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INTRODUCTION

In this thesis we present some results of our studies on free conformal field
theories defined on algebraic curves. Despite their simplicity, free fields cover a
relevant role in contemporary physics. Their most important and genial applica-
tion are probably superstrings [Sch, Gre], which can be expressed in terms of free
scalar fields and free fermions. We deal essentially with the Polyakov formulation
of superstrings [Pol] which encountered the favour of a large part of the scientific
community. In the last few years we assisted to a rapid progress in its development
and to a considerable amount of promising results. As it is well known superstrings
are the only theory which at the movment seems to conciliate the gravitational forces
with the strong and electroweak forces. Moreover there are basic clues which indi-
cate that superstrings are finite at any order of their perturbative expansion [Gre].
Even if in the future new theories will arise and they will be closer to the "true”
description of the high energy world, surely this will not spoil our current belief that
they should contain something of fundamental in this description. For example just
a fundamental constant appears in string theories, namely the string tension, in
terms of which, via the various schemes of compactification, it is possible to derive
all the other constants. Also, they satisfy the axiom of self-duality of the amplitudes
which is not verified in the usual pointlike field theories. Unfortunately, or fortu-
nately depending on the points of view, the perturbative expansion in the theory of
strings involves the definition of free fields on Riemann surfaces. This entails the use
of mathematical quantities like theta functions and prime forms [Fay] which are not
perfectly under control from the physical point of view. Therefore, despite many
efforts, we have still far from a thoroughly understanding of string perturbation
theory at high loop. In this sense we are compelled to investigate new techniques

for the development of two dimensional field theories on Riemann surfaces.

The most widely used approach certainly consists in expressing the partition
functions and the correlators of the fields through theta functions and prime forms

[AS, Ver, BI]. The big problem in this case lies in the fact that the geometrical
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informations about the Riemann surface, the so called moduli, appear in the theta
functions through the period matrix. In the space of period matrices, known as the
Siegel upper half plane, 1';he moduli space is embedded in a non trivial way when the
genus of the surface increases beyond g = 3. This makes it hard to find the moduli’s
dependence inside the period matrix. This is the so called Shottky problem wich
has been solved only recently by mathematicians [Mul] in a very umexplicit way.
In superstrings we are faced moreover with the demand to have explicitly modu-
lar invariant amplitudes and, besides, it would be nice to study their factorization
properties when a non-trivial homology cycle is pinched. A satisfactory develop-
ment of these points exists until now only up to genus two, using a simple class
of algebraic curves [GIS,CG]. Finally a non-negligible trouble in using theta func-
tions is the "computability” because, after all, we wish to extract numbers form a -
physical theory. We focus the problem with an example. In both the correlation
functions [Knil] and Green functions of free conformal field theories appear the
holomorphic differentials. They can be only implicitly defined through theta func-
tions by means of the prime form [Fay] or equivalent mathematical constructions.
But prime form contains in its definition the holomorphic differentials as well and
so an endless cycle starts. An alternative approach to theta functions is provided
by the Shottky parametrization of moduli space. First attempts of physical applica-
tions where performed by Mandelstam and al. [Man] in deriving an expression for
the off-shell vertices in string field theory. Shottky parametrization is well suited
for studying the factorization properties of scattering amplitudes [Mar], but it is
much less brilliant in producing results which lead to a clear physical interpreta-
tion. A very promising formalism which makes use of the Shottky parametrization
of moduli space is provided by N-reggeonic amplitudes [PS,DiV]. The approach
however contains many technical points such as the procedure of paints sewing and
the connection with theta functions approach is very unclear. Moreover it produces
cumbersome results which do not lean to a good computability. Finally in both
cases the region of integration over the Shottky parameters which should give the

sum over the classes of conformally inequivalent Riemann surfaces is not known.

Other methods, perturbative or not, have been applied during the story of
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strings. Unfortunately, either they are limited to one loop [Ale] or they are lacking
in solving the problems exposed above. We refer the interested reader to the existing
literature [FS,AGMV,KN]. In any case there no one of them gets rid of the Shottky

problem in perturbation theory or it is able to yield numbers.

For all these. reasons in this thesis we study free field theories on Riemann sur-
faces from a completely different perspective, i.e. using algebraic curves [GH| and
parametrizing the space of moduli in terms of branch points. This approach takes
origin from ref. [SIM] in which statistical models, holonomic quantum fields and the
Riemann Hilbert problem were treated. In this work a set of differential equations
for the partition functions at loop g in terms of branch points was obtained in a
very general and mathematical way for certain statistical models. The physical ap-
plications of these ideas were firstly developed by Zamolodchikov [Zam] who showed
the equivalence between the determinant of the scalar laplacian on a hyperelliptic
curve and a correlation function of some spinning conformal fields. Soon after Ber-
shadsky and Radul [BR1,BR2,BR3] and Knizhnik [Kni] formulated simultaneously
a string-suited method to compute the Green functions and correlation functions of
free fields on hyperelliptic curves and Z, symmetric curves. The main idea behind
their approach is that the branch points can be simulated by certain primary fields

called twist fields with relatively simple operator product expansions (OPE) with
the fields.

Their results are not only relevant for string theories on higher genus surfaces
but also for conformal field theories on the complex plane. In fact we know that the
conformal blocks of these theories have non-trivial monodromy properties around
certain critical points as much as the correlation functions of b-c systems on alge-
braic curves around branch points. For example there is a correspondence between
the Green functions of free fields on Z, symmetric surfaces and correlation functions
on Z, orbifolds [DFMS]. In view of a classification and construction of conformal
field theories it may be therefore useful to study free fields on surfaces of general
monodromy even if, in this respect, the monodromy groups provides a coarser de-
scription than the braid groups [Arn]. Moreover in [CSS] it is showed how to obtain

(in the hyperelliptic case) the correlation functions of minimal models using the
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Coulomb gas representation. Unfortunately the method of twist fields, apart from
the hyperelliptic and Z,, symmetric curves, is noi valid. It fails when we apply it
to more general cases, like fermions or b-c system coupled with an external gauge
field which gives non trivial monodromy properties around the homology cycles of
the Riemann surface. It is not very well understood for example how to construct
the two-point functions for the twisted bosons of [Mik] or the usual fermions even

on Z, symmetric surfaces.

The motivations to go beyond Z, symmetric surfaces despite the serious diffi-
culties, stem out partly from the works of [GIS,1Z,CS,CGS,Mon,LM] in which per-
turbative string theory is systematically developed up to genus two included with
the modular invariance explicitly realized, partly from the asymptotic expansion
method of [GM] to derive high energy string amplitudes. In addition we assisted
in the last two years to a warm interest in the subject of algebraic curves with the

most various applications: [SU,MMS,Mor,La,Gav,Smi,Zve] and many others.

The generalization from hyperelliptic to general curves has revealed unfortu-
nately non-trivial and still a full application of the formalism we developed requires |
further developments. The main complication lies in the fact-that on arbitrary
curves the monodromy properties at the branch points become involved and it is
difficult even to establish the form of their Riemann representation in terms of sheets
and branch points. Consequently also the twist fields which simulate the branch
points must be complicated. Unfortunately this fact prevent us from finding the
twist flelds explicitly [Fer3]. The same considerations are valid for twisted bosons
and fermions: in this case, even on Z, symmetric curves, the non-ramified cover-
ing of the curve on which these fields are single-valued is no longer Z, symmetric
[Fer 1]. Consequently its representation in terms of sheets and branch points is
not simple and the twist fields, which are still primary fields, cannot be computed.
Finally, despite Riemann surfaces represented as n-sheeted coverings of C' P, were
invented 150 years ago by Riemann, still many aspects of the theory are under
study. This is for example the case of non-ramified coverings of algebraic curves
which are so important for the understanding of spin structures and fermions (see

for example [Hor] for the hyperelliptic curves and refs. therein and [Fay| for the
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general case). Also the problem of determining the number of moduli on curves
and the dependence of the period matrix to them was solved just thirty years ago
by Rauch [Rau]. Despite these aifﬁculties, we hope that the good results obtained
in {IGS,1Z,CG,CGS,Mon,ML| and [GM] will stimulate further research in thhis di-
rection. Our work is an attempt to generalize the resultss obtained by the authors
above on hyperelliptic curves only, which unfortunately cover the entire moduli
space only up to genus two. Perhaps too optimistically, we believe that we suc-
cedeed in this task for bosonic fields on higher genus Riemann surfaces (g = 3,4 at
least) and for the superversion of the two dimensional electrostatic of [GM]. More-
over the studies performed by us on the spin structures carried by fermions seems
to be promising in the direction of a full development of superstrings and fermionic
(free) conformal field theories on general algebraic curves. Since the latter are con-
formally equivalent to all abstract compact and oriented Riemann surfaces, these

ideas are appealing for applications in string perturbation theory [Fer2].

The picture emerging from our work is that free conformal field theories on
general algebraic curves present an intermediate complexity between the simple
hyperelliptic curves and the formalism of theta functions. The amplitudes we obtain
are free from Shottky problem but is difficult to go beyong genus 4. This is because it
is not easy to find explicit algebraic equations for curves of genus ¢ > 4 which cover
a submanifold of dimension 3¢g—3 in the moduli space. The computability we obtain
is very good and using numerical algorithms it is possible to extract numbers from
the theory. In expressing analytically the scattering amplitudes we often encounter
the problem of solving polynomials of high degree, whose solutions is possible just
numerically. This is not however stumbling: also in the usual pointlike field theories
in fact very complicated functions appear [Thl]. Moreover algebraic curves provide
the simplest possible representation of Riemann surfaces known up to mow and
therefore they seem to be a good laboratory to study remarkable properties of two
dimensional conformal field theories like bosonization and modular invariance of
amplitudes. As was remarked previously, the study of free fields on general Riemann
surfaces with involved monodromy properties can also provide links between them

and non-trivial conformal field theories on the plane. Finally our formalism allows

7

e



a good comparison with analogous results expressed through theta functions.

Our approach in treating free conformal field theories on general algebraic

curves is the following:

Chapter 1 is an introduction of the classical theory of algebraic curves following
standard treatises on the subject like [Osg,For]. We apply triangulation [San] as
an algorithm to find the homology cycles of generic algebraic curves with explicit
examples fqr physically relevant Z, surfaces. We provide also a detailed explanation
of some Cech cohomological techniques [Ferl] which will be useful in the study of
relative spin structures (this denomination is mutuated from [ABMN]). In chapter
2 we show how to derive the two point functions of free fields [Fer2] on a general
algebraic curve following refs. [Ver,BI]. The procedure is valid on any curve on
which it is possible to construct the third kind differentials. If the surface is non-
degenerate, we can use for this task the algorithm of Weierstrass [Wei]. Using the
two point functions we can derive a system of differential equations for the chiral
determinants using the stress energy tensor method [AS,Ver]. In this way it is
possible to compute the vacuum expectation value of the stress energy tensor aind
also to show that the branch points can be represented by primary fields even on
curves which are no longer Z, symmetric [Fer2]. We do the calculation exphc1tly in
a partlcula.r case. In chapter 3 we study b-c systems on Z,, symmetric surfaces using
bosonization techniques on the complex plane and the twist fields as in [BR1,Kni].
We discover that the twist fields can be constructed once we know a basis of n 7-
differentials with the appropriate monodromy properties near the branch points. It
turns out that the two point functions of b-c systems are polynomial combinations
of the elements of this basis. In this way we link the properties of the twist fields
with the geometrical properties of the surface like the existence of certain kind of
7- differentials. The method of j-differentials can be extended also to more general
~ curves [Fer3]. We provide a simple but non-trivial example of a surface with non-
abelian monodromy group for which we compute the two point functions. It is
also shown as these j-differentials provide the OPE between the fields b-c and the
twist fields inside the vacuum expectation values. Finally we show that there are

strong connections between the j-differentials here derived explicitly and those of
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refs. [BR3, SIM] which are defined through Painleve differential equations.
Chapter 4 is devoted to twisted bosons and fermions. We analyse the prob-
lem of finding the twist fields which realize the various Z,, spin structures on Z,
symmetric curves. Using the cohomological methods of chapter 1, we study what
m-unramified coverings respect the Z, symmetry of the surface and are Z, sym-
metric. This is a powerful mathematical tool which can be applied to the study
of the m-unramified coverings of algebraic curves. We are non-experts on the field
of algebraic surfaces but we believe tha this point was never investigated in the
mathematical literature apart hyperelliptic curves (See for example [Hor] and ref.
therein for some review on this problem on hyperelliptic curves.) In this way we
show that only the Z, symmetric surfaces of ref. [BR2] can be expressed in terms
of twist fields because in the other cases the coverings destroy the Z, symmetry
of the surface and the usual twist fields cannot take into account of this feature.
Therefore we have to use more involved primary fields whose expression is still not
known or the methods outlined in chapters 2 and 3. We give also some examples on
how the j-differentials introduced in the previous chapter can be used to compute
the two-point functions and the correlation functions of twisted bosons. Finally we
derive the two point functions and chiral determinants for the important class of

rational curves introduced in [GM].

Chapter 5 is a trial to develope the theory of free field theories on algebraic
curves in its full generality. In the first section we show how it is possible to derive
the chiral determinants explicitly using the prescription of [Knil]. We do not treat
the chiral determinants of fermions because in this case we need the knowledge
of theta constants. The problem is that it is not easy to find the dependence of
theta functions on branch points. Section two is a long discussion of the variational
methods of Rauch [Rau] in which we try to construct the partition functions at
least for bosonic fields.

In appendix A we give an example of a general procedure to provide the Rie-
mann representation of algebraic curves in terms of sheets and branch points

Appendix B contains a short review on the formalism of theta functions.

Appendix C reviews the formula of Cardano to express analytically the roots
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of a polynomial of degree 3.

In appendix D we express the prime form in the language of branch points

following [Fay].

10



CHAPTER 1.
RIEMANN REPRESENTATION OF 2-D SURFACES

1.1 ALGEBRAIC SURFACES,BRANCH POINTS AND BRANCH LINES

The Riemann surfaces have been widely used in current high energy physics. To
get explicit results avoiding Shottky problem or to check factorization properties in
string theories , one needs an explicit representation of such surfaces. The simplest
representation is provided by algebraic surfaces. In general algebraic surfaces are
projective varieties on the space C P, [GH]. The algebraic surfaces considered in this
work are instead n-fold ramified coverings of the complex plane C U {oo} = CPi.
The symbol = denotes conformal equivalence between C'P; and the complex plane
with the point at infinity. It is known that an abstract (compact and orientable)
Riemann surface is conformally equivalent to an algebraic surfece ¥ associated to

an algebraic equation of the kind:
F(z,y) =y™ + P (2)y" 4+ ...+ Po(2) =0 (1.1).

w, z are complex variables, P;(z) represent rational functions of z only:

Qi(z)
Ri(z2)

A simpler but very important class of algebraic surfaces, (see chapters 3 and 4), is

Pi(z) = Q;, R; being polynomials.

given by the Z, symmetric surfaces &, associated to the equation:
v Po(z) =0. (1.2)

When n = 2 we obtain the hyperelliptic surfaces.
If we consider z as the independent variable, y(z) turns out to be a multivalued
function of z. Let us denote with y(¥(2), (I = 0,...,n — 1), its branches. The

branch points of y(z), in which two or more branches are identified, are provided

F(z,y)=0
{BRn e =

by the system of equations:
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When eq. (1.3) is verified for a given value of z together with the relation:
0.F(z,y) =0,

then z is called a singular branch point. We will suppose throughout this thesis
that all branch points are regular. Eq. (1.3) implies that two or more branches of
y(z) become equal at branch points. The multiplicity v of a bran-ch point indicates
the number of branches which coincide at that point. Transporting y(z) along
a small circle surrounding a branch point, the v branches gét interchanged. %
is determined by the requirement that y(z) is singlevalued on it. The Riemann
representation of ¥ consists in n replicas of the complex plane z, he so called sheets,
joined in a appropriate way along the branch cuts. The latter are obtained cutting
the sheets along certain branch lines which connect the branch points. The actual
construction of ¥ starting from eq. (1.1) is in the general case a very difﬁcult
problem. We refer the interested reader to classical treatises on complex analfysis
such as [For,Osg]. See also appendix A for an example. However let us mention at
least two important classes of algebraic surfaces in which the problem is simplified.
The first class consists in the Z, symmetric surfaces. In figs. (1.1)-(1.4) we show

the system of cuts valid for the most general ¥,. As we see, comparing fig. (1.1)
with fig. (1.2), the same algebraic equation leads to different systems of cuts. The
fact is that once we have a system of cuts, the branch lines can still be deformed

over the branch points, yielding in this way a different system of cuts. Stated in

another way, let us build the following vector:

with the I-th component equal to 1 and all the other put equal to zero. The change
of branches when y(l)(z) is moved around a branch point a is then expressed by a

matrix in the following way:

Moy = () (1.4).

Eq. (1.4) means that if y(Y(z) is transported along a small circle enclosing the
branch point @ on the I-th sheet, the branch [ interchanges with the branch s. Now
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we can build a vector from the branches y(!(z):

Z i (l)

After performing a complete cycle around a branch point the transformation law
of §(z) is §(z) — M,7(z). The matrix M, is called the monodromy matrix
at the branch point a. The monodromy matrices at all branch points form the
monodromy group of ¥. Since a circle which surrounds all the branch points
on any sheet can be shrinked to a point because it is homotopically trivial, the

monodromy matrices should satisfy the following constraint:

Ty
[[M.. =1 (1.5)
i=1
where npp, is the total number of branch points. Now the action of deforming a
branch line over a branch point a’ (fig.(1.5)) entails a transformation of the mon-
odromy matrices M, for the branch points a; belonging to that line of the folowing
kind:
My, — Mo M M =M, ..

Clearly this transformation leaves condition (1.5) unaltered. The conclusion of this
discussion is that once we have a reference system of cuts, all kind of transforma-
tions preserving condition (1.5) are allowed. An ealgebraic surface X is determined
completely once the positions of the branch points and the monodromy matrices
are specified. Let us go back to the problem of finding a system of branch cuts for
3. The second case in which this problem turns out to be easy to solve consists in
the surfaces for in which all the branch points are simple, i.e. their multiplicity v is
always equal to two. For this class of algebraic surfaces, which we denote with the
symbol X, the following theorem of Liroth [Lii] holds:
theorem: when the branch points of a Riemann surface with n sheets and genus g are all
simple, the surface can be taken in such a form that there is a single branch
line between consecutive sheets except for the last two sheets; and between the

last two sheets there are g + 1 branch lines fig.(1.6).

The relevance of the class of surfaces with all simple branch points lies in the

fact that a "general” algebraic surface of genus g can be always put in this form via
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a birational transformation [For]. The meaning of the adjective "general” will be
explained in chapter 5. Here we anticipate just that a general surface depends on

3g — 3 parameters, functions of the coefficients of the algebraic eq. (1.1) called the
moduli.

1.2 TRIANGULATION OF ALGEBRAIC SURFACES, REDUCTION TO THE CANONICAL POLYGON,

HOMOLOGY CYCLES

In this section we wish to illustrate some useful technics in dealing with algebraic
surfaces. First of all we provide a method to find the homology cycles once the
branch cuts are given. This is useful in order to check the properties of monodromy
of fermions and twisted bosons. Moreover in the case of scalar fields the Green
functions involve integrals over the homology cycles (see chapter 2). The strategy
consists in reducing the Riemann surface represented as an n sheeteci- covering to
the canonical polygon (fig. (1.7)) using triangulation; from this co#ﬁguration it
is then easy to deduce the homology cycles.

A basic property of Riemann surfaces is their triangulability. Roughly speaking
triangulation consists in dividing the surfacein a finite (for closed Riemann surfaces)
number of open sets isomorphic to a triangle [San]. Then we have to cut this
triangles and to join them again like in a puzzle to build the canonical polygon.
The tiangulation process takes place in three steps:

Step A): each sheet with cuts (fig. (1.82))can be viewed as a sphere with holes (fig.
(1.8b)).

When we stretch it on a plane, we get a polygon with vertices a;...an,,~1

(fig. (1.8¢c)). In this figure we have opened the sphere at the point an,, which in
the polygon of fig. (1.8¢c) appears as np, identified points.

Step B): after repeating the procedure of step A) for all the n sheets, we obtain n of such
polygons and we can join them along the identified cycles in an appropriate way.
After a deformation, we can bring this new figure again to a polygon (fig. (1.9)).

