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Preface

Studying protein/RNA binding is of great biological and pharmaceutical importance. In
the past two decades, RNA has gained growing attention in biomedical and pharmaceutical
research due to its key roles in gene replication and expression [1, 2]. From a pharmaceuti-
cal point of view, the advantages of targeting RNA over the conventional protein targets
include slower drug-resistance development, more selective inhibition, and lower cyto-
toxicity. Targeting RNA is, however, more challenging than targeting proteins. Designing
RNA-binding drugs is limited by the lack of medicinal chemistry studies on RNA and the
poor understanding of ligand/RNA molecular recognition mechanisms [2, 3].

Computer-aided drug-design targeting RNA faces several difficulties including the
RNA flexibility [3] and the highly charged nature of RNA molecules [4, 5]. On the one
hand, rigid-body docking and Brownian dynamics simulations are insufficient to prop-
erly describe the conformational changes and relevant inter-molecular contacts upon lig-
and/RNA binding. On the other hand, standard molecular-dynamics simulations require
unaffordable computational cost for a full binding event to be observed. For all these rea-
sons, there are still no clinically relevant RNA-binding drugs successfully developed by
computer-based drug design approaches [3]. However, promising prospects are coming
from the development of more accurate force fields for RNA [6, 7, 8, 9] and enhanced
sampling methods [10, 11, 12, 13], which allow better and faster ways of investigating
ligand/RNA complex formation.

In this thesis, we study a typical case of protein/RNA binding by means of both stan-
dard molecular dynamics and bidirectional steered molecular dynamics at the atomistic
level with an explicit representation of solvent and ion molecules. Such an explicit repre-
sentation allows a detailed and quantitative analysis of ion and solvent effects, which are
highly important for charged systems.

With a total of more than 0.5 µs of standard molecular dynamics simulations, we
are able to reproduce the structural and dynamical properties of the chosen system as
observed in NMR experiments. Besides providing detailed information on ion and solvent
distributions upon binding, our molecular dynamics simulations also confirm that binding
between an RNA and a positively-charged peptide is a spontaneous process strongly driven



by electrostatic interactions. However, standard molecular dynamics in sub-µs time-scales
is insufficient to study binding events of large and highly charged systems.

We therefore introduce a methodological improvement to efficiently accelerate bind-
ing/unbinding processes: a new collective variable named Debye-Hückel energy. As an
approximation of the electrostatic free energy component, this collective variable repre-
sents closely the electrostatics of the system including the screening effect of the ionic
solution, and hence can be proficiently used to accelerate the dynamics of molecules in
explicit solvent. To the best of our knowledge, this is the first physics-based collective
variable designed to study binding/unbinding processes.

We next perform 4.2 µs of bidirectional steered molecular dynamics simulations, in
which a biasing force acts on our Debye-Hückel energy collective variable. Within the
framework of bidirectional steerings, we also propose a method to reconstruct the poten-
tial of mean force as a function of any a posteriori chosen collective variable. This allows
a flexible post-processing of simulation results. From our steering simulations, we could
predict the correct binding pocket observed in NMR experiments in a completely “blind”
manner, i.e., without any guidance from the NMR bound structure. Such a self-guiding fea-
ture is important since it is applicable even when experimental information in unavailable,
which is the case of most computational drug designs.
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Pharmaceutical Relevance of Studying HIV-1 TAR RNA/Ligand Complex 2

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Drug-Resitance Development in HIV-1 . . . . . . . . . . . . . . . . 4

1.2.3 Searching for New Anti-HIV Drugs . . . . . . . . . . . . . . . . . . 6

1.3 Structural Features of a Tat Mimic in Complex with TAR . . . . . . . . . 8

1.4 Computational Studies of Peptide-RNA Bindings . . . . . . . . . . . . . 10

1.4.1 Achievements of MD Simulations of Protein-RNA Complexes . . . 11

1.4.2 Challenges for MD Simulations of Protein-RNA Bindings . . . . . 11

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Overview

This thesis contains an in silico study of how a small peptidic ligand binds an RNA molecule.
The Molecular Dynamics (MD) simulations were performed at an atomistic level in explicit
ionic solvent. This is crucial not only for observing the conformational changes during the
binding of ligands to RNA but also for understanding the sequence-specific recognition,
ion rearrangement, and the role of solvents upon binding.

In addition to standard MD, which requires extremely high computational costs to cover
biologically relevant time-scales, we adopt a state-of-the-art enhanced sampling technique,
namely Steered Molecular Dynamics (SMD) [10, 12]. This technique is based on biasing an a
priori chosen Collective Variable (CV). Although SMD and metadynamics have already been
used for ligand binding studies (see, for instance, Refs [14, 15]), a proper choice of the CVs



2 Introduction

remains challenging. As a new approach for an efficient acceleration, we have designed
and implemented a physics-based CV, called Debye-Hückel ENergy (DHEN), which is an
approximation of the electrostatic-interaction term of the free energy. Based on a slightly
different philosophy, several authors have proposed to bias the potential energy of the
system [16, 17, 18, 19, 20]. However, the potential energy cannot be interpreted as a proper
CV in solvated systems where the large fluctuating contributions arise from the solvent-
solvent interactions. Indeed, these methods are efficiently used in solvated systems in
a spirit more related to that of parallel tempering [21], simulated tempering [22], and
multicanonical sampling [23], i.e., to let the system evolve in an ensemble where effective
barriers are decreased and conformational transitions are more likely to occur. In this
respect, it appears fascinating to push this idea further and to use as a CV only the
component of the energy which is relevant for the transition of interest such that solvent
fluctuations are averaged out. To the best of our knowledge, this is the first time that an
“approximation of a free energy component” is used as a CV in nonequilibrium simulations
to explore the “real” free energy. This new CV stands out as a physics-based CV that takes
into consideration the long range electrostatic interaction with ionic solution screening.

Besides the computational advances, the thesis also targets a growing biological inter-
est: peptide/RNA interaction, which is extremely challenging due to the high charge and
flexibility of RNAs as well as their peptidic ligands. Last but not least, from a pharmaceu-
tical point of view, targeting viral RNAs is presumably more effective than targeting viral
proteins since viral proteins can mutate more easily than RNAs to develop drug resistance.
Therefore, the development of a robust protocol for ligand/RNA association could pave
the way to the computer-based design of new drugs targeting viral RNAs. The typical
stem-bulge-loop HIV-1 TAR RNA in complex with a small cyclic peptidic ligand (partially
mimicking the sequence and structure of the HIV-1 Tat protein, see Ref. [24]) is chosen as
a case study.

In the next Sections, we introduce the specific pharmaceutical relevance of our case
study, followed by a detailed description of our system of choice and a review on the
current stage of computational studies of protein/RNA bindings.

1.2 Pharmaceutical Relevance of Studying HIV-1 TAR RNA/

Ligand Complex

In this section, we present the basis of HIV and its replication process together with the
current stage of research in seeking anti-HIV drugs − progresses as well as drawbacks. We
also describe the chosen biological system for our simulations throughout the thesis and
discuss its pharmaceutical implication.
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1.2.1 Introduction

The family Retroviridae consists of several non-icosahedral, enveloped viruses [25]. Two
fundamental characteristics of the replication process of the Retroviridae family include
the reverse transcription of the genomic RNA into a linear double-stranded DNA and
the subsequent covalent integration of this DNA into the host genome. A virion of all
retroviruses is composed of

(i) an envelope made of glycoproteins (encoded by the env gene) and lipids (obtained from
the plasma membrane of the host cell during the budding process),

(ii) a dimer RNA with terminal noncoding regions and the internal regions that encode
virion proteins for gene expression,

(iii) proteins encoded by the retroviral genomes including: the Gag polyproteins (encoded
by the gag gene) forming the major components of the viral capsid; the protease
(encoded by the pro gene) performing proteolytic cleavages during virion maturation
to make mature gag and pol proteins; the reverse transcriptase, RNase H and integrase
(all encoded by the pol gene) responsible for synthesis of viral DNA and integration
into host DNA after infection; and the surface glycoprotein and transmembrane proteins
(encoded by the env gene) mediating cellular receptor binding and membrane fusion.
The env protein is what enables the retrovirus to be infectious.

The Human Immunodeficiency Virus (HIV) is a retrovirus that affects vital cells in the human
immune system, especially the CD4+ T cells, and causes the Acquired Immune Deficiency
Syndrome (AIDS) [26, 27]. The discovery of HIV in the early 1980s [28] earned Françoise
Barré-Sinoussi and Luc Montagnier the Nobel Prize in Physiology and Medicine in 2008.
Today, HIV has become a global pandemic. It has been reported that HIV/AIDS caused
more than 27 million deaths among 34.2 million infected cases worldwide by the end of
2011 [29]. There are two types of HIV that have been characterized, namely HIV-1 and
HIV-2. HIV-1 causes global infections while HIV-2 is less infective and mostly confined to
West Africa [30, 31]. In this thesis we focus on HIV-1.

The six basic steps of HIV-1 replication include [32]:

Step 1: Fusion and entry. The glycoprotein gp120 on the envelope of HIV-1 strongly inter-
acts with the CD4 receptor on the surface of human T cells [33]. The binding of gp120
to CD4 receptor promotes further binding of a co-receptor resulting in a subsequent
conformational change in gp120. This allows gp41, another viral glycoprotein em-
bedded in the viral envelope, to unfold and insert its hydrophobic terminus into the
cell membranes, facilitating the fusion of the viral and cellular membranes. Finally,
the viral capsid enters the host cell and releases two viral RNA strands and three
essential viral enzymes [34].
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Step 2: Reverse transcription. Genetic information of the retrovirus HIV-1 is carried by
two strands of RNA [25] while genetic material of human cell is found in DNA.
Therefore, HIV-1 makes a DNA copy from its RNA through a process called reverse
transcription. This task is done by the viral reverse transcriptase enzyme [35]. The
new DNA produced by this process is called proviral DNA.

Step 3: Integration. The viral integrase enzyme cleaves two nucleotides from each 3’ end of
the proviral DNA creating two sticky ends. Integrase then carries the cleaved proviral
DNA into the nucleus of the host cell and facilitates its integration into the host cell’s
DNA [35, 36]. The host cell’s genome now contains the genetic information of HIV-1
as well.

Step 4: Transcription. After the proviral DNA is integrated into the host cell’s genome, the
host cell’s machinery accidentally induces the transcription of proviral DNA into
viral messenger RNA (mRNA) [37].

Step 5: Translation. The mRNA containing the instruction to make new virus then migrates
to the cytoplasm. Each section of the mRNA corresponds to a protein building block
of the virus. As each mRNA strand is processed, a corresponding string of proteins
is synthesized. After translated from viral mRNA, the long strings of proteins need
to be cut into smaller proteins which are able to carry out their own functions. This
process is done by the viral protease enzyme and is crucial to create an infectious
virus [38, 39].

Step 6: Assembly and maturation. Two viral RNA strands and the enzymes then come
together and other proteins assemble around them to form the viral capsid [40]. This
immature viral particle buds off the host cell using the cell’s membranes to make its
own envelope. The virus then becomes mature and ready to infect other cells.

The above-mentioned steps are crucial for the HIV-1 life cycle and hence can be considered
as targets for chemotherapeutic intervention [41]. Current anti-HIV drugs can decrease the
replication capacity of HIV-1 in infected cells (see Table 1.1). Unfortunately, they cannot
completely stop the replication of the virus [42].

1.2.2 Drug-Resitance Development in HIV-1

For a successful reproduction in life, it is necessary to have a mechanism that creates copies
of the original genetic materials. Several enzymes performing this function are generally
known as replicases. In the specific case of DNA copying processes, these enzymes are
known as DNA polymerases. As it is critically important to copy the genetic material in
a precise way, it is not surprising to find error-correcting or proof-reading mechanisms in
most species from bacteria to human. The proof-reading mechanism is performed through
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Class of drugs First Actions of drugsinvention

Fusion/entry inhibitors
2005 preventing HIV-1 from

(Enfuvirtide [43]) binding to or entering
human immune cells (step 1)

interfering with the action
Nucleoside/nucleotide reverse 1987 of reverse transcriptase enzyme
transcriptase inhibitors (NRTIs) (Zidovudine [44]) which transcribes viral RNA

into proviral DNA (step 2)
Non-nucleoside reverse 1996 inhibiting reverse transcriptase

transcriptase inhibitors (NNRTIs) (Nevirapine [45]) enzyme (step 2)

Integrase inhibitors

interfering with integrase enzyme
2007 which helps HIV-1 to insert

(Raltegravir [46]) its genetic materials into
human genome (step 3)

Protease inhibitors

inhibiting protease enzyme
1995 which cleaves long strings

(Saquinavir [47]) of viral proteins into smaller
functional proteins (step 6)

Table 1.1: Current anti-HIV drugs can inhibit the viral replication at a certain stage in
the viral life cycle.

a 3’−5’ exonuclease activity. Shortly, if during the copying process, an incorrect base has
been incorporated, then this base is immediately recognized and the DNA polymerase
reverses its direction by one base pair and eliminates the mismatched base. After that, the
polymerase can re-insert the correct base and continue the copying process.

As we mention in the previous section, the copying enzyme for the genetic material of
HIV-1 is called reverse transcriptase. However, this enzyme copies RNA into DNA. The
copying process performed by the reversed transcriptase is fast but inaccurate. Unlike its
bacterial or human counterparts, this copying does not possess a proof-reading mechanism
and therefore the process of HIV-1 reverse transcription is extremely error-prone [48]. The
resulting mutations can cause structural differences, i.e., each new generation of HIV-1
differs slightly from the previous one. Mutations occur randomly and are common in
HIV-1. On one hand, most mutations give disadvantages to the virus itself: mutations may
affect the viral functions and slow down its ability of infecting CD4+ T cells. On the other
hand, some mutations can actually give HIV-1 a survival advantage to escape from the
control of human immune system and to fight against medical treatment: mutations can
block the anti-body and anti-HIV drugs from interacting with the HIV-1 enzymes which
they are designed to target. HIV-1 has been developing resistance to all current clinical
drugs including fusion inhibitors, nucleoside and non-nucleoside reverse transcriptase
inhibitors, integrase inhibitors, and protease inhibitors [49, 50].

HIV-1 drug resistance is one of the main reasons why mono-therapy treatment, i.e., using
only one type of drugs, fails after used for a prolonged period of time. One of the medical
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solutions to decrease drug resistance is to take a combination of three or more drugs
simultaneously [51].

1.2.3 Searching for New Anti-HIV Drugs

Searching for new classes of drugs could be the temporary solution of the strongly growing
drug-resistance problem [52]. In this respect, in the HIV-1 replication process, the transcrip-
tion step (step 4) play an extremely important role. It is required not only during the
exponential growth of the virus but also, critically, during the activation of the integrated
proviral genome which also facilitates drug resistance [53]. However, although several com-
pounds blocking the viral transcription have been synthesized [54, 55, 56, 57, 58, 59, 60],
neither of them have yet been approved as anti-HIV drugs.

1.2.3.1 HIV-1 Transcription Process

The transcription from an integrated proviral DNA into a viral mRNA is accidentally
carried out by the human cellular transcription factors. However, this process cannot be
completed without the regulation of a complex interplay among the cellular transcription
factors and two key transcriptional regulatory elements of the virus itself, namely the
proviral Long Terminal Repeats (LTRs), and the viral Trans-activator of transcription (Tat)
protein [61]:

(i) LTRs are the two identical sequences found at the two ends of proviral DNA. They
carry out two important functions [62]: (i) they are the sticky ends used by the HIV-1
integrase to insert the proviral DNA into human genome and (ii) they act as pro-
moter/enhancer in the transcription process. The 5’ LTR normally acts as an RNA
polymerase II promoter while the 3’ LTR normally takes part in the transcription
termination. When integrated into the host genome, they influence the cell transcrip-
tional machinery to change the amount of transcripts which are going to be made.

(ii) Tat is a viral protein comprising of between 86 and 101 amino acids [62, 63]. It enhances
the transcriptional elongation [64].

The transcription is initiated at 5’ LTR promoter. In the absence of Tat, most of the viral
transcriptions terminate prematurely, producing a short RNA molecule with 60 to 80 nu-
cleotides [65, 66] (see Figure 1.2.1a). When Tat is present, it increases the transcription level
by several thousand-fold [64, 67]. In this process, Tat binds to the viral Trans-Activation
Response element (TAR) [68]. TAR is a small RNA portion transcribed from the first 59
nucleotides of the proviral DNA [69]. As soon as TAR is transcribed, Tat enhances the
transcription of the remainder HIV-1 genetic code (see Figure 1.2.1b). The exact mech-
anism of enhancement is still under debate. However, it is known that after binding to
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Figure 1.2.1: A schematic representation of the HIV-1 transcription process. (a) The
transcription is aborted after producing 60−80 nucleotides due to the absence of Tat. (b)

A full-length transcription is enhanced by Tat protein binding to TAR RNA.

TAR, Tat stimulates a specific kinase called Tat-Associated Kinase (TAK) [70]. This kinase
then performs a hyperphosphorilation of the cellular RNA polymerase II. Perhaps more
interesting is the presence of a functional link between the cyclin T1 component of TAK
and transactivation. In fact, TAK is able to form a tenary complex with TAR and cyclin
T1 only when a functional loop of TAR has been generated suggesting that under these
conditions, this loop region can act as a binding site for other cellular co-factors that can
potentially enhance the transcription of the last part of rest of the proviral DNA [70].

1.2.3.2 Targeting Tat/TAR Interactions for Plausible Intervention

The key role played by Tat in HIV-1 transcription has made it the center of attention since
its discovery in 1985 [62]. Inhibition of Tat-TAR interactions is becoming an attractive target
since:

(i) TAR is the viral RNA element transcribed from 59 first nucleotides of the viral 5’ LTR
promoter [69]. This promoter plays a crucial role in the replication of HIV-1. In vitro
studies have shown that conserved nucleotides in TAR stem regions are critical for
Tat binding [71] and mutations of nucleotides in TAR hairpin severely affect the
formation of the viral RNA dimer [72]. Therefore, designing drugs targeting TAR
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could greatly reduce the drug resistance due to viral mutations.

(ii) in vitro studies have shown that the apical portion of TAR (from G17 to G45) specifically
binds to the arginine-rich region of Tat [73, 74, 75]. This discovery sheds light on
the general features of the Tat-binding-site of TAR and hence limits the range for
searching binding inhibitors. This could lead to classes of inhibitors with high affinity
and specificity which are important criteria in drug design.

(iii) there is no counterpart of TAR or Tat in humans cells. Therefore, targeting Tat/TAR
interaction is presumably advantageous over most of current anti-HIV therapies
which are interfering with the human cell’s function.

By combinatorial approaches, Hamy et al. were able to identify a peptide named CGP64222
which could compete with Tat in binding to TAR. In fact, NMR analysis has shown that
CGP64222 binds to TAR at Tat binding site [76]. CGP64222 is the first antiviral com-
pound that can selectively inhibit a protein-RNA interaction. Since then, numerous Tat-
TAR interaction inhibitors have been synthesized and evaluated in the last two decades
[77, 78, 54, 79, 80, 55, 56, 81, 82, 57]. However, none of these molecules have been approved
for preclinical studies due to their low binding affinity or specificity, and hence, inhibiting
Tat-TAR interactions still remains challenging.

1.3 Structural Features of a Tat Mimic in Complex with

TAR

As a new approach to tackling Tat-TAR interaction, Davidson et al. synthesized confor-
mationally constrained mimics of HIV-1 Tat. They discovered a family of 14-amino-acid
beta-hairpin cyclic peptides able to bind to TAR with nanomolar affinity and greatly im-
proved specificity compared with previous ligands [24]. Among 100 peptides in the in-
vestigated family, the arginine-rich sequence cyclo-RVRTRKGRRIRIPP (L22 hereafter, see
Figure 1.3.1b) stands out for its potency. L22 binds to TAR with an affinity of 1 nM and
exhibits a large number of intermolecular Nuclear Overhauser Effect (NOE) data observed in
Nuclear Overhauser Effect SpectroscopY (NOESY) spectra when in complex with TAR (pdb
code: 2KDQ). NMR experiments have shown that L22 binds to the major groove of the
upper RNA helix (nucleotides 26-29 and 36-39, see Figure 1.3.1c), which is also the binding
pocket of Tat [73, 74, 75].

As observed in NMR experiments, the loop residue A35 was not only flipped out from
the RNA but also drawn downward through a cation-π interaction with the guanidinium
group of Arg11 (see Figure 1.3.2a). The hydrophobic residue Ile10 was buried in the TAR
major groove and presumably facilitated the formation of the base triple U23/A27-U38
(Figure 1.3.2b). The side chain of Arg5 stacked on top of the base of U23 and thus provided
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Figure 1.3.1: Sequences of TAR RNA (a) and L22 peptide (b) and the L22-TAR complex (c),
whose structure has been determined by NMR experiment [24]. TAR has two well-defined
double helical regions (green and blue), a bulge (red), and an apical loop (magenta). L22

has a β−hairpin loop structure, stabilized by LPro−DPro.

a cation-π interaction with this nucleotide (Figure 1.3.2c). The guanidinium group of
Arg5 formed hydrogen bonds with G28 (Figure 1.3.2d). Besides the above-mentioned key
interactions, L22 also formed several other polar and hydrophobic interactions with TAR.
They all contributed to keeping the complex well structured with a high binding affinity,
i.e, Kd = 1 nM, in an ionic solution of 10 mM, in which K+ was used as cation and a
mixture of HPO4

2− and H2PO4
− was used as anion [83, 24].

Figure 1.3.2: Key L22-TAR interactions as observed in NMR experiments. Figures are
reproduced from Ref. [24].

The L22-TAR complex system is ideally suited to study protein-RNA binding for several
reasons:

(i) the structures and dynamics of apo-TAR and L22-TAR complex have been characterized
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by NMR experiments [84, 83, 24]; this allows a detailed comparison with molecular
simulations,

(ii) since L22 is a structural mimic of Tat and binds to TAR at the same region as Tat [85]
with comparable affinities (Kd = 1 nM versus Kd = 10 nM, respectively [86, 83, 24]), it
is expected that several aspects of the L22-TAR binding mechanism would be shared
with the much less well understood Tat-TAR interaction,

(iii) L22 is nearly as active as the antiviral drug nevirapine against a variety of clinical
isolates in human lymphocytes, and therefore represents an attractive antiviral lead
compound [87].

