ISAS - INTERNATIONAL SCHOOL

FOR ADVANCED STUDIES

Superstring Perturbation Theory

up to Two Loops and Beyond

Thesis Submitted for the Degree of

phiae

Doctor Philoso

.
°

Supervisor

.
.

Candidate

Prof. Roberto Iengo

Chuan-Jie Zhu

TRIESTE

Academic Year 1988/89







Superstring Perturbation Theory

up to Two Loops and Beyond

Thesis Submitted for the Degree of
Doctor Philosophiae

Candidate: Supervisor:

Chuan-Jie Zhu Prof. Roberto Iengo

Academic Year 1988/89



Acknowledgement

At first and foremost I would like to thank my supervisor Prof. Roberto Iengo. 1
thank him for his teaching about quantum theories and superstring perturbation theory
(from him I learnt the most important and recent developments in string perturbation
theory). I also thank him for his guidance which led to the works described in this thesis
(some of them are done together). I admire him a lot for his constant pursuing for clear,
simple and correct physical interpretation of the results obtained after long and complex
computations. To this point I also want to make a comment: eventhough most of the works
described here are just long and complex calculations, the results nevertheless have clear
and simple physical interpretations, for which most of them are owed to Prof. Roberto
Iemgo. Finally I also thank him for careful reading of the thesis, for important comments
and suggestions.

Second I want to think Profs. D. Amati, L. Bonora, E. Gava, G. Sotkov and Dr. F.
Ferrari for discussions and their interests in my works. I also thank Profs. E. Gava and
G. Sotkov for collaboration.

Part of this thesis was typesetted by my wife — Mrs. Man-Lian Zhang. To her I would

like to give my special thanks.



10

11

12

Contents

Introduction (including organization of the thesis)

String Perturbation Theory

Hyperelliptic Riemann Surface and Theta Function

Some Sample Calculation at Low Genus

Two-Loop Calcﬁations — Nonrenormaliztion Theorem

Two-Loop Calculation — Four-Particle Bosonic Amplitude

Finteness and Factorization of the Four-Particle amplitude

Ultra-High Energy Scattering or Quantum Gravity Corrections from Supersring The-
ory

Four-Dimensional Superstrings (Fermionic Construction, Including a Brief Review)
and Their Two-Loop Calculations

Two-Loop Calculation—Four-Particle Fermionic Amplitudes

Multi-Loop Calculation (including some unpublished works of Roberto Iengo and
Chuan-Jie Zhu about high genus hyperelliptic Riemann surface)

Conclusions and Perspectives

Appendix A: Calculation of the Chiral Determinants

Appendix B: Calculation of the Ghost Correlators

Appendix C: Calculation of the Prime Form Part

References



1. Introduction

Superstring theories [1,2] are serious candidates for a unified theory including gravity. This
became manifest by the important proof of anomaly cancellation for the type I superstring
theory [3], with gauge group SO(32) and the relationship then proven between this and
one-loop finiteness [4]. Almost all the previous approaches to unified theory [5] suffer from
the defects that either they don’t care about gravity — like Grand Unified Theories (GUTs)
[6] — or they are at most some low energy effective theories — like theories including N=1
supergravity [7], because of the nonrenormalizibility of quantum gravity. In superstring
theories the general belief is that superstring theories are finite theories (in (quantum)
loop perturbation expansion order by ordér; at least). If one believes that the (ultraviolet)
infinity in quantum field theory comes from the assumption of the point likeness of the
fundamental particles, there is no puzzlings that string theories are finite because strings
are one-dimensional extended objects. The inverse square of the string tension provides a
natural cut off. Bosonic string theories contain some divergences only because they contain
tachyons or there is no symmetry to ensure the vanishing of the massless tadpole. Explicit
computations up to one-loop level show that superstring theories are finite [1,2], having
neither ultraviolet nor infrared divergences (in ten dimensions). Due to some heuristic
arguments, one believes that this finiteness should be persist to all orders in string pertur-
bation expansion [9]. It is certainly an important problem to give a rigorous proof of this
“fact”. Despite the efforts of many people the proofs has always been incomplete [10,11].
However our efforts in this direction is rather plain: we will explore as much as we can at
two loops [12-17]. We will see that we can give a full treatment of superstring perturbation
theory at two loops. Even more some sensible physical results can also be drawn, like high
energy behaviour of the scattering of gravitons [18-23]. Before running into the details of
two-loop calculations, let us briefly review the various approaches to string perturbation

theory.

There are various approaches to string pertubation theory. Roughly speaking one can
divide all these approaches into two types. The first type is by using the light-cone gauge
[24]. In this gauge all the ghosts decouple completely and the non-physical modes like z~
may be expressed directly in terms solely of the physical ones. Nevertheless this approach

is non-covariant and Lorentz invariance is not manifest. This drawback sometimes turns
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out to be fatal because string theory is a theory plagued with anomalies. Anomaly is
| very difficult to analyse in a non-covariant gauge. In fact the critical dimension of string
theory was determined by Lorentz invariance® [25]. There is a vast amount of literatures
on light-cone gauge string theory [26-30] and there is also a review article [31] written,
by A.Restuccia and J.G.Taylor on light-cone gauge analysis of superstrings which gives
a comparatively complete analysis of light-cone superstring perturbation theories. So we
will not discuss thie approach here. The second type is the Lorentz covariant approach.

Let us recall some of them.

The old operator formalism [32] is very suitable to do calculations up to one loop
level [1,2]. Now this operator formalism was extended to high loops by including the
contributions of ghosts [33-36]. One virtue of this approach is its explicitness by using
the Schottky parametrization (from the process of “sewing” reggeons) of the higher genus
Riemann surfacef. Being quite explicit, this approach may turn out to have potential to
give an explicit proof of the finiteness of superstring theories. The approach taken by
string field theory [37-41] is a more ambitious approach. Hopefully string field theory
should provide tools to do something nonperturbatively. The complaints often come from
the fact that we don’t have a good string field theory which possesses (in a manifest way)
all the miracles of string theory. So it is at least premature to talk about this approach,
eventhough we can do a lot with (bad) string field theory. Another approach [42] which
is a natural path integral extention from random (particle traject'ory) line to random
surface (string trajectory), see fig.1, seems more promising. This approach is usually called
Polyakov String Theory, because it was Polyakov who firstly introduced it as a functional
integration over both the metric and string coordinates. This seemingly trivial extension
is actually quite non-trivial [43,44]. In ordinary field theory it is necessary to introduce
interactions for particles to interact. In Polyakov string theory it seems trivial to introduce
interactions for strings to interact. The trajectory of string is a two-dimensional surface
(called Riemann surface in mathematics). All Riemann surfaces can be classified by their
topology ~ the handles and boundaries attached to them, see fig.2. Because we are obliged

to do a summation over all surfaces (for fixed boundaries), this summation necessaryly

*  Thatis to say that Lorentz invariance is violated off critical dimension.

T The connection between string perturbation theory and Riemann surface will be explained below.
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includes a summation over topology. It is one of the miracles in string theory that the
first two terms in this topological summation (according to the well known topological
characterization of the (closed) Riemann surface — the genus g (the number of handles
of the Riemann surface)) are precisely the tree and one-loop level terms in string theory,
as required by the general standards of quantum field theory — like factorization and
unitarity, etc. So it is natural to suppose that this topological summation is actually
the whole story of string perturbation theory, see fig.3. Nevertheless this approach is not
manifestly unitary. Unitarity of Polyakov string (perturbation) theory has been proved
for bosonic string theory [45] by relating the Polyakov amplitudes with those in light-
cone gauge approach which is manifestly unitary. Various tests for superstring theories
are also in agreement with unitarity and factorization. Also the rules for calculations
should be derived from a more fundamental theory — hopefuly a very good string theory
(which nobody knows at present) which explains all the miracles of string theory. All these
problems are left for further research works in the next century partially because string
theory belongs to 21th century physics [46], which accidently discovered in this century.

For detail discussions of Polyakov string theory and extensive references, see for instance

[47].

So what is the present art of string perturbation theory, specifically the Polyakov string
theory? Despite many efforts we are still a long way from a thorough understanding of
string perturbation theory. It is generally believed that the S-matrix of closed superstirng
theory is finite, at least in loop perturbation expansion order by order. Part of this
conjecture is a stringy non-renormalization theorem [48] which states that the zero- up
to three-particle (massless) amplitudes do not get renormalized. In particular it includes
the the (perturbative) vanishing of the cosmological constant. Surprisingly, this question
has not been solved completely. In the last couple of years, we have seen a number of
elegant but erroneous arguments to proof the above assertions on a formal level. Part
of the cruxes of the matter lie in our ignorance of supermanifolds and, in particular, of
supermoduli space. Bosonic strings are easier to master due to more than a hundred years
of work in Riemann surface. Recently the generalization of the notion of a Riemann surface
to a super Riemann surface parametrized by coordinates (z, 8) where 8 is a Grassmann

number has attracted a lots of interests [49-52]. Here the moduli and the supermoduli
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characterize the superconformal structures of the super Riemann surfaces. Nevertheless
the study of supermoduli space is just at the beginning. How the theory of supermoduli
space will give a full resolution of the subtleties [53, 54, 55] of the present formulation
(of superstring perturbation theory) and possibly show manifestly the supersymmetry and

finiteness is not clear to us.

At present, there are basically two mutually orthogonal strategies of pursuing super-
string perturbation theory. First, given the fact that the partition function can be written
as a total derivative in ordinary moduli space* [56], it seems natural to focus on the mod-
ular boundary, i.e., on degenerate Riemann surfaces [57, 58]. The boundary integrals for
the vacuum amplitude have been investigated [54, 55], with the result that under certain
assumptions their one-loop vanishing extends to all orders in perturbation theory. If one
understands their arguments, there still remains much work to be done, in particular for

understanding factorization and modular invariance in the general genus case.

On the other hand, amplitudes with n external legs still require (at least for n > 3
which is presumbaly nonvanishing) the computation of the full integrand in the moduli
space of (punctured) Riemann surfaces. At the one-loop level, this can be domne in a
straightforward manner [1, 2]. The important observation here is that the summation over
spin structures [59] is crucial for obtaining a genuine result: it makes the zero- to three-
particle (massless of course) amplitudes vanish pointwise in moduli space and enormousl;
simplifies the four-particle amplitude [60]. In this thesis we will show that this same pattern
occurs also at two loops [12-16]. By using a purely algebraic parametrization of genus
two Riemann surfaces by hyperelliptic coordinates, the summation over spin structures
can be done in a straightforward way. Here the modular invariance can be implemented
explicitlyf. In fact the requirement of modular invariance ensures the vanishing of the
cosmological constant [13]. The pointwise vanishing of n-particle amplitudes (n < 4) (the
nonrenormalization theorem) can be proven by a straightforward algebraic calculation [13,
14]. Then the calculation of the four-particle amplitude simplifies enormously and can
be explicitly carried out [15]. All of these details will be explained in this thesis. It is

organised as follows:

* That is, we have done the trival integration over supermoduli space.

T This fixes completely the phase in the summation over spin structures.
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In section 2, we review briefly the general strategy of multi-loop calculation following
[61, 56, 62] in Polyakov string perturbation theory. Following [61], we explain how moduli
space comes out as a result of integration over world-sheet metric — the geometry — and
derive the correct measure for the partition function and scattering amplitudes for closed
bosonic string theories [63]. This derivation was also extend to superstring theories [64-
66] in the Nevea-Schwarz-Ramond covariant formalism [67, 68]. In order to do explicit
calculation in superstring theories, it is convenient first to do integration over supermoduli
— leaving two insertions of supercurrent at two loops, for example — and then over moduli.
The necessity of a summation over spin structures [59] — GSO projection [69] — is also

explained, ensuring modular invariance and finiteness of the amplitudes.

In section 3, we give some relevant mathematical backgrounds about Riemann surface
in general and hyperelliptic Riemann surface in particular {70, 71]. Some usefull relations
among O-constants, period matrix and branch point (see section 3), i.e. Thomae formula
and variational formula [72] etc. are also given. We also gave the proof of a formula (which

will be used in section 6) given by V.G.Knizhnik in [12] and some new results [16].

In section 4, we use the results of section 2 to do some sample calculations in string
theories up to one-loop level. I will derive the Virsoro-Shapiro dual amplitiude [73, 74] in
closed bosonic string theory. For type II superstring theories I will do the tree amplitude
calculations in some details to see how complex the calculation is because I don’t want to
cheat those people who haven’t done this kind of calculations, by saying that it is also easy
to get what and what. The calculation at one-loop level was done in hyperelliptic formalism
to demonstrate that one can also do explicit calculation in hyperelliptic formalism. The
results obtained are shown to be identical with those obtained in ©-function formalism [1,
2.

In section 5, we first calculate the n-particle amplitudes up to n = 3 and verify the
nonrenormalization theorem, i.e. the vanishing of the n-prticle (massless) (n < 4) ampli-
tudes, explicitly [12, 13, 14]. This calculation is based on a set of identities called Lianzi
identities in [14, 15]. We give also in this section the proof of Lianzi identities and also the

derivation of several summation formulas used in [15] and later.

In section 6, we present the full details about the computation of the four-particle am-

plitude [15, 16]. By using the nonrenormalization proven in the last section, the calculation
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of the four-particle (all bosons) amplitude simplifies enormously. The standard kinematic
factor comes out as a result of summation over spin structures. The contribution from
ghost and superghost is also calculated. As we shall see in section 7, this contribution is

necessary to ensure the right properties of the four-particle amplitude.

In section 7, we verify the main properties of the four-particle amplitude. The inden-
pendence of the amplitudes on the insertion points of supercurrent was checked explicitly
by carefully studying the boundary terms (or total derivatives) [56, 15, 16]. We show that
the amplitude obtained is finite, having neither ultraviolet nor infrared divergences and
has the right factorization properties [75]. All our discussions go through both heterotic
string (HST) [76] and type II superstring (SST II) theories [1,2] although sometimes we
discuss HST only.

In section 8, starting from the exact integral representation of the superstring scattering
amplitude at two loops for four bosonic massless external particles obtained in section 6,
we evaluated its asymptotic behaviour in the limit of high energy and small momentum
tansfer [22]. By using a simple compactification scheme (see section 9) we study also the
case of four dimensional space-time. We find a rescattering eikonal form due to multi-
graviton exchange in the ¢ channel. A subleading term like a Schwarzschild correction due
to the interaction among the exchanged gravitoné can also be obtained [22, 23]. These

results are similar, although not quite identical, to what obtained in [19].

In section 9, we review briefly a simple compactification scheme called fermionic con-
struction [77, 78]. Then we show that how the previous prescription for two-loop calcula-
tions can be applied to these four-dimensional models by explicitly doing some calculations.
The cosmological constants of all the supersymmetric string models (in fermionic construc-
tion of course) at two loops are shown to be zero [79, 80]. The nonvanishing amplitudes
(and also the nonrenomalization theorem) can be readily calculated although we will not

present all the details and formulas [81].

In section 10, we present the calculation of two-loop fermionic amplitude [17]. This
calculaion is very technical. Nevertheless we feel that it is worth presenting such complex
calculation here not only because one can do it by the techniques at hand but also it points
out many questions unanswered. In particular we discuss in detail the modular invariance

and show in full details how we obtained a modular invariant result for the fermionic




amplitude. - _

In sction 11 we will survey briefly some topics of multi-loop calculations [82-85]. We
will mainly discuss the cosmological constant. By explicitly calculating the cosmolgical
constant for high genus hyperelliptic Riemann surfaces (which unfortunately consist of
only a measure zero part of the moduli space for genus higher than 2), we can see how
modular invariance can be implemented and ensures the vanishing of the cosmological
constant [85]. Nevertheless an explicit proof of the vanishing of the cosmological constant
is still lacking. At present only partial results have been obtained.

In the last section (section 12) wee would like to summarize what we have achieved.
As to the future of string theory we are no more optimistic than some people but we are
also no more pessimistic than other people. It is certainly true that even if we do have
a complete proof and answers to all the questions raised in this thesis we are still a long
way from the goals that string theories would be reached: a truely unified theories of
everything.

There are three appendixes which explain some technical points. In appendix A I
present some details for the calculation of the chiral determinants following [86-89], see
also [90, 91]. In appendix B the derivation of eq.(5.14) is done in some details [13]. Finally

I reproduce appendix A of ref.[22] as appendix C here for completeness.
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2. String Perturbation Theory

In this section, we review briefly the general strategy of multiloop calculation following
(61, 56]. We will discuss first what Polyakov’s approach to string theory means. We discuss
how to fix the gauge and reduce the functional integration to the integration over moduli
space. Then we extend all these discussions to superstring theories and derive the loop
measure for superstring theories [56] (for both HST and SST II ).

In the Polyakov approach to string theory, quantization is performed by summing the
functional integration over all geometry and string coordinates. The vacuum amplitude

(partition function) is then

7 - Z D(geometry)D(string coordinates) -5

(2.1)
. Vol.( symmetry group)
topologies

Please note that we always assume Wick rotation both for two-dimensional world-sheet
and target space-time where string moves. S is the action. The n-particle amplitude is

computed by inserting vertices on Riemann surface in the partition function, i.e. we have

An(kiy ei) = Z

~ topologies

A

where V(k;, €;,2;) is the vertex for the emission of i-th particle with momentum k; and

D(geometry)D(string coordinates)

Vol.( symmetry group)
(2.2)

n
2 -S
d ziV(ki,ei,zi)e y
1

g 1=

polarization tensor ;.

For closed bosonic string, we have

S = / 420 /39°P 0. X - 85X, (2.3)

where X are string coordinates describing the embedding of string in space-time and
9ap(9%P = (97 )ap) is the world-sheet metric (¢%(e = 1,2) are local coordinates on the
world-sheet). It is not difficult to see that this action (2.3) is invariant under the following
reparametrization of the local coordinates:

7% — f%(o),

(o ) o (24)
gus — LA o (5(a), |
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and under the following rescaling of the metric:
gop — €7V gup. (2.5)

To quantize this theory properly, one should factorize out the volume of this symmetry
group and get the correct measure for the pai;h integral. We will follow Faddeev-Popov
procedure to factorize out this (infinite) volume.

To choose a gauge condition, we would like to choose the conformal gauge in which
the metric takes the form

gop = €°60ap. ' (2.5)
But this extremely convenient gauge has some topological limitations. Let us discuss now
both the derivation of (2.6) and these limitations.

The first naive argument which shows that (2.6) is possible is the following. The
possibility of the choice (2.6) means that any metric gog can be given in the form

Bf 85
e#) 5 5)F = e¢(f(a))é§;_a_(]7%, (2.7)

where {f7(c)} defines the necessary coordinate transfor Hence, the right hand siude of (2.7)

gap = (

depends on three arbitrary functions f!(o), ¢(o). But gog(c) also has three independent
number of independent functions matches. However, this is not enough. We must show
that the transformation (2.7) is nonsingular, i.e. the jacobian for passing to the variables

(¢, f*) is non zero. To show this we shall consider a small variation of (2.7):

89ap = 60gap + VaVs + Vs Vas (2.8)

where V* = §f*. The nonsigular nature of the transformation will be proved if for any
0gap we can find §¢ and V such that (2.8) will hold. In other words, we must be able to
solve the equation:
§pbap + VaVp + VsVa = 8gap = Yap, (2.9)
or
(PV)ap = VaVp + VaVa = Jap V° Vs = Yap — %gamg ) (2.10)
which is obtained from (2.9) by subtracting the trace. The question, whether the conformal
gauge is always accessible, is reduced now to the possibility of solving (2.10) which we shall
rewrite symbolically:
PV =1. (2.11)

12



Here we have denoted by P the differential operator, defined by (2.10) which takes vec-
tor fields into traceless tensors (notice that the number of independent components is
the same). There exists a conjugate operator P which acts in the opposite direction—
transforming tensors into vectors. It is easy to realize that equation (2.11) will be solvable
if and only if the conjugate operator PT doesn’t have zero modes. On the other hand, the
solution of eq. (2.11) is not unique if P has zero modes.

So, our conclusion is that the existence of zero modes of the operator PT means that
the conformal gauge is not accessible, and zero modes of P that it is not unique (and one
should further fix the remaining gauge freedom).

The number of zero modes is regulated by index theorem. We will not go into the

details of these mathematics and only recall the relevant results. We have
No(P) — No(P*) = 8x = —(6g - 6), (2.12)

where Ny denotes the number of zero modes, x is the Euler character of the Riemann

surface ¥4 and g is the genus. In particular, we have the following list:

Ny(P) =8, No(PT) =0, for g =0 (sphere);
No(P) =2, No(PT) =2, - for g=1 (torus); (2.13)
No(P) =0, No(PT) =69 —6, for g>2.

So we found that on a sphere we can always introduce a conformal gauge, which is defined
modulo SL(2,C) transformations (with six (= No(P)) real parameters) which requires
extra gauge fixing, e.g. the fixing of three out of four complex z;,7 = 1,2, 3,4 (the locations
of the inserted vertices) in the case of four-particle amplitude at tree level. In the case
of Riemann surface with higher genus we have topological obstructions for the conformal

gauge. The best thing which can be done is the following choice of gauge

gep(o) = e“’(")gf;g(cf;fl,fz, ey Teg—6)s (2.14)

where ggg is a metric which depends on 6g— 6 extra parameters and, e.g. which can be cho-
sen to have constant negative curvature. Integration over all metrics (i.e. geometry) must
include not only functional integration over ¢(c) but also 6g — 6 dimensional integration

over {r;,1 = 1,2,---,6g9 — 6}—the moduli space. Let us now derive the explicit measure
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for such integration. Before doing that, let us mention an important mathematical result.
Roughly speaking, this moduli space is a complex space. So we will use complex coordi-
nates for this moduli space and also for the Riemann surface. In complex coordinates, the
metric tensor on the Riemann surface are given by the components g,5,¢., and gz;. Then
€q.(2.8) can be written in the following form:

597.; - v:Vz7

692z = VzVz, (2.15)

8922 = 80gzz + 9:2(V™ + V V7).
Here 7, and 7? are covariant derivatives:

vinV. = g*%8:V,
()7 : z’_ (2.16)

vV, = g,:0,(¢**V,)  ete.,

and

(V) = —g%8;, (2.17)

where we used index (n) to distinguish the covariant derivatives acting on different tensor

fields (see, e.g. [43, 44] for more details).

From the previous discussions and (2.17), we see that an arbitrary variation of g,

can be written in the following form:
692z = V:Vz + 5Ti¢iz: (2'18)

where 73,7 = 1,2,-.-,3g — 3 are the complex coordinates for moduli space and {¢¢,} are

a basis of the zero modes of (vgl))"'—the 2-differentials. Similarly, we have
0gzz = V:Vz + 5‘7'1'4—5;3- (2.19)
In order to find the integration measure, one defines a metric in the space of all metrics:
[l 6922 [|I* = /dzzgzzggzzag”,
| 6922 |1* = / d?29::69:.697, (2.20)
= / P2g.: VO Ve iy VE + 6767,(¢7,67) ete.
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where (¢%,¢7) = [ d?2(g.z) 1 ¢L,¢I,. Then we have

ZZ

3g—3

Dg = D[pV. V3] [] d*ridet'(v2v{_yy)det(4’, ¢7). (2.21)

i=1

Notice that the functional integration over conformal factor e¥(°) can be trivially fac-
torize out in the critical dimens d = 26 for closed bosonic string as shown by Polyakov in

[3], the partition function can be written as
Z=> / [I & mdet' (7. V¢ _yy)det (4%, ¢7) / DXe %, (2.22)
g VMg

where My is the moduli space. In this expression we decomposed the variation of 6g.z as
in (2.18). In other words, this is a choice of gauge slice. We can also choose other gauge

slice, e.g.

092z = VZV' + Syi/'l'iza (2 23)
5 zz — vZV‘ + 6y‘uu'zz7

as shown schematically in Fig.4, and where jii, = g,:pi*, u’* are called Beltrami differen-
tials.

From (2.18) and (2.23), we have

Vsz -+ 67—11(751;: = sz,"i" 5yi/uiz7 (224)

or
6ri(¢7, ¢) = byi(¢7, u'). (2.25)
Doing wedge product over j = 1,2, ...,3g — 3 with eq.(2.25), we have

3g—3 39—3

H dy; - det(¢ H dr; - det(¢*, 7). (2.26)

Substituting this expression into (2.22), we get

e 3 2 , . 3
Z = Zf H 1l (;tti:/;]>>| det (vzv(,l))/DXe 5. (2.27)

Following the standard Faddeev-Popov procedure, the gauge parameter V# for repara-

metrization invariance can be replaced by an anticommuting ghost field ¢*. Introducing
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its conjugate antighost field b,,, we have the following reparametrization invariant ghost

action
Sen = / &zg,2he 7 &+ C.C. . (2.28)
Then we can represent det'(y zV(z._l)) by a path integral over ghost fields. We have

| dete®(z) |2
det(¢?, ¢7)

Substituting det'(y zV(z-l)) /det(¢?, #7) by the above expression, we found that the parti-

/ Disehe] [ (z0)b(21)e = det'(7:77s) (2.29)

tion function (2.27) can be expressed as
det(o

J— e 1 z Z: “(S'I'Sgh-)
Z = §g :/ g U d?y s Zk) /D [Xbcbe] | |b( )(z:)e
— 2, .. "E T 2 _—(S5+5Sg1)
Eg:[wg lildyz/L[Xbe]‘ilI(.u"b)| € ’

where (u?,b) is the standard notation for the pairing between b field and the Beltrami
differentials:

(2.30)

(1, b) = / &2 uich,. (2.31)
All the above discussinos can be extended to supersymmetric string theories. Here
the complication comes mainly from the fermion fields on Riemann surface. First, we
have supersymmetric (2-dimensional) partners for all the bosonic fields in closed bosonic
string theory and have to integrate over all these fields. The functional integration can be
carried out straightforwardly. In the end, because of topological obstruction one should
also integrate over a 2g — 2 dimensional space {p®,a =1,2,---,2g — 2}—the supermoduli
space, in addition to the 6g — 6 dimensional moduli space. However, the integration over
supermoduli space is a Grassmannian integration and can be explicitly carried out and we
have the following expression for the partition function derived in [56]:

My
(2.32)

X H5 (XasB))({xa,J) + ——)H Wiy b) x (left sector),

where J is the total super current (see eq.(2.56)), B and v are ghost fields for the super

reparametrization transformation. Here 5%: acts on [[,(u*,b) as b'g:

now try to derive the above expression for the loop measure of superstring theory.

pt = E%Xa- Let us
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Our starting point is the supersymmetric generalization of the bosonic string action.

It is [92, 93]

S ::/dza e {g“ﬁBC,X -0 X + -0

1 (2.33)
+xa7P7%% - (08X — Zx,adl)} ;
where* e = det(e2), ¥* (& = 1,2,---,D, the space-time index) is the supersymmetric
partner of X* and x. (a=1,2) is the supersymmetric partner of the two-dimensional
“vierbein” field e ( gap = eie%&ab). Apart from the usual reparameterization invariance
of the local coordinates (see eq.(2.4)), the action (2.33) is also invariant under the following

local supersymmetric transformations:

6X, = e,
1
6y = 0% (0o X, — §X°‘¢")E’

(2.34)
690p = e(0aXp + T8Xas

6XO! = 2@0:67
with ¢ being a Majorana spinor. The Weyl rescaling of the metric (see eq.(2.5)) is gener-
alized to

(2.35)

As in bosonic string theory, in order to get the correct measure for the path integral, we
should factorize out the volume of the symmetry group. We will follow the Faddeev-Popov
procedure to factorize out this (infinite) volume.

To choose a gauge condition, we would like to choose the supercoformal gauge in which

the metric and the gravitino fields take the form

gop = €¥84p,
g (2.36)

Xa = YaX-
Then the action reduced to a quadratic form and the path integral can be easily computed.
But this extremely convenient gauge has some topological limitations. Let us discuss now
both the derivation of (2.36) and these limitations.

%

% =elo?, a“(a = 1,2) are the Pauli matrices.

~
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The first naive argument which shows that (2.36) is possible is the following. The
possibility of the choice (2.36) means that any metric and gravitino configuration can be
transformed to the form of (2.36) by repeating use of either general coordinate transfor-
mation or supersymmetric transformation (2.34). Let us first of all count the number of
independent functions in the gauge (2.36) which gives us a rough orientation of the sit-
uation. We have 3 components of gos and two Majorana spinors x,, or in other words
3 bosonic functions and 4 fermionic ones. We replace them by one bosonic fuctions and
two fermionic functions . This is reasonable, since we have two extra bosonic functions,
describing general coordinate transformation from the gauge (2.36) to an arbitrary one,
and two fermionic ones which enter in (2.34). All in all, the number of independent func-
tion matches. However, this is not enough. We must show that the transformations are
nonsingular, i.e. the Jacobian for passing to the variables (¢, Va, X, €)* is non zero. To
show this we shall consider an arbitrary variation of Y and examine whether we can write

it as some variation of x plus a supersymmetric transformation. We have

dxa = 0abx + 2{70‘6
(2.37)

N 1
= oa(6x + P Ve eE)+2(VaE — —éaaoﬁ VB E)

The nonsingular nature of the supersymmetric transformation will be proved if for any
§X« we can find §x and e such that (2.37) will hold. In other words, we must be able to

solve the equation:

TabX + 27 o€ = 6Xa, | (2.38)
or
e 14 1,
(Le)a = 2(V ot — 500" V5 €) = 0Xa — 500 5x3, (2.39)

which is obtained from (2.38) by subtracting the trace. All this is quite analogous to the

bosonic case (2.10).

