58] pag. 201).

Moreover we say that the unit contraction operates on the quadratic form
Fin L*(M,dy) if

vE€D(F) ,v=(0Vu)Al=veDF), F(v,v) < F(u,u)

(see e.g. [30] pag. 5).

First we note that the unit contraction operates on the quadratic form
@2’0, A > Xo(B,C) and so T'5c(iv/A)! is positivity preserving for A >
Ao(B,C) ([30] theorem 1.4.1).
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Taking into account that G, /5 , A > 0, is positivity improving we get that
the whole resolvent of —Ap ¢ is positivity improving for A > Ao(4,C) =
—z'nf U(“Aﬂ,C)-

As it is well known (see e.g. [58] pag. 204) this is a sufficient condition for
the validity of assertion iv).

Q.E.D.
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2.3 Stationary scattering theory

The aim of this section is to describe the stationary scattering theory
for the pair (—Apg,c,—A).

First we calculate the generalized eigenfunctions from the resolvent in
the usual way

Ypclkw,z) =lim lim dr|z'|e EHZ_ Ay o — (k +1€)] (z,2') =

—0 |z!|—+00
= ¢ihus 4 /I Gi(z — y(5))(Tp.c (k) 2e*0) (s)ds (2.23)

where w € S? (5? is the unit sphere in R3) is defined by w = —z'/|z| ,
k¢ A,k>0,z€ R
It easily seen that ¢ ¢ (kw, z) satisfies

= Ap,ovp.clkw, ) = kg (kw,") (2.24)
in the distributional sense.

Using the generalized eigenfunctions one can compute all the relevant scat-
‘tering quantities. The on-shell scattering amplitude is given by

fo.clk,w,w') = | IliI-Ig. |z|e~ 1o [yhg ¢ (ku', ') — e84'%) =
1 . o
= E/Ie—Ikwy(s) (Tp.c (k) e ”())(s)ds (2.25)

where again w € S? is defined by w = z/|z| and k ¢ 4, k > 0.
The unitary on-shell scattering operator Sp ¢(k) in L*(S?) has integral ker-
nel

k : -
Sp.0(R)(w, o) = 8(w—w') — == /I e V() (T o (k) L)) (s)ds (2.26)

kg€ A, k>0, w,w €S2
Finally the low-energy limits of the scattering operator and the scattering
amplitude are respectively given by
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n— Ilcin% Spcolk) =1 (2.27)

— lim f5,0(k, w, ') _———/ (Tp,0(0)~11)(s)ds (2.28)

for 0 € A and 1(-) the unit function on I.
The limit (2.28) defines the scattering length ag ¢ associated to —Agc.

Remark. We observe that the time-dependent scattering theory for
(—Ap,c,—A) can also be developed following the line of appendix E of [7].
In particular by the invariance principle (see e.g. [57] pag 27) and the trace
class property of RQ’C we immediately get existence and asymptotic com-
pleteness of wave operators together with existence and unitariety of the
associated scattering operator.

Moreover using the eigenfunction expansion of —Ag ¢ and standard tech-
niques (abelian limits and so on) we can also establish the usual correspon-
dence between time-dependent and time-independent scattering theory, i.e.

(U (= Ape,—A)g)(z) = s — Kk [ duolw, 2)3(k)

(2.29)

lim s [
B2 (27)372 Jjai<r

and analogously for Q_(—Ap o, —A) , where

w"@"c(kw, z) = Pp clkw,z) , gb;',c(kw,a;) = Zb;;(——kw, ) (2.30)

and § is the Fourier transform of g¢.
Then it can be shown that the scattering operator is unitarily equivalent
to the direct integral of the on-shell scattering operator Sz (k) in L*(S?)
defined by (2.26).
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2.4 An example of solvable model

Here we will briefly discuss the special case in which C is the circle given
by y = y(¢) = (rcos¢,rsin¢,0) , ¢ € [-m,7] , and § is a constant.
This case can be interesting because it is an example of solvable model,
in the sense that all the relevant quantities (e.g. eigenvalues, resonances,
scattering amplitude etc.) can be explicitly computed and additional infor-
mation on the properties of the operator can be obtained.

Using the expansion in Fourier series the quadratic form @2)0 can be
written as

N +o0 - T e—-Z\/ering'
D) (&, €) =mzz_oo|§m] [r /;W(l—cos2ms‘)m
1 r /2 1 6—2\/erin§
_ A T i 2.3
+rh + log 27r + 2T ./; ¢ sin ¢ )s] (2.31)

where, for each h € L*([—m,7]) , we define A, = -ﬁ IT_h(¢)e "™ dg.
From (2.31) it results that in the space of the (discrete) Fourier transforms
‘the operator I'g ¢ (k) is diagonalized so it can be characterized by

D(Tpo(k)) = {€ € LX(I) | Tpc(k)mén € 17} (2.32)
(Too(k)E)(¢) = j— ; L0 (k)mEme™ (2.33)

where

r/2 1 e2:krsmg
Tpo(k)m =10 +t5- 10g Er—; +/ cos2mg¢)d¢|  (2.34)

Using the above expression we can also write the resolvent as

(2.35)
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where k* € p(—Ag¢) , Imk >0, f,g € L*(R%).

For small values of the radius only the term m = 0 is relevant in the
series expansion in (2.35); moreover

1 dkr?
Tpo(k)o = rﬁ—i———l g~ 5 (2.36)
This means that in the limit r — 0 we have resolvent convergence to
point interaction of strength o € R placed at the origin iff the parameter

[ is explicitly dependent on r according to the formula

1
B(r) = -—5—7; log &t 2nro (2.37)

As we will see in a moment the divergent term in (2.37) is determined
by imposing that —Ag ¢ has a zero-energy resonance without bound states
while the coefficient of « is simply the measure of the shrinking circle. We
remark that exactly the same situation occurs if one tries to obtain a point
interaction as the limit of an interaction supported by a shrinking sphere

([11)).

