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Chapter 1

Introduction

Molecular dynamics (MD) simulations with forces derived from quantum
mechanics have been widely applied in solid state physics, in materials science
and in physical chemistry [1]. Quantum MD is effective for optimizing atomic
geometries either locally or globally using simulated annealing techniques.
Moreover it can be used to study both equilibrium and dynamical properties
associated with atomic motion at finite temperature.

In quantum MD the ionic forces are determined by the electronic struc-
ture, which is usually computed within density functional theory (DFT) in
the local density approximation (LDA). This provides a good description of
interatomic interactions in a variety of situations involving different chemi-
cal bonding such as covalent, metallic and ionic bonding. As a consequence
DEFT-LDA has considerably improved the predictional power of standard MD
simulations based on classical empirical potentials, which have well known
transferability problems. Unfortunately the computational cost of MD sim-
ulations based on DFT-LDA is considerably greater than that of MD based
on classical empirical potentials. In view of this, simplified quantum MD
schemes such as those based on empirical tight-binding (TB) Hamiltonians
have been used in some cases. TB-MD represents an intermediate scheme
between a fully self-consistent DFT-LDA approach and one based on empir-
ical potentials [2]. In particular TB Hamiltonians describe accurately many
features of covalently bonded systems.

The treatment of the electronic structure in all quantum MD schemes
results in an increase of the computational effort compared to classical MD.
In particular, in quantum MD the computational effort grows as the cube of



the number of atoms while it grows only linearly in classical MD. Therefore,
if it is nowadayvs standard to perform classical MD simulations in which the
number of atoms is of the order of 10 and which last for a time span of
nanoseconds. quantum MD can only handle systems with a few hundred
atoms for time scales of picoseconds.

Another limitation of quantum MD simulations is that so far these have
been restricted to ground state adiabatic processes, while the study of photo-
chemical processes or of light-induced structural modifications would require
an excited state adiabatic MD. More generally it would be desirable to ex-
tend quantum MD simulations also to non-adiabatic processes since chemical
reactions often involve non-adiabatic transitions. This however represents a
rather formidable task which poses important conceptual problems that are
still open [3].

In this thesis we present new methodological developments that allow to
overcome some of the above limitations. In particular:

— We have developed a scheme for adiabatic MD simulations on an ex-
cited state Born-Oppenheimer energy surface, i.e. a simulation in which the
electrons are kept in an excited state configuration.

— We have proposed a method for electronic structure calculations and
quantum MD simulations whose computational cost grows linearly with the
system size. Although our formulation is very general, so far we have applied
it mainly in the context of TB MD.

_ We have devised an acceleration scheme which allows us to increase
the integration time step in DFT-LDA quantum MD simulations, in order
to extend the accessible time span of these simulations.

Thanks to the above algorithmic advances we have been able to study two
physical problems which were out of the reach of the pre-existing methods.

(i) We have used excited state quantum MD to study the formation of
light-induced defects in diamond within DFT-LDA. In particular we have
considered the phenomenon of self-trapping of core and valence excitons in
diamond. In diamond the lower conduction band has antibonding character.
If self-trapping occurs. the electrons excited in the conduction band localize
on a single crystalline bond which is thus broken. Our calculations predict
self-trapping of the 1s core exciton and provide a coherent description of the
K-edge absorption and emission processes, which compares well with the ex-
perimental data. In addition we predict that self-trapping should also occur
for the valence biexciton. A self-trapped biexciton would constitute a new
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type of intrinsic defect in diamond not yet observed experimentally. In our
calculation the biexcitonic self-trapping is accompanied by a large local re-
laxation of the lattice. producing a kind of local graphitization. This implies
a strong Stokes shift in the stimulated-absorption spontaneous emission cycle
of about 3 eV, which could be observed experimentally. Moreover our find-
ings have important consequences in the behavior of a high density electron
hole plasma in diamond.

(ii) We have used our TB quantum MD scheme, having a numerical cost
that scales linearly with svstem size, to study the impact of Cgo clusters on a
semiconducting surface. We have simulated Cgg collisions on the clean (2x1)
reconstructed (111) surface of diamond using cells containing 1140 atoms.
The efficiency of the algorithm has allowed us to carry out all calculations
on a workstation. The results of our simulations are in very good agreement
with experiments performed under similar impact conditions. In addition our
calculations provide a detailed characterization of the microscopic processes
occurring during the collision and allow us to identify three impact regimes,
as a function of the fullerene incident energy. The three energy regimes
(low, medium and high) can be defined according to the modification of the
(lgo ionic structure and to the bonding properties between the cluster and
the surface. In particular in the low energy regime, the molecule bounces
off the surface without ever forming bonds, and recovers its original shape
after severe distortions. In the medium energy regime, Cgo forms covalent
bonds with the surface. The cluster can be either adsorbed on or leave the
substrate, preserving its original cage structure with few coordination defects.
In the high energy regime the molecule cage structure opens and pieces of
the broken cage form stable bonds with the substrate. Finally, we found
a relation between the cluster reactivity to the surface and the presence of
defects in the cluster. This observation gives us insight into the deposition
mechanisms of Clgy on semiconducting substrates.

1.1 Structure of this work

In Chapter 2 we discuss variational properties of ground and of excited states
of a generic Hamiltonian and then we extend this formulation to the frame-
work of DFT. In a variational approach an eigenvalue quantum mechanical
problem is recast as a minimization of a functional. This scheme has sev-



eral computational advantages with respect to a direct diagonalization of a
Hamiltonian matrix. especially in context of DFT-LDA quantum MD. In
the same Chapter we also describe the minimization schemes used in this
work, with a particular emphasis on the acceleration methods reported in
the Appendix.

In Chapter 3 we discuss the two fundamental approximations which are
at the basis of quantum MD schemes, i.e. the adiabatic Born-Oppenheimer
decoupling between electronic and ionic motion and the classical approxima-
tion for the jonic motion. Then we present the unified approach for ab-initio
molecular dvnamics introduced by Car and Parrinello (CP) [4]. which pro-
vides an efficient approach for ground state quantum MD simulations. The
variational properties of the excited states discussed in Chapter 3 allows us
to extend the (P scheme to excited state quantum MD. Finally the accel-
eration methods reported in Appendix allows us to increase the integration
time step in CP quantum MD.

In Chapter 4 we use the excited state quantum MD to study the excitonic
self-trapping in diamond. To this purpose we first introduce the self-trapping
phenomena by presenting a qualitative model for such processes. Then we
ustrate the theoretical and the experimental facts which suggest the occur-
rence of self-trapping processes in diamond. Finally we present the results of
our DET-LDA calculations for the core exciton, the valence exciton and the
valence biexciton.

In Chapter 5 we present a method for electronic structure calculations
and quantum MD simulations whose computational cost grows linearly with
the system size. Our approach is hased on two ideas: (i) The use of a novel
energy functional which does not require either explicit orthogonalization of
the electronic orbitals. or inversion of an overlap matrix, and whose minimum
coincides with the exact DFT-LDA minimum. (ii) The introduction of lo-
calization constraints for the single particle wave-functions. In this Chapter
we first discuss the analvtic properties of the novel energy functional within
DFT-LDA. Then we demonstrate that a quantum MD algorithm with linear
system-size scaling can be obtained when the functional is minimized with
respect to localized wave-functions. Finally we present a practical implemen-
tation of this algorithm in a TB context.

In Chapter 6 we use the TB quantum MD scheme having computational
cost that grows linearly the system size to study the impact of a Cgp fullerene
on a clean (2x1) reconstructed (111) surface of diamond.
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In the Appendix we reproduce a reprint of Ref. [5], in which we introduce
acceleration schemes for DFT-LDA quantum MD and electronic structure
calculations. In particular we present a fictitious damped second-order dy-
namics for total energy minimizations and we show that the convergence rate
of this dynamics is comparable to that of conjugate gradient methods. More-
over we increase the integration time step in damped second-order dynamics
and in CP quantum MD by preconditioning the fictitious electronic motion.
Finally we analyse in detail a numerical instability, usually referred to as
charge sloshing instability, which could be induced by the Coulomb potential
in large supercells.
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Chapter 2

Variational formulation of the
eigenvalue-eigenvector problem

The matrix formulation of quantum mechanics reduces any quantum me-
chanical problem to the diagonalization of matrices. In a practical calcu-
lation finite matrices are used. These are obtained by approximating the
wave-function Hilbert space with a vector space of finite dimension, and by
expanding the wave-functions on a finite basis of this vector space.
However. in some cases the direct diagonalization presents a number of
difficulties and/or practical inefficiencies. In particular a direct diagonaliza-
tion provides all the eigenvectors and eigenvalues of the vector space, whereas
often only occupied eigenstates are sought. The empty state overload is par-
ticularly important. if the number of occupied states is much smaller than
the dimension of the vector space, e.g. in a plane-wave formulation. Further-
more, if the Hamiltonian matrix depends self-consistently on the occupied
eigenstates as in density functional theory (DFT) or in a mean field approx-
imation. the direct diagonalization has to be repeated many times up to the
reach of self-consistency. Another inefficiency of the direct diagonalization
turns out. whenever the eigenvectors are sought as a function of some contin-
wously changing external parameters in the Hamiltonian, as e.g. in quantumn
molecular dynamics. Indeed the diagonalization at a given value of the ex-
ternal parameters takes no advantages from the solution obtained at the
previous values of the parameters. Finally it is not possible to use a matrix
representation whenever the approximate wave-functions used in a calcula-
tion belong to a subset of the Hilbert space which is not a vector space. This
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is the case, for instance. of variational quantum MonteCarlo, where approxi-
mate eigenstates of the Hamiltonian are obtained by constructing a family of
trial functions that depend on a number of parameters, and subsequently by
looking for the optimal values of these parameters. The wave-functions do
not span a vector space also in the case treated in Chapter 5 where we present
an algorithm based on a localized orbital formulation, whose computational
workload grows linearly with the system size.

Variational approaches represent an alternative to direct matrix diago-
nalization, which do not suffer from the above limitations. In a variational
formulation the eigenvalue eigenvector problem is recast as a minimization
of a functional. The functional to minimize contains only the occupied wave-
functions. Self consistency loops are not required, since DFT or other mean
field theories are often based on a variational principle. When the Hamil-
tonian depends on some external parameters, the minimization of the func-
tional at a given value of the external parameters can use, as a starting guess,
the result of a minimization performed for close values of the external pa-
rameters. Finally the subset spanned by the wave-functions has not to be a
vector space.

In this Chapter we discuss the variational properties of the ground state
and of the excited states. first for a generic Hamiltonian in Sec. 2.1, and then
in the framework of DFT in Sec. 2.2. Furthermore we introduce in Sec. 2.3
the minimization schemes used in this thesis work. In particular we give in
the same Sec. a brief overview of the acceleration methods introduced in
Ref. [5]. A reprint of Ref. [5] is reproduced in the Appendix.

2.1 Energy and variance

Given an Hamiltonian H and a generic wave-function v we define the energy
functional E[v'] by taking the expectation value the Hamiltonian:

E[] =< $|H]y >, (2.1)

where wave-function v is normalized, i.e.:

[
o
~—

<Pl >=1 ¥

To simplify the notation in the following ' is supposed to be real.




We now consider when this energy functional is stationary with respect
to v. To this purpose we calculate the functional derivative of E[] with
respect to v

SET]
S| >

where A is the Lagrangian multiplier which assures the normalization. The
energy functional is stationary with respect to +» when the functional deriva-
tive is equal zero. i.e. when:

= 2(H| > +AJ¢ >) (2.3)

Hip >=—A

0> (2.4)

This equation is verified if and only if ¢ is an eigenstate of H. In particular.
if ¢ is equal to the minimum energy eigenvector of H, the stationary point
is the absolute minimum of E[}]. Thus the ground state eigenenergy and
the ground state eigenfunction can be calculated by minimizing the energy
functional Ev].

If 4 is a generic eigenstate of H the stationary point of E[¢] is only
a saddle point, i.e. along some directions E[¢'] has a positive curvature
(positive second derivative) and along other directions £ [+'] has a negative
curvature (negative second derivative). As a consequence the excited state
eigenenergies and the excited state eigenfunctions can not be obtained by a
direct minimization of Efi].

We now formulate a variational principle for the excited states. To this
purpose let us consider the variance of the Hamiltonian:

Vo] =< ¢|H ) > — < ¢|Hpp >*= |[H- < v|H

o>l > P (2.5)

Since V[i] is the square modulus of a vector, V[¢] is non-negative and it is
equal to zero if and only if v is an eigenstate of H. Thus a generic eigenstate
of H is a local minimum of V[¢*] and it can be obtained by minimizing the
variance in place of the energy. '

Finally we combine the energy and the variance to define a new energy
functional [7[¢]:

Ule] = E[] 4+ V] (2.6)

where 7 is a positive constant. [U/[{1'}] is stationary if and only if ¢ is a
generic eigenstate of H. since it is the sum of two quantities which have this
property. Moreover the eigenstate with eigenvalue E; is a local minimum of
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Ult] if p > 1/(E: — E,) where E, is the ground state eigenvalue. Indeed
under this condition the negative second derivatives of E[i] are smaller than
the positive second derivatives of nV[¢']. We finally note that [/[2’] coincides
with ET¢"] on its local minima since on the eigenstates the variance is zero.

2.2 Energy and variance in density functional
theory

In this Section we introduce the DFT formalism and we extend to this frame-
work the considerations done the previous Section. The Hohenberg and kohn
theorem in the Kohn and Sham formulation uses the ground state variational
principle to map an interacting electron system onto a non-interacting elec-
tron system with a self-consistent Hamiltonian [6]. In particular, for a sys-
tem of NV interacting electrons. INohn and Sham defined an energy functional
E[{1}] of N/2 single particle doubly occupied orbitals {#'}, such that the
ground state energy and the ground state density are obtained by minimizing

E[{x'}] with respect to {¢'}. E[{1'}] is defined as:

B =< 4] -

vy >+ / x;l.t(r>n<,r>d3r+% / %d&”‘lg"'*FEze[n].
(2.7)

where V_,.¢(r) is the one body external potential, E,.[n] is the exchange-
correlation functional.

)

(o4

nir) =2< LZ‘,'lI‘ >< rl‘,-']'i > (2.

is the electronic density and the single particle doubly occupied orbitals {v'}
are orthonormal, i.e.:

<y 'l,i"_,‘ >= (5,']'. (29)

Note that E[{t"}] is invariant under unitary rotation in the occupied sub-
space.

In its exact form the functional in Eq. (2.7) is of no practical use since
an explicit expression of E,.[n] is unknown. However there are simple and
accurate approximations to E..[n] which allow us to evaluate explicitly the
exchange and correlation energy. The simplest and most widely used approx-
imation is the so called Local Density Approximation (LDA) that states that
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the contribution of each small volume of the system to F,..[n] is the same as
in an homogeneous electron gas of density equal to the local one:

EEPA) = /(I3r‘ei‘.§m(n(r))n(r) (2.10)
where €"9™(n) is the exchange and correlation energy per particle of the
homogeneous electron gas of density n.

To study when E[{:'}] is stationary we consider the functional derivative
of E[¢] with respect to {'}:
dE{w}] . 4
— = Z(ZH]\'_@‘Z;‘,' > +/\1'J‘Il;‘j >). (2.11)
ol >
Here \;; is a symmetric matrix of Lagrangian multipliers, which ensure the
orthonormalization. and the INohn Sham Hamiltonian Hys is defined as:

1 . n(r’
Hies = —29 4 Vi) + [ 0L 4 10 (r) (2.12)
2 v — 1’|
where Vi(r) = 6E.[n]/én(r) is the exchange-correlation potential. The

functional is stationary with respect to {¢'} when the rhs Eq. (2.11) is equal
to zero, i.e. when {¢'} are eigenstates of Hys or are the result of a unitary
rotation of N/2 eigenstates of Hps.

In principle. only the energy and the density on the absolute minimum of
the INohn Sham functional are equal to the corresponding quantities of the
interacting electronic system. while the other saddle points of E[{3'}] have
no physical meaning. However. in many cases the stationary point of E[{v'}]
can be a valuable approximation to the excited states energy and density
of the interacting electronic system. In Chapter 4 we use the saddle points
of E[{#'}] to describe electronic excitations. We defer to this Chapter for a
more detailed discussion on this assumption.

To apply a variational procedure for a general saddle point of E[{¢"}]. we
define the variance of the Ixohn and Sham Hamiltonian Hys as:

V{}] =< &i|Hf-g|v > — < | Hrs

’I,L','j >< lf‘le[\'Sl'l/'i > (213)

It is easy to show that V[{:*}] is invariant under unitary rotation in the
occupied subspace as the energy functional E[{¢'}]: V[{¢}] is non negative
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and is zero if and only if the {'} are eigenstates of Hys or a unitary rotation
of Hys eigenstates. Thus V[{v¢'}] has local minima which coincide with the
saddle points of E[{¢'}]. Finally, in analogy with what done in the previous
Section. we combine the energy and the variance to define a new functional
U{¥}]. which has the excited states as local minima and which coincides
with E[{v'}] on the local minima.

U] = B[]+ Vi) (214)
To minimize U[{¢*}] we make use of the derivative of U[{¢}] with respect to
{1} which is given by:

oU[{w}) _ eB{w}]

+20(Hie st > —2Hgs vy >< ¢ Hrsl: > +Vy[wi >).

(sl'l,/’g > B 6](,‘, >
(2.15)
were V(1) is a local potential defined as:
. 1 SVie(r! , ,
Wir) = / + () ny(r)d>r, (2.16)
Ir — /| on(r)

and the density ny(r) is defined as:

ny(r) = 2(< ilr ><v|Hpslvr > — < ylr >< x|y, >< | Hyslin >).

(2.17)
Note that in an infinite system the long range integral appearing in Eq. (2.16)
can be treated as a C'oulomb potential of a globally neutral charge distri-
bution since [ny(r)d®r = 0. For the sake of numerical efficiency. before
evaluating the charge density ny(r), it is useful to rotate the set of occu-
pied wave-functions {1'} in order to obtain the set {¢'} such that the matrix
< ‘(BmlHthz;] > is diagonal. Then Eq. (2.17) can be rewritten as:

r >< r|Hislt > — < v >< vy >< | Hys Ly >)

ny(r) = 2(< .
(2.18)

2.3 Minimization algorithms

In this Section we brieflv describe the minimization schemes applied in this
work. A more comprehensive analysis of the different minimization algo-
rithms and the details of their numerical implementation are given in the
reprint of Ref. [5] reproduced in the Appendix.
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Our minimization schemes require explicit knowledge of the first deriva-
tive of the functional with respect to the wave-functions. Indeed the evalu-
ation of this gradient implies only a small computational overload once the
energy is calculated. We used two different approaches: namely an approach
based on fictitious dynamical methods and an approach based on conjugate
gradient (CG) scheme. The dynamical methods, introduced in the context
of DFT in Ref.[4]. are based on a fictitious dynamics for the wave-functions
which converges asymptotically to the minimum of the functional.

In particular the simplest fictitious dynamics is the steepest descent. It
can be viewed as a dynamics of the first order in the time derivative:

; LoE{e}] :
v >= —————— (2.19)
2 bl >
whete 41 is a fictitious electronic mass. This equation can be integrated in time
by finite differences. The resulting discretized motion converge exponentially
to the minimum of the functional in a number of time steps which depends
both on the system and on the functional. A more advantageous dynamical
method is based on a Newtonian dynamics with a friction term:
- 148 W .
b >= —é(—%i% — 2ypfdi > (2.20)
Here 7 is a damping constant. which, as shown in Ref. [5], has to be chosen
appropriately in order to induce critical damping on the slowest component of
the motion. Also in this case the discretized motion converges exponentially
to the minimum of the functional. However the number of iteration required
to reach with damped dynamics a given convergence is the square root of
the number of iterations required by steepest descent (see Ref. [5] or in the
Appendix). The gain compared to steepest descent is particularly important
when a large number of iterations is needed to converge to the ground-state,
which is typically the case of metallic systems.

The fictitious mass g in Eq.s (2.19,2.20) is used to tune the speed of
the electronic fictitious dynamics and does not describe any other physical
property. For a time independent functional this mass is irrelevant since it
can be included in the definition of the integration time step. The mass p
can be replaced by a any positive definite operator fi. This arbitrariness in
the choice of i is useful to precondition the fictitious dynamics: by giving
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higher masses to the higher frequency components of the fictitious motion
the integration time step can be increased. This is the basic idea of the mass
preconditioning introduced in the context of dynamical methods in Ref. [5]
(Appendix). The highest frequency components in calculations with a plane-
wave basis set are due to the high energy unoccupied Hamiltonian eigenstates
which are free particle like. Therefore. for the minimization of the energy
functional E[{¢'}]. it is convenient to choose an operator ji which is diagonal
in ¢-space has eigenvalues j(¢) proportional to the kinetic energy for high ¢:

plg)=m  if 3¢ < E,

2

/U((I) - fIOZQE.'p if %qz > Ep

Below a cutoff energy E,. it is worth considering a constant mass fio, be-
cause the low energy eigenstates are not free-particle like. The precondi-
tioning cut-off E, therefore represents the threshold above which the states
are dominated by the kinetic energy. As shown in Ref. [5] (Appendix) the
mass preconditioning allows to increase the convergence rate in the damped
dynamics minimization of E[{v'}] by a factor of 2-3.

For the minimization of the energy functional U[{s}], it is convenient
to choose a mass operator p(q) proportional at high ¢ to the square of the
kinetic energy:

wiqg)=po it 1¢°< Eg

pla) = o (55)° if 1> B,
In the damped dynamics minimization of U[{1}] the mass preconditioning
allows to increase the convergence rate by a factor of 4-9.

When mass preconditioning is used, the standard algorithm which com-
putes the orthonormality constraints, has to be modified as specified in Ap-
pendix. The modified algorithm has a computational overload which is neg-

—_
[
B

.2)

ligible in system with less than ~400 electrons.

The second minimization approach used in this thesis is the CG method.
A general description of this approach is given in Ref. [7]. In Ref. [8] CG
algorithms are introduced in the context of DFT. In Ref. [5] (Appendix) it
is shown that. in electronic energy minimization, the convergence rate of the
C'G method is equal to that of the dynamical method based on the damped
Newtonian dynamics. Thus a choice between the two approaches mainly
relies on the following considerations. In the CG method there are no mini-
mization parameters such as a time step or a damping coefficient. Therefore

15




the CG method is more suitable to be used as a black box algorithm. How-
ever, in the C'G method. at each step the functional is minimized along the
straight line of the conjugate direction. Since a line minimization is not de-
fined in presence of explicit constrains as the orthonormalization constrains,
the CG method can be applied only to unconstrained functionals. Further-
more, due to the line minimization, a code based on a C'G method is more
complex than a code based on a dynamical approach.
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Chapter 3

Quantum molecular dynamics

Quantum molecular dynamics allows us to obtain from first-principles elec-
tronic, structural, dyvnamical and thermodynamical properties of real ma-
terials. In quantum molecular dynamics the electrons are treated within
quantum mechanics, whereas the ionic motion is described by classical New-
tonian dynamics. For each given ionic position the electrons are supposed
to be in an instantaneous eigenstate of the electronic Hamiltonian, whose
eigenenergy defines the ionic classical potential energy. The two basic ap-
proximations which are understood in this treatment are the adiabatic BO
decoupling between the electronic motion and the ionic motion, which is jus-
tified by the large ion/electron mass ratio, and the classical approximation for
the ionic motion. Note that the second approximation requires the validity
of the first one.

