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In this thesis, I will concentrate the discussion on two papers, {28, 43]. During my PhD
activity, I have also written, in collaboration with Marco Fabbrichesi and Maurizio Piai,
the papers [72, 73], and, with Lotfi Boubekeur, [74].






Introduction

In our world, we experience only three spatial dimensions, and the hypothetical
presence of additional ones seems in direct conflict with observation. From the point
of view of particle physics, an argument against the existence of extra dimensions
comes from scattering processes: no missing additional transverse momenta indicates
that particles do not escape into extra dimensions. Nevertheless, the possibility that
our space-time contains more than the observed four dimensions has been considered
for a long time, at least since the observation by Kaluza [1] and Klein [2] that, in a
five dimensional world, gravitation and electromagnetism can be unified in a unique
interaction.

In fact, this lack of evidence does not exclude the possible presence of extra
dimensions compactified on manifolds with small size. For instance, consider the
possibility that one extra dimension is compactified on a circle of radius R. Moving
a particle with small mass m (mc < 7/R) into the extra dimension requires an

energy

hc
E:—R—. (1)

The accessible energies at current experiments are of the order of 1 TeV. This means
that the extra dimension can not be detected by these experiments if it is compact-
ified with a radius R < hc/1TeV~ 107'* um. This simple example shows that,
with a suitable procedure of compactification, it is possible to construct models
based on the existence of extra dimensions, and at the same time compatible with
experimental data.

In the original approach of Kaluza and Klein, all the fields that constitute our
world live in the higher dimensional space. More recently, the possibility that differ-
ent fields can live in different submanifolds of the entire space-time, thanks to some
phenomena of field localization, has been increasingly studied. One of the early
examples is the model of Rubakov and Shaposhnikov [3], which realizes a dynamical
binding mechanism of fermions on a three dimensional space by means of a higher
dimensional domain wall. In this model, fermions are localized on a hypersurface of
the higher dimensional space-time, while bosons can propagate through the entire



space. Motivated by this solitonic realization, many other models of field localiza-
tion appeared in the literature. Visser [4] has pointed out that matter might be
gravitationally bound on submanifolds: specifically, he proposed a model where a
U(1) gauge field in 4 + 1 dimensions induces a background metric that binds parti-
cles on a three dimensional brane orthogonal to the U(1) gauge field. Later, Squires
[5] pointed out that this effect can also be produced by a non-zero cosmological
constant in the higher dimensional background.

The possibility that different fields probe different regions of space is quite natural
in string theory. In this framework, consistency conditions require the presence of
extended objects, called Dirichlet branes (D-branes), that, like membranes, occupy
a finite region of space time [6]. They have the property that open strings end on
their surface; for this reason, they have been used to construct models in which the
fields of the standard model (described by open string modes) are localized on the
brane surface, while gravity (described by closed string modes) can probe the entire
space-time.

In the past few years, starting from the seminal paper by Arkani-Hamed, Di-
mopoulus, and Dvali [7] on models with large extra dimensions, the interest on the
phenomenological consequences of field localization has increased. These models
offer the possibility to rephrase the hierarchy problem in an interesting way. Con-
sider in fact a model with d flat extra dimensions, compactified on torii of radius
R. Let all the fields of the standard model (SM) be localized on a three dimen-
sional brane, while gravity propagates through the entire space-time. For distances
much larger than R, gravity will behave in the usual manner, and the effective four
dimensional action for gravitation is obtained after integrating out the degrees of
freedom relative to the extra dimensions. The resulting effective scale of gravity My
is corrected by volume factors, and its relationship with the fundamental scale My
in d 4+ 4 dimensions becomes

M2 = MY (R/Re)? . (2)

With two extra dimensions, choosing R close to the experimental limits coming from
gravimetric experiments on deviations from Newtonian law (around 0.1 mm), one
can take the fundamental scale M, of the same order as the electroweak scale. In
this way, the hierarchy problem is turned into the geometrical problem of explaining
why R takes a certain value and not others. The interest on this class of models is
mainly phenomenological, since their predictions (existence of Kaluza-Klein modes
for graviton that influence particle physics experiments, and deviations of gravita-
tional potential from the Newtonian form at distances not much smaller than the
millimeter) can be tested in the next generation of experiments.

However, flat backgrounds are not particularly suitable to construct cosmological



models. For example, a system constituted by a brane with non-zero energy density
does not satisfy Einstein equations when embedded in a flat space containing only
gravity: this means that a cosmological model in which the (non-zero) energy density
of our universe is localized on a brane cannot be embedded in these space-times.

For the purposes of this thesis, a more interesting approach is the one of Randall
and Sundrum [8]. These authors show that even gravity can be localized on a lower
dimensional submanifold of a d-dimensional space, thanks to the strong curvature of
the background produced by the presence of a non-zero cosmological constant. This
means that it is possible to construct models with infinitely large extra dimensions
and still compatible with the observed physics in the gravitational sector. In par-
ticular, they consider a five dimensional model in which SM fields are localized on a
three brane, corresponding to a fixed point of a Z; symmetry acting along the extra
dimension. By choosing carefully the cosmological constant on the brane and on the
bulk, it is possible to obtain a Poincaré invariant four dimensional subspace that
corresponds to the observed four dimensions. Moreover, the gravitational potential
measured by an observer on the brane takes the correct Newtonian form.

The Randall-Sundrum (RS) model is a simple example of fully consistent five
dimensional model, from the point of view of Einstein theory of gravity, that contains
a special submanifold represented by a brane with non-zero energy density, and that
admits a consistent four dimensional effective description of gravity. The background
of the RS model is given by an Anti-de Sitter space, a space characterized by a
constant, negative curvature.

Is it possible to extend the approach of RS to general spaces, with more complex
global geometries, containing some boundaries that we interpret as branes? Do
these generalizations admit a consistent four dimensional form for the gravitational
potential? And, most importantly, have these models interesting phenomenological
consequences? In the first part of the thesis we try to answer these questions by
means of specific examples.

From the point of view of general relativity, the simplest way to look at the
brane is to consider it as a boundary, containing localized matter, that is described
by an energy momentum tensor 7,,. The question is therefore how to define in a
consistent way a space that admits boundaries. In general relativity, as it is nor-
mally formulated, the notion of physical boundary to space-time (that is, a boundary
reachable at finite distance) is carefully avoided. The reason is that boundaries are
artificial special places where appropriated boundary conditions have to be imposed
on the physics. Without such postulated boundary conditions all predictability is
lost, and the theory is not physically acceptable. Since without some deeper un-
derlying theory there is no physically justifiable reason for choosing any particular
type of boundary condition, the attitude in standard general relativity has been to



simply exclude boundaries.

In string theory, the situation can be different. When a D-brane is used as a
boundary there is a specific and well-defined boundary condition for the physics:
D-branes are defined as the loci on which the fundamental open strings end, and
Dirichlet-type boundary conditions are imposed. D-branes are therefore capable
of providing both a physical boundary for the space-time and a plausible boundary
condition for the physics in the whole space-time. However, in general, the path from
string theory to low-energy effective field theory is rather indirect, and elucidation
of the proper boundary conditions may be obscure.

In any case, whatever the underlying theory may be, we work only at the level
of an effective description: the systems that we study are constituted by higher
dimensional Einstein gravity coupled to a boundary, and we must face the problem
to obtain a low-energy effective theory compatible with general relativity !.

We will use the following technique to deal in a consistent way with a manifold
with boundary. Take the manifold, and make a second copy of it (including a second
boundary); then, sew the two manifolds together along their respective boundaries,
creating a single manifold without boundary, which contains the doubled brane and
exhibits a Z, symmetry on reflection around the brane. In other words, the boundary
is transformed in a (thin shell) brane, and the entire system can be analyzed using a
generalization of the Israel-Lanczos thin-shell formalism of general relativity [9, 10].
The boundary conditions for the space-time become particularly simple: on one
side of the brane, the fields behave as in the case without the brane. The other
side is an exact replication of the first one 2. Considering a 3+1 shell propagating
in a 4+1 space, one finds that the metric is continuous, the connection (containing
derivatives of the metric) exhibits a step-function discontinuity, and the Riemann
tensor a delta-like function at the position of the brane. The discontinuity of the
Riemann tensor on the brane requires some source in order to be produced: the
energy density on the brane 3. The junction conditions relate energy on the brane
with discontinuities in the Riemann tensor. The dynamics of the brane is determined
by these Israel-Lanczos conditions, that, analogously to the Einstein equations, rule
the cosmological behavior of the projected four dimensional geometry on the brane
once the localized energy density has been specified.

1 This fact does not means that we are not interested in the fundamental theory behind a specific
model: the field content of the backgrounds we will consider is the typical one of low energy string
theory.

2 Actually, the condition of Z5 symmetry is not strictly necessary, and one can also consider
different space-times patched at the boundary that in this way becomes an edge. However, we will
limit our discussion to the simplest case of gluing Zs-replicated spaces.

3This is analogous to what happens in electromagnetism, where discontinuities in the electric
field are produced by charge distributions.
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Models constructed following this procedure are called brane world models [12].
It is interesting to notice that the energy density on the brane is chosen in such a way
to adapt the boundary to the space-time: to construct a brane-world model simply
means to join two space-times with an edge, where the energy density that consti-
tutes our universe lives. Chapter 1 is dedicated to present the general formalism on
which brane world models are based. Once one has constructed in a consistent way
such a model, there remains the problem of understanding if it admits a correct four
dimensional behavior for gravity. This is not a simple task, and in our discussion
we will consider various models in which the correct behavior of gravity is obtained
in different ways.

The definition of brane world shows that the brane (which corresponds to an
edge) is a very important part of a space-time, and cannot be considered as a test
object that moves without modifying the background. At the same time, it is very
reasonable that the properties of the branes, and consequently the induced four
dimensional quantities, are very sensitive to the global properties of the space-time
in which they are embedded. The procedure of dimensional reduction via junction
conditions shows that this intuition is correct: the presence of horizons affects the
cosmology of the brane universe since they modify the Friedmann equation for the
four dimensional model. Moreover, the presence of coordinate singularities, in the
metric that describes the higher dimensional background, has in general another
interesting consequence: the model does not admit a low energy effective limit
in which the gravitational action assumes the usual Einstein-Hilbert form in four
dimensions.

This observation allows us to relate these properties of brane world models em-
bedded in non-trivial geometries with the problem of the cosmological constant.
This problem arises because of the huge difference between the expected contri-
butions of quantum effects to the energy of the vacuum, and its actual value. In
general, quantum contributions to the vacuum energy can be eliminated by some
symmetry: a typical example is a theory with exact supersymmetry, in which the
cosmological constant turns out to be zero. However, phenomenology requires that
supersymmetry must be broken at a scale larger than the electroweak one, predict-
ing again a too large value for the vacuum energy. This fact turns out to be general:
any symmetry that cancels the contributions to the vacuum energy must, for phe-
nomenological reasons, be broken at some scale larger than the experimental bound
on cosmological constant. A different approach to the problem consists on trying to
compensate any contribution to the vacuum energy with the vacuum expectation
value of some other field. However, Weinberg [13] has shown that, starting from the
four dimensional covariant Einstein-Hilbert action for gravity, and admitting mini-
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mal coupling of fields to gravity, it is not possible to realize this mechanism without
a great deal of fine tuning on the parameters.

Now, brane worlds embedded in non trivial backgrounds do not admit an ef-
fective four dimensional Einstein-Hilbert form for the gravitational action, and in
principle can avoid Weinberg’s arguments. In particular, they provide the possibility
of constructing a model in which vacuum energy density is compensated by some
fields living in the extra dimensions, without the necessity of fine tuning. We will
discuss in Chapter 2 how to construct such a model, considering some interesting
phenomenological consequences due to Lorentz violating effects.

The previous examples show in specific cases how global properties of space-
time influence four dimensional physics. In Chapter 3 we address a more general
question regarding the nature of higher dimensional singularities of space-time. In
four dimensions, the study of global properties of space-time, and in particular of
the behavior of singularities, represents an important part of general relativity. In
particular, applications of the results by Hawking and Penrose [14] to the entire
universe are generally used to state that the universe begun from an initial, space-
like singularity. These theorems require some general condition on the nature of
space-time, and on the structure of the stress-energy tensor of matter embedded in
the universe. In particular, the energy density must satisfy certain energy conditions,
that are a general requirement for the stability of the system under gravitational
fluctuations.

Taking into account the results of four dimensional general relativity, we discuss
whether considering higher dimensional spaces modifies the situation. In particular,
one can ask if it is possible to find some geometry for the higher dimensional space-
time that describes a universe with the characteristics of the observed one, but that
avoids an initial singularity.

Let us clarify what we intend for a geometry describing the observed universe. It
has often been noted that the space-time inside a Schwarzschild black hole is analo-
gous to an (anisotropic) cosmology with a final big crunch. In particular, when the
black hole is infinitely large, and there is no space outside the horizon, this analogy
becomes exact, and the cosmological space-time reproduces exactly the features of
this kind of universe. It is possible to show that, considering a higher dimensional
version of this solution, one can also manage the model to obtain isotropic versions
of universes with these properties, with respect to three dimensional submanifolds
corresponding to the observed spatial dimensions. Another alternative model is the
white hole solution obtained by an analytic continuation d la Kruskal of the usual
Schwarzschild solution. In this case, the model describes an expanding, anisotropic
universe starting from an initial singularity. These examples, as fascinating as they
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are, do not help to solve the problem of an initial singularity in a cosmological back-
ground. Indeed, also in the case of the white hole solution, in the limit of the horizon
going to infinity, we obtain a flat Friedmann-Robertson-Walker universe, with an
initial, unavoidable space-like singularity.

Intuitively, a possible structure for a space-time suitable for our purpose of avoid-
ing a singularity is obtained by simply turning over a Schwarzschild black hole. The
(previously internal) time dependent region, where future directed geodesics point
toward the singularity, now becomes an external, expanding time dependent region,
with future directed geodesics pointing to infinity. The infinite, external static re-
gion now becomes an internal static region, separated by a Cauchy horizon from
the time dependent one, and contains a (potentially avoidable) time-like singularity.
We will show how to obtain geometries with these features from a proper analytic
continuation of known solutions to Einstein equations for supergravity backgrounds.
In particular, the same analytic continuation applied to the Schwarzschild geome-
try corresponds topologically to the operation of turning the inside out, that we
have just described. Another nice feature of these solutions is that their maximal
analytical extension contains a time dependent contracting region that can be inter-
preted as a contracting phase for the universe, separated by regular horizons from
the expanding phase: in other words, these space-times represent examples of higher
dimensional bouncing universes.

Can these examples avoid the celebrated singularity theorems? A careful study
of these solutions suggest that they describe a pair of infinitely distant, singular,
negative tension branes. Negative tension objects do not satisfy the energy con-
ditions necessary for the validity of these theorems. Issues regarding the stability
of these negative tension objects under perturbations can be addressed considering
them as lying on fixed points of some higher dimensional orbifold symmetry: this
implies that they are non-dynamical objects and consequently not affected by fluctu-
ations. For these reasons, these higher dimensional space-times become interesting
per se since they present an example of negative-tension objects corresponding to
solutions of Einstein equations, providing a step toward the identification of gravity
analogues of negative tension objects, like orientifold planes, that naturally arise in
string theory.

13
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Chapter 1

Brane worlds and cosmology

As discussed in the Introduction, various mechanisms can be used to localize fields on
lower dimensional spaces that we will call in general branes. From the point of view
of gravity, these models can be embedded in a consistent way in Einstein general
relativity, by considering the brane as a thin shell object containing a localized energy
density. Its energy density must satisfy suitable junction conditions that adapt the
shell to the global geometry. In particular, regardless of the fundamental theory that
produces it, any boundary can be treated with this method at the level of an effective
theory of gravity. Indeed, the boundary can be seen as a thin brane obtained by
imposing a suitable Z, symmetry to the space-time: in this approach, one eliminates
the region of space-time that resides on one side of the brane, and substitutes this
region with a duplicate of the other side (see Fig(1.1)). The resulting space-time
is constituted by two replica of the same region, with a brane on the edge between
them. While the metric tensor results continuous at the edge, the corresponding
Riemann tensor gets contributions of the form of delta-like functions.

Once one considers the Einstein equations, matter localized on the brane, which
gives a delta-like contribution to the stress energy tensor, must compensate the
singular terms coming from the Riemann tensor. These compensation conditions
are called junction conditions. The first part of this chapter is dedicated to present
a general formalism, developed by Israel and Lanczos [9, 10] starting from Einstein
theory of gravity, that allows to express these junction conditions.

Einstein equations in four dimensions give interesting predictions on the evolu-
tion of our universe, once the properties of matter that constitutes it are specified.
In the same way junction conditions characterize the evolution of a universe local-
ized on the brane: this will be the subject of the second part of this chapter. After
a brief presentation of the tools of the standard cosmological model that we need
in the following discussion, we will present the cosmological evolution of a general
class of brane world models, specifying the conditions one must impose to ensure a
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Figure 1.1: The simplest example of brane surgery: a brane world in Minkowski
space. The region on the left of the brane is eliminated, and substituted with a copy
of the region on the right.

cosmological behavior compatible with the observed universe. In the last section,
we will work out a simple example, also addressing the question to determine how
to obtain an acceptable behavior for gravity at large distances.

1.1 Israel-Lanczos junction conditions

In Einstein theory of relativity, gravity, in a d-dimensional space-time, is described
by the following set of equations:

1
Rap — :iRgab = 81Gylw , (1.1)

where G is the Newtonian constant in d dimensions (calling My the d-dimensional
Planck mass, we define 87Gy4 = M, 3‘d), and we drop a possible cosmological constant
term !. We use these equations to deduce the junction conditions on the brane.

Let us work in a five dimensional space-time, that we call bulk, that contains
a four dimensional hypersurface, that we call brane. As we have anticipated in
the introduction, in a brane world model where the brane separates two folds of
the space-time identified by a Z; symmetry, the Riemann tensor generally presents
terms proportional to delta-like functions.

To express in a closed way the complete Riemann tensor, it is necessary to define
the induced quantities of the higher dimensional space on the brane. Calling g, the
bulk metric, we need the definition of the unit normal vector n to the brane. This is
a space-like vector orthogonal to the brane surface: this means that calling V* the

1A contribution coming from a cosmological constant A can always be re-absorbed in the defi-
nition of the energy momentum tensor: Tg — T + 5= diag(~1,1,...).
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velocity of the three spatial coordinates of the brane, it satisfies V¢ -n, = 0. It also
obeys the following normalization condition

gabnanb =1. (12)

Starting from the normal vector, the induced metric on the brane is defined as
hay = Gab — Ty - (13)

It is easy to see, calculating its trace, that h,, has dimension 4, and consequently
represents the metric of a four dimensional space.

Now, we need the definition of the eztrinsic curvature (also called second funda-
mental form) of the brane, given by

Kay = hiVing, (1.4)

This quantity is very important for our arguments, because it allows to express
the delta-like part of the Riemann tensor. Indeed, starting from the bulk metric,
using standard definitions, one realizes that the Riemann tensor results [15]:

Roped = —5(77) [Kac 7y Ng + Ky ng ne — Kgg mp e — Ky nyg ﬂd} - Rg;)lclg (15)

In the previous formula, there is singular contribution proportional to the delta
function §(n), where 1 indicates the direction normal to the brane, and a regular
contribution due to bulk quantities.

