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Chapter 1: Introduction To Prion Diseases And The Prion 

Protein  

 

Historical overview  

In 1982, the term "prion" was introduced by Stanley B.Prusiner, to christen a particle 

that, on the basis of clinical and biochemical observations, appeared to be a totally new 

infectious agent, consisting only of an endogenous cell surface protein [1-3]. This term 

is a combination of the two adjectives proteinaceous and infectious. The cellular form of 

the prion protein (PrPC) is hypothesised to be able to induce transmissible spongiform 

encephalopathies (TSE) in mammals by changing its conformation through, an as yet, ill 

understood pathway, that results in the formation of a "disease-associated" isoform, 

called the "scrapie form" of the protein (PrPSc) [1], [4], [5]. In contrast, to the soluble, 

monomeric PrPC, PrPSc has been shown to have a high tendency to associate into 

insoluble aggregates, such as oligomers or amyloid fibrils, and induce a fatal 

degeneration of the central nervous system (CNS) in the regions where the aggregates 

accumulate [6], [7], [8], [9], [10]. 

TSE or prion diseases are a group of fatal neurodegenerative diseases, which affect the 

CNS of both humans and animals [3]. Although the pathology of TSE varies from case 

to case, in general it results in similar neuropathological features, e.g. vacuolation, 

astrocytosis, and neuronal loss [11] showing a “spongy” appearance in the brain. 
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The first recorded case of a TSE disorder, which was caused by the ‘scrapie’ prion 

protein, and affected British sheep, was identified and documented more than two 

hundred and fifty years ago [12] . Since then, scrapie disease of sheep and goats has 

been known under a multitude of names ("rubbers", "rickets", "goggles", "shakings" 

"shrewcroft" in England, "scratchie", "cuddie trot" in Scotland, "der Trab", "der 

Traberkrankheit" lub "die Zitterkrankheit" in Germany, "la maladie convulsive", "la 

maladie follie", "le tremblante" "la prurigo lombaire" in France and "trzêsawka" in 

Poland). One of the earliest scientific reports on scrapie was published in the 

"Agricultural Improvement Society at Bath, as a paragraph in the "General View of the 

Agriculture of Wiltshire" published by Thomas Davies in 1811 [13]. Interestingly, in 

1848, Roche-Lubin claimed that scrapie was caused by the sexual overactivity of rams 

or, alternatively, by the thunderstorms [13]. 

 The first author who believed that scrapie ("tremblante") was a viral disease, was 

Besnoit in 1899 whilst the transmissible nature of TSE was proven in the late 1930’s by 

the seminal experiments of Cuile and Chelle [14]. The contention that scrapie was an 

infectious disease caused by a filterable agent was accepted with a long-lasting 

scepticism. In 1938, W.S. Gordon, a deputy director of the famous Moredun Institute in 

Edinburgh, Scotland, repeated experiments of Cuille and Chelle using 697 animals of 

which ~200 developed scrapie [15, 16], [17]. The infectious nature of the scrapie agent 

was confirmed in 1935, when ~ 7% of 18,000 sheep vaccinated against Louping, 

developed scrapie [15, 16]. 
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This vaccine was produced from formalin-fixed sheep brains and where the scrapie 

infectivity could survive 0.35% on formalin for more than 3 months. World War II 

interrupted research, on scrapie, which had been continued by the research of D.R. 

Wilson [18]. Wilson’s research remained largely unpublished due to his reluctance to 

present data on such an unorthodox pathogen. However, the ‘scrapie’ community 

became well aware of the unusual properties of the scrapie agent, in particular, its high 

resistance to formalin and high temperature[19].  

In the next era of the history of prion discoveries, scrapie was transmitted from sheep to 

mice by Morris and Gajdusek [20] and from goats to Chandler mice [21]. This led to 

wide-scale laboratory research and the production of many whimsical hypotheses, with 

an average frequency approaching one every year or two. The infectious agent has 

been claimed to be a self-replicating membrane [22-24] a subvirus (not well envisaged) 

linked to a membrane with a "linkage substance" [25], a viroid [26], a spiroplasma [27] 

or a retrovirus-like element [28, 29]. 
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Fig. 1. A typical image of a sheep with a disease caused by scrapie. In this figure, wool loss through 
rubbing and gnawing can be seen at the head, basis of the tail, and the sides of both fore and hind limbs. 
If scratched on the back (along the spine) affected animals start nibbling ("Gnubbern") and licking their 
nose. Other typical symptoms of scrapie disease are often a change in behavior such as separation from 
the herd, hypersensibility to touch, nervousness and fear of sudden noises (such as clapping of hands). 
Changes in sensitivity such as pruritus (itching) and related loss of wool complete the clinical picture. 
Additional symptoms such as apathy, loss of reflexes, salivation etc. can occur but are less frequent. The 
disease duration can be from weeks to months, resulting ultimately in the death of the animal from the 
disease. (source http://www.thedoctorweighsin.com/journal/2007/11/3/prions-can-kill-you.html) 

 

Another animal TSE is transmissible mink encephalopathy (TME), which was 

recognized in ranch-raised mink by Gaylord Hartsough [30]. 

Another member of the family of TSE, is the chronic wasting disease (CWD). CWD is a 

transmissible neurological disease of deer and elk that produces small lesions in brains 

of infected animals. It is characterized by loss of body condition, behavioral 

abnormalities and death. CWD is classified as TSE due to clinical symptoms similar to 

scrapie in sheep. Since the 1960s CWD has affected captive mule deer, white-tailed 

deer, and Rocky Mountain elk in North America; in the 1990s, CWD has also been 

found in free-ranging deer and elk [31].  
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Human TSE can be classified into three different forms: sporadic, inherited, or acquired 

by infection. Approximately 85% of TSE cases occur sporadically, in the absence of any 

obvious trigger [32]. The inherited forms include Gerstmann–Sträussler–Scheinker 

syndrome (GSS) fatal familial insomnia (FFI) and ~15% of the cases of Creutzfeldt–

Jakob disease (CJD) [33-35]. 

The first recorded event of a TSE disorder in humans was kuru (Fig. 2), which was 

discovered by Zigas and Gajdusek (1957) [36, 37]. The elucidation of kuru opened a 

new field in human medicine and initiated 40 years of research, which has contributed 

enormously to our understanding of neurodegenerative disorders of the central nervous 

system, which includes Alzheimer’s disease [38, 39]. The name kuru came from the 

Fore language, which means to shiver or to shake from fever and cold. The Fore used 

the noun of the kuru-verb to describe the always-fatal disease, which principally affected 

their children (Fig. 2) and adult women. It has been and still is restricted to natives of the 

Fore linguistic group at Papua New Guinea’s Eastern Highlands and those neighboring 

linguistic groups, which intermarry with the Fore tribe. Ritualistic endocannibalism (i.e 

eating of the relatives as a part of a mourning ritual but not as an alimentary habit) was 

a practice not only in the kuru area, but in many surrounding Eastern Highland groups 

which never developed kuru. In the late 1930’s and 1940’s, many gold miners, 

protestant missionaries, and government officials made contacts with the northern 

periphery of the kuru region, and they and later anthropologists, became thoroughly 

familiar with the ritual endocannibalism of Eastern Highland peoples. When the fatal 

epidemic in the kuru region was announced, most of the local Caucasians made the 

obvious assumption that it must have been spread by the cannibalistic practices. 
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It was the publication of this disease by Gajdusek, which led to the first possible 

suggestions that scrapie in animals and kuru in humans could be linked to the same 

family of disorders and caused by the same protein [40]. In 1959, Gajdusek, received a 

letter from the veterinarian William Hadlow [41], which highlighted analogies between 

kuru and scrapie, and had been successfully transmitted experimentally by the French 

group in 1936 (for review [42]). 

 

Fig. 2. Example of people affected by kuru disease. A preadolescent child totally incapacitated by kuru 
in 1957. The child had such severe dysarthria that he could no longer communicated by word, but he was 
still intelligent and alert. He had spastic strabismus. He could not stand, sit without support, or even roll 
over; and had been ill for less than six months, and died within a few months of the time of photography 
[42].  

Gajdusek’s reply to Hadlow, resulted in him reconsidering the infectious aetiology of 

kuru. In view of the chronic cerebral infections, such as Iin syphilis, toxoplasmosis, and 

trypanosomiasis, inoculated laboratory rodents and monkeys were held for longer 

observation periods than had been carried out previously in 1957, therefore he was 
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attempting to obtain a better inoculum in the form of autopsied brain tissue (for review 

[40]). 

In light of these discussions, Gajdusek, successfully transmitted kuru to chimpanzees in 

1965 [36], followed later, by transmission of Creutzfeldt-Jakob disease [43] and GSS 

[44]. Fatal familial insomnia was finally transmitted in the late 1990s [45] [46]. 

A further animal TSE disorder was described in 1987, when Gerald A. H. Wells and his 

colleagues from the Central Veterinary Laboratory, described a case of a single cow, in 

the UK, with a novel form of a TSE disorder. This eventually was called bovine 

spongiform encephalophy (BSE). Incidentally, although the paper came out one year 

later, the first case of what turned out to be BSE was reported in a nyala (Tragelaphus 

angasii) by Jeffrey et al. [47].  

An epidemic of this disorder broke out in the UK, which reached a climax in 1992, where 

more than 35,000 cases were diagnosed. However, due to the implementation of strict 

farming measures and bans on the sales of gelatin since the peak of the epidemic, the 

number of BSE cases diagnosed in the UK, has seen a steady decline since; 1,443 

cows in 2000, 1,137 in 2001 and 438 in 2002. In relation to this TSE disorder, in1996, 

Will et al. reported a finding of a new variant of CJD (nvCJD or vCJD), which they 

suggested most probably resulted from transmission of BSE to humans [48]. This 

epidemiological conjecture was subsequently substantiated by laboratory studies [49, 

50], [51], [52, 53], [54]. The number of vCJD cases is still increasing albeit it more slowly 

since their discovery although discussions about the extent of the outbreak is become 

disturbing. On the other hand, the BSE epidemic and appearance of vCJD in humans, 
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has accelerated TSE research and changed it from a rather small obscure field into a 

major scientific endeavour.  

Human-to-human transmission of TSEs was confirmed by iatrogenic CJD cases caused 

by direct contact of the CNS with contaminated material during the course of medical 

treatment [55]. 

In reality, prion diseases are still rare in humans [55], and up until the 1980s, knowledge 

of these diseases was limited to a small community of neuroscientists. However, since 

1986, from the recognition of BSE, (or ‘mad cow disease’) in combination with its spread 

in the UK, where more than 180,000 cattle were affected[56]. Attention to prion 

diseases has increased substantially from both the scientific and public communities 

[57]. BSE is believed to have been transmitted to humans by consumption of 

contaminated beef products, and it is believed to have resulted in the outbreak of the 

novel form of vCJD in England [51]. As a result of this, TSE continue to draw enormous 

attention from the scientific and public communities, and has even resulted in the 

awarding of 2 Nobel Prizes, (Gadjusek 1976 and Prusiner 1997) for research in this 

field, a rarity for most scientific fields.[57]. 
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Fig. 3. The number of deaths from TSE in humans since 1990 in the UK. TSE in human have been 
analyzed from 1990. Case of TSE in human start decrease. (http://www.cjd.ed.ac.uk) 
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The prion concept – infectious proteins 

The protein-only hypothesis was first outlined in general terms by Griffith [4], and 

formulated in more detail by Stanley B. Prusiner, [2]. It states that the partially protease-

resistant and detergent-insoluble PrPSc is identical with the infectious agent and that the 

infectious agent is devoid of nucleic acid. Additionally, the propagation of the agent is 

mediated by PrPSc and requires a conformational change from PrPC to PrPSc. Prions are 

formed by a post-translational conformational remodeling event in which a cellular 

protein, PrPC, is converted into the disease-associated infectious form, PrPSc and can 

be differentiated from PrPC by an increased resistance to digestion with proteases such 

as proteinase K (PK), poor solubility in non-ionic detergents, an increased β-sheet 

content, and its propensity for forming higher order structures such as oligomers 

amyloid fibrils [2]. The protein-only hypothesis is unique in offering explanations for all 

three etiologies of prion diseases (Fig. 4). In infectious disease, exogenous PrPSc enters 

the host, recruits copies of host-encoded PrPC and then templates their conversion, 

resulting in prion replication and disease pathogenesis. In the literature, protease 

resistant PrP (formed by the digestion of PrPSc with PK) is frequentally referred to as 

PrPres (or PrP27-30) in order to distinguish it from full-length PrPSc (Fig. 4 and Fig. 5). 

The use of the term PrPSc implies that the protein is infectious, whereas PrPres does not 

necessarily imply infectivity. 
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Fig. 4. Prion disease nomenclature and modes of acquisition. A: In prion disease, the host-encoded 
cellular prion protein (PrPC) undergoes a conformational transition to a disease-associated conformer 
termed PrPSc or PrPD. The approximate region of PrPC conformationally altered in PrPSc is shown in red, 
although the exact boundaries are unknown. Detection of prion disease is commonly achieved in vitro by 
treatment with PK, which cleaves PrPSc near residue 90, to generate the protease-resistant fragment 
termed PrPres or PrP27-30. B: Prion diseases are unique in the fact that they are infectious [58]. 
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Fig. 5. Differential susceptibility of PrPC and PrPSc to PK digestion. Demonstration of the different 
resistance of the protein with PK treatment. On the left the control sample (not abnormal PrP is present in 
the sample), on the right the abnormal PrPSc is resistent to PK treatment [58, 59]. 

 

Studies show that mammalian prions form fiber-like aggregates rich in β-sheet 

structures, which often have characteristics of a typical amyloid structure, being rod-like 

shape in electron micrographs and show apple-green birefringence under polarized light 

after staining with Congo red [2]. Amyloid fibers are also associated with other 

neurodegenerative diseases such as Alzheimer’s disease and Huntington’s disease. 

However, so far, it has been proven that only prion disorders can be transmitted. 

On the other hand, recent data has indicated that at least some amyloid-related 

disorders, once thought to be noninfectious, may also be transmissible under 

appropriate circumstances. For example, cerebral injection of brain homogenates from 

Alzheimer’s patients into transgenic mice expressing a mutant β-amyloid precursor 

protein has been shown to result in neuronal amyloid deposition and neurodegeneration 

within several months [60]. However, since control (untreated) animals used in these 

studies developed a similar disease pathology later in life, it was difficult to conclusively 
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determine whether the diseased brain homogenate used in this study acts as a bona 

fide infectious agent or simply accelerates a predetermined clinical endpoint. Perhaps 

even more intriguing, are reports pointing to potential transmissibility of systemic 

amyloidoses in animals. In the case of mouse senile amyloidosis, marked 

apolipoprotein A-II amyloid deposition has been observed following either injection or 

oral ingestion of isolated apolipoprotein A-II fibrils [61]. Amyloid found in fecal matter 

and milk of these infected animals has also been demonstrated to induce amyloidosis, 

providing evidence for more natural routes of transmission [62]. For serum amyloid 

protein A, recent data suggests that amyloidosis may be transmitted from one species 

to another, where amyloid present in the feces of captive cheetahs was used to 

accelerate amyloidosis in mice treated with an inflammatory stimulus [63]. Whilst these 

studies have offered an intriguing glimpse into the relationship between amyloid and 

infection, it remains unclear whether prion-like transmission is a common property of all 

amyloid disorders under the appropriate experimental conditions. 

Most cases of TSE arise spontaneously, but the infectious nature and spread of the 

disease has attracted the greatest scientific and public interest. Whilst in the laboratory 

setting, the TSE agent is typically delivered by intracerebral inoculation into 

experimental animals, the most common mechanism for the natural spread of the 

disease is through ingestion. For example, strong evidence suggests that the feeding of 

BSE-contaminated meat and bone meal to livestock was responsible for the outbreak of 

BSE in the 1980s, in England, and subsequent consumption of diseased cattle by 

humans was believed to be responsible for the emergence of vCJD [64, 65]. 
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Neuroinvasion typically begins upon ingestion of the TSE agent. However, the process 

of infection remains unclear. One possible mechanism is depicted in Fig. 6. 