Along the ionic trajectory. the electronic eigenstates and eigenenergies
can be computed using two different approaches: either by minimizing the
energy functional introduced in the previous Chapter at each ionic step or by
moving the electronic wave-functions according to an appropriate fictitious
dvnamics. In the latter case the adiabatic real dynamics of the electronic
quantum system is simulated by an adiabatic fictitious dynamics suitable for
an efficient numerical integration. This is the key idea of the unified approach
for ab-initio molecular dvnamics introduced by Car and Parrinello [4].

The Chapter is organized as follows. In Sec. 3.1 we derive the equations
of motion of quantum molecular dynamics. In Sec. 3.2 we show how the ionic
forces can be evaluated. In Sec. 3.3 we introduce the Car-Parrinello fictitious
dynamics and we discuss the basic ideas of this method.
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3.1 Adiabatic and classical approximation for
the ionic motion

In this Section we specified the equations of motion of the quantum molecular
dynamics. To this purpose two consecutive approximations to the exact
ionic-electronic dynamics are applied: the Born-Oppenheimer (BO) adiabatic
approximation and the classical approximation for the ionic motion.
The evolution of a ionic-electronic system is dictated by the Schroedinger

equation:

. |

(h®(R.T) = [-—WV‘ — ——T‘ + V(R.1)]®(R, 1) (3.1)
were R and r are ionic and electronic positions, A/ and m are ionic and the
clectronic masses and V' (R.r) is the potential energy operator. The exact
solution of Eq. (3.1) can be formally written as:

(R.r.t) Z@L t)\kR(T). (3.2)

were the electronic wave-functions ;. r(r) are the solution of the eigenvalue
problem:
(5 V2 4 V(R \er(r) = Fi(R)ver(r) (33)
Here the index & is the electronic quantum number and the ionic coordinates
R act as an external parameter.
In general the evolution of the ionic wave-function ¢x(R,?) at a given
k is entangled with the the evolution of ionic wave-functions at different &.
However. the large ratio between ionic and electronic masses justifies the use
of the the adiabatic BO approximation [9]; within this approximation the
evolutions of the ionic wave-functions with different & are decoupled. Indeed
within the BO approximation the ionic wave-functions obey a Schroedinger
equation:

ihor(R) = [—-

= [v 2 + E(R)Jow(R). (3.4)

Note that in this equation the eigenvalues E(R) of the electronic Hamilto-
nian act on the ionic wave-functions as a potential energy. Thus the energies
£ (R) are commonly called BO potential energy surfaces.
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The second approximation of quantum molecular dynamics is the replace-
ment of the quantum description of the ionic motion on a given BO surface
with a classical description. This approximation is justified if the ionic tem-
perature is not to low , e.g. if in a solid the ionic temperature is larger than
the Debye temperature, or whenever quantum effects such as zero point mo-
tion, tunneling or quantization of the ionic energy levels are irrelevant for
the properties under study. In the classical approximation the Schroedinger
Eq. (3.4) is replaced by the Newton equation:

dEL(R)

MR = —
dR

(3.5)
Eq. (3.3) and Eq. (3.5) define the evolution of the ionic-electronic system in
quantum molecular dynamics. Then the energy conserved during the ionic
motion is:

1 .
Eqna = 5 MR + Bi(R) (3.6)

In the following the electronic eigenenergies Ej will be evaluated in the
framework of density functional theory (DFT) as the values of the Kohn and
Sham energy functional E[{¢'}] on its stationary points.

3.2 Ionic forces

In quantum molecular dynamics the classical forces acting on the ions are
defined as the total derivatives of the electronic eigenenergy Er(R) with
respect to the ionic positions R. Within DFT we have:

EW(R) = E[{\tr},R] (3.7)

where {\,r} makes the functional stationary with respect to its first ar-
gument and the second argument underlines the explicit dependence of the
electronic external potential upon the ionic positions R. Then the force on
the ions is given by:

dE(R)  OE[{\er} - RIO{vir}  OE[{xtr}.R]
R dlwr} OR IR

(3.8)
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Since E[{¢'}.R] is stationary for {¢'} = {\xr}, the first partial derivative
in the rhs of Eq. (3.8) vanishes giving:

IE(R)  OB[{\ex).R]

dR R '
Thus the explicit evaluation of the ionic forces in quantum molecular dynam-
ics requires only the knowledge of the occupied eigenstates of the electronic
Kohn Sham Hamiltonian. This result is commonly known as the Hellmann-
Feynman theorem [10]. Note that the above derivation also holds if we sub-
stitute the functional E[{v"}. R] with the functional [/[{+'}, R] defined in the
Sec. 2.2.

(:3.9)

3.3 Car-Parrinello quantum molecular dy-;
namics -

To integrate the ionic motion in quantum molecular dynamics we can mini-
mize E[{¢'},R] or U[{¥'}.R] with respect to {¢'} to obtain the ground state
or an excited electronic state and then we can evaluate the ionic forces using
Eq. (3.9). This procedure has to be repeated at each ionic step. The mini-
mized electronic wave-functions at a given step can be used as the starting
point for the electronic minimizations at the successive steps. The drawback
of this scheme is that the minimization must be very well converged in order
to avoid a svstematic damping of the ionic motion [11], i.e. a systematic
decrease of the constant of motion E,nq (Eq. (3.6)).

An elegant and more efficient scheme is to introduce a fictitious electronic
dynamics which keeps, during the ionic motion, the electronic wave-function"
adiabatically close to the instantaneous eigenstates of the quantum Hamilto-
nian. To perform a quantum molecular dynamics simulation on the ground
state BO energy surface Car and Parrinello proposed to evolve the electronic
wave-functions using a fictitious classical Newtonian dynamics [4]. In the
Car Parrinello approach the electronic wave-functions are treated as clas-
sical fields. where the potential energy is the variational energy functional
E[¢(t).R]. The coupled ionic-electronic Car-Parrinello dynamics is defined
by the following equations:

OE[{¢'}.R]

MR = —
IR

(3.10)
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- SE{v
2|y >= ————u (3.11)

5,7,[’1' >
Here y is a fictitious electronic mass, whose value tunes the speed of the
electronic dynamics with respect to that of the ionic dynamics. Note that

the C'ar-Parrinello dynamics conserves the energy:
.. 1 .
Eop = < vildy > —{—;A[RQ + E[{¢},R] (3.12)

where 1 < ullg, > is a fictitious kinetic energy associated to electrons.

To understand how the Car-Parrinello dynamics can be used to follow
adiabatically the ground state during the ionic motion we fist consider the
electronic motion at fixed ionic positions. If the wave-function {¢'} is close to
the minimum of E[{v'}, R] and the {1} evolves according to Eq. (3.11) with
the ions fixed, the {i'} performs small oscillations around the minimum of
E[{¢'},R]. The characteristic frequencies of these oscillations depend both
on the energy functional and on the fictitious mass y. In particular in Ref. [11]
- (see also Ref. [5] or in the Appendix) it is shown that for a non self-consistent

Hamiltonian the lowest eigenfrequency of the fictitious motion wf,;, is equal
to:
2F
e [=fgap 91
“min T (313)
1

~ where E,,, is the energy gap separating the lowest unoccupied from the high-
" est occupied electronic level. Now we consider the coupled ionic-electronic
(far-Parrinello motion and we chose at the initial time, ¢t = 0, a set of wave-
functions {y'} close to the minimum of E[{¢'},R]. At t > 0 the wave-
functions {i'} remain adiabatically close to the instantaneous minimum of
E[{«}.R]. if the lowest eigenfrequency of the fictitious electronic motion

wt,, is much larger than the highest characteristic frequency of the ionic
. I' .
motion w, ’
""‘renin |
—— > 1 (3.14)
w‘
mar

In the Car-Parrinello method a value of the fictitious electronic mass p has
to be chosen in order to satisfy this condition. Once the adiabatic decoupling
is satisfied. the average energy transfer between the ionic and the electronic
motion is zero. In particular the fictitious kinetic energy p < ‘z,f:*,-luz,‘ > oscil-
lates around a constant value which is much smaller than the ionic kinetic

21




energy 1A/R?. This consideration and the conservation of E., (Eq. (3.12))
imply that energy E,.4 (Eq. (3.6)) is conserved without any systematic dritt.

The (‘ar-Parrinello dynamics is integrated in time by finite differences
using the Verlet algorithm. The technical details of the numerical integration
are reported in the Appendix. The integration time step is proportional to
the inverse of the maximun electronic frequency w¢ .. In the Appendix we
show that. if the wave-functions are expanded using a plane wave basis set,

€

Wi e 18 given by:

2F
€ _ Loyt (3 1;—
o = 3. .;))
naxr /_[
where E..: is the cut-off energyv of the plane wave basis set. Being the ra-
tio wf,;, /wl . fixed by the adiabatic decoupling condition, Eq. (3.14). the

number N, of integration step per ionic period is proportional to :

- ‘-‘"‘fnuf ECul‘ P
Nop oc ez 2 (3.16)
Wnin gap

A way to speed up the Car-Parrinello dynamics is to reduce wy, . in order
to increase the integration time step. The mass preconditioning introduced in
Sec. 2.3 in the context of total energy minimization with dynamical methods
can be used as well for Car-Parrinello dynamics. By substituting the constant
mass ¢ with the positive mass operator ji defined in Eq. (2.21) the integration
time step can be increased by a factor of 2-3 without any computational
overload, as shown in the Appendix.

A Car-Parrinello dyvnamics with the electrons in an excited state is not
stable. Indeed, since the excited states are saddle points of E[{¢'}. R].in the
('ar-Parrinello dynamics the wave-functions fall down away from an excited
state in the the directions with negative second derivatives. A way to perform
a stable Clar-Parrinello dynamics with the electron in an excited state is to use
the functional {/[{v"}. R] defined in Sec. 2.2 in place of the energy functional
E[{¢'}.R]. We note that a ('ar-Parrinello dynamics based on the functional
U[{w}.R] has been introduce in Ref. [12] in a quantum statistical mechanics
context. The mass preconditioning is very useful to speed up a Car-Parrinello
dynamics based on the functional U[{3'}.R]. By using the mass operator
defined in Eq. (2.22) the integration time step can be increased by a factor
of 4-9. In the Chapter 4 we present the first application of an excited state
Car-Parrinello dynamical simulation.
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Finallv we note that in a metal the energy gap Ey,, tends to zero for a cell
size going to infinity. In this case a perfect adiabatic separation between the
ionic and the electronic motion is not possible. However, as shown in Ref. [13]
a satisfactory solution to this problem in the context of Car-Parrinello dy-
namics can be obtained by using two Nosé thermostats to control separately
the respective temperatures of the ions and of the electrons.




Chapter 4

Excited state quantum
molecular dynamics: excitonic
self-trapping in diamond

Diamond presents an unusually favorable combination of characteristics such
as a high mechanical strength. an excellent thermal conductivity, a high
optical transparency. a wide electronic band gap. high electron and hole
mobilities. and a high resistance to radiation and to temperature. All the
above properties. in connection with the recent development of techniques for
deposition of thin diamond films, make this material a future candidate for
many technological applications. Particularly appealing is the use of diamond
in electronic or in opto-electronic devices, as e.g. UV-light emitting devices.
Moreover diamond is an ideal material for the construction of windows that
operate under high power laser radiation or/and in adverse environments.
Point defects with deep electronic levels in the gap have relevant implications
in many of these applications. Therefore the possibility to create by light-
radiation such a type of defects has to be considered with special interest.
In this Chapter we present a theoretical study on the formation of light-
induced intrinsic defects in diamond. In particular we will focus on the phe-
nomenon of self-trapping of excitons. The study of excitonic self-trapping in
diamond is interesting also from a fundamental point of view. Up to now
the occurrence of excitonic self-trapping was studied mostly in ionic com-
pounds. In these materials self-trapping is always associated with, and often
driven by. a charge transfer. It is therefore interesting to see if self-trapping
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occurs also in pure covalent materials where there is no charge transfer and
where the driving mechanism could be related only to the different bonding
character of the valence and conduction bands.

There are experimental and theoretical facts which indicate the occur-
rence of self-trapping processes in diamond. In particular the nitrogen sub-
stitutional donor impurity induces a strong local deformation of the host
crystalline lattice [14. 15. 16] which can be interpreted as a self-trapping of
the donor electron. Verv controversial is the structure of the ls core exci-
ton in diamond [17. 18. 19. 20. 21]. K-edge absorption spectra suggest that
the core exciton is weakly bound and of Wannier type [17. 20, 21]. On the
contrary emission spectra [21] indicate that the 1s core exciton undergoes a
self-trapping process similar to that of the nitrogen impurity.

On the other hand. experimental data exclude the self-trapping of a single
valence exciton in diamond. Finally no experimental or theoretical investiga-
tions were done up to now to identify or to exclude bhiexcitonic self-trapping in
diamond, although simple arguments suggest that biexcitons have a stronger
tendency to self-trap than single excitons.

In this Chapter we present a theoretical study of the excited-state Born-
Oppenheimer (BO) potential energy surfaces of crystalline diamond within
DFT-LDA. To this purpose we applied the ab-initio molecular dynamics
scheme discussed in Sec. 3.3. in which the electrons are forced to stay in an
arbitrary eigenstate rather than in the ground-state as in the standard C'ar-
Parrinello method. In agreement with the most recent experimental data [21]
we found that self-trapping is energetically favorable on the core exciton BO
surface. The atomic relaxation associated with self-trapping is qualitatively
similar to the one found theoretically for the substitutional nitrogen impurity
[16]. Again in agreement with experiments we found that self-trapping is not
energetically favorable on the valence exciton BO surface. Finally we predict
that sell-trapping is energetically favorable on the biexcitonic BO surface.
Indeed by minimizing the energy with respect to the ionic positions, we found
that two excitons localize themselves on a single crystalline bond which is
thus broken. This process is accompanied by a large local relaxation of the
lattice, producing a kind of local graphitization.

The Chapter is organized as follows. In Sec. 4.1 we introduce the seli-
trapping phenomena by presenting a qualitative model for such processes.
In Sec. 4.2 we illustrate the theoretical and experimental facts which suggest
the occurrence of self-trapping processes in diamond. In Sec. 4.3 we discuss




the accuracy of a DFT-LDA description of excitonic self-trapping. In Sec. 4.4
we give the technical details of our calculations. We present the results of
DFT-LDA calculation for the core exciton in Sec. 4.5 and for the valence
exciton and the valence biexciton in Sec. 4.6. In Sec. 4.7 we describe the
ionic and the electronic structure of the self-trapped biexciton and we discuss
the experimental implications of our predictions. Sec. 4.8 is devoted to the
conclusions.

4.1 A qualitative model of polaronic self-
trapping in covalent non polar crystals

In this Section we analyze the driving mechanisms of self-trapping of elec-
trons, holes or excitons in a covalent non polar crystal. In particular, follow-
ing Ref. [22], we present a simple qualitative model of these processes based
on scaling arguments.

We are interested here in insulating non polar crystals such as carbon.
silicon or germanium in the diamond structure. In these materials the occu-
pied valence bands and the first conduction bands derive respectively from
a bonding and from an antibonding superposition of sp? atomic hybrids.
We consider the effect of an electronic perturbation on the perfect crystal
structure such as the addition of a finite number of electrons and/or holes
to the lowest conduction band states or to the highest valence band states
respectively. If the ionic positions are frozen, the electronic perturbation ex-
tends over the whole crystal. Given the different bonding character of the
valence and the conduction bands, the electronic perturbation reduces the
bond strength. Thus it is plausible that. once the ions are freed. the system
would gain energy by relaxing the ionic structure. However, as we will show
with a simple argument below. the energy gain is non-zero only if the elec-
tronic perturbation localizes itself on a finite region of space. The localized
electronic perturbation is commonly called self-trapped polaron.

The self-trapping energy gain F,; due to ionic relaxation can be viewed
as resulting from two main contributions with opposite sign: the deforma-
tion energy Ey. s, which promotes localization and the quantum confinement
kinetic energy Ej;,, which favors delocalization. When the electronic pertur-
bation contains more than one particle there is also a Coulomb interaction



energy Ec.,. whose effect towards localization depends on the relative sign
of the particles.

We start by considering the deformation energy Eyc;. We approximate
the total energy of a crystal as a sum of independent contributions { £} } each
one of which comes from a single bond; we model the energy contribution Ej
of a given bond with a function which depends only on the bond length d:

E, = f(d) (+.1)

At the equilibrium distance dq the total energy of the crystal is minimum.
hence f'(dy) = 0. Now we consider an electronic perturbation spread equally
over N bonds and. for simplicity, we ignore interference effects between dit-
ferent bonds. The energy contribution Ej of the N perturbed bonds is given
by:

E; = f(d) + ag(d) (+.2)

where a = A/N. A is the total number of electron, holes or excitons which
constitute the perturbation. and the function g(d) models the contribution
of a hole, an electron or an exciton to £j. To determine the new equilibrium
bond length 5 of when o is small we can expand Ej around dp obtaining:

. g'(do)
45— dy = _f"(do)a (4.3)
The deformation energy per bond is then
12(
o . g (do) ,
Ej(dy) — Ef(do) = _ma = “kdefO'Q (4.4)

Recalling that there are N perturbed bonds the total relaxation energy Eqcs
is given by

1
N
From this equation it is clear that the more localized is the perturbation the
larger is the deformation energy gain. In particular the deformation energy

Ej; = —A%hyey (4.5)

gain is zero if the perturbation is delocalized (N = oo).
The second energy contribution to the self-trapping energy is the kinetic
energy associated with quantum confinement. For the Heisenberg uncertainty
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-1




principle. the energy Ey;, of A quantum particles localized in a finite volume
2

V" is proportional to AV 7%, Since Vo N:
1

E,";;’n =+A kkin l_\FZ—E

(4.6)
where kg, is a positive constant This energy contribution is positive and
larger the smaller is V. Thus the kinetic energy acts against localization.

To study if self-trapping occurs. we minimize the self-trapping energy
Ey = Egej+ Eyi, with respect to V. Since the only stationary point of Fy; 1s
a maximum, E; reaches its minimum value at one of the two extrema NV =1
and N = oo. In particular if Ay, < Akges, the minimum occurs for N =1
and the perturbation self-traps on one bond of the system. If kyin > Akuey,
the minimum occurs for N = >0, and the perturbation does not self-trap.
Thus the behaviour of the perturbation with respect to a continuous variation
of the physical parameters of the system is discontinuous. Note that, if the
perturbation self-traps. it is localized on a single bond.

In the above discussion we neglected the Coulomb interaction energy
FE¢oe. If the perturbation contains more than one particle Ec,, contributes
to the self-trapping energy. Since the Coulomb potential scales as the inverse
of the linear dimension of the charge distribution, E¢,, o< N™/3. The sign
of E¢oy depends on the relative sign of the charges of the particles which
constitute the perturbation. In particular if the perturbation is globally
neutral the contribution is negative and favors localization:

1

EC'-::u =—A L‘C'o n W

(4.7)
The perturbation is neutral if the number of electrons is equal to the num-
ber of holes. i.e. in the case of excitons. The perturbation is also neutral
if the nuclear charge changes in such a way as to neutralize the variation in
the electronic charge. i.e. in the case of a substitutional acceptor or donor
impurity. Note that for .\ — 0. E¢y, grows less rapidly than Ey. and Fiin.
Thus. remembering that a self-trapped perturbation is localized on a single
bond, we conclude that E¢,, influences the behavior of a self-trapped pertur-
bation less than Ey.; and Eii,. In absence of self-trapping, the perturbation
produced by a substitutional acceptor, donor or by an exciton is localized
on a larger length scale. In this case Eg. is negligible and the localization
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length is determined by the competitive and opposite contributions of E¢,,
and £y, as in a shallow substitutional impurity or in a Wannier exciton.
The model presented in this Section allows the study of the tendency of
the perturbation to self-trap as a function of the number of particles A. The
deformation energy Ey.; which promotes self-trapping grows as A?, whereas
Eyin which favors delocalization grows only as A. Furthermore in the case
of a neutral perturbation E¢,,. which favors self-trapping grows as A. Since
Eyer increases faster than £y,. the larger is the number of particles in the
perturbation the stronger is the probability that the perturbation self-traps.
However, note that the number of equal particles that can be accommodated
on one bond of the crystal in the same quantum state is limited by the Pauli
exclusion principle. Thus no more than two holes or/and two electrons with
opposite spins can be localized on one bond of a sp3 bonded semiconductor.

4.2 Polaronic self-trapping in diamond

In this Section we review the experimental and theoretical facts which suggest
the occurrence of self-trapping processes in diamond. In particular we first
consider the behaviour of a hole and of an electron due to a donor or to an
acceptor substitutional impurity. If self-trapping occurs in these cases it is
of “extrinsic” type, since the translational invariance is broken by the defect
from the beginning. In addition we discuss the behavior of a core exciton of
a valence exciton and of a valence biexciton. If self-trapping occurs in the
latter cases it is of “intrinsic” type.

4.2.1 Extrinsic self-trapping

A boron substitutional impurity can be viewed as resulting from the simul-
taneous subtraction of an electron from the valence bands and of a nuclear
charge from a crystal atom. For this defect there is no experimental evidence
of extrinsic self-trapping. The hole sits in a shallow acceptor level 0.37 eV
above the top of the valence bands [23].

The nitrogen substitutional impurity can be viewed as resulting from the
simultaneous addition of an electron to the conduction bands and of a nuclear
charge to a crystal atom. Contrary to the acceptor case the extra electron
sits in a deep donor level 1.7 eV below the bottom of the conduction bands
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Figure 4.1: Schematic representation of the ideal ionic structure of the sub-

stitutional nitrogen impurity.

[24]. Moreover EPR [14] and electron-nuclear double-resonance-technique
[15] experiments indicate a svmmetry-breaking structural relaxation: the
nitrogen atom moves in the (111) direction (see Fig. 4.1) thus stretching the
bond with its nearest-neighbor carbon atom along the (111) direction. The
experimental data suggest that this distortion is substantial, ~ 10% — 30%
of the bond length, and that the donor electron wave-function has most of
its amplitude on the nearest carbon atom in the (111) position.