At this point, we have to specify the right hand side of Eq. (1.1), namely the
stress energy tensor of the space-time. It gets a contributions from the fields that
live in the bulk, and from matter localized on the brane:

Ty = 8(n) T + T (16)

Now, substitute (1.5) and (1.6) in the Einstein equations (1.1). Isolating the delta-
like part of the equations, and using the Z, symmetry, one ends with the following
Israel-Lanczos junction conditions:

1
Ko = —47wGs (Tab - é’gabT> ; (1.7)

A variational derivation of the Israel-Lanczos junction con-
ditions

Let us derive explicitly the equations (1.7) following a variational procedure: the
methods used will result useful in the following discussion.
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We know that the metric is continuous everywhere and its derivatives as well,
except on the brane, that we call 33, where the derivatives have a discontinuity. The
action for the brane-bulk system is given by the sum of the Einstein-Hilbert action
in five dimensions, plus an action describing the energy density on the brane, plus
an important boundary term that constitutes the point of the present discussion:

S = Sgg + S+ Sar; (1.8)

where .
4+l ST
87rG5/d zy/—g5 R, (1.9)

SEH =

Sbr = - d3+1$\/ —*]?,4 ,Cb,« . (110)

PR

Here, hg is the induced metric on the hypersurfaces 2 and X_, since for generality
we consider as different the two sides of the brane. With ¥4 we indicate the sum of
the contributions of the two sides. Moreover, Ly, is the Lagrangian for the matter
living on the brane. The last term in (1.8) is the boundary Gibbons-Hawking term
and will be introduced in order to render the variational procedure fully consistent:
indeed, recall that in a variational procedure all the final quantities must be well
defined and continuous. Let us perform the variation of the action (1.8). It receives
the following contribution due to the presence of discontinuities on the brane:

1

5SEH - 87TG5

/ BN —hg®n(Vadgse — Vebgas) (1.11)
s+

Replacing g% = h% -+ n®nb in (1.11) one gets

1

5SEH - 87TG5

/ B3/ —h B0 (V069 — Vo0 gap) - (1.12)
S

It is possible to identify the term (V,dgs. — Vc09gas) as the discontinuity of the
derivative of the metric across the surface. To compensate this discontinuity let us
introduce in the action the following Gibbons-Hawking boundary term

1
87TG5

Ser =

/ & ~h K, (1.13)
>+

where K = h® K, and K, is the extrinsic curvature defined in (1.4). Varying the
Gibbons-Hawking term one gets

1 1
5 - A —h [ 6K — ZKh®8gy | . .
ScH SrGe /Ej: < 5 g b) (1.14)
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Now, we need the variation of ¢ K. Using the variation
1 b, c
Ong = -2-nan n°0 gpe , (1.15)
after some algebra one gets

: 1
6K = —K%®5g — h®*n(Vabgpe — Vedgap) + §K n°n®geq . (1.16)

Using these quantities in Eq. (1.14), let us consider the sum
1
6Spw + 05 / d* -1z(§habncvagbc + K6 g4 (1.17)
1 a, b 1 ab
- SKnn'ogs — K h 5gab) .

To simplify this formula, consider the following argument. Take a vector X® tan-
gential to X4, so that

VoX® = h®V, X} + n'n’VX, . (1.18)
Define the derivative operator VonX by
VX% =hoV, X4, (1.19)
then, usiﬁg (1.18) and (1.19) one has
VX% =V, X~ X'V, X,, (1.20)

and
RRET S gpe = Va(hPnE8gse) — 695V a(h™0S) . (1.21)

But using the definition of extrinsic curvature K given in (1.4) one finds
hnV 18 gpe = Va(h®n0gy.) + K n*n’Sge — K% g, . (1.22)
Then, the substitution of (1.22) in (1.17) and the integration of the total derivative

term gives the final result

1

0Sgr +0Sar = S57Cs

/ B/ —h(K® — Kh®)§g,, . (1.23)
S+

Therefore, the Gibbons-Hawking term renders this derivation fully consistent, can-
celing the discontinuities in the variational procedure.

Let us include now the variation of matter on the surface >

55[)7« = d3+1I\/ —h Tabégab y (124)
P
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where v/ —hT%/2 = §Sy, /0hyp is the energy momentum tensor of the brane. Now,
requiring the variation of the whole action

6S = 0Sgm +0SgH + 05y (1.25)
to be zero, using (1.23) and (1.24), we get the Israel-Lanczos matching conditions
I{abI; - gachcle- = “SWGS Taba (126)

where Kol = K — K and the plus and minus signs indicate on which side of
the brane the extrinsic curvature is evaluated. This relation is equivalent to

_ 1
Kap| = —87Gs (Tab -3 gabT) ) (1.27)
where T = T,,g® is the trace of T,,. Imposing the Z; symmetry means to take
KZE) = _K;; = Kub = KabI; = 2Kab- (1.28)

Substituting (1.28) in (1.27), one recovers Eq. (1.7).

1.2 An example of brane surgery

We have presented in the previous Section the junction conditions satisfied by matter
- on the brane. This Section is devoted to determine the geometrical properties of a
brane embedded into a bulk described by a static, maximally symmetric metric of

the form

dr?

h(r)
Here, dzs j indicates the metric of a three dimensional spatial maximally symmetric
submanifold of constant curvature k (with £ = 0,+1). It can be expressed as

ds? = —h(r) d® + + 77 dxj . (1.29)

) ]{:
dal, = dy? + \(/\fo) (d6” + sin® 0 dg?). (1.30)

The form (1.29) is not the most general form for a metric with the required
properties, but it is fully representative for the illustrative purposes of this chapter.

As we know, the brane corresponds to an hypersurface on this space, defined in
terms of a parameter 7 that will subsequently define the proper time of the induced
four dimensional metric:

X, x,0,0) = (t(r),a(7), x,0,9) - (1.31)
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The velocity of the (x, 0, ¢) element of the brane is defined as

dt da
JO = — — . 0,0,0]. .
| <dT,dT,0, , ) (1.32)

By definition, the normal to the brane is a vector such that V*n, = 0. It is immediate
to check that a suitable normal vector is given by

da dt
a::i: Ty Ty 7070 5 .
n ( 0 ) (1.33)

where the choice of sign is connected to the direction of the normal: a normal
pointing outwards correspond to a positive sign, and viceversa.
The normalization condition n? = 1 translates in the condition

2
h(a)t? — —— =1 _
(a') h(a) 3 (1 34)
using Eq. (1.34) and the assumed form of the metric, and defining & = da/d7. The
induced four dimensional metric takes the well known form

ds3,, = —dr? +a(r)? dz3,. (1.35)

This means that despite the rather unusual form for the five dimensional metric, this
procedure furnishes a Friedmann-Robertson-Walker form of the four dimensional
projected metric. In this approach, the scale factor of the four dimensional universe
corresponds to the position of the brane in the five dimensional background: we will
widely use this fact in the next Section.

At this point, let us present the results of the calculation of the extrinsic curvature
for this space:

- 1 agab
Kg = =nf . )
b=5 1 S (1.36)
If we go to an orthonormal basis, the XX component is easily evaluated
h(a) + &2
KXX:KQBA:K&% === —~——-———a——*—“, (137)

while for the 77 component one gets

Koe =+ (VR T &) (1.38)

Furnishing the extrinsic curvature, we have provided the geometrical information
about the left hand side of Eq. (1.7). The second part of the chapter is devoted
to specify the right hand side of this equation and to study the cosmological conse-
quences of this choice.
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1.3 Cosmology

1.3.1 Standard cosmology

As a first step, let us briefly present the main results of standard cosmology that
we will use in the rest of the thesis 2: the great successes reached by this model
in describing the observed universe makes it a point of reference when one tries to
construct alternative models.

The standard cosmological model (SCM) uses both general relativity and quan-
tum field theory. It is based on some simplifying assumptions concerning the nature
and large scale properties of the energy density that constitutes the universe. In this
Section, in particular, we will show how the theory of gravitation (general relativity,
but also Newtonian theory) yields equations that describe the geometrical evolution
of our universe.

The Binstein equations in four dimensions are given in Eq. (1.1) for d = 4.
Consider matter on the brane as a perfect fluid, with stress energy tensor of the
diagonal form

Ty = diag(—p,p,p,p); (1.39)

here, p is the energy density, while p is the pressure of the fluid. They are related
by an equation of state
p=wp. (1.40)

We will require some ansatz on the form of the metric that simplifies the Einstein
equations. Our observed universe is expanding, and it appears homogeneous and
isotropic along three dimensional spatial sections. The ansatz for the metric we
will consider is the FRW metric that we already met at the end of the previous
subsection:

ds® = guds®ds’ = —dr* + a*(7)dz3 (1.41)

where d%%k is the metric of the three dimensional maximally symmetric space with
constant curvature parameter &k = +1,0, see Eq. (1.30).

The energy momentum tensor obeys an equation of conservation of the form
T“b;b = 0. The u = 0 component of this equation, together with a FRW form for the
metric, gives the equation of conservation for the energy:

p+3H(p+p)=0, (1.42)

where H = g— is the Hubble parameter and a dot means derivative with respect to
the cosmic time 7.

2For a complete treatment of these subjects, see for example [16].
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This equation allows us to determine the cosmological evolution of the energy
density as a function of the scale factor. For the three forms of energy density
normally considered in cosmology one has

e Matter: w=0 =px CL(T)"E;,

e Radiation: w= 1% = p X a(T)_4,

3
e Vacuum energy w = —1 = p =constant.

Returning to Einstein equations, let us write the non zero components of the Ricci
tensor and the Ricci scalar for a FRW metric:

Ry = ”397
i _at Lk |
Ry = P 25+ 2;1‘5 Gij » (1.43)
i  a® k

It is a simple task to show that a suitable combination of Einstein equations give us
the so called Friedmann equation:

87TG4 k

while a linear combination of the 0-0 and i-j components give the Raychaudhuri
equation, that describe the acceleration of our universe:

H2

a 4’/TG4

a 3

(p+3p). (1.45)

Equations (1.42), (1.44) and (1.45) are the basic equations of the standard cosmolog-
ical model. Since they describe observational results with a great deal of accuracy,
any alternative cosmological model should give, for the evolution of the scale factor
of the present universe, the same predictions of these equations.

While further consequences and developments of the previous equations are be-
yond our scope, we want to stress that also within the Newtonian theory of grav-
itation one find the same evolution equations for the scale factors: see [17] for a
detailed discussion. This means that, in general, a model that predicts the correct
behavior for gravity at large distances normally also gives the correct cosmological
equations for the evolution of the universe. Since the large scale constituents of our
universe (galaxies, etc) actually are in slow motion and feel weak fields, it is not a
surprise that they are well described by Newtonian theory.
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1.3.2 Brane world cosmology

After this brief overview of the standard cosmological equations, let us proceed to
consider what happens in our brane world model. We know that in this case the
equations that rule the system are the junction conditions (1.7). Let us consider the
general form of the five dimensional metric considered in Section (1.2), and let us
again consider a perfect fluid form for matter on the brane: the stress energy tensor
is given by (1.39).

Under these assumptions, by means of (1.7), and using the expression for the
extrinsic curvature in Section (1.2), we get the following junction conditions:

h(a) + a?

&r G5 p = %3 (1.46)

Choosing the plus sign the energy density results positive definite: a plus sign corre-
sponds to take a normal that points inward, and the side of the Z, replicated space
that corresponds with this choice 3.

For the pressure we obtain

81 Gy p = ”515 ad&- (aQ\/h(a) + d2> : (1.47)

These equations are compatible with the conservation of the stress energy localized
on the brane. That means that the model satisfy an equation of conservation of
energy of the standard form:

p+3H(p+p) =0 (1.48)

While the conservation equation is identical to that for standard cosmology, we
find a surprise calculating the equation that should correspond to the Friedmann

equation. One gets
| h 81 Gs p\”
HZ:_(EZH(”;‘)) , (1.49)

in contrast, the standard Friedmann equation 1s

kA 81 G,
L8 Gap

[ R—_
a2+3 3

(1.50)
where we have explicitly written a term due to the cosmological constant (see foot-
note 1). .

Consider Eq. (1.49): as we have already anticipated, the scale factor of the
four dimensional universe corresponds to the position of the brane in the higher

3 As an example, notice that in Fig. (1.1) the brane contains negative energy density.
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dimensional background. It is possible to choose the parameters of the model in
such a way to obtain a static, Poincaré invariant four dimensional universe: indeed,
it is enough to choose the position of the brane and its energy density in such a
way that the right hand side of equation (1.49) vanishes. This situation corresponds
to a static configuration, with brane that does not move in the space. However,
considering a perturbation on the energy density, one obtains a model in which the
brane moves, producing a variation of the observed scale factor [18, 19].

Let us render quantitative these statements. Starting from (1.49), to get a brane
cosmology that is not in conflict with observation, one split the (3+1)-dimensional
energy into a constant ), determined by the brane tension, plus ordinary matter py,,
with py << A to suppress the quadratic term in comparison to the linear one [12].
Then, being p = A + py,, One gets '

h 8r G- \\2 (167 Gs A\ (87 G 12
et (B (B0 () ] o

Singling out the term linear in py,, this allows us to identify

B 16m G5 A\ : 3G,

1 1.
= M (8” G4) [—/\ + o + —ffﬂ-} . (1.53)

Therefore

a? 3

Since we want A >> p,r to suppress the quadratic term, this leaves us with a large
(3++1)-dimensional cosmological constant that we will need to eliminate by canceling
it (either fully or partially) with some term in h(a) [12].

This result is in its own way quite remarkable: up to this point no assumptions
had been made about the size of the brane tension, or even whether or not the brane
tension was zero. Nor had any assumption been made up to this point about the
existence or otherwise of any cosmological constant in the five dimensional bulk. It
is observational cosmology that first forces us to take A large (electro-weak scale or
higher to avoid major problems with nucleosynthesis), and then forces us to deduce
the presence of an almost perfectly countervailing cosmological constant in the bulk.

Naturally, another important constraint that the model must satisfy regards
the behavior of gravitational interactions. For distances larger than the millimeter,
indeed, it is necessary to recover a four dimensional behavior for the Newtonian
potential. The fact that one recovers a correct form for the Friedmann equation is a
significant clue that gravity becomes four dimensional at large distances. But how
large? In the next section, we will try to answer, in a simple example, this question.
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1.3.3 The Randall-Sundrum surgery

Let us discuss a simple choice for the function A(r) in Eq. (1.29), namely, the case
of pure AdS space, with a flat three dimensional submanifold £ = 0: this is the
Randall-Sundrum model [8]. We choose

h(r) = 2r2. (1.54)

Let us consider initially a brane-world containing only vacuum energy: with the
notation of the previous subsection, p = A, and py- = 0. The condition that ensures
a Poincaré invariant brane results

A = 8TGyA. (1.55)

This is called condition of criticality: notice that the vacuum energy on the brane
and the one in the bulk must be chosen with great accuracy to ensure this condition.
In this situation, the brane does not move and the universe on the brane is static
and Poincaré invariant. A small perturbation from this static situation, with the
addition of matter with py. < A, forces the brane to move, and this fact produces
an interesting cosmology on the brane. The Friedmann equation turns out to be

] 81 G4 1 p?
9 - Fbr
H = ( 3 ) {pbr + 57 } ) (1.56)

and it describes, neglecting sub-dominant quadratic corrections, a flat FRW universe
with vanishing cosmological constant.

What about gravity in this model? Let us change coordinates to recast the
metric in a more familiar form. Define

6
n= \/% Inr. (1.57)

This implies
2 2 A Ao oo
ds® = +dn” +exp | —2 " |5 dt® +a” dzzq | (1.58)

Re-label the time parameter in terms of proper time of a cosmologically comoving

6 )

One ends with a metric of the form
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A
ds® = +dn? + exp (—2\/% 77) [—d7? + dz® + dy® + dz*| , (1.60)

that is, exactly the metric of Randall and Sundrum as presented in [8]. These authors
have shown that, when suitable junction conditions hold (that correspond exactly
to the conditions (1.55)), gravity at large distances behaves as four dimensional.
This is due to the fact that, due to the negative cosmological constant, the five
dimensional space is curved in such a way to localize gravity. More precisely, there
is a graviton bound state attached to the brane with an exponential falloff controlled
by the distance scale parameter

6
L raviton — . 1.61
gravit IA4+1’ ( )

Now the experimental fact that we do not see short distance deviations from the
inverse square law of gravity at least down to millimeter scales implies that Lgrayiton
must be less than one millimeter. For distances larger than this, this model predicts
a four dimensional behavior for gravity.

To conclude, let us return to the cosmological side of the discussion. With the
condition of criticality, one obtains that

3 3 L2
\ = = Planck M. . 1.62
4m G3+1 Léraviton 4m Léraviton ’ ( >

This relation implies that if Lgraviton 1S as large as allowed by experimental con-
straints, then the quadratic terms in the density become important once tempera-
tures reach the electroweak scale (about 100 GeV). In particular, this model offers
the possibility of seeing deviations from the standard cosmology as we go back with
time: while the present universe can be described with great accuracy, the early
universe should have been different from the one described by SCM.
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Chapter 2

Cosmological constant and self
tuning mechanisms

In the previous chapter we have considered the Randall-Sundrum space-time as a
background to embed a brane world model. In this background, we have shown that
the five dimensional metric can be re-casted in a form that admits four dimensional
Poincaré invariant slices. Moreover, due to a negative cosmological constant in the
bulk, the coefficient in front of the four dimensional slice in (1.60), called warp
factor, succeeds on localize gravity.

Four dimensional Poincaré invariance, although simplifies the tractation, is not
strictly necessary to describe phenomenology. Indeed, what we observe is an universe
homogeneous and isotropic in the three spatial dimensions, not in time. Starting
from this observation, one can ask if it is possible to construct brane world models in
backgrounds that do not admit four dimensional Poincaré invariant reparametriza-
tions: we will call these backgrounds asymmetrically warped [20, 21]. These back-
grounds exist, and in general the associated space-times have non trivial global
properties, with horizons that cover singularities. A higher dimensional version of
the Schwartzschild black hole is an example of these spaces. A part from the intrinsic
interest to analyze the behavior of brane world models in more general backgrounds,
these attempts are interesting for at least two reasons.

The first is the fact that the low energy four dimensional limit is not Lorentz in-
variant, predicting a different behavior for gravitational and electromagnetic waves.
The effects of violation of the Lorentz invariance are subtle and very interesting from
the cosmological point of view.

“The second is represented by the new insights that these models offer toward the
understanding of the cosmological constant problem. In general, the most interesting
attempts to solve the cosmological constant problem are based on models that try
to absorb the cosmological constant on the vacuum expectation value of some field,
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like a scalar field. However, various models based on this idea have failed to solve
the problem. Weinberg [13] presented a general argument, essentially based on the
assumption of general covariance of the four dimensional gravitational action, which
shows why models of this type cannot work.

Now, brane world models, which by definition are models in which gravity is
described as a five dimensional theory, can help in facing the problem. In this
chapter we will discuss how to look at the cosmological constant problem in this extra
dimensional setting. In the first part of the chapter we will review the cosmological
constant problem. The second part is instead dedicated to a brane world approach
to the problem: we will show that, for this purpose, the most interesting models are
those based on asymmetrically warped backgrounds, discussing a specific example
in which we will also study the effects of Lorentz violation.

The cosmological constant problem

The cosmological constant problem is one of the difficulties that arise in trying to
join general relativity with quantum field theory.

Let us briefly recall the problem, starting from the Einstein equations with a
cosmological constant term:

1
R,U»'/ — ingj = 87TG4T/W + /Xguu . (21)

Here, A is an integration constant, that arises in the variational procedure that
yields the equations: it has units of the inverse of a squared length. Taking as an
ansatz a FRW form for the metric, one can parametrise the present bounds on the
value of A in terms of the present value of the Hubble parameter, Hy:

A< HY =h}-107%m™2 (2.2)

where hg is a constant of order one that reflects our error in the determination of
the Hubble parameter.

Consider the introduction of quantum fields in the description. First of all, notice
that the fundamental scale of gravity is Mp;, with Mp; ~ 2 - 10'® GeV. One can
expect the integration constant A to be of the same order of Mp;, since this is the
typical scale of the theory. However, this expectation is far to be correct, since the
experimental limit (2.2), in terms of Mp;, reads

A <1070 E, (2.3)

Moreover, even if we set A = 0, we know that in any quantum field theory there
is a non zero vacuum energy (the energy of the ground state) due to contributions of

30



vacuum fluctuations. This can be written, in terms of the energy momentum tensor,
as

(Tw) = —(P) v (2.4)

This implies that the vacuum energy contributes to the cosmological constant via
the following quantity

)\4
/\eff :87TG4<p> = Mg, (25)
where )\ represents some characteristic scale. The inequality (2.3) becomes
A <1078V . (2.6)

The smallness of the parameter A contrasts with our knowledge of standard
model of particle physics. Indeed, in this framework one can expect that the vacuum
fluctuations of the quantum fields produce an energy density p*, with p at least of
the order of O(TeV), the natural cut-off of the theory. _

Actually, one can consider the possibility that some high-energy symmetry ex-
ists, that cancels exactly Acsy at a certain high scale. However, any low energy
phase transition (think for example to the QCD phase transition) contributes to the
effective vacuum energy, in a way that is not canceled by the previous symmetry:
in other words, the cosmological constant problem is actually an infrared problem.