The L22-TAR complex was thus chosen as a case study for this thesis. In silico studies can
provide important insights on structural and dynamical properties of the L22-TAR complex
to gain a better understanding of the underlying molecular recognition mechanism.

1.4 Computational Studies of Peptide-RNA Bindings

In the past three decades, while docking tools have been successfully developed for
predicting protein-protein interactions [88, 89], much less has been achieved for an ef-
ficient and accurate prediction of protein-RNA and peptide-RNA interactions despite
great effort has been spent on improving the docking methods and scoring functions
[90, 79, 91, 92, 93, 94, 95, 96, 97, 98]. The challenge for rigid-body docking methods comes
from the high plasticity of RNA. Indeed, binding affinity and specificity are strongly dom-
inated by induced-fit mechanisms [99, 100]. An understanding of molecular recognition
thus requires a knowledge of RNA’s conformational change upon binding.

MD simulations are currently the most suitable tools to study molecular recognition
involving RNA. However MD simulations of nucleic acids seriously lagged behind those
of proteins mainly due to the lack of available experimental high-resolution nucleic-acid
structures which can allow a thorough validation of force fields and simulations [101].
Specifically, among MD simulations of nucleic acids, there are remarkably less simulations
of RNA compared to DNA. This can be explained by the more complex structural determi-
nants of RNA with respect to DNA. Indeed, unlike DNA which is often found in double
helix structures, RNA can frequently feature non-canonical structural elements such as
loops, hairpins, and bulges, which usually play an important role in the binding sites. This
section contains discussions on both recent developments and current challenges faced by
RNA MD simulations.
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1.4.1 Achievements of MD Simulations of Protein-RNA Complexes

MD simulations on RNA have improved progressively. Before 1995, simulations were
unable to provide stable RNA trajectories beyond 500-ps timescale. This was due to the
limited resources in both computing power and experimentally resolved RNA structures
(based on which the force field parametrization was done.) Since then, together with the
increment of computing power as well as the introduction of PME treatment for long-range
electrostatic forces (see Section 2.2.1.5 for the basic concepts), RNA force fields have been
considerably refined (see Section 2.2.1.3 for discussions on force field improvements). A
broad variety of RNA simulations (e.g., single- and double-stranded RNAs, catalytic RNAs,
and increasingly large RNA-protein complexes) has been performed using AMBER force
fields. In several cases, the results not only matched quantum chemical data but were also
in good agreement with experiments. These simulations also provided stable structures of
complex RNA systems in longer timescales (i.e., ~100 ns), shedding light on new structural
and dynamical properties of RNA in aqueous ionic solution. The combination of increased
computer power, more reliable experimental structures, and refined force fields makes MD
simulation a promising tool for studying the structures, dynamics, and functions of RNA.

1.4.2 Challenges for MD Simulations of Protein-RNA Bindings

Highly Charged Character of RNA Molecules

The highly charged nature of RNA creates a strong solvation and ion association around
the molecules [4, 5]. However, inclusion of an explicit representations of solvent and ion
molecules increases significantly the number of atoms to be simulated; in a typical explicit-
solvent MD simulations, more than 90% of the computational cost is spent on calculat-
ing solvent-solvent interactions [101]. More efficient alternative approaches have been
recently developed with the creation of implicit-solvent representations based on Poisson-
Boltzmann and Generalized-Born theories [102, 103, 3]. By using Poisson calculations in
combination with a set of optimal Born atomic radii for small model compounds con-
stituting the building blocks of nucleic acids, Banavali and Roux were able to not only
provide a good agreement with solvation free energies from explicit-solvent calculations
but also accurately describe the free energy associated with base pairing for both standard
and mismatched nucleic-acid base pairs [104]. Regarding the Generalized-Born approach,
which is an approximation of the Poisson-Boltzmann equation, application to RNA is still
limited. However, Rizzo et al. found a high correlation between these two implicit-solvent
approaches in representing absolute free energies of hydration for more than 500 neutral
and charged compounds [105]. Despite some success has been reported for RNA systems,
implicit-solvent methods still suffer from inaccuracy and high computational cost for large
systems [101].
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During the binding process, the displacement of water molecules and ions from the
RNA structures results in an entropic contribution to the energetics of complex formation
which needs to be treated carefully [106]. The residence time of solvent and ion molecules
as well as the stabilizing effects of both mobile and bound solvents and ions partially
determine the binding affinity and specificity [107]. Moreover, the presence of ions creates
a screening effect which reduces the repellent interactions among the positively charged
phosphate groups of nucleic acid backbones [108, 109]. Ions are thus crucial for stabilizing
nucleic acid structures and require a careful treatment in simulations. Therefore, although
time consuming, using an explicit solvent and ion representations is necessary to provide
important information on the RNA structural adaptation and molecular recognition under
solvation and ionic effects.

Force Field Inaccuracies

AMBER force field is one of the most used force fields for RNA simulations. Despite the
satisfactory descriptions of structural and thermodynamic features of some RNA systems,
several limitations have been also reported for this force field, including:

(i) the challenging description of the sugar-phosphate backbone which has multiple de-
grees of freedom and therefore cannot be correctly described using one set of partial
atomic charges [110, 111].

(ii) the fixed charge model of the most current force fields is not able to characterize the
highly polarizable feature of the phosphodiester moiety. This difficulty is expected
to be overcome by a new generation of polarizable force fields [112], which has been
tested only for proteins and DNA simulations.

(iii) the fixed charge model also fails to accurately describe interactions between RNA and
divalent ions such as Mg2+ and anions such as Cl− [113, 3].

(iv) the non-canonical structural elements of RNA, i.e., loops, hairpins, bulges, pseudo-
knots, mismatched, etc., challenges the current force fields [114]. More simulations
on these structures are needed for a careful comparison with available experimental
or quantum mechanical data.

Insufficient Sampling

Current computer power allows performing MD simulations up to microsecond timescale
for small proteins [115, 116]. Plenty of MD simulations of RNA have also reached time
length of several hundreds of nanoseconds. However, timescale of real events is still much
longer than affordable simulation timescale. To overcome this problem several efforts have
been spent in the last decades on developing accelerated sampling methods [117, 10, 11,
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12, 13]. Longer simulations and efficient sampling are also crucial for force field testing
and validation.

1.5 Thesis Organization

In Chapter 2, we present the computational methods used in this thesis, which include
standard MD simulation, bidirectional SMD simulation, and free-energy reconstruction
from nonequilibrium works. Here, we also propose a reweighting method to project the
free energy on any a posteriori chosen CV.

In Chapter 3, we introduce our new electrostatic-based CV, which is an approximation
of the electrostatic free energy given by the Debye-Hückel formalism.

In Chapter 4, we present results from ~0.5 µs obtained by nine standard MD simulations
starting from the NMR structure of the L22-TAR complex. Besides reproducing the NMR
experimental features of this system and confirming the well-known role of electrostatic
interactions during peptide/RNA binding events, these simulations motivated us to design
and implement the CV introduced in Chapter 3.

In Chapter 5, we present results from ~4.2 µs bidirectional SMD simulations of TAR
and L22 binding/unbinding events using our new CV. Besides reproducing the reported
NMR binding pose, we found a new binding pose in the same TAR pocket.

Chapter 6 contains the conclusions of the thesis and the perspectives in which we
present the preliminary results of well-tempered metadynamics simulations applied on
our proposed CV as a complementary approach supporting the SMD findings described
in Chapter 5.
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Chapter 2

Computational Methods
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2.1 Overview

Computer simulation (referred to as simulation hereafter) is the science of modeling a real
or theoretical system, executing the model on a computer, and analyzing the execution
output. Starting from the early 1950s, simulations have grown hand-in-hand with the fast
development of computer performance. Nowadays, simulations have become an important
discipline in physics, chemistry, and biology.

Science is about both observation and comprehension. Science is incomplete until
observations are fully comprehended [118]. Traditionally, observation is provided by ex-
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periments and comprehension is based on theories. Simulations represent a new scientific
methodology, forming a triangle-like relationship with theory and experiment. On the
one hand, simulations act as computer experiments to validate theories. That is when an
experimental probe is out of reach; e.g., studying of truly isolated systems, extreme tem-
perature and pressure conditions, subtle details of molecular motion and structure such
as fast ion conduction or enzyme action, etc. [119, 120]. On the other hand, simulations
help interpreting experimental observations. That is when theories fail to provide an exact
analytical solution or derivation due to the complexity of the system (e.g., liquid, imper-
fect gases, macromolecules, etc.) and therefore has to rely on one or more approximation
schemes [119]. Simulations have a valuable role in such cases by providing essentially exact
results that can be compared with or interpret experimental results. Therefore, simulations
have been intensively used in material and biophysical sciences to study dense molecular
systems as important counterparts of experiments.

Molecular Dynamics (MD) simulations [121] are among the most commonly used tech-
niques in biomolecular studies. Given nowadays computer power, atomistic MD simu-
lations can explore up to microsecond timescale for small protein systems [115, 116];
however, most important biological processes happen at the millisecond or even second
timescales. With these technical limitations, current MD simulations mostly provide infor-
mation around local equilibrium states of biomolecular systems. There are, however, impor-
tant processes involving transition between states or conformations such as biomolecule-
ligand binding/unbinding. MD simulations, in such cases, require large computational
resources to bring the system out of a local equilibrium. Several enhanced sampling tech-
niques have been introduced to accelerate the state transition such as Steered Molecular
Dynamics (SMD) [10, 12] and Metadynamics [11]. These methodologies are based on MD
simulations and accelerate the transition by adding an external force or a bias potential to
help the system escape from a local trapping free-energy minimum.

In this chapter, we will introduce the basic concept and methodology of MD simulations,
followed by a description of SMD.

2.2 Molecular Dynamics Simulations

This section describes the basic concepts and theoretical background associated with MD
simulations. It also contains common methods to validate the structural and dynamical
properties from MD simulations against NMR data.
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2.2.1 MD Methodology

2.2.1.1 MD Algorithms

Classical MD simulations are based on three approximations

(i) Born-Oppenheimer approximation [122] enables separating the electronic and nuclear mo-
tions. Such assumption is valid due to the much lighter weight of an electron com-
pared to the nucleus of an atom.

(ii) Adiabatic approximation, originally stated by Born and Fock in form of adiabatic theorem
[123], This approximation assumes that the electrons adjust rapidly to any nuclear
displacement and thus they always remain in their instantaneous eigenstate (e.g.,
ground state) if the nuclear displacement is slow enough and if there is a gap between
the eigenvalue and the rest of the spectrum.

(iii) Nuclei are presumably heavy enough to be considered classical objects, and hence their
movements can be described solely by Newton’s equations of motion. However, this
assumption is generally not valid for hydrogen atoms. Its use is only justified by two
facts: it is computationally expensive to include quantum nuclear effects and these
effects are already taken care of by the empirical force fields which are parametrized
by quantum calculations and carefully compared to experimental data (see Section
2.2.1.3 for more details).

As a consequence of these approximations, in classical MD simulations, the energy of a
molecule can be considered a function of the nuclear coordinates only. Such simplification
is useful when there is no quest for electronic properties. The movement of an atom is then
described by numerically integrating the Newton’s equation of motion

f = mr̈, (2.2.1)

where f is the total force acting on the atom, m is the atomic mass, and r̈ is the acceleration
caused by the force f. Integrating Equation (2.2.1) requires the knowledge of initial atomic
coordinates and velocities.

One of the simplest algorithms used to integrate the equations of motion (2.2.1) is the
so-called Verlet algorithm [124]. This algorithm is simply based on a Taylor expansion of
coordinate r around time t, which yields

r(t + ∆t) = 2r(t)− r(t− ∆t) +
f(t)
m

∆t2 +O(∆t4). (2.2.2)
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Velocity is then computed based on the knowledge of the trajectory

v(t) =
r(t + ∆t)− r(t− ∆t)

2∆t
+O(∆t2). (2.2.3)

There are several other algorithms equivalent to the Verlet scheme, among which, the
simplest is the so-called leap-frog algorithm [125]. This algorithm evaluates the velocities at
half-integer time step. The new positions are then updated from these velocities

v(t +
∆t
2
) = v(t− ∆t

2
) +

f (t)
m

∆t, (2.2.4)

r(t + ∆t) = r(t) + v(t +
∆t
2
)∆t. (2.2.5)

Leap-frog is the algorithm employed in the MD simulations of this thesis.

Verlet and leap-frog algorithms can be recovered from each other, therefore they pro-
duce identical trajectories and accuracies. These algorithms are preferred in most MD
simulations since they share the same time-reversibility with the Newton’s equations of
motion.

2.2.1.2 Statistical Ensembles

Statistical mechanics provides a linkage between the microscopic world such as the atomistic
information of a system described by the Newton’s equation of motion (i.e., Equation
(2.2.1)) and the macroscopic observables such as thermodynamic, structural, and dynamical
properties of the same system. Such a linkage involves the concept of ensemble, which was
originally introduced by Gibbs in 1876 [126]. An ensemble is an imaginary collection of
systems that

(i) share the same set of macroscopic properties (e.g., total energy E, number of particles
N, volume V, pressure P, temperature T, chemical potential µ, etc.) and

(ii) can be described by the same Hamiltonian or the same set of microscopic laws of
motion with different initial conditions so that each system has a unique microscopic
state at a given instant of time.

In other words, there are many microscopic configurations of a system which lead to the
same macroscopic properties. Once an ensemble of these configurations is defined, the
macroscopic observables are calculated by performing ensemble averages over all micro-
scopic configurations. The “general” form of an ensemble average is heuristically given by
[127]
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〈A〉 ≡ ∑i Aiρi

∑i ρi
. (2.2.6)

Here 〈A〉 represents the ensemble average of the system property A, i indexes the
microstate, Ai is the value of property A measured when the system is in microstate
i, and ρi is the probability of observing the system in the microstate i. Note that the
discretized phase space is used for notational convenience and continuous case can be
easily generalized.

The probability distribution function ρ is dependent on the type of ensemble. The
simplest and most fundamental ensemble is that of an isolated system with constant N,
V, and E, which is also referred to as the NVE ensemble or the microcanonical ensemble.
The phase space distribution of an NVE ensemble is uniform over the constant energy
hypersurface E and zero otherwise.

However, NVE ensemble involves perfectly isolated systems with constant total en-
ergies. This condition cannot be achieved in real-life experiments. It is thus important
to define other ensembles that are more practical and are able to reflect the common
experimental setups. Those include the canonical ensemble (NVT), the isothermal-isobaric
ensemble (NPT), and the grand canonical ensemble (µVT).

In the following, we present the probability distribution function for NVT and NPT
ensembles, which represent the most commonly performed conditions in experiments. We
also briefly introduce how to perform MD simulations on these two ensembles.

Canonical Ensemble The condition of canonical ensemble, or NVT ensemble, is achieved
by coupling the system with an infinite external heat bath. When the system is in thermal
contact with the heat bath, its energy is allowed to fluctuate such that its temperature
remains unchanged. Notably, the extended system which is composed of the system and
the heat bath can be considered in a microcanonical formulation.

The probability distribution function of NVT ensemble is given by the Boltzmann’s
distribution (or Boltzmann’s law), also called Gibbs’ distribution [128]

ρ
(NVT)
i =

e−βEi

Z(NVT)
. (2.2.7)

Here the probability is characterized by the probability ρ
(NVT)
i of finding the system in

a microstate with energy Ei; β = 1/kBT, where kB is the Boltzmann constant; Z(NVT) is a
normalization factor given by

Z(NVT) = ∑
i

e−βEi . (2.2.8)
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Z(NVT) is also called the partition function of the canonical ensemble.

To perform MD simulation of a system characterized by an NVT ensemble, we need
to mimic the effect of the heat bath. Several methods to obtain such a thermostat have been
proposed including those by Andersen in 1980 [129], Berendsen et al. in 1984 [130], Nosé
in 1984 [131], Hoover in 1985 [132], and Bussi et al. in 2007 [133].

Isothermal-Isobaric Ensemble Isothermal-isobaric ensemble, or NPT ensemble, is one
of the most important ensembles due to its close reflection of the most commonly used
experimental conditions. Such a condition is achieved by concurrently coupling the system
with a heat bath and an imaginary “piston” to maintain a fixed temperature and pressure.
Consequently, we must allow the volume of the system to fluctuate. Therefore, the proba-
bility distribution function of NPT ensemble must include volume V as its variable and is
hence given by [127]

ρ
(NPT)
i =

e−β(Ei+PVi)

Z(NPT)
. (2.2.9)

The normalization factor Z(NPT) is then given by

Z(NPT) = ∑
i

e−β(Ei+PVi). (2.2.10)

The strategies to achieve the isobaric condition of the NPT ensemble, which are now
widely referred to as barostats, were first introduced by Andersen [129] and later generalized
by Parrinello and Rahman [134].

2.2.1.3 Force Fields

A force field is defined as a functional form and parameter sets describing the potential
energy of a system of interacting particles, from which the force acting on a single atom is
calculated at each time step of an MD simulation:

fi = −
∂V(r)

∂ri
, (2.2.11)

where V(r) denotes the potential energy. The most common functional form of a force
field is a simple additive four-term expression quantifying the intra- and inter-molecular
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interactions [135]:

V(r) = ∑
bonds

ki
2
(li − li,0)2 + ∑

angles

ki
2
(θi − θi,0)

2 + ∑
torsions

Vn

2
(1 + cos(nω− γ))

+
N

∑
i=1

N

∑
j=i+1

{
4εij

[(σij

rij

)12
−
(σij

rij

)6]
+

qiqj

4πε0rij

}
,

(2.2.12)

The first three terms in Equation (2.2.12) represents the bonded interactions in a molecular
system including the bond stretching, angle bending, and bond rotating. Displacement of
bond lengths and angles from their equilibrium values (i.e., the bond length li deviating
from its equilibrium value li,0 in the first term and valence angle θi varying from the its
equilibrium value θi,0 in the second term) causes energetic penalties, which are modeled
with a harmonic potential form. The third term is a torsional potential quantifying the
energy changes associated with bond rotations. The fourth term represents the non-bonded
interaction between all pairs of atoms in the same or different molecules and separated
by at least three bonds. Non-bonded interaction includes electrostatic and van der Waals
interactions which are commonly described by a Coulomb potential and a Lennard-Jones
potential, respectively. Various constants ki, Vn, εij, σij in Equation (2.2.12) characterize
the atoms and their unique behavior when interacting with other specific atoms. Such
constants of various atoms form the force field parameter sets.

Finding parameter sets for a certain functional form of force fields is not a trivial task. A
“good” parametrization has to ensure that calculations can produce appropriate molecular
structures and interaction energies. As reference for force field parametrization, there is
a wide class of experimental and quantum mechanics computational data. Therefore, an
important characteristic of MD force fields is that they are all “empirical”; there is no
“correct” force fields with respect to both functional form and parameter set. Indeed, force
field only provides an estimation of the true underlying interaction energy, which controls
all molecular behavior. Therefore, the accuracies of MD simulations depend severely on
the quality of the chosen force field. Despite a significant amount of effort has been spent
on force-field development, the force fields in use today still suffer from inaccuracies.

In MD simulations, the force field is chosen according to the aim of simulation and
the properties of the systems. For RNA systems, AMBER force fields are among the most
widely used. In AMBER force fields, base stacking and hydrogen bonding parameters are
sufficiently well described [136, 137]. Additionally, AMBER utilizes partial atomic charges
to calculate the electrostatic field around the monomers, which reproduces the molecular
interactions of nucleobases quite well [113]. Recently, other refinements have been made on
the standard AMBER99 force field to improve the description of RNA backbone dihedral
angles α, γ, and χ [6, 138, 7]. With these improvements, stability of RNA backbones in MD
simulations has been confirmed in rather long timescales of hundreds of nanoseconds [139].
Despite good performance in major aspects, AMBER force field has also few significant
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deficiencies, including:

(i) the flexibility of RNA sugar-phosphate backbone challenges the description of electro-
static potential which is currently based on a constant-point-charge model [110, 111].

(ii) polarization effects are still neglected by AMBER force fields for RNA

(iii) as a consequence of the neglected polarization, the description of anions and divalent
cations such as Mg2+ is also a big challenge for the force field [113, 3].

Besides these explicit deficiencies, other subtle RNA-force-field issues caused by the lim-
itations of modeling have been also reported for: (i) description of single-stranded RNA
hairpin segments [7] and (ii) dependence on the choice of salt strength [140].

2.2.1.4 Periodic Boundary Conditions

Periodic Boundary Conditions (PBCs) extend a finite system to an infinite and continuous
one. Therefore they can be suitably used in biomolecular simulations. Indeed, in vivo
and in vitro biomolecules are surrounded by a relatively infinite water medium. However,
doing simulations of biomolecules in a large water box to mimic the infinite condition
is simply unaffordable and impractical. PBCs become useful in such a case. They create
repeatable regions which are (small) boxes of water with molecules immersed inside. When
a molecule moves in the central box, its periodic image in every one of the other boxes
moves exactly in the same way. PBCs thus ensure that when an atom moves off the edge,
it reappears on the other side; or in other words, there is no wall at the boundary. With
PBCs, the system is infinite, continuous, and has no surface.

Besides the above-mentioned advantages, PBCs create artifacts as well. One of the
most severe PBC problems is the artificial interaction between the molecules and their
surrounding images. In systems of highly charged molecules such as DNAs and RNAs,
this problem becomes serious because of the spurious electrostatic interaction between the
charged molecules and their periodic images. To adjust this side effect, we have to “add”
extra neutralizing ions to the simulation box. These neutralizing ions together with the buffer
ions from experiment are distributed around the molecules and hence create a screening
effect which helps reducing the spurious electrostatic interaction between periodic images.

The solution of adding more ions could help decreasing the artificial electrostatic inter-
actions but in turn creates other side effects. In fact, these computational neutralizing ions
are conceptually different from the experimental buffer ions.
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2.2.1.5 Long-Range Interactions

Coulomb electrostatic interaction possesses a long-range feature that poses many chal-
lenges to current MD simulations and needs a special treatment.

