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1. INTRODUCTION

According to a generally accepted terminology in the theory of differential equations, an
initial (resp. a boundary) value problem whose solutions exist, are unique and depend
continuously on the initial data (parameters) (resp. boundary data) is called well posed.

The great importance of this type of properties in mathematical modelling, numerical
methods and other fields motivate the large number of existing results characterizing the well
posed problems.

The intense development of the theory of differential inclusions in the last 30 years
contains as essential part a corresponding qualitative theory in which the well posedness
properties are of major interest.

The aim of this work is to present in a unified manner certain results concerning well
posed problems and other qualitative properties of differential inclusions insisting on those to
which the author has recently contributed ([18], [19], [24], [52], [53], [54], [55)).

A natural extension of well posedness for problems without uniqueness, hence also for
differential inclusions, is expressed by saying that any solution can be embedded in a
continuous, single valued, family of solutions depending on the initial data (parameter, or
boundary data). In other words, the multivalued map assigning to an initial data (parameter, or
boundary data) the set of solutions of the corresponding initial value (or boundary value)
problem admits a continuous selection, passing trough a given point of the graph of this map.
We shall study this kind of well posedness for Lipschitzean differential inclusions on open
and closed sets in Chapter 3, for evolution equations in Chapter 4 and for a class of Darboux
problems in Chapter 5. ' |

Another extension of well posedness, which will be not considered in this work, is
expresed in terms of different type of continuity of the above multivalued map ([4], [25], [41],
[45]).

Any chapter of this thesis contains, as a first section, an introduction comparing the
results in that chapter with known results and giving the appropriate references. In this section
we shall present the main results and their location in this thesis and in the literature.

In chapter 2 we recall some notations, definitions and technical lemmas used in what
follows. Chapter 3 is devoted to Lipschitzean differential inclusions on open and closed sets.



Section 3.2 contains a result obtained in the joint paper with Colombo, Fryszkowski and
Rzezuchowski [24]. Denoting by T(s) is the set of solutions of the Cauchy problem

(1.1) xeF(t, x,5) , x(0) = &(s),

where F Lipschitzean in X, lower semicontinuous in s and E() is continuous, we have
proved the existence of a continuous selection from the multivalued map s—7T(s) passing by a
given point of graph (T). This result generalizes the continuous selections theorems from
solution sets by Cellina [ 14] and Cellina and Ornelas in [ 16]. A kind of continuous selection
from solution sets of Lipschitzean differential inclusions has been obtained by Polovinkin and
Smimnov in [50]. o

Remark that the existence of such a selection from s—7T (s) implies that the multivalued
map s—7T(s) is lower semicontinuous ({41, p.80), hence it implies the result of Naselli Ricceri
and Ricceri [45]. On the other hand it is known that the sets T(s) are in general nonclosed and
nonconvex ([17], [34]). ;

Our result contains also as particular cases the selection theorems by Antosiewicz and
Cellina [1], Bressan and Colombo [9] and Fryszkowski [31] related to multivalued maps with
decomposable values. The idea of regarding solution sets of Lipschitzean differential
inclusions as generalizations of decomposable sets is due to Cellina and it has been developed
in [55].

The proof of this result is different from the one in [14] and [16] and it is based on a
continuous selection theorem by Bressan and Colombo [9].

In section 3.3 we present an analogue for solution sets T(E) of the Cauchy problem

(1.2) x'eF(t,x), x(0)=E,

with F Lipschitzian in x, of Michael's extension theorem [42]. We have obtained this result in
[52], and we have used for this a result by Bressan, Cellina and Fryszkowski [8].

Section 3.4 contains a result proved in the joint paper with Cellina [19]. Here we have
considered a multifunction F defined on RxC, where C is a closed subset of Rn,
Lipschitzean in x and satisfying a tangentiality condition, and we have proved the existence of
a continuous selection from the map assigning to an initial point & in C the set of solutions
(with values in C) of the Cauchy problem (1.2).

