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Abstract

We introduce a new lattice version of the Correlated Basis Function
(CBF) approach for the study of strongly interacting electrons. As a first
application we have chosen the 1 dimensional Hubbard model. For this
system, we have implemented different types of correlations, namely a)
Gutzwiller; b) Jastrow; ¢) nearest-neighbor spin-spin; and d) excitonic (“e-
d”) on the Fermi sea. Correlated BCS and Spin-Density-Wave (SDW)
theories have also been developed. The resulting energies, momentum dis-
tribution and other quantities are compared with exact results (when avail-
able), and are discussed, both from the point of view of the method, as well
as from a physical view point. The most important correlations that are
needed to obtain good ground state energies are found to be Gutzwiller (re-
duced double occupancy) plus “ed” attractive correlations (between empty

and doubly occupied sites), in agreement with other studies.
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Chapter 1

Introduction

1.1 Hubbard model

The effect of strong correlation between electrons is one the most
important issues which remains challenging in solid state physics. Many
significant phenomena, such as magnetism of itinerant electrons in transi-
tion metals and compounds and metal-insulator transitions arise from this
effect. Moreover recent developments have revealed that heavy electron
systems and high- T, superconductors may have to be added to this list.

The Hubbard model [1][2], given by
H=—-t Y clrcie + U ninag, (1.1)
<L,j>,0 i
here 1, j are sites of a D-dimensional lattice, ¢ is the electron hopping energy,
and U is the on-site repulsion, is a well-known prototype problem of highly
interacting electrons. The first part of Eq. (1.1) is the kinetic energy due

to the hopping between sites ¢ and 7, which can be expressed in momentum



representation in the form

T = 3 e(k)el, e, (12
ko
with
e(k) = —tN7' 3" exp(—ik(R; — R;)) : (1.3)
,J
and
Ckp = N71/2 > cir exp(—ikRy), (1.4)

etc. This term makes the model inherently quantum mechanical. The in-
teraction part reads U 3, chc,-chlc,- | and formally represents a four-fermion
operator. Both the U — 0 and U — oo limits are simple to visualize. For
U = 0 the ground state is given by

9o >= ] elichy0>, (1.5)

k<kp

corresponding to a Slater determinant of extended Bloch functions. For
U — oo only those configurations Whiéh do not have doubly occupied sites
survive. There is an important difference between the two limits. For
U — 0 the ground state is not degenerate. For U — oo there is a huge
degeneracy both due to the distribution of particles and due to the spin
configurations. The former type of degeneracy is absent for the particular
case of an average density of one particle per site (“half-filled band”). The
remaining problem of spin degeneracy can be mapped onto a Heisenberg
model with antiferromagnetic exchange. As simple as this Hamiltonian is,
apart from Lieb and Wu’s exact result in D = 1 dimension [3], the deep

physics of this model is still open to discussion. In recent times, interest in
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the Hubbard model has been revived by Anderson’s suggestion [4] that non-
Fermi liquid behavior away from 1/2 filling might be at the origin of high
1. superconductivity. The resulting literature has acquired enormous pro-
portions [7]. Most notable in this literature are recently developed methods
(Like QMC methods [8]) of numerical solution [6] [8], and also variational
approaches [9]. The variational approaches, in particular, have been very
useful in substantiating ideas on the importance of BCS-like correlations

(as postulated by the RVB state [5] of Anderson).

1.2 CBF method to Hubbard model

The well-known CBF method [10][11] can be used to go beyond the
variational procedure. Widely used for continuous models of interacting
fermions such as nuclear matter [13] and liquid 3He [12], it has never been
implemented so far for a discrete lattice model. Yet, its potential useful-
ness for a lattice problem like the Hubbard model seems to exist. Unlike
variational Monte Carlo methods [9], where the expectation values of im-
portant physical operators are evaluated by stochastic methods, in the CBF
method these expectations are calculated using diagrammatic expansions,
and the FHNC method [14] [15] which sums up all the important class of
diagrams. This expansion can be done at the outset in the thermodynamic
limit, and is thus not disturbed by finite size problems, which instead ham-
per the stochastic approaches. Also, higher dimensionalities are not a big
problem in the FHNC/CBF method, while their difficulty becomes rapidly

prohibitive in the stochastic methods.



On the other hand, the FHNC diagrammatic expansion at present can-
not be expressed in a fully closed form, which makes this approach intrin-
sically approximate. Higher levels of approximations, although formally
doable, require increasing amount of analytical work. By contrast, the ac-
curacy of stochastic methods is in principle limited only by the computer
capabilities.

In practice, our CBF variational state is taken to be of the form
T >=G|® >, (1.6)

where |® > is some reference state and G denotes correlations to be built
into that state, which however cannot be too strong to change the symme-
tries as well as the character of |® >. This fact must in particular be borne
in mind when examining all results obtained when |® > is a Fermi sea:
the approximate correlations of |¥ > will invariably conserve a remnant of
Fermi-liquid character, unless extremely specific correlations are built in,
or the CBF perturbation theory is fully used.

In this thesis, we describe a first systematic attempt at applying the
FHNC/CBF method to the discrete 1-Dimensional Hubbard model (1.1).
The main scope of this exercise is not to uncover any new physics of this

particular situation, which is rather well studied. On the contrary, we wish
to use this calculation to assess the applicability and limitations of the
method, and to obtain precise indications which will serve for the future
planning of calculations aimed at extracting new physics for the Hubbard
model in D > 1 dimensions. More specifically, we shall describe here cal-

culations where |® > of Eq.(1.6) is taken to be the unperturbed 1-D Fermi




sea, and G will correspond to various correlations of increasing richness, be-
ginning from Gutzwiller [9][16], to Jastrow [10], to include the so-called e—d
correlations [20], to spin-spin correlations [17]. Because of this choice, all
results will bear the Fermi-liquid character by construction, which, strictly
speaking, is incorrect at least in 1D [21][4]. However, that does not mean
that FHNC/CBF is hopelessly wrong. At the price of some increase in
complication, as outlined in Chapter 6 and 8, we can perform other cal-
culations with a different choice of |® >, for example | >= |BCS >,
or |SDW >, where the Fermi-liquid character is not present at all (here
|BCS > stands for the standard superconducting state [9] and SDW for
the standard band antiferromagnetic state [9]). The sense of restricting
these first calculations mostly to |® >= |Ferm: sea > is therefore that of

demonstrating the method in its simplest implementation.

1.3 Outline of the thesis

The rest of this thesis is organized as follows. The CBF method is for-
mulated and developed for the Hubbard model in Chapter 2. Some of the
technicalities which occur in that Chapter are omitted for better readabil-
ity, and confined to Appendices. In Chapter 3, we describe calculations
performed with Gutzwiller and more generally with Jastrow correlations.
The convergence of the diagrammatic expansion is first of all tested by
comparing FHNC/0 with FHNC/4 [22]. Then physically interacting quan-
tities, like total, kinetic and potential energies, momentum distribution,

pair correlations, and effective excitation spectrum are presented in detail.



The improvement in going from Gutzwiller to Jastrow is investigated, and
found to be rather small [23]. In Chapter 4, the so-called e — d correlations
between an empty site (e) and a doubly occupied site (d) earlier recognized
to be very important near 1/2 filling [25] are implemented, by introducing
four-site (quartet) correlation terms in G. The resulting energetic improve-
ment is, as expected, quite satisfactory. Also changes of momentum distri-
bution are evaluated and discussed. In Chapter 5, we briefly consider the
problem of spin-spin correlations. Since in the present problem their impact
is not very large, we limit ourselves to éL rather simple analytic treatment.
Future investigations of e.g. the magnetic phase diagram for D > 1 would
of course require a better treatment than that. Chapter 6 contains an out-
line of the FHNC/CBF methods applied to an alternative reference state
|® >= |BCS >, which may be suitable for , e.g., RVB studies in D = 2
and which we are considering as a future application. Some preliminary
results for small U/t values are also presented. In Chapter 7, we develop
the correlated spin-density-wave (SDW) theory, and its application to the
1D Hubbard model is presented and discussed. Finally, discussions and the

conclusions of this work are presented in Chapter 8.




Chapter 2

The CBF method for lattice

calculation

2.1 The CBF theory

The Correlated Basis Function theory [24] makes use of correlated wave

function of the type
¥, = G®,/ < 8:¢1Ge, >1/? (2.1)

to derive the appropriate basis functions of the theory for fermions; ®,, are
independent particle model fermion wave functions, say Hartree-Fock, Spin
Density Wave (SDW), BCS (which is not strictly independent electron but
still manageable) etc, and G is an operator which builds up into @, the
important correlations amongst the particles.