The experimental features associated with the nitrogen impurity are well
reproduced in a theoretical calculation based on DFT-LDA [16]. In this
calculation it was found that in the relaxation of the defect ionic structure
the nitrogen atom and the nearest-neighbor carbon atom in the (111) position
move away {rom each other along the (111) direction. The displacements of
the nitrogen atom and of the (111) carbon atom from the ideal positions are
equal to 11% and to 14% of the bond length, respectively. The other nearest-
neighbor atoms move only by 3%. The relaxation energy, i.e. difference
between the the total energy of the relaxed structure and that of the ideal
structure, is equal to —.76 e\". After the ionic relaxation the donor electron in
the antibonding conduction band is localized on the broken bond between the
nitrogen and the (111) carbon atom and occupies a level lying 1.9 eV below
the bottom of the conduction bands. Thus DFT-LDA reproduces not only
the experimental lattice distortion but also the position of the deep donor
level in the gap. if the position is measured with respect to the conduction
band edge (which is reasonable since the donor level originates mainly from
conduction band states). Finally from the ab-initio calculation it turns out

30



that the symmetryv-breaking distortion is not due to a Jahn-Teller effect since
in the ideal symmetric structure the donor electronic level is not degenerate.

From the above experimental and theoretical considerations we argue
that the nitrogen impurity distortion is due to a self-trapping process. In
particular. following the intuitive picture given in the previous Section. the
antibonding electron in the conduction band localizes itself on a single bond
to maximize the deformation energy gain Ey.s. The localization of the per-
turbation on one bond is not compatible with the point symmetry of the
ideal structure, which is thus broken. The qualitative model presented in
the previous Section helps us to understand the different behavior of the the
boron acceptor hole, which does not self-trap. Indeed self-trapping occurs if
the gain in the deformation energy is larger than the kinetic energy due to
quantum confinement. The kinetic energy of an electron or a hole localized
on one bond is proportional to the energy width of the sp® conduction and
valence bands respectively. The experimental width of the diamond valence
bands is 24 eV [25]. The width of conduction bands is not known experimen-
tally, but it can be obtained by gw band structure calculations. which give
results in agreement with experiments when available. Within gw calcula-
tions the width of the conduction bands in diamond is smaller than the width
of the valence bands and is equal to 14 eV [26, 27]. Thus the kinetic energy
of a strongly localized hole is larger than the kinetic energy of a strongly

localized electron.

4.2.2 Intrinsic self-trapping

Now we consider the behavior of excitons in diamond with respect to self-
trapping.

Although the diamond 1s core exciton has been the subject of many
recent experimental and theoretical investigations [17, 18, 19, 20. 21]. a com-
plete agreement on its structure has not yet been reached. In principle the
structure of the core exciton should be similar to that of the substitutional
nitrogen impurity. Indeed, in an equivalent core approximation. the excited
core of carbon can be viewed as a ground-state core of nitrogen and in both
cases an antibonding extra electron is present in the conduction bands. How-
ever the position of the core exciton peak in the carbon K-edge absorption
spectra is only 0.2 eV lower than the conduction band minimum [17, 20, 21],
in apparent contrast with the position of the nitrogen impurity deep donor
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level. which is instead situated 1.7 eV below the bottom of the conduction
band. This has led the authors of Ref. [17] to state that the core exciton
is shallow and its energy is reproduced by effective mass theory, implying
that the equivalent core approximation does not hold. This conclusion was
questioned by the results of a DFT-LDA calculation presented in Ref. [18].
The authors of Ref. [18] argued that the agreement between experiments and
effective mass theory was coincidental and that a deeper core exciton state
existed which was not observable in dipole transitions. However further ex-
perimental investigations [20] did not find the hypothetical dipole-forbidden
transition associated with a deep core exciton level. Finally in Ref. [21] a
Stokes shift of about 1 eV between the peak position in the X-ray absorption
and emission spectra was observed. The authors of Ref. [21] propose the
following interpretation for their experimental results: (i) Given the different
time scale of the electronic transition and of the ionic motion, during the
absorption the atoms can be considered frozen in the ideal lattice positions.
In the ideal lattice the core exciton level is shallow. (ii) After the absorption
the system gains energy by self-trapping the core exciton: the core exciton
is localized on a crystal bond and the lattice relaxes as in the the nitrogen
impurity case. (iii) Finally the exciton decays back to the ground state and
the photon energy is lower in emission than in adsorption. Indeed the self-
trapping ionic relaxation lowers the exciton energy and raises the ground
state energy.

Iu view of the above conflicting experimental and theoretical interpreta-
tions we performed a DFT-LDA calculation to help clarifving the situation.
Our results. which are presented in Sec. 4.5, support the interpretation given
in Ref. [21].

Now we turn our discussion to the valence exciton. There is no exper-
‘mental evidence for valence exciton self-trapping. The valence exciton is
Wannier-like. bound by the Coulomb energy with a binding energy of 0.07
eV [25]. An hypothetical self-trapped valence exciton could be constructed
as a superposition of a nitrogen impurity, in which the conduction electron
and the ionic distortion are localized on one bond, and a boron impurity.
in which the valence hole and the ionic distortion are localized on the same
bond. Hence a rough estimate of the valence exciton self-trapping energy
would be given by sum of the self-trapping energy of the nitrogen donor.
which is negative and favors localization, and the self-trapping energy of the
horon acceptor. which is positive and favors delocalization. The experimen-
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tal finding that the valence exciton has Wannier character suggests that the
tendency of the hole to remain delocalized dominates over the tendency of
the electron to self-trap.

Finally the model presented in the previous Section suggests that a va-
lence biexciton has a stronger tendency to self-trap than a single valence
exciton. However no experimental nor theoretical investigations were done
up to now to identify or to exclude biexcitonic self-trapping in diamond.
Motivated by the above considerations we present in the next Sections a the-
oretical analvsis of biexcitonic self-trapping within the DFT-LDA framework.
which indeed predicts that self-trapping should occur.

4.3 Excited state quantum molecular dynam-

1Cs

Since we applied DFT-LDA. i.e. a ground state theory, to excited states
some considerations are in order. First we notice that, in the case of finite
systems like atoms or small molecules the DFT-LDA total energy differences
provide a reasonably good description of the exact excitation energies, if the
relaxation of the electronic charge in the self-consistent INS Hamiltonian is
tully taken into account. In an extended system the delocalized excitations
do not change the XS DFT-LDA Hamiltonian, since the LDA exchange and
correlation energy is described by a continuous functional with respect to
‘the density. Therefore the DFT-LDA total energy differences corresponding
to delocalized excitations are equal to the differences of the KS DFT-LDA
Hamiltonian eigenenergies. Also in the case of extended systems the IS
DFT-LDA eigenenergies and eigenfuctions provide a reasonably good ap-
proximation to the quasi-particle excitation energies and wave-functions. In
semiconductors the main error is on the energy gap between occupied and
empty states. which is underestimated by DFT-LDA. The underestimation
is due to a discontinuity of the exact DFT exchange and correlation energy
with respect to the density. which is not taken into account in the LDA
functional.

Excitons are bound states of electrons and holes. In Wannier excitons
the long range correlation between the holes and the electrons is responsible
for the binding. This long range correlation is missing in LDA. In the case of
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self-trapped excitons, which are the subject of the present study, the binding
is provided by the ionic distortion, i.e. by the electron-ion potential, which is
correctly described by LDA. Moreover, since in the self-trapped excitons the
holes and the electrons are localized on the scale of a crystal bond, LDA can
provide a good description also for the short range exchange and correlation
energy as it does in atoms and in small molecules.

We studied the BO surfaces corresponding to ground state, core exciton
valence exciton and valence biexciton.

We performed the DEFT-LDA calculations using both the standard en-
ergy functional E[{v'}.R] and the energy functional U[{v'}.R], defined in
Sec. 2.2, whose local minima coincide with the saddle points of E[{¢}.R].
We described the interaction between the ionic cores and the valence and
conduction electrons in diamond by a norm conserving pseudopotential [28].

The diamond crystal ground state has two doubly occupied valence levels
per atom.

In the case of a core exciton an electron is promoted from the 1s atomic
core level to the conduction bands. To describe the core exciton BO surface
we applied the method presented in Ref. [29]. We generated a norm conserv-
ing pseudopotential for an atom of carbon with one electron in the ls core
level and five electrons in the valence 2s-2p levels. The core exciton energy is
then the minimum of E[{v'}. R} in a supercell in which one atom is described
by the excited core pseudopotential.

In the case of valence exciton an electron belonging to the highest doubly
occupied level of the valence bands is promoted to the lowest empty level of
the conduction bands. Hence the energy of the valence exciton is the absolute
minimum of the functional E[{¥'}, R] in which two levels are singly occupied.

The valence biexciton is obtained by promoting two electrons from the
highest doubly occupied level of the valence bands to the lowest empty level
of the conduction bands. In this case we used the functional Ul{¢}. R].
Indeed the biexciton is only a saddle point for E[{y'}, R], since a doubly oc-
cupied state has a higher eigen-energy than an empty state. The functional
U[{¥},R] has many local minima which correspond to different excitations,
hence we started the minimization with a trial initial state close to the de-
sived excited state. To this purpose we first computed the highest occupied
orbital |, > of the ground state. Then we obtained the trial initial set
of wave-functions by minimizing the functional E[{¢'},R] in the sub-space
orthonormal to |¢, >. Note that for a non-self-consistent Hamiltonian the
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component a a b

loc 3.14960999
s 5.50708802 | 17.85441785 | -11.09816279
P 3.75969632 | -8.90408188 7.12960011

Table 4.1: Parameters of the norm conserving pseudopotential for an excited
core carbon atom. The parameters are given in atomic units. The pseudopo-
tential was generated using as reference the 1512522p? atomic configuration.
The local component of the pseudopotential is equal to —(5/ r)erf(a,lo/f-r).
The non local components are equal to (a; + birt)exp(—ar?), where the in-
dex [ indicates s or the p components.

trial state would be the exact excited state.

4.4 Details of the calculation

We used the Bachelet-Hamann-Schliiter norm conserving pseudopotential
[28] to describe the interaction between the ground state carbon atom cores
and the valence and conduction electrons. As explained in the previous Sec-
tion, to compute the core exciton BO swrface we generated an excited core,
norm conserving pseudopotential. To construct the excited core pseudopo-
tential we adopt the Clar-von Barth procedure [30]. The parameters of our
excited core pseudopotential are reported in Table 4.1. The pseudopotentials
were used in a separable form [31] with s-nonlocality only. i.e. the non-local
components with angular momentum larger than 1 are taken equal to the p
component.

The electronic wave-functions and the density were expanded using a
plane-wave basis set with a kinetic energy cutoff of 35 Ry and 140 Ry respec-
tively. These energy cutoffs allow a quite good description of the properties of
carbon in different crystalline structures, in the liquid and in the amorphous
phases (see e.g. [32]).

We used a periodically repeated simple cubic supercell containing 64 car-



bon atoms at the experimental equilibrium lattice constant. For the k-space
sampling only the T’ point was considered. In the 64 atom cell at T" the gap
between the valence and conduction bands is 4.0 eV to be compared with
3.5 eV which we obtained with an accurate k-point sampling. The errors in-
troduced by I' point sampling on structural properties are negligible, e.g the
error on the lattice constant is of 0.1%. The self-trapped states are localized
on one bond. hence in a 64 atom super-cell they are weakly affected by the
boundary condition. Indeed in Ref. [L6] the nitrogen impurity was studied
with a 64 atom super-cell and a T' k-point sampling. A more accurate k-point
sampling does not change the qualitative physics of the distortion but only
increases the self-trapping energy by 0.13 eV [16].

We adopted the damped Newtonian electronic dynamics to minimize the -
energy functionals E[{v'}.R] and U[{'},R] with respect to {4} at fixed

jonic positions (see Sec. 2.3). We use the conservative Newtonian electronic

dynamics to keep the wave-functions close to the instantaneous minimum of
the energy functionals during the ionic motion (see Sec. 3.3) and on a given
BO surface we minimized the energy with respect to the ionic position by a
damped Newtonian ionic dynamics.

In order to improve the efficiency of the computation we preconditioned
the electronic fictitious mass as described in Sec. 2.3. We set the mass pre-
conditioning cut-off energy E, at 3.5 Ry. The mass preconditioning allowed
us to increase the integration time step by a factor of 3 in the fictitious New-
tonian dynamics based on the functional E[{¢'},R] and by a factor of 9 in
the fictitious Newtonian dynamics based on the functional U/[{¥'}, R].

4.5 Core exciton

4.5.1 JIonic and electronic structure

In this Section we describe the electronic and the ionic structure of the core
exciton obtained in the DFT-LDA.

On the lowest BO surface of the core exciton we minimized the energy
with respect to the ionic positions. We found that the minimum energy con-
figuration corresponds to an asymmetric distortion of the atomic lattice very
similar to that of the nitrogen impurity described in Sec. 4.2. In particular
the excited core atom and the nearest-neighbor atom in the (111) position
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Figure +.2: Core exciton levels structure in the ideal and in the relaxed
geometry. The energies indicate the distance of the levels from the conduction
band edge.

move away one from each other along the (111) direction. The displacements
of the excited core atom and of the (111) carbon atom from the ideal sites
are equal to 10.4 % and to 11.5 % of the bond length respectively. The other
nearest-neighbor atoms move by 2.4 %.

Fig. 4.2 shows the core exciton level structure both for the ideal and
for the relaxed geometry. We computed the level structure using the KS
Hamiltonian which corresponds to the lowest core-exciton BO surtace.

In the ideal lattice the exited core carbon atom induces two defect states
in the crystal band gap. The lower state lies 0.4 e\ below the bottom of the
conduction bands. This state. which in the lowest core-exciton BO surface is
occupied by the unpaired electron. is non-degenerate and belongs to the A,
representation of the Tq point group. The higher state lies 0.2 eV below the
bottom of the conduction bands. It is 3-fold degenerate and belongs to the
T, representation.

The ionic relaxation localizes on the stretched bond the non-degenerate
state. which falls down in the gap 1.5 eV below the bottom of the conduction
bands. Instead the 3-fold degenerate level remains close to the conduction
band edge. However, since the ionic relaxation reduces the symmetry from
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Figure 4.3: Configurational diagram of the diamond BO surfaces correspond-
ing to the ground state, to the A; and the T, core exciton states.

T4 to Csy, the 3-fold degenerate level is split into a 2-fold degenerate level
belonging to the E representation of the Csy group and in a non-degenerate
level belonging to the A; representation (see Fig. 4.2).

Finally in Fig. 4.3 we show the relaxation energy associated with the self-
trapping distortion on the different BO surfaces. On the lowest core exciton
BO surface the relaxation energy is equal to -.43 eV. On the ground state
BO surface the self-trapping distortion increases the energy by 1.29 eV. In
Fig. 4.3 the higher core exciton BO surfaces are also shown. Their qualitative
features can be deduced just using symmetry arguments and the positions of
the KS eigenvalues.

Our calculation indicates that the ionic and the electronic structure of the
core-exciton is similar to that of the nitrogen impurity. This proves that the
equivalent core approximation holds at least at a qualitative level. However
the relaxation energy and especially the distance of the Ay electron level from
the bottom of the conduction band are smaller in the case of the core exciton.

The core exciton level structure with the atoms in the ideal lattice posi-
tions was previously computed in DFT-LDA [18], using a linear-combinations-
of-atomic-orbitals method and Gaussian orbitals [33]. Hydrogen terminated.

(W)
o)



carbon clusters were used to mimic the infinite diamond crystal. The largest
calculation was performed with a CoHso cluster. The results of Ref. [18]
show that the A; and the T, levels lies .2 and at .8 eV below the conduc-
tion band edge, respectively. This substantially overestimates the spacing
between the A; and the T, levels compared to our calculation. A possible
cause of disagreement between our calculation and that of Ref. [18] is the
small cluster size used in the latter.

4.5.2 Comparison with experiments

We now show that our results allow to obtain a consistent interpretation of
the experimental data of Ref.s [17, 21]. Our model is based on the following
steps: (i) During the absorption the ions are in the ideal lattice position.
The A, level is totally symmetric. Thus a dipole transition from a ls core
level to the Ay valence level is forbidden. The absorption to the Ty level is
instead allowed. In our calculation the T, is .2 eV lower than the conduction
band edge in agreement with the position the core exciton peak in the X ray
absorption spectra [17, 21]. (ii) On the Ty BO surface the lattice undergoes
a Jahn-Teller distortion which lowers the energy up to the avoided crossing
with the A; level (see Fig. 4.3). (iii) Since the LO phonon energy in diamond
(0.16 eV) is comparable with the energy spacing between the A; and T,
energy surfaces, the system can easily perform a non-adiabatic transition
from the T, to the Ay level. (iv) On the A; level the core exciton selt-
traps strongly distorting the atomic lattice. (v) The self-trapping distortion
induces a Stokes shift in the emitted photon energy. If the ionic relaxation
were complete the Stokes shift would be equal (see Fig. 4.3) to the sum of the
energy dissipated in the T;-A; non adiabatic transition (.2 eV), of the self
trapping relaxation energy (.43 eV) and of the ground state distortion energy
(1.29 eV). i.e. to 1.9 eV. In Ref.[21] the shift between the peak position in
the X-ray absorption and emission spectra is about 1 eV, but the emission
peak shows also a very large sideband which corresponds to Stokes shifts of
up to 5 eV. As pointed out in Ref. [21] this large sideband probably indicates
an uncompleted relaxation of the atomic lattice to the minimum of the A,
BO surface. Indeed the core exciton lifetime is expected to be comparable to
the phonon period. In this case the atomic lattice would perform only few
damped oscillations around the minimum energy structure during the life of
the core exciton.
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(111) direction
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Figure 4.4: Schematic representation of the ideal diamond structure around
a crystal bond.

4.6 Valence exciton and biexciton: BO po-
tential energy surfaces

In this Section we describe the DFT-LDA BO potential energy surfaces of
the valence exciton and biexciton. To this purpose it is useful to define a
configurational coordinate @) as:

(l - (lo

Q= (4.8)

(Zo
where d is the length of one bond in the supercell along the (111) direction
and dy is the equilibrium bond distance. In Fig. 4.4 we label the atoms
around a crystal bond in the ideal diamond structure. In the following the
(a.b)-bond, i.e. the bond between the atoms a and b, is used to define the
configurational coordinate Q.

First we consider the BO surface corresponding to the valence biexciton.
In order to see if self-trapping occurs, we broke the translational symmetry
of the ideal structure by giving a symmetric outward displacement along
the (111) direction to the a and b atoms. This correspond to a positive
value for the Q coordinate. On the biexciton BO swrface already a small
trial displacement of this type is sufficient to give rise a strong outwards
force in the (111) direction which acts to separate the atoms a and b even
further. For instance for @ = 0.048 the force is equal to 0.024 a.u.. A full
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Figure 4.5: Configurational diagram of the diamond BO surfaces correspond-
ing to the ground state the valence exciton and the valence biexciton.

relaxation of the 64 atoms in the super-cell enhances the local distortion and
at the minimum @ is equal to 0.512. Thus DFT-LDA predicts self-trapping
of the valence biexciton. The self-trapping energy FEj;, defined as the total
energy difference between the relaxed and the ideal ionic structure, is equal
to —1.74 eV. Note that E,; is much larger than the binding energy of the
Wannier excitons (0.07 eV') which is neglected in our treatment.

Then we consider the single exciton BO surfaces. On this BO surface we
verified that the energy is minimum when the atom are in the ideal ionic
structure. Thus, in agreements with experiments, the valence exciton does
not self-trap within DFT-LDA.

Finally we computed how the ionic distortion associated with the biexci-
tonic self-trapping raises the energy on the ground state and single exciton
BO surfaces. We found that the energy obtained with the atoms in the
distorted configuration is larger by 4.85 eV and 1.49 eV respectively with
respect to the energy obtained with the atoms in the ideal positions. The
previous results are summarized in the configurational diagram reported in
Fig. 4.5. In the ideal structure, i.e. for @ = 0, the three BO surfaces are
separated by an energy difference equal to the gap between the valence and
conduction bands. In our calculation the gap is equal to 4.00 eV, whereas the
experimental gap of diamond is equal to 5.48 eV. It is well known that DFT-
LDA underestimate the experimental gaps of semiconductors. A pointed in
Sec. 4.3 this underestimation is due to a gap discontinuity of the exact DF'T
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Figure 4.6: Ideal and self-trapped biexciton ionic structure. In the self-
trapping distortion the displacements of the atoms not shown are smaller
than 0.9% of the diamond bond-length.

exchange and correlation energy. which is not taken into account in the LDA.
Note that the DFT-LDA energy differences on the same BO surface reported
in Fig. 4.5 are reliable since they are not affected by the gap discontinuity,
whereas the DFT-LDA energy differences between different BO surfaces have
to be corrected for the gap discontinuity. Thus in the subsequent analysis
we will use the experimental value of the energy gap.

4.7 Self-trapped biexciton

4.7.1 Ionic and electronic structure

In Fig. 4.6 we compare the ideal and the relaxed ionic structure of the valence
biexciton. In the relaxed structure the (a,b)-bond is broken. The a and b
atoms connected by the broken bond relax outwards in a symmetric way
changing the hybridization of their backbonds from sp3 to sp?, i.e. producing
a kind of local graphitization.

In Fig. 4.7 we report schematically the displacements of the atoms around
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Figure LT Displacement with respect to the ideal position in unit of bond
length in the self-trapped biexciton.

the broken bond in units of the equilibrium bond-length. Only inequivalent
atoms are shown. The atoms which are not reported in Fig.s 4.6 and 4.7 move
by less then .9%. The displacements of the ¢ atoms decrease the length of
the the sp? (c,a)-bonds. A perfect planar hybridization and the bond-length
of graphite would be realized with a displacement of thé a and ¢ atoms in
the directions shown in Fig. 4.7 equal to 33.3% and 2.1% respectively to be
compared with the actual values of 25.6% and 1.2% of Fig. 4.7. Finally note
that the bonds along the (111) direction between the atoms ¢ and e stretch.

In Fig. 4.8 we show the level structure of the biexciton after the ionic
relaxation. The two conduction electrons occupy a doubly filled level at 1.7
eV below the bottom of the conduction bands. The empty level of the two
holes is situated 1.6 eV above the top of the valence bands. No other deep
state falls in the gap during the ionic distortion.

In Fig. 4.9 we show the isocontour plots of the square modulus of the
hole and of the electron wave-functions. Both the electron and hole wave-
functions are well localized on the broken bond. To give a numerical estimate
of the degree of localization we defined [j,. as:

I, = / < e ><rhp > &Pr (4.9)
oc

where the KS orbitals [t > is normalized on the super-cell and the integral is

performed inside two spheres of radius 2.5 a.u. centered on the atoms « and b

(the equilibrium bond length of diamond is 2.91 a.u.). We computed Ij, using
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Figure 4.8: Hole and electron deep levels position in the sell-trapped biexci-
tomn.

