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INTRODUCTION.

Two dimensional conformal field theories have received a lot of attention due to their
relevance in string theory, as well as the fact that, in statistical mechanics, they describe
systems at second order phase transitions.

The motivation to study conformal field theories in higher genus Riemann surfaces
is both physical (in connection with the Polyakov perturbative scheme for string the-
ory, or with models in statistical mechanics having particular boundary conditions) and
mathematical: the higher genus shares the same features as the genus zero case but the
complications arising from the non-trivial topology are introduced.

This thesis is devoted to the study of the conformal field theories in higher genus with
a particular concern on two aspects, namely in establishing a prescription to compute the
correlation functions of these theories, and in elaborating an operatorial framework for
them. For what concerns the former aspect we recall that one of the key properties of
the CFT is the factorizability of the correlation functions in chiral and antichiral blocks.
Our aim is to give a prescription to compute such chiral blocks. We have to remember
that in CFT such as the minimal models the correlation functions are fully constrained by
the conformal invariance. To solve the partial differential equation so implied is however,
from a practical point of view, extremely hard. At genus zero the Coulomb gas method
elaborated in [1] gives an integral representation of the PDE. The basic idea underlying this
method is the existence of a certain free field theory whose correlation functions, suitably
constrained, have to be interpreted as correlation functions for the minimal models. The
free field theory considered is that of a free bosonic field @ with a background charge.
However such a theory is not easily treatable in higher genus.

Motivated by the duality property between bosons and fermions in two dimension, we
will introduce a new system, a real weight chiral anticommuting b — ¢ system, which gives
rise to a fermionized version of the Coulomb gas and can be formulated in a straightforward
way on any genus Riemann surface. This system allows to compute chiral blocks for any

Conformal Field Theory which admit a representation in terms of free fields (not only
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minimal models then, but also WZW models for instance). The b — ¢ system allows
to compute, in a very easy way, also quantities which are relevant for string theories,
like spin-field correlation functions and their generaﬂ%ations. Regarding this, one should
remark that the b — ¢ system theory is a well-defined theory interesting in itself, not only
as a recipe to compute correlation functions for given CFT.

Besides knowing the correlation functions for the Conformal Field Theories, one should
also be able to identify their operatorial content. In ch. 4 we will generalize the construction
of the chiral vertex operator to higher genus Riemann surfaces. We will work in the
Krichever-Novikov framework [2] which has the striking advantage that it mimics to higher
genus the procedure already carried out on the sphere. Morever, the global data concerning
the Riemann surfaces are present from the very beginning. An interesting question concerns
the possibility that in higher genus the Krichever-Novikov algebra, which should replace
in higher genus the Virasoro algebra as a classifying tool, could be more refined than the
Virasoro one.

The material is so organized: in ch. 1 a discussion on conformal ﬁeld theories is carried
out, emphasizing particularly the aspects which will be relevant later. In ch. 2 the real
weight b — ¢ system is introduced on the sphere and a detailed presentation about how the
information about the vertex operators of the theory under consideration, as well as the
procedure to get primary field correlation functions, is given. In ch. 3 the generalization
of such b — ¢ systems to higher genus is performed. In ch. 4, besides the construction of

the vertex operator, a detailed analysis of the higher genus oscillators is presented.



1 THE CONFORMAL FIELD THEORIES.

1.1 INTRODUCTION TO CONFORMAL FIELD THEORIES.

In this section we will briefly review the features of the Conformal Field Theories on
the complex plane, emphasizing particularly those aspects which will be relevant later on.

The standard reference as an introduction to the minimal models is of course the
work by Belavin, Polyakov and Zamolodchikov [B]. A huge amount of review articles is
now available.[¢—1°]

The subject of two dimensional conformal field theories has received considerable
attention mainly because 2-D CFT are the building blocks 11~23] of classical string com-
pactifications. A classification of 2-D CFT would provide useful information about the
classical solution space of string theory.

On the other hand, in statistical mechanics, conformally invariant quantum field the-
ories describe the critical behaviour of systems at second order phase transition. 1415l
This happens because the fluctuations of the dynamical variables are scale-invariant at the
critical point. In three or more dimensions the conformal group is finite-dimensional and
it does not provide too many informations about the theory at hand . In two dimensions

(6] and places significant

however the conformal algebra becomes infinite- dimensional
restrictions on two-dimensional conformally invariant theories. This could lead to a classi-
fication of possible critical phenomena in two dimensions. In certain cases we will see that
COI]fOI"IIla.l invariance is sufficient to determine all the correlation functions of the theory.
A 2-dimensional Minkowsky space spanned by the coordinates o, 7 (0 < ¢ < ) is

rotated to the euclidean and a radial quantization [17] is performed. The cylinder can be

conformally mapped to the complex plane C — {0} through

z=e¢e , zZ=¢", : (11)

where w =74+ 1i0 , W = T — i0.

T = —oo is mapped to the origin and 7 = + o0 to the point at infinity.
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The conformal group G in two dimensions consists of all the transformations

z—€(2) , zZ-E&3), (1.2)
with ¢ and £ holomorphic.

G is given by the direct product
G=Tol, (1.3)

where T' ( T' ) is the group of analytical substitutions of the variable z ( z ). This means
that one can concentrate on studying just the chiral part of the conformal theories.

The Lie algebra L of the group I' is generated by the basis of the vectors in C — {0}:
(18]

l, =z"*! 4

1.4
z, (14)

where n is an integer.
This algebra coincides with the algebra of the vector fields on the circle S*.
L admits a unique 1-dimensional Cc central extension, 1®) L. = L @ Cc which is the

Virasoro algebra:

ln,c]=0
3 (1.5)
m°—m
[y la] = (M = n)lmgn + 6m,—n (—Ié““‘)'ca
The generators I_y,l,l; form the subalgebra si(2,R) C L. whose corresponding subgroup
consists of the projective transformations. Their commutation relations are not anomalous
even in the presence of the center c.

A Conformal Field Theory is characterized by the existence of a stress-energy tensor

T'(z) which can be Laurent-expanded through

T(z) = Z L.z~ "2

nexL

= —1——‘% dzz"T1T(z),
o)

Y

(1.6)
Ln
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where C encircles the origin.
The stress energy tensor T'(z) is the generator of the infinitesimal transformations of
the group T', i.e., for any combination X of local fields and their derivatives up to a finite

number, the conformal transformation §.X satisfies

<EX>= }2 ded(©) < T(OX >, (1.7)

where € is an infinitesimal holomorphic function and C encloses all the singular points zg
where the local fields in X are located. (*)
The correlation function

<T(2)X >

is analytic in z, single-valued and regular everywhere but at the points zj.

Inside a correlation function T'(z) satisfies the following O.P.E.:

1 ¢ 2T (w) 1

T(=)T(w) = (z —w)* 2 + (z — w)? + (z —w)

8T (w) + ... (1.8)

which expresses the conformal properties of the field 7'(z) itself.
From (1.8) it turns out that the Laurent coefficients L, introduced in (1.6) satisfy the

Virasoro algebra (1.5) where, by definition:

(L, L] = (2—;-)-2—[ j{ dz ~7I{zl>lwl dw — f dw 71{w|>l4 42 T ()™ T(w).  (1.9)

(*) The local fields A;(z;) are assumed to be operators and the correlation functions are

defined as follows:
< Ai(z1)-.An(zn) >=< 0|R{A41(21)...40n(22)}|0 >,

where R is the radial ordering, i.e.:

A(2)B(w) if |z| > |w|
RA(z)B(w) =
BwA() il >

or with a minus sign for fermionic operators.
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As a basic assumption, in the BPZ approach to the conformal theories an infinite
set of local fields A; is postulated to exist. The set of operators 4;(z) is assumed to be
complete, which means that any state in the theory can be generated by a linear action of

these operators. The identity, as well as any coordinate derivative of the fields involved,

belongs to the set {4;}.

The completeness assumption means that an operator algebra

Ai(8)4;(0) = CE(6)Ax(0) (1.10)
k

holds in a weak sense ( inside a correlation function ).
The structure constants C’,-kj are single-valued c-number functions.

The operator algebra is furthermore assumed to be associative:

S ckem =Y crck. (1.11)
k k

Among the fields 4;({) there are some ( let us denote them as ®; ),called primary,

which under conformal transformation behaves like

B5(2) - (%)A 3,(0), | (112)

where A; is a real, non-negative parameter (the conformal dimension).

The conformal property (1.12) can also be expressed as a commutation relation:

[Lin, ®r] = zm+1§;§§n(z) +Ap(m+1)2"®,(2). (1.13)

If all the fields A4;({) entering a correlation function are primary, the general relation

(1.7) can be reduced to the Ward identity

<T(2)®1(21)...Pn(2n) >= i[(z f;i)z + G j' p» 5(—9;:} < ®1(21)®n(zn) > (1.14)

=1




which relates a correlation function of T' and ®; with that of ®; only, through the applica-
tion of a differential operator. The same procedure can be iterated to express a correlation
function with an arbitrary number of stress-energy tensor 7' insertions in terms of primary
fields correlation functions.

The O.P.E. of the stress-energy tensor T' with a given primary field ®; generates a
whole conformal family ( denoted by [®;] ) of fields associated to the primary field ®;.
The conformal family [®;] forms a representation of the conformal algebra and it is spanned
by the fields L,,...L,, ®;, with L,, given by eq. (1.6). In particular L,®; = 0 if n > 0,
Lo®; = Ai®i(2) , L1®:(2) = 8. %:(2).

The new fields L_,,...L_5, ®;, with n; > 0, are called descendents.

It follows from eq. (1.14) that the descendent fields correlation functions are com-
pletely determined by the primary field correlation functions; therefore it is only needed
to specify the dynamics for the primary fields. The whole set of fields {4;} introduced

above consists of some number ( which can be infinite ) of conformal families:

{4;} = ©:[2:]. (1.15)
In a conformal theory the ket vacuum |0 > must satisfy the relation
L,|0>=0 if n>-1 (1.16)

in order to have a non-singular stress-energy tensor at z = 0. This equation reflects the
conformal invariance of the vacuum.

In the same way the bra vacuum must satisfy

<OL_p=0 if n>-1, (1.17)

so that T'(z) be non-singular at z = oo.
The reality condition for T'(z) in the Minkowsky (imaginary values of T ) space is

implied by the relation



Lt =L_,. (1.18)

The primary fields ®; are put in correspondence with the highest weight vector which

generates a highest weight representation of the Virasoro algebra. [2

A h.w. vector w is characterized by the following properties:

ng = hw
(1.19)
L,w=20 if n>0.

The h.w.r. is a representation of the Virasoro algebra spanned by the vectors
Lik oo .L,-lw .
A h.w. vector |m > which satisfies (1.19) can be introduced simply by setting

|m > = ®,,(0)[0 >
(1.20)
Lolm > = Aplm >.

In our theory the system of primary fields can be chosen to be orthonormal:
< ‘I)n(zl)@m(22) >= ‘Snm(zl — 22)—2A". (121)
We can introduce the “out” primary states by defining
<n|= lim <0|®,(z)z*"° (1.22)
and the orthonormality condition (1.21) can be reexpressed as

< nlm >= bpm.- (1.23)
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1.2 THE MINIMAL MODELS.

In this section we will exploit the properties of the highest weight representations of
the Virasoro algebra in order to completely solve those particular conformal theories called
minimal models.

The detailed analysis of the properties of the h.w.r. is originally due to Feigin-Fuchs
(21],

Let us denote as V., a h.w.r. with highest weight A and central charge ¢ . All the

vectors

L_i1 ...L_iﬂ !h >

with a fixed value ¢ = 4; + ... + ¢, span the eigenspace Viy; of Ly with eigenvalue A +1 ,
so that

Ve, = @iezy Viyi.

The formal power series

AVer = Y (dimVipi)g"t . (1.24)
icedy

is called the character of the representation Ve h-

A h.w.r. is called a Verma representation if all the vectors
L_;..L_; |h>

are linearly independent.
It turns out that a representation Ve,n is reducible provided there exists some vector |y >

belonging to Viy; ,7 > 0, (null vector ) which satisfies the relation
Lalx>=0 if n>0. (1.25)
For instance at the level ¢ = 2 the vector

3 2
= — — .2
Ix > (L2+2(h+1)L1>|h> (1.26)
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is easily seen to be a null vector if h satisfies the relation:

h=5o(5—cxv/fo— 1)(c— 29)) (1.27)

A null vector is orthogonal to any state [ >€ V., and in pa.rtiéular it has zero norm:
< |x >=0. \ (1.28)

A h.w. vector which admits null vectors is called degenérate.

A h.w.r. uniquely defines an irreducible representation, the Verma representation
M. 1, obtained from V. by taking the quotient of the subspaces generated by the null
vectors.

The analysis about which couple of values (c,h) characterizing the h.w.r. makes
Ve,n reducible has been originally performed by Kac [22]; he considered the determinants

detM;(h,c) of the inner products of the states belonging to Vi4;. It turns out that

detM;(h,c) = const H (h — hyp 4(c))F7PD (1.29)
pg<i

where p,q € Z;. Here

1
hpg = 5113 = ¢)(* + ¢*) + v/(c = 1)(c = 25)(p* — ¢*) — 24pg —2+2¢]. (130
Let us parametrize ¢ as follows:

6

=l- T Ty (1.31)

P(k) is defined by the relation

M pwit =] a _1tn). (1.32)
k=0 i=1

The determinant (1.29) vanishes for h = h, 4, which means that for this value the

representation V. j is reducible. The corresponding null vector appears at the lowest order
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at the level pq and has dimension A = pq. The h.w. vector corresponding to the degenerate
representation labelled by p,q will be denoted by [$,, >. A detailed analysis conducted
by Friedan, Qiu and Shenker (23] shows that if ¢ < 1, only a discrete set of values of ¢ gives
rise to unitary theories. The allowed values of ¢ turn out to be those of eq. (1.31) with m
restricted to be m = 3,4,5,...and p<m,qg<m—1.

An important property satisfied by the correlation functions which involve a null field
X corresponding to a null vector is the following: they are all vanishing. This property
implies that the correlation functions involving degenerate primary fields must satisfy linear
partial differential equations. If the null field appears at the level pg the maximal order of

derivatives in the P.D.E. will be pq. For instance the correlation function
< x(2)®(z1)...®8(zn) >

involving the null vector [y > introduced in (1.26) ( here |h >= |®;, > ) will satisfy the

equation

(2(}‘1 1) 5@7 B Z (2 —hiz,-)2 -2 z%m%) < D12(2)®1(21)®n(2n) >=0. (1.33)

=1

In the case of a 4-point correlation function, the SL(2,R) invariance, which is an exact
symmetry, allows us to reexpress the P.D.E. as an ordinary differential equation, whose
solutions are given in terms of hypergeometric functions.

A P.D.E. like (1.33) puts a constraint on the O.P.E. satisfied by a degenerate field with
any given primary field ®;(z). In order to understand such a constraint one has simply to
insert the O.P.E. (1.10 ) inside the P.D.E.. The conformal dimension of the primary fields
appearing in the r.h.s. of (1.10) will be restricted.

The O.P.A. of the degenerate field ®,, ,, with another degenerate field $,, ,, will look

as follows (“fusion rule”):

p1tg1—1 p2tg2—1

[@th][q)}’z,!h] = Z Z [élnlz] (1'34)

li=|p1—q1|+1 la=|p2—q2|+1
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The r.h.s. of (1.34) means that in the O.P.E. only fields belonging to those particular
conformal families will appear. The “fusion algebra” involving only degenerate conformal
families is a closed algebra.

For discrete values of ¢ < 1 there are conformal theories, the minimal models, which
involve only a finite number of degenerate conformal families. In particular this is true
when ¢ belongs to the unitary series. The conformal dimension of the primary fields in a
a minimal theory is given by the “conformal grid” introduced in ref.[3].

24’25], characterized by

The simplest example of a minimal model is the Ising model [
having central charge ¢ = 3 (m = 3in (1.31) ).
The Ising model involves 3 different conformal families whose primary fields have conformal

dimension

1

1
hay =0, hey=35 ko=

So far we have analyzed the operatorial content of the minimal models. In order to
fully specify this kind of theories one should give a prescription about how to compute the

whole set of correlation functions. The determination of the coefficients C.,,,; appearing

in the 3- point function
< n|@m(2, D)l >= Cppmiztn A —A1zAn—Am—A (1.35)

(for the time being we use the full correlation functions, analytic times antianalytic parts)
is sufficient to fully solve the problem.

In (1.34) we have used the SL(2,C) invariance to put the fields ®; and &,, respectively
to 0 and oo .