The question, whether the conformal gauge is accessible, is reduced now to the possi-

bility of solving (2.39) which we shall write symbolically:

Le = 6x. (2.40)

* where V and € describe the general coordinate and supersymmetric transformation.
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Here we have denoted by L the differential operator, defined by (2.39) which takes Majo-
rana spinor fields into traceless vector spinor fields (note that the number of independent
components is the same). There exists a conjugate operator Lt which acts in the opposite
direction—transforming (traceless) vector spinors into spinors. It is easy to realize that
equation (2.40) will be solvable if and only if the conjugate operator L™ doesn’t have zero
modes. On the other hand, the solution of (2.40) is not unique if L has zero modes.

So, our conclusion is that zero modes of the operator L™ means that the superconformal
gauge is not accessible, and zero modes of L that it is not unique (and one should further
fix the remaining gauge freedom).

The number of zero modes of L ans LT are not readily found from the classical theory of
Riemann surface because here we are dealing with anticommuting (or Grassmanian) fields.
The theory of super Riemann surface is still in its fancy form. A straightforward extension -
of ordinary Riemann surface may not be enough. Here we will restrict our discussions to the
particular background where the gravitino field xo vanishes: xo = 0. In the final results
we shall be able to restore y, dependence by the use of (world-sheet) supersymmetry. As
in the bosonic case we also use the (super) complex coordinates on the world-sheet. By
taking the world-sheet metric as ds? = p(de? + dr?) = pdzdz, 1p = g.z, 2(Z) = o L7,

the covariant derivative acting on spinor field can be found to be:
L
(Le)a = Vat — 500" Vp £
. 1 -1 -
= /922 {aa(\/g“s) - iaaaﬁaﬁ(\/g“s)} .

Changing to complex coordinates, this is exactly the covariant derivatives acting on right

(2.41)

spinor (or (3, 0) tensor) field:

Vgi)w = \/gzzaz( V gz£59)7 (242)
and we have
(T = —g*%0;, (2.43)

acting on (£, 0) tensor (or right vector spinor) field. The existence of zero modes of the
operator (Vg%))'*'—the holomorphic %-differentials—is the topological obstruction to the
accessibility of the superconformal gauge. Of course, the bosonic part of (2.41) should also
be analyzed.
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The number of zero modes of the operators V(zn) and (V(zn))+ are regulated by index

theorem. We will not go into the details of these mathematics and only recall the results
here. We have

No(90") = No(94" D)) = +5(2n — 1)x 040

—(271, - 1)(9 - 1)7
where Ny denotes the number of zero modes, x is the Euler character of the Riemann

surface £; and g is the genus. In particular, we have the following list for n = %*:

ND(V(Z%)) =2 No((V(z%))_i_) =0, for g = 0 (sphere);

) (1) (2.45)
]'V.O(Vz7 ) = 0, Ng((vza )+) = 29 — 27 for [ 2 2.

For g = 1 (the torus), the number of zero modes also depends on the spin structures (see
below). For even spin structures we have Ng(v(z%)) = No((vﬁ%))f) =0 and No(v(z%)) =
No((v(ﬁ))*“) =1 for the odd spin structure.

Combining the above discussions withe the ones for bosonic string, we found that
on a sphere we can always introduce a superconformal gauge, which is defined modulo
SL(2|1,C) transformations (with six (= No(P)) even real parameters and four (= No(L))
odd parameters) which requires extra gauge fixing, e.g. the fixing of three out four complex
z;, 1 =1, 2, 3, 4 (the even coordinates of the inserted vertices) and two out of four complex
8;, : =1, 2, 3, 4 (the odd coordinates) in the case of four-particle amplitude at tree level
in type II superstring theory. In the case of Riemann surface with high genus we have
topological obstructions for the superconformal gauge. The best thing which can be done

is the following choice of gauge

gap(o) = e“’<”) 0 (a, m;, ™m;),

492 (2.46)
Xa(a) Z p* Xa o5 ™My, mz)+‘7'aX>

where (m;, ;) are even moduli parameters and p%(a = 1,---,4g — 4) are odd moduli or
supermoduli parameters. x%(o; m;, ;) are super Beltrami differentials which consist of
a basis of zero modes of L™. As in the bosonic case, we also use the complex coordinates

for the (even and odd) moduli space and for the Riemann surface. Then the metric guog

* Forn =2, please see (2.13).
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are given by the components g,3, g,, and gzz. The gravitino field x, are decomposed into

L
27

a o-trace part (a 0) tensor x?) and a traceless part (a (1, —3) tensor x?) and their
complex conjugate fields ( x? and x%).

To compute the measure, we would like to go a two-step way [62]. First we write the
measure on the split surface ¥y which is obtained from the super-Riemann surface &, by
setting all the super moduli to zero. Second we will restore the super moduli dependence
of the string integrand and do the integration over super moduli. By completely analogous
to the bosonic string, we write the g-loop measure of the type II superstring theory as

follows

Mg i

z, _-_/ [T &2m: []&6" 2x|Zsol, (2.47)
where .

Zx = / [DXY] exp(~S[bf X*]),
2.48
Znc = / [DBDC] exp(~S[B,C]) [[6(< e B>) [[ <15, B>. (249)

Here S[X*] and S[B, C] are the actions for the matter superfield X*(z, z, 6, 6) =
XH(z, 0)+X*(z, ), X¥(z, 8) = X*(2)+6¢*(z) and the superconformal ghost superfields
B(za 0) = ﬁ(z) + Bb(z)7 C(z, 6) = c(z) + 87(2):

S[XH = % / DX*DX,,
) (2.49)
SB, C]= _—/ BD_;C.
2T

The innerproducts < p;, B > and < ji,, B > are defined by integration over the super-
Riemann surface. The above functional integrals are evaluated by expanding the fields in an
arthonormal basis of eigen modes of the corresponding Laplacians. The B-field has 3g — 3
anti-commuting and 2g — 2 commuting zero modes proportional to the holomorphic (%, 0)-
differentials. The corresponding zero mode integrals are projected out by the operators
6({fia, B)) and (u;, B), making the ghost partition function well-defined. Furthermore,
since under analytic coordinate transformations on supermoduli space (m, p) — (™, p),
the basis of super-Beltrami differentials transform as tangent vectors we readily verify that
the fermionic string partition function Zx|Zpc|? transforms as coordinate invariant density

on sM,.
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At this point we would like to point out the second complication coming from the
fermion fields on Riemann surface and motivate the integration over the supermoduli.
Because fermion fields are half integer differentials, they can change a sign when travel
around a non-contractible cycle-(path) on Riemann surface. In order to define a fermion
field, one should specify its properties when traveling around all the non-contractible cycles
on Riemann surface [59]. A specification of this properties is called a spin structures, and
there can be 229 different spin structures on a genus g Riemann surface. Because large
reparametrization (those which cann’t be continuously deformed to identity and are related
to modular transformation) mixes spin structures (changing one spin structures to another
one), one has to discuss all the spin structures and do the appropriate summation over
spin structures in the partition function in order to get a sensible (e.g. supersymmetric,
tachyon free, etc.) theory [59]. As claimed by many people superstring loop amplitudes are
space-time supersymmetric. In the covariant NSR-formulation discussed here (following
Polyakov), space-time supersymmetry arises only after performing the GSO-projection on
even word-sheet fermion parity [69], which in the path-integral is implemented by summing
over all the spin structures [59]. However, because spin structure is an intrinsic part of the
geometry of a super Riemann surface, this sum can only be performed after integrating
over the supermoduli. In other words, whereas on sM, space-time supefsymmetry is
a symmetry relating the contribution of different super Riemann surface, and therefore
difficult to analyze, after reducing the integrand to My, it is realized as a symmetry on each
individual Riemann surface. So in order to discuss the space-time properties of the loop
amplitudes, we should first do the integration over supermoduli and then do the summation
over spin structures. The integration over supermoduli is a Grassmanian integration and
can easily be done. Up to now, the problem of summation over spin structures was not
completely solved. However, at two-loops (not mention the complete solution at one loop)
this was solved in [13] by using modular invariance and the cosmological constant was
shown to be zero. We will discuss this solution in section 5 and also the nonrenormalization

theorem there.

The first step in the calculation of integral over the supermoduli p* is to isolate all
p®-dependence of the string integrand. This means we have to know the difference of the

integrand on a super-Riemann surface ¥, with that on the split surface Xy obtained from
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3, by setting all odd moduli to zero. A direct procedure for calculating this difference is
to perform in the functional integral on &y a redefinition of the fields, such that the new
fields satisfy the boundary conditions of £,. This redefinition is obtained as follows.

Let (2, ) denote the complex super coordinates on Yo and (Z, §) those on Z,. These
two coordinate systems are related to each other by a so-called quasi-superconformal trans-

formation, (z, 8) — (%, ), which can always be chosen to have the following form [62]

z + 0e(z, ),

z

j (2.50)

i

0+e(z,z2)+ }2-9668(2, z),

where €(z, %) is a multi-valued, anti-commuting (— 1, 0)-differential on Zg. This coordinate
transformation can be read as the operation switching on the odd supermoduli. The
redefinition relating the fields on Xy to those on %, can now be expressed by the help of

the above differential ¢ as follows

X — X + e+ &, P — P +e0X,
b— b+30e8 + 0B, B — B+ eb, (2.51)
c— c+ ey, v — v — 20¢ec + €0c,

From this one finds that the action functionals on X, are expressed in component fields

on %g as
S1X], = o / [0X3X + 3% + 0% + 290X + ZPOX + Z30¢] ,
(2.52)

¥is

S[B,Cl, = —1~/ [béc + B0y + ;z(%bv + %5ac + -;—(aﬁ)c) +C.C

Here the matter action S[X] is the well-known Brink-Di Vecchia-Howe action of a two-
dimensional massless scalar coupled to N=1 supergracity in the Wess-Zumino gauge [92,
93]. The anti-commuting supermoduli are contained in the two-dimensional gravitino field

%, which is an odd (——%, 1)-differentiual on Zg. It is related to the differential € by
%(z,2) = 20¢(z, ). (2.53)

Before we procced, let us make a short comment on the matter action S[X]” in (2.52).

At first sight the presence of the last term in this action is a bit surprising, since classically
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it destroys the decoupling of the left- and right-moving modes. At the quantum level, how-
ever, this additional term is in fact necessary in order to have chiral factorization, because
it precisely cancels the correlation between %%0X and x%8X caused by the contraction:
0X(2)0X(w) = —w8(z — w). Unless stated otherwise, we will in. the following consider
only the holomorphic part (or right part) of the partition function.

It is clear from the above discussion, that all dependence of the action on X, on the
anti-commuting supermoduli p® resides in the gravitino field §. To simplify the following
analysis, we will now choose the coordinates on sM, such that the gravitino ¥ can be

expanded as
2g—2

x(z,%z) = Z pxa(z, %), (2.54)
a=1
where the 2g — 2 differentials x4(z, Z) are all independent of the odd supermoduli. Having
made this choice, we can expand the action on ¥, as

29—2
S[X,B,Cl, = S[X,B,Clo+ > p*(Xas /), (2.55)

a=1

where J is the analytic two-dimensional supercurrent of the matter-ghost system
J=1-0X +2c08 — vb+ 30¢f3, (2.56)

and the pairing (x,, J) is defined by integration over 3. If we choose the even differentials
4" to be independent of the supermoduli, and allow the odd differentials y, to be dependent

of the even moduli, we have

(i, B)p = (ni,0)0 + (%75)0, (2.57)

and
{fa,B)f = (Xa)B)o- ' (2.58)

Combining all these we find the following expression for the string partition function on

Y5, in which all dependence on the odd supermoduli p, has been made manifest:

Z(m,p) =/e'5° [H[(l +p“(xa,J>)5(<xa,ﬂ))]H((#i,iﬁ+p“(g%;,ﬂ)) x (left part),
) ‘ (2.59)
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where we introduced the short-hand notation:

f e™%0 = f D[ X pbef~]exp {—-71; / [%6)(5}( + —;—qp&p + béc+ﬂ5ﬂ} x (left part).

(2.60)
Here all fields and differentials are defined on the sflit surface ¥g. We can now explicity

perform the Grassmann integration over the odd supermoduli p,, leading to:

2, = [ TL&tms [ DixpbepleCPEntamtodn
P

5 (2.61)
x [T 6((xeB))({xar I) + EE)H(M,M x (left sector).

This is exactly (2.32) as quoted before.
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3. Hyperelliptic Riemann Surface and Theta Function

As it is well-known that the evolution of a closed string sweeps out a world sheet,
which is a two dimensional surface or Riemann surface embedded in a target space-time,
the theory of Riemann surface as well as the theory of the moduli space of the Riemann
surface plays a prominent role in string theory. In this section we will give some relevant
mathematical background materials about Riemann surface in general and hyperelliptic
Riemann surface in particular. Let us start with the definition of a Riemann surface.

A Riemann surface is a real two dimensional manifold with coordinates ¢® and eu-
clidean metric gog,a,8 = 1,2. One can always choose a set of local coordinates (o, 0?%)
such that the Riemann metric takes the form

dS? = e#(7 7V do*doP b
(3.1)
= e¥(#9)d2dz,

by setting z = o' +i0?, Z = o' —io%. From (3.1) one sees that the transition function from
one local chart to another one is either a holomorphic or an anti-holomorphic function. So
every Riemann surface is an one dimensional complex manifold. Of particular interesting
is closed Riemann surface which has no boundaries. The topological classification of the
closed Riemann surfaces is by their genus—the handles on the surface. See fig.2.

Because of the handles on the Riemann surface, one can have non-contratible path(s)
or cycles on the surface. In fact on a genus ¢ Riemann surface we have and only have
2g homological different cycles. Furthermore a canonical homology basis of cycles can be

chosen such that the intersection paring of cycles (counting orientation) satisfies
(ea,ap) =(Ba,88) =0,

(aa,88) = —(Ba,aB) = baB.

A basis of cycles satisfying these conditions is showing in fig.5.

(3.2)

From cohomology theory a choice of homology basis corresponds to a choice of g
holomorphic and g anti-holomorphic closed one forms (on complex manifold, of course).
They are known as the (first kind) Abelian differentials: wy, @4. A standard way of

normalizing the w4’s is to require
}{ wp = 84B. (3.3)
a4
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Then the periods over the 3 cycles are completely determined
f WB = TaB, (3.4)
A

which is known as the period matrix of the Riemann surface. It is a symmetric matrix
with a positive definite immaginary part. |

The space of all the matrices H, = {r;7; = 7ji, Imr > 0} is a complex %g(g +1)-
dimensional space known as Siegel’s upper half plane. We have seen that every Riemann
surface with a chosen homology basis gives rise to a 7. In fact it can be shown that no
two inequivalent Riemann surfaces have the same period matrice T (Torelli’s theorem).
So we can use H, to parametrize the moduli space of the Riemann surfaces. This is a
highly redudant description, however, since the same surface with two different basis will

in general have two fifferent matrices 7. Suppose the two canonical basis are related by

(;) ) (2 j) (Z) ’ (35)

where 4, B, C, D are g x g integer matrices. In order to preserve the conditions (3.2),
the matrix in (3.5) must be a symplectic modular matrix with integer coefficients, i.e. an
element of Sp(2g,, Z):
DCT — ¢DT = BAT — ABT =, 6)'
DAT - CBT = ADT - BCT =1. @
The change of the abelian differentials and the period matrix under the change of basis
(3.5) can easily be computed. We have
w' = (C’TT “+ DT)"lw,
(3.7)
r' = (Ar + B)(Ct+ D)™
So in the parametrization of the moduli space of Riemann surface by Hgy, we can identify
two period matrices 7 and 7' when they are related as in (3.7). But this parametrization
can not be a good paremetrization because the dimensions do not equal: % g(g+1)>3g-3
for g > 3. Only for g = 2, 3 we have 3g(g+1) =3g—3and g =1, 29(g+1) =1 which also
equals to the dimension of the moduli space of the torus (the genus 1 Riemann surface). For

g > 3, we must impose some constraints on the entries of the matrix 7 for = being a period

matrix of a Riemann surface. To find these constraints and a good parametrization of the
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moaduli space of the Riemann surface by period matrix is known as Schottky problem.
This problem was solved recently [94, 95]. It may have potential applications in string
theory and physics [96, 97].

The function analyses on the Riemann surface are based on the Riemann theta function

[70, 71] which is defined as

@(Z]T) — Z eiwn-r-n+27ri'n.-z. (38)

nezZs

For describing spin structures it is useful to generalize (3.8) to include characteristic a, b €

R9. The Riemann theta function with characteristic is defined by

a ) ‘
© [ ] (z]'r) = ewr(n+a)-r-(n+a.)+2m(n+a).(,_+b)
b "gz:g (3.9)
— eivra»r.a+27ria.(z+b)@(zl‘r).

Then we have

a+n ] (z+717-n+m)= e‘i”"'f‘n*%i"'(#b@ [ ] (z)

a
e[b-l-m b

(3.10)
_ gmimneTn—2min(a+b)+2mimea g [:] (2),
and
o [a +n

b+ m](z) - emm'a@[:](‘z)’ (3.11)

describing the (quasi) periodicity properties in z and in the characteristics, with m, n € Z9.

The theta functions with half integer (and integer) characteristics can be divided into

even and odd depending on whether they are symmetric under z — —2. From (3.9) we
easily get

a . a

@[b](_z) — e47rza,-b®{b](z), (312)

Then O is even if 4a - b is even and odd if 4a - b is odd. From what follows we will restrict

a, b to integer and half integer values in RY. Then every O-function has a definite parity.
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For these ©-functions we have the following Riemann ©-identity [70, 71]

. -+ + + +
BN i b e e
=2o[ '] (%(z tytut v)) @'[:o | (%(z fy-u- v)) (3.13)

0 0

x@[::] (%(m—y-&-u—v))@[zo] (%(w—y—u‘Fv)) )

0

The proof of this identity is very easy. One simply calculate the left hand side of (3.13)
by using the definition of ®-function and make a change of summation. The result will be
seen to be the right hand side of (3.13).

For fixed value of z one defines the multivalued function on the Riemann surface
P
£(P) = 6(z + / ). (3.14)
Py

The Riemann vanishing theorem [70, 71] says that f(P) either vanishes identically or f(P)

has g-zeroes Py, ..., P, satisfying the relation

g .p
z—!—Z/P w= A, (3.15)
1=1 0

where A is some vector € J(X)* depending on Py and the canonical homology basis.
Conversely, for all Py, ---, P, € &g, if we define z according to (3.15), then f(P;) = 0.
A is known as the vector of Riemann constant. The set of points z € J(X) for which the
theta functions vanishes is a subset of complex codimension one in the Jacobian varity
known as the theta divisor. A simple consequence of the Riemann vanishing theorem is

that ©(e|Q) = 0 if and only if there exist ¢ — 1 points in ¥, such that

g—1 P; »
e-_—A——Z/ w. (3.16)
i=1 7 Fo

An important consequence of this theorem is that it allows us to characterize the spin

structure of a Riemann surface [98].

* J(X) = CY9/L,, is the Jacobian varity of the Riemann surface. Here L, = Z9 + 7 - Z9 is the

Jacobian lattice.
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There is a one to one correspondence between characteristic a, b where a; = 0, %, b; =
0, 3 and spin structures.
Let ag, by be an odd characteristic corresponding to a spin bundle s. We can construct

explicitly its holomorphic section. Let us consider the function

ol [ ) (.17

w

where z and w are two arbitrary points on the Riemann surface. Keeping w fixed, eq.(3.17)
will vanish as a function of z in g — 1 points Pi,---,P;—1. Similarly, as a function of w,
keeping z fixed, it will also vanish at the same points. Since the spin structure is odd it

also vanishes to first order when z and w coincide. If we now take z and w very close to

each other and to one of the F;’s, eq.(3.17) behaves like
(z —w)(z — F)(w — P;). (3.18)

Thus if we differentiate eq.(3.17) with respect to z and then set z = w, we obtain a

holomorphic one form

R (2) = > wal(2)0u, O )(w)lu=o- (3.19)
A=1

From eq.(3.18) we know that h?(z) has only double zeroes at the P;’s and therefore we can

take its square root.

Then the prime form is define as [71, 70]

O (u
E(z,w) = —h(ib)"igw)), (3.20)
where .
u=/ w. (2.21)

E(z,w) is a —3 differential in z and w with only one zero at z = w and E(z,w) = —E(w, z).

a
It is independent of the choice of the odd spin structure [ ° ] . From the transformation
0

property of the Riemann theta function (3.10), E(z,w) is single valued when z is moved

around the «; cycles, but when z is moved around the §; cycles n; times it transforms as

E(z,w) — e f™TmTETRY Bo w). (3.22)
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The theta-function and the prime form depend on the basis w4 of the Abelian differentials
and on the period matrix 7, which are fixed once we have chosen a canonical homology
basis a4, Ba. The action of a nontrival diffeomorphism on the homology basis is given by
eq.(3.5) and the corresponding transformations of the Abilian differentials and the period,
matrix are given by eq.(3.7), then

i=u-(Cr+ D). (3.23)
The transformation rule for the theta-function is [70, 71, 98, 99]

O (ulr) — O[%)(a|F) = @B det T/ (O + D)em (CTHD T C g (ulr), (3.24)

a
where ¢(a,b) is some phase indenpendent of v and 7 and the new characteristic [ , ] is

related to [:} by

o D —C\ [a\ 1 cDT
(b'> (——B A> <b> 2 (ABT>

I

a a
Notice that if [b } is an even (odd) characteristic [b' ] is also even (odd) since if O[;](u|T)

is an even (odd) function of u also @[Z,’ (#|7) is an even (odd) function of u.
The prime form depends on the choice of the homology basis. In fact from the defini-
tions (3.19) and (3.20) we have

R3(z) — R¥(z) = (@D det/2(COr + D)w,-(z)@ui@[:,i’](uh), (3.26)

!

and the spin structure [:O] is related to [:01 by €q.(3.25). Then

0 [2)(al7)
h2(z)h?(w)
2m‘u-(Cr+D)‘IC-u®2[2’6}(,&{7) (3'27)

o]

E*(z,w) — E2(z,w) =

€

wi(2)Bu; 02121 (17) lumow; ()8, O2 PN (ulT) fumo
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Since E(z,w) is independence of the particular odd spin structure chosen, the modular

transformatiom of E is given by:
E(z,w) — E(z,w) = ¢imw (GriD)TiC: “E(z,w). (3.28)

To complete the discussion about Riemann surface, we would like to mention a very
important identity for the prime form—the Fay’s triscecant identity (and its genernization).

The generalized identity is [71, 70, 100]

O, (X iy wi— iy i) [Ty Blus ug) Blvi,v))

6.(0) T By = T debtuud (o), (329)

For n = 2, we get Fay’s triscecant identity.

So far so much for the general theory of Riemann surface. In what follows we will view
Riemann surface as an algebraic curve. We will try to derive some explicit formulas for
a special class of Riemann surface: the hyperelliptic Riemann surface. For ¢ = 1, 2 all
the Riemann surfaces are hyperelliptic. For g > 3, hyperelliptic surfaces only consist of a
measure zero part of the whole moduli space. We will restrict our discussions to g = 2. The
generalization (reduction) to higher (lower) genus hyperelliptic surface is straighforward.

It is a well-known fact that every genus 'two Riemann surface can be realized as a

hyperelliptic surface in C P?
6

v =]](z-a) (3.30)

=1
where a;(¢ = 1,2,---,6) are the six branch points. From (3.30) one readily solves y in

terms of z:

(3.31)

Then every genus two Riemann surface can be thought of as a double covering of $? ( the
Riemann sphere) with cutting and gluing appropraitly. We will see this in connection with
canonical homology basis soon (Fig. 6).

There are two independent holomorphic abelian differentials on a genus two Riemann

surface:

dz zdz
Ql = Qz(Z) = 5‘(;)"

(3.32)

32



To see that 2;(z) and Q,(z) are holomorphic differentials, one recalls that the uniformizer

coordinate near branch point is u:

z—a; =u’ (3.33)

and the coordinate near infinite point is v:

z =

S

(3.34)

Set Q(z) = f,—(_—zi)dz, one sees that ((z) has two zeros: one z = z on the upper sheet of
52, one z = z on the lower sheet. We denote it simply as z = z+.

On hyperelliptic Riemann surface, spin structures are in one-to-one correspondence
with the splitting of the branch point {a;} into two non-intersecting sets {4} and {Bi}.
In particular, the ten even spin structure (at genus two) are corresponded with the case
when both set {4} and {B;} has exact three elements. If we use the canonical homology

basis as shown in Fig.2, the ten even spin structures are calculated to be [13]

11
s~ 1] ~ {42} = {alazaf}, {Bi} = {asasas}, (3.35)

which is abbreviated as (123 | 456)

11 . 10, 10
ag ~ ~ (124 | 356), 55 ~ ~ (125 | 346), s4 ~ [ ] ~ (126 | 345),
10 0- L0 0-
01, 0 0- 00
o5 ~ ~ (134 | 256), 56 ~ ~ (135 |246), st~ | | ~(136]245), (3.36)
L0 0- L0 0- 01
00, 00, 01
o5 ~ ~ (145 ] 236), s ~ ~ (146 | 235), s10 ~ [ ] ~ (156 | 234).
SEE 1 0/ 10

a a ' .
where the symbol [ ' 2} is the standard symbol to denote spin structure in connection
102
with ©-function with characteritics (see, for example [70, 71, 98]). The ordering of the ten

even spin structures is arranged following the convention: 4; = a;, 4, = a;, A3 = a; with
1 < j and 83 < 83 if 43 <1y or j; < j2, which has been used in [12-16].
It is easy to see that the holomorphic abelian differentials Q;(z) (eq. (3.32)) are not

normalized in the standard way:

jg wj = &, }é_ wj = Tij = T (3.37)

33



where 7 is the 2 x 2 period matrix. In fact, these differentials are related as follows:

Q; = Z“’ij’{ Q. (3.38)
i e
Set (K)ij = ¢, Qj, we have
; = w; Kj;. (3.39)
It is not difficult to solve w; in terms of £;:

K220y — Ka1§)

w1 = y
det K
3.40
e = ~ K120 + K11(p (3.40)
2T det K '

In what follows, we give some useful formulae which will be used later. The first one

is the Thomae formula [71]

3
0%(0) = +det’ K [ 4i; Byj, (3.41)
i<j

where A;; = A;—Aj, Bi; = B;— Bj. Because of the sign ambiguity of the above expression,
we will use another quantity Q, intead of ©%(0) [13]:

3
Q. =[] 4i;Bi;. (3.42)
i<
The second formula is

Qz,5) = w(z) - (Imr)‘l &() e
2 (s —w)(B —5) 5 G
Ty w)/ ¢,

| y(w) |2

where

7= | e

Finally we have a variational formula [72]

2
d?z1d*z, = 2| detK |? det(Imr). (3.44)

Ori; m R
= - : y n /s 3.45
da,, 5 wz(an)‘-"y (a, ) ( )

34



where @(a;) is defined as follows:

w(z) = (&(z0) +&'(20)(z — 20) + -+ -)dz
= el +ed, (3.46)
W(a;) = lim0 2uw(u® + a;),
2>~
where one should use the uniformizer coordinate u instead of z near the branch point.

All these formulas can be proved quite easily by explicit computation. The only trick

is using the standard formula:

/wi/\oj:;{ﬁkwﬁkoj—(a«—ﬁm} — —2i(Imr)ij. (3.47)

and the explicit formulas for T in terms of K and G: G = fﬁ Q. For example, we have

—G11 K12+ G12K11
detK

(3.48)

Ti2 =

To conclude this section, we recall another formula which is given by V. G. Knizhnik
n [12]:

(0XH*(21)0X" (22)) = — g** {m + 11‘1‘: . 6?:2 {zgzj; s imz

(21 = z1)(z1 — 22) i 2, d22, T, & To) 0.
x/ (z2 — z1)(z2 — 22) i }+( (;EQ)

We now give a derivation of this quite important formula (see section 5). Because (0X*(z1)

y(z1)y(22)

8X"(z,)) has a double pole when z; = z2, and no simple pole, one can postulate the

general form of it as:

0+ (22003 (a2)) =~ { o [ 5 (14 B2 4 o) o)

AT

(z1)
{332 {2(21 — 3) ( " zgzi%)] i Qi(zl)o’{jﬂj(xz)}
(3.50)

Here we include the factor ( + y(z’)) (instead of the factor 2) to cancell the pole when

z1 and z, are on different sheet of the Riemann sphere.
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Introducing the following anti-holomorphic (0,1) differantials:
z

—— 1 T z 2,

Fe) = @(a‘:)/ y(z ) ?(f)/ly(z l"'d ’ (3.51)
520\ _ 1 2,

P (ac = 7 5) / iy(z) Izd + -(w) / I y(z

/ Pi(z)Q;(z)d’z = %Ta;i. (3.52)
Then it is easy to find C};Q;(z2) from the holomorphicity of (9X(z;)0X (z2)):

2
22___

we have

f P (31)(8X (21)0X (23)) %2, = 0, (3.53)
i.e. we have

/Pi(il) { aiz [2(961 1_ = (1 + ZE:D] + ni(zl)o;jnj(zz)} dzy =0.  (3.54)

From the above expression, we get:

ClQ(es) = — ;/P(ml)azz{ ! -y(mz)}dzzl. (3.55)

1 — T2 y(ml)

Then

(0X*(21)0X"(22)) = — g** {2(21 }-:82)2 + %522 [931 imz . zg:;}

~-;—Qi($1)/Pi(El)3iz [Zl _l_xz ) Z,((Z))] dzzl} (3.56)
=—g" {“2‘(“;1’_1_—3‘2“)‘5 51'1:822 /zgzji k2 -1—1:2
e e Moo LEASY

Symmetrizing in z; and z,, we get (3.49) as given by V. G. Knizhnik in [12] with minor
modification.

