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1 Introduction

The physics of Helium at low temperatures is one of the most interesting topics in con-
densed matter physics.[1] The rich phenomenology that has been experimentally evidenced
in fifty years of investigations allows for touching with hand the peculiar features that char-
acterize the systems in which quantum effects are prevalent on the classical physics[2]. The
presence of two distinct isotopes, *He and 3He with different statistical properties ( the
first is a spin 0 boson while the second is a spin 1/2 fermion ) makes of Helium a relevant
topic in the field of quantum many body physics.

From the theoretical point of view an ensemble of N He atoms is realistically described
by a non relativistic hamiltonian of N elementary particles interacting via a two-body
potential:

N 2 N
22— EDIPILICH] (1.1)
= 1=1 1<y

The interatomic effective interaction v, is known with a remarkable precision, and is
usually fitted by the so called Aziz potential[3]. Employing this potential and using the
most sophisticated techniques of microscopic investigation it has been possible to reproduce
most the experimental results in *He[4].

In 3He the available many-body theories do not still allow to check the reliability of

the model hamiltonian (1.1) with the same accuracy as in *He.
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In the last few years much experimental effort has been devoted to the study of co-
existing phases, interfaces[5, 6, 7, 8], mixtures[9], free surfaces[10], thin films[11, 12, 13].
Few microscopic calculations have been performed for inhomogeneous systems such as
films[14, 15], droplets[16, 17], and liquid-vapor interface[18, 19, 20], mostly in the frame-
work of variational theories. The most sophisticated simulation techniques, such as the
Green Function Monte Carlo (GFMC) and the Diffusion Monte Carlo (DMC), that pro-
vided very good results in the study of the bulk[21], have been used to simulate helium
droplets[22] with some success. Path Integral Monte Carlo (PIMC) technique has recently
been used to describe a thin film of “He on a graphite substrate[23]. However, the major
limitation of these methods is that they are very demanding strictly from a computational
point of view, and the size of the systems that can realistically be simulated is rather small.
On the other hand the Variational Monte Carlo (VMC)approach, allows for dealing with
a much larger number of p;irticles, necessary to obtain a reasonable representation of two

coexisting phases and of the relative interface.

A remarkable improvement in the description of ‘He néar the solid—fluid phase transi-
tion has been achieved by the introduction of the Shadow Wave Function (SWF)[24, 25].
Shadow Wave Function that is written in form of a convolution of function correlating the
atoms and a set of auxiliary variables (the “shadows”), is employed as a trial wave function
in the VMC and recently also in HyperNetted Chain (HNC)[26] calculations. One ma-
jor property of SWF is the capability of describing a crystalline system without breaking
explicitely the translational invariance of the wave function. In this thesis we extend the
SWF formalism, introducing a new form of the wave function, the Local Density Shadow
Wave Function (LD-SWF)[27, 28], that allows for the description of phase-coexistence and
other inhomogeneous situations. By this wave function we performed the first simulation

of spontaneous crystallization from a superdense liquid in a quantum system, confirming
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the effective capability of LD-SWF to provide a solid phase as variational ground state

whenever the density is increased enough[29].

We focused in this work on the solid-liquid coexistence and interface in “He, ob-
taining the first microscopic estimates of interesting quantities, such as the width of the
éohd—liquid interface and the interfacial energy. Such calculations, existing for classical

systems[30, 31], were completely missing for quantum systems.

The importance of studying solid-liquid coexistence in 4He is given by the fact that
it represents a nearly ideal system in the study of surface properties, due in particular to
the high purity that can be easily reached in the samples. This allows, for instance, the
study of crystal growth in an intrinsic regime. Recent experimental works of the group of
S. Balibar[8] and of O. A. Andreeva[6] on the roughening properties of the crystal surface
of *He renewed the interest on this topic. Such experiments are based on the measure of
the anisotropy of the surface stiffness, quantity connected to the roughening temperature,
with respect to the orientation of the crystalline planes, in order to understand if for some
orientation the solid surface is rough at any temperature. Connected to that is the study of
stepped surfaces and of crystallization waves. Other important experiments are devoted
to the study of thin films of *He deposited on different substrates[13, 12]. It is known
~ that the first layers of helium are crystallized, and successively one starts to observes fluid

layers. This situation may be described in a simulation with a large number of atoms by

means of LD-SWF.

Another important extension of SWF, introduced in this thesis, has been done to
describe 3He[32]. The phenomenology in ®He is reacher than in “He, due to the presence
of spin (polarized states, spin ordering, magnetic properties). Preliminary results obtained
extending SWF to 3He are very encouraging. The upper bound for the energy per particle

in the liquid phase at equilibrium density, shows that the quality of the results is similar
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to that in ‘He. Moreover we obtained a stable crystal with the correct structure when
increasing the density. This indicates the possibility to simulate also in 3He the solid liquid
coexistence, and eventually other inhomogeneous phases.

The plan of the work is the following. We start with describing briefly the state
of the art in conventional variational theories. We introduce then the Shadow Wave
Function (SWF) in its original formulation, and its extension to Local Density Shadow
Wave Function (LD-SWF), developed in order to describe inhomogeneous systems such
as liquid-solid coexistence. We will then present results on the spontaneous crystalliza-
tion of a superdense liquid sample using such formalism, on the study of the solid-liquid
coexistence and interface in *He Finally preliminary results on the extension of SWE to

3He .

Note on units.
In this thesis we use conventional units used in low-temperature physics. In particular all

energies are given in Kelvin (K ), and lengths are given in units of o = 2.556A.



2 Variational theory of solid and
liquid “He

Variational methods[2, 21] represent one of the most successful approaches to the micro-
scopic study of many body systems. It is based on the property of the ground state ¥ of
a given system fo minimize the functional Eo = (U]|HT|)/(¥|T). For any other “trial”
wave function U7 the following inequality holds:

(Ur|H|¥7)

Er =
T )

> Ey. (2.1)

In this context it is assumed that within a given class of wave functions dependent on a
set of parameters the best approximation to the ground state of the system is obtained

minimizing the expectation value of the hamiltonian with respect to the parameters.

2.1 'Trial wave functions

The major task in the variational computations is to find trial wave functions able to
reproduce as closely as possible the exact ground state energy of the system considered.
A trial wave function that provides energy upper bound close to Ep may describe other

important physical properties of the system very badly. It is therefore important that the
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overlap between U7 and Uy is as large as possible. This implies that the choice of the wave
function must be done trying to include in it as much physics as possible. The usual way
of building up a variational wave function for a quantum system of N strongly interacting

objects is to write it in the form of a product:

Ur(ry---ry) = F(ry---ry)o(rye - ), (2.2)

where {r; - --ry} are the coordinates of the particles. ¢(ry---ry) is a mean field solution
embodying the phase and symmetry properties of the system, and F(r;---ry) expresses
the dynamical correlations induced amongst the particles in the system by the interaction.

Let us focus the attention on liquid and solid *He. The mean field factor ¢(r1---ry)

is of the form:
p(ry--ry) = SH wi(ri), (2.3)

where S is the symmetrization operator. The correlation factor can be expanded in the

so called Feenberg form[2]:

1 1
F(ry---rn) =exp ‘§Zu(rij)—§ ST uB ey + .. (2.4)
i< i<j<k

Actual calculations do not consider explicit correlations involving more than three
particles. The functions u,u(®, - are called two-, three-,... body pseudopotentials, and
exp [—% 2i< u(rij)i], exp [——% Doicj<k u(3)(r,~,rj,rk)i],..., two—, three—,... body correla-
tion factors.

The main role of F is to correct the independent particle wave function ¢ at short
interparticle distances, where the strong repulsion of interactions of the Lennard-Jones
type prevent the “He atoms to come too close. In fact, perturbative corrections to the mean
field hamiltonian associated with ¢, are very large if not divergent, due to the repulsive core

of the interaction. However, F' has an important role also at large interparticle distances,
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due to long range correlations present in the quantum system, which are intimately related
to phonon collective excitations.[33] In the following sections we will introduce briefly the

main trial wave functions of the Feenberg form that have been used in the studies of *He.

2.2 Mean field factor

In the Bose case the mean field solution is the fully degenerate independent particle wave
function, namely ¢;(r) = ¢(r) for i = 1...N and |¢(7)|? is proportional to the one body
density of the system. Therefore () is a constant in the homogeneous liquid, and a single
pariicle function satisfying proper boundary conditions for a liquid with a free surface[18]
or a droplet[16]. In order to have a localization of the particles on the sites of some given
lattice it is in general necessary to modulate the wave function with a one body term

consisting on gaussians centered on the appropriate positions. Such factor is known as
Nosanow factor[34]:

N 2

oy = 8§ ] e Cti=s)’, (2.5)

=1
where C' is considered as a variational parameter. The Nosanow factor breaks explicitly
the translational symmetry of the wave function. The symmetrization is expected to
have little effect because the exchange probability in the solid is depressed by the strong

localization, and in most of the calculations it has been neglected.

2.3 Jastrow wave function

The simplest form of trial wave function can be obtained truncating F' at the two-body

level:
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Uy(ry---rn) = [] frig)e(rn- o), (2.6)

1<]

where:

f(ri;) = e zulris) (2.7)

is called Jastrow correlation factor[35]. The first application in a variational calculation

is due to McMillani[36], that used a short ranged inverse power pseudopotential

u(r) = (b>5 : ’ (2.8)

r
resulting from the exact short range behaviour of the solution of the Schrédinger equation
with a Lennard—Jones potential. The use of a short ranged wave function is not correct
in principle, because it has been proved that the pseudopotential, should behave at large
distances as 1/72[33]. However the long range behaviour of f(r) at large distances has
little effect on the energy estimate, and therefore is often neglected in calculations. The
variational energy obtained with such wave function is still quite high (Eq = —5.72K
when b = 1.20, 0 = 2.556A). Nevertheless it represents an useful starting point for further

developments of more sophisticated wave functions.

2.4 Jastrow + Triplet wave function

A better trial wave function that includes explicit three body correlation (triplet correlation)[37]
was introduced both in VMC[38] and HyperNetted Chain (HNC)[39, 40] studies, to simu-
late Feynman—Cohen backflow[41]. It is obtained multiplying the Jastrow form by a triplet
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term:

Uyp=e b = H e~ 5 2 p E(ri)E(ran)riy Tix U5, i (2.9)
. <<k
where P are cyclic permutations over the three indexes. The three-body pseudopotential
in eq. (2.9) can be rewritten as:
1 : 1 N . . 1 2 92 <
-2~ Z §(rij)§(rik)rij T = Z Z G(Z) . G(Z) - 5 Zf(?‘ij) Tij’ (2.10)
P i=1 1<J
where :
N
G(Z) = ZT{jf(T,’j). (2.11)
j=1
Ji
This expression is more convenient in Monte Carlo computation because involves only
updating the pair form G(%). A possible parametrization of the functions £(r) is that
employed in ref. [42]:

£(r) = Vae(=2) (T - TC)z,. | (2.12)

Tc

The parameter r. is a cutoff distance introduced not to have discontinuities in the loga-
rithmic derivative of the wave function at the border of the simulation box. The other
parameters are the strength A, the position and the width of the gaussian. The triplet
correlation provides a localization of the particles at a distance Rg depending on the angles
between the directions joining the three particles. The results obtained with the intro-
duction of a three body correlations give a substantial improvement with respect to the
Jastrow form. In particular at po® = 0.365, the equilibrium density in *He, the upper
bound for the energy per particle is Fp = —6.674 £ 0.007 K. Also in the solid phase,
simulated multiplying the trial wave function by the Nosanow factor, the triplet gives a
better energy, that is Fp = —3.786 £ 0.014 K at demsity po® = 0.550, to be compared
with Eg = —3.322 £ 0.019 K given by the Jastrow+Nosanow wave function at the same
density. '
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po EMC Vitiello-Schmidt DMC
0.327 —6.8543 4£0.0022 —6.8044+0.015 —7.0117+0.0018
0.365 —6.90144+0.0037 —6.862+0.016 —7.143240.0038
0.401 —6.64274+0.0029 —6.524+0.020 -7.0166 £ 0.0054
0.438 —5.991140.0076 —5.837+£0.023 —6.5105 £ 0.0060

Table 2.1: Energy per particle (in Kelvin) for optimized variational wave functions in *He compared

with DMC results for four densities in the liquid branch of the equation of state. (From ref. [47]).
2.5 Wave Function Optimization

The optimization of variational wave functions is a long standing problem, and many
attempts have been done both in HyperNetted Chain (HNC, FHNC)[43‘, 44, 45] theories
and more recently within the Variational Monte Carlo[46] method. This studies, before
limited to the Jastrow term, have recently been extended to the whole wave function by
Moroni, Fantoni and Senatore[47]. They use the so called Euler Monte Carlo procedure,
that is based on the minimization of a linear combination of the energy expectation value
and the variance, using the reweighting method. The variational energies obtained with
“ these optimized wave functions in *He are only 3% different from the experimental results

at the equilibrium density (see table 2.1).



3 The Shadow Wave Function

The variational theory, discussed in the previous chapter, proved to be quite successful in
describing several aspects of the ground state of Bose and Fermi many;body systems. How-
ever there are a certain number of questions concerning the liquid-solid phase transition,

the description of the phaée coexistence and in general the description of inhomogeneous
systems, that cannot be faced with, in a satisfactory manner, by using the conventional
variational techniques. We saw that the solid phase can be reasonébly worked out only
assigning a prior: equilibrium positibns for the atoms. Similarly, the description of clus-
ters or free surfaces can only be obtained introducing suitable one body terms between

the correlations.

Simulations of classical ensembles have shown that the symmetry breaking occurring
at some freezing density is present even for interactions that are translationally invariant
[48, 49, 50]. We would like to have a formalism in which this spontaneous symmetry

breaking appear also for quantum systems.

The Shadow Wave Function (SWF)[24, 25] , originally proposed by Vitiello, Runge
and Kalos in 1988, meets all these requirements: it is fully translational invariant, and
nonetheless provides a stable solid phase without any external given equilibrium sites. Its

use revealed to be successful in describing a wide category of phenomena in 4He, amongst

15
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which, the elementary excitation spectrum[51] and the simulation of a vortex line [52]. In
this chapter we describe the general features of SWF and some of the results obtained by

its application in studying homogeneous phases of “He.