 

Fig. 6. Schematic representation of the potential mechanism of neuroinvasion in TSE. A: Inital 
uptake of the TSE agent from the intestinal lumen has been proposed to occur through a number of 
alternative mechanisms, including M cell transcytosis(i), ferritin-dependent trancytosis through intestinal 
epithelial cells (ii), or via direct capture by dendritic cells (iii). While phagocytic cells such as macrophages 
appear to degrade PrPSc (iv), dendritic cells may deliver the TSE agent to follicular dendritic cells (FDCs) 
where early accumulation of PrPSc occurs (v). B: After amplification of the TSE agent in lymphoid tissue 
such as the GALT and spleen, invasion of the nervous system is believed to proceed through peripheral 
nerves. Retrograde transport of the TSE agent is believed to occur along two distinct pathways, following 
efferent fibers of the sympathetic and parasympathetic nerves to the CNS. C: Retrograde transport and 
propagation of PrPSc along neuronal processes may occur by step-wise interactions along the cell surface 
(ia, ib), via extracellular deposits (ii), or by vesicle-mediated mechanisms (iiia, iiib) [65]. 

 

The mechanism seems possible due to the infective particle crossing the intestinal 

epithelium where probably microfold (M) cells play an important role [66]. Moreover, it is 

reasonable to postulate that the initial uptake of the TSE agent was made by migratory 

dendritic cells, which have the ability to capture antigens within the intestinal lumen. 
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Once past the epithelial wall, PrPSc is probably sphagocytosed by macrophages and or 

dendritic cells. Whilst macrophages appear to serve a more protective role [67], some 

experimental evidence suggests that dendritic cells can deliver the infective molecule to 

follicular dendritic cells located in the germinal centers of B cell-rich follicles present in 

Peyer’s patches and other gut-associated lymphoid tissue (GALT) underlying the 

intestinal epithelium (Fig. 6A). After incubation in lymphoid tissue, such as the GALT 

and spleen, PrPSc spreads to the CNS via the enteric nervous system. This invasion 

occurs in the retrograde direction along efferent fibers of both sympathetic (e.g., the 

splanchnic nerve) and parasympathetic (e.g., the vagus nerve) nerves [67] (Fig. 6B). It 

is unknown how the retrograde transport between synaptically linked peripheral nerve 

cells occurs: by step-wise interactions involving direct contact between PrPSc and 

surface PrPC along the axolemmal surface, through a vesicle mediated mechanism, or 

via free-floating extracellular aggregates (Fig. 6C). Once within the CNS proper, further 

retrograde transport of the TSE pathogen eventually results in infection of the brain, 

leading to characteristic spongiform degeneration and astroglial activation. 

Prion diseases are thus very important to study as they enlighten two important 

concepts in biology: (1) proteins can have different structures with the same primary 

structure but with different functions and (2) some structures can be infective because 

they are capable to self-replicate. 
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Prion diseases  

Mammalian prion diseases belong to a group of invariably fatal neurodegenerative 

disorders of both animals and humans, and are resultant of the self replication of the 

protein from its conversion of the host-encoded PrPC into a misfolded form (PrPSc) that 

tends to aggregate and may be neurotoxic [11]. There are four principle 

neuropathological observations for prion diseases (Fig. 7) spongiform change (vacuolar 

degeneration of brain parenchyma) death of neurons, astrocytic gliosis (in itself a non-

specific reactive response to CNS damage but of an unusual intensity in prion disease 

[68], and the presence of extracellular amyloid plaques in some, but not all, varieties of 

prion disease. The majority of prion diseases (including scrapie, mouse-adapted 

scrapie, BSE, and CJD) are characterized by large amounts of spongiform degeneration 

and the accumulation of PK-resistant PrP, but with little or no PrP amyloid plaque 

formation. 
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Fig. 7. The neuropathological hallmarks of prion disease. A: Spongiform (vacuolar) degeneration in 
the grey matter of the brain of a mouse infected with the RML strain of prions. Vacuolation of the brain 
(black arrows) is observed in most prion diseases and causes the degeneration of neuronal processes 
and eventually results in the death of neurons. B: Activation of astrocytes (reactive astrocytic gliosis: 
white arrows) in the brain of a patient with CJD as observed by immunostaining for glial fibrillary acidic 
protein (GFAP). (Image taken from [68]. C: Deposits of PrP amyloid as observed by 
immunohistochemistry in the brain of an elk infected with CWD (Image taken from [58] D: ‘Florid’ plaque 
(black arrow) consisting of a central PrP amyloid deposit surrounded by a halo of spongiform change in 
the brain of patient with vCJD. (Image taken from [48]) 

 

The mechanism(s) by which PrPSc causes disease are unclear. One study which used 

Prnp0/0 mice that had been grafted with Prnp+/+ tissue demonstrated that only the tissue 

which expressed PrPC was damaged, despite the large amounts of PrPSc in Prnp0/0 

tissue [69]. This suggests that the presence of PrPC is required for prion pathology and 

that PrPSc is not inherently neurotoxic. In contrast, in mice expressing PrPC exclusively 

in astrocytes, pathology in prion-inoculated mice has been observed in tissue 

surrounding astrocytes (i.e. in tissue lacking PrPC) whereas astrocytes remain 

undamaged [70]. Recent studies using transgenic mice expressing PrP lacking its GPI 

anchor (i.e. secreted PrP) have shown that these mice produce large amounts of PrPSc , 
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but fail to develop clinical prion disease following prion challenge [71]. This suggests 

that membrane anchorage of PrP is essential for prion pathology, perhaps implying the 

existence of a transmembrane protein which mediates PrPSc toxicity [72]. There is also 

considerable debate as to whether the accumulation of cytoplasmic PrP may play a role 

in prion toxicity. Transgenic mice expressing cytoplasmic PrP exhibit a 

neurodegenerative phenotype (albeit one that differs from classical prion disease) and 

accumulation of PrP in the cytoplasm results in the generation of a PrPSc-like molecule 

[73] [74]. However, other investigators have failed to find any toxic effect associated 

with cytoplasmic PrP [75]. 

The spectrum of prion diseases appears to be increasing and several new prion 

diseases of animals have recently been described [58]. Abnormal presentation of prion 

disease in two cattle in Italy was sufficiently distinct from BSE as to suggest a distinct 

neurological syndrome denoted bovine amyloidotic spongiform encephalopathy (BASE) 

[76] [77]} BASE is transmissible to mice confirming that it is a veritable TSE and 

strikingly, its properties in mice were indistinguishable from BSE suggesting that BASE 

may represent the original source of BSE [78]. Another disease, Nor98, sometimes 

referred to as atypical scrapie, was first detected in Norwegian sheep [79], [80]. There is 

no evidence of lateral or horizontal transmission, with cases (one per flock) observed in 

geographically dispersed locations. Furthermore, Nor98 possesses distinct genetic, 

biochemical, and histopathological signatures from scrapie. Nor98 is transmissible to 

mice, confirming its classification as a prion disease [81]. The origins of BASE and 

Nor98 are unclear, although it is conceivable that both represent distinct sporadic prion 

diseases of animals.  
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Prion strains are prion isolates, biologically cloned, which display unique biological 

properties and result in characteristic phenotypes when propagated in a given species. 

Strains can be identified and differentiated on the basis of clinical manifestation (such 

as the “scratching” and “drowsy” strains of scrapie when given to goats) [17], differential 

incubation times [82] pathological lesion profiles (i.e. different strains target different 

neuroanatomic areas of the brain) the ratio of glycoforms (unglycosylated, 

monoglycosylated and di-glycosylated) within protease-digested preparations of PrP 

[49], the size of the PK-resistant PrP fragment [83], [84] differential reactivity to 

luminescent conjugated polymers [85], [86], and other biochemical properties such as 

conformational stability [87]. The existence of prion strains comprises one of the main 

challenges to the protein-only hypothesis and opponents argue that such diversity 

cannot be encoded in the absence of a nucleic acid [88]. Indeed, multiple prion strains 

can exist for a given PrP amino acid sequence suggesting that strain variety is encoded 

by a different mechanism. Accumulating evidence suggests that strain-specific 

properties are encoded by the conformation of PrP. Subtle changes in conformation 

could lead to the phenotypic differences observed, such as differential sizes of PK-

resistant fragments and neuroanatomic target areas [84]. This hypothesis has not been 

definitively proven for mammalian prions to date, in large part due to the lack of high 

resolution structural data for PrPSc. Studies on various prion strains using the 

conformation-dependent immunoassay suggest that individual strains have differential 

availability of antibody epitopes implying that each strain has a different PrP 

conformation [9]. Also, small changes in amino acid sequence of a mutant PrP23-144 

molecule led to distinct ultrastructural properties of prion fibrils in vitro [89] [90]. 
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Furthermore, prion strains which are more susceptible to chemical denaturation have 

the shortest incubation times and vice versa suggesting that the conformational stability 

of a given strain governs it replication rate [91]. However, the strongest evidence for the 

conformational encoding of prion strains has come from studies on yeast prions. 

Amyloids of the Sup35 protein, prepared at different temperatures have led to unique 

conformations, which are stably propagated. When these variants are introduced into 

yeast, different strains of [PSI+] are obtained, suggesting that conformation of Sup35 

amyloid governs strain-specific [92]. Furthermore, the structural differences in Sup35 

strain variants have been probed by hydrogen/deuterium exchange revealing that 

differences in the length of the amyloid β-sheet core dictate strain structure and 

biological properties [93]. Nonetheless, the issue of prion strains will remain an open 

question in prion biology until parallel high-resolution structures exist for different strains 

of mammalian prions. 
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The cellular form of prion protein - PrPC 

The PrPC protein is a widespread cell surface tethered protein expressed mainly in the 

tissues of the CNS. Mature PrPC is a ~210 amino acid protein which largely localizes to 

detergent-resistant subdomains known as ‘lipid rafts’, located on the outer surface of the 

plasma membrane via a C-terminal glycophosphatidylinositol (GPI) anchor (Fig. 8) [3] 

[94]. 

 

Fig. 8. GPI-anchored plasma-membrane glycoprotein. Picture highlights the three-dimensional 
structure of PrPC. Here is depicted the glycosilation site and the putative copper binding site (from [95]). 

 

 

Moreover, mature PrPC undergoes endoproteolysis at the cell surface, being subjected 

to two posttranslational cleavages during the course of its metabolisms. The ‘normal' 

constitutive cleavage of PrPC, in the brain and in cultured cells, occurs inside this 

neurotoxic region of the protein (between residues 110 and 111), leading to the 

formation of a 9 kDa soluble N-terminal fragment (N1; residues 23–110) and a 17 kDa 

C-terminal fragment (C1 or PrP-II) that is still attached to the membrane through the 

GPI anchor [96], [97]. 



 26 

Any modification can have an effect on the topology and the function of the PrP. In fact, 

the PrP protein has been observed in many topological forms and each could be 

expressed for different roles and interactions for the protein. Due to the fact that the 

majority of PrP is found outside of the membrane, it is possible that during its passage 

to the plasma membrane, the mature protein could take on different partial structures 

and features such as transmembrane variants or cytoplamatica variants. Many authors 

have speculated about this but as of yet, nothing is conclusive [98, 99]. 

High-resolution magnetic resonance nucleic (NMR) studies of bacterially expressed 

recombinant (rec) PrP, a model for PrPC lacking any post-translational modifications, 

have revealed a folded C-terminal domain and an N-terminal region which is largely 

unstructured [100]. Depending on the species, the flexible N-terminus contains at least 

four glycine-rich octapeptide repeats which display a particular affinity for Cu2+ [101], 

with reports of weaker binding to other divalent cations such as Zn2+, Fe2+, Ni2+, and 

Mn+2 [102] (Fig. 8-9). 

The PrP globular domain is highly conserved over many different species, consisting of 

two short β-strands and three α-helices, with a disulfide bond bridging helices 2 and 3. 

This domain also contains two potential sites for N-linked glycosylation (Fig. 9) [100]. 
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Fig. 9. Model of three-dimensional prion protein. PrP protein is made of a globular domain (amino acid 
121-231) which includes three α-helices and two small antiparallel β-sheet structures, and a long flexible 
tail whose conformation depend on the environment condition (from [59]) 

 
 

The physiological function(s) of PrPC 

The physiological function of PrPC remains elusive. Much hope was pinned on the use 

of PrPC knock-out mice to unveil the function of the protein, but no obvious phenotype 

was observed [103]. Even postnatally induced Prnp ablation does not elicit any 

phenotype [104]. Aging mice show demyelination in the peripheral nervous system, 

albeit without clinical symptoms [105]. A number of subtle abnormalities, e.g. 

abnormalities in synaptic physiology [106] and in circadian rhythms and sleep [107] 

have been described in PrP-deficient mice, but their molecular basis is undefined. The 

only definite phenotype of Prnp0/0 mice is their resistance to prion inoculation [103]. 

An astonishing number of independent lines of mice lacking PrPC have been generated 

by homologous recombination in embryonic stem cells in many laboratories. Mice with 

disruptive modifications restricted to the open reading frame are known as Prnp0/0 
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[Zurich I] [103] or Prnp−/− [Edinburgh] [108]. They developed normally, and no severe 

pathologies were observed later in life. As predicted by the protein-only hypothesis, 

these mice were entirely resistant to prion infections [103]. 

Several physiological roles for PrPC have been proposed; cell adhesion, signaling, 

neuroprotection and metabolic functions related to its copper-binding properties. Cell 

culture experiments reveal a constitutive internalization process of PrPC from the 

plasma membrane into endocytic organelles, yet most of the protein recycles back to 

the membrane without degradation [109]. The existence of a recycling pathway 

suggests that one physiological role of PrPC may be to serve as a receptor for uptake of 

an extracellular ligand. One attractive candidate for such a ligand is the copper ion. It 

has been shown that copper ions, at physiologically relevant concentrations, rapidly and 

reversibly stimulate endocytosis of PrPC from the cell surface [110]. 

Moreover, it has been reported that PrPC can bind copper ions and possesses 

superoxide dismutase activity [111]. Additionally, amino-proximal truncated PrPC 

appears to depress endogenous dismutase activity [112], suggesting a role for copper 

binding of the N-terminal octapeptide-repeat segment. However, PrPC does not make 

any measurable contribution to dismutase activity in vivo [113]. Given the localization of 

PrP as a GPI-anchored protein in rafts or caveolate, it has been proposed that PrP, as 

with other GPI-anchored proteins, could be involved in signal transduction [95]. 

Crosslinking of PrPC with F(ab)’2 antibody fragments has been reported to activate Fyn 

tyrosine kinase [114]. Since Fyn is associated with cellular proliferation and cellular 

survival, cell surface PrP might modulate neuronal survival. However, it has been 
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reported that PrP-mediated Fyn activation in cerebellar granule neurons might be 

responsible for neurite outgrowth rather than neuronal survival [96]. Other studies 

indicate that PrPC may interact with components of signal transduction pathways, such 

as Grb2 [115]. Grb2 is an adaptor protein that mediates growth factor receptor signals 

and also plays an important role in neuronal survival. Engagement of PrPC with certain 

antibodies, a PrPC binding peptide [116] or with a molecule called stress-inducible 

protein I (STI 1), leads to activation of both the cAMP/ protein kinase A and the Erk 

signaling pathways [117] [118]. PrPC-mediated activation of the cAMP/ protein kinase A 

(PKA) pathways has a cytoprotective effect in nervous tissue [118]. Taken together, 

these studies clearly support a neuroprotective role for PrP through signal transduction 

events. 

PrP has been shown to interact with the 37 kDa/67 kDa laminin receptor precursor 

[119], [120], and heparan sulfate [120], suggesting a possible role in cell adhesion 

and/or signaling. Perhaps PrPC does not possess any intrinsic biological activity, yet it 

modifies the function of other proteins. Multiple PrPC interacting partners have been 

identified in recent years: the antiapoptotic protein Bcl-2 [121], caveolin [122], N-CAM, 

[123] and neurotrophin p75 receptor [124]. None of these interactors, however, have yet 

revealed functional pathways in which PrPC could be involved in vivo. 