Mathematical and computational problems of long-range electrostatics Let us consider
a molecule containing N charged atoms in a cubic box with diameter L (V = L3). PBCs are
applied in all directions. The Coulomb interaction energy is then given by

E =
1
2

N

∑
i=1

qiφ(ri), (2.2.13)

where

φ(ri) = ∑
n

N

∑
j=1 (j 6=i)

qj

|ri − rj + nL| = ∑
n

N

∑
j=1 (j 6=i)

qj

|rij + nL| (2.2.14)

is the electrostatic potential at the position of atom i due to the contributions of all other
atoms and n = (nx, ny, nz) (ni ∈ Z) is the box index vector. The sum over n represents
the effect of periodic boundary condition, atom i interacts not only with atom j at rj but
also with all images of j at rj + nL. Theoretically, Equations (2.2.13) and (2.2.14) represent
a well-defined electrostatic problem: given all charges qi and their positions ri, we can
compute the electrostatic interactions. In practice, such computation is not trivial, due to
two main problems:

Mathematical problem. The sum in Equation (2.2.14) is not an absolutely convergent series,
but rather a conditionally convergent one. The result depends on the order in which
we sum up the terms. A natural choice is to take boxes in roughly spherical layers.
This choice leads to a slow mathematically conditional convergence.

Computational problem. Equation (2.2.13) is a sum over N(N − 1)/2 pairs, thus scales as
O(N2). Biomolecules may contain from a few tens to millions of atoms. The com-
putational costs to perform electrostatic calculations in such systems become too
expensive.

Approaches to solve long-range electrostatic problem This part discusses some solu-
tions for the above-mentioned problems.

Cut-off methods. There is a historical scheme of methods in which electrostatic interactions
are simply ignored beyond a certain cut-off. However, there is a tradeoff: a long
cut-off is computationally expensive, while a short cut-off gives rise to inaccuracies.

Reaction field methods [141, 142]. In these methods, each atom is surrounded by a cut-off
sphere. Within this sphere, the interactions with other atoms are described explicitly.
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The space outside the sphere is treated as a homogeneous dielectric medium with
a certain permittivity and ionic strength. The computational cost of this approach
is slightly higher than that of the cut-off methods, but the accuracies are greatly
improved.

Ewald summation method [143]. This method is in the group of more reliable lattice sum-
mation techniques. Such schemes are more expensive than simple truncations and
reaction field methods. They are also more advanced as they respect the long-range
character of the interactions. The idea of the Ewald method is to convert the sin-
gle slowly and conditionally convergent summation (i.e., Equation (2.2.13)) into two
quickly convergent terms: (i) a short-range term which sums accurately and quickly
in real space and (ii) a long-range term which is a smoothly varying term that sums
quickly in Fourier space [144]. As the computational effort of the Ewald summation
scales as O(N3/2), this approach is still expensive for large systems [145].

Particle-Mesh Ewald method [146]. This approach is an alternative of the Ewald summation
method. In this approach, the distribution of all system charges is mapped on a grid
by B-spline interpolation; this grid is then Fourier transformed by a single operation
instead of the N2 operations required in Ewald method. If Fast Fourier Transform
(FFT) algorithms [147] are applied, the reciprocal space calculation is then reduced
to O(N log(N)).

2.2.2 Validation of MD Simulations Against NMR Relaxation Measure-
ments

Due to the strong dependence of MD simulations on force fields and simulation proto-
cols, the validation of simulations against experimental data is critically important [148].
On one hand, NMR relaxation yield dipolar correlation function, from which dynamical
quantities such as generalized parameter S2 can be extracted [149, 150]. On the other hand,
this quantity can be actually calculated readily from MD trajectories [119]. Additionally,
NMR relaxation measurements provide Nuclear Overhauser Enhancement (NOE) data which
are used to derive structural information such as interatomic distances of the measured
system. These interatomic distances can also be measured directly from MD trajectories
and compared with experimental ones. These two common comparisons, referred to as
dynamical and structural validations, are discussed in the two following sections.

2.2.2.1 Dynamical Validation − Order Parameter S2

Order parameter S2 is a measure for the spatial restriction of motion. In this section, we
briefly summarize the model free approach [149, 150] to extract S2 from NMR relaxation
experiments.
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Experimental derivation The NMR relaxation due to dipole−dipole interaction between
two nuclei, one being a heavy atom X (e.g., 15N or 13C) and the other being its bonded
hydrogen, can be described by the correlation function [151]

CX−H(t) = 〈P2(µ̂X−H(t) · µ̂X−H(0))〉, (2.2.15)

where µ̂X−H(t) = (rH(t)− rX(t))/|rH(t)− rX(t)| is the unit vector pointing along the
X−H bond at time t; P2(x) = 1/2(3x2 − 1) is the second order Legendre polynomial; and
〈 〉 denotes the equilibrium average.

Model free approach assumes that the overall molecular motion is isotropic and hence
can be adiabatically separated from the internal motion [149, 150]. Based on this assumption,
the correlation function in Equation (2.2.15) can be factored as

CX−H(t) = C0(t)CI
X−H(t), (2.2.16)

where C0(t) describes the overall motion and CI
X−H(t) is the correlation function for

internal motion. For overall isotropic motion, C0(t) is rigorously given by

C0(t) =
1
5

e−t/τc , (2.2.17)

with the rotational correlation time τc proportional to the inverse of the rotation diffu-
sion constant.

Now if we define a generalized order parameter S2 as S2 = lim
t→∞

CI
X−H(t), then in the

model free approach the internal coordination function can be truncated and written in
terms of the order parameter S2 and the effective (or internal) correlation time τe as

CI
X−H(t) = S2 + (1− S2)e−t/τe . (2.2.18)

The value of S2 ranges from 0 to 1. If S2 = 0, the motion of the two atoms with respect
to each other is not restricted in any way; and if S2 = 1, the interatomic vector µ̂ij is rigidly
fixed in the molecular frame.

Order parameter validation of MD simulations In computational studies, the internal
correlation function CI

X−H(τr) at time interval τr can be calculated directly from the trajec-

tories r
(tj)

i of coordinates ri and time tj as

CI
X−H(τr) = 〈P2((r

(tj)

X − r
(tj)

H ) · (r(tj+τr)

X − r
(tj+τr)

H )〉tj . (2.2.19)
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The order parameter S2 and its error are then calculated over the time beyond the
internal correlation time scale τe as

S2 = 〈CI
X−H(τr)〉τr>3τe , (2.2.20)

and

σ2
S2 = 〈(CI

X−H(τr)− S2)2〉τr>3τe . (2.2.21)

The condition τr > 3τe should hold to ensure that each time interval of evaluating the
internal correlation function between two bonded atoms can cover all internal motions of
the bond. It follows that τr should be larger than 500 picoseconds to satisfy this condition
for most chemical groups. In practice, the typical length of CX−H(τr) is about several
nanoseconds up to half of the simulation time length [119]. In the case of nucleic acid
studies, order parameter S2 are often calculated for the ribose C1’−H1’ and the base
C6−H6 or C8−H8 dipoles.

2.2.2.2 Structural Validation − NOE Data

The nuclear Overhauser effect is the primary source for solving NMR structures. It provides
geometric information to build the three-dimensional structure of the measured object.

Experimental observables The spectral density is defined as the cosine Fourier trans-
form of the correlation function in Equation (2.2.15), i.e., as

J(ω) = 2
ˆ ∞

0
C(t) cos(ωt)dt. (2.2.22)

In the model free approach, J(ω) is given by

J(ω) =
2
5

( S2τc

1 + τ2
c ω2 +

(1− S2)τ

1 + τ2ω2

)
, (2.2.23)

with τ−1 = τ−1
c + τ−1

e . The spectral density functions are then used to compute the
NMR relaxation parameters including the longitudinal (T1) and transverse (T2) magneti-
zation transfer and the heteronuclear NOE between the heavy atom X and its bonded H
[152] as

T1 = d00[3J(ωX) + J(ωH−X) + 6J(ωX+H)] + c00ω2
X J(ωX), (2.2.24)
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T2 =
1
2

d00[4J(0) + 3J(ωX) + J(ωH−X) + J(ωH) + 6J(ωX+H)] +
1
6

c00ω2
X [4J(0) + 3J(ωX)],

(2.2.25)

and

NOE = 1 +
γH
γX

d00T1[6J(ωX+H)− J(ωH−X)], (2.2.26)

in which

d00 =
h̄

20

( µ0

4π

)2
γ2

Xγ2
H

1
r6

XH
; (2.2.27)

c00 =
1
15

∆σ2; (2.2.28)

µ0 is the vacuum permeability; γX,H are the gyromagnetic rations; ωX , ωH , ωX+H , and
ωH−X are the Larmor frequencies; and ∆σ is the chemical shift anisotropy of X.

In the initial rate approximation, NOE is proportional to the sixth root of the distance
between two atoms, i.e., NOE ∝ r−6

XH . From this set of observables, interatomic distances
are obtained and three dimensional structure is built up.

Validation of MD studies In principle, relaxation parameters T1, T2, and NOE can be
directly calculated from simulation results and compared to those from experiments. How-
ever, in practice, checking the violation of interatomic distances in simulations with respect
to the distances obtained from NOE data is a more widespread protocol.

2.3 Steered Molecular Dynamics Simulations

Single-molecule force-probe experiments (e.g., Atomic Force Microscopy (AFM), Laser Optical
Tweezers (LOT), etc.) enable the characterization of biomolecules in response to mechan-
ical force, which in turn reveal mechanical properties and functions of the biomolecules.
However, in these experiments, the underlying atomistic dynamics and interactions that
give rise to molecular mechanisms cannot be disclosed. This is the main motivation of
reproducing these experiments in silico by means of atomistic simulations that are now
widely referred to as Steered Molecular Dynamics (SMD) simulations. SMD simulations
involve not only applying external forces to manipulate biomolecules for the purpose of
exploring their responses and functions, but also accelerating processes that are unafford-
able by means of standard MD simulations. SMD has become a powerful in silico tool in
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guiding, complementing, and explaining in vitro single-molecule force-probe experiments.

In this section, we first discuss some historical facts and events related to the SMD
method. We then present the common constant-velocity SMD algorithm.

2.3.1 Historical Background

2.3.1.1 Single-Molecule Experiments In Vitro

Force probe experiments were initiated in 1994 by Florin, Moy, and Gaub [153]. In this AFM
experiment, biotin was extracted from its complex with streptavidin and the unbinding
force was measured. This was reported as the first force measurement of individual ligand-
receptor pairs.

Figure 2.3.1: Setups of a single-molecule experiment in vitro (a) and in silico (b). Figures
are reproduced from ref. [10].

Figure 2.3.1a illustrates the experiment by Florin et al. [153], in which the cantilever
of the AFM microscope acted as a force sensor. A polymer linker connected the avidin
(or streptavidin) molecules with a surface (on the left). At the same time several biotin
molecules were also connected through another polymer linker with the tip of the cantilever
(on the right). When the cantilever approached the surface, several biotin-streptavidin
complexes formed. As the cantilever retracted, the complexes dissociated one after the
other. Occasionally, one single complex remained until the very end of the experiment. In
such a case, the authors measured the force required to dissociate this last complex by
observing the jump of the deflection of the cantilever to zero. On a microsecond timescale,
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the rupture was dominated by thermal fluctuations and hence has a probabilistic feature.
Consequently, repeating the experiment several hundreds of times revealed a distribution
of forces, or a histogram of forces. The maximum in the histogram indicates the most
probable dissociation force, which is the force required to break the binding between a
ligand and a receptor, and thus represents the binding strength.

The interaction between biotin and streptavidin is one of the strongest noncovalent
interactions in nature with the binding free energy of 22 kcal/mol. The force probe AFM
experiment by Florin et al. was able to reproduce this binding free energy. However,
the experiment was unable to reveal the underlying atomistic dynamics and interactions
between biotin and streptavidin and thus the binding/unbinding mechanism remained
unknown.

2.3.1.2 Single-Molecule Experiments In Silico

Motivated by the force probe experiment of Florin et al. [153] and the quest of molec-
ular mechanism, the first computer simulation modeling such experimental set-up was
introduced two years later (i.e., in 1996) by Grubmüller, Heymann, and Tavan [10]. In this
simulation, the authors modeled the effect of the cantilever by a symbolic “spring” (see
Figure 2.3.1b) which caused an additional harmonic steering potential:

Vspring = k0[zO2(t)− zcant(t)]2/2, (2.3.1)

acting on the z coordinate of atom O2 (zO2) of biotin molecule. In Equation (2.3.1),
k0 is the spring constant and zcant(t) denotes the cantilever position at which the spring
potential is centered:

zcant(t) = zcant(0) + vcantt, (2.3.2)

here vcant modeled the velocity of the cantilever. During the simulation, Vspring was
shifted on z direction as the free end of the spring moved with velocity vcant. This ensured
that in the simulation atom O2 was subjected to the same force as in the experiment, in
which the same atom was covalently connected to the cantilever through a polymer linker.

The force probe simulation (as called by the authors) allowed determining the dissociation
force from the force profile1. Besides, this simulation provided information on atomistic
interactions and how they broke during the dissociation. These insights are inaccessible
from experiments. However, the simulation was performed in nanosecond timescale, which
is many orders of magnitude faster than the experimental time of milliseconds.

1Note that in force probe experiment, the dissociation force is determined from the force histogram.
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In the next year (1997), Schulten and co-workers performed a series of “steering” simu-
lations on the same biotin-streptavidin complex system with the same spirit of modeling
the cantilever as a symbolic spring [154]. The difference was that the authors modeled a
spring with a varying harmonic restraint coefficient:

kt = αt. (2.3.3)

Eight simulations with different values of the rate α were performed to explore the
dependence of unbinding on the speed of rupture. Since the name Steered Molecular Dy-
namics simulation later came from Schulten group, it is fair, for historical reason, to mention
this work as their first attempt to perform in silico single-molecule experiment. However,
their first published work on this technique had negative results when compared to the
AFM experiment by Florin et al. [153]. This work contained several severe problems, one
of which was that the simulations were performed in vacuum, which, according to the
authors, “did not affect the actual binding pocket” [154].

Since the first attempts to model AFM experiments, SMD has grown to be a complete
computational methodology that helps not only explaining but also complementing and
guiding experiments. Such expansion is based on two foundations: (i) the blooming devel-
opment of theories on nonequilibrium process starting by the famous Jarzynski’s equality
in 1997 and (ii) the advantage of molecular simulation that allows one to apply more
complex forces than can be performed in AFM experiment. Details of the first issue is
discussed in section 2.4. With regard to the second issue, indeed, the force in simulation
can be applied on a group of atoms if necessary instead of only one atom as in experiment;
the change of directions is easily permitted in simulation while more complicated to be
achieved in experiment; simulation also allows applying the force to nonlinear and subtle
coordinates, or Collective Variables (CVs), that may be more efficient in capturing the na-
ture of the conformational transitions than the distance used in experiment. The latter is
discussed in chapter 3.

2.3.2 Steered Molecular Dynamics Algorithm

There are two common SMD protocols: constant force and constant velocity. In constant-
force SMD simulation, a force is directly applied to one or more atoms and atomic displace-
ment is then monitored. A variation of this scheme is to apply customized time-dependent
forces. In constant-velocity SMD simulation, a moving harmonic potential modeled as
a symbolic spring is used to cause atomic motion along the CV. The free end of the
spring moves with a constant velocity. The atoms attached to the other end are subject
to a steering force, which can be evaluated by the spring extension. Here we employ the
constant-velocity protocol for our SMD simulations.
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In constant-velocity SMD algorithm, the CV z acting on one atom or a group of atoms
is restrained to a symbolic point which is initially positioned at z0, say the restraint point, by
a symbolic spring whose stiffness is k. The restraint point is then pulled in the direction of
the chosen CV with a constant velocity v, acting a harmonic potential V on the CV,

V(t) = k(z(t)− zrestraint(t))2/2 = k(z(t)− vt− z0)
2/2. (2.3.4)

The external force or steering force exerted on CV z can be expressed as

F(t) = k(z0 + vt− z(t)). (2.3.5)

Under this force, the CV changes its value. Through the response of the CV to the
steering force at each timestep, the molecular system also adapt to a new conformation
defined by the newly adopted CV value.

The cumulative external work at time t can be calculated as

W(t) =
t

∑
t′=0

vk(z(t′)− vt′ − z0)∆t′. (2.3.6)

Note that the time is discretized for notational convenience. This is applicable for
MD-based simulations.

2.4 Reconstruction of Free Energy from Nonequilibrium Works

Steering is a nonequilibrium process in which the system is driven away from its equilib-
rium states. For such a process in microscopic scale, the second law of thermodynamics
states that the average work exceeds the free-energy difference between the initial and final
equilibrium states,

〈W〉 ≥ 4F, (2.4.1)

here the bracket 〈 〉 denotes the average over a statistical ensemble of realizations.
The equality (〈W〉 = 4F) only holds if the steering process is reversible, i.e., the steering
speed is infinitely slow. In physically realistic situations, all thermodynamic processes are
irreversible, i.e., happen at finite rates. The difference 〈W〉−4F is referred to as the wasted
work or dissipated work associated with the entropic increment during an irreversible
process. It is not trivial to quantify such an entropic change and thus challenging to
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recover the free-energy difference from the nonequilibrium works over all realizations of a
given thermodynamic process.

In 1997, Jarzynski discovered a renowned equality which permits the reconstruction of
free energy, an equilibrium property, from the nonequilibrium works done on a system.
This is the pioneering foundation for the discovery of nonequilibrium work relations and
Potential of Mean Force (PMF) estimators that allow obtaining equilibrium properties of
a system by observing how the system responds when driven away from equilibrium.
These powerful theoretical foundations have opened big avenues for both experimental
and computational applications.

In this section, we first review and rederive in a unified framework the methods for
reconstructing free energy from both in vitro and in silico nonequilibrium processes, includ-
ing:

(i) the nonequilibrium work relations, namely the Jarzynski’s equality and Crook’s fluctuation
theorem. These relations allow recovering free-energy differences between states as a
function of the restrained CV of an extended system (i.e., the system coupled with the
external perturbation),

(ii) the Bennett Acceptance Ratio (BAR) that, in a similar spirit to the Crook’s fluctuation
theorem, estimates the free energy of the extended system utilizing the works from
both forward and backward processes. However, in advance to Crook’s theorem, the
free energy from BAR method maximizes the chance of observing these work values.

(iii) the PMF estimators proposed by Hummer and Szabo for unidirectional realizations and
proposed by Minh and Adib for bidirectional cases. These estimators can recover the
PMF as a function of the unrestrained CV of the unperturbed system (i.e., in the absence
of external potential).

Next we propose our reweighting method that allows projecting the free energy profile on
any a posteriori chosen CV that is not necessary to be the steered CV.

2.4.1 Nonequilibrium Work Relations

Among the most general and widely used nonequilibrium work relations are the Jarzyn-
ski’s equality [155] and Crook’s fluctuation theorem [156]

(i) Jarzynski’s equality is expressed as〈
e−βW

〉
= e−β∆F, (2.4.2)

here the bracket 〈 〉 denotes the average over a statistical ensemble of realizations; the
factor β = 1/kBT is the inverse temperature. The critical assumptions leading to this
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equality include (i) the evolution of the system must be Markovian and (ii) the process
must satisfy detailed balance conditions for each of the values taken by the external control
parameter2 during the switching process3. Jarzynski’s equality basically states that the free-
energy difference between two equilibrium states of a system can be accurately recovered
from the exponential average of the nonequilibrium works performed on switching the
system from one equilibrium state to the other. Independently of path and rate of this
thermodynamic process, Jarzynski’s equality puts a strong constraint on the distribution
of the works which remains valid even if the system is steered away from its thermal
equilibrium. Jarzynski’s equality has a wide range of applications since it allows the
determination of equilibrium free-energy difference and hence several other equilibrium
properties of a system from monitoring its response in nonequilibrium processes.

(ii) Crook’s fluctuation theorem is formulated as

ρF(+W)

ρB(−W)
= eβ(W−∆F), (2.4.3)

here ρF(W) and ρB(−W) denote the work distributions in the forward and backward
processes respectively. It is noteworthy that a backward process can be considered the re-
verse of a corresponding forward process where the work takes the opposite sign. Crook’s
theorem implies that ρF(W) and ρB(−W) meet at W = ∆F. The assumptions of Jarzyn-
ski’s equality regarding Markovian and detailed balance conditions also hold for Crook’s
theorem. Moreover, Crook’s theorem can be rearranged, i.e., by multiplying both sides
of Equation (2.4.3) with ρB(−W)e−βW and then integrating over W, to obtain Jarzynski’s
equality.

There have been a number of derivations of Jarzynsky’s equality including the pio-
neering proofs of Jarzynski himself, e.g., the derivation for a Hamiltonian system weakly
coupled to a heat bath [155], or the derivation based on a master equation approach [157],
and several other approaches, see for instance references [158, 159]. However, one year
after the discovery of Jarzynski’s equality, Crook proved that the equality came out as a
direct consequence of the critical assumptions regarding Markovian process and detailed
balance condition [160].

In the following, we summarize Crook’s derivation of both Jarzynski’s equality and
Crook’s fluctuation theorem under the above-mentioned assumptions [160, 156]. For con-
venience, let us first clarify the notations and assumptions. The derivations follow right
after that.

2See Section 2.4.1 for the definition of external control parameter and the formulation of detailed balance
conditions.

3These conditions are satisfied by e.g., Hamilton equations with a time dependent Hamiltonian.
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Notations and Assumptions

Consider a classical microscopic system in contact with a heat bath at a constant tempera-
ture T. Let us assume that the system can be controlled by a single external parameter λ.
Manipulation of the value of λ cost an amount of work W, resulting in an exchange heat
Q with the heat bath and invoking the change in the total energy ∆E and free energy ∆F
of the system. We are interested in a process happening in a finite time τ in which λ is
switched between an initial value λ0 and a final value λτ . During the process, let λt be the
value of the external controllable parameter, let it label the internal state of the system, and
let E(it, λt) denote the energy of the system at time t 4.