3.1 Original formulation of the SWF formalism.

The Shadow Wave Function for a systems of N bosons has the form:

v(r) = | K(R, ()4, (3.1)

where R = {r1,...,rn} and S = {s1,...,sy}. The auxiliary variables S are called
“shadows”. The kernel K is factorized in a Jastrow term involving only the real degrees

of freedom and a coupling term:
K(R,S) = 9(R) []0(xx — s¢)- (3.2)
k )

The analytic expression of ¥.(R) and 9s(.5) are of the Jastrow form

“1Y ug(rij) = C Y Iri — sif?
K(R,S)=e < : , (3.3)

)
-3 D tss(sij)

Ps(S)=e 1< ) (3.4)
We will refer to u,, and u,s as particle—particle and shadow—shadow “pseudopotentials”.
Correspondingly e~2%rp and e~Us* are the particle-particle and shadow—shadow correlation
functions, which tend to 1 for large interparticle distances. The coupling term between
particles and shadows is short-ranged and vanishes for large separation of the particle-
shadow distances (r; —s;). It is taken of the gaussian form which resembles the Nosanow

factor employed in the variational calculations for quantum solids:

O(r —s) = e C=s) (3.5)
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where C is a variational parameter.

The McMillan form:
b 5
Upp = <‘£> ] (3.6)

.
with b, as variational parameter, provides a reasonable representation for the particle-
particle pseudopotential u,,. This can be optimized with the procedure mentioned in the
previous chapter, as done by Vitiello and Schmidt, and more recently by Moroni et al.
Similarly, uss can be taken of the McMillan form,:

Mgy = <f’—>m . (3.7)

S

with both bs; and m; as variational parameters. We will label this form of the SWF as
M(R) + M™s(S), where M stands for McMillan. The optimized form of the ;;article—
particle pseudopotential will be indicated with O(R). At present a derivation of the
shadow—shadow correlations by Euler equation is still absent, and the optimization is still
based on the search of better analytic forms of the pseudopotential ug;. ‘

With SWF many-body correlations at any order are introduced in the system[25, 26].
This is illustrated in figure 3.1-b, where it is made evident that each particle is correlated
through the shadow-shadow correlations to all the other particles. Analytically this might
be seen through a cluster expansion of the shadow integral, in which two, three, four...

body terms explicitly appear.

.3.2 Justifications for SWF form

Two kinds of heuristic justifications for the choice of the integral form for a variational
wave function have been given in the literature. The first one is based on an imaginary time

propagation of the trial wave function, similarly to what is done in GFMC calculations[24].
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Left shadow

Left shadow

Right shadow

Right shadow

Figure 3.1: a) Cluster diagram illustrating interactions between particles and shadows [26]. Black
circles represent atoms, while gray circles represent shadows. Full line: p—p interaction; wavy line:
's-s interaction; dashed line: p—s interaction.

b) With SWF one has explicit two body correlation amongst atoms (first term) but also indirect

correlations at higher order (second term illustrates an indirect three-body correlation).
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The second one is based on a Lie-Trotter expansion of the density matrix that leads to a

path—-integral representation[53].

3.2.1 GFMC-like scheme

Let us consider some trial many body wave function Uo(R,t), where R is the set of the N
particles coordinates. We can propagate it in imaginary time 7 according to Schrédinger’s

equation.

56;%(3,7) = HUy(R,T). (3.8)

The solution of this equation at a certain time 7 can be written in terms of the eigenstates

¢ of H and of the trial wave function at some initial time 7o
Uo(R,7) = Y e R BB (R)) (1 B)| Bo( R, 70))- (3.9)
!

If we let 7 — oo, and we assume that ®g(R, 7p) is not orthogonal to the ground state the
sum reduces exactly to the ground state of the hamiltonian H. In conclusion imaginary
time propagation filters out from a given trial wave function the ground state component.
We can propagate Ug inverting the operator H. The formal inverse of the hamiltonian is

the Green function, and the wave function at time A7 can be written as:
Uo(R, AT) = / G(R, S, AT)Uo(S, 0)dS. (3.10)

One can take for G(R, S, T,7p) the so called “short time approximation”:
G(R,S,A1) = (Rle2H|§) = (R|e= " [T+V(|5). (3.11)

Let us assume now that the Fourier transform of the Jastrow functions w(R) = [1;<; f(7i;)

are eigenstates with eigenvalue ——2% S°; k2. Tt is possible to expand the Fourier transform




20 7 8§ 3. The Shadow Wave Function

of G(R,SAT) (neglecting the potential energy) on this approximate basis set. One gets:
N ” .
G(R,S) = o(R) [T e =5 (5) (3.12)
=1

The imaginary time interval Ar has been reinterpreted here as a variational parameter.

If we pose:
G(B) = 6(B)  :(5) = 9(S)Te(S), BECED)

using the McMillan form for both ¢’s and ¥ leads to the SWF of egs. (3.1)-(3.7) This
scheme suggests that SWF overlaps the real ground state better than the starting trial
function, indicating also a possible scheme of systematic improvement based on the search

of a more realistic kernel in eq. (3.10).

3.2.2 Path Integral scheme

A more suggestive interpretation of the SWF expression can be given in terms of a path
integral decomposition of the density matrix of the N He atoms. The density matrix at

temperature T = (Kpf)~! is defined as:
(Rle~PH|R). (3.14)

Let us expand the diagonal elements inserting a certain number v — 1 of projectors in

coordinates space and summing over all the possible permutations:
(Ble~*7|R) = Zdel - dRNRI V| RY) (R Y R).
P

The result is a mapping of the-original quantum systems onto v replicas each at an higher

effective temperature ' = B/v. If v is large enough we can use for each subsystem the



3.2. Justifications for SWF form 21

Figure 3.2: In the PIMC scheme each particle is mapped on a polymer connected via harmonic

potentials.

quasi classical approximation for the partition function:

(Re|e= " |ReH) ~
(3.15)

_ K _potlpz _ +1
e—BV(R%)/2v Hf\_f__le Kyplrd=xT | =BV (R*T) /20

with K,7 = T—"%%"—T Here V(R) is the potential energy appearing in the hamiltonian, and
m is the m@ss of the atoms. The quantum problem has been translated into a classical one.
The position of one particle is associated with v — 1 positions. The elements of this set of
coordinates corresponding to a given particle are connected to each other via an harmonic
potential, giving rise to a sort of flexible polymer (see fig. 3.2). The original quantum
problem is recovered tracing the positions of all the monomers but one. Moreover the Bose
statistics requires that the particles are indistinguishable. This allows in principle for a
crossing of the monomers belonging to different particles, and is mathematically realized

summing over all the possible permutations of the particle index in each set of coordinates.
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We must now add a further consideration. We are mainly concerned in condensed phases
of helium. In liquid phase the structure is such that each atom is surrounded by a cage
of neighbours and the shape of the polymers associated to each particle must be rather
compact. In the solid phase particles reéide on precise positions, and neither wide motion
nor wide delocalization are allowed. In such conditions it is reasonable to think that the
motion of the polymeric structure can be decomposed‘in the motion of the center of mass
of the structure and the motion of the particles confined through an harmonic potential
around the center of mass. In this picture the shadow becomes a representation of the
correlation hole carried around by ‘thé helium atom. We expect from this scheme that
shadows are more rigid and localized than the real degrees of freedom, as it is in fact

observed.

3.2.3 Physical interpretatibn

The SWF is a powerful ansatz to satisfy the minimal requirements to describe, both
the homogeneous and inhomogeneous phases which is crucial to study the liquid-solid
coexistence and interface:.

—translational invariance

—full permutation symmetry (proper for the Bose systems)

We mentioned above that shadow degrees of freedom are more rigid, and represent
the motion of the centers of mass of the particles. Their behaviour is very much like that
of classical particles interacting via a potential that is the correlation pseudopotential
between the shadows. If we consider for instance the simpie case described above, we
can think to the shadows, in a very rough approximation, as if they were a classical
ensemble of soft spheres, that is objects interacting via an inverse power potential e(b/r)™.

Real particles are centered in the shadow positions and are delocalized within a distance
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invérsely proportional to the parameter C. It is known from classical simulations that
soft-spheres ensembles crystallize spontaneously above a given density that is a given
fraction of the close packing density depending on the exponent n. The shadow degrees
of freedom behave exactly in the same way. Once the density reaches a large enough
value, the stable phase is that of an fcc crystal. Such mechanism would work also for
trial wave functions of Jastrow or Jastrow+Triplet form. The point is that in this case,
crystallization can be achieved only enlarging the repulsive core. The localization imposed
to the particles increases the kinetic energy, in such a way that the resulting upper bound
for the energy per particle results too high. With SWF crystallization is obtained only
through the auxiliary degrees of freedom, and the kinetic energy of atoms is adjusted by

the delocalization of the atoms around the shadows.

As we will see in the following of this chapter, the values of the parameters optimizing
the energy are density dependent. that obviously poses serious problems in treating liquid—
solid coexistence. Such difficulties are overcome by the LD-SWF as discussed in chapter

4.

3.3 Improved shadow—shadow pseudopotentials

In absence of Euler equations for u,s and 6(r — s), one can use the path integral scheme
to have information on their analytical structure. The particle-particle correlaﬁon should
mimic the effect of the strongly repu]siile core of the potential that is effective in the
monomer—monomer interaction[53]. The correlation between the centers of mass of the
polymers is instead strictly connected to the interatomic botential V(r), because the whole
strength of the interaction has to be recovered averaging over the v monomers. This

suggests the presence of an attraction which can be simulated by a shifted and rescaled
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form of the Aziz potential (A(S)), that is:
uss(s) = aV(0s) (3.16)

The parameter o can be interpreted as an effective temperature, and 6 as the displacement
of the minimum of the interaction due to the spreading of the chains. This form of the
wave function has been widely explored by McFarland et.al.[54]. The energy uppér bounds
results to be significantly lowered with respect to the M (R) 4+ M™:(S) case, and also the
correlation functions are much closer to the GFMC results. A similar effect can be reached
substituting the rescaled and shifted Aziz with a combination of renormalized Aziz and

McMillan pseudopotential (M A(S))[55]:

uss(s) = €V (s) + (%—)m (3.17)

This last form accounts in a slightly different way for the interaction between the centers
of mass, because here the Aziz potential appears as it is except for the rescaling due
to the effective temperature, and the McMillan part reflects the correlation between the
particles, dressing the free particle density matrix. We have explored this alternative
parametrization that looks much simpler in view of dealing with inhomogeneous systems.
The results that can be obtained are comparable to the rescaled ~Aziz form.

Another relevant improvement is obtained optimizing the particle—particle correlation
in the same way done for the Jastrow + Triplet wave function[56].

As mentioned a full optimization based on Euler equations is still lacking. Some pre-
liminary studies were performed with reweighting techniques on the local energy and on
its variance. They indicate that a minimization of this kind is possible only for the param-
eters b, and C. Several problems arise in optimizing uss. The reweighting is not efficient
for uss, because it does not enter explicitly in tﬁe local energy expression. Moreover we

could not find clear minima in the variance.
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It would be interesting in this context to study %%? in HNC. This scheme, which has
been recently applied to SWF[26], may proﬁde useful informations about the long range

properties of the correlation functions.

3.4 Results for Liquid Phase

We summarize here the results obtained with SWF in the fluid phase of *He (0.327 <
po3 < 0.438)[24, 56], compared with results of other variational wave functions and with

DMC[47] results.

Variational energy and equation of state

In table 3.1 we report the energy per particle at the experimental equilibrium density for
Jastrow, Jastrow + Triplet, Shadow, Diffusion ‘Mo'nte Carlo (DMC) and experiment[57].
The gain in energy for the McMillan shadow—shadow correlation is not so high, even if large
improvement is obtained with respect to the pure Jastrow case. Adding the attractive part
the energy upperbound lowers consistently, and a further optimization Upp gives a result
that is only 0.1K higher than the Jastrow -+ Triplet result and 0.3K above the DMC and
experimental value.

In fig. 3.3 we report the fluid branch of the SWF equation of state for M(R)+M™(.5),
M(R)+ A(S) and O(R) + A(S) compared with DMC results. The calculated equilibrium
density coincides in all cases and is very close to the experimental value. In table 3.3 we
list the results for the energy per particle at four densities in the liquid. The freezing
density is underestimated in the M(R) 4+ M®(S). In fact the value obtained from the
Maxwell construction is po3 = 0.420, to be compared with the value 0.438 of both DMC

and O(R)+ A(S). Nevertheless all the most important features in the equation of state are
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T E+AFE
’ Jastrow —5.7174 0.021

Jastrow+Triplet | —6.674 £ 0.007
fully optimized | —6.9014 & 0.0037
M(R)+ M5(S5) | —6.241+0.035

M(R) + A(S) —6.55+0.01
O(R)+ A(S) —6.789 £ 0.023
DMC —7.1432 + 0.0038
Experiment —-7.144+0.01

Table 3.1: Energy per particle at equilibrium density pod = 0.365 for some variational wave

functions, DMC and experiment. (From refs. [56] and [47])

maintained, making reasonable the use of M(R)+ M®(S) in describing the liquid phase.