Another question which can be easily investigated is the occurrence of
‘bound states. By proposition 2.2.1 and symmetry properties of —Az o we
have that Ey < 0 is the ground state iff it solves the equation

1 7/2 1 — ¢~2V/~Eorsing
ﬂ+5r. g___+-—-/ ° d¢ =0 (2.38)

sin ¢

Now the integral in (2.38) is a function F(z), where z = 2¢/—FE; r ,
satisfying

F(0)=0, Jim F(z) = +oc0, F'(z) >0 Vz >0 (2.39)
So we conclude that —Ag ¢ has at least one bound state iff

1 1
ﬂ + ‘2—7}‘ log —8_'; <0 (2.40)

(while = 0 leads to the occurrence of a zero-energy resonance).
In particular the condition (2.40) implies that for § > 0 (i.e. ”repulsive”
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interaction) we have at least one bound state for a sufficiently large r while
for B < O (i.e. ”attractive” interaction) we have no bound state for a
sufficiently small r.

We conclude considering the scattering amplitude which, as usual, can
be explicitly computed using the Fourier expansion

2 R (er)mler)m

kyw,w') = — 2.41
fﬁ’C( ) 4m m=z—:oo I‘p,c(k)m ( )
where (ex)m = ﬁ 7 etkenle)=ims ge
By (2.41) we have that the scattering length is given by
asc = 3 : (2.42)

2 B+ (1/2m)log(1/8r)
Formula (2.42) shows that for r — 0 point interaction is obtained keep-
ing the scattering length constant.
Finally it is an easy exercise to show that the scattering amplitude has
a particularly simple form in the special case of an incident plane wave
propagating along the z-axis (i.e. w = (0,0) , w' = (¢',¢') )

r?

fﬁ’c (k, 0’) = m.]o(kr sin 9') (243)

where Jo(:) is the Bessel function of zero order ([1]).
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Chapter 3

Point interactions and models of
random media

3.1 Limit theorems for many randomly
distributed point interactions

In this chapter we turn to the study of some interesting properties of
the simplest perturbations of the Laplacian, i.e. point interactions, in con-
nection with the analysis of some models of random media.

In particular in this section we start giving a rigorous mathematical mean-
ing to the idea that the effects on a quantum particle of a generic potential
can be viewed as the sum of suitable normalized and distributed point in-
teractions, whose strength and distribution are uniquely determined by the
_potential itself.

In the next section we will study the physical application of such mathe-
matical result to the low energy neutron scattering (see introduction).

Let us introduce first some notation. Let V be any positive density
distribution such that

Viz) >0, /R V(z)de =1, ||V]s < +oo (3.1)
In particular V belongs to the Rollnik class, i.e.

iy = [, L Wlgay <oz e

(see for example [65]).
Now we consider N points yi,...,yn € R?® identically and independently
distributed according to the common density law V(z). In other words
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on the set of all configurations Y¥) = {y;,...,yn} of N points of R® we
introduce the probability measure PV) = {V (z)dz}®V.

Moreover for any given real function a(z), z € R®, such that 0 < ¢; <
|a|(z) < ez < 400, continuous apart from a set of V (z)dz-measure zero we
define aM) = {ay, ..., an}, where o; = a(y;).

We notice that any potential U € L'(R*) N L?*(R®) can be written as the
ratio V/a of a density distribution in L?(R®) with a function « satisfying
the assumptions stated above. In fact it is enough to define

Ul

=Tl (3:3)
 (sgn U)(a)

a= o7 (3.4)

Consider the Schrédinger operator —A y,v) yv) with point interactions
in Y(V) of strength Na™). For N inf;e;/|k| > 1 we can approximate the
resolvent of —A y,v) yv) with the corresponding Neumann series truncated
at the first order (Born approximation)

‘ 1 X 1
(—ANQ(N)'Y(N) - kz)_l(a:,:l:') o~ Gk(z - x') + N Z Gk(:c —_ y,‘);;Gk(:c' - y,-)

i=1
(3.5)
then by the law of the large numbers we have

ligln—]l\?g@k(m—y;)a%Gk(z'—y;) = /Rs @k(x—z)z((:)) Gi(z' — 2)dz (3.6)

so at least in the above approximation we have

vV
li]\I’n(—ANa(N)’Ym) — kz)_l = (—A — -&- —_ kz)'.l (3.7)

The claim is that the same convergence result is true up to any order
in the Neumann series, i.e. we have the following proposition ([24])
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Proposition 3.1.1 Ve > 0, Vf € L*(R®) and k = iv/A, X positive
large enough

14
lim P({Y ™) | [|(~Aypon yon — k)71 f = (A - = k)l > €}) =0

(3.8)

In other words we have strong resolvent convergence uniformly on a
set of configurations Y (¥) of measure increasing to 1 as N goes to infinity.
Moreover we mention that the fluctuations around the limit operator can
be completely characterized

Proposition 3.1.2 For any f,g € L*(R®) and k = iv/X, X positive large
enough, the random variable

_ V _
N [(= Ay yoo — k)7 = (=A = ~ —k)79) (3.9)
converges in distribution, when N goes to infinity, to the gaussian ran-

dom variable of mean zero and variance

1 1
(Arf Axg, = Arf Arg)v — (Arf, > Arg)y (3.10)

where Ay is a short hand notation for (—A — L — k?)7! and (f,g)v =
Jps f(z)g(2)V (z)dz .

Here we will prove only proposition 3.1.1 while for the proof of proposi-
tion 3.1.2, which is rather long and technical, the reader is referred to [25],
[26].

Proof of proposition 3.1.1 For any f,g € L*(R®) we can write (see (.1)
in the introduction)

N .

(fs (=ANam yon + )7 9) = (f,Giy50) + 2 QN (Giys () (3.11)
i=1

where Q% are the solutions of the linear system
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VA

. N ~
(Noaj + o )@y — 2 Gia(ui —v)Q% = (G 50)wi)s 7 =1,...,N (3.12)
=1

The first step is the investigation of the uniform solvability (with respect
to a sufficiently large V) of the above linear system.
We notice first that

~

Gi/x 1 X exp(~—2\/)_\fyz — y5) 1/2
i L 3.13
” N ”HS {N2 lﬁv_::l 1671'2‘1/1 _ y]|2 } ( )

where |A||g.s. denotes the Hilbert-Schmidt norm of a matrix A and
where

(Givilii = Giyzlw — ) (3.14)

By the law of large numbers and by our assumptions on the density
distribution V', we then have

~

G;
=3P s, < e W1V Ilx (3.15)

‘with limy 100 ¢(X) = 0, ||Vl < +o0.
This implies that the matrix (see the definition (.2) in the introduction)

1

jV—I‘Na(N),y(N)(Z.‘\/X) (3.16)

has a bounded inverse, and then (3.12) is solvable, for an appropriate
choice of A and N sufficiently large.