The coefficients C,,,,; are however not fixed by the conformal invariance and to deter-
mine them one has to make use of some dynamical principle. In the bootstrap approach
of BPZ the dynamical principle which plays the role is the associativity property (1.11) of

the O.P.A .. Let us consider a primary fields 4-point correlation function

< ®p(€1,&)21(&2,62)Bn(és, &) B m(Ee, Ea) >

14



The projective invariance allows us to fix {; = 00,2 =1, {4 =0 and

(&) - &)
T 6 = Es)(E — ) (136)

{s =

( m is a conformally invariant anharmonic ratio).
The associativity condition is equivalent to the crossing symmetry which is expressed by

the following relation: let
G (1,7) =< k|81(1)8n (0, 7)lm >,

then
G () = G (1 —n,1 =) (1.37)

After substitution of the product ®,(n)®.,(0) with the O.P.E., eq. (1.37) leads to a system

of equations which allows to determine the constants Cym; -
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1.3 THE COULOMB GAS METHOD.

In the previous sections we have reviewed the BPZ approach to CFT. We have seen
in particular that the conformal invariance, together with the associativity of the operator
algebra, fixes in a univoque way the correlation functions of the minimal model theories.
To solve the partial differential equations derived in the bootstrap approach is however,
from a practical point of view, not an easy task.

In this section we will review the Coulomb gas method elaborated by Dotsenko and
Fateev (128 which gives an integral representation of the PDE. In the simplest cases, it
has been explicitely shown that the results obtained by using the Coulomb gas method are
in agreement with the requirements placed by the conformal invariance.

The basic idea underlying the Coulomb gas method is the existence of a certain free
field theory whose correlation functions, suitably constrained, have to be interpreted as
correlation functions for the minimal model under consideration. The free field theory

considered is that of a free bosonic field ®(z,%z) , whose equation of motion in the (

uncompactified ) complex plane is given by
0.0:® =0, (1.38)
so that the chiral and antichiral parts decouple
®(z,z) = ®(z) + 2(2). (1.39)

If we take the action on the sphere S? to be

5= % / P2\ /5lg*P 0 B0p® + icto B R] (1.40)

(here gop is the metric on the sphere, R is the 2-dim. curvature and —2ag represents
the insertion of a background charge) and we assume, which can be done without loss of
generality, that the curvature is all concentrated in the point at co, then we are led to the
equation of motion (1.38) on the complex plane.

The correlation functions are defined by means of a path integral:
1
< B(e1).B(zn) >= 1 / (D®]8(zy)...8(zn)e™S. (1.41)
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The propagator for the chiral part reads as follows
< ®(2)®(w) >= —log(z — w). (1.42)

The stress-energy tensor T for the theory under consideration is obtained by varying

the action w.r.t. the metric gop; we get

T(z) = —% 10,90, : +i002d. (1.43)

The normal ordering is defined as usual by requiring the subtraction of the singular terms
in the operator expansion.
It is straightforward to apply the Wick theorem to compute the O.P.E. T'(z)T(w). In

particular one obtains for the central charge ¢ the value

c=1-24al. (1.44)

The presence of the background charge is therefore necessary if we want the free bosonic
theory to describe a minimal model whose charge ¢ < 1 is given by eq. (1.31).
The primary fields V,(z) of the Virasoro algebra introduced in the previous section

are expressed in this framework as follows, by taking the chiral part of their r.h.s.:
Va(z) =: @%@ ;| (1.45)

From the general O.P.E. between a stress-energy tensor T(z) and any given weight A
primary field V(P):

RV (P) 1
(z—P? " (z-P)

T(2)V(P) = 8pV(P), (1.46)

we can derive in our case the conformal dimension h, of the vertex Va(z):

ho = o? — 2aay. (1.47)

The conformal dimension satisfies a duality relation

he = hag—a. (1.48)
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This means that the vertex Van,—«(2) describes the same primary field as V,(z2).
The 2-point correlation function < V4(z)Vaae—a(w) > is given by

< Va2 Vaag—al®) >= (z = w)?2C20=), (1.49)

A generic correlation function is given by:

< Vi(P1)...Vo(Pr) >= const H(ZP,-‘ — zp, )%, (1.50)
i<j

In (1.50) the constraint

D e = 2a (1.51)

is assumed to be satisfied. Any other correlation function which does not satisfy (1.51) is
 automatically zero. The origin of the constraint (1.51) can be understood by noting that,
for ¢ = 1 and o = 0, there is a conformal weight 1 conserved current J (2):

J(z) = 10,9

i} (1.52)
8:J(z) =0

The last equation follows from the equation of motion (1.38). A charge neutrality condition

imposes in this case [27]
E a; = 0.
)

When ¢ < 1, even if J(z) is no longer a primary field, it still measures the charge inserted
by the vertex V,. The charge neutrality is now given by eq. (1.51) because the linear term
in @ in the action (1.40) inserts a charge —2aq at oco.

At this point we have to specify which kind of prescription is needed in order to
compute the correlation functions of the conformal minimal models in terms of the bosonic
theory. Firstable one has to take into account the fact that both the fields V, and Vany—a
represent a primary field with conformal weight given by (1.47). Then, one has to notice
that non-local screening charge operators having conformal dimension b = 0 can be inserted

in a correlator without changing its conformal properties.
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A screening charge operator @) is constructed simply by taking the contour integral

§ J of a screening operator J =: ¢*% : . In order to make sense of the contour integral

J must have conformal dimension h, = 1. This condition can be satisfied by 2 values of

a, namely
atr =ogt4/ad +1. (1.53)
We get therefore 2 screening operators J+ =: e’*% : and the relative charge operators

Qi = f J+. The screening operator J. carries a charge a+. Inside a correlation function
the insertion of a suitable number of charge operators Q.+ can be done in order to balance
the charge neutrality condition (1.51). In this way the correlation function for the minimal
model under consideration is obtained from the correlation function of the vertex fields V,
“dressed” by the presence of the charge operators .

Let us consider the 4-point correlation function of the primary field ®;, represented
by the vertex V,. Many choices are in principle available but the one which works is the
following:

< ‘i’i(zl)...@,-(z,;) >= VaVaVa%ao—afJ+---fj—--- > (154)

(in the r.h.s. the number of screening operators has been inserted in order to match the
condition (1.51)). The screening contours must be suitably chosen to enclose the vertices
V in order to get a non-vanishing result.

With the choice (1.54) the condition on the neutrality of the charge can be satisfied

only if a is quantized and assumes the following values:

o= anm = %[(1 —n)ar + (1 - m)ay] (1.55)

( n,m non-negative integers ).

It is quite a remarkable property that the conformal dimensions A, ,, corresponding
to these values of a precisely coincide with the conformal dimensions given by the Kac
formula.

Any correlation function which involves primary fields of minimal models can be rep-

resented as in (1.54) with the insertion of screening charges.
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In the above formulation the method proposed by Dotsenko and Fateev is somewhat
heuristic. A deeper understanding of why it works has been given by Felder [?®], who stud-
ied the properties of a cohomology underlying the representation of the minimal models.
The reason why one has to perform the contour integration over the screening charges is
due to the fact that in this way one projects out from the highest weight representation
the subspace spanned by the null vectors.

As an example of the above procedure let us consider the 4-point correlation function
< ®n,m(00)®1,2(2)@1,2(1)@n,m(0) >

which is expressed through

$ 0 < Vi (00 Ve s (Ve () Ve (0)7:0) >

There are two independet contour integration (either from 0 to oo or from 1 to co ) which
correspond to the two independent hypergeometric functions I,I> which solve the second

order differential equation satisfied by our correlator. The integrals I;,l; are given by:

h= [ a1 - 2 =

T+ 1)(—a—b—c—1)
B I'(—a—¢)

L= /D dvv®(1 —v)*(z —v)° =

_ yater1 @+ (e +1)
I'(a+c+2)

F(—c¢,—a—b—c—1,—a—¢;2)

(1.56)

F(=bya+1,a+c+ 2;52)

F(a,b,¢,d) is the hypergeometric function [29],

So far we have limited ourselves to consider only the chiral part of the conformal theo-
ries. However the complete correlator has both analytic and antianalytic pieces. Assuming

that the physical vertex operators have spin 0 ( & = & ), the full correlator is of the form
G(z,2) = > Xi;Li(2)I;(2). (1.57)
2%

The coefficients X ; are found by requiring G(z, Z) to be monodromy invariant ( the chiral
pieces I;(z) transform linearly into themselves: I;(z) — g¢;xIx(2) when z winds around the

points 0,1,00 ).
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For the case at hand we get
G(z,Z) = sinm(a + b + ¢)sin wb|I1(2)|* + sin wa sin we|L(2)|? (1.58)

This expression can be shown to be crossing symmetric.
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1.4 OSCILLATORIAL REPRESENTATION OF THE VIRASORO ALGEBRA AND CHIRAL
VERTEX OPERATORS.

In the previous section we have seen how the Coulomb gas can be formulated in a
field theoretical language. It is possible however to rephrase the Coulomb gas emphasizing
another point of view, namely its algebraic aspect.

It turns out that there are two equivalent algebraic versions of the Coulomb gas; one
is bosonic, the other one is fermionic.

It is important to know all the different versions of the Coulomb gas because, though
they are all equivalent, one version can be preferred to solve specific problems. In particular
the algebraic formulations are more suited to study the representation theory, while the
field theoretic versions are more suited to explicitely compute the correlation functions.

As for the two different algebraic formulations, the fermionic one goes back to the
original work of Feigin-Fuchs [?1] and it is realized in terms of semiinfinite forms con-
structed with tensor fields on the circle S'; the space of the semiinfinite forms carries
a representation of the Virasoro algebra. The bosonic version [29~32 gives a representa-
tion of the Virasoro algebra realized in terms of oscillators. The equivalence of these two
representations goes under the name of boson-fermion correspondence 331,

Here we will present the oscillatorial version following in particular the reference [30].
The oscillator ( Heisenberg ) algebra is a complex Lie algebra defined by the basis

{an,n € Z} with the commutation relations

[am,an] = MO, n- (1.59)

ag is a central element since it commutes with any given a,, .

An irreducible representation R of the Heisenberg algebra is spanned by the monomials
ay..aln |0, p >,

where k; € Z4; |0, > is called the vacuum vector of R and satisfies the properties:

an|0,p>=0 for n>0
(1.60)
ao|0, p > = p|0,p > .
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We limit ourselves to consider u a real parameter.
A positive-definite controvariant hermitian form < *|* > is introduced on R assuming
that the monomials

1
ah a'linn 0, >

N

form an orthonormal basis ( in particular the normalization condition < 0, 1|0,z > holds).

The hermiticity is introduced by the relation
at =a_, (1.61)

In terms of the oscillator a, we can write down an explicit representation of the
Virasoro operators L., which satisfy the Virasoro algebra (1.5).
They are defined as follows:

oo 1 n—1
La(p) = (ao + pn)an + Za_jan+j + 3 Z Qjn_;

j=1 j=1
%) 1 n—1

Lon(p) = (a0 — pn)an+ Y @ n_jaj + 3 D a—nija-; (1.62)
Jj=1 Jj=1

1 co
Lo(k) = 5(a0® — p*) + > a-ja;
j=1

( mis a positive integer ).

The central charge c is related to the c-number parameter p by:

c=1-—12p%. (1.63)

It is also possible to introduce a hermitian coordinate gy as conjugate to the momentum
ag:

(90, @n] = i8n0- (1.64)

In terms of a complex variable z we can write a free scalar field ¢(z) as:

oo

$(2) = qo — i(ao — p)log z — i Z[(E“:—E) . (9;;1) 2. (1.65)
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A vertex operator of momentum t is defined by:

Vi(2) =t exp itd(z) := exp (¢ Z(f—;ﬁ)z") exp (—t Z(%")z—") exp (itgo)2"(®~#)  (1.66)
n=1 ) n=1

( in a normal ordered expression a,,n > 0, is moved on the right of a_, and ag on the
right of go ).
Vi(z) is a primary field since it satisfies the commutation relation (1.13) with Ln(x).

Its conformal dimension is
.t2
h(t) = 3 +pt = h(—2p —1).

As we have seen in the previous section we can introduce two screening operators
J+ = Vi, (2), having conformal dimension 1 ( t3 = —p++/p? + 2 ). The screening charge
operators @+ = § J4 commute with all L,(x) but satisfy

90, Qz] = £+Qx. (1.67)

The ket vacuum |0,p > satisfies the right property of conformal invariance (1.16)
(Ln(p)|0,p >=0 for n > —1 ). However since from (1.61) it is

Lo(p)' = L_n(—p) (1.68)
it turns out that the bra vacuum which satisfies the conformal property (1.17) is < 0, —p|:
<0,—plL_p(p)=0  for n2>-1. (1.69)

The bra vacuum < 0, —p| is however the hermitian conjugate of the ket vector

10, —p >=lim V_,(2)|0, u >= exp —(2inq0)[0, 1 > . (1.70)

This has the consequence that the correlation functions must be computed using the

positive-definite inner product on R, but the bra vacuum must be reinterpreted according
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to (1.70). Moreover, unless u = 0, the oscillator representation of the Virasoro operators
is not unitary.

The primary fields correlation functions < V;,(z1)...V;, (zn) > are defined through the
radial ordered product

<Viu(21)Vio (2) >=< 0, —p| B[4y (21)-. V2, (22)]10, 1 > (1.71)

As a consequence the charge neutrality condition (1.51) follows naturally:

S ti+2u=0 (1.72)

Of course the correlation functions computed using the prescription (1 .71) give the
same result of eq. (1.50).
In this framework the singular vertex operators @,i(t, z) which correspond to a null

vector |x > of eq. (1.25) is introduced by the relation:

,%(t,2) = }( dz, / " dze_y... / d21 Ve, (20). Ve (21)Vi(2) (1.73)
C, z z

The contour integration C, encloses all the other points.

The equivalence between this procedure and the other one presented in the previous
section is quité obvious.

A final remark concerns the fact that this procedure can be easily generalized to the

super Virasoro algebras, which can be realized in terms of boson and fermion oscillators.[2°]
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1.5 THE WZW MODELS.

So far we have discussed conformal theories characterized by having central charge
¢ < 1. There is a theorem due to Cardy [*4

which states that theories having ¢ > 1 have necessarily an infinite number of primary
fields. It is however possible to characterize a class of ¢ > 1 theories, the so called rational
conformal field theories, in the same way as done before for the minimal models. [3%:36]

The theories of this class are invariant under a chiral algebra A which admits the
Virasoro algebra as subalgebra. In these models the states are organized into a finite
number of representations of .4 and it is possible to extend the notion of highest weight
vector and primary fields introduced for Virasoro to the full chiral algebra .4 ( in general
primary fields for the Virasoro subalgebra are descendents fields w.r.t. the full chiral
algebra A).

Among the RCFT, there exist the so called Wess-Zumino-Witten models [37=%°] which
admit a lagrangian formulation.

The fundamental fields in these theories are a set of scalars g(¢), taking values in a

compact Lie group G.

The action Sy for these models is given by

Sap = —= | d2Etr(Bag™t8%g) + kT'(g)

4)2

1 (1.74)
T(9) =54 / d*ze*PTir(g7" Oagg ™  Opgg ™ 049);

A and k are dimensionless coupling constants ( k necessarily integral ). The Wess-Zumino
term I'(g) is an integral over a 3-dim. manifold whose boundary is the 2-dim. space.

The action is invariant under the transformation
g — Q(z)g(z)

( where Q,) € G) which gives rise to the Kai-Moody algebra.*!] As a consequence of this

symmetry the chiral current
a a 1 -1
J(z) = J(2)t* = —ikazgg (1.75)
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( here t* are the antihermitian matrices representing the Lie algebra [¢2,1%] = F25¢t¢ of the
group G ) is conserved:

8:J(z) = 0. (1.76)

The current J%(z) is on the same footing as the stress-energy tensor T'; it generates
a current algebra G, while the full chiral algebra 4 is given by the semidirect product of
G with the Virasoro algebra. Besides (1.8) the currents T'(z), J%(z) satisfy the following
O.P. E.: ‘

T(2)7%(w) = (;z—_—lw—)zJa(w) + (z—_l—;;)-awﬂ(w) +..
ab abc (1'77)
J(2)J(w) = (zk_éw)z P J(w).

Here k is the level of the Kag-Moody algebra and it is related to ¢ by the following formula:

kD
Cv+k’

(1.78)
where D is the dimension of the Lie algebra and cy is defined through
CV&ab — facdfbcd_

The current algebra (1.8,1.77) continues to be satisfied if one expresses the stress-

energy tensor T'(z) through the Sugawara construction:

kdimG ]
(z —w)2"

lim [7%(2)J°(z) -

79
P (1.79)

1
T(z) = ——: J° (z) :=
() = g T ET)
The primary fields for the chiral algebra A are defined to be the operators which
satisfy the O.P.E. (1.46) together with

t

J(z)Vi(P) = _a'PVz(P) + . (1.80)

z

(1.80) implies the following Ward identity:

27



< JN2)Viy(21)-. Vi, (z) >= Z (zt%j < Vi, (z1)...Vi (zn) > . (1.81)
k=1 t

Using the projective invariance the eq.(1.81) can be rewritten as:
D ot < Vig(21).Vin(22) >=0. (1.82)

k=1

The modes of the J*(z) current become the Ka¢-Moody generators:

J = fdww"’.]“(w) (1.83)

( n is an integer ).