PrPC associations with raft membranes, adhesion molecules and signalling pathways 

are consistent with its involvement in the assembly of new cellular structures such as 

neurites and synapses in neurons, and projections in leukocytes (pseudopodia) and 

follicular dendritic cells (dendritic processes). At the same time, there is evidence that 
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PrPC negatively modulates the phagocytic activities of macrophages and other 

phagocytic cells in a manner that might control inflammatory responses to damaged or 

apoptotic cells [65]. Notably, PrPC is expressed at relatively high levels in the brain, 

where overly aggressive inflammatory responses might be particularly damaging and 

irreversible. One curious characteristic of PrPC that is not obviously connected to the 

assembly of cellular structures, but might be related to clearance or scavenging 

mechanisms, is its propensity to bind metals, nucleic acids, porphyrins and their 

analogues. The presence of free forms of these PrPC ligands in the extracellular spaces 

would ordinarily be unexpected, unless they were released from pathogens, dying or 

damaged cells, or perhaps debris from decommissioned cellular structures such as 

under-used axons, dendritic spines and synapses. The detection and control of 

potentially harmful factors is an important part of the responses of the innate immune 

system and glia to infections, tissue damage, stresses, developmental changes (such 

as apoptosis) and restructuring. It is tempting to speculate that PrPC might modulate 

such responses in various cell types by scavenging nucleic acids, metals, porphyrins 

and similar factors for delivery to appropriate receptors or subcellular sites for 

degradation and/or signalling. In this context, the binding of PrPC by cell-surface GAGs 

might keep PrPC molecules occupied until preferred ligands appear, because GAGs can 

compete for the same sites on PrPC [125]. Most of the known PrPC ligands - for 

example, NCAMs, laminins, laminin receptors and HSPGs - are involved in cellular 

adhesion, and these molecules, and their binding partners, are notorious for being 

polymorphic. Thus, one likely possibility is that PrPC functions as a part of complexes 

comprising multiple proteins and membrane subdomains that are modulated by cell 
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type, developmental stage, differentiation state, and both extracellular and intracellular 

cues (Fig. 10). 

 

Fig. 10. Model of potential PrPC interactions associated with axonal growth. PrPC seems to be 
important for neurite (nascent axon and dendrite) growth and synapse formation in neurons (from [95]).
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Chapter 2: Mechanism Of Prion Protein Conversion: Lessons 
From In Vitro Studies 

 

Protein aggregation: oligomers vs amyloid fibrils; their toxic role they 
play in neurodegenerative diseases 

Proteins are essential parts of living organisms and participate in virtually every process 

within living cells. In the last several decades, a great deal has been learned about the 

various structural forms that the protein molecules adopt in their native states and their 

functional roles in cellular systems. Moreover, we are also beginning to have a basic 

understanding of the complex protein folding mechanism at a molecular level and how 

biological systems have evolved to optimize the protein structure and to ensure the 

correct folding of proteins. In more recent years, this knowledge has led to the 

development of numerous computational methods that predict the structures and 

functions of proteins from their genomic information, which has become largely 

available from the various genome projects.  

Due to the importance of proteins and their roles in cellular systems, failure to 

synthesize, or misfolding of proteins, may cause the malfunctioning of cellular 

mechanisms and serious harm to the host organism. Thus, biological systems have 

evolved elaborate protection procedures to prevent this failure to synthesize or 

misfolding of proteins by detection and degradation of proteins when misfolding occurs.  

However, despite these inherent cellular level controls to prevent protein’s misfolding 

events, a number of human diseases are still associated with protein misfolding and the 
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subsequent aggregation of proteins [126, 127]. This includes a wide range of diseases 

from cystic fibrosis and familial emphysema to non-neuropathic systemic and localized 

diseases such as Type II diabetes, and neurodegenerative diseases such as 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and prion diseases 

[128], [129]. These diseases are often inherited and sporadic, but they can also be 

infectious like in the case of prion diseases. Each disease is associated with a particular 

protein or aggregates of these proteins, which are thought to be the direct or indirect 

cause of the pathological conditions associated with the disease [127]. 

Lately, most research has focused on a group of diseases that involve protein 

misfolding or the destabilization of the normal soluble structure of proteins followed by 

subsequent conversions to insoluble fibrillar aggregations, which accumulate in a 

variety of organs including the liver, spleen and brain [130]. These fibrillar forms of 

ordered aggregates are known as amyloid. Although proteins that are involved in these 

amyloid diseases are structurally and evolutionarily unrelated in their native states, the 

misfolded fibrillar form of proteins bear similar features. 

Abnormal protein aggregation is a key feature of a number of other neurodegenerative 

diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s diseases and 

amyelotrophic lateral sclerosis [131] [132]. These protein aggregates share several 

physicochemical features: a fibrillar morphology, a predominantly β-sheet secondary 

structure, birefringence upon staining with the dye Congo red, insolubility in common 

solvents and detergents, and protease-resistance. None of the polypeptides implicated 

in these diseases exhibit any primary sequence homology, nor do they derive from 
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similar sources. However, non-conservative gene mutations have been identified for 

each of these disorders, contributing to protein misfolding, aggregation and eventual 

deposition in neuronal inclusions and plaques. These diseases lead to extensive 

degeneration of neurons. 

In Huntington’s disease, neuronal loss is believed to be directly mediated through the 

aggregated state of the huntingtin protein [133]. In other cases (for example the β-

amyloid and α-synuclein proteins in Alzheimer’s and Parkinson’s disease, respectively), 

presumptive neurotoxic oligomeric protein-intermediates, referred to as protofibrils, have 

been suggested to mediate cell death [134].  

In prion diseases, the precise role of misfolded, aggregated PrPSc in the 

neurodegenerative process remains controversial. The protein-only prion hypothesis of 

protein replication [4] [2], states that the prion (of which PrPSc constitutes the major, if 

not sole component) is the infectious and neurotoxic agent. However, work by Brandner 

et al. [69] and recently by Mallucci and coworkers [135] provide evidence in vivo that 

accumulation of PrPSc in the brain per se, may not cause neurodegeneration. Rather, 

this neurotoxicity may be mediated by the conversion of PrPC to disease-associated 

isoforms, PrPSc, specifically within or on neurons expressing PrP. Or, because PrPSc 

binds PrPC [136] it may cause a loss or alteration of the physiological function of PrPC. 

However, postnatally induced Prnp ablation does not elicit any phenotype [104] hence 

prion pathology is unlikely to come about by a loss of PrPC function. 

A general mechanism for neurotoxicity in all neurodegenerative diseases based on 

protein aggregation has recently been suggested [137] [138] [139]. Bucciantini and 
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colleagues demonstrated that the aggregation of non-disease associated proteins 

exhibit inherent cytotoxicity. Moreover, it has recently been demonstrated that different 

types of soluble amyloid oligomers potentially share a common structure that is 

recognized by a single antibody, irrespective of the primary amino acid sequence [138]. 

The binding of this antibody neutralizes the cytotoxic effects of these oligomers, again 

suggesting a common mechanism of toxicity for all these oligomers. However, despite 

this recent progress, understanding of the precise pathophysiological mechanisms that 

eventually lead to the death of neurons is currently lacking. 

For more than forty years amyloid deposits were believed to be the causative agents in 

the degenerative process [140]. Although many studies supported this notion, newer 

studies with improved techniques are challenging this view [141]. In fact, the current 

thinking is that it is a group of still poorly defined pre-amyloid species, rather than the 

amyloid deposits themselves, that are the true toxic conformations [138] [142]. 
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A structural view on amyloid fibrils  
The term amyloid was introduced in 1854 by the German physician scientist Rudolph 

Virchow [143]. Utilizing the best scientific methodology and medical knowledge 

available at the time, Virchow used iodine to stain cerebral corpora amylacea that had 

an abnormal macroscopic appearance. The macroscopic appearance of the brain tissue 

was similar to previous descriptions of other tissues, perhaps as early as 1639, as 

lardaceous liver, waxy liver, and spongy and “white stone” containing spleens. During 

the 19th and early 20th centuries, investigations on the nature of amyloid evolved from 

the macroscopic observations of Virchow and contemporaries to classifications of 

clinical symptoms. 

The term amyloid is often used in different ways. In the context of diseases it was 

defined by the Nomenclature Committee of the International Society of Amyloidosis as 

”extracellular depositions of protein fibrils with characteristic appearance in electron 

microscope, typical X-ray diffraction pattern, and affinity for Congo Red with 

concomitant green birefringence” [144]. 

Amyloid fibrils may form with distinct kinetics. Amyloid fibril formation typically shows a 

kinetic curve typical of a nucleation mechanism with a characteristic lag phase. Seeding 

of the amiloid formation solution with preformed fibrils can shorten this lag phase [128] 

(see Fig. 11, below for more details). Before formation of mature fibrils, prefibrillar 

aggregates, sometimes termed amorphous aggregates, occur which can have a 

spherical shape. Interestingly, specific antibodies can be designed which bind to the 

prefibrillar aggregates of different proteins but not to the mature fibril [138]. 
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 Furthermore, it has been demonstrated that the prefibrillar aggregates are generally 

more toxic to cells than the mature amyloid fibrils [145]. This led to the speculation that 

amyloid cytotoxicity is based on the structural properties of the prefibrillar aggregates 

[145]. However, little direct data exists on how the structure of the prefibrillar aggregates 

compares with the arrangement of the polypeptide chain in mature amyloid fibrils to truly 

validate this belief.  

Amyloid fibrils also exhibit certain distinctive features. They may be long fibril entities 

(µm range) with lateral dimensions in the range of 6–13 nm with a distinctive X-ray 

diffraction fingerprint that results from the cross-β structure (Fig. 11). 

They share a common molecular skeleton, the protofilament core structure, which is a 

continuous β-sheet assembly [146]. 
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Fig. 11. Amyloid structure. Hierarchy of structure from protein folded into a β-plated structure to amyloid 
fibril. The 4.7 Å correspond to the hydrogen bonding distance between two β-strand, the 11 Å correspond 
to the distance between β-sheet and the 60-80 Å distance corresponds to an average fibril diameter 
(adapted from [147]). 

 

The X-ray diffraction reflections at approximately 4.7 Å on the meridian and 10 Å on the 

equator are characteristics of fiber diffraction pattern for all amyloids. The structural 

repeat of 4.7 Å along the fibre axis corresponds to the spacing of β strands and the 10–

12 Å spacing corresponds to the face to face separation of the β sheets [148]. 

Whilst little structural data, exists on whether prefibrillar aggregates and mature fibrils 

are similar, one study on Aβ(1-40), has shown that the fold of the toxic prefibrillar 

aggregates and the mature amyloid fibrils are similar [149].  
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Mature fibrils are the end point of the aggregation process and thus are easily 

accessible for structural studies. Due to the non-crystalline insoluble nature of amyloid 

fibrils a variety of methods has been applied to elucidate their structure. The most 

widely applied technique is electron microscopy, which typically shows straight, 

unbranched amyloid fibrils, which are 0.1-1.6 µm in length and have a diameter of 60-

120 Å. They are built from protofibrils with a diameter of 25-35 Å [147]. Similar proteins 

may form amyloid fibrils with different morphologies exhibiting a twist of the fibril or 

lateral association forming an untwisted fibril. Oriented amyloid fibrils show a typical so-

called cross-β X-ray diffraction pattern with a meridional 4.6-4.8 Å spacing, which results 

from the main chain distance within β-sheets running parallel to the fibril axis [148]. The 

variable equatorial 8-12 Å spacing corresponds to the distance between two β-sheets 

[145]. Interestingly, amyloid fibrils show a different amide I’ band in FTIR spectra in 

comparison with native β-sheet-rich globular proteins [150]. However, it is the 

underlaying common structural properties of amyloid fibrils lead to specific reactions 

with staining dyes (Congo Red [151], Thioflavin T [152] and antibodies [153]). 
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In vitro conversion studies 

The available experimental evidence in vitro indicates that the kinetics of fibril formation 

are complex and can be often separated into a nucleation (or lag) phase and an 

elongation phase (Fig. 12), followed by the equilibrium between isolated polypeptides 

and the fibrils [154], [153]. Moreover, multistep kinetics, with the presence of 

intermediates have also been reported [155]. 
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Fig. 12. Mechanism of prion replication and the seeding–nucleation model of amyloid formation. 
Compelling evidence suggests that PrPC to PrPSc conversion as shown in (A) follow a crystallization-like 
process known as ‘seeding–nucleation’. In this model, formation of a stable oligomeric structure that is 
capable of further sustaining and catalyzing polymerization of the protein is the key and kinetically limiting 
step. A: The kinetics of amyloid formation usually exhibits an initial lag phase, in which no detectable 
amyloid is formed, whereas monomers nucleate to form fibers when mixed together with a fresh pool of 
soluble protein. Moreover, fragmented amyloid fibrils can shorten the lag phase and initiate rapid amyloid 
formation; a phenomenon known as seeding; B: Amyloid formation consists of two kinetic phases. In the 
‘lag phase’, oligomeric nuclei are formed in a slow process that involves misfolding of the protein and 
unfavorable intermolecular interactions. Once these ‘seeds’ are formed, a much more rapid ‘elongation 
phase’ results in fibril formation. The limiting step in the process is the formation of seeds to direct further 
aggregation [154]. Amyloid formation can be substantially accelerated by the addition of preformed seeds 
(circle line) representing the structure that is inherently infectious.  
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Pathways of fibril formation, fibril morphologies and stability of protofibrillar 

intermediates are influenced strongly by experimental conditions (e.g. protein 

concentration, pH and ionic strength [156]) and elongation rates can depend on the 

stability of aggregation of the protein and the folding intermediates [157]. In vitro 

generation of infectious prions from recombinant PrP is considered as the final proof of 

the “protein-only” hypothesis. In addition, compared to slow and costly conversion 

experiments in animals and cell culture [3], cell free conversion systems simplify the 

experimental environment, and opens an opportunity to understand the mechanism of 

the conversion. Many scientists endeavored to study in vitro PrP conversion (despite 

inherent caveats to the procedure) using short, synthetic PrP peptides [158-162]. 

Although these short peptides were found to form amyloid fibrils under certain 

conditions, their relevance has always been questioned since these fibrils have never 

been found to be infectious in vivo.  

Difficulties in purification of large quantities of PrPC from natural brain source and the 

insolubility of PrPSc are limiting factors in studying biophysical aspects of the PrPC → 

PrPSc conversion reaction. However, new opportunities for obtaining purer and larger 

volumes of protein are available from the development of expression systems for the 

production of recPrP [163]. The methods for production of PrP with either the presence 

or absence of tag are utilized for purification [164-166]. The use of a tag in the 

production of the protein gives the best possible results compared to systems without 

the use of the tag.  
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Studies with human recPrP fragment corresponding to the Y145stop variant have 

demonstrated the possibility to transform the monomeric state in fibrillar state in vitro 

[167] and then use it for studies on the species barrier and strain diversity [89].  

Studies performed with other peptides such as PrP106–126, a region located near the 

N-terminal of the protease-resistant PrPSc has attracted interest, and has demonstrated 

toxicity in both in vitro and in vivo toxicity of aged 106–126 peptide in a rat retinal model 

[168]. Whilst these studies provide us some clues with regards to the enigmatic 

infectivity of prion diseases, they do not explain the process in its entirety. 

Moreover, it is known that a broad variety of proteins that rapidly fold into monomeric or 

oligomeric cellular forms under native-like conditions can also be refolded into β-rich, 

amyloid forms under conditions that destabilize the native state [126]. 

In recent years, different protocols for producing fibrils from recPrP or PrPC in vitro have 

been developed by several groups. In contrast to yeast prions in which the 

amyloidogenic regions are natively unfolded, the PrP domain associated with 

mammalian prion infectivity is structured and thermodynamically stable [169].  

