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Abstract. In this thesis two rather different topics are addressed:

• the application of the Truncated Conformal Spectrum Approach (TCSA) to pertur-

bations of SU(2)k Wess-Zumino-Witten (WZW) models, and to Landau-Ginzburg

(LG) theories;

• the analysis of the role of quantum statistics in the steady flow patterns of 2d driven

ideal Fermi gases in a non-integrable geometry.

A common methodological question unifies the two topics: how to simulate numerically

quantum systems with infinite spaces of states. This problem is typically faced either in-

troducing a lattice in the real space or directly in the continuum, and the two addressed

topics can be seen as examples of these two cases. The TCSA is aimed to tackle perturbed

conformal field theories directly in the continuum. Instead, to study the ideal Fermi gas

we introduce a lattice which naturally captures the features of the chosen non-integrable

geometry.

Chapter 1: This part of the thesis is mainly methodological and it is focused on the

application of the TCSA to c = 1 conformal field theories. In particular, our interest is

concerned with perturbations of WZW models with SU(2)k symmetry, which capture low

energy properties of k/2-Heisenberg spin-chains. The new problem faced is how to ap-

ply the method in the presence of marginal perturbations, where UV divergences result in

non-universal contributions in the simulations. A generic framework to cure this pathol-

ogy is proposed, and tested in the case of the current-current deformation of SU(2)1.

Among c = 1 theories, Landau-Ginzburg theories are of great interest, since their classi-

cal structure of the vacua captures the massive phases of deformation of minimal models.

The most important methodological problem we faced here is that LG theories have an

uncountable space of states. We show that the TCSA applies also in this case, once the

target space of the LG field is properly compactified. The TCSA is thus used to very an

existing conjecture on the number of stable neutral bound states.

Chapter 2: Interacting quantum gases, such as the electron liquid, are known to admit

a hydrodynamic description and, as for classical interacting fluids, they develop turbulence

at sufficiently strong driving. On the other hand, ideal classical fluids cannot develop any

turbulent flow. We ask whether this property extends to ideal quantum gases. Indeed,

Fermi gases satisfy the exclusion principle that could play the role of an effective inter-

action, resulting in non-trivial flows. We are going to describe an ideal Fermi gas which

flows form a narrow channel into a wider region. A lattice which approximates the geom-

etry is introduced, and the system is tackled within two approaches: the micro-canonical

formalism and the Lindblad equation. In the first case the system is closed, while in the

second one it is coupled to external baths. Despite this difference, the observed physics
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turns out to be the same far from the boundaries. We show that, in specific regimes, quan-

tum statistics induces non-trivial patterns in the vorticity, which generates local magnetic

moments of a measurable intensity.
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Guideline for the reader. This thesis is organized in two Chapters concerning rather

different topics such that they could be considered almost unrelated, and the reader can

choose to select one of the two main Chapters independently. The first Chapter is ded-

icated to the Truncated Conformal Spectrum Approach, a numerical method to study

perturbed conformal field theories in the continuum. We applied the method to perturbed

SU(2)k Wess-Zumino-Witten models, continuum limits of specific Heisenberg spin chains,

and to Landau-Ginzburg theories. The second Chapter is dedicated to non-equilibrium

ideal Fermi gases flowing in a non-integrable geometry. The main focus of this part is on

the role of quantum statistics in the flow patterns detected in this kind of systems.

Despite the apparent differences, the two parts of the thesis are unified by the same

methodological question: how to simulate numerically quantum systems with an infinite

number of states. We are going to discuss in the Introduction this fundamental prob-

lem since many important physical systems are described by theories for which analytic

approaches are difficult or hopeless, and numerical simulations are needed.
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Introduction: numerical methods for

large spaces of states.

Despite computer performance has exponentially improved in recent years, solving quan-

tum systems numerically is still prohibitive without specific approximations. The prin-

cipal reason is that their numerical solution typically requires to sample the space of

states, which generally is very large or infinite. The problem concerns the huge demand

of memory to store the space of states, as well as the long computational time needed to

explore it.

Already for the simplest quantum mechanical systems, such as the free particle, the par-

ticle in a box, or the hydrogen atom, Hilbert spaces are infinite dimensional, and cannot

be studied numerically unless some specific technique (or analytical insight) is used to

reduce the set of states.

The problem becomes more intriguing in many-body systems, where analytic approaches

are typically much more complicated, and numerical analyses are often required. As a

trivial example, consider one of the simplest many-body system, built with spins in a

given representation. Albeit each single spin is characterized by a finite – and usually

small – Hilbert space, when joined together, they form a many-body system with a space

of states which is exponentially large in the number of spins. These systems are known

as spin-chains [1], and in the thermodynamic limit they capture the magnetic properties

of some organic and inorganic crystals, KCuF3 being an example [9]. For this reason,

they are actively studied both analytically and numerically. However the huge number

of states makes it problematic to study these models on traditional computers, where

simulations are done on finite chains of rather small size1.

Furthermore, a large variety of many-body quantum systems is modeled by quantum

field theories. The (Fock-)space of states of these theories is naturally infinite, and, in

some cases, even uncountable2.

1Consider that, on a standard laptop, a chain with ∼ 15 spins is hardly processed, unless specific

approximations or techniques are used.
2In the second part of the Chapter 1 we are going to address a specific example where the space of

states is uncountable: the Landau-Ginzburg theories in 1 + 1 dimensions.
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Among these theories there are many important ones which describe fundamental aspects

of nature such as phases of matter [2], fundamental interactions [3] and gravity [4]. All

these examples can be very hard to tackle analytically, for instance when perturbation

theory breaks down. Herein, numerical simulations are crucial, but not at all trivial, since

the space of states must be reduced to a finite subspace, which should be large enough

to capture the physical properties of interest, and, at the same time, sufficiently small to

be tractable by a computer.

The difficulty of simulating quantum systems has been known for some times. Already

in the 80s, Richard Feynman introduced the concept of universal quantum simulator [5]

as a possible candidate to handle the huge number of quantum states3. In the same years,

quantum computers4 were introduced, although not realized [6]. Hence, at the present

time, the numerical investigation of quantum systems is still constrained to classical ma-

chines, and a finite, meaningful, and possibly small set of computational states must be

identified to perform numerics efficiently.

Various successful (although still partial) solutions have been proposed in different

fields. The common idea is to identify the relevant states that capture physical proper-

ties of interest, typically the low energy physics.

A successful method to study numerically many-body problems is the so called Nu-

merical Renormalization Group (NRG) [12]. It was introduced by Kenneth Wilson in the

70s [13] to solve certain many-body systems with impurities, the first being the Kondo

model. Although there have been several implementations of the NRG [12] – specific ex-

amples will be discussed in this thesis on Sections 1.4.2 and 1.8.3 – the common strategy

is to realize numerically a renormalization transformation that iteratively reshapes the

Hamiltonian into a new effective one where irrelevant degrees of freedom are described

by effective terms. In this way, it is possible to reduce substantially the complexity of

the problem, focusing just on the relevant features of the system.

With this idea in mind, along the years many improvements have been proposed. In

3The underlying idea is that a quantum system could be efficiently simulated only by a device which

shares the same complexity, i.e. another quantum system. At the present time, a limited number of

systems can be studied by the mean of quantum simulators [7], and, as an example, we cite ultra-cold

trapped ions, which can be used to simulate certain metals very difficult to study even in laboratory [8].
4A quantum computer is a device which uses quantum properties to perform computations on data,

in a more efficient way than in a classical computer. Using the fact that a quantum system can be in

a superposition of states, the fundamental computational unit, the q-bit, can access much more con-

figurations than the typical 0/1 of a classical bit. In light of this, more sophisticated information can

be handled and eventually quantum systems can be simulated more efficiently. In this sense, quantum

computers move in a similar conceptual direction than quantum simulators.
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the context of spin chains, for instance, one of the most famous examples is the DMRG

(density matrix renormalization group) [14]. This technique, proposed by Steven R. White

in 1992 [15] as an improvement of Wilson’s NRG, is aimed to describe a target state of

a many-body system, typically the ground state, in an iterative variational way. The

problem of the exponentially large space of states is (partially) overcome by identifying,

iteration by iteration, the most relevant states to describe the target, selecting them by

the (reduced) density matrix5. In this sense the DMRG implements an analogue of a

renormalization group strategy6.

The DMRG procedure can be sped-up by the choice of a smart ansatz for the target state.

One of the most successful variational ansatz in 1-dimensional many-body systems is to

express the coefficients of the target state on a reference basis7 as a product of matrices8

(MPS) whose entries can be determined by energy optimization.

Beside these examples, all formulated in the discrete space, many systems are modeled

by quantum field theories in the continuum. As anticipated, in this case the Fock-space is

generally infinite and even uncountable in some cases. However, several tricks can reduce

its cardinality.

For instance, it is well known that, if the available momenta for the particles are un-

countable, it is enough to force constraints such as finite volume or periodic boundary

conditions to select a discrete subset of allowed momenta. The physics of the original

theory is then recovered by a finite-size scaling procedure [18], where the volume is in-

creased to extrapolate the behavior at infinity. Typically the volume is also discretized

on a lattice which implies a further reduction of the space of states9.

A famous example where some of these techniques have been used is that of lattice

gauge theories [3], and – in particular – of quantum chromodynamics [19]. The space-

time is discretized on a lattice and operators and fields are defined on nodes and links.

In principle, the theory can be solved numerically by direct diagonalization. However,

the numerical effort to accomplish this task is still remarkable and further techniques

are used to speed-up the computation, the most significative being the quantum Monte

Carlo [20].

Quantum Monte Carlo is a specific application of the Monte Carlo method to quantum

systems [20]. The main idea underlying the Monte Carlo application to quantum field

5The procedure of selecting relevant states with the density matrix gives the name Density Matrix

Renormalization Group to the method.
6However, it is important to underline that there are not ultraviolet nor infrared cut-offs, and no

change in scale is performed.
7The computational basis is typically the spin-basis.
8It can be proven that the DMRG indeed produces MPSs [16].
9Notice that in the simple case of single particle problems the Hilbert space becomes finite dimensional.
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theories is to compute observables by sampling the path-integral. Roughly, the observ-

ables are computed on sample field-configurations extracted with the probability measure

defined by the action10. The average over the sampled realizations is then returned as

the best approximation of the exact value of the observable. The method can reach, in

principle, a high accuracy, since it can be improved by enlarging the sample over which

the average is computed. However, the computational time is typically long, if high ac-

curacies are needed.

Another interesting area where Monte Carlo like methods are used is lattice quantum

gravity [4]. This numerical implementation of gravity is based on the simulation of the

covariant path integral in a quantized (gravitational) background. The geometry is dis-

cretized on a simplicial structure which is indeed a multidimensional lattice approximation

of the continuum curved space-time. This lattice fluctuates and its single realizations are

generated with a probability fixed by the action.

As a matter of fact, all previous examples, sooner or later, require the introduction

of some lattice structure. However, other methods that work directly on the continuum

exist. The most representative and important for this thesis is the so called Truncated

Spectrum Approach (TSA), which applies to quantum field theories with a countable

number of states.

The method consists in the introduction of a proper truncation which selects just relevant

states for the properties of interest, directly on the continuum, without introducing any

lattice structure.

One of the branches where this method performed rather successfully is that of perturbed

conformal field theories11 in 1 + 1-dimensions [2]. Indeed, within these theories, the con-

formal basis is a natural candidate to be used as computational basis, once properly

truncated to be finite dimensional, in a way that will be fully explained in the first Chap-

ter. The specialization of the TSA to deformation of conformal field theories is called

Truncated Conformal Spectrum Approach (TCSA).

Proposed for the first time in 1990 by Yurov and Zamolodchikov [21] the TCSA is a

numerical method widely and successfully applied to both integrable and non-integrable

perturbations of conformal field theories in 1 + 1 dimensions [22, 2], whose low energy

spectrum is determined with high accuracy.

If the number of states is uncountable, much more effort is needed to tackle the theory in

the continuum, and the simplest strategy seems to introduce boundary conditions that

10For instance a sample of realizations can be generated by starting from an initial seed and proposing

a random deformation. The new configuration is accepted with a probability which depends on the value

of the action. Repeating the procedure produces samples which contain mainly configurations favored

by the action. In principle, several further questions about ergodicity and convergence of the method

can be posed, but addressing these issues is not the scope of this thesis. Further details can be found for

instance in [20]
11Defined on a cylinder.
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limit the cardinality of the spectrum.

In alternative, other formulations, in which effective descriptions of the many-body

system are considered can be attempted. An example, related to the second part of the

thesis, is the hydrodynamic approximation [23]. Within this approach, the many-body

system is described by effective quantities as spatial density and velocity (or eventually

the current density), which obey equations of motion [25, 26, 27, 28, 29, 23] that assume

a hydrodynamical form, such as the Navier-Stokes equations [24]. This global treatment

of microscopic degrees of freedom into few effective fields exchanges the complexity of

working with an infinite Fock-space into that of solving non-linear partial differential

equations. Although, this task is not at all trivial12, there are specific cases in which

these can be solved with a reasonable numerical cost. The most interesting example for

our purpose is the case of the electron liquid – the effective description of a many-electron

system – flowing in non-integrable geometries [30, 108]. The physics emerging in the elec-

tron liquid will be strongly motivating for our investigations in Chapter 2.

All previous examples show that the problem of treating numerically the huge dimen-

sion of the space of states of a quantum system is an open and hard issue. We decided to

tackle this problem within two examples of great interest for their wide applicability. The

first one concerns numerical methods to study quantum field theories in the continuum,

while the second one applies lattice approximations to study non-equilibrium Fermi gases

flowing in non-integrable geometries.

In the Chapter 1 we are going to discuss and solve some technical issues about the

application of the Truncated Conformal Spectrum Approach [21] to two classes of 1 + 1-

dimensional models widely used in statistical physics: the perturbed Wess-Zumino-Witten

models [33, 34] (WZW) and the Landau-Ginzburg theories [2].

The former models are of great interest since they capture the low energy properties of

certain spin-chains [50]. These field theories can be decomposed in a conformal field the-

ory – the WZW part – plus some perturbations, expressed in terms of operators of the

conformal field theory itself. Hence, the Hamiltonian can be represented on the conformal

basis, which is naturally infinite, but discrete, and states are organized into finite sets of

given energy.

The introduction of an ultraviolet (UV) cutoff is in principle enough to obtain a finite

dimensional space of states. We will discuss in detail the consequences of the introduc-

tion of this cutoff. In particular, we will focus on WZW models perturbed by marginal

operators. In this case the cutoff results in non-universal contributions which must be

properly treated to obtain universal results.

12The complicated dynamics of non-linear systems was originally observed by Enrico Fermi, Stanislaw

Ulam, John Pasta, and Mary Tsingou already in the 1953 [31].
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On the other hand, Landau-Ginzburg (LG) theories are bosonic field theories of funda-

mental interest in statistical physics since their classical structure of the vacua coincides

with that of massive phases of several important models [35]. It is thus useful to study

LG theories numerically in their natural continuum formulation.

The space of states in LG theories is uncountable, since the momentum of particles can

take every (real) value. Hence, some further approximations beside the UV cutoff are

needed in order to reduce to a finite dimensional space of states.

As anticipated, a typical technique is to impose periodic boundary conditions on the

space. For what concerns the kinetic term of the Hamiltonian, this compactification

leads to the theory of the compactified boson, which is conformal and has a discrete spec-

trum to which a UV cutoff can be applied. The original theory is obtained in the limit

of a large compactification radius.

We will show which significant information about the low energy physics can be obtained

within Landau-Ginzburg theories, with a reasonable computational cost.

After a detailed introduction on the topic, perturbed WZW models are treated from Sec-

tions 1.1 to 1.6, while Landau-Ginzburg theories are addressed from Section 1.7 to 1.11.

Chapter 2 is dedicated to ideal Fermi gases out of equilibrium. Interacting quantum

gases, such as the electron liquid, are known to admit a hydrodynamic description and,

similarly to classical interacting fluids, they develop an analogue of turbulence at suf-

ficiently strong driving [29, 123, 30]. Ideal classical fluids instead cannot develop any

turbulent flow [24], and we ask whether this property extends to ideal quantum gases.

Indeed, Fermi gases satisfy the exclusion principle that could play the role of an effective

interaction, resulting in non-trivial flows.

We are going to describe an ideal Fermi gas which flows from a narrow channel into a

wider region. If the geometry is infinite in the longitudinal direction (both the narrow

channel and the large very are infinitely long in the longitudinal direction but finite in the

transverse one), the number of states is infinite, the available longitudinal momenta being

even uncountable. Therefore the space of states has to be reduced to a finite sub-set for

a numerical study.

The system is naturally described in the coordinate space and the most natural and es-

tablished procedure is to define the system in a finite volume and discretize it on a lattice

which captures the features of the geometry. Obviously the density of sites must be tuned

properly in order to capture the physics at a given length-scale. For instance, we will

look for specific features of Fermi statistics which naturally manifests itself at the scale

of the Fermi wavelength. Although this condition constrains the density of sites to be

much larger than the density of particles, the computational cost remains still affordable.

Within the micro-canonical formalism, we will describe transport properties of a closed

system where a local quench establishes a flow of particles and we will follow its dynamics.

Beside the closed system, an open system, driven out of equilibrium by coupling to ex-

6
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ternal baths, is studied. In this case, the transport properties can be captured by the

Lindblad equation [36] which controls the time evolution of the density matrix and gives

access to the non-equilibrium steady state (NESS).

To reduce the space of states to a finite set we will introduce again a lattice which cap-

tures the geometry. However, the solution of the Lindblad equation for the NESS-density

matrix is, at this stage, exponentially complex in the number of sites.

A further improvement in performance will be achieved within the so called third quanti-

zation formalism [37, 38], which amounts to represent the Lindblad equation in a smart

fermionic space, where symmetries of the ideal Fermi gas13 reduce the complexity to be

linear in the number of sites. This is a significant optimization further reinforced by

constructive prescriptions to determine easily existence and uniqueness of the NESS, and

the values of observables in this state, if it is unique.

We introduce and contextualize the addressed problem in the beginning of the Chapter

2. The micro-canonical description of the closed system is discussed in Section 2.1, and

the main physical result, obtained with the micro-canonical formalism, is presented in

Section 2.2. The third quantization formulation of the Lindblad description is studied in

Section 2.3, as well as the possible equivalence between the two descriptions of transport.

13The linearity of the coupling with external baths is also a fundamental ingredient within the third

quantization formalism.
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Chapter 1

Truncated Conformal Spectrum

Approach and c = 1 Conformal Field

Theories.

Based on arXiv:1301.0084.

Correlations in one dimensional systems typically require non-perturbative, non-mean

field techniques to access the underlying physics. These techniques often trade on low

energy, field theoretical reductions of the system. Examples include bosonization [39],

conformal field theory [22], integrable field theory [2], the Bethe ansatz [40], and the

truncated conformal spectrum approach (TCSA) [21]. The last approach, unlike the

aforementioned techniques, is able to deal in principle with any one dimensional field

theory, in an exact numerical manner. In that sense the TCSA is similar to the density

matrix renormalization group (DMRG) [15], but the framework where it is formulated is

field theoretical and not discrete quantum lattice systems.

TCSA deals with models whose Hamiltonians can be represented in the form,

H = HCFT +Ψ, (1.1)

where HCFT is the Hamiltonian of some conformal field theory and Ψ is an arbitrary

perturbation. The approach employs the Hilbert space of the conformal field theory as a

computational basis and exploits the ability to compute matrix elements of the perturbing

field in this same basis using the constraints afforded by the conformal symmetry. It was

first employed by Yurov and Zamolodchikov in studies of massive perturbations of the

critical Ising model [41] and the scaling Yang-Lee model [21].

Since its introduction it has been used in a large number of instances and to some

degree has become a standard tool. It has been used to study perturbations of the tri-

critical Ising [47, 48], the 3-states Potts model [49], bosonic (c = 1) compactified theories

9



CHAPTER 1. TRUNCATED CONFORMAL SPECTRUM APPROACH AND C = 1
CONFORMAL FIELD THEORIES.

[51], the sine-Gordon model [52, 53], and perturbations of boundary conformal field theo-

ries [54]. Spectral flows between different conformal field theories were addressed in Ref.

[55], while the correctness of the thermodynamic Bethe ansatz equations was checked in

Refs. [56, 57]. Finite-size corrections to the mass spectra have also been analyzed in

Refs. [58, 59]. By replacing the conformal field theory with an integrable field theory, the

approach can also study models of perturbed integrable field theories. Matrix elements

of the perturbing field are then computed in the form factor bootstrap approach [60].

While the TCSA approach is extremely flexible in the models it can attack, it is in

practice limited to perturbations of conformal field theories with small central charge (c <

1). For theories with large central charge, the underlying conformal Hilbert space is large

and becomes numerically burdensome to manipulate. The difficulty has recently been

partially overcame with the development of a numerical renormalization group (NRG)

for the TCSA [61, 62, 63, 64, 65]. This renormalization group permits large Hilbert spaces

to be dealt with piecewise making the numerics manageable. Using this renormalization

group, the excitation spectrum of semi-conducting carbon nanotubes was studied [64]

(here the underlying conformal field theory had c = 4) as were large arrays of coupled

quantum Ising chains [62] (here the underlying conformal field theory had c ∼ 30− 50).

The TCSA approach, as designed, focuses on accurately computing the properties of

the low energy states. However when combined with an NRG together with a sweeping

algorithm not dissimilar to the finite volume algorithm of the DMRG [15], the TCSA can

compute the properties of states over a wide range of energies. This was demonstrated

in [63] where the level spacing statistics were studied in crossing over from an integrable

to a non-integrable model.

In the first part of this Chapter, we apply the TCSA to perturbations of Wess-Zumino-

Witten (WZW) models. WZW models are non-linear sigma models, i.e. field theories

whose field1, Φ, lives on a group manifold G, of a non-Abelian Lie-group. In addition to

non-linear sigma models they possess topological terms, the Wess-Zumino term, whose

action is quantized with the consequence that its coupling constant k is constrained to be

a positive integer. The consequence of the topological term is to make the sigma models

conformal with the affine Lie algebra associated with G, spectrum generating2. Affine Lie

algebras typically have richer structure than the Virasoro algebra and are consequently

more difficult to treat with the TCSA. Specialized code needs to be developed in order

to treat such models. Here we report the development of such code for the study of

perturbations of SU(2)k WZW models.

Perturbed SU(2)k WZW models are interesting physically primarily because they are

1assuming to have just one field.
2This is true just if the group is non-Abelian. For an Abelian group, for instance U(1), the non linear

sigma-model is already conformal without the need of the topological term.
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CHAPTER 1. TRUNCATED CONFORMAL SPECTRUM APPROACH AND C = 1
CONFORMAL FIELD THEORIES.

able to represent the low energy structure of spin chains [66]3. The most important

example here is the spin-1/2 Heisenberg chain, whose low energy behavior is governed

by SU(2)1 perturbed by a marginally irrelevant current-current interaction. Adding

different perturbations to SU(2)1 leads to different variants of the Heisenberg model.

The Hamiltonian

H = HSU(2)1 + g

∫

dx J̄R · J̄L + h

∫

dx (φ1/2,1/2 φ̄1/2,−1/2 − φ1/2,−1/2 φ̄1/2,1/2) , (1.2)

where φ1/2,±1/2 are the spin-1/2 fields in SU(2)1, is the low energy reduction of the

dimerized J1 − J2 Heisenberg model

H =
∑

n

J1 (1 + δ(−1)n) S̄n · S̄n+1 + J2 S̄n · S̄n+2 . (1.3)

The couplings of the two models are related via g ∝ J2 − J2c and h ∝ δ. This model has

been studied intensely both field theoretically with RG analyses [67] and with DMRG

[68, 69]. These methodologies do not currently agree on how the spin gap depends upon

the dimerization parameter δ. It is one of the aims of our work to set up the framework

under which disputed questions surrounding this model can be addressed.

SU(2)k for k > 1 WZW theories are also of considerable interest as they are the low

energy reductions of families of spin-k/2 spin chains with finely tuned, local interactions

[66]. They have also been shown more recently to represent Haldane-Shastry type spin

chains [50] with longer range interactions [70, 71, 72]. In both cases, it is of interest to

understand how SU(2)k WZW behaves in the presence of relevant and marginal pertur-

bations. And more generally, because SU(2)k WZW theories are multi-critical with many

possible relevant perturbations. Actual spin chains are likely to be realized only in the

vicinity of these critical points rather than precisely at them.

In the final part of this Chapter we also apply the TCSA to Landau-Ginzburg Theories

(LG). These theories were introduced within the context of second-order phase transi-

tions and later used to model type-I superconductors [73]. LG theories provide effective

descriptions in terms of the order parameter.

Already at the mean field level, these theories give a first approximation of critical ex-

ponents, and help to understand the mechanism behind the phase transitions. A very

important example is the Ising model in 1 + 1 dimensions, which exhibits a transition

between a paramagnetic phase at high temperature and a ferromagnetic phase at low

temperature. The action of the corresponding LG theory for the order parameter φ (the

magnetization) is

S =
1

8π

∫

d2x

[

1

2
∂µφ∂µφ+ g2φ

2 + g4φ
4

]

, g4 > 0 (1.4)

3There are others applications in high-energy physics which we are not concerned with.
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where the coupling g2 is proportional to T−TC , TC being the critical temperature. Hence,

if the coupling is positive the potential has just one stable minimum at zero magnetiza-

tion, corresponding to the paramagnetic phase, while if g2 < 0 the shape changes and two

minima with finite magnetization appear. A spontaneous symmetry breaking mechanism

leads to the choice of one minimum, which gives the ferromagnetic phase.

Although very simple, the presented mean field considerations about the phase transi-

tion can be extended to a large variety of systems. Moreover, fluctuations of the order

parameter can be included to enrich the information about the system by just promoting

the LG theory to a quantum field theory. These quantum field theories are typically

non-integrable and thus quite challenging for analytical studies.

A crucial task is to compute their spectrum of stable excitations, which is the ba-

sic information for building up their space of states and for proceeding further in the

analysis of the dynamics, with the computation of scattering processes, matrix elements,

correlation functions, etc.

The determination of such a spectrum is however a dynamical problem in itself: what

usually happens, in fact, is that the elementary fields present in the Lagrangian of a model

do not exhaust the spectrum of stable excitations, which may indeed contain additional

bound states. Assuming one would be able to solve exactly the dynamics of the theory,

the whole spectrum could be read from the poles placed in the physical strip of the various

S-matrix amplitudes.

Such a procedure is known to work perfectly well with 2D Integrable Quantum Field

Theories (IQFT) [80] and has lead to an exact solution of many models, among which

the Sine-Gordon and the Gross-Neveu models, or the Ising model in a magnetic field4.

However, relatively few analytic methods are available to make progress in non-

integrable models. Focusing the attention on two-dimensional quantum field theories,

there are, beside the standard perturbation theory, essentially two techniques:

• Form Factor Perturbation Theory [42, 43], a method particularly suited to study

those non-integrable field theories obtained as deformations of integrable models.