The operators L,,J%,, obey the following commutation relations:

[Ln’ Jam] = _mjam—i-n

e 7] (1.84)

k
'2—Tb5ab(5m+n,0 + fabCJcn+m

( the commutator [L,, L,,] is given by eq. (1.5) ).
An operatorial interpretation for the WZW theories exists as well as for the minimal

models. The h.w. vector |V; > is defined to satisfy eq. (1.19) and

T%|V; > =1%]V; >

(1.85)
J%|V;>=0  for n>0.
The h.w. representation of the chiral algebra A4 is spanned by the vectors
LonLn,J® oy J |V > (1.86)

In terms of the modes-operators the Sugawara relation (1.79) can be rexpressed as:

~(k+cv)ln= Y :J*mI nem (1.87)

—c0
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This relation means that the chiral algebra A is contained in the Kaé-Moody enveloping
algebra. The Virasoro descendent L_, in (1.86) can therefore be written in terms of the

Kac-Moody descendents J*_,,.

A consequence of eq. (1.87) is that any h.w.r. of A admits a null vector: applying
(1.87) to |V; > we find

. 4
(J* 1t + Sk + ev))|V; >=0. (1.88)

Equation (1.88) fixes the conformal dimension of |V; > to be:

(1.89)

where c¢; is the Casimir ¢; = ¢*;#%; in the ¢ representation.
The null state (1.88) implies that the differential equations which follow from the
Ward identities for the primary fields correlation functions can be completely solved, as

with the minimal models.

We now follow the ref. [#2%4 {o show that the WZW theories admit a Coulomb
gas representation realized in terms of free bosonic fields. In order to be definite we limit
ourselves to consider the si(2); Kaé-Moody algebra. The extension of this procedure

to generic WZW theories is quite straightforward, the main complication involves group

theorethical factors.

In our particular case the Lie algebra structure constants f2%¢ are precisely f2%¢ = e®?¢;

the parameter cy = 2 and the dimension D = 3.

The Ka¢-Moody currents J*(z), J3(z) can be constructed from a free boson ¢y com-

pactified on a circle of radius vk and the Z; parafermions v, ! [45] *;

* We remember that the parafermions 1,1 describe a CFT with central charge ¢ =

Z(kk_;;); they have fractional conformal dimension (1 — %) and are called in this way since

they do not obey neither commutation nor anticommutation relations.
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TH(z) = VEb(z) exp [i‘@?]

J () = \/Et,bf(z) exp [__196%)] (1.90)

J3(z) = Vk8, .

The parafermions v,%1, in turn, can be constructed in terms of 2 bosons¢;, ¢; on a
lorentzian lattice of signature (4,—). The former is compactified on a circle with radius

vk + 2 and has background charge

&p, =

| =

k+2;

the latter has negative signature and is compactified on a circle of radius VE:

¥(:) = 3 (azqsz - \/5',‘;—26»1) exp =2
¢'T(z) = % (6z¢2 + 1/ kkjaz(ﬁl) exp [_—7;9{)2]

Using this representation for the parafermions it is possible to represent the s@(2)s

algebra in terms of the 3 bosons ¢1, @2, ¢s.

(1.91)

The stress-energy tensor T(z) for this WZW model is the stress- energy tensor of a
free-fields system:

1 1 1
T(Z) = Zaz¢laz¢1 + Zaz(,bzaz(ﬁz — Zaz(,ﬁ()azqﬁo
: (1.92)

1
——“-"8;8;
HEW A é1

In this theory there are several conformal dimension 1 screening operators J; only one

of them however, J , commutes with the Kac-Moody currents:

1
Vk+2

For what concerns the full chiral algebra primary fields V, they are expressed as

J = [0:¢2 + +/(k + 2)k0:¢1] exp | ¢1] (1.93)

Vau,w = exp [Ado + pé1 + véa].
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The coefficients A, i1, v have to be determined in such a way to satisfy the O.P.E. (1.46,1.80).
The primary fields can also be labelled as V;, ., since
T(2) Vi (0) = 23V m(0) 4+ 28,7} m(0)
Z)V¥im = —Vim —0zVjim
’ L z (1.94)
TV (0) = Z25,m(0)
with

j(j+1) :
A =———= 1.95
J k+2 ( )

and j,m are integers or half-integers (—j < m < 7).
The correlation functions can now be computed in the usual way. For instance the

4-point correlation function of the fields in the fundamental representation j = % is given

by:
< Vo (0) Vi (2)Va (1)V-(c0) 7{ 2y (1.96)
The tilde means that in the operator V is inserted the “vacuum charge”; we have put

+ = (%,:{:%) Choosing two independent integration contours we get for the result the

following:

L 1 k
E+2 k+2°k+2”

1 3 k+4
1.9
F<k+2,k+2,k+2,z>, ( 7)

and

where F(a,b,c,d) is the hypergeometric function. The above results correspond to the two
different solutions of the Knizhnik-Zamolodchikov equations of ref. [39].

We conclude this section pointing out that WZW theories provide a scheme to analyze
rational conformal field theories. The so-called coset construction [4®! is in fact a powerful
method to produce RCFT. The basic idea goes as follows: given a compact Lie group G
and a subgroup H C G, the Virasoro generators L,® and L, with central charge ¢© and
cH respectively can be constructed in terms of the Sugawara relation (1.87).

The generators Ln% =L,%— L7 can be associated to the coset % The LnTGI' satisfy

a Virasoro algebra with central charge

e =c%cH (1.98).



In particular the minimal models of the unitary series can be obtained from the coset

SU(2)x x SU(2):
SU(2)k+1

withm =k +2=3,4,5,....
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2 THE FERMIONIZATION OF THE COULOMB GAS

2.1 INTRODUCTION.

In the previous chapter we have discussed in detail the Coulomb gas prescription
which enables us to compute the correlation functions for the conformal minimal models
and WZW theories.

As we have already stated, so far the Dotsenko- Fateev realization has been the only
field theoretical formulation of the Coulomb gas.

The aim of this chapter is to provide a fermionic realization of the Coulomb gas,
exploiting the possibilities offered by real weight chiral b — c systems.

Firstable we should say that it is reasonable to expect that there exists a fermionic
field theory formulation of the Coulomb gas. The duality between bosons and fermions
in two dimensions is in fact a well-established property (free fermions can be bosonized
on any Riemann surface [47_50]). Moreover, the semiinfinite forms which appear in the
Feigin-Fuchs (21! formulation and are constructed starting from bases of real (or complex)
tensor fields, can be envisaged as bases of b — ¢ systems.

The fact that a free chiral anticommuting b—c system of suitable (in general irrational)
weight can be used to describe any given minimal model has been indeed proven in ref.
[61,52]. It is worth to mention that the interest in considering such kind of fermionic
theories is not merely an academic one. The main advantage of the b — ¢ system approach
w.r.t. the usual one lies on the fact that the b — ¢ systems can be formulated from the very
beginning as chiral theories. This in turn has the consequence that the generalization of
the Coulomb gas prescrition in the b — ¢ system framework to CFT formulated on higher
genus Riemann surfaces can be done in a straightforward way. That is not true when the
Coulomb gas is described as a free boson. Moreover in higher genus Riemann surfaces the
b — ¢ framework takes automatically into account geometrical factors such as curvature

and holonomy.

Even the “charge at infinity” acquires a topological meaning and the ¢ charge neutral-
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ity condition” (1.51) is seen to be a consequence of a “generalized Riemann-Roch index”.

This chapter is structured as follows: at first we introduce the real weight b—c systems.
We remark that these are new objects, since in the standard literature (53361 only integral
or half-integral weight b — c systems are considered. The quantization of the b —c system is
performed in an operatorial framework. Then we are able to prove that such a b—c system
is equivalent to the chiral part of a free boson with a charge at infinity. This equivalence
is a reflection of the above mentioned duality betwen bosons and fermions. It is likely to
emphasize that such a duality appears at this very fundamental level and the equivalence
between the bosonic and the fermionic Coulomb gas prescriptions is just a consequence of
it. As a corollary any CFT which can be realized in terms of free bosons (like the WZW
models and the parafermionic theories discussed in the previous chapter), can be expressed
in terms of the corresponding b — ¢ systems too. 1571

The key point of our strategy to use the b—c system as a recipe to compute correlation
functions for CFT is based on the fact that it is possible to encode in the bases themselves
over which the b and ¢ tensor fields are expandéd, the information about the primary fields
insertions under consideration.

Along the same line real weight commuting § — v systems can be quantized too. It
is not clear if these systems play any role in the CFT. It is likely however that they are
someway connected with the Coulomb gas representations of the superconformal theories.

In this chapter we limit ourselves to treat the genus zero case only. The higher genus

case will be dealt in the next chapter.
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2.2 REAL WEIGHT b — ¢ SYSTEMS.

At first we have to introduce a real weight chiral b — ¢ system and the corresponding
bases. This system is described in terms of two (anti)-commuting fields b and ¢ of weight
A and (1-)) respectively. Unless otherwise specified it will be understood that ) is a real
number. Let us start with the anticommuting case. The energy momentum tensor of the
system is

T = (1 — \)8bc — Abdc (2.1)
A system of bases for the b fields on the sphere is given by: (1)
FM(2) = (Py — P_Y*A(z — Py)i™2(z — P_) ™9 (dz)* (2:2)
where j € Z+ Al and | € Z7 is a sector index, namely when going once around P,
fOD s gmidl gD, (2.3)

When A is rational, i.e. A = =, with m,n relatively prime integers, then there are only
n distinct sectors | = 1,2,...,n . When ) is half-integer we recover the Neveu-Schwarz

(I =1) and the Ramond (I = 2) sectors. For the c fields we have similarly the bases
fioap(®) = (Pr = PL) 271z = P)THHAT (o - p Y1 (24)
with the same conventions as above, so that the following duality relation holds:
57§ Fo @) = 8 (25)

where 2,7 € Z + Al. The contour integral winds once around P, . Notice that for integer A
eq.(2.4) gives the 2\ — 1 zero-modes of the c fields.

We expand now, in each sector [, the fields b and ¢ :

J J

)= V) o)=Y AR ) (2.6)

() P_ and P, are two points singled out on our sphere. We use this non-standard
notation as an introduction to the higher genus case. The normalization is chosen in such

a way that the usual notation is recovered by sending P, to 0 and P_ to infinity .
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and assume the following anticommutation relations
(B ey =8 {6 = {eici} =0 (2.7)

For each sector the ket and bra vacua are defined as follows [3!:

¥H0 >,=;< 0l¢;' =0, for i <A+A1-1)—-1; 0

c;-|0 >1=1< 0|p"! =0, for7 > A +m (28)
The bar denotes the non-integer part of A({ —1) . When A is integer or half-integer the
bra vacuum so defined does not coincide with the one usually introduced in the literature
because it automatically takes into account the zero-modes insertions [*8 and moreover
1 < 00 >;= 1. This situation reflects in this language the discussion after eq.(1.70).

Our choice of the vacuum comes from the requirement that 4'(2)|0 >; be non singular

in z = P, ; on the other hand the first value of j corresponding to non-negative frequency
in the expansion of b(z) is just

J=A+A(1-1).
The propagator is defined as follows:

1 < 0p(2)c! (w)]0 >, if [¢(2)] > I¢(w)l 5
5Dz, w)=,<0|R (bl(z)cl(w)) |0 >;=

=1 <O (w)b!(2)[0 >, i [C(w)] > [¢(2)] -
' 2.9
where R denotes the radial ordered product and

_(=—=P)

C(IB) - (’J) __P_)'

Inserting the expansion (2.6) in eq. (2.9) we get

( r) .7 3 .
OOz, ) 2 A=D1 7 () ffoap(w); if [¢(2)] > [C(w)] (2.10)

=Y 1 (), if [¢(w)] > 1¢(=)] -

Then the expression for the propagator S (z, w) is:

1 s P \MNED o p N\ T2AH-A(0SD) ~
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The sum 1 — 2X of the exponents plays the role of a total charge as it will be seen later on.
It is easy to see that there is a direct connection of S(*¥(z,w) with the covariant delta

function for A differentials in the sector [

Al(z,w) =Y f7(z) i _an(w) (2.12)

J

o) = f ALz, w)g(w)  (213)

where g(z) is any smooth A-differential with the multivaluedness given in (2.3).
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2.3 EQUIVALENCE BETWEEN FERMIONIC AND BOSONIC COULOMB GAS.

As explained in the introduction our aim now is to generalize the bases (2.6) in such
a way as to record in the bases themselves the insertions of suitable fields which will be
assimilated to the vertex operators of the bosonized formulation. Specifically our purpose
is to arrive at eq.(2.23). To this end we notice that the propagator S(A’l)(z,'w) can be seen

as the propagator in the sector I = 1 with the insertion of a “\-spin fields” at the points

Py
b 1 <OR (SRR () (w)SH(PL) [0 >
S5, w) = 1 < O|R(S—HP_)STH(Py)) |0 >1 (2.14)

w

eq.(2.11) are the effects of the A-spin field insertions ST!(P;) and S™!(P-). The weights

+,1 et z—p, \ M1 z—p_ \ "D
where S® are the identity operators. The factors (ﬁ) and ( —~ P‘_) in

of the A-spin fields can be calculated as shown below and are equal to

:i:%/\(l “[£30-D+23-1]

1—2X
The factor (i—:—%ﬁ) is due to the total charge (see below). In the standard formalism,
when A is half-integral the spin fields can be inserted at any points on the sphere. In our
framework, in order to reprbduce (2.14) with the insertion of the A-spin fields and of the

charge in arbitrary points we have to modify the bases in the following multiplicative way:
]EJ(-A’I)(Z) :(P+ _ P_)j—A—A(;ll)(z _ P+)j—>\—k(l~1)(z _ P_)—j—i—A—l-{-A(l—l).
. (z _ Pl))\(l—l)(z _ Pz)—)\(l—l)(z _ Ps)l—z)\(dz))\
(2.15)
P ap(2) =(Py = PLy D pymim e XED(; _ p_ a0,

. (z _ Pl)—A(l—l)(z _ Pz)A(l-—l)(z . P3)2>\—1(dz)1—-A

The exponents of (z — P4) in eq.(2.15) is an integer and [-independent. In particular
(z _ P+)j—-A—/\(l——1)(z _ P_)—j+A—1+A(l—1) ___(z _ P+)k(z _ P_)—k-—l
E=G-2=Xl-1)eZ
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Therefore in this formalism we have only the vacuum |0 >;(?).

Using these modified bases we obtain the propagator

_ 2(—1) _ YR 1—2)
FOD (2, w) = 1 z— P z— Py z— Ps (d2) (dw)' >
(z—w) w—P1 ’U)—Pz w—P3

(2.16)

Notice that with the use of the bases in eq.(2.15) the propagator is independent of the
points Py where the bra and ket vacua are defined. Just like (2.11), the sum (1 — 22)

of the exponents in eq.(2.16) plays the role of the total charge. When A is an integer

)—2)\+1

there are no A-spin fields and the factor (-""—P;”- is just the effect of the zero-mode

w—P3
insertions, the number 1 — 2\ being the Riemann-Roch index on the sphere. Obviously
the c zero-modes can be inserted at arbitrary points on the sphere. In our formalism this

is achieved by a further modification of the bases:

. 2A-1
fy"l) = (z — P) "Mz — P_)7 it H (z — P) 7Y (d2)*
i=1

and
221

foian(® = (=P 7z = P)I> T] (2 — Pi)(d2)* (2.17)
i=1
The propagator becomes
22—-1
o 1 w— F; _
S(A,l)(z,w) = (z — w) H (z —5 ) (dz)}‘(dw)l A
i=1 *

s <ORE ) 0>, L)

The RHS refers to the standard formalism. From eq.(2.16), for A € R, the charge 1 — 2

(2.18)

can be seen as a sort of generalized Riemann-Roch index. As we will show later this is
true in any genus. This result plays an essential role in our approach; in particular the
background charge for the bosonized version of the minimal models in higher genus is just

- equal to the generalized Riemann-Roch index (2A —1)(g —1) , A € R.

(2) With this basis the first non-negative frequency in P, in the expansion of b(z)|0 > is
just (z — P4)? . This reflects the fact that we have inserted the A-spin fields away from

the points Py where the bra and ket vacua are defined
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As a natural extension of the above procedure we introduce a “ fat ” b — ¢ system (we
denote it as B — C system). To do this we reshuffle the location of the A-spin fields and
of the zero modes and represent them as insertions of V-fields at points P;. As we will
show these fields V¢(P;) have to be assimilated to ( the chiral part of ) insertions of vertex
operators : €'*x#(Px) :: namely the basic relation which allows to identify this forma.lism
with the standard one is the following:

< 1 V*(Pr)b(2)e(w) >

5(zw) =1 <OR(BEICW)0>1= — 7 gy >

(2.19)

These insertions are obtained by modifying in a suitable way the b — ¢ system bases. The
principle which drives us is the following: the bases are assumed no more to be holomorphic
outside P_ and P, but a well defined behaviour is assumed around the points P; where
the primary fields are thpught to be inserted.