Pair correlation functions

Another important comparison can be done looking at the pair correlation function[2],

defined as:

o(r) = —]-Vl—,;;<6<|ri N

In fig. 3.4 we report the results from M(R)+ M°(5) shadow wave function and M(R) +
A(S) shadow wave function calculations, compared with DMC results. It can be imme-
diately noticed that in the M(R) + M®(S) the peak of the nearest neighbours is lower of
about 6% and shifted in of a 3% with respect to the DMC g(r). The M + A(S) form leads
to a g(r) that is only 1% lower than DMC, but still shifted of the same amount of the

previous case. The shift is completely removed when an optimized pseudopotential for the
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pa® Ey
0.327
M(R)+ A(S) | —6.561+0.032
O(R)+ A(S) | —6.695+0.027
DMC ~7.0117 + 0.0018
0.365
M(R)+ A(S) | —6.599 +0.034
O(R)+ A(S) | —6.789+0.023
M(R)+ M®(S) | —6.165+0.019
DMC —7.1432 + 0.0038
0.401
M(R) + A(S) | —6.308 % 0.019
O(R)+ A(S) | —6.615+0.029
DMC  -'| —7.0166 =+ 0.0054
0.438
M(R)+ A(S) | —5.87140.016
O(R)+ A(S) | —6.286+0.022
M(R)+ M>3(S) | —5.342+0.012
DMC —6.5105 + 0.0060

Table 3.2: Energy per particle at different densities in the fluid branch of the equation of state

(from ref. [56] and ref. [47])
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Figure 3.3: Equation of state in the fluid branch. Triangles: O(R) + A(S); crosses: A/f(R) + A(S);
stars: M(R)+ M™(S); open squares: GFMC.

particle-particle correlation is used, namely for the O(R) + A(S) model. In this case g(r)
is practicaﬂy indistinguishable from that of DMC, and for such readon is not reported in
fig. 3.4.

There are other pair correlation functions which may be defined when using SWEF.
They have no direct physical meaning, but are useful to understand the behaviour of
_the auxiliary degrees of freedom in the system. The shadow—shadow correlation function
gss(7), shown in figure 3.5, is defined as:

9es(r) = 37> (015 = 55 = ¥
1#]

According to the path integral scheme, the shadows result more localized than the parti-

cles, and the nearest neighbours peak is higher than in g(r). Also the peaks corresponding
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g(r)

0.5 —

Figure 3.4: Pair correlation functions for particles. Solid line: M(R) + M®(S);dotted line:
M(R) + A(S) ; dashed line: DMC
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1.5

0.5 I~

Figure 3.5: Pair correlation function for shadows at equilibrium density po® = 0.365. Solid line:

M(R) + M®(S) ; dashed line: M(R)+ A(S).
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to the successive shells appear more pronounced.

Particle-—shadow correlations:

Gorss (1) = %):w(zrz- —si—r).

T

give important information on the relative distribution of particles and shadows with
the same index. Shadow left-shadow right correlation function measures the relative

distribution of shadows of different kind (see appendix A):
1
gsLsR(T) = —NTO- ;(6“8? - S? - rl)

Both of them are plotted in fig. 3.6. gp;s,(r) (on the left) reflects the gaussian shadow—
particle correlation in eq. (3.3), while g,z r(r) (on the right) shows a peak at r = 0 due
to the presence of the couple of shadows near a given particle, and subsequently shows a

structure similar to that of g(r) or gss(r).

Condensate fraction

Another interesting quantity is the one body density matrix, given by:

/dR\y(rl’...’r;.’...’rN)\y(rl’...,ri)...,rN)

n(r) = (3.18)

[arip(r)p

In term of n(r) the condensate fraction is given by[58]:
no = lim n(r). (3.19)

r—00
The actual way of computing this quantity is somewhat difficult. Nevertheless it has been
possible to estimate ng, that results to be of the 4.5% in the case of the McMillan shadow-
shadow correlation[24], and of the 7.1% in the case of the rescaled Aziz without particle-
particle optimization[54]. This has to be compared with the 9.35% of the GEMC[59], and
8.1% of DMC [47].
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Figufe 3.6: Particle—shadow and shadow left-shadow right correlation functions

3.5 Results for the solid phase

As discussed above, the most important feature of the shadow wave function is the ca-

pability of describing the solid phase without imposing any constraint on the equilibrium

positions of the atoms. This feature has been shown by numerical simulations carried out

in the range of density 0.491 < po® < 0.589, in simulation boxes compatible with a fcc
lattice.!

As for the liquid phase we report the main results compared with GEMC.

1The experimentally found structure for solid *He is hexagonal close packed (hcp), which differs from fcc

for the different stacking order of the hexagonal planes (that have (111) indexes in fcc and (100) indexes in

hep). The difference in energy among these structures is not very high, and computationally fcc is sim

pler
to deal with.
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pa’ Eo
0.491
M(R)+ A(S) | —5.05240.014
O(R)+ A(S) | —5.414+0.019
M(R)+ M5(S) | —4.968 £+ 0.018
GFMC 5.61+0.03
0.550
M(R)+ A(S) | —3.639+0.012
O(R)+ A(S) | —3.765 + 0.012
M(R)+ M2(8) | —=3.557 £ 0.010
GFMC 4.197 4+ 0.03
0.589
M(R)+ A(S) | —1.947 £ 0.012
O(R)+ A(S) | —2.132£0.012
GFMC —2.70 4 0.06

Table 3.3: Energy per particle at different densities in the solid branch of the equation of state

(from ref [56])

Variational energies

In table 3.3 the results in the solid phase are reported for three different densities above

the melting point.

As in the liquid case, the use of the rescaled Aziz pseudopotential for u;, improves

considerably the results. However the M(R)+ M™:(S) model reproduces the slope of the

equation of state, and also the melting density as described by the Maxwell construction.
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An important feature that can be observed analyzing the optimal values of the vari-
ational parameters in the solid phase, is that the repulsive core of the shadow—shadow
correlation must be considerably enlarged with respect to the liquid phase. This is due to
the fact that the crystal is stable only if the radius of the correlation hole is larger than a

given critical value, as will be discussed in detail in the next chapter.

Pair correlation functions

The analysis of the pair correlation functioné in the solid phase shows a quite different
behaviour of the particles and of the shadows. The peak corresponding to the nearest
neighbours is about 50% lower than the peak of the shadows, the latter being comparable
with the peak obtained in simulation of classical systems. The shadows show also in the
subsequent cells the whole structure of a fcc lattice. On the contrary the structure in
g(r) is smoothed out, and only a shell structure similar to that of the liquid phase can
~ be resolved, although the peaks are more pronounced.. The effective localization of the
atoms around the lattice sites can be checked using the Lindemann ratios or measuring a
crystalline order parameter (that will be defined in a later chapter). As in the case of the
liquid phase, the use of rescaled Aziz potential for uss provides results which are in better

agreement with the GFMC than the M(R) + M™:(S) case.



4 Local Density SWF

As discussed in the previous chapter, SWF have the merit of providing for a realistic
description of both the solid and the hquid‘ phase of *He, within the same functional form.
The deécription of the solid liquid coexjsfence, and consequently of the interface, requires
however a further step, that is the possibility of describing efficiently both the solid and the
liquid without changing the values of the variational parameters. In this chapter we will
describe an extension of the SWF which is suitable for inhomogeneous systems denoted

as Local Density Shadow Wave Function (LD-SWF)[28].

4.1 General form of LD-SWF

Our purpose is to write down a variational wave function that can describe simultaneously
the liquid and the solid phase. If we look at the results obtained in 4He using the SWF,
we can see that the values of the optimized variational parameters are indeed density
dependent.

The relative variations differ for different parameters. For instance, in the case of
M(R)+ M™:(S), the variation of b,,in eq. (3.3) over all the interesting range of densities
is of the order 1%. The other parameters C and b, instead, show a much wider dependence,

on p .

35
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bert(p)

15 ' -

0.4 0.45
po®

Figure 4.1: Optimized value of b, in SWF for different values of the density.

The parameter C mainly controls the delocalization of particles around their centers
of mass, and it results to be larger in the solid, where the average displacement is smaller.
The role of b, is to control the "width” of the correlation hole, and therefore it is crucial
in determining the phase of the system, as it will be better explained in chapter 6.

In fig. 4.1 we show the values of b, for m; = 5 at different values of the density.
From the figure one can see that bs is roughly linear on p argued. One expects that the
parametrization

by = bo + bip (4.1)

reproduces the gross features of the optimized results. In general one could think to

express every parameter as a function of p

{a} — {a(p)}-

In describing an inhomogeneous system, however, it is necessary to introduce a mechanism
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Figure 4.2: The function v(r) for p = 3.0 and r. = 2.1

that enables to fix p in the wave function according to the local value of the density. This
can be done by calculating around each position r; of the particles the density p with an

operator p;, the Local Density Operator (LDO), defined by:

. . A
pi == >_v(ri), (4.2)
v 413
were the function v is:
1

vir) = , 4.3
") = T ol = o) (43

and A is a normalization constant given by
A= 47r/r21/(r)dr. (4.4)

The operator p; measures the local density in a limited region around the particle . The
quantity 7. represents the width of this region, while u gives the steepness of the function
at the edge. The function v is plotted in fig. 4.2. In this way, the parameters are expressed

as functions of the local density operator, namely:

{o} — {o({p:D)}, (4.5)
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From a formal point of view, a SWF with the above substitution (LD-SWF) is parametrized
in such a way that its “variational” parameters are no more density dependent. Moreover
in an inhomogeneous system LD-SWF can describe regions whose density presents varia-
tions on a scale of some r. as efficiently as the optimized SWF, whereas in the interfacial
region it provides a mechanism to adjust the density profile in a self consistent way.

The first realization of this idea has been done using the original form of the SWF
M(R)+ M™:(S§), that is taking a shadow-shadow correlation of the McMillan form, for
which appears reasonable the linear p—dependence for the parameter b, as suggested in eq.
(4.1). The LD-SWF contains in general more variational parameters than the respective
SWF'. This additional parameters are the coefficients of the functional forms which fit the
p dependencies, such as p and 7. appearing in eq.(4.3). One should in principlev perform
a global minimization involving all the variational parameters. However, as discussed
previously, the parameter whose density dependence is more important to characterize the
phase of the system is b5 and the whole equation of state can be satisfactorily described
fixing all' the parameters but by . Thié assumption is reasonable, considering that the
sensitivity of the estimated energy with respect to the other parameters with larger density
dependence (as C') is not very high.

In the pair correlation term it is reasonable to consider as the value of the local density

the average of the densities experienced by each particle:

b\
— —_—
Tij )

We will indicate this wave function as M(R) + M(p,S)m.,.

bO + bl (é‘_‘gﬁl) ] ms . (46)

7‘”

Alternatively the M(R) + M(p,S)m. parametrization may be viewed as the inclu-
sion of higher order correlations among shadows. It is remarkable that such many-body

correlations are essential in dealing with the liquid-solid interface.
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4.2 Optimization procedure

We describe here the optimization procedure followed to find the functional form of LD~
SWF. As previously discussed, b, is the crucial parameter for the determination of the
phase of the system. We have therefore followed the strategy to keep all the parameters

fixed except b, in the minimization of the energy.

4.2.1 Optimization of b;

Calculations for F(b,) has been carried out for the following densities:
e po® = 0.365 (equilibrium density);
e po® = 0.438 (freezing density from DMC);

o po® = 0.550 (a density well after the melting point).

Three different values for the parameter C, that is C = 402 (optimal in the liquid),
C = 4.8072 (optimal at melting) and C = 5.702 (optimal at po® = 0.550) where consid-
ered. The values of the remaining variational parameters were kept fixed at the following
values which better reproduce the M(R) + M™:(S) equation of state over all the density
range: |

b,=1120, my=9, p=30"", r.=21l0

The parameter b, has a value that is slightly lower than the optimal one at the equilibrium
density, but it describes the system better at intermediate densities. The exponent m;
is reasonably good both for liquid and solid. The values of p and 7. have been fixed so
that the average of the local densities reproduce the value of the average density p in

an homogeneous system. This point will be discussed more widely in section 4.3. Simple
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C bsh.opt Absh,.opt Eyar AFEyqr

4.0 1.21 0.11 -6.17 0.04
4.8 1.13 0.09 -6.13 0.05
5.7 1.05 0.06 -6.19 0.05

Table 4.1: Optimal values of bys , errors and correspondent energies in K obtained fitting MC

results for €(b;) at several values of C and at density po3 = 0.365

scanning on b, have been performed, namely separate simulations have been carried out for
each value of b;. The runs at this stage consisted of 10000 MCS plus 2500 for equilibration,
Statistical errors were computed from variance. Autocorrelations in this case do not exceed

10 MCS. The simulations started with a perfect fcc configuration with 108 paiticles.

4.2.2 Liquid phase

In the liquid phase the function €(bs) presents a minimum that has been accuratelyvdéter—
mined by fitting the results with a cubic polynomial.‘ Results of the fit and relative values
for the optimal energies are reported on table 4.1 The case for C' = 4 is plotted in fig.4.3.
It can be noticed that the energy per particle shows a jump approximately in correspon-
dence of the value b, = 1.5. For b, > 1.5 no more melting is observed in the system. This
fact points out very well the importance of the parameter b in determining the phase of
the system. The presence of a critical value for the parameter, above which the system
prefers the solid phase, has to be connected with the similar behaviour of classical ensem-
bles interacting via purely repulsive potentials. If the core of the repulsion is increased
above a critical value the crystalline packed phase is thermodinamically preferred to the
disordered one. In chapter 6 this point will be better clarified also in connection with the

critical properties of a system described by SWEF.
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Figure 4.3: Energy as function of b, at density po® = 0.365 with other parameters fixed (C = 4)
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Figure 4.4: Energy as function of b,; at density po® = 0.438. with other parameters fixed (C' = 4)

4.2.3 Freezing density

- At freezing density the situation is very similar to that of the liquid (see figure 4.4). The
position of the minimum in this case is very close to the critical value of b;, although the

system is definitely in the liquid phase.! (see fig. 4.4 ). The results are also reported in
table 4.2.

'The study of solid-liquid interface has shown that for LD-SWF the effective freezing density lies at a
larger value, namely po® = 0.449
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C bsh.opt Absh.apt Evar AtE‘var

40 135 0.08 -5.46  0.05
4.8 128 0.06 -5.51 0.04
57 118 0.07 -5.33 0.03

Table 4.2: Same as table 4.1, but at density po® = 0.438

4.2.4 Solid phase

In the solid phase the situation appears slightly different. Here the jumps in the energy
per particle obtained for values of b, below and above the critical one are larger, with lower
values being associated with the solid phase. There is also a more pronounced dependence
on C. Fig. 4.5 and fig. 4.6 shows the results for-C = 4 and C = 5.7 respectively. In the
first case no minimum for €(b;) appeafs, while for C = 5.7 a minimum can be observed
just above the critical value of b;. For by — oo the energy tends to a constant value,
consistently with the fact that this case corresponds to the Jastrowq‘-Nosanon case. In

fact, if b is too large the shadows are nearly blocked in their initial configuration,

4.2.5 Linear Interpolation

The results given above are compatible with a linear dependence of the parameter b, as
a function of the density, as illustrated in figure 4.7. The results for the coefficients are
given in table 4.3. For C' = 4 the sensitivity of the energy per particle on b, in the solid
phase lower than for C = 4.8 or C' = 5.7. For this reason the value C = 4 has been chosen.