The operator G usually contains parameters, whose values are deter-

mined variationally, by minimizing the expectation value of the hamiltonian



on the ground state ¥,
E=<TH|¥ > /< T[T >, (2.2)

with respect to the variational parameters of G. .

The correlated functions ¥, are usually not orthogonal each other. They
can be orthogonalized in a number of way. However, since the real eigen-
value E, is in general quite close to < U,|H|T, >, one requires that the
orthogonal set |¥, > maintains the diagonal matrix elements variational

estimated, namely
< U |H|¥, >=< U, |H|T, > +0(1/4), (2.3)

where A is the number of particles. This property is achieved by using
the orthogonalization procedure given in Ref. [10]. Standard perturbation
techniques are then used to solve the many-body problem, by keeping the

diagonal part of H as the unperturbed hamiltonian Hy, namely
Hoij = &5 < V| H|T; >, (2.4)
whilst the interaction term Hj is given by
Hpij = (1-6;) < U|H|Y; > . (2.5)

In this thesis we limit our attention to the calculation of the diagonal
matrix elements of H, in the case of an independent particle model |® > of
the Hartree-Fock or of the BCS type. In particular we are interested in a
variational calculation of ground state energy Hoo, which will also provide

us a realistic correlation operator G.




The correlation operator can be written in the following general form:

G = ' xG*xG*x..G%P
= TLFCris) I] FPrigorie) I FH(rismies o)
i

i,k 1,5k,0

S TI(+72(5,9)) | (2.6)

where G7 (Jastrow), G® (3-body) and G* (4-body) are state-independent
correlations, determined strictly by interparticle coordinates, while G5P
are in general state-dependent correlations, exemplified, in particular, by

spin-dependent correlations
(i,7) = 1+ n(ri;)e:05, (2.7)

and S is a symmetry operator. In this Chapter we consider the case of
correlation operator of the Jastrow type and a |® > of the Hartree-Fock
type. The inclusion of G* is discussed in Chapter 4 and that of state
dependent correlation in Chapter 5. The cases of a |® > of the BCS or
SDW type are reported in Chapter 6 and Chapter 7 respectively.

The expectation value of the hamiltonian H is given by

E=<T>4+<V >, (2.8)
<T > /N = —2tpn(a), (2.9)
<V > /N =Up%g(0)/2, (2.10)

where N are the lattice points separated by a and p = A/N, which is twice
the filling factor. The functions g(r;;) and n(r;;) are the pair distribution

function and the one body density matrix respectively. As seen from (2.9),
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we need to know the former for r;; = 0 (on-site resulsion) and the lat-
ter for r;; = a (ﬁrst-ﬁeighbor hopping). These two quantities also allows
for the evaluation of the density-density correlation function S(k) and the

momentum distribution n(k), as will be shown in Chap. 2.3.

2.2 Pair correlation function

The derivation of the FHNC integral equations is based on a diagram-
matic cluster expansion of the multidimensional integrals which appear in
the definition of the two-body radial distribution function (pair-correlation

function)

A(A - 1) de3...ClXA|@!2 Hi,j fz(r,-,j)
p*  Jdxi..dxa|@P L ; f2(ris)’

where A is the number of particles and p denotes the particle density of

9(riz) = (2.11)

the system. the relevant spin summations are implicit in the integrations.
In addition to the original papers several review articles are now available
in which the FHNC method is explained [22] [24]. Therefore in this section
we shall only very briefly illustrate the FHNC method and we refer to the
original papers and those review articles for more detailed discussion. In
Eq. (2.11), @ is taken to be the antisymmetrized product of the following

single particle wave functions

Pro(i) = €56, (3), (2.12)
where {,(7) represents the spin state, the the variable z; sums over the N

lattice points and k (1D) is subjected to boundary conditions

21_21

k
! Na’

(2.13)
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with [ = £1, £2, ....

The fermi momentum kp is given by

kp = g%, (2.14)
where p, the density of the system is twice of the filling factor v.

The correlation function f(r;;) is also defined on the lattice points,
namely the interparticle distance r;; = z; — z; with z; =4e¢ (¢ = 0,4%1,...+
N). Because the convolution integral becomes a product in momentum
space, the convolution integral equations can be expressed in momentum
space, and thus their extension to the lattice case is straightforward.

In the case of Fermi statistics the pair-correlation function is obtained as
a sum of linked irreducible diagrams. In these diagrams a pair of particles
may be correlated either by a dynamical correlation h(r;;) = f%(r;;) — 1 or
by an oriented statistical correlation or both. The statistical or exchange
lines, which appear in nonoverlapping closed loops, correspond to the un-

correlated two body density matrix, is given by

ples) = § ¥ieleold)

= P g6 () )
a FT

= 5pE) DEWE), (215)

with the one body density matrix

. 1 .
P(i) = 5 20 o (D) = p- (2.16)
k,o
Correspondingly, the uncorrelated pair distribution function results to be
1
9(ei) =1 = 50 (zs5)- (2.17)



By using Eqgs.(2.15, 16) one easily recovers the Hartree-Fock results for the
uncorrelated energy Egp = -—4t/7r + U/4 at half filling.

In the case f(ri;) # 0, the pair distribution function can be calculated
by using the FHNC theory originally developed to study strong interacting
Fermi systems [26][27] by keeping p(zi;) of Eq. (2.15) as the exchange
correlation. In such a theory g(r) is given by a sum of the distribution
functions,

9(r) = gaa(r) + 2gae(r) + gee(r), (2.18)

where the labels dd,de and ee refer to the particular exchange character
of the distribution functions considered. The “direct-direct” diagrams in-
cluded in g4; have only correlations h(ri;) = f*(ri;) — 1 ending at both
external points, whereas the label e indicates that the corresponding dia-
grams have one exchange correlation p*(r;;) ending at the external points.
In Appendix A the detail diagrammatic rules for the cluster expansion are
discussed.

The various distribution functions are calculated by solving the follow-

ing set of integral equations (see also Appendix A):

Nap(i) = p3 D (Goy(2it) = Sadrya) Ay (gyp(zi;)
Ty ok
1
- Nyg(zejy + 5 86c0yrep(zis))
(af) = dd,de,ee,cc (2.19)

where k& run over the lattice points whereas the indices a, 3,7, run over

13




the exchange labels (d,e,c) and the 3 x 3 matrix 4 is given by
110
A=|10 0 . (2.20)
0 01
The cc-function entering in Eq. (2.18) sum up diagrams with one ex-

change loop joining the two indicated external points. The distribution

functions g.u(z;;) are given by

gai(z) = f*(z)exp{Nu(z)+ Es(z)}
= de(:z:) -+ Ndd(:z:) +1, (221)

9de(2) = gaa{Nae(z) + Eae(z)} = Xae(z) + Nae(z), (2.22)

gee(2) = gaa{Nee(2) + Eee(®) + [Nae(®) + Eue(2)]’
= 2NVle) + Bule) - 5p(a)]%}
= Xee(m) + Nee(m)7 (223)

1
Jee(z) = 9ad{Nee(z) + Eee(z) — ip(w)}
1
= Xe(z)+ Ne(z) — Ep(a:) (2.24)
The functions E(2;;) correspond to the so called “bridge (or “elemen-
tary”) diagrams”, two examples of which are shown in Fig. 2.1. They are

expressed in terms of g, and their full calculation can be expressed in the

form

Eu(z) = Y B3 (), | (2.25)

14



Figure 2.1: Examples of four-body (a) and five body (b) ele-
mentary diagrams, in which each bond can be a different kind
of g, combined according to the diagrammatic rule, which we
discuss in Appendix A. Dashed lines are used to represent
dynamical correlations n(1,2) = f2(1,2) - 1, solid lines cor-
respond to factors —p(kpz)/2.
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where the index n refer to the number of points which characterizes the
corresponding bridge diagrams. For instance diagram a in Fig. 2.1 corre-
spond to n = 4, whereas the five body bridge diagram has n = 5 (diagram
bin Fig. 2.1). If Ey is taken to be zero, the corresponding approximation
is called FHNC/0. Similarly the approximation FHNC/N is obtained by
truncating the series (2.25) at » = N. It is known that the convergence
of the series FHNC/n rapidly decreases as the contribution of the bridge
diagrams to g(r) increases. Eventually one needs to use different schemes,
like for instance the scaling approximation [33] or the interpolation equa-
tion method [28]. In this thesis we }consider the FHNC/0 and FHNC/4
truncation. The calculation of the four-body bridge diagrams EY, is given
in Appendix B. The lowest order approximation FHNC/0 has been found
[12][34] to be accurate for many dense systems like e-plasma, liquid Helium,
nuclear matter and neutron matter.