For the B field we have the expansion:

B(z) = ZBJ (A)

iy n (2.20)
by P ’—P_J~A+IZ—P i=A &
( )(Z) ( = (Z)—P )j(—A—l-l +) H(z “‘Pz) '(dz)k.
- i=1
The corresponding expansion for the dual C fields is
C(z) = Z Cigly _x(2)
(2.21)

, L P, )-itA-1 ™ _
9a—n(2) = (Py — P-)” JH(( P;;)) :L+A E(Z—Pi)_a'(dz)l_A,

where j € Z + \. Also in this case we get a total charge conservation expressed by the

constraint
S a=1-2x (2.22)

This constraint is required as a geometrical consistency condition for the B and C bases,
specifically by the fact that they must satisfy the right tensorial properties. The “fat”
propagator S(z,w) is given by:

S(z,w) = (Zi I (z:l;ji) ' (do) (dw)' (2.23)

'w)t w
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According to eq. (2.19), the correlation functions < []; V(P;) > can now be computed
with a procedure similar to the one introduced by Dixon et al. in [59. The stress-energy
tensor satisfies the following OPE with any weight h primary field V(P):

RV(P) |1
z—P¢ " z-P)

T(2)V(P) = 8pV(P) (2.24)

Therefore

< T(2)V(P,)..V(P,) >= Z[(z —h}%)z o fiP}) SI<V(R)-V(R) > (229)

(2.25) gives us a set of first order differential equations which can be solved to obtain the
correlator < V(P;)..V(P,) > . In our case we have

<T(2)V(P)..V(P,) > o B ) 1
<V(R).V(P)> }1_23” (1= A)0: — A8w][S(z,w)  —w

] (2.26)

By solving the equations we get

< H V¥(P;) >= const§ (Z a;+2X — 1) H(zp‘. — zp, ) X% (2.27)

1<j

The conformal weight of the vertex operator in P; is given by: (3
1_
hs, = & (& +2X-1) (2.28)

The vertex operators satisfy a duality relation since the same conformal weight is obtained
both from &; and from 2&, — &; ( here 2&p =1 —2)). The central charge of the fermionic
system is:

c(A) =122 + 120 -2 =1 — 1242 (2.29)

It is clear at this point that the Ansatz we have made, namely that the modified bases
represent primary fields vertex operators is indeed correct.
It is also evident that the b — ¢ system of real weight X share the same features of a

bosonic field ® with a background charge at infinity.

() For X ¢ % a similar formula can be found in (69,
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We recall a few basic facts about it. The stress energy tensor is
1 . 2
Tzz = “ZazQSazQS + 7‘0‘06 qu
where —2ay is the charge placed at co. The central charge is
c=1-240
The primary fields are represented by vertex operators Va =: "¢ : of conformal weight

2
ha' =o;" — 20500 = hZao-—a;

Therefore the relation between the two formalisms is established by setting:
& =v2a; & =V2a (2.30)

In particular

as for the chiral part. We notice however that the condition

> i =2a0 (2.31)

for the non-vanishing of the correlator in the Coulomb gas case, is obtained in the b — ¢
formalism as a topological prescription ( generalized Riemann-Roch index).

The electromagnetic duality (1] in our framework is expressed by the transformation
A—(1=2X).

Therefore a free boson with charge ay at oo is equivalent to a b — ¢ system of weight
1
A=+ V200

As far as concerns the Coulomb gas, the two formalisms can now proceed in a parallel
way. In order to fulfill the condition (2.22) we have in general to introduce screening

charges in the correlators. A screening charge is determined by the condition hs =1 , i.e.

&=dy =dap+/(60)? +2 (2.32)
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As a consequence the allowed charges & are quantized:

1
iy = (1= 7)as + S(1— )i (2.33)
If we specialize ourselves to the models of the unitary series we get in particular
1

c:l——(-i—— &) = t——m—— (2.34)

m(m + 1) 2m(m + 1)

Therefore the relevant b — ¢ system one has to consider will have
I S (2.35)

2 /2m(m+1)

So, in general A will be irrational, apart from an infinite series of special values (m =
8,49,288, ...).

We conclude this chapter with a couple of remarks. The former concerns the fact that
the procedure we have outlined allows us to compute not only primary fields correlation
functions but also correlation functions involving composite operators, built up with pri-
mary field operators. To be explicit let us consider the case of the current J(z) = i8,®
introduced in (1.52).

In the fermionized version J(z) is represented by J(z) =: bc : (z). Since the fields
b(z) and ¢(z) turn out to have charge +1 and —1 respectively, the correlation functions

involving J(z) can be computed by taking the finite part of the insertion

]ir% Vi(z + €)V_1(2) :

< J(2)e. >=<: ViV_g 1 (2). > - (2.36)

The other remark concerns the application of this formalism to the conformal theories
which are expressed in terms of more bosonic fields. In this case the total correlation
function is given by the product of the correlation functions of any constituent b — ¢
systems. For instance the correlation function < Vg, ...Va, > for the su(2); WZW model

which involves 3 bosonic fields, can be expressed as follows
< VagoVan >=< VigoVip >1< Va1V n >2< Va1 Vam >3, (2.37)

where < ... >; ,i=1,2,3 refers to the correlation functions realized in terms of the b;,c;
system. The corresponding charges for the primary fields operators are associated with

the values A, p,v which enter in the primary field operator after eq. (1.93).
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3 REAL WEIGHT b — ¢ SYSTEMS IN HIGHER GENUS RIEMANN SURFACES.

3.1 INTRODUCTION.

Conformal field theories formulated on higher genus Riemann surfaces have received
attention mainly in string theory, in the context of multiloop amplitudes within the

Polyakov perturbative expansion scheme .[52]

However higher genus CFT are not relevant only in that case. The modular invariance
requirement for a CFT on a torus, for instance, [63:%4] specifies the operatorial content of
the theory. Besides that the problem of defining CFT in higher genus Riemann surfaces
is an interesting mathematical problem for itself, since it deals with the complications

introduced by the non-trivial topology.

Here we will face the problem of extending the results of the previous chapter to real
weight chiral b— ¢ systems in higher genus R.S. The main motivation for that lies of course
in the application of the results we get to analyze higher genus CFT along the same lines
as for genus 0. This means that we want to mimic the construction carried on the complex
plane to describe a CFT on a generic Riemann surface. It makes sense to do so because the
factorization property between chiral and antichiral pieces discussed in ch.l holds in any
genus. We are therefore motivated (2! to single out on the Riemann surface two points Py
and P_ which play the same role as the North Pole and the South Pole on the Riemann
sphere. A suitably normalized abelian differential of the third kind allows us to introduce
an euclidean time 7 on the Riemann surface. P1 can be set to correspond to 7 = o0 and
can therefore be pictorially visualized as the point where a strings comes from the very

past and goes into the very future.

The material of this chapter is organized as follows: We deal first of all (section 2)
with the problem of generalizing bases of real weight A differentials to arbitrary genus.
Then, inspired by the calculations of the spin field correlation functions, we apply these
results to calculate correlation functions of field insertions whose interpretation depends

on the particular b — ¢ system we are considering. To this end we introduce suitable b — ¢
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systems, both commuting and anticommuting, essentially characterized by the bases over
which we expand them. The bases contain the information concerning the field insertions
we want to describe.

In section 4 we test our formalism by rederiving known results of spin field correlation
functions and generalize them, by calculating correlation functions of spin fields for rational
A. In this case field insertions represent exactly spin fields. Finally in section 5 we apply our
method to bases of b — ¢ systems (“fat” bases) such that the corresponding field insertions
represent chiral vertex operators in minimal models. Finally, Appendix A and Appendix
B contain details relevant to Section 2 and Section 5, respectively. Appendix C is devoted
to our notation and conventions concerning theta function theory.

A few distinctive feat}ues of our approach deserve to be pointed out. Qur bases allow
us to define bra and ket vacua both depending on the Riemann surface. This is why we
can generalize in a natural way our previous approach on the sphere. Furthermore we
obtain the conservation of the total charge in the correlation functions, eq.(3.30) below,
as a consequence of geometrical consistency on the basis (the total charge corresponds to
the higher genus ”charge at infinity” of the Coulomb gas approach). This is an example of
the connecfion between conformal field theory and geometry exposed by the b — ¢ system

approach.
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3.2 REAL WEIGHT DIFFERENTIALS.

In this section we introduce and give the explicit form of bases for real weight differ-
entials. This generalizes the work of refs.[2,58].

Real weight differentials in general are well defined only on a covering (in general with
infinite sheets) of a Riemann surface ¥.. However for brevity we will refer .to them as A -
differentials on X. Let Py, P_ € ¥ be two distinguished points in general position which
for g = 0 can be identified with 0,c0. In the following, z+ will denote local coordinates
vanishing at Pi. For A € R we define a )\ - differential holomorphic outside P+ with the

following behaviour in a neighborhood of these points:
fJ(»A’l)(Zi) _ agk)i(l)zi:j—s(k)(l + O(zi))(dzi)A _ hgk'l)(zi)(dzi)k, (3.1)
s()) = %”— Ag —1),
where j € Z+ s(A) + A(l —1), l € Zt and agx)i(l) are constants. When A = 2, with m
and n relatively prime numbers, there are only n distinct sectors, i.e. [ =1,...,n.
When we go once around P, along a trivial homological cycle separating P, and P_,

Al 27 F1-— + Al
h(' ) e A(l g g)h(' )' (3.2)

For instance when A € Z 4+ 1 the Neveu - Schwarz (I =1) and the Ramond (I =2) sectors
are recovered 51,

We remark that fJ(’\’l)(z) is a well defined )\ - differential on ¥ only if [ = 1 (single-

valuedness of hg-’\’l) in P;), and

Q) = -2s(A)+1=(2r—1)(g—1)

is an integer (single-valuedness in P_). Notice that the same information can be gotten
from the Riemann-Roch theorem. Indeed when A > 1, g > 1, the A - form fJ(-A’l)(z)
is holomorphic for s(A) < j < —s()), therefore eq.(3.1) gives all the zero modes of the
Cauchy - Riemann operator 8 coupled to X - differentials and therefore @Q(A) must be an

integer.
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Due to the Riemann - Roch theorem eq.(3.1) must be modified in a few specific cases
which are listed and treated in detail in Appendix A.

For X € % the Riemann - Roch theorem guarantees the existence and uniqueness
of fJQ’l)(z) up to the multiplicative constants a_(iA)""(l) (ag-x)_(l) is completely determined
once the a_(iAH(l) is chosen). For arbitrary A we will show the existence of fJ(-’\’l) (z) by
explicit construction. The uniqueness follows from the fact that given two X - differentials
satisfying eq.(3.1), their quotient is a merorﬁorphic function with g poles in general position;
therefore, by the Weierstrass (Noether) gap theorem [8%), this function is a constant.

On X the euclidean time can be defined to be the harmonic function
Q
r=Re [ 1), (3.3)
Qo 2

where f(_li (z) is the third kind differential with simple poles in P. with residues +1,
2
normalized in such a way that the periods along the homology cycles be purely imaginary;

its explicit expression is given in Appendix A. The level lines

Q
Cr={Q € T|Re /Q 1) =, G

for 7 — 400 become small circles around P,

The dual f(jl_/\)l)(z) of fJ(}"l)(z) is defined by means of

1
2me

fo IOV () = 6. (3.5)

Let us start now with the construction of the X - differential fJQ"l)(z) in terms of theta

functions and prime forms. The expression

E(z, Py)ite(M)-22
E(z,P_)its(x) ?

is a (multivalued) X - differential with degree in P, exceeding that of fJ(}"l)(z) by 2s(A) —
2XA = g(1-2}). Since by the Riemann vanishing theorem [%6:57] the divisor of (P—g Py +A)
is gPy, we put

FOD (5 = E(z, Py Yo =22 gz 4 (5 — s(\) Py — (j + s(A\)) P + (1 — 2))A)
’ E(z, P_)i+s() 8(z — gPy + A)1-22 :

(3.6)
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where A is the Riemann class. The § - function in the denominator insures the correct
singularity in Py, while the 6 - function in the numerator guarantees the single-valuedness
of fJ(-A’I) (z). Since the latter has g zeroes, it follows that the degree of fJ(-A’l)(z) is precisely
2A(g - 1).

Using the definition of the o - differential (see Appendix C) and inserting the theta
characteristics, eq.(3.6) is generalized to the ) - differential with [{] - structure, i.e.

2= + (G — () Py — ( + s(N)P- + (1~ 20)A)
E(z, Py )~ i+ E(z, P_)its()

() = (22, (3.7)

where j € Z 4 s(A) + A(I — 1), I € Z+ (). For §,¢ = 0 eq.(3.7) differs from eq.(3.6) by the
constant term s(P4, ..., Py ) defined in eq.(C.8). When A =  then §;,¢; € {0, £,..., 221},
so that there are n?9 “[%] - structures”, n for each one of the a; and b; homology cycles.

However, for the time being, we will leave the “[%] - structures” undetermined. The dual

of f§A’l)(z) is

NOLLNOTE (2 — (G — s(A) + )Py + (5 + s()) — 1)P_ + (2 — 1)A)
E(z, P )i—*(V+1E(z, P_)—i—s(M)+1g(z)2A-1 (, |
3.8

where N(A,1,7) is a suitable normalization constant fixed by the condition (3.5), which,for

f(jl——A,l)(z) =

the sake of brevity, we do not write down explicitly.

The multivaluedness of f{l_ A,l)(z) is given by (3.2) with A replaced by 1 — ), so that
the integrand in eq.(3.5) is a well defined 1-differential.

To conclude this section we give the expression of the covariant delta function for

A - differentials in the sector [:

Al ]
A0 w) = 3 5 sy (w), (3.9)
j
that is, if g(z) is a smooth A - differential with the multivaluedness given in eq.(3.2), we
have
9:) = § A0 w)glo). (3.10)
(*) Of course when \ = ™, with m and n relatively prime, ! = 1,...,n represent the only

distinct possibilities.
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3.3 THE “FAT” b — ¢ SYSTEM IN THE OPERATOR FORMALISM.

We start with the chiral anticommuting b - ¢ system. It is a first order system whose
action is
S = / bdc, (3.11)
z
the fields b and ¢ being A and 1 — )\ differentials, respectively. The anticommutation
relations are

b, el =85, {50y = 0= {d, (3.12)

(g

where j € Z+ s(A) + A(I —1), I € Z+, X € R. In the operator formalism these fields are
expanded in a basis of A - differentials in such a way that the equations of motion 8b = 0
and dc = 0 are satisfied everywhere except possibly at Py. We use the differentials defined

in section 2 as bases to expand the b and c fields

J

8O(z) = > b fD(z), D(z) =D iy n(2)- (3-13)
g

For any A € R we define the vacuum |0 >; associated to %, following ref.[68] (for A = 0,1
or g =1 there are some modifications, see Appendix A), by requiring that

PU0> = 1 <0lcf =0,  for j<s(A)+u(l)-1;

, (3.14)
H0>1= <0 =0,  for j2>s(A)+pu(l),
1 <00 >;=1,
p,(l) = A(l - 1)7

where the bar denotes the non integral part of A(I — 1). Notice that the requirement
1 < 0]0 >;= 1 is consistent with the algebra (3.12).

Since they are going to play a very important role in the following, let us digress a
bit on the properties of the vacua we have just defined. They are different from the vacua
one usually meets in the literature *7~5%. First of all both |0 >; and ; < 0| depend on
the moduli of ¥. The second remark is that the vacuum ; < 0| accounts for the insertion

of the total charge @Q(A), which is entirely concentrated in P_. The subscript / means a
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further insertion of “A-spin fields” S~/(P_) and ST (Py)in; < 0] and |0 >y, respectively.
In particular as we will show below we have
1 < 0]§—YP2)

0>;= SHYP.N0 , 0| = ’
0> (PO >, 1 <0l = e 5+ AP0 o

where S7(P_) and ST}(P,) are the identity operators. We recall that for Q(\) € Z+ the
higher genus generalization of the standard (i.e. without zero mode insertion) vacuum are
defined by the requirement that 5()(2)|0 >z, ¢(*)(2)|0 >5 and 5 < 0]6(1)(2), » < 0]cP)(z)
be holomorphic in Py and P_ respectively. This condition gives |0 >g= |0 >; and

» < 0|c} =0, for 7 < —s(A);

5 <0 =0,  for j>1—s(N\).