Remark that the (generalized) successive approximations process that is the base of the
" construction, in the case under consideration requires at each step a projection over the (in
general, non convex) set C, since F is not defined outside C, and that this projection is not



continuous. Moreover, the lack of an argument allowing the extension of a multivalued
Lipschitzean map from a closed set to an open set containing it, prevents the possibility of
exploiting the available techniques for the present case.

As a side result we obtain the convergence of the sequence of generalized successive
approximations for any initial function x,. Taking the initial function to be a solution of (1.2)
for £=£,, we obtain a continuous selection from &—T(E) passing by (§p.xg )

Section 3.5 concerns the arcwise connectedness of solution sets T (&) of the Cauchy

problem
(1.3) x'e F(x), x(0)=€,

where F is Lipschitzean. By the results in sections 3.2 and 3.4 we have that there exists a
continuous selection from the multivalued map §—7T(€) passing by any given point of the
graph of T. Using this result we shall prove that the set T(§) is arcwise connected. We have
obtained this result in the joint paper with Wu [54], for F defined on an open set and in the
joint paper with Cellina [19], for F defined on closed sets. Moreover, following [19], we
shall prove that any two continuous selections from the map assigning to the initial point the
set of solutions, are linked by a continuous homotopy with values in the solution sets.

As it is well known the solution sets to ordinary differential equations without
uniqueness defined on open sets are connected but not (in general) arcwise connected. In the
case of solutions to differential inclusions on closed sets the difference between continuity and
Lipschitz continuity is even more striking: example in ([4], pp. 203) shows that the solution
set to (1.3) for x—F(x) single valued, continuous (and independent on t), may consist of
exactly two solutions, a disconnected set. '

Chapter 4 is dedicated to existence and well posedness for evolution equations, that is
differential inclusions having in the right-hand side a maximal monotone map or a generator of
a semigroup.

In section 4.3 we present a result obtained in the joint paper with Cellina [18],
concerning the local existence of solutions for the Cauchy problem

(1.4) | fc(t)e —0V(x(1) + F(x(t)) , F(x)coW(x)
x(0) =%,

where V is a lower semicontinuous proper convex function (hence its subdifferential dV, is

a maximal monotone map), W is a lower semicontinuous convex function and F is an upper



semicontinuous compact valued map defined over some neighborhood of x,. Remark that at
the right hand side of (4.1.5) is defined by a maximal monotone map with a minus sign and a
bounded monotone but not maximal monotone map with a plus sign. This result is a
generalization of the one by Bressan, Cellina and Colombo [7] asserting the existence of a
local solution of the Cauchy problem

(1.5) x(t)e F(x(t)TOW(x(1)), x(0) = xq,

where, as before, F is a monotonic upper semicontinuous (not necessarily convex-valued,
hence not maximal) map contained in the subdifferential of a locally bounded convex function.
Existence of solutions depends on arguments of convex analysis.
Sections 4.4 and 4.5 contain two results proved in [52]. In the first one we prove the
existence of a continuous selection from the map assigning to  in the closure of the domain

D(A) of a maximal monotone map A, in a Hilbert space, the set of weak solutions of the
Cauchy problem

(1.6) x(t)e—Ax(t) + F(t, x(t)) , x(0) =E,

where F is a multivalued map Lipschitzean in x. In the second one we prove a similar result
for the map assigning to & in a Banach space the set of mild solutions of the Cauchy problem

(1.7) x(t)e Ax(t) + F(t, x(t) , x(0) =¢&

where A is infinitesimal generator of a C-semigroup on a Banach space and F is as before.
The last part of this thesis, chapter 5, contains a result wich we have proved in [53]
concerning well posedness of a Darboux problem

(1.8) U, € Fyw , ux,0)=a(x), u0.y)=p(y).

where F is Lipschitzian with respect to u, without convexity assumptions on the values of F.
Denoting by T(c.,B) the set of all solutions of (1.8) we prove the existence of a continuous
selection from the map (a,B)— T(c,B). Properties of the multivalued map (o,B)— T(a,B)
have been also obtained in [27] and [56] for convex valued F and in [41] for F Lipschitzean,
not necessarily convex valued.