This is not of curse the canonical polygon. First of all we have to simplify the
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adiacent sides as in fig. (1.10). Moreover the sides have as vertices the various
points a; ...an,,~1. Instead they should not appear in the canonical polygon
where all the vertices are identified. We cope with this sit;lation applying
the first kind of cuts showed in fig. (1.11) till all the unwanted vertices will

disappear from the external sides.

step C): At the end of step B) it may happen that the polygon is still not canonical
since the sides are not in the correct sequence a1biazbs ...agb, as in fig. (1.7).

The second kind of cuts gets rid of this shortcoming fig. (1.12).

After a finite number of cutting and glueing we get therefore the canonical
polygon and hence the a and b cycles. Examples of @ and b cycles are given in figs.
(1.13).

This procedure becomes complicated when the genus of the surface increases or
there are many sheets and branch point. Fortunately this task is oversimplified in
the case of surfaces in which the branch points are simple. Using Liiroth theorem

they can be brought always in the form of fig.(1.14) with the system of a and b

cycles showed.
Matrix representation of homology cycles

The purpose of this section is to set up a convenient notation to represent
the homology cycles. In fact often the necessity arises to subtract and to sum
the homology cycles, for example when discussing the modular invariance of the
partition function. This becomes difficult when the Riemann representation of the
surface becomes involved with many sheets and branch points.

The method we introduce is general but it is better suited for Z,, symmetric
surfaces. To fix the ideas we use the curve %(1,3,1,0) (see the notation of chapter
3, section 1) with the system of cuts of fig. (1.13). We draw all the possible oriented
paths encircling the branch points as in fig. (1.15). These will be called elementary
paths. All the homology cycles can be decomposed in terms of these elementary
paths. To each path we associate a matrix A in the following way: the columns

represent the branch points in the order ¢j,¢3,c3. The rows correspond to the
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possible branches of y(z) at those branch points. All the branches of a multivalued
function can be characterized by a set of numbers which are roots of the unity. For

example the branches of y such that y* = (z = ¢;)(z — ¢2)(z — ¢3) are characterized

by

y(l)(z) = ¢ Y(z = cl)(z — e2)(z — ¢3)

with €@ = 1. The elements of the matrix A associated to a closed path (in CP)
are the increments or decrements to the variable [ at each of the branch points
which y(z) encircles when transported along the path (see ﬁg; (1.15)). Having a
closed path C it is easy to construct the related matrix Mo. With the help of
appropriate continuous deformations of C' we can individuate all the elementary

paths composing C and therefore:

Me= Y Mo,.,.

elem.paths

The converse is also true. Starting from M¢ we can draw all the elementary paths
encircling the branch points and then join them. In some cases there is an apparent
ambiguity because the connection can be done in different ways. As a matter of
fact all closed cycles coming from the same matrix M¢ are equivalent and can be
reduced to a common reference cycle. This matricial representation is additive, i.e.
Mc,+c, = Mc, + Mc, modulo trivial cycles. The zero element of this algebra is
not unique: all cycles which can be deformed to a point are zero elements and the
associated matrices need not to ber zero. The closed cycles (on X) are individuated
by imposing the condition that the number of the lines entering branch lines at
each sheet is equal to the number of outgoing lines.This fact allows to determine all
independent matrices for a given Riemann surface and to construct the other cycles

as linear combinations of them.
1.3 CECH COHOMOLOGY AND SPIN STRUCTURES

Let us divide the algebraic surface in the Riemann representation into a set

of local patches {Us}. A prototype of this set is given in fig. (fig. (1.16)). This
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covering can be easily generalized to all algebraic surfaces constructed in terms
of sheets and branch points. To U, we assign a local set of coordinates z, and
consider local trivializations ¢q(zs)dzl of a line bundle L. A physical meaning to
this mathematical language will be given in chapter 4 in which the balza)dzl, will
be the b-c fields with lagrangian L = b8c. j € Z for twisted bosons while j € Z
for twisted fermions. Here we are interested in sections of line bundles of the kind
[BR2,GH]: L; = K7 ® LY, where LY is a flat line bundle with degree 0 and K
denotes the canonical line bundle. When j is half-integer @ is a 2z2g matrix of
phases corresponding to a definite behaviour of the sections ¢q(z)dz when they
are transported along the homology cycles. For example when j = 0 these sections
are multivalued functions on the Riemann surfaces and a representations of them
is provided by theta functions (see appendix B for a short review):

0(z](z — a)

6[0](z —a)

The sections for the case j # 1 are simply the usual tensors g (24 )dz?, singlevalued

on the Riemann surface &, multiplied by functions of this kind [AMV]. In particular

when
91 dg
n n
U =
Py Py
=

we have the Z, spin structures of chapter 4. For now on the characteristics @
will be only of this kind. The transition functions gop relating the trivializations
balza)dzl and qSﬂ(z[;)dzg at the intersections Uy N Ug are very simple to find on
algebraic surfaces (see fig. (1.16)):

dzs\’
Palza) = Hp(2p) (dzi) Tap-

Nap are the transition functions corresponding to the line bundle LY. They should

satisfy the usual consistency conditions on Uy N Ug N Uy:

Nep + Nax = Max = 0 (3-1)-

Iwik .
These transition functions are of the formim,g = e™= ° , kap being integers. We

wish now to compute their logarithms vog = log(neg); this will turn out to be useful
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in chapter 4 where we are faced with the problem of cataloguing all the possible Z,,
spin structures leaving on an algebraic surface. The result of the calculation will be
n?9 sets of 745 corresponding to the Z, spin structures.

Since LY is a flat line bundle, its transition functions ~«p belong to the first

cohomology group of Cech IUII(E, Z,) [GH]. In this case we represent Z, as the set

1 n-—1
0,—,...,
{ae{ ’n’

mod Z}}.

To compute the elements of such group it is sufficient to ha;re a good covering
{Ua} on %, ie. such that the intersections U, N Ug are contractible open sets
(BT]. Again a generalizable exampie of a good covering is in fig.(1.16). At this
point we assign a number 7, € Z, and we define the usual cohomology operator

6t HY(Z, Zpn) — H™(T, Z,,) [GH]:

80t e = Na — N

(3.2)
611 Tap — Nap + M8x — Nax
and so on. Now we recall that:
HY(2, Z,) = keré, ,
Ty kerd
HI(E,Zn) = —_”ledo (3.3)
72 . kerd,
H*(%,Z,) = SCTN

where ker and I'm denote respectively the kernel and the image of the operators
0n. From the first of eqs. (3.2) it should be clear that the only possible values
of no belonging to kerdy are those for which 1, = a = constant. So ker§y has
only one degree of freedom a € Z, implying ﬁ'o(E, Zn) = Zp. From the second of
egs. (3.2) we get the linear system of equations (3.1) which yields keré;. Finally,
since on algebraic surfaces there there are no four-fold intersections between the
open sets Uy, kerb, = éé Zn where n, is the total number of open sets forming the
good covering. For exarilple in fig. (1.16) there are forty-five intersections U, N Ug
and thirty intersections of the kind U, N Usg N Uy. The former correspond to 45
transition functions 7.5 € Z, while the latter are related to 30 elements of the kind

30
YaBx € Zn. Obviously keré, = @ Z,, and we have n®? possible choices of values for

1
the variables .3, which give 627apx=0- Analogously from the second of egs. (3.2)

18



45
Dz 5

16
we get that keréy = @ Z,,. Since Imé;, = kleT = @ Z, we are able to compute
1 1

all the cohomology groups of eq. (3.3). The result for the worked out example is:
H%(0,Z) = H*(0,%n) = Zn

and
HY(2,24) = Zn P Za.

As a matter of fact the surface of fig. (1.16) is of genus one and therefore there
are n? spin structures corresponding to the n? possibilities to choose the transition
functions .3 € H1 (¥,Z,) This method allows also to determine the transition
functions 7ap explicitly. In fact after solving egs. (3.1) we get an expression of
Yap € Im(6;) in terms of the independent variables y45 € ker(6;). We denote the
latter with a prime to distinguish them from the former. To find out what are the
transition functions corresponding to non trivial spin structures we set up the linear

system of equations:
Yap = Yo — V8-
If we consider the v, as unknown and the 7,5 as coeflicients, it turns out that in

general this system is overdetermined and there are 2g consistency relations that

the coefficients should satisfy to become soluble. For example for the surface in fig.
(1.16) we get:
Yor — Y17 T 716 — Yos = 0 (3.4)
PGyl oyl —ol =0 =)
T2 Y28 T Yos — Yos
We choose now the values of these 7' in such a way that these equations are violated.
For example when we deal with Z, spin structures there are only 22 possibilities:

)76 = 3and all other Yop = 0
i)y, = L and all other 4., =0
“).70,7 2 g (3.5).
iit)7;6 = 3and all other 7,,=10
iv)all coefficients set equal to 0
The last equation represents the trivial spin structure. In the other equations we

have simply to use the values of the independent 7('1[, to compute all the other v44.

1.4 ALGEBRAIC SURFACES OF GENUS g
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We proceed now with the analysis of algebraic curves generated by the Weier-
strass polynomials of eq. (1.1). One of their most striking characteristic is that it is
possible to get explicit expressions in terms of known functions of the differentials
of first, second and third kinds. As it is known all the other differentials are simply
linear combinations of them. As well we can explicitly derive all the j-differentials
of chapter 3. The importance of these j-differentials lies in the fact that the Green
functions of scalar fields X and b-c systems are just j-differentials. Moreover prime
form and theta functions (see appendix B) are expressible in terms of third kind
differentials and viceversa. The advantages in the use of j-differentials instead of
theta functions are their expliciteness which allows to extract numbers from physi-
cal amplitudes and moreover the fact that moduli are parametrized automatically
by branch points. In this way we avoid the problem of Shottky. The rest of this
section is devoted to generalize to algebraic curves the construction of local uni-
formizer (see below) and of the divisors of the differential dz and the functions
Fy(z,y), y. These are the building blocks in the derivation of j-differentials. In part
of this analysis we follow standard book on the subject [Wei,Osg,FK,For]. Since
explicit examples are worked out in the mathematical literature just for Z, simmet-

ric surfaces (eq. (1.1)) we do here the exercise to extend these results to arbitrary

surfaces.
Local analysis:

The branch points of T are the solutions of the system of equations:

F(z,y) =0
{ 6y(F(Z3y> =0 (1-3).

For each regular branch point a , we can take y as a local uniformizer. By
definition [Zve] a local uniformization is a pair of single-valued analytic functions
of a complex variable ¢, given by a power series convergent in a neighborhood U,

of the branch point a:

{Z = go(t) = a—{—aktk +.ak+1ik+:.l +...,k>0,a; ;é 0,
y =9%(t) = y(a) + bjt? + bjp1t? T +...,7>0,b; #0
and such that F(p(t),%(¢)) = 0 in the common domain of convergence of the

two series. More roughly, a local uniformizer provides a system of local transition
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functions for the b-c tensor fields in the neigborhoods of branch points. To show
that z and y provide a local uniformization, we expand eq (1.1) near a using the

following change of variables:

z=a+z,y=yla) +v'.

The result is an algebraic equation in 2' and y':

Z 2 Ap 2Ty = (4.1)
with
A.T._, presy GZBZF(z,y)‘gzz(“) .

The general form of eq.(4.1) is:
Az + higher orders in z'+

+By'™ + higher orders in y' +mized terms involving 2' and y =0.

With the substitutions: z' = {™, w' = v, this equation becomes:
(A+ Bv™)é™ + higher orders in € =0.

At the lowest order we have the m solutions:

2 =E"y =0 (4.1a),

where v, = ez:pz’”’ {/g, (r =0,...,m—1). It is possible to conclude from here that

w' plays the role of the local uniformizer.

A similar procedure is also valid for the points at infinity, performing the change
of variables z — z' = 1 in eq.(1.1) and then expanding it near the point z' = 0 as
in eq.(4.1). From this local analysis we have seen that m different solutions of y
correspond to the branch point a as we said in section (1.1).

The genus of 3 is determined by the multiplicities v; of the branch points via

the Riemann Hurwitz formula:

20—2=-2n+ ) (i—1) (4.2).
b.p.
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The sum in eq.(4.2) is extended over the whole set of branch points.
The algebraic equation of a general Riemann Surface of genus g.

A general algebraic equation for a Riemann Surface of genus g should depend
on 3g free parameters [GH]. Three of them are fixed by the automorphisms of the
z complex plane, the others are related to the 3g — 3 moduli. These parameters
appear in eq. (2.1) as the coefficients of the polynomial in y ?.nd z. Solving the
system (1.3) we can express the branch points in terms of these coefficients. The
maximum number of free parameters (or equivalently of free branch points) allowed
by eq. (4.2) is N = 2n 4 2g — 2, obtained when all branch points have multiplicity
two. It is clear that for large n we have N > 3j. This does not imply that the
number of moduli of a surface of genus g can be higher than 3g — 3. The apparent
contradiction is solved in the mathematical literature [GH]. (see also chapter 6)

We proceed with the construction of a general algebraic equation for g = 3. In
this case the Riemann Hurwitz formula predicts n > 3¢ and therefore ¥ cannot be
covered by hyperelliptic curves. We choose n = 3 because it is advisable to Vkeep
the number of sheets as low as possible.

With g = 3 and n = 3 eq.(4.2) is consistent when the following possibﬂitie; are
verified: there are 10 branch points with multiplicity 2 or 9 branch points one of
which with multiplicity 3 and the other with multiplicity 2. In the first case the

algebraic equation is:
¥ +3P(2)y - 20(2) = 0 (43)

with

P and @ take into account 9 parameters: the last parameter is the point at infinity.

In the second case the equation is more complicated and an expression can be found

in [SUJ.
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An analogous analysis repeated for the case g = 4 yields n = 3 with 12 branch
points of multiplicity 2 and the equation:

v® + 3p(z)y — 29(2) = 0 (4.4).

Now:

a(z) = Bo [ [(z - Bs)

i=1

and there are exactly 12 parameters.

Eqns. (4.3) and (4.4) are strong candidates to represent the general Riemann
Surfaces of g = 3,4 respectively. Their regularity can be tested using Baker’s
method [For] and the homology cycles can be found with the methods of section 1.2.
Moreover these surfaces have all simple branch points and therefore their Riemann
representation is given in fig. (1.6). Both of them have been derived with the aid
of the exact formulas for the roots of a general polynomial of degree three listed
in appendix C. Such formulas exist only for polynomialé of degree less or equal to
4. This limits the validity of the method exposed to surfaces with ¢ < 6. Beyond
this value of g, the problem of constructing the algebraic equation of a Riemann
Surface knowing the positions of branch points and their multiplicities is a special
case of the classical converse problem of Galois theory. No algebraic method to solve
it exists yet, so we can just make a guess of the solution. It is not our intention
to treat this problem. We will always assume that the algebraic eq.(1.1) is given
together with its solution y(z) and starting from this we will construct the relevant

correlation functions for (super)string calculations.

1.5 DIFFERENTIALS

ON A GENERAL ALGEBRAIC CURVE

In [Ferl] and above we have stressed the role of differentials in the computation

of correlation functions for b-c systems on surfaces with abelian group of symmetry.
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Here we construct the differentials of first and third kind for more general surfaces.
These differentials turn out to be necessary in order to express the correlation
functions of bosonic fields. The building blocks of differentials are the quantities -
dz, z ~ a, y, Fy(z,w). We need to specify their divisor, i.e. the positions and the
order of their zeros and poles. The zeros of dz occur only at branch points. The
order of these zeros at a branch point of multiplicity v is v — 1. In fact using the
local uniformizer ¢ of eq.(4.1a) we have dz = dz' = ¢£*~1df. Next we consider
the behaviour of dz at infinity. The projection of the generic point z = a on the
sheet k is denoted by a(z). Let us suppose that from the local analysis z = oo
turns out to be a branch point of order m. Then m sheets are joined at this point
and correspondingly m of the points co(pyare identified to an unique point co. If
OO(3i1)9 ++) (i, ) are the points for which y(z) is not branched, we can write the

divisor of dz as:

vy—1 vy —1 me-1
div(dz) = alz o:'“’l oooozm (5.1).
OOil... ('in.-m)

In eq.(5.1) I represents the total number of branch points and m; their multiplicities.

To find the divisor of y we look at eq.(1.1) which we rewrite here:
Y+ Poa(2)y™ 4L+ Pi(z)y+ Py(z) =0 (1.1).

The zeros of y occur when Py(z) = 0. The order of these zeros is the order of the
zeros of Py(z), but can change if the roots of Py coincide with the branch points or if
Py has some roots in common with the other P;. The infinities of y are given by the
singularities of the P;’s [For]. The order of these infinities is computed performing
the change of variable z — 2/ = (—7_—_1_71—)— and then proceeding as in the case of the

point at infinity. To show how the method works, we apply it to two interesting

perticular cases.

Case 1) g = 3, eq.(4.3).

There are 9 branch points a; of multiplicity 2. For z = co we put z' = L and
we search for a solution of eq.(4.3) of the form: y(z') = vz P f(z') = v2'"P(1 + ..).
At the leading order eq. (4.3) becomes then:

P2 TP 14 =0 (5.2).
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Consistency requires that:

3
4—~3p::1—p::>p=—2—.

This means that z = oo is a point of multiplicity 2. Since the leading order terms are
divergent, they should cancel simultaneously requiring: v® +« = 0. This equation
has three solutions. The first, ¥ = 0, corresponds to the behaviour w ~ % because
if v+ = 0 this is the only way to satisfy eq.(5.2). This branch of y is therefore
singlevalued at the point z = co. We will call co; the point at infinity of the related
sheet.

The second solution is given by 4% = —1. These are the two branches of y which

have a branch point at co. The behaviour of y in this case is that of a multivalued

function:

bt

z 2

‘—‘ b b’|
R
z 2 z2

yN

The polynomial coefficients of eq.(4.3) have no other singularities except z = oo, 50

we are now in the position to write the divisors of dz and y:

div(dz) = 20‘5’3 (5.30)
1
div(y) = ilofj (5.3b)

These divisors have the correct degree, 2g — 2 and 0 respectively. S;...B4 are the
zeros of Q(z) in eq.(4.3). In general we have to specify in which sheet these zeros
occur, but for our purposes this is not necessary. In the same way it is possible to

compute the divisors of Fy(z,v) and of z — a:

o ay...ag

io(Fy(,9)) = 5% (5:30)

div(z — a) = il_‘%%f—(”- (5.3d).
o2

Case 2)9': 4, eq(4.4) The procedure to find the divisors is analogous to that

applied in the previous case. The results are:

div(dz) = —pt 12 (5.40);

°°fo)°°?1)°°fz)

25



B1-Bs

d'zv(y) = ) 5 > (5.4b);

(0)*(1)°(2)

where [;...0s are the zeros of ¢(z) in eq.(4.4);

. ay...aiz

div(Fy(2,9)) = (5.40);
’ °0(0)%°(1)%2)
div(z — a) = OO (5.4d).
©O(0)S0(1)°(2)

I*t kind differentials:

on a given surface of genus g there are g holomorphic differentials.

Case 1)g = 3.

2(i=1)d; 19
W; = g y &y w3 = Ywi.
Fy(z,9)’
case 2) g = 4.
(i"'l)d-x
z z
W= ——r, 1=1,2,3; Wy = Ywi.
Fy(z,y)

III™ kind differentials.

A third kind differential w,;(z) has two simple poles at a and b with residues +1
and -1 respectively. On a general surface ¥ with equation (1.1) w,p is constructed

starting from the Weierstrass kernel [Weil:

F(a,y(z)) dz
(y(2) —y(a))Fy(z,9(2)) z — a

It is easy to proof that, once a branch y(Y(a) has been chosen, G(z), has a simple

G(z), =

(5.5).

pole in a(;y with residue +1. Therefore G(z), — G(z)p = wqp is a good candidate for
a third kind differential. Nevertheless this differential can still have spurious poles.
We have to eliminate these poles subtracting from wg,p other terms with the same

singularities without changing the behavior in a and .

Explicit construction of ITI™ kind differentials

Case 1) g = 3.
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In this case we get from eq.(5.5):

v3(2z) + 3P(a)y(z) — 2Q(a) dz
3(y(z) —y(a))(¥yP(2) + P(z)) z — a
Let us suppose that a lies on the first sheet. Then, since F(a,y(z)) = (y(z) —
¥ (a))(y — v (a))(y — ¥ (a)) G(z)e becomes:

(v =y () (y —yP(a)) dz
3(y%(2) + P(z)) (z—a)

G(z)e =

(5.6).