For a canonical ensemble, the equilibrium probability of a state i at a given value of λ

can be expressed as

P(i|λ) = e−βE(i,λ)

∑j e−βE(j,λ)
= eβ(Fλ−E(i,λ)), (2.4.4)

where Fλ denotes the free energy of the system at a given λ.

If the evolution of a system is assumed to be Markovian then the probability of going

from state it to state it+1 (i.e., P(it
λ−→ it+1)) depends only on the state at time t and not

on all previous states. In other words, a Markovian process is a memoryless process. Under
this assumption, the probability of evolving in a path from state i0 to state iτ given the
control parameter at all time λt (t = 0, 1, 2, . . . , τ) can be split as

P(i0
λ1−→ i1

λ2−→ i2 −→ . . . λτ−→ iτ) = P(i0
λ1−→ i1)P(i1

λ2−→ i2) . . . P(iτ−1
λτ−→ iτ). (2.4.5)

Now if every single step is assumed to be microscopically reversible then the following
detailed balance condition must be satisfied

P(i λ−→ j)

P(i λ←− j)
=

P(j|λ)
P(i|λ) ≡

e−βE(j,λ)

e−βE(i,λ)
. (2.4.6)

Let us now reproduce the derivation of detailed balance condition for a multiple-step
process given that the process is Markovian. Using the Markovian property (Equation
(2.4.5)), we can rewrite the ratio between the probabilities of a forward process and a
corresponding time-reversed process as

4Discrete time and phase space will be used hereafter for notational convenience. The derivation presented
here can be easily generalized to continuous time and phase space.
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P(i0
λ1−→ i1

λ2−→ i2 −→ . . . λτ−→ iτ)

P(i0
λ1←− i1

λ2←− i2 ←− . . . λτ←− iτ)
=

P(i0
λ1−→ i1)P(i1

λ2−→ i2) . . . P(iτ−1
λτ−→ iτ)

P(i0
λ1←− i1)P(i1

λ2←− i2) . . . P(iτ−1
λτ←− iτ)

. (2.4.7)

Applying the detailed balance condition (Equation (2.4.6)) for every single step, we
obtain

P(i0
λ1−→ i1

λ2−→ i2 −→ . . . λτ−→ iτ)

P(i0
λ1←− i1

λ2←− i2 ←− . . . λτ←− iτ)
=

e−βE(i1,λ1)e−βE(i2,λ2). . . e−βE(iτ ,λτ)

e−βE(i0,λ1)e−βE(i1,λ2). . . e−βE(iτ−1,λτ)

= e−β[(E(i1,λ1)−E(i0,λ1))+···+(E(iτ ,λτ)−E(iτ−1,λτ))]

= e−βQ. (2.4.8)

Here Q is the total heat that the system exchanges with the heat bath. Equation (2.4.8)
represents the detailed balance condition for a Markovian microscopically reversible sys-
tem.

If both forward and backward processes start from the equilibrium initial and final
states i0 and iτ , then by combining Equations (2.4.4) and (2.4.8), we find

P(i0|λ0)P(i0
λ1−→ i1

λ2−→ i2 −→ . . . λτ−→ iτ)

P(iτ |λτ)P(i0
λ1←− i1

λ2←− i2 ←− . . . λτ←− iτ)
=

eβ[Fλ0
−E(i0,λ0)]

eβ[Fλτ−E(iτ ,λτ)]
e−βQ = eβ(W−∆F). (2.4.9)

Here W = ∆E−Q is the external work performed on the system.

Derivations

Below we rederive the proof that both Jarzynski’s equality and Crook’s fluctuation theo-
rem arise directly from Equation (2.4.9) as a consequence of the assumptions regarding
Markovian and detailed balance conditions.

(i) Derivation of Jarzynski’s equality.

Relation (2.4.9) can be rearranged to yield

e−βW =
P(iτ |λτ)P(i0

λ1←− i1
λ2←− i2 ←− . . . λτ←− iτ)

P(i0|λ0)P(i0
λ1−→ i1

λ2−→ i2 −→ . . . λτ−→ iτ)
e−β∆F. (2.4.10)
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From Equation (2.4.10), the Jarzynski’s equality follows directly. Indeed, if the process
starts from a canonical equilibrium distribution, the ensemble average of the quantity e−βW

is given by

〈
e−βW

〉
= ∑

i0,i1,...,iτ

P(i0|λ0)P(i0
λ1−→ i1

λ2−→ i2 −→ . . . λτ−→ iτ)e−βW . (2.4.11)

Here the ensemble average (on the left-hand side) is taken over all processes and hence
the sum (on the right-hand side) runs over all paths in the discrete phase space, given
a fixed sequence of the control parameter. Placing Equation (2.4.10) into (2.4.11), we can
easily find

〈
e−βW

〉
= e−β∆F ∑

i0,i1,...,iτ

P(iτ |λτ)P(i0
λ1←− i1

λ2←− i2 ←− . . . λτ←− iτ). (2.4.12)

It is noteworthy that the free-energy difference ∆F is path independent. From here,
Equation (2.4.2) arises directly because probabilities are normalized.

(ii) Derivation of Crook’s fluctuation theorem.

The work distributions ρF(+W ′) and ρB(−W ′) associated with forward and backward
paths are obtained by integrating over all possible discrete paths

ρF(+W ′) = ∑
i0,i1,...,iτ

P(i0|λ0)P(i0
λ1−→ i1

λ2−→ i2 −→ . . . λτ−→ iτ)δ(W ′ −W). (2.4.13)

ρB(−W ′) = ∑
i0,i1,...,iτ

P(iτ |λτ)P(i0
λ1←− i1

λ2←− i2 ←− . . . λτ←− iτ)δ(W ′ −W). (2.4.14)

Equation (2.4.9) can be rearranged as

P(i0|λ0)P(i0
λ1−→ i1 . . . λτ−→ iτ) = P(iτ |λτ)P(i0

λ1←− i1 . . . λτ←− iτ)eβ(W−∆F). (2.4.15)

By multiplying both sides of the above equation with δ(W ′ −W) and then summing
over all possible paths, we obtain
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ρF(+W ′) = ρB(−W ′)eβ(W ′−∆F), (2.4.16)

This relation is equivalent to Crook’s fluctuation theorem (Equation (2.4.3)).

In conclusion, the free-energy difference between two equilibrium states of a system
can be directly related to the nonequilibrium works required to switch the system between
these two states. Jarzynski’s equality allows recovering the free-energy difference from an
exponential average of the works performed in unidirectional switching processes. How-
ever this estimation strongly depends on the behavior at the tails of the work distributions,
which is poorly sampled with respect to the rest of the distribution especially for small
sample sizes. Crook’s fluctuation theorem involves the work distributions in both forward
and backward processes and thus permits a better estimation compared to using informa-
tion from only one direction. However, the quality of free-energy estimation by Crook’s
theorem is still dictated by the sample sizes. Jarzynski’s equality can be recovered from
Crook’s fluctuation theorem. Both relations are proved to emerge as direct consequences
of two essential assumptions that the evolution of the system satisfies both Markovian and
detailed balance conditions.

2.4.2 Bennett Acceptance Ratio

Formulation of the Bennett Acceptance Ratio

Before the introduction of Crook’s fluctuation theorem, in 1976 when examining two states
of a system at equilibrium, Bennett already proposed to use the information of potential
energy in both forward and backward distributions to improve the estimation of the free-
energy difference [161]. Bennett’s derivation of the so called Bennett Acceptance Ratio (BAR)
based on equilibrium potential energy can be trivially generalized to the case of nonequilibrium
work and rewritten as

〈
1

nB + nFeβ(W−∆F)

〉
F
=

〈
1

nF + nBe−β(W−∆F)

〉
B

, (2.4.17)

where nF and nB denote the number of forward and backward processes respectively.

BAR can be considered the best asymptotically unbiased estimator 5 of the free energy
given a set of nonequilibrium works performed in forward and backward processes. The
free energy in BAR method is estimated by iteratively solving Equation (2.4.17).

5an asymptotically unbiased estimator is the estimator that becomes unbiased as the sample size goes to
infinity
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Derivation of BAR Using Maximum Likelihood Principles

Here we summarize a rederivation of BAR by Shirts et al. [162] using the maximum
likelihood principles [163]. Details of the maximum likelihood can be found in Appendix
A. Maximum likelihood estimators can be shown under relatively weak conditions to be
asymptotically efficient, i.e., there are no other asymptotically unbiased estimator with
lower variance. Therefore by deriving BAR using this estimator, we also prove that BAR
is the best asymptotically unbiased estimator of free energy given a set of nonequilibrium
works. This is the theoretical advantage of this derivation.

We start the derivation by rewriting the Crook’s fluctuation theorem (Equation (2.4.3))
as

ρ(W|F)
ρ(W|B) = eβ(W−∆F). (2.4.18)

For notational convenience, we have replaced ρF(W) and ρB(−W) with ρ(W|F) and
ρ(−W|B) respectively. To further simplify the notation, we have substituted −W with W
without loss of generality. We now want to compute the likelihood of a free energy estimate
from a given work measurements which come from either a forward or a backward process.
For this purpose, we first rewrite the left hand side of Equation (2.4.18) using the properties
of conditional probabilities

ρ(W|F)
ρ(W|B) =

ρ(F|W)ρ(W)
ρ(F)

ρ(B|W)ρ(W)
ρ(B)

=
ρ(F|W)ρ(B)
ρ(B|W)ρ(F)

=
ρ(F|W)

ρ(B|W)

nB
nF

, (2.4.19)

here ρ(F|W) and ρ(B|W) are, respectively, the conditional probabilities of a forward
and backward process in which a work W is performed; and the ratio ρ(B)

ρ(F) between the
probabilities of backward and forward processes is equivalent to nB

nF
.

From Equations (2.4.18) and (2.4.19), we have

ρ(F|W)

ρ(B|W)
=

nF
nB

eβ(W−∆F). (2.4.20)

Using the fact that ρ(F|W) + ρ(B|W) = 1, we can write the probability of a single
measurement ρ(F|Wi) and ρ(B|Wi) as

ρ(F|Wi) =
1

1 + nB
nF

e−β(Wi−∆F)
, (2.4.21)

and
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ρ(B|Wi) =
1

1 + nF
nB

eβ(Wi−∆F)
. (2.4.22)

Given the value of ∆F, we now can write the overall likelihood L of obtaining the given
measurements, i.e., the joint probability of forward processes at the specified work values
times the joint probability of backward processes at the specified work values, meaning

L(∆F) =
nF

∏
i=1

ρ(F|Wi)
nB

∏
j=1

ρ(B|Wj), (2.4.23)

Employing Equations (2.4.21) and (2.4.22), Equation (2.4.23) becomes

L(∆F) =
nF

∏
i=1

1
1 + nB

nF
e−β(Wi−∆F)

nB

∏
j=1

1

1 + nF
nB

eβ(Wj−∆F)
. (2.4.24)

The log-likelihood is then written as

lnL(∆F) =
nF

∑
i=1

ln
1

1 + nB
nF

e−β(Wi−∆F)
+

nB

∑
j=1

ln
1

1 + nF
nB

eβ(Wj−∆F)
. (2.4.25)

The most likely value of ∆F is the value that maximizes the log-likelihood, or in other
words is the solution of the following equation

∂ lnL(∆F)
∂∆F

= 0, (2.4.26)

which is equivalent to

nF

∑
i=1

−β

1 + nF
nB

eβ(Wi−∆F)
+

nB

∑
j=1

β

1 + nB
nF

e−β(Wj−∆F)
= 0, (2.4.27)

which can be further rearranged to yield

nF

∑
i=1

βnB

nB + nFeβ(Wi−∆F)
=

nB

∑
j=1

βnF

nF + nBe−β(Wj−∆F)
. (2.4.28)

Dividing both sides of this equation by βnFnB, we obtain

1
nF

nF

∑
i=1

1
nB + nFeβ(Wi−∆F)

=
1

nB

nB

∑
j=1

1

nF + nBe−β(Wj−∆F)
. (2.4.29)
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This equation is exactly equivalent to the BAR method expressed in Equation (5.3.8).

In conclusion, given a set of nonequilibrium works measured in both forward and
backward directions, the BAR estimator results in the free energy that maximizes the
chance of observing these work values.

2.4.3 Potential of Mean Force Estimators

In the previous section, we presented the BAR method to estimate the most likely value of
the free-energy difference given the nonequilibrium works from both forward and back-
ward processes. It is important to notice that this is the free energy of the extended system,
i.e., the system described by an extended Hamiltonian that is the sum of the external po-
tential V(t) and the Hamiltonian in the absence of the external perturbation. However, we
are usually more interested in the Potential of Mean Force (PMF) of the unperturbed system
described by the unperturbed Hamiltonian. In the following sections, we present the most
commonly used PMF estimators for reconstructing the free energy of the unperturbed
system from the nonequilibrium works. These estimators include (i) the Hummer-Szabo
estimator for unidirectional processes and (ii) the Minh-Adib estimator for bidirectional
cases.

2.4.3.1 Hummer-Szabo PMF Estimator for Unidirectional Steerings

Hummer-Szabo Formulation The Hummer-Szabo estimator is written as [158]

e−βG0(z) =
∑t

〈
δ(z− zt)e−βWt

0

〉
eβ∆Ft

∑t e−β[V(z;t)−∆Ft ]
, (2.4.30)

where G0(z) denotes the unperturbed free energy as a function of a chosen CV z;
zt is the value of the CV z at time t in a specific trajectory; V(z; t) = k(z − λt)2/2 is
the harmonic potential centering at λt acting on the CV z; Wt

0 is the cumulative pulling
work up to time t; 4Ft is the free-energy difference of the extended system between the
equilibrium state at time t and the initial equilibrium state. Note that the nonequilibrium
works and free-energy difference satisfy Jarzynski’s equality

〈
e−βWt

0

〉
= e−β∆Ft . (2.4.31)

The Hummer-Szabo estimator allows recovering the free-energy difference of the unper-
turbed system by relating it with the nonequilibrium works and the perturbing potentials.
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Derivation In this section, we rederive the Hummer-Szabo estimator using the maxi-
mum likelihood principles. We first start by defining the biased equilibrium probability of
observing the value zt of the CV at time t in the trajectory ith as

P(z(i)t ; t) =
e−β(G0(z

(i)
t )+V(z(i)t ;t))

Z(t)
, (2.4.32)

here Z(t) = ∑z′ e−β(G0(z′)+V(z′ ;t)) denotes the partition function at time t. Z(t) ≡ e−β∆Ft

acts as a normalization factor.

Given the free energy G0(z) of the unperturbed system when the CV adopts the value
z, the probability of observing a whole set of trajectories is then written as

P(G0(z)) = ∏
t

∏
i

P(z(i)t ; t) = ∏
t

∏
i

e−β(G0(z
(i)
t )+V(z(i)t ;t))

Z(t)
. (2.4.33)

This is also defined as the likelihood L(G0(z)) of observing the set of trajectories given
the free-energy difference G0(z). The log-likelihood is then given by

lnL(G0(z)) = ∑
t

∑
i

[
−β(G0(z

(i)
t ) + V(z(i)t ; t))− ln Z(t)

]
. (2.4.34)

The most likely value of G0(z) is the value that maximizes the log-likelihood, or in
other words is the solution of the following equation

∂ lnL(G0(z))
∂G0(z)

= 0, (2.4.35)

which is equivalent to

∑
t

∑
i

[
−βδ(z− z(i)t ) +

βe−β(G0(z)+V(z;t))

Z(t)

]
= 0. (2.4.36)

Note that trajectories with lower work values are closer to equilibrium and thus more re-
liable to be used when evaluating the equilibrium free energy. Therefore, a work-weighting
factor e−βWi(t) together with its normalization factor eβ∆Ft should be added to each trajec-
tory to give more weight to the low-work ones. Equation (2.4.36) then becomes

∑
t

∑
i

{[
−βδ(z− z(i)t ) +

βe−β(G0(z)+V(z;t))

Z(t)

]
e−βWi(t)eβ∆Ft

}
= 0, (2.4.37)

which can be further rearranged to yield
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e−βG0(z) ∑
t

{[
e−βV(z;t)eβ∆Ft

]
∑

i
e−βWi(t)eβ∆Ft

}
= ∑

t

{[
∑

i
δ(z− z(i)t )e−βWi(t)

]
eβ∆Ft

}
,

(2.4.38)

here we use the definition of the partition function Z(t) = e−β∆Ft . Applying the Jarzyn-
ski’s equality

〈
e−βWi(t)

〉
= e−β∆Ft , Equation (2.4.38) can be rewritten as

e−βG0(z) =
∑t

{[
∑i δ(z− z(i)t )e−βWi(t)

]
eβ∆Ft

}
n ∑t e−β[V(z;t)−∆Ft ]

=
∑t

〈
δ(z− zt)e−βWt

0

〉
eβ∆Ft

∑t e−β[V(z;t)−∆Ft ]
. (2.4.39)

Here n denotes the total number of trajectories. Equation (2.4.39) is exactly the Hummer-
Szabo estimator as shown in Equation (2.4.30).

2.4.3.2 Minh-Adib PMF Estimator for Bidirectional Steerings

Minh-Adib Formulation The Minh-Adib PMF estimator is given by [164]

e−βG0(z) =

∑t

[〈
nFδ(z−zt)e

−βWt
0

nF+nBe−β(W−4F)

〉
F
+

〈
nBδ(z−zτ−t)e

βWτ
τ−t

nF+nBeβ(W+4F)

〉
B

]
eβ4Ft

∑t e−β[V(z;t)−4Ft ]
, (2.4.40)

where G0(z) denotes the unperturbed free energy as a function of a CV z ; τ is the total
time of each pulling; zt is the value of the CV z at time t ; 〈 〉F and 〈 〉B denote the averages
taken over all forward and backward realizations respectively; nF and nB are the number
of realizations in forward and backward pullings; Wt

0 is the cumulative pulling work at
time t; W is the total works at time τ performed in a certain forward or backward pulling;
V(z; t) = k[z− z0(t)]2/2 is the harmonic potential acting on the CV at time t, where z0(t)
denotes the “position” to which the CV is restrained at time t; 4Ft is the free-energy
difference between the equilibrium state at time t and the initial equilibrium state of the
forward process, whose value is given by:

e−β4Ft =

〈
nFe−βWt

0

nF + nBe−β(W−4F)

〉
F

+

〈
nBeβWτ

τ−t

nF + nBeβ(W+4F)

〉
B

, (2.4.41)

in which 4F = 4Fτ is the free-energy difference between the initial and final equilib-
rium states of the pulling, which can be calculated from the BAR method. Equation (2.4.41)
can also be rearranged to give the BAR formula (Equation (2.4.17)) in the particular case
where t = τ.
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The Minh-Adib estimator allows recovering the free-energy difference of the unper-
turbed system from the nonequilibrium works in both forward and backward processes.

Derivation In this section, we partially summarize the derivation of Minh-Adib estimator
by Minh and Adib [164]. Notice that in their derivation, the bidirectional estimator was
straightforwardly generalized from a unidirectional estimator, i.e., the Hummer-Szabo
estimator, which was rederived using the Weighted Histogram Analysis Method (WHAM)
[165]. However, WHAM requires large numbers of samples to be valid. A workaround
is to rederive the Hummer-Szabo estimator using maximum likelihood as we show in
Section 2.4.3.1. Maximum likelihood principles are applicable even for small numbers of
trajectories.

We start the derivation of Minh-Adib estimator by rewriting the Crook’s fluctuation
theorem (see Section 2.4.1)

PF(W) = PB(−W)eβ(W−∆F), (2.4.42)

which can be rearranged to give

PF(W) =
nFPF(W) + nBPB(−W)

nF + nBe−β(W−∆F)
. (2.4.43)

The ensemble average of f (W) over all forward realizations is given by

〈 f (W)〉F ≡
∑nF

i f (Wi)PF(Wi)

∑nF
i PF(Wi)

=
∑nF

i
nF f (Wi)PF(Wi)+nB f (Wi)PB(−Wi)

nF+nBe−β(W−∆F)

∑nF
i PF(Wi)

=
∑nF

i
nF f (Wi)PF(Wi)

nF+nBe−β(W−∆F)

∑nF
i PF(Wi)

+
∑nF

i
nB f (Wi)PF(Wi)e−β(W−∆F)

nF+nBe−β(W−∆F)

∑nF
i PF(Wi)

=

〈
nF f (W)

nF + nBe−β(W−∆F)

〉
F
+

〈
nB f (W)e−β(W−∆F)

nF + nBe−β(W−∆F)

〉
F

.

(2.4.44)

This is equivalent to

〈 f (W)〉F =

〈
nF f (W)

nF + nBe−β(W−∆F)

〉
F
+

〈
nB f (−W)

nF + nBeβ(W+∆F)

〉
B

. (2.4.45)

Here we transform the forward to backward average in the second term using the
Crook’s path-ensemble average theorem [166], which can be rewritten as
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〈 f (W)〉F =
〈

f (−W)e−β(W+∆F)
〉

B
. (2.4.46)

Note that for backward trajectories, W is used instead of −W due to the fact that a
backward trajectory can be considered a reverse of the forward one. Now if we substitute
f (W) = δ(z− zt)e−βWt

0 into Equation (2.4.45), we get

〈
δ(z− zt)e−βWt

0

〉
F
=

〈
nFδ(z− zt)e−βWt

0

nF + nBe−β(W−∆F)

〉
F

+

〈
nBδ(z− zτ−t)eβWτ

τ−t

nF + nBeβ(W+∆F)

〉
B

. (2.4.47)

Here the time and work in backward processes are “reverted”. If we further insert the
right-hand side of the above equation into the following unidirectional Hummer-Szabo
PMF estimator 6

e−βG0(z) =
∑t

〈
δ(z− zt)e−βWt

0

〉
eβ∆Ft

∑t e−β[V(z;t)−∆Ft ]
, (2.4.48)

we obtain the so-called bidirectional Minh-Adib PMF estimator

e−βG0(z) =

∑t

[〈
nFδ(z−zt)e

−βWt
0

nF+nBe−β(W−4F)

〉
F
+

〈
nBδ(z−zτ−t)e

βWτ
τ−t

nF+nBeβ(W+4F)

〉
B

]
eβ4Ft

∑t e−β[V(z;t)−4Ft ]
. (2.4.49)

Here eβ4Ft is used as a normalization factor. Its expression is given by choosing f (W) =

e−βWt
0 in Equation (2.4.45)

e−β4Ft =

〈
nFe−βWt

0

nF + nBe−β(W−4F)

〉
F

+

〈
nBeβWτ

τ−t

nF + nBeβ(W+4F)

〉
B

. (2.4.50)

This equation can be rearranged to give BAR formula (i.e., Equation (2.4.17)) when
t = τ.