An alternative approach to the problem is the idea of dynamical adjustment: we
would like to find a mechanism that compensates new contributions to the vacuum
energy density with an equal (but opposite in sign) contribution. For example, a
scalar field could adsorb new contributions to the vacuum energy on its expectation
value.

Unfortunately, Weinberg [13] has shown that this idea is not realizable without
reintroducing an unadmissibly high level of fine tuning in the model. For a simplified
version of his proof, consider the following argument [23]. Take the standard minimal
form for the action that describes gravity minimally coupled to matter and one
adjusting scalar:

1

5= 167Gy

/ d'e~/=g (R+ Low + L(2)) (2.7)

Now, integrate out the standard model degrees of freedom, and choose the extrem-
izing value for the scalar field ¢g. One finds

1
5= 167Gy

/d4:c V=9 (R—Agu — V(o)) . (2.8)

To cancel the cosmological constant means to render zero the sum of the potential
for the scalar and of Agyr: Agar + V(gg) = 0.
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It is clear that it is not possible to choose once for ever the potential V(¢) in
such a way that its minimum satisfies the previous equation for any walue of the
parameter Agy,. This means that for a given value of V(¢g), one must impose a
great fine tuning to the quantity Agp.

However, notice that this example, and Weinberg’s general proof, are based on
the hypothesis of four dimensional general covariance. There is the possibility that
models based on the brane world picture can give new insights to the problem, since
gravity is actually described by an higher dimensional theory.

For example, we have already shown in Section (1.3.3) that, in the RS model,
it is possible to compensate a four dimensional vacuum energy with bulk quanti-
ties, in such a way to obtain a Poincaré invariant brane, with H = 0, also in the
presence of a non-zero cosmological constant in the bulk. However this model re-
quires a fine tuning between cosmological constant on the brane and the one in the
bulk. In the past years, the possibility to compensate vacuum energy density with
bulk quantities has been analyzed in detail, looking for brane world models that
provide this compensation without fine tuning. Such mechanisms of adjustment of
the cosmological constant are called self tuning mechanisms [26].

The next sections are devoted to present some examples of these attempts for
a brane world model embedded into a five dimensional bulk. In Section (2.1) we
will consider a bulk containing gravity and a scalar field: in this case an apparent
self tuning solution has results to be erroneous, for reasons that is very interesting
to point out. Section (2.2) shows an example of how to cure the problems of the
previous model.

Self tuning mechanisms

2.1 A bulk containing a scalar field

In [24] and [25], an adjustment mechanism of the cosmological constant has been
presented, for a brane world embedded into a bulk containing gravity and a scalar
field. In this approach, any new contribution to the vacuum energy on the brane is
transmitted to the expectation value of the scalar and of the cosmological constant
in the bulk.

Let us present briefly the model. Consider the action

5= / a5 R - %(V@Q ~ he] - / b7/ gae ) (2.9)

Here, g5 and g4 correspond to the determinants of the five dimensional and four
dimensional metric, respectively, and we have set the five dimensional Newton con-
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stant equal to one. This action describes a bulk containing gravity and a scalar
field, and a brane containing vacuum energy density A conformally coupled to the
bulk scalar field.

To analyze the model, the first step is to find exact solutions to the Einstein
and scalar equations in the bulk, using some ansatz. First, we look for solutions
of Einstein equations that are four dimensional Poincaré invariant, with the five
dimensional metric that takes the form

ds? = e*A(—dt? + dz? + dzj + dx3) + dr®. (2.10)

We will require that the metric and the fields depend only on one variable, let
us say 7, in such a way that A = A(r), and ¢(r). Strictly speaking, this condition
is true only when Birkhoff theorem holds: however, the presence of a scalar field
generically violates the theorem, and one needs additional conditions to ensure the
dependence only on one variable. In this case, a condition that guarantees this fact
is

A = ag’ (2.11)

for some constant a, and a prime indicates derivative along 7 . In any case, we will
take this as an ansatz, that moreover simplifies the calculations.

With these conditions, the solutions to the Einstein equations and to the equation
of motion for the scalar field are easily found. For the scalar field, one gets

: 3. 4
, gb:j:zln‘gr—d—l—d (2.12)

where ¢ and d are arbitrary integration constants. One obtains the expression for the
scale factor A(r) starting from (2.11). Actually, this solution presents a singularity
of the Ricci scalar at the point r = 3c.

The brane will be located on a point of the extra dimension, and the physical
region of the space-time will be represented by the interior region between the sin-
gularity and the brane. The exterior region between the brane and infinity must be
excluded because, for any choice of the parameters, the warp factor is not sufficiently
steep to localize gravity.

On the contrary, taking the interior region, the singularity represents a natural
boundary for the space-time, that will be cut at this point. The fact that the
extra dimension is finite indicates that the four dimensional gravity behaves in the
correct way for distances larger than the experimental bound on deviation from the
Newtonian form for the gravitational potential, when one chooses the parameter ¢
sufficiently small.

1See Appendix A for a proof of this statement in a more general background.
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Using the methods developed in the previous chapter, one can find the junction
conditions that the vacuum energy density A must satisfy to render consistent the
model. We will not present here the explicit results of the calculation since we will
obtain them in the next Section with a particular choice of the parameters. We limit
ourselves to the simplest case of a bulk without cosmological constant: A = 0. The
authors of [24] propose a simple way to understand how the adjustment mechanism
work. Looking at the action (2.9), one sees that any correction to the parameter
A, coming from some new contribution to the vacuum energy, can be absorbed into
the expectation value of the extra dimensional scalar field ¢o, without changing the
form of the action and without requiring a fine tuned choice of A.

However, a simple variation of this argument shows the problems behind this
model [23]. The field configuration corresponding to the solution of the equation of
motion of the scalar field should extremize the action (2.9). This condition is not
true in this case. This is immediately clear since the only non-derivative coupling
of ¢ appears in the factor multiplying A: thus, for nonzero A, changing ¢ by an
infinitesimal constant leads to a change in .S proportional to that constant.

The point is that the space time presents a boundary, being cut at the singu-
larity. When varying the action on a finite interval (as appropriate if a singularity
is present), one gets, in addition to the equations of motion, a boundary term, as
we have already seen in Section (1.1), which has not been considered. Notice in-
deed that the action (2.9) does not present a Gibbons-Hawking term, necessary to
compensate discontinuities when boundaries are present.

This additional boundary term will reintroduce a fine tuning on the model. To
see this fact, consider the method used in [27] to solve the problems of this model:
add a second brane that covers the singularity, containing a dark energy o. The
resulting system is a brane world model with two branes, each of them containing
a specific energy density. We have seen in the previous chapter that the Gibbons-
Hawking terms in this system has the effect to impose precise junction conditions
for the two dark energies A and o. One finds, solving the equation, that a new fine
tuning between the two dark energies is required, exactly like in the RS model, and
in this way the model does not solve the cosmological constant problem.

Let us also present another clue of the fact that some version of Weinberg no-
go theorem should hold also in this case. The point is that a five dimensional
solution like (2.10) is still Poincaré invariant in four dimensions. This means that
integrating out the additional spatial dimension, one finds, for a scale lower than
the five dimensional Planck scale, a covariant four dimensional effective action for
gravity: the no-go theorem applies to this effective theory.

To conclude, we must look for a model constructed in such a way that

e It does not present dangerous boundaries, a part from the brane, that would
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need a separate discussion. This means, in particular, that the physical region
of the space-time does not contain naked singularities.

o Tt does not admit, at any scale, an effective description for gravity in terms of a
four dimensional Einstein-Hilbert action. This fact leads to possible interesting
consequences, since a model constructed in these terms should present effects
of Lorentz violation.

The following section is devoted to present an example of such a model.

2.2 A bulk containing a scalar and a gauge field

Let us consider the possibility to add a gauge field to the background considered up
to now, constituting a charged dilatonic background [28]. In Section (2.2.1) we will
present the total bulk action, and the general solutions to the associated Einstein
and field equations. The interesting fact is that the resulting space-time does not
share the bad properties of the case analyzed in the previous section.

Indeed, this geometry presents horizons that cover the naked singularities. These
are points where the metric component g* vanish. They describe null-like hypersur-
faces in which the space-time can safely be cut off without the necessity to introduce
additional boundaries: in particular, a gravitational action does not need additional
Gibbons-Hawking terms due to their presence. They can be seen as physical bound-
aries since, from the bulk point of view, an object (in particular a graviton) takes an
infinite time to reach them. The resulting five dimensional metric, moreover, 1s not
four dimensional Poincaré invariant, offering a background in which Weinberg no-go
theorem definitively does not hold. One expects to recover the correct behavior
for the gravitational potential since, considering as physical the region between the
brane and the horizon, one ends with a finite extra dimension.

Section (2.2.2) is devoted to construct a brane world model in a space-time
with this field content. We will present the junction conditions, that show how to
compensate bulk quantities and energy on the brane in such a way that is possible
to find a Poincaré invariant brane without fine tuning. Actually, junction conditions
impose also severe constraints that render matter on the brane exotic. Using however
the properties of a scalar-tensor theory of gravity, we will show a method to render
energy density on the brane physically acceptable.

In Section (2.3) we will discuss some phenomenological consequences of this
approach, at the level of Lorentz violating effects, that are naturally present since
gravity is not Poincaré invariant in four dimensions. In Section (2.4) we will conclude
with a discussion on the progresses that this class of models provide towards the
comprehension of the cosmological constant problem.
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2.2.1 Space-time geometry

Let us consider the following action, in the Einstein frame 2:

s = [#avm {R"%(Vaﬁ)?—e“”muw“
- / i3/ g7 eV L (0 T, PP gun) + Seon (2.13)

where ¢ is the scalar field, F), = 9,4, — d,A, is the field strength tensor of an
abelian gauge field, A,, and we use units in which 167Gs = 1. This field interacts in
the standard minimal way with gravity, and it conformally couples with the scalar
field. The Lagrangian L, describes matter fields, ¢, living on the brane that we
model as a perfect fluid with equation of state p = wp; g4 is the four dimensional
induced metric. The conformal coupling of the scalar to projected metric is specified
by S and we have introduced an additional conformal coupling, parametrized by 7,
of the scalar to matter on the brane. The Gibbons-Hawking term Sgg is added for
consistency.

In this section, we will concentrate on the analysis of the five dimensional back-
ground corresponding to the first line of formula (2.13). This background is very
interesting per se since the action (2.13) is a typical action for a model based on
low energy string theory. Indeed, the gauge field in five dimensions, corresponds to
the dual of the string theoretical antisymmetric two form field, B,,. Alternatively,
it can be obtained from the Ramond-Ramond field present in the spectrum of a ten
dimensional type II string model. For these reasons the scalar will be called from
now on dilaton field.

Varying the action (2.13), one obtains the following Einstein equations:

1 1 1
R/ﬂ/ - —g,uuR ——(V¢)2 g,uu + = vuqs Vz/¢
2 4 2
1
+ ¢ (:2}7‘;&A — —O-g,J,Z,F2> : (2.14)
The equation of motion for the dilaton is
Vip= —ce PF?. (2.15)
while for the gauge field, one gets
V(e 7?F*) =0. (2.16)

2The Einstein frame is related to the string frame by the Weyl transformation g%, = e=%¢g5 .
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To solve the Einstein and field equations we need some ansatz for the form of
the fields. We will require that the all the quantities depend only on one variable, in
particular r. For a general background, a metric can always be re-casted in a form
depending only on one variable only if Birkhoff theorem holds: however, as we have
said, for a background containing a scalar field this theorem does not hold. In this
case, one must impose some additional condition to ensure the fact that the metric
depends only on one variable, as discussed in Appendix A.

Let us take the theorem as granted, and consider the following ansatz for the
form of the metric and the fields:

ds? = —A(r)2dt* + B(r)*dr? 4+ r*C(r)*dz; 5

¢ = o(r) (2.17)
Fy = Fy (T)

Here, dzj, 5 represents the metric for a maximally symmetric three dimensional sub-
space, see Fiq.(1.30). This form for the metric describes a space isotropic and homo-
geneous in the three spatial dimensions. However, notice that the coefficients A(r)
and C(r) are a priori different: in this case, such a metric is not four dimensional
Poincaré invariant. This fact in particular induces violations of Lorentz invariance,
as we will discuss later.

Starting from this ansatz, one finds the solutions

ds? = —h B At + h7 hZVdr? 4 r2ht dal

¢=2Inh_=+/3b(1 - b)Inh_ (2.18)

FtT:Q/Tg

where the functions h, and h_ are defined as

By (r) = s(r) [1 ( : ) } . h(r) = ‘k (?> (2.19)
The sign function is
s(r) = sgn k—(f———)z ’ 2.20
- g r ) ( . )
and finally the constant b is given by
2
o
b= ———-. 2
0% +4/3 (2:21)

It is important to notice that the form of the five dimensional metric depends ex-
plicitly on the curvature k£ of the three dimensional submanifold. This metric cor-
responds to a a black hole only in the case & = 1. The charge of these objects, for
every k, is given by Q% = 4r+7-"b T the case k = 1, the mass of the black hole

o2
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is proportional to p = r2 + 2 (1 — 2b); for the case of k = 0, —1, the calculation of
this quantity is more delicate, and will be discussed only in the next chapter in a
more general context. In general, r,, r_ are arbitrary constants of integration, but
in order to have a singularity hidden by a horizon, for k£ = 1, one requires r_ < r.
To have a real electric charge, we must also impose 2, ri > 0.

Let us describe in more details the global properties of the solutions (2.18):

e k=1: This case has been study for the first time in [29]. By computing the
scalar curvature, it is possible to realize that » = r_ is a scalar singularity for
an arbitrary value of b. The background is asymptotically flat and corresponds,
in the case of dilaton field and written in the Einstein frame, to the well-known
Reissner-Nordstrom solution as it can be seen from the Penrose diagram shown
in Fig. (2.1).

e k=0 and k=-1: It is clear from the expressions for h_ above, that r = r_
is just a regular point, whereas r = 7, remains a horizon. Furthermore,
the coordinate r becomes time-like in the region r > r, but remains space-
like for r < r,: exactly the opposite behavior of Schwarzschild black hole.
The region r > r, is interesting for cosmology: in this region r becomes
the time coordinate and the horizon r, is a past Cauchy horizon for this
cosmological solution. Unlike the standard cosmological singularity » = 0
becomes a time-like singularity behind the horizon, resembling the ‘white hole’
region of the Reissner-Nordstrom solution, but having a single horizon instead
of two. Moreover, unlike the Schwarzschild solution, since the singularity is
time-like it may be avoided by a future directed time-like curve in the region
beyond the horizon, as an analysis of the Penrose diagram in Fig. (2.1) shows.
These and other properties render the background very interesting also outside
a pure brane world context, and we will discuss these issues in the next chapter.

Let us consider the case k = 0. Switching off the gauge field means to take 7, = 0:
in this case, the metric does not present any horizon, but a naked singularity in
r = 0. For the special case b = %, moreover, the metric becomes four dimensional
Poincaré invariant, and corresponds to the space-time examined in the previous
section. Notice that, contrarily to that case, the presence of horizons with r, # 0
does not allow, for any choice of the parameters of the model, to recast the metric

in a form presenting a four dimensional Poincaré invariant slice.

2.2.2 Embedding the brane

In the previous section, we have studied the properties of the background metric.
This subsection is devoted to the problem of embedding the brane in this back-
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ground, and to obtain the properties that characterize the brane world, i.e. the
induced metric and the behavior of matter on the brane. Let us not fix the brane
curvature k for the moment, but, for simplicity, let us locate the brane in a region of
the metric that is static. We will use the receipt developed in the previous chapter
to construct a brane world model.

The brane corresponds to a hypersurface on the five dimensional space-time
parametrized by the cosmic time 7:

XF = (t(7), R(7), %1, T2, T3) (2.22)
Taking the brane velocity
V# = ({(r), R(r),0,0,0), (2.23)

where the dot indicates derivative along 7. It is easy to see that the normal to the
brane must satisfy the following normalization condition:

—h R pRTIRE = 1 (2.24)

It is immediate to show that the induced metric on the boundary becomes

ds* = —dr? + a*(7)dx3 (2.

[\]
DO
[eBa}
Ny
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with a(7) is the scale factor on the brane, i.e.

a(r)=r o2 (T)IT‘:R(T) ‘ (2.26)

We know that the components of the extrinsic curvature must satisfy the junction
conditions

. 1

[-Kab]i~ - _"2’ (Tab - %gachc) ) (227)

while the junction condition for the dilaton reads (n is the unit normal to the brane):
+_ (B

[n-0g]” = { =5 Bp—p) —yecp |- (2.28)

Junction conditions, and self tuning

Assuming the Z; symmetry, the junction conditions for the metric become

1 b _ :
p=F12 <-7-€ + ﬁ) el '\/1 +hTThTRE (2.29)

e e ( bA
\/ 1+ hithZHIR2

3p+ 2p = +12

N AR Ry ) . (2.30)

—§—(3p —[1 = 2wey/Blp) = F4 g h_hLP Rz ~\/1 +hTRIIPR2 (2.31)
where a dot means derivative with respect to 7 and a prime means derivative with
respect to the variable on which the function depend. The choice of the plus or
the minus, as we have seen in the previous chapter, depends to the side of the 2,
symmetric space that one consider as physical region of the space-time.

Let us concentrate on the case k& = 0: the other cases can be obtained with
similar methods, without adding additional information. As we have seen, in this
case the static region of the space-time is located inside the horizon, and it lies
between the time-like singularity and the horizon.

To have a brane with positive energy density, located in the static region, one
must take as physical the interior region of the space, between the singularity and
the position of the brane R(7). We will however consider the opposite case, that
avoids the presence of naked singularities, taking as physical the exterior region
between the position of the brane and the horizon. This region of the space time is
perfectly well defined because it does not present any boundary besides the brane:
however, in this case one must deal with a negative energy density on the brane.
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Various combinations of the junction conditions give us the physically interesting
relations. We will let the equation of conservation of the energy for the next Section,
while let us consider the Friedmann equation, that as we know gives important
information about the eventual realization of the condition of Poincaré invariance.

The Friedmann equation on the brane results

2
1 1 b N
2 __ 2 - _
B = qqap = e (g * ‘2‘7;72::;) 7 (2.32)
where the Hubble parameter is defined by

H(r) = g% = R(7) (*ﬁ% + g%:—) - (2.33)

In particular, for any choice of p and R, one considers, the couplings 8 and 7 as
fixed, and tunes the parameters ., r_and o, connected with the properties of the
dilaton and the gauge field, in such a way to compensate the contribution of the
energy density on the brane, and to obtain a vanishing right hand side in Eq. (2.32).
This procedure is perfectly analogous to the choice of the bulk cosmological constant
that leads to the condition of criticality in the case of RS. Contrarily to RS, in this
case there exist regions on the parameter space that ensure complete compensation
without fine tuning.

Behavior of energy density on the brane

Although one can construct a self tuning mechanism in this model, it is also necessary
to check if matter on the brane has the necessary characteristics to be compatible
with the observed universe. To understand this fact, let us continue the analysis of
the junction conditions for this model.

A combination of (2.29, 2.30, 2.31) gives the equation of (non)-conservation of
the energy on the brane:

o+ 3H(p ) = S4(11 ~ 2mev/Blo—39) (2.34)

Substituting the known solution for the bulk scalar field, one finds the non standard
equation

,0‘+3H(1+w—i—(3w—1)%(z+ap>p:0 (2.35)

This means that, in the Einstein frame, one does not obtain the usual equation
of conservation of energy, and this fact is due to the presence of the dilaton in the
bulk. This field couple with matter on the brane, that transmits to it part of its
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energy. Choosing the parameter ¢ = 0 corresponds to eliminate the dilaton, and
indeed Eq. (2.34) takes the usual form.

Another suitable combination of the junction conditions imposes the following
relation between w, the coefficient of proportionality that appears in the equation
of state, and various parameters of the model

1 4y
3 9B80(1—0b) 38°

The previous formula shows that, considering the couplings 8 and +y as fixed, there
is a precise relation between the parameter w and o. This fact actually reduces,
but does not completely eliminate, the freedom in the choice of the parameters to
compensate the energy of the brane without fine tuning.

w =

(2.36)

However, consider a static universe with a Poincaré invariant brane, and call Ry
the position of the brane, that is located behind the horizon: Ry < r,. Another
combination of the junction conditions imposes the relation

1
Ty :Ro 1+ m (237)

the previous requirement imposes, since b < 1 (see the definition in Eq.(2.21)), the
condition

w>0 (2.38)

Since we have a negative energy density on the brane, Eq. (2.38) means that matter
on the brane violates the condition p + p > 0, called weak energy condition. These
problems with energy density are actually common to any brane world model. In-
deed, the authors of [30] have shown that any brane world model based on Einstein
theory of gravity, that provides a self tuning mechanism, requires exotic energy
density on the brane.