The linear fit matches well the values obtained in this first optimization, as can be

seen in fig. 4.7.
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Figure 4.5: Energy as function of bsn at density po® = 0.550 with other parameters fixed (C' = 4)

Co? | bg/o bio™
4.0 | 0.51 191
4.8 | 039 2.02
5.7 | 0.53 1.46

Table 4.3: Coefficients of the linear fit of b,(p) for the LD~-SWF for three different values of the

parameter C
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re EXAE (i) o?(pi)

1.80 -5.874+0.05 0.3738 £0.0006 0.0787
2.10 -6.23£0.05 0.3671 £0.0003 0.0379
2.60 -6.17+0.05 0.3566 £0.0003 0.0208
3.40 -6.22+0.05 0.3637 £0.0003 0.0172

Table 4.4: Variational energies obtained with different values of cutoff r, at po® = 0.365, values of

(pi) and variances relative to p;
4.3 Consistency of the local density operator

The local density operator p introduced in eq. (4.2) measures the density of shadows in
a restricted region around a given one. In order to have correct results the parameters p
and 7, must be chosen in such a way that the run time averagé of the values of p gives the
average density of the system. This guarantees that the average value of the parameter
bs is the optimum one at the specific density considered. In an homogeneous sample
this procedure is equivalent to consider the wave function which givés the minimum of
the energy. If (p) # p then (bs) # b%P', and the energy is higher than the variational
minimum. The value of p,which in principle should be as large as possible to guarantee
the maximum of locality, has been fixed to 30! after some numerical exploration, the
reason being that higher values make the operator too sensible to the local fluctuations,
yielding too large fluctuations. Also the value of r. should be as small as possible. A
reasonable choice is to fix its value so to include in the evaluation of the local density
the first shell of neighbours. In table 4.4 we report the results of some simulation with
different values of r. at the equilibrium density. It can be seen that the best values in

‘energy coincide with the best estimates of the average densities, obtained when r. falls
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poc® Eo(K) Bi(K) C(K)
solid | 0.385+0.09 —580+£03 026+22 29.1+224
liquid | 0.376 +0.007 —6.42+0.07 22.4%£6.6 57.1+29.4

Table 4.5: Coefficients of the fit of the two branches of the equation of state with the functional

form of eq. (4.7).

in the minima of the pair distribution function g(r). In conclusion, the dependence of
the results on the parameters y and 7. is not crucial, provided that the range of p; falls

between two successive shells of neighbours.

4.3.1 Equation of state

In figure 4.8 we report the equation of state obtained with LD-SWF. The behaviour re-
sembles the gross features of the equation of state yieldéd by M(R)+ M™:(S), although
the values obtained for the energy are slightly different, in particular at the melting and
freezing densities. We calculated the energy also at some density values within the coexis-
tence region, where the homogeneous phases are metastable. This can be obtained using
small samples N = 108 particles, for which the realization of a stable phase coexistence
is not possible. The two branches of the equation of state were fitted with the following

formula[4]:

_ _ 3
L _g+B (”——-——p"> +C (p————p°) (4.7)
N Po Po

The resulting coefficients are reported on table 4.5.
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Figure 4.8: Equation of state of *He calculated with LD-SWF with the parametrization given in

text. Dashed line is drawn as guide for the eye.




5 A crystallization experiment in

‘He

In chapter three it has been pointed out that one of the important features of the Shadow
wave function is to provide a solid phase without any need of a Nosanow factor impos-
ing a priori equilibrium positions. It is a recurrent problem in classical thermodynamics
to know the microscopic behaviour of the particles during the fluid-solid phase ‘transi-
tion. Several molecular dynamics and Monte Carlo simulations have been performed, in
which, starting from a disordered configuration, the formation of crystalline seeds or even
a complete solidification of overcooled fluids has been observed[60, 61]. Such kind of nu-
merical simulations are were still lacking for quantum systems. Shadow Wave Functions
are good candidates to try such an experiment in 4fe. Other variational wave functions
would not be able to provide any information, because they need of a different functional
form passing from the liquid to the solid. Whether SWF may give spontaneously a solid
phase or not is an important question, because usually the simulations of the solid phase
of *He start already from a crystalline configuration, and therefore a real homogeneous
nucleation of crystals is not ensured when using SWF. Considering that the mechanism
of the crystallization is based on the quasi—classical behaviour of the auxiliary degrees of

freedom, and that crystallization has been observed in classical systems, one might expect

50
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a symmetry breaking also in the shadow wave function.

5.1 The simulation

We have found spontaneous crystallization in a quantum system using SWF, in a sample of
fluid *He compressed over the melting density. Simulations have been performed with LD~
SWF. We are mostly concerned with this form of the wave function, because we employed

it in the analysis of the solid-liquid interface.

5.1.1 Initial configurations

The simulations regards two different samples, one containing N = 108 *He atoms and
© the other with N = 500 atoms. The initial configuration has been obtained performing
a simulation of the length of about 50000 MCS at equilibrium density (po® = 0.365) .
All the coordinates both of particles and shadows, were then rescaled in order to fit a
cubic box at a density slightly above the melting point, that is po® = 0.500. Periodic
g boundary conditions have been imposed in all directions. The use of two different sizes of
the simulation boxes is due to the fact that it isvbelieved that periodic boundary conditions
may influence fhe formation of crystalline seeds unless the number of atoms employed is
large enough (typically > 500). Moreover the effects due to the interfacial excess energy
are reduced in a larger sample, because the size of the crystalline seeds that may grow in
it is larger. Also statistical fluctuations increase in larger systems helping in this way the

nucleation of the phase with lower symmetry. The main runs performed are four:
e 108 particles box, with SWF, starting from a fcc lattice (reference case)

e 108 particles box, with LD-SWF, starting from liquid
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e 500 particles box, with LD-SWF, starting from liquid (two independent runs)

the first Tun has been chosen as reference, in order to compare the results for energy and
also for distribution functions. The second run was done in order to look for crystallization
in a small box. The last two runs have been analyzed in more detail. Two runs with a
different walk have been performed in order to check whether solidification does depends
on the particular walk chosen. The runs are all of the order of 2x 10°> MCS. The parameter
of the LD-SWTF have been chosen as follows:

b,=1.120 C=40"% my=9

bo = 0.510 by = 1.910*

We also performed a simulation with 108 atoms and SWF with b, = 1.465, as a comparison

with LD-SWF.

5.1.2 Methods for searching crystalline configurations.

An accurate analysis of the evolution of the sample is necessary in 6rder to find out a solid
structure in a sample in which the initial configuration is disordered. The major problem
is that the crystalline seeds may choose random orientation within the simulation box,
and this precludes any possibility of performing a run-time monitoring of the situation.
It is necessary in this case to proceed a posteriori to analyze the configurations. The
most important quantities that can give significant indications are the pair correlation
function g(r) and its Fourier transform, the structure factor S(k). These functions are
calculated as spherical averages, and do not depend on the particular orientation of the
solid. Another useful procedure is the direct visualization of the configurations, that can
give immediate indications about the particular structure chosen by the system. The use

of other estimators that give results dependent on the choice of particular vectors of the
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lattice, such as the crystalline order parameter has not been found appropriate in this

kind of experiment.

5.2 Results

In all the samples that we have considered a solidification occurred, although
with slightly different characteristics. This definitely confirms the capability of the LD~
SWF to choose spontaneously a state of lower symmetry whenever the density is above
the melting value. Nevertheless the results show that the grown solid is not oriented
as expected. The growth properties do not depend either on the size of the simulation
box or on the particular parametrization chosen. The variational energies found for the
spontaneously grown crystal do not coincide with the'\results of the simulation already
started from a crystalline configuration at the given density. In fact, the lattice cbnstants
that can be measured by the pair correlation functions are compatible with a crystal
whose density is indeed th'gher than the initial one. Such effect is due to the fact that the
crystallization is clearly favoured along é particular direction, corresponding to the {111}

of the f.c.c. lattice and to the {100} of the h.c.p. lattice, rather than the {100} of f.c.c.

5.2.1 Pair correlation functions and structure factors

Fig. 5.1 shows the pair correlation functions for particles and shadows resulting from the
simulations with N = 108 particles.

It can be seen the crystallization simulations do not coincide with the reference sim-
ulation, especially for the shadows. In the reference case gss(r) for the shadows shows
all the peaks proper of an fcc lattice. The real particles are much less localized, and the

distribution function does not present the structures typically observed in classical solids.
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Figure 5.1: Pair correlation function for particles (solid lines) and shadows (dashed lines):
a) SWF, started from an f.c.c. lattice

b) SWF, started from fluid

¢) LD-SWF, started from fluid
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The simulations started from the liquid conﬁguré,tions give a g s(r) that presents a near-
est neighbours peak that is about 15% lower than in the reference case. Nevertheless its
height is still typical of a crystalline phase. The structure of the subsequent peak is not
very well determined, although it is possible to observe a clear shoulder at distance 2.30
that is the sign of the presence of a structure in the configurations. The pair correlation
functions of the particles do not differ in shape very much in both cases. LD-SWF and
SWF give roughly the same results. |

In figure 5.2 we show g(r) and g;s(7) at the very beginning of the run, when the system
is still fluid, and at the end, in the case of the density independent correlation. Evolution
in the sense of an ordering appears very clearly. ‘

The pair correlation functions obtained in two of the runs with 500 particles lead to
different results. In one case the features of the two main peaks closely resemble the results
obtained with 108 particles (see fig. 5.3), with is the second peak blurred out and without
the presence of neighbour peaks. In the second case (see fig. 5.4) g(r) presents the gross

features of the a perfect f.c.c. crystal.

5.2.2 Configurations

The direct visualization of the configuration generated in the random walk is very im-
portant in order to understand more deeply the structural features of the crystal grown
in the simulation box. From the correlation functions it can be seen that the ordering
properties are made more evident when we look at the shadow degrees of freedom rather
than to the real particles. The results are similar for all the runs considered. From a
~ visualization of the configurations it is also possible to follow the pseudo-evolution of the
sample, observing the progressive growth of the crystalline seeds. There are several ways

to study the configurations. The most suggestive consists in using some 3-D visualization
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Figure 5.2: Pair correlation function for a) particles and b) shadows at the beginning of the run

(solid line) and after 200000 MCS (dashed line), for N=108 particles.
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Figure 5.3: Pair correlation function for N = 500 particles in a LD-SWF simulation. Solid line:

helium atoms; dashed line: shadows after 80000 MCS; dotted line: shadows after 200000 MCS.
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Figure 5.4: Pair correlation function for N = 500 particles in a LD-SWF simulation. Solid line:
helium atoms; dashed line: shadows. This run differs from that of fig. 5.3 in the generated random

walk.
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package realizing a movie with the successive configurations. The results reported below
are all referred to the simulations with 500 particles. Another way is to plot projections of
the coordinates on a chosen plane (commonly one of the faces of the simulation box). In
fig. 5.5 we can see the pfojections of the coordinates in the z — z and in the z — y planes

~ after about 80000 MCS.

The sample in this case is still not.completely crystallized. This is particularly clear in
the z — 2 projection, where we can distinguish three different regions, one on the top with
planes oriented with an angle of = /4 with respect to the axes, one in the middle where
the shadows are already localized, but the structure is not well defined yet, and one in the
bottom, where the orientation of the planes looks to be parallel to the z axis. Also in the
x — y projection it can be noticed that the orientation of the layers is not well defined,
even if we can distinguish portions where the pldnes are ordered. This indicates that in
the box the cfystal growth does not begin from a unique seed, but rather from several '
seeds, differently oriented. Thus we can think to the motion of the particles as splitted in
two different motions: one, with larger frequency, around the mean value of the position
at the time ¢, and a second one, slower, tending to adjust the positions of the atom in
the appropriate crystalline configuration. This more complex situation is reflected in the
acceptance rate of the trial moves for the shadows, that was gradually lbwering, for the

same step width, from 30% to 20%.

Going on with the simulation we observe that one of the seeds prevails on the others.
In figures 5.6 to 5.8 we report the projections on the faces of the simulation box of config-
urations generated after about 200000 MCS. It can be seen that the situation is different
from that of the previous figures. In particular the y — z projection presents a well defined
layering, with 9 planes 1ot parallel to the z — y plane. The spacing between the layers

is larger than the expected one. In fig. 5.9 we show the same projection after a rotation
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Figure 5.5: Projection of 40 configuration taken from 1000 after = 80000 MCS. Top: z — z

projection; bottom: z — y projection
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Figure 5.6: = — y projection of the shadow configurations after 200000 MCS
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x/a

Figure 5.7:  — z projection of the shadow configurations after 200000 MCS
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Figure 5.8: y — z projection of the shadow configurations after 200000 MCS
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of the configuration around the z axis of an angle 7/16. In fig. 5.10 the projection on
the z — y plane is displayed after the rotation. From the figures it becomes evident the
formation of a close-packing ordering: the winning seed is that growing along the {111}
direction of a f.c.c. lattice, or equivalently along the {100} direction of an h.c.p. lattice.
From the angle and the distance we can estimate the lattice constant of the solid. The
interlayer spacing is:

100 T
6= ~—9—'COS (I‘é) = 113290', (51)

and the lattice constant is given by:
a = 6v/3 = 1.96220, (5.2)

that is smaller than the value initially chosen for the density 0.50~2. The growth crystal

has therefore an effective higher density. Its value is given by
= 0.5290 2. ' (5.3)

This value can be checked also from the positions of the peaks in the pair distributibn
functions, that we have seen to be shifted with respect to the reference case. The values
obtained are consistent with the estimates given above.