From (3.56), one can also write the expression for Y, ;(8X (2) X (w;)) with >_; a; = 0.
It is

D ei{0XH(2) X" (wi)) = — g+ ' ai{—l +—1—/y(wi). !

; 20z—w;) 2T ) y(z) z—w;

(3.57)
d221d222} ,

y(z1)y(22)

(z — 21)(z — 22)
(wi — z1)(w; — 22)
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which satisfies

/ Fi(2) Y asl0X* ()X (wi)) 2 = 0. (3.58)

1

By differentiating (3.57) with respect to w;, we get

z—u)(w — 1) P

.#zn”w = —76@ z. : (
(0X*(2)0X" (w)) = —m6Y + y(z)g(w)/ | y(w) 2 (3.59)

= 6@ (z —w) + gw(z) (Imr) ™ & (@).

Finally, we would like to give the expression of Sezgd kernel—the propagator of 1/2-
differential field +. It is [71]

] _ 1 (@) tu()
W) = = 5 s,

u(z) = E 1/ z : ‘g: . (3.61)

All these formulas will be used later in two-loop computation in superstring theories.

(3.60)

where

That completes our review of the mathematics about genus 2 hyperelliptic Riemann sur-
face. Before plunging into the very details of the two-loop calculations we would like first
to do some easy and simple calculations at lower genus. This will be done in the next

section.
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4. Some Sample Calculations at Low Genus

In this section we present some sample calculations at low genus. First we are going to
derive the Virasoro-Shapiro amplitude [73, 74] for the closed bosonic string theory. Second
we will derive the tree-level amplitude for type II superstring theory. And finally we will do
the one-loop calculations for superstring theories in the hyperelliptic language. The result
obtained was proved to be the same as the result obtained in the ®-function language.

For g = 0, there are three holomorphic conformal Killing vectors (zero modes of the
operator P, see eq.(2.10)). In the calculation of the amplitude, there is an extra gauge
freedom which should be fixed. We can fix three points to some arbitrarily chosen points.
The measure for this gauge fixing is

d?z;d*z;d% 24,
(2 = 2i)(z5 — z6) (2 — 2) 2

which is PSL(2,C) = SL(2,C)/{1,—1} invariant. Here ¢, j, k denote any three distinct

dp = (4.1)

points among the inserted points 1,---,n. The n-particle amplitude is then
An(k = H V(k; 4.2
n( 1y°°° n) H ( 19 €1y 24 > ( . )

where V(k;,€;,z;) is the vertex operator for the emission of the i-th particle (with polar-

ization tensor ¢; and momentum k;). For the tachyon we have
Viki, €, 2i) =: gtk X(z) (4.3)

with mass shell condition: k* = 2. For n = 4 we get from (4.3) and (4.2) the four-tachyon
amplitude

Ag(ky,- - kQ—/H’“ fexp{ D ki ki(X(2:)X(2;))
i< (4.4)

by using the contraction (X(z;)X(z;)) = In|z; — z;|%. This amplitude is independent of

the arbitrary points z;, z; and zx chosen. We can choose what we want to simplify the
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calculation. By choosing z, =0, z3 = 1 and 24 = o0, we get™

A4(k1,...7k4):/dZIZIlzkl-kzll_Zl‘zkl.ka

_ P(-—l - k1’ . kz - kl kg)r(l + kl . kz)].-‘(l + kl . k3)

- T(—ky - k2)T(—k1 - k3)T(2 + kb — 2 4 k1 - k3) (4.6)

_r(a-yra-Hrei-y
Te+H)TR+HT(2+3)
which is the manifestly dual amplitude of Shapiro [74] and Virasoro [73]. Here we have used
the definition of the Mandelstam variables for the four-particle amplitude: s = —(k1+k2)?,
t = —(ks + k)% and u = —(k; + k3)?.
The four-particle amplitude in type II superstring theory can be calculated similarly.

By using the super coordinate notation z = (z,6) and dz = dz+6d4, the invariant measure

is now as follows [47]

du — dz;dz;dz,d6;d6;d0y
B T Gizinen)

5, (4.7)

2ij Ok +2550:i+21:60;+6:9; 0k
(zijzj 0 28i )12

group which is isomorphic to the complexified OSp(1,1)—the superconformal extension of
PSL(2,C). The four-particle amplitude is then

where § =

. The measure dy is invariant under the superconformal

[ |%__1 d?z;d%6; 4
e e o femand 1= " k‘t) ,i, 1' - 4:-8
A4(k17 7k4) / d,udﬁ <iI=|1 ( €2 )) ( )

For graviton the emission vertex is given by
V(ki,ei,2:) = €2 DX, (2:) DX, (2;)e* X =0, (4.9)

The contractions needed in the calculation of the amplitude aref:

(X(3)X(27)) = Inessl? — 22,
\ . Y 5. (4.10)
D;j(X(z:)X(z;)) = ;j, D;(X(2:)X(z;)) = gj

* Rememner the integration formula

2 aa b (1 +a)T(1+b5)D(-1—a —?)
/d z22%Z (l—z)b(l——z)b --—71' T2 + a £ BT (—a )T (—b)

(4.5)

T.D]"—:g%j-—i-@j%j.
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It seems an easy task to carry out the calculation to lead to the four-particle amplitude:

oo’ I(=3T(=3)T(-%
Ag(kq,-- k4)—-61 44 e Kuvpo Ky Vel T e +2 )1"(12.}- 5 (4.11)
2 2 2

first obtained by Green and Schwarz in 1982 [1, 2]. Let us try.

First we would like to set some z; and 4; to some specifically chosen points in order to
simplify the algebra of calculation. We set z; = 0, 23 = 1, z4 = co and 83 = 6, = 0. We

have then*

6= 92a
d dzzdzst4d92d93d849
#= | 223234 242| /2 2 (4.12)
_ dzydz3dzedf;do,

|223234242|1/2

The computations of the correlation functions in <H?—_—1 V(ki, €i,2;)) simplify a lot by using
this choice. We have

4
(TLV (ki ei,)) = e s 2" ™ ({ (W, + 620X,,) (b, + 020X,,)
=t \ (4.13)
¢“3¢#4 % (C C, p— y)}Heik;'X(zi)>.
1=1
After integration over d26,d%§, we get
4
/(H V(ki, 61;,Z,;)>d291d292 — 6511/1 egzuz Egalm #4V4<{(3X#1 + ik - T,b‘l,bm)
= : . (4.14)
(6X#2 + ikz - "/"‘/’#’2 )¢Ma¢#4 X (C C1 B V)} H eik;-X(z;)>'
i=1
To simplify the writing we write /""" = e/*€!*. By using the Wick theorem the contractions

* We don’t care the over all multiplicative factor.
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in (4.14) can be easily carried out. We get

4
/(HV(ki,ei,zi))dzeld?‘Gz

=1

={(Ber - X(22)) Y ihe - X(z0)) ika - ves - Plz2)es (s )es +h(z0))
+ (0(e2 'X(Zz))ziki + X (2:)) (thy - e '1/)(Z1)€3" P(zs)es - P(24))

+ (8(e1 - X (21))8(ez - X(22))){es - P(23)ea - ¥(24))
+(Bler - X(2)) Y ks - X(z)){B(e2 - X(22)) 3 i« X(3:)) e - plaa)es - ()

+ (8(61 . X(Zl)) Z zk.,, . X(Zz)><1.k1 . 1/)61 . 1/1(z1 )Zkz . ¢ez . 1/J(Zz)€3 . ¢(23)€4 . ¢(24)>}

x (C.C., e — E)exp{z ki ki (X (2:)X (27))].
i<j
(4.15)
The contractions (X (z;)X(z;)) etc. can be read from eq.(4.10):

(X (2:)X (25)) = In |z — 2%,
(0XH(2)X* (3)) = —g" ——

Z; — zj

(0X*(2)0X" (2;)) = *gpua;l_%?, (4.16)
1

zi — zj

?

(b (z: )" (25)) = —g"”

By using the above formulas and keeping only the leading terms in ;1;- (24 — o0), the
quantiaty in the big curly parenthesis in eq.(4.15) is
101
RA =— ;“{;—{61 . kg(eg . kzég €4 — €4 ¢ kgt‘:z . 63) — €4 °* kl(El . kgéz » €3 — €] * €2€3 ° kz)
a2y

+ k1 koer - eser €3 — €3 - kiey - esez3 -k — €30 €a€q ~kyen 'ks}
1

1—21

{61 'ks(és ckoey - eq —eq - koes - 63) + € - ks(és kieg - €s — €1 - €364 kl)

1
— €1 °* kgég . k363 . 64} -+ ;—i‘(l - kl . k2)€1 + €9€3 * €4
1

1
- M{éz ki(es - k€1 €4 —€a-hier -€3) —ex-kyer - kges - s

+k1 'k2€1 c €3€ * €4 — € 'k1€1 + €3€4 'kz — €3 'kl(él 'k262 €4 — €1 * €264 kg)} .

(4.17)
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The next problem is to do the integration voer z;. This can be easily done with the help

of the integration formula (4.5). We have

1 1 .
/dzzm!zl“l*zu Ry kz————kl T /d2z|z12k1"°2~2|1 — g|PRrks

1 ki -kaki -k 1
2 2|, |2kka—2)q _ |2kika _ 1 T2 T R4 d2 2ky-ky—211 _ |2k1-ka
/d zz[zl |1 — 2] Tk F R E / z|z| |1 — 2| )
1 2 | 12ky ko—2 2ky ks
T /d z|z| |1 — z| ,
T(=3)T(=3)T(-3%
T+ 3TA+ 51+ %)

/ dzz(l—l‘j‘zl“l*"zll — z[Pke = —k; -k
—Z

[l s = (- ha)?

(4.18)
Of course we have used the mass shell condition: k*> = 0 and momentum conservation law:
Zle k; = 0. The Mandelstam variables s, t and u are the same as defind before. By using
eq.(4.18) we get finally the four-particle amplitude in type II superstring theories

T(—$)I(—5)I(-%
(14 3T+ T+ 3)

Ag(ky,- ky) = K.f{r (4.19)

where the kinematic factors K and K are calculated to be:

1
K = —-Z(Stel  €3€3 " €4 -+ SUEg *+ €3€71 - €4 +iue1 * €2€3 64)

1
+ ’2-3(61 ckaes - hoes €y + €3 - kaeg - ki€r - €3+ €1 - kaes - koey - €3+ €3 - kaes - kier - €s)

1
+ §t(eg ski€y - kg€ - €3 + €3 - kaey - ko€s - €4 + €2 - kaey - kaes - €s + €3 kies - kaer - €2)

+ %u(él -k - hgey - €3+ €3 -kaea - krer - es + €1 - kaea - kser s + €3 - koes - kyer €2),
K=K (e — 8),

(4.20)
which are the same as obtained before [1, 2] by different method. That completes our
calculation of the four-particle tree amplitude for type II superstring theory.

The last calculation which I would like to show in this section is the one-loop amplitudes
in superstring theories. Here the complications come mainly from the summation over spin
structures. There is really a great deal of literature on one loop calculations. Here we will
do the calculations in hyperelliptic formalism and prove that the results obtained are
identical with those of @-function formalism [1, 2|. In hyperelliptic language the genus 1
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Riemann surface are realized as as algebraic curve in CP?:

ll"’___ij

(z — at (4.21)

where a; (¢ =1,---,4) are the four branch points. By choosing a canonical homology basis
of cycles as shown in fig.7, we have the following list of three even spin structures (at one

loop):

1 0 0
~~v ~J ~ ~v ~y ~ - 4.22
s [0} (12]34), s3 [0] (13 ] 24), s [1] (14| 23) (4.22)
By using the Thomae formula we obtain the modular invariant Riemann identity [59]
0 — 0F + 05 =0, (4.23)

or

a12a34 — Q13024 + Q14023 = 0, (4.24)

where a;; = a; — a;. This fixes the phases in the summation over spin structures."

The n-particle amplitudes in superstring theories are computed as follows

Ay, o kn) = / dp[[ &z D meQo(J ] Vkir s 2))s, (4.25)
=1 s i=1
where the measure du is (in terms of the branch points):

1 [, d%a;/dV;,

dp = (4.26)
T |Tlic;ail®
for type II superstring theory or
1 [, d%a;/dVp,
dp = : 2 (4.27)
T6 H1<_7 33 fg ’
. . _ d?z _ d%a;d%a;d%ay
for heterotic string theory. Here T = [ Ol and dV,, = Tei;armani? - In (4.25) the

summation over spin structures was written only for the right part. Appropriate factor

of @, and the summation over s’ should also be included for the left part. For graviton

amplitude we have

V(kiyer,2:) = {(8(e; - X) + ks - the; - 1b(2:)) x (left part)}eri (=), (4.28)
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By substituting the above expression into (4.25) we get

R =3 Q[T X) + ki e p(z)) x (et parpe™ X0y

= various terms.

Let us compute the various terms in RA,,.
For n < 4 the maximal number of (/%) contraction is three. For example we have a

term (only the spin structure dependent part)

RAL =3 n,Q,((z1)(z2))]

= m.Qs (Zl L nlz) +ulz) ) (2.30)

— 22 24/u{z1)u(z2)

_ Zi_z_l_iz_ﬁzZsz (2+ u(z1) n u(zz)) — 0,

u(z2)  u(z1)

by explicit calculation. Let us see the term involing the maximal number of (¥7) contrac-

tion:

RA2 = " 1,Q.(%(21)%(22)) s (¥(22)%(25)) s ($(23 )% (21)) s

1
(21— z2)(22 — 23)(23 — 21) (4.31)

(u(z1) +u(z2))(w(z2) + u(zs))(u(zs) +u(z1)) _
" Z s u(z1)u(zz)u(zs) -

0.

So all the terms are zero after summation over spin structures. This is what we expected
from the nonrenormalization theorem. For n = 4 the only nonvanishing terms are those

with four (¢¢) contraction. We have

RA,4 = (kinematic factor) x Zq,Q,(¢(zl)¢(22 )>§<¢(Z3)¢(24))§

4
x (left part) x (H giki-X(2:))

i=1

4
= (kinematic factor) x —H}ﬁ x (left part) x exp[z ki - ki (X (2:)X (25))]-

i=1 Y\ % i<j

(4.32)
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The full amplitude (for type II superstring theory) is then

Ag(ky, -,k K/ L [Lies dza’/dvp" H | ¢z exp[z kiok; (X (2:)X (25))], (4.33)

IH1<J ai;|? y(z:)]? Iy

where K is the kinematic factor. This result is identical with the one obtained in the

©-function formalism [1, 2]
2
Ag(kry-oe k K/ (Ir_m')ﬁ Hd zjexp| ;k kX (2)X(Z5)], (4.34)
This can be proved by using the following transformations:

or T

Ba, = —é—w(az)w(az)
dz; !

T = (4.35)
— |, w(s) = s

which are relations proved for g = 2, but can be similarly proved for g = 1. That completes

our calculations in lower genus cases. Now we start to do computations at two loops.
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5. Two-Loop Calculations — Nonrenormalization Theorem

Since odd spin structures give trivially no contributions to the n-particle amplitudes
up to n = 3, we shall consider only even ones. From (2.2), (2.30) and (2.32), we know

the expression for two-loop n-particle amplitude in HST for a given choice of the spin

structures:

= /dp(m,,m, Hd z;(detlm7) L, R,. (5.1)

To get the right amplitude, we have to perform the sum over all spin structures:

/dp, (mg;,m; Hd zi(detImr)™ Zn, o Ly R,

(5.2)

= / d/.l.(mi, T—fL.L) H Cl2 z,-(detlm’r)_s Z Qﬁs’f/s’ Z nsRu
=1 s’ 3

where 7, and @, are phases.

To be specific, we consider the gauge boson vertex in HST. That is, we take the
following form of V'(k, ¢, z):

V=Vr Vi,
Va={8(c - X)+ik-pe-p}e*¥, (5.3)
V= A1),

where Al are the left moving (i.e. antiholomorphic) two dimenional spinors. Then we have

/ D[Xpbef]e (512 ¥lFSanlbre.8,7]) H Va(k:, €, 2:)

 { T 080 e 7) T )+ 3 T %
a=1 j=1 j=1i#j (5.4)

X (22, 8)6( (1, 8)) oz 7z, B)) + (1 2)] ),

7
3 n
Ly = / D[bele~ SIS BD TT (7, 5) T vi(2),
j=1 =1
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where s refers to the spin structure of +,3 and v*; s' refers to the spin structure of A
ni,1 = 1,2,3 and xa,a = 1,2 are Beltrami and super Beltrami differentials respectively.

All the scalar products are defined as

(XG7IB> = /dszaﬁ, etc. (55)

and

J(z) = - 0X + 2c08 — vb + 38¢8, | (5.6)

is the total supercurrent. In eq.(5.4) we have assumed that the metric is independent of
supermoduli but allowed the super Beltrami differentials x, to depend on moduli. Due
to the local world-sheet supersymmtry, there is a freedom in choosing x, and different
choices are related by total derivatives in moduli space. In the following we shall make
the choice that y, are §-functions located in moduli independent points z,(a = 1,2) on
the Riemann surface and p* are also §-functions located in b;. In particular we make the
convienient choice [13] of taking z; > to be the zeroes of a holom—orphic abelian differential
Qz) = ;j—(%dz to simplify computations. Then z;, = z%, i.e. the two corresponding

points in the upper and lower Riemann sheet. Then eq.(5.4) simplifies to the form [13]:

(J(z1)J (z2) Hﬁ__l Vr(ki, €, 2:))s
detp?(zs) ’

R, = (det'8,)™°(det', )(det, /2 )% (det' 5 5) ;" (5.7)

where ©®(z) are the holomorphic 3-differentials and (J(z1)J(22)---), denotes the normal-

ized correlator (the spin structure dependent part in R,):

- oy = K Hi:l J(z28(B(za)) Hf‘:l b(b;) Hf\-’_:l Vr(ki,€,2i) >
o) oz) ] Valbo e 2. = < TPy 6(B(za)) T, b(b:) >

)

(5.8)
where the double bracket < --- >> indicates the functional integration over all the right
fields (including X also). The chiral determinats appearing in (5.7) are coming from the
path integration over all the matter fields X, ¢ and ghost fields 4, ¢, 8 and . These
determinats (for hyperelliptic surface) can be calculated by the method of conformal field
theory [101]. This calculation was presented in appendix A. The results are (for genus 2

* They should have the same spin structure.
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hyperelliptic surface and in an obvious notation):

6 6
det,‘él/z = H(aij)—% (H AijBij) ,

W

i<j i<g

1
6 6 *
det 0y, = H(%’)% 114485 | (5:9)
i<j 1<j
6 6
— = 1
detdy = H(a;j)%, detdy = detK H(aij)i,
i<j i<y
where K is the periods of the differentials Q4 (see €q.(3.32)) along the a cycles (see
eq.(3.39)). By using these results we get
6
_ Ilic; 445By Qs
(detK)S[[ic; a5 (det®)® [Tic; aij
(5.10)
So the spin structure dependent factor is just @, which is defined before (see eq.(3.42)).

(det'él )_5(detléz)(detgl/z)i(det'53/2 )3—1

What left are the computations of correlation functions in (J(z1)J(zz)---) and the sum-

mation over spin structures

1

n k%

Ra = Fy)
(detK)> H?q‘ aij

A (5.11)
A:" = (J('zl)J((Ez) H VR(kia €, Zi))aQs-

i=1
To begin with, let us first consider the case n = 0, i.e. the vacuum amplitude. Using

the explicit form of the supercurrent, we can represent A® as a sum of a matter part

A = (bu(za )P (22))s (0X*(21)0X " (22)), Qs (5.12)

and a ghost part
Agh = (Jgn(21)Tgn(22))s Qs (5.13)
where Jg = J — - 0X. Here we will not do the calculations which have been done in [13]

and only recall the relevant results which will be used in the present and the next section.
The details can be found in appendix B. We have (following the notation of [13]):

Agh = {—262P(331:82)R(z1 «”32) —_ Qp(zzml)R(mzzl)a:I(Elil))

—(82R(z2z1) + 2A(z2)R(z221)) BSZZ((?BZI)) — (1 — 2)} Qs-

(5.14)
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From [13] we know that all the terms in Ag , can be reduced, up to spin structure indepen-
dent factors, to (¥(z1)¥(z2))sQs and (0% (z1)¥(z2))sQs. Then the summation over spin

structures was reduced to the calculation of the following two expressions:

Ezy =Y 1,Q.(%(21)$(=2))s,

(5.15)
Bes = 3 1Qu (0% (21 )b(22))s.

Roughly speaking, these two expressions should be modular invariant (in the sense ex-
plained below) if the amplitude is modular invariant. To see how the requirement of
modular invariance completely determined the phases 7, let us recall first how modular
transformation is realized in the hyperelliptic language.

A modular transformation is just a change of canonical homology basis chosen. In
hyperelliptic formalism a éhange of canonical homology basis can be induced by a per-
mutation of the branch points. So a modular transformation simply corresponds to a
permutation of the six branch points a;,i = 1,2,---,6 in hyperelliptic language. What
modular invariance means is that* > n,R, should be invariant invariant under all the
permutations of a;’s. From (5.11) we see that >, 7,A, [13] should be antisymmetric for
every interchange a; «— a;,1 # j. Reasoning along this line we get finally that Ez; and
Ez; should be ‘also antisymmetric for every interchange of the branch points. This is a
sufficient but not a necessary condition ensuring the modular invariance of the (vacuum)
amplitude at two loops.

To proceed further let us take z;,, = co*. Then we have

(b(a (e2)) = 1 > (4 = B,

":1 (5.16)
(B J(e2)) = 5 (42~ B2,

=1

* Strictly speaking this is not quite true because of the prefactor (det Im‘r')"5 in egs.(5.1) and (5.2)
which is not modular invariant. Thereis a factor (detK)“s in R, which is also not modular invariant but
spin structure independent. These two factors will combined (with also another factor of (detK )"5 coming
from the left part Esf) to give a modular invariant expression: (det Im’f‘)_s(detK)“5 (detK)—s =
(%—T) _5. See eq.(3.44).
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Then the two expressions Ez; and Fz, are polynominal functions of the six branch points
ai,t=1,--+,6. Good! Starting from one term, for example 71Q1(a; +a2+as—as —as—as)
in Ezqy or 11Q1(a? + a2 + a2 — a2 — a% — a2) in Exz,, all the rest terms can be generated by
permutations of the six branch points by imposing of the modular invariance (in the sense
- of that whenever we interchange two branch points we get a minus sign explained before).

By taking n = 1 we get the following unique determination of all the phases

M=-—T=1n3s=-Ns =175 = —76 =177 =17s = —7y = N0 = L. (5.17)

Then we can easily prove that

3
Ez, = %Zm@.« Z(Ai — B;) =0,
3 =1

: (5.18)
1 2 2
Ezz = g ;T’aQa ;(A,, - ‘Bz) = 0.

The argument goes as follows (which is quite useful in what follows in the proof of non-
renormalization theorem and the calculation of the four-particle amplitude). Because these
expressions are homogeneous polynominal (of degree 7 and 8 respectively) in a;, they should
be proportional to P(a) = [lic;(ai — a;) = Hi<j a;j (a homogeneous polynominal of de-
gree 15 in a;). One sees immediately that the powers of a; cann’t be matched. So Fz; and
Ez, must vanish. That completes our proof of the vanishing of the vacuum amplitude at
two loop for superstring theory*.

To prove nonrenormalization theorem at two-loops, we have to study the following

quantities

Z 7:Q H Va(ks, €i,2:) T (21) T (22)) s, (5.19)

=1
obtained from (5.11) by summing over spin structires. Substituting (5.3) into (5.19), we
can calculate A™ by using the Wick theorem. We consider first the contractions of 4 which

are relevant for the summation over spin structures. There are two types of contractions:

* At thi point I would like to mention some early works about two-loop calculations for superstrings
[102-106, 90]. Nevertheless all of these works pay little attentions to modular invariance which is very

important to detemine uniquely the phases and to ensure the vanishing of the cosmological constant as we

see here.
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Type A: contractions (J(z+)y(2;))s appear;
Type B: only the contraction (J(z+)J(z—))s appears,
ie. { [ Va(k: e, 2)) (T (1) (22))s,
i=1

Let us compute A3:

3

AS = ([ [{ei - 0X (2) + ik - ()i - (2:) e XD . T (21) T (22)), Qs

=1
‘We have
Ai = {A, + B, + C’s}Qg,

where

3
A, =(e1 - 0X(21)er - 0X (z2)es - 0X (25) [ [ €™ X T (21) T (22))
i=1

By = —i({e1 - 0X(21)e2 - X (22)es - P(23)ks - ¥(23) + (1 & 3) + (2 5 3)}

3
x [T ™0 (1)1 (22)),,

=1

s?

Cy =~ <{61 < 0X (z1)€r (222 - (22)es - ¥(2z3)ks - Y(23) + (1 = 2) + (1 « 3)}

3 .
x [Te* % 1(21)7(e2)),,

i=1
3

(5.20)

(5.21)

(5.22)

D, =i(er - (z1)ks - ¥(21)er - $(22)ka - (22 )es - (23 )ks - (2s) [ [ 0T (21) T (2)),-

=1

(5.23)

For >, nsQsAs, one sees that it is similar to R, up to spin structure independent

factor because X(z, %) is independent of spin structure s. Then we have
Z nstAs = 07

by using eq.(5.18).

(5.24)

As to By, C, and D,, they lead to the following various spin structure dependent
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factors:

E, = (¥(z1)¢¥(21)) s (¥ (21)0(22))s,
E, = (¥(21)¥(21)) s (¥ (21 )9 (22)) s (¥ (22 ) (22)) s

(p(z1)¥(z2))s)
E, = ($(21)%(22))% x
(O (21 )¥(22))s)
Ey = (p(z1)9(21)) s (¥(21 )b (22)) s (¥ (22 )9 (23)) s (¥(23)p(22)) s,

(B(z1)¥(z2))ss

By = (¥(z21)9(22)) s (¥(22)9(23)) s ($(23)9(21)) s X {
(0% (21 )(22))s)

B, = ((21)9(22)); (¥ (21 )% (25))s (b (23 )b (22)) -
Setting z1 > = co+t and recalling (3.60) and (3.61):

)b (z)) s = 1 u(z1) + u(z2) wls) — 2= 4;
(#(z1)d(22)). z1— 22 2 u,(zl)u,(zz)7 (2) E z—B;’
we get
; . _ u(zy) —1 22 )b(2)), = u(z2)+1
(¥(21)%(z1))s oSl (¥(22)¥(z2))s Nk

3 3

1

(ba)b(ea)) = 3 D (A= B),  (0p(en)blea)) = 5 D (42 - B2).

=1 1=1
By using these relations we see that

1). >, 1:E1,Q, = 0 leads to the following identity

gm {U(Z) - u(lz) } Q. =0.

2). > ,m:E2,Q, = 0 leads to the identity

RE T A

- u(zz)

and if (IV.23) is true.
3). >.,nsE3,Q, = 0 leads to the following identities

Soa. {3+ 38} -2 . -
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(5.28)

(5.29)

(5.30)



where we have used (5.18).
4). >, n.E4,Q, =0 if (5.28) is true.
5). >, nsE5,Q, =0 if (5.30) is true.
6). >, 1:E6,Q, =0 leads to

u(zl) _ u(zz)'u,(zs) _ |
Zm {U(ZZ)U(ZS) (1) } @ =0, (5.31)

and if (5.28) is true.

So if we want to show that >, n,A% = 0 is true, it is sufficient (but not necessary) to
show that (5.28)—(5.31) are true. What we will show below is that this is really the case.
All these identities (called Lianzi identities in [14,15]) are true. In fact, (5.31) implies (5.28)
and (5.29) as it can be easily seen by setting z; = z3 and z3 = oo respectively. Moreover,
we have one more general identity:

o {u(zl)u(zz) ~ u(zg)u(24)} 0. -0 (5.3)

u(z3)u(za)  u(z1)u(z)

3

From this identity, one can easily derive (5.31) by settin z4 = co.
All these identities (5.28) — (5.32) can be proved quite easily. Let us see, for example,
(5.29). Substituting u(z;1) and u(z2) by (5.26) into (5.29), we have:

LHS of (5.29) = Zns {H \/(zl j %(: ‘g:; —(z1 < zz)} Qs

(22 —

I _1(z1 A;)(z2 — B;) — (21 & 22)
= i Qs
2; \/Hi___l(zl - a;)(z2 — as)

3

= WZn, {H(zl —Ai)(zz —Bi) - (A A B)} Q

i=1

(5.33)

An important point is that this expression is modular invariant in the sense of that
whenever we interchange a; and a; (1 # j) we get a minus sign for this expression. So
this expression should be proportional to P(a). By simple power counting, one sees that
S 1s(ITes, (21 — Ai)(z2 — B;) — (4 < B)) - Q, is a homogeneous polynominal of degree
6 + 6 = 12 in a; and z;. But the degree of P(a) is 15. So we must have

i=1

Zm {H (21 — 4Ai)(22 — Bi) — (A = B)} Qs = 0. (5.34)
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That completes the proof of (5.29) (and also of (5.28) by setting z, = co). This same
argument can also be used to prove (5.30). We have
1 3 3

LES of (530) = Sy 300 {Q( Az =B+ (4 o B)} S 47 ~ B
(5.35)

One easily sees that this expression is also modular invariant and should be proportional

to P(a). But the degree of 3", n,Q,{ T2, (21 — Ai)(z2 — By) + (A B)} % (AF — BP)

is at most 14 (n = 1,2). So we must have

3 3

Z sz{ H(a — Ai)(z2 — B;) + (A & B)} Z(A"; - B?) =0, n=1,2, (5.36)

=1 =1

To prove (5.32), one follows the same strategy as above. We have

LHS of (5.32) = —ﬁ—é—l;(—z-—) > s {H(zl — Ai)(z2 — 42) (5.37)

x (23 — B;)(zs — B;) — (4 B)}Qs.