Further, the density-density correlation function S(k) is obtained from

the pair correlation function by means of the equation

Sk)=1+ p;(g(ml) — 1) exp(ika;). (2.26)

2.3 Omne body Density matrix

In order to study the kinetic energy of the Hubbard hamiltonian (1.1), it
is necessary to evaluate the momentum distribution function. This quantity
is related by a Fourier transform to the one body density matrix defined as
A(A-1)

n(ru,) = pZ

16



Jdxz..dx 4 @*(1'2.. A) T £(rui) T] #(r15) II A@s)e@2.4)

1<j#1,1!

f dxy...dx 4 ®* Hfz(T,'j)é

X

(2.27)

The Hartree-Fock approximation is obviously included in n(ri1) and it
corresponds to the uncorrelated lowest order term of the cluster expansion
and it is given in Eq. (2.15).

In analogy to the treatment of the pair-correlation function discussed
in the last Section, a diagrammatic expansion of the right-hand side of Eq.
(2.27) may be employed to derive a set of integral equations which facilitate
the infinite partial summations of the contributing diagrams. The cluster
ejcpansion and the FHNC equations to calculate n(r111), have been derived
in ref. [27] and they can be readily modified to the present lattice version.

In addition to the dynamical correlation factor h(ri;) = f*(ri;) — 1 the
chain and bridge diagrams which contribute to the density matrix contain
another dynamic link representing the factor £(rij) = f(ri;) — 1. This link
originates from the point 1 or 1’ and may also be multiplied by statistical
correlations: {(ri;)p(ri). Examples of the diagrams as well as detailed
discussions of the diagrammatic rules can be found in Refs. [13] and [27].
The diagrams are labelled with éd,€e, E€, Ecc, and Ecbe respectively. The

density matrix is given by

n(r11) = no{p(r11/)/2 — Neego(r11/) — Eeee(rivtexp{ Nee(r11) + Ege(r11)},
(2.28)

17



where the ¢céc nodal function Ngy,. is obtained by solving the equation:

1
Neete(riv) = p 2 AGece(r1i) (gee(rirr) = Nece(Tarr) + 5 peee(ria’))
k

1

- 'z"(gécc(rlk) - gcc("'lk) - NScc(rlk)

+ Ne(rae))p(ran)}s (2.29)

and the other chain functions for the nodal functions Ngg, Nea, Nee and Neee
are given by Eq. (2.19), where m still runs over d, e or c and (ab) = £¢,¢d, (e

and £cc. The various distribution functions are given by

gea(z) = f(z) exp{Nea(z) + Eea(z)}, (2.30)
gee(r) = gea(z){Nee(2) + Eee(z)}, (2.31)
eee(r) = gea(z){ Nece(z) + Eeee() — (1/2)p()}- (2.32)

The strength factor of the density matrix no may be evaluated as
no = e2Ve Ve, (2.33)

where
Ue = ;{Z(gﬁm(mik) — Nea(zir) — Eea(zir )

1
- > gsm(wik)Amm'(gNm'e(wki) + Eme(zi)} + Ee,  (2.34)

where both m and m' run over d and e only, and the expression of Uy is
obtained from Eq. (2.34) by replacing each subscript { with d which means
that Uy is determined solely in terms of the diagrams which contribute
to the pair correlation function. The expressions of the bridge functions

appearing in the calculation of n(r) are given in Appendix B.

18



The momentum distribution is easily calculated from n(r11/) by using
the following equation

n(k) = %Z n(z;)exp(tkz;). (2.35)

The momentum distribution of a normal Fermj system shows a discon-
tinuity at the Fermi surface, which can be calculated through (2.28) and
(2.29). The existence of such a discontinuity is the characteristic behavior
of a Fermi liquid, and the amount of the discontinuity decreases with in-
creasing strength of the dynamic correlations of the system. However, it
is worthnoting that such a discontinuity does not exist if we choose the &
of either a BCS or a SDW form, which we will discuss in Chapter 6 and
Chapter 7 in more detail.
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Chapter 3

Gutzwiller and Jastrow

correlations

3.1 Gutzwiller correlations

Among‘ several approximate methods the variation theory is featured by

a wide applicability ranging from weak to strong correlation. A standard

approach along this line is to use the Jastrow-type variational wave function
[10]

U = [] f(ri;)detM, (3.1)

i<i
where f(r;;) is a two-particle correlation factor and det M is the Slater
determinant of plane-wave states. The factor f(r;;) takes care of strong
repulsion acting for a close pair. The Gutzwiller theory is the simplest ver-
sion of Eq. (3.1) in that only the same site is taken into account in f(r;;)

(i.e. f(ri;) =1 for Tij # 0). The resulting wave function is very attrac-

20



tive in its simplicity. However, even with this simplification, an analytic
evaluation of expectation value of energy and other physical quantities is
extremely difficult. This led Gutzwiller to resort to a ra,ndom—phase-‘type
approximation (often called “Gutzwiller approximation”), which turns out
to spoil in some cases the upper bound property, a necessary condition for
a correct variational theory. Since then many researchers have followed
the Gutzwiller approximation (GA), but there are fewer studies which go
beyond the approximation. Recently, Vollhardt and his collaborators [16]
have worked out analytically the energy and correlation functions for 1D
Hubbard model under the Gutzwiller wave function and avoiding the GA.
We propose therefore to compare our results with theirs, as a check of the
method. ‘

The Gutzwiller ansatz for a state independent correlation operator is of

the form [9]
GG = Hf(}'(rij) = H(]- - (1 - 9)51';11'51)1 v (32)

l.e., it correlates only particles sitting on the same site. The limiting values
g =1 and g = 0 correspond respectively to the uncorrelated Hartree-Fock
wave function and to projecting out configurations with double océupancies.

We have performed FHNC/0 and FHNC/4 calculations as a function
of U/t and of the filling factor, in order to study the convergence of the
FHNC scheme with respect to the inclusion of bridge diagrams. The results
of the density-density correlation function S(k) are displayed in Figs.3.1
and 3.2 for p = 1 and p = 1/2 respectively. The contribution of bridge

diagrams increases for larger value of filling factor and smaller values of g.

21



Figure 3.1: Density-density correlation functions for p = 1.
Solid lines correspond to calculations with use of FHNC/4
whereas dashed lines FAHNC/0. Results for the Gutzwiller

variational parameter g = 0.9,0.7 and 0.5 are shown.
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Figure 3.2: Density-density correlation functions for p = 0.5.
Solid lines correspond to calculations with use of FANC /4
whereas dashed lines FHNC/0. Results for Gutzwiller vari-
ational parameter g = 0.9,0.7 and 0.5 are shown. Note the

supression of the 2ky singularity with increasing correlations.
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Table I:

Kinetic and potential energies compared with exact results

[4] for Gutzwiller wave function.

Tezact | Vezact T v p | n(0)
-.541 | .283 | —.552 | .293 | 1.0 | .99
U/t=4|-.654 | .141 | —.662 | .148 { 0.8 | .79
-.769 | .0658 | —.770 | .0659 | 0.6 | .60

Their effect is negligible for |k| > $pks. The inclusion of four body bridge
diagrams helps in reducing the violations of the sum rule S(0) = 0. For
values of g < 0.5 higher order bridge diagrams would be needed in order to
fulfill the sum rule. In fact we could force S(0) to be zero by redefining S(k)
in a small region of k around 0, with practically no change of the energy
expectation values. We have checked that this procedure does not lead to
significant energy improvements, and we decided not to follow it.
Violations of similar order of magnitude are found for other sum rules,
like for instance, n(0) = p. As mentioned in the Introduction, such viola-
tions are intrinsic in the truncation of the FHNC method, and, if not too
large, they do not imply any serious prejudice on the quality of the cal-
culation. Table I reports the results expectation values of the kinetic and
potential energies < T' > /N and < V > /N compared with exact results.
The inclusion of bridge diagrams improves slightly the accuracy of the cal-

culation. Somewhat surprisingly, the improvement is substantial for “weak”
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correlations, i.e., ¢ > 0.5. In the case of strong correlation this result indi-
cates the convergence of the FHNC scheme is getting lower and lower and
eventually one should eventually resort to other schemes [10][19][28]. As a
measure of the importance of bridge diagrams, we note that the relative
importance of bridge diagrams, given by the ratio E44/Ngq increases for
smaller values of g (stronger correlations), as expected. Similar results are
found for other elementary functions E4e, E,. and E...