Initial studies using recPrP  suggested that the conversion of PrPC to PrPSc requires the 

reduction of the disulfide bridge that connects residues Cys179 and Cys214 and that 

the conversion occurs via a soluble β−sheet monomer. However this conversion does 

not necessarily bring to an infective form although it can form a β-rich isoform and 

consequently fibrils [170]. Moreover, it has been recently shown that, the recMoPrP can 

be folded either to its native, monomeric α-helical isoform or to a β-sheet rich, 
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oligomeric form with the folding regulated by kinetic control [162, 171]. In addition, it has 

been shown that an equilibrium between the α-helical and the β-sheet-rich isoforms, 

where partially denaturing conditions (acidic pH and urea) and with increased 

concentrations of PrP, favors the conversion to the β-oligomer. Interestingly, whilst both 

abnormal isoforms, the β-oligomer and the amyloid form, coexist at pH 4–6 [172], the 

formation of the β-oligomer is favored at pH below 5.5, whereas optimal pH for the 

conversion into amyloid fibrils is between 5 and 7 [172].  

Further still, the conversion to β-sheet of recPrP is strongly dependent on pH, 

denaturant concentration, and the presence of salts [166, 173]. 

Because chemical denaturants and elevated temperatures are the most common ways 

to manipulate the dynamic balance between different unfolding intermediate states, it is 

not surprising that the first experimental protocols for producing amyloid fibrils from the 

structured C-terminal domain of α-recPrP (recPrP(90–231)) utilized partially denaturing 

conditions, such as chemical denaturants [170] [174, 175] or combinations of elevated 

temperature and high pressure [176]. Moreover, detailed studies of the effect of the 

denatured agent used have shown how the concentration and the type of agent 

denaturant can affect the rate and the state of the PrP protein. In 0.4 M urea and at 

37°C, the protein maintains its native state [166].  

As no unique protocol for making fibrils exist, modifications have been made, which are 

dependent on the aim of the scientist making the fibrils. Most studies have used the 

truncated form of recPrP [166]. Although recently a protocol to produce fibrils from full-

length PrP has recently been developed. [174]. These protocols evolved around using 
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the same conditions for amyloid formation that was used when the first synthetic prions 

were produced (MoSP1) [174, 177]. 

An alternative to the system above, Riesner and co-workers have established an 

alternative conversion procedure, where amyloid fibrils are produced by incubating 

recPrP(90– 231) or PrPC in the presence of low concentrations of sodium dodecyl 

sulfate (SDS) or in the presence of lipids [178, 179]. 

Cell free conversion studies have demonstrated similar findings to studies in vivo upon 

the role of PrP to the transmission and the pathogenesis of TSE. The work of Kaneko et 

al. with labeled PrPC demonstrated a high specificity in the PrPC to PrPSc conversion 

[180]. Using a similar approach, Bossers et al. have shown that the nature of PrPSc has 

an impact on the yield of the conversion reaction [181]. In contrast, evidence exists that 

suggest that the complete disaggregation and denaturation of PrPSc in the presence of 

high concentrations of denaturant abolishes the conversion, whereas unfolding of PrPC 

has no influence on the converting activity [180].  

In order to explain the mechanism by which a misfolded form of PrP could induce the 

refolding of native, normal PrP molecules into the abnormal conformation, two distinct 

models have been postulated: (A) the template assistance or 'refolding' model, and (B) 

the nucleation-polymerization or 'seeding' model (Fig. 13). 
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Fig. 13. Proposed models of prion replication. A: In the template-directed refolding model, PrPSc is not 
normally present in the brain and its spontaneous formation is impeded by a large energy barrier between 
PrPC and PrPSc. Exogenous PrPSc recruits host PrPC and templates its conversion to an additional copy of 
PrPSc. Amyloid formation is a byproduct of prion replication and does not figure explicitly in the 
mechanism. B: In the seeded nucleation model, an equilibrium exists in the brain between PrPC and 
PrPSc (although the balance is shifted greatly towards PrPC). The formation of a PrPSc seed occurs slowly 
and is favoured by the introduction of exogenous PrPSc. Once the seed has formed, recruitment of 
additional PrPSc occurs rapidly allowing the formation of larger amyloids. Fragmentation of amyloid into 
smaller pieces generates new seeds and allows prion replication to progress (Figure modify from [182]). 
 

The first model postulates an interaction between exogenously introduced PrPSc and 

endogenous PrPC, which is induced to transform itself into further PrPSc. A high-energy 

barrier may prevent spontaneous conversion of PrPC and PrPSc at detectable rates 

[183]. This reaction may involve extensive unfolding and refolding of the protein to 

explain the postulated high-energy barrier and could be dependent on an enzyme or 

chaperone, provisionally designated as protein X [84]. In the second model, i.e. the 

nucleation model, PrPC and PrPSc are in an equilibrium strongly favoring PrPC [184], 
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[185]. Only if several monomeric PrPSc molecules are mounted into a highly ordered 

seed, can further monomeric PrPSc be recruited which will eventually aggregate to form 

amyloid assemblys. Within such a crystal-like seed, PrPSc becomes stabilized. 

Furthermore, fragmentation of PrPSc aggregates increase the number of nuclei, which 

can recruit further PrPSc molecules and thus result in apparent replication of the agent. 

Consistent with the latter model, cell-free conversion studies indicate that PrPSc 

aggregates are able to convert PrPC into a protease-resistant PrP isoform [180, 186]. 

Moreover, this model postulates that small amounts of PrPSc are present in a healthy 

brain. Supporting this idea, PrPres has been shown to be amplified from control healthy 

brain samples using the protein misfolding cyclic amplification (PMCA) procedure [187]. 
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Synthetic mammalian prions 
The most stringent criteria for judging whether prion infectivity is generated in vitro de 

novo are the bioassay in animals. Recently, it was shown that the transmissible form of 

prion disease could be induced in transgenic (Tg) mice that expressed PrP(89–231) at 

high levels (Tg9949) by inoculation with amyloid fibrils generated in vitro from 

MoPrP(89–230) [87]. However, these fibrils did not cause disease up-to 600 days after 

the inoculation into wild type mice. Most interestingly, after the first passage in Tg9949, 

the synthetic prions were transmitted to both Tg9949 and to wild type animals in the 

second passage [87]. 

Similar to the fibrils formed from recPrP(89–230), a chemically synthesized 55-residue 

peptide (residues 90 to 145) harboring a P101L mutation and refolded in vitro into a β-

conformation was shown to induce disease in transgenic mice that express PrP(P101L) 

[180]. In contrast to the Tg9949 mice, the TgPrP(P101L) mice were found to develop 

disease spontaneously, even in the absence of the synthetic peptide [188]. On the other 

hand, Tg9949 mice did not develop any clinical signs of spontaneous disease, nor did 

they produce transmissible scrapie upon aging.  

With regards to biochemical and neuropathological features, the two studies showed 

different findings. In the Tg9949 mice which had been inoculated with fibrils a novel 

strain of TSE were discovered [189]. Whereas the disease associated PrP conformer 

identified in TgPrP(P101L) mice and inoculated with the synthetic 55-residue peptide, 

the conformation of the protein was indistinguishable from that seen in the same Tg 

mice that developed disease spontaneously [190]. Taken together these data argue, 
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that the 55-residue peptide accelerated a slowly progressing, spontaneous form of the 

disease, whereas the fibrils of recPrP(89–230) caused prion disease de novo.  

Perplexing though was that the incubation times observed upon inoculation of fibrillar 

MoPrP(89–230) were much longer than those exhibited by most known PrPSc strains. 

Because the length of incubation time is typically used as a measure of prion infectivity 

titer, this assay brought to the hasty conclusion that synthetic prions would exhibit a 

very low infectivity titer. However, this conclusion cannot be accepted because the 

infectivity of natural TSE strains has been tested only on a particular host and not all 

strains. Based on the knowledge of the molecular mechanism of prion conversion, Soto 

et al. developed the PMCA technology (Fig. 14), designed to mimic PrPSc autocatalytic 

replication in vitro [191]. In a cyclic manner, minute quantities of PrPSc (as little as one 

single particle) induce misfolding of large amounts of PrPC in a process catalyzed by 

ultrasound waves to multiply the number of converting units. Moreover, they recently 

demonstrated that it is possible to produce a synthetic PrP from the PMCA and observe 

directly an effect in wild type mice. Whilst this finding has high importance there are 

technical issues to consider, such as whether another molecule besides PrPSc could 

have been enriched in the process of PMCA that caused the effect [192]. 
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Fig. 14. Schematic representation of methodologies used to produce synthetic prions using 
purified substrates. A: Schematic diagram of the production of new synthetic prions using the PMCA 
method by serial dilution and propagation of PrPSc starting by purified PrPC [193]. B: Schematic 
representation of the procedure for the production of synthetic prion without use a seeding of PrPSc with 
changes in the condition of PMCA for mimic sporadic condition. C: Schematic representation of the 
procedure for production of the first synthetic prion using recPrP [87]. 
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In vitro assay for the infectivity 
Conversion of PrPC to PrPSc has been successfully reproduced in cell-based and animal 

systems in which PrPSc is propagated and prion infectivity is maintained. As mentioned 

in the previous section, several in vitro conversion assays have been introduced over 

the past 15 years to investigate how PrPC is conformationally altered by PrPSc.  

However, molecular conversion, in various cell-free systems have failed to completely 

reproduce the proposed prion conversion process. Although close, none of the in vitro 

systems simulate perfectly prion propagation. Conversion of PrPC to PrPSc seems to be 

difficult in most cell-free reactions unless other molecules besides PrP isoforms are also 

present. The continuous evolution of in vitro assays mimicking the conditions of prion 

conversion and propagation is still under progress. 

Table 1 gives a summary all currently used in vitro conversion assay systems. 

The most recently developed system is the so-called amyloid seeding assay (ASA) 

developed by Colby et al. [194] (Table 1). The assay can detect the infectivity in 

biological sample. Furthermore, the assay shows that many prion strains are capable of 

seeding the polymerization of recPrP into amyloid, and that property of each strain can 

be used as a means for the detection of prions in biological samples [194]. 

In terms of data, the quickening of the kinetic profile indicates the presence of infective 

molecule. Taking into account the capabilities of this assay, it is one of the fastest and 

most reproducible protocols to use. 
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Table1. Summary of in vitro conversion assay develop in prion field. 
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Current structural models for PrPSc 
As the structure of PrPSc is still elusive because of its insoluble nature and because is 

inaccessible to conventional methods of protein structural biology, such as NMR 

spectroscopy or X-ray crystallography, alternative combination of methodologies have 

been utilized to produce structural data. In 2002, Wille et al. used electron microscopy in 

combination with computational imaging and modeling methods, to study the structure 

of two-dimensional crystals of PrP27-30, and produce from the reconstructed images, a 

model showing that the repetitive unit of the crystals had hexagonal symmetry [195]. 

Assuming PrPSc has a similar structure to currently known proteins, the authors 

suggested that the hexagonal symmetry came from a trimeric structure, and proposed a 

“left handed β–helical model,” as shown in Fig. 15 [196]. 
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Fig. 15. Model of PrPSc. Left handed β–helical model [196] A: The -helical model of the N-terminal part of 
PrP 27–30 B: Model of the monomer of PrP 27–30. The -helical region (residues 177–227) as determined 
by NMR spectroscopy (PDB ID code 1QM0 [PDB]) was linked to the -helical model shown in A. C: The 
crystal structure of the trimeric carbonic anhydrase from Methanosarcina thermophila (PDB ID code 1THJ 
[PDB]). D: Trimeric model of PrP 27–30 built by superimposing three monomeric models onto the 
coordinates of the C 's of the 1THJ [PDB] structure. 
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In their model, the N-terminus of each monomeric subunit (residues 89-175) forms left-

handed β-helices in the core part of the trimer, whereas the C-terminus (residues 176-

227) largely preserves the disulfide-linked α helices at the outer part with the glycosyl 

groups pointing away from the center. The structures proposed are highly regular and 

repetitive, and symmetrical fold formed by the coiling of elongated β–sheets into helical 

‘rungs’. Left-handed β-helices are stacks of triangular rungs that typically incorporate 18 

residues per rung. This model is derived directly from the experimental electron 

crystallography data, which clearly show the circular-elliptical form. DeMarco and 

Daggett utilized molecular dynamics to simulate PrP conversion, which resulted in 

another theoretical model being proposed, the “spiral model”, as shown in Fig. 16 [197]. 
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Fig. 16. The spiral model A: Building of a protofibril with 31 axis (viewed down the fiber axis). The 
oligomerization site occurs between the isolated strand and a three-stranded sheet of the adjacent 
monomer. B: Views of hexameric representation of protofibril showing maintenance of symmetry on 
oligomerization and propagation of the extended strands between monomers to form extended sheets 
(from [197]). 

 

In this model, each monomeric subunit in PrPSc preserves all three α-helices, but has 

increased β-sheet content in the 116-164 region, consisting of a three-stranded sheet 

and one isolated strand. During polymerization, each isolated strand is connected with 

the adjacent monomer’s three-stranded sheet to form a continuous four-stranded sheet, 

which leads to a spiraling protofibril. This model was developed targeting the dimension 
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of a small aggregate studied by EM. The minimum and maximum diameters, excluding 

glycans of the spiral model are 58 Â [195]. 

In 1994, Reed Wickner proposed that two non-Mendelian genetic elements of yeast 

Saccharomyces cerevisiae, [PSI+] and [URE3], were also caused by a self-propagating 

conformational conversion of protein [198], which extended the prion concept from the 

infectious agent of TSEs to heritable elements in yeast. To date, six prions in yeast and 

other fungi have been identified [199]. Although fungal prions do not share amino acid 

sequence identity with mammalian PrP, these fungal proteins display prion-like 

mechanisms of propagation. The aggregation of soluble fungal prion proteins into 

amyloid fibrils changes the phenotype of cells, and these characteristics can be 

cytoplasmically transferred from mother to daughter cell, showing that the altered 

phenotype is heritable. Studies on these fungal prions have been proven extremely 

valuable [200]. For example, one of the best-studied fungal prion, the translation 

termination factor Sup35p, can aggregate into distinct forms of amyloid fibrils in vitro 

under different experimental conditions [201]. Infection of normal yeast cells with these 

distinct amyloid fibrils was found to generate different [PSI+] strains, providing an 

opportunity to understand the molecular basis of this phenomenon [202].  

HET-s is the prion of the yeast Podospora anserina and is involved in heterokaryon 

incompatibility, a mechanism that controls vegetative cell fusion [203]. Up until recently, 

the only known high-resolution amyloid fibril structure has been obtained by magic-

angle spinning (MAS) NMR spectroscopy on fibrils formed by the prion domain of HET-

s consisting of the C-terminal residues 218-289 [204, 205]. 
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An earlier study, proposed that the β-strand regions were derived from proton-deuterium 

exchange experiments and solid state MAS NMR chemical shifts [206]. In contrast to 

other MAS NMR studies of amyloid fibrils, the observed lines are very narrow. 

Interestingly, in CP-MAS spectra only 43 of the 78 residues were detected [207, 208]. 

Most of the missing residues were, however, observed using proton detection and 

solution NMR techniques, indicating a high mobility in some parts of the protein [207]. In 

addition, the observed chemical shifts suggest a random coil conformation of these 

residues which comprise the N and C-terminus of the protein and residues in the loop 

regions. 

Now, high resolution structures for HET-s(218-289) have been presented [205]. The 

monomeric unit forms eight short β-strands. Six of them are arranged in a manner 

similar to a left-handed β-helix or β-solenoid with two coils per monomeric unit, Fig. 17. 

Thereby, the β-strands incorporated in the same β-sheet are pseudo repeats of each 

other. Between strands three and four a long loop region, not incorporated in the fibril 

core, is observed. 
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Fig. 17. Representations of the high resolution MAS NMR structure of HET-s(218-289). A: backbone 
fold of five monomeric units, the single monomeric units are shown in different colours, B: structural 
ensemble of a monomeric unit. From [205]. 
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Aim of this work 
Despite considerable research efforts, the mechanism by which the PrP converts into 

the pathological abnormal form remains enigmatic. Whilst people have begun to show 

that is it possible to produce the infectious molecule in the test tube no clear evidence 

exists for the structure of this molecule. Solubility problems and the reproducibility of the 

preparation of the fibers are still outstanting problems.  

The major aim of this study has involved a systematic analysis of the different 

conditions under which fibrils can be formed, with the ultimate aim to produce a 

reproducible protocol to use for biochemical and biophysical studies.  