Notice that when 27 = z3 or 24, or zz = z3 or 24, (5.32) is true because of (5.29) (which
has been proved). Then the last factor 3, 7,(--+)@, in (5.37) should be proportional to
P(a)(z1 — z3)(21 — z4)(22 — 23)(22 — 24): @ homogeneous polynominal of degree 19 in a; and
z;. But the degree of ) 7,(---)Q, is 3 x 4 + 6 = 18. We have then

3

S TGt — 4)(z2 = Ai)(zs — Bi)(z — Bi) — (4 o B)}Q, =0. (5.38)

=1

In summary, we have proved the following Lianzi identities:

Z;ns {u(Z) - } Q. =0,
SETR I

- u(zz)

> {u wa) _ wnjus) } Q. =0, (5.39)

- zo)u(z3) u(z1)

(
z1)u(z2) 3 u(z3)u(zs)
< J

z3)u(zs)  u(z1)u(zz)

1
u(z)

[
=
S
ElE A




Using this set of identities, one readily proves the nonrenormalization theorem, i.e. the

vanishing of all the n-particle amplitude up to n = 3. We have
> mAT > Ry =0, n=1,2,3. (5.40)
For example, for n = 1 we ;ave 3
ZnsA _Zn, (1) (z2)Valk, €, 2))s Qs
=F] Zn, p(z1)(22))5 Qs + Fi D_(0%(21)(22)) . Q

5.41)
F"Zn, (o362 (B(2(22)). Qs (&40

_ F"Zm{u(z) ()} —0.

To conclude this section, we would like to prove the following summation formula:

S, {“(zl)u(zz) L wlzs)u(za) } 23:(‘4? _BMO.

7 Lulzs)u(ze)  w(z)u(z) ) o
1 | n = 1, - (5.42)
Pla)(z —z)(z —za)(z2 — zs)(z2 —28) | ) 4 . |
H$=1 y(z,-) z a; — z zZp o= 2.
i=1 k=1

which has been used in [15] in the calculation of the four-particle amplitude.

For n = 1, we have

LHS of (5.42) = i ( Z’?s {H(zl — A;)(z2 — Ai)(z3 — Bi)(z4 — Bi)+

Fae B} S - B,
=1
Zﬁ‘;——(—i x (a homogeneous polynominal of degree 19 in a; and z;).
=1 YL z;
(5.43)
From Lianzi identities (5.30), this expression vanishes when z; = z3 or z4, or 2z = 23 or 24.
It should be proportional to (21 — z3)(z1 — z4)(22 — 23)(22 — 24). It is also modular invariant

and should be proportional to P{a). Then we have

2 cP(a)(z1 — z3)(z1 — z4)(22 — 23)(22 — 24)
o+ 4; - B))Q, = < , 5.44
E;n ( );( B;)Q T v (5.44)
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where ¢ is a constant and can be calculated to be: ¢ = 2.

For n = 2, we should have

> na(-+) Z(Af — B})Q.

_ cP(a)(z1 — 23)(21 — 24)(22 — 23)(22 — 24) - a: -+ Flz: }
[Tims (=) {Z R

from the above experience (and power counting). Here F(z;) is a linear function of z;

(5.45)

i=1

(without constant term). From the symmetry of the original expression, we have F(z;) =
a);z and a = —1 (by explicit computation). That completes the proof of (5.42). Let us

now turn to the computation of four-particle amplitude which is presumably non-vanishing.
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6. Two-Loop Calculations — Four-Particle Bosonic Amplitude

In this section we are going to compute the following expression

A* = 0 (][ Valks, e, z) - I(21)T (22)) Qs
’ "“‘;1 (6.1)
= S [T bs - lzdes - ()™ T (2)0(22)).Qs,

because of nonrenormalization theorem which was proved in the last section.

First, we want to show that Type A contractions give zero contributions, i.e. we have
Zm Y (21)$” (2:)) o (7 (22)%° (25))s Qs = 0. (6.2)
In fact, all the type A contractions are the following kinds:
Ads = (P(z1)(21))s (¥(21)9(22)) s (P(22)%(23)) s (W (23 ) (24)) s (¥ (22 ) (22)) s
= ((21)%(22)) s ($(22)9(23)) s ($(23 ) (21)) s (Y(21 )% (24)) o ($(28)8b(22))s,  (6:3)
= (P(21)%(22))3 (P(21)b(28)) s (P (23)9(24)) s (b (28)%(22)) s

or sometimes the expressions permutated among 21, 22,23 and z4. By using the explicit

formulas of (1(z1)1¥(z2)), etc., one readily shows that
Zn;A4st = Z"]aB‘q:st = Znsc’4sQa - 07 (64)

by using the Lianzi identities (5.39). Here one should use the more general identity (5.32)
which is not needed in the verification of nonrenormalization theorem.

Using (6.2), we have

= 2o mel[[ kel blm)) oI (2) T (e2) [T 450000 (69)

By using the summation formula (5.42) derived in the last section, we have
3

D (21 (22))s (B(229(25)) o (523 Jib(20)) s (2 )b (21)) Z(A? — B})Q.

—Zm (21)8(22))2 (3 (23 )b (2a)) §MM3n .
1 n=1,
__P@ ) ]
8H§=1 y(z:) Zai - sz n = 2.
=1 k=1




Then one can do the summation over spin structures in (6.5). We have

3

2ol T p(E)e 9= D (A7 - BY)Q,

=1
1 n=1, (6.7)
Pla)
=Y Kk x{ E 4
4H?=1 y(z,-) Zai - sz n=2.
=1 =1

where the kinematic factor K(k,€) is computed to be:

1
K = —Z(Stel < €3€3 - €4 + SUEy + €3€1 - €4 + TUEL - €263 - 54)

1
+ 53(61 ~kaes - koey €5 + €2 - kyea - hier - €3+ €1 - ksea - koey €3+ €3 - kaeg - kier - €4)

+ '12-t(62 -kieq - kgey - €3 + €3 - kyer - hoea - €s + €2 - kaer - kges - e + €5 - kg - kaer - €2)
+ %u(ﬁl ~kaes ~ksey - €3+ €3 -kaes -kiey - €s €1 - kaey - kaer - €a + €3 - koes - k16 - €2),
(6.8)
which coincides with the standard kinematic factor at tree and one-loop level [1, 2] (see
eq.(4.20)).
Recalling the relevant computations done in [13] and appendix B, we have

I(z) = (J(z+)J(z—) H eF X

! _ . (6:9)
= = 79" (0K, (24)0%, (2=) [ %) + (][ e ) Lo (),

where Igp(z) = (Jgn(z+)Jgn(z—)) is the contribution from the ghost pa.ft. See (5.14) for
explicit expression.

The various factors appearing in (6.9) can be calculated following [13] by Taylor expan-
sion. The calculations are tedious and sometimes very complicated but straightforward.
We only give the results of all the calculation for completeness.

1): z1,z, are the zeroes of Q1(z) = 1—/’%2—),2:1,2 = cot;

2):
P(#,9) = g ()0 0)
P(z1,22) = —(¢p(21)¥(z2)) = —P(z2,21), | (6.10)
01P(z2,21) = =0, P(21,22) = (0¢(21)9(z2)) — A(z2)(P(21)9(22)),
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where A(z) is the finite part of P(z,y) when y — z and A(z1) = A(z2) =
3):
pi(z) = £0:1(2) (¥ (2)P(z:)), pi(z;) = bij, 1=1,2,
Ops(z1) = —5801(232) = (1:5(331)"/’(1’2))

6

(6.11)

(6.12)

(6.13)

B1(21) = Bpa(zs) % S ai
4):
Rley) = ~{e(u)) [0 Bleaes) = =30 os =230 + 520
02 R(z2z1) = (52@3—%—62@,%)-}—32%261
=1 i<j =1 =1
-z Zb by 4 {Zai}l‘(b) - 22’(5)} ;
‘I»<J 1
where (b))
Y01
(k) = o b0 =) + (123 — 231) + (123 — 312),
5 (b) = (bsz_;g?ii’(flgs) + (123 — 231) + (123 — 312);
5):

3

(22 b (2)) = Z(A B, (0v(ea)(2) = 5 D (4T - B2),

=1

where b; are the locations of the Beltrami differentials.

Putting the above together and doing some computation, we get

Ipp =— Zaz—2Zb)Z(A2 B?)
(Za —2Za,a1+826b ZA‘—B,').

1<j 1<J i=1

(6.14)

(6.15)

The factors ) ,;(A? — B?) and > .(A; — B;) appearing in (6.15) will have to be substituted
by >°;ai — >, zr and 1 respectively in (6.9) due to the summation formula (5.42).
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By making use of the formula (3.49), we have

(0XH*(21)0X" (z2)) = / —= Z + = Z aia; +ud +ugug +uj—

1<J
2
—— a; p | ———= d°ui1d‘u 6.16
(ul +'U'2)Zl } y('lLl)y(uz) 1 2 ( )
IS LI
i<j t

Putting all these results together and doing some algebraic calculation, we have™

I(a:v:oo)z-——lz—Za,-aj be + =~ Zaz‘ijz

i<j 1.<J =1 (6.17)
1.8 4 5 8 P 6
—{—g(ZaiaJ‘-—ZZbi)ZZk'*Z a.?-—;z—_—]n(THaj),
i=1 i=1 k=1 i=1 * j=1

where we write only the leading terms when k& — 0, i.e. we put [[e** — 1 in (6.9).
We see that, for generic b;, I(z) is symmetric for the permutations of a;, i.e. it is modular
invariant. In the following we will take a; 23 to be the moduli, i.e. our integration variables
over moduli, and therefore we fix b; = a; for: =1, 2, 3.

Notice that we have presented the expression for I(x) when z; ; = coz, i.e. the zeros
of Q1. To get the generic case 12 = z=, one simply performs a Mdbius transformation:

z,a——>—-(z_1_z), (a ok Then

]:[alzz (z:)I(z) = Hdzk

1en 1 1o 1
-§§a1~xa ——:c+—4_;zlaz z;bi—

=1 y(Zk) 1= \
13 1 1 18 3 4 58 (618,
—Zgbi—zbj——m_*_g(;a—x ; m);zi Z; —:z:Ba;lnT

* For generic k, there is one more term coming from the contraction (Zz tk; - X(zi)aX“(ml»
<Zz 1k - X(Zi)BX“(IEz)) and there is an overall factor (H eik-X) which is not equal to 1. For most of
our discussions we will restrict to the case & — 0 to simplify the presentation. But the discussions can be
easily modified for generic k. A exact formula for the four-particle amplitude in type II superstring theory
will be given at the end of this section and will be used to discuss the factorization in the next section and

to study the ultra-high energy scattering or quantum corrections in section 8.
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Putting everything together (see [13, 15, 16]), we get finally the following expression

for the four-particle two-loop amplitude for HST (choosing SO(32) and when k — 0):

A(K) =cK(k,e)/d2a1d2a2dza3 | assaseass |2

Xv — HG]. ; % /Igdzzkﬂ(zk)f(w)2<HVL? —f,

i<y @ijGi;

(6.19)

where the integration runs over the complex plane, ¢ is an undetermined constant and s
denotes the spin structures of the left sector®. We will discuss the various properties of
this amplitude (6.19) in the next section.

Similar calculation can be done for SST II. Here the relevant supercurrent insertion is
(T(r+)T(54+)T (r=)T(3=) ), (6.20)

where we have taken z;, = r+ for right sector and Z;, = 3+ for the left sector. We
remark that it is necessary to take r # s to get rid of some sigularities arising by simply
taking r = s.

By using eq.(3.59), it is an easy matter to arrive at the following expression for the

four-particle} amplitude at two-loops (k — 0):

- 2 2 2 9 4 L _
AII(k — 0) :CIK/ d ald azd ;13 ia45a56C664 | Hdzzi (Zz 7’)(2,2 s)
T5 [Tic; | aij 2 ol | y(z:) |

rsy o (T 1 o )@ - 5)\’
x {I('r)f(s)+ 2 (Ty(r)g(E)/ | y(v) 7 ) }

where K is the same kinematic factor as in tree and one-loop level, see ref.[1, 2] or K =

(6.21)

K(k,e)  K(k,€) for €/ = /2, see eq.(4.20). For generic k an exact formula for this

* Needless to say, (H VL) can also be explicity expressed in terms of (AA) = (1,_&!’)
7 The vertex function is V(k,e,2) = (BX* + 1k - ’gb’l,l)”)elw (BX” + ik - ‘z,/)—?,by)eik'x.
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amplitude can also be obtained. We have

dzaldzazd agla45a55a64| H dz Z — T)(Z, - S)
TS [Tic; lasil? (2:)I?

I(3 1 dz”(”‘T)U“S) ik X
X {(I(T)I(S) + 4 (T y(r)g(g)/ ly(v)]? ) ) H

e <<6X(r+) L 0X(r—)0X (5+) - 0X (5-) [ %)

AII(k,€) =c'K /

(6.22)

— (80X (r+) - 80X (r—)8X (5+) - 8X(5-)) - (][ e*'k'X)) }

By further evaluating the (X X) correlator, we can rewrite

dzaldzazd a3|a45a55a54| H dzzz Z-,, - r)(zt ant .3)
TS Hz(] lai;|? ly(z:)[?

" {I(T)f(g) 3 Fowm | dzv(vly_(gl(f =) |

T 1 d?v(v —)(7 — 3) 2. B(s (6.23)
T 167 y2<r)@2(s>/ pop ) EG)

- -—1—<aX(r+) L OX (r—))5(5) - ;—4(5X(§+) X (5-))S(r)

+ 52=5()3(s )} (TT+%),

AII(k,e) =c'K /

wherz
(u1 - ug)dulduz 2

Bls kiy(z:) z—uy)(z — ug)
(2) = TZ T — z; / (zi —u1)(2zi — u2) y(u1)y(uz)
S(@) =4 ki kj{0X (24)X (2:))(0X (2—) X (2;)) (6.24)

4]

—[(Z_) - SR E@)|,

)

and




In the next section we will discuss the various properties and in particular the finiteness
of the four-particle amplitudes (6.19) and (6.21). The factorization of the amplitude (6.23)
will be also studied.
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7. Finiteness and Factorization of the Four-Particle Amplitude

Now let us study the various properties, and in particular the finiteness and factoriza-
tion, of the four-particle amplitudes calculated in the last section.

First we would like to show that the amplitudes (6.19) and (6.21) does not depend on
arbitrary parameters, i.e. the choice for ¢ and for the values of a456. It is seen from the
starting expression (it is actually simpler to do it before summing over spin structures) that
A(k) (eq.(6.19)) is invariant if we simultaneously make the same Mdbius transformation for
z and a4 5,6. Since a generic Mobius transformation depends on three parameters, it follows
that if we show that A(k) is independent of z, then it will also be independent of a4 5.
The z independence is expected by a general argument [56] and indeed we can explicitly
verify that it is true [15, 16]. In fact, the integrand on the right hand side of (6.19) is a
meromorphic function of z and the poles, i.e. ¢ — a;, can be expressed as total derivatives
in a; 2,3 and z; 3 34. The strategy to show the independenceof the amplitudes on z is to
study these total derivatives and show that they are vanishing. Then the amplitude as a
meromorphic function of ¢ has no poles. They are constants and independent of z.

Now let us study the pole structure of the amplitude (6.19). The sigularities of the

integrand for z — a;,1 = 1,2,3, can be isolated in the form:

3 6 4
Zy — a; 1 1 1 1 1 1 1 1
K - - -
c ;}g y(zx) 4(a; —z)? 40,——:1:;(1—0, 8(1—:::}?_2%—&1
5.1 9 1 1 ) (7.1)
+Zai—mé?zzlnT}gakz&i,—ng;(HVL)Q’
3 .
cK o} 1 1 ZE — Qg -3
_— — = VL ’,
4 ;aai{ —stnkda’kll:c[[l y(zk) }!;Il Z H

which are total derivatives in a; 2 3. Similarly, the sigularities of the integrand of (6.19) for

Tz — a;,1=4,5,6, can be isolated in the form (choosing ¢ — a4 for specifics):

. 4
cK 1 sz——aé. 1'2(14—0;5—(16—1 1
as —z -+ y(z)
= (7.2)




By making use of the formula

5 1 : 2
"6741]111_ {2(&5-}-&6)—; | EZ: T'5a1’6——-——'1nT’} (73)

Q45046

which can be derived from the projectve invariance of T*, we can write (7.2) as:

1< 8 1 ajsap * zp —a
CK - 15 16 T_ 4
4 ) Oa; | a4 — T assaus E # 1;[;[1 y(zk)
1 0 (zk — as)(zr — as) 2k —as | T
k — ds k — 4g k— a4 —1 —5 ——3 ~4
4+ . Vi) Q5
2 kE—_—:l Oz, { a45044 J’I y(Zk) } ;[;JJ: E Z,:q—[ >

(7.4)
which are also total derivatives in a1 2,3 and 21,2,3.4. When ¢ — 2z, one can easily see that
there is no sigular terms because of the prefactor [],(zx — z). There is also no sigular
terms when 2 — cof. When we set ¢ = co in (6.18), we get precisely (6.17).

Actually, the above expressions for the sigularities in = can be generalized to include

the [] e®% part of the vertices, by making use of the formula
(0X*(z+)0X u(z—) [ e*%)

. 1 1 -
— zk'X = ik- X k ] ik X ,
e T + e T - Stk T
- (7.5)
where T'(z) is the (normal ordered ) energy momentum tensor T'(z) = —3 : 6 X (z)-0X () :.

This formula can be proved by calculating both side of (7.5) explicitly by making use of

*  From the definition of 7' (eq.(3.44) we get T( ') = IH 1(0a1+D)l2 (Cb) for 0:2 = gz ig, AD- '

BC = 1. Then we have

g, n = 0;
6
%) -3 n=1;
Za? InT = ’ ’
— " da; 6
= - Z a, n=2
\ =1

Selving jﬁ—‘_—th (z = 4,5,6) in terms of %IHT (2 =1,2,3), we get exactly (7.3).

T In fact all the sigular terms can be shown to vanish by making use of the summation formulas for

6 . . .
Zi:l a?—g‘% In T obtained in the previous footnote.
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the expressions of (0X9X) (eq.(3.49)) and (X8X) (eq.(3.57)). For k — 0, we have

lim (0X (z+) - 80X (z—))

z—a;

1 1 18
=5 —..____1__;_3 1 Z - g InT } + (regular terms),

8(a; —z)? 4a,~——zj¢iaj—ai a; —x Oa;

‘ (7.6)
which has, implicitly, been used previously, see eq.(6.16) for z = co. By using eq.(7.5), we |

have

lim (0X(z+) 06X (z—) H et %)y =5 {— . "—‘1‘—“<H e )

z—ra; g (ai — q;)z

1 ] 8 . ‘ '
— _ /2 itk X . kX
a; — z Oa; In (T g | ax — a1 | (H e )) (H e )} + (regular terms).
| ' (7.7)
Then one easily sees that the above discussions go through by including also the factor

[T e**. Therefore the present discussion holds for the general case.

The proof of independence of = is completed by checking that there are no boundary
terms, i.e. that the total derivatives give vanishing contributions. This is true and can be
checked by studying in detail the potentially dangerous degenerate configurations in the
moduli space. For instance, consider the integration of the expression (7.1) or (7.4) in the
region © — 0 where © = a; — a;. The boundary term will be proportional to

. dz
hm -3
u—0 U

: | U ]3 -F('u,,'ﬁ), (7'8)

where we have taken into account that 7 — In | u |. The integration over d?z; is included
in F:in the degeneration limit dz/y(z) ~ dt/t in the uniformizer coordinate ¢* = z — a;.
Since the left part is regular for z — @, there is no sigularity coming from the integration
over dZ. Therefore F' is regular and the above expression (7.8) vanishes.

Of course, when many zj collide together, in particular in the point a;, possible sin-
gularities have to be interpreted as physical singularities in the external momenta and one
has to take into account the factor [ e'**. As always in string theory, the integration
by parts, like the ones we are discussing here, are meant to be done in the region of the

momenta k where the integrand is regular, and then analytically continued everywhere
[107].
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As an extra exmple, in the “dividing” degeneration case az — a1 = u, a3 — a1 = VU,
taking into account T — 1—11;—1, we get the following boundary term for (7.1) and (7.4):

di .
lim —;31 |u [P F(u, ). (7.9)

u—0

In this degeneration limit dz/y(z) ~ dt/t* but the left part is regular (for all the spin
structures but one, where however Q* gives a further factor (%)®) and F is regular so that
(7.9) vanishes. The conclusion is that A(k) is independent of z, and therefore also of a4,5,6-

The independence of the four-particle amplitude for SST II, eq.(6.21) on r (and 3) and
as,5,6 can be discussed similarly. Let us compute the sigular terms when r — a;, i = 1,2,3

and 5 kept arbitrary. They are
6
E— S 10 1 1 1 zk —a; \ = _
S == —_— I

5 1 : zp—a; (T 1 (v— a,,)(v 5) 2
"o ooy —ed Tl en 7% LL 900 (Ty(s / ECLaN )(7}@

where we have used the results of the previous analysis. One notices that the only ob-

pd

struction for the first term to be a total derivative in a;, i = 1,2,3, is coming from
I(3) = c+ 5 Zj T3 82. In T, the last term. What we will show below is that this gives
7

a contribution which cancels exactly the second term in (7.10), i.e. we have

18 1 52 1 r 1 (v —a;)(® —3) , )2
=y —— ——IT+ (-__ $2v) =0. (7.11
4558~ 3 0300 T Moaley — a0) \T () MON (10

This identity can be proved as follows. From (3.45), we have

Ori; im
- — 7.12
%5 = Fai(an)oslon). (7.12)

Notice that T' = 2 | detK |* detImT, we have

82 62 2
B0, InT = 52:03; IndetImr = Tr (aaiaaj hﬂmf)
2 (7.13)
C(p i [lmslem)
T 9(a:)y(a;) | y(v) |2 ’
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where §%(a;) = [];.;(a: — a;). So we have

L& e L (r 1 (-5
4};& — 3%1 T= };aj——:s’(Ti/(ai)@(‘_‘j)/ ly(v) 12 ’ ) (7.14)

- 5t s | “Te 3)d2>

This is precisely (7.11). Then the sigular terms when r — a;, 1 =1,2,3, are

1 - ST )
- Kzaaz[ T e AL TwewE 1C )} (7:19)

Similarly, the singular terms when r — a4 are

1 - 3 53] 1 a;5ais 1 : (Zk - aé)(zk - 5) =, _
L { e Pl T I(”] (716)

a4 — T Q45046 TS I Hi<j aij |2 k=1

+ (total derivatives in zg),

by making use of the formula

3

e 2 2
Z 415 Qi6 6 nT = — 9 — InT. (7.17)

-1 Q45046 Ba,-c')aj Baéaaj

which can be proved by making use of (7.13).

It is an easy matter to show that all these total derivatives eqs.(7.15) and (7.16) give
zero contributions. That completes our verification of the independence of AII(k) on r
(and likewise on 3) and therefore also on a4 5.

We metion that a form of the two-loop four-particle amplitude for SST II was con-
jectured in ref.[108]. While in some aspects it resembles our above formula eq.(6.20), in
some others, in particular in the important ones related to the supercurrent contribution,
it does not seem to agree with the result of our explicit computation.

Next, we would like to discuss the finiteness of A(k), considering for definiteness the
HST case. In the “handle” case we consider the corner u — 0 where v = a3 —a;, and in the
“dividing” case the corner u — 0 and v keep fixed, where u = a3 — a1, vu = a3 — a;. We
can read the corresponding expression for HST from eq.(6.19). By taking the appropriate
variable y = u? and doing some computations, we can put the “handle” degeneration

expression in the canonical form [109, 110]

&y |y )R (7.18)
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where one recognizes a tachyon 1/7% in the left sector and a massless state 1/y in the
right sector, as is expected in HST. For the “dividing” degeneration case the appropriate
variable is v = y? and from (6.19) we get the canonical form

i;?i 2 F (7.19)
where we recognize again a tachyon in the left sector and a level 3 massive excitation
(y?, compare with the zero level 1/y) in the right sector as is to be expected from the
norenormalization theorems, implying that the one-loop tadpole vanishes if it is attached
to a vertex (1h1)™ with n < 4. Of course, the integration over arg(y) will select the same

contribution from the left sector as it does from the right sector, and therefore finally the

degeneration expression will be

2
la?ZJ?IJz (In|y)~° - F', for the “handle” case; (7.20)
d*y |y |*-F', for the “dividing” case.

The amplitude is thus finite, for generic values of the external momenta k;, taking into
account the part []e**%.

A more subtle question is whether the leading term which we have obtained for A(k),
i.e. the coefficient mutiplying K (k, €) in eq.(6.19), where we dropped ] et* X is also finite.
The question arises because in the “handle” case, taking z — a1 = 12 we get y(z) ~
t-(t? +u)'/? and the integration over dz; looks like T1; dt:/(t3 +)*/? which combined with
an appropriate left sector contribution could give ~ (In | y |)*, making the first expression
in (7.20) divergent [108] (notice that the divergence comes from the integration region
z; ~ z; and therefore disappears for generic k;). We will not done the rather involved
explicit computation for the left sector, but we can nevertheless argue that even this
divergence in k; — 0 is removed. In fact we can make use of the arbitrariness in = to
choose* z — a: we have then to take the finite part of (6.18) in this limit, and we can see
that it contains a factor (z; —a;) = t? at least for two values of i. The resulting divergences

from the integration over dz; will then actually be

2 dy
[T —5=— x (left sector) ~ (In | y )%, (7.21)

i=1 Vt3+u

* This means choosing the supercurrent insertion on a branch point, as considered in
refs.[12, 111, 102].
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making the first expression in (7.20) finite.
Similarly, in the “dividing” case: z—a; = %, z —a; = t? +u, z — a3 = t? = uv, putting
z = a1, we would get, from the corner z — a;, a divergence like

2

dt;
H 5 ¥ (left sector) ~ :
=1 ity |y |

and the second expression in (7.20) will remain finite.

The last point which we want to discuss is factorization. Factorization is a very impor-
tant and basic requirement for a sensible theory. In the early days of string theory (called
dual resonance models) factorization plays an important rule to discover the physical spec-
trum of the Veniziano amplitude. We will show in what follows the four-particle amplitude
(6.22) also has the right factorization property [75].

The factorized diagram fig.8 corresponds in moduli space the following limit:

Az — a1 = U, az — ay = vy,
Z2; — a1 = 21U, Z9 — a3 = Ta2u, (723)
v — 0, v, i, T2 fixed.

This can be easily understood. We knew that the limit v — 0, v fixed corresponds to the
dividing of a genﬁs 2 Riemann surface into two genﬁs one Riemann surfaces (two tori).
One torus seems to be a point on the other torus, but it is actually a genus one Riemann
surface with modular parameter v. This is due to conformal invariance. If we want to
get the factorization configuration shown in fig.8, we should insert two particles one one
torus and the other two on the other torus. Then we get the limit (7.23). The colliding of
a1,2,3, 21 and z; to one point, for example a1, should be simutaneous. Otherwise we will
get other factorization limit, like fig.9, which is obtained by first taking z; — z; and then
z1, @z 3 — aj. ‘
Under the limit of (7.23) we have

T= —2—T1T2 !

™ raarsans] + O(In |u]), (7.24)
where 2
h= {yl(zz)|2 v yi(z) = 2(z = 1)(z —v); (7.25)
o [F () = (- a)e — aa)(s — as)(z — as).
ly2(2)[2
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Then the measure transforms as follows:

dard’asd®aslagsaseass|® 1 |u|d2ud?vd®ay
To [l lag? 2 TR - v)Plasasos]’

(7.26)

Apart from the kinematic factor and ] e* % the rest terms in (6.23) can be divided into
two parts: one part which doesn’t depend on the momentum and the other part which

does. For the first part we have

&2z — 1) (5 — 3) s o (m 1 (v —r)(7 - 3)" '
= {”’“)I(”zx(:r’y(r)g(g)/ o) } o)

1 1 1 dledZQ:z d223d224
2

6 |ul? 1‘11441504612 Iyl(ml)yl.(mz)lz lyg(zs)y2(24)12 ’

i=1,2,3), setting r = s = a1

1-7

by subtracting all the divergent terms (in ﬁ and ——
and then taking the limit v — 0.
The second part can be computed similarly. Let us write R(z) = 3, R(z, z;) and

R@zy_@@)(—L~+ﬁ&)(x~@ﬁ@0, (1.28)

where

2 1 1 1
fi(z) ='—‘f/ _zd,u,(ul,uZ), f2(2) = T/ =z )d,u(ul,uz), (7.29)

uy —z)(uy — z

and ,
('lL1 - uZ)d'lleu?_

y(ul)y(uz)

The important observation here is that f;»(z) are finite in the limit of eq.(7.23),

dp =

(7.30)

irrespective whether z — a1 or z 4 a;. The point is that, taking for instance z ~ a1, the

potentially singular region u; ~ a; contributing to fi » can be written as a total deivative

and then:

2 1 F(uy,@)duy / p) 1 o
— 3 - F d
3 / Uy — a1 |u1 — a_ll‘.’» 611,1 |?1,1 _ a1I3 (’lLl,ul) Uq

= - _1_ dU:l L . ! . F(ul,ﬁl) (731)

21 ’17,1-—&1 |’IL1—G.1] Uy — az

2
/3u1F(u1,u1) d Lt

luy — ay]?’