G(z)e =

It is easy to check with the aid of eqs. (5.3) that the divisor of G(z), is given by:

div(G(z),) = LT (5.7).

OOG,(D)

In eq. (5.7) vs...7s are six zeros of the function (y —y(1)(a))(y —3(*(a)). The other
two are of course a(;y and .a(g). From eq. (5.7) we see that G(z), has the correct
pole in a(gy and a pole at co. In doing the difference G(z). — G(z)s this extra pole

at infinity is changed to a pole in b. Therefore
wap(z) = G(2)a = G(2)s (5.8)

is the wanted third kind differential. In the g = 4 case we get for the third kind
differentials the same formula (5.8). Also here there is no need to subtract spurious
poles. Of course G(z), is built starting from eq(4.4).

Notice that in both cases wg; is given by an expression in which the dependence

on the free parameters of the curve is explicit since from appendix C we know the

form of y(I(z).
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CHAPTER 2
FERMIONIC CONSTRUCTION OF CORRELATION FUNCTIONS
ON ALGEBRAIC CURVES

2.1 TWO POINT FUNCTIONS FOR b-c SYSTEMS

We realize on ¥ a conformal field theory in terms of b-c systems with conformal

weight 7 and the usual action:
SO = / @260 ()50 2),

- where b((2)dz7 and ¢(¥dz =7 are the branches of the multivalued fields b(z)dz7 and
c¢(z)dz'~7 defined on the sheet I. The boundary conditions of the fields b and ¢ near
the branch points are dictated by the monodromy matrices of eq.(2.4) of chapier
1. On a general algebraic curve the monodromy matrices are not simultaneously
diagonalizable. Therefore the methods of [Kni,BR1,Ferl] to compute the correlation
functions are no longer applicable [Ferl].

We concentrate in the propagator G;;—-;(z,a) for b-c systems of central Weiéht
7. The other correlation functions can be obtained with the Wick theorem. |

G;j1-j(z,a) is determined by a pole in z = a and by the zeros and poles at the
location of the zero modes. There is still the freedom to add a term containing the
zero modes but this turns out to be irrelevant in the physical amplitudes [BI}. Our
strategy consists in reconstructing the structure of zeros and poles of G;1-;(z,a)
by means of differentials of the first and third kind.

We start with the case j = 1, ¢ = 3. The Riemann Roch theorem predicts

three zero modes for b and one for ¢. Therefore Gy (z,a) is given by:

< b(z)c(a) ﬁ b(z;)c(ze) >
Gio(z,a) = 5 =2 (1.1).

< IT b(zi)e(ze) >

1=1

G1,(z,a) should be a differential in z and a function in a. Roughly speaking the
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position of the relevant zeros and poles for Gy o(z,a) is:

Gi(z,a) ~ (a = 24)(z = z1)(z — 22)(z — 2z3)(z1 — z2)(21 — 23)(22 — 23)

(z—a)(a—z1)(a — z2)(a — z3)(z — z4)(21 — 24 )(22 — 2z4)(25 — 24)

This behavior is exactly reproduced by:

w((z))m wl((z )) wZ((Z)) wS((Z ))
et o wnlza) walzs) wslz2)
G, oz,a) = W(z3)az, wi(z3) wa(zz) ws(z3)

det |wi(z]-)|

(1.2).

We notice that w,;, has singularities at infinity as a function of @ and b. Nevertheless
these exira poles do not appear in the divisor of G} ;(z,a). In fact the divergent
terms at @ = oo of G(z), are always factorized in the form fi(a)w;(z) where the
w;(z) are holomorphic differentials and f*(a) are singular functions of a. Therefore
these terms will not contribute to Gj ¢(z,a). Since there are no other sources
of extra poles, we can identify G ¢(z,a) with G1,(z,a) apart from an irrelevant
arbitrariness due to zero modes.

Now we treat the case 7 = 2, g = 3 corresponding to the ghosts of string
theories. There are six zero modes related to the fields b. To build the propagator
G2,~1(z,a) we need a meromorphic tensor {,(z), with a simple pole at the point a
with residue +1 and with the tensorial structure dz2da™!. The following expression

for Q4(z) fulfills all of these requirements:

N Fla,u(2)) iz Fy(a,4(e))
) = GO w5 @) r—a  da

Moreover the singularities in a occurring at a = co are of the form f7(a)Q;(z). Now

(1.3).

;(z), 7 =1,...3g— 3, are holomorphic quadratic differentials. A basis for 2;(z) can
be constructed performing all possible products of two holomorphic differentials. As

before it is possible to write the propagator G3,—1(z,a) in terms of determinants:

Qa(z)  Q(z) ... Q4(2)
et Qa(z1) Qll(zl) cee Q1)

< b(2)c(a) f[ b(z;) > : ; ) ;
Gz,-1(z,a) = - =1 = a(z5) Qa(zs) ... o(z) (1.4).

< e > det ;)]
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Analogous expressions can be written in the case g = 4.

w(2)azs wi1(z) ... wa(2)

et w(z1)azs wi(z1) .. w4(:z1)

_ w(z;)az5 w1y (.z‘;) ... w,;(.z.;)
GI,O(Z,G) = det lwi(zj)l (1a5)“

Qa(z) Qu(z) ... Qo(z)

Qa(z1) Q(z1) ... Qg(zl_)

det ) . . :

1 Quz) Qu(zm) ... Do(ze)

Gz —1(z,a) = 3ot [0 (23| (1.6).

All the correlation functions of eqms. (1.2), (1.4), (1.5), (1.6) have an explicit
dependence on the parameters of the algebraic equations (4.3) and (4.4) of chapter
1. It is easy to show that for general j the generalization 0, (;y(z) of eq.(1.3) is
provided by:

(e, y(2))

Lol = 41 ~Z’(i§)( —a) [Fy(ch;(z))r {Fw(ac,lju(a))}l_J

2.2 TWO POINT FUNCTIONS FOR THE SCALAR FIELDS

Let’s consider on ¥ the scalar fields X(z) with the action:
SO = / ?20XV(2)8Xx 0 (2).
These fields are functions on ¥ and therefore they obey the monodromy properties
of eq.(1.4) of chapter 1.
We start from the correlation funcbtions:

G(z;a,b) =< 80X (z)(X(a) — X (b)) > (2.1).

This is a differential in z and a function in @ and b. Moreover it has a zeroin a = b
and two poles in z = a, z = b with residues +1 and -1 respectively. Therefore

G(z;a,b) is a third kind differential and its general form will be:

G(z;a,b) = was(z) + Z Awi(z)
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where w; are holomorphic differentials and the constants 4; depend on a and b.
Clearly when a = b we have A; = 0. The coeflicients 4; are computed with the
method of [BR], that is imposing the condition that G(z;a,b) is single-valued on .
This condition provides a system of equations in which A; are the unknowns. From

this system we get:

det

T, B
§a, wJ §&; CDJ
395 wj 3%; wj

T, A‘

A= (2.2).

We used here the following notations:

fal wi(z) ... 39&1 wi—1(z) $was(z) ... §a1 wq(z)

fowi(z) e g wina(d) $uas(2) e § ()

4 a(2)

and Ty, B are the analogue for the b-cycles. Again G(z;a,b) has an explicit de-

A=

pendence on the parameters of the curve, though in a very complicated way. From

G(z;a,b) we can find:
< 80X (2)8X(a) >= 0.G(z;a,b) (2.3).

and

< (X(c) = X(d))(X(a) ~ X(b)) /G 2 a,b)d (2.4).

These correlation functions are sufficient to compute the physical amplitudes of
bosonic strings. The chiral determinants can be derived using the stress energy
tensor method [AS,Ver] which in this general case is still applicable. Finally we give
an expression for the prime form FE(z,a) which is suitable for Riemann Surfaces
realized as branched coverings of the complex plane [Fay]. We suppose, without
losing generality, that the zero of the prime form occurs in the first sheet. Therefore:

an—1

g a
EZ(Z,CL) = (~d e*{p / Zwa—() Z(i) + Z/ mJG)J] (2'5)7
j=1%
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where:

mj = --1—/ d{zn(@_—z))].

2 t—a

In eq. (2.5) @a3(z) and @; are the normalized third kind and first kind differentials

respectively. It is easy to see that in terms of the old basis we have:

0 wi(z) ... we(z2)

_5.71 §a1 “1 e fal Wy
det )
; —bjg fag wy o o... fag Wy
@;(z) = § ] § o,
det :
g w1 ... §G-g Wy
and:
wap(z)  wi(z) ... wy(z)
 wap(z) LWL e $, Wy
det
; ., Wab(Z) $owr . b w
wab(z) — q 7

fal (425} [P §a1 wg
§ag (925 §a W

g 9

In appendix C we will prove eq.(5.5) following ref. [Fay].
2.3 CHIRAL DETERMINANTS

The explicit expression of the two point functions enables us to get the expec-

tation value of the stress-energy tensor for b-c systems by means of the well known

formula [Ver]:

1

< T(2) >= lim [58.Gj5(z,) + (1= )0:Cra-5(5,0) = )

(3.1).

In analogy with the Z, symmetric surfaces we suppose that on general algebraic
curves the equivalence between branch points a; and certain primary fields V(a;)

called twist fields still holds. Under this hypothesis, to be checked a posteriori, we
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use the stress-energy tensor method [AS,Ver] to compute the chiral determinants:

N M
_ < .1;[1 b(z:) kl;ll o(z)V(a1)... V(an,,) >
detfs = det [0z (3.2)

In this equation (); represent the zero modes, nyp is the total number of branch

points and:

{Zz(ﬁj—l)(sr%) for j 1,
N=g L
{le. for 7 =1.

We review briefly the stress-energy tensor method to compute the chiral determi-
nants. From the operator product expansion of the stress-energy tensor with a

primary field V(a;):

s Ba, |
T(2)V (e:) = <(Z ol m)) V(a:) (3.3)

and the definition of the Green functions:

N M
< b(2)e(a) [T b(z) I1 e(21)V(a1)... V(an,,) >
Gionoilzra) = ——— =L k21 (3.4)
< l;[l b(zz)kl;ll e(zp)V(ar)... V(an,,) >
it descends that:
N M
oy h, Oa; < _l;[l b(z;) kl;[1 o(z;)V(a1)... V(an,,) >

<T(z)>=)

=1

5 T (3.5).

(z — a;)

Therefore the coefficients of the second order poles in a; of < T'(z) > represent
the conformal weight of V(a;) while the residue of < T'(z) > at the branch points
provides a set of differential equations for the numerator of eq. (3.2). If, following
[Gav], we pick up from G;1-;(z,a) just the part independent from the zero modes,
the result of these differential equations will be automatically detd; with a "natural”
normalization for the basis of zero modes.

Let us apply this method to the b-c systems with 7 =1 and ¢ = 3. The compu-
tation can be easily extended to the case g = 4. The part of Green functions (1.2)

and (1.5) which is independent on the zero modes is represented by the Weierstrass
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kernel G(z), of eq. (5.5) of chapter 1. Inserting G(z), in the correlation functions
of eq. (3.2) we get the three branches of < T(z) > which are:

<T(2) ey 1 [30 () — @) 4 L@ (0 — () 4 W] (3.60)
3 (w(®? + P(2))

< T(5) e 1 [2(®(w® — w) 4 L (w0 — w©) 4 w©yE)] (3.6)
8 (w®)* + P(z)) |

A e T
3 (w®? + P(2))

In these equations w(" is defined in Appendix B and w', w" cienote the first and
second derivatives of w(z). Unlike the case of Z, symmetric surfaces, the poles
of < T(z) > are distributed in a non symmetrical way on the sheets. In order
to proceed, we need the position of the branch points a;. Unfortunately it is not
possible to know simultaneously the branch points and the parameters a;, §; of
egs. (4.3) and (4.4). In fact the positions of the branch points are roots of the
polynomial of degree 9:

Q*+P=0 (C.1)

(see App. C) for which an explicit solution does not exist. Nevertheless the relations

between branch points and parameters of the algebraic equation (4.3) are known

(eq.(C.1)). Rewriting P and Q in the following way:

4
P=Y bz , g=) c2

=1 =0
and equating the coefficients of the different powers of z in the equation:

9

Q@ +P =]](z—a) (3.7)

=0
we yield a set of algebraic equations fm(ai;bj,cx) =0, m = 0,...,9 determining
the dependence of b;, ¢, on a;. For the moment we suppose that the branch points
are independent variables and that the parameters are expressed in terms of them

trough these equations. With this assumption it is possible to evaluate the poles of

< T(z) > at a;:

F1ay
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30(a) | 270(a;)?

( o
~ Z (z = ai) MG Z (z —a;i)@Q*(ai) H(ai ~ k) (3.8)

i ki

EQ(%’)'Y 1 )

Eq. (3.8) proofs our previous assumption that a branch point a; is equivalent to
“a twist fleld concentrated at that point and moreover tells us that the conformal
dimension of such fields is h; = -—%. Our result is quite reasonable if we remember
that on the algebraic curve defined by eq. (4.3) all branch points connect just two
sheets, so that in the neighborhood of a branch point our curve closely resembles
an hyperelliptic one. This result is also in agreement with [BR3] in which it is
said that the branch points can be still simulated by primary field whose conformal
dimension depends just on the multiplicity of the branch point with the formula
(1.12a) of chapter 3. Ne#t we consider the residue of < T(z) > from which we set
up the differential equations determining detd;:

TP s

k>i (a; — ax)

1Q'(a:) 1 5 1 - |
<3 Qi) 27(@2(a,.))> T 36z - )@ (ar) 1[(e: ~ax) (3:9)

ki
The first term in the RHS of eq. (3.9) is "hyperelliptic” but the other two represent

nontrivial corrections which prevent us to give an easy analytic solution to this

equation.
Comments

We have seen how to explicitly construct the 2-point correlation functions for
the bosonic string on surfaces defined by a general algebraic equation. Examples
have been worked out for the genus three case, while for genus 4 we still have to
prove that eq. (4.4) is a good representative. On the other hand, we have shown
that on general algebraic curves the behavior of the fields b and c at branch points
can be simulated by twist fields with definite conformal dimension h. Moreover our

analysis allows the computation of h. At least in our particular case our analysis
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shows that the conformal dimension of the twist fields at a branch point is the same
one which is obtained if we consider a Z, surface approximating the general curve
in a neighborhood of the branch point. This result could shed some light in the
search for the explicit form of twist fields on nonhyperelliptic curves. In practice
it gives a link between the fermionic method exposed above and the bosonization
techniques using twist fields using [BR,Kni,Ferl]. Concerning the partition function,
two obstacles prevent us from computing the chiral determinants detd; and detd,.
The first lies in the complexity of the differential equations (6.9). The second
consists in the difficulty to express the branch points in terms of the parameters
of the starting algebraic equation and viceversa. For these reasons we believe that
in the case of nonhyperelliptic surfaces the Beilinson-Manin formula [BM] is better
suited than the stress-energy tensor method for computing the partition function
of bosonic string theory. The Beilinson Manin formula in fact requires just the
knowledge of a half differential corresponding to an odd spin structure together
with its g — 1 zeros. This problem is well known in the mathematical literature (see
for example [Fay| and references therein). A more difficult problem is to extend the
fermionic construction of correlation functions to superstrings due to the presence
of fermions. In [Ferl] we pointed out that even in the case of Z, symmetric surfaces
the spin structures are troublesome in the language of branch points. There are two

main difficulties:
1) the derivation of the 229 differentials with quadratic divisors such that their
square root represents well defined half differentials. There exist algorithms to
obtain these quadratic divisors in terms of branch points [Fay] but they involve

the solution of a nontrivial algebraic equation.

2) The square root of a differential with quadratic divisor is defined only up to a
sign. When we choose a sign, it is not easy to know how it will change when

crossing a nontrivial homology cycle apart from relatively simple cases [Ferl].

We will show in section [4.4] that one can overcome these troubles at least for
the particular Z, symmetric surfaces of ref. [GM] appearing in high energy string

calculations. Finally we stress that the formalism that we have introduced can be
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applied to a larger class of conformal theories, for example the minimal models and

the bosonic WZW models.
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CHAPTER 3
BOSONIZATION ON ALGEBRAIC SURFACES

3.1 CONFORMAL FIELDS ON Zpy SURFACES

BOSONIZATION AND TWIST FIELDS

We consider here the family of Riemann surfaces of genus g 2(g,n,m,q) ex-

pressed as n-sheeted coverings of the sphere C P, with associated algebraic equation:

mn q

y" = H(z —ci) H %i—z)l ¢; #aj #bj ; m,n integers (1.1)

i=1 j=1
The genus g of these surfaces is given by the Riemann Hurwitz formula (eq. (A.2)):

n(n—1)

g=(1-n)+ = +g(n—1) (1.2)

2 .

When m = 0 and ¢ 5 0 we get an important class of Riemann surfaces which will
be called rational surfaces. The surfaces in [GM)] represent the subset with ¢ = 2.
It is possible to see that each ¥ is invariant under a Z, symmetry generated by
the operator which interchanges the sheets and and that the point at infinity is
not a branch point. Slightly more general surfaces can be obtained allowing two or
more branch points to coincide: the results presented here can be straightforwardly
extended also to these curves. All mathematical details used here about R.S. are
contained in appendix A. We consider on ¥ a CFT of b-c systems with conformal

weight j and the usual action (see chapter 2):
SO = /dzz b(0()5c0(2) (1.3)

where b(z)dz7, ¢(z)dz* 7 depend on the variable z € CP; and are multi-valued fields
over the sphere whose branches are denoted by (z) and ¢((z), [ = 0,...,n — 1.
Let us briefly review what is known up to now about bosonization on Z, symmetric
R.S. The basic references [Kni,Br1,Br2,Gav] deal with the case %(g,n,m,0): we

add here the treatment of the ’rational’ points b;.
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Local Monodromy Matrix

We introduce here the monodromy matrices M, for fields as we did in chapter
1 for the function y(z). To a branch ¢{!(z) of a general multivalued tensor field it
corresponds a vector ¢(!) = (0,...,1,...,0)T with the [ — th component equal io 1
and all other put equal to 0. The change of branches when ¢((z) is moved around

a branch point a is then expressed by an n - n matrix in the following way:
MdO(z) = §)(z) (1.4).

If we put q?(z) => $(l)¢(l)(z), then qg’(z) — MJ(@. Since the action of M, corre-
l
spond to encircling a branch point, we have:

$)(z) = $0((z — )™ + @) = Mad(V(2) (1.4a).

M, is called the monodromy matrix at the branch point a of the fields $(9(z)dz7.
This monodromy matrix do not coincide in general with the monodromy matrices
of chapter 1, which are instead refered to the surface T. See for example the note
below and chapter 4. Nevertheless, since a circle which surrounds all the branch
points a; at a given sheet can be shrunk to a point being homotopically trivial, the
monodromy matrices of the fields should again satisfy the following constraint:

Ty

[ Ma; =1 (1.5)

where np, is the total number of the branch points ;. From eq. (1.1), going
clockwise around a branch point, the [ — th sheet is interconnected only with the
(I41)-th sheet when a = a;,¢; and with the (I —1)-th sheet when a = b;. Therefore

eq. (1.4) can be rewritten as:
MoV = ¢ for cja; and Ml.¢D = ¢ for b; (1.8).

These equations represent the local boundary conditions of the field ¢{!(z) at the
branch points. Clearly these are just local relations. The spin structures we will
introduce below, involve non trivial transition functions relating the fields at the

intersections of local patches. Therefore they induce global effects consisting in an
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additional multivaluedness of the fields carrying spin structures when they cross
the homology cycles. In this case eq. (1.6) does not hold in general. As we will
see, for certain spin structures, their global effect on the fields can be still expressed
using modified local boundary conditions. If s branch points coincide, the boundary
conditions become M,8()(z) = =), where the minus sign is valid when a is a
rational point. In all cases described by eq. (1.1), it is easy to conclude that

monodromy matrix should be of the form:

0 1
1 . . .0

My=1{. . . . . (1.7)
0 10

or some integer power of it (M™ = identity).
Conformal Properties of the b-c Fields and Twist Fields.

It is convenient to choose a basis which diagonalizes the monodromy matrices.