In order to analyze the properties of the Q' when N is very large, we
consider the integral equation corresponding to (3.12) in the continuum

o(2)Q(c) - [

[ Guse— V)WY = (Gope)le)  (3.17)

which is solved, for A large enough, by
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o(z)Q(z) = [(~A — = +2)7g](2) (3.19)

Notice that, by our assumption on V and « , the potential —V /e« is Kato-
small with respect to the Laplacian (see e.g. [56]) and so the hamiltonian
—A — V/a is selfadjoint on the operator domain of the Laplacian H?(R?).
Since H*(R?) is embedded into the space of holder continuous function of
order less than 1/2 (see e.g. [42]), in particular from (3.18) we get the
continuity V (z)dz-almost everywhere of the function Q(z).

Now, comparing (3.17) with (3.12), we are in position to estimate the
difference NQ% — Q(y;)

2 l(ent )iy — (S8, N} - Qu) N =

= (0"): + (0%) (3.19)

Y

where

1 M. 1
(Ol)’ = N3/2 z:lGn/—A-(yl - yJ)Q(yJ) - N1/2 (Gs\/XVQ)(yl) (3'20)
i=

VA

(0%) = —WQ(M) (3.21)
By direct computation
E i 1\2y N -1 2 2 N -2 2
(;(O ) = LGV QT - —~lIGsvely  (3:22)
LA A 2
E(lz__;l (0%)) = Toranz @l (3.23)

where E means expectation value, ||f||2 = (f, f)v and (Gfﬁf) (z) =
JrelGiy5(z — v)* f(y)dy. From (3.22) and (3.23) we infer .
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lim B }:(O" = n=12 (3.24)
=1

which together with the invertibility of the matrix ¥ nam yon (V)
gives us that for any g € L*(R?) and X sufficiently large

1 X
lim{= > [NQy — Qw)]*}*/* =0 (3.25)
N "N =1

on a set of configurations Y ™) of measure going to 1 as IV goes to +oo.

The final step of the proof of the proposition follows now easily from

(. [(= e yon + X7 = (A= 2 4 3)1]g) =

= G0 - (1 (-8 + 7Y (o= L) -

_i[QN Q(w) /N]( fff (yt )+ = 1 iQ “/_f (yl)

< supelGaf|2) 57 LNl - Q'Y +
+o(yW™) - E [H(Y(N))ll (3.26)
where
1 N
o(y ™) Z Q) (G5 f)(w) (3.27)
l=1

Again by direct computation

E|0 — E6* =
= L G @QP @V @z~ [ (Gs) @)@V (@)ds]?) <
< JoupslGiz (=) [IQI5 + (1,1QD3 ] (3.28)
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From (3.25)-(3.28), taking into account that sup,|G, 5f|(z) < ¢/ fll2

and our assumptions on V', we conclude that for every g € L%(R?), on a set
of configurations YY) of measure going to 1 as N goes to infinity

(s [(=Anemym + )71 — (-A —V/a+ A)"Yg)|
1712

concluding the proof of proposition 3.1.1.

1111vn{| }=0 (3.29)

Q.E.D.

We conclude this section with some remarks on possible generalizations
of Proposition 3.1.1 to more singular situations.

Remark. First we note that the result should be true for a potential in

the Rollnik class, which seems very natural in our context, being equivalent
to require that the system of the charges Q(z) has finite energy.
The proof requires some additional technicalities due to the fact that the
operator domain of the limit hamiltonian doesn’t coincide any more with
the operator domain of the Laplacian, so that the charges Q(z) might not
be continuous.

Remark. Second one can consider the case in which the support of the
limit potential is a set of Lebesgue measure zero (cfr. sections 1.2, 1.3).
The case of a regular surface is quite easy and the proof can be carried out
just as in the case of the potential treated above.

The situation is slightly more complicated if the support of the potential is a
regular curve since the limit I operator (cfr. section 1.2) is now unbounded.
Moreover if § is the ”potential on the curve” of finite length L then it turns
out that the point interactions are to be distributed independently and
uniformly on the curve, with strength given by (N/27L)log N + Nj(y:)
(i.e. the renormalization of the strength is different from the previous
cases).

Finally we observe that, at least in principle, the result should be true even
in the general case of singular perturbations of the Laplacian mentioned at
the end of the section 1.3, the difficulties being only of technical nature.
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3.2 Physical applications to neutron optics

As we pointed out in the introduction the investigation of point in-
teractions begun in the early thirties among physicists attempting to find
solvable and realistic models for short range interactions in non relativistic
quantum mechanichs, mainly nuclear interactions at low energies (see e.g.
[16],[23],[17] and [50] for the physical motivations).

In particular zero-range interactions are still widely used by the nuclear the-
orists in the study of the low energy neutron scattering from condensed mat-
ter, which is the central subject of the so called neutron optics ([41],[13],[37],
48], 61], 621, 64]).

Although the rigorous treatment of point interactions has by now a long
history no attempt to exploit the entire power of a complete series expan-
sion has been made.

The aim of this section, part of which will have an heuristic character, is
to show how the correct definition of point interactions and the methods
developed in the last section to study many randomly distributed point
interactions can be used to introduce a rigorous model for such scattering
processes.

. The question might have some interest because, as we will see in a moment,
this seems to be one of the rare occasions in which a rigorous mathemat-
ical treatment could clarify some aspects of the physical theory and make
available a complete computational scheme.

We start describing briefly the present status of the physical theory under
consideration here.

Neutron optics is the branch of nuclear physics devoted to the study of the
coherent elastic scattering of slow neutrons from condensed matter, pro-
ducing typical optical phenomena like reflection, rifraction, diffraction and
SO on.

The experimental evidence shows that, with a good approximation, the
motion of the neutrons can be described by a ”macroscopic” wave function
V¥, which is called the coherent wave, satisfying a one-body Schrédinger
equation with an effective potential U , called optical potential.

One can also describe absorption or diffuse scattering considering a com-
plex optical potential and take the influence of the spin into account but
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here, for the sake of simplicity, we will treat only the purely coherent elastic
scattering.