A prototype example may be considered the multi-frequency Sine-Gordon model,

whose Lagrangian contains two or more cosines of different frequencies [43].

• the Semiclassical Method [44, 45, 46], that can be used to analyze in relatively

simple terms non-integrable field theories with topological (kink-like) excitations of

very high mass.

4It is particularly important to have mentioned the Sine-Gordon and the Gross-Neveu models because,

in both cases, it is well known that the spectrum of their stable excitations is much richer than what one

can infer from their Lagrangians [80]. It must be also added that in Integrable Quantum Field Theories

there could be stable excitations whose mass m is higher than the natural energy threshold E = 2m1

dictated by the lowest mass excitation m1: their stability is ensured in this case by the infinite number

of conservation laws which characterizes the integrable dynamics.

12
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At the present time, many semi-classical predictions have been derived [44, 45, 46], but

some of them are still at the level of conjecture [46].

It is thus important to set-up a numerical method to study these quantum field theories

efficiently, as discussed in the final part of this Chapter. By applying an adapted version

of the TCSA to LG theories, we will show that the conjecture proposed in Ref. [46] about

the number of possible stable neutral bound states is verified in the LG theories addressed.

The outline of this Chapter is as follows. In Section 1.1 we give fundamental ingre-

dients of SU(2)k WZW models, while in Section 1.2 we present the TCSA applied to

perturbations of SU(2)k are studied. In the next three sections (Section 1.3 to Section

1.5) we present applications of the TCSA to perturbed SU(2)k models to confirm that

how the method properly applies to these kind of theories. In particular in Section 1.3

we examine the SU(2)1 + Tr(g) model, which is equivalent to the sine-Gordon model.

This allows us to compare our numerics with known analytic results. In Section 1.4

we study the SU(2)1 + J̄L · J̄R model, which corresponds to a marginal current-current

perturbation of SU(2)1. We show here that one can isolate the UV divergent behavior,

essential for extracting the universal behavior of spin chains described by SU(2)k with a

marginal perturbation. Finally, in Section 5., we consider SU(2)2 perturbed by Tr(g)2.

This provides a useful benchmark of our methodology as the theory is equivalent to three

non-interacting massive Majorana fermions. In Section 1.6 we than comment about our

results on SU(2)k and present possible future developments. In Section 1.7 the structure

of the expected stable excitation spectrum in Landau-Ginzburg theories is presented,

while in Section 1.8 we are going to adapt the TCSA to study Landau-Ginzburg theo-

ries. The method is used to verify the semi-classical predictions in [46] in Section 1.9.

In Section 1.8.3 the NRG is also applied to LG theories. We conclude and discuss about

the applicability of TCSA to LG theories in Section 1.10. Appendix A contains basics

ingredients of thermodynamics Bethe ansatz used along the Chapter.

1.1 An introduction to Wess-Zumino-Witten mod-

els.

In this Section we introduce those fundamentals on WZW models which will be required

in this thesis. WZW theories are non-linear sigma models – i.e. models where the field is

valued on a manifold, in the following the SU(2)-Lie group – modified by a topological

term that makes the full theory a conformal field theory [33, 34]. The starting point of

the construction is the non-linear sigma model

S0 =
1

4a2

∫

d2xTr
[

∂µΦ−1∂µΦ
]

(1.5)
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where Φ takes value on SU(2) and a is a positive dimensionless constant. The equations

of motion have the form5

∂µ
(

Φ−1∂µΦ
)

= 0 (1.6)

that imply conservation laws for the currents Jµ = Φ−1∂µΦ. In complex coordinates,

(z, z̄), they become

∂z̄Jz + ∂zJ̄z̄ = 0, (1.7)

where

Jz = Φ−1∂zΦ and J̄z̄ = Φ−1∂z̄Φ (1.8)

If both the terms in Eq. (1.7) vanish separately, the identity is satisfied and we have

the typical separation of the holomorphic and antiholomorphic sectors of conformal field

theories. However it is easy to prove, that this occurs just if Φ is valued on an Abelian

group6 which is interesting for the last part of the Chapter, when we are going to apply

the TCSA to theories with U(1) symmetry7.

Even though the non-linear sigma model S0 with SU(2)-symmetry is not conformal, it

has been show in Ref. [33, 34] that the conformal symmetry can be restored by modifying

the action with a topological term Γ,

S = S0 + kΓ, (1.10)

defiend as

Γ = − i

24π

∫

B

d3yǫαβ,γTr
[

Φ̃−1∂αΦ̃Φ̃−1∂βΦ̃Φ̃−1∂γΦ̃
]

. (1.11)

In (1.11) Φ̃ are SU(2)-valued extension of Φ, defined on a 3-dimensional manifold B which

boundary is the compactification of the domain of Φ. Albeit the extension is obviously

not unique, the Γ term changes by just by multiples of 2πi if different Φ̃ are considered;

hence the action remains unchanged and it is perfectly well defined.

The coupling in front of the topological term is consequently quantized to be an integer,

called level of the theory. We will thus refer to the model described by S as SU(2)k WZW

model.

5A fundamental ingredient in the computation is ∂µΦ
−1 = Φ−1∂µΦΦ

−1. This can be obtained just

realizing that ∂µ
(

ΦΦ−1
)

= 0. Similarly, since δ(ΦΦ−1) = 0, it follows that δΦ−1 = Φ−1δΦΦ−1.
6By performing the derivative of the equation of motion in complex coordinates (∂z

(

Φ−1∂z̄Φ
)

= 0

and ∂z̄
(

Φ−1∂zΦ
)

= 0) and using the identity ∂µΦ
−1 = −Φ−1∂µΦΦ

−1 we find

∂z̄ΦΦ
−1∂zΦ = ∂zΦΦ

−1∂z̄Φ (1.9)

which, once defined A = ∂z̄Φ 6= 0, B = Φ−1 6= 0, and C = ∂zΦ 6= 0, reads as ABC = CBA, and has

non-trivial solution just in commutative groups.
7The U(1)-group is commutative, hence the non-linear sigma model is going to be conformal, and

additional terms in the action are not needed..
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Although, the topological term is defined on a three-dimensional manifold its variation

defines a total derivative

δΓ =
i

8π

∫

d2xǫαβTr
[

Φ−1δΦ∂α
(

Φ−1∂βΦ
)]

(1.12)

and it is equivalent to a two dimensional functional. The introduction of this term results

in the modified equations of motion:
(

1 +
ka2

4π

)

∂z
(

Φ−1∂z̄Φ
)

+

(

1− ka2

4π

)

∂z̄
(

Φ−1∂zΦ
)

= 0 (1.13)

The choice a2 = ±4π
k

gives either ∂z (Φ
−1∂z̄Φ) = 0 or ∂z̄ (Φ

−1∂zΦ) = 0.

In order to compute the conserved currents we consider infinitesimal transformations

δωΦ = ωΦ and δω̄Φ = −ω̄Φ (1.14)

with ω an element of the su(2) algebra. If a2 = 4π
k
, the variations (1.14) result in

δS =
k

2π

∫

d2xTr
[

ω(z)∂z̄
(

∂zΦΦ
−1
)

− ω̄ (z̄) ∂z
(

Φ−1∂z̄Φ
)]

(1.15)

and we can extract the two currents

J = −k∂zΦΦ
−1 and J̄ = kΦ−1∂z̄Φ (1.16)

which are separately conserved:

∂z̄Jz = 0 and ∂zJ̄z̄ = 0. (1.17)

This result evidences the underlying conformal symmetry. We now want to clarify the

role of the SU(2) symmetry in the construction of the states of the conformal field theory.

Infinitesimal transformations of the conserved currents, using (1.16) and (1.14), have

the form

δωJz = −k∂z (δωΦ)Φ
−1 − k∂zΦδωΦ

−1

= [ω, J ]− k∂zω , (1.18)

and a similar expression for the antiholomorfic current, an equivalent expression being

δωJ
a = ifabcω

bJ c − k∂zω

δω̄J̄
a = ifabcω̄

bJ c − k∂z̄ω̄ , (1.19)

where fabc are the SU(2) structure constants.

If X is a generic operator, the Ward identities obtained from (1.15) by moving to complex

integration variables8 have the form

δω.ω̄〈X〉 = − 1

2πi

∮

dzωb〈J bX〉+ 1

2πi

∮

dz̄ω̄b〈J̄ bX〉, (1.20)

8We have d2x = − i
2
dzdz̄.
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such that in the case where X = Ja, and using (1.19), the identity is consistent with the

operator product expansion (OPE):

Ja(z) · J b(w) ∼ kδab
(z − w)2

+
ifabc
z − w

J c(w) + . . . (1.21)

Modes of the currents are then defined as

Ja(z) =
∑

n

Ja
n

zn+1
(1.22)

and the OPE is consistent with the following algebra for the modes:
[

Ja
n, J

b
m

]

= ifabcJ
c
n+m + nkδabδn+m,0 (1.23)

These commutation relations define what is typically called SU(2)k Kac-Moody alge-

bra. It belongs to the class of Affine Lie Algebras, well studied in mathematics [22]. As

we are going to show, this is the spectrum generating algebra of the SU(2)k WZW model.

The stress energy tensor of these theories is a bilinear operator in the currents, and

it can be computed within the so called Sugawara construction [22]:

T (z) =
1

2(k + 2)
: Ja(z)Ja(z) : . (1.24)

By just by comparing the mode expansion

T (z) =
∑

n

Ln

zn+2
(1.25)

with (1.22) one finds

Ln =
1

2(k + 2)

∑

m

: Ja
mJ

a
n−m : (1.26)

which relates the conformal Virasoro modes with the SU(2)k modes, and explains why

the SU(2)k algebra is the spectrum generating algebra of the SU(2)k WZW model. The

central charge is computed by performing the OPE of the stress-energy tensor with itself

and by using its decomposition into current modes. The fourth-order pole of the resulting

expansion contains the central charge, whose expression is the SU(2)-specification of the

so called Sugawara-formula:

c =
3k

k + 2
. (1.27)

The operator content of the theory will be discussed in the construction of the computa-

tional basis for the TCSA in the next Section.

We remark that this construction holds for every Lie Group once the correct structure

constants fabc are considered. In the last part of the Chapter a different current algebra

will be studied: the U(1)1 , the spectrum generating algebra of the compactified boson.

16



CHAPTER 1. TRUNCATED CONFORMAL SPECTRUM APPROACH AND C = 1
CONFORMAL FIELD THEORIES.

R

Figure 1.1: The WZW field Φ is defined on an infinite cylinder of radius R.

1.2 TCSA for SU(2)k WZW models

In this Section we describe the application of the TCSA [21] to deformations of the SU(2)k
Wess-Zumino-Witten model [74, 75]. We thus start by considering Hamiltonians of the

form

H = HSU(2)k + g

∫ R

0

dxΨ(x). (1.28)

Here Ψ is a spin singlet combination of (highest weight or current) fields of the WZW

model. The Hamiltonian is defined on a circle of length R. Adding the time coordinate

the underlying space-time is an infinite cylinder with circumference R (see Fig. 1.1).

The first step in the TCSA is to characterize the unperturbed theory, HSU(2)k . This

theory provides the computational basis of the TCSA numerics. HSU(2)k has central

charge c = 3k/(k + 2) (k = 1, 2, . . . ), and can be written à la Sugawara in terms of the

SU(2)k currents:

HSU(2)k =
2π

R

(

L0 + L̄0 −
c

12

)

=
2π

R

(

∑

m

:

[

(2J0
mJ

0
−m + J+

mJ
−
−m + J−

mJ
+
−m)

+(2J̄0
mJ̄

0
−m + J̄+

mJ̄
−
−m + J̄−

mJ̄
+
−m)

]

: − c

12

)

. (1.29)

The left-moving currents J0,±
m obey the algebra,

[

J0
m, J

0
n

]

=
km

2
δn+m,0,

[

J0
m, J

±
n

]

= ±J±
m+n, (1.30)

[

J+
m, J

−
n

]

= 2J0
m+n + kmδm+n,0,

with the right moving currents J̄0,±
m obeying the same algebra. These commutation

relations are trivially equivalent to (1.23).

The field content of HSU(2)k consists of k+1 primary fields, φs,m=−s,··· ,s, forming spin

s = 0, · · · , k/2 representations. The conformal weight of the spin s primary field is given

by

∆s = s(s+ 1)/(k + 2). (1.31)
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The primary fields and the WZW currents are the basic tools to construct the Hilbert

space of the unperturbed theory, providing the first ingredient of the TCSA. The Hilbert

space can be written as a tensor product of its holomorphic (left) and anti-holomorphic

(right) degrees of freedom. For SU(2)k, the left and right sectors of the Hilbert space have

k+1 modules each, one for every allowed spin. Each module is associated to one primary

field, φs,s that defines the highest weight state (or primary state), |s, s〉 ≡ φs,s(0)|0〉. The
module contains this primary state together with an infinite tower of descendant states:

JaM
−nM

. . . Ja1
−n1

|φs,s〉, ni = 0, 1, 2, · · · ai = 0,±. (1.32)

These states (1.32) are eigenstates of the Virasoro operator L0, and the third component

component of the current J0
0 :

L0

(

JaM
−nM

. . . Ja1
−n1

)

|s, s〉 =
[

∆s +
∑

i

ni

]

(

JaM
−nM

. . . Ja1
−n1

)

|s, s〉;

(1.33)

J0
0

(

JaM
−nM

. . . Ja1
−n1

)

|s, s〉 =
[

s+
∑

i

ai

]

(

JaM
−nM

. . . Ja1
−n1

)

|s, s〉.

The quantity
∑

i ni is called the Kac-Moody level, or simply the level, of the descendant

state.

We can give a simple argument that explains the truncated number or representation

in the theory. Let us consider the matrix element 〈s, s|J−
1 J

+
−1|s, s〉. This is a norm, and

thus surely non-negative. Therefore, by using (1.31) we have

0 ≤ 〈s, s|J−
1 J

+
−1|s, s〉 = 〈s, s|[J−

1 , J
+
−1]|s, s〉 = −2s+ k

which implies

s ≤ k

2
(1.34)

and evidences the existence of an upper bound for the possible primary state of the theory.

The set of states (1.32) is not yet a basis of the Hilbert space since it is over complete

and contains null states. In order to form a complete orthonormal basis, we tackle each

Kac-Moody module separately.

We do so in an iterative fashion. At each step we have a set of non-zero norm

states which are linearly independent (at the beginning this set will consist solely of the

highest weight state). We next add a new descendant state to this set, compute the

matrix of scalar products of states in the expanded set (the Gramm matrix), and find its

determinant. If it is non-zero, the new state is added to the list; otherwise it is discarded.

We then move to the next descendant in the tower of states in increasing order in the
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SU(2)1 SU(2)2
level I 1/2 I 1/2 1

0 1 2 1 2 3

1 4 4 4 8 7

2 8 10 13 20 19

3 15 18 28 46 40

4 28 32 58 94 83

5 47 52 112 178 152

6 76 86 206 324 275

7 119 132 359 564 468

8 181 202 611 948 786

9 271 298 1002 1552 1272

10 397 436 1611 2482 2026

11 571 622 2529 3886 3145

Table 1.1: The dimensions of the Verma modules of SU(2)1 and SU(2)2 at different levels.

level. The process ends when all the states up to a given truncation level have been

considered.

This procedure yields a complete set of states that we can easily orthonormalize to

obtain a basis. In order to optimize this procedure we take into account the following

properties:

• states with different L0 quantum number are independent;

• states having different spin (eigenvalue of J0
0 ) are independent;

• we discard the states with null norm;

• we act only with level 0 currents, J0,±
0 , directly on the highest weight state |s, s〉 in

the module.

To demonstrate that the above method amounts to a numerically intensive task, we

present in Table I the number of states per level for the two modules of SU(2)1 and the

three modules of SU(2)2.

Once the chiral sector of SU(2)k has been obtained, the total Hilbert space is con-

structed as a tensor product of the isomorphic holomorphic and antiholomorphic sectors.

These tensor products are diagonal in the modules, i.e. left moving spin s states are only

tensored with their right moving spin s counterparts. In forming these tensor products,

we group the states by their value of Lorentz spin, (L0 − L̄0), and z-component of SU(2)

spin, J0
0 + J̄0

0 . Recall that the Lorentz spin is proportional to the momentum carried by
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SU(2)1 level mom. 0 SU(2) spin 0 SU(2)2 level mom. 0 SU(2) spin 0

1 18 8 1 75 25

2 70 24 2 444 120

5 1309 381 4 6839 1595

11 133123 32021 7 185111 38665

Table 1.2: The cumulative dimensions for non chiral spaces at given level with total

Lorentz spin (mom.) zero (first column) and both Lorentz spin and SU(2) spin Sz zero

(second column).

SU(2)1
C0,0;1/2,−1/2;1/2,1/2 1 C1/2,1/2;1/2,1/2;0,0 1

SU(2)2
C0,0;1/2,−1/2;1/2,1/2 1 C1,1;1,1;0,0 1

C0,0;1,−1;1,1 1 C1,1;1/2,1/2;1/2,1/2 1

C1/2,1/2;1/2,1/2;0,0 1 C1/2,1/2;1/2,−1/2;1,1 -1

C1/2,1/2;1,0;1/2,1/2 − 1√
2

Table 1.3: Non zero structure constants of SU(2)1 and SU(2)2.

the corresponding state. In Table 1.2 we present the number of cumulative states up to

a given level in SU(2)1 and SU(2)2 with vanishing Lorentz spin.

Once the computational basis has been constructed, the TCSA requires the evaluation

of matrix elements of the perturbing operator in that basis. For this purpose one uses

the commutation relations of the fields, φs,m(0), with the current modes, J0,±
0 , which are

given by

[

J0
0 , φs,m

]

= mφs,m;
[

J±
0 , φs,m

]

= (s±m)φs,m±1. (1.35)

With these commutation relations and those of the current modes (1.30), matrix elements

of the form

〈φs,s|Ja1
n1

· · · Jam
nm
φs′,m(0, 0)J

b1
−l1

· · · J bk
−lk

|φs′′,s′′〉, (1.36)

can be reduced to the structure constants, Cs1,m1,;s2,m2;s3,m3
:

〈φs,s|φs′m(0)|φs′′,s′′〉 =
(

2π

R

)2∆s

Cs,s;s′,m;s′′,s′′ . (1.37)

We list all non-zero structure constants, Cs1,m1,;s2,m2;s3,m3
in Table III for SU(2)1 and

SU(2)2.
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With the spectrum of the unperturbed SU(2)k model specified and the matrix ele-

ments of the perturbing field given, we are able to compute explicitly the matrix elements

of the full Hamiltonian on the circle and represent it in matrix form. To be able to analyze

this Hamiltonian, we truncate (the truncation in the acronym TCSA) the Hilbert space

by discarding all states with a chiral component whose level is greater than Ntr. The

resulting finite dimensional Hamiltonian matrix can then be diagonalized numerically,

obtaining the spectrum of the perturbed theory. This procedure is particularly robust

for relevant perturbations since the low energy eigenstates of the perturbed theory, |r〉,
are localized on the low energy conformal states, {|c〉α} . Namely, expanding |r〉 into the

conformal basis, {|c〉α},

|r〉 =
∑

α

bα|c〉α, (1.38)

the coefficients bα, are primarily concentrated on the low energy conformal states |c〉α
determined by HSU(2)k .

To extract physical quantities for the perturbed Hamiltonian (1.28), such as the mass

gap, energy levels, correlation functions, etc., the choice of the system size, R, requires

special consideration. For mR ≪ 1 (here m is the putative mass scale of the perturbed

theory), the system lies in the UV limit where the conformal term, HSU(2)k , of the full

Hamiltonian dominates. In this regime the spectrum resembles that of the conformal

HSU(2)k where the energy levels scales as 1/R. In the IR regime, Rm≫ 1, the perturba-

tion,
∫

dxΦ(x), dominates and one expects a scaling of the form ∼ R1−2∆s , where 2∆s is

the scaling dimension of the perturbing field. In general, the spectrum of the perturbed

model must be extracted in a region of R where the conformal term and the perturbation

are balanced in the sense that physical quantities remains stable under small variations

of R. This region is usually denoted as the “scaling region”.

For theories where the dimension of the Hilbert space grows very fast, i.e. SU(2)k
with k large, the truncation scheme proposed above may not yield accurate results.

In those cases one can take recourse to a numerical renormalization group (NRG)

improvement of the TCSA [61, 62, 63, 64, 65]. This procedure allows the TCSA to reach

much higher truncation levels than that possible in its unadorned form. Taken together

with an analytic renormalization group, it is possible to remove the effects of truncation

altogether [61]. While this NRG has been tested extensively on relevant perturbations of

conformal field theories, it has not been tried on marginal perturbations of CFTs. We

will show in Section IV that the NRG can accurately predict the low lying spectrum even

in the marginal case.
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1.3 SU(2)1 perturbed by the spin-1/2 field

Our first test of the TCSA is the perturbation of the SU(2)1 WZW model by the singlet

formed from the spin-1/2 operator of SU(2)1,

Ψ =
(

φ1/2,1/2 φ̄1/2,−1/2 − φ1/2,−1/2 φ̄1/2,1/2

)

,

the Hamiltonian being

Hrel = HSU(2)1 + h

∫

dxΨ(x) . (1.39)

The scaling dimension of Ψ is 2∆1/2 = 1/2, and so this is a relevant perturbation.

Moreover the theory is invariant under h → −h. This Hamiltonian is equivalent to the

sine-Gordon model whose Lagrangian is given by [76]

LSG =

∫

d2x
(1

2
(∂µϕ)

2 + 2λ cos(βϕ)
)

, (1.40)

with β2 = 2π. The correspondence between (1.39) and (1.40) is based on the identifica-

tions

φ1/2,1/2 (z) =: e
1√
2
ϕ(z)

: and φ1/2,−1/2 (z) =: e
−i 1√

2
ϕ(z)

: (1.41)

which, up to phase redefinitions, are the bosonization formulas of the SU(2)1 model [22].

The vertex-operators representation of the current within our conventions are

J0 =
i√
2
∂ϕ

J± = : e±i
√
2ϕ : . (1.42)

It is easy to show, by just using elementary properties of vertex operators such as

∂ϕ(z) · Vα(0) ∼ − iαVα(0)

z
,

eiαϕ(z) · eiβϕ(0) ∼ |z|2αβei(α+β)ϕ(z) , and

eiαϕ(z) · eiαϕ(0) ∼ |z|2α2

(

1 + iα
∑

n>0

∂(n)ϕ

n!
zn

)

, (1.43)

that our definitions provide a representation of the algebra (1.31):

[J0, J±] ∼ i√
2
∂ϕ · e±i

√
2ϕ ∼ −± i

√
2
i√
2
e±i

√
2ϕ/z → ±J±

[

J+, J−] ∼ ei
√
2ϕ · e−i

√
2ϕ ∼ 1

z2
+
i
√
2∂ϕ

z
→ 1 + 2J0. (1.44)
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Figure 1.2: Plot of the TCSA data for the lowest six excited states in the Sz = 0 sector

with the ground state energy subtracted. The lowest two excited states correspond to

B1 (the Sz = 0 state of the triplet) and B2. The next four excited states are two particle

states. The data are computed with a truncation level Ntr = 9. The fundamental triplet

of particles can be seen to have mass M=1.0016.

The commutators between primaries and the currents (1.35) are also derived from:

[J0, φ1/2,±1/2] ∼
i√
2
∂ϕ · e±

1√
2
ϕ ∼ ±1

2
e
± 1√

2
ϕ
/z → 1

2
φ1/2,±1/2

[J∓, φ1/2,±1/2] ∼ e∓
√
2ϕ · e±

1√
2
ϕ ∼ |z|−2e

∓ 1√
2
ϕ → φ1/2,∓1/2

[J±, φ1/2,±1/2] ∼ e±
√
2ϕ · e±

1√
2
ϕ ∼ |z|+2e

∓ 1√
2
ϕ → 0.

(1.45)

We now show that the TCSA numerics reproduce the expected behavior of the sine-

Gordon model. The spectrum of the sine-Gordon model at β2 = 2π is composed of a

soliton S and antisoliton S̄ with mass M and two breathers B1 and B2 with masses

M1 = M and M2 =
√
3M respectively. The soliton, anti-soliton, and the first breather

form a triplet under SU(2). The charges of the particles (S,B1, S̄) are given by (1,0,-1)

and they coincide with their Sz quantum number. The second breather, B2, is a singlet

under SU(2).

Fig. 1.2 shows the low energy TCSA spectrum which reproduces the basic structure:

a low lying triplet with mass M , and a single excitation at roughly
√
3M . The expected

value of the mass M can be determined from the coupling constant used in the TCSA.

The relation between the coupling of the sine-Gordon model and the mass M is given as
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Figure 1.3: Single particle state B2: Analytic prediction for its mass with finite size effects

(continuous line) compared to the TCSA data.

[77]

h = λ =
Γ(β

2

8π
)

πΓ(1− β2

8π
)

[

M
√
π
Γ
(

1
2
+ ξ

2π

)

2Γ
(

ξ
2π

)

]2−β2

4π

, (1.46)

where ξ = β2

8
1

1−β2

8π

= π
3
. With h = 0.0942753.. we expect the mass to be 1 while from the

TCSA we find M = 1.0016, in excellent agreement.

For the second breather, found roughly at
√
3M , a more careful analysis of the TCSA

data is required. For this excitation there are significant finite size corrections. These

corrections can be understood as virtual processes on the cylinder (first considered in [91]

and later developed in more detail for one dimensional field theories in [58, 21]) which

are suppressed exponentially as R becomes large. These corrections can be considered to

have two contributions, the µ−term and the F-term [58]. The µ− term for B2 is of the

form

∆mµ
B2
(R) = −3

√
3e−MR/2, (1.47)

while the F-term equals

∆mF
B2
(R) =

′
∑

i

∫ ∞

−∞

dθ

2π
e−miR coshθmiR cosh(θ)

(

SB2i
B2i

(θ + iπ/2)− 1
)

, (1.48)

where the sum
∑′

i runs over all particles in the theory where SB2,i
B2,i

(θ + iπ/2) does not

have a multiple pole for real θ. For completeness these S-matrices are as follows:

S
{S,S̄,B1},B2

{S,S̄,B1},B2
=

sinh(θ) + i sin(π
2
)

sinh(θ)− i sin(π
2
)

sinh(θ) + i sin(π
6
)

sinh(θ)− i sin(π
6
)
;
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SB2,B2

B2,B2
=

sinh(θ) + i sin
(

2π
3

)

sinh(θ)− i sin
(

2π
3

)

sin2
(

i θ
2
− π

6

)

cos2
(

i θ
2
+ π

6

)

sin2
(

−i θ
2
− π

6

)

cos2
(

−i θ
2
+ π

6

) . (1.49)

For B2 the only particle that satisfies the no multiple pole condition is B2 itself. Thus

the F-term for B2 is of order e−
√
3MR, and so considerably smaller than the µ-term. To

determine whether we should include it at all we need to make an estimate of higher

order terms of the finite size corrections (of order e−σB2R) neglected in the computation

of µ- and F-terms. Using Ref. [58] as a guide we find σB2
= 1. Given that these higher

order terms are larger than the F-term, we will henceforth ignore the F-term.