71




where the contour integral is around a;, and due to the angular integration it is only linear
divergent. Noting that also 7' in the denominator of f; » is linear divergent, we see that

fi1,2 is finite. When z is away from a;, we can also derive an explicit expression for fi 2(z).

We have

2

1 1 1 dw

filz) = — T / —w |yz(w) (7.32)
B 1 1 1 dw 2

f(z) = z—a ’E/z-w y2(w)

First let us consider the term F%—;R(z)-R(z) in S(z). By using eq.(7.28) and factorizing

the singular terms in ——, we get
a;—z

Z1— T z) = Bz ul 2 H‘li=1(zl—$)
H(z )52 ) R(E) 3k kv = D

x( 1 ,+f1(zi>+(z—zi>fz<zz~)) (s = 25) (1.33)

4

i<J

where

4

SN zZ]—a . 1
nlid) == - o) o=y

< (s + () + (an = (a0 ) (5= )
P(i,7) =f2(2:) f2(2;).

(7.34)

We will show that the expression (7.33) is zero after substracting all the divergent terms,
setting z = a; and then taking the limit w — 0. For z; or z; near a; (this is the case for

i =1,2), this is true because of the factor y(z;)y(z;) which is zero in the limit u — 0. For
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z; and z; away from a;, we get™®

Z Puls ’])+P(W) =fa(z:) f2(z2;) — Z . ! Hl:l(zigﬁa'n)

n=t,5,6 0™ n=g,5,6 I T (an —a1)® ITin (an —a1)

X( a1 — Gn _ a1 —aq 1 | dw ‘2>.(Zi_+zj)

(a1 — zi)(an — 2i) a1 — 2z w—z y2(w)

AT ES Py g p— (2i — an)(z; — an)

45,6 Llizn (an —ai) (z: — ai)(zj; — a1)

y 1 1 1 dw |? )
—_— . P
an —2; 1o w — z; (= %
(7.35)

y2(w)
=0
by using the expressions for f1 2(z) in eq.(7.32) and doing some “trivial” algebraic calcu-
lation like

y o)z = an) g (7.36)

456
n=4,5,6 l#n (a’n - l)

We conclude that

[T 505

=1

(i= 1,2,3)> =0. (7.37)

divergent terms in
a; —z

Second we discuss the other disturbing term in (6.23):

4

[[E =)@ -3 IO (8)/d ww =)@ =3) oy Bs). (7.38)

=1 ly(w)[?

Let us compute the right (holomorphic) part of (7.38):

e
H (z1—7) —w Z kiy(z:) (T_l—z + fi(z:) + (r = zi)fz(z,-)> (7.39)

6
n—l(r - a’n) H

* Notice that H?zl(zz — an) & (a1 — a;)*(2zi — an)(2; — an) in this case.
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where

4

Ap — W 1

S | (G - - ( 4 falz) + (an — z,->f2(z,-)) . (1.40)
=1 H!;én(an - a) an — Zi

For z; ~ a1 (i = 1,2), these gives no contribution to R, after subtracting the divergent

terms because of the factor y(z;). For z; away from a; we have also R, = 0 which can be

proved following the same reasoning in (7.35). The conclusion is

H(zz - r)( )R(r) (divergent terms in — 1_

7

~(i= 1,2,3)) =0. (7.41)

By using eqs.(7.37) and (7.41) we easily compute the second part of eq.(6.23). We get

n d? Zz(zz - T)(Z-L - 3) dzw(w — T)(’I‘E - 5) . R(5
Fond = H ) {mTy o | R R

| S B o
- a(aX(H—) 90X (r=))S(3) - EZ(E)X(s—I—) -0X(5-))S(r) + 5365(1-)5(3)}

1 d*zd%z, d?z3d?z4

" ulfazsassass|? [yi(e1)ys (22)F [(75 — a1)(zs — a1)|?|y2(z3)ya(z4)[?

X H(zi —7r)(Z — 3) ( — Elz(aX(r—-) - 0X (r+)) (Z - ki_ )

~ 5 —Z
1 B\ g\ B\
~ 51 (0X(-) - 0X (5+)) (Z — Zi) + 5o (Z m— ) (Z — z) )
1 5 1 d l!ldzzg d2Z3dZZ4
sk k(2 k k) .
267 (2 5 ) Tulllarsarsasel? [yi (21 )y: (2) ] [y (23 )yz (ze) 2
(7.42)
Combining (7.27) and (7.42) we get ( 2k; - ko, = —2, see below)
d?ud?vd?aq
AII(k,€) = K/
( E) 212 512 ¢ TSTSI'U,H'U(]. — v)|2]a14a15a15|3 (743)

d :cld To d223d224 kX
X 1 .
[y1(21)y1(22)]? |y2(zs)y2(z4)I? G

To see the factorization we should also compute (J] e*%) in the factorization limit.
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We have
(T %) =exp { ~2{(X(21) — X(22))(X(22) = X ()} }
exp { = £{0X(22) = X ()X ar) = X221} }
=) exp { -2 [(X(z2) X (e ]}
coxp { £ [+ (KXl = (X(on) X(e)a - (@)X ()]

(7.44)

where the index 1 and 2 mean that the propagators (X(z;)X(z;)) are defined on the
(factorized) first and second torus respectively.

Remember that the appropriate variable for the “dividing” degeneration case is y:

u = y?, we have

AII(k,e .-:__1_6’['{' dzyyz ~t
210

1 d2v 2z d%z, { : }
X 75 — (X (z1)X
TE ol = o) (e e o8 | "2 e e
d*ay d?z3d%z4

X
T3 |araa1sa16]® [y2(23)y2(24)]?

wexp {4 KX () — (K0 X ) = (X (o) X2

2T , - 1 1 d*v Pz d?z, t }
A il ——(X X
o t—2/ T3 To(1 — v)? fya(22)va (22) P e""{ g e el
x/ d%aq d%z3d?z4 :
T§|a14a15a16|3 lyz(zs)?ﬂ(zé)lz

exp { - [ e = (X)X e = (X)X |

t = —2k; ky ~ 2,
(7.45)

which shows apparently the right factorization property of the two-loop four-particle am-
plitude.

To complete the study of two-loop factorization, we’d like to show that the kinematic
factor K in eq.(6.23) can also be decomposed into a product of two one-loop kinematic
factor. This has been done in [112]. Nevertheless the author of [112] was not able to
obtain the standard kinematic factor. The point is that at one-loop the amplitude with

the external line of the massive rank-two symmetric tensor also contributes to the two-loop
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factorization as can be easily seen from the presciption given in [113]. If this contribution

is included we get the standard kinematic factor*. Let us now show some details of this

calculation.

From the prescription given in ref.[113] we know the general vertex operator (right

part) for the emission of a level one (k? = —2) massive state:
Vi ~ J/ d6 {ae,0DX* + be,, 0X*DX" + ce,,,DX* DX? DX} e**
~{ae (PPX* + ik - pOY) + ey, (BX ik - ¥ + Pp*” + 0X,0X")

+ cepup(ik - poPp¥eh? + OXFp P — DXV pHeh? +OX PohPep? + HX Pohprahr} eF K,
(7.46)

where €,,, is an antisymmetric tensor and €,, is a symmetric tensor. At one loop level

the three point function is computed as follows (see section 4)f:
(Vi(ke, €1, 21)Va(k, €2, 22)VR(k, €, 2)) s
= Z NsQs (Vi(k1, €1, 21)Va(ka, €2, 22)Va(k, €, 21)

__ ic;n,wwel (ks per - p(zm)k W @ewmn

+ bz NsQs (k1 - Yer, '%L'(Zl)kz - €2 '@5(32)5@[’“?1’”(2»85“1/
—1a Z 'TL,Q,(]cl -1pep - 7,[1(21)]92 : ¢€2¢(ZZ)>3<5¢¢(Z)>37

by using the non renormalization theorem. From the above expression for the three-point
function we found the following kinematic factor for the three contributions:
S1(k1y€e1, k2,60, k,€) = (k1 - kel'ky el — €1 - kkikyeh + ko - kki'eled — €3 - kki €V kS) €40 p,
So(k1,€1,k2,€2,k,€) = (k1 - hoel'eh — k1 - exelky — €1 - kakl'el 4+ €1 - e2kl'k) €y
Ss(k1,e1,ka,€2,k,€) = (k1 - koer - €2 — k1 - €261 - k2) .
(7.48)

We will use the following nonmalization for the summation over intermediate states:

D CapyetUP = BEE560 + 6L556E + SL848Y — 646560 — 625568 — 5L855Y,

D euef = 5968 1 585,

€

(7.49)

* This has also been noted in an erratum to [112].

1 The other two are massless particles.
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Then we found

2Sl(kl,El,kg,62,k,E)Sl(kg,€3,k4,€4,—k,€)/2k1 . kz

= — 62 .

— k-

- (61 . kgez . k4 — €1 ° k4€2 'kg)(ﬁzg ® k1€4 . kg — €3

es(ky -

es(ky -
ez (ks -
cea(ky -

ks(el"
k4(€2 :
ks(ez -
k4(61 .

kseg - ko + €1 - kaes - k1) — ko - ks(eg

kaes - k1 + €2 - kaes - ko) — k1 - Ea(er

kses - k1 + €2 - kseq - ko) — ka1 - k3(ea

kses - ko + €1 - kaes - k1) — ko - ka(es

kz(kz . kg - kz . k4>(€1 + €3€9 * €4 — €71 * €4€7 - 63)

Z52(k1,€1,k2,Ez,k,f)Sz(k3,€37k4,647“ka5)

ckoey -

~kaes - ko + 1
'k463'k1+€2
ckaes - k1 + €2

~kses - ka + €1

kl)a

=(k; - k2)2(€1 ‘€363 €4 + €1 - €a€p - €3) + €1 - €36€3 + €a(ky - ksks - ks + k2

+ (€1 - ksea

+ €1
+ €2
+ €2
+ €
+ €
+ €1

+ €3

and

2K (kye) = Si(ky, €1, k2, €2, ky €)1 (Rs, €3, ka, €4, —F, €)/ 2k - ko

. k4 — €1 * k462 . kg)(é;; . k164 . kg — €3 - k264 . kl)

. kzez . k1€3 'k464 . kg

es(ky
A
- es(ks
- e4(ks

. k451
~kseq
kyey

. k362

. k264
- kaes
~kies

. k1€3

k3 — ks
ks — k1
ks — ks
<ks — k2

- koey kse; -
'k2€3 'k4€1 .
kies - kses -

. k1€3 . k462 .

ks + e -
ks + € -
ky + e -
ks + €5 -

kaes - k1)
koes - k1)
kies - k2)
kies - ka)

ckaeg -
. k363
. k4€4

< kses

 ksky -

. 62(—2k1 . k363 . k264 . kl -‘-2]@2 . k363 . k164 'kg —-kl . k263 . k4€4 . ks)

- 64(—2k2 . k3€2 . k4€1 . k3 - 2]’61 . k361 . k4€2 - kg - k3 . k463 . k161 . kz),

+ ) Sa(-)Sa(+ ) = Ss(-+)S3 (),

k1))

-k2))
- k2))
- k1))

k4)

(7.50)

(7.51)

where K (k,€) is the standard kinematic factor, see eq.(4.20) or eq.(6.8). Thus we recovered

the standard kinematic factor from the product of two 3-particle kinematic factors by

summing over all the intermediate states.

As alast comment to the factorization, we point out that before our explicit computa-

tion was finished, A Morozov [108] suggested a formula for the two-loop contribution to the
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four-particle amplitude which can easily be seen not satisfying the factorization condition.
We also remark that the factorization of the two-loop four-particle amplitude has been
discussed by Yasuda [112] by using the rather implicit representation of period matrix and
O-constants, and claimed that only matter supercurrent part gives contribution to the
lowest order in the factorization limit. But what we found is that the ghost supercurrent

also gives a non-vanishing contribution at the same order.
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8. Ultra-High Energy Scattering or Quantum Gravity Corrections

from Superstring Theory

In this section we will study the high energy behaviour of the superstring scatiering
amplitudes. There are many motivations for doing that, perhaps the most important being
the fact that superstring theory is supposed to be a scheme in which quantum gravitational
effects are in principle computable, making possible the important géal of understanding
the quantum corrections to general relativity. More precisely two regions of interest have
been explored for the four massless bosonic particle scattering amplitude: the large s, small
¢ limit [19] and the large s, fixed angle limit [21]. We shall be concerned in this section
with the first region which could provide the computation of string corrections to the large
distance gravitational interactions. This has been studied in [19, 20] up to one-loop level
within the framework of standard superstring theories [1, 2] and to arbitrary loops by
Regge-Gribov techniques [19] as far as the leading term is concerned. The two-loop stringy
analysis was carried out in [22] by using the two-loop amplitudes obtained in [15, 16]. This
is important because, as also noticed in [19], it is at two loops that one starts probing
the full string interaction and therefore expecting genuine new effects appearing. It is also
important to check that the two-loop amplitudes we have obtained can be used in practice
to get physical results like this asymptotic behaviour.

To begin with let us study the high energy behaviour of the tree amplitude in type II
superstring, eq.(4.19):

L(-3)M(=3T(-%

A.(1b—2¢)= K -Kg°
+(1b = 2¢) I T+ I+ Hra+ )

(8.1)

where we have appended the coupling constant g into the amplitude. Here we are interested
in the following high energy limit:
s = —2ky -ky = —2ky - ke — o0,
(5.2
t= —2k; - ky = —2kp - ke — 0.
See fig.10 for the hinematics of the scattering. By using the Stirling formula

1
z*T1z

I(z+1)=+v2r pe (8.3)
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we get
) (=3T3 P(=)P(=3)T( + 3)
T+ 3T+ 5T +3) TA-3) - HLO+HTA-3)
(3 +

__sinw ) T(-%) [TE+3) 2
o sin -;— 1+ 2) (F(l + %)) (84)

R ()

where we have replaced exp (—i3t) for sinn(§+3) [18]. This is obtained by the following

sin 7|“

limiting procedure: setting s = 3(1 +i¢) (3 posmve real) and taking § to be large and then
¢ — 0T. The asymptotic behaviour of the kinematic factor K - K is [19]

K- K~ (—;—)4 €1 - €2€p * Ec. (8.5)

By using egs.(8.4) and (8.5) we get the following asymptotic behaviour of the graviton-

graviton scattering
Atree(1d — 2¢) = atree(s; 1),

atree(s,t) — ﬁ(t)sa(t) =9 I‘(i _:z) < )LH exp <_i%ﬂ> , o

which is Regge-behaved. The corresponding Regge amplitude is a simple pole in the ¢-
channel angular momentum at J = a(t) = 2 + ¢, L.e,

92

as(t) ~ T’ (8.7)
corresponding to the graviton trajectory exchange. It is a simple matter to show that the
impact parameter transform of (8.6) violates partial wave unitarity at high energy [18],
thus indicating the loop corrections are important.

The one-loop correction to the asympototic behaviour of the tree amplitude was cal-
culated in [19, 20] by using the exact integral representation of the 4-garviton scattering
amplitude. The following result was obtained

— zF(D)g ——-———(i) (8.8)

%one 100p(s’ t) [t|(6=D)/2"

Here F(D) is a function depending on the dimension D of the compactified superstring

theory. We will not repeat their derivation here. Nevertheless I would like to make a
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few comments about (8.8). First the asymptotic contribution at one loop was obtained
from the integration over a corner of the moduli space: the Imr — oo region. This is a
general feature. When we make some asumptions we simplify the problem and we can get
exlicit result. We will show later this is also what happens at two loops. Second the result
is in accordance with the general Regge-behaviour at g-loops: (%)g+z+3ﬁ x (t dependent
function). As to the leading behaviour this result can be derived by using the Regge-Gribov
method. It is also generalized to multi-loops [19]. Evenmore one can do a resummation over
all loops and get a result which has an operator eikonal form. The s-channel unitarity was
recovered. Due to the lack of space we will not discuss all these aspects here. See [19] for
detail discussions. In what follows we will present some details how we obtain the two-loop
Regge-behaviour from the explicit two-loop four-particle amplitude, eq.(6.23).

In hyperelliptic language the rescattering term depicted in fig.11 corresponds to the

following corner in moduli space:

az — ai, U= ay —a; — 0,
ag — as, ] A = a4 -—-a,3i_-> 0, (89)
ag — as, v = ag — a5 — 0.

This degeneration limit of the moduli space is expected from the diagrammatic analysis as
shown in fig.12 and fig.13. Fig.12 shows the realization of the genus two Riemann surface
as a double covering of the (cut) Riemann sphere. We indicated there also the canonical
homology cycles chosen. From general arguments the rescattering term corresponds to the
pinching of the three cycles a1, oz and a3 by taking z; 2 in the upper and z,c in the lower
Riemann sheet (see fig.13). All these cycles can be identified in the hyperelliptic language
as shown in fig.12, and one immediately sees that the rescattering term correspdonds to
the corner in moduli space as given by eq.(8.9).

Under the limit (8.9) we have

C\..
T—30mt—— (8.10)
’313(135‘151 2
where we have defined & as
S = det Imr
(8.11)

. ;1.2_(111 lul1n o] + 1n Jo] 1n |A] + 1o |A In ul).
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7 is the standard period matrix.
By using the explicit formulas of (BX(m—l—) 0X(z—)) and I(z) and eq.(8.11), one can

easily prove the following (for generic z):
(0X(z+)-0X(2—)) =
I(z) = 0.

As to R(z) appearing in (6.23) we have, in this limit,

(8.12)

R@)=y@>( > ik %_z>, (8.13)

where we have defined c; as follows:

_ In |v[1n ||
T Wfulln o] +1n|v|ln A + In [N In [u]’
In |u|ln |v]
= 8.14
= I fulln o] + In [o|1n || + In [N In [u|’ (8:.14)
In |A|1n |ul
Cy =

Inju|ln |v| +In|v|ln |A] +1n A ln |u]

Here the §; (+ = 1,2,---,4) are equal to 1 if z; lies on the upper sheet and —1 if z; lies on

the lower sheet.

By using the fact that z; and z; are on the same sheet, z; and z. on the other one, and

substituting the above results ((8.10)—(8.13)) into (6.23), we see that in the limit (8.9):

S(z) — —2s (= I_Iz(zz(_"”’z”) ze) (8.15)

and that the right hand side of eq.(6.23) is dominated by the S(r)S(5) term*, so we get:

d*ud?vd?)\ 1 |aisassas:|*d®z1d%z,d%zpd? 2,
5

luwoAlP S° Jy(z1)y(z2)y(zs )y (zc)? (8.16)
x 8*|(z1 = z2)(z — z) ([ [ 7).

ATI(k,€) ~ B(k,¢) /

where (and in what follows) we drop the overall constants.

* The second and third terms in the right hand side of eq.(6.23) are easily seen to be:

1 1 132 1 1 1 :
O R W) |;\|) — 0 and s - O(lnlul’ mpl = I/\I) — 0 respectively.
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From (8.16) one sees that the dependence on » and s disappears and the integration
over z; is manifestly M&bius invariant. This should be the case because we started from
an amplitude which is Mdbius invariant (modulo total derivatives in moduli space which
comes from the arbitrariness of the supercurrent insertion points on the Riemann surface).
Since the dependence on  and s disappears, we should get a manifestly Mobius invariant

expression.

The integration over z; can be simplified by a change of variables. This is motivated

by the exponential factor (][] e***) as we shall see later. Choosing the homology cycles as

1 ( 1 1 )
wp = —— - dz,
2m \z —ay z — as

1 ( 1 1 )
Wy = — — dz,
27t \ z — as zZ — a3

in the limit (8.9) and when z is away from the branch points. Then if we define p and o as

z2
p:27ri/ w,
2

shown in fig.3, we have

(8.17)

. (8.18)
o= 27rz'/ w,
it follows that
B2 od2p, = alsaasam(zl - Zz) 2 dzz d229
pl P2 y(zl)y(zz) 1 P (8 19)
) )
dz 42 _ alsassasl(zb - Zc) 2 2,
c1dos o2y (=) d°zpd”® 2,
Here we have used
y(zi) = £(z — a1)(zi — as)(z — as). (8.20)
By substituting (8.19) into (8.16) we get
= 2 dud’vd®A 1 2 2 2 2 ik-X
AII(k,€) ~ K(k,€)s T s md pdond oo (] 7). (8.21)
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The last piece of computations needed is the factor (] e**X). We have*
ik S
(T1 &™) = exp { = 2{(X(21) = X(z2))(X () = X ()

t (8.22)
)~ X)X ) - XE) -

General arguments give the expression for the propagator (X (z)X (w)) as follows [115,
116):

(X(2)X(w)) = In |B(z,w)? + 3 ( / Cwo c.c.> (Tmr)~t - ( / . c.c.) , | (8.23)

where E(z,w) is the prime form defined on the Riemann surface [71, 70]. By using this

expression, we have

(X = et = Xe) = 2

- (/w - c.c.) (Tmr)~1 - (/w ——c.c.) .

In appendix C it is shown that the first term is zero under the limit (8.9), then by

(8.24)

taking into account the definitions of p and o, €q.(8.18), we have
1 -
(X (21) = X(22))(X (2) — X(2¢))) = —Rep - (Imr) ! . Reo. (8.25)

The calculation of the other term appearing in (8.22) is more conveniently done by

making use of the following integral representation:
(X(z1) = X(2))(X(22) — X(2c))) =

- 8.26
= —j;/dzsz(z)(X(h)—X(Zb)))<3X(5)(X(Zz) — X (2c)))- (5:29)

From the explicit expression of (80X (2)(X(z1)—X(2b))) derived in section 3, and evaluating
the integral in z by looking at the dominant regions, we get

41n ju|ln [v|In|A| '
Inju|ln|v] +1njv|ln [A] + 1n |A]1n |u]

(X(21) = X(2))(X(22) — X(2))) = (8.27)

* The convention is
(X*(2)X"(y)) = —g"" (X (2)X(y)) = —¢"" In|z —y[?,
forz — y.
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Substituting (8.25) and (8.27) into (8.21) we have

d*ud?vd*)\ 1

AII(k,e€) NK(k,e)sz / WS\ . -(gs—dzpldngdzaldzaz

s 1 In ju|ln jv|1n |A|
: exp{ 2ﬂ_Rep (Im7)™" - Re = 1n{u|].n|v[+ln lv|1n [A] + In [A]1n |u]
(8. 28)
The integration over Rep and Reo can be easily done by using the following formula:
+oo 9
/ e gy duy = 2 for s — doo (8.29)
e s

giving finally:
AII(k,€) ~ff(lc,e)/d1n lu|dIn [v|dIn |A|

i—exp{ In|u|ln |Alln |v| }
& 1n\u|1n|vl+ln|v]1nl)\|-{—ln]/\]ln[ u|

(8.30)

By remembering the definition of &, eq.(8.11), and comparing with the standard Feyn-

man parametric representation of fig.1, we recognize that this result can be rewritten as

(¢* =1):

AII(k,e) ~ K(k e)/d a1d%g2— ! (8.31)

Ga3(g— a1 —3)?
This gives exactly the eikonal approximation for high energy scattering of gravitons at two

loops by taking into account the asymptotic behaviour of K (k,€):
R’(k,e) ~ ste - €26y - €, for 5 — oo. - (8.32)

The above analysis can be extended to lower dimensional superstring theories. Explicit
calculations can be done for a class of interesting compactified models called D-dimensional
fermionic strings [77, 78]. From eq.(9.34) we know that for the maximally space-time
supersymmetric case the four-particle amplitude can be written as (with a suitable choice

of the gauge group):

d2 agd2a4d2a6|a13a35a51 ‘2

TD/"’ [lic; lasif?

dzi(zi — i D/ZJD(«'E z) <Heik-x> )

y(z:)

AIIp(k,e) NK(k,e)/

II

1

(8.33)
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From the explicit expression of Jp(z,Z) given in eq.(9.35) we know that for very large s
the relevant terms contributing to the rescattering term are the same as for D = 10. Under
the limit of (8.9) it is easily seen that the relevant summation in (8.33) is coming from
s =26,7,8and 9 (fo]lgwing the convention used in [12-16]), and the rest are all suppressed

by powers of u, v or A\. We have

Q.[F-2r2

10~D+D 1
TD/2

~ |@13Q350a51
[ &D/2

) (8.34)

= ‘613635%1 110‘3‘572‘7

which is dependent on D (the dimension of the space—timé) through the power of $ only.
So we get finally:

AITp(k, é) ~ fé(k,e)/dm lu|d1n [v]d1n |

1 In u|ln [A|1n |v]
gD/a-1 P {“2t1n P EREmE s ey AR CE L)
_ 1
~ K(k,e /dD~2 dP-2 .
(F:¢) T R a - @)

This is the correct result of the eikonal approximation for the high energy scattering of

gravitons in D dimension. From (8.35) one sees that AIIp(k,¢) is divergent for D — 4 as

1

(m)z, (8.36)

1
Allp(k,e) ~ s* - 2 -

In the above we have implicitly taken ¢ln s — 0, so we cannot see the full Regge behaviour
s*T*/3 at two loops [19]. The divergence in (8.36) for D — 4 is an infrared divergence. The
detail analysis of this infrared divergence and also the comparision with Feymann diagrams
can be found in (22, 23], which we will not repeat here.

Another asymptotic configuration, which is sub-leading by a power of s, corresponds
to a 2-graviton exchange in te ¢-channel which interact in the “middle” by exchange string

excitations. This configuration was called H-term in [19, 22], for reasons evident from fig.14.

For the calculation of this configuration and its physical implication, please see [22, 23] for
details.
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9. Four-Dimensional Superstrings and Their Two-Loop Computations

Up to now all of our calculations were done for ten-dimensional superstring theories —
the heterotic string and type II superstring theories. But these theories are not realistic in
that our space-time is four-dimensional, not ten-dimensional. So we should compactify six
dimensions to escape observations (up to now), or construct some realistic string theories
directly in four dimensions — four-dimensional string theories. After the resurgence of string
theory in the fall of 1984, there are a lot of proposals of compactifying superstring theory,
like compactification on Calabi-Yau manifold [117], orbifold compactification [118], covari-
ant lattice costruction [119, 120] and (free) fermionic construction [77, 78]. The simplest
scheme is the fermionic construction. In this section we will review briefly this construction
and present some two-loop calculations for these models. Before doing that let us make

some general coments about low dimensional string theory.

Everyone who once studied string theory knows that bosonic string theory (described
by bosonic coordinates X#(o,7), p =1,--+,D) is consistent in D = 26 dimensions (called
critical dimension) only. By introducing fermionic coordinates ¥#(o,7), = 1,---, D which
combined with X # form a supermultiplet (in two dimensions of course) and supersymiiiétry,
the critical dimension changes to D. = 10. But what is the essence of this construction—by
introducing 2-dimnsional fields, like X# and ®# 7 We are not obliged to interpret that all
these bosonic coordinates are related to space-time coordinates. Probably only part of X*
are related to space-time coordinates. Also peculiar to two-dimensional models is boson-
fermion equivalence. A fermionic field can be constructed from bosonic field(s). We can
bosonize some bosonic fields into fermionic fields or vice versa. These fields will not have
any space-time interpretation—they are just hidden or internal coordinates. Then what is
(are) the consistent condition(s) for the construction of string theoy? They turn out to be
conformal invariance and modular invariance. Conformal invariance restricts the number
of internal coordinates we should choose. For heterotic string theory in D dimensions,

we have the following list of two-dimensional flelds appearing in the construction of the
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models:
X¥,4*( p=1,---,D) which have a space-time interpretation;
internal fermions:

x!,yf,wl, I =1,--.,10 — D which are 3(10-D) free (right) Majorana fermions;

¢t A=1,--- ,2(26 — D) which are 2(26-D) free (left) Majorana fermions.

The matter supercurrent is realized nonlinearly by these fields as [121]

10—-D

Tm=1%-0X+ Y x'ylo. (9.1)
I=1

As we discused in section 2, fermion fields have non-trivial boundary conditions. For dif-
ferent boundary conditions these fermion fileds give different contributions to the partition
function. The partition fuction should be modular invariant, guarantee the cancellation of
gauge and gravitational anomalies [122] (in the low energy or field limit of string theory).
How modular invariance restricts the possible choice of boundary conditions was discused
in [77, 78]. By studying the one-loop partition function and its multi-loop counterparts,
they found a set of rules of constructing modular invariant string theories. By using their
rules one can comnstruct a lot of consistent models. Some of them are supersymmetric,
having N = 4, N = 2 or N = 1 space-time supersymmetry. The one-loop vanishing of
the partition function of all these supersymmmetric models can easily be proved [77]. The
two-loop vanishing was proved in [80] by making use of th method of ref.[13], based on
hyperelliptic description of genus ¢ = 2 Riemann surface. Nevertheless one can also show
that the prescription for two-loop computations (for non-vanishing amplitudes in partic-
ular) developed in the previous sections can also be extended to these low dimensional
models. Befor doing that let us review briefly their construction.