2. NOTATIONS, BASIC DEFINITIONS AND PRELIMINARY RESULTS.

Let X be a separable metric space with distance d(.,.). For xe X and A, B any two
closed subsets of X we define the distance from x to A by d(x,A) = inf {d(x,y): ye A}; the
separation of A from B by d*(A,B) = sup {d(a,B): ae A} and the Hausdorff-Pompeiu distance
from A to B by d(A,B) = max {d*(A,B),d*(B,A)}. ‘

The following properties may be easily proved and are widely used

2.1) d(x,B) <d(x,A) + d(A,B)
(2.2) Id(x,A) - d(y,B)I < d(x,y)+ d(A,B).

Denote by B(x,r) := {ye X: d(x,y) < r}(resp. B[x,r] := {ye X: d(x,y) < r}) the open
(resp. the closed) ball of center xe X and radius r > 0. By B(A,r) = {ye X: d(y,A) <1} we
denote the open r-neighborhood of AcX, and by cl A the closure of A in X. ,

Let C be a closed nonempty subset of X. For xe X let ne(x)={yeC: d(xa,y)=d(x,C)}
be the projection of x onto C.If X is a Hilbert space and C is closed and convex then wo(x)
has an unique element. In this case we denote by m(C) the unique element of 7-(0).

Let I be the interval [0,T], let L be the G-algebra of Lebesgue measurable subsets of I and
let 1 be the Lebesgue measure. For Ae L we denote by A the characteristic function of A, that
is % A(x) =1ifxeAandy A(x) = 0 otherwise.

If X is a Banach space with norm ILIl then we denote by C(I,X) the Banach space of
continuous functions x:I-X with the norm

lixll__ = sup{lix()ll : teI};
by L™(1,X) the Banach space of essentially bounded measurable functions x: I—=-X with the
norm

lixll  =inf{r20:Ilx()ll<r ae.inI};

by Ll(I,X) the Banach space of Bochner integrable functions x: I-X with the norm

T
il = flix(lde);




and by AC(I,X) the Banach space of absolutely continuous functions x :I— X with the norm
Ixll o= Ix(O)I+IxIl, |

where x stands for the derivative of x.

Let X and Y be two metric spaces. Denote by 2Y the family of all nonempty subsets of Y
and by B(Y) the c-algebra of Borel subsets of Y. If Abe a o-algebra of subsets of X then we
denote by A®B(Y) the product c-algebra on XxY, generated by all the sets of the form AxB
with Ae 4and Be &(Y). |

A map F: X—2Y is said to be a multifunction or a multivalued map or a set-valued map
from X into the subsets of Y. We recall in the following some definitions and basic properties
related to the continuity and measurability of a multivalued map.

Definition 2.1. A multivalued map F: X—2Y is called:

(@) lower semicontinuous (l.s.c.) in X if for any xpe X, yge F(xg) and any &>0 there exists
&>0 such that
d(x,xg) <8 implies F(x)NB(yq,e)#J,
(b) upper semicontinuous (u.s.c.) in X if for any open subset U of Y containing F(x) there
exists &>0 such that
d(x,xg) < d implies F(x)cU,

(¢) continuous if it is both L.s.c. and u.s.c..

It is easy to see that the following equivalent formulations of (a) and (b) hold:
(a) <> the set FF(C) := {xe X : F(x)cC} is closed in X for any closed subset C of Y;

(b) & the set F (C) :={xe X : F(x)NC#J)} is closed in X for any closed subset C of Y.

Definition 2.2. A multivalued map F: X—2Y is called:

() Hausdorff-lower semicontinuous (h-l.s.c.) in X if for any xpe X, and any € > 0 there
exists 8>0 such that
d(x,xg) < & implies d*(F(xy), F(x)) <&,



(B) Hausdorff-upper semicontinuous (h-u.s.c.) in X if for for any xye X, and any €>0 there
exists 6>0 such that
d(x,x9) < & implies d*(F(x), F(xg) <€,
(Y) Hausdorff-continuous if it is both h-Ls.c. and h-u.s.c..