If we now fit mB2
+ ∆mB2

(R) to the TCSA data, we find that MB2
/M = 1.7322 ±

0.0002. Using this mass, we plot mB2
+∆mB2

against the TCSA data in Fig. 1.3. This

shows excellent agreement between the theory and the TCSA data for R > 9.

We now turn to the ground state energy Egs. The TCSA gives Egs as would be

computed in conformal perturbation theory to all orders. This perturbative energy can

be expressed as the sum of a linear term in R, proportional to a bulk energy density,

ǫbulk, plus a term given by the thermodynamic Bethe ansatz ETBA [79, 21].

Egs = ǫbulkR + ETBA(R). (1.50)

The bulk contribution to Egs is given by [80]

ǫbulk = −M
2

4
tan

ξ

2
= −αM2R. (1.51)

For sine-Gordon with β2 = 2π, α = 0.14438.... The contribution from ETBA(R) is given

by the solution of a coupled set of integral equations involving the S-matrices of the

various excitations in the model [79, 21]. At large R, this contribution reads

ETBA(R) = −3M

∫ ∞

−∞

dθ

2π
cosh(θ) e−MR cosh(θ)

−
√
3M

∫ ∞

−∞

dθ

2π
cosh(θ) e−

√
3MR cosh(θ) + O(e−2MR), (1.52)

and essentially marks the correction to the energy due to the spontaneous emission of

a virtual particle from the vacuum which travels around the system before being reab-

sorbed. Fig. 1.4 shows the TCSA data against the theoretical values of Egs (including

the full, not just the leading order large R, contribution coming from ETBA(R)). There

is a good agreement for R smaller than mR = 8 and then slight deviations thereafter,

which can be reduced by increasing the value of Ntr (see Fig. 1.4).

Above the single particle states, one encounters sets of two-particle states consisting

of pairs of particles from the triplet and the singlet of the SG model. These two-particle
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Figure 1.4: Ground state energy: analytic prediction (continuous line) compared to the

TCSA results. Black squares: TCSA with Ntr = 9; orange circles: TCSA with Ntr = 10.

states can be organized into SU(2) multiplets. For example, two-particle states involving

the triplet decompose as (3⊗ 3) = (5⊕ 3⊕ 1). These states suffer finite size corrections

due to scattering between the particles. These effects can be taken into account by solving

the quantization conditions for the momentum in finite volume:

2πni = mR sinh θi − i lnSij(θi − θj), i = 1, 2, (1.53)

where θi (i = 1, 2) are the rapidities of the particles that parametrize their energy-

momentum, (E, p) = (m cosh θi,m sinh θi), and Sij is the scattering matrix between the

two particles [81]. The solution of these equations, for a pair (n1, n2), yields the rapidities

as a function of R, and so the energy of these states. Fig. 1.5 shows reasonably good

agreement between the analytical and the TCSA results, particularly at large values of R.

At smaller R, single particle virtual processes become important, leading to deviations

between the TCSA and our analytic estimates.

1.4 SU(2)1 perturbed by current-current interactions

In this section we consider the perturbation of the SU(2)1 WZW model by the marginal

current-current operator,

H = HSU(2)1 − g

∫

dx J̄L(x) · J̄R(x). (1.54)

Unlike the perturbation by the spin-1/2 field, here the sign of g matters as it differentiates

the model’s behavior in the IR limit [78]. For g > 0 the perturbation is marginally rele-

vant and asymptotically free. The corresponding theory is a massive integrable rational
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Figure 1.5: Two-particle states: comparison between the analytic results and the TCSA

data. Left panel: a two particle state involving two triplet particles with total Sz = 0

and (n1, n2) = (−1, 1). Right panel: a two-breather B2 state with (n1, n2) = (−1, 1).

Continuous line: analytical results derived from Eq. (1.53). Dots: TCSA data.

field theory (RFT) coinciding with the SU(2) Thirring model [82]. And for g < 0 the

coupling is marginally irrelevant and the theory undergoes a massless RG flow towards

the SU(2)1 fixed point.

We address two questions here. We first ask if we can determine with the TCSA

the universal correction (as explained below) to the ground state energy due to the

marginal perturbation. And second, we question if the numerical renormalization group

improvement of the TCSA works in the context of marginal perturbations [61, 62, 63, 64,

65].

1.4.1 Universal Term in Ground State Energy from the TCSA

In the small g regime, the correction to the ground state energy on the cylinder is given

in perturbation theory by [83]:

E0 = − π

6R
c− g2

2!
R

(

2π

R

)2x−2
3

4
I2 −

g3

3!
bR

(

2π

R

)3x−4

I3, (1.55)

where

I2 =

∫

d2z|z|x−2|z − 1|−2x;

I3 =

∫

d2z1d
2z2|z1|x−2|z2|x−2|z1 − 1|−x|z2 − 1|−x|z1 − z2|−x. (1.56)

We write these expressions so that they are valid for a general dimension, x, of the

perturbing operator, φ(= J̄L · J̄R for x = 2). Our conventions are such that two point

function (on the plane) is

〈φ(r)φ(0)〉 = 3

4

1

|r|2x ,
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The normalization can be fixed by the flowing quick argument. The operator is explicitly

expressed as

φ = J0
LJ

0
R +

1

2
J+
L J

−
R +

1

2
J−
L J

+
R (1.57)

and thus for the two point function we formally have

〈
[

J0
LJ

0
R +

1

2
J+
L J

−
R +

1

2
J−
L J

+
R

] [

J0
LJ

0
R +

1

2
J+
L J

−
R +

1

2
J−
L J

+
R

]

〉

and just

〈J0
LJ

0
RJ

0
LJ

0
R〉+

1

4
〈J+

L J
−
RJ

−
L J

+
R 〉+

1

4
〈J−

L J
+
RJ

+
L J

−
R 〉

are different form zero. Using the OPE between current-operators the result is

1

4
+

1

4
+

1

4
=

3

4
.

The corresponding three point function equals

〈φ(r1)φ(r2)φ(r3)〉 =
b

|r12|x|r13|x|r23|x
, (1.58)

with b = 3/2. Indeed, as for the two point function, the three point function can be

expressed in term of the non-zero terms

1

4
〈J0

JJ
0
RJ

+
L J

−
RJ

−
L J

+
R 〉+

1

4
〈J0

JJ
0
RJ

−
L J

+
RJ

+
L J

−
R 〉,

plus other two similar terms which differ just for the position of J0
LJ

0
R. Summing all these

three equal contributions the result is:

3

(

1

4
+

1

4

)

=
3

2
.

The β−function for this theory, within our conventions, is given by

dg̃

dl
= (2− x)g̃ +

4πb

3Γ2(x/2)
g̃2. (1.59)

where g̃ is then the dimensionless coupling and l is a logarithmic length scale. To convert

to the conventions of Refs. [83, 84], we need to take φ→ −
√

4
3
φ.

Although the theory is defined on a cylinder, under a conformal transformation the

integrals I2 and I3 can be written as integrals over the plane, as given above in Eq.

(1.56). It is evident form expressions (1.56) that they are UV divergent and require

regulation. The divergent pieces of these integrals contribute to the non-universal piece

of E0 (non-universal because their value depends on the regulation scheme). If ǫp is a short
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distance regulator in the plane (i.e. the difference of two plane integration variables is not

permitted to be smaller than ǫp), both I2 and I3 contain terms proportional to ǫ−2
p (for

x = 2). Under a conformal transformation, ǫp is related to a short distance regulator on

the cylinder, ǫc, by ǫp = 2πǫc/R. Thus the divergent pieces lead non-universal correction

of the form

E0,non−univ = (a2g
2 + a3g

3 + · · · ) R

ǫ2x−2
c

, (1.60)

i.e. these corrections scale linearly with the system size.

On the other hand, the universal corrections coming from I2 and I3 are independent of

the details of the regulator. Such corrections are usually accessed through analytic con-

tinuation in the operator dimension x. For sufficiently small x, the resulting perturbative

integrals become convergent. For such a range of x, one then introduces a regulator, ǫp,

and expands in a Taylor series, finding that I2 and I3 have the form [83, 84]:

I2(x, ǫp) = c2 ǫ
2(2−x)−2
p + I2,univ.(x) + O(ǫ6−2x

p );

I3(x, ǫp) = c3 ǫ
3(2−x)−2
p + I3,univ.(x) + ǫ2−x

p I3,subleading(x) + O(ǫ6−2x
p );

I3,subleading(x) = −6π
ǫ2−x
p

2− x
I2,univ.(x). (1.61)

Because everything is convergent, expressions can be obtained for I2,univ.(x) and I3,univ.(x)

as a function of x. The universal terms’ values close to x = 2 are then the analytically

continued parts of the expansion of I2 and I3 that are independent of the UV regulator

(the non-universal terms, in contrast, in general either diverge or vanish close to x = 2).

The relationship between I3,subleading(x) and I2,univ(x) arises from the OPE, φφ ∼ bφ[84].

In the case at hand, the universal contributions near x = 2 are [83, 84]

I2,univ.(x ∼ 2) = −π
4
(2− x);

I3,univ.(x ∼ 2) = −2π2;

I3,subleading(x ∼ 2) =
3π2

2
. (1.62)

We also include the evaluation of I3,subleading(x) because exactly at x = 2 the prefactor of

this term becomes independent of ǫp. Its evaluation, with important consequences, will

turn out to depend upon the choice of the regulator.

The universal and subleading parts of I2 and I3 allows us to write the universal part

of E0 solely as a function of the running coupling g̃(l) [84]. E0,univ in terms of the bare
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dimensionless coupling, g̃ = gǫ2−x
c , is equal to

c(g̃) ≡ −6R

π
E0,univ = c+ (24π)

(

3

8
(ǫ−y

p g̃)2I2,univ +
b

6
(ǫ−y

p g̃)3I3,univ)

)

. (1.63)

Supposing y ≡ (2− x) > 0, we can use the β−function to express g̃ in terms of g̃(l):

g̃ =
g̃(l)ǫyp

1− g̃(l)
g̃∗

(1− ǫyp)
, (1.64)

where g̃∗ = 4πb
3(2−x)

+ O(2− x) is the zero of the β−function. We then have

c(g̃(l)) = c+ 24π

(

− 3

4

π(2− x)

8
g̃2(l)− g̃3(l)(

bπ2

12
+ O(2− x)) + O(g̃4(l))

)

. (1.65)

c(g̃(l)) is nothing more than Zamolodchikov’s c-function [85]. We see that ∂g̃(l)c(g̃(l))

has the same zero, g̃∗, as the β−function, as it should. We also see that exactly at the

marginal point, x = 2, there is a finite third order correction in g̃(l) to the ground state

energy.

An interesting question is what of this universal behavior can be extracted from the

TCSA. While it has been suggested in Ref. [55] that the dependency of the TCSA data

upon the UV regulator (here, the truncation level, Ntr) obscures such terms, it has been

shown in Ref. [86] that upon the subtraction of leading and sub-leading order divergences,

universal IR behavior can be observed.

In order to determine the nature of the universal behaviour in the TCSA approach,

we need to compute the integrals I2 and I3 with the TCSA regulator in place. This

however can be straightforwardly done [86]. The essential idea is that these integrals

can be expanded in powers of the integration variables. These expansions can be then

compared with a Lehmann expansion of the corresponding n-point function.

By truncating the Lehmann expansion to the same low energy states used in the TCSA,

we learn how to truncated the expansions for I2,3, and we are able to compute them with

the TCSA regulator. The resulting integrals, precisely at the marginal point x = 2, are

surprisingly simple and can be computed exactly to be:

ITCSA
2 = π Ntr(Ntr + 1);

ITCSA
3 = 3π2Ntr(Ntr + 1). (1.66)

We now carry on this strategy: first we force the UV regularization of the TCSA in the

Lehmann representation of the n-point functions, then we expand the integrals (1.61)

at x = 2 in powers of the integration variables. We then truncate these expansions by

comparing with the regularized Lehmann representations; at this stage the integrals can
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be performed with the TCSA regulator implemented [88, 86].

We compute first the integral I2, coming from the two point function. By intro-

ducing operators PNtr
and P̄Ntr

that project out all chiral states of level higher than

Ntr, we can write the two point function appearing in the evaluation of the second order

perturbative contribution to the ground state energy as

〈T φ(x, t)φ(0, 0)〉 = 〈T PNtr
P̄Ntr

φ(x, t)PNtr
P̄Ntr

φ(0, 0)PNtr
P̄Ntr

〉, (1.67)

where T is the usual time ordering operator. These projectors truncate the Lehmann ex-

pansion, computed with the insertion of a resolution of the identity between the operators

of (1.67):
∑

0≤m,m̄≤Ntr

〈0|φ(0, 0)|m〉 ⊗ |m̄〉〈m| ⊗ 〈m̄|φ(x, t)|0〉. (1.68)

Here the sum is limited to all states whose conformal level is less than Ntr. Furthermore,

we just considered the contribution with t < 0 coming form the time ordering (also the

contribution t > 0 must be considered). Using the time and space translation opera-

tor, e−Ht−iPx, and defining z = e
2π
R

(ix+t) and z̄ = e
2π
R

(−ix+t), we can rewrite the above

expression as
∑

0≤m,m̄≤Ntr

〈0|φ(0, 0)(|m〉 ⊗ |m̄〉〈m| ⊗ 〈m̄|)φ(0, 0)|0〉zmz̄m̄. (1.69)

The correlation function is reduced to a truncated sum on powers in z and z̄.

We want now to expand the integral, ITCSA
2 , in order to make it comparable with

(1.69). Transforming the integral in I2 back to the cylinder we obtain,

ITCSA
2 = 2 ·

(

2π

R

)2 ∫ R

0

dx

∫ 0

−∞
dt

z

(z − 1)2
z̄

(z̄ − 1)2
, (1.70)

where the factor of two counts the two contributions coming from time ordering. If we

then expand the integrand as a power series in z, z̄

I2 = 2 ·
(

2π

R

)2 ∫ R

0

dx

∫ 0

−∞
dt

∞
∑

n=0

nzn
∞
∑

n=0

mz̄m, (1.71)

The comparison with Eq. (1.69), indicates to truncate the sums as follows

I2 = 2 ·
(

2π

R

)2 ∫ R

0

dx

∫ 0

−∞
dt

Ntr
∑

n=0

nzn
Ntr
∑

n=0

mz̄m. (1.72)

The integral has now implemented the TCSA regulator expressed by projectors of Eq. (1.67)

and sums are now easily computed:

I2 = πNtr(Ntr + 1). (1.73)
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Comparing with the evaluation in [83, 84], we see that we obtain a relationship between

the TCSA regulator and the short distance cutoff, ǫp, used in [83, 84]:

ǫp =
1

√

Ntr(Ntr + 1)
. (1.74)

The third order correction is determined by the three point function which can be

computed following the same strategy. We implement the TCSA regulator by inserting

the projectors

〈T PNtr
P̄Ntr

φ(x, t)PNtr
P̄Ntr

φ(0, 0)PNtr
P̄Ntr

φ(x′, t′)PNtr
P̄Ntr

〉, (1.75)

resulting, in the case where t′ < 0 < t (similarly other contributions from the time-

ordering must be accounted), to

∑

0≤m,m̄,n,n̄≤Ntr

〈0|φ(x, t)|m〉 ⊗ |m̄〉〈m| ⊗ 〈m̄|φ(0, 0)|n〉 ⊗ |n̄〉〈n| ⊗ 〈n̄|φ(x′, t′)|0〉. (1.76)

Again, space time translation operators are applied and, keeping the notation d z =

e
2π
R

(ix+t), z̄ = e
2π
R

(−ix+t), w = e
2π
R

(ix′+t′), and w̄ = e
2π
R

(−ix′+t′), we obtain

∑

0≤m,m̄,n,n̄≤Ntr

〈0|φ(0, 0)|m〉 ⊗ |m̄〉〈m| ⊗ 〈m̄|φ(0, 0)|n〉 ⊗ |n̄〉〈n| ⊗ 〈n̄|φ(0, 0)|0〉z−mz̄−m̄wnw̄n̄,

(1.77)

that is a polynomial truncated at order Ntr in z, z̄, w, w̄. The expression (1.77) must be

compared with the expansion of I3 in Eq. (1.56) on the cylinder, to understand how to

truncate it in order to reproduce the regularization of the TCSA.

The computation of ITCSA
3 is just slightly more complicated. The integral reads:

ITCSA
3 =

∫

dzdz̄dwdw̄
1

(z − w)(z̄ − w̄)(z − 1)(w − 1)(z̄ − 1)(w̄ − 1)
. (1.78)

Mapping to the cylinder, the time ordering gives 6 contributions, t < t′ < 0, t > t′ > 0,

t < 0 < t′ and those with t ↔ t′, all being equal. We show, as an example, the integral

for t > 0 > t′:

(

2π

R

)4 ∫ R

0

dx

∫ R

0

dx′
∫ ∞

0

dt

∫ 0

−∞
dt′

z z̄ w w̄

(z − w)(z̄ − w̄)(z − 1)(w − 1)(z̄ − 1)(w̄ − 1)
,

(1.79)

where z = e
2π
R

(ix+t), z̄ = e
2π
R

(−ix+t), w = e
2π
R

(ix′+t′), and w̄ = e
2π
R

(−ix′+t′). We compute its

contribution by expanding the above in a power series of z, z̄, w, w̄ and truncating it at
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the Ntr-th power. Matching the truncation in the Lehmann expansion of Eq. (1.77), the

integrand in (1.79) becomes

|z|2|w|2
|z − w|2|z − 1|2|w − 1|2 =

1

|1− w/z|2
1

|1− 1/z|2
1

|1− w|2
|w|2
|z|2 (1.80)

=
∑

j,k,lj̄,k̄,l̄∈C

( z

w

)j+1 ( z̄

w̄

)j̄+1

z−k z̄−k wl w̄l

=
∑

j,k,lj̄,k̄,l̄∈C

wj+l+1w̄j̄+l̄+1z−k−j−1 z̄−k̄−j̄−1, (1.81)

where C is defined by

1 ≤ j + l + 1 ≤ Ntr;

1 ≤ j + k + 1 ≤ Ntr;

1 ≤ j̄ + l̄ + 1 ≤ Ntr;

1 ≤ j̄ + k̄ + 1 ≤ Ntr. (1.82)

and all the indexes are positive or zero. The integrals can now be computed and the

summations evaluated to be

π2
∑

C

1

(j + l + 1)(j + k + 1)
= π2 Ntr(Ntr + 1)

2
. (1.83)

Once combined with the other five equal contributions, we obtain the final result:

ITCSA
3 = 3π2Ntr(Ntr + 1), (1.84)

and we obtained (1.66).

The expressions (1.66) contain both non-universal terms (as it is evident from the

dependency on Ntr) and potential universal terms. The question becomes how to iden-

tify which is which. We do so by comparison with the evaluation of I2 and I3 in Refs.

[83, 84] already given in Eq.(1.62). At x = 2, I2(x = 0) is purely non-universal, i.e.

I2,univ.(x = 2) = 0. This corresponds to our finding that I2 is proportional to Ntr(Ntr+1)

and indicates that the regulator, ǫp, used in Ref. [83, 84] can be identified with the TCSA

regulator via ǫ−2
p ∝ Ntr(Ntr + 1). However ITCSA

3 is also proportional to Ntr(Ntr + 1),

which seems to imply that the third order contribution to Egs, as with second order, is

purely non-universal. We see then already at x = 2 that the TCSA regulator leads to a

different universal structure to E0,univ than the Lorentz invariant regulator employed in

[83, 84].
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Figure 1.6: Plots of the ground state energy of SU(2)1 + J̄L · J̄R as a function of the

marginal coupling g. Solid lines give the perturbative computation for both g > 0 relevant

(blue) and g < 0 irrelevant (red). The black line shows the second order perturbative

correction in g. The data points represent the corresponding numerical data from the

TCSA.

We verify the accuracy of this perturbative computation by comparing it with the

TCSA numerics. In Fig.1.6 we plot E0 at small g evaluated numerically against the per-

turbative results. We obtain excellent agreement. To analyze more closely the possible

presence of a universal term in the numerics, we plot in Fig. 1.7 the residual ground state

energy arrived at by subtracting from the numerical data the perturbative contributions

(solely non-universal) corresponding to ITCSA
2 + ITCSA

3 . To determine whether the nu-

merics indicate any universal contribution, we plot the residual as a function of g and

fit the results to a function of the form g3(a + gbNtr(Ntr + 1)) (see Fig. 1.7). These fits

put an approximate bound (the value of a) on the third order universal term consistent

with the numerics. We find it to be considerably smaller than that found in Ref. [83, 84],

consistent with our previous statement that in the regulation scheme used by the TCSA,

there is no universal term at third order in the coupling.

To get at the origin of the discrepancy between the TCSA evaluation of E0,univ and

that of Refs. [83, 84], we evaluate the integrals, I2 and I3 in the TCSA regulation scheme

away from the marginal point. These integrals have the structure (compare with Eq.

(1.61))

ITCSA
2 (x,Ntr) = ITCSA

2,div. (x)(Ntr(Ntr + x− 1))x−1 + ITCSA
2,univ.(x) + ITCSA

2,subleadingN
2x−6
tr ;
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Figure 1.7: Plots of the residual ground state energy (the TCSA data with the pertur-

bative contributions, ITCSA
2 and ITCSA

3 , subtracted off) as a function of g for Ntr = 9

(red: irrelevant g; blue: relevant g). The average of the two results (black curve) is

fitted with the function, g3(a + gbNtr(Ntr + 1)) (this average removes lower order logs

that might appear from resumming high order contributions). The fitting parameters are

a = 0.002± 0.001 and b = 94.12± 0.02.

ITCSA
3 (x,Ntr) = ITCSA

3,div. (x)(Ntr(Ntr + x− 1))x−1 + ITCSA
3,univ.(x) + ITCSA

3,subleadingN
2x−4
tr .

(1.85)

Let us start deriving the above expression for I2 for generic x, and computing the

coefficients of the divergent, universal and subleading terms. Once transformed back

onto the cylinder, the integral reads

ITCSA
2 (x) = 2 ·

(

2π

R

)2 ∫ R

0

dx

∫ 0

−∞
dt

|z|x
|z − 1|2x . (1.86)

Expanding the integrands in powers of z and z̄, truncating with level Ntr, and performing

the integrals leaves us with (compare Eq. (1.72))

ITCSA
2 (x) = 2π

Ntr−1
∑

n=0

Γ2(n+ x)

(n+ x
2
)Γ2(x)(n!)2

≡ ITCSA
2,div. (x)(Ntr(Ntr + x− 1))x−1 + ITCSA

2,univ.(x) + ITCSA
2,subleading(x)N

2x−6
tr .

(1.87)

The coefficient of the leading term in the above can be determined from the Euler-

Maclaurin formula converting a sum to an integral in combination with our exact result

at x = 2. The result is

ITCSA
2,div. (x) =

2π

Γ2(x)(2x− 2)
. (1.88)
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Figure 1.8: Plot of ITCSA
2,subleading(x) as a function of x.

The universal coefficient, ITCSA
2,univ., can be determined from performing the integral in

Eq. (1.86) for 0 < x < 1 and then analytically continuing [83]:

ITCSA
2,univ.(x) =

πΓ2(x
2
)Γ(1− x)

Γ2(1− x
2
)Γ(x)

. (1.89)

Finally we determine the coefficient of the subleading term, ITCSA
2,subleading(x), numerically:

we compute the sum in Eq. (1.87) numerically as a function of Ntr, subtract the first

two terms in the second line of Eq. (1.87), and fit what remains to extract the coefficient

of N2x−6
tr . The results are plotted in Fig. (1.8). We note in particular that as x → 2,

ITCSA
2,subleading(x) → 0.

The computation for ITCSA
3 (x) is now much less trivial. It is done by first representing

I3(x) as an integral over the cylinder:

I3(x) =

(

2π

4

)4 ∫ R

0

dx1dx2

∫ ∞

−∞
dt1dt2

|z1|x|z2|x
|z1 − z2|x|z1 − 1|x|z2 − 1|x , (1.90)

where zi = e2π(ixi+ti)/R. Expanding the integrand in powers of zi, performing the integrals,

and truncating the remaining summations on the basis of a comparison with the Lehmann

expansion leaves us with

ITCSA
3 (x) = 12π2

Ntr−1
∑

j=0

j
∑

j̄=0

Ntr−j−1
∑

l=0

Ntr−j−1
∑

k=0

γjγj̄γlγj+l−j̄γkγk+j−j̄

(j + l + x
2
)(j + k + x

2
)
;

γj =
Γ(j + x

2
)

Γ(x
2
)Γ(j + 1)

. (1.91)
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Figure 1.9: Definition of contours used in evaluating ITCSA
3,univ.(x). There are branch points

at all labelled points: 0, 1, y−, and w−. The red lines mark additional branch cuts with

branch points at 0 and 1 that result from integrating w− in the case of L12 and y− in the

case of L22.

ITCSA
3 (x) then has a similar structure to ITCSA

2 (x):

ITCSA
3 (x) = ITCSA

3,div. (x)(Ntr(Ntr + x− 1))x−1 + ITCSA
3,univ.(x) + ITCSA

3,subleading(x)N
x−2
tr . (1.92)

We infer that the leading term of ITCSA
3 (x) must be proportional to (Ntr(Ntr+x−1))x−1

– otherwise the relationship between the TCSA cutoff, Ntr, and ǫp established in the

evaluation of I2 would breakdown. (We will in any case verify this numerically in what

is to come.)

The coefficient of the leading term can be found by converting the sums to integrals:

ITCSA
3,div. (x) =

12π2

Γ6(x
2
)

∫ 1

0

dj

∫ j

0

dj̄

∫ 1−j

0

dl

∫ 1−j

0

dk
(jj̄lk(l + j − j̄)(k + j − j̄))

x
2
−1

(j + l)(k + l)
. (1.93)

We can also evaluate analytically the universal coefficient ITCSA
3,univ.(x). This can be

computed by performing the integral in Eq. (1.56) for values of x where it is convergent

and then analytically continuing. To make this evaluation we first perform the integration

by parts suggested in Ref. [84]:

ITCSA
3,univ.(x) = I3,univ.(x) =

2− x

4− 3x

∫

d2z1d
2z2

|z1 + 1|x−2|z2 + 1|x−2

|z1 − z2|x|z1|x|z2|x
(

z1
1 + z1

+
z̄1

1 + z̄1

)

.