Figure 4.9: Isocontour plots of the the square modulus of the hole (right
panel) and electron (left-panel) wave-function. The wave-functions are nor-

malized on the super cell and the isocontour level is equal to 0.01 (a.u)™3.
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Figure 4.10: Hole and electron wave-functions along the (111) direction. The
squares show the position of atoms « and 0.

the hole and electron excitonic wave-functions. We obtained [, = 0.32 and
Lo = 0.49 for the hole and the electron respectively. For comparison a typical
value for a delocalized valence wave-function would be I;,. ~ 0.05. Since the
super cell is finite, the I, of the delocalized state is non zero, nevertheless it is
one order on magnitude smaller than the [, of the localized excitonic states.
The values of [, indicate that in the biexciton the holes are less localized
than the electrons. This fact is consistent with the different behavior of the
of the boron and of the nitrogen impurities and it can be related to the width
of valence and conduction bands as explained in Sec. 4.2. A closer inspection
of Fig. 4.9 shows that the hole probability density is mostly localized on the
broken bond but has some weaker localization also on the the (111) oriented
bonds (€,¢). As previously noted these bonds are stretched with respect to
the ideal structure.

From Fig. 4.9 the hybridization of the excitonic wave-functions can be
deduced. As expected from the local graphitic-like structure of the defect, the
hole and the electron states are a superposition of p, atomic orbitals oriented
along the (111) direction. The superposition has bonding or antibonding
character for the holes or for the electrons respectively. The symmetry of the
exciton states is more clearly seen in Fig. 4.10, where we plot the hole and
electron wave-functions along the line connecting the atoms a and b. The
wave-functions are zero on the « and b atoms since they are combinations
of p atomic orbitals, and the even or odd parity of the wave-functions with
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Figure 4.11: Stimulated-absorption spontaneous-emission cycle of self-
trapping hiexciton.

respect to the exchange of the two atoms reflects their bonding or antibonding
character.

4.7.2 Experimental implications

Similarly to what it is found in the case of core exciton the first consequence
of the valence biexciton self-trapping is a large Stokes shift in the stimulated-
absorption spontaneous-emission cycle. This is schematically illustrated in
Fig. 4.11. In an optical transition from the excitonic BO surface to the biex-
citonic BO surface the energy of the absorbed photon is at least equal to the
energy gap of the ideal crystal.i.e. 5.5 eV. On the biexcitonic BO surface the
crystal can relax to the self-trapped configuration. This process is accompa-
nied by an energy transfer of 1.74 eV to the jonic degrees of freedom. In the
distorted configuration the system decays vertically by spontaneous emission
to the excitonic BO surface. On the excitonic BO surface the energy in cor-
respondence of this distorted configuration is 1.49 eV above the minimum.
Hence the energy of the emitted photon is equal to Ep, = (5.5-1.74-1.49) eV
— 9.3 V. Then on the excitonic BO surface the system relaxes back to the
ideal structure by transferring 1.49 eV to the ionic degrees of freedom.

The gap of diamond is indirect, i.e. the difference Ak between the high-
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est valence state k-vector and the lowest conduction state k-vector is non
zero. Since the k-vector of a 5.5 eV photon is negligible with respect to
Ak, the direct optical absorption at the minimum gap energy is forbidden
by the k-vector conservation rule. An allowed photon absorption is then as-
sisted by a simultaneous emission or absorption of a phonon, whose k-vector
assures total momentum conservation. For the same reason in the ideal di-
amond crystal the spontaneous decay of an exciton is phonon assisted and
the exciton radiative life time is very long with respect to that of direct gap
semiconductors. However, once the biexciton self-traps, the translational
symmetry is broken and the direct spontaneous emission becomes allowed.
Thus the radiative life time of the self-trapped biexciton is much smaller than
the one of the delocalized exciton. The biexciton radiative life time 7 in the
dipole approximation is given by:

3 h2Am?

"= 1OpAL (4.10)

where ¢ is the speed of light, ¢ and m are the electron charge and mass,
AE = 2.3¢V is the emitted photon energy and p =< W |p|¥er > is the
expectation value of the momentum operator between the biexcitonic and
the excitonic total wave-functions. p can be estimated as:

) 1 ,
p =< '1;"51 — —ﬁVI'x/vh > (411)

where |1 > and |3, > are the doubly occupied electron level and the empty
hole level of the LDA wave-functions of the self-trapped biexciton. With
this approximation we eventually obtained 7 ~ 7 ns. This time is orders of
magnitude smaller than the decay time of the Wannier exciton, nevertheless it
is also orders of magnitude larger than the typical time of the ionic relaxation
which occurs on the time scale of the phonons, i.e. in fractions of a ps.

Now we discuss the experimental conditions under which it is possible to
observe biexcitonic self-trapping. Since the self-trapped biexciton is a fusion
of two excitons on one crystal bond, the formation of self-trapped biexci-
ton requires a high excitonic density on a finite region of space. To realize
this condition it is possible either to excite directly bond states of Wannier
excitons, or to create a high density electron-hole plasma, e.g. by strong
light irradiation. In the second case many self-trapped biexcitons could be
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produced. This raises some interesting implications. If many self-trapped
biexcitons are created, they could cluster on planes producing a macroscopic
graphitization. Moreover, since the process of self-trapping is associated with
a relevant energy transfer from the electronic to the ionic degrees of freedom
in a high density electron hole plasma the self-trapping could heat up the
crystal up to melting in fractions of a ps, i.e in the characteristic time of the
ionic relaxation. Note that the behavior of the diamond electron hole plasma
has technological implications in the design of diamond based electro-optical
devices, which could operate under high excitation regime.

Finally we note that recently melting of the GaAs crystal under high
laser irradiation have been observed to occur in fractions of a ps [34]. In
Ref. [34] this phenomenon have been ascribed to the changing in the binding
properties due to the electronic excitations. Our study on diamond suggests
that in a sub-picosecond melting experiment the self-trapping could play an
important role. We expect that the electron-ion coupling should be smaller
in GaAs than in diamond, since, contrary to case of diamond, in GaAs there
are no experimental indications of single carrier self-trapping. However in
GaAs excitonic self-trapping could be sustained in presence of a high density
electron-hole plasma. ‘

4.8 Conclusion

We have shown that there are experimental and theoretical facts which sug-
gest the occurrence of self-trapping process in diamond. In particular the
symmetry breaking distortion observed experimentally in the nitrogen impu-
rity can be interpreted as a self-trapping localization of the donor electron.
Moreover the occurrence of 1s core exciton self-trapping was recently invoked
to explained a Stokes shift between the absorption and the emission peaks
observed experimentally in the K-edge spectra.

Led by this considerations we have studied the excited-state BO potential
energy surfaces of crystalline diamond using an ab-initio molecular dynamics
scheme and calculating the electronic structure in the framework of DFT-
LDA.

Our calculation reproduces the self-trapping of the core exciton and pro-
vides a coherent description of the absorption, self-trapping and emission
processes which compares well with the experimental data.
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Moreover we predict the self-trapping of the valence biexciton. Indeed
we have found that, as in the nitrogen impurity and in the core exciton, two
excitons localize themselves on a single crystalline bond which is thus broken
with a total energy gain of the order of 2 eV. The process is accompanied by a
large local relaxation of the lattice, producing a kind of local graphitization.
The ionic relaxation implies a strong Stokes shift in the stimulated-absorption
spontaneous emission cycle of about 3 eV, which could be observed experi-
mentally. The implications of our finding for the behavior of a high density
electron hole plasma in diamond have been discussed.
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Chapter 5

Quantum molecular dynamics
simulations with linear
system-size scaling

The evaluation of the BO potential energy and of the ionic forces for DFT-
LDA quantum molecular dynamics requires the knowledge of the occipied
eigenstates of the KS Hamiltonian. The occupied eigenstates can be ob-
tained either by self-consistent diagonalization of the KS Hamiltonian or by
minimizing the DFT-LDA energy functional E [{x'}, R] with respect to the
wave-functions {1'}.

Both self-consistent diagonalization and iterative minimization imply an
overall scaling of the computational effort which grows as the third power
of the number of electronic states, and thus as the cube of the number of
atoms in the svstems. This unfavorable scaling is a major limitation to the
use of ab-initio DFT-LDA techniques for systems containing more than a
few hundred electrons. Simplified quantum approaches such as tight-binding
(TB) molecular dynamics [52, 53] still require a computational effort that
grows as the cube of the number of atoms, but with a smaller prefactor
than in fully self-consistent DFT-LDA calculations. Hence TB molecular
dynamics is limited to systems containing up to few thousand electrons.

Let us analyse in detail the computational cost of an electronic energy
minimization step. We consider two different approaches for the minimiza-
tion of the electronic energy: the constrained minimization methods and the
unconstrained minimization methods. In the constrained minimization meth-
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ods, which we introduced in Chapter 2, the single particle wave-functions are
recuired to be orthonormal at each step of the minimization and the orthonor-
malization is assured by a set of Lagrangian multipliers. In unconstrained
methods the orbitals are allowed to overlap: this requires the evaluation of
the inverse of the overlap matrix S among occupied orbitals as an essential
ingredient of the calculation [35, 36]. Both constrained and unconstrained
methods require the evaluation of H|@; > for the N occupied electronic states
giving O(N M) operations, where M is the dimension of the basis set [37].
M is proportional to the number of atoms and thus to N. In constrained
methods the coefficients in the equation for the Lagrangian multipliers re-
quire the evaluation of N? scalar products among the N occupied states for a
total of O(N2A/) operations. Then the solution of this equation requires ad-
ditional O(N3) operations. In unconstrained methods the calculation of the
overlap matrix S and of its inverse requires O(N?M) and O(N?) operations,
respectively.

The primary reason for the O(N?) behavior relies on the delocalized char-
acter of the wave-functions |@; >. If each wave-function could be localized in
a finite region of space independent of the system size, the cost of most of the
above calculations would be reduced to O(N). The only exceptions are the
explicit solution of the equation for the Lagrange multipliers and the evalua-
tion of the inverse of S, which in general are still O(/N3). The idea of forcing
the wave-functions to be localized in given regions of space to construct an
O(N) scheme was first suggested in Ref. [35] and subsequently applied in
Ref.s [38, 39, 40, 41, 42].

The localization constraint does not introduce any approximation if the
construction of localized wave-functions amounts to a unitary transformation
in the space of the occupied eigenstates. This is the case of a periodic insula-
tor for which exponentially localized Wannier functions can be constructed.
In the general case imposing a fixed localization can be considered as a varia-
tional approximation for the electronic wave-functions. The accuracy of this
approximation can be controlled in a systematic way by varying the size of
the localization region. u

In order to reduce to O(/N) operations also the explicit solution of the
equation for the Lagrange multipliers or the evaluation of the inverse of S,
in principle one should resort to assumptions on the form of the overlap
matrix. For example, if the off diagonal elements of S could be made appro-
priately small, with respect to the diagonal elements, then the matrix could
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be inverted iteratively with a number of operations which is independent of
the system size. However the problem of imposing explicit orthogonalization
constraints or of inverting S can be solved without any assumption or approx-
imation. In fact, one can define a novel unconstrained functional containing
only the S matrix but not its inverse. Nevertheless such functional has ex-
actly the same minimum as the Kohn-Sham density functional. This idea
was introduced in Ref. [39]. Although this formulation is very general, the
scheme has been applied so far only to TB molecular dynamics [39, 42, 43].

Others O(NV) methods, not based on the direct evaluation of the occupied
orbitals have been proposed in the literature. Such schemes are based instead
on the divect calculation either of the one electron Green’s function [44] or of
the density matrix [46, 47, 49]. Real space localization constraints are used
also in these methods to obtain an O(N) scheme. So far these approaches
have been applied to TB Hamiltonians. Their generalization to DFT-LDA
calculations [45], in which the dimension of the basis set is much larger
than the number of occupied states, appears to be very costly since they
imply the knowledge of the full spectrum (occupied and empty states) of the
Hamiltonian matrix.

In this Chapter we present a detailed discussion of the O(N) method
introduced in Ref. [39], following closely a long report [42]. In Sec. 5.1 we
‘ntroduce the novel unconstrained energy functional. In Sec. 5.2 we discuss
numerical results obtained with this functional for first principles calculations
within DFT-LDA. In Sec. 5.3 we demonstrate that an algorithm with linear
system-size scaling can be obtained when the functional introduced in Sec. 5.1
is minimized with respect to localized orbitals. Sec.s 5.4 and 5.5 contain the
results for the minimization of tight binding Hamiltonians and for molecular
dynamics simulations, respectively. Summary and conclusions are given in
Sec. 5.6.



5.1 An energy functional with implicit or-
thogonalization constraints

5.1.1 Definition and characterization of the energy
functional

In Chapter 2 we have introduced the energy functional used in standard
constrained minimization methods. In such methods the single particle wave-
functions are orthonormal. In the following we indicate with {} a set of
orthonormal wave-functions and with E+[{:}] the constrained DFT energy
functional defined in Eq. 2.7. ’ '

In unconstrained minimization methods the single particle wave-functions
are allowed to overlap. In the following we indicate with {¢} a set of over-
lapping wave-functions and with S their overlap matrix. In the standard
approach (see e.g. [35, 36]), the unconstrained energy functional requires the
inverse of S in the definitions of the kinetic energy and of the density. The
absolute minimum of the standard unconstrained functional coincides with
that of E+[{y}].

In this Section we present the novel unconstrained functional introduced
in Ref. [39]. Its main features are:

(i) It does not require the inverse of the overlap matrix, contrary to the
case of the standard unconstrained functional.

(ii) The absolute minimum of the novel unconstrained functional coincides
with that of E+[{y}].

(iii) At the minimum the single particle wave-functions are orthonormal.

To prove and to illustrate the above statements we introduce the following
notation. We define an energy functional E[A, {¢}] as:

N/2
1 . . :
EIA{8)) = 23 Ay < 6 — 5 V18 > +FI) +0(N — [ dep(r)) (5.1)
tJ -
where {#} are N/2 overlapping orbitals, A is a (IN/2 x N/2) real matrix,
p(r) = p[A, {o}](r) =2 Zf\;ﬂ Aijoi(r)di(r), F[p] is the sum of the Hartree,
exchange-correlation and external potential energy functionals, and 7 is a

constant to be specified. The factor 2 accounts for the electronic occupation
numbers, which are assumed to be all equal. For simplicity we consider real



orbitals. According to the choice of the matrix A in Eq. (5.1), one can obtain
either the standard or the novel unconstrained functionals.

If A =871, where S;; =< ¢;|@; >, we obtain the standard unconstrained
functional E[S™1, {¢}] [35, 36]. In this case p[S™'] is the single particle charge
density p(r) and the term multiplying 7 is zero. In particular, if the wave-
functions are orthonormal then S™! = I, where I is the identity matrix, and
E[S™1, {1}] becomes equal to E*[{¢}].

In general, it is easy to prove that the absolute minimum of £ [S71, {¢}]
coincides with that of EX[{¢'}]. For this purpose we recall that, if S~ is not
i1l defined, then for any given set of overlapping orbitals {¢} it is possible to
construct a set of orthonormal orbitals {#} by using the Lowdin transforma-
tion [50], i.e. ¥; = 3_; 5'5'1/‘2615‘]'. Since E+[S™/2¢] = E[S™1,{¢}], it follows
that:

min EX[{¢'}] = min E[S™, {¢}] = Eo. (5.2)
{u} {#} '

If instead A = Q, where
N
Q=> (I-8) (5.3)
n=0 '

and A is odd, we obtain the novel unconstrained functional E[Q,{¢}] in-
troduced in Ref. [39]. Q is the truncated series expansion of S—! in powers
of (I—S). We note that similarly to E+[{¢}] and E[S™!, {¢}], E[Q,{¢}]
is invariant under unitary transformations in the subspace of the occupied
states.

We now prove the three statements given above concerning the properties

of E[Q,{¢}].

(i) E[Q, {¢}] does not require the inverse of S . This is evident from the
definition of E[Q.{4}].

(ii) The absolute minimum of E[Q,{¢}] is Eo. First we notice that, if
the orbitals are orthonormal. then S = Q = I. Consequently E[Q, {#'}] =
EX[{#}]. In the general case, since {1} is a subset of {#}, mingy; EQ.{4}] =
mingg) £[Q, {#}] and therefore:

min B [{v}] 2 min £(Q. {#}] (5.4)

{0}

This shows that Eg is an upper bound to mingg) F[Q, {#}].

=
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We now prove that FEy is also a lower bound. For this purpose let us
consider the difference between the functionals E[Q, {¢}] and E[S™!, {¢}]

AE = Bl o)) - Bl o)) = [ PPED 5

where A()\) = M(Q—S71)+S~1. Using in Eq. (5.5) the definition of E[A, {¢}]
given in Eq. (5.1) we obtain:

N/2
AE =2 Z < ¢j|H[{5 — 7]]¢i > (Qij — S;l) (5.6)
i
where Hys = —%V‘Z + Vs, with Vs = [ d\Vis[p(A)] and Vis[p] =

% Here Hps is a INohn-Sham Hamiltonian, in which the self-consistent
potential is averaged over the integration path (A) of Eq. (5.5). Since in a
numerical calculation the wave-functions and the operators are represented
in a finite Hilbert space, it is always possible to choose 7 large enough that
the operator (Hps — 7) is negative definite. Then also the (N/2 x N/2)
matrix < ¢;|Hxs — n|¢: > is negative definite. Using in the definition of Q

the expression for a sum of a geometric series, we obtain:
(Q—-S1)=-8SI-SV* = _(I-sV*s1 (5.7)

If M is odd, (Q —S™') is a non positive definite matrix since S, S~! and
(I — S)V+! are commuting non negative definite matrices. Therefore if 5 and
N fulfill the above requirements, AF is non negative since it is equal to the
trace of the product of a negative and of a non positive definite matrix. As
a consequence, for each set of {@} it follows that:

E[Q.{¢}] = E[S7",{¢}]. (5.8)

In this equation the equality sign holds if and only if (Q —S)™' = 0 and
therefore if and only if S = 1. Eq.(5.8) shows that Ey is a lower bound to

ming E[Q, {4}].
From Egs. 5.2, 5.4 and 5.8 we have

min B4[{(4)] = min E[Q. {$}] = min B[S, {4} = o (5.9)

U}
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This proves that the energy functional E[Q] has the Nohn-Sham ground state
energy (Eo) as its absolute minimum, if n and N fulfill the requirements

discussed above.

(iii) At the minimum of E[Q,{@}] the single particle wave-functions are
orthonormal. As discussed in the previous point, if {¢} are not orthonormal,
then E[Q, {#}] > E[S7!,{#}]. Thus, if the wave-functions which minimize
E[Q, {¢}] are not orthonormal, then mingy E[Q, {¢}] > minggy B[S, {¢}].
This is in contrast with Eq. (5.9). Hence it follows that the minimization of
E[Q] yields orthonormal orbitals.

The choice of  which makes (H s — 1) negative definite deserves some
comments. If the Hamiltonian of the system does not depend on p, a value
for 5 larger than €,q,, i.e. the maximum eigenvalue of the Hamiltonian,
insures that AE > 0. Within LDA, one can prove that

Hies[plQl] < Halpl, (5.10)

where Hy[p] = [-%Vz + Vi lp] + Vize], Vi and Vep are the Hartree and exter-
nal potential, respectively, and p = p[S~']. This follows from the property
AlQ](r) < p(r), valid for each point r, and from the explicit LDA expression
of the exchange and correlation energy as a function of p(r). Within, e.g.,
a plane wave implementation with a finite cutoff, Hy has an upper bound.
This insures the existence of 5 such that AE > 0. However in practical
calculations one can choose 5 smaller than the upper bound of Hy; indeed
for practical purposes it is not necessary to require Ey to be the absolute
minimum of E[Q], but it is sufficient to require it to be a local minimum of
E[Q]; the constant 5 which fulfills this weaker condition is in general much
smaller that the upper bound of Hy, as we will discuss in the next Section.

5.1.2 TIterative minimization of the energy functional

In this Section we discuss the choices of n appropriate in practical applications
and the convergence rate of iterative minimizations of E[Q] with A" = 1,
compared to that of E*. For non self consistent Hamiltonians, we will show
that if 7 is larger than the Fermi energy, then Ey is a local minimum of
E[Q]; furthermore if a value of 7 is chosen, which is close to the Fermi
energy, the minimum of E[Q] and that of E* can be obtained with the same
computational efficiency.
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The asymptotic convergence rate of iterative minimizations of a func-
tional E[{#}] can be estimated by expanding it around its minimum FEp, up
to second order in the variation of the wave-functions {¢}. As discussed, e.g.,
in the Appendix, in the minimization asymptotic regime the number of inte-
gration steps to reach convergence is directly related to the ratio between the
maximum and the minimum eigenvalues of the quadratic form which results
from the second order expansion of (F — Ej).

We consider a non self-consistent Hamiltonian (H) and we relate its eigen-
values ({e}) to those of the quadratic expansion of (E[Q] — Ep). Since E[Q]
is invariant under unitary transformations in the subspace of occupied states,
a generic variation of the wave-function with respect to the ground state can
be written as :

|6; >= |\ > +|A; >, (5.11)

with .
1A >= > gl > (5.12)

le[TOT)

Here |\ > are the eigenstates of H, and the indices ¢ and [ belong to the set
of occupied states and to the set of occupied plus empty states, respectively.
We denote with [OCC] and [EMP] the sets of occupied and empty states, and
with [7OT] the union of the two sets. ¢} are expansion coefficients of |A; >
over the eigenstates of H. If Eq. 5.11 is substituted into the expression
of AE = FE[Q] — Ey, the first order term vanishes, showing that for each
value of 5 the orbitals [\? > make F[Q] stationary. The stationary point
is in particular an absolute minimum if > €y42, as shown in the previous
Section. One is then left with a second order term, which can be recast as
follows:

AE = Z Z €m - m + Z ’7 - —E—%iz][%(cj + C‘L))]?

me[EMP]ie[OCC ijelocc]
(5.13)

From Eq. 5.13 it is seen that the quadratic form AF has two sets of normal
modes. The first set has eigenvalues k,; = 2[e;m — €], which are always
positive and independent of 7; they correspond to the coordinates c},. These
modes are associated with an increase of the total energy when the orbitals
acquire non zero components on empty eigenstates of H. They are the same
as the normal modes of (E+ — Ejy), calculated in Ref. [11]. The second set

57



of normal modes of AFE has eigenvalues _l;(i]-) = 8[n — (-E%"-C—J—)], theyv corre-
spond to the coordinates [—\%(Cs + ¢)]. These modes are associated with a
change of E[Q] due to the overlap of the electronic wave-functions; they are
indeed associated with the orthogonality constraints implicitly included in
the definition of E[Q] and they are not present in (E+ — Ey).