Its eigenvalues are 1,,...,a™ !, (a™ = 1) and the eigenvectors are:
by = Z 0 = Z a MW (E=0,..,n-1) (1.8).
l l

The local behavior of the b-c fields near a generic branch point a of multiplicity v
is constrained by the requirement that b (z)dz? and ci(z)dz* =7 must be finite in a
neighborhood of a. This condition is necessary to avoid punctures on ¥ located at
the branch points and to preserve the usual equations of motion: 6by = dci = 0.
Going to the local uniformizer t¥ = (z — a) (see the definition of chapter 1,

section 1.4), we have:

dz\? . .
bie(z) ~ br(?) (EZ) dt? = nby ()7 ("D dt (1.9)
d7 1—.‘7' - .
cr(z) ~ ci(t) (j) di* 77 = neg(¢)t DD gy (1.9a).

From these equations the behavior of by, ci near the branch points should be:

b(z) ~ (z—a)™% 2

(1.10)
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1 -7)E—n)

cr(z) ~(z—a)"% g} > - (1.10a)

Therefore
QkE{Lii"(‘é:-—Q, 1=0,...,n—1} mod n (1.11)
q}ce{”(l—i)(l_”), 1=0,...,n—1} mod n (1.11a)
Moreover tile definition of by band ci (eq. 1.8) entails g& = —g, mod n. Egs.

(1.10), (1.10a), (1.11), (1.11a) determine the fractional values of gx and g} apart
from the addition of an integer compatible with egs. (1.10) and (1.10a). This is
obvious because the fields b and ¢ can have also zeros of different orders at the branch
points. Moreover the local analysis above just depends on the multiplicity of the
branch point but does not distinguish for example between ”rational” branch points
b; and "normal” branch points a;j, ¢;. For example if a normal branch point has a
monodromy matrix M asin eq. (1.7), a rational branch point has the monodromy
matrix M~!. If we wish to diagonalize simultaneously both these matrices, we
can use the same basis by, ci of eq.(1.8) but the corresponding eigenvalues will be
assigned in a different way to the eigenvectors by, cx. In other words, if at the first

branch point we act with the monodromy operator, we get:
Mby, = e2mias)p,

but at the second branch point we have:
Mb, = e 72ma)p,

with ¢x = k/n mod Z. It is nevertheless important to derive uniquely the charges
gr at all branch points of the Riemann surface. The knowledge of the g, s allows
in fact the computation of the n-point functions and of the correlation functions
of b-c¢ systems on Z, symmetric surfaces. To show this, we follow the analysis of
[Kni] extended here to general algebraic surfaces. The algebraic surface is imagined
as an n-fold covering of the complex plane C U {0} or, equivalently, of the sphere
CP;. A quantum field ¢(z)dz7 singlevalued on this surface, is multivalued on CP;.
Its general expression consists in n independent fields ¢(l)(z)dzj defined on CP;,
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each one assigned to one of the n replicas of CP; which build the covering. ¢()(z)
play the role of the branches of ¢(z). The fields ¢("(z) are locally subjected to
the boundary conditions of egs. (1.4) dictated by the monodromy properties of
the surface. Moreover in a neighborhood of a branch point a of multiplicity v, we
can always introduce a set of fields ¢« (z), linear combinations of the ¢(")(z), which
diagonalizes the monodromy matrix M,. Going to the local uniformizer t’ = (z—a)
which provides local coordinates in the neighborhood of the branch point, we can
show [Kni] that the stress energy tensor of the b-c systems:

dz\* C [(d*z/d®3t) (d%z/d*t)
T =1(=) ('&?) +'1§( (/a7 (dz/dt)> - (1)

has a second order pole at the branch point of the form (2142{)’7 with

v(6j2 — 65 — 1) 1
_ B 12a).
A > (1 1/2> (1.12q)

An analogous procedure repeated for the conserved current of the ghost number

Jr =: brcr :, shows that Jy has a first order pole at a with residue gx. This is
sufficient to conclude that a branch point can be represented by a primary field V(a)
also called a twist field. Introducing the bosonization rules by ~ ei¢k, cp ~ e ik

and
< r(2)pw (2') >= diw |In(z — 2')],

V(a) has the following simple form near a branch point:

G S dudn(a)
V(a) ~e W0 - (1.13).

Accordingly: ‘
1_, 1
A= =g  — =)q 1.14).
;(2& +(j 2)%) A (1.14)
In eq. (1.14) g is defined as in eqs. (1.11) and (1.112) but it is denoted by a
different symboi to remember that this is the charge associated to the branch point

and which we have to determine. We impose now the following requirement A),

which is typical of Z,, symmetric surfaces:

A) the monodromy matrices M, are simultaneously diagonalizable at all branch

points.
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In this way we obtain everywhere on the surface a basis b}, ¢}, of fields single-
valued on C'P;. They diagonalize the monodromy matrices at all the branch points
and the related twist fields have the form of eq. (1.13). The consistency with the
boundary conditions (1.10), (1.10a) is provided by the OPE:

bi.(2)V(a) ~ (z —a)7% : by (2)V (a) : (1.15)
S (2)V(a) ~ (z — a)™% : c(2)V(a) : (1.15a)
with ¢x = @x + m, g, = g} + m', m, m' integers determined by the vanishing

properties of b}(z) and ¢} (z) at a. From these considerations it descends that it is
possible to describe b-c¢ systems on Z, symmetric surfaces in the following way:
i) introduce 2n independent fields b}, ¢} single valued on C'P;. We used a prime

to distinguish these fields from the multivalued ones of egs. (1.15), (1.15a).

ii) Their behavior near the branch points is simulated by the twist fields V(a)

which, under requirement A), assume the form shown in eq. (1.13).

ili) The two point functions and chiral determinants detgj are given respectively

by:

Gji1-j(z — a)k,k

< 0fbr(z)cr(w)(zero modes) Tnn V{e:) f[ V(a;)V(b;)]0 >
e (1.16)
< 0](zero modes) gl Vie:) _1;11 V(a;)V(b;)]0 >
and
detgj =
< 0|(zero modes) TﬁL V(ci) f[ V(a;)V(b;)|0 >
=1 =1 (1.17)

det|we(z)] det|por(zm)]

where |0 > is the usual SL,(C) invariant vacuum on the sphere,

M

N
(zero modes) = H br(zr) H ck(zs)

r'=1
and pi(z2), vj(z~) are the zero modes in b and c respectively (N — M = (25 —

1)(g — 1). Wick theorem and standard bosonization techniques provide all
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the other correlation functions once the charges g are known. This rises the
problem of determining the charges gr. As we said previously, this can be done
only taking into account also the global properties of the fields. Before to show
our method to compute the g, s for the most general case in which requirement
A is valid, let us point out that also on an arbitrary Riemann surface (eq. A.1)
there is evidence that analogs of relations (1.16) and (1.17) still hold (see [Fer2]
and below). Unfortunately we do not know so far an explicit expression of the

twist fields in this case.
3.2 A GENERAL METHOD TO DERIVE THE CHARGES ék

Definition: a faithful j-differential [FK] %, is a j-differential which transforms
non trivially under the symmetry group of the surface: for j half- integer the divisor
D of 92 is a quadratic divisor of degree 2g — 2, i.e. D = ¢2 where ¢ is a divisor of
degree g — 1. More explicitly, a faithful differential should transform non trivially
under the local monodromy matrices. For example dz/y is faithful differential (y
as in eq. (1.1)) but not dz/y™ As we will see in the half integer case the spin
structures change the monodromy properties of the fields. In this case the faithful
2j-differentials can transform trivially at some branch points and we need the con-
cept of a j differential faithful at single branch points. This means that at these
points the local monodromy transformations of ¥y are not trivial. If we take a field
b(Vdz7 satisfying eq. (1.6), go to the diagonal basis bxdz’ and expand by as in eq.
(1.10) at each branch point, then it is always possible to associate a j-differential
to br with the same behavior at the branch points:

pdot = [(z - ) [[(2 - 05) (= — by)"5 do? ).

. i §

Here v;, p1;, k; are the charges gy at the branch points a;, b; anbd‘c,-. I is a well
defined j-differential on the Riemanﬁ surface, i.e. it has the correct monodromy
properties on it, then some constraints on the phases v, ij, k; are in order. Since
these phases come out from general quantum field, it is not immediate to conclude
that they should obey such constraints. Let us proof that this statement is indeed
true. First of all 1 should be branched as the surface on which it is defined. So
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for example at a branch point of multiplicity v, % ~ (z — a)%, m being an integer.
This condition is clearly fulfilled: a glance at the form of g; in eq. (1.9)1is sufficient.
Secondly eq. (1.5) implies that the sum over all phases v;, uj, k; must be an integer
number. This requirement is nothing but the law of balance of fermionic charge on

each sheet proved in ref. [Kni]:

Nbp

No — Ny =1-21— ) daik (2:2)
=1

where §a, , represent the charge at the branch points o; and Ny, N, denote the
numbers of zero modes in by and cj respectively. Therefore we conclude that to a
given field by it corresponds a well defined j differential of the kind shown in eq.
(2.1). Conversely a well defined differential has the same local behavior at branch
points of a class of fields brdz?. Due to this correspondence, we can read the charges
gr at all the branch points directly from j-differentials using the consistency of eq.
(1.10) with eq. (1.15). To decide what what are the right j-differentials carrying
the charges §x, we consider eqgs. (1.16) and (1.17). Here we see that the twist fields
modify the definition of their left vacuum state |0 >. Since the branch points are
sources of stress energy, the insertion of twist fields rises the energy of the system. If
we choose a set of differentials with higher zeros at branch points, we get the charges
gr +nk, 7k being a positive integer. These values are allowed by eq. (2.2), therefore
leading to nonzero physical amplitudes, but in this way we ignore the spectrum
of the theory corresponding to lower energy states. On the other side the g,s are
bounded from below. In fact the two point functions of eq. (1.16) are tensors for
which conditions (1.10)-(1.10a) apply as well. At this point we can determine the
charges gr using the following recipe:

starting from a faithful j-differential +, we multiply it by integer powers of y,
(z — aj), (z = b;), (z — ¢;) to get the first n; differentials 9%, (k = 0,...,n ~ 1)
which are finite at the branch points and with the lowest degree of zeros at these
points. On a Z, symmetric surface n — 1 of these differentials should be faithful
for j integer. If j is half integer and there are spin structures or j is integer but
fields have nontrivial twisted boundary conditions (twisted bosons), then at each

branch point n — 1 of the j-differentials ¢, are faithful at those points. These last

45



two conditions guarantee that the local monodromy group of the surface is fully
represented. The changes §r at the points a;, b;, ¢; are then simply the powers
Paj ks Kbk and ve, r with which the factors (z — aj), (z — b;), (z — ¢;) appear in ¥y
(see eq. (2.1)). Let us notice that the only hypothesis needed in the above procedure
is requirement A), which is unavoidable if we want to use twist fields of the form
(1.13) to simulate the effect of branch points. Our method for the computation of
the charges gr depends just on the geometrical properties of the surface such as
the zeros of the n j differentials 7, at branch points. It takes automatically into
account the distinction between rational and normal branch points. It is therefore
well suited in the case of twisted bosons and fermions in which spin structures can

reshuffle the eigenvalues corresponding to the basis by, i at different branch points

as we will see.

3.3 APPLICATIONS TO SOME SIMPLE CLASSES OF SURFACES

CORRELATION FUNCTIONS AND GREEN FUNCTIONS

We give some applications of the method just explained through explicit ex-
amples. The characteristics of spin structures are denoted here by the symbol:
[le Zj}. When a; and b; (¢ = 1,...,g) are rational numbers of the kind
p/n, we say that the spin structure has Z, characteristic. The charges of twist
fields at a generic branch point « are denoted with Jo,k We will often use also the
vectorial notation for the charges § = (go,...,dn_1). Moreover the divisor of a

J-differential 1 is written in the follovﬁng form:

dz'v"(!): 21...ZM.
P1...-PN

Of course N — M = j(2g — 2). Finally when dealing with curves with many branch
points and sheets, it is convenient to use a matricial representation of the homology
basis because the graphical picture turns out to be often not clear. The details of

this representation are in appendix B.

Bosons with Conformal Weight j
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Let us consider the surface £(g,n,m,0). The holomorphic differentials for this

surface are:

z’\dz{1+51m_<_1§n—1
wz’,\dz: '

y() \A=ml-2,1-3,...,0°

Since the divisor of dz is:

n~1 n--1

. c LA,
divdz = = 5 =
001 ...OO,;L

the j-differentials ), of the previous section are given by:

dz
Ve = e

k+j(1—n)_

The powers with which the factors (z — ¢;) appear in 9y are v;r = -

Therefore we conclude that the charges g, r are:

- k+(1—n)
oo = ————.
n

At this point we can compute the two point functions and the correlation functions
for these surfaces using the bosonization techniques on the sphere. Let us consider

J > 1. A basis of the holomorphic j differentials is provided by:

) 2 27 [ = {'_3_7_} i(n—1)
4 — ={Z},...,] i
wypaaz y(z)l {A:ml_zj’ml__Qj—ul,,O

where {z} denotes the integer part of z. Not all these differentials are independent
when j(n-1) > mn + {%’} In this case the values with A > mn are not to be
taken into account. Relation (2.2) implies that there are My =1 — 25 — mj(l —n)
zero modes for by, M; = 1 — 27 — mj(1 —n) —m zero modes for b, ... and M,_; =
1—-2j—mj(l—n)-— ﬁi%:ﬁm for b,_1. Therefore the correlation function has the

following form:
Mo Mg+M,

< 0] H H bi(zi,) ...

1:021 i1=M0+1

M0+"'+Mﬂ.-—1
H brn-1(zi,_ )V (c1) ... V(emn)|0 >=
iu—1=M0+A/I]_+...]VI“_.2-|-1
Mo+..+M,._4 mn
H H(z,\ — 2, )y(z) ") H H(CP — cg)TreEe (3.2).
A=1 n>A p=lo>p
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Here q,- ¢ = Xk: gc, * ge, - For the Green functions (here we consider just j > 1) we
get an analogous expression:

dz3 dw'™! . -z
Gin—i(z,w)er = = {y(z)] H > (3.2a)

z—w |y(w) S w =z
Here Z; are the locations of the zero modes of the b fields. All the results obtained
are in agreement with refs. [Kni,BR1].
Let us study now the class of surfaces X(g,n,0,¢). A basis for first kind differ-
entials is given by:

d 1 .
Wy = - 222,...,q.

toy (z b))z - by)

The divisors of dz and y are:

9]

o R ay...a
divdz = a(ln_l) e agn—l)bgnnl) e bgn_UOOi 00 divy = hqﬂ (3.3).

The second of these equations shows that the charges g, » will be in general different
from their counterparts gy, . It is also clear that all the a's (and the b's separately)
should be treated in a symmetric way. The strategy in order to find the charges is

the following: let us consider the j-differentials:
Quadz? (3.4)
with divisor:

) (n—-1)j—l—-nX a(n—l)j—l—nkb(n—l)]‘—!—l ”.agn—l)j-{—-l)\
divQpadz? = 2 M 1

05 -
27—qA 27—-qA
0] ce. 00y

The lowest order of the zeros at the rational branch points b occur when I = j(n—1).
This implies that one of the phases defined in eq. (1.18)is k; = i(—l;?—l}l, (i=1,...,9).
In order that also the order of the zeros at the branch point a is the lowest possible,

we have to adjust A in such a way that:

A= {M} _
n
This choice corresponds to

#izﬂ[{2j(1—n)}+j(1—n)} i=1,....q

n n
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These values of k and p determine 1odz?. The second possible choice of I is now

n

)= {2]'(1-77,)—1}
n
This implies:

M:_[{2j(1——n)~1}+1+j(1—n)} i=1,....q

n n

! = j(1 —n) + 1 which implies k; = ia-n)+1  Again the zeros in a are minimal if

we set:

Repeating this procedure for n — 3 times, we get all the j-differentials %, (k =

0,...,n —1) from which we can read the charges g,k and gy :
- k4-7(1—n
Gy, = EHiliom)

(3.5).

n n

Go = — [{ 2j(1—n)—k} + k+j(1—n)]

We consider just an example because the general case entails a complicated notation:
7 = 3 and 2(6,4,0,3). Then: g = (:42,—2,—_;11,:2—?’-) and ¢, = (—_7},—2,3:—3,:5%),
Putting these values in eq.(2.2) we obtain that j = 3 differentials admit 7 zero
modes in by, b; and b, respectively and 4 zero modes in b3. The total number
of zero modes is 25 in agreement with Riemann Roch theorem. The correlation
functions can now be computed in the same way as we did for the case of surfaces
>(g,n,m,0). |

We discuss now a somewhat different class of surfaces, those associated with

the multivalued functions:

y(z) = Va(@) + Vo) ()

Let us consider for example 7 = 1, n = 2, m = 3 and ¢(z),p(z) polynomials of
degrees n and m respectively. More general cases do not present in fact any further

conceptual complication. y(z) satisfies an algebraic equation of the form:
y® = 3q(2)y* — 2p(2)y” +3¢*(2)y® — 6p(2)a(2)y +p*(2) = ¢*(2) =0 (3.7).

The branch points are obviously the zeros of p(z), a1, a2, a3 and the zeros of ¢(z)

[1 and (2. The Riemann surface constructed in terms of sheets and branch points
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is shown in fig. (1.17). There are two different projections of the branch points
a; on the sheets which we have denoted with p; and p!. The branch points f;,
(7 = 1,2) have instead three different projections g, 45, g; - The algebraic function

q(z) of €q.(3.6) is strictly related with y'(2) = 3/¢(z) 3/p(z). In fact the monodromy

matrices are:

0 01 0 0 0 000100
100 0 0 0 0060 0 1 0
010000 0100 0 1

Mo, = 0000 0 1 Mg; = | 4 000 00O
0001 00 01 01 0 0
000 0 1 0 001010

Therefore requirement A of section 2 is still fulfilled. The genus of this algebraic

surface is four. Accordingly we have four independent holomorphic differentials:

dz dz
Wi =T W2E Y o
p%(2)/q(2) p(z)v/a(2)
dz dz
Wi = a/ o W = 3
p*(z) p(2)+/q(z)
with:
12_12_12 12 12 1n2 _n2
. P1P2P3P1 P> P ‘11 ‘Zv 91 9341793
div(dz) =
w(dz) = o? ... oo

Four of the 1 are the holomorphic differentials. The remaining v are:

dz
v/'p(2)

Padz = i Ysdz = dz.

These j-differentials yield the following charges:
qa; = (_§1 %)0"—%1'*%10)
ga; - (”%,“%;—%,0,0,0

Substituting these values in eq. (2.2) we obtain > Ny, — N, = 3 as it is expected
k

from Riemann Roch theorem. Finally we compute the part of the Green func-

tion G1,0(z,w) independent on the zero modes: this is the relevant part for the

computation the expectation value of the stress energy tensor [Gav]:

Gl,o(z,w) =
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)P
) P

wi| wiv
U.H ul»—l

2 1 ( ( )+1>.
p3(2)qi(2)  pi(w)gi(w) q¢i(z)  p3(z) p3(w)

G1,0(z,w) is a third kind differential as it should be as pointed out in ref. [Fer2].

1 ()t (w)  prwleiw) | giw) p
6(z_w)< B s

As we have seen the b-c systems on the surfaces as in eq.  (3.6) correspond to

correlation functions of a conformal field theory with the insertion of spin fields of
the kind:
V(iz)=¢ +9(2) and V(z) = e ie(®)
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3.4 FERMIONIC CONSTRUCTION OF THE CORRELATION FUNCTIONS ON Z,

SYMMETRIC SURFACES

The Green functions of b-c systems with conformal weight j obtained with
bosonization can be compared with their analogs constructed by means of the
fermionic construction of ref. [Fer2, Fer4]. Let us apply this method in the case of
the surfaces X(g,n,m,0). it is known from refs. [Ver,Bon] that the green functions
Gj1-j(z,w) are determined by their poles and zeros when z, w approach the coor-
dinates z; in which the zero modes are located. Moreover the pole at z = w should

have residue equal to 1. Therefore (5 > 1):

Qulz)  u(z) ... On(2)
Qw(zl) Q]_(Zl) e QN(ZI)
det : : :
S _ Qw(-?fN) Qi(zn) ... On(zN)
Gii-i(z,w) = RN (4.1).

Ineq. (4.1) N = (25 —1)(g — 1), Q(2)dz?, (i = 1,...,n) are the zero modes deter-
mined as in the previous section and Q,,(z)dz’ is a tensor satisfying the following

equation on X:

00, (2) = §(z,w) (4.2).