The pair correlation functions in figures 5.4 and 5.3 show that the final packing in the
two runs performed with N = 500 particles is different. In one case there is a pure f.c.c.
structure, layered along the close— packing direction. For the second case we have plotted
the configurations of a single z — y plane. The structure is evidently distorted. for each
single plane (see fig. 5.11). 7

Looking at the succession of the planes it is possible to distinguish regions where
the ordering is that of the f.c.c. lattice, and others where the h.c.p. is prevailing. We

can measure again the lattice constant from the distances between the shadows in the
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z/0

y/o

Figure 5.9: y — z projection of the shadow configurations after 200000 MCS and after a rotation

of 7/16 around the z axis
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x/a

Figure 5.10: = — y projection of the shadow configurations after 200000 MCS and after a rotation

of 7/16 around the z axis
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Figure 5.11: Shadow configurations on a single {111} plane.
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N ¥ Initial conf. e(K) Erin(K)/N  Ep(K)/N MCS
108 SWF solid —4.82+0.01 26.47+0.03 -31.30£0.03 5x 10*
108 SWF fluid ~4.26+0.01 2643+0.03 -29.374+0.02 2x10°
108 LD-SWF fluid —4.094+0.01 25.27+0.03 -30.714£0.02 2x10°
500 LD-SWF fluid ~4.23+0.01 26.30+£0.03 -30.54£0.02 2x10°
500 LD-SWF fluid —4.33+0.01 26.32+0.03 -30.65+0.01 3x10°

Table 5.1: Variational energies, potential and kinetic energies per particle in the crystallization

runs.

planes. An average of the nearest neighbours distances gives a lattice constant a = 1.96,
compatible with that obtained from the spacing between the planes. An useful check of

this results can be done calculating the pair correlation function in the z — y plane:

1
Gaal(r) = 5= 3000/ (@i = = 2 + (ui — 95 = 9)?1)-
P iz . :
The result is reported in fig. 5.12. The positions of the peaks reflect the expected ordering.
Nevertheless we can observe that the peak at the distance the second neighboﬁrs is blurred

out. In particular we can observe a spurious peak at distance r = 2.10. This comes from

the distorted triangles observed in fig. 5.11 in the upper left and lower right corners.

5.2.3 Variational energies

In table 5.1 we report the variational energies obta.ined in our runs, together with potential
and kinetic energies. The main feature that can be observed is that in all the cases
considered there is a difference of ~ 0.5 — 0.6 K between the energy of the reference case
and the other results. In the previous section we observed that the structure of the crystal

corresponds to a lattice constant associated with a density of po® = 0.53. From the fit of
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Figure 5.12: gy (r) for shadows after 200000 MCS in a N = 500 simulation box
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the equation of state of the LD-SWF the energy‘corresponding to such density is —4.15K,
consistently with the results obtained. It is interesting also to observe the evolution of
the variational energy along the run. In fig. 5.13 we plotted the results for in one of our
simulations. It can be observed that the variational energy starts from a quite lower value,
then tends to increase. In this phase of the simulation in the box interfaces between the
solid and the liquid are present. The excess energy introduced is reflected in the rising of
the energy per particle. After this barrier is overcome, the variational energy begins to
lower again, reaching soon a nearly constant value. This is a further indication that the

situation reached by the system is an actual equilibrium state.

5.3 Comments

This crystallization experiment gives two main results. First of all it is deﬁnitely confirmed
that the Shadow Wave Function can provide a spontaneous symmetry breaking from the
liquid to the solid phase. The stable crystalline phase is not an artifact of the initial con-
ditions, and also the solidification does not depend on the presence of an already existent
seed. Secondly there is a strong indication that the growing process is favoured along the
{111} direction, even if this leads to a state that is incommensurate to the simulation box.

More quantitative studies on this important feature are under consideration at present.
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Figure 5.13: Variational energy per particle as a function of the number of MCS performed in a

N =500 particles box.




6 Solid—Liquid coexistence and in-

terface in 4He

In the previous chapters we described how it is possible to build up a variational theory
that is capable of describing with a unique trial wave function the whole equation of state
of “He within the Shadow Wave Function formalism. We have also verified that SWF
nucleates spontaneously a crystal in a metastable fluid, confirming that at high densities
the solid phase is indeed stable. We are therefore readyAfor our most imporfant step, the
description of an inhomogeneous system, that is the branch of the equation of state in
which we have solid— liquid phase coexistence. We will report here on the calculations
performed employing a McMillan density dependent form as shadow-shadow correlation

pseudopotential.

6.1 The solid—fluid coexistence

We want to summarize rapidly some general properties of the solid-liquid coexistence[62].

The coexistence of phases 1 and 2 occurs when the following conditions are realized:

Tl = Tg P1 = P2 M1 = M2 ) (61)

72
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where P is the pressure and p the chemical potential. Let us consider a system of Ny
particles in the phase 1 with specific volume v, and N, particles in the phase 2 with
specific volume v, at fixed temperature 7' and under the constraint that Ny + N, = V.

The total Helmoltz free energy F' = U — T'S is given by
F = N1Fi(N1, V1) + NoFo(No, Vo). (6.2)

An additional constraint (equivalent to the Maxwell construction) is the so called ¢ lever
rule 7, that requires also the conservation of the specific volume:
Ny Ny

—*]\?7}1 + —N—"DQ =7 (63)

The constrained minimization of F in eq. (6.2) with respect to N 1, N2, and v, gives back
the conditions of eq. (6.1), showing that describing the phase coexistence as a mixture
of two components, in a proportion such to minimize the free energy, is consistent with
Vphysica,l conditions. In the limit v — v; all the system is on the phase 1 and the value
of F is that corresponding to that point. When v increases F is given by the Maxwell
construction, that is by the tangent common to the two branches of F(N,V) relative to
phases 1 and 2. This construction can be rigorously justified in the frame of statistical
mechanics, and represents a simple way to find out coexistence regions, once that the
Helmoltz free energy is known. In the case of solid-liquid coexistence v'! is referred as

freezing density and v]! as melting density.

The Maxwell construction has been widely applied in classical calculations for many
different systems, such as hard and soft spheres[48] or Lennard-Jones systems[49]. We
can find in the literature many simulations of solid—fluid coexistence, both with Monte

Carlo[30] and Molecular Dynamics[31] techniques.
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Figure 6.1: Simulation box for the interface

6.2 Simulation procedures and estimators

6.2.1 Simulation box

The simulation of a phase coexistence requires a number of particles which is much larger
than that usually adopted in simulation of homogeneous systems. In order to avoid finite
size effects, it is necessary to have a quite large number of particles in the bulk phases.
Moreover the interface has an intrinsic width, that in the case of solid-liquid coexistence
in helium is expected to be 5 —7 A wide, about five times the interlayer spacing. The
area of the surface should not be too small to avoid the strong influence of the periodic
boundary conditions[61]. MD simulations for classical systems have been done with 6x 10°
particles[31]. In the quantum case such numbers are comfputationa]ly unaccessible. In our
simulations N ranges from N = 1800 up to N = 4400. A picture of the initial configuration

is shown in fig. 6.1.

It comsists of M layers of solid, built up along the {100} or along the {111} direction.



6.2. Simulation procedures and estimators . 75

In the first case the z —y section of the box is a square of side 4a where a is the side of the
conventional elementary cubic cell for fec. In the second case the section is rectangular,
with 2 side equal to 12.72a and y side equal to 14.70a. Aside we put a volume of liquid
(that at the beginning is set up as random configuration), in accordance with the desired
average density and the initial density of the liquid. The box is closed with periodic
boundary conditions in all directions. The effective geometry is therefore that of a torus

in which a part of solid and a part of liquid are present.

6.2.2 Computational procedures
Technical aspects

The large numbers of particles involved in the calculation requires the use of sophisticated
techniques for the implementation of the Metropolis algorithm. In particular we used the
linked lists (LL) method[63], in order to have a linear growth of the CPU time with the
number of particles. The details of this technique are sketched in Appendix B. LL exploits
the short range of the correlations to save computer time. If the size of the simulation
box is smaller than the range of the correlations and potentials considered, whenever a
particle is moved, only a fraction of the atoms is involved in the computation of changes
in |¥|?, therefore the time that is really needed become proportional to N and not to N2,
In our case the correlations are not very short ranged. Nevertheless the use of truncated
forms of the inverse power correlations in boxes containing N = 108 particles gives already

excellent results, justifying the adoption of such procedure.

Equilibration and development of the simulation

In the simulation of a phase coexistence, correlation times in the MC calculations tend to

become very large[64]. This implies that the length of the simulations must be increased.
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The major problem arises from the relaxation of the initial configuration towards the
equilibrium state. Because the melting and the freezing densities are not known a priori,
we might start form a situation that is quite far away from the final one. A typical

simulation has been organized as follows:

e Starting from the initial configuration few tens of MCS are needed to eliminate the

peculiar numbers due to the random configuration set of the liquid

o A first phase of equilibration is done, during which it is necessary to accumulate the
estimators for relatively short periods (typically 10000 MCS) in order to follow the

relaxation of the profiles.

o After the stabilization of profiles the real accumulation of statistics may start. The
typical time of relaxation is around 50000 MCS, but it depends strongly on how far

the initial conditions are from equilibrium.

6.2.3 Estimators for interfacial diagnostic

The particular nature of the system under investigation requires various kind of estimators.
which are suggested by earlier classical simulations[30, 31]. They are all organized in the
form of profiles, obtained dividing the box in slides that are orthogonal to the direction
along which the density varies, which is the z axis. The estimators are then evaluated in
each slide. This procedure is very important in order to get informations about the local

properties of the system.
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Crystalline Order Parameters

A crystalline order parameter is defined by:
G 1K ‘
OFF = {5 - €™ (6:4)
[ '

where G is a vector in the reciprocal lattice of the initial crystalline structure, [ is the
layer indexv, and N; is the number of particles present in the [-th layer, and () indicates
the average on the configurations generated in the random walk.

The crystalline order parameter is one when the particles sit exactly on the sites of
the lattice, and zero on average in the case of a disordered phase. In real solids at finite
temperature its value is much lower than one, due to the displacement of the atoms around
the equilibrium positions. 7

For this estimator the layering is based on the spacing between the crystal planes
* orthogonal to the z direction. Therefore, in the case of the {100} interface the width Az
of the layer is equal to a/2, where a is the elementary cubic cell side, while in the case of the
{111} interface the binwidth is a1/3/2. The vectors G determine the direction along which
the monitoring of the order is done. In the case of the interface the common procedure is
to monitor separately the order in the lattice planes orthogonal to z direction (transverse
order parameter), and the order along such direction (longitudinal order parameter), that is
connected with the spacing of the layers. Of course different sets of G vectors are needed,
whether we consider the {100} or the {111} interface. For the {100} case a possible choice
for the G is:

47 T
Gt ="7(1,0,0) Gt = (01,0
Y o a

£ a

4
Gl = —;5(0,0_,1)

The transverse order parameter is obtained averaging G and G@L, while the longitudinal
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order parameter is given by Gll. For the {111} case one can take the following vectors:

2V2% 1
T(L —“\7—57 \/6)

‘2\/§7r \/§
= hd
Gl = - (0,0, 2)

These order parameters are estimated both on the particle and on the shadows configura-

Gt =

tions.

Density profiles

The local density of the system is monitored using the density profiles. A density profile
is defined as:

o) = (52D, (63)
where N(z) is the number of particles with z coordinate lying between z and z + Az, 5 is
the area of the z — y section of the simulation box, and Az is the width of the bin. It is
customary to accumulate density profiles based on different binnings. A coarser binning,
based for iﬁstance on the spacing between the crystalline planes, as it is done for the order
parameter, provides a density profile that is smooth in the solid, and allows to view the
decay of the density in the interfacial region. A demnsity profile based on a finer binning,
allows for a closer view of the single planes in the solid, that therefore appear as sharp

peaks, while in the liquid it has a nearly constant value. In this case a binwidth of about

0.08¢ has been adopted. Also these estimators are accumulated both for particles and

shadows.

Energy profiles

Another class of profiles is based on the evaluation of the energy per particle profile. Due

to the form of the hamiltonian, we can adopt a convenient representation in which the
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local energy HU /¥ is splitted in the contributions relative to each single particle:

Ay X
T - .ZEi’ : (6.6)
=1 ’
where:
hVIU 1 -
Bi= = gmy T3 2000 (6:7)

where v is the potential energy. The energy per particle profile is defined as:

N
o = (3 LB, (6.8)
=1

where [ is the bin index, and N are the particles éontdined in it. Note that the expression
of the energy in a specific layer does not involve only the particles present in that layer, but
- includes the contributions due to the interaction with all the particles. In the same way
it is possible to define the profile of the potential energy per particle, and of the kinetic
energy per particle, which are quantities of major physical interest. Strictly connected to
the evaluation of the local energies are the calculations of the pressure and of the diagonal
part of the stréss tensor. The pressure is the derivative of the energy with respect to the

specific volume:
p-_9E _ 10E(p)
 Ov p? Op

Derivatives with respect to changes of volume in given directions give the components of

the pressure tensor Pyg. The stress can be easily evaluated from the diagonal components:
1
S = P.. - é[sz + ,Pyy]

An estimate of these quantities can be obtained scaling the coordinates of both particles

and shadows and evaluating in the rescaled configuration the energy profiles, in order to
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calculate the numeric derivative of the energy profile with respect to the volume. For

instance, the profile of the zz component of the pressure tensor is given by:

where ef' is the energy profile calculated in the system when the z coordinates are expanded
to z(1+a), and analogously € is calculated with the z coordinates transformed in z(1—a).
Av = 2aAAz/N;, where A is the area of the zy section of the simulation box, Az is the
with of the bin, and N, is the number of particles in each bin, gives the variation of the

specific volume. Similarly it is possible to calculate "Pix and P!

ys and consequently the

stress profile.