For 5 larger than the highest occupied eigenvalue of H, enyy (i.e. the
Fermi energy), the ;) are positive and thus Ep is a local minimum of E[Q].
7 > enye is a weaker condition than the one required to prove Eq. (5.9); it is
however a sufficient condition to insure that the minimization of E Q] leads
to the correct ground state energy, provided a reasonable starting point for
the minimization is chosen. This will be shown also with numerical examples
in the next Section.

The minimizations of E[Q] and E* can be obtained with the same ef-
ficiency provided the weaker condition on 7 is adopted. For example one
can choose 7 =~ €y/a241. Under such a condition the ratio between the maxi-
mum and the minimum eigenvalues of the expansion of (£ [Q] — Eo) and of
(E+ — Ejp) is the same in most systems. Indeed the eigenvalues & lie in the
interval defined by the eigenvalues k, if the spread in energy of the excited
states of H is four times smaller than the valence band width. This condition
is satisfied in most systems of interest. This means that in practice iterative
minimizations of E[Q] and MD simulations with £ [Q] can be performed with
the same efficiency as the corresponding calculations with E+. However, if
y is chosen so that Ep is an absolute minimum of E[Q], the time step used
in MD simulations, which is proportional [11, 5] to the square root of the
maximum eigenvalue of AE (Eq. 5.13), is reduced by a factor of two with
respect to that used in standard calculations.

The functional E[Q] has clear advantages over standard energy function-
als when conjugate and preconditioned conjugate gradient minimization pro-
cedures are used: the complication of imposing orthonormality constraints
is avoided, and contrary to ordinary unconstrained methods an automatic
control of the S matrix is provided, since at the minimum S = L Fur-
thermore, when the mass preconditioning introduced in Sec. 2.3 is used, the
integration of the electronic equation of motion does not imply any extra
work, at variance with integration schemes with explicit orthogonalization
constraints.



5.1.3 Relationship with other functionals

The total energy minimization scheme which we introduced in Ref. [39] is
related to other approaches recently proposed in the literature for electronic
structure calculations with linear system-size scaling. In particular Ordején
et al. [41] derived the same functional as that of Egs. 1 and 3 for N =1 for
non self-consistent Hamiltonians. Their derivation is based on a Lagrangian
formulation with explicit orthogonalization constraints, where the Lagrange
multipliers (A;;) are approximated by an expression which is exact only at
the minimum, i.e. \;; =< ¢;|H|¢; >. The approach presented by Ordejon
et al. [41] is similar to that of Wang and Teter [38], although in Ref. [3§]
constraints are introduced by means of a penalty function. However the
minimum of the Wang and Teter functional is Ey only if the weight of the
penalty function goes to infinity, at variance with our and Ordejon et al.’s
functionals which at the minimum is always equal to Fy.

Instead of using an orbital formulation, Li, Nunes and Vanderbilt [46]
and Daw [47] proposed a functional for total energy minimizations within
a density matrix formulation. In this case one minimizes the energy func-
tional with respect to the density matrix, which must fulfill the idempotency
condition. This condition is enforced by minimizing the total energy with
respect to a purified version of the density matrix [46, 51] (p(r,7’)), con-
structed from a trial density matrix p(r,7’) in such a way that its eigenvalues
lie on the interval [0,1]. The energy functional E[Q] (Eq. 1,3) for non self-
consistent Hamiltonians can be re-derived within the formulation of Ref. [46]
if p(r,7") is expressed in terms of the occupied single particle wave-functions,
Le. p(r, 1) = Yigocc ¢i(r)¢i(r'), and a purification transformation is cho-
sen such that p = I — (I — p‘)‘w’l. This transformation forces the eigen-
values of j to be less than 1 only if A/ is odd; one does not need to force
the eigenvalues to be positive, as done in Ref. [46], since by construction
p(r, ') = Yicroce) ¢i(r)9:(r') has a number of non zero eigenvalues equal to
the number of occupied states.

59



5.2 Numerical results of first principles cal-
culations

The validity of the minimization scheme presented in Sec. 5.1 was tested
numerically for KS Hamiltonians within LDA, by computing the ground state
energy of Si in the diamond structure. We used an expansion coefficient
N =1 to define the Q matrix entering the energy functional (see Eq. 3). We
chose n smaller that the maximum eigenvalue of Hys; this choice insures the
iterative minimization to properly converge to the ground state energy Eo,
unless a pathological starting point for the electronic orbitals is chosen.

E[Q] was minimized by steepest descent; the derivative of the functional
with respect to the single particle orbitals is given by:

2

~

JE[Q] %

56 =t l(Hrs - Mé; > (285i — Sji) — 185 >< 6;|(Hrs —n)lei >]

\,M

(5.14)
The orbitals were expanded in PW with a kinetic energy cutoff (E..) of 12 Ry
and the interaction between ionic cores and valence electrons was described
by a norm conserving pseudopotential [28] expressed in a separable form [31].
The calculation was started from orbitals set up from random numbers, with
n set at 3.0 Ry above the top of the valence band. In Fig. 5.1 we report
E+ and E[Q] as a function of the number of iterations; it is seen that the
minimizations of the two functionals require the same number of iterations
and leads to the same energy. Fig. 5.2 shows the integral of the charge density
during the minimization procedure. For N =1, AN = N — [drp(r) =
N —Tr(QS) is given by

AN = Tr((I-8)%). (5.15)

This is a positive quantity which goes to zero as the orbitals become or-
thonormal. In our calculation the difference AN between the total number
of electrons and the integrated charge reaches a value very close to zero
(~ 107%) after 10 iterations, showing that the single particle wave-functions
are orthonormal already well before reaching the minimum.
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" Figure 5.1: Total energy (E) as a function of the number of iterations for
a steepest descent minimization of 64 Si atoms in the diamond structure,
described within LDA with a PW basis set. The solid and dotted lines
correspond to the minimization of E[Q] and E* (see text), respectively. Q
was defined with AV = 1. Each run was started from the same set of random
Fourier coefficients.
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Figure 5.2: Total electronic charge as a function of the number of iterations
for the energy minimizations reported in Fig. 5.1. The total number of
electrons in the system 1s 256.
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5.3 Localized orbitals and an algorithm with
linear system-size scaling

We now twrn to the discussion of the approach introduced in Sec. 5.1 within
a localized orbital (LO) formulation [35]. Within such a formulation, each
single particle wave-function is constrained to be localized in an appropriate
region of space, which we call localization region (LR): the electronic orbitals
are free to vary inside and are zero outside the LR. Different single particle
orbitals can be associated to the same LR, e.g. two doubly occupied orbitals
per LR for C' and Si, which have four valence electrons. The extension of a
LR is determined by the bonding properties of the atomic species composing
the system, and it is the same unrespective of the size of the system which
is simulated. The choice of the centers of the LRs is arbitrary. In all of
our calculations (see next Section) we centered the LRs on atomic sites; this
choice is physically unbiased. i.e. 1t can be adopted for a generic system
whose bonding properties are totally unknown, and allows for a solution
which satisfies charge neutrality conditions. If one wants to take advantage
of known properties of the system, LRs can for example be centered on
atomic bonds or on positions compatible with the symmetry of the Wannier
functions, if these can be defined. This is however difficult to do, e.g. at each
step of a MD simulation, where the evolution of the bonding properties as a
function of time is not known. One could also treat the centers of the LRs as
variational parameters and optimize their locations during the calculation.

We now consider the minimization of E[Q] with respect to LO ({¢'}).
When the orbitals are localized, S;;, and < oF|H 1\-5|¢f > are sparse matrices
which have non zero elements only if ¢ and j belong to overlapping LRs. The
evaluation of E[Q] (Eqs. 1,3) as well as of 75{;?] (Eq. 12) implies only the
calculation of matrix products containing S and < oF|H KS|</)JL >. No or-
thogonalization or S inversion is needed. Thus at each step, the minimization
of E[Q] can be performed with a number of operations which is proportional
to the system size.

When localization constraints are imposed, the variational freedom of
the minimization procedure is reduced. The energy obtained by minimizing
a functional with respect to LOs is then larger than the absolute minimum
(Eo) obtained with no constraints on the single particle wave-functions. In
particular, the minimum of E[Q] with respect to LO {4} does not coincide
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with that of EF[S™!], and the LO which minimize E[Q] are in general not
orthonormal. This is easily seen as follows. Whereas Eq. 5.4 and 5.8 hold also
for LO, Eq. 5.2 is no longer valid when localization constraints are imposed.
Indeed the transformation from {¥} to {¢} with S™%/2 does not preserve the
size of the LR, i.e. it does not map functions localized in a given region onto
functions localized in the same region of space. Therefore Eq. 5.9 does not
hold but is replaced by

in £+ > min £[Q] > min E[S™!] > E, 5.1
mh e 2y FlRlz gy P2 B 210

where the LR for the {1/*} and {#*} are the same. Since in Eq. (5.16) the
equality is in general not satisfied, at the minimum S is different from I,
contrary to the case of extended orbitals.

The variational quality of the results obtained by minimizing F[Q], i.e.
the difference [ming,ry E[Q] — Ey], depends upon (i) the order N chosen for
the definition of the Q matrix and (ii) the size of the LR. For S < 21, it is
easy to see that E[Q(N —2)] > F[Q(N)]. Therefore by increasing A in the
definition of Q, one obtains an improvement of the total energy. This leads
as well to an increase of the number of operations needed in the computation
of Q (see Eq. 3)." Most importantly, in order to improve the quality of the
results one can choose to increase the size of the localization region. We
note that the number of non zero elements of S is proportional to nprlV,
where npp is the average number of regions overlapping with a given one.
Instead the number of degrees of freedom needed to define the N/2 single
particle orbitals is proportional to mN, where m is the number of points
belonging to a LR, e.g. the number of points where the wave-function is non
zero. The ratio npp/m strongly depends on the basis set chosen to set up
the Hamiltonian. The optimal choice of A and of size of the LRs, e.g. of
the parameters determining the efficiency and accuracy of the computation,
crucially depends upon the chosen basis set.

In calculations where m > npg, the computer time for the S inversion
amounts to a small fraction of the total time also for relatively large systems
(e.g. systems with up to a few thousand electrons in LDA calculations with
PW basis). On the contrary for computations with small basis sets, such
as those with TB Hamiltonians, the computer time for the S inversion con-
stitutes a considerable part of the total time already for small systems (i.e.
containing a few tens of atoms).
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5.4 Minimization of TB Hamiltonians

The LO formulation was tested numerically using TB Hamiltonians [52, 53]
with the convention ¢, + ¢, = 0. We performed calculations for Si and C
in different aggregation states. In calculations for crystalline structures, we
considered non zero hopping terms only between first neighbors. We chose
a number of LRs equal to the number of atoms and we centered each LR
at an atomic site (I). In a TB picture a LR can be identified with the set
of atoms belonging to it. For each site I, we label the set of atoms which
belong to a LR with LR;. C and 5i atoms have four valence electrons and
there are two doubly occupied states for each atom in the system. We then
associated two states to each LR: The two wave-functions of the LR centered
in I have non zero components on the atoms belonging to the set LR and
zero components (expansion coefficients) on the atoms which do not belong
to LR;. The expansion coefficients of the single particle orbitals are treated
as variational parameters in our calculations. The total number of expansion
coefficients grows linearly with the size of the system.

We tested two different shapes of the LR. In one case an atom is defined
as belonging to LR if its distance to the site I is less than or equal to a
given radius r. (in other words, an euclidean metric is used to define the
shape of the LR). In the second case, we took advantage of the form the
TB Hamiltonian and we considered an atom as belonging to LRp if 1t is
connected to the site I by a number of non zero hopping terms less than or
equal to a given number of shells Np.

In all calculations E[Q] was minimized with respect to ¢r by a conju-

ate gradient (CG) procedure. The gradients BF[LQ] are simply obtained by
gate g g 4] P

projecting Eq. (12) onto the LR where ¢F is defined. For non self-consistent
Hamiltonians. the line minimization required in a CG procedure reduces
to the minimization of a quartic polynomial in the variation of the wave-
function, along the conjugate direction. In our calculation the line mini-
mization is performed exactly by evaluating the coefficients of the quartic
polynomial.

We found that when localization constraints are imposed, E[Q] can have
local minima and metastable states, where the system may be trapped for
a long time during the minimization procedure, before reaching a minimun.
This problem can be overcome if an appropriate choice of the initial guess
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Figure 5.3: Percentage error on the cohesive energy of Si (diamond struc-
ture) as a function of the number of shells (/N.) in the localization region,
computed with a TB Hamiltonian (see text). Diamonds and crosses refer to
minimizations of F[Q] with Q[A = 1] and Q[N = 3], respectively. The LRs
were defined using an euclidean metric (see text). The errors were evaluated
with respect to a computation with extended orbitals.

for the iterative diagonalization is made. In all of our calculations we used
starting wave-functions with non zero components only on the site / where
they were centered; furthermore orbital components were the same for each
I. This choice allowed to avoid local minima and metastable state traps
for a wide class of ionic configurations. The problem of being trapped in
metastable states or local minima involves only electronic minimizations; it
does not concern MD simulations, where the ground state orbitals of a given
step can be used as guess wave-functions for the following step.

Fig. 5.3 shows the percentage error on the cohesive energy E. of Siin the
diamond structure, as a function of the size of the LR, computed with respect
to a calculation performed with extended orbitals. All computations were
carried out at the same fixed volume, with 216 atom supercells, simple cubic
periodic boundary conditions and the I' point only for the supercell Brillouin
zone (BZ) sampling. E. was evaluated with QA = 1] and Q[N = 3] and
with 7 = 3 eV. The shape of the LR was first chosen using an euclidean
metric. We denote with N, the number of shells included in a LR, defined
according to such a metric. It is seen that E. converges rapidly as a function
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of N., with both A" =1 and 3. Already with N, = 2 (17 atoms belong to
a LR) the results are very good, i.e. E. is higher than the result obtained
with extended orbitals by only 2.1% and 0.8% for N = 1 and 3, respectively.
For N = 1, the error on the total charge AN (see Eq. 13) which gives the
deviation from orthonormality due to localization constraints is in general
very small; already for N, = 2 we found it to be 0.2%. We note that when
going from N, = 3 (29 atoms in a LR) to N. = 4 (35 atoms in a LR), we
obtained the smallest variation of F.. Indeed the atoms added to a LR when
including also the fourth neighbor shell are not connected by hopping terms to
those defining a LR when N, = 3. This suggests that a definition of LR based
on hopping terms is more physical than one based on the euclidean metric.
We repeated the calculations with A" =1 by choosing the LRs according to
the hopping parameters and by setting the number of hopping shells V), at
3. (For the diamond lattice, the definition of LRs using the two metrics are
different for N, and N, larger than two). The choice N, = 3 amounts to
considering 41 atoms in a LR. The percentage error (0.7 %) on E. is very
close to that obtained with N. = 5 (0.6 %), although the number of atoms
in a given LR is bigger (47). The choice of the shape of the LRs according
to the hopping parameters is superior to that of the euclidean metric and
it is especially so when energy differences between different structures are
to be computed. This is the definition which was adopted in all subsequent
calculations for C.

Results for carbon in different crystal structures are presented in Ta-
bles 5.1 and 5.2 and in Fig. 5.4. We chose systems with different bonding and
electronic properties: a sp® bonded insulator, diamond, a sp? bonded semi-
metal, planar graphite, and a sp bonded metal, a non dimerized C chain.
Table 5.1 shows the binding energy of the three structures as a function of
the size of the LR. The calculations were performed with E QW = 1)].
The errors for Nj, = 2 and N}, = 3 are of the same order of those found in
the case of silicon, and in particular we found that already for Ny = 2 the
LO formulation and a direct diagonalization scheme are in good accord. In
Fig. 5.4 we compare the total energy of the three C systems as a function
of the lattice parameter, as obtained by direct diagonalization of the Hamil-
tonian and by minimizing E[Q(N = 1)] with respect to LO, with N, = 2.
The agreement between the two calculations is again very good for the three
systems, in spite of their different bonding and electronic properties. The
percentage difference between the computed equilibrium properties (lattice
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Crystal structure | ro | E. [Ny, =2] | E. [N, = 3] | E; [N} = 0]

Diamond 1.54 7.16 7.23 7.26
2D-graphite 1.42 7.09 7.19 7.28
1D-chain 1.25 5.62 5.75 5.93

Table 5.1: Cohesive energy E. (eV) of different forms of solid carbon com-
puted at a given lattice constant rg (A) as a function of the number of
shells (N3) included in the LR. The calculations were performed with a TB
Hamiltonian, with supercells containing 216, 128 and 100 atoms for diamond,
two-dimensional graphite and the linear chain, respectively.

Crystal structure | éro (%) | 6E. (%) | 6B (%)

Diamond 0.2 1.4 1.0
2D-graphite 0.4 2.5 1.4
1D-chain 0.5 4.7 2.7

Table 5.2: Percentage errors on the equilibrium lattice parameters (érg),
cohesive energy (6E.) and bulk modulus (6B) of diamond, graphite and a
carbon linear chain, as obtained by minimizing E[Q] with Q[A = 1] and
N;, = 2, described within a TB framework. The errors were evaluated with
respect to a computation with extended orbitals.
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Figure 5.4: TB total energy (£) of diamond (dots), bidimensional graphite
(open circles) and a carbon linear chain (squares) as a function of inter-
atomic distance (d), computed with supercells containing 216, 128 and 100
atoms, respectively. The dotted lines were obtained by minimizing E[Q] with
Q[N = 1], and by using localization regions with N = 2. The solid lines

were instead obtained by diagonalizing the Hamiltonian.

constant, cohesive energy and bulk modulus) are given in Table 5.2.

5.5 Molecular Dynamics with TB Hamilto-
nians

By using the functional E[Q] and localized orbitals one can set up a MD
scheme in which the computational cost of each step scales linearly with
the system size. According to the Helmann-Feynman theorem, see Sec. 3.2,
one can obtain the forces acting on a given atom I by computing F; =
_'JI‘T[ (Q: {¢r}, {R}]; here (Ry) denotes ionic positions and {¢r} are the
localized orbitals which minimize E[Q]. The general expression of the ionic
forces is given by F; = =2 Z?J/ Qi < ¢ —,%;](bj >, where V indicates
the external potential in a LDA calculation and the Hamiltonian in a TB
calculation. In practical computations it is convenient to first calculate the



auxiliary wave-tfunction
IV/Z

6: >= D Qijlg; > (5.17)
J
and then to evaluate the expression of F; as follows:

JV/'Z C’)‘/ .
F; = —22 < ¢il0_1%7|¢i > . (5.18)

The ground state wave-functions {¢r} can be obtained either by evolv-
ing the electronic states according to a Car-Parrinello [4] dynamics (see, e.g.
Ref. [39]), or by minimizing the energy functional E[Q] at each ionic move.
In our simulations, we determined the sets LR; at each ionic step; conse-
quently the sites belonging to a set vary as a function of time, when, e.g.
the atoms are diffusing or changing their local coordination. This implies
an abrupt modification of the basis functions used for the expansion of {¢r}
and therefore a discontinuity of {¢} as a function of the ionic positions. In
correspondence to any change of the sets LRy, E[Q] must be minimized with
respect to the electronic degrees of freedom; we therefore chose to minimize
the energy functional at each ionic step, unrespective of whether the LR
changes at a given step. The minimizations were performed with a conjugate
gradient procedure where we used as initial guess for the orbitals the lin-
ear extrapolation of the minimized wave-functions of the two previous ionic
steps, as suggested in Ref. [36].

In order to test the accuracy and efficiency of the LO scheme for different
classes of systems, we performed MD simulations for a crystalline insulator,
1.e. diamond at low temperature, and for a liquid metal, i.e. liquid carbon at
T~ 5000. As for the calculations for C presented in the previous Section,
we adopted LRs centered on atoms, which include up to second shell of
neighbors and whose shape is determined by the hopping parameters.

We first discuss the case of crystalline diamond, when the sets L Ry do not
vary in time. We found that for diamond our MD scheme allows for a correct
description of the total energy oscillations, around equilibrium, consistently
with what obtained [39] for Si. We performed two simulations, one with a
64 atom and the other with a 1000 atom supercell. In both cases we started
from a ionic configuration with zero velocities, generated by giving a random
displacement to the atoms up to .03 A with respect to their equilibrium

69



-7143 -

-7.14

E/atom (eV)

-7.15

0 0.1 02 03 04 05
TIME (ps)

Figure 5.5: Potential energy (lower part) and the sum of the potential and
kinetic energy (upper part) as a function of simulation time for crystalline
(! in the diamond structure at 70 K. The dotted and solid lines refer to
two calculations with 64 atom and 1000 atom supercells respectively. In
both cases we used QN = 1] and N = Z; the LRs were computed for the
configuration at 0 K and held fixed during the simulation.

positions. The integration time step (At) used in the simulations was 30
a. and the number of CG iterations per ionic move was 10. In Fig. 5.5
we show the potential energy (£) and the sum of the kinetic (Ekin) and
potential energy of the system as a function of the simulation time. It is
seen that the same energy drift A(E + Etin)/ Erin (0.1 10 0.5 ps) was found
for the two simulations. This shows that the number of CG iterations to
obtain a given accuracy in the energy conservation does not depend on the
size of the system and that the overall scaling of the computational scheme
is therefore linear. Finally we evaluated the relative error on the ionic forces

. . . . Floc__Fe:rt
F; introduced by localization constraints as aF — Z—:—I_l—_f—_——————"——[,
M F ZI IFF}xtl

overline indicates time averages, and the upperscripts loc and ext refer to
calculations performed with localized and extended states, respectively. This
error was found to be ~ 6% in crystalline diamond at room temperature.
We note that if extended states are used, the number of iterations needed
to have the same conservation of energy as the one reported in Fig. 5.5 is
smaller than 10. Nevertheless our MD scheme applied to ordered systems
becomes more efficient than direct diagonalization of the Hamiltonian already

where the
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Figure 5.6: CPU time per ionic step (30 a.u.) as a function of the number
N of atoms in the system, for a TB-MD simulation of C diamond at low
temperature (see text). Squares and crosses indicate the CPU time in a
direct diagonalization based scheme and in our MD approach (with 10 CG
iterations per ionic move), respectively. Calculations were carried out on a
Silicon Graphics Iris Indigo 4000.

for small systems, i.e. for systems containing more than 40 atoms. This can
be seen in Fig. 5.6 where we compare the efficiency of our approach to that
of direct diagonalization based MD schemes.