2.4.4 Projection of Free Energy on an A Posteriori Chosen CV

The PMF computed as a function of the steered CV does not necessarily provide a good
picture of the investigated transition, as the steered CV is not guaranteed to properly dis-
tinguish all the relevant states. Moreover, in many cases it is instructive to look at the
same result from a different perspective, i.e., computing the PMF as a function of a dif-

6which can be derived from maximum likelihood principles (see Section 2.4.3.1)
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ferent, a posteriori chosen CV. Such task can be performed by employing a reweighting
scheme. Suitable schemes have been proposed for other kinds of non-equilibrium simu-
lations including metadynamics [167]. For SMD simulations, a reweighting algorithm for
unidirectional pullings was introduced by some of us in a recent work, i.e., see ref. [168].
Here we extend this scheme to the case of bidirectional pullings.

The free energy as a function of an arbitrary, a posteriori chosen CV z̄ is defined as

e−βG0(z̄) = ∑
z

e−βG0(z)δ(z̄− z̄(z)). (2.4.51)

Using the Minh-Adib estimator for G0(z) we have

e−βG0(z̄) = ∑
z

∑t

[〈
nFδ(z−zt)e

−βWt
0

nF+nBe−β(W−4F)

〉
F
+

〈
nBδ(z−zτ−t)e

βWτ
τ−t

nF+nBeβ(W+4F)

〉
B

]
eβ∆Ft

∑t e−β[V(z;t)−∆Ft ]
δ(z̄− z̄(z))

=
∑t

[
∑nF

i
e−β(Wi(t)−∆Ft)

nF+nBe−β(Wi−4F) + ∑nB
j

e−β(Wi(t)−4Fτ−t)e−β∆F

nB+nFe
−β(Wj+4F)

]
∑t e−β[V(zt ;t)−∆Ft ]

. (2.4.52)

Here the free energy and work of the backward trajectories have been adjusted for a
notational consistency. Now let us define the weighting factors of the forward and backward
processes as

wF
i (t) =

e−β(Wi(t)−∆Ft)

∑t′ e−β(V(zt ,t′)−4Ft′ )
× 1

nF + nBe−β(Wi−4F)
, (2.4.53)

and

wB
j (t) =

e−β(Wj(t)−4Fτ−t)

∑t′ e−β(V(zt ,t′)−4Ft′ )
× e−β4F

nB + nFe−β(Wj+4F)
. (2.4.54)

Based on these weights, the free energy can be estimated as a function of any a posteriori
chosen CV z̄ as:

e−βG0(z̄) = ∑
t

(
nF

∑
i

wF
i (t) +

nB

∑
j

wB
i (t)

)
δ(z̄− z̄t). (2.4.55)

Our reweighting scheme (Equations (2.4.53), (2.4.54), and (2.4.55)) can be rearranged
to give an identical expression to the Minh-Adib bidirectional PMF estimator (Equation
(2.4.40)) when z̄ ≡ z. However, this approach of calculating a weighting factor at every
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time-frame is more general as it allows estimating the PMF as a function of a different, a
posteriori chosen CV. Applying this algorithm, one can be flexible in projecting the PMF on
the appropriate CVs for different post-processing purposes.
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3.1 Overview

Although Steered Molecular Dynamics (SMD) and metadynamics simulations have been
extensively used for ligand-binding studies, a proper choice of Collective Variables (CVs)
still remains challenging and can be highly dependent on the specific problem. The center-
to-center distance, a common choice of CV in binding/unbinding enhanced-sampling
simulations, may disfavor the right complex formation by not taking into account the
charge-charge interaction which is an important driving force in biomolecular recognition.
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This thesis devises a strategy that uses a CV that is a proper approximation of the
electrostatic-free-energy difference between the actual state of a biomolecular complex and
a reference unbound state. This free energy can be easily computed on the fly within the
Debye-Hückel formalism and can be used as a descriptor to distinguish the bound (lower
free energy) and unbound (higher free energy) states.

In this chapter, we first rederive the formulation of the CV starting from the Debye-
Hückel theory and the general Poisson-Boltzmann Equation (PBE). We then compare the
electrostatic free energies calculated by our proposed expression and by solving the non-
linear PBE.

3.2 Derivation of the Electrostatic-Based Collective Variable

3.2.1 Debye-Hückel Continuum-Solvent Model

The continuum model of molecules in ionic solutions was first proposed by Debye and
Hückel in 1923 for electrostatic-free-energy calculations of spherical ions [169]. Since then,
it has been extended and considered an important tool to study electrostatic interactions
in biochemical molecular systems.

In the original Debye-Hückel model, there is a particular ion of interest located at the
region Ω1. However, the model can be trivially extended to model a macromolecule in
region Ω1 with a dielectric constant ε1 (see Figure 3.2.1). Region Ω3 contains the solvent
with a dielectric constant ε3. Mobile ions also belong to this region. Region Ω2 is called the
ion-exclusion region and is described as a transition space which bears the same dielectric
constant as the solvent region Ω3, i.e., ε2 = ε3, but to which no mobile charges have access.

Figure 3.2.1: A two-dimensional schematic representation of the extended three-
dimensional Debye-Hückel model for macrobiomolecular systems.
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In the next section, we will describe the electrostatics of the model by deriving a Poisson
equation for each region.

3.2.2 Nonlinear Poisson-Boltzmann Equation

The electrostatic potential in each of the region satisfies the Poisson equation which has
the following form

−∇2Φk(r) =
4π

εk
ρk(r), (3.2.1)

in which k = 1, 2, 3 denotes the index of each region; Φk(r) is the electrostatic potential
at a position r in region Ωk; and ρk is the charge density function which depends on the
charge distribution in each region Ωk.

Suppose that the molecule is composed of Nm charges qi at positions ri. These can be
partial charges. The electrostatic potential in region Ω1 is defined as

Φ1(r) =
Nm

∑
i=1

qi
ε1|r− ri|

, (3.2.2)

which consequently gives

−∇2Φ1(r) =
4π

ε1

Nm

∑
i=1

qiδ(r− ri), (3.2.3)

here δ is the Dirac delta function.

As exclusive to charges, the charge density function in region Ω2 is given by ρ2(r) = 0.
The Poisson equation for this region then becomes

−∇2Φ2(r) = 0. (3.2.4)

The critical assumption in Debye-Hückel theory states that the mobile ions in region Ω3

obey the Boltzmann distribution law, in other words the ratio between the ion local density
and the bulk density of each type of ions is given by Boltzmann distribution law, namely

ρi
3(r)
ρ0

= e−βWi(r), (3.2.5)

in which i denotes the ion type; ρi
3(r) is the local density of the ion type i in region Ω3;

ρ0 represents the ion bulk density; and Wi(r) is the work required to bring one ion of type
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i from infinity to the position r.

In case of a 1:1 electrolyte, which is applicable for most molecular simulations, we have
two types of ions with opposite charges of +ec and −ec. The works required to move these
ions from far away to the position r can be written as

W+(r) = +ecΦ3(r), (3.2.6)

and

W−(r) = −ecΦ3(r). (3.2.7)

The charge density in region Ω3 is then given by

ρ3(r) = ρ+3 (r)− ρ−3 (r) = ρ0ec(e−βecΦ3(r) − eβecΦ3(r)) = −2ρ0ec sinh
( ecΦ3(r)

kBT

)
. (3.2.8)

We next define Is = 1/2 ∑NI
i=1 ciz2

i as the ionic strength of the solvent, which is deter-
mined by NI types of ions, each type has a charge qi = ziec and a concentration ci. The ion
bulk density of a 1:1 electrolyte is then related to the ionic strength as

ρ0 =
NA Is

1000
, (3.2.9)

where NA is the Avogadro’s number. The Poisson equation for region Ω3 can be then
written as

−∇2Φ3(r) = κ2
( kBT

ec

)
sinh

( ecΦ3(r)
kBT

)
, (3.2.10)

here

κ =
( 8πNAe2

c
1000εwkBT

)1/2
I1/2
s , (3.2.11)

is defined as the Debye-Hückel parameter.

From the Equations (3.2.3), (3.2.4), and (3.2.10), a single equation can be generalized as

−∇(ε(r)∇Φ(r)) = 4π
Nm

∑
i=1

qiδ(r− ri)− κ̄2(r)
( kBT

ec

)
sinh

( ecΦ(r)
kBT

)
, (3.2.12)
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in which Φ(r) denotes the electrostatic potential at any point r in space; the permittivity
ε(r) adopts the appropriate dielectric constant values in different regions (i.e., ε1, ε2, or
ε3). Notice the introduction of the modified dielectric-independent Debye-Hückel parameter κ̄(r)
which is defined as κ̄(r) =

√
εwκ if the point r belongs to the solvent region Ω3 and

κ̄(r) = 0 elsewhere. Hereafter εw replaces ε3 to represent the dielectric constant of water.

The Poisson-Boltzmann Equation (PBE) (3.2.12) is a second-order nonlinear partial dif-
ferential equation whose analytical solutions are not trivial to derive in general cases.
Recently developed softwares including APBS [170] and DelPhi [171] have achieved re-
markable accomplishment and improvement in providing robust numerical solutions of
nonlinear PBE. However, the high computational cost makes impractical the integration of
solving nonlinear PBE into MD-based simulations.

3.2.3 Linearized Poisson-Boltzmann Equation

Under the assumption of dilute solution such that the relation ecΦ(r)� kBT holds, one can
approximately keep only the first term of a linear approximation of sinh(x) and rewrite
the PBE in a much simpler form:

−∇(ε(r)∇Φ(r)) = 4π
Nm

∑
i=1

qiδ(r− ri)− κ̄2(r)Φ(r). (3.2.13)

Equation (3.2.13) is referred to as the linearized PBE or Debye-Hückel equation and its
analytical solution can be explicitly constructed for the solvent region as:

ΦDH(r) =
1

kBTεw

Nm

∑
i=1

qie−κ|r−ri |

|r− ri|
. (3.2.14)

From the electrostatic potential in Equation (3.2.14), one can easily derive the electrostatic-
interaction term in the free energy of a system consisting of two non-overlapping molecules
as

GDH = ∑
j∈B

qjΦDH(rj) =
1

kBTεw
∑
j∈B

∑
i∈A

qiqj
e−κ|rij |

|rij|
, (3.2.15)

where A (B) is the set of all the atoms of the first (second) molecule; i and j are the atom
indexes in the two sets A and B; and |rij| = |ri − rj| denotes the distance between atoms i
and j.

Since Debye-Hückel equation is an approximation of nonlinear PBE in extremely dilute
solution condition, the electrostatic potential ΦDH(r) given by Equation (3.2.14) is hence
an approximation. One can easily notice that ΦDH(r) and thus GDH do not account for the
difference in electrostatic interactions due to different atomic sizes. Furthermore, neither of
them consider the increasing in strength of electrostatic interactions close to and inside the
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molecular region, where the screening due to the ionic solution is smaller. The modified
generalized Born model developed by Onufriev et al. [172] solved the limitations of linear
Debye-Hückel equation by (i) introducing into the formula of electrostatic potential extra
terms associated with the dielectric constant of the molecular region εp and (ii) modifying
the distance |rij| to an effective distance taking into consideration atomic radii. In their
model, the electrostatic potential defined at the position of each atom i is calculated as:

ΦGB(ri) = −
(

1
εp
− e−κ fij(rij)

εw

)
∑

j

qj

fij(rij)
+ ∑

j 6=i

1
εp

qj

rij
, (3.2.16)

where fij(rij) =
√

r2
ij + RiRj exp(−r2

ij/4RiRj) is the modified distance, in which Ri and
Rj are the so-called effective Born radii of atoms i and j . Effective Born radius account for
the change in interaction energy in case that the atom may be surrounded by neighbors
which replace the solvent. The method for estimating Ri is fully introduced in reference
[172]. Undoubtedly, the Equation (3.2.16) tends to quantify better the electrostatic interac-
tion than the Equation (3.2.14). However, its drawback involves the nontrivial estimation
of effective Born radius for each atom that in turn makes it impractical to be implemented
as a CV.

We thus propose to use the expression (3.2.15), from now on referred to as Debye-Hückel
ENergy (DHEN), as a CV due to its generality and computational efficiency and due to
the small number of parameters needed. Here we assume that only the inter-molecular
electrostatic interactions contribute significantly to the free-energy difference between the
bound and unbound states of a complex, thus ignoring the intramolecular relaxation. This
assumption and the dilute-solution approximation do not affect the accuracy of free-energy
calculation, which is obtained from the all-atom accelerated simulations. Indeed, GDH in
Equation (3.2.15) is not claimed to be the electrostatic free energy of the system. It is only
used as a CV for guiding the exploration of the conformational space.

3.3 Free Energy Calculations from Nonlinear versus Lin-

earized PBEs

For a comparison of electrostatic free energy between solving nonlinear and linear PBEs,
we performed electrostatic calculations on configurations featuring all relative orientations
between L22 and TAR. This section presents the calculation procedure and the comparison
results.
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3.3.1 Calculation Procedure

To prepare for the calculation, an arbitrary coordinate system was chosen. L22 was then
put at the origin and TAR was placed at 40 Å on an axis, e.g., the x-axis. This choice of
distance ensured that L22 and TAR were far enough to have no inter-molecular contacts.
The dipole moment of both molecules were aligned with another direction, e.g., the z-axis.
We next progressively rotated both L22 and TAR molecules about the x-, y-, and z- axes. The
combination of these rotations is equivalent to placing the ligand in all three-dimensional
rotations everywhere on the surface of a sphere with a radius of 40 Å around the RNA.

The “angle-step” of the rotation was 1◦. At every step, the electrostatic-interaction free
energy was calculated by two methods: (i) numerically solving the nonlinear PBEs using
APBS 1.3 [170] and (ii) using our proposed DHEN estimator (Equation (3.2.15)). These
calculations provided the orientation dependence of the electrostatic interaction.

3.3.2 Results

Figure 3.3.1: Electrostatic interaction free energy as a function of TAR’s orientations
calculated by both methods: (a) numerically solving nonlinear PBE and (b) using Equation
(3.2.15) which analytically arises from the linearized PBE. In both calculations, we found
two energy minima corresponding to two orientations of TAR at which L22 face both the

upper and lower major groove of TAR.

The linearized PBE gives an explicit expression of the electrostatic free energy, i.e.,
Equation (3.2.15). Using this expression has a great computational advantage compared to
solving the nonlinear PBE numerically. In fact, for every rotation, it takes only a fraction
of a second to calculate the electrostatic free energy using Equation (3.2.15) while it takes
3−4 minutes to numerically solve the Equation (3.2.12) using APBS. The results, however,
are not considerably different from one another. That can be observed in Figure (3.3.1),
which shows the dependence of electrostatic free energy on the two angles α and γ, which
describe the rotation of TAR about the x- and y- axes. Both calculation methods agree on
the two minima representing two orientations of TAR at which the electrostatic free energy
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of the system have the lowest values. This result provided us with more confidence when
using DHEN as a CV for the accelerated simulations which will be presented in Chapter 5.

3.3.3 Qualitative Prediction of L22-TAR Binding Modes

As a further notice, both methods suggest that there are two orientations of TAR featuring
the lowest electrostatic free energy of the system. Since both L22 and TAR were treated as
rigid molecules, these calculations did not provide an accurate estimation of the electro-
static free energy. However, from these calculations, we can learn two important facts

(i) the electrostatic free energy DHEN is more “collective” and “selective” than the center-
to-center distance when describing the system. Indeed, if we look at the distance only,
we cannot tell the difference among the relative orientations of L22 and TAR. The
electrostatic free energy, however, can tell us that at some orientations, the interaction
becomes stronger than at the others,

(ii) there are two possible low-energy funnels for the L22-to-TAR encounter path: approach-
ing the upper major groove from above and the lower major groove from below (as
sketched in Figure 3.3.2).

Figure 3.3.2: Possible approaches of L22 to TAR predicted by electrostatic-free-energy
calculations: (i) upper major groove, which is as well the binding site of Tat and (ii) lower
major groove. Solving both nonlinear and linearized PBE are in agreement on this result.

However, this is merely a qualitative assessment. We will verify it by a more quantitative
methodology in the next sections.
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3.4 Concluding Remarks

We propose to use DHEN, i.e., the electrostatic free energy given by Equation (3.2.15),
as a CV for accelerating simulations. Although derived from the linear Debye-Hückel
equation, which is obtained by a dilute-solution approximation, the crudeness of this CV
does not affect the accuracy of free energy calculation. Indeed, it is only used as a CV
on top of which a suitable bias is added. The computational advantage of the DHEN
formulation is that besides the atomic charges which are ready in the force field and
the well-defined intrinsic properties of the system including temperature, ionic strength,
and solvent dielectric constant, DHEN does not require extra parametrization. The DHEN
CV was implemented in an in-house version PLUMED 1.3 [167]. Therefore, it can be
employed interactively with the common MD simulation engines such as GROMACS,
NAMD, AMBER, etc.

An electrostatic-free-energy calculation of the L22-TAR system using DHEN CV quali-
tatively predicts that there are two possible low-energy funnels for L22 to approach TAR
which lead to two possible binding pockets: the upper and lower major grooves. This
prediction is to be quantitatively assessed in the next chapters.
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4.1 Overview

Here we use Molecular Dynamics (MD) simulations to investigate changes in TAR structure
and plasticity as well as ion redistribution upon L22 binding. We first validate our compu-
tational approach by comparing the simulated structural parameters and conformational
fluctuations with experimental results obtained by NMR. Our calculated structural features
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and order parameter S2 values are in agreement with experimental data. We then average
the ion distributions during the simulations of apo-TAR and bound-TAR. The calculations
are complemented by an analysis of the hydration of TAR in both free and bound states.
Finally, we perform several standard MD simulations starting from different initial con-
figurations of the unbound states of the complex system to see how the two molecules
recognize each other. Our calculations show that the encounter between the TAR RNA and
the positively-charged L22 peptide is a spontaneous process strongly driven by electrostatic
interaction, which happens in a very short time-scale of no more than 5 ns. Indeed, electro-
static interaction plays a critical role in binding of proteins and small molecules to RNA
[173]. This interaction is presumed to be modulated by the distributions of ions around the
RNA molecule which in return are also altered during the binding process. However, this
issue has not yet been fully targeted in RNA studies. Therefore we carefully investigate the
rearrangement of ions during the molecular recognition events leading to the formation of
the L22-TAR complex. Additionally, we calculate the ion occupancies with respect to each
RNA nucleotide. Our calculations shed light on ion redistribution upon ligand binding, a
feature that has yet to be examined.

In this chapter, we first introduce the biological systems to be simulated and the simu-
lation protocols. We then present the main MD results as well as a thorough comparison
with the NMR studies.

4.2 Systems and Simulation Protocols

4.2.1 Apo-L22, Apo-TAR, and L22-TAR Complex Systems

The molecular systems used for the MD simulations presented in this chapter were ex-
tracted from the NMR structure of the L22-TAR complex [24] (pdb code: 2KDQ, see Figure
4.2.1a). A total of 544 ns of MD production run were performed in nine simulations in-
cluding (i) 100-ns simulation of apo-L22, (ii) 200-ns simulation of apo-TAR, (iii) 200-ns
simulation of L22-TAR complex, and (iv) 44 ns of six simulations starting from six different
unbound structures (referred to as L22//TAR hereafter). To prepare the initial structures
of L22//TAR, we defined an arbitrary Cartesian coordinate system originating at TAR’s
geometric center. L22 was then placed at ±40 Å from the origin along the three axes x,
y, and z, generating six starting structures (see Figure 4.2.1b). This approach is general
because the positions of L22 are arbitrarily chosen due to the arbitrary definition of the
coordinate system.
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Figure 4.2.1: The starting structures of nine MD simulations. (a) The L22-TAR complex
from NMR experiment, which provides the starting conformations for three simula-
tions including apo-L22, apo-TAR, and L22-TAR complex. (b) Six starting structures
(L22//TAR) for encounter simulations in which L22 is placed at 40 Å away from the

TAR’s center.

4.2.2 Simulation Setups

The nine starting structures, including apo-L22, apo-TAR, L22-TAR, and six structures
of L22//TAR, were embedded in explicit water boxes to which the periodic boundary
conditions were applied. The solutes and their images were located at a minimum distance
of 24 Å. The use of a large simulation box was necessary to decrease artificial interactions
between the highly charged molecules and their periodically repeated images (see Section
2.2.1.4 for a detailed discussion on this issue). A total of 3,175; 7,401; 7,374; and 31,260 water
molecules were used in the simulations of apo-L22; apo-TAR; L22-TAR; and L22//TAR
respectively. KCl was added to neutralize the charges and reproduce the experimental
ion concentration of 10 mM in all cases [83]. The number of K+ and Cl− ions in each
simulation along with other setup details such as box size and total number of atoms are
specified in Table 4.1.

Systems
Simulation setup

Box size (Å3)
Ions No. of atoms Force fieldsK+ Cl−

Apo-L22 57× 51× 46 1 8 9,803 ff03
Apo-TAR 60× 72× 71 30 2 23,165

ff03+parmbsc0L22-TAR 66× 72× 71 23 2 23,346
L22//TAR 107× 107× 107 27 6 95,012

Table 4.1: Summary of MD simulation setup information.
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We employed TIP3P model [174] for water, AMBER ff03 force field [175] for L22, and
ff03 with parmbsc0 reparametrization [6] for TAR (see Section 2.2.1.3 for the clarification
this reparametrization). This combination of force fields has been shown to provide good
results for protein/nucleic-acid complexes [176, 177].