6.3 Results

6.3.1 Simulations performed

The first problem we have faced with was that the effective coexistence region does not
coincide with that determined by the Maxwell construction on the equa,tioﬁ of state,
for which the coexistence region lies between po® = 0.420 and po® = 0.490. Choosing
densities around po® = 0.450 a complete crystallization of the sample is found. A stable
phase coexistence has been found for values of the density between pa? = 0.449 and

pos = 0.456. Within this range we performed simulations at four different densities:

o po = 0.4505;
o pod = 0.452;
o po° = 0.454;

e po> = 0.4557.
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po> MCS # of solid layers % solid % liquid N orientation
along z
0.4505 2 x 10° 30 50% 50% 1876 {100}
0.4520 1 X 10° 30 50% 50% 4272 {111}
0.4520 2.5 x 10° 30 50% 50% 18642 {100}
0.4540 7 x 10% 30 50% 50% 1902 {100}
0.4557 2 x 10° 20 33% 66% 1896 {100}

Table 6.1: Summary of the MCS and of the initial configurations for the main runs performed in

the coexistence region. N is the number of atoms in the sample. The number of variables is 9N.

In table 6.1 we report the initial configurations of the main runs.

6.3.2 Energies and equation of state

In chapter 4 we proved that when simulating an homogeneous phase, the LD-SWF provides
results which are not significantly different from those of SWF. We can now complete the
" equation of state with the points that we have found in the coexistence region. In table
6.2 we report the total energies, potential and kinetic energies for each of the densities
considered. In all cases po® = 0.452 there is no significative difference for the {100} and
the {111} orientations.

One can see in fig. 6.2, that the energy in the coexistence region is a decreasing function
of the density. This is a direct consequence of the M(R) + M®(S) model considered for
the SWF'. Interpolating the equation of state obtained with such wave function at the
effective freezing and melting densities (p; = 0.449073 and p,, = 0.4560 73 respectively),

one obtains:

E(ps) = =5.16K E(pm) = —5.43K.
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Figure 6.2: Equation of state of 4He obtained with LD-SWF. The coexistence region is reported

in the insert, and the points represent the results of table 6.2.
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pos €t Ac V+ AV Tpp + ATpp
0.4505 —-5.19+£0.02 —-26.60 £0.04 21.41+£0.04
0.4520 —5.22 £ 0.02 —27.2440.04  22.03+£0.04
0.4520 | —5.214 £0.005* —-27.25+0.01 22.03+0.01
0.4540 | -5.234+0.05 —27.264+0.07 22.01+0.07
0.4557 —5.26 £ 0.02 —26.60 4+ 0.04 22.77 £ 0.04

Table 6.2: Total energy per particle (in Kelvin), potential and kinetic energy per particle in the
coexistence region.

*relative to the {111} orientation with 4272 particles

6.3.3 Proﬁles analysis

Most of the informations regarding the physics at the solid— liquid interface may be de-
duced analyzing the informations given by the various profiles that are produced during the
runs. We illustrate in the following the results concerning the runs at density po® = 0.452,

comparing them with the results at the other densities considered.

Order parameters

Typical order parameter profile are shown in fig. 6.3. The order parameters for the
particles and for the shadows coincide in the liquid, while assume different values in the
solid phase. Shadows are much more localized than the particles. As a consequence,
higher values for the order parameter are found for the shadows than for the particle.
The order parameter for the shadows assume values which are typical of classical solids.
The region in which the values decays to zero signals the presence of layers in which the

disorder takes place of the crystalline structure, and can be defined as the interface. The
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transverse order parameter results to be steeper than the longitudinal one. Thjs‘is due to
the fact that the first liquid layers are no more ordered in the transverse direction, while
a modulation of the distance in the direction of the density variation may persist. In fig.
6.4 the longitudinal and the transverse order parameter for the {111} interface are shown.

The profiles have the same behaviour in the proximity of the interface.

In figure 6.3-(a) two different sets of profiles are plotted. They refer to different block
averages in the simulation, distanced of about 40000 MCS. The figure displays clearly that
the solid experiences a wide motion throughout the box. This phenomenon is peculiar of
our simulations, and it has never been noticed before in classical simulations. and it is
not due to spurious motions of the center of mass, that are corrected in the simulation.
Examining the configurations it is possible to observe that the layers in the middle of
the box contain always the same particles, that kdo not drift from the original positions.
This means that the interface is moving through a process of melting and reconstruction
of the layers. This resembles the mechanism proposed by Andreev[65] to explain the
dynamics of the melting~freezing waves in “He. ! The driving force for this motion could
be originated by the fact that the initial conditions are far from the equilibrium. The fact
that in the {111} interface, where we started with densities closer to the values found in
the simulations the motion is very depressed supports this interpretation. Additional care
must be taken in calculating the width of the interface because its motion tends to blur
out the profiles. This can be avoided taking partial averages on reduced samples. In fig.
6.5 it is shown the order parameter as it appeafed if averaged over all the configurations
generated in the random walk. The interfacial region is completely blurred out, and the

determination of the quantity of solid resent becomes impossible.

! Melting—freezing waves have been widely observed experimentally [66], and are strictly connected with

the roughening properties of the crystalline surface [67].
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Figure 6.4: Longitudinal (solid line) and transverse (dotted line) order parameter profiles for

particles in the {111} interface at density po® = 0.452
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Figure 6.6: Fine scale density profile for the {100} interface at density po® = 0.452. Full line:

particles, dashed line: shadows.

An alternative strategy to reduce the noise due to the motion of the interface consists

in correcting the positions with respect to the center of mass of the solid defined as:

Y= % 3
— > 20
Nl o 1]

B =
L
2.0

!

zoym should be determined in a self consistent way, starting from an estimate of the order

parameter profile.

Density profiles

The fine scale density profile shows very well the different structure of the liquid and of
the solid (see fig 6.6). Deep inside the liimid it assumes a fairly constant value, with
fluctuations within the variance of the estimator that decrease with the number of MCS
performed. This indicates the absence of strong modulations along the z axis. Here the

behaviour is the same both for the particles and for the shadows. In the bulk solid a series
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of peaks may be observed, each corresponding to a layer in the solid. The shape of these
peaks is roughly gaussian, and their width is connected to the average displacement of the
particles around the crystalline sites. Here the shadows and the particles give different
profiles. The peaks for the shadows are quite narrow, and the height is comparable to
that obtained in simulation of classical system[30, 31]. The profile for the particles is
different, and shows broader peaks overlapping at the basis, indicating that there is a
finite probability for atoms of one layer to visit the nearest layers. This is not connected
to the exchange probability that results to be nearly zero also in this case. The width
of the peaks depends in part on the variational parameter C that controls the relative
displacement of particles and shadows. We adopt a value for C that is lower than the
optimal one for the solid phase (C = 5.7), and this contributes to enlarge the peaks of the
real particles. In the interfaéial region the peaks present in the solid decay progressively
toward the constant value, according to what is indicated by the order parameter. The
decay of the amplitude of the oscillations in the liquid is quite slow, indicating that the
disordered phase is strongly modulated ‘approaching the solid. The layer based density
profile (fig 6.7) is a quantity that in the solid is very sensitive to the changes in the
lattice spacing, because the interference between the periodicity of the binning @nd the
periodicity of the crystal gives rise to wide spurious oscillations. In the figure we report
the profiles in the case of the {100} interface. The bulk densities are not affected on
the orientation. Where the disordered phase begins a lowering of the density appears of
the order of 0.05072, that is the 1% of the freezing density and is of the same order of
the gap between. the freezing and the melting densities. This feature does not depend
neither on the interface considered nor on the particular characteristics of the simulation
as the initial conditions or the movement of the solid. Such behaviour is observed also

in classical simulations[68], and means that the liquid tends not to wet its solid surface.

-
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Figure 6.7: Per layer density profile, for particles, for a {100} interface at density po® = 0.452.

Fach bin has width equal to the distance between successive crystalline planes.

This minimum in the density profile was claimed to be at the origin of localization of
3He impurities at the solid-liquid interface of “He[69]. From the analysis of the density
profiles we can extract with good precision the values of the critical densities. Estimation
of the freezing density is straightforward, and can be obtained both from the fine scale
and the coarser scale profiles. In the fluid the density fluctuations in a given point tend to
average quite rapidly with a large enough number of MCS, and the value obtained is fairly
constant in all the bins. More difﬁcuﬁ is to estimate the melting density. We adopted
two methods, both based on the fine scale density profile. One consists in measuring
directly the distance among two consecutive peaks in the solid, obtaining in such a way
an estimate of the lattice constant. Alternatively we calculate the Fourier transform of
the profile, in which appears clearly the peak correspondent to the periodicity in the solid
(see fig. 6.8). The results, compared with the extension of the coexistence region expected
from the Maxwell construction, the results of GFMC and the experiment, are reported in

table 6.3.
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pso°  pma®

LD-SWF (interface) 0.449 0.456

LD-SWF (Maxwell constr.) 0.407 0.467
GFMC (Maxwell constr.) 0.438 0.491
Experimeﬁt ‘ 0.438 0.465

Table 6.3: Melting and freezing densities of *He from LD-SWF calculations, Green Function Monte

Carlo equation of state, and experiment.

Energy and pressure profiles

In figure 6.9 the total energy profile energy profile is shown for the {100} case. The energy
of the bulk solid is lower than the energy of the bulk liquid (according to the discussion of
the previous section), and their values are E; = —5.32 £ 0.07K and ;= -5.20 £ 0.07K,

in accordance with the results expected from the equation of state.

A feature that can be observed in the energy prdﬁle is the peak appearing in corre-
spondence of the interface, that has to be connected with the interfacial energy, although
it does not represent an efficient way of computing it, due to the statistical error that
for such profiles is about 7 times larger than that on the average value of the energy per

particle. The maximum of the excess energy, that is located inside the interfacial region,

is of 0.1K per particle.

The profiles of quantum pressure and stress pose an apparent paradox. As it can be
seen in fig. 6.10, the values of the pressure in the solid and in the liquid are quite different,
that is 1.9 K/o> = 15.5 atm in the solid, and 7.3 K /o3 = 59.6 atm in the liquid.

Actually, this values are consistent with the values that can be obtained from the

equation of state provided by the LD-SWF (P = ;176—;(;‘12). To the difference in the
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Figure 6.9: Per particle energy profile in {100} interface at density po® = 0.452. The values in the

figure do not include the tail correction, that is ~ 1K

pressures, do not correspond the presence of stress in the sample. We can rule out that
. as it can be seen by the stress profile (fig. 6.11), which clearly excludes such occurrence.
" The difference in pressure is then connected to the width of the coexistence interval, and

* is consistent with the melting and freezing densities obtained in the simulation.

Comparison of the results at different densities

The profiles obtained at densities other than po® = 0.452 do not present features which
are significantly different from those discussed above. An important check that has to be
done is how much the lever rule of equation (6.3) is fitted. In figure 6.12 we show as an
example, the fine scale density profile at density po® = 0.4505. The number of solid layers
remained in the box is much lower, although at the beginning there was half solid and half
liquid. The opposite effect has been observed in the simulation at density pa> = 0.4575,
where the sample solidified quite completely starting from a situation in which only one

third of solid was present. The lever rule results to be satisfied within few percent.
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Configurations analysis

In fig. 6.13 the configuration plot of the particles in the interfacial region is shown. The
layers considered are ten. This plot is relative to 24 configurations extracted from 16000
generated, and is a projection onto the y — z plane. Here the passage from an ordered
phase (on the right) to a disordered one is very clear. The interfacial region as seen in this
picture consists on 4-5 layers, in which the localization of the particles tends gradually
to be destroyed. The lines here connect consecutive positions of each particle. In the
interfacial region the particles look to be free to move away from the crystalline sites,
although they spend still some time around ﬁxed‘positions, as signalled by the more and
more blurred planes that can be observed. In fig. 6.14 we show a crystalline plane in
the interface compared with one still inside the solid. There are still atoms occupying
- definite sites for some time and atoms diffusing more widely. Moreover some sites are not
permanently occupied by the same atom, indiéating that in the interfacial region exchange
of particles is much more likely than in the solid, where all the atoms are well bounded
around their equilibrium pbsitions., The mobility of the atoms can be measured by the
average square displacement from the initial positions 672 = ((r — r0)?) (see fig. 6.15).
In the solid this value is about 0.60%, meaning that the particles are displaced from the
lattice sites no more than one half of the nearest neighbours distance. Going through the
interface the value increases quite rapidly. It saturates well inside the liquid, where the
average displacement is of ~ 4¢. This means that the first layers of liquid are still sensitive

to the presence of the solid, and the mobility is somewhat depressed.

6.3.4 Interfacial energy

One of the major results of this calculation is the first theoretical estimate of the solid-

fluid interfacial energy in *He. Consider an expansion of the equation of state in terms of
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E(v)

Figure 6.16:

specific volume v = V/N, around the freezing point for the liquid branch and around the

" melting point for the solid branch:

Er=Eg - p(v—vs) + jas(v —vs)’
(6.9)
Es=FE,—p(v—v,)+ %—am(v — Uy )
with B¢y < B, and oy > oy, see fig. 6.16
If the simulation box containing N particles, Ns of which in the solid phase and Np,
particles in the liquid phase, the bulk contributions to the total energy per particle can
be written as: V

By _ Ns

1 2 JVL 1 2]
NN Em*-P(v—vm)JrQam(v—vm)]f N [Ef“P(”“”f)+2af(”_”f) -

(6.10)
The energy measured differs from Ep/N and we define interfacial energy the difference
among the calculated value and Ep/N. It is convenient to express this contribution in

terms of interfacial energy per surface unit €,,,s. Therefore the total energy can be written
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as:
Etot _ EB 25 .
N == N + N €surf (611)

where § is the area of the = — y section of our simulation box. and the factor 2 is due to
the presence of two interfaces in it. In order to take into account possible finite size effects

we parametrized €4, in the following way:
€surf = €0 — IB[AU - (’U, - 'U”)], (612)

where v/ and v are the freezing and melting specific volumes found in the simulation,

namely:

v = 2.227 + 0.005,
v = 2.193 + 0.009.

We fitted the values of the energy per particle at the four densities considered with the
expression in eq. (6.11). The results are given in table 6.4, where are displayed all the
values obtained ‘considéring the uncertainty Av on v’ and v".
From thé fitted values it comes out clearly that 8 is compatible with 0, so we can rule
out strong finite size effects. The largest source of uncertainty is due to the errorbars on

the values of the freezing and the melting densities. The final value for g is then given by

_ K K
€= 1171048 Pl 0.18 £0.07 1

that is very close to the extrapolated experimental value [70].