(1.94)
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We now evaluate this integral following the techniques introduced in Ref. [93] and used

in Ref. [94]. Writing zi = xi + iyi and making the changes of variables:

yi → ie−i2ǫyi, (1.95)

followed by

y± = x1 ± y1; w± = x2 ± y2, (1.96)

allows us to rewrite I3(x) as

I3(x) =
2− x

2(4− 3x)

∫

dy+(y+ − 1− iǫ∆y)
x
2
−1(y+ − iǫ∆y)

−x
2

×
∫

dw+(w+ − y+ − iǫ(∆w −∆y))
−x

2 (w+ − 1− iǫ∆w)
x
2
−1(w+ − iǫ∆w)

−x
2

×
∫

dy−(y− − 1 + iǫ∆y)
x
2
−2(y− + iǫ∆y)

−x
2
+1

×
∫

dw−(w− − y− + iǫ(∆w −∆y))
−x

2 (w− − 1 + iǫ∆w)
x
2
−1(w− + iǫ∆w)

−x
2 ,

(1.97)

where ∆w/y = (w/y)+ − (w/y)−. The positions of the contours for w− and y− relative to

the various branch cuts of the arguments depend on the values of w+ and y+. Only for

certain values of w+ and y+ is it not possible to deform the contours w−/y− to infinity

without encountering poles or branch cuts. This allows us to restrict the limits of w+

and y+ dramatically, simplifying the above integral to

I3(x) =
2− x

2(4− 3x)
(L1 + L2);

L1 = −L11L12; L2 = −L21L22;

L11 =

∫ 1

0

dw+

∫ w+

0

dy+(1− y+)
x
2
−1w

−x
2

+ (w+ − y+)
−x

2 (1− w+)
x
2
−1y

−x
2

+ ;

L12 =

∫

C2

dy−

∫

C1

dw−(1− y−)
x
2
−2y

−x
2
+1

− (w− − y−)
−x

2 (1− w−)
x
2
−1w

−x
2

− ;

L21 =

∫ 1

0

dy+

∫ y+

0

dw+(1− y+)
x
2
−1w

−x
2

+ (y+ − w+)
−x

2 (1− w+)
x
2
−1y

−x
2

+ ;

L22 =

∫

C3

dy−

∫

C4

dw−(1− y−)
x
2
−2y

−x
2
+1

− (y− − w−)
−x

2 (1− w−)
x
2
−1w

−x
2

− . (1.98)

The contours Ci, i = 1, 2, 3, 4 are defined in Fig. (1.9). These four separate integrals can

now readily be expressed in terms of known functions (B(x, y) is the Euler β−function

and 3F2 is a generalized hypergeometric function):

L11 =

√
π

2x sin(πx
2
)

Γ(1− x
2
)Γ(1− 3x

4
)Γ(3

2
− x

2
)Γ(x

4
)Γ(x

2
)

Γ(x
2
)Γ(2− x)Γ2(1− x

4
)

;
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Figure 1.10: Plot of ITCSA
3,subleading(x)/(2π)

2 as a function of x.

L12 = −π(x− 2)B(x
2
, x
2
)

2 sin(πx
2
)

3F 2(2−
x

2
,
x

2
,
x

2
, 2, x, 1);

L21 = L11;

L22 = B(
x

2
,
x

2
− 1)Γ(

x

2
)Γ(1− x

2
) 3F 2(

x

2
,
x

2
− 1, 1− x

2
, x− 1, 1, 1), (1.99)

Finally we can evaluate the coefficient of the subleading term, ITCSA
3,subleading(x), nu-

merically. We compute this coefficient by evaluating the sum in Eq. (1.91) for a range

of Ntr, subtracting off ITCSA
3,div. and ITCSA

3,univ.. The remainder is proportional to Nx−2
tr and we

extract ITCSA
3,subleading as the fitting coefficient. The results are found in Fig. 1.10. We see

in particular that ITCSA
3,subleading(x) → 2π2 as x→ 2.

The results we found for the x-dependent coefficients in (1.85) are thus summarized

in:

ITCSA
2,div. (x) =

2π

Γ2(x)(2x− 2)
;

ITCSA
2,univ.(x) =

πΓ2(x
2
)Γ(1− x)

Γ2(1− x
2
)Γ(x)

;

ITCSA
3,div. (x) =

12π2

Γ(x
2
)6

∫ 1

0

dj

∫ j

0

dj̄

∫ 1−j

0

dl

∫ 1−j

0

dk
(jj̄kl(l + j − j̄)(k + j − j̄))

x
2
−1

(j + l)(k + j)
;

ITCSA
3,univ.(x) = − 2− x

4− 3x

1

2
(L11L12 + L21L22);
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L11 =

√
π

2x sin(πx
2
)

Γ(1− x
2
)Γ(1− 3x

4
)Γ(3

2
− x

2
)Γ(x

4
)Γ(x

2
)

Γ(x
2
)Γ(2− x)Γ2(1− x

4
)

;

L12 = −π(x− 2)B(x
2
, x
2
)

2 sin(πx
2
)

3F 2(2−
x

2
,
x

2
,
x

2
, 2, x, 1);

L21 = L11;

L22 = B(
x

2
,
x

2
− 1)Γ(

x

2
)Γ(1− x

2
) 3F 2(

x

2
,
x

2
− 1, 1− x

2
, x− 1, 1, 1), (1.100)

and, as explained, we are only able to evaluate numerically the sub leading coefficient.

Close to x = 2 we find

ITCSA
2,subleading(x = 2) = 0;

ITCSA
3,subleading(x = 2) = 2π2. (1.101)

Now how does this compare to the results of [83, 84]? Remarkably the universal

(constant) parts of I2 and I3 are the same (compare Eq. (1.61)):

ITCSA
2,univ.(x) = I2,univ.(x);

ITCSA
3,univ.(x) = I3,univ.(x). (1.102)

In particular

ITCSA
2,univ.(x ∼ 2) = −π

4
(2− x);

ITCSA
3,univ.(x ∼ 2) = −2π2. (1.103)

We however see discrepancies in the subleading term, I3,subleading:

I3,subleading(x ∼ 2) =
3π2

2
; ITCSA

3,subleading(x ∼ 2) = 2π2. (1.104)

This difference is a consequence of the TCSA’s different (non-Lorentz invariant) regula-

tor. It is possible to understand this difference as I3,subleading is finite at x = 2 due to a

cancellation in a pole term due to an OPE and a zero in I2,univ.. This delicate cancellation

leaves I3,subleading sensitive to choice of regulator in a way that I3,univ. is not.

What are then the implications of I3,subleading(x) depending upon the regulator? Firstly

we obtain an altered Zamolodchikov c-function:

cTCSA(g̃(l)) = c+ 24π

(

− 3

4

π(2− x)

8
g̃2(l)− g̃3(l)(

bπ2

12
(1− ǫ2−x

TCSA))

)

(1.105)
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where ǫTCSA = N−1
tr . Interestingly the TCSA c-function agrees with that derived previ-

ously in Ref. ([84]) for x < 2 in the large Ntr (small ǫp) limit. However it is not solely a

function of g̃(l) as would be suggested by scaling theory.

As we have already noted, at x = 2 the g̃3(l) term vanishes in cTCSA(g̃). This sug-

gests that corrections that nominally contribute to the universal part of the ground state

energy are sensitive to the use of a non-Lorentz invariant regulator. It turn this may

make it difficult to compare universal corrections computed in the setting of a Lorentz

invariant field theory with universal corrections in models where Lorentz invariance is

not present, i.e. lattice models. It would be interesting if this is the reason behind the

suboptimal comparison for the specific heat of a spin-1/2 Heisenberg chain reported in

Ref. [89] between the quantum transfer matrix solution of the lattice model and the

corresponding Lorentz invariant field theoretic treatment of the spin chain [90] could be

understood in this light. In this work uncomputed higher order corrections in g̃(l) had to

be employed as fitting parameters so as to obtain good agreement between the two treat-

ments for the specific heat. We caution however that we do not claim that all universal

quantities are regulator dependent. We ourselves have shown that I3,univ.(x) as evaluated

both with the TCSA regulator and with the Lorentz invariant regulator agree. And Ref.

[89] finds excellent agreement between the exact solution of the magnetic susceptibility

of the lattice spin-1/2 chain and that of its Lorentz invariant field theoretic reduction.

1.4.2 NRG and Marginal Perturbations

In this subsection we apply the numerical renormalization group to the study of the

marginal current-current perturbation of SU(2)1. The NRG is a technique that allows

the TCSA to include states at much higher conformal levels than would be possible

with a straight exact diagonalization. It does so by taking a cue from Kenneth Wilson’s

NRG [13]: it takes into account the states that have a weaker influence on the low

energy eigenstates of the full theory, in this case high energy conformal states, only in

numerically manageable chunks. It works in the case of a relevant perturbation because

such perturbations guarantee that the high energy conformal Hilbert space only affects

weakly the low energy sector of the theory. Thus it is not clear, a priori, whether the

NRG will work in the case of a marginal perturbation where the high and low energy

sectors of the theory are more tightly coupled. We will, however, see that the NRG does

work, reproducing with high accuracy the results of the TCSA run with a straight exact

diagonalization.

Fig. 1.11 shows the RG evolution of the energies of the ground state, the first excited

state, and the fifth excited state. The NRG results converge towards the exact diagonal-

ization results with excellent accuracy. At least for the low lying energies in marginally
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Figure 1.11: Plots of the ground state (left), the first excited state (center), and the

fifth excited state (right) energies as a function of RG step. The energies of the last RG

step correspond to taking into account all states up to a truncation of Ntr = 11. Here

g = 0.008 is marginally irrelevant. The NRG base matrix size and step size (N and ∆

in the notation of [62]) are N = 4767 and ∆ = 500. The total number of states in the

Verma module of the Identity is 14767. The solid line is the TCSA result done with an

exact diagonalization at level Ntr = 11.

perturbed conformal field theories, the NRG seems to be able to reproduce the expected

energies, despite their dependencies upon the TCSA UV cutoff, Ntr.

1.5 SU(2)2 perturbed by the spin-1 field

In this section we apply the TCSA to a deformation of the SU(2)2 WZW model [22].

The SU(2)2 WZW model is a c = 3
2
conformal field theory with three primary fields, the

spin-0 identity field, a spin 1
2
field, φ1/2,±1/2, and a spin 1 field, φ1,{±1,0}, with conformal

weights ∆ = 0, ∆1/2 = 3
16
, and ∆1 = 1

2
respectively. A representation of the SU(2)2

operator algebra cannot be given just in terms of vertex operators. Hence we defined also

two auxiliary operators ψ and σ which satisfies the following fusion rules:

ψ · ψ ∼ 1 , σ · σ ∼ 1

and ψ · σ ∼ 1√
2
σ . (1.106)
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Figure 1.12: Plot of the energies of the four lowest excited states as a function of R in

the sector Sz = 0. The ground state energy has been subtracted. The data are found

for a truncation level Ntr = 6. There is a single low lying state with mass M = 1.001

and spin Sz = 0, which is a member of the fundamental triplet of particles. The higher

energy level is three fold degenerate and corresponds to two-particle states.

The SU(2) current operators can thus be defined as

J0 = i∂φ

J± =
√
2ψ : e±iφ :, (1.107)

and the algebra (1.31) for k = 2 can be recovered by just exploiting the OPEs as in

(1.44). Similarly we can work out the commutators between currents and fields, which

we defined to be

φ1/2,±1/2 = σ : e±iφ/2 :

φ1,±1 =: e±iφ :

φ1,0 = ψ (1.108)

We here report some non trivial commutators to show the role of σ and ψ

[

J±, φ1/2,∓1/2

]

∼
√
2ψe±iφ · σe∓iφ/2 ∼

√
2(ψ · σ)

(

e±iφ · e∓iφ
)

∼
√
2

1√
2
σ e±iφ/2 → φ1/2,±1/2

[

J±, φ1,∓1

]

∼
√
2ψe±iφ · e∓iφ →

√
2ψ (1.109)

It follows that, with our notations, the commutations between currents and spin-1/2

fields are the same as in (1.35), while the commutations with the spin-1 field become
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(m = 0,±1):

[

J0, φ1,m

]

= mφ0,m
[

J±, φ1,∓1

]

=
√
2φ1,0

[

J±, φ1,0

]

=
√
2φ1,±1 . (1.110)

We computed (but for a phase) the structure constants of Table 1.3 form the OPEs be-

tween the primaries (1.108).

SU(2)2 WZW model describes three non-interacting massless Majorana fermions (the

spin-1 fields). Perturbing SU(2)2 with the spin-1 field,

H = HSU(2)2 + g

∫

dx
(

φ1,1 φ̄1,−1 − φ1,0 φ̄1,0 + φ1,−1 φ̄1,1

)

, (1.111)

makes the fermions massive. Finding such a spectrum however is a strong check on the

TCSA as the massive Majorana fermions are not simply expressible in the conformal

current algebra basis.

Fig. 1.12 shows the low lying excited states from the TCSA. The coupling g is fixed

to a value where the mass of the first excited state is 1. The TCSA captures this state

(the Sz = 0 state of the triplet of massive Majoranas) as well as a set of three two

particle states with an energy approximately equal to 2. The Majorana fermions are

non-interacting, hence their mass must scale linearly with g. This behavior is shown in

Fig. 1.13a. We also consider the finite size corrections to one of the two-particle states.

Even though non-interacting, the quantization condition for the two-particle state, Eq.

1.53, is non-trivial as one needs to quantize with a doublet of distinct integers (n1, n2),

n1 6= n2. Fig. 1.13b shows that the TCSA energy of the two-particle state matches the

prediction derived from Eq. 1.53.

1.6 Discussions on TCSA and perturbed SU(2)k.

Up to now, we have applied the TCSA to perturbations of SU(2)k. The general method-

ology is illustrated with various examples. We began by studying the SU(2)1 + Tr(g)

perturbation, equivalent to the sine-Gordon model at a particular value of its coupling.

We showed the TCSA accurately captured both the ground state energy and excited state

spectrum including finite size corrections. We next turned to SU(2)1 + J̄L · J̄R, a WZW

model perturbed by a marginal interaction. We demonstrated that one can accurately

identify analytically the leading UV divergences in perturbation theory that characterize

the ground state energy as computed numerically by the TCSA. By subtracting these UV

divergences (i.e. the non-universal contributions to the ground state energy) we isolated

44



CHAPTER 1. TRUNCATED CONFORMAL SPECTRUM APPROACH AND C = 1
CONFORMAL FIELD THEORIES.

0 0.1 0.2 0.3 0.4 0.5
g

0

0.5

1

1.5

2

2.5

3

E

0 5 10 15 20

mR

0

1

2

3

4

5

6

7

E
/m

Figure 1.13: a) Linear scaling of the mass of the triplet with the coupling g. b) A

comparison of the energy of a two-particle state with (n1, n2) = (−1, 1) between TCSA

numerics (black dots) and analytics (solid red line).

the universal contribution to the ground state energy due to the marginal perturbation.

We find that it differs from that predicted with calculations using Lorentz invariant regu-

lators. Interestingly, away from the marginal point, the universal structure of the ground

state energy is restored. Finally we considered SU(2)2 perturbed by Tr(g)2. This model

is equivalent to three massive non-interacting Majorana fermions. The TCSA, is able

to reproduce the expected spectrum. This is a non-trivial check of our methodology as

the Majorana fermions do not have a simple representation in the current algebra basis

employed by the approach.

We have developed this capability to study perturbed WZW models in order to tackle

a number of problems. In particular, we have two in mind. In the first, we plan to examine

the dimerized-frustrated J1 − J2 − δ Heisenberg model whose Hamiltonian is

H =
∑

n

J1 (1 + δ(−1)n) S̄n · S̄n+1 + J2 S̄n · S̄n+2. (1.112)

Field theory analyses [67] argue that the low energy sector of this theory is equivalent to

H = HSU(2)1 + g

∫

dx J̄R · J̄L + h

∫

dx (φ1/2,1/2 φ̄1/2,−1/2 − φ1/2,−1/2 φ̄1/2,1/2), (1.113)

where g ∝ J2 − J2c and h ∝ δ. If the marginal perturbation g is absent, the model’s

spin gap, ∆S, would scale simply with h: ∆S ∝ h2/3. In the presence of g, however, this

scaling is altered to become ∆S ∝ h2/3/| log(h)|1/2. However this altered scaling has been

difficult to see in DMRG studies of the dimerized-frustrated Heisenberg model [69, 68].

It would be extremely interesting to analyze this scaling behavior using the TCSA.

Our study here of SU(2)1 + J̄L · J̄R has thus lain the groundwork for this future study.

The second problem that we intend to tackle is the study of possible integrable per-

turbations of SU(2)k for k > 1. There are indications, coming from Zamolodchikov-type
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counting arguments [87], that those perturbations do exists. We intend to study these

perturbations with the TCSA, extracting both the spectrum of the model as well as ev-

idence for or against their integrability. The example analyzed in this paper concerning

SU(2)2 shows that this goal is within reach.

After the successful application of TCSA to perturbed WZW models, we wonder

whether the method can be extended to situations where the space of states is uncount-

able. In this scenario, it is difficult to understand a priori in which way a truncation

should be implemented, as well as what would be the resulting approximation of the

system. In the rest of this Chapter dedicated to TCSA, we face this problem and adapt

the method to address a specific class of quantum field theory with uncountable space of

states: the Landau-Ginzburg theories.

These theories are believed to be non-integrable and hence difficult to tackle analytically.

In particular the structure of stable neural excitation at low energy has been conjectured

in Ref. [46], and a numerical confirmation is our main objective. Beside this, understand-

ing how to extend TCSA in the case of an uncountable space of states is interesting by

itself as a methodological improvement of the technique.

Before explaining how to apply the TCSA to LG theories we introduce the conjecture in

the next Section.

1.7 Landau-Ginzburg Theories and stable bound sates.

In this Section, we introduce the conjecture about the structure of the stable low energy

excitation spectrum in the important class of quantum field theories given by the Landau-

Ginzburg (LG) models. The most familiar example of these models is the Φ4 LG theory,

based on a real scalar field φ(x) with euclidean action given by

S =
1

8π

∫

[

(∂µφ)
2 + g2φ

2 + g4φ
4
]

g4 > 0 . (1.114)

For g2 > 0 the theory has an unique vacuum while for g2 < 0 the theory possesses two

degenerate vacua, connected by kink excitations. In particular, one of our goals is to

confirm a conjecture put forward in [46], i.e. that a non-integrable quantum field theory

with degenerate vacua (connected by kink excitations), cannot have more than two stable

excitations per vacuum.

The spectrum of non-integrable quantum field theories with topological excitations

(kink-like) can studied by means of Semiclassical Methods [44, 45, 95, 46]. The simplest

example of these theories involves a scalar real field φ(x) and a Lagrangian density

L =
1

2
(∂µφ)

2 − U(φ) , (1.115)
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where the potential U(φ) has several degenerate minima at φ
(0)
a (a = 1, 2, . . . , n), as the

one shown in Figure 1.14. These minima correspond to the different vacua | a 〉 of the

associate quantum field theory.

Basic Excitations. The basic excitations of this kind of models are the kinks and

anti-kinks which interpolate between two neighboring vacua. Semiclassically they are

described by the static solutions of the equation of motion, i.e.

∂2x φ(x) = U ′[φ(x)] , (1.116)

with boundary conditions φ(−∞) = φ
(0)
a and φ(+∞) = φ

(0)
b , where b = a± 1. Denoting

by φab(x) the solutions of this equation and by ǫab(x) the classical energy density

ǫab(x) =
1

2

(

dφab

dx

)2

+ U(φab(x)) , (1.117)

the classical expression of the corresponding kink mass is given by

Mab =

∫ ∞

−∞
ǫab(x) . (1.118)

Once put in motion by a Lorentz transformation, i.e. φab(x) → φab

[

(x± vt)/
√
1− v2

]

,

these configurations describe in the quantum theory the kink states | Kab(θ) 〉, where
a and b are the indices of the initial and final vacuum, respectively. The quantity θ

is the rapidity variable which parameterizes the relativistic dispersion relation of these

excitations, i.e.

E =Mab cosh θ , P =Mab sinh θ . (1.119)

Conventionally | Ka,a+1(θ) 〉 denotes the kink between the pair of vacua {| a 〉, | a+ 1 〉}
while | Ka+1,a(θ) 〉 is the corresponding anti-kink: the multi-particle states are then given

by a string of these excitations, with the adjacency condition of the consecutive indices

for the continuity of the field configuration

| Ka1,a2(θ1)Ka2,a3(θ2)Ka3,a4(θ3) . . .〉 , (ai+1 = ai ± 1) . (1.120)

Neutral Bound States. In addition to the kinks, in the quantum theory there may

also exist their bound states. These are the neutral excitations | Bc(θ) 〉a (c = 1, 2, . . .)

Figure 1.14: Potential U(φ) of a quantum field theory with kink excitations.
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around each of the vacua | a 〉. For a theory based on a Lagrangian of a single real

field, in infinite volume these states are all non-degenerate: in fact, there are no extra

quantities which commute with the Hamiltonian and that can give rise to a multiplicity

of them. The neutral particles must be identified as the bound states of the kink-antikink

configurations that start and end at the same vacuum | a 〉, i.e. | Kab(θ1)Kba(θ2) 〉. If

such two-kink states have a pole at an imaginary value i ucab within the physical strip

0 < Im θ < π of their rapidity difference θ = θ1 − θ2, then their bound states are defined

through the factorization formula which holds in the vicinity of this singularity

| Kab(θ1)Kba(θ2) 〉 ≃ i
gcab

θ − iucab
| Bc 〉a . (1.121)

In this expression gcab is the on-shell 3-particle coupling between the kinks and the neutral

particle. Moreover, the mass of the bound states is simply obtained by substituting the

resonance value i ucab within the expression of the Mandelstam variable s of the two-kink

channel

s = 4M2
ab cosh

2 θ

2
−→ mc = 2Mab cos

ucab
2

. (1.122)

In order to determine the resonance values ucab, one can make use of a remarkably simple

formula due to Goldstone-Jackiw [45], that applies in a semiclassical approximation, i.e.

when the coupling constant goes to zero and the mass of the kinks becomes correspond-

ingly very large with respect to any other mass scale. In its refined version, given in [95],

this formula reads as follows

fφ
ab(θ) = 〈Kab(θ1) | φ(0) | Kab(θ2)〉 ≃

∫ ∞

−∞
dx eiMab θ x φab(x) , (1.123)

where θ = θ1 − θ2. Substituting in this formula θ → iπ− θ, the corresponding expression

may be interpreted as the following Form Factor

F φ
ab(θ) = f(iπ − θ) = 〈a | φ(0) | Kab(θ1)Kba(θ2)〉 , (1.124)

where appears the neutral kink states around the vacuum | a〉 of interest. Eq. (1.123)

deserves several comments:

• the appealing aspect of the formula (1.123) consists of the relation between the

Fourier transform of the classical configuration of the kink, – i.e. the solution

φab(x) of the differential equation (1.116) – and the quantum matrix element of the

field φ(0) between the vacuum | a 〉 and the 2-particle kink state | Kab(θ1)Kba(θ2) 〉;

• given the solution of eq. (1.116) and its Fourier transform, the poles of Fab(θ) within

the physical strip of θ identify the neutral bound states which couple to φ. The

mass of the neutral particles can be extracted by using eq. (1.122), while the on-

shell 3-particle coupling gcab can be obtained from the residue at these poles (Figure

1.15)

lim
θ→i uc

ab

(θ − iucab)Fab(θ) = i gcab 〈a | φ(0) | Bc 〉 . (1.125)
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Figure 1.15: Residue equation for the matrix element on the kink states.

The simplest application of this analysis is to the broken phase of the Φ4 Landau-

Ginzburg, whose potential can be chosen as

U(φ) =
λ

4

(

φ2 − m2

λ

)2

. (1.126)

Denoting with | ±1 〉 the vacua relative to the classical minima φ
(0)
± = ± m√

λ
and expanding

around them, φ = φ
(0)
± + η, we have

U(φ
(0)
± + η) = m2 η2 ±m

√
λ η3 +

λ

4
η4 . (1.127)

Hence, ordinary perturbation theory predicts the existence of a neutral particle for each

of the two vacua, with a bare mass given by mb =
√
2m, irrespectively of the value of

the coupling λ. Let us see, instead, what is the conclusion reached by the semiclassical

analysis. The classical kink solutions are

φ−a,a(x) = a
m√
λ

tanh

[

mx√
2

]

, a = ±1 (1.128)

and their classical mass is

M0 =

∫ ∞

−∞
ǫ(x) dx =

2
√
2

3

m3

λ
. (1.129)

By taking into account the contribution of the small oscillations around the classical

static configurations, the kink mass gets corrected as [44]

M =
2
√
2

3

m3

λ
−m

(

3

π
√
2
− 1

2
√
6

)

+ O(λ) . (1.130)

So, introducing

c =

(

3

2π
− 1

4
√
3

)

> 0 ,
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and the dimensionless quantities

g =
3λ

2πm2
; ξ =

g

1− πcg
, (1.131)

the mass of the kink can be expressed as

M =

√
2m

π ξ
=

mb

π ξ
. (1.132)

Since the kink and the anti-kink solutions are equal functions (up to a sign), their Fourier

transforms have the same poles and therefore the spectrum of the neutral particles will

be the same on both vacua, in agreement with the Z2 symmetry of the model. We have

f−a,a(θ) =

∫ ∞

−∞
dx eiMθ xφ−a,a(x) = i a

√

2

λ

1

sinh
(

πM√
2m
θ
) .

By making now the analytical continuation θ → iπ − θ and using the above definitions

(1.131), we have

F−a,a(θ) = 〈a | φ(0) | K−a,a(θ1)Ka,−a(θ2)〉 ∝ 1

sinh
(

(iπ−θ)
ξ

) . (1.133)

whose poles are placed at

θn = iπ (1− ξ n) , n = 0,±1,±2, . . . (1.134)

Notice that, if

ξ ≥ 1 , (1.135)

none of these poles is in the physical strip 0 < Im θ < π. Consequently, in the range of

the coupling constant
λ

m2
≥ 2π

3

1

1 + πc
= 1.02338... (1.136)

the theory does not have any neutral bound states, neither above the vacuum to the right

nor above the one to the left. Viceversa, if ξ < 1, there are n =
[

1
ξ

]

neutral bound states,

where [x] denote the integer part of the number x. Their semiclassical masses are given

by

mn = 2M sin

[

n
πξ

2

]

= n m1

[

1− 3

32

λ2

m4
n2 + ...