If Q(\) € ZT, it is not possible to define a bra vacuum such that the exponents of z_ in the
expansion of 3 < 0[6(1)(z), 1 < 0|c!)(2) be integral. The solution of this problem is to use
a modified basis, where an “amount Q(X) of singularity” in P_ of the differential f§A’1)(zi)
( f(jl_ A’1)(2::{:)) is shifted to other points. As we will show, this corresponds to a shift in the
location of the charge Q(A). Moreover, using this modified basis in the expansion of the
fields 5(1)(2) and ¢(Y(w), the vacuum ; < 0| is defined by the holomorphicity condition
on 1 < 06 (z), 1 < 0]¢M)(z) in P_. An analogous argument holds for the vacua in an
arbitrary sector [. The bases representing A-spin field insertions at arbitrary points will be
discussed later.

After this digression concerning the vacua (3.13), let us compute the following prop-

agator
1 < Olb(l)(z)c(l)(w)lO >1, if Tz > Tw;
SO (z,w) = | < O|R(BD(2)cP(w))[0 >; =
—1 < 0]cB(w)bD(2)[0 >, if 7y > 7, .
: (3.15)

Inserting the expansions (3.12) into eq.(3.15) we obtain

o) ) .

Z'(s A+l —1f§>‘l (z)f1_)\z (w)a if 7, > Tw;

5O(z,w) = { TS (’A \ a=h (3.16)
= Xizsotun fi 7 (), if Ty > 7.
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To evaluate S(V(z,w) one looks at the behaviour of the right hand side of eq.(3.16) in a
neighborhood of P4 and in the limit z — w. A careful analysis similar to the one carried
out in [6] shows that

. _ 1 E(Z,P_.) Q(N)—u(d) E(Z,P ) u(l)
S0 = 5o (E(w,m) (E@fpﬁ)) '

. (5<_>_> OL)(z —w + (QU) — p()P + u(DP: — (22— 1)A) (5.1
o(w) OEI(@DN) — D) P- + w(D)Py — (22 ~ D)A)

That equations (3.16) and (3.17) coincide, can be seen also in another way: one considers

the propagator S(Y(z,w) in (3.17) as X - differential in z and expands it in the basis f](’\)(z)

5D(z,w) =Y o (w) £V (2), (3.18)
j
where
: 1 .
)= 3= § SOl w2, (3.19)
It is easy to verify that
o (w) = { faon@), 5 <s() + (), s
0, it 5> s(A) + () + 1,

(3.20)

iwy=4"%; if j < s(3) + w(l),
@lw) = {_fgl—x)(w), if 72> s(A)+p()+1, Tw > Tz

Notice also that S(l)(z,w) can be seen as the generalization of the Szego kernel to ) - and
(1 = X) - differentials in the w and z variables respectively.

Let us come now to the main point of this section (and a crucial point of our con-
struction), i.e. generalizing the bases (3.6,3.7) in such a way as to record in the bases
themselves the insertion of suitable fields (V-fields) which, as in ref.[51], will be eventually
assimilated to vertex operators of the bosonized formulation. The goal will be achieved

with the introduction of the bases (3.28) and (3.29). In the following we would like to
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motivate the introduction of these bases by discussing several intermediate steps that lead
to these equations, bearing in mind that the basic idea is simply to shift (inside the bases)
the singularities corresponding to the charge Q(\) and the spin-fields, from P, and P_
to generic points on ¥. The first step in this direction comnsists, following the procedure
already seen for the genus zero case, in locating the zero modes (whose total number is
Q(A)) outside the point P_ (zero modes exist only when Q()\) € Z7 in the sector | = 1;
however their presence is reflected in any sector [). This corresponds to expanding the b

field in terms of (68!

12 E(z, P)oE](= + )
E(Z,P__)J a(A)+1E(z,P+) J+5(A)0'(Z)1_2)"

() = (3.21)

u=(j—s(A)Ps — (G —s(A) + )P + ZZVP; + (1 — 2))A,
where j € Z +s(A) + X1 =1), I € Z® and Q()\) € Z+. The dual basis (up to a
normalization) is

Oz = (G = s() + Py + (G = sQA)P- —~ BEPP + (20 — DA)
E(z, Py)i=sOV+1E(z, P_)=i+sNg(2)22-1 [[Y E(z, P)

f(1 an(2) = (3.22)

The propagator with the insertion of zero-modes at the points Pi,..., Pg(») is

w(l Q)
5(1)(z,w) = 1 (E(Z,P+)E(w,P_)> ® (H E(z, P))

E(z,w) \ E(w, P+)E(z,P-) E(w, F;)

(<>) Oz —w = p()P- + p(HPs + BEDR - A=DA) g

o(w) 68} (—u()P- + p()Py + SV P, — (21 —1)A)

When A € R is generic we cannot do the same as above, i.e. insert vertex fields with
charge +1. However we can, for example, insert a vertex field at the point P € ¥ that
absorbs the entire charge Q(A). This can be done substituting in eqs.(3.21-22) the terms
H?:O‘) E(z,P;) and EQ( )P, with E(z, P)?*) and Q()\)P, respectively. The propagator

becomes

(*) The range of distinct values of I is determined by the value of (see comments after
eq.(3.1)).
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1 E(z,Py)E(w,P-) (D) E(z, P) Q)
S(l)(z,’LU) - E(z,w) (E(w,};:_)E(z,P_)) (m) .

. (zu) PTG —w — p()P_ 4 p()Py + Q)P — (2A —1)A) (3.24)
o(w) 68 (—n()P- + p()Py + QP — A —1)A)

Notice that S()(z,w) can be seen as the propagator in the sector [ = 1 with the insertion

of A-spin fields at the points Py :

1 < OIR (S“’I(P_)bl (z)cl(@)S+”(P+)) |0 >4

50 = 3.25
) = T SRS PSP 0> (5:29)
w(t) —u(D)
where S*! are identity operators. The factors (%(%,%)7) and ( gf;’;:%) in

egs.(3.13-14) are the effects of the A-spin field insertions S*#(P;) and §—(P_).

The remarks just made, concerning eq. (3.25), suggests that also the spin-fields can
be moved away from P, and P_. Let us consider a simple example. We want to find the
analog of eqs.(3.21-22) with the insertion of the A- spin fields at arbitrary points Q; and
Q2. The bases fit for that are for Q(A) € Z* (for A € R the modification is analogous)

F0( = (EEQNY _ TIED Bz, P)o(2)* ) (= +-u) (3.26)
1\ EGe)) B P 0m0EG, Py omma 3
where u = (j—s(A)~p())( P —P_)~P—+p(1)(@:1~@2)+(1-2N)A, § € Z+s(A)+A(I-1).

For the sake of conciseness we do not write down explicitly the dual basis. We remark

that the numbers j — s(A) — u(l) are l-independent and integral. So the conditions (3.14)
define a unique (l-independent) vacuum.

Using such modified bases we find a propagator $(*9, which is equal to (3.23) with
Py (P-) replaced by Q1(Q2). As a consequence this propagator is independent of the
points Py where the vacua are defined.

As a final natural extension of the procedure outlined above, we introduce now “fat”
b — ¢ systems, referred to as B — C systems. The idea is to reshuffle the location of the
A-spin fields and of the total charge, and to represent them as insertions of V-fields at the
points P;. As we have shown in the g = 0 case the fields V(P;) can be regarded as the
fermionized counterparts of (chiral) insertions of vertex operators : ei®i#(P) . (for suitable

a;). In other words
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< Ik VE(Pe)b(2)c(w) > .

S(z, = < 0|R((B = .
(s0) = <OR(BEICw)N > = I (3.27)
The last expression refers to the standard formalism.
In order to implement the idea just outlined, we have to use modified bases
n N\é&; 916
g_.(,A)(z) — Hi:l E(Z, Pl) a{e](z + 'lL) (328)

E(z, P_)i—sV+1E(z, Py )—i+s(Ng(z)1-22"

where u = (j — s(A))Py — (j — s(A) + 1)P_ + 10, &P+ (1 — 20)A, jeZ+s(A). We

expand

B(z) = Z ngg-)\)(z).
The dual bases are
O[28)(z + (=5 +5(0) = )Py — (=j + s(A))P- — 7, &P+ (2A = 1)A)

E(z, P )i—sN+1E(z, P_)~i+sN [[, E(z, P;)% o(2)? -1 ’
(3.29)

Ga—xn(2) =

and

C(2) = 3 Cigh_x(2)-

The vacuum |0 > in eq.(3.27) is defined by the analog of eq.(3.24) and since in eqgs.(3.28-29)
J € Z + s(A) it corresponds to |0 >;. The requirement that gg-)‘) be of weight A in z gives

the constraint

Z & = (22 —-1)(g = 1). (3.30)

From this equation we can see the topological origin of the constraint over the total charge
of the V-fields.
The propagator of the B — C system is

S(z,w) =< B(z)0(w) >=

1 % [ E(z,P;) &; o(z) 22—1 08)(z —w+ 3 r, &P — (2A = 1)A)
E(z,w) =1 (E(w,P,-)) (G'(w)) 9[?](2:;1 a;P; — (22 —1)A) . (3.31)
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3.4 SPIN FIELD CORRELATION FUNCTIONS.

As an introduction to the calculation of V-field correlation functions in the next sec-
tion, here we show how one can compute correlation functions of spin fields in a straight-
forward way. In particular we test the formalism introduced in the previous section by
recovering the 2-point spin-field insertions in the \ = —;—
[69,70], We then generalize these calculations to rational A. We recall that A-spin fields are

a particular case of V-fields. We start with the A = 1 case. Let S*(P4) be the spin-field

and in the commuting A = % cases

connecting the Neveu-Schwarz with the Ramond vacuum(:

< S (P-)b(2)e(w)S™(Py) >
< §—(P-)S*+(Ps) >

S (z,w) =< 0|R(b(2)c(w))]0 >2= (3.32)
Once the propagator S(*)(z,w) is known, the correlation function < S~(P-)St(P;) >
can be computed with a procedure similar to the one introduced by Dixon et al. in [59].

The normal ordered stress energy tensor T'(z) of a b — ¢ system of weight A is
T(z) = (1 — A)8bc — Abde. (3.33)

By means of the operator product expansion -

<T()VYP)..V*(P,) >= Z <(z _h"P)2 + (za_Plv,-)> <VYP)..V*(P,) > (3.34)

we obtain a set of first order differential equations which can be solved to get the correlator
<VYP)..V™(P,) >.
For A = % we have the following correlation function for the stress-energy tensor in

presence of spin-field insertions:

< ST(P)T(x)SH(Py) > . 1 2 .
< S‘(P_)S+(p+)+> = lim ~(9; — ) (5( )(z,w) — = w)> (3.35)

with

[

0[)(z —w + 3(Py — P))
0[8)(3 (P4 — P-))

$ (2, ) = 1 (E(z,P+)E(w,P_)) (3.36)

E(z,w) \ E(w, Py)E(z, P_)

(*) For brevity here we do not consider odd spin structures.
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We obtain
< S7(P)S*(P) >= Ko B(P-, Py) 40L)(5(Py — P) (3.37)

where Ks . is an integration constant which carries a dependence on the spin structure.
The conformal weight of the spin-fields S*(Py) is % as can be seen in two independent
ways: either by looking at the residue in the leading singularity in (4.4) or directly from
the geometrical weight in eq. (3.37).

(NI

Before addressing the commuting A =  case, we consider the anticommuting A =
system. In order for the propagator to be non vanishing we must put 2g — 2 insertions of

b zero-modes at the points P;. Therefore the propagator for the A = % case is

5= (P)b(z)e(w) 12477 b(z:)S*(Py) >
< 5=(P_) I ()5 (Py) >

5®(z,w) =5< O[R(B(2)e(w))|0 >o= = (3.38)

where
s, - L (B&POEw PO\ Bz P (o(2)\? 0E]( —w +u)
5 ( ) E(z,w) (E(va+)E(z7P— ) H E(w7Pi) (U(w)> 9{5](11,)
(3.39)

with u = 1(Py — P_) 4+ 272 P - 2A.

The same procedure outlined above allows us to compute the correlation function with

zero-modes and spin-field insertions:

< ST(P_)b(Py)..b(Pag—2)ST(Py) >= K. ZE];*_”; H o(P;) B(P_,Py)+-

LB, ) 2 B(Pw, P)E T B(R, PRSI (P — P) + 3 P~ 280,
ik i

I<m

(3.40)

In P_,P, the conformal weight is respectively —% and 2. The 2g — 2 points P; represent
the zero-mode insertions, as can be seen by notmg that the conformal weight at P; is
precisely %

Let us now discuss the commuting case. The quantization of a generic commuting
B — 7 system of weight A and 1 — X respectively is achieved by imposing the commutation

relations
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B yvl=8, 18,67 = 0=, (3.41)

The bra and ket vacua of the bosonic system are assumed to satisfy the relation (3.14) as
for the anticommuting case.

Once a specific choice of the zero-mode insertions is made, the bosonic propagator
§0(z,w) =< OR(BD(2)yO(w))[0 >,
coincides with the fermionic one |
SV (z,w) =< O|R(BP(2)cP (w))[0 >; .

The regularized bosonic stress energy tensor is

. 1
T(2) = ~ b, (1= )2 = 300) (Bnw) - -2 ). (3.42)
For A = % a possible expression for the bosonic propagator is the one given in eq. (3.39).
The points P; represent the insertion of vertex operators Vi(P;) which carry a charge 1.
These vertex operators can no longer (as in the fermionic case) be considered as zero-mode
insertions because their conformal weight, as shown below, is —% (*), Starting from the

correlator of the stress-energy tensor with vertex operators Vi and spin-field insertions
< §7(P_) (T2 Va(P)) T()8+(Py) >
< §=(P-) (I a(Py)) 5+(Py) >

we get the correlation function:

< §7(P_YVi(Py)...Va(Pag)SH(Py) >= Kg,e-o%% [[e(P) 2 E(P_, Py)i-
g\L+ ;

) (3.43)

0N (3(Py — P_) + 3, P — 24)’

-1 E(P-, P})? E(P:, P1)~% ] E(P, Pm)?
Jrk I<m

In P_,P, the conformal weight is respectively g— and —%. In order to compare our result

with Atick-Sen’s [°%7% we notice that they absorbed the extra charge by inserting, instead

(*) In the path integral approach these vertex operators are represented by a delta function

8(8)-
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of 2g — 2 vertex operators with charge 1, g — 1 vertex operators V3 with charge 2 (which
turn out to have conformal weight —4)™), In our formalism their result can be recovered

starting from the propagator

5Oy = — L (E(z,P+)E<w,P-))%ﬁ(M)Z(a(z))29[£1<z—w+u>

B(zw) \B(w, PEG ) U\Ew,p)) \ow)) — @)
- (3.44)
with w = 2(Py — P_) 42 f;ll P; —2A. With this choice the correlator is
- + o(P-) —4 1
< ST(P_)Va(Py)..Va(P,_1)8T(Py) >= KJ,EG—(I-DT) Ha(p,-) E(P_,P.)%.
’ 1 (3.45)

T E(P-, P)E(Py, 1) T] E(P1, Pr)™

ik I<m 081 (3(Py — P_) + 2%, P — 24)

This result completely agrees with Atick and Sen’s. From the discussion carried out in
section 3, it is clear that our approach allows us to compute the correlation function for an
arbitrary number of spin-field insertions and, moreover, that the vertex operators, which
must be inserted in order to fulfill the condition (3.30) on the total charge, can be placed
in general position and assumed to have the most general charge. The corresponding
formulas can be obtained by specializing the expressions given in the next section for real
A, q.(3.56).

In this section however we limit ourselves to give some more examples with rational \.
The general expression for the spin-field correlation functions in the case of anticommuting

b — ¢ systems of half-integer weight —2]\—7, N odd, is:

(*) The relation between the conformal weight and the charge in the case of a fermionic
b — ¢ system of weight A is shown in the next section and it is given by eq. (3.53). We
remark here that since the stress-energy tensor for the bosonic system differs by a minus
sign from the fermionic one, in the bosonic case the relation between conformal weight and
charge is just the opposite: ha, = —1al + %(1 —2A)é&;. An immediate consequence of this
fact is that only in a certain range of values for A is it possible to introduce real charge

operators which reproduce the (A\,1 — ) 8 — v system.