6.4 Correlation pseudopotentials and coexistence range

In the previous sections we pointed out a couple of apparent inconsistencies in the results,

mainly concerning the region of phase coexistence:
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€0 v — Av' v v+ Av'
v — Av” 1 0.824+0.14 | 0.99+0.14 | 1.12+0.14

v 1.00£0.14 | 1.16 £0.14 | 1.28 £ 0.14
v+ Av” | 1.334+0.14 | 1.44+£0.14 | 1.51+0.14

Jé; v — A’ v v+ AV
v — Av” | —=1.51+£0.50 | —0.89 4+ 0.51 | —0.39 £+ 0.52

v ~0.84 £0.48 | —0.27£0.49 | 0.14+0.50
v+ Av” | 0.3040.47 0.67 4+ 0.48 0.93 £ 0.49

Table 6.4: Fitted values of ¢g and § in eq. (6.11).

e the coexistence region is very narrow with respect to what expected from the Maxwell

construction;

e there is a wide difference in pressure among the two phases without an evident stress

in the solid. Nevertheless the system is mechanically stable.

A possible cause of the first point might be the occurrence of strong finite size effects.
We can rule out this hypothesis, because simulations with boxes of different length (with
120 and 40 layers respectively) and with different area of the section of the simulation box
(5 x 5 x 5 cells) stabilize immediately at the same melting and freezing densities, in spite
of the fact that thé gap between the initial densities of the solid and of the liquid was
made larger.

The incorrect behaviour, of the equation of state, and consequently of the pressure and
of the stress, lies in the fact that our wave function differs from the exact eigenfunction

more on the coexistence region than in the homogeneous phases. The variational principle
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does not guarantee good results for the coexistence properties. Actually one can try to
use the properties at the coexistence to get a better trial wave function closer to the
eigenfunction. The simulation is governed by the probability distribution determined by
|¥|2. Let us consider for instance a Monte Carlo simulation in 4He with a variational
wave function of the pure Jastrow form with a McMillan correlation pseudopotential. The
Metropolis algorithm does not distinguish among this case by an ensemble of soft spheres
interacting via a potential V(ry;) = (b/r;)®, where the canonical probability distribution
is
5
(R) = He_ﬁ<%) , (6.13)
i<j

with 8 = 1. As a consequence the various estimators, with the ezception of E behave
during the simulation as in an ensemble of soft spheres interacting with the McMillan
potential. A similar feature occurs in our case. As written in appendix A, the probability

distribution governing the random walk in a SWF simulation is:
b 5 9 9
-\ =5 —C(Tﬁs,-L)Z—C(T-'—SF)?—(:"‘*) —(L>
=(R, S, Sr) =] |e (%) ) \%/ | (6.14)
i<y

Consider the “partition function” for a fictious classical system described by =

7= / (R, S, SR)dRASLdST. (6.15)

Let:

_(ﬁz)s_<ﬁi>g_(ﬁi)g
Ty 3:LA tE
fii=e N7 g W)o-1, (6.16)
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We have then

Z:/deSLdSRHfg;L = T](fi + 1) (6.17)

i<j

The first order cluster expansion, considering the gaussians as mean field (see ref. [26]),

gives the approximate expression:

7\3N N(N/1) (=\®
Z ~ VN (%) [1 + _._é_# (—C—;) /f&LféngLngf12dT1d7‘2d8{'dS{2d8'2Ld8§ 5 (618)

where V' is the volume of the system and N is the number of particles.

The integral in (6.18) can be evaluated using again a cluster expansion. Defining the

following symbols:

O left shadows

right shadows

>< particles
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the integral is the sum of the following contributions:

The diagrams (ii) and (iii) are completely equivalent, while the diagrams labelled with
(iv) are negligible because of order (5-}—)3- with respect to (i-iii). Further development of

the calculations leads to the following result for the approximate partition function

\3N 1 3 2 1
2oV (2)7 [t anmo (Gr(-3) 40 (-5) %)) @19

The expression (6.19) implies that once C is fixed, the partition function depends only on

a reduced density v whose expression is:

e (e B ()

With such expression we can check if the width of the interfacial region depends only on
the particular functional form chosen for the correlation pseudopotentials. Remémbering
that in LD-SWF b, — bg + b1p, and keeping th value b, = 1.120, and substituting to the

T’ functions their numerical values, we can transform eq. (6.20) in:
v = p[0.90(bo + b1p)? + 1.04] (6.21)

The hypotesis that the free energy depends only by 7y has the consequence that the coex-

istence interval, is known for any value of the parameters appearing in eq. (6.21), if it is
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known at least for one set of parameters. The simulations with by = 0.51 and b; = 1.91
give py = 0.449 £+ 0.001 and p,, = 0.456 £ 0.002, and consequently the values for the

reduced densities corresponding to the extrema of the coexistence interval are:

vf=1503 + 0.015, (6.22)

vm = 1558 £ 0.032. (6.23)

If we want to reproduce roughly the experimental range of coexistence (p’f03 = 0.435,

ph.o® = 0.460), we must solve for by and b; the system of equations:
75 = p[0.90(bo + b1p%)° + 1.04]

Ym = ph.[0.90(bo + b1p )° + 1.04]

The calculations give by = 1.680 and b; = —0.670%. A simulation of 25000 ’MCS plus
20000 of equilibration at average density po® = 0.445 gives 12 layers of stable solid, and
the freezing and melting densities are py = 0.43940.002 and p,, = 0.464+ 0.002, consistent
with the values expected and to which the parameters have been fitted. Obviously with
such a change of by and by the value of the total energy in the bulk liquid and solid become
higher, but now they are in the order expected (€501 > €144), although their values are very
close one to the other (€5, = —5.28K and ¢, = —5.35K).

A very important point is that the value of the interfacial energy obtained with this
new values of the parameters bg and by, does not vary much respect to what found before
(0.10 £ 0.08K/A). This means that the interfacial energy is not very sensitive to the
parametrization chosen, and depends mainly on the presence of a mismatch between an

ordered and a disordered phase.
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6.5 Perspectives

The study of the solid-liquid interface by means of the LD— SWF already gave excellent
results. The use of the improved wave function makes sensible more detailed studies of the
interfacial structures. A very interesting calculation that can be performed regards the
computation of the change in the condensate fraction across the interfacial region. More
detail can be also still given about the geometrical properties of the solid layers in contact
with the liquid, in order to understand better how the density changes in proximity of the
solid and if the packed structure of the crystal is maintained.

Other problems will be attacked with the use of LD-SWF. We will mention three
possible fields of application in the helium physics. First of all this wave function can
be used to face on a microscopic point of view some problems of surface physics that
otherwise can be studied only by means of mean field calculations. It is possible to
calculate, starting from the estimation of the interfacial energy, the roughness properties
of the interfaces at various orientations, or the step energy in 2a tilted interface, that
has been recently measured. Secondly there are several question to be answered in the
behaviour of impurities (*He or other) in the two phases system. For instance, it is known
experimentally that such impurities are alwéys located at the interface. It is not yet clear
if this is due to a static effect, in the sense that there is a surface bound state for the
impurity, or to a dynamic effect, connected to the difference among the crystal growth
velocity and the diffusion velocity of the impurities in the liquid. A simple calculation
based for instance on the Lekner approximation could already give some indication about
this problem. Eventually one can also study more challenging inhomogeneous systems,
such the helium films deposited on a graphite substrate, and that seem to present a couple
of layers of solids, each one with a different structure, and then a liquid. Some study in

this direction has already been performed by Ceperley and Pollock[58] with Path Integral
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Monte Carlo techniques, but the very small number of atoms that can be managed at the

moment, does not allow for giving a satisfactory theoretical analysis of this effect.



7 Shadow wave Function for Nor-

mal SHe

In this chapter we present an extension of the SWF, originally proposed for Bose systems,
to treat strongly interacting Fermi systems, such as liquid and solid 3He. In recent years,
several ab initio calculations based on variational theory have been performed. They are
based either on Fermi HyperNetted Chain (FHNC)[45, 71] theory or on VMC[72, 42]
methods. Obviously one would like to carry out GFMC or DMC calculations on *He,
like for “He. However this has .not been possible yet, due to the sign problem, typical of
Fermi systems, and GFMC[72] and DMC[47] calculations has been carried out under the
constraints of fixing the nodes of the wave function[73]. These need to be determined by
a previous variational calculation.

The main perspective in extending the SWF ansatz to the case of Fermi systems is to
open the possibility of ab-initio calculations for solid ®He as a possible component.

The typical trial wave function for a Fermi system is made up of a bosonic correlation
operator, as the one discussed for *He acting on a mean field wave function ¢, which
is antisymmetric under the exchange of the particles[74]. Therefore one can think of
including the shadow degrees of freedom in the bosonic part of the wave function, or in

the antisymmetric part, or in both. Since we are mainly interested in giving a realistic

110
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ansatz for solid 2He we developed here only the case in which th shadow degrees of freedom
enters the Bose part of the wave function. We will also present preliminary results obtained

both in the liquid and in the solid phase, and performed with Monte Carlo methods.

7.1 VMC calculations for normal *He

Monte Carlo techniques have been widely applied in the study of the ground state prop-
erties of 3He . The approaches do not differ substantially from that used for *He. The
major complication comes from the a.ntisymmetrykof the trial wave function. In the case
of normal ®He this is realized by taking the mean field part of the wave function ¢ of the
following form[42]: |

gry---ry = Di(ry - rn2)Di(rnyogn - TN, (7.1)

where D,(ry---ry) is the Fermi gas wave function of N fermions with spin ¢. The
correlation factor F(ry---ry) is the same as for *He. However in Fermi systems the
backflow not only provides triplet correlations, but also momentum dependent correlations.
These are usually taken into account modifying the plane waves in the determinants D,,

namely considering the following single particle orbitals:

go]lfi = exp(tk - r;) — exp [ik . (ri +A8)Y n(rij)rij)} . (7.2)

i%j
Table 7.1 reports the results of some variational calculations carried out at density

po® = 0.277[42], compared with Fixed Node Diffusion Monte Carlo, (FN-DMC)[47] and

the experimental value at the equilibrium density po® = 0.273!

!The small discrepancy in the values of the density at which the simulations were performed, are due

to more recent accurate experimental determination of the equilibrium density (see e.g. ref. [75] and
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Ur E+AE
Jastrow—Slater —1.08 £0.03
JS + Triplet —1.61+0.03
JS + Backflow —1.55+0.04
JS + Trip. + Back. -1.914+0.04

—2.0947 + 0.0056*
DMC (Fixed node) | —2.2991 £ 0.0069~
Experiment —-2.47+0.01

Table 7.1: Variational energies for different trial wave functions from ref. [42]. Numbers marked

with * are from ref. [47].

As in the case of *He the use of backflow correlations give a lower upper bound for
the energy. The discrepancy with DMC results is still ~ 10%, indicating that n-body
correlations with N > 3 are not negligible.

Mouch less satisfactory is the situation in the solid phase, where most of the calculations
have been performed in terms of mass three bosons, based on the fact that in a crystalline
structure the exchange effects are small. Ceperley et al.[74] considered an antisymmetric
wave function for the solid, in which a Slater determinant of gaussians centered on lattice

sites is used.

7.2 Slater—Shadow Wave Function

Our generalization of the SWF for a fermionic system follows the way indicated in the

variational calculations previously discussed, and includes the shadow degrees of freedom

references therein).
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in the bosonic part only, namely:

\IIT(R) — W;%Ziq upp(rij) / dSH e—CII‘i—Sil282£<)‘ uss(sij) (73)

In our calculations we included backflow correlation via eq. (7.2) The correlation
pseudopotential among the particles, uyp, has been taken of the McMillan form, and for
shadow-shadow correlation,us; we have used the rescaied Aziz pseudopotential uss(s) =
6V (as) (see chapter 3 for definitions). Recalling the PIMC framework[53] we can interpret
this wave function as describing the centers of mass of the delocalized quantum particles as
"quasi classical” objects, for which the exchange force is not effective, while the quantum
effects are accounted for the real particles.

From a computational point of view the introduction of the Slater determinant mul-
tiplying the shadow type correlation factor does not change substantially the numerical
procedures , except for the changes usually needed when passing from bosons to fermions.
In particular there are now some restrictions on the number of particles to be employed.
One can use only an odd number of particles for each spin component. This is due to the
requirement of having a zero total momentum in system, because in building the Fermi
sea one starts to fill the & = 0 state and successively pairs of states with momentum +&.
Moreover in order to have a wave function with spherical symmetry it is necessary to fill
a complete shell of k vectors in the k-space. This is obtained for n = 1,9,19,27,33,54...,
while the total number of particles is restricted to N = 2n, therefore N = 2,18,38,54,....
This has to be combined with the compatibility with a b.c.c. lattice (experimentally found
to be the stable phase of solid *He )[75]. The presence of backflow correlations implies
the computation of the determinant at each elementary move, so that becomes convenient |
to perform a collective gradient-biased move at least for the particles. The evaluation of

the kinetic energy estimators is also modified by the presence of the Slater determinant,
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in the sense that we have to add to the particle-particle pseudopotential the contributions
coming from —log(D;D1). This does not influence in any way the shadow contributions.
As for the He case we have two distinct estimators, the Jackson Feenberg and the Pand-

haripande Bethe kinetic energies, whose equality signals the reached equilibrium.

7.3 Liquid phase

In order to optimize the variational parameters in the liquid phase we proceeded with a
scanning over a region of the parameters space close to the point that optimizes the SWF
_in the bosonic case. In particular we can fix some criteria basing on past simulations and

on physical considerations.

We explored a whole multidimensional grid of parameters. The simulations were per-
formed with 54 particles in a cubic box with periodic boundary conditions. The density
was fixed to po® = 0.273. Table 7.2 reports the values for the variational energy, kinetic
and potential energy for some of the values of the parameters considered, close to the
“optimal” ones. Preliminary results obtained for runs with 114 particles confirm the esti-
mates reported in the table. One should notice that the particle-particle correlation has
a narrower core than in the bosons, in agreement with simulations with Jastrow—Slater
which give an optimal value for b of 1.130 (to be compared with 1.200 of *He). The

parameter C, is also reduced, consistently with the mass difference between >He and *He.