From a theoretical point of view the first task is to prove that the effec-
tive Schrédinger equation with the optical potential can be derived from
the microscopic dynamics of the neutrons scattered by a large number of
atoms and moreover to give an explicit expression for the optical potential.
This is the content of the so called theory of dispersion.

It is claimed in the literature (see e.g. [62],[64]) that the first question, i.e.
the existence of an optical potential, can be solved in complete generality
without specifying the nature of the interaction between the neutron and
the system. Only when the specific form of the optical potential is required
then one has to introduce the dynamics.

In particular it is found that, according to the "elementary” theory ([61]),
the optical potential is given by the scattering length per unit volume as-
sociated to the system.

This result is obtained by simply averaging the point interactions in the
Born approximation, i.e. neglecting the multiple scattering of the neu-
trons.

It should be remarked that the Born approximation is the only available
inasmuch as one has a formal theory of point interactions and this lead
‘the physicists to the convinction that point interactions cannot be used to
describe multiple scattering processes.

A more "advanced” theory ([61],[62],[64]) is based on the consideration of
the so called local field, which essentially gives corrections due to the mul-
tiple scattering.

The problem is reduced to the solution of a set of equations (the quantum
mechanical analogue of Ewald’s equations in optics) plus a phenomenolog-
ical constitutive equation relating the scattered wave and the local field.
The result of this rather intricate theory is an optical potential equal to
the scattering length per uniy volume multiplied by a factor essentially de-

pending on the pair correlation function of the system of the scatterers,
which is defined by

r
fy(rr)zdr =Pr{l: ~y;l € (r,r+dr) | u} (3.30)

where yy,...,yny are the positions of the nuclei.
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When yi,...,yn are independently distributed the factor reduces to 1 and
the result of the ”elementary” theory is recovered.

We are now in position to discuss a possible application of the result of the
preceding section to the problem of the theory of dispersion.

First of all we observe that the assumptions of our model correspond to a
scattering process in the long wavelength limit.

In fact, in the limit N — +oo we have considered, both the scattering
length of each scatterer and the interparticle distance are going to zero
while the wavelength of the incident particle is kept constant.

So our result seems to be suitable for a rigorous description of cold neutron
scattering from independently distributed nuclei.

Under these conditions we recover (proposition 3.1.1) the result of the above
mentioned ”elementary” theory since the optical potential we have found
is just the scattering length per unit volume of the medium —V/a (in fact
—1/N e is the scattering length of the scatterer in y; and V is the density
of the scatterers).

The result seems interesting because it has been obtained using the cor-
rectly defined Schrédinger operator with point interactions as hamiltonian
of the incident neutron, without considering any Born approximation.

In particular this means that we have explicitly taken the multiple scatter-
.ing into account.

This fact can be also easily recognized if one writes the scattering wave
function ([7]) associated to the hamiltonian — Ay, y ) considered in the
last section

by (k) = 7 1 50 Cgi (g
Ny (kw, ) = € + —_— 3.31
. ’ 2 Dl ]

where k > 0 , w € S? and the ”charges” Q7 satisfy the set of linear
equations

(Noj + v )@’ et +) il Q" (3.32)
o+ — = '™ — .
T 4r 15 Amly; — yy|

The formula (3.31) can be physically interpreted as follows:
the total scattered wave is the sum of the incident plane wave plus a scat-
tered spherical wave from each scatterer proportional to the ”charge” Q'
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Such charge again depends on the scattered waves from all other nuclei, as
shown by (3.32), so that it is evident that ¢y, yv) embodies all possible
multiple scattering effects in the collision of the neutron with the system
of nuclei.

Such considerations lead to the conclusion that the above referred asser-
tion that the result of the ”elementary” theory neglects multiple scattering
doesn’t seem correct.

From our point of view the word ”elementary” should only indicate that
the scatterers are supposed independently distributed.

In this framework the réle of a more sophisticated theory of dispersion
should be the analysis of the low energy scattering of neutrons from a sys-
tem of correlated scatterers.

This study is still in progress but we clearly expect to obtain the optical
potential of the above mentioned ”advanced” theory of dispersion in the
long wavelength limit.

This result would be an indirect confirmation of our guess that the real
difference between ”elementary” and "advanced” theory is determined by
the consideration of correlation effects and not of multiple scattering effects
(which are already present in the ”elementary” theory) and moreover that
the correctly defined point interactions give a good physical model of in-
teraction for any low energy scatterig process in neutron optics.

A result which can be, at least partially, considered in the same direction
is given in [21],[6], where a rigorous analysis of the kinematical theory of
neutron scattering is developed. The kinematical theory ([48],[64]), con-
trary to the above described dynamical theory, is devoted to the study of
the scattering of the thermal neutrons from small samples of condensed
matter.

Here the expression ”thermal neutrons” means that the wavelength of the
incoming particles is of the same order of magnitude as the interparticle
distance in the sample and ”small samples” means that the multiple scat-
tering effects are not taken into account.

The scattering process is again described in the physical literature using
the formal point interactions in the first Born approximation and the result
obtained for the scattering cross section is
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do 1
o2

0= Z_: Wi=vi) —[1+Vg(<J)] (3.33)

where ¢ is the transferred momentum and § is the Fourier transform of
the pair correlation function.
The formula (3.33) shows why the kinematical theory is particularly inter-
esting in the study of the structure of the materials, since the pair correla-
tion function of the material is related to directly measurable quantities.
The situation can be modelized as follows: let y; be distributed according
to an homogeneous point process in R* of smooth density V and pair cor-
relation function g and let us consider the Schrédinger operator with point
interactions in yi,...,yn of strength 1/N'/2a |, a € R; then in the limit
N — oo the corresponding scattering cross section converges to the r.h.s.
of (3.33).
This result shows that, from a mathematical point of view, the difference
between the kinematical and the dynamical theory lies in a different scaling
law for the scattering length of each scatterer as N goes to infinity.
In conclusion we note that it should be possible to extend the methods of
the last section and of [21],6] to describe situations in which each scatterer
is considered harmonically bounded around some equilibrium position so
‘that inelastic scattering is allowed ([23],[47],[48],[64]).
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3.3 Point interactions and boundary value problems

This section is devoted to show the relation between point interactions
and two particular boundary value problems for the Laplace equation ([28]).
Let S, = UL, S/ be the union of N disjoint spherical surfaces Sj = {z €
R® ||z — y;j| = r} of radius r and centers y; € R® and let v, = {4},...,7}
be a smooth function defined on S,.