For a given value of U/t and of p we have minimized total energy,
i.e., the FHNC/4 estimated expectation value of the Hubbard hamiltonian
(1.1), with respect to the variational parameter g. The results obtained are
given in Fig. 3.3 and compared with the “exact Gutzwiller” results [16] and
also with values obtained from Lieb and Wu'’s exact formulas. For U /t up
to about 5, our results are almost identical to the Gutzwiller results [16],
obtained with the same wave function. For larger U/t, higher order bridge
diagrams are clearly needed. It has to be noticed that the accuracy for the
total energy is substantially better than the corresponding accuracy found
separately for < T > and < V > as shown in Table I. The kinetic energy
is too low, since correlations are imperfectly implemented. The potential
energy is correspondingly too high, and largely compensates the kinetic
energy error, but of course not exactly so.‘

The FHNC/4 estimates of n(k) for ¢ = 0.3 and 0.6 at p = 0.8 are
compared with the corresponding “exact Gutzwiller” results in Fig. 3.4.
The increasing behavior of n(k) with k is a typical defect of the Gutzwiller
ansatz [25] and is present in our calculation too, especially before the kp

jump. As we will show in the next Chapter the inclusion of quartet corre-
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Figure 3.3: Total energ‘y for the Gutzwiller wave function

compared with the exact Gutzwiller results.
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Figure 3.4: Momentum distribution function evaluated by
the present method (dashed lines) for p = 0.8 compared with
the exact results for the same Gutzwiller wave function (16]

(solid lines).
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lations acts to remove this behavior.

3.2 Single particle excitation spectrum

We have calculated the single particle excitation spectrum e(k), by
evaluating the diagonal matrix elements of the hamiltonian on correlated
particle-hole states of the type given in Eq. (2.1). The correlation oper-
ator G used is of the Gutzwiller type with the parameter g determined
by variational calculation in the ground state previously discussed. The
particle-hole uncorrelated wave function |®, > corresponds to a state with
the particle having momentum p and the hole momentum k=kp

< &,,G | H|GB,, >
< ®pr|Pph >z

e(p > kr) — e(p = kr) = (3.3)

The actual calculation has been performed [28] by keeping the following

density matrix
po.a(Ei;) = p(zi;) — A(cos pzij — cos kpzij) (3.4)

in place of p(z;;) of Eq. (2.15). That amounts to remove a state for k = kp
and putting it into p. Having created this “bare” elctron-hole pair into the
uncorrelated function ®,;, then the rest of the correlation calculation is

repeated exactly as for the ground state. One has

(p) — e(kr) = o (E(ppa) = B(p)) lamo (35)

A completely similar procedure has been used to calculate the energy of

the hole states k < kp.
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The single particle excitation spectrum e(k) is displayed in F ig. 3.5 and
3.6 for different values of U /t and for p = 1 and 1 /2 respectively. It is
interesting to note that the slope of U/t for k ~ ky increases with U/t, in
qualitative agreement with the behavior expected from perturbative (e.g.
one lbop) self-energy diagram. This increase of slope goes qualitatively
in the right direction, and indicates a tendency to develop a pseudogap.
That pseudogap in turn is a remnant of the true gap A that could be
obtained by implementing the exact (Lieb-Wu) correlations at p = 1. Such
a striking disagreement between the known exact result (a true gap in e(k))
and our calculation exhibiting only slight steepening over the free particle
e(k) should not be surprising. This defect is intrinsic and well-known for
- the Gutzwiller wave function.

Away from half filling (p < 1), the change of e(k) with increasing cor-
relations is again similar, but is asymmetric for electrons and holes. As it
turns out, and is shown in Fig. ‘3.6, correlation effects are far larger for
holes than for electrons. Again, the Gutzwiller approximation fails to yield
the more delicate aspects of the 1D Hubbard model, which implies the total
absence of quasi-particles [30], which makes e(k) itself ill-defined.

3.3 Jastrow correlation

The results presented so far applied to the strictly on-site Gutzwiller

correlation (3.1). Next we have studied the possible importance of nearest-
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Figure 3.6: The single particle excitation spectrum for the

Gutzwiller wave function at p = 0.5.
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neighbor correlations (Jastrow type correlations).

g z;=0
)= g1 |zijl=a (3.6)

1 otherwise

The calculation of the expectation value of the hamiltonian is of similar
simplicity as for the Gutzwiller case. We have minimized total energy E
with respect to g and g;. The improvement of E was found to be quite
small, comparable with the accuracy of our calculation [23]. The energy
expectation value has been found to be a very flat function of g; for g1
around 1. Inclusion of second and higher neighboring site correlations yields
corrections that site are even smaller, and totally negligible. These longer
range correlations have however some minor effect on n(k) as can be seen
from Fig. 3.7.

On the basis of the above analysis it emerges quite clearly that the
discrepancy between the Gutzwiller and Lieb and Wu result is not due to
a poor choice of state independent two-body correlations. The importance
of other correlations, particularly of the e — d type will be discussed in the
next Chapters.
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Figure 3.7: Momentum distribution function for Jastrow

wave functions (g; # 0) compared with Gutzwiller ones

(g1 =0).
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Chapter 4

Four-particle (“quartet”)
implementation of e-d

(charge-charge) correlations

4.1 The importance of the correlation

As shown in the previous Chapter, the FHNC/CBF realization of
Gutzwiller correlations can be considered on the whole quite satisfactory.
This success however does not cure the fact that Gutzwiller correlations are
themselves basically unsatisfactory, as is well-known, on several accounts.
A very good physical description of the differences of pure Gutzwiller cor-
relations in the 1D Hubbard model can be found in a recent article by
Fazekas and Penc [25]. The main missing ingredients, at least near half-

filling (p ~ 1), are known to be the charge-charge correlations, particularly

34



the so called e — d correlations, discussed originally by Kaplan, Horsch
and Fulde [20], and later by many others [16][21]. Empty (e) and dou-
bly occupied (d) siters, which the Gutzwiller wave function leaves mutually
uncorrelated, prefer in the true ground state to sit on neighboring sites.

We can present the following qualitative rationale, due to Tosatti [29],
of these correlations. At half-filling, where e and d are present in equal
numbers, bound pairs are actually formed, with a binding energy equal to
the insulating gap. Because of this, we can argue that e—d correlations must
fall exponentially with distance. The nature of the insulating ground state
can be seen as “excitonic”, i.e., it contains a “condensate” of (ed) pairs.
Away from half filling, say for p < 1, there is an excess of e over d, and
the final nature of the ground state is decided by a three-body scattering
process, e + (ed). The general belief that in this regime the 1D Hubbard
model becomes a marginal conductor, that is, borderline between a metal
and an insulator (3], could imply that, although the (ed) bound state is
not destroyed, its binding energy must fall to zero. Hence, in this case
long-range e — ‘d correlations will decrease only as a power law of relative
distance.

Our task in this Chapter, is to build at least some of these important
ed correlations into the present FHN C/CBF calculation scheme. Draw-
ing heavily from previous experience on the same problem with different
methods [20], we shall content ourselves with introducing nearest-neighbor
correlations only. They are the simplest to implement, and they are also
the most important in reducing the total energy. We are of course well

aware, in doing this, that many other physically important aspects, such
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as metallic versus insulating character, and Fermi liquid versus non-Fermi
liquid behavior would also require a proper treatment of long — range cor-
relations, which at this stage we do not provide. Similarly to Fazekas and
Penc [25], we prefer to take one step at a time, by demonstrating at this
initial stage how the simpler short-range ed correlations can be included.
Extension to long-range correlations seems conceptually feasible, but is left

for the future.

4.2 TFour-particle correlations

In the present real space method, inclusion of nearest neighbor e—d correla-
tions involves a minimum of four electron sites, (which we call a “quartet”).
Calling ¢ = 0 the coordinate of a doubly occupied site d, we start by as-
suming r; = 0,7, = 0. [Fig. 4.1]. Then, if a third electron, of coordinate
rs, occupies a first-neighbor site, |rs| = a, we can require that no fourth-
electron should be as close, i.e. |r4| > 2a. If only configurations which obey
this rule were included, the confinement of the (ed) pair would be total.
What we do, is to include the possibility to enhance (or depress) this type

of configurations by taking as our new variational state
T >= QG|® >, (4.1)

where

i if :1312:0, Ti3 = a4, (1314#241

(4.2)
1 otherwise

In calculating the pair distribution function and the one body density

matrix the quartet correlations can be treated as 4-point bridge structures.
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Figure 4.1: Example of e — d configuartions in 1D lattice. e
refers to an empty site, d a doubly occupied one, and s for
singly occupied sites. Such configurations are favored varia-

tionally in the CBF calculation.
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Correspondingly, one has to calculate four functions Quq, Que, Qee, and Q..
related with the 4-point irreducible diagrams having the quartet correla-
tions and the various bond dressed with the proper distribution functions.
For example, the function Q44 is given by

Qdd(ﬂhz) = ZQz(wl,"Ez,ws,M)

T3,T4

< Z_gaa("’ls)gﬁf(wlti)gm(mzs)gss(mu)gm($34)Ci (4.3)

where the second summation follows the same rule for the combinations
of g’s as in E}; which is given in Table I in Appendix B, with the only
difference that the bond g4y — 1 becomes here ggq.