4.2.3 Control Parameters and Simulation Protocols

Control Parameters

All-atom MD simulations were performed using the program NAMD 2.6 [178]. The Particle-
Mesh Ewald method [146, 179] was used to treat the long-range electrostatic interactions
with a real space cut-off of 12 Å. The same cut-off was also used for the van der Waals
interactions. The simulation time-step was 1 fs and the non-bonded atom pair list was
updated every 20 steps. The SHAKE algorithm [180] was applied to constrain all bonds
involving hydrogen atoms. NPT conditions were controlled by the Langevin equation
[181, 182] describing the coupling of the systems to a thermostat at 300 K with a damping
coefficient of 1 ps−1 and a barostat at 1 atm with an oscillation period of 200 fs and a decay
coefficient of 100 fs.

Simulation Protocols

MD Simulations of all systems were performed with the following protocol

Step 1: Minimization. A minimization procedure was conducted for 15,000−18,000 steps
until the root-mean-square energy gradient reached the value of about 10−2 kcal/mol.

Step 2: Solvent equilibration. Water molecules and ions underwent a 50-ps constant-volume
MD simulation, keeping restraint on each atom of the solute with the force constant
of 500 kcal/mol/Å2.

Step 3: Heating. The whole system was heated up to 300 K with a 200-ps constant-volume
MD simulation. No restraint was applied to any atom.

Step 4: Equilibration. A 500-ps MD simulation in NPT condition was performed at 300
K and 1 atm. The density fluctuated around 1 g/ml. The configuration associated
with the density that is closest to the average density was saved as the starting
configuration for the next step.

Step 5: Production. A long MD simulation was carried out with the same protocol as in the
equilibration step. For MD production run, we performed 100 ns for apo-L22, 200
ns for apo-TAR, another 200 ns for L22-TAR, and a total of 44 ns for six L22//TAR
systems.



4.3 Results 61

4.3 Results

In this section, we first validate our computational approach by comparing simulated
structural parameters and conformational fluctuations with experimental results obtained
by NMR studies. We then describe the distributions of water molecules and ions around
TAR in the simulations of apo-TAR and L22-TAR. Finally, we present the results of the
MD simulations starting from different initial conditions of the L22//TAR systems. These
simulations provide insight into ion redistribution upon ligand binding.

4.3.1 General Features and Comparisons with NMR Results

4.3.1.1 Structural Features of TAR RNA in Both Apo- and Bound- States

TAR becomes more rigid and compact upon complex formation. The structural features
of apo-TAR and bound-TAR, as obtained by 200-ns MD simulations, reproduce well the
NMR observations [24]. As expected, TAR becomes more rigid upon complex formation.

Figure 4.3.1: RMSDs and running averages with respect to the initial NMR structure of
apo-TAR (a) and bound-TAR (b) in 200-ns MD simulations. The values for the entire
TAR structure are shown in red. Those for specific regions, i.e., lower stem, upper stem,
bulge, and loop, are shown in green, blue, yellow, and brown respectively. All regions in

bound-TAR vary less than those in apo-TAR.

Figure 4.3.1 shows the Root Mean Square Deviations (RMSDs) with respect to the NMR
structure (i.e., the starting structure in all simulations) of apo-TAR (panel (a)) and bound-
TAR (panel (b)). All regions of TAR vary less when TAR is bound to L22. Indeed, the
average RMSD of apo-TAR with respect to its initial configuration is 4.5± 0.6 Å, while
that of bound-TAR is 3.7± 0.3 Å. Looking closer into the local deviations, we found that
in both cases, the bulge and loop regions exhibit greater variations than the rest since
they are unstructured and hence are allowed to move freely during the simulations. The
upper stem, in both cases, shows the lowest deviation from its starting structure because
the location of this stem is more constrained than the rest of the regions. Interestingly, the
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lower stem, most part of which is not structurally bound to the ligand, also experiences a
decrement in flexibility upon complex formation.

Figure 4.3.2: Average RMSFs are shown for each nucleotide of apo-TAR (in pink) and
bound-TAR (in red). Below the x-axis, the letters representing the nucleotides involved
in ligand binding are marked in red while the rest are shown in black. Overall, bound-
TAR is more rigid than apo-TAR and the ligand-binding regions change the most upon

complex formation.

A similar feature can be observed when plotting the average Root Mean Square Fluctuations
(RMSFs) of each nucleotide in both apo-TAR and bound-TAR (Figure 4.3.2). The bulge and
loop regions have the highest flexibility in both cases. The nucleotides involved in peptide
binding significantly decrease their flexibilities upon complex formation. For instance, the
RMSFs of C24 (a bulge nucleotide) and A35 (a loop nucleotide) decrease from 3.6 Å to 1.9
Å and from 2.7 Å to 1.5 Å respectively.

Principle Component Analysis (PCA) [183] further showed that upon complex formation,
TAR decreased considerably its flexibility; this is clearer for the case of nucleotide A35
(see Figure 4.3.3). Additionally, in the bulge region, C24 becomes more rigid due to its
interaction with a peptide residue (specific L22-TAR interactions are to be discussed in
Section 4.3.1.2). However, U25 of the bulge region turned to be more flexible presumably
because it was more exposed to the solvent in the bound state.

A closer look into the conformational changes of the hairpin loop is presented in Figure
4.3.4. In the starting NMR structure (panel (a)), all loop nucleotides except for G33 and
A35 point toward the major groove, forming a compact structure. In apo-TAR, during the
MD simulation, the hairpin loop is flexible: U31, G32, G33, and A35 point outward to the
solvent, while C30 and G34 point toward the loop (panels (b1)−(b5)). In bound-TAR, the
loop is more rigid compared to that of apo-TAR. However, the bases of C30, U31, G32,
and G34 still adopt a wide range of conformations, while their backbones are structurally
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Figure 4.3.3: Superposition of the main configurations adopted by apo-TAR (left) and
bound-TAR (right) from PCA calculations. Normalized degree of flexibility per nucleotide
is shown in the colors ranging from blue (complete rigidity) to red (complete flexibility).

Bound-TAR is more rigid than apo-TAR.

similar to those of the NMR structure (panels (c1)−(c5)). A35 is relatively rigid due to its
interaction with a peptide residue.

Figure 4.3.4: (a) The hairpin loop conformation in the starting NMR structure with the
loop nucleotides C30-U-G-G-G-A35 presented in pink, purple, cyan, ice blue, lime, and
red, respectively. (b1-5) Snapshots of the loop structure at 40 ns, 80 ns, 120 ns, 160 ns, and
200 ns respectively in simulation of apo-TAR. (c1-5) Snapshots of the loop structure at 40

ns, 80 ns, 120 ns, 160 ns, and 200 ns respectively in simulation of bound-TAR.

Besides losing flexibility, TAR becomes slightly more compact upon L22 binding as well;
the average radius of gyration of apo-TAR and bound-TAR are 14.5± 0.5 Å and 13.7± 0.2
Å respectively.

Agreement between MD-derived and NMR-resulted order parameters. Our calcula-
tions reproduced well the experimentally-derived order parameter S2 values, which were
obtained from NMR analysis of the relaxation of the base C8−H8 dipolar interactions
(in adenine and guanine) and C6−H6 dipolar interactions (in cytosine and uracil) for
both apo-TAR and bound-TAR (see Section (2.2.2.1) for the definition and formulation
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of the NMR order parameter S2). The results are presented in Figure 4.3.5. In particular,
in both NMR experiments and MD simulations, the bulge and loop are the most mobile
regions in apo-TAR, and remain so in the bound-TAR. The bulge nucleotide U25 and
loop nucleotide U31 of apo-TAR are flexible with low order parameters, indicative of lo-
cal mobility (S2 = 0.57 and 0.31 respectively). Upon ligand binding, U25 becomes more
solvent exposed and hence it increases the mobility; U31, on the contrary, becomes more
rigid through the reorganization of the loop. There is, however, a remarkable discrepancy
between simulations and experiments in the S2 value of the loop nucleotide A35. This is
probably due to the solvent-exposed property of A35 which leads to its high flexibility and
hence its relaxation time is probably poorly estimated within the performed computational
time. Our simulations also provide information on the S2 values of several nucleotides
(mostly in the helical regions) which are not available by NMR experiments due to spectral
overlapping.

Figure 4.3.5: Per nucleotide NMR order parameter (S2) as obtained by MD simulations
(green circles) and by NMR experiments (red triangles) in apo-TAR (a) and bound-TAR

(b).
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Figure 4.3.6: (a) A side view of L22-TAR NMR structure. (b) A top view of L22-TAR
NMR structure. (c)-(f) Main contacts of L22 and TAR as seen in MD simulation and
in agreement with NMR structure: (c) cation-π interaction between Arg11 and A35; (d)
cation-π interaction between Arg5 and U23 together with the burial of the hydrophobic
residue Ile 10 into the RNA backbone which facilitates the formation of the U23/U27-A38
base triple; (e) Lys6 side chain pointing to the pocket created by the backbones of C24,

A27, and G28; and (f) hydrogen bonds between Arg3 and C26.

4.3.1.2 L22-TAR Interactions

All key hydrophobic and polar contacts between L22 and TAR observed by NMR experi-
ments are reproduced in our simulations (see Figure 4.3.6). These include:

(i) the cation-π interaction between the guanidinium group of Arg11 and the loop nu-
cleotide A35 (panel (c)). This interaction draws A35 toward the UCU bulge (panel
(a)). Such a displacement in turn draws down the other loop nucleotides G32, G33
and G34, forming a cavity where the peptide is partially buried (panel (a)).

(ii) another cation-π interaction was also observed between Arg5 guanidinium group and
U23 (panel (d)).

(iii) the hydrophobic interactions between the Ile10 methyls and the TAR nucleobases,
including U23, A27-U38, and G28-C37 base pairs. These interactions, first observed
in the related BIV Tat-TAR complex [184, 185], facilitate the formation of the U23/A27-
U38 base triple (see also panel (d)).

(iv) the hydrogen bonds between the side chain of Lys6 with the phosphate groups of C24,
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A27, and G28 as Lys6 points to a pocket formed by the backbone of these nucleotides
(panel (e)).

(v) Arg3 forms a hydrogen bonds with the phosphate of U23, although it has been pro-
posed to interact also with A22 [75, 186]. Arg3 also forms hydrogen bonds with G26
(panel (f)), although these did not emerge directly from the NMR data.

(vi) Arg5 forms hydrogen bonds with G28.

Other selected L22-TAR interactions whose life-time exceed 30% of the 200-ns MD simula-
tion are reported in Table 4.2.

L22 TAR average distance (Å) time course (%)
Arg8 (NE) C30 (N3) 3.0 (0.1) 95

Arg8 (NH1) G34 (O2’) 2.9 (0.1) 93
Arg8 (NH1) C30 (O2) 3.0 (0.2) 85
Arg5 (NH1) G28 (O2P) 2.8 (0.1) 74
Arg5 (NH1) A27 (O2P) 2.9 (0.2) 70
Arg3 (NH1) G26 (N7) 3.0 (0.1) 69
Arg3 (NH2) G26 (O6) 3.0 (0.2) 56

Arg11 (NH1) A35 (O1P) 3.0 (0.2) 52
Arg8 (NH2) A35 (O2P) 3.1 (0.2) 42
Arg9 (NH1) A35 (O1P) 2.9 (0.2) 42
Arg5 (NH2) G28 (O2P) 3.1 (0.2) 38
Arg3 (NE) G28 (O1P) 2.9 (0.2) 38
Arg5 (NE) U23 (O2) 3.1 (0.2) 37

Arg1 (NH1) A22 (O2P) 2.8 (0.1) 37
Arg1 (NH1) A22 (N7) 3.0 (0.2) 33
Arg9 (NH1) G33 (O2’) 3.1 (0.2) 32
Arg11 (NE) A35 (O2P) 2.9 (0.2) 31

Table 4.2: Key L22-TAR interactions with average length and time course (> 30%) as
observed in the 200-ns MD simulation of L22-TAR complex.

4.3.2 Hydration and Ion Distribution around TAR

4.3.2.1 Hydration Properties of TAR in Both Apo- and Bound- States

The bulge and loop of apo-TAR are highly hydrated. The most hydrated residues are C24,
U31, and A35, which are fully solvent-exposed in the absence of ligand (see Figure 4.3.7).
Binding of L22 causes a decrease of hydration for these nucleotides. The numbers of water
molecules within the first hydration shell around the mentioned nucleotides decrease from
36 - 37 in apo-TAR to 23 - 27 in bound-TAR. At the same time, U25 becomes the most
solvent-exposed nucleotide in bound-TAR.
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Figure 4.3.7: Number of water molecules in the first hydration shell around each nu-
cleotide in apo-TAR (pink) and bound-TAR (red).

4.3.2.2 Electrostatic Properties of TAR and Surrounding Ion Distribution

The electrostatic potentials on the surface of TAR were calculated by solving nonlinear PBEs
using APBS 1.3 [170]. The RNA major groove was found to be more electro-negative than
the minor groove (see Figure 4.3.8). In general, this result supports the electrostatic feature
of A-form nucleic acids. Within the major groove, the upper part (i.e., nucleotides U23-
C39) involves more electro-negativity when compared to the lower part (i.e., nucleotides
G17- A22 and U40- C45). This observation qualitatively explains the binding position of
the positively-charged Tat’s region and also of the ligand L22.

Consistently, in apo-TAR, K+ occupancy has the following order: upper major groove,
lower major groove, and minor groove (see Figure 4.3.9a). Most of the K+ ions are found
close to the nucleotides 20-23 and A27, which are located around the UCU bulge and form
the crucial part for L22 and Tat binding (see Figure 4.3.10). Among those nucleotides, A22
has the highest propensity to bind K+ ions. This result agrees with what was found in a
recent MD study [187], although that simulation was considerably shorter (20 ns).

In bound-TAR, as L22 is present in the upper major groove, K+ ions are displaced
towards the lower major groove and Cl− ions are also found to couple with K+ ions in the
lower major groove (see Figure 4.3.9b).

4.3.3 Formations of the L22-TAR Complex from Encounter Simulations

Six 5-ns MD simulations were performed for the L22//TAR systems (for details on how
the systems were prepared, see Section 4.2). By doing these simulations, we aimed at
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Figure 4.3.8: Electrostatic potentials on TAR’s surface are shown in a continuous RWB
color scale with red representing negative potentials (from −10 kT/e ), white representing
neutral potentials (0 kT/e ), and blue representing positive potentials ( up to +10 kT/e ).
The subfigures show: (a) the view from TAR’s front and (b) the view from TAR’s back.
TAR’s major groove is more electro-negative than the minor groove. Within the major
groove, the upper part has more electro-negativity than the lower part. TAR’s upper

major groove is where Tat protein and ligand L22 bind [73, 74, 75].

investigating how L22 and TAR would encounter each other and how the ions would
rearrange themselves during the L22-TAR encounter process. In all cases, L22 bound to
TAR within a very short time-scale. In this section, we summarize the structural features
of all six final states and proceed further into ion analysis.

4.3.3.1 Structural Properties of the Encountered Complexes

Figure 4.3.11 shows the snapshots taken at 5 ns of six MD simulations of the L22//TAR
encounters. In all cases, L22 binds to TAR starting from everywhere within a distance of
40 Å. Therefore, these events are driven by electrostatic interactions. In two simulations,
L22 approaches the TAR minor groove (panel (a)). In the other four cases, L22 binds to
the TAR major groove (panel (b)). Among the four major-groove complexes, there are two
cases in which L22 binds to the upper major groove of TAR (see the subfigures marked by
the elliptic frames). These binding poses share analogous features to the NMR structure,
the most important of which is that L22 binds to the same TAR pocket as seen in NMR
experiment [24] and this is the Tat-binding pocket as well [73, 74, 75].

The average RMSDs of TAR with respect to the NMR structure in each simulation vary
from 4.0± 0.4 to 4.7± 0.6 Å. In one of the two upper-major-groove binding poses, L22
was found along the RNA groove in a similar way as observed in the NMR structure but
with the LPro−DPro template pointing upward instead of downward as with NMR (see
the subfigure in the left top of Figure 4.3.11b). For notational convenience, we signal this
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Figure 4.3.9: A schematic representation of the isosurface of ion density around TAR. (a)
In apo-TAR, the K+ ions (shown in cyan) mostly occupy the upper major groove of TAR.
(b) In bound-TAR, K+ ions are repelled by L22 and hence shift to the lower major groove;

Cl− ions (shown in yellow) are also found in this groove.

binding pose as MD1. In the other upper-major-groove pose (denoted as MD2), L22 has an
orthogonal orientation thus not so similar to the NMR structure (see Figure 4.3.11b right
bottom).

These two simulations, i.e, MD1 and MD2, were then prolonged to 12 ns for further
analysis. The RMSD of TAR in each simulation in this timescale oscillates around 4.6± 0.4
Å (see Figure B.0.1 in Appendix B). Salt bridges are formed mostly between the Arginine
side chains of L22 and the TAR’s phosphate groups or hairpin loop nucleobases. See Table
4.3 for the selected salt bridges in the last 5 ns of the simulation MD1. These are not
the same interactions as found in NMR structure and in our previous simulation of L22-
TAR complex presumably due to the short simulation timescale which does not allow the
system to relax and finally reorganize itself into the correct binding pose. However, all of
the stable salt bridges in MD1 involve the L22’s Arginine side chains. This confirms that
Arginine residues play a critical role in molecular recognition and moreover suggests that
electrostatics provides the driving force for the encounter process.

4.3.3.2 Ion Redistribution upon Complex Formation

A quantitative analysis of ion redistribution involves the calculation of ion occupancy using
the so-called proximity method [188, 189, 190]. Each K+ ion was assigned to the closest TAR
atom within a cutoff distance of 5 Å. Analogously, each Cl− ion was assigned to the closest
L22 atom within the same cutoff. At every time frame, a summation of ion occupancies by
atoms provides the ion occupancy for each nucleotide (in TAR) or residue (in L22). The K+
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Figure 4.3.10: Number of K+ ions within a distance of 5 Å around each nucleotide of
TAR in both apo- (pink) and bound- (red) states.

and Cl− occupancies in the simulation MD1 were monitored as the peptide encountered
TAR and compared with those of the isolated molecules in aqueous solution.

At the beginning of the simulation, K+ ions are found in the upper major groove as also
seen in apo-TAR (see Figure 4.3.12a). As L22 approaches TAR, it causes a displacement
of the K+ ions from the upper major groove, hence K+ occupancy decreases significantly.
After 5 ns, when L22 is fully bound to TAR, no ions are located inside the L22 binding
pocket (see Figure 4.3.12b).

A similar and complementary picture is obtained for the Cl− ions (see Figures 4.3.12c
and d). In this case, these ions are found around L22 at the beginning of the simulation, but
the approach of TAR causes a displacement of the Cl− ions. As L22 approaches TAR, Cl−

ion occupancy decreases and in the complex, the ions are fully displaced. A very similar
picture is obtained for the MD2 simulation as well (see Figure B.0.2 in Appendix B).

It can be seen clearly that Cl− ions are lost from L22 much earlier than K+ ions are lost
from TAR. This is due to the fact that the mass of L22 is much smaller than that of TAR.
Hence, during the fast 5-ns encounter process, L22 moves quickly towards TAR while TAR
is basically staying in the same place.

The total K+/Cl− occupancy around L22-TAR in MD1 is shown as a function of the
shortest distance between the molecular surfaces of L22 and TAR upon binding (see Figure
4.3.13). K+ (and Cl−) are highly distributed around TAR (and L22) when TAR and L22 are
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Figure 4.3.11: Final configurations of L22-TAR complex formations after 5 ns of MD
simulations starting from six randomly positioned L22//TAR systems. (a) two minor-
groove binding poses. (b) 4 major-groove binding poses, in which there are two poses
(marked by elliptic frames) featuring the upper-major-groove binding mode, i.e., the same
L22-binding pocket as observed in NMR studies and the same Tat-binding pocket as well

[73, 74, 75].

separated, i.e., at surface distances larger than 8 Å. At distances of between 7.5 and 8 Å,
the ion occupancies clearly decrease due to the presence of L22 in TAR’s major groove.
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L22 TAR average distance (Å) time course (%)
Arg8 (NH1) A35 (O1P) 2.9 (0.2) 97
Arg8 (NH1) A35 (O2P) 2.8 (0.1) 92
Arg8 (NH2) G36 (O2P) 3.2 (0.1) 86
Arg8 (NH2) G36 (O1P) 3.0 (0.1) 84
Arg8 (NE) A35 (O2’) 3.1 (0.2) 76

Arg11 (NH1) C30 (N4) 3.1 (0.1) 73
Arg11 (NH1) G33 (O2’) 3.1 (0.2) 70
Arg11 (NH2) G34 (O1P) 3.0 (0.2) 64
Arg11 (NH2) G34 (O2P) 3.2 (0.2) 58
Arg11 (NE) G34 (O6) 3.1 (0.1) 53
Arg9 (NH1) C37 (O2P) 2.9 (0.1) 48
Arg9 (NH1) C37 (O1P) 3.2 (0.2) 44
Arg5 (NH1) A35 (N6) 2.8 (0.2) 35

Table 4.3: Key L22-TAR interactions in the last 5 ns of the simulation MD1 shown with
average length and time course (> 30%).

Figure 4.3.12: Ion occupancy as a function of simulation time calculated by proximity
method [188, 189, 190]: K+ occupancy along the RNA nucleotides in the simulations of
apo-TAR (a) and MD1 (b); Cl− occupancy along the L22 residues in the simulations of

apo-L22 (c) and MD1 (d).
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Figure 4.3.13: Ion occupancies as a function of the shortest distance between the molecular
surfaces of TAR and L22 upon binding.
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4.4 Discussions

4.4.1 Assessment of the Chosen RNA Force Field

The α/γ torsions in our simulations, under parmbsc0 reparametrization [6], still visit the
energetically unfavorable trans conformation from time to time but with low probability
(see Figure C.0.1 in Appendix C). Furthermore, in MD simulations of RNA based on ff99
force fields and its variants, the glycosidic χ torsion may adopt the high-anti conformation.
After a few tens of nanosecond, this may distort RNA double helices to generate a ladder-
like shape. A new parametrization has been recently developed to address this issue [191].
Our MD simulations were performed before this modification was introduced. Although
such a reparametrization was not applied, the high-anti conformation was not observed in
our simulations (in both apo-TAR and bound-TAR) (see Figure C.0.2 in Appendix C).