Then we consider the following boundary value problem in R®

(=A + XNy, = f in R\ S,

Ju ou . .

—r r = ~J r J, = 1,...,N 3-34
ont ~on; UM §r> 9 (5.34)

where A > 0 and f € L*(R?®).
By a simple integration by parts it is easily realized that the quadratic form
associated to the problem (3.34) coincides with (1.47)), (1.48) of chapter
1 so that the solution of (3.34) is nothing but (—A,, s, + A)7'f , where
—A,, s, is the Schrodinger operator with é-interaction supported by S, of
‘strength ~, defined in section 1.3 .
We note that problems of the type (3.34) arise e.g. in non relativistic Quan-
tum Mechanics in the study of some kinds of §-shell interactions ([11],[33]
and references therein).
The second boundary value problem we consider here is the exterior Robin
problem

(A + Ay, = f in R*\ U}, B’
dv,

E,LT — ’7{%— e 0 on S,‘?, ] = 19-‘-3N (335)
J

where now f € L*(R*\ UY,B!) and B! = {z € R® | |z — y;| < r}.
In the physical applications the Robin problem is useful to describe some
situations in electrochemistry, in the computation of the skin effect, in
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problems of heat propagation and, in electrostatics, to study the potential
of a conductor covered by a thin dielectric film ([44],[54]).

Our claim is that if we fix

,-7;7' = ——(1‘ -+ 471'&]'7'2)_1 j =1, "'aN (336)

where a; € R , then the solutions of the problems (3.34), (3.35) are
both converging for r — 0 to

u=(—Any +A)7'f (3.37)
where a = {1, ..., a0} , Y = {y1,--, YN}

The physical meaning of the position (3.36) can be understood if one
thinks of (3.34), (3.35) as scattering problems.
If for each scatterer SI we consider the s-wave effective range expansion
([51] pag 309), then condition (3.36) means that in the limit r — 0 we
obtain point interactions in Y of strength o from problems (3.34), (3.35)
if we keep the scattering length of each scatterer to be the constant value
(4mey) ™t
‘We observe that the result for the problem (3.34) in the case N = 1 is
proved in [11] while for the problem (3.35) it is announced in [24], where
an heuristic argument for its validity is also given.

We start with problem (3.34).
In the Hilbert space @ . L*(S?) of the n-tuples o, = (0,},...,0,") , with
o/ € L*(S?) , endowed w1th the usual scalar product

(o7, 7r)r Z/ o 1 dX? (3.38)

and the corresponding norm

lowll, = [ Z / )2z |2, (3.39)

we introduce the following bounded and selfadjoint operator
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O'rj v 5 N v l
(F'Trasr( \/_)Ur) - “7 - Gi\/Xar IS;Z - Z Gi\/XUT IS;.1 (3'40)

r I=1l75

Then, as we know from section 1.3, the solution of (3.34) can be repre-
sented in the form

N
u, = Goif + 2 G0 (3.41)

i=1

where the surface charges 0,7 are the solutions in L*(S?) of the following
system of integral equations

(s 5. (i\/:\-)‘fr)'7 = Gi\/if!sg' (3.42)
(The dependence of the charges on f and A has been dropped to semplify
the notation).
Our first goal is to establish the uniform (with respect to a sufficiently small
r) solvability of (3.42), i.e. to obtain an estimate of the lower bound for
the operator defined by (3.40).
A simple calculation gives

Ly . . sinhvAr _ .
07 uusor |y am < T e g | (3.43)

Ly , 47 sinh v/ Ar eV
|5 [ ety d | < i =rig |Glmslol:

Jil=Ll#5
(3.44)

where d = in fiz;|y — y;|. Using (3.43), (3.44) we get

@ Tas VAo 2 Pinfyamag) + VA~ 4V e

+ o(r®)]o: | (345)
From (3.45) we conclude that there exist ry > 0 sufficiently small and

A(ro) > 0 such that =T, s, (44/}) is strictly positive (and then invertible)
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whenever r < ry and A > A(ro).
This fact is the basic ingredient for the proof of our first result

Proposition 3.3.1 If 4! is given by (3.36) then

lu — urflz
1£1]2

Proof. Let us fix f,g € L?*(R®). Then using the representation (3.41),
(3.42) of the solution of (3.34) and the explicit expression of (—A, y+A)~1f
(see (.1) in the introduction) we separate the contributions to the difference
u — u, as follows

lin% r™" suprerr(rs) =0 Vn €[0,1/2) (3.46)

. N
I(g,u_u z ga "yJ)q —G\/—Ur )I+
+ (9, Giyalor —3.))]| (3.47)
where

N
¢ = [Tay (VA 3iGiyxf (w1) (3.48)

=1
g, = VX d (3.49)

d7r sinh v/ 1

The surface charges 0, have been chosen in order to satisfy the equality

éi\/xarj(x) = G5z — ;)¢ Vze R*\ B, j=1,.,N (3.50)

As a consequence of (3.50), the first term of (3.47) gives a non zero

contribution only for a region of integration whose measure is going to zero
as r — 0.

Using the Schwartz inequality and the standard potential estimate (see e.g.
[32])

1Givzflloo < cllfll2 (3.51)
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one gets

21 [, 9@ Gusle ~ 10’ ~ (Eiyso) (2) Jds| <

| j e V¥ d
< |G, . . <
< O 10Dl sur|Gx(tia) i) + 5 oups [ lo(@)lde] <
< er'’2| Gz flollgll <
< er'| 1z lgll (3:52)

where 17 is the characteristic function of Bj.
Now we turn to the second term in (3.47). An application of the Fubini
theorem and the Schwartz inequality yield

(9, Giyzlor = )| = |(07 = B+, Giyngls.)e| <
< Giyzgls.ll-llor — o:|l: (3.53)
Again by the estimate (3.51)

< erlgll (3.54)

HGi\/Xg S,

and moreover

. -1 . _
lor = 0lle < o5 (V) ellGiyafls, = Tons, (VX)L (3.55)
So using the lower bound (3.45) we find

(9 Givs(or = 3,))] < ellglls sups sup, s |G /57() = (Trrs, ((VN)3,) (6))]
(3.56)
Taking the explicit expression of &, and of 4/ into account we have

(9, Gryalor —3,)| <

N
< ellgllzl sup; supyesi |Goyzf(6) = Giyaf(ui)l + o(r)le’| +er - ¢'|] <
1=1,1#5
< erlgllzllF1]2 v €[0,1/2) (3.57)
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where again (3.51) and the Sobolev inequality (see e.g. [42])

IGi\/;f(x) - G.\/xf(z’)l

o=l

SUPzzeR? <cfl: Vvnelo,1/2)  (3.58)

have been used.