As a starting point, my project commenced, using other proteins; α-synuclein, β protein, 

insulin, in order to learn the commonalities of the methodologies to produce fibers and 

further improve the approach and understanding of aggregation studies, in particular to 

that of PrP.  

For the production of fibrils from the PrP, I have analyzed in great details the effects of 

changes in the environmental conditions on the morphology of the fibrils, with particular 

attention to the conditions, which appear to aid in demonstrating the presence of an 

infective molecule. 
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Chapter 3: Materials and Methods 

 

Preparation of recPrP 

The recMoPrP(89-230) was a kind gift of the Prusiner laboratory, University of California 

at San Francisco, San Francisco, USA [163]. 

 

Monitoring of the kinetics of in vitro amyloid formation 
To monitor the formation of amyloid fibrils in our samples, lyophilized recMoPrP(89-230) 

was initially dissolved in 6 M GndHCl, to a protein concentration of 1-5 mg/mL. The 

aliquots were kept frozen at -80°C until used. Upon use, the stock protein solution was 

made to a final protein concentration of 50 µg/mL. This was then incubated in 1X PBS 

buffer pH 7, 10 µM thioflavin T (ThT) with different concentrations of guanidinium 

hydrochloride (GdnHCl) (0.4 M to 4 M) in a reaction volume of 200 µL in 96-well plates 

(BD Falcon 353945, BD Bioscience).  

For the seeding experiments, which were performed to provide information as regards 

to the autocatalytic nature of the reaction, small amounts of preformed aggregates were 

added to the reaction mixture at t=0. To each well, 4 µL of the seeding sample was 

added to the 200 µL reaction. To the seeding experiments, a glass bead was also 

added to each well, to increase the production of the kinetic profile. The 96-well plate 

was covered with sealing tape (Perkin Elmer) and incubated at 37°C with continuous 

shaking on a plate reader (Spectramax M5 and Gemini EM, Molecular device). The 

kinetic of fibril formation was monitored by top reading of the fluorescence intensity 
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every 5 min, using 444 nm excitation and 485 nm emission filters. Each sample was 

measured in six independent replicates and the differences were evaluated using 

statistic programs R software. Data were assessed using different methodologies: one 

was based on [209], the other was based on a qualitative evaluation. The analysis was 

performed using a R program to verify any statistical differences (See Appendix for 

mathematical approach).  

 

Dynamic Light Scattering 

Dynamic light scattering (DLS) was used to analyse the homogeneity of the fibril 

formation. To this aim a dynamic light scattering with DLS Zeta sizer Nano zs Malvern 

(Dispersion Technology Software) was used. After the fibrillization reaction, samples 

were analysed after dialysis with phosphate buffer. The analysis was performed at the 

same concentration of the protein, and verified by calculations using the extinction 

coefficient. 

 

Phosphotungstic acid (PTA) precipitation of PrPSc from ScGT1 cell 

lysates 

GT1 and ScGT1 cells were grown in DMEM containing 10% fetal bovine serum and 1% 

penicillin/streptomycin at 37°C and 5% CO2. Cells were split 1:10, incubated for 7 days 

and then disrupted using lysis buffer (10 mM Tris HCl pH 8, 150 mM NaCl, 0.5 % NP-

40, 0.5 % DOC). Typically, total protein concentration of 1 mg/mL was used for the PTA 

protocol as described by Colby et al. 2008. PTA from a 10% (wt/vol) stock solution (pH 
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7.4) was added to the sample to a final concentration of 0.5%. Then, it was incubated 

the sample with constant shaking (350 rpm) for 1 h at 37°C. After incubation, samples 

were centrifuged at 14,000 g for 30 min at room temperature (RT). The pellet were 

washed with 500 µL of PBS/2% sarkosyl, containing protease inhibitors, and centrifuged 

at 14,000 × g for 30 min at RT. The pellet was resuspended in 150 µL of water and then 

stored it at −80°C until use. 

 

 Amyloid Seeding Assay (ASA) 

Briefly, total cells extracted in sarkosyl were precipitated with PTA to purify prions. Four 

µL of PTA purified brain cell extracted were diluted into 400 µL water, then used as 

seeds in amyloid formation reactions. A 96-well plate was prepared with 180 µL/well of 

MoPrP(89-230) solution (50 µg/mL recMoPrP(89–230), 0.4 M GdnHCl, 1XPBS, 10 µM 

ThT). Twenty µL of diluted PTA-precipitated brain homogenate were added to each 

well, with each sample tested with six replicates. ThT fluorescence measurements were 

taken at 444/485 nm excitation/emission spectra on a Spectramax M5 fluorescence 

plate reader with continuous shaking at 37°C. 

 

Atomic Force Microscopy (AFM) 

MoPrP(89-230) solutions prepared with different GdnHCl molarities were deposited 

evenly onto a freshly cleaved piece of mica at a concentration of 50 µg/mL, and left to 

adhere for 1-10 mins. Samples were then washed with distilled water and dried with N2. 

Specimen were imaged with a NanoWizard-II BioAFM (JPK Instruments AG, Berlin, 
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Germany, www.jpk.com) operating in dynamic mode and using non-contact cantilevers 

(NSG11, NT-MDT – Moscow, Russia, www.ntmdt.com or ARROW-NCR, NanoWorld-

Neuchâtel, Switzerland, www.nanoworld.com) with tip radii of <7-10 nm, spring 

constants of 20-42 N/m, and resonance frequencies of 285-325 kHz.  

The images were acquired at line scan rates of 0.5-1 Hz at RT. 

The images were analyzed using Gwyddion software (http://gwyddion.net/), which 

extracts data from the scanned images and evaluates the statistical value of the image. 

All data was analysed with the R program (http://www.r-project.org/). 

 

Circular dichroism of MoPrP(89-230) at different concentrations of 
GdnHCl 

Circular dichroism (CD) spectra were obtained with a JASCO J-810 spectrometer at 

20°C in 20 mM Na-Phosphate pH 7. Far-UV CD spectra (208-250 nm) were recorded at 

protein concentrations of 0.2 mg/mL in a 0.1 cm cell, with an average of 6 accumulated 

scans, and at varying GdnHCl concentrations. 
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Chapter 4: Results 

The kinetics and the products from in vitro fibril formation assay are 
affected by the concentration of the denaturant used 

In order to gain insight into the physical properties that separate infectious from 

noninfectious MoPrP(89-230) fibrils, the kinetics of fibril formation was analyzed in 

greater detail. It is known that the addition of GdnHCl improves the yield and shortens 

the lag phase of fibril formation, but is also influential in physical properties of the fibrils 

[210]. Toward this aim, different concentrations of GdnHCl were employed in the 

fibrilization assay 

Previous studies have shown that in an attempt to generate the infectious PrP forms, 

different strategies have been pursued. There is the PrPSc-dependent conversion or 

amplification [211] [180], [191] and the conversion of PrPC or recPrP in the absence of a 

PrPSc template [212] [172] [170] [173] approach. Moreover, these topics have been 

analyzed in several review papers [213] [212]. 

An alternative approach has more parallels with the sporadic formation of prions, rather 

than with prion diseases acquired through transmission. In opposition to the 

amplification approach, where the physical properties of the newly generated PrPSc are 

expected to mimic that of PrPSc seeds, the conversion reaction in the absence of PrPSc 

seeds poses question as regards to the uncertainty with regarding the conformation of 

the final products of the reaction.  
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By analogy to the studies where the amyloid form has been shown to be equivalent to a 

prion state for several yeast prions [202, 214] and [202, 214-217], converting recPrP 

into amyloid fibrils seems to be one of the possible ways for de novo generation of 

mammalian prion infectivity in vitro. For the last few years several protocols for 

producing fibrils from recPrP or PrPC have been developed by different groups. In 

contrast to yeast prions in which the amyloidogenic regions are natively unfolded, the  

domain associated with mammalian prion infectivity is partially structured and 

thermodynamically stable [169]. Due to the fact that chemical denaturants and elevated 

temperatures are the most common way of manipulating the dynamic balance between 

different unfolding intermediate states, it is not surprising that the first experimental 

protocols for producing amyloid fibrils from the structured Mo(PrP90–231) utilized 

partially denaturing conditions such as chemical denaturants [170], [218], [166], [25], 

[219] and [220] or combinations of elevated temperature and high pressure [176]. 

Amyloid formation can be monitored in solution using the dye ThT [152]. This dye 

undergoes a fluorescence shift upon binding to amyloid fibers, from 342 to 442 nm and 

from 430 to 482 nm for excitation and emission maxima, respectively. As ThT does not 

fluoresce significantly at excitation/emission maxima of 442/482 nm in the absence of 

amyloid fibers, the background signal tends to be quite low, and hence the dye is used 

as highly sensitive reporter. When used in conjunction with multi-well plates and 

automated plate readers that record fluorescence over time, ThT offers ideal solution, of 

detecting conformational changes of proteins in solution.  
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In order to get acquainted with the process of formation of fibrils I started to investigate 

the protocol to form fibrils. There are at least two main different ways to produce fibrils 

using either (a) discontinuous assay or (b) continuous assay (Fig. 18).  

The first procedure is base on the fact the fibrils are made in a pure condition, with the 

kinetic profile of ThT obtained in a discontinuous time. The kinetic profile is obtained by 

numerous readings of the sample at different time points. However, this type of analysis 

gives problems in the reproducibility of kinetic profile, and also depends upon the 

number of time points read and the operator ability. Moreover, the total protein levels 

change during the procedure, thus possibly altering the true kinetic reading. 

 

Fig. 18. Schematic production of fibrils. A: Method for preparing fibrils in a continuous assay. Protein 
is : incubated with the presence of ThT at 37 °C with agitation of 600 rpm. B: Method  for preparing fibrils 
in a discontinous assay. Protein dissolved in particular protein concentration and buffer condition and 
incubatde at 37°C without the presence of the ThT molecule. Aliquots of the solution are taken and read 
on a fluorimeter in the presence of ThT. 

 

The continuous assay first appeared in the literature authored by the laboratory of Ilia 

Baskakov, where they demonstrated the possibility of obtaining a kinetic profile, using a 

plate of 96-well in a plate reader, using a continuous reading without alternating sample 

readings [174]. 
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The results obtained using this procedure gave reliable results. The protein chosen for 

that primary purpose was insulin. I performed fibril formation using a simple protocol 

giving intriguing results. Then we use the discontinuous assay using MoPrP(89-230) in 

1X PBS/2 M GdnHCl pH 7. This protocol is a standard protocol for preparing fibrils for 

many researchs [174, 221]. The kinetic results obtained are summarizes in the Fig. 19. 
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Fig 19. Kinetic profile of MoPrP(89-230) incubated at 37°C with 600 rpm. Here I report time course of 
MoPrP(90-230) conversion in the presence of 2 M GdnHCl. The reaction was monitored by ThT 
fluorescence readings. 

It was observed difference in the rate of fibrilization using both procedure. The lag-

phase starts either at 9-10 hours or at 40 hours or more. For a practically point of view 

for more experiments we use a continuous assay because allow to follow all process 

without interruption. Another important factor of the use of continuous assay is that the 

concentration of the protein in the test tube remains constant throughout the reaction. 

However, the procedure employed in a discontinuous assay has been generally used in 

many paper. Due to the fact the continuous protocol gives better resolution for the 
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reproducibility of fibril formation. The presence of glass beads inside the well plate helps 

to obtain a quite reproducible kinetic profile. 

The reaction is characterized by a well-defined lag phase followed by a growth phase, 

consistent with a nucleation dependent polymerization mechanism. Moreover, the 

conversion seems to be possible even in the presence of high denaturant 

concentrations, conditions under which the protein is fully unfolded. I have performed a 

series of kinetic experiments in which an array of different growth condition were 

employed. The conversion was studied under different experimental conditions and 

special attention was focused on the influence of denaturants on the conversion 

mechanism and the morphology of the conversion products. The experiments were 

performed under vigorous shaking conditions at pH 7, and 37°C. The typical fibril 

formation process starts with a lag phase in which the amount of amyloid proteins 

turned into of fibrils is not significant enough to be detected. Afterwards, a drastic 

elongation phase follows and fibril concentration increase rapidly (see figure below). 
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Fig. 20. Kinetic profiles of fibril formation in 96-well by continuous assay. Example of the kinetic 
profile made by change the concentration of guanidine inside the growth condition. From the right to the 
left it was possible to observed the decrease of the lag phase. 

 

Low concentration of GdnHCl in solution gives a relative long lag-phase in contrast to 

high concentration of that denaturant. Above 1M of GdnHCl It was obtained quite the 

same lag-phase (Fig. 20). These results is in agreement what was found by other 

authors but contradicts what some author believe that high concentration of GdnHCl 

increase the lag-phase time [166]. 

The kinetic data profiles were analyzed using a mathematical approach for calculate the 

lag-phase value (see Appendix I: Mathematical approach). 
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Due to the fact recently demonstrated that it is possible to amplify many different prion 

strains by using a particular concentration of GdnHCl I wanted to analyze in detail the 

effect of different concentration to the fibril formation. The results support the fact of the 

reliability of the continuous assay and the in vitro approach. 

The studies were focused only on two concentrations of denaturant: 2 M GdnHCl and 

0.4 M GdnHCl. The first concentration of GdnHCl was already used in many 

publications by other authors, which gave good results in terms of fibril formation. The 

second concentration was chosen because this particular concentration gave a read out 

of the infectivity. Thus, these concentrations were used in discontinuous growth 

condition [222], [65], [174]. 

The kinetic profiles extracted by these two concentrations follow the same sigmoidal 

kinetic curve typical of an aggregation of the protein, which was clearly different 

between the two preparations (Fig. 21). This kinetic difference was observed in all 

experimental assay runs. 
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Fig. 21. A: Time course of MoPrP(89-230) conversion in the presence of 2 M GdnHCl (solid line) and 0.4 
M GdnHCl (dotted line). The curves results are shown as mean of different kinetic curves. B: Mean value 
of the lag-phase for the two different solvent conditions (2 M and 0.4 M GdnHCl) as calculated using the 
equation of quadratic and exponential functions Bishop-Ferrone [209]. Bars denote the standard error 
(n=6; *, p <0.01; **, p<0.05; ***, p< 0.001). 

 

It was observed that the mean lag phase of 2 M GdnHCl condition gave a fast kinetic 

profile than 0.4 M GdnHCl. ANOVAs analysis shows statistically significant difference 

each growth condition (p <0.001). 

Using different estimation protocol we obtain the same ratio of difference between 

growth conditions as reported in Table 2 below. 
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Concentration of 

GdnHCl 

 

Bishop and Ferrone 

[209] 

 

Cohlberg et al. 

[223] 

Qualitatively 

 

 

2 M GdnHCl (n=106) 4.155±0.166 5.22±0.160 4.67±0.160 

0.4 M GdnHCl (n=68) 9.72±0.487 10.8±0.495 12.11±0.523 

 

Table 2. Lag-phase values estimated using a script in R program as describe AppendixI:Mathematical 

approach. 

 

In addition the maximum ThT fluorescence intensities also showed differences between 

the two preparations. The preparation using 2 M GdnHCl appeared to show a trimodal 

probability density distribution. In contrast, the preparation with 0.4 M GdnHCl revealed 

a different probability density distribution (data not shown). With this preparation the 

probability of the maximum intensity of ThT signal was higher in the lower signal 

intensities compared to what was found with the 2 M GdnHCl preparation (Fig. 22).  
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Fig. 22. Mean value of ThT max Intensity in two different solvent conditions(2 M and 0.4 M GdnHCl) as 
calculated from data before normalization by script run R programs (http://www.r-project.org/). 

 

Furthermore, in the 2 M GdnHCl preparation, a non zero probability density at the 

higher signal levels was present, which was different from that of 0.4 M GdnHCl. These 

results suggest that the mechanism, which we used to detect the aggregation process, 

reveals a different mechanism of fluorescence in terms of intensity between the growth 

conditions (data not shown). 