]

. (1.137)

It is easy to see that the leading term of this expression is given by multiples of the mass

of the elementary boson | B1〉. This leads to the interpretation of the n-th breather as a

loosely bound state of n of it, with the binding energy provided by the remaining terms

of the above expansion. However, as a consequence of the non-integrability of the theory,
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all particles with mass mn > 2m1 will eventually decay. Investigating further this aspect

and analyzing the picture which emerges by varying ξ, if there are at most two particles

in the spectrum, it is always valid the inequality m2 < 2m1. However, if ξ < 1
3
, for the

higher particles one always has

mk > 2m1 , for k = 3, 4, . . . n . (1.138)

Hence, according to the semiclassical analysis, the spectrum of neutral particles of φ4

theory is, for each vacuum, as follows [46]:

• if ξ > 1, there are no neutral particles;

• if 1
2
< ξ < 1, there is one particle;

• if 1
3
< ξ < 1

2
there are two particles;

• if ξ < 1
3
there are

[

1
ξ

]

particles, although only the first two are stable, because the

others are resonances.

1.8 TCSA for Landau-Ginzburg theories.

In this section we discuss the implementation of the Truncated Conformal Spectrum Ap-

proach (TCSA) to Landau-Ginzburg theories. TCSA is a numerical method suitable to

study theories which can be written as a Conformal Field Theory (CFT) plus some rele-

vant perturbations, where these perturbations are expressed in terms of matrix elements

of the primary operators of the CFT itself. Such a Hamiltonian can be truncated by just

discarding all states above a truncation level Ntr or, equivalently, by introducing a UV

energy cutoff within the conformal theory (Etr). The resulting truncated Hamiltonian

is then diagonalized. As far as the low energy states of the perturbed and the original

CFT theory are adiabatically related, the error made on the determination of the lower

eigenvalues decreases exponentially while increasing the truncation.

If the CFT has a countable number of representations, whose highest-weight states

are ordered in energy, the truncation can be performed by keeping those representations

with the energy of the highest-weight state below the UV cutoff. Serious problems arise

instead when the CFT has an uncountable set of representations, as it happens in the

Landau-Ginzburg theories described by an euclidean action of the form

S =
1

8π

∫

d2x

(

∂µφ∂
µφ+

∑

n

gnφ
n

)

. (1.139)

The kinetic part is a c = 1 CFT, the free boson, while the potential can be considered as

a multiple perturbation thereof. The spectrum generating algebra of this CFT is U(1)1
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defined by the commutation relations

[an, am] = nδn+m,0 , [ān, ām] = nδn+m,0

for the holomorphic and antiholomorphic sectors respectively. This algebra admits a

continuum of representations with conformal dimension h = h̄ = α2/2, for all α ∈ R.

Hence this direct approach results in an uncountable set of primary states in the conformal

basis, making impossible the reduction of the Hilbert space of the c = 1 theory to a finite

subspace by just introducing a UV cutoff. Therefore, to apply TCSA to LG theories we

need to follow another route and to select a discrete computational basis over which the

Hamiltonian can be truncated in a meaningful way.

It is also important to notice that the field φ(x) and all its powers are not primary

fields of the c = 1 CFT of the free boson. In the following we will address this issue

introducing two specific methods to express the powers φm in terms of primary fields of

the theory.

1.8.1 The (conformal) computational basis.

With the aim of selecting a manageable computational basis, let’s consider a free com-

pactified boson [2], which is defined on the cylinder of circumference R, and takes values

on a circle of length 2π/β so that

φ(x+R) ≡ φ(x) +
2π

β
w. (1.140)

The integer w counts the number of windings of the field in its internal space while

the spatial coordinate runs once around the cylinder. The compactification induces a

quantization of the momentum that results in a countable set of primaries Vn,w, with

conformal weights

hn,w =
1

2

(

nβ +
w

2β

)2

, h̄n,w =
1

2

(

nβ − w

2β

)2

(1.141)

where n and w are integer numbers, and energies

En,w =
2π

R

[

(nβ)2 +

(

w

2β

)2
]

− π

6R
. (1.142)

The primary state related to each representation can be defined by the action of a vertex

operator on the vacuum, i.e. |n,w〉 ≡ Vn,w(0)|0〉. The conformal towers, built by acting

with U(1)1 holomorphic and antiholomorphic modes on each primary state, provide a

discrete basis where to represent the Hamiltonian.

The TCSA can be now straightforwardly applied to the compactified boson, and the
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truncation is realized by keeping states (including primaries) with energy below the UV

cutoff. Increasing the compactification radius, the number of representations increases

and the R-valued free boson is in principle recovered in the limit 1/β → ∞. So, in a

nutshell, the idea is to use the truncated basis of the compactified boson in the limit

of very large compactification radius as a computational basis for the perturbed theory

(1.139), with the number of representations, and thus the number of states in the theory,

that grows at most linearly with the compactification radius at a fixed truncation.

Since we will be interested in the sector of the spectrum with zero topological charge,

we restrict from now on our attention to the w = 0 winding sector, although the following

results can be easily generalized to generic winding numbers. The highest weight states,

denoted now by |n〉, are thus generated from the vacuum |0〉 by applying the primary

fields as

|n〉 ≡ eiβnφ(0) |0〉 with φ(0) = φL(0) + φR(0) . (1.143)

The energies of such highest weight states are given by

En =
2π

R

[

(nβ)2

2
− 1

12

]

. (1.144)

From each highest weight state, the descendants are obtained by applying the left and

right modes of the field,

|n, aL, aR〉 = ap1−1a
p2
−2 . . . ā

q1
−1ā

q2
−2 . . . |n〉 . (1.145)

Their energy is computed to be

E = En +
∑

j=1

j (pj + qj) , (1.146)

and the restriction to energies below Etr is now a well defined operation.

1.8.2 The perturbation: the Fourier method

Even though the compactified boson provides the computational basis for the TCSA, we

have still to understand how to write the perturbation part of the Hamiltonian within

this framework. Perturbations of the LG theories are powers of the bosonic field φ(x)

and in general they are not periodic of 2π/β. Hence, they do not belong to the operator

content of the considered CFT. The most natural way-out to represent the perturbation

within the compactified theory is to expand the various powers φm(x) in terms of their

Fourier series

φm(x) ≡
∑

p∈Z
cp e

ipβφ(x) , (1.147)
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where the Fourier coefficients are computed according to

cp =
β

2π

∫ π/β

−π/β

dφ e−iβpφ φm =
p(−1)n

(nβ)p

p−2
∑

k=0
k even

(−1)
k
2
+1 (p− 1)!

(p− k − 1)!
(πn)p−k−2 . (1.148)

In this way, the operator φm(x) is written as a linear combination of primary fields of the

theory and its matrix elements between two states |n, aL, aR〉 and |n′, bL, bR〉 can then be

written as a sum of matrix elements of the primaries

M
(m)
ab =

∑

p∈Z
cp

(

2π

R

)(pβ)2

〈n, aL, aR| eipβφ |n′, bL, bR〉 . (1.149)

The scaling factors (2π/R)(nβ)
2

, which originate from the conformal mapping of the three-

point function of the primary fields from the plane to the cylinder, provide the correct

conformal dimension to the operators entering the Fourier series (1.147). It is important

to observe that these factors implement a normal ordering of the operators so that, at

the matrix level, we have that φ2n 6= (φ2)n. Each remaining expectation value can be

split as

〈n, aL, aR| eipβφ |n′, bL, bR〉 = 〈n, aL| eipβφL |n′, bL〉 〈n, aR| eipβφR |n′, bR〉 , (1.150)

and computed just using the commutator between the vertex operators and the modes

[

an, e
ipβφ
]

= −pβ eipβφ , (1.151)

and the definition of the three-point-function:

〈n|φm(0)|n′〉 =
∫ π

β

−π
β

dφφm ei(n−n′)βφ . (1.152)

Let us mention that a simple check of the soundness of this approach to implement

the TCSA for perturbed c = 1 CFT based on the compactified boson, is provided by the

Sine-Gordon model. We have indeed tested that our method is able to reproduce well

known results about this model, as briefly discussed in Appendix A.

However, to fully implement the strategy discussed so far, one must pay attention

to another subtle aspect: it is well known in the TCSA literature [21] that operators

with conformal dimension higher than one lead to UV divergences that must be treated

properly to extract universal features from the numerical data. In our case the Fourier

series associated to the various powers φm(x) requires infinitely many UV divergent terms

to approximate the LG potential on the target space. A rather pragmatic way to cure

this pathology is to truncate the Fourier expansion (1.147) to include only UV convergent

operators, i.e. those with conformal dimension less than one, |n| < 1/β.
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(a) (b)

(c)

Figure 1.16: In panel (a) we show the energy levels with the ground states subtracted

for the φ2 perturbation. Here β = 0.1, g2 = 0.0004, and Ntr = 6. The mass is given by

m1 = 2
√
g2 = 0.04. The solid black line represents the (trivial) Bethe-ansatz prediction.

In panel (b) we show the energy of the first two levels as a function of m = 2
√
g2. Their

values are compared with the expected one of a free theory (here m1R = 4). Panel

(c) shows the exact shape of the target potential in black, and its approximation with

a dashed red line. For β = 0.1 the first 21 primaries in the representation (1.147) are

retained.
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In order to test whether this method provides sound results, we have firstly studied

the simplest LG theory, i.e. the free massive boson

S =
1

8π

∫

d2x
(

∂µφ∂
µφ+ g2φ

2
)

. (1.153)

It turns out that the numerical results are in rather good agreement with theoretical

predictions already for β = 0.1 and Ntr = 6. The representation (1.147) is truncated

in this case to 21 vertex operators with conformal dimension (nβ)2 < 1 and the φ2

potential is closely approximated, see Fig. 1.16(c). In Fig. 1.16(a), we show the low

energy spectrum of the theory. The plot refers to the energy differences with respect to

the ground state energy of the theory and, as in other similar plots shown below, once we

have determined the smallest particle mass m1, the energy differences have been rescaled

with such mass and plotted as function ofm1R. We will always restrict to states with zero

total momentum. It is however trivial to study also sectors with higher total momentum.

The general features of these energy difference lines are pretty clear

• For small values of m1R, the Hamiltonian of the unperturbed CFT dominates and

therefore the resulting spectrum is the conformal one, with the typical dependence

1/R of the various lines. The degeneracies that we find are those expected for the

free compactified boson: there is a single ground state (not shown in the figure

since it has been subtracted), while the low lying states are coupled in doublets

corresponding to the primaries with ±n for increasing n < 1
β
. Potting more states

it is also possible to see the corresponding descendants with the correct degeneracy.

• For larger values of m1R, we expect the perturbation to become more and more

important until eventually some truncation effects start to be dominant and the data

are no longer reliable. Therefore the physically sensitive data must be extracted in

the intermediate region, the so called scaling region, soon after a very rapid crossover

to a massive (gapped) theory takes place. The state with a single particle is the one

colored in red while the second level (blue) is a state with two particles, both at zero

momentum. This state has energy exactly 2m1, the threshold. These two particles

do not interact in this case, since the theory is free. The higher horizontal lines can

be interpreted as states with many non-interacting particles, each of them with zero

total momentum. Finally, the lines decreasing as 1/(m1R) may be regarded as total

zero momentum states with many particles, event though some of them can have

non-zero momentum. The lowest of these momentum lines corresponds to a double

degenerate state with two particles of momentum kn = (2π/R)n, for n = ±1. For

R → ∞, it will get closer and closer to the threshold line. This picture is confirmed

by the comparison with the trivial Bethe-ansatz prediction of the energy of a two

particle state with Bethe numbers (1,−1) and with no interaction, E = 2
√

k21 +m2
1.

This is shown in the plot as the black, dashed line. Finally, in Fig. 1.16(b) we show
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Figure 1.17: We show the convergence of the NRG (black dots) to the exact diagonal-

ization (solid red curve) within the Fourier-method. The truncation level is always fixed

to Ntr = 7 and β = 0.07, hence the computational basis contains Ntot = 11003 states.

Here we chose N = 6003, ∆N = 500. The coupling are fixed to be: g2 = −0.025, and

g4 = 2.6172× 10−5, while m1R ≈ 0.51. We show the convergence of the NRG for (a) the

ground state, (b) the third state (the bound state B1), and (c) the 12th state.

the energy of the two first levels as function of the mass m = 2
√
g2 at fixed cylinder

radius R. The agreement with the expected values m and 2m again confirms the

reliability of the method.

In the following we will address just Z2 invariant LG theories, but the method straight-

forwardly applies also to potential containing odd powers of φ.

1.8.3 Numerical Renormalization Group

The accuracy of the numerical values of the energy levels can be improved by means of

the Numerical Renormalization Group (NRG). The NRG is a technique that allows the

TCSA to include states at much higher conformal levels than would be possible with a

straight exact diagonalization.

In this procedure we implicitly assume the localization of the low energy states of the
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full theory on the low energy states of the computational basis. Even if this assumption

is guaranteed in principle only for relevant perturbations, in Ref. [32] it has been shown

that, in the case of a marginal perturbation where the high and low energy sectors of the

theory are more tightly coupled, the method still works properly.

In the framework of the compactified boson we need to deal with many perturbations

with different conformal dimensions. We have checked that even in this case the method

applies and the energies computed with the NRG converge to those obtained by direct

diagonalization, as shown in Fig. 1.17.

1.9 Double well potential and stable neutral bound

states.

In this section we present a series of results which support the conjecture on the number

of stable neutral bound states discussed in Section 1.7 for various double well potentials.

Let us start our discussion from the Φ4 LG theory

S =
1

8π

∫

d2x
(

∂µφ∂
µφ+ g2φ

2 + g4φ
4
)

, (1.154)

in the regime where two wells are present, i.e. g2 < 0, and g4 > 0. We have restricted our

analysis to the regime ξ ≪ 1 (see eq. (1.131) for the definition of ξ), in which the Fourier

method is supposed to perform better as the shape of the potential is well approximated

by a limited number of terms. Although in this regime [1/ξ] neutral bound states are

predicted to exist, just two of them can be stable.

Let’s now describe our results for a representative choice of the φ4 potential with

ξ ≈ 10−4. The potential we consider is shown in Fig. 1.18(a) (black solid line), together

with its Fourier approximation (dashed red line), while in Fig. 1.18(b) we present the low

energy spectrum.

As for the φ2 potential, we subtract to all energy levels the ground state energy and we

rescale these differences with an estimate of the first massm1. As usual, in the small m1R

region the conformal part of the Hamiltonian dominates and the low energy levels have the

correct degeneracy of the unperturbed CFT: we have a single ground state9 corresponding

to the identity operator and double degenerate states corresponding to other primary

fields. On the other hand, for large values of m1R (in this case (m1R) & 12), truncation

effects become important and the data are no longer reliable. Hence in this case the

scaling region of this theory is identified by the interval 1 < m1R < 12. Here one can see

that the first level (green) rapidly goes to zero, which signals the finite-volume double

degenerate ground state: indeed, due to finite-volume tunneling effect, the two infinite-

volume degenerate ground states have an exponentially small splitting of their energies

9The single ground state is subtracted to other energy levels, hence it does not appear in the figure.
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(a) (b)

(c)

Figure 1.18: (a) The potential for g2 = −0.025, g4 = 1.47218 × 10−5 and ξ ≈ 5.6 ×
10−4 is shown in black. The dashed red line represents its approximation within the

Fourier method when the Fourier representation (1.147) is truncated to the 33 terms

with (nβ)2 < 1, with β = 0.06. (b) The low energy levels of the mass spectrum for

the Φ4 LG theory. The truncation level is fixed to Ntr = 6, and β = 0.06. In this

regime the semiclassical analysis tells that just the first two of the [1/ξ] predicted neutral

bound states on each vacuum can be stable. The two lower states become exponentially

degenerate for m1R > 0.1 and they correspond to the double degenerate ground state

of the Φ4 LG theory (green line). The first double-degenerate level (red) is believed to

be the neutral bound state B1, while the double-degenerate blue line is related to the

second bound state B2. The conjectured spectrum is thus recovered. The mass of B2 is

predicted to be m2 ≈ 2− 3
8
ξ2 ≈ 2−10−6. Panel (c) shows a detail of the avoided crossing

at m1R ≈ 4.

once the the theory is defined on a cylinder of radius R. Above this double degenerate

ground state a gap is opened and two degenerate states are present (red), each of them

corresponding to the neutral bound state B1. Above these two more degenerate states

(blue) finally appear just below the threshold at 2m1, and correspond to B2.

Within the region 1 < m1R < 4, one can observe almost parallel levels roughly spaced
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(a) (b)

Figure 1.19: (a) The exact φ6 potential with couplings g2 = −0.015, g4 = −5.68047 ×
10−6, and g6 = 1.43412 × 10−8 is shown in black. The red dashed line represents the

approximation used within the Fourier method, for β = 0.08 (the 25 primaries with

(nβ)2 < 1 are retained). (b) The low energy mass spectrum of the Φ6 LG theory for the

two wells potential. The truncation level is fixed to Ntr = 6, and β = 0.08.

by an energy ∆E ≈ m1, which can be interpreted as the states predicted by eq. (1.137)

with n ≥ 3. The energy levels decreasing in m1R are reminiscent of the momentum lines

already seen for the free Φ2 LG theory in Fig. 1.16(a). With respect to the free theory

where all the levels were crossing with each others, in the spectrum of Fig. 1.18(b) there

are instead many avoided crossings, although their identification may require to study

the region where they occur with a higher numerical resolution. An example is given in

Fig. 1.18(c) where we show a detail of the avoided crossing at m1R ≈ 4.

In summary, the spectrum we obtain satisfies all the expectations about the Φ4 LG

theory. Moreover, we find that the number of stable neutral bound states is at most two

per minimum, as predicted in Ref. [46].

We have also tested the conjecture of Ref. [46] in the double well phase of the Φ6

LG theory for the potential depicted in Fig. 1.19(a). For this LG theory, we study the

potential in the range of its parameters for which it is most faithfully reproduced by its

truncated Fourier approximation. In this regime we find again the same features that

we discussed for the φ4 potential, as can be seen in the energy spectrum presented in

Fig. 1.19(b). Also in this case, after a very short conformal behavior of the energy levels,

a massive regime is quickly reached with a double degenerate ground state (green), a first

double degenerate single particle state B1 (red), and a second double degenerate single

particle state B2 (blue). Again we find the unstable states of eq. (1.137) for n ≥ 3 and

some reminiscent of the momentum lines decreasing with m1R.

At this point, a discussion about how the parameter β can be chosen to improve the

accuracy of the numerical results is in order. In principle, the precision of TCSA data
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(a) (b)

(c) (d)

Figure 1.20: We show the effect of a different compactification radius 1/β on the spectrum

of the Φ4 LG theory already presented in Fig. 1.18. In the left panels, the black lines

represent the exact shape of the φ4 potential for (a) g2 = −0.025, g4 = 4.08938 × 10−5,

β = 0.1, and (c) g2 = −0.025, g4 = 2.55586× 10−4, β = 0.25. The dashed red lines in the

same panels are the approximations used within the Fourier method. The related spectra

are shown respectively in (b) and (d). Observe that the general quality of the spectrum

as well as the precision of the approximation of the second bond state (predicted mass

m2 ≈ 2) increases decreasing β.

can be improved to the desired accuracy by making β smaller and smaller. The idea is

to implement the following transformation on the field that leaves the theory unchanged

form the physical point of view:

φ′ =
β

β′φ . (1.155)

The new field φ′ lives in the interval [−π/β′, π/β′] and, beside of an overall multiplica-

tive factor in the Lagrangian, this transformation induces the following rescaling of the

couplings:

g′2n =

(

β′

β

)2n−2

g2n. (1.156)
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As already mentioned, this transformation does not change the physics of the problem.

Hence, if we could retain all terms in the truncated Fourier approximation and all states

in the computational basis, this transformation would not actually change anything. On

the contrary, from the numerical point of view, with β′ < β we both increase the number

of terms in the Fourier representation and the number of conformal towers included in the

computational basis. This amounts to a better approximation of the studied potential and

of the low energy states, but involves a higher computational cost, since the dimension

of the matrix to be diagonalized increases. In Fig. 1.20, we show the same φ4 theory

discussed in Fig. 1.18 but with different choices of β (and with the parameters rescaled as

discussed in eq. (1.156)). As expected, the best approximation is found for the smallest

value of β.

1.9.1 LG theories and minimal models.

An important remark concerns the LG theories studied in this paper and the LG theories

entering the description of minimal models of CFT proposed by Zamolodchikov [96]. Let

us discuss in particular the vacuum structure of these two theoretical frameworks which

happen to share the same name.

In our case, the starting point has been a CFT with c = 1 and we have used the

computational basis of the (compactified) boson φ(x) to compute the matrix elements of

the various powers entering the interaction terms. For the normal order prescription, for

the corresponding matrices we have φ2n 6= (φ2)n, and therefore one should not expect that

the vacuum structure identified by the classical potential will be necessarily realized by

the TCSA implementation of the Hamiltonian. Consider for instance the Φ6 LG theory

associated to the potential

V (φ) = φ2
(

φ2 − a2
)2

= φ6 − 2a2φ4 + a4φ2 . (1.157)

At the classical level, this theory has three degenerate vacua, one at the origin and the

other two placed at φ = ±a. One could think that the same vacuum structure would

be realized in the TCSA implementation of this LG potential by tuning the coupling

constants in front of the various matrices as in eq. (1.157), but this turns out to be

false. First of all, notice that the second derivatives around different minima are always

different:

V ′′(0) ≡ m2
0 = 2a4 , V ′′(±a) ≡ m2

a = 8a4 , (1.158)

with m2
a > m2

0. This means that, while classically the minima are degenerate, this is no

longer true once quantum corrections are introduced. Indeed, in a semi-classical picture

[97], these quantum corrections will depend on the shape of the potential near each

minimum: calling E
(0)
vac and E

(±a)
vac the vacuum energy state around each classical minima,
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(a) (b)

(c) (d)

Figure 1.21: (a) The φ6 potential with g2 = 0.00064, g4 = −1.6×10−6, and g6 = 1.×10−9

at β = 0.09. Although the potential has three degenerate wells, in the spectrum (b)

there are two towers of states, the first relative to the vacuum in the central well, and the

second relative to the two degenerate vacua produced by the two lateral wells. The states

relative to the central well are single degenerate and they are parallel to the corresponding

ground state (hence they are horizontal when the ground state is subtracted). The states

belonging to the lateral wells are double degenerate and are increasing linearly in m1R.

(d) The low energy spectrum for the potential V (φ) = − cos(3βφ)− cos(6βφ) at β = 0.1,

depicted in (c). The shape of the potential is the same around each minimum. The first

two states (green) quickly converge to zero, signaling a triple degenerate ground state.

The spectrum contains two stable triplets (red and blue) of neutral bound states. The

levels increasingly linearly in m1R belong to the three smaller wells with higher minima.
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a semi-classical analysis gives

E(0)
vac ≡ ~R

4π

∫

√

k2 +m2
0 dk + O(~2) (1.159)

E(±a)
vac ≡ ~R

4π

∫

√

k2 +m2
a dk + O(~2)

Regularizing the integrals above by a ultraviolet cut-off Λ, the lifting of the classical

degeneracy is given by

∆Evac = E(±a)
vac − E(0)

vac ≃
~R

4π
(m2

a −m2
0) log Λ . (1.160)

So, the expectation is that the quantum corrections will select as ground state energy the

one associated to the vacuum at the origin (that becomes therefore the true vacuum of

the theory), while the energies relative to the classical vacua at φ = ±a will be shifted

symmetrically higher with respect to it. This is indeed what is observed in the data

coming from a TCSA implementation of the potential in eq. (1.157): in Fig. 1.21(b),

where are plotted the differences of energies with respect to the ground state, one can

observe a single degenerate tower of states relative to the vacuum at the origin and a

double degenerate set of lines which increase linearly in R with respect to the previous

ones. The double degeneracy of these linearly increasing lines is obviously due to the

symmetry between the original classical vacua at φ = ±a.
The same effect of lifting the classical vacuum degeneracy also holds for higher order

LG. For instance, considering a more complicated example

V = φ2(φ2 − a2)2(φ2 − b2)2 , (1.161)

with b2 > a2, the classical degenerate vacua placed at φ = 0, φ = ±a and φ = ±b cannot
have all the same curvature10. Hence, considering the quantum corrections, less than five

ground states are expected.

It is easy to see that, within the polynomial LG potentials, it is impossible to realize

a situation where all classical vacua share the same curvature. The only exceptions

are given by potentials which have just two symmetric wells with respect to the origin

(as for instance in the broken phase of Φ4). Potentials with perfect symmetric vacuum

structure (i.e. with the same curvature at all the minima) can only be realized with non

polynomial terms. If it is the curvature at the vacua which is responsible for the lifting

of the degeneracy, designing a perfect symmetric vacuum structure one should obtain

energy levels in the TCSA with a degeneracy equal to the number of vacua. This is what

we have checked by engineering an ad-hoc potential, made of double Sine-Gordon model,

10It is important to stress that, although some of the minima could in principle be tuned in order to have

equal second derivative, higher derivatives will be different and quantum corrections will discriminate

between these minima at higher order.
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with three perfectly equal minima, as shown in Fig. 1.21(c). The spectrum with three

degenerate ground states is shown in Fig. 1.21(d). Above the three degenerate ground

states in this case there are other six stable bound states, organized in two triplets.

Coming back to polynomial interactions, in principle there could be a classical LG

potential leading to a desired number of degenerate quantum vacua but this implies a fine-

tuning search in the coupling constant space, a task that is generally quite hard to fulfill11.

Different story for the so-called LG picture proposed by Zamolodchikov [96] for the

minimal models of CFT. First of all, in this case, the LG scheme is nothing else but a

very useful bookkeeping of the number of relevant fields of the Kac table (which can be

associated to the composite operators : σm(x) : of the most relevant operator σ(x) of

the theory), of their Z2 parity and the overall fusion rules of the models. However, in

all these minimal models it is present a very robust algebraic structure which ensures

the right number of degenerate vacua once they are perturbed away from criticality (see

Ref. [98] and references therein). In particular, for the minimal models associated to the

LG σ2(m−1) and perturbed in the massive regime by the conformal field Φ1,3, it is the

fusion rule of this operator that automatically gives rise to a theory which has (m − 1)

degenerate vacua.

1.10 The Derivative-method.

Supported by the promising results obtained for the massive free boson, we have extended

the Fourier method to more complicated potentials, paying though a huge computational

cost. Indeed, to describe faithfully even the φ6-double well potential, the number of

primaries to be included in (1.147) grows significantly. Since we can keep only UV

convergent primaries we need to take β very small, which results in an increased number

of states to handle numerically.