In the case of j = 1,which we do not discuss, there exist an analogous expréésion
with a third kind differential at the place of Q,(z)dz? [Ver]. The only unknown
quantity of eq. (4.1) is the meromor;')hic j-differential Q,,(z)dz?. To compute
it explicitly, we assign to the sheet I, (I = 0,...,n — 1), the branch y{)(z) =

e {‘/(z —¢1)...(z — ¢mn. Hence the differential:

T (0(2) - ety (w)
G o

exhibits a first order pole with residue 1 at the projection of the point z = w

Gw(z)dz =

a =1

3=

on the | — th sheet. Besides this, G, (z) has also n spurious poles at the points
zZ = 003 ...00,-1 due to the fact that g, (z)dz ~ (—z—dj’;—ﬁ near infinity. These extra
singularities cancel in the final expression of Q,,(z)dz? which is:

Qu(2)dz? = %H:;—ll y(2) = eiyD(w) [y( dz ]j [y( dw r—j (43).

(= w) 977 Ly(wy
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Moreover all the singularities in w occur when w = co and come out from terms of
the kind f(w)Q(z), where f(w) is a meromorphic function in w and Q(z) a linear
combination of the holomorphic j-differentials. Obviously these terms automatically

drop out from the Green functions of eq. (4.1).

3.5 BOSONIZATION IN THE CASE OF ALGEBRAIC SURFACES

WITH NON ABELIAN MONODROMY GROUP

The fermionic construction method discussed in the previous section can be
generalized to arbitrary algebraic surfaces [Fer3]. The natural question arises, if it
is possible to extend also the "bosonized” version which makes use of the twist fields
to more general surfaces. The answer is yes in the examples we have worked out.
In fact from the Green functions computed by means of fermionic construction,
we can compute the mean value of the stress energy tensor and of the current
J(z) =: b(z)c(z) :. From all the examples worked out, (see e.g. [Fer2] and below),
looking at the pole structure of the stress energy tensor and of the current J(z) at
the branch points, it turns out that the branch points are sources of stress energy
an(% have a well defined conformal weight. In particular relation (1.12a) seems
to hold. Therefore we can imagine also on a general surface a basis of fields b},
¢k, singlevalued on C'P; and a set of twist fields V(a;) which simulate the branch
points. The OPE of &', ¢’ with V(a;) will be involved, but in a neighborhood of
the branch points becomes as in eqs. (1.15)-(1.15a). The charges gk, g, can be

n

considered as ” asymptotic charges”. Moreover the geometrical method outlined

at the end of section two to find the basis ¢ is also true because we did not use
any peculiar property of the Z, symmetric curves to proof it. The demonstration
that given a certain behavior of the multivalued fields b, and' ¢, at the branch
points there is a j-differential with the same behavior and conversely still holds in
the general case. So we can find the j-differentials ¥, (and the 1 — j differentials
1) )regular at the branch points and with the smallest possible degree of zeros at

these points. They are related to a "natural” basis of singlevalued fields b} and c}.
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Of course this basis does not simultaneously diagonalize the monodromy matrices
because requirement A no longer holds. The behavior of these differentials at the
branch points is again the behavior of the Green functions themselves. Nevertheless
the outlined picture entails that b-c systems on higher genus Riemann surfaces are
equivalent to (indeed involved) conformel field theories on the plane. In particular
the Green functions of the former correspond to multipoint correlation functions
of the former (eq. (1.16)). The twist fields can be imagined as insertions of spin
fields localized at the branch points. Hence we can say that the behavior of the 9
(1)) at these points is nothing but the result of the OPE between the twist fields
nd the b}, (c'). The only difference from the case of Z, symmetric surfaces is that
now the j-differentials ¢, are no longer of the simple form (2.1). In fact a general
j-differential is always of the form ¥dz/ = R(z,y(z))dz?, with R(z,y(z)) a rational
function in the variables z and y. R involves in general nested roots from which it
is difficult to extract the informations like the asymptotic behavior near a branch
point. Therefore to read the asymptotic charges gk, §; from the j—djﬁ'erentialé we

need the following integral expression of a general functions R(z,y) [Mum]:

z g
R(z,y(z)) = ezp / ) wag + ) mjw; (5.1).
i j=1

Here w; denotes a basis of holomorphic differentials and w,,q, is a meromorphic
differential with first order poles at z; and g;. z; and g; turns out to be the zeros

and the poles of R respectively. Finally the m’s are numbers determined by the

condition:

g
dit ¥ w4, + ) mjw; =0 k=1,...,9 (5.2)
$at S wn + Y mi,

; i=1

over all the homology cycles of the kind A (fig. 1.7). Now the points z;, ¢; in
the case of the j-differentials are branch points or infinity points. In eq. (5.1) the
behavior of R at each of these points is transparent. Since [ w;; 4 ~ pilog(z —
z;) —vilog(z — g;) + ... it is also possible to obtain easily an expansion of R(z,y) in
their neighborhood. Let us illustrate the procedure with a simple example provided

by the surface associated to the multivalued function:

y= a1 o0 (53,
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p(2) is a polynomial of degree 6 and ¢(z) has degree less than three. The algebraic
equation satisfied by y is:

y° —2¢(z)y° + ¢*(2) — p(z) = 0.

The branch points are the six zeros of p(z) i, (i = 1,...,6), for which ¥® = ¢(z)
and the zeros of y ¢;, ( = 1,...,6) which occur when ¢?(z) = p(z). The Riemann
representation of this surface in terms of sheets is shown in fig. (1.18). In this figure
we have denoted with p;, Pk, p! the projections on the sheets of the branch points

a;. The surfaces of fig. (1.18) has genus 10. The monodromy matrices are:

0 0 01 00O 1 000 0O
0 0 0 010 0 1 0 0 0O
01 0 0 01 0 01 0 0O
Me; = 1 0 0 0 0O Mg, = 60 00 0 0 1
01 01 00O 0 0 01 00O
0 01 010 0 00 010

and do not commute. A basis of holomorphic differentials is:

i dz .
wi jdz = —— 7=0,1,2,3
p(z)y?
»1dz
LUon~Z ~d~ ]'—_0,1,2
p(2)y
23dz
w3z jdz = 7=0,1
p(z
dz

wadz =

with
div(dz) = P1...DsP; ...pgp'l’...pg'qf...qg.

2 2
o007 ... Qg

The j-differentials 1 with minimal zeros at branch points are given by:
¢0d2’ = wl,odz 3 ¢1dz == wg,gdz
Padz = w3 odz ; Podz = wyedz

Yy = — ;5 s =dz
Y

We need also the functions v} corresponding to the fields ¢}. In fact in the non
abelian case the general expression of the twist field is not known. It is just pos-

sible, through the j-differentials, to guess the OPE of the twist fields with the
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b,. Nevertheless also the fields ¢} enter in the computation of the Green functions
and therefore we must know also their OPE with the twist flelds. The %' are the

following functions:

b =1,%1 =y, ¥y =%, %5 = /P, ¥y = /Py, ¥5 = \/Py’. As we see, even
in this simple example it is not easy to find the behavior of ¢, and %} at branch
points because y = /g + ,/p. Therefore we use the representation of eq. (5.1). It
.is just sufficient to express in this way p(z) and y. First of all we need the third
kind differentials at the branch points. It is possible to show that:

Wy ,001...006 —

has exactly a pole of first order and residue +1 at p; and a pole of first order and

residue —% at the projections of z = co on the various sheets. Analogous expressions

are valid for p} and p!' substituting a{/q(a;) and o? {/q(a;) to ¥/q(a;). As well we

can write the third kind differentials at the points ¢;:

g+ +/(p(z) —2q(q:) dz _
(z—a) /p2)

Again wy; has a pole of first order with residue +1 at ¢; and a pole of first _grder

1
We;,001...006 = _é

with residue % at c0;...00q. Therefore we can write:

z g
p(z) = ewp/ dt | D (@psr00y.c0q + (Pi 2 PE) + (pi = pY) + > mjw; | =
i=1

1

(5.4)

1

B : (q(t) + /p(t) — g(es) 1 ~
._ea:p/ dt Z ' a \/(P(t)—}—j:Zl jYj

and:

1~ q;

oy [ | VD20 1 S .
y(z)_emp/ y Z \/(p(t)Jr; ij(t) (5.4a).

m and m' depend on the branch points. Using eqs. (5.4) and (5.4a) we can study

the behavior of ¥, near the branch points. For example:

Po =
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ezpf‘ dt _% Z (a(t)+/plti—ala;) 1 1 Z (a(t)++/p{t)~2q(a3) 1
1 3

g
1 - mi 2m Yw;
teay N t—qq Vip(t) j=1( - +2mj)w; (1)
(5.5)
The equation above, when z approaches a branch point a, yields the OPE b with the

twist field V(a). As a matter of fact, studying the third kind differentials appearing

in the exponent of ¢, we can compute the asymptotic charges which are:

Yo ~ (z — a;)d=ie with Ja, = —

[N

) L —2 4t the sheets 3,4,5
~ — {4 9a;,0 th : = 3 “ 0y
o (Z 9) we 94,0 {0 at the sheets 0,1,2

Analogously we find:

. 1 . —% at the sheets 3,4,5
Qo1 = —35 9¢:,1 =
0 at the sheets 0,1,2

do; 2 =-3 dgi2 =0

- ~0 s —% at the sheets 3,4,5 .
Toir Ta: .8 0 at the sheets 0,1,2

- -0 - —% at the sheets 3,4,5
Tociyt Tai,8 0 at the sheets 0,1,2

o5 = 0 g;n =0
As can be expected, the charges §; are dependent from the sheets in the non abelian
case. In fact, according to [BR3], in this case the charges are matrices g = gx(l)
depending also on the various different projections of the branch points on the

sheets. Following [BR3], the Riemann Roch theorem is now given by:

Mh.p.
Ny—Ne= > (1-25)= > trg:x(l) (5.6)
sheets =1
where:
0 0 0 -2 -z _:2 1 —1
S SR SR 2 :
0 0 0 3 3 3 0
N 000 0 O . -1 -2
Qq;,k(l): 0 0 0 _2 2 _2 Qa;,k(z): 02 02
3
000 -1 -1 1 -3 -3
0 0 0 0O 0 0 0 0

Putting these matrices on eq. (5.6) we get Ny — N, = 9 as expected. Moreover we

know also for which values of k& the zero modes of the fields by, and c’k occur. In fact
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from the definition of 1% and 7}, we see that there are 4 zero modes in by, 3in b}, 2
in b}, 1in b} and. 1in c. Finally we test our hypothesis that the ¥ and %} provide
the OPE of the fields with the twist fields. Of course in this non abelian case we
do not know the OPE between the twist fields themselves, but it is still possible to
compute the Green functions using the "bosonization” rules induced by %y, ¥}, in
eq. (2.16). The nonvanishing Green functions are:
6 6
< br(2)er(w)(zero modes)kig1 Vie:) IT V(g:) >

=1

Grr(z,w) =

6

< (zero modes)y ljl Vi(e) [T Vig) >

=1
Let us compute for example Goo(z,w). In this case there are four zero modes by (z;),
(7 =1,...,4), so we have:
6
< bo(z)co(w)bo(z1) - .- bo(zs) [T V(eui) H Vig) >
i=1

=1

Goo(z,w) =

< bg(zl) - b0(24) Ijl V(&i) igl V(Q{) >

From eq. (4.5) and considering the fact that 1} is exactly the inverse of 1, we see

that:
Goo(z,w) = dz  +/p(w)y*(w) (z —z1)...(z — za) .
SR A= T 5 N CTRP) O CPmey

Analogously we obtain all the other Green functions. From eq. (1.16) they are :j:ust

determined by the finiteness at z,w = co and their poles at the locations of the
zero modes. Finally the residue at the pole z = w should be 1. Let us now recover
the Riemann Roch theorem from the residues of the conserved charges Ji(z) at the

branch points:

1
< Ji(z) >= lim Gre(z,w) — P

For example

-um»~£wwwﬂm+z 1

— z — z
f b

Substituting the expression of 4/p(z)y%(z) in terms of third kind differentials (egs.
(5.4) and (5.4a)) we get:

q +‘\/ "_qaz
< Jo(z Z z—al) _. dz—
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3Zq )+ +/p(2) — 2q¢(ai) d“‘*”z dz

(z - qz) p(z) w= z_.,
The contribution to the residues at branch points depends now also on the sheet [.

Summing these contributions over all the sheets we have:

1
Jo(z)>~——z (z — oy 32 (z — qi) Z

—~ W — z;
F J

Therefore:
Npy — Ney = 7[ < Jo(z) > dz = -1
. C

Here C'is a contour enclosing all the singularities of < Jo(z) >. This result can be
expected from the charge conservation for the fields by, ¢j.In fact from conformal
field theory we know that all amplitudes in which the inserted operators do not
annihilate the charge (1 — 2j) vanish. This confirms eq. (5.6) at least on this
particular class of Riemann surfaces provided by eq. (5.3) and j = 1. Moreover
we can now use the knowledge of the Green functions Ggr(z,w) to derive the usual
Green functions. The latter are a linear combination of the former as is shown in
ref [BR3]. The coefficients are chosen in such a way that the residue at the pole
z = w is the unity. The result, imiting ourselves just to the part independent on
the zero modes which is the relevant contribution to the vacuum expectation value

of the stress energy tensor, is:
Gl,g(z,w) =
d: (VA | eluw) | VA | vl )
6(z —w) \ /p(2)y(2) p(z)y(z)  /p(z)  ¥(z)? u(2)
As we can see, this is a third kind differential with a pole in z — w. The sheets in

which this pole occurs depends on the branches of y(w) and 1/p(w) we have chosen.

Egs. (5.5) and (5.6) are in agreement with ref.[BR3]. Let us recall that in this paper
analogs of our j-differentials ¥ and v} are defined through a system of differential

equations: .
g,
qan
¢L Z p—— (5.7)
d qaj,k(l)
g i) = =) (53)



Here we denote with «; the branch points of a general surface (s = 1,...,7n4.p.). Sim-
ilar equations define also the 1},. The charges gq,,x(!) should satisfy the Schlesinger
equation [STM] in order that eqs.(5.7) and (5.8) are compatible. Our method relates
the zeros of the j-differentials ¥ and 9}, at Abranch points to physical considerations
on the total energy of the left state [0 > = V(ay)... V(an,.,. |0 > of the Green func-
tions of eq. (1.16). This allows an explicit computation of the j-differentials ¥ and
¥). In this way we get also the OPE of the related fields b, and c}, with the twist
fields. From this it is possible to find the asymptotic charges §o, x(I). Finally using
the OPE between fields and twist fields we are able to express the Green functions
in the bosonized form. For the case 7 > 1 we proceed in an analogous way. The
new vy are those of j = 1 multiplied by the factor 477 p this way the

(Vp(2)y?)i=-1)’

zeros at branch points are kept to a minimal degree. Since:

5 5
1 07 ... 00

d'I:'U =
p(z)y?)  P1-.-PePy---PEPY---PEGE - 4§

and

div( X2V c(zzm
A

the 9} are obtained multiplying the 1} of the case j = 0 with the factor:

) = o0l ...008

dzt—7
(v/p(2)y?)*—7)

. Again we verify that the asymptotic charges satisfy the condition: §x = —g,. The

charges gy are simply those of 7 = 1 shifted by a constant term:

2 2(7-1 2(7—-1
000 -3 2, 2 27D
2(j-1) 2(j—1) 1 2(j-1)
000 —jomn pown o
G k(1) = 0 0 0 _2(j-1) _2(13‘"1) _2(J3—1)
" 2 _ 2(4-1) 2 2(j-1) 2 2(5-1)
o _.3_2(1'31) _5_;'3_1: —§_z<1'31)
0 0 0 —3— == —FT TR TiT T
0 0 O _2(13—1) _—-(.13—1) __2(13—1)
1 (-1) 1 -1
2 2 2 2
-1 _ -1
2 2
_1 -y 1 G-
= _ 3 3
Gac() = | 2 (54§ e
1 G- 1 -1
2 2 2 2
_G-1) _(-1)
2 2

(@)
(am]



The Riemann Roch theorem stated in the form of eq. (5.6) is again verified. All
the above analysis can be extended in a straightforward way to classes of Riemann

surfaces associated to the multivalued functions:

y= 1/¢g+ ¥/p

We believe that it is valid for all the simple surfaces of standard textbook of complex
analysis for which we can compute the third kind differentials at branch points.
Besides b-c¢ systems on higher genus surfaces examples of applications are the non-
abelian orbifolds. Also it should be possible to study the bosonization on a general

surface of genus three generated by the multivalued function:

Y= \3/q+\/q2+p3+{/;— V¢ +p.

However in this case the two members of the RHS represent a degenerate curve with
singular branch point [For|. These singularities cancel in a subtle way when we put
the two terms together and the behavior of fields on this surface is very complicated.
For example [Fer2] in the expansion of < T(z) > powers of the kind (z — c;)7*/3
occur in some of the sheets. Of course these pieces cancel after summation over
all the sheets but it seems anyway that one cannot use blindly in this case the
techniques here exposed or those of ref. [BR3]. The same problems exist when we
have to bosonize fermionic fields. In fact as we will show, in this case the twist fields
are defined on a non-branched covering of the surface detemined by the monodromy
properties of the fields. Again this covering has a complicated equation in terms
of the branch point of the starting surface for which it is not simple even to find
the way in which the sheets are joined. Moreover in this case we need to find the
quadratic divisors corresponding to the %-diﬁerentials v and this can be done just
solving an algebraic equation of degree 2971(29 + 1) [Sta]. In the following we will
introduce the example of the surfaces of [GM]. Besides to have a physical application
in the computation of high energy superstring amplitudes, they also provide a good

laboratory to study spin structures on non-hyperelliptic surfaces.
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CHAPTER 4
TWISTED BOSONS AND FERMIONS ON ALGEBRAIC SURFACES

4.1 TWISTED BOSONS AND FERMIONS
In this section we consider the Riemann surface ¥ divided into a set of local
patches {U,} with a local system of coordinates z,. An example of local covering
{Us} is shown in fig. (1.16). Generalizations to arbitrary Riemann surfaces are
straightforward. The analytic local tensor fields Odq(z4) of conformal weight ; are
related at U, |J Ug by the holomorphic transition functions gqug:

ba(za) = gapdp(zs) (1.1).

The fields discussed in the previous section have for example transition fuctions:

dzg J
gap = (dz >

defining the complex line bundle K7 [GH], where K denotes the canonical line

bundle. In this case da(zs)dz7 is called a trivialization of K7. The chiral operator
0; is the holomorphic connection on K7. This becomes clear if we think to the b-c
fields as the left and right components of a free massless dirac field ¥ coupled with
an external gauge field 4, (¢ = 1,2) and with the action [AMV]:

S= /edgz@7°eg(ﬁ# +A,)T (1.2).

Here e'g‘ is the usual zweibein and 8, = 0, + 10,. Moreover the field strength of
A, is zero. Since the fields are massless, the Dirac equation for ¥ splits into two

equations for left and right movers:

and with



The classical solutions are:

b = by exp/ Az dzZ' = ¢ exp/ A, dz! (1.4)

with 8by = Hcy. The action of eq. (1.2) represents a gauge theory with U(1) group
of transfomations. Eqgs. (1.3) induce a complex structure on the line bundle K7
(and K177 for c-fields). Therefore the fields b and ¢ of eq. (1.4) admit also a

holomorphic representation. In this case a gauge tranformation 4, — A, — Oup

and

T — oJ oy

corresponds to a local change of coordinates z, — z, on the open sets U,. The
trivializations ¢o(z4) and the gauge field respectively transform in the following
way:

¢a(za) - gaa'qﬁa'(z('z) . (15)
and

A, (zo) = A;a(z;) — d(loggaar) (1.6).

Egs. (1.4) and (1.5) describe the same gauge group of transformations. In the first
case the fields are not holomorphic because ¥ has the structure of a R? manifold.
The two representations are nevertheless related apart from a gauge transformation.

In fact from eq. (1.4) a gauge transformation acting on the fields is given by:

(Pr1,P:)
¥ — U(P)¥ = exp/ A,dP,T (1.7)
(Po,1,Po.2)

where A, is constructed in terms of the properly normalized harmonic differentials

a;and B35, (1 =1,...,9):

g g
A=2mi) 6a;—2mi ) $'4; (1.8).
1 1

In the usual b-c systems the only allowed gauge transformations are those in which
§°,¢* € Z. If this condition is not true ¥ gets twisted boundary conditions along
the nontrivial homology cycles. Now we are interested in the case in which 6t ¢

are general. Accordingly U(P) becomes a multivalued function. Expressing the
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harmonic forms «;, f; in terms of holomorphic and anti-holomorphic abelian differ-

entials we get:

Az = 2miag(T — T);jle(z)

~ where g = 8* 4+ Tyr. We can give at this point a holomorphic representation of

b(z) = bo(z)e:z:p/ Az dZ

replacing the exponential with a theta function having the same transformation
properties along the homology cycles.