Changing the concentration of GdnHCl from 2 to 0.4 M revealed an extension of the lag 

phase (Fig. 21B). This difference in the kinetic trace and the maximum intensity 

frequency (Fig. 22) was also showed by the differences in the morphology of the 

aggregates as revealed by AFM (Fig. 26 A-B). 
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Kinetics of fibril formation is accelerated by seeding 

MoPrP(89–230) formed amyloid in the presence of low concentrations of GdnHCl, as 

measured by ThT fluorescence (Fig. 22). When preformed fibers of MoPrP(89–230) 

were added to the reaction, amyloid formed much more rapidly. This phenomenon is 

defined seeding effect. The presence of seeds in an amyloid formation reaction was 

quantitatively detected either by observing a decrease in the mean lag phase of the 

reaction compared to control samples, or by observing an increase in the mean ThT 

signal during the period before negative control samples began to polymerize. 

During our analysis of both conditions, we additionally tried to analyze the effects of 

seeding using different solvent condition. I tested the effect of cross seeding in both 

solvent conditions and observed a general universal effect of seeding as in agreement 

with many studies [224], [184], [90], but our data cast light on some differences related 

to the reaction rate. Homo-seeding was more efficient than the cross seeding in both 

protocols, which is in agreement with previous studies using full length prion protein for 

the preparation [210]. In the 0.4 M GdnHCl preparation, fibrils made in 2 M GdnHCl 

condition had only a small seeding effect although they showed a high effect of seeding 

in 2 M of GdnHCl (Fig. 23). 
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Fig. 23. Effect of seeding of MoPrP(89.230). A: Change in lag phase mean values after seeding 0.4 M 
GdnHCl. B: Change in lag phase mean values after seeding in 2 M.  

 

Seeding effect was seen in all samples. The seeding effect of homogeneous solution in 

both cases resulted in a decrease of the lag phase (Fig. 23). This was a more apparent 

decrease for the 0.4 M GdnHCl preparation and more efficient compared to 2 M 

GdnHCl suggesting that the length of the lag phase could be a key for detecting 

different prion strains. Probably for this reason 0.4 M GdnHCl was chose as base on the 

Colby et al. protocol.  
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Atomic force microscopy analysis of end products 

The atomic force microscope (AFM) or scanning force microscope (SFM) are very high-

resolution type of scanning probe microscopies, with demonstrated resolution of 

fractions of a nanometer, more than 1000 times better than the optical diffraction limit. 

The AFM has several advantages: unlike the electron microscope, which provides a 

two-dimensional projection or a two-dimensional image of a sample, the AFM provides 

a true three-dimensional surface profile. Additionally, samples viewed by AFM do not 

require any special treatments (such as metal/carbon coatings) that would irreversibly 

change or damage the sample. Disadvantages of AFM are the image size and an 

incorrect choice of tip can lead to image artifacts. 

To gain further insight into the structures of the aggregate products in both preparations, 

we studied their topology using AFM in ambient conditions. The preparations were 

viewed at the end-point of growth using recombinant MoPrP(89-230) synthesis in vitro 

for both aggregation conditions and revealed different substructure data. Furthermore, 

Imaging of the samples confirmed that highly polymorphic fibrils form in a single growth 

condition as described in the literature [225].  

The MoPrP(89-230) incubate at 2 M GdnHCl by discontinuous assay was analyzed by 

AFM show fibril formation. In the first time it was observed a low yield but after improve 

the manual ability increase the yield of fibrils aggregates. 
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The scanning was performed in different substrate like mica, glass and silica surface. 

What was evident the mica is a system more rapidly for analysis the fibrils in AFM as 

described by Anderson et al. [226]. 

 

 

Fig. 24. MoPrP(89-230) fibril preparation in discontinuous assay. A: Topography of the fibrils. B: 

Topography of one fibrils were was perform the height profile reported in C. C: Distribution of height long 

x axes of one fibril. 

 

In Fig 24 A and B, AFM scans of mica surfaces prepared in discontinuous protocol gave 

a typical fibril morphology. Comparison of the data obtained by our readings with the 

other author they approach these problems, shows the same polymorphic structure 

[226]. The length of the fibrils made by discontinuous assay was up to 2 µm. 
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Fig. 25. AFM scan topographical images of PrP deposited mica surfaces made by discontinuous 
assay. 5x5 µm area was scan acquired by AFM (1024x207 pixel). 

 

Due to the fact we want to characterize the structure of different growth condition we 

perform many scanning in the sample prepared in the two growth conditions. 

The kinetic profile clearly shows difference between two growth conditions. In fact the 

kinetic profile have a different rate but also the intensity of ThT is different. These 

differences are due to a different assembly of the aggregates as show by analysis of the 

AFM scans.  
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Fig. 26. AFM imaging was performed at the end of the fibrillation reactions. The reaction was formed 
in two solvent conditions 0.4 M GdnHCl (A) and 2 M GdnHCl (B). Scale bars represent 500 nm as 
depicted. 

 

In Fig. 26 A and B, AFM scans of mica surfaces prepared with these solutions clearly 

revealed differences in the two growth conditions of the preparations. The solution with 

the concentration of0.4 M GdnHCl contained a few nanometer sized, mostly globular, 

aggregates of the protein in addition to a small number of short fibril fragments with less 

than 100 nm length. In contrast, the high concentration of denaturant (2 M GdnHCl) 

solution showed long amyloid fibrils of the protein in addition to a few smaller fibril 

fragments. Preparation with 2 M GdnHCl resulted in the formation of fully mature fibrils. 

The major fibrillar subtypes were either straight or slightly curvy ribbons or rod-shape 

fibrils, which is in agreement with earlier studies using the same concentration of 

chaotropic agent, but in a different buffer solutions (Fig. 26F A-B). 

The distribution of fibril height in the profiles from both preparations gave differing 

results (Fig. 27 A-B). The deconvolved line profiles from the blind estimated tip shape 
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suggested an approximate 5 nm FWHM width of the fibril (data not shown). AFM  

cannot provide a high precision results about the width of the fibrils because of an effect 

know as tip convolution. The AFM tip radi are usually about 5-6 times wider than the 

fibrillar structures. 

 

Fig. 27. A 3D representations of the AFM topography images as in Fig. 26. B: Height distribution data 
obtained from the AFM images in part A. An exponential curve for the low topographical structures was 
subtracted from the data. The frequency peaks at the levels of 3.2 nm, 5.7 nm and 8 nm are marked by 
arrows, suggesting an approximate 2.7 nm periodicity in height. The 3-D views revealed structures with 
different topology (Fig. 27 A-B). Moreover, the frequency peaks height distribution obtained from the 
Gaussian fits indicated the differences. 

 

 

The preparation of 2 M GdnHCl gave a peak of the height at 5.7 nm and 8 nm whereas 

the preparation with 0.4 M GdnHCl revealed peak height levels at 3.2 nm and 5.7 nm. 

The height distribution associated with 5.7 nm is the common height peak found in the 

two preparations, and is probably due to the formation of some protofibrillar structures. 
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Fig. 28. A: 10 mm × 10 mm AFM topographical image of PrP deposited mica surface prepared with 2 M 
GdnHCl. B: A 3 mm × 3 mm higher resolution scan image belonging to the area marked with a blue 
dashed square in part A. C: A 0.75 mm × 1.5 mm higher resolution scan image belonging to the area 
marked with a blue dashed square in part B. D: Topography and phase images of an amyloid fibril 
acquired by AFM.  

 

The length of the fibrils obtained with 2 M GdnHCl could be as long as 1800 nm and 

were composed of straight ribbon-like fibrils, curvy fibrils, and fibrils with occasional 

branching (Fig. 28 A-C). Moreover, the acquired phase image of an amyloid fibril as 

seen in Fig. 28D illustrated that protofilaments were formed with different fragment 

lengths. 
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Detailed analysis of the fragment size is 0.0859±0.00519 µm length. However the 

dimension is not always the same there is a variation.  

In Fig. 29 show different profile shape for both condition: 2 M show a profile typical in 

fibrils while the 0.4 M GdnHCl gave typical dimension of spherical shape with a height 

not more than 5 nm. At the low molarity (0.4 M GdnHCl) preparation, clusters of 

aggregates ~5-6 nm height were seen. In contrast, the 2 M GdnHCl preparations, as 

revealed from the profiles “steps”, featured the height profiles ranging between 3 nm to 

15 nm (measured from the 2 nm baseline) with approximately 4 nm unit height steps 

(Fig. 29).The detail in the branching and fragment formation was observed as shown in 

Fig. 30. 
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Fig. 29. A: AFM scan topographical images of PrP deposited mica surfaces. The PrP is prepared with 0.4 
M GdnHCl (left image) and 2 M GdnHCl concentrations (right image). The white bars show the 
unidirectional length scale. The color scale of the height is given in far right. On the left image isolated 
clusters of PrP oligomers, on the right image amyloid fibrils of PrP are clearly observed. The white 
dashed arrows designate discontinuities along a fibril. B: The AFM height profiles along the blue lines in 
topographical images of part A. The profiles belong to the lines as numbered in the images. 

 

From the analysis of both AFM and kinetics data it can be stated that the solvent 

conditions are a determinant of the final products of the assay. 
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Fig. 30. Dynamic mode AFM scans of an amyloid PrP fibril. A: The height image. B: The phase 
image. The white arrows indicate the points of presumable fragmentation in both of the images. C: Height 
profiles along the lines as color designated and numbered in the height image. The height along the fibril 
lies between 3 nm to 18 nm (measured from the 2 nm baseline) with approximately 3 nm unit height steps 
(see also Fig. 29B). 
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Amyloid Seeding Assay (ASA) from partial purificated PrPSc  

The amyloid seeding assay (ASA) is an alternative protocol for measuring PrPSc in 

biological samples. The ASA employs PTA precipitation, similar to the conformational –

dependent immunoassay (or commonly known as CDI) [9], but detects prions based on 

their propensity to hasten the formation of PrP amyloid rather than detection using 

antibodies. It was found that many prions strains could be detected using the ASA [194]. 

In our study, the ASA protocol appeared to be related to the formation of a particular 

assembly of the aggregates not exhibiting long fibrils. Moreover, our analysis revealed 

how this powerful tool to detect a small quantity of prions, could be associated to the 

different states of the PrP amyloid. The original ASA protocol condition, 0.4 M GdnHCl 

gave a better detection in the assay compared to 2 M GdnHCl. The lag phase after the 

addition of scrapie sample as a seed can be seen in Fig. 31.  
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Fig. 31. The ASA assay using PTA from either GT1 or ScGT1 cells. A: Effect of seeding of PTA 
precipitated of ScGT1 cells using recPrP in the presence of 0.4 M of GdnHCl [194]. B: Effect of seeding 
of PTA precipitated ScGT1 cells using recPrP in the presence of 2 M of GdnHCl . C and D lag phase 
measurements from several experiments using A and B protocols, respectively. 

 

Stability of MoPrP(89-230) was checked also by the effect of the denaturant agent like 

GdnHCl. In order to understand better the performance of the ASA protocol we 

attempeted to perform analysis on the effect of hastening the kinetic curve by extracted 

PTA ScGT1 cells. Increasing the concentration of GdnHCl to the extracted PTA ScGT1 

cells does not block the ability of the extracted PTA samples to hasten the kinetic 

profiles. A titration is presented in Fig. 32. 
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Fig. 32. Effect of increasing GdnHCl concentrations in the ASA protocol. 
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Comparing two different aggregation conditions by CD and 
fluorescence 

We used CD and fluorescence to elucidate the biochemical features that give rise to the 

different aggregated states of recPrP using the two ASA protocols. Guanidinium salts 

are well known for their denaturing action on proteins. In our experiment we use 

GdnHCl, one of the most effective denaturants. In 6 M GndHCl all proteins with an 

ordered structure showed partial or total unfolding and most of them become randomly 

coiled, meaning they do not contain any residual structure. The CD spectral obtained 

from MoPrP(89-230) in different growth conditions are shown in Fig. 33. The CD spectra 

of MoPrP(89-230) in 20 mM sodium phosphate buffer revealed prevalently α-helix 

content in this mixture, without apparent aggregation. Increasing the amounts of 

denaturant changed the conformation of the recombinant protein, which eventually 

became unfolded. The results showed the 0.4 M GdnHCl condition is different from 2 M 

GdnHCl condition of the folded protein. In 2 M GdnHCl we found an increase of random 

coil with respect to 0.4 M GdnHCl. The α-helical content of MoPrP(89-230) without 

denaturant was very similar to that of 0.4 M GdnHCl, as indicated by the intensity of the 

negative maxima at 208 nm and 222 nm (Fig 33). The molecular ellipticity of the 

recombinant protein at 222 nm decreased at increasing concentrations of the 

denaturant. This result suggested that MoPrP(89-230) after dilution during the 

preparation of the working solution in the ASA protocol had the folding of the native 

protein. This may suggest that different concentrations of GdnHCl can lead to different 
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structural conformations. Moreover, the changing of the molar ellipticity intensity could 

be due to the changing of the concentration of GdnHCl.  

 

Fig. 33. A: FarUV CD spectra of MoPrP(89-230) at different concentration of GdnHCl. B: Variation of 
intensity mean ellipticity at 208 nm, 215 nm, 221 nm, 222 nm at different concentrations of GdnHCl. 

 

We also analyzed the variation in the fluorescence of particular aromatic amino acids to 

demonstrate the occurrence of conformational changes. This analysis gives indirect 

information about how the structure differ in solution and during the formation of 

aggregates. In fact, the fluorescence of both preparations was different not only at the 

starting condition, but also at the end of the reaction. The analysis of the intensity ratio 

of 270 nm and 280 nm fluorescence wavelengths showed qualitative differences in two 

conditions. In fact, we found the same solution before performing the aggregation 
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process that the ratio is different between the two growth conditions. These differences 

were also found at the end of the reaction. 

 

 

Fig. 34. Variation in the fluorescence intensity from excitations at 270 nm and 280 nm belonging to 
preparations with 0.4 M and 2 M concentrations of GdnHCl. T = 0 h is the value before starting of the 
fibrilization process at 37C. T = 24 h shows the same after 24 h. 

 

DLS : effect of mechanical agitation using beads on the kinetic of 

fibril formation 

DLS was used to detect the average size of the assembly (Fig. 35). The preparation 

with 2 M GdnHCl resulted in a monodisperse solution, whilst a polydisperse solution 

was observed with the 0.4 M preparation (Fig. 35 A-B). This further supports our 

observations from AFM and kinetics data analyses, i.e. that the two preparations can 

lead to different protein aggregates.  
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Using DLS it was also observed how the size changes in the presence of absence of 

glass beads. These supported the fact the beds help to obtain the select the  size made 

in function of the solvent condition. 

 

Fig. 35. DLS of fibril formation with or without beads using two different concentrations of 
GdnHCl. A: Fibrils sizes using 2 M GdnHCl in the presence of beads. B: Protein aggregates sizes using 
0.4 M GdnHCl in the presence of beads. C: Fibrils sizes using 2 M GdnHCl in the absence of glass 
beads. D: Aggregation size of the protein made using 0.4 M GdnHCl in the absence of glass beads. 

 

The absence of the glass beads gave a polydisperse solution in both buffer conditions. 

However, analysis of 2 M GdnHCl using AFM reveals the presence of much longer 

fibrils than in presence of the beads. However, 0.4 M GdNHCl does not reveal any 

fibrils.  
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Biochemical characterization of fibril assemblies 

PrPSc fibrils produced in vitro by a spontaneous conversion of the recPrP have shorter 

PK-resistant core than those obtained present in brain homogenate with prions. 

Recently, Bocharova et al. reported that the PK-resistant core of Mo and hamster full-

length PrP can be extended to ~16 kDa fragment with the N-terminus at residue 97 

[174, 224, 227]. MoPrP(89-230) protein after fibril preparation was analyzed by SDS-

PAGE and western blotting. No conclusive data were obtained. The result suggests low 

yields of the aggregation preparations for both protocols.  