To try to overcome this problem we have explored an alternative method to treat

the perturbations. The starting observation is that the matrix elements can be formally

written as

M
(m)
ab = (−i)m 〈n, aL, aR| ∂(m)

γ eiγφ |n, bL, bR〉
∣

∣

γ=0
. (1.162)

In other words, we need to compute the matrix element with the generic operator of

eiγφ, then derive with respect to γ and finally set γ = 0. More details can be found in

Appendix B. Clearly eiγφ does not belong to the operator content of the theory for generic

γ, and the prescription relies on the assumption that all computations can be done as

if it was an actual primary of the theory. In particular the commutator with modes is

11It would be interesting to understand if this fine-tuned potential reproduces the correct physics of

the expected corresponding massive phase or just the correct degeneracy of the ground state.
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(a) (b)

Figure 1.22: In panel (a) we show the energy levels with the ground state subtracted for

the φ2 perturbation, obtained within the derivative method. Here β = 0.1, g2 = 0.0004,

and Ntr = 6. The mass is given by m = 2
√
g2 = 0.04. The solid black line represents

the (trivial) Bethe-ansatz prediction. In panel (b) we show the energy of the first two

levels as function of m = 2
√
g2. Their values are compared with the expected one of a

free theory (here m1R = 4).

defined to be
[

an, e
iγφ
]

≡ −γ eiγφ. (1.163)

This assumption, even though is strictly formal, can be justified by the fact that we

want to simulate the gaussian field of the LG theory. Imposing the commutation relation

(1.163) includes a specificity of the gaussian field which could improve the agreement

with the target theory. In the compactified theory indeed, the correct and straightforward

definition of (1.163) would include a boundary term proportional to the Dirac delta which

contributes to the matrix element and vanishes just in the infinite radius limit, 1/β → ∞
(for additional details see Appendix C).

We have compared the numerical results for the free φ2 LG theory against those

computed with the one obtained with the Fourier method, observing a significant im-

provement in precision. Within this derivative method, the low energy spectrum and the

comparison with the Bethe-ansatz is shown in Fig. 1.22(a), while the first two mass gaps

are plotted in Fig. 1.22(b) as function of the coupling m = 2
√
g2. Data are stable for

large regions in m1R and the agreement with analytics is remarkable. Compared with

the Fourier method, the derivative method performs even better. The spectrum is stable

for a larger interval of m1R and the two particle state by (trival) Bethe-ansatz is better

approximated.

However, despite this success with the free φ2 potential, we have realized that this

method cannot describe LG theories without further modifications. The reason is that

normal ordering is not implemented in the derivative method as it is. Hence, each power

of φ2n is trivially commuting with φ2 itself, and the unique element of non-commutativity

66



CHAPTER 1. TRUNCATED CONFORMAL SPECTRUM APPROACH AND C = 1
CONFORMAL FIELD THEORIES.

is at the level of U(1)1-modes. In the Fourier method, instead, the normal ordering is

encoded in the R-dependent factors of eq. (1.147).

Since the derivative method performed so well with the Φ2 theory, it would be interesting

to extend it to higher power of the field φ in a way that keeps into account the correct

normal ordering of operators.

1.11 Discussion on TCSA and Landau-Ginzburg the-

ories.

In this paper we have studied the implementation of the TCSA to Landau-Ginzburg

theories. The kinetic part of these theories is a conformal field theory but its spectrum

is uncountable and this makes it not suitable for a direct TCSA-implementation. We

overcame this problem by considering the conformal basis of the compactified boson,

which is discrete and can be truncated by the introduction of a UV cutoff. In the limit

where the compactification radius goes to infinity the original LG theory is recovered.

The powers of the field φ(x) entering the potential are expressed in terms of their Fourier

representation in the interval [−π/β, π/β], so that matrix elements can be computed and

the TCSA implemented. Due to the large number of Verma modules, we have improved

the method implementing a Numerical Renormalization Group.

We obtained a good description of the free φ2 LG theory, for which analytic predictions

have been perfectly reproduced.

The method was then used to study the low energy neutral excitations of the Φ4 and

of the Φ6 LG theories in their double well phase, where basic neutral excitations are

breathers made of kinks and anti-kinks interpolating between the two vacua. The masses

and consequently the number of stable bound states were estimated semiclassically in

Ref. [46]; within all our simulations the semiclassical predictions are verified.

We furthermore observed that the quantum implementation of the LG theories with

a classical set of vacua leads to a lift of their classical degeneracy. Indeed, while classical

vacua are determined just by the minima, quantum corrections depend upon the shape

of the potential in their vicinity. In particular, it is impossible to have, within LG the-

ories, a potential whose multiple classical degenerate vacua share the same curvature, if

there are more than two minima. However, this is markedly different from what proposed

by Zamolodichikov [96] where underlying symmetries protect the correct degeneracy of

ground states.

We furthermore explored an alternative procedure to compute the matrix elements

of the LG perturbations, called derivative method, which performs remarkably well with
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the Φ2 LG theory. However, within this method the normal ordering of operators is not

yet implemented. Hence, less trivial LG theories cannot be addressed at the moment,

and the extension of the technique is an interesting perspective for future investigations.
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Chapter 2

Quantum-statistics induced flow

patterns in driven ideal Fermi Gas.

Based on arXiv:1306.0422v1.

Experimental advances in the rapid quenching and imaging of ultracold atoms [99,

100, 101, 102, 103, 104], as well as in the microscopy of nanoscale structures [105], make

it possible to observe interesting effects of current-carrying systems with specific features

attributable to their quantum nature. Form the theoretical point of view, many predic-

tions are available [101, 102, 103, 104, 105], also thanks to improvements in numerical

methods. Most of these systems are characterized by an infinite number of states, and

many techniques to reduce the cardinality of the spectra have been developed. Among

these, as far as the spatial geometry of the system is important, a typical procedure is to

discretize the system on a finite lattice1.

In this second part of the thesis we discuss the role of Fermi statistics in the formation

of new, experimentally detectable features in a two-dimensional ideal2 Fermi gas which

flows out of a small orifice into a large volume.

Differently form a classical ideal gas, which flows under the same conditions, and cannot

develop any turbulence, the Fermi gas senses the Pauli exclusion and it is unknown which

kind of flow should be expected. Indeed, the quantum statistics, acting as an analogue of

an interaction, could result in significant modifications in the structure of the flow, which

may exhibit fingerprints of the quantum nature of the gas.

The analogy between classical and quantum fluids is marked in the presence of

strong interactions. Indeed, it has long been known – ever since the beginning of

1Consider that, if the lattice has n-sites, the number of states in the theory is immediately reduced

to n in the case of a single particle.
2Non-interacting.
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quantum mechanics [106] – that interacting quantum fluids can be described in terms

of the same hydrodynamic equations that describe classical interacting (viscous) flu-

ids3 [25, 26, 27, 28, 29]. In fact, the many-body time-dependent Schrödinger equation is

exactly equivalent to the equations of motion for the density and velocity field, namely

the continuity equation and a hydrodynamic equation – albeit with an unknown stress

tensor [106, 26, 23].

As any viscous fluid, interacting quantum liquids can exhibit a transition between laminar

and turbulent flows when driven strongly. This has been shown, for instance, using the

Density Functional Theory (DFT) for the electron liquid in Ref. [29, 23, 30]. In particular

the flow of electrons out of a narrow constriction was studied while increasing the driving

untill turbulence sets up and unstable eddies are generated. Experiments on electron

liquids to detect this phenomenon have been proposed [107, 108, 109]. For instance, in

Ref. [108] it is suggested to measure the magnetic field generated by vortices of turbulent

electrons.

Furthermore, it has been argued, that electronic systems close to quantum criticality are

best suited to exhibit such turbulence, as they feature a small ratio of shear viscosity and

entropy density; undoped graphene [107, 110] or cold atoms at unitarity above Tc [111]

being probably the simplest such systems.

More specific effects in the flow of quantum fluids have been studied, both experimentally

and theoretically [112, 113, 114, 115, 116, 117, 24], in the context of vorticity and turbu-

lence in superfluids, focussing on dynamics and interactions of quantized vortices. The

definition of turbulence in this last field is very different from what is called turbulence in

the classical fluid. In classical fluids, indeed, the term usually refers to the development

of chaotic patterns in the velocity field, while in the context of superfluids the word tur-

bulence has a twofold meaning. The system is typically described by two interpenetrating

fluids: a normal viscous fluid and a superfluid. While the dynamics of the normal viscous

fluid is exactly that of a classical fluid and is described by Navier-Stokes’ equations [24]

(such that turbulence develops in the usual form), within the superfluid component quan-

tum mechanics results in the formation of quantized vortices which interact and form a

complicated tangle, to which the term quantum turbulence refers.

Another interesting aspect of fermionic quantum fluids has not received much atten-

tion so far. Complex flow patterns are generally attributed to the particles’ interactions

which generate non-linearity and chaoticity in the dynamics. It is therefore interesting to

ask if, in absence of interactions, quantum statistics alone gives rise to non-trivial flows.

With the advent of atomic gases where interactions among atoms can be tuned to essen-

tially zero [101], the question whether the exclusion principle alone – a form of collec-

tive repulsion – may lead to interesting flow patterns, if the Fermi gas is driven out-of-

equilibrium, can be tackled seriously.

3Namely, the Navier-Stokes’ equations [24].
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Non-trivial phenomena are known to arise in out-of-equilibrium flow of free fermions

from recent works in 1d gases [118, 119, 120, 121], where the formation of shocks and

interference ripples after a local quench was observed. The setup and the underlying

physics is rather simple. A Fermi sea is deformed with a bump which is left free to evolve

under a free Hamiltonian. The space displacement on top of the bump is much smaller

than at the bottom such that, due to Heisenberg uncertainty, particles lying on the top

have higher momenta and spread faster than those at the bottom. Hence, during the

dynamics the shape of the bump deforms until the particles on the top overcome those

at the bottom. This population inversion results in a series of shocks and ripples in the

density. This effect is thus suggesting that even more interesting phenomena could de-

velop in higher dimensions where reacher patterns such as eddies or complex streamlines

could form.

Moreover, already at equilibrium, Pauli exclusion alone leads to interesting interfer-

ence phenomena in free fermions, such as Friedel oscillations [122], and one may expect

even more complex patterns out-of-equilibrium. In particular Friedel oscillations develop,

as a consequence of Fermi statistics, every time boundaries and/or some strong potential

are present in the system. These oscillations are going to play a central role in our inter-

pretation of the results presented in this Chapter.

We study the simplest case where some nontrivial flow is expected to develop as a

consequence Fermi statistics: driven ideal fermions in restricted geometries in two dimen-

sions. We show that they indeed develop non-trivial patterns in the vorticity (the curl of

the current), which are manifestations of the Fermi statistics. Antiferromagnetic patterns

are found not only in transients (unlike in the above-mentioned 1d studies), but also in

the long-time steady state4. The latter should facilitate their observation in experiments,

such as most recent transport measurements in cold atoms where constrictions as we con-

sider here have been realized [103, 104]. Note instead that the ideal Bose gas, if prepared

in a condensed state at T = 0, reduces to a single-particle problem, so that particular

effects of “anti-exclusion” are absent. However, we recall that the case of free bosons is

a pathological limit, which is likely to be modified by any weak interaction, as it alters

the low energy spectrum and thus ensures superfluidity.

The setup we considered is shown in Fig. 2.1: a narrow channel (A) of width ǫ is

connected to a much wider region (B) of width W , at x = 0. We study the system for

values of W ranging from W = 4ǫ to W = 20ǫ, and we are interested in the limit of

very long regions, L. The choice of this geometry is motivated by simplicity and one

of the simplest non-integrable geometries where nontrivial flows are expected to emerge

is chosen. Moreover, geometries very similar to ours have been realized for instance in

4A steady state is a state where all observables of the system are invariant under translations in time.
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x̂

ŷ

ε W

A B

L L

Figure 2.1: (Color online) Set-up studied: a narrow channel (A) is connected to a wide

region (B). In the micro-canonical formalism the dashed boundaries are hard walls, while

they represent external leads (Markovian baths) in the Lindblad approach. If the distance

L from the junction to those boundaries is large enough, the vicinity of the orifice behaves

as in an open system.

Ref. [103, 104] where two reservoirs containing ∼ 104 atoms of fermionic 6Li are put in

contact with a very narrow channel (∼ 20µm) and a current is established between the

reservoirs by preparing the two with an initial unbalancing in chemical potential.

In this Chapter, we analyze the dynamics and the steady state properties of the spatial

density 〈n̂(x, y, t)〉, of the current density 〈Ĵ(x, y, t)〉, and of the vorticity ∇×〈Ĵ(x, y, t)〉
in the region close to orifice.

The computation of these observables for large L is numerically a prohibitive task. There-

fore we approximate the system in two different ways that we assume to give similar results

close to orifice. This assumption will be tested a posteriori.

We first study a closed system approximated on a lattice where we compute the above

observables within the micro-canonical formalism [123, 124]. The dynamics is then fol-

lowed until a quasi-steady state5 is formed. The second system is a driven open system

coupled to external baths at x = ±L. Again a lattice is introduced. The transport is

studied by solving the Lindblad equation within what is called the “third quantization”

formalism [37, 38]. Within this approach, we have direct access to the non-equilibrium

steady state6 (NESS) properties.

In general, the steady state of the open system and the quasi-steady state that may

establish in a closed system, are usually closely related, except near to the boundaries.

In fact, the two approaches to transport are expected to be equivalent in the thermody-

namic limit, if interactions and (potentially) impurity scattering induce thermalization

5We say that a closed system is in a quasi-steady state if, far from the boundaries, the system looks

steady until reflections from the boundaries occur.
6A non-equilibrium steady state is a state that looks steady but some external work is done on the

system.

72



CHAPTER 2. QUANTUM-STATISTICS INDUCED FLOW PATTERNS IN DRIVEN

IDEAL FERMI GAS.

and momentum randomization far from the junction.

However, for our system of non-interacting fermions the equivalence of the two methods

is not guaranteed, since reflected waves from the contacts at x = ±L can coherently

propagate back to the junction, in the NESS of the open system. Despite this caveat we

found that the two approaches give quantitatively very similar results in specific regimes

where reflections appear to be of minor importance. Moreover, in both cases the steady

state seems to be determined by just two control parameters, which makes it reasonable

to match the two descriptions. In other regimes instead, the agreement is just qualitative.

Here we expect the micro-canonical approach to be a better description for a realistic sys-

tem with weak but finite interactions, since it gives information about the system before

reflections form boundaries occur. We therefore present our central results within this

framework.

We will discuss in detail both formalisms, and, in particular, we will focus on differences

and similarities between the two approaches.

2.1 The closed system: micro-canonical formalism.

The micro-canonical approach is used to describe a closed system in which the energy

and the number of particles are both conserved. To build the closed system the dashed

lines in Fig. 2.1 are replaced by solid lines which describe real walls. However, we are

interested in the limit of large L where these boundaries will play no active role in the

dynamics7, except for very late times, when some wave can be reflected.

The initial state (t < 0) is realized by preparing the set up in Fig. 2.1 with fermions of

mass m in the ground state of the initial Hamiltonian

H0 = − ~
2

2m
∇2 + Vinθ(x), (2.1)

where θ(x) is the Heaviside step function. The potential Vin lives in the box B and it

determines how particles are distributed between the box A and B. This initial condition

results in average densities n̄A and n̄B in regions A and B, respectively.

If Vin = 0, the resulting initial density has a flat profile and n̄A = n̄B ≡ n̄. We care

to choose n̄ǫ2 & π
4
, otherwise there are no propagating modes in the channel A and the

density is exponentially suppressed.

It is important to observe that the density in the box B, Fig. 2.2, is not uniform.

Oscillations at the scale of the Fermi wavelength, usually called Friedel oscillations, are

indeed present. This kind of features always appears in fermionic densities when bound-

7Although the boundaries at ±L do not influence the dynamics, as it will be clear later, a trace of

these is present in the initial state.
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Figure 2.2: The spatial density in the box B before the quench: 〈n̂(x, y, t ≤ 0)〉. The

Fermi surface is not uniform; Friedel-oscillations are visible.

aries are present.

If, instead, Vin is increased, the average density in the box B decreases until it vanishes

for Vin → ∞. In this regime, the gas is fully confined within the narrow channel A and

we thus define n̄ = n̄A.

Within the two boxes A and B we define “effective chemical potentials” as those of

Fermi seas with uniform densities nA(B):

µA(B) = 4π
~
2

2m
n̄A(B). (2.2)

Similarly, in the two extreme cases Vin = 0 and Vin → ∞, we define a dimensionless

parameter, n̄ǫ2, an “effective chemical potential”

µ = 4π
~
2

2m
n̄, (2.3)

and an “effective Fermi wavelength”

λF =

√

π

n̄
. (2.4)

These last two quantities are respectively the Fermi wavelength and the chemical poten-

tial of a Fermi sea with uniform density n̄. Within the micro-canonical formalism, all the

above definitions refer to the initial state.

We want to turn on a current from the narrow channel A to the large box B. This

flow is realized by a sudden local quench. At t = 0, the Hamiltonian is abruptly changed
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to a new one, which governs the time evolution for t > 0:

H = − ~
2

2m
∇2 + Vfinθ(−x). (2.5)

If Vfin = 0, the evolution is unbiased, and the flow is due to the difference between the

chemical potentials in the two boxes: µA−µB which is proportional to n̄A−n̄B. Hence, in

the case Vin = 0 where n̄A = n̄B, there is no current flowing unless a finite Vfin is applied.

Otherwise, if Vfin > 0 a current is established for any (non-negative) value of Vin.

To enlighten the effect of quantum-statistics in a clearer way, we compare the results

obtained within two different protocols.

The first protocol, called expansion into fermions, is characterized by an equal average

density all over the geometry in the initial state (obtained by fixing Vin = 0). At t = 0 the

final potential, Vfin, of the order of the chemical potential Vfin ≈ µ/2, is turned on to push

fermions out of the narrow channel A into the large box B. Under the influence of this

bias, fermions are forced to exit form the narrow channel and to flow into a preexisting

fermionic density whose profile is non-uniform because of Friedel oscillations (Fig. 2.2),

induced by the boundaries.

In the second setting, called expansion into free space, the initial state is characterized

by Vin → ∞, and the gas is trapped in the small channel. At t = 0 the system is released

and the gas is left free to expand into the empty region B (Vfin = 0).

These two protocols will be useful to clarify the role of Friedel-oscillations (and hence of

Fermi statistics) in the resulting flows.

We compute the spatial density and the current density by projecting the initial state

into the new eigenstates of the Hamiltonian H and computing the two observables as

now explained.

The first important observation is that the initial wave function is a Slater determinant

and, since both Hamiltonians are non interacting it remains so at all times. Hence it

is enough to solve for the time-dependent single-particle eigenvalues and eigenfunctions

before the quench and after:

H0ψ
(0)
α (x, y) = Eαψ

(0)
α (x, y),

Hψβ(x, y) = Eβψβ(x, y). (2.6)
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The fermionic field operators before and after the quench are built as

Ψ̂(x, y) =
∑

α

ψ(0)
α (x, y)a(0)α , Ψ̂†(x, y) =

∑

α

ψ(0)
α

∗
(x, y)a(0)α

†
, t ≤ 0

Ψ̂(x, y) =
∑

β

ψβ(x, y)aβ , Ψ̂
†(x, y) =

∑

β

ψ∗
β(x, y)a

†
β , t ≥ 0 (2.7)

with {a(0)α , a
(0)
α′

†} = δα,α′ , and {aβ, a†β′} = δβ,β′ . We define ψβ(x, y, t) ≡ e−iEβt/~ψβ(x, y),

and the spatial density and current density for t > 0 can be computed as

〈n̂(x, y, t)〉 = 〈eiHt/~Ψ̂†(x, y)Ψ̂(x, y)e−iHt/~〉
=

∑

β,β′

ψ∗
β(x, y, t)ψβ′(x, y, t)〈g(0)|a†βaβ′ |g(0)〉. (2.8)

〈Ĵ(x, y, t)〉 =
~

2mi
lim
r→r

′
[∇r −∇r

′ ] 〈eiHt/~Ψ̂†(r)Ψ̂(r′)e−iHt/~〉

=
~

m
ℑ
[

∑

β,β′

ψ∗
β(x, y, t)∇ψβ′(x, y, t)〈g(0)|a†βaβ′ |g(0)〉

]

. (2.9)

where |g(0)〉 is the ground state of H0. Using the completeness of eigenfunctions of H0

ψ(0)
α (x, y) =

∑

β

Θβαψβ(x, y) ,with Θβα = 〈ψβ|ψ(0)
α 〉, (2.10)

and imposing the continuity of the second quantized fermionic operators across the quench

(t = 0), we can express a and a† in terms of a(0) and a(0)
†
as

Ψ̂(x, y) =
∑

α

ψ(0)
α (x, y)a(0)α =

∑

α

[

∑

β

Θβαψβ(x, y)

]

a(0)α =
∑

β

ψβ(x, y)

[

∑

α

Θβαa
(0)
α

]

=
∑

β

ψβ(x, y)aβ (2.11)

It follows that creation and annihilation operators after the quench can be written in

terms of those before the quench as

aβ =
∑

α

Θβαa
(0)
α , a†β =

∑

α

Θ∗
βαa

(0)
α

†
(2.12)

and, considering that a(0) and a(0)
†
are creators and annihilators on the initial vacuum

|g(0)〉, we arrive at

〈g(0)|a†βaβ′ |g(0)〉 =
∑

αα′

nαα′Θ∗
βαΘβ′α′ , (2.13)

where the fermionic occupation number nαα′ is δαα′ if α is an occupied state (α ∈ occ),

0 otherwise. The spatial density and the current density are thus computed for t > 0 to

76



CHAPTER 2. QUANTUM-STATISTICS INDUCED FLOW PATTERNS IN DRIVEN

IDEAL FERMI GAS.

be respectively:

〈n̂(x, y, t)〉 =
∑

α∈occ

∑

β,β′

ψ∗
β(x, y, t)ψβ′(x, y, t)Θ∗

βαΘβ′α,

〈Ĵ(x, y, t)〉 =
~

m
ℑ
[

∑

α∈occ

∑

β,β′

ψ∗
β(x, y, t)∇ψβ′(x, y, t)Θ∗

βαΘβ′α

]

. (2.14)

The eigensystems (2.6) are solved numerically. In principle, both systems have an

infinite number of eigenstates and we need a method to truncate this set to finite mean-

ingful subsets. In the systems, where the geometry is naturally important, a standard

method to reduce the number of states8 is to restrict the space to a lattice. The lattice

is able to reproduce the main features of the geometry and results in a natural reduction

of the dimension of the Hamiltonians to be linear in the number of sites. An important

remark is that we always choose the lattice spacing, a, much smaller than the effective

Fermi wavelength, a
λF

≪ 1. Although this results in having many sites and thus a high

computational cost, the above constraint must be considered in order to capture faith-

fully the features of the flow at the natural scale where Fermi statistics is expected to

manifest, the Fermi wavelength itself.

With this in mind, we construct a discrete tight-binding Hamiltonian with a hopping

strength g = ~
2

2ma2
, and we solve numerically the related finite-dimensional eigensystems

to obtain the ingredients to use in Eq. (2.14). The dynamics is followed in the time

window ~/µ . t . L/vF , where vF ≈
√

2µ/m, in order to exclude reflection effects from

the dashed boundaries in Fig. 2.1. Within this times, the flow is rather stable close to

the orifice, and a quasi-steady state seems to form, but for very weak time oscillations.

This suggests that in an very long system a true quasi-steady state will establish at late

times9. In Section 2.3 we are going to show that this is also confirmed by a different

approach to the transport problem.

2.2 Physical results.

In this section we discuss the main physical results extracted by analyzing the flow of the

ideal Fermi gas in the geometry of Fig. 2.1, within the micro-canonical formalism. The

motivation of this choice is that, as it will be clear later, the micro-canonical formalism

captures better than the Lindblad description the physics close to the orifice in the spe-

cific regimes where non-trivial features appear.

In the following, we show that two regimes, connected by a smooth crossover, are

encountered upon increasing n̄ǫ2. We refer to the regime at n̄ǫ2 ≫ 1, where the Fermi

8We remark that single particle Hamiltonians are diagonalized.
9Since it is a closed system, sooner or later revival effects will destroy the steady state.
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Figure 2.3: (a) The Current density J and contour plot of |∇×J| computed in the micro-

canonical quasi-steady state, for n̄ǫ2 ≈ 5, at time t ≈ 16~/µ. The protocol used is the

expansion into free space, although the same current and vorticity pattern is recovered

in the expansion into fermions, as far as the same n̄ǫ2 is chosen with Vfin ≈ µ/2. (b)

The spatial density corresponding to (a). Distances are measured in units of the orifice

width ǫ (notice that the aspect ratio is 2:5). In all plots lighter colors correspond to larger

values (linear scale)

wavelength is small with respect to the channel width ǫ, as high-density regime. Within

this regime the flow develops in way which is simply understood by semi-classical diffrac-

tion theory. If n̄ǫ2 ∼ 1, instead, the Fermi wavelength is comparable with ǫ and the

flow exhibits peculiar patterns that we show to be sensitive to quantum statistics (low-

density regime).

At high densities, n̄ǫ2 ≫ 1, semi-classical diffraction is expected to hold. Indeed, as

long as the Fermi wavelength is much smaller than the channel width ǫ, the flow is natu-

rally more classical. Accordingly, we find a relatively simple steady state pattern. In this

high density regime, the resulting flow does not depend on the protocol used, expansion

into fermions or expansion into free space. For a representative choice of n̄ǫ2 ≈ 5 within

the protocol of expansion into free space, the current density pattern and the absolute

value of its vorticity (|∇ × J|) are shown in Fig. 2.3(a), as well as the density pattern in

Fig. 2.3(b).

The most prominent feature of the current pattern in Fig. 2.3(a), is a diffraction beam

exiting from the orifice, whose angle is determined by the transverse momentum of the

highest propagating band in channel A (here the second band). Those beams are reflected

at y = ±W/2 and give rise to two islands of intense vorticity around (4ǫ,±ǫ/2). They are
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thus simple boundary effects due to reflections at finiteW , see also the density pattern in

Fig. 2.3(b). The main characteristics of this regime is a rhomboidal region, of size ∼ W 2,

of very small and uniform vorticity centered at (2ǫ, 0).

x̂2                    4                    6                    8   

1

-1

0

ŷ

Figure 2.4: Current density J and contour plot of |∇×J| computed in the micro-canonical

quasi-steady state, for n̄ǫ2 ≈ 1.1, at t ≈ 16~/µ. Distances are measured in units of the

orifice width ǫ (notice that the aspect ratio is 2:5).

The flow pattern is much more interesting at low-density, n̄ǫ2 ∼ 1, where quan-

tum effects are more pronounced. In this regime and within the protocol expansion into

fermions, additional structures – of the size of the Fermi wavelength ∼ 1√
n̄
– develop in

the current and vorticity within the interior of the rhomboidal region, which was nearly

vorticity-free at high-density. In Fig. 2.4, we show the current and vorticity computed at

time t ≈ 16~/µ, before reflections at x = ±L occur. We stress that the quench parameters

were Vin = 0 and Vfin ≈ µ/2, i.e., a strong bias is suddenly applied to fermions prepared

in their ground state with average spatial density n̄ all over the geometry (expansion into

fermions).