58



< SF(P1)...SH(P)b(Q1)---b(Qr)e(Ra)..cc(Rs)S ™ (T1).S~(Tk) >=
= Kae [ o) @ [T o(@)" [T Ry~ Lm0

-HE(P:,P )4 HE(Qk,Qz) [ BB, Bo) [ BT, To)*-

i<j . k<< m<n p<q (346)
- [I E®P:,Q;): E(P:, R) ™5 E(P, T\) "% E(Q;, Rk) ' E(Q;, Tt) " * E(Rx, Th) *-
Lrk,1

9[5](-;—(2 Pi—) T)+> Qj— > Ri—(N-1)A).
i 1 i k

The charge conservation condition requires the constraint
1
Sla=t)+r—s=(-1)(g-1)

to be satisfied, otherwise the correlation function vanishes. The spin-fields S* have charge
+% and their conformal weight is 3—1!8:-1— for ST and 3—”5—11 for S~.
Likewise the general spin-field correlation function for a commuting 3 —~ system with

A:%is:

< SH(P1)..ST(P)V(Q)S™(Th)-.5™(Ty) >=
=Ko [J o)™ HN-Dg(Q)ra=m) H o(T;) 3N -D),

-HE(Pi,Pj) H B@, 1) HE(Pm,Q)"'*HEm,Q)ﬂHE(Pt,T ) (3.47)
i<j k<l

PG Pi— Y T) +9Q — (N —1)A)
i l

The spin-fields S* have charge +1 and conformal weight 1_82N for S* and 222 for .
The extra charge has been absorbed by inserting at the point Q a single operator V, whose

charge v is given by
AN -1)(g-1)+s—g
= 5 )

(3.48)

Finally we consider the case of a fermionic b — ¢ system of rational weight A = £,

with N, M relatively prime integers. The A-spin fields with charge +k,k = 37, ..., MAZ L are

denoted by S,:ct. These fields, of course, live on a suitable covering of the Riemann surface
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2. The correlation function with the insertion of Ni; A-spin fields .S’ki at the points Py ;,
where i = 1, ..., N1y, is given by:
< 8T (Pra)--5F (Pr,n, ) S5 (Payt)--Sr 1 (Parr—1,Nae - JB(Q1)--6(Qx)-
o Ra)-.e(Re) gy (Paas,2)-S7 (P vy) >=
k — M-2N
=Ksel[[ I o(Pee)* V25 [T (@) 5 [ o()*5

k I=1,..,N4p

J

— k! E k
T T EPeri Priv i) 547 ] E(Pirg, Q) % [[ E(Patn, Ry)T5- (3.49)

ki k',j k,,m kyn,g
R
II  EPiri, Paw ) J] E(Q1, Qm) 11 E(&., B,)-
(kli)¢(k’?j) I<m n<p
k (2N — M)
6
- 0[] ﬁ:; “Mpik,msz:Qj—ZRz——————M A

The correlator is non-vanishing only if the constraint

M-1
2N - M k k
-M—(g—l):r—s-l- E ('A—JN_i.k— MN_]@) (350)
k=1

is satisfied. The conformal weight of Skik is given by

k* F (M — 2N )k
2M? '

(3.51)

The correlation functions calculated so far are in general non-single-valued as the
points, where the insertions occur, are shifted by a homology cycle. So the above formulas
are to be considered as starting points where single-valuedness and modular invariance are

still to be implemented.
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3.5 VERTEX INSERTION CORRELATION FUNCTIONS FOR MINIMAL MODELS.

In this section we return to the general case. We consider the “fat” b — ¢ systems
defined in section 3 (egs. (3.27)-(3.31)) and apply to them the method applied in the last

section to a few simple cases. We will use

<TEVYP)...VMP) > _ .
<VIP).. VP > lim ((1-2)8; - A0y) (S(z,w) - w) (3.52)

where S(z,w) is given by eq. (3.31).

Analyzing the residues of the leading and subleading singularities at P;, and comparing
them with the OPE of T'(z)V*(P;) we are able to identify the weights k; of the fields Vi and
to extract differential equations which allow us to determine the form of < [[; V¥(B;) >.

Specifically we obtain the relation which determines the conformal weight in terms of the

charge a;:
hi = hc"x,- = ; a; — -—(1 - ZA)a,, (353)
and
- P) 6"[‘s (v) E(P,,P)
opin < [[VEP) > = (22 —1)a a( +a + &0 3.54
where
= Y &P — (22— 1)A. (3.55)
Integrating (3.54) we obtain
< HV"(Pk) >= Kjs. Ha Py s D TT E(P;, Py) %% 0[] (v) (3.56)

1<J

where K5 is an integration constant.

As for eq.(3.53) we remark that the weight of V* can be obtained directly from
eq.(3.56) by calculating the conformal weight of the RHS at the points P; and applying
the constraint (3.30).
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In general the correlation functions given by eq.(3.56) are not single-valued on X.
They have cuts with endpoints P; as expected. But they, in general, pick up a phase and
the theta characteristics are shifted when P; winds around a homology cycle. Precisely,

when P; — P; 4+ na + mb, eq.(3.56) goes over to

Koo | [ o(P)S D[] E(P;, py)tess emmisimntmaimegifaimy). (3.57)
k i<j

The phase and the shifts can be rational or irrational depending on the values taken by
@;, € and 6. In order to carry on the discussion of this very important point we need to be
more specific, so let us refer as in ch. 2 to the minimal models.

Let us add the information that B — C systems represent minimal models. It has
already been shown indeed that in genus 0 “fat” b — ¢ systems constitute a dual (fermion-
ized) version of the Coulomb gas approach, so that by the use of B — C' systems we can
represent primary fields and reconstruct their correlation functions. The correspondence
between the b — ¢ system formalism and Dotsenko-Fateev’s Coulomb gas approach is es-

tablished by means of the identifications
| 1
& =V2a;, @ = S(1-2)) = V2, (3.58)

and the value of A suitable for a given minimal model is obtained by équating the central
charges

6(p — 2
e(A)=-1222+120-2=1-2402 =1 - M
pq

Here g and «; are the same symbols appearing in [1]. So for the minimal model identified

by the integers p and q we have

3

—q
Vv2pq

As we have already seen, in general ) is irrational. Incidentally we remark that exchanging

p and ¢ turns A into 1 — A. This is the way the electromagnetic duality of the bosonic
formulation is recovered in our formalism. We remember that the constraint (3.30) on
the bases implies that the V-fields correlation functions are non-vanishing only if the total

charge > ; @; satisfies the relation:
D ai=—2a(g—1). (3.60)
i
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We can now introduce screening charges, i.e. weight one V-fields that by eq.(3.53) have

&t =dp+ /a2 +2. (3.61)

Eqs.(3.60) and (3.61) imply charge quantization, the same as in the case g = 0:

charge

Grp = -;-(1 —r)ay + %(1 — ). =(1— 1')' 5?; —(1- s)\/%, (3.62)

wherel <r < p-—1,1 < s < g—1. We remark that in higher genus, w.r.t. the genus 0 case,
an extra charge 2é&0g must be reabsorbed (we can think of 2a¢(g — 1) as a “bra vacuum
charge”). In general this can easily be done by inserting in the correlation function an

appropriate number of screening charges and relative contour integrations; this is possible

thanks to the fact that for the a.s given by egs.(3.58-60) the following relation holds

(P~ a4 + (g~ 1)a- = ~26o = \/5”—"\/1):: (3.63)

with the parametrization of &; and A given by eqgs. (3.57-59).

For the sake of simplicity, from now on, we will be dealing only with unitary minimal
models. The relevant formulas are obtained from the previous ones by the substitutions
g—pandp—p+1

Let us now return to eq. (3.56) with the parametrization of &; and A given by egs.
(3.62) and (3.59), respectively, and the above substitutions. Looking at eq.(3.57) we see
that the shifts of the theta-characteristics are in general irrational. This fact is not sur-
prising since it is inherited from the bases (3.28) we started from: they are well-behaved
as far as the z-dependence is concerned, but not with respect to the P;’s (well-behaved
meaning that the relevant shifts along homology cycles involve rational phases and shifts).
Now, if phases and shifts in (3.57) were rational (as they are in some particular cases), we
could take the attitude of the previous section and consider eq.(3.56) as our basic result,
from which single-valued quantities can be calculated by taking linear combinations of the
RHS of (3.56) with suitable coefficients Kjs .. Since this is not the case, we take another
attitude (see however the remark at the end of this section): we change the bases (3.28).

In order to construct the new bases we argue as follows.

63



- When a P;, i.e. a point where a vertex is inserted, winds around a homology cycle, in
general the theta-characteristics change and a phase appears. The phase and the theta-
characteristic shifts must correspond to the behaviour of the vertex insertions at the points
P;. We describe the latter in the following way: we say that there exists a finite covering
%' of the Riemann surface ¥, such that on ' the correlation functions < [[, V¥(P%) >
are single—vélued (up to a possible phase depending only on the 6-characteristics). We will
see that this simple statement will allow us not only to characterize the covering, but also
to determine the #-characteristics § and e.

To see this let us modify the bases (3.28) as follows

E(z,Py) =) T/ B(P;, Py)i—s) \* 2 A
gg'}‘)[f](z1pl""’Pn) = ( +') H ( ( +) ) HE(Z7P1') "
i=1

E(z, P_)i=2(M)+1 1. E(P,,p )i—s(A)+1

HE(P,,P)"‘“JU(z)”‘ 11‘[0(13 JECADYE ez + cv]|dQ), ¢, d€R, (3.64)
i<J i=1

where u = (j — s(A))Pr — (5 — s(A) + 1)P— + 30 &P + (1 — 20)A), j € Z+s(}),
and ¢, d are numerical constants to be determined. We recover the bases (3.28) by setting
c=d =1, up to a normalization. This normalization is actually very important since it
allows us to put the conformal weights hs, = -;- (1 2)A)é&; at the points P;. We point
out that this normalization is not ad hoc: it is possible only if condition (3.30) is satisfied,
being thus another indication of the geometrical consistency of our method.

Our aim now is to determine ¢ and d in such a way that the bases be single-valued (up
to theta-characteristic dependent phases) when one of the P; winds around a homology
cycle of the covering ¥'. This will allow us to determine also § and e. The detailed
derivation is contained in Appendix B. Here we write down the result.

Using the freedom in the choice of theta-function basis, pointed out in Appendix B,

we can write the new bases (3.64) in the form:

(A) § _ E(Z, P_*_)]"‘B(A) n E(PZ,P-]-)J_S(}\) ; n . &i.
95 el P Br) = g pyimoon Ul E(P;, P_)i—s)+1 EE(%R)

TJT B P5)% o(2)27 [] o(B)SA=D0[777)(y/25(p + 1)(= + v)[28(p + 1))
i<j i=1

(3.65).
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where u = 0,1, ...,2p(p + 1) — 1. These bases are characterized by the fact that when any
P; winds 2p(p + 1) times around any homology cycle of ¥, they remain unchanged. This
is not true for the z-dependence: the effect of a z-shift along the homology cycles implies
an irrational shift both for the § and € characteristics. Evidently the z-dependence can be
understood only in terms of an infinite covering of X. The propagator of the new b — ¢

system is given by

e~ el () (29)

- 0[2p(p+1) (\/2P(P +1)(z—w+ Zz—l a@;P; — (2A —1)A)12p(p + 1)9)
2p(p+1) ](\/21?(? + 1)(21_1 a; P, (2A — 1))A)12P(P + 1)9)
Redoing now the calculations from (3.52) to (3.56) with these new bases we find

(3.66)

< HVk(Pk) >= Ks 1_[0(1%)""‘(2A T E®, Pj)*%6ll(yl2p(p +1)Q),  (3.67)
i<j

where v is given by:
= v2p(p +1)(¥;&;F; + (1 — 22)A),

and the characteristic § is of the form where v = 0,...,2p(p + 1) — 1.

2p(p+1)

A few comments are in order. The result (3.67) is now single-valued when any P;
winds n = 2p(p + 1) times around any homology cycle. We have already noticed that this
in general cannot be true for any integer n for the formula (3.56). However it is likely
that one can recover eq.(3.67) starting from the formula (3.56), by means of an averaging
procedure over the theta characteristics similar to the one outlined in the third article of
ref. [21].

An interesting question concerns the possible relation between our bases and the bases
for the Krichever-Novikov algebra with more punctures described in [71-73].

Eq.(3.67) is our final result in this section. It is the higher genus counterpart of eq.
(1.50).

A similar result was obtained via the bosonic approach in ref. [74] (see also [24, 75-
83]). It can be taken as a starting point for computing conformal blocks of minimal models

in a generic Riemann surface.
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Of course, when we want to compute the full correlation functions, we have to put
together the chiral and the antichiral pieces, as discussed in ch. 1. Such a combination
must satisfy some properties, like monodromy invariance, which give rise to constraint on
the constant factor Ks. Besides that contour integral are still to be carried on when one
deals with minimal models.

We point out that our formalism allows us to compute not only the correlation func-
tions, but also the partition functions. Take for instance the case g = 1, which is a favourite
one since in this case one does not need to insert any screening charge. The chiral part of

the partition function can be obtained by inserting the identity operator 1 as follows:
<1>=1in:B<Vo~,V_.&>.
[® Saas d

The full partition function (chiral and antichiral pieces together) has to be determined
satisfying the modular invariance.

A final remark concerns the Ising model. In our framework the Ising model is excep-
tional because it can be described in two different ways. In one procedure one treats it
on the same foot as any other conformal minimal model. This means that one has simplyA
to specialize the formulae given above to the particular value p = 3 which gives ¢ = % as
central charge.

There is anyway another procedure 4 which reflects the well-known fact that the

Ising model is equivalent to a theory of Majorana fermions. Taking into account this fact,

the Ising model can be described by a A = % b — c system, where now the fields are

interpreted as Majorana.

Since a Dirac stress-energy tensor Tp is twice a Majorana stress- energy tensor Ts:
Tp(z) = 2Tm(z),

we can compute the Majorana correlation functions < V...V >(a=1,pm) Which describe

2
our Ising model, by means of the Dirac A = —;- correlation functions < V...V >(A=1,D)

computed above.

The relation between the two is the following

<V.V >(>\=%,M): \/< V.V >(A=-,_1;,D) (368)
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For instance the Ising partition function Z on the torus can be expressed as

1 1 0
7= 5 (1031001) + o3 101m) + 1o

I(0}r)) (3.69)

[N

where

n(r) =73 [J(1—7")

is the Dedekind n function.
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4 THE HIGHER GENUS VERTEX OPERATOR

4.1 INTRODUCTION.

4In the previous chapter we have elaborated a system which allows to compute the
chiral blocks of primary fields correlation functions in higher genus Riemann surfaces.
A prescription was also outlined for computing, starting with these blocks, the minimal
models correlation functions.

Just like the CFT on the complex plane, a full understanding of the minimal models on
higher genus Riemann surfaces can not however be obtained unless we are able to specify .
their operatorial content.

The oldest operatorial formulations of conformal field theories [#3—8°] over generic
Riemann surfaces privileged the local description of CFT over a disk cut out from the
Riemann surface. The globalization was essentially obtained (gluing or sewing procedure)
via Bogoljubov transformations relating states over the disk to states over the Riemann
surface without disk.

Here we tackle the problem of constructing the operatorial formalism from a different
point of view, namely privileging from the very beginning the global data. To do so we
make use of the Krichever-Novikov formalism [2:58:29=92] (already encountered in ch. 3)in
which the meromorphic tensor fields on genus ¢ Riemann surface holomorphic outside the
points P, and P_ are considered.*.

The Krichever-Novikov bases over which such meromorphic tensor fields are expanded
play the same role as the monomials z™ over the sphere ; therefore they provide a mean to
perform a Laurent-like expansion of any tensor field on the genus g Riemann surface; such
an expansion turns out to be globally defined. As we have already pointed out in ch.3 we

can mimic for the case at hand the conformal field theory over a sphere.

* Maybe that a natural framework for studying the correlation functions with insertions
of vertices at the points P; makes use of the system of bases holomorphic outside P;. See

the remark at the end of ch. 3.
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The conformal field theories on the sphere are characterized by their representations
of the Virasoro algebra (1.5). In higher genus Riemann surface they should be classified in
terms of the Krichever-Novikov algebra. Loosely speaking the KN algebra is the analogue
of the Virasoro algebra, but now the circle S* is replaced by the equal-time curves C;, of
eq. (3.4). A Bogoljubov transformation connects locally the two algebras.

While the representation theory of the Virasoro algebra is a well established matter,
the representation theory of the KN algebra is still an open problem. The results presented
in this section are part of a long research project [°3] whose aim is to set up a chiral vertex
operator representation for the KN algebra. In this context the chiral vertex operators will
be realized in terms of higher genus oscillators, along the same lines as shown in section
1.4 for the genus 0 case. Even if the work is still in progress we have some new interesting
results which sheds light on these vertex operator representations.

The material of this chapter is organized in the following way: in sect. 2 we will review
standard facts about the KN algebra and we will establish our notations. In sect. 3 the
higher genus analogue of the Heisenberg (oscillator) algebra is introduced and its relevance
in representing the KN algebra is discussed. Moreover a system of bases, different from the
usual KN one, is introduced; such system allows a striking simplification of the oscillator
algebra. In the next section the theory of a free chiral boson is considered; such a bosonic
field allows us to arrive at the main result, namely the construction of a vertex operator
which has a geometrical meaning, since its commutation relations with the Krichever-
Novikov generators give rise to a Lie derivative. The transformation properties around the
homology cycles for the vertex operator are discussed. The last section is devoted to draw

the conclusion and to discuss the future perspectives.