It was also analyzed the stability of the fibrils at both concentration of GdnHCl. The 

analysis made did not give conclusive results, indicating that there is probably a loss of 

proteins during the analysis.  
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Fig. 36. Wester blots of PK digestion of Mo(PrP89–230) fibrils at two different conditions of 
GdnHCl. The concentration of PK: or the ratio PK:PrP(wt/wt) is indicated on top of each lane. –  or + 
symbols refer to fibrils made in absence or presence of PK, respectively. Western blots were performed 
using the antibody D18. On the left 2 M GdnHCl aggregates using PK resistance and on the right 0.4 M 
GdnHCl. 
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Chapter 5: Discussion 

 

The discovery of prion disease transmission in mammals, as well as a non-Mendelian 

type of inheritance in yeast prions, has led to the establishment of a new concept in 

biology, the prion hypothesis. The prion hypothesis postulates that an abnormal protein 

conformation propagates itself in an autocatalytic manner via recruitment of the normal 

isoform of the same protein as a substrate, and thereby acts as a transmissible agent of 

disease (in mammals). Ironically, while prion researchers have been struggling to 

provide definite proof that the PrP transmits the disease, other amyloidogenic proteins 

have been shown to be able to transmit (or cause) certain neurodegenerative or 

systemic diseases in a prion-like manner [228]. 

In vitro studies are typically performed using pure protein samples or protein in the 

presence of other components found in amyloid deposits. Two aspects of amyloid fibril 

formation can be determined in vitro: i) the structure of the fibril; and ii) the process of 

fibril formation (i.e., the mechanism of kinetics). For both, it is important to first 

characterise the protein using traditional techniques (i.e. SDS-PAGE, DLS, CD, UV-

spectra).  

However, there are caveats and limitations to the study of amyloid fibril formation and 

interpretation of data. The single biggest obstacle in the examination of peptides and 

proteins that can form amyloid fibrils is the preparation of the sample. There have been 

several reports by different laboratories of batch-to-batch variability and poor 

reproducibility of experiments [229]. Several factors can contribute to this variability. 
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One factor to consider is the purity of the peptide or protein sample. Impurities can 

affect the kinetics of aggregation and, unfortunately, there is no way to predict if a 

sample impurity has an effect on aggregation. To reduce chemical degradation of pure 

samples, proper storage conditions are necessary. Typically, peptides are most stable 

when stored -20 or -80°C as a lyophilized powder, under N2, in a desiccator, in the 

freezer. However, even under these conditions, some peptides can undergo chemical 

modifications [230]. 

Another factor affecting sample preparation is the ion-pairing agent used in the 

peptide/protein purification process, since the ion pair can affect the kinetics of 

aggregation. The purification, particularly of peptides, is performed using buffers that 

contain either HCl or trifluoroacetic acid (TFA). Since peptides are charged molecules, 

the negative ion present from the acid (Cl- or TFA-) forms an ion pair with the positively 

charged N-terminus or side chains of the peptide. These two reagents lead to ion pairs 

that differ in size (Cl- <TFA-) and hydrophobicity (Cl- <TFA-) and, consequently, can 

have a significant effect on amyloid fibril formation. The Aβ1–40 peptide, for example, 

has been shown to be random coil by CD if prepared from TFA but β-sheet if purified 

using HCl [231]. Equally, dramatic effects of ion pairing agents on the ability of IAPP24–

29 to form amyloid fibrils have also been reported [230]. However, in relation to this last 

point, as yet, no affect seems to have be reported in the PrP. 

Another caveat which has to be considered that can influence amyloid formation, is the 

effect of agitation, which can affect both the morphology and the kinetic output of the 

fibrils produced. This has been assessed for many proteins [232]. Moreover, recent 
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studies  in the prion field showed the agitation have a big effect on the morphology of 

the fibril formation [233]. The agitation effect is dependent upon the type of machine 

used to produce the agitation and the speed of the agitation. Moreover, physical 

agitation such as shaking could provide an increased kinetic energy for the nucleation 

units to overcome the repelling force between the surface chemical potentials of two 

approaching particles and thus increase. 

For the experiments carried out in this study, the machine used was a Spectramax M5 

(Molecular Devices). No detailed published details exist for this machine and it is 

assumed from communication by technical staff from Molecular Devices, that the 

mechanism of agitation produces in the machine is a step moving by chaotic mixing, 

giving the same centre of agitation and intensity for each well (Fig. 37).  
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Fig. 37. A: Figure depicting two wells with two different concentrations of GdnHCl as used in this study. 
The agitation can be longitudinal, transversal or both. B: Representation of the ratio between the glass 
beads and MoPrP(89-230) The surface glass beads can attract protein due to the charge of the protein. 
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Recently, the development of the ASA has provided a new opportunity to detect prion 

infectivity in biological samples [194]. However, the discovery that prions can be 

artificially created by polymerizing recPrP into amyloid has also led to the development 

of cell-free systems [87]. The ASA assay is based on the availability of prions in 

biological samples, which can be detected by their ability to hasten the kinetic of 

aggregation of PrP. This assay measures the infectivity of any given biological sample, 

in a reasonable time scale, with a high sensitivity to low seed concentration. Moreover, 

further questions can be posed about the possible structures for detecting prions in 

biological samples. Additionally the system has been shown for revealing potential anti-

TSE drugs [221]. 

The protocol can make use of 96-well plates with different platforms (Molecular Devices 

and ThermoLabsystems) and different buffer conditions (Fig. 38). 
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Fig. 38. Parameters of two protocols used to develop PrP aggregation protocol in a 96-well plate format. 
On the left condition published for revealing anti-TSE drugs properties, on the right for detecting prions in 
biological sample. 

 

The main focus of my PhD studies was to analyse in detail the process of fibril formation 

using the ASA assay. Firstly, the initial analysis of the reaction of fibril formation was 

carried out using a discontinuous assay due to the fact that it is historically the protocol 

to study amyloid formation. However, I switched to the continuous assay, which uses a 

96-well plate, in order to develop this particular assay system. 

The parameters of the assay used for making the fibrils, was the same as the one used 

by Colby et al.: Spectramax M5 (Molecular Devices) 600 rpm at 37°C. In order to 

assess the ASA assay, one parameter was changed for the experimental assay: the 

concentration of GdnHCl. Intriguingly, the ASA protocol uses only one glass bead (3 
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mm) inside each well in contrast to that of the protocol by Breydo et al. [234] which uses 

3 beads (Fig. 37B and Fig. 38).  

Two different concentrations GdnHCl were used: 2 M and 0.4 M. These two 

concentration of denaturant were chosen, because the former concentration is routinely 

used for fibril production and gives a good production of fibrils, while the latter is used 

for detecting the infectivity in biological samples [194]. GdnHCl is known to alter protein 

structure. In the presence of 2 M GdnHCl we observed that recPrP folded completely 

into a random coil whereas in the presence of 0.4 M GdnHCl, recPrP is mainly α-helical. 

This latter condition was also postulated and demonstrated with the same concentration 

of urea [166]. Recently, studies have shown an existence of a strong correlation 

between the conformational stability of synthetic prions, (determined from PK digestion 

assays) and the incubation period to prion disease [91]. To explain this relationship 

between the stability of fibrils and their infectivity, they authors of the study proposed 

that the conformational stability of amyloid fibrils determines their intrinsic fragility and/or 

the size of the smallest possible fibrillar fragments. Recently, this model was sustained 

by analysis of aggregates made in different growth conditions [210].  

Interestingly, the kinetic output data was modulated by the concentration of GdnHCl. In 

difference to that was seen using the discontinuous assay, the increase of concentration 

of GdnHCl reduces the lag phase. However the maximum rate was obtained at 2 M 

GdnHCl.  An increase in the concentration of GdnHCl above 2 M gives a small 

decrease in the lag phase in comparison to that one seen in the concentration range 

between 0.4 to 2 M GdnHCl. The strength of the denaturing environment has an 
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important impact in the range of possible amyloid structures with those exhibiting high 

conformational stability.  

An aim of these experiments was to find a common structural characteristic of the 

aggregate formed. Moreover, the main question was to assess if there were different 

structures formed under the different concentrations. To this aim, a combined AFM and 

biochemical characterization analysis was performed. The AFM analysis was performed 

with the help Dr Alpan Bek. We observed, by a systematic analysis of the different 

growth conditions, that the growth conditions impacted greatly, the assembly of 

aggregates.  

We observed a production of long fibrils using 2 M GdnHCl but only small aggregates 

using 0.4 M GdnHCl. These differences were also revealed by a different max intensity 

of ThT. 

The ThT dye shows a strong increase in fluorescence upon binding to amyloid fibrils 

and has hence become the most commonly used amyloid-specific dye. In spite of this 

widespread use, the mechanism underlying specific binding and fluorescence 

enhancement upon interaction with amyloid fibrils remains largely unknown. 

Nevertheless, ThT fluorescence enhancement is strongly dependent on fibril 

morphology. Our data highlights the fact that the profile of data gives a direct indication 

of the aggregation process. Furthermore, a difference in the maximum fluorescence 

intensity from 2 M GdnHCl preparation to 0.4 M GdnHCl was seen. The differences 

enable an analysis of the seeding effect in detail. The catalytic and the templating 

effects, the two key features of the amyloid and prion replication, were intimately 

coupled due to the self-replicating nature of the cross-β structure. The catalytic effect 



 103 

was observed also in the analysis of the kinetic profile. The templating effect was also 

demonstrated using ThT intensity. In fact the intensity obtained with cross seeding is not 

the same as that from the initial analysis. This effect has also been seen in earlier 

experiments using cross seeding from mouse fibrils and hamster fibrils [234, 235]. 

Under the growth condition in 0.4 M GdnHCl, seeding had a different impact to that as 

seen in 2 M GdnHCl. In fact, the homo-seeding condition at 2 M GdnHCl is significantly 

different to the seeding made by 0.4 M GdnHCl. However, the seeding experiment 

suggests that  low concentration of GdHCl can help to reveal seed effect. Recently, 

Baskakov et al. showed that the effect of seeding can be separated between the 

catalytic effect and templating effect. The catalytic effect can be visible also with the 

absence of the templating effect as demonstrated in different recent works [233]. This 

result is in agreement with our results. In fact, a max intensity of ThT as a marker of 

templating effect it was found only the catalytic effect (no seed-specific structure eredity) 

(data not shown). However, we observed the possibility to reveal the infection molecule 

also in the cells culture. In fact, we observed a seeding effect using PTAScGT1 cells but 

not in PTAGT1 cells. This is in agreement to the fact the ASA protocol can be useful to 

that scope. However we observed the catalytic effect also at 2 M GdnHCl. 

Inoculation of β-pleated fibrils formed by one protein was sufficient to cause or 

accelerate the in vivo amyloidosis of an unrelated protein in animals [153]. This result 

suggests the necessity to define in detail the seeding structure definition.  

To elucidate more details of structure recPrP in amyloid fibrils, this structure was 

analysed both at the start and at the end of the preparation under different 

concentrations. The protein, under the conditions of the ASA assay, shows mainly an α-
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helical fold. This suggests therefore that the data obtained in this study highlights the 

importance of the growth condtions of the fibril for the structure of the aggregate formed. 

This difference is important in order to explain the heterogeneity of the aggregate  

preparations. The random coil structure enabled a production of fibrils with a particular 

assembly in a constant reproducible manner.  

Interestingly, the impact of the growth condition revealed from a detailed analysis of the 

aggregates, a particular distribution of the height of the amyloid assemblies: height of 8 

nm and 5.7 nm for the preparation of 2 M GdnHCl. Preparations of 2 M GdnHCl showed 

fibrils with height profile more than 8 nm (12-20 nm). Preparations also revealed a 

monodispersity using DLS instruments suggesting a homogeneity in the preparation 

sizes is aided by the glass beads (Fig. 41). Moreover, this occurrence suggests that the 

assembly of higher-order fibrils occurred predominantly in the vertical dimension via the 

stacking of ribbons on top of one another, with the association in the lateral dimension 

being limited.  

Fibrils prepared with 2 M GdnHCl also displayed twists in the fibrils. SAFs (scrapie 

associated fibrils) extracted from a single source, typically include fibrils consisting of 

filaments aligned in parallel arrays, fibrils formed by helically twisted filaments, fibrils 

with a “spaghetti-like” wavy appearance, and fibrils with undefined morphologies. 

Ultrastructural studies of the full-length PrP, by atomic force microscopy and  TEM 

reveal extremely broad polymorphism in fibrils formed under a single growth condition 

[226]. Detailed analysis of ultrastructure was attributed to a fibrils with a major subtype 

height 3.61±0.28 nm, composed of two ribbons, each of which was composed of two 

filaments. These studies were made, using the same condition used for the production 
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of the first synthetic prion [87]}. Unexpectedly, the 2 M GdnHCl condition gave fibrils 

with a particular distribution of height. In 0.4 M GdnHCl growth condition we found 

aggregates with a similar height profile to that of the aggregates made using a protocol 

to produce synthetic prions: 3.2 nm and 5.7 nm. A detailed analysis of the volume of the 

particles suggests the possibility that each aggregate has a variable number of 

molecules (Fig.39). 

 

 

Fig. 39. Number of molecule of MoPrP(89-230) composing aggregates at 0.4 M GdnHCl. This analysis 
was based on a estimation of the volume of MoPrP(89-230) in 15 nm3.  

 

However, in the fibril preparation in 2 M GdnHCl, the solutions contain a polydispersed 

distribution of the aggregates. Moreover, testing the influence of glass beads showed an 

effect in the kinetics of the aggregates (Fig. 40) also revealed an effect in the size of 

aggregates by DLS (Fig. 39). 
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Fig. 40. A: Kinetic curve of MoPrP(89-230) of 2 M and 0.4M GdnHCl in presence of glass beads. B: 
Kinetics curves of MoPrP(89-230) of 2 M and 0.4M GdnHCl in absence of glass beads. 

 

Therefore this data suggests that the associate structure in the ThT intensity profile is 

not of a particular aggregate form. This could explain why the height of 5.7 nm, as was 

found in both preparation conditions, probably is in a protofibrillar state and common to 

both conditions.  
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The morphological diversity of the fibrils has been previously proposed to appear as a 

result of a variation in nucleation events. The data here, suggests that the denaturation 

state can affect both the nucleation event and the aggregate morphology. Many models 

of structure of prion aggregates have been proposed but the heterogeneity of the 

preparation makes it difficult to sustain a unique model. The data in this study appears 

not to support either the model as proposed by Govearts et al. [196] but is in agreement 

what suggested by Caughey group [236] This is supported by the minimum height of the 

packed fibrils which is in agreement by the spiral model [197]. However the Spiral model 

does not account for the cross-β fiber X-ray diffraction and that is a great limitation in to 

validate that model. This study has certain limitations but is in agreement with that as 

proposed by previous authors [236] showing that the structure proposed by Govaerts et 

al. and by the recent publication by Anderson et al., that aggregates made in vitro are 

not similar to prion fibrils produced in vivo. However the in vitro aggregates have more 

similarity with a particular structure encoded in the SAF fibrils. Recently unpublished 

result show how  X-ray diffraction patter of PrPSc are different with the patter obtain 

starting by recombinant source. In conclusion, more details on the structural 

relationships between prion fibrils and SAF fibrils, in contrast with other strains or 

infective aggregates should be undertaken. Moreover, the data from this study shows 

that the continuous assay in a 96-well plate has the possibility (using different growth 

conditions) to differentiate aggregates in terms of their structural morphology and their 

kinetics traces. One important parameter can be use for that purpose is the 

concentration of GdnHCl but also the pH and the type of agitation.  
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Altogether, these results suggest the need to further investigate several other 

biophtsical conditions. In other words, the approach presented in detail above provides 

new insights into a new methodology of how to prepare a new generation of synthetic 

prions and suggest the necessity to improve our knowledge of prion structure and its 

function.
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APPENDIX I: MATHEMATICAL APPROACH 

Method for fitting kinetic profile of MoPrP(89-230) 

 

The kinetics and products of protein aggregation have been measured using at least 18 

different analytical techniques, each having its own intrinsic advantages and 

disadvantages [237]. Typical kinetics of spontaneous in vitro fibril formation of 

MoPrP(89-230) at 37°C showed a substantial lag-phase followed by a rapid increase of 

amyloid fibrils accumulation as measured by ThT fluorescence. The length of the lag-

phase is a important parameter as it can help to detect any effect on the fibril formation. 