Similar expressions are found for Qg ,Q.. and Q., which they refer
to Tables II-IV. Each quartet function Qg is then summed to the corre-
spond bridge function E,, into the FHNC equations (2.21-25). The calcu-
lation of the density matrix is performed in an analogous way. The quartet
functions Qeay Qees Qece é.nd Q¢ are respectively added to bridge functions
Eta, E¢e, E¢cc and E; in the equations (2.30-32) and (2.34). They are given
by one equation similar to (4.3) with Q(z;...zx) in place of Q*(z;...zx).
The g-combination follows Table V, VI, VII, and IX with ge¢g — 1, gaa — 1
substituted with gg4, geq, respectively. There are no quartet function of the
type Q¢e and Qecec-

The resulting FHNC equations turn out to be of the same complexity as
in the case of the pure Jastrow model disqussed in Chapter 3. More realistic
quartet correlations, including also long-range correlations would not imply
any extra real difficulty with respect to that employed here and given in

Eq. (4.1). We also note that the introduction of quartet correlations leads
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to a more rapid convergence process in the solution of the FHNC equations,

and to a better fulfillment of the various sum rules discussed in Chapter 3.

4.3 Results and Discussion

In Fig. 3.3, we have shown the minimized total energy with the use of
Quarlet/Jastrow correlations. For U/t = 4, the variational parameters 7,
g1 and ¢ are found to be —0.50,0.80 and 0.45 for p = 1, —0.45,0.80 and
0.45 for p = 0.8 and —0.45,0.75 and 0.45 for p = 0.6, respectively.

The quartet correlations accounts for as much as 90% of the discrepancy
~ between the results of the Gutzwiller model and the exact ground state
energy, in qualitative accordance with the calculations of Ref. [25]. For
example, for U/t = 4,p = 1, we have Egutzwitier /[N = —.521, Eg/Jastrow =
—.565 compared with F.zoc:/N = —.571 [3]. The results for < E > /Nt are
reported together with the corresponding Gutzwiller evolution in Fig. 3.3
for various filling factors.

Another important indication of the fact that the quartet correlation
improve the ground state wave function comes from the results obtained
from the momentum distribution, which are shown in Fig. 4.4 and 4.5 for
p =1 and 0.8. The magnitude of the drop of k = k; is reduced, although
not eliminated, by the inclusion of quartet correlations. In particular, n(k)
changes from increasing to decreasing just before krp. This feature goes
qualitatively in the right direction when one compares with numerically
obtained n(k) based on exact solution of the 1D Hubbard model [30].

In fact the inclusion of quartet leads to a decrease of n(k) for k < kp,
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n(k)

— Quartet/Jastrow-

p=1

e U ft=4

Figure 4.4: Momentum distribution function for the quarlet
wave function at p = 1. Dashed line corresponds to the case
U/t = 4, while solid line corresponds to the case n = —0.50,
g1 = 0.80, g = 0.50,0.40 and 0.35 respectively.
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p=0.8

Figure 4.5: Momentum distribution function for the quarlet
wave function at p = 0.8. Dashed line corresponds to the case
U/t = 4, while solid line corresponds to the case n = —0.50,
g1 = 0.80, g = 0.45,0.40 and 0.35 respectively.
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in accordance with the exact solution by Lieb and Wu.
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Chapter 5

Spin correlations

5.1 State-dependent spin correlations

Spin dependent correlations modify the distributioﬁs of singlet and
triplets with respect to that of the Slater determinant and are also suggested
by the well-knowbn antiferromagnetic tendencies of the Hubbard model.
Therefore it is interesting to study the effect of their inclusion on the energy.
This has been accomplished by considering the correlation operator

G =G'G% = STI(1+(ir 7)), (5.1)

i
in the wave function ¥, of Eq. (2.1). A correct FHNC treatment for such
a correlation operator requires that chain, hyperchain and bridge diagrams
are computed by taking care of all possible orderings of the 75(¢,7) cor-
relations. The approximation, denoted as Single Operator Chain (SOC)
[13], includes the leading diagrams with links corresponding to spin cor-

relations. It has been applied to study nuclear matter and more recently,
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an improved version of SOC has been successfully used in liquid *He [12],
where spin-dependent correlations are crucial. Unfortunately, at present, it
is not clear how to go beyond the FHNC/SOC scheme of Ref. [34] which
may be necessary to study the Hubbard hamiltonian. An interesting way
to overcome such a difficulty would be to consider a G°P of the so-called
independent cluster form

Growny = 1+Z ﬁz(iaj)+22 ﬁM(iJ,k)‘i‘--'*" ; 7i2(3, 7 )2(l, m)+..., (5.2)

ij ij i, j#lLm

where the cluster correlation 7’s appearing in each sum have no common
indices, and M denotes the largest cluster included. An exact FHNC treat-
ment can be derived for each M, which is free of the “commutator terms”.
The case M = 2 has already been developed to study liquid *He [12] and

work to include three-body clusters 7s(¢, 7, k) are in progress.

5.2 LCE method

In the present work we limit our analysis to very weak spin correlation
functions n(r;;). Unlike *He, weak spin correlations are, as it turns out,
quite appropriate for the Hubbard model. Since théy also have a very short
range nature, it is expected that they can be well accounted for by the sec-
ond order of the power series cluster expansion [9], namely by retaining
all the cluster diagrams having at most two 7(¢,7) correlations. This ap-
proximation allows us to include correctly all the orderings in the diagrams
considered. The quadratic terms in 7 are necessary in order to determine a

minimum in the expectation value of the hamiltonian with respect to the

44



variational parameter of 7(z, 7).
In this calculation we limit ourselves to consider the simplest variational
choices for both the Jastrow correlation f(ri;) and the spin correlation

function 7(r;;), namely
1 .
f(T,;j) == exp{:?-a&-j}, (53)

L+4(2,5) = exp{%’?ﬂi-jl.l&i&'j}- (5.4)
On site spin-correlations are already included in the Gutzwiller ansatz
(5.3), since two electrons in the same site must in a singlet state only.
It follows that the simplest interesting variational choice for n(%,7) is to
correlate the first neighbor sites as in Eq. (5.4).
The pair correlation function at z;; = 0 is given by
6(0) = == < Y65 >, (5.5)
Ap G
where < > denotes the expectation value on G®. The zeroth order term is
1/2. First order terms are obtained from the equations

; (5.6)

an=0

9(0) = -2 4(0)

d
an=0 1 77%9(0)

whose evaluation requires that of two- three- and four-body uncorrelated

distribution functions. In fact,

d 2
_J&g(o) la,n=o = :‘1—p{< Z5ij6jm > — < Z&j >p< Z5jm >§>}
2
= — Z < Zfsi'5'm > (5'7)
AP connected T

where < >3 denotes the expectation value on the uncorrelated wave func-

tion ® and the last sum is limited to the connected diagrams only. The
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two-, three- and four-body distribution functions are required to calculate
the terms arising from (i) and (Im), having both, one and no common
indices respectively. An analogous expression holds for the spectrum

d d

—g(0

7790

=0 = - > < 6ii63om 1515 m >e (5.8)
connected

Here, the two body terms vanish, since 6:30ji—jj1 = 0. One can easily verify

that

Wy = 2 4 57 9
g+(0) 5 T (5.9)
Similarly, the quadratic terms are provided by the equation

1 ., d? 1 ,d? 1 d?
2 2 2
g( )(0) - Ea Wg(o) a,n=0 + 577 "&-_29(0) a,n=0 + 5"7adad g(O) |°‘177=0

1
= Ap < Y bii(abim + N6j1-m|1)(@bnp + M6jn—pj1) >2  (5.10)

They turn out to be

g®(0) = 2(“"+

connected

39 24 6a77
42 +7r )+

A completely similar procedure can be used to evaluate the zeroth, first

—(~1+ -—) (5.11)

and second order terms of the density matrix which is needed to compute
the kinetic energy expectation value. The zeroth order term gives 2/7 and
it is found that first order terms in both « and 7 vanish. The net result for

the second order terms is given by

1 27 20, 2am,?2
n<2>(0):—2a2(1—1é Ly W2 20, 2002

472 (16+37r2 ] ) (5'12)

5.3 Discussion

If we set n = 0 we recover the LCE expression [9]. In this case the

minimum of E /¢ for U/t =41is -0.521 with o = —1.49, whereas for the full
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Table I:

Energies calculated by second order pPower series expansion

with and without nearest-neighbour spin correlations.