If F: X—2Y is a multivalued map thenits graph is defined by

graph (F) := {(x,y) : xe X, ye F(x)}

The following proposition gives some relations between the above concepts and its proof can be
found in [4, § 1.1].

Proposition 2.3. Let F: X—2Y be a multivalued map. Then

@ ()= (a)and (b) = (B);

(i) if F has compact values then (a) < () and (b) <> (B), so that (c) < (V);

(iii) if Fis u.s.c. with closed values then F has closed graph. Conversely, if F has closed
graph and Y is compact then F is u.s.c..

Let (X, 4) be a measure space, where 4 is a o-algebra of subsets of X, and let Y be a metric
space.

Definition 2.4. A multivalued map F: X—2Y is called 4-measurable if F (C) belongs to 4

for each closed subset C of Y.
If XcR™ and 4=L is the c-algebra of Lebesgue measurable subsets of X then we say
measurable instead of L - measurable.

The following proposition is a consequence of Theorems 3.5 and 5.6 in [36]



Proposition 2.5. Let F: X—2Y be a multivalued map. Then:

(i) if Fis 4-measurable with closed values then graph (F)e 249 B(Y) and x—d(y,F(x)) is
measurable for any ye Y.

(i) if Y is complete and separable then: F is 2-measurable <= graph (F)e AB(Y) <
x—d(y,F(x)) is measurable for any ye Y < there exists a countable family ¥ of
measurable selections from F(.) such that F(x) = cl {f(x) : fe ¥} for each xe X.

Definition 2.6. Let F: X—2Y be a multivalued map. A function f: X—Y is called a selection
from F if f(x)e F(x) for every xe X.

We recall some results concerning the measurable selections from a measurable
multivalued map.

Proposition 2.7.(Proposition 1 in [37]) Letu: I—->R" be a measurable function and let
F:1—-2R" be a measurable' multifunction with closed nonempty values. Then there exists a
measurable selection f: I-R" from F such that

llu(®)-£(ON = d(u(t), F(t) a.e.inL

The following proposition, which is the infinite dimensional counterpart of the previous
one, follows from Proposition 2 in [9], and it has been stated also in [45].

Proposition 2.8. Let X be a separable Banach space, u : I-X be a measurable function and
let F: 12X be a measurable multifunction with closed nonempty values. Then for every € >0
there exists a measurable selection f: =X from F such that

lla(t)-£(0)ll < d(u(t), F() + € a.e.in L.

The following Lemma was proved in [18] and will be used to prove Theorem 4.11.



Lemma 2.9. Let {5,(): neN} be a sequence of measurable functions, §,: I — R" and
assume that there exists oe Ll(I, R) such that for a.e. tel

I8, (Ol < ou(t) .

Then:
@A) t—=y® =cl(U {8,(t)}) is measurable, VieN .
ni :

() fora.e. te[0, T], y«(t) = N y;(t) is nonempty compact and t — Yx(t) is measurable.

ieN

(iti) For any multifunction G:I-2R" with closed nonempty values such that, for a.e.
te[0,T], d(6,(1),G(1))—0 as n — e we have that y.(t)cG(t).

Proof. (i) Since t — {8,(t)} is measurable and since y;(t) is compact, by Proposition II1.4
in [13] it follows that t — y;(t) is measurable.
(i) {y;i(t) :ieN} is a decreasing sequence of compact subsets of R" hence W,(t) is

compact nonempty. The measurability of t — y«(t) follows from (i) and Proposition

1.4 in [13].
(i) Fix €> 0. Then there exists neN such that for n2n,, 3 (t)ecl B(G(t), €) , hence

\J,Ing(t)ccl B(G(t), €) and wyx(t)cel B(G(t), &) . - ¢

Let X be a separable Banach space, and let F: I-2X be a measurable multifunction with
closed nonempty values. Let

Sg = {veL'(IX) : v(DeF® ae. in I}
be the set of integrable selections from F. Then S; has the following property : for every u, v in
Sll; and Ae L we have uy RAZING Sllg . This property characterizes a important class of

subsets of LI(I,X), the so called decomposable sets.
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Definition 2.10.([35]) A subset K of LI(I,X) is called decomposable if for every u, vin K
and Ae L we have )

uy,+ vxﬁAe K.