From now on we will consider just holomorphic trivializations of b-c fields. A
general U(1) gauge transformation (1.5), (1.6) implies that a section b € K7 moves
to a section b’ belonging to the line bundle Ly = K7 ® LY with:

_ [ 6 ...8, ]
brovidy ]|
Here LY is an holomorphic line bundle of degree 0. In fact the sections of L3are just

multivalued functions f3(z) which can be expressed in terms of theta functions.For

example we can write:

olal(=)
12 = g1y

Following [BR2] we impose the unitarity of the monodromy factors of fz(z). This
means that the changes of the branches of fz(z) when a non-trivial cycle v is crossed

are of the kind:

fa(z) = ™M £ (2)

with ¢(v) a real number. The sections of L; are therefore b-c fields belonging to
K7 multiplied by a multivalued function. Their monodromy properties along the

boundary values are therefore changed and become:
b(z) — 2™ (Mp(z)  ¢(z) — 2™ Ve(2) (1.9).

In the next section we restrict ourselves to the case in which ¢(y) are rational
numbers of the kind: ¢(v) = p/n. These spin structures will be called throughout

Z, spin structures.
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Finally let us discuss the spin statistics of b-c systems. When j is an integer
they are ghost, i.e bosons with the wrong statistics. In the case of twisted boundary
conditions (Lg # K7) we call them twisted bosons. When 7 is half-integer we have
the usual fermions defined on the line bundle K}.E, where R now denotes a reference
spin structure. A remarkable exception is constituted by the 5 —~ ghosts related to
supersymmetric transformations in superstring theories. In fact they are commuting
fermions. This makes the bosonization rules more complicated [Ver].

In the case of hyperelliptic curves the bosonization of the 8 —- system is studied
in [CS,La]: A

B =1i:0¢e? ; v =:ne Pk

It is possible to show again that the branch points retain a definite conformal

dimension given by the stress energy tensor:

T = =3 Bx0vx + (1 — 7)(0Bk )1

Moreover the fields 7 and ¢, of conformal dimension 0 and 1 respectively, can interact
with spin fields producing spurious poles in the correlation functions[Ver|. Since the
twist fields of eq. (1.13) are spin fields, such extra poles are likely to occur on more
general surfaces then the hyperelliptic ones. To conclude this discussion on 8 — v
systems, let us recal that the % differentials do not represent the zero modes of the 5%
operator acting on the ghosts 8 and v. They corfespond instead to anticommuting
fields of the same conformal dimension. This becomes evident when we use the
prescription of eq. (1.17) of chapter 3 to compute the chiral determinant. The
dependence on the zero modes of the numerator does not cancel with that of the
denominator if we use det|w,(z,)| contructed in terms of %-diﬂ'erentia.ls. In order to
obtain the correct result We have to impose the different statistics by hand taking

the inverse of such determinant in the definition of egs. (1.16) and (1.17) of chapter
3.

4.2 Zn, SYMMETRIC SPIN STRUCTURES on Z, SURFACES
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According to the previous section, we want to construct twisted bosoﬁs and
fermions deriving the multivalued functions fz(z) € L%. The strategy consists in
constructing meromorphic functions single-valued on ¥ and with zeros and poles
of order m. Acting on them with the monodromy operators, they pick up trivial
phases of the kind 2™k and e2™ili, (: =1,...,9), along the homology cycles 4;
and B; respectively. It is clear that when we take the m-th root of these functions

we get the so called root functions [see Sta, Krz] which are section of Ly with:

L
m

i

21
i

n

3o

Looking at eq. (1.1) of the previous chapter we see that the meromorphic functions
(z — aj), (z — b;) and (z — ¢;) have zeros of order n at branch points. Thus their
n-th roots are indeed root functions corresponding to Z, spin structures apart from
the fact that the poles at infinity generate extra branches at z = co. We can get

rid of this shortcoming multiplying them together in order to cancel these spuridus

branches:
Th.p. '
fa(z) =} H (z — oy, )3 ij = mn, m integer (2.1)
k=1 k
with {@;,7=1,...,n,} denoting the set of branch points of the surface. The root

functions obtained in this way correspond to ratios of theta functions as discussed
above. Since the branch points are also Weierstrass points on Z, symmetric curves,
(this needs not to be true on general algebraic surfaces), the theta functions involved
will be very special. It is natural to consider firstly the subset of Z,, spin structures
associated with root functions with zeros at branch points. We will call them Z,
symmetric spin structures for reasons which will be clear below. This strategy
has been applied for the first time in [BR2]. We start to notice here that the Z,
symmetric surfaces look very different from the other surfaces with n > 2. In fact
in the first case there are 2g + 2 root functions \/z — o; corresponding to some of
the 229 Z, spin structures. Now let us recall that the periods of Z, spin structures
form a group of n?9 elements. The special feature of the Z, symmetric surfaces lies
in the fact that Using the 2g + 2 root functions /z — a; we can generate all the

229 elements of the group. This does not happen in all the other surfaces, partly
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because the number of root functions in this case is always less than 2g + 2, partly
because the number of the elements of the group is much bigger.

The second step is to catalogue all the possible b-c systems with Z,, spin struc-
tures realized in this way. In order to do this we use the elements of the Cech
cohomology group fIl(E, Zm) (see chapter 1). They give the transition functions
Nap of the line bundle LY. Obviously in the case of fermions they represent just
" differences” of spin structures [ABMN] because we do not know the reference spin
structure R. Strictly speaking the n,s are transition functions of twisted bosons
only and therefore we will consider here just twisted bosons. Afterward we will
extend the discussion to fermions. The word spin structures is an abuse in the
case of twisted bosons. It is better to use the denomination Z, twisted character-
istics or Z, twisted boundary conditions. Let us consider, to fix ideas, the surface
2(1,3,1,0) in fig. (1.16) and Z; twisted characteristics on it. For the general Zs
surface the generalization is straightforward because, form the cuts of fig. (1.1), it
is evident that they are roughly builded from a basic cell ¥(1,3,1,0) repeated m
times. Analogous is the case of rational surfaces with ¢ # 0. Moreover the cases
with general n, apart from n = 2, do not introduce any new remarkable case. From
table 1 we can read the solutions of eq. (3.4) of chapter one corresponding to the
various twisted boundary conditions. (They are referred to the system of homology
cycles given by fig (1.19). Now we can transport the fields b-c along all possible

cycles enclosing two or more points. Soon one realizes that for the characteristics:

the phases which the fields take along the cycles do not depend on the sheets. In
other words, the phases which the fields undergo over two cycles obtained shifting
one of them by one sheet (fig 1.20) are identical. This means that the three-fold
covering of (1, 3,1,0) corresponding to the characteristics of eq. (2.2) retains the
Z3 symmetry of the surface. There are no other characteristics except those in eq.
(2.2) for which this is true. For example if we repeat the above procedure for Z,
twisted boundary conditions or for the remnants Z3 twisted boundary conditions, we

see immediately that they do not conserve the Z; symmetry of ¥.. The same analysis
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shows that for the rational surface £(2,3,0,2), just the following characteristics are

Z3 symmetric:

- &1

- (2 3= 1 )

= [3a alee=[afa o)

Finally on hyperelliptic curves all Z, characteristics respect the Z, symmetry of the

(2.3).

21

curve. Therefore we can conclude that on Z, symmetric surfaces there is a subset
of Z, symmetric characteristics (apart for n = 2 in which we have the whole set),
whose representatives j-differentials, sections of the line bundle Lz, are expressed
in terms of the root functions of eq. (2.1). This descends also from Abel theorem
[Fay,GM]. On a Z, surface the branch points «, «; are such that under the Abel

map:
I[D]::n/awaO (2.4).

They correspond therefore to Z, periods in the Jacobi variety (see appendix B)
related to Z, characteristics. Actually the analysis using the Cech cohomology
provides more informations than Abel theorem. First of all it tells us that it is not
possible to express general Z,, characteristics (or spin structures) on Z, surfages
in terms of the twist fields of eq. (1.13)-chapter 3. In fact the m-fold non ramjﬁed
covering is no more Z,, symmetric and the phases taken by b-c fields on cycles ﬁke
those in fig. (1.20) are different. This implies that, as for the surface of eqs. (4.3)-
chapter 1 and (5.3)-chapter 3, the asymptotic charges g; » of the twist fields depend
on the sheets and are matrices. Secondly the Cech cohomology method allows to
find the monodromy group of the m-fold covering, solving a problem posed in ref.
[BR2].

Let us consider a cycle v(e; ...a!) enclosing s branch points @;...c, and
starting on the sheets [. The branch points ai,...,a, are encircled by the cycle
V1,...,Vs times respectively. The phases by which the fields are multiplied when
transported around v are denoted by ¢(7(a;...a!)). The monodromy matrices

associated with the cycle v satisfy therefore the following equations:

(M- M2 M2 )y = fiemr el (25).
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Now from the transition functions nes € El(z, Zm), we know all the phases ¢ for
any < and therefore we are able to provide enough equations as (2.5) in order to
derive the monodromy matrices at each branch point of ¥. As an example let us
consider %(1,3,1,0) with the Riemann representation of fig. (1.16). Again these
techniques are generalizable to all Z, symmetric surfaces and eved to arbitrary
algebraic surfaces paing the price of ackward calculations. For each of the spin
structures of table 1, we compute the phases corresponding to the all possible cy-
cles enclosing just the branch points. Thi is enough to compute the monodromy

matrices. The twisted characteristic 2; of eq. (2.2) yields for example the following

matrices:
0 0 « 0 0 1 0 0 a?
M=« 0 0 M,=1{1 0 0 M., = a’> 0 0
0 o 0 0 1 0 0 &> 0
(a = ez%r_:')‘ while for u, we have:
0 0 &2 0 0 1 0 0 «
M., =1{ca" 0 0 M,=11 00 M,=1]a 0 O
0 2.0 g0 1 0 0 a O

As we see, in both cases property A of chapter 3 holds also for those monodromy
matrices which, in a certain sense, describe 3-coverings of X. They are therefore
simultaneously diagonalizable and we expect that the bosonization with the twist
fields of eq. (1.13)-chapter 3 is possible. Instead the remaining Z; characteristics
and the Z, twisted boundary conditions produce matrices which do not satisfy
property A (see table 2) and the standard method of twist fields is no longer valid
for them. One can see that these monodromy matrices form non abelian groups, Dy
for the Z3 characteristics and Dg for the Zs characteristics. A treatment of these
characteristics can be done using the methods of section 5-chapter 3. Nevertheless
a further complication is introduced by the fact that for twisted bosons we need
an algorithm to find the j-differentials <. This is possible, as we will see, but it
requires the solution of a polynomial of order n?9 [Sta] which is, in the language of

branch points, the analogous of the Jacobi inversion problem.

Z. twisted fermilons
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Here we consider half-integer 7. Some of the root functions of eq. (2.1), com-
bined with the differentials d=%7 (2j even) yield 2j-differentials with quadratic di-
visors as required in section 3.2. They should correspond therefore to fermionic
fields with Z,, symmetric spin structures after taking their root. With this respect
the Z, symmetric surfaces have a different behavior if n is odd or even. In the
first case n = 3,5,... we have 2j-differentials corresponding to some Z, symmetric
twisted boundary condition. When we take its square root we get a 7 differential
which, apart the reference spin structure R, corresponds to a Z, spin structure
again. This is because in this case Z2 = Z,, where Z2 is a shorthand to indicate
the group G = {1%2,02,...,a** Y]a™ = 1}. As an example let us consider on a

general Z3 surface the 25 differential:

P? = <3_6i> dz.
z—cj

(see eq. (1.1) of chapter 3 for the notation). Going around the homology cycles,

Wi

some of them will encircle the branch points ¢; and ¢; and the differential becomes
multiplied by a phase of the kind ¢ = 2%72/3. Since the divisor of dz on a Z;
symmetric surface is already quadratic, it is not possible to have phases of the
form: ¢ = 27i1/3 because they would correspond to factors like (z — ci)% which
are no longer perfect squares on the surface. Taking the square root of ¥ we get
. therefore always Z3; boundary conditions along the homology cycles. Conversely
this is not true for curves with n even. In this case the Z, twisted characteristics
become Z,, spin structures because now Z2 = Z,,,. Since in the case of even n the
group of the characteristics is enlarged, this phenomenon should be reflected in the
local properties of the fields. As a matter of fact going to the local uniformizer in

the neighborhood of a branch point @ and acting on the fields with the monodromy

matrix n times we have:

M7 e0(z) = £410(2).

The minus sign is valid for odd n and allows to enlarge the group of spin structures
from Z, to Z3,. Looking at the expression of a j-differential as in eq. (2.1) of

chapter 3, we see that the condition that it corresponds to the square root of a
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2j-differential is equivalent to the following linear system of equations [Ferl]:

nvi+n—1

= = integer
TR o nteger
ﬁ‘%’_‘;‘l = integer (26)

)

Dovit Y (pitks)

3 = integer
Substituting the solutions of this system of equations in eq. (2.1) of chapter 3
we can construct the faithful j-differentials 9, and from these the charges gi are
derived via the procedure explained before.

Finally we have to notice that to perform the square root of a 2j-differential
is not so simple. In fact we have to determine the changes of signs when /% crosses

the homology cycles. If we do not do this we get an absurd. For example let us

consider the hyperelliptic curve ¥(1,2,1,0) of genus 1. On this surface we have just

an holomorphic differential w = 5iy—z. Its square root should correspond to the only
odd spin structure [2]. However if we transport it naively along the homology cycles
we discover that it changes the sign on both the cycles a and b. This shortcoming is
of course not important in string theories where in general summation on the even

spin structures is considered.

4.3 APPLICATIONS TO TWISTED BOSONS AND FERMIONS

A)X(g,3,m,0)

We use the system of cuts of fig (1.2). The solutions of eq. (2.6) correspond
to twisted bosons with Z; symmetric boundary conditions. Their square root are
j-differentials corresponding to fermionic fields. In order to keep the notation as
simple as possible, we refer to the Riemann surface £(1,3,1,0) but the formalism
is easily generalized to all other cases. Using triangulation we find the two cycles

A and B which, in the notation of section (1.2), assume the form:

-1 1 0 01 0
A= 0 0 0], B=-|10 0
0 0 0 01 0
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The minus sign in the definition of the B cycle provides the correct intersection
numbers for this homology basis. There are three solutions to eq. (2.6), the first of

them is the {1/2] odd spin structure. The remaining two are:

1/2

(V1,V2,V3) - (“1/3,“2/3,0)

(v1,v2,v3) = (0,—2/3,-1/3).

[

They correspond to the divisors D; = , D2 = 2+ and do not admit any holo-

2

x]

morphic section. In the general case of ¥(g,3,m,0) we can always manipulate the
2j-differentials using the method of [Lew] in such a way that their quadratic divisor
is composed of b.p. only and has a double pole in ca. The square root is a faithful
j-differential defined only up to a sign. Nevertheless the Z, boundary conditions
are privileged on Z, surfaces and it is possible to know to which characteristic a
j-differential ¢ belongs together with its reference spin structure. Its divisor will

be given by:
div(vy) = Sarrfy oy #1,...9 enskip; 1 =1,...,3m.

ciy,

We relate 1 to its analogous constructed in terms of theta functions [Fay]:

g = S (3.1)

€iy,

where [3] is the spin structure corresponding to the divisor of 4, [v] is an arbitrary

odd spin structure and n,(z) is the holomorphic 1/2-differential corresponding to

7. Using Riemann theorem it is easy to see that if the zeros of 14 are Ciyyer+sCig
then:
ci
g ' ~
B=>" / G-K (3.2)
m=1

In eq. (3.2) K is the vector of Riemann constants and [ is the half period

corresponding to the characteristic [3]. It is easy to show that the integrals in the
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RHS, whose extrema are branch points, correspond to Z3 characteristics. In fact,

turning to our example £(1,3,1,0) the periods are given by:

foroafle s fomuwmi [

A B
Hence:
2 w+ja§w=3/'w (3.3).
A B “
. ... 12/3
and the divisor D; correspond to the characteristic /3" Analogously we can
. .. 11/3 .
infer that D, correspond to the characteristic 2/3 " From eq. (3.1) it turns out

2/3
1/3

period of the Riemann constant K is always a Z, characteristics on %(g,3,m,0).

(considering D; that [8] = [ ] + [K]. The characteristic [K] associated to the
When g = 1 this is clear because K = 211;—'—1, T being the period matrix. In the
other cases we use as basepoint of K a branch point and the fact [FK] that —2K is
the image of the divisor of a meromorphic differential under the Abel map. Since
on X(g,3,m,0) an holomorphic differential with a single zero of degree 6m — 6 at
one of the branch points always exist, we can take this as basepoint and conclude
that —2K is equivalent to the trivial period and consequently that K correspond
to an half period. From this analysis it follows that the characteristics of the
faithful j-differentials which are square roots of bosons with Z; symmetric boundary
conditions correspond to Zs characteristics; in particular the branch points do not
form any partition as happens in the case of the hyperelliptic surface {Fay]. Moreover
in the case discussed above the choice of the spin structure related with the period

K as the reference spin structure seems to be natural.
B) E(g7 3’ O) Q)

A system of cuts is provided in fig 1.2 . As before it is convenient to fix a

particular case, for example £(2,3,0,2) with equation:




The projection of this curve, viewed on CP,, over the z axis is an hyperelliptic

curve. Due to this fact y has an additional Z, symmetry. With respect to the

system of cuts in fig. (1.2) the homology cycles are:

11 00 0 0 0 O
Air=10 0 0 0} A2=|0 0 0 O
0 0 0O 0 01 1
01 10 0 0 0 O
B,={0 00 0} B=|011 0
0 0 0 O 0 0 0 O
There are four solutions to eq. (2.6) given by:

(p1,p2,v1,122) =(0,1/3,1/3,1/3).

The symbol = here means that the four solutions are given by all possible

permutations of the R.H.S. The corresponding j-differentials admit holomorphic

representatives with divisors

D1 :CL]_,DQ :ag,D33: bl,D4 - bg.

In terms of theta functions they are of the form:

6[81( [ &)
¢9 N E(Zapﬂ)

E(z,po) being the prime form. Using Riemann theorem we have:
D;
ﬂ:/a—ﬁm (3.4).

K corresponds to an half period. This time it is no more possible to have an
holomorphic differential with a zero of degree 2g — 2 at a branch point to show this.

Instead we have to find those points p which solve the system of equations:

{au(z) T Aws(2)]o,
8 wa(2)|

H

2(wi(2) + Aw ()==0

w1, wp being two independent holomorphic differentials and a a coefficient to be-

determined. The solutions have rather cumbersome expressions. For our purposes
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it is sufficient to fix the branch points conveniently. For example: a; = —a2 =1
and by = —by = a. In this case we have 4 = —e:z:p(27r§—),3/ E;{__le, (k=1,2,3) and
six values of p given by the infinity points coj and the zero points O at each sheet
k. This is in agreement with the fact that for genus two surfaces there are six odd
spin sfructures. Choosing 0; = 0 as basepoint py we get —2K =0 and therefore K

corresponds to an half period. We are left to compute the integral fODi w. Let us

choose D; = a. Then:
a 1 a
/(IJ:/ d?—i—/ @.
0 0 1

The second term on the right can be evaluated as we did for
%(g,3,m,0)

. . 2/3 1/3
and gives the Z; spin structure [1/3 1/3} .

0 O

The first integral is related to [1/2 0

}. In fact the B1 cycle is given by:

}il w(z2)dz = (1 - o) /_11 5(2)dz.

1

and the R.H.S. is, using the symmetry z — —z of the integrand: 2(1—«?) [ &(z*)d=.
0

In conclusion B is a Zg spin structure. The demonstration given here for D, is similar

for all other D!s. Neglecting the effects of transition functions our method provides
2/3 1/3

the charges qr. For the Z3 characteristic {1/3 1/3

j‘ and j = 1/2 we have:
Qo = (=1/3,1/3,0) Go,x = (0,-1/3,1/3)

b, x =(-1/3,0,1/3) g, = (—1/3,0,1/3).
c) Finally we consider the Z, surface %(3,4,4,0) with equation:

y' = (z —a)(z —ea)(z ~ es)(z — cs).