In the recent literature some group has tried to overcome these difficulties consid-
ering corrections to Einstein gravity given by Gauss-Bonnet terms [31]. In the next
section, we will consider the possibility, more natural in this context, to consider a
Brans-Dicke theory [32].

The model as a Brans-Dicke theory

The results of the previous section seem to throw doubts on the validity of this
approach: it seems that it is possible to compensate various contributions without
fine-tuning in such a way to obtain a Poincaré invariant brane, but only at the price
to work with an exotic form of energy density on the brane.
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Luckily, it is possible to see that the last problem can be overcome in the context
of a higher dimensional Brans-Dicke theory of gravity. Indeed, let us perform a Weyl
transformation on the action (2.13). We know that in a dilaton gravity theory,
the particular conformal frame is not fixed a priori by any physical reason: in
particular, one can change the coupling of the scalar curvature with the scalar field
via a conformal transformation, and different choices of the conformal factor gives
different models. In this case, it is possible to perform a Weyl transformation of
the metric such that one recover energy conservation on the brane: consider the
transformation

g/.w = €'a¢9uy . (239)

Let us show that choosing carefully the parameter a, one recovers an exact conser-
vation of the energy density on the brane. After the conformal transformation, the
action (2.13) takes the form of a generalized Brans-Dicke theory in five dimensions

Se+5 = [ dz/—Gs [ R—YED- (V®)? —@”FWFW]
— | d*a /=G5 Lo (2.40)

Tn the previous expression, Ly, = e@et284Mo L (LeletBég, ), n=1/3 —20/3a.
We have also defined a Brans-Dicke-type field, ®, by:

P = 292 (2.41)

and the Brans-Dicke parameter wgp is given by,

4 1
2w = — + = .
wgp + 3 Oor? + 3 (2 42)
In the new frame, eq. (2.34) becomes
L T~ ~ '6£~br ¢ ~ ~ .
p+3H(p+p>=¢5¢ = Sl(a+F+27)p—3p(e + B)]. (2.43)

where p = €2*®p. Thus energy will be conserved on the brane, and the right hand
side of (2.43) will vanish as soon as the following relation for a holds:

B —2v — B(1 — 3w)
N 1— 3w '

(2.44)

where w is the parameter in the equation of state of the perfect fluid: p = wp.

For the case w = % (radiation dominated universe), the only way to eliminate the
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right hand side of (2.43) is to take v = 0, or ¢ = const. and formula, (2.44) does
not applies in that case. Notice that for the pure conformal coupling (v = 0) one
recovers energy conservation in the Jordan frame as usual.

This analysis shows that in this situation there is a preferred conformal frame,
in which energy is conserved on the brane, and the higher dimensional gravitational
theory becomes a dilaton-gravity theory. In this frame, the dilaton field result
decoupled from the energy on the brane. It is also possible to see that relations like
(2.36) does not hold in this case, and the parameter w can take the preferred value
(although we must always take p < 0).

Actually, what we obtain is a five dimensional version of the Brans-Dicke theory.
Notice however that the usual limits, coming from gravitational experiments, on
the parameter wgp of Brans-Dicke theories do not apply in our higher dimensional
case. Those limits come essentially from the evaluation of the differences between
general relativity and scalar tensor theories predictions in four dimensions, and do
not directly apply to an higher dimensional case. The only constraint we must
impose is that the BD parameter given by (2.42) result positive, in such a way to
have the correct sign for the scalar kinetic term.

2.3 Violation of four dimensional Lorentz invari-
ance

Let us return in this section to the action written in the Einstein frame, that is,
describing the usual Einstein theory of gravity. It has been emphasized [20, 21, 33,
34] that brane world models can present interesting effects regarding the different
behavior for the speed of propagation of light and gravitational signals. Indeed,
the general solution (2.18) breaks the four dimensional Poincaré invariance in the
bulk. As a consequence, a gravitational wave produced on the brane, that is not
constrained to move on it, can reach a second point of the brane passing through the
bulk. This means that is then possible to foresee gravitational signals that travel
faster through the bulk than on the brane.

Now, it has been argued since long time that faster than light propagation and/or
variation of the speed of light can solve cosmological puzzles like the horizon problem
[34]. The elaboration of brane world models has raised the interested for these
possibilities [33]. Indeed, since a gravitational signal can bring information faster
than light, it carries information from one region of the universe to another that is
outside the causal horizon of the first (determined on the hypothesis that nothing
can carry information faster than light). Disconnected regions of the universe, that
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Figure 2.2: An artistic representation of the different behaviors of photons and
gravitons

are inexplicably similar one to the other, becomes connected by gravitational signals.

However, these effects, although interesting, are also dangerous for phenomenol-
ogy, and must be carefully controlled. The violation of four dimensional Lorentz
invariance was extensively discussed in [20, 21], where the authors shown the cor-
rectness of the intuitive idea for which if one has a decreasing speed of gravitational
waves moving away from the brane, then the brane Lorentz invariance can be re-
covered, in the sense that the gravitational waves prefer to move on the brane, due
to the Fermat’s principle. As an example of the method employed, let us estimate,
the conditions for which one has a negative derivative for the speed of gravitational
waves running away of the brane. This means, according to Fermat’s principle, that
the gravitational waves prefer to propagate on the brane rather than through the
bulk. Choosing appropiately the parameters of the model, it is possible to control
the effects of Lorentz violation to render them compatible with phenomenological
constraints.

Let us first examine the case of a static brane with a a vanishing curvature k = 0.
From the expression (2.18) of the metric, we deduce the local speed of propagation
of gravitational waves in a direction parallel to the brane is:

(7 1\ & 2(1-3b)
Cérav(r) = (—r:‘zt - 1> (;ﬁ) r_ . (245)
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This expression is of course valid only in the region where 7 is a space-like coordinate.
It is easy to see that, since 0 < b < 1, the local speed of propagation ¢}, (r) is
always a decreasing function of r in the region 0 < r < r,. This means that this
local speed of propagation will be either decreasing or increasing away from the

brane in Ry depending on the sign of the brane energy density (see figure 2.3):

e Positive energy density. We keep the interior region (r < Rp) and thus the
speed of propagation is increasing away from the brane and the gravitational
waves will prefer to propagate through the bulk. Note that in this case the
naked singularity at r = 0 is not shielded by a horizon.

e Negative energy density. We keep now the exterior region (Ry < r < ry),
therefore in this case the gravitational waves will prefer to travel through the
brane instead of the bulk and there will be no evidence of Lorentz violation.

We can then conclude that Lorentz violation would be manifest only in the case
with positive energy density on the brane, and in the presence of naked singularity
in the physical space.
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2.4 Is the cosmological constant problem solved?

In this chapter, we have presented an explicit example of higher dimensional model
that tries to face the cosmological constant problem via a compensation mechanism.
Can this be considered a solution of this problem?

We have already pointed out some problems connected with the nature of the
energy density localized on the brane. However, considering models that are not
based on the Einsteinian theory of gravity, but, for example, on Brans-Dicke theories,
these problems can be overcome.

Maybe, the real problem of the previous mechanism does not lie in the behavior of
the energy density, but on the same realization of the self-tuning mechanism. Indeed,
start from a static brane, and consider a small perturbation from this position. As
expected, one obtains the correct, linear behavior on the energy density. However, as
the brane moves further away from the static point, the corrections to the Friedmann
equation will start to become sizeable. One has to overcome this problem requiring
a mild time dependence for the parameters defining the charge and the mass of the
higher dimensional background: 7 /r ~7_/r_ ~ H.

One can expect that a modification of charge and mass can be due to some phase
transition on the brane: similar phenomena has been for example considered in the
holographic context of the AdS-CFT correspondence [35]. However, in this case the
time depéndence of the parameters seems not associated to any phase transition,
so it is less clear the source of this behavior. Moreover, a consistent holographic
interpretation of the present space-time, that is asymptotically flat and not AdS, up
to now has not been worked out.

A part from this problem, there is no doubt that this approach to the cosmolog-
ical constant via asymmetrically warped space-times is interesting and corresponds
to a first step toward further developments.

First, it presents a simple model that shows in an explicit, calculable case how
to renounce in a consistent way to a generally covariant four dimensional action
for gravity with the aim to approach the cosmological constant problem. This
approach, by the way, evidentiate how unavoidable effects of Lorentz violations
can be controlled and used also in other cosmological contexts.

Second, it points out in an interesting example the importance of the global
properties of the bulk space, showing how the presence of singularities and horizons
really affects the physics on the brane.
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Chapter 3

Negative tension objects and their
cosmological consequences

In the common view, our universe begun with an initial singularity, in which the
scale factor vanishes and the energy density diverges, and that we cannot describe
in terms of known physics. After this initial point, a phase of expansion started
(maybe with a primordial phase of inflation), and this phase continues today.

A simple model that presents this behavior is the flat FRW universe. Let us
start from the Raychaudhuri equation (3.1):

a 4G

- =5 (p+3p). (3.1)

Today, we observe a universe in expansion, with a > 0. If the following inequality
holds
p+3p=>0, (3-2)

then & was always negative, and thus at some finite time in the past a must be have
been equal to zero. This argument is based on the so called strong energy condition
(3.2).

Notice that a universe dominated by a positive cosmological constant violates
this condition. This exception is important because it is believed that during the
inflationary period a positive cosmological constant provided the necessary force to
exponentially expand the universe. Interestingly, recent observations seem to favor
the possibility that our universe is presently accelerating [22]: the most natural ex-
planation of this fact, in terms of the SCM, is to admit the possibility that a fraction
of the present energy density is constituted by positive cosmological constant.

However, the previous argument concerning the initial singularity can be gener-
alized to the following statement: given a flat universe, filled with energy density
satisfying the null energy condition, a possible phase of contraction is connected to
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the expanding one by a singularity [36]. The null energy condition prescribes that
(o +p) > 0: a positive cosmological constant satisfies this condition, and, although
it describes an accelerating universe, it does not help, alone, to avoid an initial
singularity in a flat universe. On the other hand, it is interesting to observe that ex-
amples of systems that do not satisfy the weak energy condition exist: for example,
the negative energy density of the flat dilatonic charged brane world model of the
previous chapter violates this condition. But working with an energy density that
does not satisfy the weak energy conditions is usually a delicate issue, since this fact
generally induces instabilities.

In the present chapter, we start from the problem of the initial singularity posing
the following question: are there higher dimensional backgrounds suitable to describe
the general cosmological properties of the present universe, namely expansion and
acceleration, and at the same time help to consistently face the problem of the initial
singularity?

Acceleration is due to a force. The same cosmological constant can be seen as
an external force that causes the acceleration of the universe. Is it possible to find,
thinking always from a geometrical point of view, some different sources of accel-
eration? A simple answer to this question is the following: negative mass objects.
These can be the responsible of this acceleration: exactly like a positive mass ob-
ject attracts another positive mass object, a negative mass one repels, accelerating,
another object.

In this chapter, we will present a general receipt that, starting from known so-
lutions to Einstein equations, furnishes examples of backgrounds that describes an
accelerating, expanding universe, and that contain negative tension objects. These
backgrounds have also the characteristic to be asymptotically flat, a notable dif-
ference in respect to the asymptotically dS space-time corresponding to a universe
with positive energy density.

As we will discuss, space-times containing negative tension objects can help to
avoid an initial singularity in an interesting way: intuitively, their repelling action
does not allow a contracting universe to contract up to a zero size. More precisely,
we will show that the structure of the solution is such that it can be reinterpreted
as a time-like wormhole, that smoothly connects two cosmological regions, one that
can be interpreted as a contréncting phase, the other as the expanding one that cor-
responds to the observed universe. We will also discuss how to avoid the instability
generally associated with negative tension objects, giving some indications of the
fact that they lie on fized point of some orbifold symmetry.

The solutions of Einstein equations we will present are interesting per se, since
provide an explicit example of how to obtain, in FEinstein theory of gravitation,
objects with negative tension, and can give some hints of how to include, in a
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theory of gravity, negative mass objects, like orientifolds, that naturally arise in
string theory.

It is interesting to observe that a particular case of the time-dependent regions
of the solutions that we will describe have been recently re-discovered in a totally
different context, in the attempts to find time dependent string backgrounds: they
are called S-branes.

The first part of the chapter is dedicated to a brief overview of recent attempts
to describe what happened at the beginning of our universe. They are based on a
geometrical approach, and are constructed using the concept of time-like orbifolds,
an orbifold defined not only along a spatial coordinate, but also along a time-like
one. These approaches, although very interesting, should be used with care for the
still unclear status of the concept of time-like orbifolds. Indeed, it is not clear if
they are consistent or not in a theory containing gravity. The attempts to obtain
the same results of these models, but at the level of the well based Einstein theory
of gravity, lead naturally to a class of space-times corresponding to a generalization
of S-branes.

In the second part of the chapter, we will concentrate on a careful analysis of
these new solutions, showing how to obtain them from a simple analytical contin-
uation of known solutions of Einstein equations in supergravity backgrounds. We
will present two ways of interpret these solutions, interesting for possible cosmolog-
ical applications: in terms of space-times containing negative mass objects, and in
terms of wormholes connecting two cosmological regions of the complete space-time.
We will also discuss the delicate issues of the thermodinamical properties of these
objects, and their stability under classical and quantum fluctuations.

3.1 New directions towards the initial singularity

It is a challenge for modern physics to try to understand what really happened at
the singularity: does it correspond to the beginning of time? Or the universe has
also a past, interesting history, potentially important to describe at least the first
stages of the phase of expansion? One can imagine, for example, that the universe
underwent a period of contraction that preceded the present period of expansion. In
the past decade many efforts have been done to construct models that describe this
type of universe, in the context of fundamental theories like string theory. A model
constructed in these lines is the pre-Big Bang scenario, developed by Veneziano,
Gasperini et al. (see [37] for a recent review).

In this model, a contracting phase is still connected to an expanding one via a
singularity. However, the singularity (or more precisely the run-away instability of
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Figure 3.1: Penrose diagram for a FRW universe with the initial space-like singu-
larity.

the fields at the singularity), is tamed by string effects and transformed in conven-
tional cosmology, possibly by means of a T-duality that maps an higher curvature
regime to a low curvature one.

Recently, other approaches to the initial singularity have been presented, based
on different methods always coming from string theory. In particular, new develop-
ments of string theory models constructed in time-dependent backgrounds [47] have
received a great attention for their possible relevance in cosmology: this will be the
subject of the next two sections.

Models based on time-like orbifolds

Past year, a new cosmological scenario has been presented, based on a higher di-
mensional brane world approach: the ekpyrotic model [38]. In this scenario, the
background is constituted by a five dimensional space, with a spatial extra dimen-
sion compactified on a circle. Matter that forms our universe is localized on a three
dimensional brane, localized on a fixed point of a Z; symmetry acting along the ex-
tra dimension. The model contains, besides our fixed brane, other branes in a nearly
BPS state, that move along the extra dimension. In particular, the authors propose
a scenario to interpret the big bang in terms of the collision between our brane with
another one. Quantum fluctuations produced by the process of approaching of the
two branes result in the observed nearly scale invariant spectrum of the CMB.

In this thesis, we are interested on the methods that the authors use to construct
the space-time where the model will be embedded. To explain these methods, let us
consider the illustrative example of a flat space—time in 2 4+ 1 dimensional gravity
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(our three dimensions are reduced to a singular one, called X). The line element is
ds? = —dT* +dX*+dY? . (3.3)

We define in this space time an orbifold projection in the following way. Let us
identify points on this space along orbits of a subgroup of its isometry group, i.e. a
subgroup of the three-dimensional Poincaré group. Define k to be the Killing vector

k= 2mi(AJ), (3.4)
where
) 0 o,

is the generator of Lorentz boosts along the X direction. The Killing vector & defines
a one parameter subgroup of isometries. Let me identify points ) along the orbits
of this subgroup according to

Q ~exp(k)Q . (3.6)

Now, perform a change of frame from the usual Minkowski frame to the Milne form:
T = tcosh(e),

X = tsinh(9¢). (3.7)

This change of frame allows to write the metric of the orbifold space in the following

way
ds? = —di* + t*d¢® + dY? (3.8)

where ¢ is a periodic coordinate, corresponding to an extra spatial dimension.

The passage from a period of contraction to a period of expansion, in this model
for the Universe, is represented by the behavior of the scale factor for the compacti-
fied extra-dimension ¢. For ¢ that goes from —oo to +o00, the scale factor decreases,
crosses a space-like singularity in ¢ = 0, and after starts an expansion phase. The
size of the extra dimension, in this way, shrinks to a point, and after begins to
increase.

The flat metric (3.3), with the additional orbifold conditions, represents an ex-
act solution of a string theory system, that utilizes a time-dependent orbifold, an
orbifold that involves also a time-like coordinate. In this sense this approach is new,
because it utilizes a novel ingredient in string theory, and produces an interesting
time dependent background in which it is possible to construct a higher dimensional
cosmological model.

However, let us notice some potential problems of this construction. The met-
ric in the frame (3.8) actually excises two important regions of the space time,
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Figure 3.2: Penrose diagram for a space that avoids the singularity problem

just because the choice of the Milne coordinate system eliminates two folds of the
Minkowski space. Indeed, the system of metric (3.8) contains also additional re-
gions, and there is not any compelling reason to eliminate them (the fact that they
lies behind a singularity is not enough, because, we repeat, this is due only to the
bad choice of coordinates in the dimensional reduction). The point is that, in these
excites regions, it is possible to see that the identification (3.6) implies the presence
of closed time-like curves. In general, their presence corresponds to a violation of
causality, and signals an instability for the system: we will reconsider this problem
at the end of this subsection.

Is it possible to extend the methods introduced in [38] in some interesting way,
at least from the point of view of the initial singularity problem? Recently, another
group [46] has shown that a simple extension of the receipt of [38] can provide the
possibility to avoid completely an initial singularity, obtaining a model for a universe
passes in a smooth way from a phase of contraction to a phase of expansion. Consider
again, as illustrative example, the same 2 + 1 dimensional system of metric (3.3).
This time, let k& be the Killing vector

k= 2mi (AJ +RP), (3.9)

where J is just as before, while P is given by

0

ZP:W’

(3.10)
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and corresponds to the translation along the Y direction. Also in this case we shall
identify points @ along the orbits of this subgroup according to

Q ~exp (k)@ . (3.11)

Also in this case, it is possible to find a particular coordinate system that allows to
write the metric in a space with a compactified extra dimension. The corresponding
Penrose diagram is given in Figure (3.2). In this diagram, the interesting cosmo-
logical regions I are not connected by a singularity, but by a horizon that separates
them from the two static regions II. The universe can pass from a period of con-
traction (region I in the lower part of the diagram) to a region of expansion (region
I in the upper part) without meeting any singularity. However, this space time has
the problem that the Penrose diagram comprehends again regions containing closed
time-like curves (the regions indicted by III).

These space-times, defined in terms of time dependent orbifolds, have stirred up
the attention of string theorists, that have tried to understand if it is really possible
to define a consistent string theory in this background [47]. Very recently, Horowitz
and Polchinski [39] have pointed out that, for the unavoidable presence of regions
containing closed time-like curves, these systems are unstable. It is sufficient to
embed in these space-times a massive particle, to produce a giant black hole that
overcloses the universe producing a big crunch.

Any way, we believe that this approach to the initial singularity is extremely
interesting, and we pose the following question: is it possible to find an exact so-
lution for a gravitational system with the field content of low energy string theory,
that reproduces the interesting behavior of [46], with the same Penrose diagram,
but without violating the energy conditions? The answer to this question builds an
interesting bridge with other interesting recently considered time-dependent solu-
tions in string theory, the so called S-branes, and constitutes the argument of the
following subsection.