To illustrate their construction let us first set some notations. For the torus it can be

represented by a flat parallelogram in the complex plane with side 1 and 7 corresponding
o

to its two non-contractible loops. We denote the one-loop spin structure as { J where

« and 3 are subsets of F* containing those fermions that are periodic around 1 and 7

respectively. For nay set a of fermions we define its characteristic function as

a(f) =1, if fea a(f) =0, otherwise. (9.2)

* F' denotes the set of all fermions.
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We also define addition and multiplication of fermion sets as ordinary addition and multipli-
cation modulo 2 of their characteristic functions. Thus addition is the symmetric difference

and multiplication the intersection:

! . !
at+a =alao —aNa,

(9.3)
ad' =and.
The one-loop vacuum amplitude can be written as
d*r a a(f)7'"?
Z one—loop = / (Im'r)%'*'ln”ﬁ“ ;C[ﬁ]Xzong,s/z er;[w @[ﬁ(f)] (). (9.4)

€
Here n(7) is the Didekin eta function; © [

,} is the Jacobi theta function with characteris-
€

€/ 2
tic [ ,/ } By slight abuse of notation we suppress the fact that this theta function should
€
be complex conjugated when f is a left (anti-holomorphic) fermion. F' is the set all “trans-
verse” fermions, i.e. F' minus two ¥*’s. The contribution of two “longitudinal” fermions

and superghost is denoted by Xj55,3/2- It is different from 1 beyond one loop. Finally the
~ o

coeflicients C [ﬂ] take values equal to either +1 or —1 which should be determined from
modular invariance.

For torus the modular group (all the modular transformations from a group) is ‘gener-

ated by

r—Tr+1, (9.5)
and
1
L (9.6)
T

Under these transformations the eta and theta functions are transformed as [77]
n __}ei'rr/lz,r]’ @1 _ eivr/é@l’ @2 — eiﬂ'/‘i@z’ @3 — @4; (97)

and

n— (“i’F)l/zU, '(:)j' - eivr/z_Q_{, 9?' «* :0_4, Qi - "G')ia (98)
n n n Ui n 1
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respectively. To ensure the modular invariance of eq.(9.4) we should impose the following

conditions on the coefficients C:

1.
O[ﬁ]z"e’q’ §”;am C[a+ﬂ+F]’
(9.9)
c[;]=exp 3T S al£)8(9) o’]
f [s4

where ) s stands for Xrignt fermions — Xlef fermions. Lhis is what one loop modular invari-

Qi
ance tells us. At multi-loops, modular invariance requires the coefficient C [ g]

BBz By

factorized into a product of g one loop coefficients:

ar -y o 8
O[ﬁl...ﬂg]zc[az]mc[gg] (9-10)

But there is additional constraint among one-loop coefficients that reads [77]

! !
a

(—1)X B+ () o %iwzf:a(f)a'(f) C’[;]C[;,] - C[ﬂ N a,]o[ﬁ,i a] (9.11)

Eqs.(9.9)—(9.11) are all the equations required for modular invariance.
The analysis of these equations is rather lengthy [77], but the results can be presented
with reasonable dispatch. The sets of fermions which enter the summation in eq.(9.4) form

an additive group Z of subsets of F, containing in particular F. The precise choice of Z
a
and C [ ] defines the theory. This choice is restricted by a series of consistency conditions,

which are derived from eqs.(9.9)—(9.11). Firstly, admissible spin structure assignments to
the fermions must be such that the supercurrent J,, has also a well-defined spin structure.

This leads to the requirement that for all elements o € E:
(’1)0“]771»(—1)& = 6a']m, (912)

where (—1)* is the ferimon number operator that counts the ferimons in o modulo 2 and

6o is a sign that takes the value —1 if * € @ and +1 otherwise. Note in particular that for

a
any assigment [ﬂ} the supercurrent J,,, the gravitino and superghosts, as well as the D
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a($*)
B(*)

ferimon field ¢# all have the same spin structure [ } The second condition is that

forall « € &
n(a) = 0 mod 8§,

n{ac') = 0 mod 4, (9.13)
n(ad'a"a™) =0 mod 2,
where n(a) is the number of transverse right ferimons minus the number of left ferimons

o
in set a. Finally the coeflicients C [ﬁ] must obey

c_ﬁ_ :ezc[ﬁ],
C:a: =~eac{;}, (9.14)
o[Jel] -l ]

where ¢, = exp(%imn(a)). Note that condition (9.13) ensures the consistency of eq.(9.14).
By choosing a basis {bg = F, bi,--+, by} which generates E, we can solve (9.14)
explicitly. We have

A B
a = Z breiys B = Z by,
=1 7=1 Ca (915>

_ B-1 A-1 2 o
¢ [ﬂ] - H 551(;‘) H 6bJ(j) €y H H Cai 1y

i=1j=1

where Criyiy = C’[Zb)j((j;} are not all independent. Cj; with 7 < 7 (] # 0) can be
determined from (9.14) by Cop and Cy; for k > 1 =0,---, N.

The application of these rules is straightforward. By carefully analysing the spectrum
of non-interacting string states, we found that a string model is supersymmetric if and

only if there exists a set s € £ such that s is a set of precisely ten right ferimons including

the *. Without loss of generality we may assume that

s ={¢*, x'}. (9.16)
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The one-loop vacuum amplitudes of these supersymmetric models can easily be proved to
be vanishing. In what follows we prove that the two-loop vacuum amplitudes of these mod-
els also vanish. Evenmore explicit calculation can also be done for non-vanishing amplitude,
for example the four-particle amplitude in N = 4 space-time SUSY model.

T(; be specific, we shall consider the following choice of E, indicating the corresponding
four-dimensional string models they define [77, 79, 80]:
(1) N=4 space-time SUSY model, =(4) = {F, 0, s, F + s}, where § is the empty set;
(2) N=2 space-time SUSY model, Z(2) = Z(4) U {51,581 + 7 for every v € E(4)},

where 51 = {¢*, (x1,X2), (Y3, ¥6), (81, -, f16)}5
(3) N=1 space-time SUSY model, Z(1) = E(2) U {s2,s2 + 7 for every v € E(2)},

where 5 = {t*, (x3,X2), (s, ¥s ), (w1,w2), (¢, -, 6*°) .

The two-loop vacuum amplitude can be written generally as:

| a(f) 1/8
{;} fgw (Q[ﬁ(f)]) , (9.17)

Ziwoloops = [ @3 0[] T(e2)
a,f

where J(z) is the supercurrent:

I(2) = Im(z) + Jon(z)

=.0X + z xTyTw! + 2¢88 — +b + 38¢8. (9.18)
I

The calculation of the correlator (J(z1)J(z2)) appearing in (9.17) proceeds the same way

as before. We have

(J(21)J (z2)) = K1((z1)¥(2)) s(y) + K2 (0%(z1)%(22)) s(y) |
+ K3 > ((z1)9(22)) axny (¥ (210)8(22)) s(rry ($(21)8(22)) sty

I

where s(1) denotes the structure of ¥#, K;, K, and K3 are spin structure independent

factors. By choosing z;, = coz, we have

= (Y(z1)%(22)) s(y) = Z(A B;)
(9.19)

¥ = (002 J0(e2)) ) = 3 Z(A% ~ B}
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as we used before*.

To proceed further, we shall do the summation in eq.(9.17) replacing the contribution of
«(f) (o +ns)(f)

A1) (B +ms)(f)

by s (here and in the following s means the transverse part and n = (n1, no) etc.). We get

Do toops = / s Jl;[sczi(; <SUM1 [;] + SUM, [;}
a(y?) a(w’) @
[0 Il ).

I

each spin structure [ }, over all its translation

] by an average E%Zn - [

(9.20)

where the sum is over oy, 81,2 € E(IV), for the N-SUSY model, and SUM; are, apart

from unimportant spin structure independent factors, given by

o a+ns a(¥)+n eralf)+n .
SUMI[ﬂ] =ZO[6imS}Y[ﬁ(¢)im] EQ / [,G(f)—{-m}‘ (9.21a)

n,m

SUM, is the same with Y replacing Y, and

atns g ralx)+n o oerelf)+n
suMI = Zc[ﬁ+ms} [ﬁ(x")er]EQ/ [ﬁ(me} (9.218)

n,m

For the case N=4 it is always possible, by redefining if need n; — n; + 1, to put a(f) =0
and also B(f) = 0. Then by using

o) =Tol]  ely i ]=cr=meZl e
each of SUM; is proportional to

(or ¥ replacing ¥) which vanishes as was shown before and in ref.[13].

By the explicit exprexssions of eq.(9.19) one can see that

0 0 01 1
Y[O g] —Y[; 0] —Y[O 0} +Y[O ;] —0. (9.24)

* For s=1, 8, 9, and 10, we interchange A and B which is more convenient for the discussions here |
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The same also holding for Y, together with four additional identities obtained from eq.(9.24)l
by modular transformations. This is precisely what was conjectured to hold in ref.[79],
where the result of eq.(9.23) is indicated to follow from eq.(9.24) and some ©-function
identity. For the model with N=2 an analysis like the one of ref.[79] shows that, in addi-
tion to expressions of the form of eq.(9.2?;), one has additional terms which are modular

transformations of

a =ZC’[a+n8 ]Y[1+n1 nzz]Ql/z[l—}—nl T3 }Qlﬁ[nl N2 ], (9.25)

gy B+ ms my  m mi Mo ™M1 Mo

or else of G} where Y — Y, or else G4 where (depending on the value of I) one has
[n1 ') 1 +n1 %)

ma Yuy)
the spin structures giving m; = 0 and npm, = 0. Taking into account eq.(9.22) and

€q.(9.19) we obtain (¢ =1 for Y and ¢ = 2 for Y)

- @] oo

] instead of Y[

]. The only non-zero contribution can come from
my M3

0 01 11
el el ]

] e 2]}=O.

This result can be checked from the explicit expressions of @,, and it is quoted as a Theta
identity in ref.[79].
Finally the model with N=1 contains terms like eq.(9.23), terms like eq.(9.26) and

(9.26)

additional terms which are modular transformations of

ngzc[aﬁ-ns ]Y[l—}-nl 1—i—n2] [1+n1 1+n2]

am B +ms m1 ™o

XQ1/4[n1 1+n2]Q1/4[n1 T2 ]’

my M2 my M2

Ql/é’:

Q1/4[1+n1 o ]

M mo m1 ma

(9.27)
or G4 with Y — Y or G¥, where (depending on I) the characteristic of Y| | can be the one
of some other factor Q'/%[ | in the right hand side of eq.(9.27). Using the property of C,

this reduces to

00 11 01 10
ARSI ERSRNES SN} .
0 11 01 10 '
XQ1/4[0 O]Q1/4[0 0]Q1/4[0 0]Q1/4[0 0} =0,



or else Y — ¥, which vanishes by virtue of eq.(9.24). Again as before the SUMs corre-
sponding to all other choices of a; and f; are modular transformations of the generating
one or they are identically zero because of the appearce of Q/* with odd spin structure.
That completes our proof that the vacuum amplitudes of all these supersymmetric models
are vanishing at two loops.

The above discussions can be easily extended to check the nonrenormalization theorem.
The nonrenormalization theorem at one-loop level has been studied in [123]. They found
that the three-particle amplitude is no longer vanishing for N < 2 aupersymmetric string
models*. This is also true at two loops [81]. We mention that the nonrenormalization
theorem at two loops for N = 4 supersymmetric string theory was also discussed in [124],
although this is just our results [14] extending to low dimensional string theory. Here I will
not present the explicit formulas for the nonvanishing amplitudes for N < 2 SUSY string
models at two loops. They would occupy all the rest of this thesis and I would never come
to an end. Nevertheless I encourage those people who have computer accounts and like
to practise with symbolic manipulation (with MACSYMA or REDUCE, for example) to
prove the assertion made in [77] (the first one) in page 102, lines 23 to 27 directly at two
loopsT.

To conclude this section let us compute the four-particle amplitude of the D-dimensionalll

string theoies with maximal SUSY N = 4. Here the relevant correlator is

() 7(a=) [T b wlze - pla)e™ ), (0:29)

The summation over spin structures can be easily done to yield (k — 0)

S 00Qu{I ()T (z=) [T be - (z0)es (2 et XD
8 o (9.30)

z

= c’K(ky €)P(a) H 3:/(;;

X (Im + Ign + I(xyw)),

*  Nevertheless I don’t agree with their expilcit expression for the kinematic factors in three-particle

amplitude.

1 To be honest I'd like to tell you that some of the computations in this thesis were carried out by using

MACSYMA and REDUCE.
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<
6 3 6 4
1 1 1 1 1
= = = - (9.31)
1] 1 5.1 1 1 1
— 8
32{2(0,.;——:2:)2 2,§::_a¢—za1—a:+ Zb,—:cbj——:c}’
=1 <]
10-D [ 1 1 )
I p— _ —_
(yew) = =57 {;:::-Az a:-B,}
The amplitude is then
2 g2 12 _
Ap(k, ) =cK(k,e)/ d?a;d*?ayd?as | a45a56ae4 |2 /Hdzz}czk z
TP/ ]} ; a8 (2) (9.32)
Z@i[Qsls—D/ZID(z)s H_VL )s
where
In(z) 10—Di 1 D-{~626: 1 1 1}3 1 1
D(\Z)s = — —
64 < (ai—z)? 32 Sjei-gca—c 4i<jb,—:cbj—-:z:
Tes 1 < 1 1< 1 1 & 1
+Z§a,—x§b,—z g(;ai—z—zzb—z)gz-—m
D 1 8 10-D [ 1 1 )
+§ az——maallnT 64 {;m—A;‘x—B,}
(9.33)

It is an easy matter to check that the above amplitude does not depend on the arbitrary

chosen points ¢ and a4,5,6 and is finite.
All the above discussions can be extended to low dimensional type II string theo-
ries. Here we will only present an explicit formula for the four-particle amplitude in D-

dimensional type II string theory with maximal supersymmetry. The model is

E={F0,s F+s,35 F+3.---}
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The four-particle amplitude can be calculated to be

d%a;d%asd*as|assassasa]? H d*zi(z; — ’.r')(z1 =)
TP/? [Tic;lais]? v (z:) (9.34)

% Z Q4 |5 P/2 I p(r, 5) <H ik- x> _

AIlp(k,e) =¢'K /

where

L N 2 r 1 d*v(v —71)(T - 5) ’
Jp(r,3) —{ID( )sID(3)s + 3 (Ty(r)g(E)/ | ly(v)|? )

_ i(@X(rJr) L 8X (r=))8(5) - _1—(5X(g+) L BX(5-))S(r) (9.35)
™ d*v(v — r)(v — s) i 1
T I6T 2P (3)/ FOE R(r) - R(s) + 2565( r)S(s )}.
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10. Two-Loop Calculations — Four-Particle Fermionic Amplitude

In this setion we will calculate the 2 fermion—2 boson scattering amplitude at two loops
[17] by using the method developed in the previous sections and the covariant fermion
emission vertex [125, 126]. This computation is very technical. Nevertheless I think it
is worth presenting it here not only because one can do it with the help of Riemann
identity but also it points out many questions unanswered. For example, we don’t know
how to extend this calculation to 4F scattering amplitude. A more profound question is
how explicit modular invariance is implemented in the general case (at two loops). For an
arbitrary number of bosons, thel3scattering amplitude can be easily shown to be modular
invariant® [13]. But we don’t know how this can be extended to include an arbitrary
number of fermions. Because of spin fields in the covariant fermion emission vertex, we
can not separate the contribution of even spin structures from the contribution of odd
spin structures. Even for 2F-2B scattering amplitude, both even and odd spin structures
contribute, which is contrary to 4B scattering case where only even spin structures give a
contribution. So the foregoing proof [13] cann’t be applied to show the modular invariance
of the fermionic amplitudes. As we have seen in the previous sections and shall see in
the next section, modular invariance is a very useful argument.to show the vanishing
of the vacuum amplitude and also the nonrenormalization theorem. Nevertheless in the
calculation of the fermionic amplitude modular invariance seems violated, probably in a
modular covariant way because of the choice of a spin bundle over the Riemann surfacef.
In my opinion it is dangerous to argue in this way. One should prove that the final reult
does not depend on the particular spin structure chosen and is modular invariant. In this
section we will show that this is what happens at two loops. Previous computations at
one-loop level have been done by Atick and Sen in [127]. We will see that some of their
calculations can be adapted to two loops, and we will use their results without further
constantly referring to [127].

Before going into the details we’d like first to recapitulate what the strategy we have

used. In the covariant formalism [125] the vertex describing fermion emission involves

* . .
At least for summation over even spin structures.

T Remember that we are dealing with sipn fields here.
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spin fields of matter and superconformal (bosonic) ghost, and the calculation of fermionic
scattering amplitudes would necessarily require correlation functions of these fields (in par-
ticular, the spin fields). A priori, these are not so straightforward to compute. Nevertheless
we know these correlation functions because of the efforts of many people [111, 56, 128].
These correlation functions are written in terms of ©-functions and prime form. They can
be derived by using conformal field theory method [101, 111], or by bosonization [56, 116]
or other methods [128]. We will briefly review these results in section 2 and 3. In sec-
tion 2 we also present some two-loop computations by using the bosonization techniques.
The results are shown to agree with those of [12-16]. By using these correlation functions
one can readily compute the (nonvanishing) fermion scattering amplitude. The summation
over spin structures can be easily done by using the Riemann identity. Nonrenormaliza-
tion theorem [14] involving fermions can be easily proved. The result obtained for 2F-2B
scattering amplitude can be written in a modular invariant form. This is done in section 4.
We will see also there that the insertions of supercurrent is very important to ensure the
modular invariance. The calculation of the 4F amplitude is a more difﬁcult problem and
we have not successed doing that. It is certainly true that one must use some generalized

Riemann identities as those used in [127].

To start with let us first review some of the basic facts about the bosonic ghost system
and its spin fields. We start from the ansatz of ref.(129], formula (43), where the result of
the integration over supermoduli is proposed to be the correlation function of the appropri-
ate number of picture-changing operators Q¢ introduced in [125]. The partition function
is (right part only and for a specific choice of even spin structure s) (see eq.(10.6) for

bosonization prescription)

Ag = «é(mo)Qé(ml)Qé(xZ)»s) (101)

where {(--)), denotes functional integration over all (holomorphic) fields ¥, 3, v, b and ¢
and also X. The action of the BRST charge Q on ¢ is defined as follows [125]:

Q&(z) = c(z)d¢(z) +}§ & (—;-w L BX + %7%) (2)é(z). (10.2)

2 2T

99




By substituting (10.2) into (10.1), we have
~4A3 =(€(a0)é(e1)6(e2) § 70X § 7 -0%),

+ (o )e(21)8: £(21)¢(32) f 128, (10.3)

T2

T (E(20 )é(w1)c(22)B2(2) f 225,

In this paper we will compute only the first term—the contribution from the matter
part of the supercurrent. The remaining terms-the contributions from the ghosts part of
the supercurrent—could be fixed by BRST invariance, as we have checked in [15, 16]. Then

the correlation function for the bosonic ghost that we want is

F(y1,y2520,21,22) = ({(z0)é(z1)é(z2)7(y1)7(v2))s, (10.4)

and the correlation function involving two spin fields is

F(y1,y25 20, 21,225 23, 24) = {€(20)é(21)é(22 )7 (1 )7 (v2)S; (23) 5] (24)) s, (10.5)
where we have used the standard bosonization prescription:
| B~ aée—qs’ 8 St TI€+¢,

1
Sy ~e 3% Sg"' ~et3?,

(10.6)

From [5,7,17,18], we have
1 y(y)y(y2) { 1
4 Vulyr)u(yz) Lu(z1) —ules)
<u("31) +u(y)  u(z2) + U(yl)) (U(‘Bl) +ulyz)  u(za) +u(y2)

- ) (10.7)
L1 — U1 T2 — U1 T1 — Y2 T2 — Y2

+ (z1 — 2o, 2 — z1) + (T2 — T0, T3 — 32)},

F(yl,yz;mmml:wz) = -

and

1/2
F(y1,92520,21,2; 73, 28) = F(y1,¥2 20, 21,2) (B9, 23))/* ZEZ% {5&335&23}
O,(zo + 21 — 2A)0,(z1 + 22 — 2A)0,(z3 + zo — 24)
Os(—y1 + o + 21 + 72 — 2A)0,(—y2 + zo + 21 + T2 — 24)
Ou(=y1 +zo + @1 + 3 + 3(24 — 23) — 2A)0,(—y2 + To + 1 + T2 + 3(2a — 23) — 24)
Os(zo + 1 + %(24 —23) —2A)0,(z1 + 24 + %(24 —23) —2A)0,(z2 + zo + %(z4 - ?3) —8-)2A)'
10.
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To proceed further, we’d like to point out that the ansatz (10.1) works quite elegantly

for the calculation of the bosonic amplitudes as one can easily checked.

By using the explicit formula of F(y1,v2; z9,Z1,72), we have*

_AS _l y(:cl)y(z;z) T ) ) ) :E. .
<<1»a _4u($1)—u($2) ( 1) ( 2)<¢#( 1)¢V( 2)><8X ( 1)6X ( 2)>

L RN u(z1) + u(z2) '
2 {R< 22 )y (=)0 (m —wzxu(m-—u(m))) (10-10)

Foa(R(ama )y (22000 (s (a2

u(zy) — u(z:

where we have defined R(z;z2) as follows [24]:

3

R(z,y) = (b(z)c(y) [ [(m: * b)), (10.11)

=1

where 7; are Beltrami differentials which can be taken as §-functions.

To compare with the computations done in previous sections, we also make the conve-

nient choice of taking z; » to be the zeros of a holomorphic abelian differential Q(z) = 575,
i.e. z; 5 = z+, the two corresponding points in the upper and lower Riemann sheet. Then

2 (o 22emy) = 3
- é‘; (z—lAi N :z:-—lBi>

= (b)),

o (bl - (S (32 )
- —% ; ((w —]LA,-)2 (= _131.)2)

= (09 (z+)p(z—))s,

we have

92 lnu(zs)

e R

(10.12)

* Notice that the explicit dependence on g drops here due to theintegration over Y3 and Yy around

z1 and Ty respectively.
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and it follows:

A0/, =5 (@) (o) - Y(e-)) (0K (o) - X (2-))

- ‘é‘ {8(R(z221)y" (z2)) + 8. (R(z122)y*(21))} ($(2+)d(2—))s  (10.13)

_ .}iyz(m)(R(mzm + R(z122)(0%(z+ ) (z—)) s,

which is identical with the expression (6.9) after substituting the various factors. The
inclusion of the bosonic vertex operators is straightforward. So we see complete argeement
between this ansatz and the one we used previously. However this ansatz is more suitable
for the calculation of the fermion emission amplitude.

If we also make the choice of z1,; = z+ in (10.8) we have then
Ao = 2{é(e0)é(m:)6(ma) § 190X § - XS (20)8] (ea)
_ ¥’ () o(z3) { E(z+,23)E(z—, 23) }1/2 (10.14)
O,(3(23 — 24)) o(2a) | E(z+,24) E(z—, 24)

(b(z+) - 0X (a+)p(z—) - X (z=) -~ +)ss
where - - - denotes fields other than bosonic ghost fields or its spin fields. This formula will

be used later in the calculation of the 2F-2B scattering amplitude in closed superstring

theories.

We will not repeat the procedure to arrive at the following expression for the correlation

function in SO(2) spin model} [111, 127]
Ny Ny N3 " N _
Fy(ysziyus,vi) = (] ST ws) [ $™ () [[#(a) [ 20D
i=1 i=1 i=1 i=1

Hi<j E(yi,yj)1/4 Hi<j E(z, zj)1/4 Hi,j E(yi,uj)1/2 Hi,j E(Ziyvj)l/z
Hi,j E(yi, zj)t/* Hi,j E(yi,vj)t/? Hi,j E(zi,u;)/?
» Hi<j E(u;,uj) Hi<j E(vi,v;)

1
O | (> yi— D) z)+ ) uwi—) vil,
oo R (ORSD MRS SR>
(10.15)
where ST(y) and S~(z) are SO(2) spin fields with fermionic charge +1/2 and —1/2 re-
spectively. They have conformal dimension 1/8. %(u) and 9 (v) are SO(2) complex fermion

=K,-

fields and have conformal dimension 1/2. The conservation of fermionic charge requires

that (Ny — N;) + N3 — Ny = 0. Notice that since the argument of ©, contains* 3y; and

T We will write ( . ) instead of « . » in the sequel to simplify TEX typing.
* It is understood that we use the symbol Y; to denote its value under the Jacobi mapping: fy' w.
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%z,’, it changes to a ©-function with a different spin structure as we translate y; or z; by n
and 7-m on the Jacobi variety where T is the period matrix, so F is not well defined on the
Riemann surface. As have been seen in [111] correlation functions of the physical vertex
operators in string theories involve appropriate powers of the correlation functions of the
spin fields given above and of the bosonic ghost, which make them well defined after sum-
ming over spin structures. The relative phases and normalization of the contributions from
different spin structures are fixed as in [15,16], which we will not repeat. Here one should
choose a reference spin structure. Nevertheless we will show later that the depéndence on
a reference spin structure will drop and we do get a modular invariant result.

The spin operators appearing in the covariant fermion emission vertex is §O(10) spin

operators. This can be written as a product of five SO(2) spin operators (S7, S7), 1 =
1,2,---,5:

SESESESESE (10.16)

by combining the right-moving Majorana-Weyl fermions ¥#(z) in the NSR formulation of
the superstrings into five complex fermions. There are 32 such operators which go into
two sets according to their chiralities. We adopt the same convention as Atick and Sen
did in [15,16]. Then the correlation functions of the SO(10) spin operators will simply be
products of the correlation functions of the SO(2) spin fields which we have quoted the
right formula, eq.(10.15). Now we begin to calculate the 2F-2B scattering amplitude.

We will use the covariant fermion emission vertices constructed by Friedan, Martinec
and Shenker [125], and by Knizhnik [126]. Let us briefly review their construction. The

basic fermion emission vertex is given by
Voi2(u, b, 2) = u(k)Sa(2)S; (2)e* ¥, (10.17)

which carries a ghost charge of —1/2. Here u® is a Majorana spinor characterizing the po-
larization of the external state. So(z) and S;(z) are the SO(10) and the ghost spin fields
which have conformal weight 5/8 and 3/8 respectively. So V_;/, has conformal weight 1
(k* = 0). Because V_y,, carries a ghost charge of —1/2 the correlation function involv-
ing several V_;,;’s on the Riemann surface vanishes identically due to the ghost charge

conservation. The solution to this problem given in [125] is to introduce another fermion
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emission vertex
Viapa(u,k, 2) = w(k)S] (2) lim (w — 2)/ ($(w) - 0X (w)Sa(2)e* D), (1018)

which carries a ghost charge of +1/2. Here S;” is the ghost spin fields carrying ghost charge
+1/2 and having conformal weight —5/8. By using the operator product expansions of ¥,
S, and X, and the on-shell condition = - ku = 0, we have

V+1/2(’LL, k, Z) :ua(k)Sj(z)eik'x(z)

10.19
((1)as S5 (20X (2) = ik (Jim (w0 — )7 29, (w)Sa(2)) - S

The prescription for calculating an amplitude with (2r) external fermions, as given
in [125] is to use the vertex V_;/; for n of the fermions, and the V,/, for the other n.
Then the total charge adds up to zero and we expect a nonzero answer. In this paper, we
will compute the 2F-2B scattering amplitude in closed superstrings. The boson emission

vertex (carrying zero ghost charge) is given by
Vole,k,z) = (8(e - X) + ik -pe - ) %, (10.20)

Certainly all the above various vertex operators serve only half (right part) of a com-
plete vertex operator. For different theories and different particles, one should supplement
the other part in order to get the complete amplitude. However this is quite easy because
the left part and the right part decouple completely from each other for the spin structure

dependent factors. So we will only consider the right part in the sequel.