With respect to the system of cuts in fig (1.3) a basis for the homology cycles is
given by:



1 -1 0 0 0 0 0 0 0 0 —1 1

0 0 0 0 0 0 0 O 00 0 0

A = 000 oo =1 1 00)] %00 0 o
0 0 0 0 0 0 0 0 00 0 0
00 0 O 0 0 0 0 00 0 O
{00 0 o0 o 0 o0 o0 o0 -1 1
By = 00 o0 o] 4= 100 1) =00 o 0
1 0 -1 0 0 0 0 0 00 0 0

Using the same methods as in the previous examples we find that on this
surface there are 64 solutions of the system in eq. (2.6). They correspond to Z,
spin structures and six of them correspond strictly to Z, characteristics. Anyway it
is not possible to obtain the other 58 Z» spin structures using the method of twist
fields. We write here the charges for the particular solution of egs. (2.6):; = vy =

1/4,v2 =v3 =3/4 and j = 2:
Gey b = e, 0 = (—1/8,1/8,3/8,3/8)

Genk = ey x = (—3/8,1/8,3/8,3/8).

ll

The charges of the other spin structures can be derived using the same procedure.
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’ n_ (z—a)(z=as)
4.4 THE RATIONAL SURFACES y™ = o3y

The aim of this section is the computation of the two point functions and chiral
determinants for fermionic fields defined on the class of rational algebraic curves
2(g,n,0,2):

no__ (z = a1)(z — aa)

o (z —b1)(z — b2)

with ¢ = n+1. These curves were studied in the previous section, where we learned

’ (4.1)

that the Z, spin structures cannot be realized in terms of simple twist fields as in
eq. (1.13) of chapter 3. For example in the case n = 3 the odd spin structures
are solutions of the non-trivial system of equations (3.5). Nevertheless these curves
have a physical importance because they provide the leading terms of the high
energy string amplitudes [GM]. Moreover they are simple and constitute a first step
in understanding fermionic fields theories on algebraic curves. One of the reason
of their simplicity is that they possess an extra Z, symmetry and belong to the
hyperelliptic subvariety 'of the moduli space. As a matter of fact, performing the

change of variables (z,y) — (v, z), eq. (4.1) becomes:
22(y" — 1) + z((a1 + az) — y™ (b1 + b2)) + (b1boy™ — a1a2) =0 (4.2).

This polynomial equation is of the kind az?-+bz-+c = 0 and represent an hyperelliptic

curve. As a matter of fact a linear transformation yield the equation:

4z (y™ - 1) = v (by — by)® +2y"s + (a1 — a2)2 (4.

W]
~—

with s = (2a1a2 — a1b; — a1by — asby — asby + 2b1bs).

Now it is easy to find from eq (4.2")the 2g + 2 root functions in terms of which
it 1s possible to construct sections corresponding to the whole group of the Z, spin
structures. The strategy is therefore to map these sections from the curve of eq.
(4.2) to the curve (4.1). Both of them are different projections of the same curve.
The mapping from (4.2) to (4.1) is provided by:

L2z =1)

)
z—a

y - y(z) = z(y) — z | (4.4).
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We simplify equations (4.1),(4.2) and (4.3) using the S{(2,C) group of automor-
phisms of the sheets to fix three of the branch points:

a; =0, an =1, by = 0c0,0b; =a.

Consequently these equations become:

yn — Z(Z - 1) (4_11)
z—a
22y +1)—ay™ =0 : (4.2")
n 2
2% = (il—l) — ay™ (4.3").

Notice that the branch points of eqs. (4.2’) and (4.3") are the same and are the

solutions of:

vyt (2 —4a)+1=0.

The roots of this polynomial are:

aize“i{/(l-za;t\/az—a), i=0,...,n—1 (4.5).

As it is well known [Fay] the even spin structures on hyperelliptic surfaces are in
one to one correspondence with the partitions of the branch points into two sets
with the same number of elements. We denote the branch points of the first set
A; and those of the second set B;. Let us discuss the case of fields with conformal
weight 7 = % on the surface (4.1°). We start from the Szego kernel S(y1,y2) for the
hyperelliptic surface of eq. (4.2) which is given by [Fay]:

2(y1 = ¥y2) | VVu(y1)u(y2)

s, ga) = YV [u(yl)‘F“(yz)} (45).

The function u(y) has the following expression:

(4.6a).

The fact that the curves of equations (4.2) and (4.3) have the same branch points

and Szego kernels is not surprising. As a matter of fact the two curves are related
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by a linear transformation involving z but not y. Of course the square of the Szego
kernel should be a single-valued differential in both the variables y; and y; on the
starting surface (4.2). We can check this taking the square of eq. (4.6). At this point

we perform the transformation (4.4) on this Szego kernel. After some manipulations

we have:
1 n—1 . .
S(z1,22) = —2";(1:](;(3/1 - A:)2(y2 — Bi)* +
n-—-1 -
1 L Yay D dz ng .
H(yl—Bi)z(yz — A7) (y21) 1 (@7)

Pl V(z1 —a)(z2 —a) Y1 — V2
with y13 = y(z1) and y» = y(z2). It is easy to show that S(z1,22) has just a pole of
residue 1 at the point z; = z5 when the branches of y; and y» coincide. Besides,
S(z1,z2) is finite when its two variables approach infinity. Moreover its square is
single-valued on the Z3 symmetric surface of eq.(4.1). For example when n = 3 it

assumes the form:

52(31,4) =
1 n—1 n—1
& [ [T =490 ~ B + [[ (01 ~ Bi)(v2 = B) + 21 = a)(=2 — )
i=0 =0
(i +v1*v2 +93)° dzydzy

9 9 4.8).
(21 — 22)% (2120 + afza + 21) +a)? Y23 8

It is easy to proof that the differential in eq. (4.8) is a single-valued second kind
differential on (2, 3,0,2) as expected. Since S*(z1,22) is related to a spin structure,
its zeros and poles are quadratic. Intuitively this is true also for eq. (4.8). In fact,
after the transformation (4.4) double zeros are stil double zeros using the derivative
of composed functions. Let us consider for example a differential f(y)dy such that,

when y = yp it has a double zero:

{ f(y)dyly=yo) =0
yf(y)d'y[y=yo =0

After a transformation v — y(z), f(y(z))dz has still a second order zero at the

solutions p; of the equation p; = y™*(yo) because:



However, despite the fact that the the half-differential in eq. (4.7) fepresents the
Szego kernel of an even spin structure on X(n — 1,n,0,2), it is not possible to
check it transporting naively S(z;,22) along the homology cycles of fig. (1.21) and
looking at its changes of sign. In fact, as we show in appendix A, even for the
simplest multivalued functions it is very difficult to guess the way in which they
change their branches. Now S(z;,z2) contains a very complicated rational function
R depending on y(z1), y(22), z1 and z2. We have therefore to study this function
using the methods of chapter 5, i.e. computing the algebraic equation to which
R satisfy. This algebraic equation is very complicated and requires an algebraic
manipulator on a powerful computer as MACSYMA. We give here just the form of

this equation in the variable z;:
R*™ 4+ Pyn_a(ya, z1,22)R*" 7% + ... Po(y2, 21, 22) (4.9)

where the Py;(ys, 21, 2z2) are rational functions. In some sense, the Riemann rep-
resentation of the algebraic curve corresponding to the equation above describe in
terms of sheets and branch point the double coverings of the surfaces of [GM]. Since
only even powers of R appear, we can do the substitution R?> = p and to solve the
algebraic equation in p. Therefore R = +,/p and it changes sign as is expected
from a Szego kernel. To find in which way the signs interchange when transported
around the homology cycles is a too difficult problem. Eq. (4.9) shows us again
the unique features of hyperelliptic surfaces for the usual spin structures. In fact
when n = 2 the equation can be reduced to a form similar to that of eq. (4.2) and
it is again hyperelliptic. Even if we do not proof it, eq. (4.9) is the general form
of the algebraic equations satisfied by Szego kernels on hyperelliptic surfaces. We
can compute explicitly the zeros of the Szego kernels, which are the zeros of the
corresponding theta functions, just looking at the zeros of Py(ys, z1,22).

We are still left with the problem of finding the chiral determinants detaé.
For this task we can use the stress energy tensor method [AS,Ver] introduced in
chapter 1. As for the Green functions the strategy is to start from the hyperelliptic

stress-energy tensor

< T(y) >= %(Z . _1Ai -3 - _131_) (4.10).

1
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and then to use the mapping (4.4) to get the expression of the stress energy tensor
on the Z, surface associated to eq.(4.1). Now it is known that the effects of a

general coordinate transformation on the stress energy tensor is given by:

T(z) = T(y) <§i> Lo [dsy/dzz 3 (dzy/dz)z} (4.11).

12 | dy/d= 2 \ dz/dy

The second term in the RHS is the Schwarzian connection {y, z}. Under the trans-

formation (4.4) it yields:

2 2a—1 1
L 2z2e-l (4.12).

(z—=a)?® 9(a’—a)z—a

{v, 2} =

WO =

The other term, containing T'(y) is more troublesome. In fact when we expand the

vacuum expectation value of T'(y(z)) around the branch point a we get also powers

of the form:

dy\? h
<T(y)><—g> N—-IT?‘{”----
dz (z——a)T

These irrational powers are not physical because we know that terms of that kind
are not allowed in conformal field theories. Here we experience the effect about
which we spoke in section two. The global effects of the spin structures destroy
the abelian symmetry of the surface and the contributions to the residues given by
the various branches of y(z) in the expression of < T(y(z)) > do not appear in
a symmetrical way. Something similar happened in the computation of the stress
energy tensor for the {1,0} b-c system on the surfacegiven by eq. (4.3)-chapter
1. As a matter of fact the irrational tefm cancel when we sum over the branches
of y. Using the stress energy tensor method we get a differential equation for the
determinant J1 which can be easily solved explicitly taking an integral because the
surfaces corresponding to eq. (4.1’) depend just on one branch point. As an example

we provide the differential equation for the chiral determinant corresponding to the

spin structure:
{Ao=(4),41 = ¢(+),42 = (-)|Bo = €(+), By = ¢(—), B> = ()}
In this equation € represent the third root of unity while

(£)=(1 —-2a=+ \/az-—a)%.
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The result is:

<T(z) >= %(z —1a)2 - [g(ij___i)%-
é‘i(azi::)uom F10(=) = 2(e(+) + (=) +3(+) + 3(=) - 4(1 — 26))| ——
and therefore:
2 2a—1 1
Oudel(0y) = S T Bl —a)

(10(4) + 10(=) = 2(e(+) + (=)+
3(4+) + 3€3(=)) — 4(1 — 2a)).

As we can see the conformal dimension of the twist fields is 1/9, as it can be expected

on a Z3 symmetric curve.



CHAPTER 5
FURTHER DEVELOPMENTS

5.1 THE PROBLEM OF SPIN STRUCTURES ON GENERAL ALGEBRAIC SURFACES

Let us briefly review what was done in the previous chapter, section (4.3) about
the problem of spin structures on algebraic surfaces. We considered b-c systems with

conformal weight j on Z, symmetric surfaces:

wh=[J(z-a)¥  Li=#1 (2.1).

Using the method of twist fields V(a;) which simulate the behavior of the fields b
and c at branch points, we have catalogued all the possible b-c systems expressibile
in this way.
1) j = integer
When n = 2, we have the 229 bosons with Z, twisted boundary conditions.

Repre-sentatives of this class are of the form:

V(z = a;)(z — ap)dz? i,k arbitrary.

When n > 3 we have a subset of the n?9 twisted boundary conditions, the socalled
Zn symmetric twisted boundary conditions. They owe their name to the fact that
the monodromy matrices expressing the boundary conditions of these fields, when
they are transported around a branch point along a small circle surrounding it,
are elements of the group Z,. The j-differentials which, with various degrees of

meromorphicity, represent these twisted bosons, are of the kind:

ny
v H(z — a;, )ik dz’ E Jk = mn, m integer.
k=1 k

In this formula all products with n, points a;, are to be considered with n, such

that the right monodromy properties at co are assured.
2) j = half-integer.
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In the case n = 2 all the 2%9 spin structures are expressed as a partition of the
2g + 2 branch points [Fay]. In the other cases we have instead that a part of the
bosons with Z, twisted boundary conditions are 2j-differentials with a quadratic
Vdivisor, so that it is possible to take their square root. The resulting j-differentials

correspond to Zy, spin structures [Ferl].

The reason for which it is so natural to realize these b-c systems with twist fields
is that their transition functions respect the Z, symmetry of the surface. This im-
plies that the phases taken by these fields after they are transported around a non-
trivial homology cycle, are dependent on the branch points inside the cycle and on
how many times the branch linesoutgoing from the branch points are crossed [Ferl].
It is nevertheless independent on the sheets in which the cycle meets the branch
lines. This behavior can be simulated by simple twist fields V(a;) ~ efax#x(aid
¢r (k=1,..,n~1) being a basis of fields for which all monodromy matrices are
diagonalized and g being the charge of the branch point a; with respect to the
current Jx(z) =: bg(z)cr(z) :. As a matter of fact the simple vertex V(a;) above
does not distinguish a sheet from the other.

All the other spin structures and twisted boundary conditions are singlevalued
on a unramified n-covering with nonabelian group of local monodromy. Therefore
the monodromy matrices cannot be simultaneously diagonalizable and the twist
fields are not expressed in the form they have in the case of Z, characteristics.
Moreover the phases taken by fields after going around homology cycles depend on
the sheets on which these cycles meet the branch lines. Even if we would be able to
compute the monodromy matrices for the non-abelian case, we were then faced with
the problem to construct twist fields for a nonabelian group of symmetry which is
so far unsolved. Anyway each meromorphic j-differential leaving on an algebraic
surface obeys as well an algebraic equation [For]. For this equation a previous anal-
ysis [Fer2] shows that on general curves with nonabelian local monodromy group,
the twist fields are again primary fields concentrated at the branch points as in
the case of surfaces wi‘th abelian group of symmetry. Their conformal weight for
a branch point of multiplicity m is the same they would have for a branch point

of a Z, symmetric surface. Whith respect to the searching of sections related to
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a given spin structure, general algebraic surfaces do not present much more com-
plications than Z, symmetric surfaces, so that we will consider the problem in its
generality. Any-way a look at eq.(2.1) teaches us a good lesson: all meromorphic
functions (z — a;) have zeros of the n — th order in z and their poles are all at co

Therefore factors of these functions with appropriate weights are associated to
products of theta functions with periods of the kind 2 [Krz,Sta]. We have to find

a way which reproduces this situation also on more general surfaces.

5.2 THE ODD SPIN STRUCTURES

We consider first the odd spin structures on a general algebraic surface ¥ as-
sociated with the equation F(z,w) = 0. We treat z as the independent variable.
F(z,w) is a polynomial at most of degree n in the complex coordinates z and w.

The holomorphic differentials for these surfaces are of the kind:
(2, w)
Fulz,w)

In this equation ®;(z,w) are polynomials of degree n—3 in z and w while F,(z,w) =

w; =

dz 1=1,...,9 (2.2).

%F(z,w). The square of a % differential v, corresponding to an odd spin structure

* 1s given by an appropriate combination of the holomorphic differentials w;:

= iA,-wi (2.3).
=1

The coefficients A4; are to be chosen in such a way that v2? has ¢ — 1 quadratic

* I

v

zeros. Explicitly the holomorphic differentials are written as a differential ﬁ%—j‘T)
multiplied by a rational function R;(z) = ®;(z,w) which is singlevalued on X. It is
known that such functions obey a polynomial equation as well as w(z) and that this
equation describes a surface with the same genus of ¥. Putting § = _}g‘_{ A4:9:(z,w)
we have to compute a finite number of powers of § (in general n) anéztlhen todoa
linear combination of them with coefficients T; (i = 1, ..., n). These coefficients are

determined by the condition that the result of the sum should be free from radicals

of functions of z. At the end of the procedure the equation for § will be of the kind:

G4+ Poa(2)7" 7 4 o+ Py(2)7 + Po(2) =0 (2.4)
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pi(z) being polynomials in z whose coefficients consists in polynomials of 4;. From
this equation it is easy to realize that the zeros of 4, i.e. the zeros of v2 because the

divisor of ‘F_EiizT) can be considered known, are the zeros of Py(z) [For, Fer2]. In

fact explicit examples show that Py(z) has degree 2g — 2. If we insert in eq. (2.4.)
y with arbitrary coefficients A4; all the zeros of Po(z) will be in general simple.
We wish instead g — 1 quadratic zeros. The best way to determine the correct
coefficients 4; is to impose the condition Py(z) = gf[l(z — 2;)?. This relation gives
constraints on the coefficients of Py(z) which dete;_r‘riine all the Als corresponding
to the 2971(29 — 1) odd spin structures. A similar algorithm is written in [Sta] but
we prefer this procedure because in this way we are able to separate automatically

the calculation of odd spin structures from that of the even spin structures. Let us

study for example the surface of genus 3:
w® + p(z)w + g(z) =0 (2.5)

where:
4

5
p(z) = Z a; 2z g(z) = Z bz

i=1 =1

The holomorphic differentials are in this case:
—_} W3 = dz e (2"6)'

Using eq. (2.4.) we get:
2 Arw+ Az 41
. Fu(z,w)

v? is defined apart from a multiplicative constant so that we can drop 4i. 7 obeys

(2.7)

v

in this case a polynomial equation of the third degree in § with:

Py(z) = 34,z — 3;

Pi(z) = Alp(z) +3432% + 6422 + 3;

]30(2) = Aiq(z) + zArngp(z) + +A%p(z) + zBAg + zzAg +3z4, + 1.

In particular Py(z) has degree 2g — 2 = 4 as we expected. The relations that
the coe;fﬁcients of a polynomial ﬁ: c;z*7% (cg = 1) of a fourth degree should satisfy

1=0
in order that the roots have multiplicities two are:

1 ciy2
{64 B 29)

2
Cy = —':1!‘(62 _ T)C]_



Plugging the coefficients of ]50(3) in these equations we obtain a system of two
equations between the 4, 's which provides the solutions corresponding to the whole
set of spin structures. This system is the analog of the inverse Jacobi ‘problem in the
language of branch points. Even if it is imnpossible to solve egs. (2.8) explicitly, we
can get at least the coefficients 4; for a single odd spin structure. This is sufficient
in order to construct an expression for chiral determinants in the case of bosonic
string [Fer2]. The idea is that we can change the parametrizations of the curve of

eq. (2.5) so that Py(z) becomes exactly of the form:

v? being as in eq. (2.7). This is a very easy achievement which does not involve
any solution of higher order polynomials. The result is:

by = —4345(2a120 + 2a121 — a») — Alay — A3 — 2byzg — 2by 2y

by = A14s(arz3 +4arzoz +a12? —a3)— Alas — 34, —3A—2 = by 22 +4byzpz +

Let us notice that with these substitutions, b1, b3, b4, and bs become functions
of the other parameters of the surface (2.5), of Als and of the zeros z;. The total
number of free parameters remains in all cases equal to nine. Actually the choice
of the parameters b; (i = 2,.., 5) was arbitrary and we can use any other four
coefficients of eq. (2.5) instead of them. The method proposed here is valid for
each curve F(z,w) = 0. Another way to obtain explicitly odd spin structures is to
rearrange the starting algebraic equation in such a way that some functions of w

and z play the same role of (z —a;) in the hyperelliptic case. An example is provided

by the surface of genus 3:

wzt — f2 =0 (2.10)
with
t=cyz+ csw -+ ¢c3 and

2 ]
f=agz* +anw’ + ars + argzw + axgz + anw
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This is a general surface of genus 3 [Rie] with 9 free parameters and it is
easy to proof that z, w and ¢ correspond to three different odd spin structures.
Unfortunately this method is not appliablé for all surfaces of genus g. The Z,

symmetric curves are for example very difficult to rewrite in a symmetric form as

in eq. (2.10).

5.3 CHIRAL DETERMINANTS

The knowledge of an odd spin structure enables us to write an expression for

the special combination of chiral determinants [Kni,Leb:
AJ’ = (detgg)%(detéj).

In particular we are interested in:

0.,:&"(z1)
Ag = ~ . — 2.11
0 det[@!(z1)@i(z1)...0:(zg-1)] ( )
and:
A, 0.0 (z1) (2.12)

In these formulas:

0

ea'i - Ou;

@[C(](ul...'ngIT)llu]_:...zug=D;

w; are the normalized holomorphic differentials;

¢o(a = 1,...,3g — 3) form a basis of the holomorphic quadratic differentials

and:

21, ..., Zg—1 are the zeros of v? which, in the theta function formalism, is given

by:

v = 0, .:0:(2).