Space-like branes

Very recently, a different approach has been considered to study time-dependence
in string backgrounds. Remember that, in string theory, D-branes are constructed
defining a Dirichlet boundary condition in one space-like coordinate. Gutperle and
Strominger, in [40], ask the following question: is it possible to define Dirichlet
boundary conditions in the time direction, in such a way to construct a space-like
brane? The space-like brane (S-brane) would be an object with a purely space-like
world volume, that exists only for one instant in time: it corresponds to a sort of
time-like kink.
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This question is interesting, because one of the concepts one hopes to generalize
from a spatial to a temporal context is holography. In the AdS/CFT correspondence,
the D-brane field theory holographically reconstructs a spatial dimension. By anal-
ogy, S-branes should reconstruct a time dimension: such temporal reconstruction
was argued to be a key ingredient of a proposed dS/CFT correspondence. In anal-
ogy with AdS/CFT, one can indeed imagine that the world volume field theory on a
S-brane is holographically dual to the supergravity solution sourced by the S-brane.
This holographical interpretation suggests that a Sp-brane (with p + 1 dimensional
Buclidean worldvolume) in d dimension should have ISO(p+1) x SO(d—p —2,1)
symmetry. The non compact SO(d—p—2,1) can be interpreted as the R-symmetry
of an Fuclidean field theory living on on the S-brane.

In [40], few examples have been provided of supergravity solutions corresponding
to S-branes. Subsequently, more general analysis were performed in [41, 42] and [43].
Let us consider here the simplest example discussed in [40], to present some features
that will subsequently developed: this corresponds to a charged SO-brane in d = 4
Einstein-Maxwell gravity. The Einstein-Maxwell action is

/d4x\/:§(R — 7). (3.12)

Consider the ansatz

2 dt? 20,2 L R24H2
ds® = 7 + \dz” + Hs,

where R and )\ are functions of ¢ only, and dHZ (e3) is the line (volume) element
on the unit Hy space with negative curvature. Solving the corresponding equations,
one finds as a solution

2 2 2.2 __ .2 2,2
2 Q 7 2, ToT —To , o, QT 2 )
ds® = m—T—OQ—TQ -’r§‘dT + I dz* + 2 dH; (3.14)

where 7¢ is an integration constant.

Interestingly, this geometry corresponds, in four dimensions, to a special case of
the solutions previously presented in [28], that we have considered in the previous
chapter for the five dimensional case. The geometry given by (3.14), in particular,
is obtained switching off the dilaton field, and has the same Penrose diagram of Fig
(2.1).

Remarkably, this corresponds exactly to the Penrose diagram of Fig (3.2), but
without the regions denominated by III in that figure. It presents two cosmological
regions (denominated by I), one corresponding to an expanding phase, the other to a
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contracting one. They are divided by horizons from static regions, that present time-
like singularities for » = 0. This means that supergravity solutions corresponding
to S-branes, constructed to analyze time-solutions of string theory, can constitute
suitable spaces to construct models describing a bouncing universe.

Regarding this purpose, we ask the following question: are the time-dependent
regions of the solutions the only important ones, or the analysis of the static part
of the solution, containing time-like singularities, provide additional interesting in-
formation about the global behavior of the space time?

The remaining part of this chapter is devoted to show that the answer to the
previous question is affirmative. We will show that time-dependent solutions of the
form (3.14) are, in a certain sense, typical in supergravity and low-energy string
theory, and a natural interpretation of the corresponding space-time is a space that
contains a pair of negative mass objects lying in the static part of the geometry. We
will interpret the time dependence of the space time (in particular, the characteristic
behavior of contraction followed by an expansion) as due to a sort of destabilization
of the space time due to the negative mass objects. The presence of negative mass
objects avoids the various theorems that predict an initial singularity: indeed, we
will see that the solutions can be written in a particular frame that resembles a
time-like kink, or wormhole *.

3.2 Cosmological space-times from negative ten-
sion brane backgrounds

Recently, there has been considerable interest in the dynamics of brane interactions.
The interest was motivated partly by the insights that static brane configurations
have already given to long-standing low-energy issues like the hierarchy problem,
and partly by the potential application of brane collision/annihilation processes to
the cosmology of the very early universe [44, 38, 45, 28, 40, 41, 42, 46, 47, 39, 29].

A remarkable feature, which has emerged from studies of brane physics, is the
existence of physically sensible objects with negative tension — a prime example
being orientifolds [48]. These objects are expected to bear important implications for
cosmology. For example, some negative-tension objects do not satisfy the standard
positive-energy conditions which underlie the singularity theorems. As such, they
may open up qualitatively new kinds of behavior for the very early Universe.

Tt then behooves us to construct a cosmology built out of objects having negative-
tension. In doing so, it is imperative to understand first the large-scale gravitational
fields produced by these objects. We will take a step towards improving our under-

!The following part of the chapter is based on [43].
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standing of these objects by providing a class of simple space-times which describe
gravitating negative-tension objects, based on the solutions of [28] that we have
studied, in a particular case, in the previous chapter. These solutions describe
cosmological space-times with a horizon, but with singularities only in the static
region of the full space-time. We will see that these singularities correspond to
negative-tension branes of opposite charge. We believe these space-times are useful
for developing intuition concerning such objects, as they are no more complicated to
analyze than the well-known Schwarzschild black-hole. The space-times we discuss
in this chapter enjoy the following properties:

e They are classical solutions to the combined field equations involving dilaton,
metric, (¢+1)-form (¢ > 0) antisymmetric tensor fields. For particular choices
of coupling parameters, they are classical solutions to bosonic field equations
of supergravity and string effective field theory at low-energy.

e They describe field configurations of a pair of g-branes carrying mutually op-
posite g-form charge and equal but negative tension. These g-branes constitute
time-like singularities of the space-time metric which are separated from one
another by an infinite proper distance.

The space-time is time-independent in the immediate vicinity of each brane.
The static nature of the space-time metric may be understood as a consequence of
Birkhoff’s and Israel’s theorems for negative- and zero-tension objects. By contrast,
part of the space-time which lies to the future of both branes is time-dependent.
The boundary between the two regions — time-independent versus time-dependent
regions — is a horizon of the space-time.

Outline

The remaining part of the chapter is structured in the following way. After a general
discussion about stability problems related to negative mass objects, we review and
generalize the solutions studied in the previous chapter, starting from a particularly
simple Schwarzschild-like limit, for which a generalization of the Birkhoff and the
Israel theorems [54] to negative-tension objects applies. After, in Section (3.5) we
will support the interpretation in terms of negative-tension sources in two ways.
First, the conserved charges which are carried by the source branes are computed
using the curved-space generalizations of Noether’s theorem. Second, the response
of a test particle to the gravitational field is examined through the study of time-like
and null geodesics. Section (3.6) describes how the throat between the two cosmo-
logical regions can be interpreted as a time-like bounce. Section (3.7) investigates
small fluctuations about the solutions, with evidence presented for the instability
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of some of their remote-past features. We believe the late-time metric to be stable,
and we regard the calculations of this section as a first step towards a more com-
prehensive stability analysis. We also discuss in that section the relevance of the
time-like singularities, and why these can make sense of space-time’s overall causal
structure. In that section, we show that a Hawking temperature can be defined,
and we present preliminary arguments that this reflects the spectrum of particles
seen by static observers. Finally, in Section (3.8), we comment on some future di-
rections for research that our calculations suggest, above all on the construction of
the cosmological models.

Negative tension versus stability

As many of the unusual features of these space-times are traceable to the fact that
the source carries negative tension, it is worth recalling why such branes are be-
lieved to make sense [48] — and potentially to be virtues [52] — in the low-energy
world. Traditionally, negative-tension (and negative-mass) objects were considered
pathological on the following grounds. Consider the world-volume action of a single
g-brane, which has the form

Sb:—T/dq“y\/—detfy+-~, (3.15)

where T' denotes the brane’s tension 2, Ve = guw Ouz™ Gy refers to the metric
induced on brane’s world-volume by the space-time metric gpn(x), and the ellipses
represent contributions of other low-energy modes of the brane dynamics. If the
embedding of the brane were free to fluctuate about some fixed value, z{’, in the
ambient space-time, then £ = £}/ 4+-&M and ¢ is a dynamical variable. A negative-
definite value of the tension, 7' < 0, poses a problem since it implies a negative-
definite kinetic energy — and hence an instability — for the fluctuation £ [53]. This
being so, one always assumes that the tension 7" of a dynamical object is positive-
definite.

The explicit construction of sensible negative-tension objects such as the ori-
entifolds within string theory hints how the aforementioned instability and no-go
argument are avoidable. Specifically, the argument does not apply in the instances
of the space-time studied in this chapter, simply because these objects are not free
to move in the ambient space-time. Rather, negative-tension branes are arranged
to be localized at special points, such as orbifold fixed points or space-time bound-
aries, and hence do not carry dynamical variables such as £M | causing an instability

2Here, we tacitly assume that the object moves relativistically so that the energy density p (as
measured per unit g-dimensional volume) equals to the tension 7'
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as the tension T becomes negative-valued. The immobility is consistent with the
equations of motion because it is the equation of motion for the missing dynami-
cal variables £ which would have required the brane’s centre-of-mass to follow a
geodesic trajectory (if the brane were neutral).

We believe that the immobility of the negative-tension branes helps explaining
several otherwise puzzling features of the space-time we describe in this chapter.
For instance, as will be shown later, the source branes do not follow geodesics
in the space-time, even when the branes are arranged not to carry any electric
charge. On the other hand, despite not following the geodesics, the space-time
contains no nodal singularity. The situation is unlike what arises with the C-metric
solution, where the nodal singularities are interpreted as consequences of the external
stress-energy which is required to force the sources to move along their non-geodesic
trajectories. This kind of stress-energy is not required for negative-tension objects
since, by construction, they are not required to move along geodesics in any case.
The immobility of these objects might also help explaining why the late-time regions
of the metric are time-dependent 3.

3.3 Simple solutions: Schwarzschild revisited

Before presenting the solutions in their most general form, we pause here first to
build intuition by describing their simplest variant: vacuum solution to Einstein’s
field equations, R,, = 0, in four dimensions.

Let us start with the well-known Schwarzschild black-hole, whose space-time
geometry is given — in the asymptotically flat region r > 2M — by:

-1
ds? = — {1 - 2—?[} at® + {1 - leJ dr* + 17 (sin® 0d¢® + d6®),  (3.16)
whose constant r and ¢ surface is the two-sphere Sy. Birkhoff’s theorem states that
Eq.(3.16) is the unique solution for representing spherically symmetric non-rotating
black holes *. Israel’s theorem [54] states further that eq.(3.16) is also the unique
solution for representing static non-rotating black holes .

As is well known, the apparent singularity of the metric Eq.(3.16) on the surface
r = 2M is a coordinate artifact. For r < 2M, the metric goes over to that of

3We are largely concerned with classical aspects of the negative-tension objects. The stability
issue creeps out again once quantum effects such as pair-creation/annihilation of these objects are
taken into account. We discuss this issue further in later sections.

4This theorem assumes nothing regarding time-(in)dependence of the solution.

5 Although we describe in detail in this section the four-dimensional case, the discussion trivially
generalizes to 2 + n dimensions — with n > 2 - through the replacement 1/r — 1/771.

60



the interior region, for which the role of r and ¢ gets interchanged, leading to a
time-dependent metric of the form:®

2 M -1 2M
ds?, = — {_{{_1] a2+ [T_l} dr* + ¢ (sin® 0d¢® + d6*) . (3.17)

Note that the surface of constant 7 and ¢ remains the same two-sphere S;. A real,
space-like singularity occurs for ¢ — 0, which is to the future of any observer falling
into the Schwarzschild black-hole.

A particularly simple form of the solutions which are of interest may be obtained
from Eq.(3.17) by an analytic continuation, § — 46 followed by an overall sign change
of the metric. 7 This leads to the following time-dependent vacuum solution:

-1
ds? = — {1_.2_?} dt* + {1_ -2-?} dr? + t* (sinh® 0d¢® + d6*) . (3.18)

Note that, after the analytic continuation, the surface of constant r and ¢ has turned
from the two-sphere, Sy, to the hyperbolic surface, H,, viz. sign of the curvature
scalar is flipped from positive to negative. The metric is explicitly time-dependent
but homogeneous otherwise — it has a space-like Killing vector £ = 0, in addition to
the symmetries of the hyperbolic surface 5 at fixed values of r and t.

Eq.(3.18) is well-defined for ¢ > 2P, but as is clear from its connection with the
Schwarzschild black-hole, the degeneracy at ¢t = 2P is merely a coordinate artifact.
An extension of the metric to ¢ < 2P is given by performing the same continuation
as the one leading to Eq.(3.18):

-1

dsj; = — sz - 1?] dt* + F{i - 1} dr® -+ r* (sinh® 8d¢®> + d6®) . (3.19)
The metric in this region is static and retains the hyperbolic space H; at constant
r and t. A real, time-like singularity occurs for »r — 0, and this is the structure we
are primarily interested.

Just as 7 = 2M does for the Schwarzschild black hole, the surface ¢ = 2P defines
a non-compact horizon of the space-time described by Egs.(3.18, 3.19). This is most
transparently seen from the Penrose diagram of the space-time, given in Fig.2.1. It
is simply a 7/2-rotation of the Penrose diagram for the Schwarzschild space-time.

An observer in region I experiences a time-dependent, expanding region of the
space-time, which becomes flat as ¢ — oo. The observer sees no singularity in
null or time-like future, but will experience two time-like singularities in the past.

6We adopt here the convention of always labelling the time coordinate as ¢, both inside and
outside the horizon.
"Equivalently one can take § — i, ¢ — i¢,t — ir,r — it, M — iP.
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By contrast, an observer in regions II and IV experiences a static space-time, and
sees only a single time-like singularity in the past. Observers in region III see no
singularities to their past, but have both time-like singularities in their future light
cones. On the other hand, observers at fixed values of r, § and ¢ in the static regions
— including the singularities themselves as a limiting case — do not follow geodesics
and so experience a proper acceleration.

The above description suggests a viable interpretation for this solution, as well
as for many of the other more general ones which we present in subsequent sections.
Regions IT and TV describe the space-time external to two objects which we argue to
be negative-tension branes. These branes may also carry other conserved charges.
Region I gives the time-varying transient gravitational fields which these branes
produce at late times. Region III similarly describes the time-reversal of this last
time-dependent process.

In this interpretation, the horizons, which are reminiscent of S-branes (in a pre-
cise sense explained below) [40], describe the locus of instants when observers make
the transition from having only one of the branes in their past light cone to having
them both in their past.

3.4 General solutions

We now turn to the description of a wider class of solutions which extend the sim-
ple considerations of Section (3.3) to various space-time and brane’s world-volume
dimensions, and to a system involving metric, dilaton, and (g -+ 1)-form tensor fields
— a system encompassing bosonic fields of diverse supergravity or superstring theo-
ries and their compactifications. This wider class of solutions was already obtained
in [28], in which the primary interest was generalization of the well-known black
branes of string theory to all possible signs of the curvature parameter, k, of the
maximally-symmetric transverse space.

3.4.1 Dilaton-generalized Maxwell-Einstein solutions

The system we will consider is defined by the following Einstein-frame action in
d = (n+ ¢ + 2)-dimensional space-time:

S = / d*z\/g [aR — MN0¢)? — ne™? ;‘H} : (3.20)
My _

where g,,,, ¢, I denotes metric, dilaton field, and (g + 2)-form tensor field strength,
respectively. Stability requires the constants o, A and 7 to be positive, and, if
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so, they are removable by absorbing them into redefinition of the fields . It is
nevertheless useful to keep them arbitrary since this in principle allows to examine
various reduced systems, where each constant is taken zero (to decouple the relevant
fields) or negative (e.g. to reproduce E-brane solutions in the hypothetical type IT*
string theories, related to the type II string theories via time-like T-duality [56]).
Eq.(3.20) includes supergravity, and so also low-energy string theory, for specific
choices of d, o and ¢ (for instance d = 10, ¢ =1 and o = 1).

The field equations obtained from Eq.(3.20) are given by:

aG = NI, [¢] +ne T, [F) (3.21)
2NV = —one "PF?, (3.22)
V(e ?PFF) =0, (3.23)

where
Towld] = VudVop — %guy(V@Q and TwlF)=(q+2)F, F,. — %QWF?,.

We are interested in classical solutions whose space-time geometry take the form
of an asymmetrically warped product between g-dimensional flat space-time and
n-dimensional maximally-symmetric space, parametrized by a constant curvature
k = 0,41. For this ansatz, the solutions depend only on one warping variable —
either t or r — and ought to exhibit isometry SO(1,1) x Ox(n) x ISO(q), where
Oy (n) refers to SO(n —1,1), ISO(n) or SO(n) for k = —1, 0 and 1, respectively.
The ansatz is motivated for describing a flat g-brane propagating in d = (n+¢ + 2)-
dimensional ambient space-time, where n-dimensional transverse hyper-surface is a
space of maximal symmetry, and constitute an extension of Birkhoff’s and Israel’s
theorems.
A solution satisfying these requirement is readily obtained as [28]

ds® = b (—h+h1:(”“1>bdt2 N R Ll 1] dmgk) + hBdy?, (3.24)
¢="D%mp, (3.25)

—_ —n R
Ftv‘yl...yq = Q€try1...yq7n ) €tryr..yg — +1. (326>

The notations are as follows. The metric of an n-dimensional maximally sym-
metric space, whose Ricci scalar equals to n(n — 1)k for k = 0,41, is denoted as

8The canonical choices are A = o = 1/2, and 7 = 1/2(g + 2)! in units where 87G = 1.
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Figure 3.3: Penrose diagram for the k = 0, —1 case. This diagram is very similar to
the Schwarzschild black hole (rotated by 7/2), but now region I (I1I) is not static,
but time-dependent with a Cauchy horizon and region I (IV) is static.

dmi,k. The harmonic functions hy (r) depend on two first-integral constants, 74, and
are given by:

ho(r) =s(r) (L= (ry/r)"1) ho(r) = |k - (r-/m)" Y, (3.27)
where
s(r) =sgn (k— (r_/r)"") . (3.28)
The constant @ is given by
0= dn(n — 1)2a A(ryr_)™! 12 | (3.29)
(g+2)In(anX? +4(n—1)A)
where ¥ and b are constants defined in terms of parameters of the action as
$2 % 4 Ag(n—1)% 7 b 2&;222 ‘
a n(n+q) (n—1)(anX?2+4(n— 1))

Likewise, the exponents A, B in Eq.(3.24) are defined in terms of the same param-
eters as

_ 4M(n—1)% and -1 n
 an(n+q)%? aln+ )2 q
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The solution defined by Eqs.(3.24 - 3.26) is unique modulo trivial field redefinitions:
& — d(r) + 2¢p and F' — Fe? which in turn can be compensated by rescaling of
the space-time coordinates and the first-integral constants, ry.

The two first-integral constants, r., are related intimately to two conserved
charges associated with the solution. One of these is the g-form electric charge ) -
see Eq.(3.26) — acting as the source of the (g + 2)-form tensor field strength. The
electric charge is measurable from the flux integral § *Fyyo over the n-dimensional
symmetric space. The explicit integral yields the electric charge given precisely
by Eq.(3.29), so is a function of the first-integral constants. For the g-brane to be
physically sensible, the electric charge @ ought to be real-valued. From Eq.(3.29) and
from the stability condition > 0 °, the condition renders an inequality (r_r,)"~! >
0. Note that r_ = 0 if and only if @ = 0, and the point r = r_ 1s potentially singular
(or a horizon) only if & = 1. The second conserved charge is associated with the
Killing vector of the metric, and so can be understood as a mass, in a sense which
will be made explicit later.

A dual, magnetically charged solution is obtainable from the electrically charged
solution by making the duality transformation: Fyio — Fy=*F, ., 0 — —0o and
g — (d—4—gq) in Egs.(3.24), (3.25) and (3.26), where Fi1 is related to F,, through
the dilaton-dependent expression:

Fpiy = e%eqronky. (3.30)

The solution presented above is expressed as a function of the coordinate 7. One
readily finds that r denotes a spatial coordinate for & = —1,0 in so far as r < r,.
For r > r,, the harmonic function hy flips the overall sign, so the r coordinate
becomes temporal. As such, we will relabel the coordinates as r <+ ¢ for r > r so
that ¢ labels always the time coordinate.