We now analyze a MD simulation run during which the sets LR; change
as a function of time. In Fig. 5.7 we show the potential energy for an oscil-
lation of crystalline diamond around equilibrium, computed with extended
(Es*t, dotted line) and with localized (E'¢solid line) orbitals as a function
of simulation time (¢). The two energies have been computed for the same
ionic trajectories, generated by a simulation with localized orbitals. The MD
run shown in Fig. 5.7 is the same as the one reported in Fig. 5.5 but now the
LRs are allowed to vary in time. At ¢ = t1, the evolution of the ionic posi-
tions makes the number of atoms belonging to given localization regions to
increase. At t = t2, the ionic configuration is such to restore the localization
regions as they were at ¢ < t1. Since at ¢t = t1, t2 an abrupt modification
of the basis functions used for the expansion of {#r} occurs, the potential
energy E°¢ is discontinuous and its derivative with respect to ionic positions
is not well defined. However ionic forces can still be defined by neglecting the
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Figure 5.7: Potential energy for an oscillation of crystalline diamond around
equilibrium, computed with extended (dotted line) and with localized (solid
line) orbitals as a function of simulation time. The two energy curves have
been computed for the same ionic trajectories, generated by a simulation
with localized orbitals. The LO calculation is the same as the one carried

out in Fig. 5.5, but here the LRs are allowed to vary during the simulation.

discontinuity in E and by evaluating either the left or the right derivatives of
the potential energy. The numerical values of the left and right derivatives
are in fact the same within a very small error. This error is negligible, being
much smaller than the one introduced by localization constraints. This can
be seen in Fig. 5.8 where we compare forces obtained in calculation with
extended and localized orbitals by plotting dE®**/dt = 3=r F& - vy (dotted
line) and dEP°/dt = 3, F'c - vy (solid line). On the scale of the picture no
discontinuity is observable in dE™¢/dt at ¢t = t1, t2.

We now turn to the discussion of the simulation of liquid C, during which
many changes of LR, were observed. We generated a diffusive state at 1" =~
5000 K starting from a diamond network prepared at a macroscopic density of
2 grem™3; we then heated the system by means of a Nose'-Hoover thermostat.
We used a 64 atom cell with simple cubic periodic boundary conditions and
only the I' point to sample the BZ. We used a cutoff radius of 2.45 A for
the hopping parameters entering the TB Hamiltonian and for the two body
repulsive potential [53] (i.e. the cutoff distances 1, and d,, of Ref. [53] are
set at 2.45 A ). Equilibration of the system was performed in the canonical
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Figure 5.8: Time derivatives dE®*/dt = 3_; F&*-v (dotted line) and dE"¢/dt
= 3 F*¢ - vy (solid line) of the potential energy curves reported in Fig. 5.7

(see text).

ensemble and temporal averages were taken over 3.8 ps. The same simulation
was repeated twice: once with our MD scheme and once by using direct
diagonalization at each step. The radial distribution function ¢(r) and the
partial atomic coordinations obtained in the two cases are shown in Fig. 5.9
and Table 5.3, respectively. The agreement between the two descriptions
is excellent, showing that the LO scheme is accurate even for a difficult case
such as a disordered system with differently coordinated atoms and metallic
properties. The self-diffusion coefficients obtained in the two cases are 0.4
10~ ecm?sec 7! and 0.6 107* cm?sec 71, respectively. The difference between
the cohesive energies computed within the extended orbitals and the LO
formulation for given ionic configurations is of the order of 2%, similarly to
what found for crystalline structures.

In the simulation for the liquid with LO, we used At = 5 a.u. and we
performed 50 iterations per ionic move, in order to minimize £[Q]. This num-
ber is much larger than that needed for ordered systems, such as crystalline
diamond. Consequently in the case of liquid C our scheme becomes advan-
tageous with respect to direct diagonalization when the number of atoms is

larger than 200.



N, | Np=2|Ny=00

1-fold 5 4
2-fold 33 42
3-fold 53 50
4-fold 4 4

Table 5.3: Percentage number of differently coordinated sites (N.) in liquid
C computed as averages over a TB-MD simulation of 3.8 ps. The results of
the LO formulation with N, = 2 and N = 1 are compared to those of a
direct diagonalization scheme (Np = 00).

Figure 5.9: Radial distribution function g(r) of liquid C (see text) computed
as average over a TB-MD simulation of 3.8 ps. The results of the LO for-
mulation with N, = 2 and V" = 1 (dotted line) are compared to those of a
divect diagonalization scheme (solid line). The average number of atoms in
a LR is 13.



5.6 Conclusions

We have presented an approach to total energy minimizations and molecular
dynamics simulations whose computational workload is linear as a function
of the system size. This favorable scaling is obtained by using an energy
functional whose minimization does not imply either explicit orthogonaliza-
tion of the electronic orbitals or inversion of an overlap matrix, together
with a localized orbital formulation. The use of LOs reduces the evaluation
of the energy functional and of its functional derivative to the calculation of
products of sparse matrices.

The performances and efficiency of the method have been illustrated with
several numerical examples for semiconducting and metallic systems. In par-
ticular we have presented molecular dynamics simulations for liquid carbon
at 5000 KX, showing that even for the case of a disordered metallic system
the description provided by the LO formulation is reliable and very accurate.
We have also shown that tight binding molecular dynamics simulations with
1000 atoms are easily feasible on small workstations, implying a one day run
to obtain 0.5 ps.
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Chapter 6

Cgp impacts on a
semiconducting surface

Since the discovery [54] of the unique stability of Cgp molecules against surface
induced fragmentation, the investigation of fullerene interactions with solid
substrates has become an exciting field of research [54]-[63]. Collisions of
(o on several surfaces have been reported to induce no fragmentation of the
impinging molecules, for initial kinetic energies (Ex) up to a few hundred
eV [54]. This property is unprecedented in molecular-ion surface-induced
phenomena and has earned Cgo the name of resilient molecule.

Of particular interest is the case of Cgo impacts on semiconducting sur-
faces which can form covalent bonds with the cluster. The study of these
bonds is a challenging problem, from a fundamental point of view. Further-
more such an investigation is an essential prerequisite for the understanding
of fullerene deposition on non-metallic substrates. These deposition processes
have recently been proposed [63] as a valuable way of synthesizing thin films
which would retain specific characteristics of the incident clusters.

In order to understand the physics of Cgo collisions on solid substrates,
't is crucial to reveal the processes occwiring at the surface. Whereas these
processes are difficult to probe experimentally [54], they can be investigated
by computer simulations. Recently, simulations of Cgp impacts on a hy-
drogenated diamond surface have been performed by using both classical
potentials [56] and tight binding (TB) Hamiltonians [61]. The comparison
between the results of the two studies and experiments [61, 62] indicates
that a quantum mechanical (QM) treatment is necessary in order to have an
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accurate description of the cluster-surface interactions.

Realistic simulations of Cgp interactions with a surface require cells with
number of atoms of the order of a thousand. Until recently QM computations
for systems of this size have not been possible because of the computer time
required by conventional algorithms, which grows as the cube of the number
of atoms in the system (N). Indeed the only QM study reported to date [61]
has been limited to small MD cells.

This situation has changed with the introduction of methods for electronic
structure calculations and MD simulations, which are based on algorithms
whose computational workload grows linearly with the system size. These
methods are usually referred to as O(N) methods. These approaches have
opened the way to QM-MD simulations of systems much bigger than previ-
ously accessible, and therefore to the study of problems usually out of reach
for QM calculations.

In this Chapter we present QM-MD simulations of Cgp impacts on a semi-
conducting surface as a function of the molecule incident energy, carried out
with the O(N) method described in Chapter 5, and with MD cells containing
1140 atoms. Interatomic forces are described according to a tight binding
(TB) Hamiltonian [53], derived from first principles calculations. We con-
sidered the clean (2 x 1) reconstructed diamond (111) surface. This surface
can be expected to form bonds with the impinging Cg, since its uppermost
layer contains three fold coordinated 7 bonded atoms. It therefore repre-
sents a good candidate for the study of covalent bonds between the fullerene
and a semiconducting substrate. The results of our calculations are in very
good agreement with experiments carried out under the same impact condi-
tions [54, 55, 57, 58, 59]. Furthermore they allow us to characterize in detail
the microscopic processes occurring during the collision and thus to identify
three different impact regimes as a function of Cgp incident energy. Finally,
we found a relation between the cluster reactivity to the surface and the
presence of defects in the cluster. This observation gives us insight into the
deposition mechanisms of Cgo on semiconducting substrates.

The results presented in this Chapter are also reported in Ref. [43].

The Chapter is organized as follows. In Sec. 6.1 the details of the simula-
tions are reported. In Sec. 6.2 we discuss the results of our simulations, and
Sec. 6.3 is devoted to the conclusions.
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6.1 O(N) quantum molecular dynamics: de-

scription of the simulations
In owr calculations, we used the O(NV) method described in Chapter 5. This
approach is based on an energy functional with implicit orthogonalization
constraints and on a localized orbital formulation. We adopted the TB
Hamiltonian proposed by Xu et al. [53]. We used a cutoff radius of 2.30
A for the hopping parameters of TB Hamiltonian and for the two body re-
pulsive potential. As suggested n Ref. [53], in order to control the charge
transfer in the presence of dangling bonds, we have considered in the total
energy a Hubbard-like term equal to (1/2)U(qr — 4)%, where ¢; is the total
charge at the atomic site [ and [7=8¢V. Indeed in simulations performed
with /=0 we observed unphysical charge transfers, as large as one electron
on some sites.

The localized orbitals were centered on atomic sites, extending up to
second neighbors (in the notation of Chapter 5, Np = 2). At each MD
ionic step the electronic energy was minimized with a conjugate gradient
procedure, by performing 15 iterations per ionic move and by extrapolating
linearly the input wave-function from the two previous ionic steps. The time
steps used for the integration of the equations of motion varied from 15 to 6
a.u. according to the incident kinetic energy Ey.

We simulated neutral Cigo molecules colliding with a Pandey reconstructed
C(111) surface at initial energies Ex= 60, 80, 120, 150, 180, 210, 240, 300, 400
eV Each of the nine runs lasted from 0.3 to 1 ps. The efficiency of the O(N)
algorithm allowed us to carry out all the calculations on workstations. Cesg
impinged upon the surface at normal incidence, oriented in such a way that
a double bond between two hexagons faced a Pandey chain of the surface.
The C/(111) substrate was represented by a slab composed of twelve layers,
each containing ninety C atoms. The dimensions of a layer were 22.72X
21.86 A in the 2 and y direction, respectively. The slab was terminated on
each side by a reconstructed surface, and periodic boundary conditions were
applied along x and y. Nine surface layers were allowed to move during the
simulations. According to the size of our MD cell and to the number of
mobile layers, we estimate that the shock wave produced by a collision of
Cgo with the substrate is echoed back to the impact region about 0.2 ps after
the impact. This is the time interval during which we observe the formation
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of bonds between the cluster and the surface. Therefore the characterization
of the three impact energy regimes proposed in the following is not affected
by finite size effects.

Before starting the simulation of Cgp collisions on the surface, we opti-
mized the slab and the molecule geometries independently. Our results for
the surface reconstruction compare well both with those of a conventional
calculation using the same TB Hamiltonian [64] and extended orbital, and
with the findings of first principles computations [65]. For example, we find
that the average bond distance in the surface chains is 1.44 A and that the
change in bond length between the second and third layer is 6%; the corre-
sponding values reported in Ref. [64] are 1.48 A and 6%, whereas those of
Ref. [65] are 1.44 A and 8%. However our calculation seems to overestimate
the dimerization of the surface chains (4% versus 0.2% in Ref. [64] and 1.4%
in Ref. [65]). The two characteristic bond lengths of Cgo calculated within the
localized orbital formulation differed by 5% (single bond) and 2.5% (double
bond) from those optimized with extended orbital. Also in this case the TB
results [66] are in good agreement with those of first principles calculations
[67]. We note that the differences between the localized orbital and the ex-
tended orbital formulations can be systematically reduced by using localized
orbitals which extend up to third neighbors (N,=3). For example in the
case of Cgo with Np=3 the errors are 1.1% (single bond) and 0.7% (double
bond). We believe that calculations with N, =2 are sufficiently accurate for
the purpose of the present investigation. )

6.2 Results of the simulations

The results of the simulations allow the identification of three impact regimes,
as a function of the fullerene incident kinetic energy Ey: a low energy regime
for Ey <120eV, a medium energy regime for 150eV<E, <210eV and a high
energy regime for Ej;, >240eV.

As shown in the next subsections, the energy regimes can be defined
according to the modification in the Cgo ionic structure and to the bonding
properties between the cluster and the surface. In particular in the low energy
regime, the molecule bounces off the surface without ever forming bonds, and
recovers its original shape after severe distortions. In the medium energy
regime, Cgg forms covalent bonds with the surface. The cluster can be either
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adsorbed on or leave the substrate, preserving its original cage structure
with few coordination defects. In the high energy regime the molecule cage
structure opens and pieces of the broken cage form stable bonds with the
substrate.

6.2.1 Bond formation between the cluster and the
surface

We now analyze the occurrence of covalent bonding between the cluster and
the surface during the MD simulation. Throughout the Chapter we use a
cutoff distance of 1.9 A to define bonds and atomic coordination.

In the low energy regime, i.e. in the simulations with E,=60, 80 and 120
eV, the molecule does not form any bond with the surface. The minimum
distance between Cgo atoms and the substrate (D) is approximately constant
during the collision and very close to 2 A, as seen in Fig. 6.1, where we show
D as a function of the simulation time (t). In all the three cases after the
impact the molecule leaves the surface. _

In the medium energy regime, i.e. in the simulations with Ex=150, 180
and 210 eV, the Cgo bonds to the surface. Indeed, after some oscillations
around 2 A, D suddenly decreases to a value of about 1.5 A, i.e. to a dis-
tance typical of sp® like bonds, as it is seen from Fig. 6.1. Not surprisingly
the surface atoms involved in the bonding belong to the topmost layer, con-
taining three-fold coordinated sites in the Pandey reconstruction. In Fig. 6.2
we show the number of bonds (INb) between Cgo and the surface as a func-
tion of the simulation time. In this energy regime Nb depends weakly on
Ey. For E =150 eV, these bonds are stable after the impact and the cluster
is adsorbed on the surface. This is also seen in Fig. 6.3 where a snapshots
of the simulation 1.00 ps after the impact is shown. For Ex=180 and 210
eV, the Cgo-surface bonds break after the collision and the molecule leaves
the substrate as shown in Fig.s 6.1 and 6.2. We recall that in collision ex-
periments on a graphite substrate [55, 59] a decrease in scattering intensities
around 140 eV has been found , which has been ascribed to the adsorption
of intact Cso [55].

Finally in the high energy regime, i.e. in the simulations with Ei=240,
300 and 400 eV, we observe the formation of several bonds between Cgp and
the surface is observed. Their average number increases with the incident
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Figure 6.1: Minimum distance (D) between Cgo and the surface as a function
of the simulation time in the low (upper panel), medium (middle panel) and
high (lower panel) energy range. Solid, dashed and dotted lines correspond
to Ex= 60, 80 and 120 eV (upper panel), to Ex= 150, 180 and 210 eV (middle
panel), and to Ex= 240, 300 and 400 eV (lower panel).
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Figure 6.2: Number of bonds (Nb) between Ceo and the surface as a function
of the simulation time in the medium (upper panel), and high (lower panel)
energy range. Solid, dashed and dotted lines correspond to Ex= 150, 130
and 210 eV (upper panel). and to Ex= 240, 300 and 400 eV (lower panel).
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Figure 6.3: Snapshot of the uppermost five layers of the slab and of Cgy for
Ex=150 and at t=1.00 ps.
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energy, as it is shown in Fig. 6.2. In this regime the surface atoms involved
in the bonding belong also to the second surface layer, containing four-fold
coordinated sites.

6.2.2 Modification in the cluster structure

We now turn to the discussion of the modification in the fullerene structure
induced by the collision.

In the low energy regime the impact provokes large distortions in the
fullerene cage: the cluster height is decreased from 7.0 to 3.9, 3.4 and 3.1A ,
for Er= 60, 80 and 120 eV, respectively, and the flattened molecule adapts its
shape to that of the reconstructed surface. This is also seen in the snapshot
of the simulation with Ex=120 eV reported in Fig. 6.4. For Ex=120 eV, a
few bonds of the molecule are broken during the collision, whereas no bond
breaking is observed at lower energies. This can be seen in Fig. 6.5 which
displays the number of 9_fold and 3-fold coordinated sites of Cgo as a function
of t. In this energy regime, after the impact the cluster leaves the surface
with its original shape, without any defect.

In the medium energy regime the molecule does not only suffer large
distortions upon impact on the surface, but also some bonds of the Ceo
cage are broken during the collision, resulting in the formation of twofold
coordinated sites, as it is seen in Fig. 6.5. After the collision, the topology of
the molecule is still that of a cage, although defects are present with respect
to the original shape (see Fig.s 6.3 and 6.5).

In the high energy regime many bonds break within the molecule (see
Fig. 6.5) and the cage structure of the fullerene can no longer be identified.
A disordered structure is formed and adsorbed on the substrate as it is seen
in Fig. 6.6, where we show a snapshot of the simulation with Ex=300 eV for
t=.33ps. After the 300 and 400 eV collisions, some of the Cgo atoms form
twofold coordinated chain structures. Note that the formation of such chains
was observed also in MD studies of fullerene melting [68].

In the medium and high energy regime we observed the formation of
cluster-surface bonds also after some oscillations of the molecule on the sur-
face, i.e. when the speeds the Cgo atoms was decreased by orders of magni-
tude with respect to the initial incident speeds. Instead in the low energy
regime the cluster is totally inert to the surface. Thus the formation of
cluster-surface bonds is not related to the speed of the cluster atom which
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Figure 6.4: Snapshot of the uppermost five layers of the slab and of Cgp for
Ex=120 and at t=0.14 ps.
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Figure 6.5: Twofold and fourfold coordinated Cgo atoms (Nat) as a function
of the simulation time in the low (upper panel), medium (middle panel) and
high (lower panel) energy range. Solid, dashed and dotted lines correspond
to Ex= 60, 80 and 120 eV (upper panel), to Ex= 150, 180 and 210 eV (middle

panel), and to Ex= 240, 300 and 400 eV (lower panel).
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Figure 6.6: Snapshot of the uppermost five layers of the slab and of Cygy for
Ex=300 and at t=0.33 ps.
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Figure 6.7: Final energies (Er) of Clgp bouncing on the surface as a function
of By: diamonds and crosses indicate the kinetic energy of the centre of mass
(Ecm) and the internal kinetic energy of the molecule (Ei,), respectively.

forms the bond but to the reactivity of the Cgo molecule. From our sim-
ulations there is a close relationship between the (lgo reactivity with the
surface and the presence of defects in the molecule. We expect that this fact
might characterize deposition processes of the fullerene on other semicon-
ducting surfaces. Therefore the variety of STM images produced by cova-
lently bonded Cgo on, e.g., Si(111) [60], might correspond to molecules with
different types of defects.

6.2.3 Outgoing clusters

In this subsection we analyse the ionic kinetic state of the cluster after the
collision when the cluster bounces off the surface.

In Fig. 6.7 we show the translational kinetic energy Ecm, i.e. the kinetic
energy of the centre of mass, and the internal kinetic energy Ein, i.e. the
kinetic energy with respect to the center of mass, of the outgoing molecule
as a function of the incident energy Ex.

In the low energy range, Ecm shows a clear dependence upon Ej. In
particular Ecy, 18 proportional to Ex for incident energies in the two collisions
E,=60 and 30 eV. Note that in these simulations no bonds of the cluster are

broken.
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Figure 6.8: I'inal kinetic energies (E¢) of the slab after the collision.

In the medium energy range when the molecule leaves the substrate, i.e.
for Ex=180 and 210 eV, E., is equal to 8§ and 15 eV, respectively. Our
findings compare well with those of Ref. [55], where the E.y, of fullerene ions
scattered from graphite is found to be distributed between 10 and 20 eV and
nearly independent of the impact energy, for Ey larger than 140 eV.

Whenever Cgp left the surface, we did not observe any fragmentation of
the molecule. However a rupture may be expected to occur some time after
a collision if the internal energy E;, of the bouncing molecule (see Fig. 6.7)
exceeds its stability threshold. MD investigations of fullerene melting [68]
have shown that Cgy becomes unstable when its internal kinetic energy (Ej,)
is between 30 and 40 eV.

6.2.4 Behavior of the surface

We conclude the analysis of the MD simulations with the description of the
surface behavior.

In the low and medium range the topology of the reconstructed surface is
unaffected by the collision, although a considerable fraction of E;, is trans-
ferred from the molecule to the slab, as it is seen in Fig. 6.8, where we show
the kinetic energy of the slab after the collisions in which the cluster leaves
the surface. In the medium energy range only the three fold coordinated
atoms of the topmost layer bond to Cgy atoms (see Fig. 6.3).
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In the high energy range the fourfold coordinated surface atoms (belong-
ing to the second layer) are also involved in bonding to the molecule. However
they remain fourfold coordinated since their bonds with the third layer atoms
are broken. This bond breaking induces a local surface deconstruction from a
7 bonded chain geometry towards a (1 X 1) ideal arrangement (see Fig. 6.6).

6.3 Conclusion

In summary, we have identified three impact energy regimes of (go collisions
on C(111). For E; < 120 eV, the molecule bounces off the surface without
ever forming bonds, and recovers its original shape after severe distortions.
In a second regime, Cgo forms covalent bonds with the surface. The cluster
can be either adsorbed on or leave the substrate, with defects in its original
structure. The energy at which we observe absorption (150 eV) corresponds
to the energy at which a decrease of fullerene ions scattered from graphite
is observed experimentally. In the third regime (Ey > 240 eV ) the molecule
breaks after the impact and pieces of the broken cage form stable bonds
with the substrate, which can induce a local surface deconstruction. The
formation of bonds between C(111) and the fullerene is always accompanied
by the formation of defects in the molecule. When the molecule bounces off
the surface, the kinetic energy of its centre of mass shows a clear dependence
on its incident energy in the low energy range; on the contrary Eqn, depends
weakly on Ej, in the medium energy range and acquires values in agreement
with those measured under the same impact conditions. Finally we have
shown that QM simulations for systems containing thousands of atoms, so
far not possible with conventional methods, are now feasible by using O(V)
approaches. In the simulations reported in this work, the gain in computer
time with respect to conventional O(N?) methods is estimated to be of the

order of 1000.
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Appendix

A cceleration schemes for
ab-initio molecular dynamics
and electronic structure
calculations

In this Appendix we reproduce a reprint of Ref. [5].
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Abstract

We study the convergence and the stability of fictitious dynamical methods
for electrons. First, we show that a particular damped second-order dynamics
has a much faster rate of convergence to the ground-state than first-order
steepest descent algorithms while retaining their numerical cost per time step.
Our damped dynamics has efficiency comparable to that of conjugate gradient
methods in typical electronic minimization problems. Then, we analyse the
factors that limit the size of the integration time step in approaches based
on plane-wave expansions. The maximum allowed time step is dictated by
the highest frequency components of the fictitious electronic dynamics. These
can result either from the large wavevector components of the kinetic energy
or from the small wavevector components of the Coulomb potential giving
rise to the so called charge sloshing problem. We show how to eliminate
large wavevector instabilities by adopting a preconditioning scheme that is
implemented here for the first-time in the context of Car-Parrinello ab-initio
molecular dynamics simulations of the ionic motion. We also show how to
solve the charge-sloshing problem when this is present. We substantiate our
theoretical analysis with numerical tests on a number of different silicon and

carbon systems having both insulating and metallic character.
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I. INTRODUCTION

The introduction of a fictitious dynamics for the electrons™? with driving forces obtained
from the total energy within density functional theory (DFT)? has provided a convenient
approach to minimize the total energy of condensed matter systems and to perform ab-initio
molecular dynamics simulations of the ionic motion. These techniques have been applied
successfully to a variety of insulating, semiconducting, and metallic systems involving a large
number of atoms in the context of structural optimization problems at zero temperature and
of dynamical simulations of the atomic motion at finite temperature®.