4.4.2 Critical Role of Electrostatic Interactions in Protein/RNA Molecu-
lar Recognition

In our study, the ligand is charged with +7e and the biomolecular target has a total charge
of -28e. Despite an obvious total neutral box content, the long-range electrostatic interaction
still acts as a driving force for the rapid formation of first encounter complexes. Indeed,
different complex formations are found within 5 ns of several standard MD simulations.
Therefore, our simulations confirm that binding between an RNA and a positively-charged
peptide is a spontaneous process strongly driven by electrostatic interactions [192, 173].

Our short MD simulations only observe the intermediate complexes. They did not
allow a more quantitative estimation such as the free-energy difference in the transition
or how long it would take the biomolecules to rearrange themselves into the correct
binding conformation. However, classical MD simulations for studying full biomolecular
binding/unbinding events require considerable computational time. Therefore, enhanced
sampling methods with a proper choice of CVs are preferably used to accelerate the
transition process.

4.5 Concluding Remarks

Despite the limitations inherent to MD simulations which cover only the sub-µs time-scale
[113], and of the known inaccuracies of force fields (see Section 2.2.1.3), the computational
results presented here compare well with experimental NMR data and provide new insight
into the paradigmatic TAR RNA and its complex with a lead inhibitor of viral replication.

In addition to demonstrating that our simulations satisfactorily reproduce both struc-
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tural and dynamic properties of TAR and its complex with a Tat-mimic peptide, and that
we obtain results in agreement with those obtained from NMR experiments, we also pro-
vide new information on the ligand binding process, as well as changes in ion distributions
that occur upon complex formations. Most interestingly, ions are displaced from the two
molecules even as they are at long distances from each other, and the peptide and RNA
are able to spontaneously bind each other within the first few nanoseconds of simulation.
The results from our short binding simulations also suggest that electrostatic interactions
play an important role in molecular recognition.

These observations are the motivations for our next step: designing a CV that contains
the description of electrostatic interactions (Chapter 3) and applying this CV to enhanced
sampling methods.
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5.1 Overview

In the previous work presented in Chapter 4, we employed standard Molecular Dynamics
(MD) simulations to investigate structural and dynamical properties of the L22-TAR com-
plex. Our simulations agreed with experimental data in structural and dynamical proper-
ties of the system. Our simulations also confirmed that binding between an RNA and a
positively-charged peptide is a spontaneous process strongly driven by electrostatic inter-
actions [192, 173]. However, a well-known difficulty of atomistic MD simulations is that
they can be used to follow the system dynamics on the microsecond timescale at most.
The studies of slower conformational transitions in larger molecules do require some form
of acceleration. Here we employed a bidirectional scheme of Steered Molecular Dynamics
(SMD) simulations with Debye-Hückel ENergy (DHEN) as a Collective Variables (CVs). A
total of 4.2 µs of SMD simulations were performed. Using this approach, we were able
to make a blind prediction of the correct NMR binding pocket. Additionally, we also
produced several putative complex structures.

In this chapter, we first describe the simulation protocols including the bidirectional
steering scheme and the controlling algorithms as well as parameters. We then perform the
free-energy reconstruction using the Hummer-Szabo and Minh-Adib Potential of Mean Force
(PMF) estimator. We next describe and classify all the binding poses obtained from our
binding SMD. We then conduct a thorough quantitative assessment on the two dominant
poses in which the ligand is bound to TAR at the upper major groove, i.e., the same binding
pocket as seen in NMR experiments.

5.2 Simulation Protocols

Here we perform constant-velocity SMD simulations (see Section 2.3.2) with DHEN (Equa-
tion (3.2.15)) chosen as a CV. The external harmonic potential used to steer the CV in this
case is given by

V(t) =
k
2
(z(t)− zrestraint(t))2 =

k
2

[
1

kBTεw
∑
j∈B

∑
i∈A

qiqj
e−κ|rij(t)|

|rij(t)|
− vt− z0

]2

, (5.2.1)

where k is the spring constant, v is the velocity of the steering, and z0 is the initial
restrained value of DHEN CV.

The cumulative work perform in such a steering is then given by
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W(t) =
t

∑
t′=0

vk(z(t′)− zrestraint(t′))∆t. (5.2.2)

5.2.1 Bidirectional SMD Scheme

A total of 4.2 microseconds of simulations have been performed in a bidirectional steering
scheme. Hereafter we refer to the unbinding direction as forward SMD and the binding
direction as backward SMD.

5.2.1.1 Forward Scheme

Our forward SMD scheme included:

(1) 20 ns of NPT MD simulation starting from the NMR structure of L22-TAR complex.
An average DHEN (−140 kJ/mol), and its standard deviation (σ = 3 kJ/mol) were
calculated from this equilibrium simulation.

(2) 64 ns of CV-restrained simulation in which the value of the DHEN was restrained to
the average value of −140 kJ/mol. A spring constant k = 0.2 kJ mol−1 nm−2 was
used here and in the following SMD1.

(3) Configurations were then extracted every 1 ns and used as initial structures for 64
forward (unbinding) SMD simulations (25 ns each), in which the DHEN was pulled
from the value of z0 = −140 kJ/mol to −30 kJ/mol. This target value has been chosen
large enough so that the two molecules are completely separated. Indeed, among 64
final structures of unbinding SMD simulations, the smallest center-to-center distance
between L22 and TAR is about 32 Å while the smallest distance between an L22 atom
and a TAR atom is about 7 Å.

5.2.1.2 Backward Scheme

Our backward SMD scheme was consisted of the following steps:

(1) Each of the structures obtained at the end of the SMD was equilibrated for 1 ns, re-
straining the DHEN at −30 kJ/mol.

(2) A random configuration was then extracted from each CV-restrained simulation and
used as the starting structure for another set of 64 backward (binding) SMD (25 ns
each), in which the DHEN CV was pulled from z0 = −30 kJ/mol back to −140
kJ/mol with the same speed and spring constant as in the forward SMD simulations.

1Empirical rule for choosing the spring constant in SMD simulations: k ≈ kBT/σ2
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5.2.2 Additional Forward SMD Simulations from the Upper-Major-Groove
Binding Pose

Among 64 bound configurations at the end of the backward SMD simulations, we found
two dominant classes in which L22 binds to the TAR’s upper major groove, i.e., the same
binding pocket observed in NMR studies. To further quantify the difference between these
two classes, for each class, we selected the structures associated with the lowest external
work. We then repeated the same forward SMD procedure as described in Section 5.2.1.1,
which, for each selected structure, included (i) 30 ns of MD equilibration for step (1), (ii)
12 ns of CV-restraint MD for step (2) at the same DHEN value (−140 kJ/mol ) and spring
constant (0.2 kJ mol−1 nm−2), and (iii) 12 forward SMD simulations (25 ns each) for step
(3).

5.2.3 System Preparation and Control Parameters

System Preparation

We used a truncated octahedral box of explicit water, in which L22 and TAR could reach
a center-to-center distance of at least 40 Å. The box contained 11,780 water molecules. An
excess ion concentration of 10 mM was set in all simulations to reproduce the experimental
conditions [83], which resulted in 23 K+ cations and 2 Cl− anions. We employed TIP3P
model [174] for water, AMBER ff99SB-ILDN force field [193] for L22, ff99SB-ILDN with
parmbsc0 reparametrization [6] for TAR. When using the standard ff99SB-ILDN force field
for K+ and Cl− ions at the ion concentration of 150 mM, we experienced the growing
of ion crystallization after the first 5 ns of MD simulation (data not shown). In fact, the
AMBER ff9X force fields, i.e., ff94 [194], ff98 [195], and ff99 [196, 197] and their variants,
have been reported to facilitate the ion crystallization due to the incorrect parametrization
which causes the imbalance between cation-anion interactions2 [200, 201, 202]. Therefore,
the ff99SB-ILDN force field corrected by new ions’ reparametrization3 [203] was used for
the K+ and Cl− ions in our simulations.

Control Parameters

All standard MD simulations were performed using GROMACS 4.5.5 [204]. Additionally,
SMD simulations with DHEN CV were performed using an in-house version of PLUMED
1.3 integrated with GROMACS 4.5.5.

The Particle-Mesh Ewald method [146, 179] was used to treat the long-range electro-

2The AMBER ff9X force fields mix the AMBER-adapted Åqvist parameters [198] for the cations and Dang
parameters for Cl−[199].

3This new reparametrization involves reoptimizing the parameters of the Lennard-Jones potential for the ions.
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static interactions with a real space cut-off of 12 Å. The same cut-off was also used for the
van der Waals interactions. The simulation time-step was 2 fs and the non-bonded atom
pair list was updated every 10 steps.

In all simulations, temperature was kept constant at 300 K using the velocity rescaling
algorithm [133]. In all equilibrium MD simulations, which were performed under NPT
condition, pressure was kept constant at 1 atm using a Parrinello-Rahman barostat [205].

In all SMD and CV-restrained simulations, Equation (3.2.15) was used to determined
the DHEN CV. Sets A and B contained all atoms of L22 and TAR respectively. Atomic
charges were extracted from the ff99SB-ILDN force field. A value of 80 was chosen for the
dielectric constant of water εw, which, together with the ionic strength I = 10 mM, resulted
in the Debye-Hückel parameter κ ' 0.033 Å−1.

5.3 Results

5.3.1 Free-Energy Reconstruction from SMD Simulations

5.3.1.1 Hummer-Szabo PMF Estimator for Unidirectional SMD Simulations

Figure 5.3.1: (a) Nonequilibrium works (gray lines) and PMF calculated by the Hummer-
Szabo estimator (black line) as functions of DHEN CV from 64 forward SMD simulations.
(b) Nonequilibrium works (cyan lines) and PMF calculated by the Hummer-Szabo esti-
mator (blue line) as functions of DHEN CV from 64 backward SMD simulations. The
resulted PMFs are those of the unperturbed system and are strongly governed by the

low-work trajectories.

Figure 5.3.1a shows the nonequilibrium works and the PMF as a function of DHEN CV
calculated by the Hummer-Szabo estimator from 64 forward SMD simulations. Similarly,
those of backward SMD simulations are shown in Figure 5.3.1b. Since the Hummer-Szabo
estimator is applied, the resulted PMFs are those of the unperturbed system, which is the
system itself without any external perturbations. Notably, in both cases, the behavior of
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PMF is strongly governed by the low-work trajectories. This is due to the property of the
exponential average

〈
e−βW〉, which gives more weight to the lower work values.

5.3.1.2 Minh-Adib PME Estimator for Bidirectional SMD Simulations

The free energy of the unperturbed system as a function of DHEN can be reconstructed
using the Minh-Adib PMF estimator (Equation (2.4.40)) which utilizes the information
from both forward and backward pullings. Figure 5.3.2 shows a quantitative comparison
between the Hummer-Szabo unidirectional and Minh-Adib bidirectional estimators.

Figure 5.3.2: Reconstruction of PMF of the unperturbed system as a function of DHEN
CV by the Minh-Adib estimator for bidirectional steerings (red line) in comparison with
those by the Hummer-Szabo estimator for forward steerings (black line) and backward
steerings (blue lines). The works from forward and backward pullings are also shown
(gray lines and cyan lines respectively). Backward works are shifted by ∆F as estimated
from Equation 5.3.8. The Minh-Adib estimator outperforms the Hummer-Szabo one
by providing the optimal combination of trajectories from both forward and backward

directions.

Our calculations confirmed that the bidirectional estimator provides a better result
than the unidirectional one. Indeed, while the Hummer-Szabo method for combining uni-
directional steerings is strongly biased when the system moves away from its starting
equilibrium state; the Minh-Adib method provides an optimal way to combine both steer-
ing directions into the nonequilibrium path averages. Especially, when the system is still
closer to the starting equilibrium state, Minh-Adib estimator still gives larger weights to
the trajectories on the direction leaving this state. However, when the system is out of
equilibrium and getting closer to the ending equilibrium state, Minh-Adib estimator favors
the time-reversed counterparts of the trajectories on the reversed direction. Therefore, the
bidirectional Minh-Adib method outperforms the unidirectional Hummer-Szabo method
by optimally combining forward and backward trajectories to give the least biased PMF
estimation.
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5.3.1.3 Reweighting Scheme for Projecting the PMF on Center-to-Center Distance

Divergence of the PMF at the Unbound State. If we define the unbound state as the
state in which the two molecules are infinitely far apart, we have the PMF diverge in the
unbound state. Indeed, the further away the two molecules are, the larger conformational
space the system possesses, and hence the larger the entropy becomes. However, it is
nontrivial to quantify such an entropic contribution in terms of DHEN CV. On the contrary,
it is easy to determine the entropic contribution as a function of the center-to-center
distance d between the two molecules. Indeed, the partition function of the system is
proportional to the surface area of a sphere with the radius d

Z(d) ∼ 4πd2. (5.3.1)

The free energy of the system is thus given by

G(d) = E(d)− TS(d) = E(d)− TkB ln Z(d) = E(d)− 2kBT ln d + C. (5.3.2)

where C sums up all constant terms. When d is large enough, the change in total energy
is only given by the change in electrostatic interaction. We can then rewrite the free energy
as

G(d) = DHEN(d)− 2kBT ln d + C. (5.3.3)

For systems with two opposite charges like our case, during the increment of d, DHEN(d)
increases toward 0 and −2kBT ln d decreases. At some point, the decrement of the entropic
term starts to take over the increment in the value of DHEN. As d goes to infinity, DHEN
becomes 0 and G(d) finally diverges due to the divergence of −2kBT ln d.

To calculate the free-energy difference between the bound and unbound states, we need
first to determine the free energy value in each state. It is more advantageous if we can
quantify and then compensate the entropic contribution and thus make the PMF converge
to zero in the unbound state. DHEN may be a good CV for guiding the biased simulations,
but not a convenient CV for manipulating the PMF. In this respect, the center-to-center
distance d can be a better choice.

Projection of PMF on the Center-to-Center Distance Our proposed reweighting scheme
allows manipulating the PMF by projecting it on any a posteriori chosen CV. We here apply
this reweighting scheme to compute the PMF as a function of the distance between the
centers of mass of the two molecules (see Equation (2.4.55)). The entropic contribution can
now be easily evaluated (−2kBT ln d) and added to the PMF, and hence allows estimating
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the free-energy difference between the bound and unbound states, which turns out to be
approximately 85± 5 kJ/mol (see Figure 5.3.3). This value is larger than that obtained from
experiment, which was approximately 52 kJ/mol . As it will be discussed in Section 5.4,
we prove that this discrepancy does not come from statistical inaccuracies, therefore it is
presumably due to a combination of the inaccuracy of the force fields and the uncertainty
of the experimental measure.

Figure 5.3.3: Free energy as a function of the geometric center-to-center distance (d) ob-
tained by the reweighting scheme (Equation (2.4.55)) without any entropic compensation
(black solid line) and with an entropic compensation of 2kBT log d (red solid line). The
plots have been shifted so that free energies are aligned at d = 4. The projection of
free-energy profile onto distance allows defining both bound and unbound states. The

free-energy difference between these states is approximately 85± 5 kJ/mol.

5.3.2 Structural Features of L22-TAR Complexes Obtained from Back-
ward SMD Simulations

64 binding (backward) SMD simulations, in which the DHEN CV was pulled from −30
kJ/mol to −140 kJ/mol, all ended up with L22-TAR complexes. The binding poses of L22
to TAR can be classified in the following way (see also Figure 5.3.4 and Table 5.1)

(i) L22 binds to TAR at the major groove in 51 complexes (80%), among which 33 complexes
(52%) can be classified as upper-major-groove binding (i.e., the same binding pocket
as of the Tat protein and as seen in NMR experiment [24, 73]), 12 complexes (19%)
feature lower-major-groove binding, and 6 complexes (9%) have L22 bind to TAR at
the region lying between the upper and lower major groove (referred to as middle
major groove hereafter).

(ii) L22 binds to TAR at the minor groove in 10 complexes (16%), among which there are
4 complexes (7%) classified as upper-minor-groove binding and 6 complexes (9%)
classified as lower-minor-groove binding.
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Figure 5.3.4: A pie chart representation of the L22-TAR binding poses from binding SMD
simulations which can be classified as: (a) upper-major-groove, (b) lower-major-groove, (c)
middle-major-groove, (d) upper-minor-groove, (e) lower-minor-groove, and (f) otherwise.
More than half of the simulations (i.e., 33 in a total of 64) blindly bring L22 to the upper
major groove pocket, the same binding pocket as of the Tat protein and as seen in NMR

experiment [24, 73].

(iii) 3 complexes (4%) do not belong to any of the above categories.

Major groove (80%) Minor groove (16%)
OthersUpper (52%) Lower (19%) Middle Upper Lower(1) (2) (3) (4) (5) (6)

31% 13% 8% 9% 7% 3% 9% 7% 9% 4%

Table 5.1: Occurrence of L22-TAR binding poses obtained from 64 binding SMD sim-
ulations. To better classify the binding poses at the major groove, we subdivide the
upper-groove and lower-groove binding poses into smaller groups. For the upper groove,
(1) represents the pose in which the LPro−DPro template of L22 points outward TAR; (2)
denotes the pose with the LPro−DPro template pointing inward TAR; and (3) contains
the rest of the upper-major-groove-binding complexes that are not trivial for the deter-
mination of L22 orientation. Similarly, poses (4), (5), and (6) respectively represents the
same classification criteria for the lower-major-groove binding. It is noteworthy that pose

(2) is the binding pose observed in the NMR experiment [24].

In the upper-major-groove binding, we found 20 complexes (31%) in which the LPro−DPro
template of L22 points outward TAR (i.e., pose (1) in Table 5.1 and Figure 5.3.5a) and 8
complexes (13%) in which the LPro−DPro template points inward TAR (pose (2) in Ta-
ble 5.1 and Figure 5.3.5b). Similarly, in the lower-major-groove binding, we also found 6
complexes (9%) with the LPro−DPro template pointing outward (pose (4) in Table 5.1 and
Figure 5.3.5c) and 4 complexes (7%) with the LPro−DPro template pointing inward (pose
(5) in Table 5.1 and Figure 5.3.5d). Pose (2) represents the same binding pose as observed
in the NMR experiment [24]. However, it only appears as the second dominant pose in
our simulations. The first dominant pose, which has the same binding pocket but with
LPro−DPro pointing to the opposite direction, occurs with a higher probability.
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Figure 5.3.5: Structures of four dominant binding poses obtained from 64 binding SMD
simulations including (a) upper-major-groove binding pose with the LPro−DPro template,
colored in green, points outward TAR (i.e., pose (1) as classified in Table 5.1), (b) upper-
major-groove binding pose with LPro−DPro points outward TAR (pose (2)), (c) lower-
major-groove binding pose with LPro−DPro points outward TAR (pose (4)), and (d)
lower-major-groove binding pose with LPro−DPro points inward TAR (pose (5)). Pose (2)

is close to what observed in NMR experiment.

5.3.3 Quantitative Comparison in Stability of the Two Dominant Upper-
Major-Groove Binding Poses

A quantitative assessment of the relative stabilities between pose (1) and pose (2) can be
done by looking at the PMF.

5.3.3.1 PMF Comparison

As discussed in the previous Section, pose (1) in Figure 5.3.5 is at the same time the
most frequent and the one for which the lowest work is performed during the binding
SMD simulations. In pose (2), the ligand occupy the same binding pocket in a different
orientation, which is consistent with that obtained from NMR data. For a quantitative
comparison between pose (1) and pose (2), we performed 12 unbinding SMD simulations
starting from the complex obtained by the lowest work in each pose (i.e., the globally lowest
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work in case of pose (1) and the sixth-lowest work in case of pose (2)). We then combined
these 12 unbinding simulations of each pose with a selected set of the previous binding
simulations which ended on the same pose (i.e., 20 binding simulations resulting in pose (1)
and 8 simulations resulting in pose (2)). Equation (2.4.40) was then used to calculate the free
energy as a function of the restrained DHEN CV based on such combination of each pose
(see Figure (5.3.6)). Remarkably, this equation permits this calculation despite different
numbers of forward and backward trajectories. The free-energy difference between the
two end states associated with pose (1) is larger than that of pose (2) (79± 7 versus 69± 6
kJ/mol respectively), thus pose (1) can be considered more stable than pose (2).

Figure 5.3.6: Reconstruction of free energy of the unperturbed system in pose (1) (a) and
pose (2) (b) as a function of DHEN CV (solid red line). The works from forward and

backward pullings are also shown (gray lines and cyan lines respectively).

Applying the proposed reweighting scheme on the center-to-center distance CV, we
found that the free-energy differences as functions of distance in both poses (1) and (2) are
comparable to that of the previous calculation shown in Figure 5.3.3 on the whole set of
64 forward (starting from NMR structure) and 64 backward pullings (see Figure 5.3.7).

5.3.3.2 Verification of the Robustness of the Comparison

To test the robustness of the comparison, we repeated 500 times of solving the BAR equation
(5.3.8) (which is a special case of Equation (2.4.41) when one considers only the end states)
on the randomly chosen half-set, i.e., 6 unbinding and 10 binding simulations for pose (1)
and 6 unbinding and 4 binding simulations for pose (2). The resulted free-energy difference
from 500 BAR calculations for each pose can be found in Figure 5.3.8. The average values
of free-energy difference are 75± 6 and 66± 6 kJ/mol for pose (1) and pose (2) respectively.
Despite random choice of the half-set of simulations to be involved in BAR calculations,
pose (1) consistently shows a higher stability than pose (2).
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Figure 5.3.7: Free energy as a function of the center-to-center distance obtained by the
reweighting scheme performed on the whole set of simulations (black solid line) and the
set of simulations coming from and to pose (1) (blue dotted line) and pose (2) (red dashed
line). free-energy difference between the bound and unbound states have comparable

values in all cases.