Drawing lessons from the simple solution presented in Section 2, we are primarily
interested in & = —1,0 cases. Note that the k¥ = —1 solution is obtainable from the
k = 1 solution in much the same way via the following analytic continuation:

t—ir, 7= it,Qn —1Q and 7y —iry, P — —(ir_)"h
Note that this is precisely the same as that defined the simpler, Schwarzschild-type
solution in the previous section. The above procedure also suggests that one can
obtain yet another solution with hy = |k — (r4/r)*™!| and h_ =1 — (r_/r)""! via
n=1t 10 Tt turns
out these new solutions are singular at r = r_ for generic values of the parameters.

an alternative analytic continuation 7_ — ir_ and r™" — —(iry)

9This last conclusion does not follow for E-branes, for which n may be chosen negative (see
later sections).
10The additional minus sign is required to ensure the real-valuedness of the electric charge ).
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As such, they would correspond to more standard cosmology evolving from a past
singularity. Further new (and generically singular) solutions are also obtainable
by T-dualizing the above solutions with respect to the coordinate r in the time-
dependent region and ¢ in the static region. In this case the corresponding element
of the metric — g, or gy — in the string frame gets inverted and the dilaton field is
shifted accordingly (see for instance, ref. [55]).

3.4.2 Asymptotic and near-horizon geometries

For foregoing discussions, we pause here to examine both the asymptotic and the
near-horizon geometries of our solution, Eqs.(3.24 - 3.26). Asthe k& = 1 case parallels
to the standard black-brane studies, we focus primarily on the £ = 0, —1 cases. For
the ease of the analysis, we adopt the isotropic coordinates, defined by

- (t”"l _ Ti—l) _ (3.31)

The near-horizon and the asymptotic limits then correspond to 7 — 0 and 7 — oo,
respectively.
The metric Eq.(3.24) takes, in the isotropic coordinates, the form:

Atb 2/(n—-1) FL-nb B
ds® = (H_) [— + dr? + —= dr2+72Hi/(n_1)dm%7k]+(_]i:> dy?.

ﬁ: H_ HJQF-nb H, q
(3.32)
The harmonic functions Hy(7) are given, for the & = —1 case, by
Hy=1+ (3})(“—1) , H =H, + <7~_;><n—1> , (3.33)
and, for £ = 0 case, by
Hy =1+ (fl})(n_l) , H_ = (%__><n~1> | (3.34)

Likewise, the dilaton field and the (g + 2)-form tensor field strength are given in the
isotropic coordinates by

B(r) = B2 (H H) and Py, (7) = Qetryygp 7 "H 070 (3.35)

From Eqs.(3.32) and (3.35), we now analyze the limiting geometries for the two
cases k = —1, 0 separately.
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Near Horizon region

Figure 3.4: Penrose diagram for the near horizon limit. It is simply the Milne
Universe, where the shaded zone is excluded and an apparent singularity sits at
t=0.

The k = —1 brane:

In the asymptotic region, 7 — oo, and both H, and H_ approach the unity. That
is, the asymptotic geometry is flat:

d5?|asymptotic = —d72 + dr® + TdH, + dy? (3.36)

where dH2 = dz? ;. Moreover, both the dilaton field and the (g -+ 2)-form field
strength become zero: ¢, F© — 0. This is very interesting as the time-dependent
regions I and III tend asymptotically to a vacuum state corresponding to (a patch
of) flat space-time, both in the asymptotic past and future infinity.

In case the system under consideration is the bosonic part of a supersymmetric
theory, the asymptotic region could constitute a supersymmetric vacuum. For in-
stance, as the asymptotic geometries are flat, in- and out-states might be defined
naturally having anywhere up to the maximal number of unbroken supersymmetries.
Clearly, cosmologies with asymptotic supersymmetry could have many interesting
features.

In the near-horizon region, 7 — 0, and the harmonic functions are reduced to

H, — (fTi)n_l and  H_ — <f>n_1,

-
where 777! ;= (r”'+7}7"). For simplicity, consider a particular choice of the
parameters so that r_ = r, — the result does not change if they are different. The
metric then behaves as
S\ 2
t
dSQInear—-horizon == “‘d? + (7"—-) d'rz + Tidﬂi + dyz ) (337)
+
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where unimportant numerical factors are absorbed by rescaling coordinate variables,
and the time coordinate is newly defined as = r(n=D/20=9/290-4-t)/2 " Noe
that the near-horizon geometry does not depend explicitly on the dimension n of
the transverse space. Moreover, the dilaton field and the (g + 2)-form field strength
tend to constants in this limit.

We thus find that the near-horizon geometry of the time-dependent regions I and
IIT (¢ > 7. ) is described by the direct product of a two-dimensional Milne Universe
with coordinates ¢ and r, an n-dimensional hyperbolic space with coordinates z,,
and a g-dimensional flat space with coordinates y,. In the near-horizon geometry,
the Penrose diagram of Fig.3.3 goes over to that of the Milne Universe, illustrated
in Fig.3.4. The apparent singularity at ¢ = 0 is harmless, as it corresponds to a
regular point at the horizon.

Alternatively, the near-horizon limit can be taken from the static interior regions
— regions II and IV of Fig.3.3. In this case, we find that the two-dimensional space-
time with coordinates 7, t is reduced to Rindler space-time — the shaded region in
Fig.3.4.

The k = 0 brane:

The k£ = 0 branes exhibit several marked differences from the & = 41 ones. The
main difference is in the asymptotic geometry, which in this case does not become
flat as 7 — co. In particular, in this limit, the coefficient of d&2 = al:ci)D goes to zero
and the dilaton field runs logarithmically to ¢ = —o0.

The result for the metric in the near-horizon limit —again taking r_ = ry for
simplicity — is:

-\ 2
05w norion = —dE + (%) dr? 12 dE? + dy?. (.38)
As might be expected starting from the original causal structure, the geometry is
again a direct product of a two-dimensional Milne Universe, an n-dimensional flat
space and a ¢-dimensional flat space. The Milne Universe geometry of the near-
horizon region seems to be quite generic for all these solutions. Note, however, that,
in this case, the near horizon geometry is an exactly flat space-time, in contrast to
the k = —1 brane.

3.5 Interpretation I: negative tension brane

In this section, we shall be drawing a viable interpretation of our solution Egs.(3.24
- 3.26). We will first investigate in further detail the conserved charges for these
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systems. alluded we will show that, while the definition of the electric charge of
the source object do not pose problems, the definition of the gravitational mass
requires careful treatment. We will then explore the space-time geometries and
causal structures by studying geodesic motion of a test particle.

3.5.1 Conserved quantities

We start by identifying two conserved quantities as Noether charges carried by the
source branes, whose metric, dilaton field, and (g + 2)-form field strength are given
as in Eqgs.(3.24 - 3.26).

Electric charge

We have argued earlier that the constant @, Eq.(3.29), defined roughly by a flux
integral of the Poincaré dual n-form field strength *Fj o = E,, over the n-dimensional
maximally symmetric space, is interpretable as a conserved electric charge. We now
elaborate the argument, and associate the electric charge with g-branes located at
each of the two time-like singularities.

From the field equation Eq.(3.26) of the (g + 2)-form tensor field strength, a
conserved charge density can be defined through d*F, > = *J. This leads to the
following expression for the electric charge:

Q= / 4.V, (€7 7PFH) = / A i, e TP FH (3.39)
) 8%

where ¥ refers to any (n + 2)-dimensional space-like hyper-surface transverse to
the g-brane. Advantage of the above expression of the electric charge lies in the
observation that the integrand vanishes almost everywhere by virtue of the field
equation Eq.(3.23). It does not vanish literally everywhere, however, because the
integrand behaves like a delta function at each of the two time-like singularities.
Conservation of @ is also clear in this formulation, as the second equality of Eq.(3.39)
exhibits that @ is independent of ¥ so long as the boundary conditions on 0% are
not changed.

Evaluating the flux integral Eq.(3.39) over a space-like hyper-surface ¢ = constant
within either of the two static regions (regions II and IV of Fig.3.3), we retrieve the
result Eq.(3.29), up to an overall normalization, for the electric charge at each of the
two time-like singularities. The electric charge turns out equal but opposite for each
of the g-branes located at the two time-like singularities in the fully extended space-
time: Qp = —Qrv. One can draw this conclusion by directly applying Eq.(3.39) to a
choice of the space-like hyper-surface 2, which extends from the immediate right of
the singularity located in region II to the immediate left of the singularity located in
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region IV, and passes through the ‘throat’ where these regions touch (see Fig.3.3).
As this choice of the hyper-surface does not enclose the singularities, the flux integral
in Bq.(3.39) necessarily vanishes. This implies that the (outward-directed) electric
fluxes through the two components of the boundary, 0¥ = X;; + Xy, are equal
and opposite to one another, and so the same is true for the electric charges which
source the dilaton and the tensor fields on the two boundaries.

We are led in this way to identify the conserved quantities, =@, with electric
charges carried by each of the two g-branes located at the time-like singularities.
Which brane carries which sign of the electric charge may be determined as follows.
As Eq.(3.26) defines the constant @ relative to a coordinate patch labelled by r
and t, the key observation is that the coordinate ¢ can increase into the future only
for one of the two regions, I or IV. Then, the charge +@ applies to the brane
whose static region ¢ increases into the future, and —@) applies to the brane whose
t increases into the past.

Gravitational mass

Recall that the metric Eq.(3.24) is static only in the regions II and IV, but not in
the regions I and III. This means that only in the static regions is it possible to
define a conserved gravitational mass (or tension) in the usual sense for the branes
located at time-like singularities.

A procedure for evaluating the gravitational mass in the present situation is
to adopt the Komar integral formalism [63], which cleanly associates a conserved
quantity with any Killing vector field, ¥, by defining a flux integral:

K[£] = ca 7{@ _dSu D" (3.40)

Here, ¢ denotes a normalization constant, and T is again an (n 4+ 2)-dimensional
space-like hyper-surface transverse to the g-brane, and 92 refers to the boundary of
Y. The Komar charge K is manifestly conserved since it is invariant under arbitrary
deformations of the space-like hyper-surface ¥ for a fixed value of the fields on the
boundary 0%.

The connection between the flux integral Eq.(3.40) and the more traditional
representation of K[£] as an integral over ¥ of a current density is obtained by using
the identity D2 = —RF,£” and Gauss’ law:

K[€] = 2ca / dS,D,DHE = / dS,J*(€); (3.41)
b I

where the current density

Mo =c(me - 757 (3.42)
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is conserved in the sense that D,J* = 0. This last expression utilizes the properties
of Killing vector fields, as well as Einstein’s equations for relating 2, to the total
stress-tensor, T},,. As we see explicitly later, if 7, is nonzero, then the value taken
by K can depend on the location of the boundary 0% in Eq.(3.40).

We now argue that, if one adopts the Komar integral for the definition of the
g-brane tension 7, the sign of the tension ought to be the same for both static
regions, I and IV. This is most transparently seen for the Schwarzschild-like solution
for which T,, = 0, by applying the definition of Eq.(3.40) to the two-component
boundary of a surface, X;, of constant ¢. The boundary extends from near the
singularity in region II over to near the singularity in region IV. Then, the vanishing
of T}, leads to the conclusion that the contribution from each boundary component
is equal and opposite: K;(0;) = —Krv(0;). However, since the globally-defined
time-like Killing vector is only future-directed in one of the two regions, II or IV,
local observers will identify 7 = —K[3;] in the region where 0, is past-directed,
leading to the conclusion 7;; = Trv- ‘

To evaluate the tension 7 = K[8,] in the patch for which 0 is future-directed, we
will choose for the hyper-surface ¥ a constant-t spatial slice and for the boundary 0%
ar =1y (viz. a constant radius) slice in the regions II and IV, respectively. It turns
out that, if @ ## 0, the expression for the tension depends on the value r at which
the boundary 9% is defined. This is also true for the radius-dependent mass of the
Reissner-Nordstrom black-hole. Likewise, we would expect that the gravitational
mass of the g-brane depends on the stress-energy of the (¢ + 2)-form tensor field for
which the brane is a source if @ # 0. Explicitly, we find the tension is given by:

Tg) = —2a(n—1) {rﬁ‘l — kT M 24+ A (n—1)b) ((%)M - 1)}
@ o e (o) e

where the normalization constant ¢ has been chosen to ensure that 7 /V takes the
conventional (positive) value for the black-brane solutions (¢ = 4), and V is the
volume of the (n + ¢)-dimensional hyper-surface over which the integration is per-
formed. The standard normalization choices 167G = 1/(¢ + 2)! and 167Ga = 1
are made in the second equality above.

Recall that for £ = —1,0 in the static part of the space-time r must satisfy
r < 74, and this shows that the tension as defined above is negative throughout
the static region. For the special case of the simple Schwarzschild-type solution
discussed in Section 3.3, the tension becomes simply 7 /V = M/V = —P/V,,, where
V., denotes the finite volume of the n-sphere (so Vi = 4m). As the Schwarzschild
case is a vacuum space-time (7, = 0), this result is independent of the choice of
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r, and is only nonzero due to the ¢-function singularity in 7}, which the solution
displays as the time-like singularities are approached. This again shows how the
tension may be identified with g-branes sitting at these singularities. For k =1 one
recovers the standard charge dependence of the tension, in this case the calculation
is done in the region inside the second horizon.

Negative tension, 7 < 0, for both branes is in accord with the form of the Penrose
diagram of Fig.3.3, which, in the static regions, I and 1V, is similar to the Penrose
diagram for a negative-mass Schwarzschild black-hole [64], or the overcharged re-
gion of the Reissner-Nordstrom black-hole. As we shall show next, negative-valued
gravitational mass or tension is also borne out by the behavior of the geodesics of a
test particle in these regions.

Note that the Komar integral technique used above can also be used to com-
pute a ‘conserved’ charge in the time-dependent regions, which may be relevant for
confirming the S-brane interpretation of the horizons of these regions. The quantity
obtained in this way involves the ti-components of the stress-tensor, and defines
a generalized momentum corresponding to the symmetry under shifting r in this
region. We regard however the existence of the static regions, where conserved
quantities like tension can be clearly defined, as being very helpful in providing a
physical interpretation of geometries like S-branes.

3.5.2 Repulsive geodesics

To substantiate why the negative-tension interpretation is a viable one, we will study
geodesic motion of a test particle in the background of the solution Eqs.(3.24 - 3.26).
Specifically, we will be primarily interested in the k = —1 case, and study geodesic
motion of a massless or a massive test particle, which couples only to the metric
but not to the dilaton or the (g + 1)-form tensor fields. To understand the nature of
the solution beyond the static regions, we will follow the geodesic motion of these
particles starting from the past time-dependent region III, passing through the static
regions II and IV, and eventually ending in the future time-dependent region I.

Null geodesics

In the static regions II and IV, the radial coordinate ranges over 7 < r, so we
consider the radial null geodesics defined by ds? = dH2 = dy; = 0. This implies
that:

—pATT ey 2 p AR = (3.44)
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Figure 3.5: Null-like geodesics form in the simple case, b = 0, n = 3.

where the dots refer to differentiation with respect to the affine parameter along the

world-line. Thus, _
dt t — 14 —1+nb/2
— = - =+h'h : .
dr 7 LER ) (3 45)
where the 4 sign is for outgoing/ingoing geodesics.
As the regions IT and IV are time-independent, a first-integral of the geodesic

equation renders energy conservation:
gt = g = B (3.46)

where & = 0, denotes the time-like Killing vector. Eqgs.(3.46) and (3.44) together
furnish
j o= L ER-ATOTINE (3.47)

Though we have derived them in the static region, Egs.(3.47) and (3.45) are
applicable equally well in other regions too. One can integrate them numerically
for a generic initial condition, and we illustrate the result in Fig.3.5. The outgoing
geodesics are those which travel outside the horizon and pass into the region I of
Fig.3.3. Similarly, ingoing geodesics are those which come from the past time-
dependent region III in Fig.3.3.

Since ho — 00 as r — 0, there is no difficulty for integrating either Eq.(3.47) or
(3.45) right down to r = 0, indicating that null geodesics reach the singularities in
a finite interval of both affine parameter and coordinate time.
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Time-like geodesics

Radially directed time-like geodesic motion is characterized by §* = —1, dH2 =
dy? = 0, and so:
ATy 2 A = (3.48)

Combining this with the first-integral of energy conservation, Eq.(3.46), we find the
following condition for time-like geodesics in all regions:

1/2
=k (B2 AT A ) (3.49)

where again the sign is + for outgoing and — for incoming radial time-like geodesics.

As before, the geodesic equations can be integrated numerically in the general
case, but it is clear that the observer takes a finite proper-time to reach the horizon
(hy — 0), across which the observer can pass freely. In terms of the coordinate

time, we have:

B h(n——l)bAA
@ o_ = (3.50)

dr ]'L+h_ \/E2 h:?A—I—(n—Q)b . h}_ﬁA*bh_*.

The integral of Eq.(3.50) diverges as hy — 0, so we see that it takes an infinite time
for a particle to reach the horizon as seen by a static observer inside the horizon
(r<ry).

On the other hand, as » — 0, he ~ 1/7""! — co. In this limit, the first term
inside the square root of Eq.(3.49) grows slower than the second term, which renders
the square-root to become complex-valued if r becomes sufficiently small. One sees
from this that an infalling time-like geodesic never hits the singularity. Instead the
infalling observer reaches a point of closest approach, r,, > 0, at which the square
root in Bq.(3.49) becomes zero, and reflected outward. The turning point for a time-
like geodesic is given by the value 7. of the coordinate r, for which the following
expression holds:

_ T+
Te = (1+ Eg[h_(Tc)](n~1)b+A—1)1/(n—1) ' (3.51)
Note that 7. is always between 0 < r, < r;. For example, for r_ =0, and k = —1,
we have that
re = o (3.52)

1+ B/

Gravitational repulsion

We see from the above considerations concerning geodesic motion of a test particle
that the two time-like singularities act gravitationally as repulsive centers, as no
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Figure 3.6: Typical time-like trajectory. Shown also are constant-r, constant-¢ sur-
faces and the Cauchy horizon of the solution.

1 In this sense, the space is time-like

infalling time-like geodesic can hit them
(although not null) geodesically complete. Observers who originate in the remote
past — region III — enter one of the static regions by passing through the past horizon,
and then leave this through the future horizon of the future time-dependent region,
I. This resembles what happens in other geometries, such as the Reissner-Nordstrom
black-hole.

~ Putting together the above results, we are led to draw the following conclusion.
Static observers in regions IT and IV are those whose world trajectories follow lines of
constant 7, and these observers have proper accelerations which are directed towards
the nearest singularity. I find the following expression for the proper acceleration,

for k = —1,0 and ¢ = 0. We have, in the coordinates adopted,

— 1A hl—b n—1 n—1
o= (= Dhihe {” r } (3.53)

LT
2rn hs h_
so the value of the acceleration is always negative.
The singularities themselves are special instances of these observers for whom
r — 0, in which limit the proper acceleration becomes infinitely large. As discussed

in the Introduction, this behavior does not contradict with the equations of motion

1However, infalling null geodesics can hit the singularity.
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for the branes at the singularities since for negative-tension branes these do not
imply motion along a geodesic (or otherwise) within the space-time.

This is in contrast to what is found for accelerating positive-mass particles,
as described by the C-metric. For this metric, the particle world-lines are also
not geodesics, so the particles follow trajectories which are not self-consistently
determined by the fields which the particles source. For positive-mass particles this
inconsistency shows up through the appearance of nodal defects, which are conical
singularities along the line connecting the two particles. These singularities are
interpreted as being the gravitational influence of whatever additional stress-energy
is responsible for the particle motion [51, 50].

3.6 Interpretation II: time-like wormhole

Comparison with the Schwarzschild black-hole permits another interpretation of our
solution. After re-expressing our solutions Egs.(3.24 - 3.26) in conformal frame, the
geometry of the n-dimensional slices turns out that of a time-like bounce. On the
other hand, the scale factor for the 7 coordinate resembles an object localized in
time, and so is a kind of time-like kink. Such bounce/kink behavior would help
explain what precisely the S-brane configuration is.

We shall be interested in foliating the geometry with respect to the time in the
time-dependent regions, I and III. We will be finding that the geometry exhibits
bounce and kink behavior for the symmetric space and the radial direction, respec-
tively.