It is a subject of current interest to study the factors that limit the efficiency of fictitious
dynamical methods for electrons in order to improve their numerical efficiency. This depends
on the choice made for the dynamics and on the size of the time step that can be used to
integrate numerically the equations of motion.

When discussing how to choose a specific dynamics, it 1s convenient to consider total
energy minimization separately from molecular dynamics. It has been shown by Car and:
Parrinello that to simulate the classical adiabatic motion of the atoms it is useful to adopt
a second-order Newtonian dynamics also for the electronic degrees of freedom, since this ex-
ploits optimally the concept of continuous simultaneous evolution of electronic and atomic
degrees of freedom® 2. Newtonian dynamics conserves energy. Different approaches should
be used to minimize the electronic energy, as it is required to start a molecular dynamics
simulation or to solve an optimization problem at zero temperature. The simplest approach
to minimization is provided by steepest-descent dynamics, which can be viewed as a dy-
namics of the first-order in the time-derivative?. Steepest-descent dynamics, which requires
only knowledge of the gradients of the energy functional, is not very efficient particularly in
metallic situations. Better schemes require some knowledge also of the second derivatives
of the energy functional either explicitly or implicitly. Conjugate gradient methods have
been developed in this context® ™1 and have been shown to be superior to steepest-descent
methods, particularly when the full energy functional was used in the line minimizations
and full account was taken of the orthonormality constraints on the wavefunctions'’.

In this paper we show that a minor modification of a steepest-descent algorithm, namely
replacing first-order dynamics with a specific damped second-order dynamics, improves sub-
stantially the rate of convergence of the wavefunctions to the ground-state. The resulting
scheme, which we call damped molecular dynamics, has efficiency comparable to that of the
best conjugate gradient algorithms when used in typical electronic minimization problems,
with the additional advantage of having basically the same numerical complexity of simple
steepest-descent algorithms.

We then investigate what determines the maximum allowed time step for numerical in-
tegration when using steepest-descent (SD), damped (D) or Newtonian molecular dynamics
(MD). In all cases the time step is limited by the need to integrate the high frequency com-
ponents of the fictitious dynamics. These arise either from the large wavevector components

of the electronic kinetic energy or from the small wavevector components of the Hartree
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energy due to the divergence of the Coulomb potential at small wavevector. In the latter
case the related numerical instability is usually referred to as the ‘charge sloshing’ problem
and it is expected to become serious when the size of the system becomes very large.

The large wavevector instability can be eliminated by preconditioning the equations of
motion since at large wavevectors the wavevefunctions are dominated by the kinetic energy
and are to a large extent free-particle like. Indeed, it was already suggested earlier by
several authors that this property could be used to speedup iterative schemes for electronic
minimization. In particular, Ref. ( 11) proposed an analytical integration scheme for the
large wavevector components of the wavefunctions within second-order dynamics. This
scheme was subsequently extended in Ref. ( 12) to first-order steepest-descent equations.
Since this approach can be less stable than standard steepest-descent algorithms® we will
not discuss it any further. A successful preconditioning scheme in the context of conjugate-
gradient minimization of the electronic total energy has been proposed in Ref. ( 7). This
has same similarities with the quasi-Newton step proposed in Ref. ( 8) and with the residual
minimization/direct inversion in the iterative subspace describe in Ref. ( 9).

In this paper, we propose a preconditioning scheme which is appropriate to all the dy-
namical methods referred to above, namely SD, D, and MD dynamics. It consists in properly
scaling the fictitious masses associated to the large wavevector components of the electronic
wavefunctions, in order to compress the high frequency spectrum of the electronic dynamics
and to use a larger integration time step. Our preconditioning method is similar in spirit to
those of Ref. ( 7) but it is formulated as a modification of the differential equations lead-
ing to SD, D, and MD dynamics. In particular, we apply it here for the first time to the
Car-Parrinello MD equations, which provide an efficient approach for ab-initio molecular
dynamics simulations of the ionic motion. In this context our preconditioning scheme allows
to use a timestep which is two to three times larger than in previous applications of this
method, resulting in a considerable saving of computational time.

We now turn our attention to the ‘charge sloshing’ problem. This has been discussed
previously in the context of self-consistent diagonalization of the Kohn-Sham Hamiltonian®3.
The onset of this kind of instability depends on the algorithms used and is expected to oc-
cur at significantly large sizes in the context of fictitious dynamical methods since in these
approaches the wavefunctions change little over a single timestep. Indeed recent MD simu-
lations for metallic liquid silicon have shown no sign of a ‘sloshing’ instability up to cubic
cells containing 216 silicon atoms'. However one expects that for sufficiently large cells
the ‘sloshing’ instability should appear, although a quantitative theoretical analysis of it in
the context of fictitious dynamical methods for electrons has been so far missing. ‘Sloshing’
instabilities have been found numerically within some iterative schemes for electronic min-
imization in the case of systems having a long linear dimension”. In this paper we present
a theoretical analysis of the ‘charge sloshing’ problem in the context of SD, D, and MD
- equations of motion. We find that the ‘sloshing’ instability is absent for insulators, but it is
present for metals. This is in accord with previous results of Ref. ( 13). A practical scheme
to control the sloshing instability is discussed in the paper.
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To summarize, we improve the numerical efficiency of fictitious dynamical methods for
electrons in several ways. Firstly, we replace steepest descent dynamics by a more efficient
damped second order dynamics to minimize the total energy. Secondly, by preconditioning
the fictitious electronic masses we increase the integration time step for total energy mini-
mization and for simulation of the adiabatic ionic dynamics. Thirdly, we show that in the
context of fictitious dynamical methods the so called ‘charge sloshing’ problem, which is
expected to arise for large systems, is less serious than expected. We support our theoretical
analysis with detailed numerical tests on several systems involving Si and C atoms.

The paper is organized as follows. In Sec. II we discuss first-order SD dynamics and
second-order conservative MD dynamics for the clectronic degrees of freedom. In Sec. III
we introduce a damped second-order dynamics which is substantially more efficient than
SD and is competitive with the best conjugate gradient schemes for electron minimization.
In Sec. IV we discuss large wavevector instabilities and the ‘charge sloshing’ problem. In
Sec. V we discuss the preconditioning of large wavevector components. In Sec. VI we
present some details of the numerical implementation. Finally, in Sec. VII we present the
results of realistic numerical tests on silicon and carbon systems. Sec. VIII is devoted to

our conclusions.

II. FICTITIOUS DYNAMICS FOR THE ELECTRONS

Dynamical methods for minimizing the electronic total energy and for simulating the
adiabatic motion of the atoms are based on a fictitious dynamics of the electronic degrees
of freedom. Within these approaches the forces acting on the electronic degrees of freedom
are derived from the total electronic energy E[{#}] in the DFT-LDA forn:

E[{#}] = Exinl{}) + Bexilp] + Enlp] + Euclp], (1)

where Epin, Eerts En, and Eg. denote kinetic, external potential, Hartree and exchange-
correlation energy, respectively®. The local density approximation is adopted for the latter®.

The electronic charge density p is given by:
p(r) =2 < Pilr >< i >, (2)

For reasons of numerical simplicity we adopt here a total energy functional based on a non
self-consistent tight-binding Hamiltonian. where the occupied orbitals |tp; > are orthonor-
mal. The factor of 2 accounts for the occupation numbers, which here and in the following
are supposed to be all equal to 2. Summation over repeated indices is understood.

In order to ensure the orthonormalization of the electronic orbitals during a dynamical
evolution it is convenient to add appropriate forces of constraints. These do not perform
work on the electronic system, and can be conveniently calculated in terms of Lagrangian

multipliers. The corresponding equations of motion for the first order dynamics are:
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LOE{Y}] |

b >= =5 ==, >, (3)
and those for the second order dynamics are:
- 1 5E 2
plibi >= —5**3%_/*}—] + Aijlipy > (4)

where we have assumed that the wavefunctions |t > are real. Here and in the following the
indices « and j run over the occupied states only. The symmetric matrix A;; of the Lagrange
multipliers enforces the orthonormality condition, i.e. < #;|i; >= 6,;. The derivatives of
E[{+}] with respect to the [¢; > define the Kohn-Sham Hamiltonian:

L6B[{))

= 2H ol 5
2 637[!][ "’HI\SllJZl > . (-))

The parameter  is a fictitious electronic mass. It is used to tune the speed of the electronic
dynamics and does not describe any other phy sical plopelty When the ions are held ﬁ\ed
this mass can be included in the definition of the time step and it is irrelevant. However when
we allow the ions to move, the ratio between p and the physical ionic masses is important
since it defines the relative speed of the ionic and of the fictitious electronic motion.

Now let us suppose that the wavefunctions are close to the minimum of the energy

E[{pM],

e (6)
where I'l/ﬁ,(o) > are the wavefunctions at the minimum and |6t; > are the corresponding
deviations. We notice that |61; > have to fulfill the orthonormality condition to linear

order, i.e. < ‘t/*fo){&,[g >= 0. To linear order in |§1); >, the Lagrange multipliers A;; are the
same for first and second order dynamics, and are given by

A;j =2< 'l/?iIHI\'5|'§Z7j > . (7)

Thus, by retaining only the terms up to linear order in |6; > in the equations of motion

(3) and (4) we obtain:

|6 >= — K516, > (8)
and

|65 >= — K56 >, (9)

respectively. Here I;'l-]- 1s a linear operator, which acts on the single-particle Hilbert space
and which has the same form for both first- and second-order dynamics. In the following we
will use the notation K to indicate a matrix of operators having for elements the Ix” Notice
that K is a positive definite linear operator since Eqs. (8) and (9) result from a quadratic
expansion of E[{}] in |61; > about the minimum E[{1}], i.e.:



E[{p}] - El{tro}] = 1 < 6l Kij|69; > +0(69°%). (10)
The equations of motion (8) and (9) can be formally integrated yielding:
50i(t) >= (eap(~KD) 15,0 > (1)
and
|83pi(t) >= (,COS\/_IAEt)ijw'l/’j(O) > +(f<_1/25in\/§f)u15‘12’1‘(0) >, (12)

respectively. In the case of first order evolution the wavefunctions decay exponentially to-
wards the minimum E[], while in the second order evolution they perform small oscillations
around it. These motions take place with characteristic decay rates and frequencies which
are equal to the eigenvalues N of the operator K and to the square root /R of these
eigenvalues for first and second order dynamics, respectively.

In numerical implementations the electronic states are expanded on a finite basis set, so
that only a finite number of eigenfrequencies and eigenmodes occur. Let K,in and Npar
be the minimum and maximum eigenvalues of K. The maximum allowed time-step for
numerical integration is proportional to the smallest period of the system, i.e. to 1/ pqx OF
to 1/v/ Kpae for first and second order dynamics, respectively.

In the case of first order dynamics, the minimum eigenvalue dominates the long-time
behavior of the decay to the ground—state, so that a rough estimate of the convergence time
is given by 1 [ Konin - Recalling that the size of the time step 1s proportional to 1 / Koz, onE
finds that the number no, of integration steps needed to converge satisfies the condition:

noi1 X I{maa:/l{min- (13)

In the case of second order dynamics we usually start a simulation from an electronic
configuration close to the minimum of the electronic energy. Then if the ionic and the
electronic frequencies are well decoupled!:?, the electrons remain adiabatically close to the
instantaneous energy minimum during the ionic evolution. Let wi,, be a typical ionic fre-
quency. The adiabatic condition requires it to be much smaller than the minimum electronic

frequency i.e.
Wion << Koin- (14)

A meaningful measure of the simulation’s workload is given by the number of time steps
necessary to integrate a full ionic oscillation. Thus, recalling that the time step is inversely
proportional to v/ Apas, We find that the number nos of steps necessary to integrate a typical

ionic oscillation satisfies the following condition:

no2 X/ I\’max/-[{min- (15)
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III. DAMPED SECOND ORDER DYNAMICS FOR MINIMIZATION

In the previous section we showed that the number of iterations necessary to minimize
the electronic energy within steepest descent dynamics is proportional to Ayae [Kpin. In
this section we present an improved minimization dynamics in which the typical number of
iterations is instead proportional to \/Npmas/Romin, i.6. a number significantly smaller than
Koo/ Kpin. We attain this goal by inserting in Eq. (4) a damping term as follows:

16E[{4)]

2 by — 2vuf > +A Y > (16)

he S —
plipi >=—
This equation defines a damped second order dynamics. As in the previous section we
study the resulting motion close to the energy minimum. We find that the deviations of the
wavefunctions from the minimum are subject to damped oscillations given by:

|6:(t) >= eap(iW 41);; ['z;’,vj(vﬂ > +c;1:])(iW_7f){j]¢](~_) > (17)

Here |'§Z’J('+) > and |';/)j(-“) > are determined by the initial conditions, and

W, =iv1+ VK — 121 (18)

The real part of W1 gives the frequencies of the oscillatory motion, while its imaginary part
gives the decay rate to the minimum. In order to maximize the rate of convergence, we must
use the maximum value of 4 for which the argument of the square root remains positive.

This optimal value of « is given by
Topt = ]{minv (19)

since this value corresponds to critical damping of the smallest eigenvalue of K. In this case
the imaginary part of all the eigenvalues of W is equal to Yopt and the time of convergence
to the minimum is of the order of 1/v/A ;. The integration time step is related to the
maximum norm of the eigenvalues of W, which is equal to v/Kmee. Thus, the number of

integration steps necessary for minimization is given by:

Noor
npos I,mm' x /no1. (20)

min

From this formula we see that a relevant gain of efficiency is obtained when using damped
dynamics instead than steepest-descent dynamics to minimize the electronic energy. The
gain is particularly important when a large number of iterations is needed to converge to
the ground-state, which is typically the case of metallic systems.
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IV. SECOND ORDER EXPANSION OF THE LDA ENERGY FUNCTIONAL

In this section we compute explicitly the eigenvalues of the operator K. For this purpose
we consider the expansion of the energy functional around its minimum ¥® up to second

order in &1, This is given by:

E[{¢}] - E[{¢'}] = 2 < 8| Hes |6t > —2 < 6l >< PO Hys | > (21)

, . (52Eh, 52E;vc A . ,3
+/dr/dr dp(r) [6/)(1")6;)(1") + 508 Sp(r') + O({6%°}).

The second term on the r.h.s. of this equation comes from the Lagrange multipliers (see Eq.
(7)), and

sp(r) =4 < p\V|r >< r|6y; > (22)

gives the variation of the electronic density to first order in {6¢}. We recall that {3} and

{6} are supposed to be real.

A. Non self-consistent case

If we neglect the last two terms in Eq. (21), i.e. the terms corresponding to variations
of the Hartree and exchange-correlation potentials, we recover the expansion of the total
energy appropriate to a non-selfconsistent Hamiltonian. Then we can expand the 19 and
61 in terms of the the real eigenvectors \? > of Hys, which have eigenvalues g;. Since the
total energy is invariant under unitary transformations in the subspace of occupied states,

we can suppose without loss of generality:
0 >= x>,
B >= T el >, (23)
e
where i, are real coefficients. Here and in the following the indices ¢ and k refer to occupied
and unoccupied states, respectively. Hence, as shown in Ref. ( 15), we obtain for § Fpse. 1.€.

the second-order variation of the energy in which the selfconsistency of the potential is not

ta,ken ill account:
6Ensc = QZ(CZ)Z(&; — Ei). (24)
ik

where ¢; and &5 are respectively the occupied and the unoccupied eigenvalues of Hys. By
comparing Eq. (24) with Eq. (10) we see that the eigenvalues of K are given by

Cn

&k —

0

: (25)

Kip =2
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and the lowest eigenvalue of K is given by K = 2E g,/ in terms of the energy gap Fyq,
separating the lowest unoccupied from the highest occupied electronic level.

In the case of an insulator, the energy gap has a finite positive value which, above a
certain size, is independent of the simulation cell. In the case of a metal instead, the energy
gap is still finite and positive for a finite sized system but it is no longer independent of
the simulation cell. In fact the energy gap and A, tend to zero for a cell size going to
infinity. However, many properties of interest do not require an infinite energy resolution
for the states around the Fermi energy. Typically a small but finite energy resolution E.,,
is sufficient. E.., does not depend on the size of the system, and K,,, = 2F.,,,/u replaces
Ko in Eq.s (13),(20) and (19) to estimate the convergence rates noy, npo» and the optimal
damping parameter ;. Since E,,, is much smaller than a typical energy gap of an insulator,
the number of iterations needed for ground state convergence is much larger in metals than in
insulators. For the same reason, a perfectly adiabatic separation between ionic and electronic
motions is not possible for metals. However, as shown in Ref. ( 16) a satisfactory solution
to this problem, in the context of Car-Parrinello simulations, can be obtained by using two
Nose’ thermostats to control separately the respective temperatures of the ions and of the
electrons.

When expanding the wavefunctions in terms of plane-waves, we can define an effective
cut-off energy FE.. given (in a.u.) by ¢2,./2, where ¢n.. is the largest wavevector in the
basis set. The band of empty states is usually much larger than the band of occupied states.
Thus when in Eq. (25) the index k& refers to the highest unoccupied states, the eigenvalues
K iy of K have a negligible dependence on the occupied state index . Furthermore, since
the highest unoccupied states are free-particle like, the energy difference ¢, — ¢; is dominated

by the kinetic energy of the state &, i.e.

i~ g2, (26)

o
n

E—

where ¢ is the wavevector associated to the state k. The maximum eigenvalue of K is
therefore approximately given by Nyar > 2(¢2,,/2)/1t = 2E.;/p. It is this eigenvalue that
limits the maximum allowed time step for numerical integration in a non self-consistent case:
the numerical integration becomes unstable and the time step has to go to zero when E.;

goes to infinity.

B. Self-consistent case: charge sloshing

We now consider the terms of Eq. (21) that we neglected in the previous subsection in
order to see if they affect the maximum eigenvalue of K. In this case K is not diagonal in
the representation of the ¢} and, for an arbitrary system, it is not possible to diagonalize it
analytically. Thus we need some simplifying assumptions. Let us consider a crystal of given
periodicity and use a supercell containing an arbitrary number of replicas of the crystal
unit cell. In this case the {1} are linear combinations of Bloch-functions with the crystal



periodicity whereas the fluctuations {62} may have all the wavelengths compatible with the
supercell. In other words we are restricting the periodicity of the unperturbed state but not
the periodicity of the fluctuations. Based on the above simplifying assumption we find that
charge sloshing affects differently metallic and non-metallic systems. A numerical example
presented in Sec. VII suggests that this result should hold also for non-periodic systems.
In order to find out whether the maximum eigenvalue of K diverges when the supercell
size tends to infinity, we restrict our analysis to the Hartree term since the LDA exchange-
correlation energy is well behaved and typically has a negligible effect compared to the
kinetic energy on the maximum eigenvalue of K. The second order variation of the Hartree

energy is given by:

1

w7

5y = [ dv [ d'5p(r) o) =32 e G)P (27)
Here p is a vector belonging to the first Brillouin Zone of the crystal, G is a vector of
the reciprocal lattice of the crystal and the sums extend over all the non-zero wavevectors
p+G =q—q whereq and ¢’ are two generic plane-waves of the basis set used to represent
the electron wavefunctions in the supercell of volume Q. 8p(p + G) is the Fourier Transform
(FT) of dp(r).

When a linear dimension L of the supercell becomes very large, (P + G)in = (P)min, ie.
the smallest nonzero q — q' vector, tends to zero like 1/L. If, correspondingly, the maximum
eigenvalue of K diverges, we have the so-called ‘charge sloshing’ scenario. To study the
effect of Pomin on the maximum eigenvalue of K we consider only the terms with G = 0 in
Eq. (27). Then since 6p(r) is real, [6p(p)| = |6p(—p)| and §Ey(G = 0) can be written as:

8w
SER(G=0)= ). 3 ~16p(p)I%, (28)
ppe>0 2P
where
5p(p) = 3" 4(< \cos(pr)l\h > cf + < xPlsin(pr)lxi > i) (29)

ik

Notice that Eq. (28) is a quadratic form in terms of the ¢j. The real coeflicients ci. can
be considered as the components of a real vector |c >. Similarly we can introduce two
real vectors |A(p) > and |B(p) > whose components, labelled by the composite index (ik),
are given by < \V|cos(pr)|xp > and by < \%]sin(pr)|xf >, respectively. In this notation
§p(p) = 4(< c|A(p) > +1< c|B(p) >) and Eq. (28) becomes:

§Ey(G =0) = Z g; (< clA(p) >< A(p)le >+ < ¢[B(p) >< B(p)lc >). (30)

P.pa>0

Using the fact that the \y are eigenstates of a periodic crystal, it is easy to show!” that the
vectors |A(p) > and |B(p) > constitute an orthogonal set:



<A(p)|A(p') > = 6,,25(p)
B(p)B(p') > = 5p,p’%'~q(P) (31)
B(p)|A(p')> =0

where p,, pi, > 0 and the ‘static structure factor’ S(p) is defined by:
S 1 —ipr ipr .
S(p) =5 20 <\l >< agle TP G > (32)
ik

Hence |A(p) > and [B(p) > are the vectors that diagonalize the quadratic form in Eq. (30).

The corresponding eigenvalues of K are given by:

1;8/( 1287’(’ . 6471' S(
p)lA(D) > <B(p)[B(p) > = ———-]~p—)

Cuf p2 i (33)

]x'A = ]xB p) — /LQ])2
Therefore, when a linear dimension L of the supercell tends to infinity and, correspondingly,
Pmin goes to zero, Na(p ) and Npp ) do not diverge if S(p) is of order O(p*).