Finally by (3.52), (3.57) we obtain the proof of the proposition.
A Q.E.D.

We now briefly consider the exterior boundary value problem (3.35).
Again the first question is to investigate whether it is uniformly solvable in
the limit r — 0. Following the standard methods of the potential theory
we represent the solution as ([44],[36],[12])

N
v =G 5f + 2 Ginoy’ (3.59)

i=1

where the surface charges o,’ are determined by imposing the boundary
conditions. The result is the following system of integral equations

f . ] Urj PN . N N
(B (VDo) = 25 — BIVX)o = 3 HEVA)or' =
T I=1,1#]
190G, 5f .
LN W . oo
r Oy

where V¢ € S7 we have posed
o . 1 3G, (¢ —¢") . .
] j — =TT TS T ' o PN )
F VDo) = [| =505 + Gl =) 1o(€) a2 ()
(3.61)

(H (Ve )(0) = [ | _10Gisl—¢)

— LY I .
Y A OGN ¢') Jo,'(¢") dZ'(¢")

(3.62)
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It is easily recognized that f‘,,”g,(i\/X) is a bounded and selfadjoint
operator in @, L*(S) (see e.g. [54]). Moreover exploiting the spherical
symmetry of the obstacles we can explicitly compute the normal derivative
n (3.61), so, by a direct calculation, we get

[0 s = BGVR)od a5 2 rind; (ames) + Y o2 + o) o

(3.63)

The estimate of the operator defined by (3.62) can be performed along
the line of (3.44), the only difference being the presence of the normal
derivative of the Green’s function which is controlled by the absolute value
of the gradient.
In conclusion we are in the same situation as for problem (3.34), i.e. there
exist r4 > 0 sufficiently small and A(rj) > 0 such that r~2T, s (iv/A) is
strictly positive, and then invertible, whenever r < rh and A > A(r}).
In the analysis of the limit for » — 0 of the exterior problem (3.35) another
preliminary question must be faced.
In order to avoid difficulties arising in the study of a sequence of problems
defined on varying domains (in our case R*\ UL, B? for r — 0), it is useful
to define an extension to all R® of the solutlon v, , i.e. a function defined
'in all R® which reduces to v, in R?\ U]=
Taking the representation (3.59) into account it is natural to choose the
extension 9, obtamed by simply taking the values in U , B! of the poten-
tials G, 5f , G, \/~a, , which are naturally defined as contmuous functions
throughout the space.
Then the resulting extended Robin problem in R3 can be written as

(—A+XN)b, =1,f in R\ S,

0o, 09, : .

55—; — B:z)i‘ = —o,’ on S,, 7=1,..,N (3.64)
J 2

where now f € L*(R?) , 1, is the characteristic function of R3\ UL, B!
and 0,7 is the solution of (3.60).
We remark that there is no way to obtain the problem (3.34) as the ex-
tension to R® of the problem (3.35), so that the two problems are to be
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considered essentially different even if they can be treated with similar
methods.
Now we can state the convergence result for the problem (3.64)

Proposition 3.3.2 If 47 is given by (3.36) then

liﬁ(]). r7 Sup)eeLz(Rs)“—u“—;-%‘—z =0 Vn € [0, 1/2) (3.65)
r— 2

The proof is omitted here for the sake of brevity but it should now be
clear that the situation is completely analogous to the previous case so that
the proof can be carried out along the same line with only minor changes,
due to the presence of the normal derivative of the Green'’s function.

Remark. In conclusion we observe that it should be possible to gen-
eralize the connection between point interactions and the boundary value
problems (3.34), (3.35) to the case of shrinking obstacles S7 of arbitrary
shape.

The main problem is to replace the expression (3.36) for 4/ with a more
general one, independent of the shape of the obstacles. Such expression
.should be determined by imposing that in the limit » — 0 each scatterer
keeps a non vanishing scattering length.

The line of the proof should be the same but all the estimates are compli-
cated by the fact that the potential of a uniform charge distribution on the
obstacles is not explicitly computable any more.
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3.4 Effective equations for two models of random media

Here, developing further the arguments of sections 3.1, 3.3, we analyse
the asymptotic behaviour of the two boundary value problems introduced in
the preceding section when there are many randomly distributed obstacles;
in particular we will study the limit when the number N of the obstacles
goes to infinity and their linear size is going to zero.

As we pointed out in the introduction, this is a particular case of the general
problem of the study of random media.

The result we will find is that for N — 4co the two media behave as a
continuous medium whose response to an external field is described by an
effective potential given by the density of scattering length associated to
the system of obstacles.

Let us consider N points y1,...,yy € R® independently and identically
distributed according to the continuous probability density law V (z). Oth-
erwise stated, the set of all configurations Y ™) = {y;,...,yn} of N points
in R® is equipped with the probability measure P(V) = {V(z)dz}®"V.
Centered in each point y; , we consider the collection of spherical surfaces
Sy =UN, S} , where 8} = {z € R®| |z — yil =1/N}.

The technique of the proof will be based on the consideration of a set of
configurations Y¥) satisfying the following two regularity conditions

A1 z'nf#z lyj - y;l 2 CN_H_V Yv S (0, 1/3)

1 X 1
A, >

< e < 400 VE>0
N Fl=1,5%1 |ly; — wf*=¢

It is not hard to prove, using independence of the y;’s, continuity of
V and the law of large numbers ([52]), that the set of configurations ¥ ()
satisfying A; , A; has a probability going to 1 as N goes to infinity.
Moreover, as a consequence of condition A; , we have

SN S, =0 Vi#1 and N sufficiently large (3.66)
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Since we are interested in the limit N — -+oo in the sequel we can
always choose IV sufficiently large in such a way that (3.66) holds.
Let us now consider the following boundary value problem

(=A+XNuy = f in R®*\ Sy

dupy Juy 3 7 :

— — — = = Yhuy on Sy, 7=1,..,N (3.67)
onf  On;

where A >0, f € L*(R?)