The resulting current pattern exhibits zig-zag shaped stream-lines and thus differs markedly

from the semi-classical diffraction observed at high-density. Note that here the islands

of vorticity close to the orifice (x < 4ǫ) seem not to be simply due to reflection from the

boundaries at y = ±W/2, but, as we will show below, should rather be interpreted as

patterns induced by the (Friedel) density oscillations present in the steady state due to

the lateral confinement. Interestingly the vorticity pattern remains qualitatively similar
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Figure 2.5: Current density J and contour plot of |∇×J| computed in the micro-canonical

quasi-steady state, for increasing density. For (a) n̄ǫ2 ≈ 1.1, (b) n̄ǫ2 ≈ 2.2, and (c)

n̄ǫ2 ≈ 4.8. Distances are measured in units of the orifice width ǫ (notice that the aspect

ratio is 2:5). In all plots lighter colors correspond to larger values (linear scale)

if the boundary conditions are changed10. We stress that, once formed, these non-trivial

patterns are remarkably stable in time, but for very weak oscillations in time. As it will

be discussed in the Section 2.3.3, we believe that at late times, in a long enough system,

these oscillations vanish.

An interpretation of this peculiar flow can be extracted from Eq. (2.14). Indeed, even

though Eq. (2.14) states that the current density is simply the superposition of single-

10In Appendix E the role of boundary conditions is discussed
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particle contributions, the resulting pattern is highly non-trivial, as propagating states

superpose, each with their individual interference patterns. The higher the initial density

the larger is the number of superposed modes, which tends to smoothen the interference

patterns. Therefore, while interesting patterns survive for low-density n̄ǫ2 & π/4, in the

limit n̄ǫ2 → ∞ we expect to recover the classical limit where all non-trivial features are

smeared out. Within the protocol expansion into fermions, simulations confirm this trend,

as we present in Fig. 2.5, where the current patterns obtained for increasing densities are

shown. In the figure non-trivial structures clearly emerge at low-density and tend to

vanish when n̄ǫ2 is increased.
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hĴ

y
(4
ε,
y
)i

Figure 2.6: The spatial density (blue) and the y-component of the current density (red)

profiles along two transverse sections of the geometry: (a) x ≈ 2ǫ and (b) x ≈ 4ǫ. The

setting is that of Fig. 2.4, the values of the curves are rescaled to simplify the comparison

between the two. The y-coordinate is measured in unit of ǫ.

If the region B is non-empty, the Pauli exclusion leads to Friedel oscillations. We push

the idea that these density oscillations play a crucial role in the formation of the observed

vorticity patterns. Indeed, an evident anti-correlation is established between the density

profile for different transverse sections of the geometry11 and the absolute value of the

y-component of the current12 shown in Fig. 2.6. Form a pictorial point of view, we inter-

pret the above anti-correlation in the following way. Particles flowing form the narrow

channel to the box B, are forced to find their path in the landscape of hills and valleys

produced by Friedel oscillations of the non-uniform density of fermions. Since the hills of

this landscape represent the regions where fermions are denser, because of the exchange

interaction they oppose to the incoming flow with stronger statistical repulsion than the

valleys, which are favored by incoming particles. As the density is increased, the Fermi

wavelength decreases, the Friedel oscillations become weaker, and the zig-zag trajectories

of particles become gradually less marked until vanish and just the semi-classical flow –

11We define transverse section a section of the geometry at fixed x.
12The current is restricted to the same transverse section than the density.
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observed in the high-density regime – survives.

To be more quantitative, we introduce the dimensionless parameter

χ ≡ λFν

J̄ǫ
, (2.15)

where ν is the average vorticity at x ≈ 2ǫ, the Fermi wavelength λF is the typical scale of

the patterns and J̄ǫ is the average current density at the orifice. χ estimates the relevance

of non-trivial patterns in a flow with given intensity. Increasing the density n̄ and/or the

lateral size W of the box B we find that

χ ∼ 1
√̄
nǫ

1√
n̄W

∼ λF
ǫ

λF
W
. (2.16)

We remark that Friedel oscillations become less intense if n̄ and/or W are increased, so

that the observed trend for χ links the intensity of Friedel oscillations with that of the

observed patterns.

We thus conjecture that the formation of non-trivial patterns in the vorticity at low

density (n̄ǫ2 ∼ 1) is caused by the non-uniform fermionic density present in the box B.

To verify our hypothesis, we compare the current-density and vorticity pattern obtained

in both protocols expansion into fermions and expansion into free space within the low-

density regime (Fig. 2.7). The box B used for this comparison is characterized by

W = 14ǫ, in order to be sure that interference with the boundaries at y = ±W/2 does

not play any role.

In Fig. 2.7(a) the protocol is the expansion into fermions (Vin = 0, and Vfin ≈ µ/2),

and the fermions pushed into the large box B are sensitive to the preexisting fermionic

density and the flow manifests non-trivial vorticity patterns.

In Fig. 2.7(b) the setting is Vin → ∞ and Vfin = 0 (expansion into free space). The

large box B in the initial state is empty, and, after the quench, the gas expands freely

out from the channel A, with a bias of the order of the chemical potential. As it can be

seen, the absence of the initial fermionic density into the box B results in the absence

of vortices in the current-density pattern close to the orifice. Also, the zig-zag patterns

in the current density are absent and the vorticity exhibits the same semi-classical struc-

ture found at high density. This supports the conjecture that Friedel oscillations play an

important role in the formation of vorticity-patterns. Again in the high-density regime

the Fermi wavelength is small and consequently also Friedel oscillations are weak such

that just the semi-classical picture emerges.

Further differences between the two protocols can be found. In Fig. 2.8(a) we show

– for the expansion into fermions of Fig. 2.7(a) – the average vorticity along each trans-

verse section. Similarly, we show the quasi-steady total current along transverse sections
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Figure 2.7: (a) The current density pattern and the intensity of the corresponding vortic-

ities are shown for n̄ǫ2 ≈ 1.3 in the micro-canonical quench-protocol (snapshots are taken

at time t ≈ 16 ~

µ
): (a) Vin = 0 (roughly homogeneous initial density), Vfin ≈ µ/2 applied

to region A; (b) expansion into empty space, Vin ≫ 1 (region B initially empty), Vfin = 0.

The vorticity patterns in the two cases are evidently very different. In particular, in the

case (b) of the expansion into the initially empty region B, there is no evidence of non-

trivial features in the current flow and vorticity close to the orifice, in contrast to case

(a). Finite density in region B and the associated steady state Friedel-like oscillations

are conjectured to be important for the formation of non-trivial flow patterns. In both

cases, we chose W = 14ǫ so that the boundaries at ±W/2 are rather far from the orifice

and the difference between the two quench protocols is evident. The color code is the

same for both figures. Note the aspect ratio of 7:5 of the axis scales.

(shown in Fig. 2.8(b)). It appears that, at the time t = 16~/µ, the quasi-steady state is

established up to x ≈ 6.5ǫ, except for small time oscillations13. In the region 2ǫ < x < 6ǫ,

the average vorticity is characterized by an almost non-decreasing plateau which corre-

sponds to the region where non-trivial patterns are present.

In Fig. 2.8(c) it is shown the average vorticity along transverse sections for the expansion

into free space – corresponding to Fig. 2.7(b) – with total current shown in Fig. 2.8(d).

It is manifest that, in the absence of a substantial fermionic density in B, the average

vorticity decreases smoothly with the distance form the orifice. This can also be seen

form the featureless flow shown in Fig. 2.7(b).

If W ≫ ǫ, vortices of size λF form in the current density just outside the orifice, in

13We expect these oscillations to vanish at late time in a long enough system.
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Figure 2.8: The average absolute value of the vorticity (a) and the total current (b) along

a transverse section for the flow patterns in Fig. 2.7(a). The average absolute value of

the vorticity (c) and the total current (d) along a transverse section of the flow patterns

in Fig. 2.7(b).

the region where the flow is less intense (Fig. 2.9). This feature remains stable if periodic

boundary conditions are considered.

We interpret the emergence of vortices in the current-density as a fingerprint of quantum-

statistics. Indeed, in the absence of interaction, there is no mechanism able to invert the

sign of the velocity. Differently, an ideal Fermi gas senses an effective “statistical pressure”

due to the fermions present in the large volume B. This effective repulsive interaction

seems to be at the basis of the velocity inversion. The vortices occur in the region where

the flux in the x-direction is less intense and the statistical-pressure overcomes the inertia

of the gas. Moreover, we verified that these features are not present in simple diffraction

theory (within the Kirchhoff approximation).

If W is small, vortices have not enough space to form, and cannot develop.

Our understanding of the results obtained within the protocol expansion into fermions

at low-density, n̄ǫ2 ∼ 1 is that, if the density profile is non-uniform, we should expect

non-trivial patterns in the vorticity. Hence, non-trivial features, such as vorticity pat-

terns, may be detectable in experiments where dilute atoms are confined in finite volumes,

as an effect of the Friedel oscillations. Moreover, Friedel oscillations are present whenever
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ŷ

3.5

-3.5

0

2                    4                    6                    8   2                    4                    6                    8   x̂

Figure 2.9: A detail of the vortices formed in the current density in the set-up of

Fig. 2.7(a).

strong disorder is present. It is therefore important to ask whether such features have an

experimentally detectable intensity or not.

If the fermions are charged, such as in a 2d electron gas (which may still be considered

weakly interacting in the presence of a strong dielectric) a complex current pattern, for

instance that of Fig. 2.5(a), generates a non-trivial magnetic field distribution.

In the considered geometry, and at strong driving (Vfin ∼ µ), typical magnetic mo-

ments associated with the circulation patterns are of the order of a tenth of a magneton

µ = e~
2m

, that is, in principle, an experimentally accessible intensity. Interestingly, the

vorticity maxima organize in a short-range correlated antiferromagnetic pattern, which

realizes an out-of-equilibrium staggered orbital flux state, cf. Fig. 2.10, reminiscent of

equilibrium staggered flux phases proposed in strongly correlated 2d systems [134, 135].

Similar patterns arise from currents of magnetically (electrically) polarized neutral atoms.

The electric (magnetic) fields due to such moving dipoles is proportional to a derivative

of the field pattern of Fig. 2.10 (see Appendix F), but may be too weak to be detected

by current detection means. It may be interesting to look for similar patterns in systems

with spin-orbit coupling, e.g., in cold atoms.

Apart from the currents, the density patterns computed in this system could be mea-

sured experimentally by resonant light absorption in atomic gases in optical lattices. The

limiting resolution is currently ∼ 660 nm [136], which is smaller than typical Fermi wave-

lengths in those systems, and as anticipated, the set-up discussed here has already been

realized in recent experiments [103, 104].

We conclude this Section by discussing the scaling of the intensity of local magnetic
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Figure 2.10: The z-component of the magnetic field generated by a charged current flow as

in Fig. 2.4: The quasi-steady state exhibits a staggered flux close to the orifice. Distances

are measured in units of the orifice width ǫ (note that the aspect ratio 2:5). In all plots

lighter colors correspond to larger values (linear scale).

moments in the vorticity patterns when the lateral side of the box B (W ) is enlarged.

In Fig. 2.11 it is shown that the intensity decreases as W increases. This is expected

and can be explained by the fact that the strength of Friedel oscillations decreases –

when W increases – as 1
W
. However, we stress that every experiment where trapping or

confinement are present is likely to exhibit the non-trivial features we found.

We realized that Friedel oscillations induce non-trivial patterns in the vorticity of

ideal fermions out of equilibrium at low density. For charged electrons, the intensity of

these features is in principle measurable, and the dynamics appears quasi-steady within

the micro-canonical formalism. Whether a non-equilibrium steady state is expected to

form at late times is discussed in the next Section.

2.3 The open system: Lindblad equation.

In order to directly probe the non-equilibrium steady-state (NESS) and confirm that the

micro-canonical results indeed capture steady properties close to the orifice, we consider

again the set-up of Fig. 2.1, but with the dashed boundaries representing couplings to

external driving Markovian baths. In this framework the large-L system is approximated

by two external baths at different chemical potentials which interact with the system

by injecting and extracting particles. Such an open system is conveniently described in
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Figure 2.11: The average magnetic moment in units of the magneton e~
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generated by

non-trivial vorticity patterns close to the orifice (x < 4ǫ) for n̄ǫ2 ≈ 1.2 within the protocol

expansion into fermions. The red line is the fit µmean/
2~
2m

= a
W

with a = 1.08± 0.05.

terms of the density matrix ρ(t), since all the observables at time t can be computed as

〈O〉t = Tr Oρ(t). (2.17)

The time evolution of this open quantum system is thus governed by the quantum master

equation for the density matrix, called Lindblad equation [23, 36, 37, 38],

dρ

dt
= L̂ρ := − i

~
[H0, ρ] +

∑

b,y

(2Lb
yρL

b†
y − {Lb†

y L
b
y, ρ}). (2.18)

The trace and positivity of ρ is preserved by construction of the Liouvillean, L̂, which

is restricted to be quadratic. The dynamics is non unitary since it is restricted to the

considered sub-system, neglecting that of the baths14. We directly formulate a discrete

version of the problem on a lattice with spacing a and hopping amplitude g = ~
2

2ma2
. The

lattice is made of n fermionic sites.

The Lindblad operators Lb
y, are choosen to be linear in the fermions, and represent the

coupling at coordinate y on boundary b ∈ {A,B} to independent baths. To describe

driving from A to B we choose LA
y =

√
ΓAc

† (x = −L, y) and LB
y =

√
ΓBc (x = L, y),

where c†, c are creation and annihilation operators, respectively. Hence the thin channel

A is coupled at x = −L to an external bath which can inject particles in the system with

rate ΓA, while the large box B is coupled at x = L to a bath that extracts particles with

rate ΓB. Sites coupled to the external baths are called in the following boundary-sites.

14The dynamics of the full system (system plus environment) is unitary.
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We are interested in the NESS-density matrices {ρNESS} which are described by the

equation

L̂ρNESS = 0.

The problem of determining the non-equilibrium steady states (and how many there are)

amounts to the computation of the kernel of the Liouvillean. The operator, however, is

exponentially large in the number of sites n, and the solution of Eq. (2.3) is numerically

hard.

The complexity of the problem can be significantly reduced, and eventually analytically

solved, through the method of third quantization [37, 38].

The essence of this method lies in identifying the existence of a 22n dimensional linear

vector space, called the Liouville-Fock operator space of which the density-matrix ρ(t) is

a member. This operator space has a natural fermionic structure exploited by creation

(ĉ†) and annihilation (ĉ) operators satisfying the canonical anti-commutation relations,

{ĉi, ĉ†j} = δij, and being Hermitian adjoints of each other (see Appendix G).

The Liouvillean L̂ can be cast as a quadratic form in these fermionic operators defined

in the Liouville-Fock space, and reads as,

L̂ = −2ĉ† · (2iH+M+MT )ĉ+ 2ĉ† · (M−MT )ĉ†, (2.19)

where H is the 2n× 2n Hamiltonian matrix, M is a 2n× 2n complex Hermitian matrix

parametrizing the baths operators, and ĉ or ĉ† denotes a vector (column) of the 2n

fermionic operators.

The above given representation of the Liouvillean admits a further simplification (re-

duction) through a linear transformation of the set of ĉ and ĉ† operators to new operators

given by,

â1,i =
1√
2
(ĉi + ĉ†i ), â2,i =

i√
2
(ĉi − ĉ†i ), (2.20)

where the â1,i and â2,i with i = 1, 2, ..., 2n represent 2n Hermitian Majorana operators

satisfying the canonical anti-commutation relation,

{âα,i, âβ,j} = δα,βδi,j, α, β = 1, 2, i, j = 1, · · · , n. (2.21)

in terms of which the Liouvillean can be recast as,

L̂ = â ·Aâ− A0Î. (2.22)

Here, A is a complex anti-symmetric 4n× 4n matrix, referred to as the structure matrix,

having the following form,
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A =

(

−2iH+ 2iMi 2iM

−2iMT −2iH− 2iMi

)

(2.23)

where Mi is the imaginary part of the bath matrix M, which encodes the driving. The

constant A0 = 2(TrMr), with Mr being the real part of the bath matrix M encoding the

dissipation.

The eigenvalues of A, called rapidities and labeled by β’s, always come in pairs of +β

and −β. An interesting consequence, is that one set of eigenvalues, say +β′s, can be

obtained as the eigenvalue spectrum of a reduced 2n× 2n real matrix (see Appendix H),

henceforth called X, and given by,

X = −2iH+ 2Mr, (2.24)

and the complete spectrum of A is recovered as the union of the spectrum of X and −1

times the same spectrum.

It is worth noting that the complexity of the central problem of obtaining the spectrum

of the Liouvillean operator has been considerably reduced. Namely, from an exponential

one, involving diagonalizing a 22n × 22n matrix, to a polynomial one, which amounts to

diagonalize a 4n× 4n complex matrix, and finally to diagonalizing a 2n× 2n real matrix.

Herein lies the power of the method of third quantization in studying open quantum

systems.

The eigenvalues of the structure matrix A have an important physical interpretation,

first and foremost, the non-equilibrium steady state of the Lindblad equation is unique

if and only if Re β > 0 for all β’s. Whence, it follows that upon starting from an

arbitrary initial state, this will evolve in time to the non-equilibrium steady state. The

corresponding rate of exponential relaxation is determined by the real part of the smallest

eigenvalue. Finally, and most importantly, the complete set of quadratic correlations in

a unique steady state is given by15,

Tr wiwjρNESS = δi,j + 4iZi,j (2.25)

where, the matrix Z is obtained as a solution of the Lyapunov equation,

XTZ+ ZX = Mi, (2.26)

It is worth mentioning that not only quadratic but in fact any n-point function can

be obtained by exploiting Wick’s theorem. We therefore have constructive formulas to

access the spatial density and current density in the NESS, which turns out to be unique,

in our system.

15This can be proven by implementing the set of transformations form the initial Majorana-fermions

{w} to {c, c†} and finally to {a, a†}.
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2.3.1 The physics of the open system.

Using the third-quantization formalism we can compute the density and the current den-

sity easily. In the micro-canonical approach the control parameters on the system are the

number of particles N and potentials Vin/out. In contrast, in the Lindblad description the

control parameters are the bath rates ΓA,B.

In both formalisms the two control parameters determine in the steady state an aver-

age spatial density n̄B in the box B16, and total current J through a transverse section17.

Therefore we can try to match the resulting flows close to the orifice within the two

approaches by comparing these last quantities. This procedure relies on the assumption

that both the quasi-steady state of the micro-canonical formalism and the non-equilibrium

steady state of the driven open system are similar close to the orifice. Moreover, in both

approaches, we believe that the family of steady states – obtained within the geometry of

Fig. 2.1 – can be described by just two parameters, as those we are using for the matching.

In Fig. 2.12 we show the total current along an arbitrary transverse section and the

average spatial density of the NESS obtained for different ΓA,B. We will compare – close

to the orifice – the resulting flows for different bath-rates with that obtained within the

micro-canonical formalism, imposing that the average density n̄B and total current J

in the box B are matched within the two descriptions. As discussed below, in specific

regimes the agreement is even quantitative.

In Fig. 2.12(a) the total current is shown. It is evident that the total current is

non-monotonic with the strength of the coupling. The maximum is for both ΓA and ΓB

comparable to the strength of the hopping g, while the current goes to zero, if one of the

two bath-rates becomes large. This phenomenon is known in the literature as negative

differential conductance [125, 126, 127, 128, 132, 133].

In Fig. 2.13 we plot the section of Fig. 2.12(a) marked by the red dashed line. The

maximum of the total current, as anticipated, is found for ΓA,B ∼ g. This can be ex-

plained by the fact that, if a new particle is injected into a boundary-site, it requires

the typical time t∗ ∼ ~

g
to propagate to one of the nearest neighbor sites. Therefore,

while for ΓA,B < g increasing the injection rate results in an higher total current, when

ΓA,B & g the boundary sites are occupied with high probability and new particles cannot

be injected easily. A simple modification of the previous argument applies to the case of

16Within the micro-canonical formalism for the protocol expansion into fermions the value n̄B com-

puted on the steady state is very similar to that computed in the initial state. This is because the

fraction of fermions flowing into B is negligible with respect to that of fermions already present in the

volume.
17Within the micro-canonical description the section must be taken close to the orifice, where reflections

form boundaries are not important, and the measurement must be restricted to times where the flow is

quasi-steady.
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Figure 2.12: The total current (a) and the average spatial density (b) for different values

of the bath-rates.

the extraction of particles form the system.

Although this observation justifies that the current is no longer increasing when the rates

are bigger than the hopping, it does not explain the 1/ΓA,B behavior measured at large

ΓA,B. In Section 2.3.2 we will understand this feature in terms of the so called quantum

Zeno effect [129, 130, 131], for a simple two-site system.

In Fig. 2.12(b) we show the average spatial density in the box B computed in the

NESS, n̄B, for different values of the bath-couplings. As expected, the bigger the injection

rates, the higher the average density. On the other hand, the larger the extraction rate the

smaller the average density. In Fig. 2.14(a) we present in blue the average density in the

box B computed along the dashed diagonal of Fig. 2.12(b). The corresponding average

density in the narrow channel A is shown in red. In both cases, the maximum/minimum

is reached at the same point in ln(1+ΓA,B/g), which coincides with the maximum of the

total current (Fig. 2.14(b)).

We conclude the Section by noticing an interesting consequence of the non-monotonicity

of the average densities in box A and B. In Fig. 2.14(c) we plot the behavior of the

total current versus the difference in chemical potential between A and B, ∼ n̄A −
n̄B. The chemical potential is not monotonous with the strength of the driving because

the densities in A and B are not. This results in the curious hysteresis-like curve of

Fig. 2.14(c). This curve confirms that there is a optimal value of the bath rates above
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Figure 2.13: The total current along the red dashed line of Fig. 2.12(a). The maximum

is for ΓA,B ∼ g. The tail decreases as 1
ΓA,B

which the difference between the chemical potential in regions A and B starts to decrease

and the same does the total current18.

2.3.2 The two−site system and the large Γ-behavior.

In this Section, we interpret the 1
ΓA,B

behavior of the total current as a quantum Zeno

effect [129, 130, 131]. The effect is at the basis of the intriguing property of a quantum

system, subject to continuous measurements, to avoid the decay, even if prepared in a

state which is not an eigenstate. This is a consequence of the wave function collapse.

In our setup, the action of the external baths on the system can be interpreted as a set

of measurements on the system, done with a rate ΓA(B), and followed by the injection

(extraction) of a particle from the bath, if the site is found to be empty (full). However,

as the rate of measurements becomes higher and higher the probability that the system

leaves the state between two measurements decreases and eventually goes to zero at in-

finite ΓA(B).

To make this point more quantitative, as a case study, let us consider a one-dimensional

two-site system (i = A, B) with a pure hopping Hamiltonian,

H = g
[

c†AcB + cAc
†
B

]

, (2.27)

18Again, the explanation of this is given with the quantum Zeno effect in the next Section.
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Figure 2.14: (a) We show in blue the average spatial density in the large box B, n̄B, and

in brown the average spatial density in A, n̄A. In (b) we show the superposition of n̄B

(blues) and the total current (red). The curves are rescaled to have the same maximum.

Panel (c) shows the total current versus the difference between the chemical potential in

A and B, µA − µB = 4π ~
2

2m
(n̄A − n̄B). Observe that the total current can be zero also if

there is positive difference |n̄A − n̄B|. We think that this is just due the poor estimation

of the chemical potentials.
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with g being the hopping amplitude, and {ci, c†j} = δij. We call |+〉 = 1√
2
(c†A+ c

†
B)|0〉 and

|−〉 = 1√
2
(c†A − c†B)|0〉, the eigenvectors of the eigenvalues +g and −g, respectively.

The site A can receive particles from an external bath at rate Γ, while from the site B

the particles are extracted at the same rate. The Z (covariance)-matrix for this system

can be computed exactly,

Z =













0 − Γ2

g2+4Γ2 − gΓ
2(g2+4Γ2)

0
Γ2

g2+4Γ2 0 0 − gΓ
2(g2+4Γ2)

gΓ
2(g2+4Γ2)

0 0 Γ2

g2+4Γ2

0 gΓ
2(g2+4Γ2)

− Γ2

g2+4Γ2 0













.

The spatial density, and the current density can be computed analytically, the form for

which is,

〈n̂(i)〉 = 1

2
+ (1− 2δi,B)

Γ2

g2 + 4Γ2

Γ≫1−−→ δi,A

〈Ĵ(A→ B)〉 = 4
g2Γ

g2 + 4Γ2

Γ≫1−−→ g2

Γ
. (2.28)

The form of the density in the Γ ≫ 1 regime shows that the site A is always popu-

lated while the site B is always empty. The same behavior is predicted by implementing

a perturbative expansion of the density matrix in 1
Γ
, Appendix I.

Let us recover the same 1
Γ
behavior of the current for large Γ as a Zeno effect.

We consider an initial state |ψ〉 = 1√
2
(|+〉+ |−〉) = c†A|0〉 which corresponds to one

where the site-A is occupied while the site-B is empty. The probability that the state

|ψ〉 has not yet decayed after M measurements by the baths at rate Γ, at time t = M
Γ
, is

given by,

PM(t) ≡ PM
1 , (2.29)

where the measurements are considered to be independent. P1 is the probability of finding

the system in the state |ψ〉 after the first measurement at time 1/Γ, and it is computed

to be

P1 ≡ |〈ψ|e−iH/Γ|ψ〉|2 = cos2 (g/Γ) .

Hence, the probability after M measurements in the large Γ limit is the exponential

PM=Γt(t) ≈ e−
g2

Γ
t.

The bath can inject a new particle in the site A only if it is unoccupied and this occurs

after a typical time τ = Γ
g2
. The corresponding current thus behaves as 〈Ĵ〉 ∼ 1

τ
= g2

Γ
, for

large Γ, and goes to zero asymptotically, which is consistent with Eq. (2.28).
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2.3.3 Flow patterns in the open system.

We are now ready to compare the resulting flow patterns in the NESS of the open system

with those shown in Section 2.2, in the context of the micro-canonical formalism, by

matching the resulting average density and total current in the box B.

In analogy with the results obtained within the micro-canonical formalism, also within

the Lindblad description, we can distinguish two regimes in the parameter n̄ǫ2. For

n̄ǫ2 ≫ 1, i.e. the high density regime, the flow corresponds to that obtained within the

micro-canonical formalism and semi-classical diffraction theory rationalizes all observed

features.

Within the low density regime, interesting patterns in the vorticity appear when the

Fermi wavelength becomes of the order of the orifice – albeit less marked than the ones

observed within the micro-canonical formalism.

At high densities, n̄ǫ2 ≫ 1, the Fermi wavelength is much smaller than the width

of the orifice. Hence a semi-classical diffraction picture is expected to hold, marked

by a relatively simple steady state pattern. For a representative set of parameters

ΓA/g = ΓB/g = 0.256, the current density pattern and the absolute value of its vorticity

(|∇× J|) are shown in Fig. 2.15(a), as well as the spatial density pattern in Fig. 2.15(b).