The dependence on the spin structure * and on the normalization of the ¢, s should

cancel from physical amplitudes.

88



Let us consider the curve of genus 3 of eq. (2.10). This is a polynomial of the

fourth degree in w and its branch points can be derived from the following system

of equations:

{wzt—fzzo

zt—{—czwz—Qde{; =0
Using the elimination theory of algebraic equations we get a polynomial in z of
order 12 which gives twelf branch points «q, ..., a1s.

Apart certain configurations of the parameters of eq. (2.10) which correspond
to degenerate surfaces, these branch points are simple, i.e. at these points just
two sheets are interconnected. Since z = 0 is a branch point, we put «; = 01,
as = 0a; at each of these zeros two sheets of the surface are connected. With the
aid of Riemann Hurwitz formula [Far] it is easy to proof that all branch points have

multiplicity two. Therefore we can write the relevant divisors for the construction

of tensors as in [Fer2]:

. ()1()3&3_.a13
div dz = —F—5—
OOl...CO4
. 0102a3...0612
div Fiu(z,w) = —F———
? 3 3
007 ...00}
OQcﬂ 2.2
dive=—122 0 diyy= 1102
O1...004 CO1...004

Here 71, -2 are the zeros of w and are easily computed from equation (2.10):

2
—a2g &= +/ A5y — daggass

2(100

av1,2 =

A basis for the holomorphic differentials is provided by:

Their divisor is:

div wi = c071...004
div wy = 0203 (2.12)

. 2 2
div wy = v{;
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As an upshot of our choice of parametrization of the surface, wy and w; correspond

automatically to two odd spin structures. Let us call them * and %' respectively.

Then:

wy = 0,;0;, w3 =0, ;0.

Finally a basis for the quadratic differentials ¢, is obtained from the product of all

the pairs of holomorphic differentials:

.2 _ _ 2 _ 2
Y1 =Wy, Y2 =wWiWwi, P3 =WiWs, P4 = wW,;, @Ps = Wiz, P§=w3.

At this point we have at disposal all the ingradients which egs. (2.11) and (2.12)

need.
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FINAL CONCLUSIONS

The reader who is arrived at this point through the difficulties of the matter
exposed may be wondered or disappointed that, after all our conclamations to set
up an explicit formalism for superstrings and conformal field theories on higher
genus Riemann surfaces, so a few applications are possible analytically without the
aid of a computer. If this is the case, we are very sorry, but we think that this is just
like if, making the debt proportions, after having studied path integrals, one gets
disappointed because nothing can be computed except some simple physical systems
or because there are not analytical solutions of the Navier Stokes equations. Part of
the embarassement we had here in dealing with the cumbersome problem to avoid as
much as possible the solutions of tremendous algebraic equations or the difficulties
we had, being not mathematicians, in developing topics of algebraic geometry in
which the literature at our disposal was unexplicit or even lacking, are not our fault.
The matter is that even if many scientist are telling us that string theories are now
old, nobody studied seriously the problem of how to get numbers from a theory
which can’t be tested experimentally. Many of the results gotten for superstrings
make use of abstract theorems like those concerning the existence of the solution for
the inverse Jacobi problems without thinking how these solutions concretely are.
Unfortunately we were faced with this lack of knowledge and experience in the field
and, even worse, at least for us, there exists the theorem atating that where there
is no knowledge, there is also no interest. Despite all the difficulties, we think we

have succeeded in these three topics:
1) The bosonic string at low genus g < 4.

We provided an algorithm which is able to compute all two-point functions on
a general algebraic curve for which the third kind differentials exists. The latter,
moreover, can be easily computed using the Weierstrass kernel shown in chapter
1. Less brilliantly, we can compute also the partition functions of bosonic strings.
The chiral determinants are provided by the method exposed in chapter 5, while

the necessary normalization of the quadratic differentials appearing in detd, can be
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given using the expression of the Beltrami differentials. The Beltrami differentials
corresponding to the parametrization of moduli space given by branch points can be
found using the variational techniques of Rauch [Rau]. The fact that we are limited
to surfaces of genus g < 4 is due to the difficulty to find algebraic equations which

cover the whole moduli space apart sets of zero measures when genus is higher than

4.

2) Superstrings on the surfaces of Gross and Mende.

This is our central result. In fact for this case it is possible to solve explicitly
the differential equations leading to the chiral determinants of fermion because
they are just integrals. Moreover we have an expression for the Green functions.
Superstring on Gross and Mende surfaces are therefore the first step in developing
string theories on general algebraic curves. It is an important step since, as we
previously remarked, the amplitudes computed on these surfaces give the leading
behavior of superstrings at very high energies. Unfortunately also in this simple case
the expressions becomes involved and there is the need of a computing machine to

perform the calculations.

3) We have found a cohomological technique to find what Z,,, coverings of algebraic
curves with 7, symmetry still respect this symmetry. Being non experts in
the field, we know just the works on hyperelliptic curves of ref. [Hor| and
of the other references contained therein. Therefore we do not know if Cech
cohomology was already applied to this problem or even if some result on non-

hyperelliptic curves was already published.
We have presented in our thesis also some more qualitative results:

A) we knew from [JMS] and successively from [BR3] that the correlation functions
of b-c systems and scalar fields can be computed in the bosonized formalism
by means of certain j-differentials which were defined implicitly through an
involved systems of differentia equations. With their basis of j-differentials the
authors of [BR3] were able to compute the residue at branch points of the stress
energy tensor and of the current related to fermionic number conservation in

a quite (at lest for us) mysterious way. Using simple considerations on the
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energy of physical states and on the behavior of the Green functions near the
branch points, we havr shown how to find explicitly a basis of j-differentials
with analogous characteristics to that of the references above quoted. Our basis
provides correct results in all the developed cases, including a surface with non-
abelian monodromy group. The results, like for example the fact that the
asymptotic charges becomes matrices, are in agreement with the conclusions
of [BR3]. We believe that still a lot of work should be done to extend these
formalisms to very complicated curves as that in eq. (4.3) of chapter 2. For
example we are not in agreement with ref [BR3] that the difficulty in solving
their equations for the charges go, x is just due to the fact that they depend
on the branch points ;. As we have shown here this happens even in the Z,
symmetric case. The problem on general surfaces is that these charges depend

also on the index which denotes the sheets.

B) Modular invariance.

As we say in chapter 1, all algebraic curves are conformally equivalent to alge-
braic curves in which all branch points are simple. For example eq. (4.3) in chapter
2 is related to a such curve. Now a glance at \ﬁg. (1.6) shows that the system of
cuts and the canonical homology cycles are very similar to the hyperelliptic ones.
The only difference is that now the branch points are to be found solving a poly-
nomial of high degree and this is possible just numerically. This obstacle forbids
the proof that modular invariance can be-explicitly implemented to these surfaces
in the same way as in the hyperelliptic surfaces. Anyway it is promising to proceed
in this direction because as we said all Riemann surfaces are conformally equivalent

to curves in which all branch points are simple.

Many applications of the formalism exposed above can be pursued, not only
in superstring theories but also in conformal field theories defined on higher genus
Riemann surfaces. For examples it would be interesting to study the Coulomb gas
representation on algebraic curves. Moreover we are interested to some possible
generalizations of the formalism here introduced of which we provide an example.

We have already said that in certain cases the monodromy properties of the Green
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functions of free field on Riemann surfaces coincide with the Green functions of
non-free conformal field theories on the plane. So, what theories are corresponding

to the following integro-algebraic equations:

To conclude, the best reason for us in studying algebraic curves despite all the
difficulties and the unsolved questions was amusement. It was delightfully to look
again at our old university books of complex analysis and to do field theory on the

simple algebraic equations they give as examples of Riemann surfaces.
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APPENDIX A

In this appendix we want to show an example worked out by Klein [Osg] in
which he construct the Riemann repesentation for the curve associated with the

simple algebraic equation:

v —3y—z=0 (4.1).

The example is instructive because it shows that the way in which the branches of
a multi-valued function are interchanged is not always intuitive. The solutions of
equations (A.l) are a subcase of the solutions shown in appendix C. The branch
points of this surface are all real: z = +2 and z = oo, corresponding to the values
of y: y = F1, y = co. From the local analysis of chapter 1 we can easily check yjat
the first two branch points have multiplicity two, while the other has multiplicity
3. It is clear that at z = co the three branches of y(z) are interchanged but at the
other points it seem naively that just two branches, y(!) and y(?) are interchanged.
But if it is so, this violates clearly the fact that the product of the monodromy
matrices should be the identity matrix (see chapter 1). We have therefore to use
a different method to find what the Riemann reprsentation of this curve is. The
general method consists in drawing a line C' connecting all the branch points in the
z plane and then to map it in the y plane, The projection consists in a set of curves
C! because the function y is multivalued, which will divide the y plane in n areas
which are nothing but the sheets. Finally the junctions between the sheets are done
along those pieces of the curves C} which come from the same piece on the z plane.
See for this fig. (1.22) in which to each segment or half line of the C] indicate the
part of C' to which they correspond with the notation [a,b]. Thus these segments or
half lines of the urves C} transform into the branch lines. Since the branch points
are all real, we can take the real axis R as the line connecting all the branch points.
Now we split eq. (A.1l) in its real and immaginary part:

ud =302y —-3u=-s3
3uly —vd —3u =t

with z = s+1t and y = u+1v. At this point we map the line ¢ = 0 on the u,v-plane.
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To ¢t = 0, i.e. the line R, there correspond the solutions:

{g'u;;gvz—B:O'

The first is the line of the real axis on the u,v-plane, the other is an hyperbola.
These curves divide the plane in six parts, each one corresponding to the upper
half plane or the lower half plane of a sheet. This is shown in fig. (1.22a). We
denote with I*, IT* ITT* the upper (lower) half plane of the sheets I, IT, ITT
respectively. The assignement of upper and lower half planes we give to the sheets
in fig. (1.22a) is arbitrary [Osg]. For example the assignement of fig. (1.22b) is also
good. Of course the monodromy matrices will be differentin the two cases, however
they respect always the condition that their product is equal to the unity matrix.

In the case of fig. (1.22a) we have the following monodromy matrices:

0 0 1 0 0 1 1 00
M_,=[01 0 Meco=(1 0 0|Ms=1]0 0 1
1 00 0 1 0 01 0
For the choice of fig. (1.22b) we have instead:
010 0 0 1 0 0 1
M.,={1 0 0|Mew=1{1 0 0|M=1{(0 1 0
0 0 1 0 1 0 1 0 0

As we have seen here it is not trivial to find in which way a multi-valued function

hanges its branches going around the branch points.
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APPENDIX B
Theta Functions

We review here some known properties of the theta functions. Let us call {2
the period matrix and a,b two vectors belonging to R9. Then the theta function

g [Z] (z|2) with characteristic [Z} is defined by:

a . _ im{nt+a)-Q-(n+a)f2wi(nta)(z+b) _
9M(4m)_ze =

nez9
gime ataria(s g HER (B.1).
After a transformation z — z+ 0 .n + m the behavior of the theta functions is
given by:
0 {ﬂ (z+ Q- n+m|Q) = e nmin (s tiiamy {ﬂ (z]9) (B.2)

Now we can Riemann surface & in the Siegel upper half plane, i.e. the space of all

the period matrices 2;;, by means of the Jacobi map:
P
L(p) = /wi (B.3)
p0

with p,pg € & and w being the usual holomorphic differential normalized in such a

jl{wj = b;;.

ay

In this way the theta function becomes a multivalued function on %:

way that:

a

) =53] (19
At this point we can state the Riemann vanishing theorem for theta functions:
If e [g} (2]Q) # 0, then there exist a divisor § = pq,...,py such that:

P

=3 / g (B.4)

i=1
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where pg is also called basepoint and KP° denotes the vector of Riemann constants

given by:

e — 2m1 — 055 1 ng : Bs
P Ty T e 2 aA(wi(Z) ) w;) (B.5).
1=1 "
1F 7
The divisor 6 of the zeros of the theta function are with multiplicity 0, i.e. the
0

0
8s = p1,...,pg—1 with multiplicity i(8,) > 1 such that:

theta has just g simple zeros. If § (z]Q?) = 0, the it exists some positive divisor

Pi

| -xm.

Because of the properties descending from the definition of the theta function, the

w
|
-

- —
Z =

]

i=1

above formulas are valid also for a general characteristic [g} .
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APPENDIX C

In this section we give the solutions of a general polynomial of order three:
v’ + Py’ + Piy+ Py = 0.

With the trasformation y — y' = y+ P» it is always possible to reduce this equation

to the canonical form:

¥ +3py —2¢=0.

The roots of this equation are :

v = Va+ V@ + 0+ a- Ve + %

with a = exp

271
3.

The branch points are given by:

Even for eq. (2.7) this is a polynomial of degree 9 and it is not possible to solve it.
In eq. (B.1) the branch points are simple if ¢,p # 0. If p = ¢ = 0 the branch point

is of order three and connects all the three sheets.
APPENDIX D

The argument of this appendix is the proof of eq. (2.5) in chapter 2 [Fay]. To

construct the prime form we start from the following meromorphic function:

fly)  z(y) — z(q) 2(
flz)  z(y) — 2(p) 2(z)

(D.1).



This function is clearly single-valued and its divisor is

q(0)--9(n-1)
9(0)-+-9(n~1)

D =

iny and D™! in x. We suppose that neither q nor p are branch points and that the

surface is n-sheeted. We can express a meromorphic function in terms of normalized

third kind differentials in the following way:

-——~—e1cp /Zw(q.)(p) Zm%

Since the function defined in eq. (D.1) is single-valued, we need the following

condition over all the A and B cycles:

n—1 g
f (Z Gai)(pi) — ijdzj) = 0(modulo integers) (D.2).
4B =g

1=1

Since

Z Oai)(pe) T Y mib; = —;ln( f(y))

eq. (D.2) implies [FK]:

mi= 5 d[In(f(t))] = integer.
7L f 4. '

Therefore only the imaginary part of din[f(t)] contributes to this integral. Now we
use in eq. (D.1) the following properties of third kind differentials:

and
b
/ E(c,0)E(d,a)
¥4 = E(d,b)E(c,a)
Supposing without loss of generality that x and y belong to the sheet (0) and using

the first property, eq (D.1)becomes:

q(0) g
Z / Pyio)z(0, T / Wy(0)z(0) T Z m;o;].
P(i)

i=1 P(oy i=1
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Applying the second property and performing the limit ¢ — y, p — = we get:

I3}

lim L z(y) — 2(q) z(z) — z(p) E(=,q)E(y,p)
a—yp—z z(y) — z(p) z(z) — z(q) E(y, ) E(z,p)

_ nol e < .
= lim lim exp [Z @y(o2(0) T+ ijWjJ~
9y p—re j=1 Y P(i) i=1
Finally, since:
im M = const. dy,

=y E(y,9q)
we get eq. (2.5)-chapter 3:

E*(y, =z 1 ety U 2 -
. ) e:L‘p[Z/ wy(o)z(O) +ijwj]'

(=(y) = 2(=))*  dydz A Je, i=
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TABLE 1

transition functions v for Z3 spin structures

for the torus y* = (z — ¢1)(z — ¢2)(z — ¢3)

spin structure g, %
‘/c’)s = 1/3
Y18 =2/3 v =1/3 7433 =1/3
Y51 =1/3 a1 =2/3 436 =1/3
Y58 =1/3 7120 =1/3 750 =1/3
Yor =1/3 723 =2/3  vs9 =2/3
Y18 =2/3 7sp=1/3 ~sp=2/3

spin structure %, 0
Yor =1/3
va8 =2/3 138 =2/3  v36 =2/3
58 = 2/3 739 = 2/3 TsCc = 2/3
Y23 =1/3 79 =2/3 ¢ =2/3
s =1/3

spin structure -g—, %
Yos = 2/3
Y18 =1/3  7as =2/3 38 =2/3
Y51 =2/3 21 =1/3 435 =2/3
’Yss=2/3 ’)’2D=2/3 ’75022/3
Yo1=2/3 73 =1/3 69 =1/3
71B=1/3 vsp=2/3 we=1/3
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. 2
spin structure 5, 0

’7(’)7:2/3
vas = 1/3
Y58 — 1/3
Y23 = 2/3
vsE = 2/3

: 1
spin structure 3,

717:1/3
v1s = 1/3
Y58 — 1/3
74 =2/3
Ysp = 2/3

spin structure %

757 =2/3
Y18 & 2/3
Y58 — 2/3
Y14 =1/3
Ysp = 1/3

spin structure %

Y26 = 1/3
Yas = 2/3
Yss = 2/3
’)’23:1/3

35 =1/3 36 =1/3
739 = 1/3 50 =1/3
78 =1/3 71c =1/3

s

768 =1/3

Y8 =1/3  qar =1/3
Y20 =2/3 vsg =1/3
vip =2/3 vsc =2/3

21
)

(2

‘/(')s =2/3

vas = 2/3  yar = 2/3
Y20 =1/3 vag =2/3
vip=1/3 vsc=1/3

5

w |t

3

Y38 =2/3 51 =2/3
vsB =2/3 vsc =2/3
6B =2/3 vsp =1/3
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spin structure %

Y25 = 2/3
Y48 =1/3
~vs8 = 1/3
Y23 = 2/3

Y3z =
YsB
YeB

Il
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1/3
1/3

1
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57 =1/3
IsC = 1/3
Yse = 2/3



TABLE 2

Monodromy matrices associated to the Z; twisted bosons on %(1,3,1,0).

. L. 0
Twisted characteristic {1/3}

0 0 & 0 0 1 0 0 «
M,=1a 0 0 M,=11 0 0| M,= a2 0 0
0 1 0 g0 1 0 0 1 0
Twisted characteristic {163}
0 0 1 0 0 1 0 0 1
M,=|a 0 0|M,=|1100|M,=[¢c*> 00
0 & 0 0 1 0 0 a O
) .. 12/3
Twisted characteristic 0
0 0 1 0 0 1 0 0 1
M,=]¢e* 0 0| M,={1 0 0|M,=,ea 0 0
0 o« O 0 1 0 0 &> 0
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g9

og

fig. (1.5):

fig. (1.6):
fig. (1.7):

figs. (1.8a-c):

fig. (1.9):
fig. (1.10):

fig. (1.11):

- (1.1):

. (1.3):

FIGURE CAPTION

a system of cuts for the algebraic surface y™ = (z —c1)...(2 — ¢mn). Go-

ing clockwise (anticlockwise) around a branch point y(z) goes in yUF(2)

(¥4 (=)

: an alternative system of cuts for y™ = (z —¢1)...(z — Cmn). As in the pre-

vious figure the branch number of y(z) increases (decreases) by one encircling

clockwise (anticlockwise) a branch point.

q
a system of cuts for the equation y™ = [] ¢
4 P

: a system of cuts for a general Z,, symmetric surface associated to the equa-

mn q r—as
tiony™ = ] (z—c) [T =31
(i=1) j=1 ’

deformation of a branch line O — a; over the branch point a; and relative
transformation of the monodromy matrix of as. The point 0 is not a branch

point.
a system of cuts for a surface with all simple branch points.
canonical polygon for a genus 2 surface. The a and b cycles are shown.

triangulation of an algebraic curve, step A. The procedure should be repeated

over all the sheets.
the glueing of two sheets reduced in the polygonal form.
the identifying of two adjacent equal sides.

triangulation of an algebraic curve, step B, first kind of cuts.

: triangulation of an algebraic curve, step C, second kind of cuts.
: a and b cycles for £(1,3,1,0) (fg. 1.13a) and for £(2,3,0,2) (fig. 1.13b).
: a and b cycles for surfaces in which all branch points are simple.

: elementary cycles around branch points in the case of the Z3 symmetic algebraic

curve %(1,3,1,0).

: a good cover {U,} for the algebraic curve £(1,3,1,0).
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fig

fig

fig

fig

fig

fig

. (1.17): Riemann representation for the algebraic curve associated to the multi-valued
function y(z) = /q(z) + 3/p(2).

. (1.18): Riemann representation for the algebraic curve associated to the multi-valued

function y(z) = {/¢(z) + +/p(2).
. (1.19): homology cycles of 2(1,3,1,0).

. (1.20): example of the shifting of a cycle. The dashed line represent the cycle with
bold line shifted by a sheet.

- (1.21): homology cycles of %(2, 3,0,2).

. (1.22): u — v plane for the algebraic equation: y* — 3y =2 = Q.
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