We now consider a jellium model as a representative metallic system. In this case the
\{ are plane waves and one finds'®: S(p) = p[l — (p/pr)?/12]p% /872, where pg is the Fermi
momentum, and p < 2pr. As a consequence for L going to infinity, Kap,, ) and Ng (Poin)
diverge as L and the time step for numerical integration has to be reduced accouhngb this
is a charge sloshing situation.

When the system is a periodic insulator one finds instead that S(p) goes to zero as p?
(see Appendix). As a consequence for L going to infinity, Kap,, ) and Kpp,. ) tend to a
constant and the time step for numerical integration is mdependent of L: charge sloshing is
absent here.

We stress that the above conclusions apply only if we consider small fluctuations around
the ground-state: this is the typical case of ab-initio molecular dynamics simulations of
the ionic motion. However, in the initial steps of an electronic minimization procedure,
the wavefunctions may be far from the ground-state. In this case it is possible to observe
sloshing effects also in periodic systems having an insulating ground-state.

Since charge-sloshing is a consequence of the singularity of the Coulomb potential at
small p, a simple way of eliminating charge-sloshing instabilities consists in replacing the
Coulomb potential 47 /p? with a Yukawa potential 47 /(p? + a?), where 27 /a is a typical
decay length of the order of the system size L,,.;, that corresponds to the onset of the sloshing
instability. In the case of an insulator we can use this technique to stabilize the numerical
integration during the initial steps of an electronic minimization run. Then when we are
sufficiently close to the ground-state we can set a = 0 and converge to the exact ground-
state. We will show with a numerical example in a subsequent section that this technique
allows us to converge to the exact ground-state of a disordered insulating system with a
number of steps independent of the system size. In the case of a metal it is not possible to
set a equal to zero not even in the proximity of the ground-state. However we notice that

xi



Luin 1s usually much larger than the typical screening length of a metal. The results of a
numerical simulation for a large but finite metallic system should not change appreciably
if the Coulomb potential is replaced by a Yukawa potential that is equal to the Coulomb

potential for distances smaller than Lyin-

V. PRECONDITIONING THE EQUATIONS OF MOTION

The numerical efficiency of all the fictitious dynamical methods previously introduced
can be improved by preconditioning the dynamics in order to reduce the ratio Noaw/Dmin-
This can be achieved by replacing the constant fictitious mass parameter  in Eqgs. (3,4, 16).
with an arbitrary positive definite operator fi. The resulting increased arbitrariness in the
choice of fi can be exploited to compress the highest frequency components of the spectrum
of the fictitious electron dynamics. Recalling that these are due basically to the high energy
unoccupied states which are free-particle like (see Eq. (26)), we choose an operator ft which

is diagonal in g-space with eigenvalues j(q) given by:

Wqg) = 1t if £t¢? < E
1(q) = to 54 P (34)

wlq) = ;102(1; if 3¢*>E,

Below a certain cutoff energy E,, it is worth considering a constant mass jo, because the low
energy eigenstates have a relevant potential energy contribution and are not free-particle like.
The preconditioning cut-off E, therefore represents the threshold above which the states are
dominated by the kinetic energy.

It is easy to show that the solutions of the preconditioned equations of motions for small
displacements, are still given by Egs. (11,12,17) if the operator K is replaced by the operator
K characteristic of the preconditioned dynamics. All the relations (13), (15), (20) found for
first and second order dynamics with and without damping hold therefore also in the case
of the preconditioned dynamics but, in the 1a.ttc;r case, Kmar and Kpin have to be replaced
by the maximum and minimum eigenvalues of K, i.e. by K paw and K oin-

The preconditioning cut-off E, that minimizes the ratio Komaz/ K pin is called the optimal
preconditioning cutoff. It depends strongly on the atomic species, i.e. on the pseudopoten-
tials and on the plane-wave cutoff that are used in the calculation. It depends only negligibly
on the physical environment. Thus, for a given atomic species, it is possible to find the op-
timal preconditioning cutoff by performing calculations on a simple reference system. We

present a typical example in Sec. VIL

VI. NUMERICAL IMPLEMENTATION

In our numerical implementation we adopt the standard procedures described in Refs. (
2, 4) to integrate the equations of motion for first and second order dynamics. In the case of

xii



damped second order dynamics we follow the procedure introduced in Ref. ( 16) to integrate
Car-Parrinello dynamics in presence of a friction term. We obtain for first, second order and

damped dynamics, respectively:

Wit + 8) >= J(t) > —20~ By > A + Xy iy (t) > (35)
[i(t + A) >= =|yi(t = &) > +2[ei(t) > =2 > AT Xy () > (36)
it + A) >=[ihi(t = A) > +
+ (I’%Z’-i(f) > —[ipi(t — A) > “ﬁ”lﬁfcslfl’% > éf) R Xij it~ abi(t) > (37)
2 ) 14+~A

where A is the integration time step and Xj; is a symmetric matrix equal to A;j;A for
first order dynamics, equal to A;;A? for conservative second order dynamics, and equal to
AijA*/(1 + 4A) for damped second order dynamics. The matrix X is found by imposing

the orthonormality of the wavefunctions at time ¢ + A:
< it + At 4+ A) >= 65 (38)

We notice that the inversion of the mass operator i is straightforward in ¢ space where it is
diagonal. For the calculation of X;; we define the wavefunctions |;(t + A) > as the r.h.s.
of the Eq. (35,36,37) without the orthonormalization terms X;;i~! [+);(¢) >. Then Eq. (38)

becomes:
XMX'+BX'+XBf=1-A (39)

where the matrices M, B, A are given respectively by:

Affgj =< 'l,l’i(vt)lﬂ_Ql?,Z)j(t) > (-10)
Bij =< di(t + A) |7 i(2) > (41)
Ajj =< it + D)t +A) > (42)

The scalar products are easily evaluated in ¢-space where the mass operator ji is diagonal.

Eq. (39) is formally identical to the matrix equation that expresses the orthonormality
condition for Car-Parrinello dynamics when using Vanderbilt’s ultrasoft pseudopotentials®
It can be solved as described in Ref. ( 19). The matrix B can be conveniently split into a
symmetric part Bs and an antisymmetric part B,. The antisymmetric part B, is first order
in A, while X and 1 — A are first (second) order in A for first (second) order dynamics.
Using these properties, we can solve Eq. (39) iteratively in terms of increasing powers of A

(A?):
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B.X() 4 X(B, =1 - A — X®MX™ — B.X" + X"B, (43)
Here X(© is the solution of the equation:
B.X? +X9B,=1-A (44)

and the Lh.s of the Eq. (43,44) is inverted after transforming to the basis where Bs is
diagonal.

An alternative approach based on an unconstrained total energy functional which avoids
explicit orthonormalization has been recently proposed in Refs. ( 24, 25). The electronic
mass preconditioning scheme discussed in the present paper can be easily applied to the
wnconstrained energy functional method without any overload.

In some applications of fictitious dynamical methods for electrons the orthonormaliza-
tion of the electronic wavefunctions can be achieved via a Gram-Schmidt procedure. We
stress that this approach is not justified in connection with the mass preconditioning scheme
described above. Indeed if the Gram-Schmidt orthogonalization procedure Is used within
preconditioned steepest-descent dynamics, one is not guaranteed that the energy will de-
crease at any integration step for a sufficiently small time step. The origin of this instability
is related to the non-holonomic character of the constraints imposed via a Gram-Schmidt
procedure. We found that this instability is rather severe in practical numerical applications,

where it spoils all the efficiency gains of the mass preconditioning scheme.

' VIIL. NUMERICAL RESULTS

We tested the different dynamical schemes described above on various physical systems
within a DFT-LDA formulation. In particular we considered Si and C systems. We used
pseudopotentials of the Bachelet-Hamann-Schlitter type®®, with s and p non-locality in the
Kleinmann-Bylander form?*!. The cut-off for the plane-wave expansion of the electronic
orbitals was 12 Ry for silicon, and 35 Ry for carbon. We carried out all the calculations
at the T' point of the Brillouin zone only. Moreover, in order to compare the dynamical
schemes with conjugate gradient minimization, we used a tight-binding energy functional

for carbon??.

A. preconditioning

We start by presenting the results obtained with preconditioning. In order to deter-
mine the optimal preconditioning cut-off £, we had to minimize the ratio Npaz/ Kopin. We
measured Koar and Ko, within first order and second order dynamics, by giving a small
displacement to the system from its energy minimum. In the case of first order dynamics,
the numerical integration of Eq. (35), becomes unstable and results in an exponential in-
crease of the energy, when A > 2 / Koz Therefore the maximum allowed integration time
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step provides an accurate way of estimating Koaw. Ronin, i.e. the lowest eigenvalue of K,
gives instead the slowest rate of decay of the energy. This rate is conveniently sampled at
large times, i.e. when only the slowest exponential is left in the decay.

We report in Fig. (1) the ratio K. /K pin as a function of E, for a Siz molecule. We
notice that for the highest F, values the ratio decreases linearly with decreasing E,. The
behavior of the ratio A,,.. /I pin in this range is explained by the following considerations.
First, the minimum frequency is unchanged, since it is related to the lowest excited state
which has small components at high ¢. Second, all the excited modes at energies higher than
E, are compressed to the same maximum frequency 2E, /o, as long as they are kinetically
dominated. Instead, in the range of low preconditioning cut-offs E,, the minimum frequency
K i decreases and the highest excited modes become less efficiently compressed. Thus a
minimum value of the ratio A, / Romin is found, as we can see in I ig. (1). This minimum
occurs at E,=1 Ry. The corresponding reduction of the ratio fi'mw/ Ronin is of a factor of 5
compared to the non-preconditioned case. We obtained very similar results for a sample of
crystalline silicon in the diamond structure, where the optimal E, was also close to 1 Ry.

In the case of second order dynamics \/ N pep and 1/ A can be found as the maximum
and minimum frequencies of the power spectrum of the fictitious electronic dynamics. This
is easily evaluated by computing the velocity autocorrelation function corresponding to
the wavefunction dynamics. The power spectrum of the velocity autocorrelation function
corresponding to the electronic fictitious dynamics is given in Fig. (2) for the case of the
5i3 molecule. In particular we show results obtained with optimal preconditioning (E, = 1
Ry) and unpreconditioned dynamics. In calculating the spectra we chose the value of j in
such a way that the lowest frequency /A, of the preconditioned dynamics coincided with
V N in, 1.€. the lowest frequency of the dynamics without preconditioning. This is achieved
by setting y1o=260 a.u. when the mass associated to the dynamics without preconditioning
is =300 a.u.. The significant compression of the high frequency modes resulting from
preconditioning is clearly evident in Fig. (2).

For a sample of crystalline carbon in the diamond structure we found an optimal value
of E, equal to 2.7 Ry. This reduced by a factor of 9 the ratio Iz'mar/[?min compared to
the unpreconditioned case. In this case in order to make the lowest frequencies \/ N iy and
V Konin to coincide, the mass u of the unpreconditioned dynamics had to be rescaled by a
factor of 0.93 in order to obtain the mass pg of the preconditioned dynamics.

We notice that in a different context the authors of Ref. ( 7) proposed to use a precondi-
tioning cutoff £, equal to the expectation value of the kinetic energy divided by the number
of electrons. In the cases discussed above this corresponds to a value of £, = 0.8 Ry and
E, =2 Ry for 5i and C, respectively. These values are close to the optimal values of L.



B. Ionic Molecular Dynamics

In order to test the effect of preconditioning on ab-initio molecular dynamics simulations
of the ionic motion, we considered the coupled set of equations given by Eq. (4) for the
electronic degrees of freedom and by

MR; = w%ﬂ (45)
for the ionic coordinates R;. Here M; are the physical jonic masses and the mass p in Eq.
(4) has to be replaced by the mass operator fi in the preconditioned case. Eq. (4) and (45)
reproduce the adiabatic dynamics of the ions when the appropriate decoupling condition,
Eq. (14) discussed in Sec. II, 1s satisfied!?. We considered the vibrational motion of a
Sis molecule during a time span of about 0.3 ps. In the unpreconditioned case we used a
time step A=T a.u. to integrate the equations of motion. This 1s close to the maximum
allowed time step for a fictitious electronic mass 1=300 a.u.. Preconditioning allowed to
increase this time step to A =15 a.u. for a mass 1to=260 a.u. and a preconditioning cut-
off E,=1 Ry. In spite of the significantly larger time step the preconditioned dynamics
proceeded adiabatically in the same way as the one without precontioning. In particular,
any systematic energy transter from the ionic system to the electronic one was absent. We
plot in Fig. (3) the temporal evolution of the ionic kinetic energy and of the longest side of
the Siz molecule as a function of time in both the preconditioned and the unpreconditioned

cases. Differences between the two dynamics are not noticeable.

C. Damped dynamics in Insulators

In order to assess the efficiency of the various minimization dynamics discussed in this
work, we considered a 64 atom amorphous Si sample generated by ab-initio molecular
dynamics?®>. We notice that this system has a finite gap, and therefore a non-zero Koin-
In all our total energy minimizations we used the same set of starting trial wavefunctions.
These were obtained by minimizing the total energy with a very small energy cut-off Ecu
of 2 Ry. We then minimized the total energy with a cut-off of 12 Ry using four types of
dynamics, namely steepest descent and second order damped dynamics both without and
with optimal preconditioning. We report the results in Fig. (4). In particular, we found
that, when using the optimal value y,p: of Eq. (19), the rate of convergence of second order
damped dynamics is faster than that of steepest descent dynamics by the amount expected
from the theoretical analysis in Sec. III. Preconditioning accelerated further the rate of
convergence, so that finally the rate of convergence of preconditioned second order damped
dynamics was 14 times faster than the one of unpreconditioned steepest descent.

We determined the value 7op by a rough estimate of K, based on steepest descent

dynamics. In particular, a 3 point fit of the exponential decay of the total energy gives:
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, 1 Ey — E,
Yopt D ~ \/517?« (m) (46)
where [J; Ey Es5 are the energies at three successive steps of steepest descent. We waited until
only the slowest exponential was left in the decay. If faster exponentials are still present,
Eq. (46) overestimates y,,:A. In a practical calculation, we therefore suggest to start the
minimization with a few steps of steepest descent and to use Eq. (46) to obtain an upper
bound for the optimal yA. Then, we suggest to proceed with the damped second order
minimization, readjusting yA in order to achieve the optimal limit of critical damping.
As we can see from Fig. (4), it is indeed convenient to use steepest descent in the first
steps of minimization when the highest frequency components dominate the deviation of
the energy from the minimum. Subsequently, when only the slowest frequencies are left,
damped dynamics becomes much more convenient, especially in those cases of utterly slow

convergence rate.

D. Damped dynamics in Metallic Systems

In order to test the efficiency of our damped dynamical scheme for minimization in the
case of metallic systems we applied it to liquid silicon which is a metal. We use a 64 atom
sample generated by ab-initio molecular dynamics'®. As explained in Sec. IV, the damping
constant 7 can be fixed on the basis of the required energy resolution E.,,, for which we
chose here a value of about 20meV’. We minimized the total energy with a cutoff of 12
Ry using four types of dynamics, similarly to what we did in the insulating case. Again
the starting trial wavefunctions were obtained by a minimization using a small cutoff of 2
Ry. We report the results in Fig. (5). Notice that in the present metallic case, steepest
descent dynamics is particularly inefficient, while damped dynamics is very effective, since it -
improves by many orders of magnitude the convergence rate of steepest descent. A further

gain results from preconditioning.

E. Comparison with Conjugate Gradient Minimization

In this subsection we compare our damped dynamical method with a conjugate gradient
minimization scheme. The standard conjugate gradient procedure, described e.g. in Ref. (
5), cannot be directly applied to a constrained functional, unless some additional simplifying
assumptions are invoked which can reduce the minimization efficiency®”. To fully exploit
the power of the conjugate gradient procedure the authors of Ref. ( 10) proposed to use
an unconstrained energy functional. We adopt the same procedure of Ref. ( 10) but we
use a different form for the unconstrained energy functional. We use the form suggested in
Refs. ( 24, 25) in the context of electronic structure calculations with linear size scaling but

without imposing any localization constraints on the electronic orbitals?®. For reasons of
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numerical simplicity we adopt here a total energy functional based on a non self-consistent
tight-binding Hamiltonian. This choice simplifies considerably the line minimization in the
conjugate gradient scheme, which can be performed exactly?®.

We used a tight-binding Hamiltonian for carbon??, and we considered an ionic liquid
configuration of 64 atoms at a temperature of 5000 K. For this configuration the system is
metallic. Our results are reported in Fig. (6) where we plot the logarithmic error in the
total energy per atom versus the number of iterations for various minimization schemes,
namely damped dynamics, conjugate gradient and steepest descent minimization. In the
case of conjugate gradient minimization the number of iterations was multiplied by a factor
of 2 in order to take into account the increase in computational cost arising from line
minimization. From Fig. (6) it is evident that the numerical efficiency of both conjugate
gradient and of damped molecular dynamics 1s considerably superior to that of steepest
descent minimization. In the present example the numerical efficiency of conjugate gradient
and that of damped molecular dynamics minimization are practically the same.

We expect that the results that we have found here should remain valid also of in the

case of a self-consistent LDA Hamiltonian.

F. Charge sloshing on very long cells

In order to study charge sloshing effects we used a tetragonal supercell having a long side.
In particular we considered crystalline silicon in the diamond structure and we constructed
two supercells by repeating four or eight elementary cubic cells along the crystallographic
(100) direction. The resulting supercells contain 32 and 64 atoms respectively. Then we
broke the translational invariance of the diamond lattice by giving the silicon atoms a random
displacement of about 5 percent of the bond length. This did not modify the insulating
character of the system.

In the present example we have considered only preconditioned steepest descent mini-
mization. As in the previous subsections we prepared the initial trial state by minimizing
the total energy with a small cutoff of 2 Ry starting from a set of random wavefunctions.
Severe charge sloshing instabilities immediately showed up during this initial minimization
in which the starting random wavefunctions were very far from the converged insulating
ground-state. In particular, already for the 32 atom cell the time step for numerical integra-
tion had to be reduced by an order of magnitude compared to the time step that we could
use in an equivalent situation with a smaller cell. Such instability was completely eliminated
by replacing the Coulomb by a Yukawa potential as described in Sec. IV. We adopted here a
parameter 27 /a = 20.5 a.u, for the Yukawa potential. Once obtained the initial trial state,
we performed a total energy minimization on the 32 and on the 64 atom cell with a cutoff
of 12 Ry. The results are shown in Fig. (7) which reports the deviation from the converged
ground-state energy as a function of the number of numerical time steps. During the initial
30 steps we used the Yukawa potential. This allowed us to use for both 32 and 64 atom cells
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an integration time step equal to the one usually adopted for the same system when using
cells sufficiently small that no charge sloshing effects are present. Then we switched from
Yukawa to Coulomb potential. After 30 minimization steps with the Yukawa potential the
system was insulating and already very close to its exact ground-state. In this case, as shown
analytically in Sec. IV charge sloshing instabilities are not expected to occur in a periodic
system. Indeed not even in our disordered sample they did occur. Therefore we could use
in the final 30 minimization steps the same time step used with the Yukawa potential. The
overall convergence rate, as it can be clearly seen in the figure, is independent from the cell

size.

VIII. CONCLUSIONS

We have presented a detailed analysis of the stability and of the convergence rate of
fictitious dynamical methods for electrons. We have succeeded in improving considerably
the efficiency of currently used algorithms for total energy minimization and for ab-initio
molecular dynamics.

In the case of ab-initio molecular dynamics simulations of the ionic motion we have
introduced a novel preconditioning scheme which gives rise to an overall saving of CPU
time of the order of 2-3 in typical applications. In the case of total energy minimization
we have introduced an optimal damped preconditioned dynamics which has a convergence
rate substantially faster than steepest descent algorithms and comparable to that of the best
conjugate gradient schemes for electronic structure calculations. This is especially important
in metallic situations.

Although in this paper we confine our analysis to electronic minimization, we stress that
the damped dynamics algorithm can also be applied to ionic minimization. In this case the
optimal ionic damping parameter is related to the phonon frequencies of the system under
study.

In addition, we have presented a detailed analysis of the charge sloshing instability and
we have indicated a practical way to control it. We have shown with a numerical example
that, in the case of insulators, our approach allows us to converge to the ground-state with
a number of iterations that is independent of the system size.
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X. NOTE ADDED TO PROOF

In Sec. VILE we have shown numerically on a specific example that conjugate gradient
minimization and our damped dynamics scheme have a similar convergence rate. Recently
we became aware that this can be shown also analytically. In fact the convergence rate
of the conjugate gradient approach is proportional t0 1/ Nmin/Nmax a8 that of our damped
dynamical method. An analytical estimate of the convergence rate of conjugate gradient
minimization can be found in A. Jennings and J.J. McKeown, Matriz Computation 2nd
Edition, (Wiley, Chichester,1992) and in J. Stoer and R. Bulirsch, Introduction to Numert-
calAnalysis, (Springer Verlag, New York, 1992). This has been extended to the minimization
of the DFT-LDA functional in J. Annett (unpublished). We thank J. Annett for sending us

a preprint of his work prior to publication.

XI. APPENDIX

In this appendix we show that for a periodic insulator the function S(p) given in Eq.
(32) goes to zero like p* for p going to zero.

S(p) = & Ta < x0le P >< xRl PN >

= Iyl =5 <affe™

where the indices i and j refer to occupied states and the index k refers to empty states.

In Eq. (47) we used the completeness relation: Tl >< Y =1-;\F >< \9]. Let
us suppose for simplicity that we have a single occupied band. Since the expression in Eq.

(47)

Xg >< Gl PN >),

(47) is invariant under unitary transformations on the occupied subspace, we can write it in
terms of Wannier functions, 1.e.:

1
Qmin

§(p) = (1 = 30| < Wale ™ Wa > %), (45)
R

where Wg is the Wannier function centered on site R, and Qi is the volume of the ele-
mentary cell. The Wannier functions are exponentially localized in the case of an insulator:
this allows us to expand in a Taylor series for p going to zero the exponentials in Eq. (43).
In particular if we consider the term with R = 0 in Eq. (48), and expand the exponentials
in pr around p < r >=p < Wolr[Wo >, we get:
1 - I < I"""r()lﬁ_iprl""’o > |2 =
—1—|< Wt —ip(r—<r>)—[p(r—<r >)|2/2[Wo > |* + o(p?) (49)
=+ < Wol[p(r— < r >)]*|Wo > +o(p?)
This term tends to zero as p?. In a similar way one can show that the terms with R different

from zero in Eq. (48) also go to zero as p2.
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