U/t | Byeo/N | Eyz0/N
1 | -1.038 | -1.039
2 | -0.835 | -0.836
4 -0.522 -0.528

expression the minimum is —0.528 with o = —1.366 and 7 = 0.044. These
results strongly indicate that short range spin-dependent correlations do
not give a substantial contribution in the 1D case, as was anticipated.
Therefore a full calculation with the SOC scheme (or beyond) seems not to
be necessary here. Table IT shows the equation of state for different value
of U/t calculated with second order power series expansion with or without

spin correlations.
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Chapter 6

Correlated BCS function

6.1 The motivation

All correlations which we have implemented so far consist of one projected
or another (Gutzwiller, Jastrow, ed, spin-spin) acting on the bare Slater
Determinant |Fermi Sea >. Mainly due to that, the resulting system
turns out to be “Fermi liquid” like. That is the underlying single-particle
Green’s function retains a non-zero pole residue Z

Z
Gre = :m + nonpole terms (6.1)

which in turn is reflected by a finite jump of n(k) at k = kr.

As was repeatedly stated, it is of course well known that in reality
this particular detail is wrong in the 1D Hubbard model, which is in fact
a true insulator for p = 1 [3], and only a marginal metal, with Z = 0
at all other fillings [4]. We notice that, for example, the ed correlation
results of Chapter 4, yield a ground state energy which is already very
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close to the exact result, and yet, the Fermi jump is still quite large in that
approximations. Implicitly, this demonstrates that departure from Fermi
liquid behavior, at least for p # 1, is probably connected with an extremely
small and delicate energetic improvement.

Nevertheless, this Fermi-liquid issue is of great conceptual importance,
as well as a subject of intense debate in the 2D case [8]. It is therefore of
interest to investigate at least one class of trial wave functions which by
construction, do not have a Fermi surface. The simplest such state is a
band antiferromagnetic ground state with spatial periodicity = /kr, which
is usually referred to as a Spin Density Wave (SDW) state. In that case, the
uncorrelated state | > is just a magnetic band insulator, at any filling, and
the Fermi Surface is trivially destroyed by single-particle magnetic Bragg
scattering. A CBF calculation starting with a SDW uncorrelated state will
be presented in the next chapter.

A second, more challenging type of wave function without a Fermi jump
is a BOS state. It was shown a long time ago by Fantoni [39] that, in spite
of its not being a single Slater determinant, a BCS function can usefully be
employed as the starting point for a CBF calculation [35].

Energetically, we can surmise at the outset that BCS correlations might
not be favorable in the 1D repulsive Hubbard model. The Tomonaga map-
ping, for example [36], indicates that the pairing susceptibility does not
diverge in this regime.

Our main reason for carrying out a correlated BCS calculation all the
same 1s thus largely “educational”. In the 2D, U = oo case (where the

physics is different), Anderson has indicated that some kind of Gutzwiller
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projected BCS state maybe a reasonable representative for his RVB state.
In fact in 2D, there are indications that such a state with a d-wave pairing

function has quite a good energy [37][38].

6.2 Correlated BCS theory

Since |BCS > is not an eigenstate of the particle number operator N ,

we need to write G in the form of a second quantized operator [39]
|¥pes >= G|BCS > (6.2)

with
|BCS >= Ikl(uk +vxek,el )]0 >, (6.3)

where the BCS amplitude uy and vy are variational functions subjected to
the normalization condition uf + v = 1. The correlation operator G is
defined through the following equation
[Tpos >=3. 5. Gr]a0™) >< (™) |BCS >, (6.4)
L mp
where the label my, specifies a set of L single particle states. In coordinate
representation Gz|®™*) > is given by

< @125 |G| >= ¢(1,...L)A{¥,,, .. T, }, (6.5)

where each index m; denotes both the momentum & and the spin projection

o of the state. In this work we limit our attention to consider operator
G(1,...L) of the Jastrow form, namely G(1,..L) = [Lis;j=1r f(ri;). By

construction |¥pcs > has an off diagonal long range order.
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The FHNC equations to calculate the pair distribution function and the
density matrix are given in ref. [14] for a Fermi liquid. The modifications
needed to apply these equations to the present 1D lattice calculation are
straightforward and follow the procedure discussed in the previous Chap-
ters. The correspond solution of these equations is of the same amount of
simplicity as in the Fermi sea case.

The density pg of the uncorrelated |BC'S > state vector, given by
2 2
Po = _N'Zv (k), (6.6)
k

is not the same as the density p of |¥pes >. It follows that po has to be
considered as a variational parameter of the theory, whereas p results f;‘om
the solution of FHNC equations. In fact P = cpo appears in the FANC
diagrams as a vertex correction and ¢ has to be calculated self-consistently

together with the other FENC quantities Ny, Xg, and E,y.

6.3 Results and Discussion

Fig. 6.1 summarizes our calculated CBF /FHNC ground state energies
for the Gutzwiller-correlated BCS state of the 1D Hubbard model.

Clearly, the introduction of a BOS order parameter is not energetically
favorable, as expected from the previous discussion. In essence (see Fig.
6.2) the BCS pairing increases the double occupancy significantly, without
vielding a kinetic energy gain sufficient to compensate. Writing the total

energy in the form

E(A) = Ey + xA?/2 (6.7)
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Figure 6.1: Ground state energies for the Gutzwiller-
correlated BCS state of the 1D Hubbard model. The varia-
tional functional u(k) are chosen of the form u(k) = 1/(1 +
ezp(B(er — p))) with B, i being variational parameters. At

= 1 (half filling), g = 0 and u is used for the control of the

initial input for po.
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Figure 6.2: The increase of the double occupancy by intro-

ducing BCS pairing.

we can extract the pairing susceptibility as a function of filing. That

susceptibility is shown in Fig. 6.3.
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Figure 6.3: Pairing susceptibility as a function of filling.
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Chapter 7

Correlated Spin-Density-Wave
Theory

7.1 Introduction

In previous chapters, we demonstrated that the CBF/FHNC method
is in fact useful in the application to the Hubbard model. As a contin-
uation of the previous work, the CBF method is extended to include the
antiferromagnetic long-range order. The theory is based on the Jastrow-
type correlation factor and its effect is taken into account by the FHNC
procedure. An application is made to the half-filled-band case of one di-
mensional lattice. Notice that the nesting condition is completely satisfied
for the half-filled band in the system. Therefore the antifferromagnetism
tends to be realized easily here. In fact, the lowest energy within the para-

magnetic Gutzwiller wave function is higher than the antiferromagnetic
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Hartree-Fock solution in strong coupling regime [9][31].
This chapter is arranged as follows. In section 7.2, we develop the
correlated SDW theory. The results are presented in section 7.3, and in

section 7.4, summary and supplementary discussion are given.

7.2 Model and Wave Function

By transforming Eq. (1.1) to momentum space, the Hubbard hamiltonian

H can be expressed as

H = > ekc,iwcka
ko

+ —g-%r— D c;‘g,,acik,+q,ﬁc_k+q,ﬁcka, (7.1)

kk'q ofB
where €x = —2tcos(kz) (for 1D), e = —2t(cos(ks )+ cos(ky)) (for 2D square
lattice), o, are the indices for spin quantization along the z direction, and

N is the total number of sites.
Assume a SDW whose mean field is polarized in the z direction

> < SDWcl g athasgn(a)|SDW >= NS, (7.2)

ka

where the variational parameter S will be determined later by a self-consistency

condition. In the presence of this mean field, the Hartree-Fock factorization
can be worked out with the 7,j element of the Slater determinant of the

ground state (with the Hartree-Fock-type antiferromagnetic order):

Pro(r:) = (u(k)e™™ + sgn(a‘)v(k)ei(k“LQ)”){,(i) (7.3)
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for k < kp;
pr(r:) = (v(k)e™™ — sgn(o)u(k)el+Dm)e, (;) (7.4)

for k > kp, where

1 ey
= [Z]14+ =
Uk 5[+&H,
— iy EEqs
B, = (& + AN/,
A:-lg, (7.5)

and sgn(c) takes either +1 or -1 according as ¢ =T or |; and Q is the
wavevector characterizing the extra periodicity due to the antiferromagnetic
ordering. In principle, Q could be determined so as to minimize the energy.
Here, we do, however, make no attempt to deal with this problem. Instead
we choose a simple two-sublattice antiferromagnetic structure, and Q is

then defined by the condition that
e = 1 (7.6)

for all translations t which transform one sublattice into the other. Thus
e’y is equal to 41 in one sublattice and -1 in the other, then in practice
Q is 7, or (w,7) for 1D chain or 2D square lattice.