Yo = —N(1 4 4ra;)™? j=1,.,N (3.68)

and a; = a(y;) ( a(z) , € R® is the function defined in section 3.1).
Moreover we define vy = {7}, ...,7N¥} and o) = {ay, ..., an}.
In the sequel we will always assume 1 + 47a; # 0.
It is evident from (3.67) that the case 1 + 47a; = O corresponds to a
Dirichlet boundary condition imposed on Sj so that it should be treated
separatly using, e.g., the methods of [25].
‘Our problem is to find the limit of the solution uy of the problem (3.67)
for N — +oo0.

The first step, analogously to the case of a fixed number of obstacles, is
the investigation of the uniform solvability of (3.67).
Introducing the Hilbert space @), L?(S%) of the n-tuples oy = (ox?, ..., on™)
, with on’ € LZ(S}}) , equipped with the usual scalar product and norm

N
(O'N,TN)N = Z,/S] O'NjT}JV d}:] (369)
j=1"%N
N . .
lowlln = Z/Sj (on?)? d%7 (3.70)
i=1 N

we represent the solution of (3.67) in the form
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N
uny = G:\/X + Z G,‘\/XUN] (371)

=1

where the surface charges oy’ are the solutions in L*(S8%) of

(P’YN,SN(i\/X)UN)j = Gi\/XfISgJ J=1,..N (3.72)

(Again the dependence of the charges on f and A has been dropped to
semplify the notation).
Dividing the diagonal and off-diagonal contributions in T, s, (1v/}) , we
define

(1) . on' .
(Toy 5 (1VA) on)? = T Givxon’lgi (3.73)
Conisn VD) Pow) == 3 &, pow s (3.74)
I=1,l#7

Reasoning as for (3.44) and using the estimate (3.15), it is easily shown
that

INT 50 (V2R Pl < e(3) (3.75)

where ¢(}) is independent on N and satisfies limy_ 4o, ¢(A) = 0.
Since the operator G“/— is compact 1n L2(S%) (see e.g. [54]), the question of

the invertibility for NT,, s, (¢ Vi)t A) is reduced to find possible values of A >

0 such that there exist non trivial solutions in L?(S}) of the homogeneous
equation

NO’Nj
T

— NG, 508" =0 (3.76)

A simple scaling argument shows that this is equivalent to find non
trivial solutions in L*(S]) of
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(1+4mey)o’ - é;\/ﬁaj =0 (3.77)

where u = N72) .
Equation (3.77) is just the eigenvalue equation for the Schrédinger operator
with é-interaction supported by S of strength (1 + 4we;)™" (see [11]).
It easily seen ([11]) that there exists only a finite number uj, , h = 1,...,m
, of values of x such that (3.77) admits non trivial solutions.
This implies that the possible non trivial solutions of (3.76) are obtained
only for Ay, = upN?, h =1,...,m , which are all going to +co for N — +oo.
So, taking also the estimate (3.75) into account, we can choose N, suf-
ficiently large and A(Ny) > 0 such that NT., s, (:v/}) is invertible in
@I, L*(S}) whenever A > A(No) and N > Np.

This uniform invertibility is the key ingredient of the proof of the fol-
lowing proposition

Proposition 3.4.1 Ve > 0, Vf € L%(R®) and X positive large enough

lin PO (Y [luy = (~A = V/a+ )7l >e}) =0 (3.78)

Proof. Introducing the operator — Ay, y ) and using the proposition
3.1.1, we are reduced to prove

. -1
h}l\’,n } UN — {*&Na(i\r)’y(m -+ }\) sz =0 {3.79}

for each configuration ¥ %) satisfying the regularity conditions 4, , Ag.
Following the line of the proposition 3.3.1 we have, for each g € L*(R?)

(g, un — (—ANamym + X)) <

N
<22 109, Gial — 1)@ = Grzon’ )| +1( 9, Grzlow — o) )| (3.80)

i=1

where
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. N
Q}v = Z [ FNa(N),y(N)(i\/X)“I ]jl G,'\/Xf(yl) (3.81)

=1

~ 5 \/X
ON" =
47 sinhv/AN-1

Qv (3.82)

The first term in the r.h.s. of (3.80) can be estimated just as in the case
of a fixed N (see (3.52)), so that one has

N
3 (9. Gusl =)@l = Gusow’ ) <N Sl (383)

For the second term in the r.h.s. of (3.80) , again following the line of
(3.53)-(3.56) and using the uniform invertibility of NT.,, s, (iv/}) , one gets

(9, Gizlon—an) )| < cllgls sup; 5UP,_gi |1Givzf (€)= (T s (iVA)2N) (6)]

Taking the explicit expression of &y into account we have

(9, Gy 5lon —an) )| <
< ¢||g|la[ sup; SUp,_gi IG5 f($) — Gy fyi)| + ¢ sup;|Q%| +

N .
toupjsup i D |QnlIGialy —u) = Guslc —w)l ] (3.85)
I=1,1%]

Now applying the Sobolev inequality (see e.g. [42])

sup; $uP_gi |Giaf(6) = Giynf (i)l < eN 7" |2 Vn €[0,1/2)
(3.86)

Moreover using the uniform invertibility of N~1Ty_ ) vy (IVA) (see
(3.16)) and the standard potential estimate (3.51)
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- N N
SUp; |Q§V| < [ Z(Q'}v)z ]1/2 < cN7! Z ,\/—f(yj )2 1/2 <
j=1 j=1

< N7V f]l2 (3.87)

Finally using the estimate (3.87) on the charges va , the Schwartz
inequality and the regularity conditions A; , A

N
supj sup i ) |1QulIGiva(ys —w) — Giyals —um)l <
SEON =115

N

< eN7! Sup; Z IQNil I2 <
1=1,1#] Yi — U

< eN-3? 3 1 12 <
Sec Il ¢ D2 )7e <

d=1,551 lys — wl*

1 1 1
< CN_1/2 = N 1/2 SUD- 1/2 <
B 17l (v J',lzl,:j;ﬁl ly; — wf>¢ )7 Loup; |y — w|+€ s
< N7V £ (SUPJ! ul )72 <
J
< eNTEEE | 1]l (3.88)

where v € [0,1/3) and £ > 0.
Substituting (3.86),(3.87),(3.88) in (3.85) we get

(9, Giyxlon —an) )| < eN7gll2]I fl2 veelo,1/6)  (3.89)
which, together with (3.83), completes the proof of the proposition.
Q.E.D.