3.6.1 Einstein-Rosen wormbhole: a review

We begin by recapitulating the interior dynamics of the Schwarzschild black-hole
relevant for our foregoing discussions.
| Consider the maximally extended space-time of the Schwarzschild black-hole.
We am interested in describing time-evolution of the space-time geometry. One
may foliate the space-time as a stack of constant ¢ surfaces. Then, the space-time at
sufficiently early epoch consists of two disconnected asymptotically flat components,
each containing a space-like singularity surrounded by a past horizon. The two
components evolve and, at some early epoch, the two singularities join together and
smooth out by forming a ‘wormhole’ connecting the two components. The wormhole
neck widens, reaching a maximal proper size r = 2M at the time-symmetric point
t = 0. This is the instance when the wormhole neck is instantaneously static and
the event horizon of the two components join instantaneously. Evolving further, the
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Figure 3.7: Two possible foliation of the maximally extended space-time of the
Schwarzschild black-hole. Both cases lead to the Einstein-Rosen bridge connecting
the two static regions.

A A

e evolution b

past future
singularity singularity

Figure 3.8: Cartoon view of time evolution of the Einstein-Rosen bridges. The
upper/lower sequence corresponds to the evolution for the left/right choice of the
foliation in Fig.3.7.

wormhole neck recontracts, eventually pinching off as the two singularities reappear
and the space-time disconnects.

Two remarks are in order. First, as it is evident from the Kruskal coordinates, the
process of wormhole formation and recollapse occurs so rapidly that it is impossible
to traverse the wormhole and communicate between the two asymptotic regions
without encountering the singularity. Second, the picture of the time-evolution
depends on the foliation. Consider, for instance, an alternative foliation illustrated
in the right of Fig.3.7. In this case, the geometry starts as a space-like singularity
in the asymptotic past, grows out as a hyperboloid, reaches a maximal neck size of
the hyperboloid, and recollapses to a space-like singularity in the asymptotic future.
See Fig.3.8 for the comparison.

A natural question is whether a foliation similar to the Schwarzschild black-
hole is possible for our solution as well. We find that it is, although a marked
difference would be that the time-evolution is with respect to the regions outside
the horizon (inside out compared to the Schwarzschild black-hole case) and details
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Figure 3.9: A bounce and kink for the k¥ = —1 brane.

of the evolution are somewhat different for k¥ = —1 and k = 0 branes, although the
properties we end up finding turn out similar. As such, we will again separate the
discussion for the £ = 0 and £ = —1 cases.

3.6.2 The k = —1 brane

Consider, for simplicity, the case r_ = 0 and ¢ = 0, for which the singularities are
point-like 2. Recall that the metric in the original coordinates is

1 .
d52 = ——]{—dtz -+ h+d’f‘2 + tzdl'i),l, (354)
4

where b, = 1 — ()", We now rewrite this metric in terms of the conformal time
+ t

n (not to be confused with the normalization constant used in earlier sections) as
ds® = C?(n) [~dn® +dz] ;] + D?*(n)dr?, (3.55)
where the conformal time is defined by

C(n) = t(n) = ry cosh? ™~ {@——;—Qn} >y, (3.56)

and so n ranges over —oo < 7 < oo. Then, the scale factor for the r-direction
becomes

4

D(n) = tanh {(” - 1)77} (3.57)

and has the same functional dependence for all values of n. These expressions
exhibit the bouncing structure of the (n + 1)-dimensional space and the (time-like)
kink structure of the radial dimension. We illustrate the behavior of the scale factor
in Fig. 3.9 for the example of n =3 and 7, = 1.

12The case — # 0 for b = 0 can also be integrated analytically, but gives rise to a more
complicated result.

78



cMm) DM)

: ﬂ—//\

0 n

1

—+ -0.5

0 n

Figure 3.10: A bounce and kink for the £ = —0 brane.

3.6.3 The k£ =0 brane

In this case, one cannot take a vanishing charge (r— = 0), as then h_ would vanish
t00. We instead concentrate on the limit b = 0 and ¢ = 0 but r_ # 0. The starting
metric has the same form as Eq.(3.54) and hy has the same form also, but now
h_ = (r_/t)" ! In terms of the conformal time 7, the metric becomes, as before,

ds* = C*(n) [—dn2 + dﬂsfw] + D?*(n)dr?, (3.58)
but now with the conformal time defined by

1
n— 1%t 1T
Cln) =tln) =ry |1+ (————n)-q—*nz > 7y, (3.59)
4r’
and ranging again over —oco < 7 < co. The scale factor for r is similarly obtained
for general n, and is

D) = 2(n — 1)7’@_1)77
(m=-—7 M
4t 4+ (n = 1)%r 7>

(3.60)

One sees once again the bounce behavior of the (n+1)-dimensional symmetric space
and the kink behavior of the scale factor for the r-direction. We can see this clearly
in Fig.3.10, where as before we plot an example for n = 3. Note that, at n = 0 viz.
at t = r4, nothing special happens to the (n -+ 1)-dimensional subspace, but the
scale-factor for the “extra dimension”, r, degenerates to zero!

3.6.4 Cosmological bounce/kink and time-like wormhole

As anticipated, the cosmological bounce behavior of this solution offers yet another
physical interpretation: the solution is reminiscent of a time-like version of the
Schwarzschild wormhole or Einstein-Rosen bridge, which connects the two asymp-
totically flat regions in the maximally extended Kruskal coordinate space-time. The
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solution corresponds to a 7/2-rotation of the foliation illustrated in Fig.3.7 in the
sense that the two time-dependent regions — instead of the static regions — are
connected by a time-like wormhole. Note that, according to Figs.3.9 and 3.10, the
geometry of each fixed r slice start out contracting, reaching the minimum volume,
and subsequently expanding.

The bounce/kink interpretation of our solution fits also nicely with the inter- |
pretation that, in particular cases, our solution reduces to the S-brane (as alluded
earlier), and with the proposal that the S-branes are time-like kinks. Our solution
clarifies the proposal further in that the S-brane is in fact located at the horizon 7.

3.6.5 Comparison with Reissner-Nordstrom black-hole

There is a resemblance between the solutions presented here and (part of) the space-
time of the Reissner-Nordstrom black-hole. More specifically, if we let the outer
horizon of the Reissner-Nordstrom black-hole go to infinity, then the geometry and
the Penrose diagram of the two space-times are the same.

We believe that the previous interpretation of the Kruskal diagram for our
k =0, —1 solutions in terms of interactions due to negative-tension objects remains
valid also for the non-extremal Reissner-Norsdrom black-hole in four dimensions,
whose horizon is given by Sy and k = 1 (switching off the dilaton, see [57], pg.
158). In this analysis, the time-dependent region, the region between the inner
and the outer horizons, is interpretable as a destabilization of the space-time due
to the combined gravitational field of two negative-mass objects. Inspecting the
Penrose diagram of the non-extremal Reissner-Norsdrom black-hole, one notes that
the same considerations are applicable. First of all, the two singularities in the re-
gion inside the inner horizon, where the space-time is static, still exhibit opposite
charges and equal but negative masses. The negative value of the mass obtained
from the Komar integral calculation is essentially due to contributions coming from
the electromagnetic field.

The past light-cone of an observer in the ‘time-dependent’ region — the region
between the inner and the outer horizons — is aware of both the negative-mass objects
located inside the inner horizons: the simultaneous repulsion of the two objects
propel the observer toward increasing values of the coordinate 7. Once the observer
crosses the horizon corresponding to r = 7., entering into the region outside the
outer horizon, the observer’s past light-cone does not see any longer two negative-
mass objects, but only one. The interaction with only one object is not sufficient to
destabilize the space-time. In the asymptotically flat static region outside the outer
horizon, the Komar integral calculation gives a positive mass object: indeed, the
effect of the electromagnetic field is suppressed in comparison with the gravitational
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one.

Passing to a conformal frame, constructing the wormhole solution connecting the
time-dependent regions of the metric, one finds a “bounce structure” with a periodic
cosine dependence, instead of the hyperbolic-cosine one obtained for k = ~1,0,
describing in this way a cyclic universe (for related ideas see for instance [58]).

3.7 Stability, singularity and thermodynamics

An immediate question is whether our solution Eqs.(3.24 - 3.26) is stable. In this
section, for definiteness, we shall be taking again the particular solution: k = —1
brane with ¢ = 0, and make a first step toward the complete stability analysis, both
at classical and quantum levels. At the same time, based on these results, we draw
definitive statements concerning the physical nature of the time-like singularities
inherent to our solution.

3.7.1 The Cauchy horizon

An analysis of the stability of — or the particle production by — a given space-
time starts with initially-small fluctuations of the fields involved, and propagates
them forward in time throughout the space-time. The set-up therefore presupposes
that the initial-value problem is well-posed. In the space-time of Eq.(3.24), this is
not clear as there exists a Cauchy horizon, which separates the past time-dependent
region 111 from the static regions I and IV. The Cauchy horizon exists because initial
conditions specified in region III do not uniquely determine the future evolution of
the fluctuation fields. They do not do so because all points after the Cauchy horizon
have at least one singularity in their past light cone, and so can potentially receive
signals from these singularities. This implies that a unique time evolution of a field
fluctuation from the past time-dependent region IIl into the future time-dependent
region I must also involve a specification of some sort of boundary condition at the
location of the two time-like singularities.

From the perspective of brane physics, the existence of such Cauchy horizons
is physically reasonable. Imagine that the time-like singularities are the positions
of real branes. There then exists a possibility that these branes might emit radia-
tion into the future time-dependent region I, and the possible choices for boundary
conditions at the singularities simply encode the possible emission processes which
can occur on branes’ world-volume. A well-posed time-evolution problem in the
embedding space-time thus requires specification as to whether or not the branes
are emitting or absorbing radiation.
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When necessary, we shall choose the simplest possible brane boundary condition:
we assume the brane neither emits nor absorbs any radiation.

3.7.2 The Klein-Gordon equation

I first consider the Klein-Gordon equation for a scalar field propagating in the back-
ground Eqs.(3.24 - 3.26), with particular attention paid to these equations’ limiting
behavior at asymptotic infinity, and near the horizons. We then explore some rele-
vant properties of the solutions in these regions.

Consider the Klein-Gordon equation of a massive scalar field:

b
V9

in the time-dependent regions I and III. Adopting the isotropic coordinates, the
equation is given by
1

V9

Here, for clarity, we denote h;;(z) for the metric on the n-dimensional maximally-
symmetric hyperbolic space H,, whose coordinates are 2, and write g;;(7,7) =
w?(7)hij(z). The relevant metric components are:

Onr [+/G9M N O] b + M3 =0

1 g
0. 1VagT 0y — g5~ — 0 [VRnUg] w My =0 (361)

oy e
gT'T - H+ H‘v ?
Izl 1—(n-1)b 1
Grp = (Ef:) E, (3.62)

H\" L ojnet
o 2 (_) -1
H, +

The functional form of the metric involved permits separation of variables, so we take
W¥(r,t,z) = ' f(t) Lx(z), where P and K are separation constants determined by
the eigenvalue equations:

1
Vh
Both eigenvalue equations can be solved explicitly, and delta-function or £5 normal-

izability of the solutions require both P2 > 0 and K* > 0. The temporal eigenvalue
equation then becomes:

— 92T = P2iPT and 0; [ VIR0, | Lic = KLy

2

1 d d . K?
e {\/gg”—%} + [g pP?+ —+ M?} f=0, (3.63)
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Asymptotic past/future

In the asymptotic future and past regions I and III, 7 — oo, so the metric becomes
flat with H. — 1, and the mode functions go over to standard forms. In this limit,
Eq.(3.63) is reduced to

.. . ‘;2
Felj+(PPem?+=5)f=0, (3.64)
T T

where the dots represent derivatives with respect to 7. The solution is expressible
in terms of the Bessel functions:

f(r) =70 g Iy (p7) + a2 Yy (p7)] (3.65)

where y = —3+/(n —1)? —4K?, the oy, are constants of integration, and the
parameter in the argument is p = v/ P2 -+ M?.

At future infinity in the time-dependent region I (or past infinity in region III),
we find the asymptotic behavior of the solution is f(7) ~ 77V2e*F7 if P o£ 0. If
P =0 then f(r) ~ 7%, with

oy = _% [(n—1) £/ (n =17 - 1K) (3.66)

These solutions are oscillatory for all K* > + (n — 1), and do not grow with 7 for
large 7 so long as K? > 0.

Near-horizon limit

13 Near the horizon, 7 — 0 and the asymptotic form is governed by the limits
He — (ry/7)" Y and H. — (7/7)*"%, with 771 = (7' = kr™"). The metric
functions therefore reduce to g,, — ;™3 grp — 7" and w — . The precise
values of the constants ., c, and «, are not required, apart from the following
ratio:

o =\ (nb=2)(n=1) NG nb-2
T2 =7 — — k . .
Qo T <7"+) . {(H) } (3.67)

With these limits, the Klein-Gordon equation becomes, in the near-horizon limit:

. 1. JaP%1 _ K2\~ ,
f+—f+[T — +o, ™" | MP )| f =0, (3.68)
T oy T o
131n this subsection, we relax the restriction to & = —1, and treat all possible cases on equal

footing.
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If P # 0, then the solutions are oscillatory, having the form f ~ 7%, with aq =
+iP\/a, /o, If P = 0, then a similar argument shows that the solutions are
nonsingular as 7 — 0.

The logarithmic singularity which is implied by the form 7% found above has a
familiar source, which is most easily seen by transforming to ‘tortoise’ coordinates:
t, = t+ 7y log[(t/r}) — 1], whose range is —oco < . < oo, with t, — —oo corre-
sponding to the horizon due to the logarithmic singularity as t — r,. In terms of
the tortoise coordinate, the dominant part of the Klein-Gordon equation governing
the 7 and t, dependence of 1) becomes

(=0} + 5w =0.

This simple wave equation describes waves propagating in both directions across
the horizon. Note that the mass term drops out of these asymptotic expressions,
and so, near the horizon, a massive field behaves like a massless one, approximately
propagating along the light-cone. Just as for our discussion of the geodesics, these
ingoing and outgoing modes describe motion into and out of the static regions, II
and IV, evolving from the past time-dependent region III and to the future time-
dependent region I.

3.7.3 Classical stability

One may now ask whether our solutions Eqs.(3.24-3.26) are classically stable in the
time-dependent regions, I and III. Classical instability is understood here to mean
that initially-small fluctuations grow much more strongly with time than does the
background metric. Although a complete stability analysis is beyond the scope
of this chapter, we perform the first steps here for scalar fluctuations which are
governed by the Klein-Gordon equation. For simplicity, we focus in this discussion
on the massless case, M = 0.

There are two parts to be studied for the stability analysis. First, identify the
modes which grow uncontrollably, and then determine whether well-behaved initial
conditions can generate the uncontrollably growing modes, if these exist. In the
present instance, we have just seen that the asymptotic forms for the Klein-Gordon
solutions do not include any growing modes, due to the conditions P? > 0 and
K? >0, which follow from the normalizability of the spatial mode functions.

Potentially more dangerous are growing metric modes near the past horizons,
which divide the past time-dependent region III from the static regions II and IV.
These are more dangerous because of the infinite blue-shift which infalling modes
from the region III would experience as they fall into the horizon. This blue-shift
boosts their energy (as seen by infalling observers) to arbitrarily large values, and one

84



suspects that such large energy densities drive runaway behavior in the gravitational
modes, much as has been found to be so for the inner horizon of the Reissner-
Nordstrom black-hole. Naively one might have expected that the horizon in our
case could be better behaved than the Reissner-Nordstrom case [57, 59] due to the
presence in that case of the asymptotically flat static region from where the signals
sent to the horizon are infinitely blue-shifted. However in this case that region
is absent. Nevertheless this does not guarantee the stability of the horizon and a
careful stability analysis needs to be performed.

As a preliminary estimate of whether such an instability does exist, let us com-
pute the energy, F = —u™0,,% of the Klein-Gordon modes considered above as seen
by an observer whose velocity, v = M0; + NO,, is well-behaved as it crosses the
horizon. The normalization condition v? = —1 in the vicinity of the horizon allows
a determination of how M and N must behave as 7 — 0 (in isotropic coordinates) in
order to remain non-singular. One finds in this way u? ~ —a, M™% + o, N27"71,
which is regular near  — 0 provided M ~ 7(=3/2 and N ~ 77("=1/2 near the
horizon. With this choice, one then finds

—E = M8 + Noip ~ op 7~ (nD/2, (3.69)

Using the asymptotic solution below Eq.(3.68): ¢ ~ 7% with ag = +iP+/a,/a,, we
see that ' — co as the horizon is approached. This suggests that the stress-energy
density of the mode under consideration diverges as well in this limit. As such,
this mode is likely to destabilize the metric modes near the past horizon, much like
what is found for the Reissner-Nordstrom black-hole near 7 = r_. Notice that if
the horizon were stable, we would have a counter-example to the strong version of
the cosmic censorship hypothesis, since observers coming from the past cosmological
region III could examine the singularity without having to fall into it (see for instance
[60])-

There is a second kind of instability of the Reissner-Nordstrom black-hole, which
the present solutions do not share. This second stability problem for the Reissner-
Nordstrom horizon is seen as soon as the Einstein-Maxwell system is extended to
include also a scalar field, e.g. Einstein-dilaton-Maxwell system: in this case, the
inner horizon turns into a genuine singularity. A similar problem does not arise
for our solution, since our solution is already a solution to the combined Einstein-
dilaton-(g-+2)-form Maxwell system. One can see explicitly that turning the dilaton
on or off does not change the structure of the horizon. Of course, a more detailed
calculation of the metric modes is required to establish definitively whether this
instability does really arise . ,

One sees in this way that the horizons to the past of the static regions are likely
to be unstable to becoming singularities in response to small perturbations. On the
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other hand, we do not expect a similar instability for the horizons to the future of
the static regions. Certainly, a more detailed stability analysis of these space-times
is desirable.

3.7.4 Issue of quantum stability

Before proceeding describing some aspects of particle production on these space-
times, we first pause to remind the reader of some general stability issues.

The Hawking-Ellis vacuum stability theorem

Hawking and Ellis [57] have proposed a generalization to curved space of the familiar
flat-space stability condition that a system’s energy must be bounded from below.
They propose that the energy of a physically sensible theory should be required
to satisfy the following positivity conditions, at least on classical macroscopically
averaged scales. Specifically, for an arbitrary future-directed, time-like unit-vector,
t* the corresponding energy flux vector E* = —T*%, ought to be null- or time-like
and future-directed:

|E#?2 <0,  and — E*t, = T"t,1, > 0. (3.70)

This last inequality implies that the energy density seen by all observers is non-
negative.

Physically, this condition ensures the vacuum is stable against the spontaneous
pair creation of positive- and negative-mass objects. Given that the present solution
is interpreted here in terms of objects — more precisely, a pair of equal-tension g-
branes — whose tensions clearly violate the weak energy condition, one might be
concerned about instability due to runaway particle production.

It is important in this kind of discussion to distinguish carefully between the
energy density defined by the stress tensor of the fields of the problem, and the
tension of the g-branes which are their sources. For field fluctuations it is the local
field stress energy which is important, and although the g-brane tension is negative,
the field stress energy is everywhere positive or zero. For instance, the simple,
four-dimensional Schwarzschild-type solution studied in section 2 has a vanishing
energy-momentum tensor except at the location r = 0. The geodesically complete
space-time of the solution, however, does not include this point, implying that the
energy condition is satisfied globally.

Further insight is provided by the consideration of the non-extremal Reissner-
Nordstrom black-hole in four dimensions, the situation elucidated in section 4.3.
There, we have shown that the region inside the outer horizon exhibits precisely the
same physical characteristics as our solutions: the region between the outer and the
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inner horizon is cosmological, while the region inside the inner horizon corresponds
to the static region, and the black-hole singularity inside the static region is time-
like. We have argued that the Komar mass is negative if measured inside the static
region, i.e. inside the inner horizon. The negative-mass, however, does not imply
violation of the energy condition. This is because, as is well-known, the stress-
tensor of the electromagnetic field is well-behaved everywhere, and can be related
to the the local mass M (r) via, for example, dM (r)/dr = 4mr*Ty;. Thus, though Ty,
is positive everywhere, the local mass M (r) can become negative inside the inner
horizon because the large electromagnetic field digs up a deep gravitational potential
well. The latter is precisely what renders the Komar mass negative when measured
inside the inner horizon. By the same line of reasoning, one can understand why
the Komar mass turns out positive if measured outside the outer horizon.