The self-consistency condition determining the gap parameter A can be

obtained as [9]

A 2A
SN =-45" 2 - _“2n 7.7
255 =7 (7.7)

In this formulation A is a variational parameter to be determined so as to

minimize the total energy. The ordinary (paramagnetic) CBF is a special
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case of this function, i.e., A = 0, since eq. (7.4-7.5) is reduced then to the
Slater determinant of free electrons.

The one-body density in this case is given by:
1 3
po= 72 Phe(Der(1)
k,o

1 A

= DO ) = 1 (78)

and the uncorrelated two-body density matrix is given by:
1 *
P1LD = g Sk (2

= Zﬁ V€5 (2)[(Lu(r12) + €971, (715)sgn(o)]
= Zgo‘ 1)¢5(2)ps(r12) (7.9)

where
oS k) (ke Y, (1.10)
k<kp
Z (k)o(k)e ™2 (1 4 cos(Qryz)). (7.11)
<kp

The FHNC equations remain unchanged for dd, de and ee functions,
while due to the broken of translational invariance, it is convenient to con-

sider p, and consequently X.., N, as two component vectors:

L) L x:\ . N
,50 = ;ch = ;Ncc = (712)
Ly Xe Ne

The convolution integral is then given by:
= (G|F) (7.13)
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with

Ty = /d']‘gFu('f‘13)Gu(7’32) +/d7'3Fv(r13)cos(Qr13)Gv(T32),
Z, = /dr3Fv(r13)Gu(r32) +/dT'3Fu(7’13)005(Q7’13)Gv(7’32). (7.14)

The parallel connections between vector quantities is given by (note that

these parallel connections imply also spin summation):
Fip e Guy = 71, = 2F,(12)G,(12) + 2cos(Qr12)Fu(12)G,(12)  (7.15)

where the factor of 2 is due to spin summation. Therefore, the parallel
connection of two vector quantities is a scalar quantity. The parallel con-
nection of a scalar quantity with a vector one A is a vector quantity with
components obtained by multiplying the scalar quantity with the 4, and
A, respectively.

Flgélz = ZAlzZ;lz = F12G11‘2; Z;’Q = F12G11’2 (716)

It is easy to verify that the convolution between two I functions satisfying

the following relation:

[ d30(1,3)6(3,2) = p(1,2) (7.17)

with such defined convolution integral. By using the above rules the FENC
equations for the correlated SDW follow in a straightforward manner. We
have found [32] that the convolution integral Eq. (7.15) can be treated
conveniently by the introduction of a matrix representation distinguish be-
tween translations from A to 4, 4 to B, B to A and B to B for 4 and

B-type sublattices.
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The convolution integral Eq. (2.15) is not symmetrical, i.e. (F|G) #
(G|F). Hence the cancellation process of the conventional FHNC equations
does not occur here. It follows that the cc equations has to be modified in

the form:

Nee = (Xee + Nee = plXec — (Xeclp)) — (XeclB)- (7.18)

This equation reduces to the conventional FHNC equation (Eq. (2.24))
when [, = 0. The convolution is done between vector quantities in the way
discussed previously, and one should always take care of the ordering in the
practical calculations.

Similarly, the equations for X,g are formally unchanged. The only care
is to calculate correctly the products between vector quantities and of a
scalar with a vector quantity (in X.. and X..).

A completely similar treatment has to be used to compute the correlated
density matrix and the momentum distribution function. In order to take
care of the ordering, the equations for N¢.. and Ny are modified in the

following form:
Nege(r1vr) = NEo(ra) + p(riv) + p D {Ngeo(r1i) Xeco(rinr)
P
+ N (rue)(Xgee(rir) — Xee(riar)) + Xeee(run) N (ria [ F,19)

where

ngcc =—p+ (N€CC|XECC - (X&CIP))’ (7'20)

and

Nfzcc = Xﬁcc - (Xfcclp) + (Ngcc!XECC - (Xfcclp)) (7‘21)
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7.3 Results (preliminary)

We present first FHNC /0 calculations for the 1D chain with the peri-
odic boundary condition. The energy expectation value for various values
of variational parameters are calculated. The minimum of the energy is
searched for in the way in the A — g plane as discussed in Ref. [9]. For
U/t = 4 the lowest energy is found to be -.526 at A — 0.27 and g = 0.5.
The location of the minimum is in an excellent agreement with the Varia-
tional Monte Carlo calculations based on the same wave function [9]. The
total energy is slightly higher, but overall agreement is fairly good. The in-
clusion of elementary diagrams are expected to reach the better agreement,
especially at small U/t region.

The antiferromagnetic Gutzwiller wave function (AFGF) includes the
original paramagnetic Gutzwiller function as well as the HF solution as
a special case. The energy energy minimum within the paramagnetic
Gutzwiller function, -.518, is lowered further by about 0.01 with the AFGF.
Clearly the AFGF energy is lower than the HF theory as expected. For
higher U/t values, the correlation energy is found rather small, in agree-
ment to the variational Monte Carlo calculations [9], indicating that the
SDW is a better uncorrelated wave function at half filling. In Fig. 7.1 we

show the calculated momentum distribution function for U/t = 4.

The extension of the present calculation to other densities, to more
complicated correlation functions, and to the higher dimensions is straight-
forward. We are in progress of further calculations and the results will be

presented elsewhere [32].
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T T =1 !
=0.5 g p=1

Figure 7.1: Momentum distribution function calculated by

the correlated SDW theory for U/t =4,p = 1.
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7.4 Conclusions

In this Chapter we have developed the correlated SDW theory. We have
chosen 1D Hubbard model as a test case. The Antiferromagnetic state is
always stabilized for U/t > 0 and its energy stays lower than those of both
the paramagnetic GF and the Hartree-Fock theory at half filling. Fast con-
vergence has been found in the simulations for all I/ /t values, especially
for large U/t ones. It should emphasized that the present method can go
beyond the Gutzwiller wave function very easily, and the inclusion of Jas-
trow, four-body correlations is expected to give interesting results. Clearly
there is still a great future potential in this method. New types of vari-
ational wave functions are being investigated. The direct physical nature
of variational wave functions is readily allow for refinements. Altogether
it is clear that variational wave functions will continue to be an extremely
helpful theoretical too with excellent aspects, and it is interesting to apply
the present CBF method to overcome the limitations imposed by working

with small, finite system:s.

63



Chapter 8

Overall discussion and

conclusions

In this thesis, we have presented a first application of the CBF /FHNC
methods to electrons on a lattice, for the particular case of the 1D Hubbard
model.

Following the general formulation of Chapter 2, we have presented re-
sults for several different types of correlations, namely Gutzwiller, Jastrow,
e —d pairing, spin-spin, BCS and SDW correlations. The Gutzwiller results
turn out to give energies and a momentum distribution which are quite close
to the exact Gutzwiller calculations of Vollhardt and collaborators [16].

The Jastrow correlations, which generalize the Gutzwiller “on-site” ap-
proximation in allowing first-neighbor electron-electron correlations, is found
to to provide only a negligibly small improvement over Gutzwiller. On the

contrary, the introduction of first-neighbor correlations between an empty
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(e) and doubly occupied (d) state does yield a dramatic energy improve-
ment. At v =1,U =4 for example, the final result is only ~ 1% away from
the exact Lieb-Wu result., while Gutzwiller is still ~ 10% above. The im-
portance of attractive ed correlations was of course previous known [20][21],
and has been very recently emphasized by Fazekas [25]. Our practical im-
plementation of the ed correlations is technically interesting , and involves
four-electron (“quartet”) correlations.

Another type of correlations which is in principle present is first-neighbor
spin-spin correlations. In the paramagnetic state, these correlations turn
out to be weak, and their effect on the energy is marginal. For this rea-
son, we have restricted ourselves to an analytic lowest order linked-cluster -
expansion, which yields a < 1%-sized effect only.

The present method is applicable when the “uncorrelated” function is
not a Slater determinant. As a demonstration of that, we have performed
a Gutzwiller/BCS calculation, which turns out to be of similar difficulty
as those based on a Slater determinant. Of course in this case there is no
energy gain at all. We extract a BCS susceptibility which is new, as far
as we can see. Finally, we have implemented Gutzwiller correlations on an
antiferromagnetic SDW state. In this case too the energies is quite good,
especially at half filling (p = 1).

It should be again clearly stressed that a great many of the subtleties
of the 1D Hubbard model are not tackled at all by the present calculation.
As any variational method, the trial wave function correlations, to be in-
jected by hand, totally prejudice the outcome in this respect. The main

“subtlety”, i.e. non-Fermi liquid behavior has been deliberately ignored at
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this stage.

With this provision in mind, the results of the present calculations can
be defined very satisfactory. The method works well, and implementation is
simple enough. However, convergence of the elementary diagram expansion
is slow, probably due to the pathological nature of the on-site repulsion.