Figure 5.3.8: Results of 500 times of BAR free energy calculations on a randomly choice
of half-set (i.e., 6 unbinding realizations and 4 binding realizations) for both pose (1) (ma-
genta squares) and pose (2) (green triangles). Pose (1) consistently shows more stability
(larger free energy) than pose (2). The average free-energy difference values are 75±6

kJ/mol (red line) and 66±6 kJ/mol (blue line) respectively.
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5.4 Discussions

5.4.1 Effectivity, Computational Efficiency, and Generality of the Pro-
posed Electrostatic-Based Collective Variable

Our proposed DHEN CV (expressed in (3.2.15)) includes only the intermolecular electro-
static interactions thus does not contain the noise coming from intramolecular interactions
or interactions with the ionic solvent. Our CV is a function of not only atomic coordi-
nates but also ionic strength, temperature, solvent dielectric constant, and atomic charges
accessible from the force fields. Therefore, it is expected to be more “selective” and ef-
fective than the conventional center-to-center distance CV in describing peptide/RNA
binding/unbinding processes. Indeed, the distance CV may disfavor the right complex
formation by not taking into account the charge-charge interaction, an important driving
force in most peptide/RNA recognitions.

Besides the parameters that are trivially determined from the simulation setups, our
proposed CV does not requires any other extra parameters that need to be updated during
the simulations. This is the computational advantage of this CV.

In addition, our proposed CV has a general formalism that, in theory, is applicable for
any binding problems. However, in practice, due to its nature of describing electrostatic in-
teractions, we recommend using it for the systems in which binding events are dominantly
driven by electrostatics.

5.4.2 Bidirectional Steering Outperforms Unidirectional Steering

Steering involves out-of-equilibrium processes. Although the unidirectional Jarzynski’s
equality and the Hummer-Szabo PMF estimator allow reconstructing the free energy from
nonequilibrium works, the resulted free energy is strongly dominated by the low work
values due to the behavior of the exponential average. These low work values are asso-
ciated with the trajectories of the “rare” events which are poorly sampled. This poses a
convergence challenge to unidirectional SMD simulations. Indeed the more the system
departs from its initial equilibrium state, the more the unidirectional estimators tends to
overestimate the free energy change.

The bidirectional estimators such as the one introduced by Minh-Adib and our pro-
posed reweighting scheme provide an optimal combination of the works from both for-
ward and backward processes. When the forward and backward processes are properly
combined, the overestimation of free energy in both directions are then “averaged” out.
Bidirectional estimators hence outperform unidirectional ones (see our results and detailed
discussions in Figure 5.3.2).
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5.4.3 Verification of the Statistical Accuracy

The procedure of analyzing a selected subset of the binding and unbinding trajectories
allows us to assess the statistical accuracy of the results. Indeed, bidirectional pulling
protocols can still exhibit large statistical errors when backward pullings do not properly
bring the system to the correct starting point. However, by performing the pulling out of
the actually reached bound pose (Section (5.3.3.2)) we can guarantee that their stability is
fairly evaluated.

5.4.4 “Blind” Prediction of the Binding Pocket

Employing bidirectional SMD simulations with our proposed DHEN CV, we were able to
find the binding pocket in agreement with the NMR structure, i.e., the upper major groove
of TAR. Although the L22-TAR binding pose and its structural properties were well char-
acterized in experiments, we did not use any of these experimental observations to make
further bias or constraint in our simulations. Indeed, our pullings were performed in a
“blind” manner, in which L22 is not constrained to bind to the known NMR binding pocket
but rather free to decide its encounter paths upon increment of electrostatic interactions.
In such manner, we were still able to find two dominant binding poses, in both of which
L22 bound to the correct pocket as observed by experiments. This result not only confirms
the assumption that electrostatics plays an important role in L22-TAR binding but also
strongly justifies the use of DHEN, an approximation of the electrostatic interaction free
energy, as a CV in accelerated simulations.

TAR is a rather large RNA containing 29 nucleotides with a complicated double-helix
conformation featured by two stems, a bulge, and an apical loop. The apical loop partially
closes the access to the upper major groove associated with the upper stem, which is also
the binding pocket of Tat [73]. Any designed molecule able to bind to TAR at this pocket
is a promising candidate for HIV-transcription inhibition. L22 is not a very small molecule
compared to its receptor TAR (269 versus 930 atoms). Moreover, L22 has a rigid β−hairpin
backbone and long side chains (i.e., mostly composed of Arginine side chains), which
make it difficult to navigate and end up inside a partially closed pocket. Interestingly, in
experiments, L22 was reported to bind and fit completely in this pocket. And we were
also able to reproduce such a non-trivial binding mode only by using SMD simulations
pulling on an electrostatic-potential-energy-based CV without any further guidance from
experiments.
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5.4.5 Accuracy of the Predicted Binding Affinity

As we discussed above, we are confident in the statistical accuracy of our calculations.
Thus, we are convinced that the discrepancy between our estimate of the affinity and
the one reported in ref. [24] should be ascribed to other causes such as the difference
between the anion type we used (Cl−) and the one used in the experiments (mixture of
HPO2−

4 and H2PO−4 ); the not so large simulation box and the resulting periodic boundary
artifacts which are even more amplified in smaller simulation boxes; and probably the
inaccuracies of the force fields. These latter inaccuracies could be likely associated with
(i) the challenging description of the multi-degree-of-freedom sugar-phosphate backbone
using a constant-point-charge model [110, 111], (ii) the difficulties in describing the RNA
non-canonical structural elements [114, 7], i.e., the bulge and hairpin loop in our case, (iii)
subtle force-field dependence on ionic strength and types [140, 206], and most importantly
(iv) the well-known inaccuracies of the non-polarizable force fields in describing the elec-
trostatic interaction between the RNA and the anions (i.e, Cl− ions) as well as the strong
electrostatic interaction between the highly polarizable phosphodiester moiety of RNA and
the positively charged atoms [113, 3] including the cations K+ and those of the peptidic
ligand L22 in our case.

5.5 Concluding Remarks

We have performed a total of 4.2 microseconds of SMD simulations in a bidirectional
scheme with the electrostatic-based DHEN CV. Using our proposed reweight method,
we were able to reconstruct the PMF as a function of the distance between the L22 and
TAR. This resulted in a larger free-energy difference between the unbound and bound
states when compared to the experimental value. By an extensive analysis method that
uses random half-sets of data, we proved that this overestimation was free from statistical
inaccuracy. It was then presumably due to both the difference in anion type used in
our simulations and experiments and the improper description of electrostatics by non-
polarizable force fields.

Despite of these defects, our simulations were still able to blindly predict the correct
binding pocket, i.e., TAR’s upper major groove. Besides reproducing the NMR binding
pose, we also found another pose which consistently showed more stability than the NMR
one. In this new pose, the ligand L22 occupied the same binding pocket but in an opposite
orientation, namely the DPro−LPro pointed upward instead of downward as observed by
NMR. This new pose is totally reasonable as L22 is a rather symmetric ring with Arginine
residues equally distributed. There is hence no reason why the LPro−DPro template has
to point downward only as discovered in NMR experiment.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

Designing drugs targeting RNA is, at the same time, a promising and challenging task
[1, 2, 207, 208, 106]. The main challenges come from RNA’s highly charged nature and
structural flexibility [3]. In silico studies, especially Molecular Dynamics (MD) simulations,
can provide important insights on the molecular recognition and structural adaptation
processes, which are highly critical for ligand/RNA binding but are difficult to understand
from static X-ray and NMR structures [113, 209, 3].

Here we perform all-atom standard MD and enhanced sampling simulations on a
system of HIV-1 TAR RNA in complex with the cyclic peptide inhibitor L22 (pdb code:
2KDQ [24]). L22 was designed to be a competitor inhibitor of the viral Tat protein for the
binding site on the viral TAR RNA element [83, 24]. In the normal viral cycle, Tat/TAR
interaction enhances the viral full-length transcription process and is thus crucial for HIV-1
replication. In vitro studies showed that L22 binds to TAR with a high binding affinity of
1 nM1 at the upper part of TAR major groove, which is also the Tat-binding pocket [85].
L22 appeared as a promising anti-HIV transcriptional inhibitor; however, the details of the
molecular recognition mechanism upon TAR binding were unknown.

Our first approach to studying this system is to employ all-atom standard MD simula-
tions [139]. We performed ~0.5 µs of MD simulations starting from several configurations
extracted from the NMR structure of L22-TAR complex (i.e., including apo-TAR, apo-L22,
and bound as well as unbound structures of the complex). These simulations:

1. show a quantitative agreement with experiments on the NMR order parameter values,
and hence on the dynamical properties of important TAR’s nucleotides. Our simulations

18 nM in case of Tat-TAR binding [86]
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also provide complementary order parameter values missing in NMR experiments,

2. confirm the structural features of TAR including (i) the flexibility decrease of TAR upon
ligand binding, (ii) the more compact shape of bound-TAR, and (iii) the conforma-
tional changes at the hairpin-loop region of TAR (which is directly involved in the
ligand binding site) during the time course of 200 ns,

3. reproduce all key intermolecular hydrogen bonds and hydrophobic contacts observed
in NMR experiments. Our simulations also provide complementary information on
the hydrogen-bond lengths and their time course, thus validate the stability of the
L22-TAR complex within the time-scale of 200 ns,

4. show the difference in hydration and ion distribution around apo- and bound-TAR.
Moreover, our simulations of the encounter process also give insights on ion redis-
tribution upon ligand binding. This information is only accessible by all-atom MD
simulations,

5. reproduce the NMR binding pocket (in 2 of 6 encounter simulations), which is the same
as the Tat-binding pocket. Our simulations also show that (i) binding between L22
and TAR is a spontaneous process strongly driven by electrostatic interactions and
(ii) arginine residues play important roles in L22-TAR molecular recognition. The
former has been shown to be also the case of Tat-TAR binding [192] and generally
true for binding between RNA and positively charged proteins [173].

The 200-ns-long MD simulation of the L22-TAR complex is, however, insufficient for the
molecular dissociation to occur. This is a well-known limitation of atomistic MD simula-
tions in studying slow conformational transitions of large molecules. Therefore, enhanced
sampling methods with a proper choice of Collective Variables (CVs) are preferably used
to accelerate such transition processes. Choosing a “good” CV that can describe and dif-
ferentiate all relevant states is essentially a challenging task.

Motivated by the observation that binding between an RNA and a positively charged
ligand is driven by electrostatic interaction and by the idea of using (potential) energy of
a system as a CV [16, 17, 18, 19, 20], we here propose an electrostatic-based CV that is an
approximation of the intermolecular electrostatic component of free energy, which is given by
the Debye-Hückel formalism and is easily computed during the simulations. Our proposed
CV, called Debye-Hückel ENergy (DHEN), has the following characteristics:

1. DHEN includes only the intermolecular electrostatic interactions and is thus computa-
tionally efficient.

2. DHEN is not only a function of atomic coordinates, but also of the ionic strength, the
temperature, the solvent dielectric constant, and the atomic charges defined in the
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force fields. By construction, DHEN is expected to be more effective than the conven-
tional center-to-center distance CV in describing peptide/RNA binding/unbinding
processes.

3. DHEN has a general formalism that can be applicable to any binding event involving
electrostatic interactions.

The DHEN CV is a general and computationally efficient CV that uses straightforward
definitions for its parameters. This obviously comes at the cost of accuracy, which, however,
appears to be well justified since the approximated electrostatic free energy of the system
is used only as a CV for guiding the exploration of the conformational space.

We next perform bidirectional Steered Molecular Dynamics (SMD) simulations of the L22-
TAR complex system with the bias applied on our proposed DHEN CV [210]. In addition,
we also propose a reweighting method to project the Potential of Mean Force (PMF) on any
a posteriori chosen CV in a bidirectional steering scheme. This post-processing technique
permits looking at the PMF in a different perspective which can be instructive in some
cases. We find that:

1. The bidirectional steering scheme outperforms the unidirectional one. Indeed, when
the forward and backward trajectories are optimally combined (i.e., by using the
Minh-Adib PMF estimator or our proposed reweighting technique), the errors due
to overestimation of PMF are averaged out.

2. At the end of 64 binding SMD simulations, 80% of the L22-TAR complex structures
feature a major-groove binding mode. This confirms an important electrostatic feature
of A-form RNA: the major groove is more electro-negative than the minor groove.

3. 52% of the complexes can be classified as upper-major-groove binding. In other words,
more than a half of our binding SMD simulations are able to end up in the correct
binding pocket without any guidance from the NMR information. This is an efficient
self-guiding prediction protocol, which is extremely important for drug design when
experimental structures are not available.

4. Among the upper-major-groove-binding structures, some complexes have a similar
ligand orientation as in NMR structure, i.e., the LPro-DPro template of L22 points
downward and inward TAR; some other complexes have the ligand in the same
pocket but with opposite orientation, i.e., the LPro-DPro template points upward and
outward TAR. A thorough PMF analysis and statistical accuracy test show that the
latter pose consistently exhibits higher stability than the former pose. Since L22 is a
small (14 amino acids) and rather symmetric cyclic peptide with 6 arginine residues
almost equally distributed, we are convinced that this new pose is also likely to occur.
In any case, both poses feature the correct binding pocket.
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5. The free-energy difference computed from our bidirectional SMD simulations is, how-
ever, higher than that obtained by experiments (i.e., 85 ± 5 versus 52 kJ/mol re-
spectively). Since we are confident in the statistical accuracy of the simulations, we
would ascribe the discrepancy between the estimated PMF from simulations and
experiments to other causes, probably including and not limited to (i) the difference
in anion type, (ii) the insufficiently large simulation box, and (iii) the well-known
force-field inaccuracies, especially the challenging description of strong electrostatic
interactions by the non-polarizable force fields [113, 3].

6.2 Perspectives

As a complementary approach to SMD simulations, we also performed Well-Tempered
MetaDynamics (WTMetaD) simulation [13], which can be applied on multiple CVs simul-
taneously. The simulation starts from the NMR binding pose. Besides the DHEN CV, the
number of intermolecular hydrogen bonds is used as the second CV. Within the time
course of 500 ns, we observe two times of complete complex dissociation. After the second
dissociation, the ligand associates to TAR in the same pocket but with the opposite orien-
tation, i.e., the dominant orientation found in our binding SMD simulations (see Figure
6.2.1). Since this WTMetaD simulation is at an early stage, in which the free energy profile
has not converged and the time that the complex spends in the new binding pose has not
exceeded the time it stays in the NMR pose, we cannot make judgment on the relative
stability between these two poses at this stage. However, this preliminary result supports
the previous SMD simulations on the observation of the new binding pose that has not yet
been reported by experiments.

In theory, if the time of the WTMetaD simulation is large enough, the fluctuation of
free-energy difference between any two metastable states is progressively damped to the
correct value2 [13]. Figure 6.2.2 shows the time evolution of the free-energy difference
between a representative unbound state (e.g., chosen at DHEN= −40 kJ/mol and d = 35
Å correspondingly) and the bound state (i.e., corresponding to the minimum of the free
energy surface in the last time frame) as a function of DHEN and distance CVs3. In both
cases, the free-energy difference has not converged to a constant but rather fluctuates
around the value of 80 kJ/mol, which is at the same order of magnitude as the free-energy
difference estimated by our bidirectional SMD simulations. This result again confirms that
the discrepancy in free-energy difference between our SMD simulations and experiments
is due to neither the statistical insufficiency nor the simulation techniques. Therefore it is
more likely due to other sources of errors as previously discussed in Sections 5.4.5 and 6.1.

2This is how WTMetaD is more advantageous than standard metadynamics in controlling convergence.
3Note that the free energy surface as a function of the distance CV is reconstructed by the reweighting

technique for WTMetaD introduced in Ref. [211].
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Figure 6.2.1: Time dependence of the DHEN CV during the 500-ns WTMetaD simulation.
The simulation starts from the NMR binding pose (a), completely dissociates for the first
time at 250 ns (b), associates back to a pose very similar to the NMR one (c), dissociates
again at 340 ns (d), and finally associates at 345 ns to a new pose (e), which has the same

binding pocket but opposite ligand’s orientation.

In this particular case of L22-TAR binding, due to the special geometrical property of
L22, our proposed DHEN CV (so as the distance and number-of-hydrogen-bond CVs4)
is not able to distinguish the two binding poses. Indeed, these two poses belong two the
same basin in the free energy profile projected on each CV (see Appendix D). However, our
CV is able to guide the ligand several times to the right binding pocket, which is the same
pocket as in Tat-TAR binding [85]. Therefore we are confident that our proposed DHEN
CV is useful to study the molecular binding events involving electrostatic interactions.

4see Appendix D for the time evolution of distance and number of hydrogen bonds during the WTMetaD
simulation.
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Figure 6.2.2: Time evolution of the free-energy difference between unbound and bound
states projected on the DHEN CV (red squares) and distance CV (gray circles).



Appendix A

Maximum Likelihood

The method

The maximum likelihood estimation method was introduced by the English statistician
and population geneticist R. A. Fisher in 1922 [163]. The making of maximum likelihood
was one of the most important developments in 20th century statistics [212]. In general,
the maximum likelihood method finds the estimate of a model parameter that maximizes the
probability of observing the data given a specific model for the data.

Simple examples

Example 1

Consider tossing a coin, which has a number and a figure side. The result of every toss is
registered as 1 for figure side and 0 for number side. Suppose that n tosses have been made
and we obtain a series of data x1, x2, . . . , xn in which xi is either 1 or 0. This set of data
defines a specific model of data, or a specific distribution function. The maximum likelihood
method can help answering the question “what is the probability of obtaining the figure side
(or number side) in a single toss given the result of n tosses?”. For that purpose, maximum
likelihood method first treats the probability of obtaining a specific side in a single toss as
a parameter. Then the method involves finding the value of this parameter that maximizes
the chance of observing the given data (i.e., the specific data model).
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Example 2

One might be interested in the distribution of the weights of one-year-old children in
a specific population but is only able to measure the weights of some children in that
population. Supposed that the weights of all one-year-old children in the population are
normally distributed with unknown mean and variance. The maximum likelihood method
can help finding the mean and variance (treated as model parameters) of a distribution given
only some sample of the overall population (i.e., the given model).

The principles

Suppose there is a sample of independent and identically distributed observations x1, x2, . . . ,
xn that has a probability density function ρ0. The specific form of ρ0 is unknown, however,
we know that ρ0 belongs to a certain family of distribution {ρ(·|θ), θ ∈ Θ}, in which θ ∈ Θ
denotes a certain parameter in the parametric space, so that ρ0 = ρ(·|θ0). Here θ0 is the
value of the parameter that describes the probability density function of the given sample.
The maximum likelihood method allows finding the parameter θ0 given the sample of
observations x1, x2, . . . , xn. 1

For that purpose, we first write the density function for all observations as

ρ(x1, x2, . . . , xn|θ) = ρ(x1|θ)ρ(x2|θ) . . . ρ(xn|θ). (A.0.1)

This joint density function is valid for independent and identically distributed obser-
vations. Notationally, this function represents the probability of observing the sample x1,
x2, . . . , xn out of a given distribution characterized by the parameter θ. Now we can look
at this same function from a different perspective by considering the sample x1, x2, . . . ,
xn as fixed parameters of this function and θ is the function’s variable to be found so
that the distribution described by θ is the same distribution determined by the sample of
observations. We can then define a function to be called the likelihood as followed

L(θ|x1, x2, . . . , xn) = ρ(x1, x2, . . . , xn|θ) = ρ(x1|θ)ρ(x2|θ) . . . ρ(xn|θ). (A.0.2)

The problem now becomes finding a value of θ that maximizes L(θ|x1, x2, . . . , xn). An
equivalent is finding θ that maximizes log-likelihood lnL(θ|x1, x2, . . . , xn) which is more
convenient to solve due to the product of density functions on the right hand side. We can
write the log-likelihood as

1Note that the observations xi and parameter θ can be vectors.
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lnL(θ|x1, x2, . . . , xn) =
n

∑
i=1

ln ρ(xi|θ). (A.0.3)

The value of θ that maximizes the log-likelihood is the solution of the following equa-
tion

∂ lnL(θ|x1, x2, . . . , xn)

∂θ
= 0. (A.0.4)
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Appendix B

Additional Information on the
Encounter MD Simulations

Figure B.0.1: (a) and (b): Superpositions of NMR structure and the last snapshot of the
MD1 and MD2 trajectories respectively. The NMR TAR is shown in black, MD1 TAR
is in green, and MD2 TAR is in purple. The NMR L22 is shown in red and both MD1
and MD2 L22 are shown in pink. In MD1, L22 is located along the upper major groove,
providing a binding mode similar to the NMR structure. In MD2, L22 is orthogonal to
the groove. (c) RMSDs and running averages of TAR (with respect to NMR structures) in
MD1 (green) and MD2 (purple). (d) RMSDs and running averages of L22 (with respect

to NMR structures) in MD1 (green) and MD2 (purple).
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Figure B.0.2: Ion occupancy as a function of simulation time calculated by proximity
method [188, 189, 190]: K+ occupancy along the RNA nucleotides in the simulations of
apo-TAR (a) and MD2 (b); Cl− occupancy along the L22 residues in the simulations of

apo-L22 (c) and MD2 (d).



Appendix C

Assessment of the Chosen RNA
Force Field for MD simulations

Figure C.0.1: α/γ torsion distribution of lower stem (upper panel) and upper stem (lower
panel) in TAR. The distribution of these angles in the energetically unfavorable trans

conformations is small.
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Figure C.0.2: χ torsion angles (degrees) for the helical regions of TAR plotted as a function
of simulation time (ns). Average χ angles of the lower stem (blue) and upper stem (green)
are distributed mostly in the anti region (i.e., from 180 to 250 degrees). Only in one case
is a nucleotide (G17) occasionally occupying the high-anti conformation (i.e., form 320 -
360 degrees). However, G17 belongs to the lowest base pair of the lower stem. It is far
(i.e., about 20 Å) from the L22 binding site and it is very likely to play a negligible role

for L22-TAR interactions.



Appendix D

Preliminary Results of WTMetaD
Simulation

Figure D.0.1: Time dependence of the number of hydrogen bonds.

Figure D.0.2: Time dependence of the center-to-center distance.
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Figure D.0.3: Free energy surface as a function of the DHEN and number-of-hydrogen-
bond CVs estimated from a 500-ns well-tempered metadynamics simulation.

Figure D.0.4: Free energy as a function of the distance CV estimated from a 500-ns
well-tempered metadynamics simulation by a reweighting technique.
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