The relevant correlation function for the calculation of 2-fermion and 2-boson scattering

amplitude is

A = (£(20)QE(21)QE(z2) Vo€, ka1, 21) Valez, k2, 22) Vo2 (us, ks, 23) Vi ja(ua, ke, 24)) s
(10.21)
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By taking z;, = z+ and using (10.17)-(10.20), (10.22) and (10.14), we havef

4 —F(z3,24)"/* v’ (z) o(z3) [ E(z+,z3)E(z—, 23) 12
A =E(z3,24) @s(%(z:; — z4)) o(z4) (E(z*i*,z‘;)E(a:—-,z%))

((B(e1 - X(21)) +1ky - p(z1)er - ¥(21)) (O(e2 - X(22)) + ika - P(22)e2 - 1h(22))

ug S5(zs Jug ((w)agsﬂ(z:;)aX“(n) — ikg( im (w — zé)‘l/zsz(w)Sa(zé)) (10.22)

P(z+) - OX (z+)b(z—) - 0X (z—) [[ ™ **), + (other terms)

1=1

=AT + (other terms).

where (other terms) denotes the contributions from the ghost part of the supercurrent
which we will not calculate explicitly. They could be fixed by BRST invariance as has
been checked in [15, 16]. It is not difficult to see that A7 can be written as a sum of
eight different terms. For each of them, we can use eq.(10.15) to calculate the correlation
functions involving the spin operators S, and the fermion fields ¥, and then sum over the
spin structures. Because of the nonrenormalization theorem [48, 14]*, most of the terms
give a zero contribution to the amplitude after summing over spin structures. In fact the
only term contribute to the amplitude is the term involving maximal number (7 for 2F-
2B scattering) of 1 fields. All the rest terms give zero contributions. Let us see the term

involving six ¢ fields (for spin structure dependent factors only):

_ 1 (g “(z2) 1 h* (29 " (21)
A“"_'@s(%(z$~z4))<¢ (19" aa) 1 95 ()% ) (10.23)

PP (20977 (22)5a(23) 5P (28) 1)

The strategy to show that A, also gives zero contribution to the amplitude after sum-
ming over spin structures is as follows. First we write down the general expression for A,
according to the tensor structures of SO(10). It is easy to see that A, has 76 independent
tensor structures. Then one can calculate the coefficients by a specific choice of the config-

uration of (pvpivipsveeB). And finally all the coefficients can be easily shown to vanish

7 Some trivial overall constants may have been omitted.

*  We mention that the nonrenormalization theorem has also been discussed in ref.[130].
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by making use of the Riemann identity (eq.(3.13) for g = 2):

. + taoy sort -
§e4wz<a.b0~b.ao>@ [:+ :: [=)0 [:+ :: Jwe [:+ :: Jwe [:+ :: @)

=407 (%(3+y+u+v)> Or (%(z—%—y—u——v)) (10.24)

or (}é(m——y-i-u—v)) Or (%(x—y——u-w)),

Or (%(zl - zz)) —0r (/P w) ~ 0, (10.25)

ao . . . .
where T = [ ] is an odd spin structure and Py is the corresponding Weierstrass point
0

or branch point{ (or the zero point (other than z;) of the function f(z) = ®T(f:1 w)

and

defined on the Riemann surface). Here we have chosen a reference spin structure 7' (FPp is
the corresponding Weierstrass point) and the integration contours from z; to z; such that
z1—FPy = —(z2 — F). Now let us show some details of this calculation. The 76 independent
tensor structures can be written as follows

Ay =+ ag(y?Hrriren) f

[21

+ @y §* (y#r71#171) Bt (14 more terms)

(10.26)
+ a166#Y #2171 (y#2¥2) P 1 (44 more terms)
+ agy 6PV 8#1¥1§#2¥26 P 1 (14 more terms),
where y#¥"" = ~v#~¥.... From (10.26) we see that some of the coeflivcients, like a;6 and

ag1, can be consistently set to zero because of the physical conditions. Now we prove that
all these coefficients are zero.
By choosing p=1,v=1,u1 =2, 1 =3, g2 =2, =3anda=08=(————— )s
one sees that there is only one term in A,:
Ay =a;6*verigravag B (61 <4 < T5)
= oI~y ¥ P e @ )P ) (=)
57 (23)85 () S5 (22) S (25) 55 (22)S7 (24)S7 (24)S5 (24) S5 (24) S5 (24))

1 1 1
~0.(5(zs = 24))04(5 (28 — 24) + z-22)07(5 (2 — 24) + 21 — 22),

(10.27)

T Remenber that an odd spin structure is corresponded to the partition of the six branch points into

two sets: {Al} and {A2A3A4A5A6} in the hyperelliptic language, see [71].
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which is zero after summation over spin structures®. Thus we have a; = 0 forz = 61,---,75
(the rest can be proved similarly by appropriately choosing the indexes p, v, etc.). Similarly
by choosing p = 1, v =1, pg = 2,11 = 3, 2 = 2, v, = 4, & = (— —+ — —) and
B =(———+ —), we have

A, =a; 877 §Hvi(yH2v2) B (16 < i < 60)
1 1:8 _113 2Zl 321_222‘4,22
S (23)S5 (23)S5 (23)S¢ (23) 55 (23)S7 (24) S5 (24)S5 (24) S5 (24)5 (24))s  (10.28)

1 1
~®,(§(z3 - Zé) +z1 — 332)93(5(23 - Z4) +z; — Zz)

1 1
X @s(—'z'(zs — 24) + 21)63(5(23 — z4) — 22),

which is also zero after summation over spin structures. We have then a; = 0 for 1 =
16,--+,60. Setting p=1,v =1, p1 =2,y =3, po =2, s =3 anda=F=(—++——)

&

we get

As =a15#1/(7#1 vipav2 )aﬁ

: Yz )0 ()97 (21 )9% (21)0° (22)9° (22
= STl =y (P P e ) (B () )

S (23)85 (23)S5 (23)S5 (23) S5 (23) 57 (24) 57 (24) S5 (24) S5 (24) S5 (22))s  (10.29)
NGs(%(zs — z4) + 1 — 332)93(‘12‘(23 —z4) + 21 — 22)

1 1
X 63('—'2—(733 - Zq,) + z1 — Z2)®3(5(23 _— Z4)>,

which is again zero after summation over spin structures. We get a; = 0 and like wise

a; = 0,7 =2,---,15. The proof of ag = 0 is achieved by choosing p = 1, v = 1, p1 = 2,

* The strategy for the choice of a specific choice of the configuration of (;l,l/,u,l V12 Vgaﬁ) is that we
should have at least a factor @,(-12-(2:3 — 24)) coming from the remaining correlators (so we can use
Riemann identity) and there is only one term contributing to Ay. By using the Riemann identity one has

always a multiplicative factor @a(%(ml — T3 )) which is zero by eq.(10.25). Similar remark holds for what

follows.
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v =3 p=2,r,=3anda=8=(+++—-):

As _:ao(,.y#l'ullﬁmvz)aﬁ
! Yz )b (z2)97 (2093 (21)02 (22)°% (2,
6.0 _z4))‘('¢ (21)9" (22)9" (209" (22 )9 (22)9° (22)

87 (23)S5 (23)S5 (23) 87 (23) S5 (23) ST (24) S5 (24) S5 (24) S5 (24) S5 (24))s
Nes(%(zli —z4) + 1 — wz)@f(‘;‘(zs —z4) + 2y — 32)93(%(23 — z4)),

(10.30)

which is zero after summation over spin structures and so ag = 0. That completes the proof
of the nonrenormalization theorem for fermionic amplitudes at two loops. It is amusing to

note that what we have proved is (K, are some phases)
> KA, =0, (10.31)

for generic configuration of (pvuivipsveofl). By taking (pvpivipers) = (112345) and
appropriately adjusting (a3), we could get

Z X, Os(3 (23 + 24) — 21)20,(3 (25 + 24) — 32)_268(%(28 — z4) + 21 — T2) =0, (10.32)

O,(3(2s — 24))

which is an identity beyond the Riemann identity, eq.(10.24). It is also possible that one
can get some generalized Riemann identities as those used in [15], but their role in the
calculation of the 4F amplitude has not been sorted out.

In summary, the only contribution to the amplitude is

o oa V(@) o(z) (E(et,2)E(e—z)\ "
As E( 3 4) @3(%(23 ‘—Z4)) 0’(24) (E(93+,24)E(m—,z4)>

w—rzg4

kitky® el e kyug® (ks )ug(ke) lim {(w - z4)“1/2<ax(m+) ,BX(Q,_)H eik-x>

(Y(2+) - B(2=)u, (21)80 (22)P 05 (22)902 (22)P0(w) Sa (23) Sy (24)) s }

(10.33)
Following Atick and Sen [127], a simple group theoretic analysis shows that AT* has
26 independent tensor structures. (This is the number of independent singlets in the 10 ®

10®10®10®10® 16 ® 16 representation of SO(10)). We write down the general expansion
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for the correlator as

=((z+) - P(z=)Pp" (21)9" (22)9"2 (22 )97 (22 )9 (W) S5 (23) Sra (20)) 5

2. 24 )1/4 y*(z) o(z3) [ E(z+,z3)E(z—, z3) 1/2
X E(z3,24) @(%(Zz — z4)) o(24) (E($+,Z4)E(m—,z4)>

:A(s#lfﬂ 5#2 V2 (7“)&30:4 + B5M1V1 5#2#(,.),1’2 )aaou‘ + G5#1V1 5#1'2 (7”2)a3a4

+ DEFEGEYE (Y g0, + BEH P (1 Jagay + FE#H2 8717 (7 ) asa,

+ GRS (P )y + H(YHY Y )i 64272 + I(7#951 7 oy 67272
T IV ) aiea 8 + K(7 17 )asas 672 + L1777 )asaa 67
T MY e 644 + O(Y* Y77 )asay

+ N#arrghee (7“1)‘13(14 + pgwb’xcguw(,),m)aaaé + QorrrgTre (7“2 )oescu

+ REFT2E (4F ) aya, + 56K (Y 7 Jagay + TEHH2 M2 (77 ) ez

+ U2 (472 )agay + VEHE* 2 (17 )azas + W (Y1727 oty 671

F X (VY a6 + Y (1977 Jarsers 08+ Z(rH 7P )i 687
(10.34)

The tensor structure have been chosen in such a way that the contribution from the tensors
multiplying 4 to O vanish by on-shell constraints when substituted in eq.(10.33). Hence
we only need to calculate the coefficients from N to Z. The calculation simplifies by noting
that the result must be symmetric under the simultaneous exchange pu; + p2, v1 < vz,
z1 + z3. Symmetry under this exchange gives

W(z1,22) =Y (22,21), R(z1,2z2) = N(22,21), P(z1,22) = Q(2z2,21)

X(z1,22) = Z(22,21), S(z1,22) = V(22,21), T(z1,22) = U(z2,21)
This has the advantage of cutting down the number of terms that we need to calculate by
half. '

(10.35)

Let us now set p; =3, v1 =1, up = 1, v, =2, p =2, a3 = (—— — —+) and
oy = (++ — + —). The only term in (10.34) that contributes for this configuration is N.
It is

=1(23,24 1/4 yz(x) O'(z3) E(m+,Z3)E(:c—,z3) ,1/2
S OWG Yompmpy  per (E<m+,zaE<z——,u>>

- .36
)P () () Z (er)iiem) — W em)Fee)

87 (23)85 (23)85 (23)S7 (23)55 (23 5+(24)5+(Z4)5 (24)S7 (24)S5 (24))s-
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Next consider the configuration iy = 3,01 =1, ps = L,ve =2, p=2,a3 = (+————)
and ay = (— + — + +). From (10.34) we see that this contribution is given by —N — X.
On the other hand the application of the Riemann ©-identity shows that this correlator
vanishes (apart from a prefactor E(zs,w)!/? which is needed to cancel the divergence factor

(w — 24)"/2 in (10.34)) in the limit w — z4. Thus we conclude that
N ~-X, ' (10.37)

where ~ denotes equality up to the desired accuracy. Evaluation of the correlator with

pr=1l11=3 =2, =1, u=2,a3 =(———+—) and ag = (++ — — +) gives

S ~0, (10.38)
and with p1 =2, 1 =3, us =2, o =L, p=1l,a3=(++—+—)and s = (— — — — +)
gives

T ~ 0. (10.39)
Finally setting p; = 3,01 =1, s =2, =1, p=2,03 = (————+)and oy = (++—+—)
gives

- 23, 2. 1/4 2(2:) U(Z3) E($+)Z3)E(z_7z3) 1/2
P E( ” 4) (%(23 "24)) (2,'4) (E(m+7zé)E($—,24>>

(% (21 )" (228 (22 )" (22 )9 w>Z He+)bi(z—) — v (z—)P'(z+))  (10.40)

S1 (23)85 (23)S5 (23) 5 (23) 55 (zs)5?(24)5;(24)55(24)5f(24)5§(24)>a
=—N, '

andps =3, 11 =1, =2, =1, p=2, 03 =(+————) and ag = (— + — + +) gives
P=-W (10.41)

Here we have determined the phase n introduced in [9]. So what we need to calculate is IV

only and all the others can be obtained by the above relations and by using eq.(10.35).
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By using eq.(10.15), we have

e ¥ (z) o(z3)
N E( s 4) E(zl,ZQ)E(z37z4)E(z2,zé)E(Z1,Zé)U'(Zé)

1 (E(wl,zaE(zz,m 12 (E(z+,z3>E<z—,z3>>”2
E(z1,z2) \ E(z1,24)E(z2,23) E(z+,24)E(z—, 24)

1 1
K3®s('2"(z3 —2z4)+ 21 — 22)93(‘2'(23 — z4) + 23 — 24)

(10.42)

1 1
83(5(33 + z4) — 21)93('2-(13 —z4) + z1 — T2),

where we write only one term. All the remaining nine terms give identical results as can
be easily seen from what follows. With the help of Riemann ©-identity (10.24), one can

do the summation over spin structures and gets

=E(w, z4)/? v'(z) 7{z)
N E( y 4) E(zl,zz)E(z3az4)E(z ,Z4)E(Zlaz4) 0(24)

e () GEsre)

(10.43)

1 1
X 4@1"(21 — 23 + 5(:1:1 — mg))@T(Zl — Z4 — ‘2‘(.’31 — (I}g))

1 1
@T(Z4 — Zg — —2—(2}1 — 332))@'1‘(23 -— Z4 + '2‘(231 - 1132))

The next problem is to write @ (z; — 22 + %(:cl — z3)) in hyperelliptic language. This
can be done also with the help of Riemann ©-identity. We have

1 1
OF(z1 — 22 + 5(21 —22)) = > 105(0)0,(2(z1 — 22) + 71 — 2)

10.44
PN ERA RS (1044
- 773 8 @3(0) )
where we have used the Thomae formula [20] (see also eq.(3.41)):
3
©%(0) = £ det K [[(4: — 4;)(Bi — B;) = +4e- Q,, (10.45)

1<j

where Q, is defined as in [1] for even spin structures. Notice that the constant ¢ depends
on the homology basis chosen. Therefore it is not invariant under modular transformation

eventhough it is spin structure independent. Notice that in eq.(10.44) the dependence on
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the reference spin structure drops (see eq.(10.48) below). This seem a little bit puzzling.
The point is that on the left hand side of eq.(10.44) the choice for the integration contour
from z, to z, also depends on the spin structure 7. The dependence on 7' then drops due

to these two factors.

By using the generalized Fay triscecant identity, eq.(3.29)

0, (N u — 20, ) iy B(uiui)E(vi, v5)

=(—1)™""D/2 det (b (ui)P(v;)) s,

0,(0) 15 E(ui,vj)
(10.46)
we have
@3(2(21 —2z3)+ T — z3) (E(zl,fl’l)E(ZZ:xZ))z
0,(0) (E(z1,22)E(22,21))2 E(21,22)* E(21, 22)

Pz )p(z2)ys  (b(z1)b(22))s  (P(z1)0d(22))s (10.47)
=—| Wz )¥(z2))s  (b(z1)¥(22))s  (P(21)0%(22))s |-
(O (z1)p(z2))s  (Ob(21)%(22))s  (O%(21)0%(22))s

By substituting (10.47) into (10.44) we get

1 (BE(z1,21)E(22,22))'/* 1
Or(z zz+2($1 —-932))(E(zl,m2>E(z%$1))1/2E(Zl,Z2)E(w1,a:2)1/4 e

Bz )b(z2))s  (B(21)b(22))s  ($(21)8%(22))s t)”‘*

(W(z1)b(z2))s  (¥(21)P(22))s  (¥(21)0%(22))s
(09(z1)¥(22))s  (O(21)¥(22))s  (99(21)0%(22))s

3

- (Z 75Qs

(10.48)
which can be a modular invariant expression if we choose the phases 7, as those used in
[12-16] and in sections 6 and 7. At this point it is quite clear that the insertions of the
supercurrent is very crucial to obtain a modular invariant expression. It is not clear how
this can be recognized from the very begining of the calculation. The modular invariance
of the fermionic amplitude (at two loops) is still an open problem.

The calculation of the modular invariant expression, eq.(10.48), is a little bit difﬁcﬁlt,
but nevertheless it can be carried out. We will sketch the main steps of the calculation

here.

On genus 2 hyperelliptic Riemann surface we have (eq.(3.60))

1 u(z) + u(w)

z —w 2, /u(z)u(w)’
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where the function u(z) is defined by eq.(2.9). Then we have

1 u(z) + u(w) 1 u(z) —u(w) E@lnu(z)

oyl | o w eyl 20
2 u(z)+ u(w)
(z —w)? 24 /u(z)u(w)
1 u(z) — u(w)
TGP 2 AR()
1 u(z)+u(w) 1

e w2 /u(zu(w) 2

B = -

(09(2)0¢(w)) =~

(10.50)

: (%amu(z) + %Blnu(w))

—0lnu(z) - %alnu(w).

In order to do the summation over spin structures, we write eq.(10.60) as follows:

(Y(z1)b(z2))s  (P(z1)d(22))s  (¥(21)0%(22))s

(Y(z)d(z2))s  (P(z)¥(22))s  (b(21)0%(22))s
(0v(z1)p(z2))e  (O(21)¥(22))s  (8%(21)0%(22))s
= ®T1 -4 @Tg -+ @Tg,

0T =% 7,Q,| (

8

(10.51)

by expanding the determinant with the first column. It is not quite easy to see that

(B(z1)d(22))s  (¥(21)0%(22))s

OF: = = 3 mQulb @) | oy () (09()00(za))s |~ (105
and
B pb(e))e (B(o)00(e))s | _
OT; = Zns 87/) ~1)¢($2)> <T/)(21)1/)(Zz)>s <¢(z1)a¢'(22)>3 =0, (10.53)

but they are true. The reason why these two expressions are vanishing is very simple:
they do not have the right pole structure as ;—2—%—5 as a function of z. One can also prove

©T; = ©T3 = 0 by explicit computation. Let us see, for example ©T3;. We have (omitting
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some spin structure independent factors)

u(z1) — u(z)
®T3 ~ 33
Z" “ (\/u(zl)u

u(zl)+u(z)3lnu 1 )
+ \/u z1 )u(z) (=1)

u(z2)+u(z) u(zz)+U(z) + u(zs)—u(z) o1
x(/u(sz(z% ﬁm?(z)) «/(u<;z>u(<=>) nu(z2)
w(z1)+u(z2 w(zy)+u(z2 u(zy)—u(z2 81
V(e u(z) ﬁ(zl)u(zz)<+) Cz;)u(ni )n u(("';z)
uw(zz)+u(z u(za)+u(z
u(z1) —u(2) | VaGu(z)  Vulz)u(e)
~ + Z SQS ~1)u(m) u(zl)-{-u(Zg) u(zl)—{—u(zg)
Vaulz)u(za)  /u(z1)u(z2)
(=) (2) j\:./(ig)—!—u(:c) :L/(Zg)—u(z) (10.54)
ulzy) —ulz w(z2)u(z) u(zz)u(z)
+ Z "Q"W u(z1)+u(z2)  u(z1)—u(z2) Olnu(z2)
Vau(z)u(zz)  /ulz)u(za)
( ) ( ) u(z2)+u(z) :L/(zz)-%-u(::)
ulz1)+u \/u(z Yu(z) u(zz)u(z) _
" Z T ) Mz iu(s)  al)tetsm) |O0u(21)
Vau(z)u(z)  y/u(z)u(z)
)+ ( ) :,/(zz)—i-u(::) :L/(z;)—u(z:)
(z1 Uz u(z2)u(=) u(z2)u(z) .
+ Z nstW u(z1)+u(zz) w(zy)—u(z;) Oln ’lL(Zl)ahl u(pz).
Vau(z)u(za)  u(z1)u(z2)

The first term in(10.54) can be easily seen to vanish by using of the Lianzi identities
(eq.(5.39)). The vanishing of the second and the third terms leads to

ZnsQaalnu(z) =
(10.55)
u(z) _wz2) g1 00,0 =
Z SQS( (Zz) u(z1)>al ( 3) 01

3

which are in fact Lianzi identities. They are obtained from (5.30) just by a Mobius trans-

formation. The vanishing of the last term in (10.54) requires that

8

- (3 -

u(z1)

u(2) ) Olnu(z;)dnu(zs) = 0.

(10.56)

This identity can be proved as follows. By M&bius transformation it is enough to prove
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taht (10.56) is true for z; = co. We have (21 = 00)

LHS of (10.56) ~ Zm@s (H (z — 4s) - fI(w - Bi))

* - (~2-1—A z2-1~Bi> Z<Ai_3i)
- : T 3 (10.57)
NznsQJ (H(m—Ai)—H(m—B)> Z(A - B;)

3

x}: H(zz—Bj)H(zz—Aj)—(AHB) = OT;.

j=1 JF#i

By power counting the last expression (073) is a homogeneous polynominal of degree 15

and therefore it is just a multiple of P(a) = []° . We can set z and z; to zero to

1.<]
calculate this expression. We have then
3 3 3 o
OT; ~ > 1. Qu(J] 4 - [[ B: > (4i - B)Z HB HA (A~ B)|. (10.58)
3 i=1 =1 =1 =1 7=1 iF1

By explicitly calculating one term, ajajadaias for example, one can show that it is zero*.

That completes our proof of eq.(10.56) and therefore eq.(10.53). Similarly one can prove
q.(10.52). :

* Keeping only the term ai a‘% ag aias we have (first keeping the terms containing a,i and no ag)

QTsl ~+ a%(az ~az)P aq&sas)ala"ag —alazag(a4a5))a1
- G%(Gz —ay)P asasas)alaz% a1azas(asa ))al

-+ af(ag - CL5) Q3d40¢ )A14205 aydzas a3a4))a1

( (

( (=

( as(—a1a205(

+a}(as — as)P(azasas)arasas(—asazas(asas))a;

— a}(as — as)P(asasas)as asas(—a1asas(a2as))ay
( as(~a1a4as(azas))

+ a?(as — as)P(azazag)ayasas(—ajaqas azas))as,

whee P(aiajak) = (ai — aj)(ai - CLk)(CLj — ak). The various terms vanish because they either give

a,§ or dg as indicated above.
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By using of egs.(10.52) and (10.53) we get

($(z1)d(22))s  ($(21)0%(22))s
(0% (z1)(22))s  (0%(21)8¢(22))s

1 1 1 1
T 16(z1 — 22)? ;773@3; (:c—A~ a :c—Bi>

1 (u(z) + u(z2))?
8 {<z1 —z2>2 u(z1)ul(zs)

- 64(::1 — 2 Z”’Q Z(

0T = 0T = Zm Yb(z2))s

+0lnu(z) - 5111“(732)}

2 3
1 1 1
i—m—Bi>j__I:[1;(Zj—Ai _zj——B,)'
(10.59)

The calculation of the last factor is simplified by modular invariance and projective in-

variance considerations. First it is modular invariant and therefore should be proportional
to P(a) = H?q(ai —aj) = qu aij. Second, it should have a factor y*(z)y®(z1)y*(22) =
[I5_;(z — a;)(21 — a;)(22 — a;) in the denominator. And finally by taking into account of
the projective transformation properties of ©T and power counting, the rest factor can

only be proportional to (z — z1)%(z — z2)?(z1 — z;)?. By assembling all these together we

have
- 2 - Z2 ZP((L)
or = o B2 (= 2) 10.60
(e (0 (2) o0
where ¢’ is a constant: ¢’ = -ilg.
By substituting (10.60) and (10.48) into (10.53), we get
N =G’ P()B(zs,wy/ LW 2o — 2y s _ o)
) y(21)y(22)v/y(23) /¥ (21)
_ 1/2
o(z3) (E(a;+,Z3)E(:z: ,z3)> (10.61)
o(zs) \E(z+,24)E(z—, 24)
4
=C'P(a)E(z4,w H f—i——-_—m,
( ) ( 4 ) E y(zi)
by using of the following expression for o(z):
1 z—2z 1/2
o(z) = 5 <E(m+,z)E(:c— z)> x (factors independent of z). (10.62)

One sees that the above expression for o(z) has the main properties expected: one differ-

ential in z, no poles and zeros, but we don’t have a proof of this relation at the moment.
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By using of (10.36)-(10.41) and (10.35), one can calculate all the coefficients from N

to Z appearing in (10.34). We get

N=+4R=-X=-Z=-P

4
= -—Q =+W=+Y = C’P(CL)\/Z4 —’UJH Zi —’m,
I'=585=U=V=0,
with this (10.35) reduces to
O' /34 —w [(,},#171/1,7,#2 )a4a35#y2 + (7#27112,.),#1)0‘4&35#1/1

zZ; — T
7

(1Y) anaa 8 = (7729727 )asas 6] [ | (=)

1=1

and the final amplitude takes the form (see [13, 15, 16]):

6 2. 4 d2z:(z: — _
7,=51 d (lz/d-vvpr Z‘L(Zz (Z:) X F(21>22)53’24)
Tollicjoi i (=)

{(BX(:c—i-) -0X(z—) H e*' %) & (ghost contributioné)} ,

Asr 2B ZC'KZF—-ZB/ 11

where
T _/ (21 — 2z2)dz1dzy 2
y(z1)y(2z2)
av,, = Ludeid e
laijajrar:|
and

Kop_2p =2ks - kyuger - y(k1 + kg) - yea - yus
+ 2ky - kauses - y(ky + ks) - yer - yus,

(10.63)

(10.64)

(10.65)

(10.66)

(10.67)

is the standard kinematic factor for 2F-2B scattering (1, 2]. Here F' is the contribution to

the amplitude from the left (anti-analytic) part. It is seen from the above result that the

only difference between 2F-2B scattering and 4B scattering (for matter supercurent part)

is the kinematic factor. So we have

(0X(z+)-0X(z—) H e'* %) 1 (ghost contributions) = —4I(z), when & — 0, (10.68)

where I(z) is the same quantity which is defined in section 6, eq.(6.18) appearing in two-

loop computations. This could also be derived by imposing of BRST invariance. This

concludes our calculation of the 2F-2B scattering amplitude in closed superstrings.
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11. Multi-Loop Calculation

So much about two loops. How about multi-loops? Does the vacuum amplitues vanish?
. Everybody answers: Yes, it does. Some people even offer one or two proofs for arbitrary
loops. Nevertheless all of them are erroneous, partially because of our ignorance of the
supermoduli. By choosing the super-Beltrami differentials located at moduli independent

points z4: Xo = §(z — o), the vacuum amplitude can be written as

Zg :/M (H d i Z?]a det(?g) sdetag(det 61/2) (det 83/2) -1

o () ($29—2)>s

det p%(zy)

(11.1)

x (left sector),

where (J(z1)---), is defined as before in (5.8) (with more insertions of §(3(z.)) and b(b;)).
The chiral determinats appearing in (11.1) can be explicitly computed by using the ©-
constants. Roughly speaking the spin structure dependent determinants are [131, 98, 116]

det, By 5 ~ det ;3 = (det Bo)720,(0]7). (11.2)
By using these results we get
(det 50)_5 det 52(det351/2)5(det553/2)—1 ~ @t(OlT). (113)

So the spin structure dependent factor is just ©%(0). If there were no insertions of super-

curent, we would get

JLid*mi d*m; .
(left t 11.4
Zy ~ detImT)5 E BON( eft sector). (11.4)

With appropriate choice of the phases 15, we have
> n,0%(0) =0, (11.5)

by using the Riemann @-identity, eq.(3.13). Then the vacuum amplitude vanishes. However
there are a number of questions arising by using this ansatz. First modular invariance plays

no roles here. In fact the Riemann O-identity (11.5) is not modular invariant. It depends
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on a reference odd spin structure. One way to overcome this difficult is to argue that
modular invariance was broken and could be restored by a resummation over all the odd
spin structures [106]. In my opinion this is too naive to be true. Second the Riemannn
©-identity does not have the right factorization property. This was pointed out by Moore
and Morozov in [106] at two loops. As shown in [13] if the contribution of the supercurrent
is included, the vacuum amplitude does have the right factorization limit. That shows
supercurrent insertions in the vacuum amplitude (which is induced by integration over

supermoduli) must play a crucial role to ensure modular invariance and factorization.

Another approach [82, 83, 84, 106] to prove the vanishing of the vacuum amplitude at
low genus (g < 5) is to explicitly calculate the supercurent correlator (J(z1)- -+ J(2g-2))
by an appropriate choice of the insertion points z, (e =1,---,29 —2). A natural choice of
these points seems to be the zeroes of an abelian differential, which leads to a pointwise
vanishing of the vacuum amplitude and n-particle amplitudes (n < 3) in the moduli space,
see previous sections and [14]. At two loops, by using hyperelliptic representation of genus
g = 2 Riemann surface one sees that the requirement of modular invariance completely
determines the phases in the summation over spin structures. The proper interpretation of
these results in the ©-function language leads to the concept of modular covariance. That
is, one introduces an arbitrary reference spin structure at the intermediate steps. The final
result does not depend on this spin structure and is modular invariant. They [84] further
extend these results to multi-loops, claiming the vanishing of the vacuum amplitudes up to
g < 5 and also part of the nonrenomalization theorem. Apart from some technical points
which I don’t understand fully, I agree with their computations but I would like to make
some comments about these calculations [84]. First from our experience at one and two
loops modular invariance was used as a principle to determine the phases in the summation
over spin structures. Modular invarianc is also important in the proof of the vanishing of
the vacuum amplitude. In the calculation of the non-vanishing amplitudes modular invari-
ance also plays’an important role as one can see from sections 6 and 10 in the calculation of
the four-particle (bosonic and fermionic) amplitudes. The problem is that how the modular
invariance of the final result is guaranteed. Probably this is not important for the vanish-
ing amplitudes, but may be fatal for the nonvanishing amplitudes. Second eventhough one

can express the various chiral determinants and propagators appearing in loop amplitudes
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in terms of ©-functions, these expressions are not explicit enough (in my opinion). Some
algebraic extension of the hyperelliptic representation of Riemann surface may be useful
[132]. At high loops hyperelliptic Riemann surfaces consist of only a measure zero part of
the whole moduli space. Nevertheless the study of multi-loop calculations on hyperelliptic
Riemann surface may be helpful [85]. To conclude this section I would like to show that all
the problems raising before can be solved easily for these hyperelliptic Riemann surfaces.
Here we have an algebraic (i.e. hyperelliptic) reprensentation of high genus Riemann sur-
face. The requirment of modular invariance leads to a unique determination of the phases
in the summation over spin structures. The vacuum amplitude can easily be proved to be

vanishing pointwise in moduli space.

A genus g hyperelliptic Riemann surface is an algebraic curve in CP%;

2g+2

y' =[] (z—a) - (11.6)

i=1

where a; (¢ = 1,-++,2g + 2) are 2g + 2 branch points. By solving y in terms of z, one
can view the genus g hyperelliptic Riemann surface as a double covering of the sphere
with cutting and gluing appropriately. See fig.15 for illustration and also a choice of the

homology basis of cycles.