The analysis of the asymptotic behaviour for N — +oo of the problem
(3.67) can be reproduced with only minor changes to study the correspond-
ing exterior Robin boundary value problem
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N .
(—A+XNoy = f in R®\ |J By

J=1
6vN

T 'ﬁ;,vN =0 on S,’;,, j=1,.,N (3.90)
J

where now f € L*(R®\ U, BY) , Biy = {z € R® | |z — y;| <1/N} and
vy is given by (3.68).
As usual we represent the solution vy as

N
Uy = Gi\/xf + Z G,'\/XUNJ (3.91)

i=1

where oy’ are the solutions of the integral equations (3.60)-(3.62), with
r and 4! replaced by N~! and ~},.
Again we define the extension 9y of vy to all R® by simply taking the nat-
ural extension in Uf{__l B};, of the potentials G, 51 , éi\/;aN" and replacing
the r.h.s. of the equation by 1yf , where now f € L*(R®) and 1y is the
characteristic function of R®\ UL, Bj.
Since all the other steps of the analysis can be carried out following the
corresponding steps of the previous case, we simply state the convergence
result omitting the details of the proof.

Proposition 3.4.2 Ve > 0, Vf € L*(R%) , and X positive sufficiently

large

lim PMYW | oy — (A =V/a+ X . >ek)=0  (3.92)

Remark. It should be emphasized that in the proof of the proposi-
tions (3.4.1), (3.4.2) the role of the point interactions (more precisely of
— Ay o)y ) is that of a good approximation for N — +oo of the solu-
tions uy or vy of the problems under consideration.
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The idea of this procedure is taken from [25] where, in the corresponding
Dirichlet problem the proof is divided into two parts: first the real Green’s
function is approximated by the potential of suitable chosen point charges
and then for such potential the limit for N — +oo0 is explicitely computed.
The main difference between the two situations is that in the Dirichlet
problem the effectiveness of the point charges approximation is proved us-
ing the maximum principle while in the present case we are forced to study
the integral equations of the potential theory.

Even if slightly more intricate this last method seems more general and in
principle it could be applied to a large variety of boundary value problems
for p.d.e. (e.g. Neumann problem for the Laplace equation, Navier-Stokes
equation and so on).
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Appendix

Time-dependent propagator for the one-center
point interaction in three dimensions

The aim of this appendix is to compute the explicit form of the time-
dependent propagator for the Schrédinger operator —A,, with a point
interaction in y € R? of strength o € R.

(In order to simplify the notation we fix y to be the origin o of R?).

The derivation is straightforward and we report it because, as far as we
know, it never appeared in the literature.

In recent papers (see e.g. [60]) only the simpler case of a point interaction
in dimension one has been treated.

We start rewriting the integral kernel of the resolvent of —A,, (see
formula (.1) of the introduction in the case N =1 )

1

_ _ L2y-1 n _ )
(800 = ) @,2) = Galo = #) +

Gr(z)Gr(z") (4.1)
where ke C,Imk >0, z,z' € R3.

Computing the inverse Laplace transform (see e.g. [1]), we get the semi-

group integral kernel associated with —~Ag,

e~ (8w (z, ") = Gy (z, £'; —iz) +
_ Uzl+l="'p? too _ (utlzl+|='?
— 4o g trave
0

1
+47r\/7f_2|xl|x’1[e ) o)

where Re z > 0 and

1 z—zl|2

I, — —
Gole,2'5) = (griyera®

(4.3)
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is the free propagator.
For o > 0 the corresponding unitary group is obtained from (4.2) after the
substitution z — #t. In particular, for & > 0, we can integrate by parts
and obtain the following alternative representation

e~ it(-Bas) (z,2') = Go(z,2';t) +

1 +o0
+|$H1"| /0 e~ % (u + |z| + |2'])Go(u + |z| + |2'|,05t)du  (4.4)

For a < 0 the convergence of the integral in (4.2) for real time may seem
problematic. This fact is related to the existence of exactly one bound state
for —A,, (see e.g. [7] pag. 15).

It turns out that the explicit form of the propagator is more conveniently
written in such a way to isolate the specific contribution of the bound state.
More precisely we write

+oo (ut]z{+ z' !2
/ et & du =
0

oo (ut]z|+]z")? 0 (utlz|+lz')?
/ Rt = du ——/ et MMeT T 4 du=
-0

—o0
+o0 h2
2 ! . (u—]zl—]2"])
= 47z ez(47ra) e41ra(l:c|+|z )] __/ girau, v du
0

Using the last equality we can now substitute z — it and obtain the
representation of the unitary group for o < ©

e—it(‘Aa,O)(m, x') = Go(xa ml; t) +

1 too drau ! ! .
[ etres(u — Jo] — ) Golu — || = [</], 05 t)du +

+
Ed{E

etre(l=l+|='])

+ (—20() W— eit(41raz)2 : (45)

We observe that the integral in (4.5) is exactly the same as in (4.4)
(except for a change & — —a , |z| + |z'| = —|z| — |z'| ) while the last term
is the contribution due to the ground state.
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Remark. We emphasize that the knowledge of the explicit form of the

time-dependent propagator can be used to get more information on the
motion of a particle subject to a point interaction.
Following the line of [60] one can describe the explicit time evolution of a
wave packet, e.g. a gaussian wave packet, comparing it with the usual time-
independent scattering theory and, more important, one can investigate the
meaning of the semiclassical approximation for —A,,.
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List of the main symbols

H™(R"™)

Fo

a/on* , 8/on"
Gy

” ) ”p

fla

()

[R5

pWw)

(5 )v
| lla-s.
E()

- llv

(s )e s -l
() s Il
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