In fact, the difference of the lag phase was used to detect the propensity of prion 

transmission [166, 174, 224]. 

The way we can estimated the lag-phase depends on the type of equation used. 

Therefore, I use three different approaches based on the different starting hypothesis.  

The first method was the qualitatively method: this method is base on the fact the 

operator estimated the lag-phase in function of is experience. This method was used in 

many papers and don’t have any physical meaning. This method was also used by 

Colby et al. [194] as a base for detecting the infectivity in biological samples. In fact, 

after the determination of the lag phase, the error was estimated using ANOVA 

procedure. 
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[162, 166, 212, 224]. The second method is base on the sigmoidal curve develop by 

Cholberg et al. [223]. The authors are careful to note that, “This expression is unrelated 

to the underlying molecular events, but provides a convenient method for comparison of 

the kinetics of fibrillation”[223]. These empirical equation has been used to analyze 

numerous data sets thus allowing for comparisons to be made between related data 

sets [162, 166, 174, 222, 226].  However, meaningful kinetic and mechanistic 

information is lacking. 

The data were fit to a sigmoidal equation (Eq 1) using  

 

F ) (Fi + mit) + (Ff + mft)/{1 + exp[-(t - tm)/τ]} (Eq.1) 

 

where F is the fluorescence intensity and tm is the time to 50% of maximal fluorescence. 

The initial baseline during the lag time is described by Fi + mit. The final baseline after 

the growth phase has ended is described by Ff + mft. The apparent rate constant, kapp, 

for the growth of fibrils is given by 1/τ, the lag time is calculated as tm – 2τ, and the 

amplitude, amp, is given by Ff - Fi. Although Eq 1 gave very good fits for the ThT kinetics 

profiles, the expression is strictly a simple empirical means of providing kinetics 

parameters for comparing rates of fibrillation from different samples and does not 

directly reflect the underlying complex kinetics scheme. 
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Third method was base by quadratic and exponential functions that describe nucleation 

and elongation stages of fibril formation. These functions are limiting forms of hyperbolic 

cosine solution (Equation 2) of the first-order approximation of the reaction equation 

developed by Bishop and Ferrone [209]. for analysis of the nucleation-controlled 

polymerization. 

F = A(cosh Bt – 1), F � ½ B2A t2 at Bt � 0, F 

� ½ A eBt at Bt ›› 1, Eq. 2 

where F = observable parameter (ThT Fluorescence), t = polymerization time, A and B 

= fitting coefficients.  

These method was used for estimated the length of lag-phase. Toward this aim we use 

a statistic program for intimately rapidly the lag-phase value. Therefore we use R 

Program (http://www.r-project.org/) a open source program give a opportunity to write a 

simple script to analyzed many data sets. 

Thanks to the precious help of Prof. Corrado Lagazio it was wrote a script for any type 

of equation for estimated the lag phase. Each kinetics profile obtain by different growth 

condition was import by the R program and Normalized. Then the data was fitted using 

all equation describe above. 

Program after many iteration give at the end a simple table with the lag phase 

estimation. For any analysis give the confidence of the reading and a PDF image to 

evaluated the properly fitting kinetics (Fig. 1). 
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Fig. 1. Example of the normal procedure of analysis using R program. 

The estimated lag phase was compare using R program using one way ANOVA. 
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APPENDIX II: Atomic Force Microscopy (AFM) 

 

The atomic force microscope (AFM) is one of the foremost tools for imaging, measuring and 

manipulating matter at the nanoscale.This technique uses a probe that consist of a sharp tip at 

the end of a micromachined cantilever generally made of Silicon or Silicon Nitride. The tip 

interacts with the sample or better with the surface of the sample, at the atomic level through 

attractive or repulsive forces, depending on the imaging regime. AFM tip determines with its 

structure the interactions with the surface. The values of these interactions are recorded while 

the tip and the cantilever are scanned on the sample surface allowing the reconstruction of the 

sample topography with sub nanometric high resolution. The tip moves in one direction and 

returns in the opposite direction generating two images (trace and retrace image) of the same 

scanline. When all the parameter are set correctly trace and retrace images should be identical. 

When instead the tip interact and modify the sample trace and retrace could appear dramatically 

different (see picture below). 
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APPENDIX III: Insulin Amyloid Fibril Formation 

 

Introduction 

Insulin, a small hormone protein consisting of two polypeptide chains, adopts an α-

helical conformation in its native state. The insulin sequence is well conserved among 

mammalian species, with few variations. Two polypeptide chains are linked by two 

interchain and one intrachain disulfide bridges [238]. Although insulin does not appear 

to be directly involved with any known human amyloid diseases, native insulin does 

readily convert to an inactive fibrillar form under a wide range of conditions [239]. In one 

clinical study, amyloid fibril–like deposits containing insulin were found at sites of insulin 

injections in a diabetic patient [240]. An interesting feature of insulin is that its three 

disulfide bridges are retained in the in vitro and ex vivo fibrillar form [238, 241] [242] 

[243]. Thus, these disulfide bonds must constrain the possible conformational 

rearrangements during the α-helix to β-sheet transition [243]. This conformational 

constraint makes insulin a unique model system for studying protein misfolding and 

subsequent amyloid fibrillization. 
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Material and Methods 

Preparation of Insulin Protein 

Bovine insulin and all other chemicals were of analytical grade or better and were 

obtained from Sigma–Aldrich and used without further purification. Solutions were made 

up by weighing out the required amount of insulin and dissolving the dry powder in 

distilled and deionized water adjusted to pH 2 with HCl. The pH was then checked and, 

if necessary, adjusted with solutions of HCl or NaOH. It was found by UV absorption at 

280 nm that insulin concentrations obtained by this method were precise to within 10%. 

Solutions were incubated in glass vials at temperatures of 37°C or 65°C for up to 24 h. 

These protocol was follow in agreement of what publish in 2005 [244] 

The fibril preparation has been diluted in buffer solution to a concentration of 10µM and 

cooled at 0oC. A droplet has been dispersed on a freshly cleaved mica substrate. After 

1 minute the sample has been washed in DI water and blown dry with air (N2 is not yet 

available). 

Thioflavin-T (ThT) Measurements. 

 Aliquots (5 µl) of insulin solutions after incubation were added to 995 µl of a 10 mM 

Na2H/NaH2PO4, 150 mM NaCl, and 50 µM ThT solution and stirred for 30 s. By using a 

fluorescence spectrophotometer (Cary Eclipse, Varian), fluorescence emission intensity 

was measured for 30 s at 482 nm (10-nm slit width), exciting at 440 nm (5-nm slit 
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width). Values were compared with those of the ThT solution and of samples taken from 

the insulin solution before any incubation. 

Atomic Force Microscopy (AFM). 

 AFM images has been acquired in tapping mode and in true non contact mode with 

three different tip, from different tip provider (NT-MDT, Nanoworld, ParkScientific 

instruments). The nominal tip radius was in all the three cases about 10nm, the 

oscillation frequency was 160kHz, 260kHz and 83kHz respectively. Scanning velocity 

was kept between 0.5 to 16mm/sec.n. 

Results and Discussion 

Insulin was incubated at 65°C for 24 h. The reaction was followed using a ThT intensity. 

The lag phase obtained was 22.3±1.12 hours  and the kinetics follow a sigmoidal curve. 

It was follow using a typical approach of discontinuous assay. The protocol use is base 

on a a paper that describe the reaction was terminate up to 24 hours at 65°C. 
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Fig. 1. Kinetics profile of insulin fibrils with ThT. The reaction was performed at 65 °C for 24 
hours. 

 

 

At the end of the reaction, sample was analyzed using atomic force microscopy (AFM). 

In Fig. 2 it was put enlighten the process of aggregation have success. In the sample 

some long fibrils (>2µm) were found. 



 122 

 

Fig. 2. AFM analysis of the product of aggregation of insulin protein. Fibrils shows a typical image 
over an area of 2x2µm. In larger images, using standard digitalization parameters (256x256 or 512x512) 
the pixel size is comparable or larger than the lateral size of the fibrils, and some details are lost. Fibrils 
appear randomly distributed with several crossings and some loop. Fibril length often exceeds 2µm (the 
scanning area).  

 

Statistic analysis of the insulin fibrils show that typically the fibrils height is 2.5 – 3 nm. 

Some bundles of fibrils are also present with height never exceeding 10nm.  The height 

distribution was show some particular peaks 10.8 nm, 3.8 nm. Analysis of different 

region taken with a larger magnification, where all the fibrils are 3nm height. The width 

of the fibril as measured by AFM range from 10 to 20 nm (Fig. 4). Even if nominally the 

three tips used are identical, fibrils appeared narrower with the 2nd tip. In order to 

obtained a more precise evaluation of the lateral size. 
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Fig. 3. Height distribution of the image shown in Fig. 1. Typically the fibrils heigh is 2.5 – 3 nm. Some 
bundles of fibrils are also present with height never exceeding 10 nm. 
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Fig. 4. A different region taken with a larger magnification, where all the fibrils are 3 nm in height. The 
width of the fibril as measured by AFM range from 10 to 20 nm, depending on the tip used. Typically the 
observed width is the result of the convolution of the sample size and the tip size. 



 125 

 

 

Fig. 5. Details of Fig. 3A.  An height profile has been obtained along the fibril marked with a straight line 
B Structures with a periodicity of about 70 nm are highlighted.  

 

Insulin fibrils report a particular periodicity  of the height along straight line about 70 nm 

like it was show in fig 5B. This fits rather well with the twisted structure already reported 

in literature and observed by TEM spectroscopy [223]. 

Insulin fibrils show some twisted fibrils; these data is in agremment what was reported 

by other authors. 

 

 



 126 



 127 

 

 

 

 

Fig. 6. A large area picture in which the colour scale has been set in order to highlight the twisted 
structures on the 3 nm height fibrils. 
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Fig. 7. Lock in phase of insulin aggregates. On the left panel a standard height image is displayed 
while on the right panel an image where the phase delay between excitation and tip oscillation is plotted. 

 

 

The lock phase of the fibrils reported in Fig. 8 show the  different resistance of insulin 

and mica surface. In fact the phase delay is significantly different when the tip interacts 

with the mica and when the tip interacts with the fibrils. This can be attributed to a 

different hydrophilicity of the two materials, or to different mechanical and/or dissipative 

properties. Maybe we should try to use this effect to distinguish different kind of fibrils. 

The differences at the borders (yellow) are due instead to the feedback delay. 
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Fig. 8. Lock phase of Insulin fibrils.  

 

 



 130 

APPENDIX III References 

1. Brange, J., et al., Toward understanding insulin fibrillation. J Pharm Sci, 1997. 
86(5): p. 517-25. 

2. Brange, J., et al., A model of insulin fibrils derived from the x-ray crystal structure 
of a monomeric insulin (despentapeptide insulin). Proteins, 1997. 27(4): p. 507-
16. 

3. Dische, F.E., et al., Insulin as an amyloid-fibril protein at sites of repeated insulin 
injections in a diabetic patient. Diabetologia, 1988. 31(3): p. 158-61. 

4. Brange, J. and L. Langkjaer, Insulin formulation and delivery. Pharm Biotechnol, 
1997. 10: p. 343-409. 

5. Jimenez, J.L., et al., The protofilament structure of insulin amyloid fibrils. Proc 
Natl Acad Sci U S A, 2002. 99(14): p. 9196-201. 

6. Devlin, G.L., et al., The component polypeptide chains of bovine insulin nucleate 
or inhibit aggregation of the parent protein in a conformation-dependent manner. 
J Mol Biol, 2006. 360(2): p. 497-509. 

7. Krebs, M.R., et al., The mechanism of amyloid spherulite formation by bovine 
insulin. Biophys J, 2005. 88(3): p. 2013-21. 

 
 



 131 



 132 

APPENDIX IV: α-Synuclein Amyloid Fibril Formation 

Materials and Methods 

Expression of α-synuclein 

E. coli strain BL21 cells were transformed with the WT and mutant α-synuclein 

constructs (pET11a:Syn, kindly gave by Professor Gustinchic and dr. Alessandra 

Chesi). One bacterial colony was inoculated into 5 mL LB broth containing 100 µg/mL 

ampicillin (QBiogene,Serva), and incubated overnight at 37°C with continuous shaking. 

Overexpression of the protein was achieved by transferring 2.5 mL pre-culture to 500 

mL LB medium supplemented with 70 µg/mL ampicillin. Cells were grown at 37°C, with 

continuous shaking to an OD600 nm of about 0.4-0.6 followed by induction with 1 mM 

isopropyl-β-thiogalactopyranoside (IPTG) for 3 h. After induction, the bacterial cells 

were harvested by centrifugation at 5000 g for 10 min and stored at -80°C. 

It was also made α-synuclein using bioreactor (BiostaB-plus 2L Sartorius). Single cell 

was inoculated in  200 mL of  LB o/n at 37°C. Following morning  it was inoculate in 2 L 

fermentator with 1.8 L of LB media  with 50 mL of preculture. After  reach 0.8 OD  

bacterial was induce with 1mM IPTG for 8 hours. 

The cell pellet was re-dissolved in 50 mM Tris (Applichem), 50 mM KCl (Applichem), 5 

mM MgAc (Applichem), 0.1% Sodium Azide (Applichem), pH 8.5 (250 mg pellet/mL of 

buffer). The cell suspension was sonicated for 10 minutes, and the lysate was 

centrifuged at 8000 g for 30 min. The supernatant was separated from the pellet and the 
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former was first boiled for 20 min, then centrifuged at 8000 g for 30 min, and finally 

filtered through a 0.22 µm filter (Millipore).  

Purification α-synuclein 

The protein was firstly purified through anion exchange chromatography (HiPrep Q FF 

column, Amersham) in 20 mM Tris, pH 8, 20 mM Tris, 1 M NaCl, pH 8 followed by 

injection onto a size exclusion chromatography column (Superdex 200 26/30 

Amersham) in 50 mM Tris/HCl, pH 7.5. Purified preparations were dialyzed against 

water for approximately 24 h, then lyophilized and stored at -80°C until use. 

Fibrillization conditions 

To characterize the aggregation properties of WT and mutant α-synuclein proteins were 

dissolved in 20 mM Tris (Aldrich)/150 mM sodium chloride (Aldrich), pH 7.4, at a 

concentrationof 100 fM (500 µL total volume in a 1.5 mL test-tube). The concentration of 

α-synuclein was determined using its _molar extinction coefficient at 280 nm (i.e. 

ε280=5120) ona Cary 100 Bio spectrophotometer. The purified proteins were then 

subjected to fibrillization  conditions in absence or presence of an equimolar quantity of 

dopamine hydrochloride (Fluka) at 37 °C with continuous shaking for the indicated time 

points. 
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ThT assay. 

 

Fibril formation was monitored by the ThT assay, which was performed by combining10 

µL of aggregated α-synuclein with 80 µL of 50 mM Glycine-NaOH (Fluka), pH 8.5, and 

10 µL of 100 µM ThT (Sigma) in water. Fluorescence measurements were recorded in 

an LSB 50 (Perkin Elmer). 

 

Results and Discussion 

α-synuclein was expressed using pET11a-syn in flask and also in bioreactors Biostat B 

plus (Sartorius). 

α-synuclein gave a high expression in both approach and the protein was successfully 

purify using a protocol from Lansbury Lab.  Kinetics experiments demonstrate is it 

possible to obtain fibrils using 96 plate with one glass beads inside. The kinetics 

obtained demonstrate a low reproducibility. However it after 100 hour of agitation at 

37°C the analysis of the sample show presence of the fibrils. Detailed analysis of the 

height distribution put enlighten two height peaks  10.8 µm and 3.8 µm. 
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Fig .1. Expression of Synuclein obtained in bioreactor (Biosta B plus) M, Marker ,1: one oD of Inoculum in 
the bioreactor; 2 one OD of before induction;3 After 4 hours of induction with 1mM IPTG; 4: after o/n 
induction. 
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Fig. 2. A: Kinetics profile of α-synuclein in plate readers. B: Example of topography of fibrils obtained 
from α-synuclein protein. 
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