69



4.2 THE KRICHEVER-NOVIKOV ALGEBRA.

In this chapter we will consider only a particular set of meromorphic tensor fields,
namely the functions, the meromorphic differentials, the vector fields and the weight 2
differentials. The Krichever-Novikov bases over which these tensor fields are expanded are
labelled respectively by Ay, w’, ey and Q7.

The local behaviour of these bases around Py, is obtained by specializing the equations
(3.1) and (A.1,A.2). Since for later convenience we have to modify slightly the conventions
used in ch.3 we report here their local behaviour:

A5(z2) = a%oi(z2) 1+ O(zx))  for Ij]> 5

+ 1jog (1 e g (41)
Aj(z2) = a%o,j(z+) 7271+ O(22))  for -357<3

A% is taken to be =1.

wi(z1) = aF 1 j(z2) Y1 4+ O(22))(d2x)  for |j] >

. 4.2
W(2s) = a*1 j(z2) T (14 O(es))(d2e)  for - -

the w’ with —$% < j < § are holomorphic abelian differentials.

w? is assumed to be the abelian differential of the third kind with simple poles in Py
and residues &1, normalized in such a way that the periods around the homology cycles
be purely imaginary.

For the vectors we get

e5(zz) = ¥ o1 (2 Y TIH (L4 0o 5 (43)
Finally,
QI (24) = a%2,3(22) 372 (1 4 O(22))(dz)’ (4.4)

The coeflicients CL+i,] can be assumed to be normalized = 1.

Let us call 7, the map which restricts the tensor fields f* of weight A, defined on the
Riemann surface X, to the equal-time curves C,. The image of i, is dense in the space of
the holomorphic tensor fields f* ¢, defined on C.. Therefore any differentiable tensor field

over C; can be developped over the relevant Krichever-Novikov bases.

70



The bases (4.1)-(4.4) satisfy a duality relation which reads as follows:

451‘] = T EIQJ
™ Jo
1 (4.5)
517 =— ¢ Amw
27"7/ C-

The completeness of the bases guarantees that we can write a Dirac delta function

A(Q,Q):

1 KA
Q@)= 5>, 4x(Qw™(Q) (4.6)
K
The delta function must be understood as follows:

AK(@-—-f AQ,0)Ax (D)
c, (4.7)
WK () = fc WX (Q)A(Q, Q).

A similar delta function can be constructed for vectors and 2- differentials replacing
in the above formulas Ax — ex, wk — QK.
Let us now recall the notion of the Lie derivative L. (e is a vector field ); in local

coordinates, when acting on a tensor field of weight A, is defined through

of* g
Lof = 2 1 AP (49)
In the r.h.s. the ordinary derivative can be replaced by the covariant derivative.
The meromorphic vector fields ey satisfy an almost- graded Lie algebra L:*
go
ler;eg) = Le;er = Z Corrersi-s (4.9)

—go

where gy = %g and the structure constants C°1s are expressed by

* An almost-graded Lie algebra L is an algebra which can be expanded in subspaces L;:
L =3, L; and the L; are such that L;L; C E|k|<N Litij—k-
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1
C3p5 = — QI+J-5 4.10
1= 5 . ler,es] (4.10)

Using the leading behaviour in the expansion (4.1-4.4) it is trivial to compute the
value of C§5:

Cc¥ =J—1.

The go gradation structure is obtained because the structure constants are different from

zero only in the range

I4+J—-go2>2S5>I+J+ go,

as it can be easily understood from the polar structure of the tensor fields.

The algebra I admits subalgebras identified by the vector spaces

Li® ={er:+I > go— s}.

The subset Ly of the holomorphic vector fields with poles both in Py and P_ has
dimension 3¢ — 3; it generates the non- trivial transformations of the Riemann surfaﬁe and
can be identified with the space tangent to the moduli.

The algebra L is the higher genus extension of the algebra of the vector fields over S?;
just like the vector fields algebra on S L admits a unique (up to trivial cocycles) central
extension, the KN algebra:

s c
= - —1
[L1,LJ] ZS:C 1er+J-5 + 7517

(4.11)
[LI,t] = 0.
The cocycle x1y is given by
1 1,.._ _ -
XIJ = =— =0%€rey — (I & J) — R[(O¢ér€r) — (I « J)] (4.12)
2m Jo, 2

— = 8
(61’ = _[5;)
R is the schwarzian connection, holomorphic outside P, which under diffeomorphism

z — w(z) transforms as follows:
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R'(w)d*w = R(2)d*z + {w, 2}d*z (4.13)

3 62zw)2
T2\ Gw

Two algebras specified by different schwartzian connections are isomorphic since they differ

where

{w9z} = 8

3
o°,w
LW

only by trivial cocycles. The cocycle xrs is obviously antisymmetric; moreover it satisfies

a locality condition
xry=0 if |I+J|> 3g.

The algebra (4.11) replaces in higher genus the Virasoro algebra.
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4.3 THE OSCILLATORS IN HIGHER GENUS.

Let us introduce now the generalization of the Heisenberg algebra (1.59) to higher
genus Riemann surfaces. The Heisenberg algebra can be seen as a trivial Lie algebra
centrally extended by the introduction of a cocycle. The commutator of the pointwise
product of C-valued functions of the basis (4.1) gives rise to the trivial Lie algebra structure.
As for the cocycle, it can be introduced as follows: if 4 1,47 are meromorphic functions of

the basis (4.1), then we can define the cocycle to be:

1
e dA ' 4,14
= o %CT ArdAy (4.14)

(4.14) has the right properties to be considered a cocycle: it is of course antisymmetric

and satisfies in a trivial way the cocycle condition ( consequence of the Jacobi relation of

the algebra ):

7(—47 [B’CD +7(Ba[07 A]) +7(C’7 [AaB]) =0 (4'15)

From the expansion (4.1), due to the polar structure in P, it is clear that, if T > £

the relation

vr7 =20 for |I+J|>g (4.16)

holds. For any I,J, the slightly weak condition is held: v7; = 0 if |I + J| > 2g. This has
the consequence that the cocycle 717 is “local” and univocally defined (trivial cocycles are
necessarily zero).

Since A% is a constant, it is clear that Yer =0.

Then the higher genus centrally extended Heisenberg algebra is introduced by the

relation

lar,ag] = =17 (4.17)

The operators a are the higher genus version of the oscillators (1.59) (specializing 4.17
with g = 0 we reproduce precisely 1.59).
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Using the oscillator (4.17) one can give an explicit realization of the centrally extended
KN algebra (4.11) with ¢ < 1. This is in complete analogy with the construction carried
on in sect. (1.4).

We introduce the operators

Ln=Ln+1n (4.18)
(n is an integer)
where
L, = 1l Haray = 11 en(Q)w! (Qw” (Q)aras (4.19)
nT g 7T 20w Jo, T
and
N I
L,=—— enarVw". (4.20)
2m Jo,

Here V, is the covariant derivative ( acting on a A-tensor we have V, = 8, — AT';, with
I, a given, specified, connection: different choices for the connection give rise to different
projective connections in the cocycle).

At a fixed value of n, [,77 differs from zero only on a strip in the plane of the pairs
(I, J).

It is easily proven, since the relation (4.17) and (4.6) that the commutator [L,, L]
gives the centrally extended Krichever-Novikov algebra (4.11) with central charge ¢ =
1—12p2.

We remark that this is true no matter which possible normal ordering is introduced
for the operators L.

It turns out that the bases defined in eq. (4.1,4.2) are not the most suited to analyse
the properties of the generalized oscillator algebra.

Let us introduce the following conventions about the index I: we denote as ¢ the index
running over the set [ = {—3 <i< £}; i1 and iy define the set [ = {iy < —%,ip > 2}
Then

I={iy,i, %,iz,}. - (4.21)
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In this notation the 1-forms holomorphic everywhere are denoted as w* (Z € I ).
The standard choice of the basis 7* for the holomorphic differentials is introduced
through the normalization

1 T 7
o P =5
L7 (4.22)
i i Q.
2mi J,. | j

The contour integrals go around the homology cycles @ and b. Q0 ; is the period matrix

of our Riemann surface.

We introduce the following notation concerning the w! of the basis (4.2):

-2——, W = NI]
T Ja.
. (4.23)
I I
—_— =M
2‘71"1: b @ J

In particular if we connect the different system of bases for the holomorphic differen-

tials:

n' = C%w
. o (4.24)
w' = (C’“l)’jnJ,
we get the set of relations . '
CszkJ — 51]
| . (4.25)
Cszkj — sz

( which imply that (C_l)ij = N*; and M, = N*;Q!; are satisfied).
Since the matrix M*j is non-singular we can also introduce a matrix D? ; defined by

the relation

DM = 8. (4.26)
Integrating along the homology cycles a;,b; the expression
dAI = ")/JIUJJ (427)

we get the relations
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0=N7sym
(4.28)
We point out that the sum in the r.h.s. is finite since, at a fixed value I, vys is different
from zero only for a limited range of values of J.
Eq. (4.28) tells us that the matrix vsr admits 2¢ + 1 null vectors ( eigenvector with
zero eigenvalue ): they are N; = {N7;}; M; = {M7;} and Kg = {6']%}.

‘We introduce now the “momentum?” field

P(Q) = 3 aw’(Q). (4.29)
I

From eq. (4.17) it follows that P(Q) satisfies the commutation relation

[P(Q), P(Q)] = ~2idgAQ, §). (4.30)

" At this point we are motivated to introduce the operators &; and a&; through the

infinite sums:

a; = N‘I,aj
(4.31)
a; =M’ ;a;.
Since
(@i, 0] = Nilaz,er) = N7 iysp =0
(4.32)

[, a] = 0.
then &; and a;, together with g are 2g+1 central elements of the oscillator algebra (4.17)
( we remark that even if d; and &; are introduced via an infinite sum, the commutators

(4.32) are well-defined since they involve only a finite sum).

Therefore the algebra (4.17) admits 2g + 1 conserved moments

Il

p*—_“a% , Pi=a; , DPi (s 79



Two new systems of bases for functions and 1-forms can be introduced: A I,cu-I and
Ar, W,

They are introduced through the position

wl = {0, wh, Wi} =

= C’ijwj,w%,wil — N"’iC’ijwj
- - - . (4.33)
AI = {Ai,A%,AiI} =

{N1:Ai, Ag, As}

Similar relations hold for /f_r and w! with NI, - M1, Oij — Dij.
These new systems of bases satisfy the duality property and the completeness relation

(4.6):
_ 1

-~ -~ ]_ ~ =
— Ard = — Ao
o ?{, = om o,

AQ,Q) = 5= X Ax(QWH(@) = 5oz Y A(Q)(Q).
K K

617

(4.34)

Since fii is introduced in terms of an infinite sum, the relation (4.33) must be under-
stood in the distribution theory context. In later discussions however we do not need to
consider them.

Outside P4 we have

dAi = dA, = 0. (438)
If we define ;

a-;:l = a-il = Q!
) (4.35)

a"% = a-% = a%

then we obtain that
P(Q) =) axw®(Q) = axwk(Q) = dxwk(Q). (4.36)
K

We can derive from eq. (4.17) the full algebra for a7, ar:
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[C{i’ ) a}'] = 7y

(4.37)
[d-hd'j] = [dI’a-%] =0. :
The same relation holds when we replace = — -
The geometrical meaning of the & is expressed by the property:
1 - , 1 -
il i=§; — i = 4.39
omi 0 T0 2m'f;,_°" 0 (4:39)

( the same relation holds when we replace = — ~ and the homology cycles a; with b;).
The systems (4r,w’,ay), (ffj,u;—',d}), (@I,JI,él) are all on the same foot: they are
all interchangeable, since it is possible to express any two of them in terms of the third

one. E.g. the relation which expresses ay in terms of ay is given by:
a; = oZ,-C",- — a}rNj'jCji
ail s a_i’ (4.40)

g = Qg.
2

wla

(4.40) inverts the relations (4.31) and (4.35). Since, as usual we can get a similar
relation by replacing = — Ct; — D, Nj'_.,- — Mj'j, we are able to express & in terms

of a. In particular we obtain the following relation

C‘Yzi = OZkaiji + a-%(M%i - ijMjiN%k) + o[}cr(Mkli - ijMjiN,f') (4.41)

Here k' = {k'1,k',}.

The importance of (4.41) lies on the fact that it is a consistency condition which
constraints the central elements &;, o, oy = ag, which label the representations of the
oscillator algebra. The last term in the r.h.s. o[}cr(Mk',- — ijMjiN,’:') is a c-number since

it commutes with any ay as it can be easily verified.
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4.4 THE CONSTRUCTION OF THE VERTEX OPERATOR

The next step in our construction involves the introduction of a bosonic Fubini-

Veneziano field #(Q) which satisfies the relation
de®(Q) = P(Q) (4.42)

This is obtained by setting *:

Q —_
#(Q) = g+ar [ W1(Q) (4.43)

o

Qo is a reference point in a generic position on the Riemann surface but different from Py
so that the integral in the r.h.s. is well-defined. The physical results we get at the end
should be independent from the point Q.

The constant ¢ = ®(Q) is assumed to satisfy the following commutation relations

with the operators a;:

9, 1] = —A1(Qo) (4.44)

(notice that in particular [g, o 2] = —1 for any Qy, which is precisely what we want from
our knowledge of the genus zero case).

(4.44) guarantees the right commutation property between &(Q) and P(Q'):

[2(Q), P(@")] = —2miA(Q, Q") (4.45)

The field @(Q) is multivalued, its multivaluedness being given by

@(Q -+ nia,- + mibi) = @(Q) + 27ri(o?ini + éimi) (4.46)

n’,m' € 7 are the winding numbers around the homology cycles ai, b; respectively.

* Naively one could expect that the most general solution to the eq. (4.42) contains

terms proportional to A;, A;; but these terms can be reabsorbed in the constant ¢
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®(Q) represents the chiral part in the decomposition of the harmonic bosonic field €
in ref. [94-96].

We can now introduce the higher genus analogue of the vertex (1.66).

It must be a well-defined tensorial object and therefore its commutator with the
Krichever-Novikov generators L; must be equal to the Lie derivative (4.8), in analogy
with eq. (1.13) for the genus zero case. From our previous knowledge about the genus zero
case we already know that the vertex should be normal ordered. Before going ahead let

us introduce some useful notations: we define

Q.
Q)< = Z aiI/Q w™ iy = {t1,1}

Q
@>(Q)=Zai2/Q W= {5}
i2 o

(all the operators appearing in ®s(Q) commute one another since , for any 'z, j'5, we

(4.47)

have v;r,;, = 0).

The following commutation relations will be useful:

[ar, €] = BAL(Qo)e

Q
[aI,eﬁik(Q)] — _:671.7'1/ witePE< (4.48)
Qo
(same relation replacing <—> and 1 — 2).
Moreover
{LI,O(J] = :— CIdeAJaK
2mi Jo, (4.49)
[L1,q] = ex(Qo)w™ (Qo)ax
and
— 2
[L1,¢27] = (22 er(Qo)™(Qu)arc — -er(Qu)o™(Qu) Axc(Qo)eP
— Q
[L1,eP%<] = [275. erwdAj ak / wit]efF< — (4.50)

ﬂz ! f (erdA;, dA; / wit JeP®<
2 21 T Qo



As a preliminary step towards the construction of the chiral vertex operator of charge
B, we introduce the following operator which is motivated by the analogy with the genus

ZEero case:

Va(Q) = ePE<eP1PE> (4.51)

The commutation property of V5(Q) with the operators L introduced in (4.20) are easily

seen to be the right one:

[L1,V5(Q)] = BuVer(Q)Va(Q). (4.52)

Notice that the r.h.s. is actually not dependent on the reference point Q.
More involved is the computation of the commutation relations with the L 1. After

lenghty computations, and making use of the relation

doet(@ = (B + g)

which holds for generic operators A(Q), B(Q), C(Q) such that dA = B and [4,B] = C is

a c-number, we get at the end:

[L1,V5(Q)] =erdVs(Q) + ( >o= > ) P Ar(Q)AL(Q)Vs(Q)

K,L>% KL<% (4.53)
i Q
- erese(@) | (@IWa(@)
where Lr%” is introduced in eq. (4.19).
If we define o
i172 wil(Q) w’2 '
a(@) = s @y ) (459)

then we have that V5(Q) satisfies the relation

[L1,V5(Q)] = e10V5(Q) + = ( >, - >
L>¢ KL<

) P AR(QUAL(Q)TR(Q).  (4.55)

g

g
2 2
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The next step requires the identification of the term

(Z—Z)M%mm@. (4.56)

K.L>% K,L<%

Firstable we must say that this object is well-defined since the sum which appears is a
finite one (see the remark after (4.20)). We will see now that there exists a connection T’

which ensures the following identification:

K.L>% K,L<%

( Z - Z ) I*P Ax(Q)AL(Q) = Ver(Q) = der + Ter. (4.57)

Such a connection is the same for any I. We notice at first that both sides are linearly
dependent on the vector e;. (4.57) can be proved analysing the leading behaviour of
both sides around Pi. The reasoning goes as follows: the leading behaviour of the term
er(@)w (Q)wl(Q) in the limit Q — P can be computed from (4.2) and (4.4) and it is
given by

(z4) TH P3N (day ) (1 + O(24)) (4.58)

(4.58) makes clear that I;¥7 is different from zero on the range I — K — L — 2-1<-1,

namely for

K+L21—%. (4.59)

A similar analysis can be performed around the point P_ and gives that, for values of I

very large (I >> £), then a further condition for 5T to be different from zero is obtained:
K+L51+§ (4.60)

A constraint derived from P_ which leads to a condition like (4.60) actually holds for any I,
but there are slight modifications according to the range of values taken by I. The leading
term in (4.56) is obtained precisely when K 4+ L = I — £. In fact in this case Ax(Q)AL(Q)

goes as
ArAp ~ (24)77 (1 + O(24)) (4.61)
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It is a simple exercise to count the number of terms which give contributions to (4.56).