We believe that the present calculations demonstrate the potential use-
fulness of the CBF/FHNC methods for strongly correlated electrons on a
lattice. Future applications to the Hubbard model in 2 and especially in 3
dimensions, as well as to more complicated models are now being consid-

ered.
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APPENDIX A

In this appendix, we introduce some terminology for diagrams used in
CBF/FHNC method.

An i1—j subdiagram is a part of a diagram which is only connected with
the rest of the diagram by means of the points 7 and j.

A subdiagram is called composite if it is composed by two or more
1 — j subdiagrams which form parallel, independent connections between
the points 7 and j. |

Any i — j subdiagram is either nodal or nonnodal. A subdiagram is
nodal if it has one or more nodes, a node being an internal point through
which any path joining the points i and j must pass. By definition, a
composite subdiagram is nonnodal.

A subdiagram which is neither nodal nor composite is called elementary
(bridge diagram).

A basic subdiagram is bridge diagram which has not any i — j sub-
diagrams larger than the single bonds employed to construct subdiagrams
(namely p(krrim), p2(kFrim)s B(Tkm )y B(Thm ) p(kFTem ) and h(Pkm ) P*(kFTrm))-

Examples of composite, nodal and elementary subdiagrams are shown
in fig. 7.

Any i — j subdiagram I'(z,7) may be also classified, by looking at the
type of correlation lines reaching the points ¢ and 7, in the following way:

Taa(7,7) if both the points 7 and j are not reached by statistical lines
(dd=dynamical, dynamical),

T4e(4,7) if point ¢ is not reached by statistical lines, whilst point j is a



common extremity of two statistical lines (de=dynamical, exchange),
I'ee(,7) if both the points ¢z and j are both reached by statistical lines
(ee=exchange, exchange),
Ice(?,7) if both the points ¢ and j are both reached by one statistical
line (cc=cyclic, cyclic), namely are extremities of an exchange loop.
Starting from some given subdiagrams it is possible to construct other
more involved subdiagrams by parallel connection or superposition of them.
Of course, in this process, the above diagrammatic rules must be satisfied.
Let us now indicate as N,,,(712) the sum of (the terms associate to) all
the 1-2 subdiagrams of the type specified by the subscripts mn. Moreover,
let us assume that X,,,(r12) represents the sum of all the composite 1-2
subdiagrams of the type mn. The function Np,,(r:2) may be constructed
by means of chain connection of the various elements X,n(r) with X, (r)+
Npma(r). Due to the diagrammatic rules, only the following connections are

possible:

Xad + Nin(r) with Xgg, Xee or Xge,
Xge + Nmn(r) with X4q or Xy,
Xee + Nppn(r) with Xgg or Xge,
Xee + Nin(r) — p(r)/2 with X, or (=1/v)l.

The FHNC equations given by Eq. (2.19) are based on these combina-

tions. The composite quantities X,,,(r) are calculated in real space by the

equations (2.21-24).
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APPENDIX B

In this appendix, we list in Table I-IV all combinations contributing to
the four body elementary diagrams. As shown in Fig. (A.1), the g bonds

are combined as the diagrammatic rules and
9dde = Gdd + gde — 1 (B.1)

Gepd = Gde + Gee (BZ)

Figure 8.1: Four-body elementary diagrams
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Table I: Combinations contributing to Fg44

ci | A(13) | B(14) | C(23) | D(24) E(34)
1/2 | 9gaa—1|gsa—1|gaa—1|gaa—1| g—1

2 Gde | 9aa—1|9gaa—1|Ggaa—1| Gdde

1 Gde gde | 9da—1|gda—1|gaa—1

1 gide | 9aa—1|9gaa—1| gae |9aa—1

Table II: The same as in Table I, for Eg

e | A(13) | B(14) | c(23) | D(2a) | E(34)

1| gs |9aa—1|gaa—1|gaa—1| g—1

1| gee |9ad—1|Gda—1|gaa—1]| Gdae

1] 9ga Gde | 9da—1|gdd—1| Ydde

1| gde |9dd—1| Gde |9ad—1| ade

1| 9gde |9aa—1]|gaa—1]| gae Jdde

1] Gee gde | 9ad—1|gaa—1|gaa—1

1| Gee |9aa—1|gaa—1| Gae |gaa—1

1] 9de Gde gie | 9da— 1| gaa—1

1| gae |9da—1| Gae gde | 9ad—1

2| e e | 9dd—1|Ggaa—1| Gee
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Table III: The same as in Table I, for E.,

¢ | A(13) | B(14) | C(23) | D(24) | E(34)
1) gse [gaa—1| gae |gaua—1]| g—1
1| 9de |9aa—1]|gaa—1 Gde g-—1
2| ga Gde gde | 9ad— 1| Gaa
2| ga 9de | Gdd—1]| gae Jdde
2] Gee |9aa—~1| Gae |Gaa—1| gas
2| Gee |Gaa—1|gaa—1| ga Jdde
2| Gee Gde 9de | 9ad —1 | gag — 1
2 | e 9de | 9dd—1| gae | Gaa—1
2| Gee |Gaa—1]| ga gde | Gda — 1
1) Gee [9aa—1|gsa—1]| gee |gaa—1
| ga 9de Jde 9de | Gaa — 1
4 e Gee gde | Gaa—1]| ge
2| e Gee Gee Yee | Gaa—1

Table IV: The same as in Table I, for E.,

ci | A(13) | B(14) | C(23) | D(24) | E(34)
Tl gee | Gaa—1|gaua—1| ge Gee
LV Gee | 9aa—=1| gee |gaa—1| gaae
21 Gee Jde Gee | 9ad— 1 | gaa—1
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Table V: As in Table I, but for Egy

c; A(13) | B(14) | C(23) | D(24) | E(34)
1/2 1 gea—1|gea—1|gaa—1|gaa—1| g—1

1 Gee | 9ea—1|9da—1|gaa—1| gade

1 |9ea—1|9ea—1| Gde |Gaa—1]| 9dde
/21 ge gee | 94a—1|gaa—1| gaa—1
1/2 | gea=1|gea—1| 9gae gde | 9aa—1

1 Gte | Gea—1|gaa—1| Gae | Gaa—1

Table VI: As in Table I, but for E.

e | A(13) | B1e) | c23) | D(24) | E(34)

I Geee |Gea—1|gaa—1| e Gec

11 geee |9ea—1| Gee |9ad— 1| gade

1| g ee Gee | 9ad—1|gaa—1

L] Geee [9ea—1] 9o gde | 9aa—1

A completely similar combinations are obtained for E¢. by changing the

first label d of G of A(13) and B(14) in Table IV into £. And

combinations for F; are obtained by changing the first label ¢ of G of

A(13) and B(14) in Table X into d.
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Table VII: As in Table I, but for B,

e | A(13) | B4 | 0(23) | D(24) | B(30)

1/2 | gea—1 | gea—1 ged—1|gea—1| g—1
2 Gee | Ged— 1 gea—1|gea—1| gag
1 Gee gee | Ged—1 | gea—1|gaa—1
1 gee | 9ea—1|gea—1| gee |gag—1

Table VIII: As in Table I, but for Eeee.

¢ | A(13) | B(14) | C(23) | D(24) | E(34)
L) Geee [ 9ea—1|gea~1| geee Gee
L Ggee |96a—1| geee |Gea—1] guae
2| Geee Gee Geee | Gea—1 | gaa—1
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Table IX: Combinations contributing to Eg¢

¢ A(13) | B(14) | C(23) D(24) | E(34) | F(12)
1/6 | gea—1|gea—1|gea—1|gaa—1|gaa—1] g1
1/6 | gea—1|9ea—1|gea—1| Ggepa |Gaa—1| gaae
1/6 | gea—1|gea—1|gea—1|9aa—1| Ygepd Jdde
1/6 | gea—1|gea—1|9ea—1| Gepd gie | 9aa—1
1/6 | gea—1|9gea—1|gea—1| 9gae Gde Gde
1/2 | gea—1|9gea—1|gea—1| gae Jee | 9aa —1
-2/3 | gea—1|gea—1|9ea—1]| e Gee Gee
1/2 | gee |gea—1|gea—1|gsa—1|gaa—1}| 91
1/2 | gee |9ea—1|9ea—1| gae |9da—1]| gade
1/2 | gee |gea—1|gea—1|9gaa—1| gae Gdde
1/2 | gee |9ea—1|gea—1| 9ae gie | 9dd —1

1 Gee gée | Gea—1|9gaa—1|9gaa—1| Gdde

1 gte gee | 9ea—1|gaa—1]| Gde |9aa—1
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