Indeed, we have a situation similar to the above cases: the stress-tensor of matter
fields in the right-hand side of Eq.(3.21) are well-defined, and are positive-definite.
Despite being so, the Komar mass, defining a local mass, can become negative inside
the horizon, as the positivity of the matter stress-tensor imposes the positivity of
radial variation of the tension but not that of the tension itself.

3.7.5 How singular is the time-like singularity?

Let us now examine the behavior of waves near the time-like singularity at r = 0,
and ask whether the singularity is ameliorated when it is probed by waves rather
than by particles*.

This sort of the problem has been studied previously [62, 61] in the context of
static space-times having time-like singularities. In some cases, it can happen that
space-times which appear singular when probed by classical particles are not singular
when these test particles are treated quantum mechanically as waves. Qualitatively,
this occurs when an effective repulsive barrier is produced that does not permit the
particles to enter into the singularity, and instead scatters them. More precisely,
the singular region is not singular to waves if these waves propagate through the
singularity in a definite and unique way. As explained in [62], mathematically, this
condition is equivalent to the condition that the time-translation operator for the
waves must be self-adjoint. A sufficient condition to ensure this property is if only
one of the two linearly-independent solutions to the equation

D*Dyh£ip =0, (3.71)

is square-integrable.

14We limit our discussion to the massless case: for the massive one, the singularity is already
well behaved.
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In the present case, let us examine the solutions to the massless Klein-Gordon
equation near the singularity 7 = 0, where the equation becomes equivalent to
Eq.(3.71). The condition of non-integrability of a solution translates into the fol-
lowing condition on the wave function’s radial part, f(r):

| f [Pec /0 drr™hyh (%)2 — 00, (3.72)

asr — 0.
Since the Klein-Gordon equation reduces, for r near 0, to:

(n—2)

f' = f'=0, (3.73)

the two independent solutions to this equation behave as
fr) ~ o+, (3.74)

for any dimension n, with arbitrary constants cp,ci. It is clear that both of these
solutions are normalizable, implying the singularity is wave-singular.

3.7.6 Temperature and entropy

Given the explicit time dependence of the space-time in the time-dependent regions
I and 111, one would expect particle production takes place in these regions. This
radiation would indicate a quantum instability for the future region. A calculation of
this radiation is beyond the scope of the present work, but we will make a preliminary
analysis which shows that a Hawking temperature can be associated with the static
regions II and TV of the space-time.

Hawking temperature

An indication that some observers may see excitations with a thermal spectrum is
offered by adopting the Hartle-Hawking computation of the Hawking temperature
for a black-hole [64]. These steps also lead to the definition of a Hawking temperature
for the space-time under consideration, when applied to the static regions II and IV.

The estimate proceeds by performing a Euclidean continuation of the metric in
this region by sending ¢ — 7, and then demanding no conical singularity at the
horizon in this Euclidean space-time. This condition requires the Euclidean time
coordinate to be periodic 7 ~ 7 + 27/k, and so implicitly defines a temperature:
T = k/(27).
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The r- and 7-dependent parts of the Euclidean metric in the static region are:
dsy = |h|tRATTN R 4 ]h+|hé+1“(n”1)bd72 ,
o~ hA‘H)-—l ( T‘F ) dp2 + hé+1“(n~1)b <(n - 1)p> dTQ (375)
- (n—1)p Ty

= dR>+ k? R%dr?,

where p = r, —r < r, gives the coordinate distance from the horizon. The last
equality of Eqs.(3.75) defines the rescaled radial coordinate R and the parameter

(n—1) pLmb/2

K = 2 , (3.76)
which determines the temperature. Here, h_ = h_(r}) = |k — (r-/r4)""!| denotes
the value of this quantity at the horizon.

We find in this way the temperature:
1 -1 1—-nb/2
kK n- T
T=_" = Lo (= o
2m 4rmrg (m) (3.77)

This reduces to previously obtained expressions for the special cases where these
metrics agree with those considered elsewhere. In particular, it vanishes for extremal
black-branes, for which £ = 1 and r_ = r,. For the four-dimensional Schwarzschild-
type solution presented in Section3.3, we have r_ = 0 and so T' = |k|(n—1) /(47T ).

Entropy

The possibility of associating a temperature with a space-time involving horizons
immediately suggests that it may also be possible to associate to it an entropy, using
the thermodynamic relation

as
B(—M)

(3.78)

N

The unusual negative sign in this expression arises because of a technical complica-
tion in defining an entropy in the present instance. The complication arises because
the entropy is associated with degrees of freedom behind the horizon, where the
globally-defined time-like Killing vector changes direction. This situation is very
much like what happens for the de Sitter space, for which the above expression is
used to define the entropy [65].

For simplicity, we shall be restricting ourselves to the simplest Schwarzschild
solution with 7_ = 0, & = —1 and n = 2, for which we have T' = 1/(4nry) and
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TV =M|V = =PV, = —r4[2GV,, with V,, denoting the volume of the n-sphere.
In this case, the entropy becomes:

oS M
= -87GV, —, .
oMy Y (8.79)
from which we integrate to find
S M\?
S —wav(3) . (3.50)

where the integration constant is chosen to ensure S(M = 0) = 0.

Note that, although both S and M both diverge due to infinite volume of the
planar or the hyperbolic directions, the entropy and tension per unit volume are
finite, and are related in the same way as are these quantities for a black-brane.
Notice also that we retrieve the usual expression, S = 4mGM? when we specialize
to the £ = 1 case of a black brane.

In the general case, the expression for the entropy will depend on the electric
charge as well. In order to extract the general form of the entropy we follow the
standard prescription in terms of the Euclidean action. Consider first the definition
of the Gibbs free energy:

W =-TlogZ =TS+ Qd(r)—T(r), (3.81)

where T (r) is given in Eq.(3.43), while ®(r) is the potential associated with the
¢+ 2 form. Note that we have here a sign change in the right-hand side of Eq.(3.81)
with respect to the usual definition of the free energy as explained above.

In the semiclassical approximation, one can identify the partition function Z
with e~1# where I corresponds to the Euclidean action for the system. From this
fact we obtain immediately

TS+ Qd(r) — T(r) =Tlg. (3.82)

At this point, we need an expression for the Euclidean action for our system. This
takes the form

Ig=— / d*z/g (@R — M0¢)> — ne " F?) — 2a / " laVhK . (3.83)

where we have included the Gibbons-Hawking boundary action.
The contribution from a boundary at a surface of a fixed 7 is

/dd—lwﬁfc - Lﬁ;—@ [r?fl kT (2 A (n— 1)b)r71“1'< (T—i)n*l - 1)}

T
4aT’

90



where in the second equality we have used Eq.(3.43). Consider now the solutions
that we have found for our system. Following [65] we take the magnetic rather
than the electric solution, using the duality transformations given in section 3.1.
Substituting the solutions in Eq. (3.83), it is straightforward to obtain a general
expression for the Euclidean action in terms of the parameters of the model. We
then find the following expression that relates Eq.(3.83) to other global quantities,
and that allows interesting manipulations of Eq. (3.82):

1

Ip= —
E=or

(T(r) —Q2(r)) - (3.85)
Substituting Eq.(3.85) into Eq.(3.82), a simple calculation yields the general relation
S=-Ig. (3.86)

At this point, one can write the general expression for the entropy density s, using
the known value of the temperature T, for any curvature k. Indeed, for £ = 1, in
which the entropy is calculated outside the outer horizon, it is enough to change
sign on the last expression in Eq.(3.81). We obtain the following compact form

=)

where in the last equation we have used a = (167G)~'. It is remarkable that, for
any k, the expression for the entropy does not depend on the coordinate 7@ g,
corresponds to the determinant of the induced metric on the n spatial dimensions,
and it is calculated at the horizon ry. In case k = 1, we obtain the well-known

nb/2

_ n
8 = = odmrly

1
= = 15 V/mlr, (3.87)

relation

A

S = el (3.88)

where A is the area of the black-hole horizon. Again for £ = —1 and 0, the area of the
horizon is infinite but we can still consider the entropy per unit volume. It is worth
noting that these quantities can be made finite by modding out the planar or the
hyperbolic subspace by discrete subgroups of I5O(n) and SO(n—1, 1), respectively,

as the operation would leave the volume of the horizon finite.

3.8 Future developments

There are two important issues which we were able to resolve only partially here. One
is the question of the stability of these space-times (for a recent discussion see [68]).
We have shown that the past horizons of these space-times are likely to be unstable
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in precisely the same manner as the inner horizon of the Reissner-Nordstrom black-
hole. A more complete investigation of stability is obviously of considerable interest.
The second is the question of quantum instability, and whether the time-dependent
fields in regions I and III give rise to particle production. We have argued that
there is a natural definition for the Hawking temperature for the static space-times
near the g-branes, and this strongly suggests that this is associated with thermal
radiation as seen by the static observers. A more detailed calculation of particle
production is certainly desirable.

The time-dependent regions, I and III, of the space-times are also of considerable
interest, because they may open up a new avenue for the cosmology of the early
Universe. In the future time-dependent region I, the space-time exhibits expansion
of the hyperbolic directions, and a past horizon without a past space-like singularity.
Since region III corresponds to the time-reverse of region I, taken together the two
regions I and 11T offer an interesting realization of a singularity-free cosmology, which
bounces from a contracting to an expanding Universe. One is eventually interested
in a realistic bouncing cosmology free from instabilities at the past horizon. A
possible prescription ensuring the stability would be a periodic identification of the
Killing coordinate, r, in the time-dependent regions.

An obvious obstacle to constructing a realistic cosmology out of the solutions
Eqgs.(3.18) and (3.19) is that co-moving observers do not see a homogeneous and
isotropic space. This objection needs not be fatal, as it may describe space-time
during the very early universe — perhaps during inflation — before the Universe
is really required to be isotropic and homogeneous. Indeed, an attractive brane
cosmology for these early epoch has been proposed by utilizing brane-antibrane in-
teractions [44]. Alternatively, it may be the higher-dimensional solutions which are
of cosmological relevance. After all, these space-times do have three-dimensional
hyper-surfaces which are homogeneous and isotropic. In the specific metrics pre-
sented in [28], this usually requires that the radial coordinate, r, describes a com-
pact direction. This would be problematic if the space-time also includes the static
regions because, there, the r-coordinate would correspond to a compact time direc-
tion. Having closed time-like curves, it may also lead to orbifold instabilities [47].
In a brane-world picture, this instability however does not appear: a direction for
future work can be to contruct a cosmological model in this framework.
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Appendix A

General cosmological solutions and
Birkhoff’s theorem

Birkhoff’s theorem states that, for gravitational systems with maximal symmetry,
each solution of Einstein equations can be re-conducted to a form depending only
on one variable, via a coordinate transformation.

Extensions of this theorem for systems in more than four dimensions that contain
also a gauge field and a cosmological constant have been studied [69, 20]. However,
if a scalar field is present in the system, the theorem does not hold [28, 70, 71].

In the present appendix, we will consider a five dimensional background consti-
tuted by gravity, a scalar field, and a gauge field. We will show that Birkhoff theorem
does not hold for this background, if one only requires maximal symmetry for a three
dimensional spatial submanifold. However, we will find an additional condition that
ensures, with this field content, that the metric can always be re-casted on a form
depending only on one variable.

Let us consider the following action, in the Einstein frame:
1
S = /d% v —0s [R — ;2—(V¢)2 — e %F,, F* | ; (A1)

here ¢ is a scalar field (called dilaton), while F},, = d,A, — 0,4, corresponds the
field strength tensor of an abelian gauge field, A,. The gravitational coupling 167G’
is set to one.

Varying the action (2.13), we obtain the following Einstein equations:

1 1 1 —od 1
R, — §9uuR = “Z(vd))Q Guv + B Vud Vi +e <2F:FV>\ - igH'/Fz) - (A2)

The equation of motion for the dilaton is
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Vi = —oe " F?, (A.3)
while for the gauge field we get

V, (e PF™) = 0. (A.4)

We look for solutions that are isotropic, homogeneous and maximally symmetric in a
three spatial submanifold. The most general ansatz consistent with these symmetries
is given by

ds® = ?PUV) (—dt* + dy?) + 40 dz} (A.5)

where y is the coordinate that labels the extra spatial dimension and dzj 5 rep-
resents a three dimensional maximally symmetric metric with constant curvature
parametrized by k. We also assume that the scalar and gauge fields depend only on
t and y; that is, ¢ = ¢(t,y), F = Flu(t,v).

A.1 Bulk equations

With the ansatz (A.5), the equations of motion take a simple form written in the
light cone coordinates defined as u = ¢t + vy, v = t — y. Moreover, the equation for
the gauge field is easily solved, giving

F, = deot+2B=34 (A.6)

Here, d is a constant that corresponds to the conserved charge. After some algebraic
manipulations, and by means of Eq. (A.6), the Einstein and dilaton equations of
motion (A.2, A.3) become

B3A LA, + Ay = —2keX A 4 @Pe702B-04 (A7)
B + Ay + %(b,ud),v _ g e2(B-A) _ §d26“¢+23“6‘4, (A8)
3¢ uAy + 30y Ay + 20, = —2d70e7? TP (A.9)
2A W By = Ay + A% + %cb,zu , (A.10)

2A4,B, = Ay + A + %qs?;, . (A.11)

Now, let us show that, already in the simplest case when k& = 0 and d = 0 (null
curvature of the three dimensional submanifold and no gauge field), the effect of
the dilaton is such that Birkhoff’s theorem does not hold, and in general solutions
depend strictly on two variables.
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A.2 Non validity of Birkhoff’s theorem

The case k¥ = 0 with vanishing gauge field corresponds to a system containing
a dilaton field without any potential. Equation (A.7) simplifies and the general
solution can be found exactly: it is given by

Afu,v) = 3l [6() + X)), (A1

where £(u) and y(v) are arbitrary functions of u and v respectively. (A possible
additive integration constant can always be absorbed by an overall scaling of £ and
x). Using Eq. (A.12), it is possible to find the most general form for the fields ¢
and B. These read

B(u, ) = / Ak (k)Y k(€ + 2] + bUE)To[E(E + )] (A.13)
and

Blun)= 26w~ 5 mE+0+g [ A€+ 00

1 1 :
s 1 [axer 00+ g [debxire (A1)

We can explicitly see that in the absence of a dilaton field both A and B depend
only on the combination £(u) + x(v), establishing Birkhoff’s theorem in that case.
In the presence of the dilaton field there is a dependence on &(u) — x(v) which ruins
this result indicating that Birkhoff’s theorem will not be valid.

However, we may in principle foresee another change of variables that could
make all the functions still depend on one single parameter: we will now prove that
this is not the case. In the form above, the general solution does not offer much
information. For the purpose of proving the non validity of Birkhoff’s theorem we
only need a counterexample, and we will restrict to the following particular solution
for the dilaton field:

B, v) = KIn (€ + %) + AE—X), (A.15)

where k and A are two arbitrary real constants.

Inserting the solution (A.15) into (A.14), we get

— /2 5 |
Blu,v) = 2in () + LI 40 + A+ 07+ 62, (A16)

where [ = 3k?/4. Notice that, while A is exactly determined, the fields ¢ and B
depend on the free parameters x and A. At this point, one can perform the following
transformation of coordinates

1
r:g(§+x)1/3 : fz’z*(‘f—X)a (A.17)
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and in these coordinates, the metric (A.5) takes the form
2 P 2 -
ds? = 20D At =t g2 204D At g r’dzf 5 . (A.18)

The metric coefficients depend both on ¢ and 7 (moreover, there is an exchange
between time-like and space-like coordinates). Now, we show that, for a general
choice of the parameters, the metric depends strictly on the two variables r and ¢.

Our argument will be slightly more general, and does not apply only to the
metric (A.18), but to all metrics of the form

ds? = —g(r)dt* + f(t)dr® + h(?")dxg’z,, . (A.19)

It is evident that the metric (A.18) can be recasted to this form with a simple
rescaling of the coordinates r and ¢. The explicit structure of the functions g, f
and h is not important for our argument. With the exception of the trivial case in
which f(t) = constant, a metric of the form (A.19) can not be rewritten on a form
depending only on one variable.

The point is that when we perform a change of coordinates, we limit ourselves
only on the two dimensional plane (r,t), while the three dimensional spatial coordi-
nates will not be involved in the transformation, not to spoil the symmetry of the
three dimensional submanifold. In general, we send (¢,7) — (%o, z1), with zy the
time-like variable, via a coordinate transformation

t = p(zo, x1), (A.20)

r = k(zg, x1).

Let us search a coordinate transformation of the previous form such that the trans-

formed metric depends only on one of the new coordinates, let us say z;. Notice that

the only way to ensure that the coefficent of the transformed metric h(k(zo, z1)) de-

pends only on z; is to force k(zg, 1) to depend only on z;: we must have k = k(zy).
With this information, the metric (A.19) becomes

ds* = — [pg(k(z1)] dzf — [209'9(k(z1))] dzodms (A.21)
+ [(K)2f (p(zo, 1)) — ()79 (k(21))] da? + [R(k(21))] dag 5,

where in the previous expression the dot corresponds to a derivative along zo, and a
prime to a derivative along z;. Let us analyse each term of the transformed metric
(A.21). The only way to have a non zero coefficient for the first term of the metric
that does not depend on zg is to impose p = 0, with p # 0. ‘With this condition,
the second term of the metric does not depend on zy only when p' = 0. These two
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requirements are satisfied only if p can be expressed as p(zo, 1) = ¢ - zo + m(z1),
where ¢ is a nonvanishing constant and and m an arbitrary function. With a function
p of this form, it is finally easy to see that the third term of the metric will be
independent of zy if and only if the function f is a constant.

The previous argument shows that in general, with a function f different from a
constant, it is not possible, starting from a metric of the form (A.19), to arrive to a
metric that depends only on one variable. Starting from our specific metric (A.18),
the condition f = constant is reached when A = 0. In this case, it is clear that the
metric depends only on the variable 7.

A.3 A condition for the validity of Birkhoff theo-
rem

Additional assumptions must be made to ensure that the solutions to Einstein’s
equations depend only on one variable: in this section, we consider an example
of these requirements for the charged dilatonic background. We suppose that the
dilaton field can be expressed as

¢ = G(A), (A.22)

where G is a smooth function of the unique variable A(¢,y)!. With this ansatz,
Eq. (A.10) and (A.11) become %

G/Q Auu
2 = — u — .2
B, (1+ 5 > A+ A, (A.23)
G/2 Am)
2B, = (1 + ~6—> Ay + A, . (A.24)

These equations imply that A(u,v) is necessarily of the form
A(u,v) = f(U(u) + V(v), - (A25)

where f, U and V are arbitrary functions of a single variable. The integration of
the two above differential equations (A.23) and (A.24) then gives

Blu,v) = %f(U+V)+—§%(f(U+V))+%ln}f’(UJrV)]

1
+ % In|U'| + 5 In|V'|+ ¢, (A.26)

1This is a generalization of the requirement of proportionality of [71], where G(4) = kA for
some constant k. Actually, all the following discussion is a generalization, for every brane curvature
and with a gauge field, of the argument of that paper in the case of proportional solutions.

2Tmposing the condition that A, and A , are different from zero, otherwise it is simple to show
that the theorem is satisfied.
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where ( is a constant of integration, which can be arbitrarily chosen by an appro-
priate rescaling (we will take ¢ = 0). The function H depends on G in the following
way:

Hi) = [ G (A.27)

Plugging A and B in Eq. (A.7), it is straightforward to see that f’ can be expressed
as a (complicated) function of f, that we call f' = F(f).

Finally, let us put our results in the metric (A.5) (written in the light-cone
coordinates), obtaining

ds® = —4|U' V' f'| /T dudv + € da . (A.28)
Let us introduce new coordinates defined by

R = ¢ (A.29)
T = U-V. (A.30)

The previous metric can be rewritten as
ds’® = —P(R)dT* + Q(R)dR* + R*dz} 5, (A.31)
with
P(R) = Re*(" )

B 1 e?{(lnR)
Q(R) = RL(InR)

. (A.32)

Although the explicit form of the functions P and ) is complicated, we have reached
the promised result, showing that the initial metric (A.5), with the additional re-
quirement (A.22), can be re-casted on a form depending only on one variable. Notice
that, in the simple example of the previous section, the condition (A.22) corresponds
exactly to chose the parameter A = 0, that turned out to be the condition to obtain
a metric depending on one variable.
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