2g+1 "
At genus g there are ( g even spin structures which correspond to the splitting
g

of the branch points into two sets, each has g + 1 elements. We will not consider other
even spin structures which give no contribution to the vacuum amplitude because of the

presence of zero modes. We choose the insertion points of supercurrent to be zero points

of the following abelian differential

Q(z) = [ama(z - %a) 4, (11.7)

i.e. the 29 — 2 points ¢ = z, = (¢ = 1,2,---,9 — 1). Then we have detp®(z;) = 1. The

various chiral determinants appearing in (11.1) can be computed as in two loops. From
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appendix A we have

1/4
detséé = H(ai — aj)-l/s (H Alekl> )

i<j k<l
: 1/4 s
~ 11.

detsag = H(aij)a/s (H Alekl> ) ( )
i<j k<l

det352 = H(aij)s/é, det 50 =det K H(aij)l/é.'
i<y i<J

By using these formulas we get

(det 8p) ™% det B (det,d; j»)° det, 8; 9. (11.9)

3/2 = (det K)s Hi<j a'ij’

where Q, = Hi<j A;; B;;j. The spin structure dependent factor is again Q. as at two loops.

The correlator for supercurrent insertions can also be computed as at two loops. At
multi-loops I don’t think that the ghost part will give new spin structure dependent factors
other than (Y(z;%)%(z;%)), (0%(z:E)¥(z;x)) and (G¢(z;£)0%(z;+)). I will use a dia-
gramatic representation for these spin structure dependent factors. A closed loop starting

from and ending in z, (see fig.16) represents

‘ g+1
($(zat)d(za—)) = %Z (% i v i Bi) , (11.10)

1=1
A closed loop starting from z;, passing through z,, -+, z, and ending in z; represents
(sh(z1E)b(za%)) (b(za£)b(z5E)) - - - (P(za—1E)P(zat)), see fig.17. For example we have
a digram (see fig.18) which represents either

(Har Pl W r (o)) = 2l 1l

= 4= -1-:::2)2 (ZEB - Zgii B 2) |

(11.11)

or

T T 2o —b(zs—)) = 1 u(z) +u(z) 1 —u(z2) — u(z1)
Wt ples ) lee e ) z1 —z2 yJu(zy)u(zy) T2 — T1 24 /u(zi)u(z2)

_ 1 (u(ml) L ule) | 2) |

4(z1 —z2)? \u(zy)  u(zr)

(11.12)
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Doing some more exercises with (¥(z1+)¥(z2—)) (¥(z2+)¥(zs—)) (¥ (zs+)¥(z1—)), for ex-
ample:

($(@1+)p(z2 =) (P2 )t (2 =) (¥ (23 +)d(21-))

1 u(zr) —u(zr) " 1 u(za) —u(zs) “ 1 u(zs) — u(zy)
z1 — 22 2/ uley u(zy) T2 — T3 2/ u(z)u(zs) (23 — z1) 24 /u(zs)u(z:)

1 {<u(z1) _ U(fcz)) +(12_>23)+(12_+31)},

T 8(z1 — 22)(z2 — 3 )(2s — 21) | \u(z2)  u(z)
(11.13)

it is easy to prove that the spin structure dependent factor appearing in fig.17 will be
($(z1£)p (22 ) (b(z2£)b (23 ) - -+ (P2t )P (21 %))
u(z1)u(zs) - - u(egg) w(orgpa)u(ergi42) - ulza)

TP P Pese o I U P i s e

+ (other terms).
(11.14)
Here “other terms ” means that they are either obtained by interchanging some z; and z;

from the first term or terms with less (always even number) u(z;) appearing in (11.14),

like a term

a U 21492 a a
w(z2)u(zs) -« u(zps)) (1) (zr242)ulzie)s) - - u(za) (11.15)
u((g)+2)u(@g)4s) - - u(2a) u(s)u(zs) - - u(zpg)
For a = odd number, there is no constant term in (11.14). The other spin structure

dependent factors, with partial derivatives, will be represented almost the same way as

before, but with an arrow indicating the partial derivative®. For example fig.19 represents

19!
(8% (21 -+ )b(21—)) = Z < AT —13»2) , (11.16)
and fig.20 represents either
(03 (21+)¢ (22 =) (b(z2+) P (21 -))

== T Ba (e ) (et ()
1 cule 1 uzy) + u(zs) 1 u(zz) —u(zy)
* 261 (22) z1 — T2 24/u(zy )u(z:) T u(zy)u(zs) (11.17)

(B )22 ) (a4 (21 —))

1 u(z1)  ulzsz)

i 8(zy — z9)2 (u(mz) - u(m;)) x Olnu(z:),

* An arrow emitted from a point Zo will represent either (5¢(ma+) .- ) or (51#(.’2,1—) .- > We will

not have a diagram with two arrows emitted from the same point.
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ot (84 (@1 +)(22+)) ($(22— (21 -}, (B (a1 —b(e2+)) (#(22—)b(w:+)) and (8 (a1-)
P(z2—)) (¥(z2+) ¥(z1—)) which gives the same spin structure dependent factors as in
(11.17). We note here a very important observation: the partial derivative in (8¢ (z1+)
P(z2—)) (Y(z2+)¥(z1—)) can be interchanged, i.e. we can first evaluate (¥(z;+)¥(z2—))
(¥(z2+) ¥(z1—)) and then do the partial derivation with respect to = (not just to one of
z+ or z—). The difference is only a term with the same spin structure dependent factor
as the original expression and other terms with some spin structure dependent factors
which also appear in the expansion (see eq.(11.14)) of the original expression. I encourage
the readers to calculate some expressions, like (9% (z1+)¢ (22 —)) (¥(z2+)¥ (23 —)) (¥ (T3 +)
P(z1—)) and (0¥ (z1+)¥(z2~))(P(z2— ) (z1—)) for example, to justify this important
observation. Then in order to prove the vanishing of the vacuum amplitude we need only
to prove that the diagrams without arrows give zero contribution to the vacuum amplitude.
The diagrams with arrows will automatically give zero contribution because they are just
partial derivation of zero, which is also zero.

Now let us begin with the first diagram, fig.21 in the expansion of (J(z1+)J(z1—) -
J(zg—14+)J (zg—1-)):

(Y21 +)p (=) (P22 +)¥ (2 =) - - (P(2g 1 +) (21 —)) (11.18),

which leads to following spin structure summation:

g—1g+1 1 1
SUM = 28:77,@3 gl ; (x ypiad BJ (11.19)
where ()5 = Hf:; (A; — A;)(B; — B;), s = (Ai|B;) denotes a spin structure. The phase
7, in the summation over spin structure in (11.19) can be determined by the requirement
of modular invariance®. We fix first 71 = 1, s1 = (a1a2 -+ agy1|agss - -~ azg+2). Then the
rest phases can be calculated by interchanging a; and a;. We get, for example,

2 = —1, 53 = (a1as -+ ag@gialagyiGgqs -+ aggta);

(11.20)

Ng+3 = 1, Sg+3 = (@182 *++ Gg_1Gg12a543|a0gag11ag44 -+ a2gr2); etc.

*  We remind you to remember that modular invariance simply means S U M should be antisymmetric

under every interchange a; + a; (1 £ 7).
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This unique determination of phase readily leads to a modular invariant summation as we

. . -1 1 . .
can check. The supercurrent insertion part [[J_] Zfil (: _l_A‘ - = iB-) is very important

to ensure modular invariance. By interchanging all {4;} and {B;}, the supercurrent part
will give a sign (—1)?7! and Q, will not change. Modular invariance requires the sign to
bet (—)9%! = ()97 which is exactly the sign coming from the supercurrnt part.

By making use of modular invariance one can éasﬂy prove the vanishing of the mod-
ular invariant expression SUM, eq.(11.19). As a function of a;, SUM has 2g + 1 zeroes,
a1 = a1 =1,2,---,29+1 because of modularinvariance (SUM is antisymmetric for inter-
changes ay « a;,1 = 2,---,2¢+2). It has also g—1 simple poles: a; = 24, a =1,2,---,9~1
and a multi-pole at a; = oo with multiplicities g (it comes from the factors @, ). As a
complex function, SUM(a;) should satisfy the well-known relation (n(z) denotes the mul-

tiplicities of the zero or poles)

> nz) - Y n(=z)=0. (11.21)

zeroes poles

But this can not be satisfied for the above counting:
2¢+1 > g—1+g. (11.22)

Therefore we must have

SUM(a;) = const. = 0. (11.23)

Bu using eq.(11.14), other diagrams can also be easily proved to vanish. For example fig.22

gives
SUM; = Zns (@ + ) (2 =) (22 + (21 =) [ [ (#(zat)db(za—))
u(zs) I 1 1
“Z”S y ( (z2) + u(z1) —2> g; (ma—-Ai Tz, —Bt-)
g+1 g—1lg+1 ‘ 1
~ S, (T - ates -3+ o2 TS (25 - 525

(11.24)

T Remember that (A4;|B;) — (B;|A4;) can be obtained by g+1 interchanges 4; « B;, 1 =
L,2,---,9+1
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The counting (of the zeroes and poles) is as follows:

2g + 1 zeroes, a1 = a;, 1t =2,3,---,2g + 1,
g — 3 simple ploes, a; = z,4, az, -+,9—1, (11.25)
1 multi-pole a; = co with multiplicities ¢ + 1.

We have then
20+1 > g—3+g+1 = SUM; =0. (11.26)

Other terms, like

(11.27)
which is appearing in the diagram fig.23, can also be shown to vanish by the same reasoning
as used above. Thus we have proved the vanishing of the vacuum amplitude.

Certainly the above computations were done only for a class of high genus Riemann
surface—the hyperelliptic Riemann surface. One would like to go beyond the hyperelliptic
Riemann surface. At g = 3, hyperelliptic surfaces consist of a codimension one submanifold
of the g = 3 moduli space. In hyperelliptic language the deformation away from hyperel-
liptic surface was induced by an odd (with respect the Z, symmetry of the hyperelliptic
surface) 2-differential™*: ;—(—b;—)-dzz. One can then use the method of conformal field to calcu-
late the partial derivatives of the vacuum amplitude Z; loops With respect to the moduli
parameter b. The vanishing of Z3 j50ps Will be proved if we have

BTL

-7 oops = O, 0. 11.28
F el P "2 ( )

¢ H

T eiz
* The even 2-differentials are given by ——-E‘I%(sz——dzz.
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We have tried to do that, but it seems hopeless.
In summary I do not think that the vanishing of the vacuum amplitude has been
proved rigorously beyond two loops, not mentioning the calculation of the nonvanishing

amplitudes.
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12. Conclusions and Perspectives

In previous sections we have done a lot of calculations at two loops for superstrings.
Starting from the Polyakov prescription for the calculation of string scattering amplitudes,
we derived the correct measure for the integration over moduli space for both bosonic and
fermionic strings. Some mathematics about Riemann surface and ©-functions are reviewed
in section 3. In order to do calculation at two loops we use the hyperelliptic representation
for genus 2 Riemann surface. Various formulas with detail proofs about hyperelliptic Rie-
mann surface are presented also in section 3. In section 4 we show some sample calculations
at tree and one-loop level by making use of the techniques developed before. Sections 5—7
and 10 constitute the main body of this thesis. We present in these sections the full details
about the calculation of the two-loop bosonic and fermionic amplitudes. We also checked
that the main properties and in particular the finiteness and factorization of the amplitudes
obtained. In bsection 8 we showed that the amplitudes obtained can also be used to drawn
some interesting physical results, like high energy behaviour of the scattering of gravitons.
All these calculations can also be done for a special class of compactified string models
(called fermionic construction) as we showed in section 9. In this section we also gave a
brief review about this compactification scheme. As to high loops (beyond two loops) what
we can say and we are sure is only for (high genus) hyperelliptic Riemann surfaces which
unfortunately consist of only a measure zero part of the whole moduli space. Here modular
invariance plays an important role and ensures the vanishing of the vacuum amplitude. All
these are discussed in this thesis. From the above discussions we see that quite explicit cal-
culations can be carried out at two loops. By using these results we have arrived at a very
good understanding of superstrings at two loops. The two loop four-particle amplitudes
are finite, in accordance with what we expected for superstrings. Here the arbitrarineess of
the locations of supercurrents is very important to ensure the finiteness of the amplitudes.
This arbitrariness also plays an important role to ensure the right factorization properties
(and unitarity). All these are good at two loops, mostly due to the explicit parametriza-
tion of the genus 2 moduli space by branch points. How about multi-loops? I have almost
nothing to say. But I believe that our explicit computations may shed some light on the

general theory of high loop computations in superstring theories.
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Superstring theory is believed to be a Theory Of Everything (a TOE). At the moment
there seems less enthusiasm in this theory as before. But I must say that superstring
theory is a very beautiful theory as before, in every aspect. It is the most natural and
nontrivial extension of the point quantum field theory. Conformal symmetry plays an
important role in string theory. The number of consistent string models increases without
limit only indicating that we have not understood the undelying beauty of string theory.
Many beautiful mathematics, like Riemann surface and their moduli space, ®-functions,
Calabi-Yau manifold, find their applications in string theory. And vice versa, the study of
strings also contributes a lots to mathematics, like Virasoro algebar, Kac-Moody algebra
and their vertex representation, infinite dimensional algebra and super Riemann surface.
Recently the study of conformal field theory has merged with the study of exactly solvable
models in statistical mechanics to lead such idea as quantum group. These are also related
with some beautiful mathematics, like link and knot theories. All these are related to string

theory. Probably some people will forget string, but I will not, at least.
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Appendix A: Calculation of the Chiral Determinants

In this appendix I will show some details for the calculation of the chiral determinants
appearing in the measure of string amplitudes. This calculation was based on conformal
field theory on hyperelliptic Riemann surface developed in [86-89]. See also [90-91]. As
shown in these papers conformal field theory techniques applied quite nicely to a class of

complex curves described by the polynominal equation

yN = H(z - ai)? (Al)

where we assume a; # a; and L = 0 (mod N). For N = 2 we have hyperelliptic Riemann
surface. The genus of the Riemann surface is g = (N — 1)(L — 2)/2. By solving y in terms
of z, one can view the Riemann surface as an N-sheeted branching coverings of the sphere.
Clearly they possess the symmmetry given by permutation of the sheets, and permutation
of the branch points which is just modular transformation. One can also fix three branch
points by using the projective invariance SL(2, C).

We shall be concerned with the computations of the chiral determinants of b, ¢ system
[125,49], where b and ¢ are weight A\, 1— A analytic Fermi fields on genus g Riemann surface.
A can be either in Ztor in ZT + ;, ZT being the set of positive integers. The action is
= fbéc d*z and the usual short distance expansions hold for b, c.

The energy momentum tensor is given by:
T,=—-X:bdc:+(1—=X):0bc: (4.2)

where : : means subtraction of the double ploes: this regularization procedure is Weyl
invariant but obviously breaks reparametrization invariance, turning T into a projective

connection. In any case the following operator product expansion holds for any conformal

field @ of dimension h:

P w4 L

(z —w)? z—w

T,(2)®(w) ~ By ®(w) + -+ (A.3)

This formula will be crucial in the following.
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Given N zero modes for ¢(z), v;(z) i = 1,--+, N, and M zero modes for b(z), pi(z) 1 =
1,-++,M, related by the Riemann-Roch theorems, the chiral determinant to be computed
is formally represented by:

_ [ DbDeITX b(z:) TI5L, e(y;) exp(—5)
det 0, =
det p1(z;) det vi(y;)

The computation of the path integral in (A.4) is done by the important observation: we

(4.4)

can treat the fields b and c as free fields defined on the spheres with appropriate monodormy
transformation from omne sheet to another, and with some insertion of conformal fields at

the branch points. That is, the determinats is computed as
det By ~ Fx = ([ [ V(as) [T b(2) [ e(we)), (A.5)
1 J k

where V(a;) are conformal fields inserted at the branch points, b(z;) and c¢(wg) are inser-
tions of b and c¢ fields needed to absorb the zero modes.
The computation of the correlatoor follows the standard method of conformal field

theory. First one computes the normalized correlator (cx and by_j are fields defined on

the N sheets)

(er(2)b—k(w) IT; V(ad) T, b(=5) TLx c(ws))
(IL: V(@) IT; 5(25) T1x e(ww)) '

Gk N-k(z,w) = (4.6)

Then we can compute

(T, I[; V(as) Hj b(z;) [ 15 e(we))

(IL: V(@) I1; 8(25) T1 e(ws))
where T, = }:QI____OI [=A 1 bg(2)Bey—k(2) s +(1 — A) : Oby(z)en—x(2) :] . By using the opera-
tor product expansion of T, with V(a;) [86-89],

LT, >»=

(A.7)

V(i) + —— 0V (as), (4.8)

(z — a;) z — a;

T(2)V(a;) ~

one can derive some partial differential equations for Fi:

88 In F\, = Residue of < T, > for z — a,
a;
——Q—ln F, = Residue of < T, > for z — z;, (4.9)
0z; J
0 .
——In F\ = Residue of <« T, > for z — wy.
Owy
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By solving these differential equations we can get explicit expressions for F (in term of
a;). Let us show some examples.
Pirst for N =2, L = 29 + 2, A = 2 (the bosonic ghost system defined on the genus g '

hyperelliptic Riemannsurface), we have

1 g 3978 0y — 2

_ — % I R

Goo(z, ) = z—w ]:E w — a; ;;];11 z—z; o(z,w),
- - A.10)
2g9+2 (z A1/2 (

Gii(z,w) = ! ” H ) = G1(z,w).

z— sl (w — a;)1/?

Seting z — w = A, we compute Go(z,w) and Gi1(z,w) in Laurant expression in A:

1 1 1 1
Go<z’w>=z+;w_ai‘;w-Zj‘LA(Z(w—ai)(w—an

i<j

Then we have
< T, »=[28:(Go(z,w) + G1(z,w)) + 8:(Go(w, 2) + G1(w, 2))] [.—,, finite part
5 1 13 1
T4 ; (z —a;i)(z — aj) ) El: (z — a;)? (A.12)
1 1 1
+2 — + .
zj: (2 —z;) zz,j:(zﬂai)(z—zj) j;c(z—zy')(z"zk)
The partial differential equations obtained are
0 5 1 1
F=- - ,
6a,~1n B 4Zai—aj Zai—zj
e d (A.13)
__Q_l F = Z 1 Z 1
3?:3' & Z“J#jzj—zk P zJ'-—ai’
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which can be integrated to yield:

- F, = <HV(a,~)H b(Zj)> = const X H(ak —a )" Hf_fl(;k(%) 2t) (A.14)

k<l

Notice that —Hﬁ%——;—l) is exactly det Qx(z;), where {Q(z)} is a basis of holomorphic
zk
2-differentials. So we have
2g+2

detd; = [] (a: —aj)3. (A.15)

i<j
Similarly we can compute det Oy for A = 1 and we have

2g+2
— 1
det 0; = det K H (a; —aj)%. (A.16)
1<j
The other determinants det, 9, /2 and det, 0, /2 can also be computed. Here we have a
complication from the spin structure dependence. But no trouble at all. For example for

A=3/2 (N =2, L =2g=2 as before) the relevant formulas are

_ 1 = 40T w - BT 1 (w— z)
GO““z—wH (z — 4;)-1/4(z — B;)-3/4 H(z—Zj), aan

1 (w— A) 3/ *(w = B)7* o (w — ) |
G“_z—wg(z—fi)”‘*( L i

By using these correlators and doing some algebraic calculation as before one arrives the

following expression for det, 05 /2

1/4
det, 83, = | [(ai;)*/® (H AHBH> . (A.18)

i<j k<1

For det,d; /2 We have

1/4
det,él/z = H(aij)-—l/S (H AHBH) . (A.lg)

i<j k<l
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Appendix B: Calculation of the Ghost Correlators

In this appendix I would like to show in some details for the calculation of ghost
correlators, eq.(5.14). By definition we have

_ (22T (22)8(8(2 )88z TL (7 = )
In = anlealTon(e2)) = s GGy L)

Here we have taken a generic basis of the Beltrami differentials n; and we use (m; % b) to
denote the integration of 7;(z)b(z) over the Riemann surface. Because of the appearance of
the correlators at the same point in (B.1), one should use some regularizations. We choose

a gaussion representation for the §-functions xa:

\o(y) ~ lim = exp (—‘-y—‘——i) , (B.2)

to represent Jyi(z1) and Jgn(z2) as

Ton(za) = (e Igp) = [ @2xa(2) T (2) (B.3)
Then we have
Ign :<Jgh(3l)']gh(z2))

:/dzyldzyz x1(y1)x2(¥2 ){Tgn(y1)Tgn(z2))
(B.4)

=/d2y1d2y3 [— x1(y1)x2 (v2) + x2(y)xa (v2)]
x [2R(y1y2)025(y1y2) + 202 R(y — 132)S(y192)]

by using the explict expression of ghost supercurrent, eq.(5.6). Here we have defined

R(y1y2) and S(y1y2) as [115]

R(y1ys) = (b(ya)e(yz) [ [(n: )

1

3
= —det™ (n; * f5) / HdZXk nk(zr ) B(y2y1212223), (B.5)

i=1

B(yzozizazs) = e**7 H(yz,) fi(z0)fa(2p) f3(20),

zZT :__l_ﬂ y(z) g/_(_ﬁ i, -_—_z:_l_
H(zz) z(z—z>(1+y(m))y(z), &) = sy
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and

S(v1y2) = (7(¥1)B(v2)8(xa * B1)6(x2 * B2))

= detwl(xa * gob)/dzwldzngl(wl)xz(wz)G(ylyzwlwz),
G(yzoziza) = P P(yz, )p1(zy)p2(z,), k (B.6)
1
= e Q

Play) = s (B 02(0),

pi(z) = 201 (2) (Y ()P (=:)).
We will set from the beginning (x; * ¢;) = 26;;C;, C; = ¢;(z;) which is consistent with
our regulanization. We have then

S(unte) = Planys) - Tl lon)enlye)  Pluwwn) xalwslesn) = (5.

where intergration over w; and w; is understood. Notice that all the possible singularitis
are coming from S(y;y2) because integration over y; and y, can be either around z; or

T3, and sometimes y; >~ y; ~ z; or z,. Let us compute first, for example a term

R(y192) gg‘é‘iﬁ)‘m (y1)x2(y2) = R(y1y2)x1(y1)x2(v2)

P a P R 2 (w280 (Y2
X {sz(ylyz)-— (y1W1)X1((;’?1ﬂ1) ©1(y2) . (yle)X‘(wzg,f \wz) wa(y2)

(B.8)

The only singular term is P(y;w;)x1(w:) which appears in the following combination

R(y1y2)x1 (1) P(yrw1 )xa (w1) 02 (y2)x2 (¥2) = B(yre1)xa (y1)P(yaws )xa (w1 )8a (2).-

(B.9)
The integration over y; and y, are computed as follows:
R(y12z2)x1 (y1) P(yrwi)xa (w1)d’y: d*w;
R(y1z2)x1(y1) P(y1w1)xa (wi) = /
( le(yl)Xl(wl)d2y1d2w1
_lyi-zq? Jwi-=g)? 2 49 (B.10)
_ J R(y1z2)e a e = P(yywi)d*y1d*wy
- _lya==zal?  Jwi-=q12 o 2
fe a e a dy;d w;.
In (B.10) only y1, wy — =z; contributes, so we can substitute P(y;w;) by
1
P(yiw;) =~ — + Alz1) + O(y1 — 21, w1 — z1). (B.11)
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Then by a changing of variables from y; — w; = 21 and ¥y, + wy = 2z; + 22 to y1 =

zy + %(zl + z2) and wy; = z; — %(zl — z3) we have

R(y1z2)x1 (01 )P(yl wy )X1 (ws1) =A(z1)R(z122)

fR(CD]_ + %(Zl -+ Zz),ﬂ:g)‘]*'e I_ll__i‘_“_°|_d2 d
+ f e I‘]!2+lzg|2 d2 dg
=A(z1)R(z122) + 56‘313(31 z7).
(B.12)
Second we compute the other term in (B.4)
OR(y1y2
%2—15 (y1v2)x1(y1)x2(y2)
Y2
OR Plyw w Yy
= ——*—_*éityZ)Xl(yl)XZ(yZ) (P(yﬂ/z) - Pl 12;11(531;)(‘01( 2)
: (B.13)
_ P(ylwz)xz(WZ)soz(yz})
p2(z2)
OR(y1y2) p1(y2)
S Xl(yl)Xz(yZ)P(ylwl)Xl(wl)Pl(ml)-

Here the singular factor is x1(y1 ) P(y1w1)x1(w1) comimg from integration around z;. How-
ever the integration over y, is regular (at least around z») which gives a factor v1(z2) = 0.

So we have

@%z—yz—)swlyz)xl(mm(yz) 9, (B.14)

where integration over y; and y2 is understood.

Substituting (B.8), (B.12) and (B.14) into (B.4) we get

Igp = — 2R(z123) {32]3(1,12,2) _ A(ml)agzl((;:)) _ P(xlzz)fiiz(g;z))}
P1(T1 oo (B.15)
= — 20, P(z122)R(z125) — (82 R(z221) + 2A(z2) R(z221)) LEAGE

pa(z2)

- 2P($2$1)R("32$1)6¢1(§i1)) (12),

as given in(5.14).
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Appendix C: Calculation of the Prime Form Part

In this appendix we show, in the rescattering cases, the contributions of the prime
form part of the X-correlators appearing in (8.24) is suppressed with respect to the period
matrix part, the one which we have taken into account in our estimates.

The part in question can be compactly expressed in terms of the unique abelian dif-
ferential of the 3rd kind wp.(z), having simple poles with residues +1, —1 at z; and z,

respectively, with zero periods along a-cycles. Indeed one has [71]:

e

The quantity wy.(z) can be easily written, to leading order in the degeneration limit u, v,

3 2

E(z1,2:)E(22,2p)
E(227ZC)E(Zlyzb)

(C.1)

A — 0, in terms of the normalized abelian differentials w;(z) introduced in (8.17):

1 1w(2) j{ 1 1
Qwpe = d _
e z— 2z * 2wi(2) Jao “iz) z—zp z'— 2z

(C.2)

325 4 o (2 =) (- 2)

= wa(z — —(z o).

2wa(zs) Jao, 2 z—zy z'—z b
One can then do explicitly the contour integration to get:
1 1 1 wy(z
2wpe(2) T _z (1 * 5;:1((:)) * §w2((z ))>

%b 1{<b 2\ %b (0‘3)

wi(z) 11 wz(z) 1

wi(zs) a1 —2zp  2wz(z) ’ as — zp

— (zp — z¢).

Consider now the first part of (C.3): as a function of z; it is holomorphic everywhere;
indeed it is holomorphic at co and also at z; = z: for the latter case, notice that z12 and
25, lie on opposite sheets, so that in (C.1) z and z; are also on opposite sheets, implying:

%;“31-‘(%% + %::2((;,)) — —1 for z; — z. We conclude that in (C.3) the pole at z, = z is

cancelled. As a result this expression is independent of z; so that when we substract the

term (zp — z.) we get zero. In fact one can see that f: wpe = O(u, v, A).
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Fig.1

Fig.2

Fig.3
Fig.4
Fig.5
Fig.6

Fig.7

Fig.8
Fig.9
Fig.10
Fig.11
Fig.12

Fig.13

Fig.14
Fig.15

Fig.16
Fig.17
Fig.18
Fig.19
Fig.20

Figure Captions

The trajectory of a point particle is a line. The trajecctory of a string is a (two-

dimensional) surface — Riemann surface.

The topological classification of Riemann surfaces is by their genus — the handles

attached to the sphere.

String perturbation theory represented as a topological summation.
Decomposition of Vgsz: 69,z = VzVe + 6Tigl, = A V] + Syipl..

A Riemann surface with a chosen canonical homology basis of cycles.

A genus two Riemann surface as a double covering of the (cut) Riemann sphere. We

[13

also indicated the canonical homology basis chosen. “---” meana that the path is on

the lower sheet.

A genus one Riemann surface as a double covering of the sphere. We also indicated

the canonical homology basis chosen.

Factorized diagramm of a four-particle amplitude at two loops.
Another factorization limit.

Kinematics for two-body scattering: k1 + ky — k2 + be.
Rescattering diagrams.

Genus two Riemann surface as a double covering of the (cut) Riemann sphere. Notice

the identification of the cycle a3 = a3 + as.

“Rescattering” term as the pinching limit of the cycles a;, az and a3 on the Riemann
surface.
H-diagrams.
A genus g (hyperelliptic) Riemann surface as a double covering of the (cut) Riemann
sphere. We also indicated a canonical homology basis.
Diagramatic representation of (¥(zo+)¥(za—)).
Diagramatic representation of (¥(z1%)¥(za%)) (¥(za£)P(zsL)) -+ (Y(zat)P(z1E)).
Diagramatic representation of (¥(z1+)¥(z2£)) (¥(z2£)¥(z11)).
{
{

Diagramatic representation of (9v(z1+)¥(z1—)).
Diagramatic representation of (8¢ (z1+)¥(z21)) (¥(z2 )P (z14)).

137



Fig.21 Aterm ((z1+)¥(z1—)) - -+ (¥(zg—1+) ¥(zg—1—)) in the expansion of (J(z1+)J (z1—))
(I (zg-1+) J(zg—1-))-
Fig.22 Another term in the expansion of (J(z1+)J(z1—)) - (J(zg—1+)I (zg—1—)).
Fig.23 A somewhat generic term in the expansion of (J(z1+)J(z1—)) -+ (J(zg-1+)J (zg—1—)) B
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