With respect to the normalization after (4.4) we get

2 = >0 U A@ALQ ~ T+ S+ 1)) TR L) (462)

K,.L>% K, L<%

Meanwhile we get for de;:

deg ~ (T = 39+ 1)(z4) " 39(1 4 .) (4.63)

The same analysis, performed for P_ gives us:

= 2| U A(@An(@) = a(~T + § ~1)(z) (1 4 )
K,L>Z K,L<

vl

| (4.64)
der = a~1I — gg -+ 1)(2_)"1_%9(1 +...).

It turns out that the connection I' which plays the game has no pole in P; and a simple
pole in P_ with residue 2g —2. T can be explicitely constructed in the following way: given
a specific abelian differential of the third kind @ with simple poles in P, and in P_ and
residues +1 and —1 respectively, together with 2g simple zeros at the points P;, we can

set:

r=%2., (469
@

Here x is a 1-form with the following characteristics: it is the sum of 2g + 1 abelian
differentials of the third kind (x=>;wpp_ —~wp, p_), having poles in P;,P, and P_ with
residue +1 in P_. The poles at P; in y precisely cancel the poles in %‘Z’- deriving from the
zeroes of @.

I' has the right polar behaviour (we remember that since (4.56) is holomorphic outside
Py, 50T is). The 1-form y is determined up to the addition of an unknown holomorphic

abelian differential.
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Therefore the commutation relation of the vertex Vp does not give rise to the Lie
derivative. Moreover Vﬁ even at the classical level is not a tensor field. The vertex operator

with the right commutation property is

/5 = a"—fﬁf;oxvﬂ(cg) | (4.66)
which satisfies:
X . gz .
[L1,Ve(Q)] = e10V5(Q) + - 9erVp(Q) (4.67).

If we are interested in the commutation property with the operator L (see eq. (4.10)),

then we must take

7 — (& +Bm) (5—22‘+3“)fQ0XVf
. o A ¢ 5 ) ﬁ(QA) (4.68)
[L1,Vp(Q)] = erdV5(Q) + (55 + Br)0erVp(Q)-

Doing some more exercise one can compute the multivaluedness of the operator Vﬁ( Q)
around the homology cycles a, b. The important thing is that its multivaluedness is
expressed by a numerical factor which does not depend on the point Q. For instance we

have
Va(Q + a;) = P V3(Q) (4.69)
with

Bei _ eﬁz(%NI;AI(Qo)+§ fa; Aj wii-1 fﬁ‘i Ajzwjz)e‘@of‘- o

(here z; derives from the multivaluedness of the term containing x).
It is possible to set to 0 the multivaluedness around the homology cycles a (or, since
they are on the same foot, b) by reabsorbing these terms with insertions of holomorphic

abelian differentials, namely defining

V'a(Q) = e P e 75(q). (4.70)
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It turns out that V'g(Q) is single-valued around the homology cycles a; and satisfies the
right commutation relations w. r.t. the operator L' obtained from I I by substituting the

operators a; with o'; = a; +¢;:

L1, V'5(Q)) = erdV's(@) + B-ex(Q)0V'4(Q). (.71)

The operator L'y gives trivially a representation of the Krichever-Novikov algebra
which differs from the one obtained from L; only up t6 a trivial cocycle (see the remark
after (4.13).

To get rid completely of the multivaluedness of V' p(Q) one has to choose in a very
specific way the set of values d;, a; and ag which label the particulasr representation.
The constraint (4.41) inmplies that this can not be implemented in general: only on
some Riemann surfaces characterized by particular values of the period matrix this can
be achieved. Anyway, if we allow the previous redefinition to be done in general, namely
if we let for any I to put V”4(Q) = e P gowIV”ﬁ(Q) and a'r = ay + ¢;, then V74(Q)
is single-valued and has the right commutation property. This position has the further
consequence that the parameters &;, &; and « g have no real physical meaning and can
be all set equal to zero without loss of generality. The latter position is however delicate
since it involves an “infinite” redefinition. A more accurate evaluation of its feasibility is

required.
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4.5 CONCLUSION AND PERSPECTIVES.

In this chapter we have discussed how to set up a global operatorial formalism to study
CFT on higher genus Riemann surfaces. The very basic problem, namely the construction
of the vertex operator, has been carried out (in a different context see [97] ). This, in a
certain sense, is the most difficult part of the job since, before knowing it, one had to guess
the explicit form of the vertex having no hints about what was going on higher genus.
Most of the work which has still to be done concerns the application of this framework.
Apart from the obvious generalization to the superconformal case, let us discuss the most
important open problems.

At first we have to mention that the single-valued operator of charge 3 should provide,
together with the operators ay, a representation for the higher genus generalization of the
Kaé- Moody affine simply laced 2 = 2 algebra (along the same lines as shown in [41] for
the genus zero case). The work in this direction is in progress: everything seems to fit
in in our framework, the only trouble being due to the technical complexity of evaluating
the commutator of two vertices, which requires to perform a resummation of an infinite
sum. Once this goal is achieved, the coset construction can provide a method to realize an

explicit vertex representation of the Krichever-Novikov algebra.

Another very interesting problem concerns the connection between the framework of
this chapter and the real weight b — ¢ system approach: it would be very nice to reobtain
the correlation functions of ch. 3 within the language of this chapter. In this case one has
already some hints that the central elements d;, &; of the oscillator algebra are somehow
related to the theta functions characteristics a; and b;.

The computation of the correlation functions would require the introduction of a ket
and of a bra vacuum over which the operators « act, together with an inner product.
By the way we notice that the operators a7 ( or a 1) allows to solve a problem concerning
the normal ordering of the operators «; mentioned in [90]: the ket and bra vacua are
introduced in such a way that < 0|aj, =< 0]ay, = 0 and a7,|0 >= ay,|0 >= 0; our &;
are c-numbers and their normal ordering causes no trouble.

One of the long-standing problem for the higher genus oscillators concerns the intro-
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duction of their hermitian conjugate, which provides a Hilbert space structure to their
representation space (see e.g. [98]). It may be possible that the “diagonalization” of the
oscillators we have performed could help to solve this problem. The introduction of such

a hermitian conjugation could provide a definite parallelism between the higher genus and

the genus 0 case.
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APPENDIX A

In this Appendix we discuss some particular cases in which bases defined in Section
3.2 need to be modified. Due to the Riemann - Roch theorem, eq.(3.1) does not work in the
following cases (this follows also from the application of the Riemann vanishing theorem
to the explicit form of eq.(3.1) given in eq.(3.7))

Vg for |j| < £ and A = 0,1;

Vg for |j| = ; and X = 3, 1 = 1 with odd spin structure;

g:lforlgl:%and)\EZ'

g=1for|jl=3andXeZl+1,1=1.
Then we define
+j-g- 13t g . g
£7(ze) = 75T (14 0(za)), —5<i<5-1 (4.1)
and f(;)(z) = 1. For A =1 we put
i) = 5T 04 0 ), 241252, (4.2)

and choose f(_lg (z) to be the third kind abelian differential with simple poles at Py
2
with residue +1, normalized in such a way that its periods be purely imaginary, i.e.

Re fa‘. ff_lé(z) = Re fb‘. f_(.lé(z) = 0. For g =1 we define
P = 1O E)P, rez (4.3)

0 = (O @P, Azt (4.4

* where the spin structure of (f(ll)(z))% is chosen to be odd. Finally, for A = 1, [ =1 and
2

odd spin structure:
£ (24) = aF (1221 (1 + Oz (d22) (4.5)

£F0(2x) = aSPF()(1 + O(2))(d2) F. (4.6)

The multivaluedness of f(Jl_ A,1)(z) is given by (3.2) with A replaced by 1 — A, so that the
integrand in eq.(3.5) is a well defined 1 - differential.
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The explicit form of the differentials in eqs.(A.1 - 2)is

@, y_ 0+ -$)P +R—(j+ £ +1)P; + A) g_._g
f ( ) E(z R) 1E(z P_ )J+S_+1E(z P+) J+%0‘(Z) _2 <J< 2 1, (A7)

0(z+(7+2£-1)PL —R-(j—9)P_ - A )
R e LIt b N RSP P
E(z, R)E(z,P_)=5E(z,P})~i~i+15(z)~1 2 2

where the point R € ¥ is arbitrary; its presence in (A.7) reflects the fact that the mero-
morphic function defined in (A.7) is unique up to addition of a constant. In eq.(A.8) the
pole in R is cancelled by the zero of the 8 - function; indeed, being 6(—z) = 6(z), from the

Riemann vanishing theorem we have for —-$+1<5<14
.. 9 . g
oG+ S 1P~ (=P~ a) =0,

Note that this result allows us to identify the differential f(ll) (2) in eq.(A.3) with o(2)2.
For j = —£ the 1 - differential is

£ = amg 2] P”—mZIm ( / j) ImQ)lwn(z).  (A9)

Jk=1
Finally the conditions (A.5 - 6) give

E(z,5)

(2,1)
f ( ) E(Z P+)E(Z P_) [g](z +85 - P+ - P__), (A]'O)
(3,1) 8[2)(= — P-)
f% (Z) E(Z, P_) H (Al]')

where the § - characteristics are odd. The presence in eq.(A.10) of the arbitrary point
S € 3 is due to the fact that eq.(A.5) does not fix uniquely f-(_%l’l)(z). Note that fié’l)(z),
as defined in (A.11), is equal to the expression (3.7) with j ; hA=1,1= ; This
means that in the framework of § - functions theory the modification (A.6) to eq.(3.1) is
automatically taken into account. Moreover since P_ € divf[¢](z — P_), f(;’l) (z) does
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not have poles, it is the zero - mode associated to the odd spin structure [¢]. In particular

using the definition of the prime form, we have
£E3D(2) = h(P_)h(z), (4.12)

so that we can identify f(j’l)(z) with the % - differential which appears in eq.(A.4).
2
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APPENDIX B

Our aim in this Appendix is to determine the values of ¢, d, 6 and € in eq.(3.64). To

this end we will use the formula

O]z + en + emQ]dQ) = e~ (/Dmiemfemszmiom(cxteten)gitem/dy 10)  (B1)

€t+cn

which holds for any b,¢,6 and €. As a consequence of thiis the change of the basis under a

shift along the homology cycles is

95/\)[5](% Pi,., Py +na+mb,., P,)= e—zwim(ain+&ke/c)g§/\)[fifxgg/c](z’ Py, Py, ., Pr),

(B.2)

where we have put d = ¢? in order to eliminate the dependence on z, Py, P_, P;, Q) and

A. We notice that, had we started from an even more general expression of the bases, in

which 2, P, P_, P; Q and A all had a different coefficient in front of them in the argument

of the 6 function, the requirement of the phase being independent on z, Py, P_, P;, Q and

A in eq.(3.64), would have implied the equality of the coeflicients in front of z, P,, P_, P,
and A, and therefore would have entailed the same conclusion.

Now we impose the new bases (3.64) to live on the covering ¥’ as far as the points P;

are concerned (while we ignore the z-dependence). In other words we assume that there

exists an integer IV such that when any P; winds NV times around an a or b cycle, the bases

return to the initial form (up to a phase). From eq.(B.2) we have
95180z, Pry o P+ Nay oy Po) = §VL, )2 Pry o Pry o P, (B.3)
and
9z, Py, Pu+ Nb, ., P,) = em2miN(Gne/e) (N[E+auN/ey(, P, .,P;, wPn), (B4
Therefore, first of all, c&x N and &, N/c must be integers. Now due to eq.(3.62) with ¢ — p

and p — p + 1, we can write
- Ny

ap = —————
V2p(p+1)’
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where ny is an integer. Therefore we have

cNny Nny

V2p(p +1) T ey/2p(p +1)
It follows that
my = ang, ly = bny, (B.6)

and since in any given minimal unitary model n; always takes on the value 1, a and b must

be integers. Therefore we can rewrite eq.(B.7) as follows

cN = ay/2p(p+1) % = by/2p(p + 1), (B.8)

from which we have

N? =ab 2p(p+1) e = (B.9)

i
-
Now we choose N' = 2p(p + 1) (we will discuss later all the other possible choices). Then

ab=2p(p+1), c= ———————Vzp(;'”“l). (B.10)

The theta-characteristics § and e can be deduced from the same formulas (B.3-4).
Under the shift P — Pj + a the characteristic € becomes € + c@j. So € must be an integer
times c&y = m/b. Similarly, as a consequence of a shift of a b-cycle, we deduce that §
must be an integer times Gj/c = 22— Finally we arrive at the bases (3.64) where the

2p(p+1)°
theta function is

9{:7})/217(?'{‘1)] ( 2P(§? + 1)(z n v)’%ﬁﬂ) (B.11)

Where ¢,u € Z. Recalling now that b is an integer we remark that an equivalent basis
of b-th order theta-functions 1% is given by eq. (B.11) with b = 1. We will use this freedom
in the choice of a theta-function basis to write our new bases (3.64) in the form (3.65).

Let us recall now the choice we did after eq.(B.9) for N. We could have chosen also
N = 2p(p+1)s where s is an integer. In this case ab = 2p(p+1)s and ¢ = V2p(p +1)s/b;

but this would have entailed a simple redefinition of the basis of theta functions of the type
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considered above. Similarly we could have chosen N — p(p +1), so that ab = p(p +1)/2
etc.. But again this corresponds to a redefinition of the basis of the theta functions, as
above. Other choices for N are possible for some particular values of p, but these cases too

can be treated in the same way. So, in conclusion, there is no loss of generality in choosing

the bases (3.65).
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APPENDIX C

Here we recall some facts about theta functions theory [65-67:99] The 6 - function

with characteristic [¢] is defined by

€

9[5](2:) — Z ewi(n+6)ﬂ(n+6)+27ri(n+6)(z+e) — ewi6ﬂ6+21ri6(z+e)9(z +e+ 95), (01)
nezs9

8(z) =0[0](z), =z€CY &ech,

where §; ; = fb, wj, 5 = Q;4, Im(Q) > 0. The holomorphic differentials wi, 1=1,..,9
are normalized in such a way that § wi= ;:, a;,b; being the homology cycle basis.
When §;,¢; € {0, %}, the # - function is even or odd depending on the parity of 48e.

The 6 - function is multivalued under a lattice shift in the z - variable:
9[3](2’ +n4 Qm) — e—wimﬂm—Zwimz+27ri(6n—em)O[g](z). (02)
The prime form is defined by (I (z) is the Jacobi map)

E(z,w) = a[e](}{((j))h—(-uﬁ(w)) = —E(w, z), z,w € %, (C.3)

it is a holomorphic (multivalued) ( -1, —1) - differential with a simple zero in z = w:

E(z,w) ~z —w, asz — w. (C.4)

h(z) is the square root of 2 _1wi(2)04,0[8](4)|u;=0, it is the holomorphic % - differential with
non singular (i.e. 8y, 0[%](¢)|u;=0 # 0) odd spin structure [¢]. Notice that E(z,w) does not
depend on the particular choice of [¢]. The prime form has the following multivaluedness

around the b’s homology cycles:
E(Z + na + mb, w) — e—vrimﬂm—Zwim(I(z)—I(w))E(z, ,w). (05)

The o - differential is defined by

—-%9_ wi(w)inE(w,z
a(z)l‘—e J_lf“i () (:2)

(C.6)
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It is a Z-differential without zeroes and poles defined on a covering of ¥. It has the

following multivaluedness
o(z + na 4+ mb) = ewi(g~1)mﬂm-27rim(I(A)—(y—l)I(Z))a(z)_ (C.7)
A useful relation involving o(z) is
) = I(Pr+ ot B) + I(A)) = 8(Py, ., B)o()E(z, By).. B, Py),  (C8)

where s(Py, ..., P;) is a holomorphic section of a line bundle of degree g—1 in each variable.
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