The results obtained with our SSWF are of the same quality as those of SWEF in 1He.

This is very encouraging in view of extending the study of liquid-solid coexistence to 3He.
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b(o) C(c™?) §(K-1) a E(K) Epor(K) Epin(K)
1.08 3.5 0.1  0.85|-1.7040.03 —13.88+0.04 12.18+0.04
1.08 35 0105 0.88|-1.66+0.03 -13.724+0.03 12.06+0.04
1.08 35  0.095 0.88|-1.82+£0.03 -13.70+0.03 11.88+0.04
1.08 4.0 0.1  0.88| —1.80£0.03 —14.0440.03 12.24+0.04
110 35  0.095 088 |-175+£003 —14.16+0.03 12.41+ 0.04

Table 7.2: Results for some runs with SSWF in ®He. The number of particles employed is N = 54.

Fach run consists of about 70000 MCS

7.4 Solid phase

Solid *He is one of the most interesting quantum solids. to be studied. SSWF may
provide a powerful tool for systematic description of its properties, taking into account
the antisymmetry of the wave function, and without including a priori symmetry breaking
conditions. Tt is known that the stable crystalline phase of 3He above the melting pressure
has a body center cubic (b.c.c.) structure. Conventional correlations, (purely repulsive
but also attractive if the pressure is not very high)[76] are not able to stabilize such a
structure. Moreover it has been impossible up to now to build a Slater wave function
with the correct crystalline symmetry, without taking localized (e.g. gaussians) single
particle functions. Our wave function overcomes this problems. We could obtain a stable
b.c.c. crystalline structure with SSWF due to the fact that particle-particle correlations
are affected in a significant way by the presence of the determinant which introduces a

repulsion which increases the effective pressure in the system.

So far we have performed simulations at just one density (po3 = 0.440), with V = 54

particles and starting already with a b.c.c. structure. In order to prove the stability of
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Figure 7.1: Elementary conventional cubic cell in the case of AFM becc crystal. Darker particles

‘constitute the basis of the lattice.

the b.c.c structure a crystallization experiment, as that described in chapter 5 for ‘He,
is needed. In order to have also indications on the sensitivity of the wave function to
the spin ordering we are considering two different starting configurations: one antifer-
romagnetic (AFM) and one ferromagnetic (FM). We recall ‘that backflow correlations
distinguish between singlet and triplet spin pairs, and therefore simulates spin—dependent

correlations[45]. The results obtained so far refer to the AFM case.

7.4.1 The AFM case

In the antiferromagnetic case each elementary conventional cubic cell accommodates two
particles with different spins (see fig 7.1).
Such a configuration is known to be the ground state of 3D spin models with pure

nearest neighbours interactions. We expect it to be energetically favoured with respect to
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b(e) C(c7?) &K' «a Eo(K) ord. par. (particles) ord. par. (shadows)
1.09 3.5 0.09 0.083 2.486 + 0.038 0.161 0.201
1.09 3.5 0.09 0.081 1.470+ 0.023 0.506 0.726
1.09 3.5 0.09 0.078 1.640+£0.023 0.520 0.812
1.07 3.5 0.09 0.081 1.356 £ 0.024 0.492 0.725
1.09 3.5 0.07 0.083 1.772+0.025 0.470 0.674

Table 7.3: Variational energies in solid He at density po® = 0.440. In the last two columns the

crystalline order parameter for particles and for shadows is given.

a ferromagnetic configuration. !

For this configuration we explored the parameters space. The crystalline order has been
tested using the crystalline order parameter deﬁnéd in chapter 6. The vectors employed
here belong to a star of vectors in the reciprocal lattice (a f.c.c. ), that all the vectors
- connecting one site with the nearest neighbours. In table 7.3 we report the results obtained
- for va,lu\es of the parameters close to the optimal ones.

As can be seen the parameter o (equivalent in some sense to the b, of the SWF) plays
again a crucial role in stabilizing the solid. There exist a critical value below which the
crystal melts. The energetic behaviour is similar to that of solid “He: a 'rapid drop in
the energy is observed passing from the fluid to the solid. There is a minimum near the
critical val.ue of «, thereafter a new rise, eventually towards the Nosanow value. Order

parameters at the minimum indicate again that shadows are more localized than particles.

!Experimentally the ground state of unpolarized solid 3He is found to be paramagnetic at higher
temperatures; at lower temperatures it consist in a succession of ordered planes with a sequence like up-
up-down-down-up-up... and so on. [75]It would be sensible to test such configurations when a true
spin-spin correlation were introduced. Within our approximation we can reasonably consider AFM b.c.c.

as a good enough approximation for the ground state
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The mechanism of crystallization is presumably of the same kind of that in *He, although
here the real particles play a more significant role in determining the final geometry. The
order parameter reported in table 7.3 has the form:

N
0p = (32 le™™)) (7-4)

G =1
Where G are vectors belonging to a star of crystalline planes in the b.c.c. crystal. The
sum over the moduli has been used in order to avoid the effect of the spurious motion of
the center of mass of the simulation box. In the liquid phase such order parameter gives a
value ~ 1/ VN, while in a perfect crystal it assumes a value of 1, as the order parameter
discussed in chapter 6. The effect of the antisymmetrization of the wave function in 3
was discussed by Ceperley et al.[74] for the first time in 1977. In that case the trial wave
function consisted of a determinant of gaussians localized on a b.c.c. lattice, multiplied
by a Jastrow factor. The result was compared with analogous calculétions of Hansen and
Levesque[77], performed on mass 3 bosons. The energy per particle found in that case
is 1.07 & 0.03 K, with 864 particles, while for the antisymmetric wave function one gets
1.57 + 0.08 K with 54 particles. These results were obtained at a density lower than that
employed for SSWF calculationsi, that is po® = 0.427. The energy upperbound found -
with SSWF is not so far form these numbers, demonstrating that also in the solid phase

this trial wave function can give reasonable results.

7.5 Perspectives

The SSWT applied to fermionic systems open many perspectives, and not limited to the
study of 3He. The first application can be the study of the solid-liquid interface, that
appears to be computationally more demanding with respect to the analogous calculation

in *He. Nevertheless the use of parallelization techniques should allow for gaining in speed
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enough to reduce the computation in a reasonable time. Another important application
can be a systematic theoretical study of the solid phase in 3He, that is still completely
lacking.

In this chapter we introduced the SSWF only for normal Fermi liquids. Starting from
recently pfesented VMC calculations on superfluid 3He, it should be possible to introdu’ce
SWF also in superfluid systems. |

Finally other interesting applications of SSWF could be the study of Wigner crystal-

lization in the electron gas, or that of strange neutron matter.
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Appendix A
Computational procedures in

Variational Monte Carlo SWF

calculations

In this appendix, we want to sketch out rapidly the computational procedure used to
implement SWF calculations with Variational Monte Carlo (VMC) techniques. VMC
allows for computing average values of local operators O(R) on a given trial wave function
U7 depending on a set {a} of variational parameters. When using SWF', the average
value of the operator O is calculated integratxiingé over three different sets of degrees of

freedom:

(U(R)O(R)¥(R)) =

[ dRb.(R) [ dSTO(R, SPy8(STIORYUAR) [ dsP(R, SP)us(5).

The superscripts L and R mean “left” and “right” (denoting the w.f. multiplying O
from left and right). The Monte Carlo integration can be performed using the standard

Metropolis procedure. The probability distribution to be sampled involves both particles
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and shadows and can be written as:
7 (R, S5, SB) = $2(R)B(R, SV)b(SV)B(R, STyps(ST) (A1)

where 9.(R),1s(5) and §(R, S) are defined in egs. (3.2)~(3.4).

Sampling

The sampling is performed moving in sequence the particles, the left shadows and the right
shadows. The random displacement is performed in a cubic box of side A, for particles
and A, for shadows. Each move is then checked for acceptance following the prescription
of the detailed balance, that is calculating the ratio:

_ 7Tnew(Ry SL7 SR)
-~ mad(R, ST, SF)

and then accepting the move with probability:
min(§,1).

The fraction of moves accepted is kept around the 30%. In order to have the same
acceptance for particles and shadows the steps must be different. A, must be lower than

A,, Confirming the fact that shadows diffuse more slowly.

Modification of energy estimators introducing SWF

The configurations generated during the Metroplis random walk are processed in order
to get informations about the system. We want to describe quickly the main estimators
employed in order to see the modifications needed when shadows are added. First of all we
have some change in the estimators of the kinetic energy, due to the contributions coming

from the particle-shadow interaction term. We remind that in a VMC calculation the
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energy is estimated averaging the local energy HU/U. The direct evaluation leads to the
so called Pandharipande —Bethe kinetic energies, that we report in a form symmetrized
with respect to the contribution from the left and right shadows:

. h2 -
Tpp = R[—ZZV?“W

i i

-+

2
1 - - -
5 (Z Vi“pp) -+ (Z Vf“pp) (Viupt)
J#t JF

(A.2)
+ (Z fz’%p) : (ﬁi“pr) - ﬁ?“pl - v?“w

IF
+ <viupl) + (viupr) :‘
Applying the Jackson—Feenberg identity one gets the Jackson-Feenbergform of the kinetic
energy:
. h? 1 e
Tyr = 4—ml:2 D) ZV?UPP
1 e
1~

1=
- é-v?up, - 5v;f’u,,,‘ +

_ (@iu_pl) : (ﬁ,-upr)}

Comparison between PB and JF kinetic energies gives informations about the equilibration

L

5 (6{’&1,[)2 + (6,’%13,-)2 (A.3)

|

of the system. In fact this two estimators must lead at the same mean value. Usually Tjp

has a smaller variance than Tpg, but if we consider the total energy:
<E>=<T>+<V>,

it comes out that the use of PB expression gives a smaller variance. The computation of

both the estimators is very useful. Notice that the shadow—shadow correlation pseudopo-
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tential does not enter any of these expressions of the kinetic energy, implying that the

calculation of the total energy does not depend on the particular choice of ug;,.



Appendix B
Methods for MOC calculations 1in

large systems

In this appendix we describe briefly the modiﬁcations needed in the algorithm in order to

.deal with simulation boxes containing a large number of atoms N. In this situation the
heaviest part of the computation is given by the evaluation of changes in the probability
distribution (A.1), that must be computed for each of the 3N elementary moves. The
CPU time needed for this part grows as N2. When N is small (about 100) it is possible
to store in memoty the contributions to the two body quantities relative to each pair
of particles, reducing of a factor 2 the time for each loop over the pairs, and reducing
the number of interpolations of the pseudopotential tables. The time needed with such
optimizations for a sweep over all the particles and the shadows in a N = 108 box is of
the order of 3 x 107! seconds on an IBM rs/6000- 580. The code occupies in this way a
large amount of memory, (about 4Mbyte) that increases again with N?. For N = 1800
(that is the typical number of real particles in the case of the interface) we would get a
RAM occupation of about 1Gbyte and a CPU time per sweep of 83 seconds.

A very useful technique, that permits to reduce the CPU time needed in simulations of
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large systems, is that of the linked-lists (LL). It consists in dividing the simulation box in
subcells whose side is larger than rZ 7 wheré ™% is the largest range of the correlations
(or potentials) present in the problem. In *He only nearly short-ranged correlations are
used. Simulations with N = 108 atoms give already satisfactory results both in the liquid
and in the solid phase. In this case the correlations are truncated in correspondence of on
half of the side of simulation box. When dealing with larger boxes, the accuracy in the
calculations of pair terms is increased, but the results do not change significantly any more.
Tt is then worth considering potentials truncated at some distance independent on the
sides of the simulation box, limiting in this way the number of nonzero pair contributions
involved in the calculations. The number of particles around a given one falling within the
range of the potential is nearly a constant number M, that depends only on the cutoff and
not on the size of the simulation boz. For each particle considered, one has to calculate
only M pair terms, instead of N, and the growth in CPU time becomes linear in V.
The LL represent an efficient way of implementing the use of truncated correlations and

- potentials.

Let us consider for simplicity a 2D system. We can divide it as in fig. B.1. Before
starting the simulations one sets up two arrays, one dimensioned with the number of
particles (let us call it LIST) and one dimensioned with the number of cells (let us call
it HEAD). In HEAD we want to put a representative of each cell, that is the label of a
particle belonging to that cell, while LIST is built up in such a way that its i-th element
contains the label j of another particle in the cell, or 0. For instance, if we consider the
cell in fig. B.2 that contains the particles 5, 9, 12, 15, the correspondent elements of list

will be as follows:
LIST(5)=9

LIST(9)=12
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1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 | 25

Figure B.1: A 2D simulation box divided in neighbours cells.

HEAD (2)

(

/

LIST(5) 2

CIST(Q)

LIST(12)

Figure B.2: Close-up of cell 2 in fig. 1

K LIST(15)
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LIST(12)=15

LIST(15)=0

If the cell number is 2, HEAD(2) will contain 5. -

If we want to move the particle number 9, we have first to look for the cell to which
it belongs, on the basis of its coordinates. After that we start to calculate pair quantities
with the particles present in that cell. We look for HEAD(2), and find 5. We calculate
everything for pair 9-5. Then we look for LIST(5), that is 9 so we skip the pair. LIST(9)
contains 12, and we calculate the pair 9-12 and so on. When we come to LIST(15) we
find 0, and this signals that no more particles are present in the cell. After that we start
to consider the nearest cells (1,6,7,8,3,21,22 in this case), looking for the representative of
each and looping on the other particles present. No more particles are needed, because
the nonzero contributions can come only from within these cells. A disadvantage of this
method is that the overhead due to managing and refreshing the tables is quite large,
making unuseful the application of LL to small systems. The application of the LL algo-
rithm enables to sweep all the degrees of freedom in a N = 1800 box in 16 seconds on IBM
1s/6000 -580, without storing the pair contributions, so that the memory requested is less
than 2Mbyte. The LL implementation that we did is not completely optimized, and some
time shall be gained with refinements of the algorithm, which involve also Verlet tables.

Eventually, LL constitutes a good basis for a possible parallelization of the code. The
relative gain in time will probably allow for the simulation of interfaces of larger section,

that are essential in order to study many interesting surface properties.
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