The current pattern in Fig. 2.15(a), is characterized by a diffraction beam exiting from

the orifice. The angle is determined by the transverse momentum of the highest propa-

gating band in channel A (the second band). Those beams are reflected at y = ±W/2
and interfere to form two islands of intense vorticity around (4ǫ,±ǫ/2), which are thus

just due elastic reflection form the boundaries. The beams are also visible in the den-

sity pattern in Fig. 2.15(b), and the most characteristic feature of this regime is again

the rhomboidal region of very small and uniform vorticity centered at (2ǫ, 0). All this

feature are present in the high density regime of the micro-canonical formalism (com-

pare with Fig. 2.3). This strongly suggests that the quasi-steady flow captures, at late

time, the steady state properties of a long system. Moreover, this correspondence opens

questions about the equivalence of open and closed systems (far form the boundaries)

in non-interacting theories, where equivalence is not expected a priori. Indeed, while in

interacting system, randomization and thermalization in the thermodynamic limit can

occur, in non interacting system there is no evident mechanism to damp time-oscillations

and make the dynamics approaches a steady state.

The low-density regime, where the Fermi wavelength is of the order of the orifice

width, is obtained, e.g., by tuning the injection rate, ΓA,B, such that ΓA ≪ ΓB, and
ΓA,B

g
≪ 1.

For this regime, the current and vorticity patterns of the steady state are shown in
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Figure 2.15: Steady state from the Lindblad equation at high average density, n̄ǫ2 ≈ 2.5.

(a) Current density field J(x, y) (red arrows) superimposed on a contour plot of |∇× J|,
for ΓA,B = 0.256g. The orifice is marked by a solid bold line. (b) Corresponding density

pattern. Distances are measured in units of the orifice width ǫ (note that the aspect ratio

2:5). In all plots lighter colors correspond to larger values (linear scale).

Fig. 2.16. The rhomboidal region of size ∼ W 2 close to the orifice contains several intense

local maxima of the vorticity, in qualitative agreement with what is found using the

micro-canonical approach to closed systems. However, along with this feature a much

more complicated structure of vorticity develops throughout the wide region B. We

rationalize this reacher vorticity structure as it follows. The coupling to the absorbing

bath at x = L = 10ǫ acts only as a semi-transparent wall (it becomes fully transparent

only in the limit of infinite absorption ΓB → ∞). Thus, there is partial reflection of

the particle flux at the far ends, and reflected and incoming waves superpose to form a

complicated structure of currents and vorticity due to interference. These effects, due

to reflected waves, survive even close to the junction, because of the lack of dephasing

and randomization in this non-interacting system. While some reflection is certainly also

present in the higher density regime, its relative effect is apparently much smaller, so that

the driven open system and the quasi-steady state of the closed system are very similar

close to the orifice.

The correspondence between the Lindblad and the micro-canonical description of the

system may be extended to the low density regime. A chance is to introduce some

disorder in the box B close to the boundary in order to destroy regular patterns in the

reflected waves.

In contrast to the involved structure of the steady-state of the open system, the
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Figure 2.16: The current density superimposed on the absolute value of the vorticity,

as obtained with a low average density, n̄ǫ2 ∼ 1.1. In this regime quantum interference

effects are strong, as in closed systems, but they differ quantitatively, because of important

reflections at the leads x = ±L, which are absent in the quasi-steady state analyzed in

closed systems. x and y coordinates are in measured in units of the orifice width ǫ. Note

the aspect ratio 2:5 of the axis scales.
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micro-canonical approach can access the quasi-steady current pattern before reflections

from the boundary at ±L occur (compare with Fig 2.4). It is thus more suitable to reveal

the effects induced on the current pattern by quantum statistics. The most interesting

effects due to Pauli exclusion are found at low densities n̄Aǫ
2 ≈ 1, in the rhomboidal

region close to the orifice where the reflection of diffracted beams from boundaries do not

play much of a role.

However, the qualitative (and quantitative in the high density regime) agreement between

the micro-canonical and the Lindblad descriptions at high density strongly suggests that

the quasi-steady state observed within the micro-canonical formalism captures the essence

of the physics of the steady state.

2.4 Conclusion and Discussion.

Using two complementary approaches, we have analyzed both the steady-state properties

and the transient dynamics of an ideal Fermi gas pushed out of an orifice into a wider

region. Within both methods, the system has been studied numerically and the number

of states, infinite in principle, is kept finite by the introduction of a finite lattice.

The main result is that Pauli exclusion strongly influences the current flow of fermions

at finite density: it induces current patterns with staggered local moments of appreciable

size, formed by itinerant fermions in an out-of-equilibrium steady state. These features

can be found if the flow occurs in a non-uniform fermionic density, as if local maxima

deviates incoming particles with a “statistical pressure” due to exchange interaction.

In experiments where Friedel oscillations are present, for instance because of the con-

finement in optical traps, similar patterns in the vorticity may be expected. Combining

the results obtained within the micro-canonical formalism with those within the Lindblad

description, we suggest that the observed patterns in the low density regime of the micro-

canonical description are steady and hence simpler to detect experimentally. Moreover,

the resulting magnetic field may be used to experimentally probe the predicted patterns.

Since these effects are (after all) interference phenomena, we expect them to be ro-

bust towards weak interactions. It would be interesting to extend the present study to

disordered systems and compare with the predictions of very heterogeneous current flow

with substantial steady vorticity therein [137]. We expect that density inhomogeneities

due to Friedel oscillations from strong impurities (taking the role of the boundaries) will

lead to similar interesting vorticity patterns under a non-equilibrium steady state.

Already at equilibrium, Pauli exclusion leads to interesting interference phenomena

in free fermions. We presented here one even more complex example out-of-equilibrium.

Understanding deeply the role of Friedel oscillations out of equilibrium, is an attractive

perspective.
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Our study was originally motivated by non-trivial dynamics observed in non-interacting

1d fermionic systems [118, 119, 120, 121] and by the possibility that exchange interaction

alone may induce non-trivial flows, such as turbulence, in ideal driven Fermi gases. Al-

though our investigations reveal intriguing non-trivial patterns in the vorticity, the flow

does not develop any chaotic/turbulent behavior, even at strong driving19.

We conclude the Chapter with a comment about the possibility of developing analytic

effective descriptions of this system. The first point to observe is that, even though the

density and current density can be obtained as summation over single particle solutions,

this is not a simple task to accomplish in a non-integrable geometry as that of Fig. 2.1.

On the other hand, one could think about deriving an effective description in terms of

hydrodynamics, as it is possible for interacting quantum gases. Although this seems an

attractive possibility, there are fundamental principles that seem to prevent this approach.

Indeed, any hydrodynamical description relies on the fundamental assumption that the

typical scale at which the system is observed is such that local equilibration washes any

feature of particle distribution20. In our system, the inter-particle distance is set by the

Fermi wavelength which is the typical scale of non-trivial patterns, and thus the typical

scale that we would describe. This consideration makes us rather skeptical about the

possibility of formulating a predictive hydrodynamics which captures these features21.

19We called strong driving the regime where the driving is of the order of the chemical potential.

Higher drivings could in principle reveal unexpected instabilities.
20The scale of the observation should be much larger than the mean free path. In a non interacting

system this quantity is strictly speaking infinite. However, if the exclusion principle is interpreted as an

analogue of an interaction, the proper scale to consider for this kind of reasoning is the Fermi wavelength.
21An attempt in this direction was done in [121] for one-dimensional free fermions, which, however

resulted in considerable overestimation of the amplitudes of the interesting features.
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Chapter 3

Conclusive Remarks

In this thesis we analyzed two examples of numerical methods to tackle quantum many-

body systems which are characterized by an infinite dimensional space of states. In both

cases numerical methods have been useful to extract new physical informations about the

studied systems.

The first method is the Truncated Conformal Spectrum Approach (TCSA) that we

applied to perturbed Wess-Zumino-Witten (WZW) models as continuum limit of Heisen-

berg spin-chains and to Landau-Ginzburg theories. We proved that the method works in

both cases and reproduces well known analytic predictions. This was not guaranteed for

perturbed WZW models, since their space of states grows fast with the truncation level,

nor in the case of Landau-Ginzburg theories, which are characterized by an uncountable

space of states.

Within WZW models, we evidence that the TCSA can be used even in the presence of

marginal perturbation, provided that UV divergences are properly treated. In the con-

text of Landau Ginzburg theories, we instead tested a conjecture on the number of stable

bound states in the spectrum.

The second approach has been used to study ideal fermionic systems, which, in our

specific case, are forced to flow in a non-integrable, two dimensional geometry: a narrow

channel joined to a wider volume. The infinite space of states is reduced to a finite

subset by the introduction of a finite lattice with density of sites in principle much higher

than the density of fermions. Two different approaches, based on the micro-canonical

formalism and the Lindblad equation, have been used to study the non-equilibrium-

steady-flow patterns generated when fermions are driven form the narrow channel to the

larger volume.

Within both methods, we confirmed that quantum statistics affects the flow by generating

non trivial patterns in the vorticity, at the scale of the Fermi wavelength. These patterns

result in local magnetic moments of the order of measurable fractions of the magneton.
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The resulting measurable, non-trivial features are predicted to form in every experiment

where strong potential, disorder or confinement are present.

The formation of non-trivial flows is interpreted as a direct effect of Fermi statistics

detectable if the flow occurs in a non-uniform (fermionic) density. Albeit particles are

non-interacting, we conjecture that Pauli exclusion results in a statistical pressure on

incoming fermions such that they sense the non-uniformity of ”density-landscape” and

avoid its maxima, generating the observed non-trivial patterns.
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Appendix A

Basics of TBA.

In this Appendix we summarize principal concepts of Bethe-Ansatz and its thermody-

namic formulation that are used in this thesis. As starting point, consider a (1+1)-

dimensional integrable field theory on a circumference of length L, leading to a set of

particles with mass {ma} which scatter with a scattering matrix Sab(θab), θab = θa − θb
being the rapidity difference, each of these being defined to have: Ea = ma cosh(θa) and

pa = ma sinh(θa). For this simple theory we can write the wavefunction for a given state

of N particle as

ψ({xa}) =
N
∏

k=1

eipkxk (A.1)

Every time that two particles are exchanged (scatter) an S-matrix factors appear. There-

fore assuming to pick a particle and bring it around the circle to put it back to the original

position we have the identity (depending if we choose periodic or anti-periodic boundary

conditions)

eipaL
∏

a 6=b

S(θab) = ±1 (A.2)

which is equivalent to to

maL sinh(θa)− i
∑

b 6=a

lnS(θab) = 2πna . (A.3)

These are the so called Bethe equations which put in relation the Bethe-numbers {na}
to the rapidities of the theory θa, called roots of the Bethe-equations. The energy and

momentum of the multi-particle state are

E =
∑

a

ma cosh(θa) , and p =
∑

a

ma sinh(θa). (A.4)

We can now take the thermodynamic limit (TDL) L → ∞ and N → ∞ keeping fixed

the ratio N/L. In this limit the energy of the system can be written as

E[ρ(p)] =
∑

a

∫

dθρ(p)(θ)ma cosh(θ), (A.5)
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being ρ(p)(θ) the probability density of the rapidities of the particles of species a. The

Bethe equations in the TDL become

maL sinh(θa)− i
∑

b

∫

dθb lnS(θa − θb)ρ
(p)
b (θb) = 2πna . (A.6)

The roots for the Eq. (A.6) are solution for another set of non-admissible quantum num-

bers, corresponding to another set of excitation called holes, which density is called ρ
(h)
a .

The total density can be defined to be

ρa = ρ(p)a + ρ(h)a . (A.7)

At this stage, the thermodynamics of the system can be worked out by estimating the

phase space within the shell ∆θ in the rapidities,

Ωbosons
a =

[Lρa(θ)∆θ]!

[Lρ
(p)
a (θ)∆θ]![Lρ

(h)
a (θ)∆θ]!

Ωfermions
a =

[L
(

ρa(θ) + ρ(p)(θ)− 1
)

∆θ]!

[Lρ
(p)
a (θ)∆θ]![L (ρa(θ)− 1)∆θ]!

, (A.8)

to access the entropy (S = ln
∏

a Ωa) and the free energy f = E − TS. The tempertaure

is defined to be T = 1
R
. All the thermodynamic functions are usually expressed in terms

of pseudo-energies ǫa(θ) which are defined by

e−ǫa(θ) =
ρ
(p)
a (θ)

ρa(θ)± ρ
(p)
a (θ)

(A.9)

where the +-sign is for boson and the minus sign for fermions. The free energy, expressed

in terms of pseudo energies, looks that of a free system with “effective” spectrum ǫa(θ):

f(R) = ∓ 1

R

∑

a

∫

dθ

2π
ma cosh(θ) ln

(

1± e−ǫa(θ)
)

(A.10)

and the ground state energy is

Egs(R) = ∓
∑

a

∫

dθ

2π
ma cosh(θ) ln

(

1± e−ǫa(θ)
)

(A.11)

In a massive theory however there must be a part of the energy which scales linearly with

R for large R, the bulk energy: Egs ∼ ǫbulkR.

Let us now outline how the mass-coupling formula can be derived. Let us consider for

simplicity a Z2-invariant theory where the conformal action is perturbed with an operator

with dimension 2∆ (we assume ∆ = ∆̄):

S = SCFT + λ

∫

d2xΨ∆(x)
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From dimensional arguments we have that λ = Dm2−2∆. To determine D we apply the

conformal perturbation theory and arrive to

f(R) = − c0
12

− ǫbulk
2π

R2 + F2nR
2(2−2∆)λ2 + . . . (A.12)

On the other hand, the TBA leads to expansion for the the free energy:

f(R) = − c0
12

− ǫbulk
2π

R2 + f2n(mR)
2(2−2∆) + . . . (A.13)

Thus by comparing the terms proportional to R2−2∆, and using λ = Dm2−2∆ we get

D2 =
f2
F2

(A.14)

which gives the mass-coupling formula.
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Appendix B

Compactified boson and sine-Gordon

model.

To test the code we first reproduced the well known spectrum of the sine-Gordon model

S =

∫

d2x

(

1

2
∂µφ∂

µφ+ 2λ cos (βφ)

)

(B.1)

The perturbation is just the sum of the two primaries with n = ±1. For a specific

value of the frequency β =
√
2π the model has an underlying SU(2) symmetry and

therefore it presents some peculiar features. We correctly reproduced the spectrum and

the degeneracies just fixing the parameter β of the compactified boson to
√
2π and working

in the winding sectors w = 0, 1,−1 to account for the topological charges of the solitons

next to the neutral breathers. We also verified the mass-coupling relation

λ =
Γ
(

β2

8π

)

πΓ
(

1− β2

8π

)

[

M
√
π
Γ
(

1
2
+ ξ

2π

)

2Γ
(

ξ
2π

)

]2−β2

4π

, ξ =
β2

8

1

1− β2

8π

(B.2)

computed in Ref. [?], and we finally checked the numerical data with the thermodynamic

Bethe-ansatz (TBA) computation of the ground state energy.

The results (for the winding sector w = 0) can be found in Fig. (B.1). Here we have

also set the parameter λ in order to have M = 1 according to (B.2). The green line is

the ground state of the theory and is in quite good agreement with the TBA prediction

(blak, dashed line). Above that, we find the first excited level (red) to be a bound state

with mass m1 =M = 1 as expected, while the mass ratio between the second (blue) and

the first bound state is m2/m1 =
√
3.
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Figure B.1: In the picture it is shown the spectrum of the Sine-Gordon model with

frequency β =
√
2π in the w = 0 sector. The thermodynamic Bethe-ansatz prediction

for the ground state (dashed black line) is well reproduced as well as that for the mass

ratio between the first and second mass (m2/m1 =
√
3, dashed blue line). The first mass

is set to one (dashed red line) by using the mass-coupling formula (B.2).
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The Derivative-method.

In this appendix we compute the generic matrix elements of the form

M
(m)
ab = 〈a|φm(0)|b〉 (C.1)

within the derivative method. Here |a〉 = |n, aL, aR〉 and |b〉 = |n′, bL, bR〉, and the matrix

elements are formally written as

M
(m)
ab = (−i)m∂(m)

γ 〈n, al, aR|eiγφ(0)|n′, bL, bR〉|γ=0.

To compute such matrix elements we can separate the left and right parts of the vertex

operator

〈n, aL, aR| eiγφ |n′, bL, bR〉 = 〈n, aL| eiγφL |n′, bL〉 〈n, aR| eiγφR |n′, bR〉 , (C.2)

and the two terms with definite chirality may be computed exploiting the commuta-

tion relations (1.163), so that the two chiral matrix elements can be rewritten as two

polynomials in γ, PL(γ) and PR(γ):

〈n, aL, aR| eiγφ |n′, bL, bR〉 = 〈n| eiγφ |n′〉PL(γ)PR(γ) , (C.3)

where PL(R)(γ) = α0L(R) + α1L(R)γ + α2L(R)γ
2 + . . . . The final prescription to compute

the matrix element is

M
(m)
ab = (−i)m∂(m)

γ

{

β

2π

∫ β
π

−β
π

dφ ei[β(n−n′)+γ]φ PL(γ)PR(γ)

}

γ=0

(C.4)

leading to the following formula

M
(m)
ab = (−i)m β

2π

∫ β
π

−β
π

dφ eiβ(n−n′)φ

m
∑

p=0

(

m

p

)

(iφ)p ∂m−p
γ [PL(γ)PR(γ)]γ=0 . (C.5)
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Performing the integrals in (C.5) we obtain

M
(m)
ab = (−1)

m
2 m!

m
∑

p=0
p even

{

δn,n′
(−1)

p
2

(p+ 1)!

(

π

β

)p

+

(1− δn,n′)(1− δp,0)(−1)n−n′−1

p−1
∑

q=0
p−q odd

(−1)
p+q+1

2

(p− q)! [π(n− n′)]q+1















m
∑

k,j=0

αkLαjRδk+j,m−p.

(C.6)

This last formula expresses all matrix elements of the operator φ(0)m in terms of the

coefficients {αsL(R)} that are computed numerically just exploiting the U(1)1 algebra. It

holds just for even m, however the extension to odd powers is straightforward.
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The commutator [ap, e
iγφ].

The commutator between U(1)1 modes and the operator eiγφ is well defined if γ is a

multiple of the inverse compactification radius, γ = βn, and the operator is then a

primary field of the theory. In this case, the commutator acts as a derivative with respect

to φ, that is

[ap, e
iβnφ] = i∂φe

iβnφ = (−βn) eiβnφ . (D.1)

The Fourier expansion in the compactification region of the operator eiγφ for generic real

γ, reads

eiγφ =
∑

n

c(γ)n eiβnφ . (D.2)

Then, the natural definition of the commutator for generic γ would be

[ap, e
iγφ] =

∑

n

c(γ)n [am, e
iβnφ] =

∑

n

(−βn) c(γ)n eiβnφ . (D.3)

This expression, however, must be taken with care, since the series on the r.h.s. does not

converge to −γeiγφ, as one could expect. This can be seen in Fig. D.1. Nonetheless, the

r.h.s. of eq. (D.3) can still be made sensible in the distributional sense. Indeed, since

eiγφ is not continuous on the circle if γ is not a multiple of the radius β, then we have

to take derivatives in the distributional sense. It is now easy to see that the coefficients

(−nβ)c(γ)n in the r.h.s. of eq. (D.3) are indeed the Fourier coefficients of the distribution

i∂φe
iγφ. With these considerations in mind, we can safely write

[ap, e
iγφ] = i∂φe

iγφ , (D.4)

but now the derivative must be considered in the distributional sense. If we apply such a

distribution to a test function ψ(φ), we see that some boundary contributions are present

if the function is not periodic in [−π/β, π/β]. A short computation indeed shows that

[ap, e
iγφ] = −γeiγφ + 2 sin

(

π

β
γ

)

δ (φ− π/β) . (D.5)
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Figure D.1: (a) The black thick line is the real part of −γeiγφ on the circle for γ not a

multiple of β (here γ =
√
2β and β = π). We also show the series of the r.h.s. of eq. (D.3),

truncated keeping only N terms (N = 5, 10, 50 in red, blue, green respectively). It is clear

that, even if the average value of the truncated series approximates the real part of the

function, the series does not converge to it. The width of the oscillations is indeed

constant. (b) The imaginary part of −γeiγφ on the circle for γ =
√
2β. Increasing N , the

truncated Fourier series (N = 5, 10, 50 in red, blue, green respectively) clearly converges

to the function..

As it should, the boundary term vanishes if γ = nβ for some integer n. This we claim

to be the natural definition of the commutator between U(1)1-modes and the operator

eiγφ for generic γ. Nonetheless our target theory will be recovered just in the β → 0

limit where the additional boundary term does not contribute. With this in mind, the

derivative method consists in discarding this term and forcing the commutator (1.163)

also when γ is not a multiple of β.
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Appendix E

Influence of boundary conditions.

Here, we analyze the influence of boundary conditions on the formation of non-trivial

current patterns in closed systems, by considering different boundary conditions. We

work within the micro-canonical formalism with Vin = 0, and Vfin ≈ 1
2
µ, in the low-

density regime n̄ ≡ n̄B ≈ n̄A ≈ 1.1/ǫ2, where non-trivial patterns appear. In Fig. E.1(b)

we show patterns obtained with periodic boundary conditions where y = ±W/2 are

identified. We observe that the main qualitative features of the patterns close to the

orifice (x . 4ǫ ∼ W ) are still present with periodic boundary conditions; in particular,

the two islands of vorticity close to (x, y) ≈ (2ǫ,±ǫ/2) still form. However, one should

not expect quantitative agreement near the orifice.
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(a) (b)

x̂ x̂

ŷ

1

-1

0

2                    4                    6                    8   2                    4                    6                    8   x̂ x̂

Figure E.1: Comparison between (a) closed and (b) periodic boundary conditions at

y = ±W/2 (here W = 4ǫ) in the low-density regime (n̄ǫ2 ≈ 1.1). Shown is the cur-

rent density, superimposed on the vorticity contour plot, as obtained within the micro-

canonical approach, with Vin = 0, and Vfin ≈ µ/2. Two non-trivial patterns close to

the orifice at (x, y) ≈ (2ǫ,±ǫ/2) are encircled in yellow. The x and y coordinates are

measured in units of the orifice width ǫ. Note the aspect ratio 2:5 of the axis scales. The

color code is the same for both figures.
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Appendix F

Magnetic and electric fields

generated by charged polarized

particles.

Let ~j be the 2d number current density of atoms in the x− y plane (z = 0), and define

~b(~r = {x, y, z}) = µ0

4π
·
∫

dx′dy′~j(~r′)× ~r − ~r′

|~r − ~r′|3

where µ0 is the permeability of vacuum. According to the Biot-Savart law, the magnetic

field generated by moving particles of charge e, is then given by

~B(~r) = e~b(~r).

Similarly, polarized neutral particles with a static electric dipole ~d produce a magnetic

field
~B(~r) = (~d · ~∇)~b(~r).

Likewise, polarized particles with static magnetic moment ~m generate an electric field

~E(~r) = −(~m · ~∇)~b(~r).
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CHARGED POLARIZED PARTICLES.
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Appendix G

The Liouville-Fock Space.

In this Appendix we sketch the contraction of the Liouville-Fock space, K, the operator

space which contains the density matrix of the system and which is the starting point

for the construction of the third-quantization formalism. More details can be found in

Ref. [37, 38].

Let us define the states of K as

Pα = 2−n/2wα1

1 . . . wα2n

2n , (G.1)

where {w} are Majorana fermions satisfying {w1, wj} = 2δi,j, and αi ∈ {0, 1}. A scalar

product can be introduced in this space as

Pα · Pα′ = TrP †
αPα′ .

The dimension of the Liouville-Fock space is dimK = 22n and ρ ∈ K. The idea is to

introduce 2n creation and 2n annihilation operators on this space as follows:

cjPα = αjwjPα

c†jPα = (1− αj)wjPα. (G.2)

The crucial point is now to express the Liouvillean in terms of {c, c†}. This can be done

by looking explicitly at the action of the Liouvillean expressed in Majorana fermions and

reproducing the same result with the above new operators. We show, for instance how

to do it for the unitary part of the Liouvillean. The first point is to consider that, having

a Lie algebra structure on K, the commutator [H, ·] can be represented as

|[H, ·]〉 = adH|·〉.

The Hamiltonian a quadratic form in the Majorana-fermions and hence the fundamental

ingredient to map is

ad(wiwj)Pα = wiwjPα − Pαwiwj = 2
(

c†icj − c†jci

)

Pα.
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With similar ideas one expresses the full Liouvillean in terms of the 4n adjoint fermions.
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Appendix H

Normal Master Modes and Shape

Matrix.

In this Appendix we sketch the procedure to diagonalize the Liouvillean in its final form

in terms of Normal Master Modes (NMM). More details can be found in Ref. [37, 38].

The first point is to observe that the shape matrix A can be casted in the following form

A = VTΛV, with Λ = DJ, VTV = J

with D diagonal and

J =

(

0 1

1 0

)

⊗ I2n. (H.1)

At this stage Eq. (2.22) is “similar”1 to

L̂ = a ·VTΛVa = a ·VTDJVa

which can be diagonalized as

L̂ = b′ ·Db (H.2)

with

b = JVa and b′ = VTa.

Even if b and b′ satisfy canonical anti-commutation relations they do not constitute a

real fermionic base since they are not the adjoint of each other. However, these operators

(the NMM) diagonalize the Liouvillean.

1See [38] for more details.
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Appendix I

The large-Γ expansion of the density

matrix.

Here, we outline a recursive solution for the Lindblad equation for the two-site system

case, in the large−Γ regime.

Our objective is to recover the constant large−Γ behavior of the average density and

the g2

Γ
trend of the total current. We assume that the density-matrix can be expanded as

ρ = ρ0 +
1

Γ
ρ1 +

1

Γ2
ρ2 + . . . (I.1)

and, once plugged into the Lindblad equation (2.18), we solve the resulting recursive

linear system up to the required order:

L[ρ0] = 0, (I.2)

L[ρ1] = i[H, ρ0], (I.3)

L[ρ2] = i[H, ρ1],

L[ρ3] = . . .

The Eq. (I.2) for the two-site system with the constraint that the trace of the density-

matrix is unity, gives the unique solution,

ρ0 = |1, 0〉〈1, 0| , where |1, 0〉 ≡ c†A|0〉. (I.4)

This is the state with site-A occupied and the site-B empty, so that none of the two

external baths can modify it. The asymptotic average density δi,A is thus captured

correctly by ρ0. At this point, ρ1 can be determined using Eq. (I.3), thus obtaining,

ρ1 =
ig

2
[|0, 1〉〈1, 0| − |1, 0〉〈0, 1|] , where |0, 1〉 ≡ c†B|0〉, (I.5)

from this it is simple to compute the average current density, which at large Γ, reads as

〈Ĵ〉 ∼ g2

Γ
.
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