It follows that the set of integrable selections of a measurable multifunction is
decomposable. Moreover, we have the following proposition:

Proposition 2.11. ([35]) A closed nonempty subset K of LI(I,X) is decomposable if and
only if there exists a measurable multifunction F: 12X with closed nonempty values such that
K=S;.

We denote by D the family of all closed nonempty decomposable subsets of LI(I,X).

Assume that S is a separable metric space, X is a separable Banach space and let
F:IxS—2% be a multivalued map. Define the multivalued map s— GF(s) from S into the subsets

of LY1,X) by

(2.3) Gg(s) = {ve Ll(I,X) : v(t)e F(t,s) a.e. in I}.
The following result proved in [24] will be used several times in what follows:

Lemma 2.12. Assume that F: IxS — 2X is L®B(S)-measurable. Then the map s——)GF(s)

defined by (2.3) is l.s.c. from S into © if and only if there exists a continuous map
B:S—-)LI(I,R) such that for every se S

(2.4) d(0, F(t,s)) < B(s)(t) a.e.inl

Proof. If GF(.) is L.s.c. from S into D then, by Theorem 3 in [9], there exists g:S——)Ll(I,X) a
continuous selection from GF(.) and (2.4) is satisfied for B(s)(t)=llg(s)(DIl.



11

Assume that there exists a continuous B:S L (I,R) satisfying (2.4). Let C be a closed subset of
Ll(I,X) and let {s,},c N ©S convergent to some sge S such that GF(sn)c:C. We have to prove

that GF(S())CC. Let vpe GF(so). Then by Proposition 2.8 we obtain that for any ne N there

exists v,(.), a measurable selection from t—F(t,s,), such that
(2.5 vy (8) - voOIl < d(v(D), F(t,s,)) + ;11- ae.inL

Since s—F(t,s) is Ls.c. for every tel, it follows that for every xe X the map s—d(x, F(t,s)) is
u.s.c. and by (2.5) it follows that : v, (t) converges to vo(t) a.e.inL
By (2.4) and (2.5) we obtain that

(2.6) lva(®) - voOll < Ilvg®ll+ Bsy)(®) + % ae.inl.

Denote by a(t) the right hand side of (2.6) and remark that a (.) converges strongly in L! (ILR),

hence it is bounded in LI(I,R) and uniformly integrable, so the same holds for the sequence of
functions s — livy(t) - vy(t)ll. Then by (2.6) and the dominated convergence theorem we obtain
that vp(.) converges to vy(.) in L! (IX). Since vpe C and C is closed we have that v e C and,
since v is arbitrary in GF(SO), it follows that GF(SO)CC. ¢

The next lemma has been stated in [24] and it is a direct consequence of Proposition 4 and
Theorem 3 in [9].

Lemma 2.13.Let G:S — D be a Ls.c. map and let ¢:S—L(I,X), y:S—L(L,R) be
continuous and such that for every se S the set

2.7) H(s) = cl {ue G(s): llu(t) - ¢(s)(Ol < Ww(s)(t) a.e. in I}

is nonempty. Then the multivalued map s—H(s) defined by (2.7) is Ls.c. from S into D, hence
it admits a continuous selection.
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Remark 2.14. Lemma 2.12 and Lemma 2.13 hold true in the more general case when instead
of (I,L,)1) consider a measure space (T,%,v) where Fis a c-algebra of subsets of T and vis a

nonatomic probability measure (see [9]).

Consider the Cauchy problem
(2.8) xeF(tx), x(0)=t,

where F:IxX — 2% is a multifunction and £ X.

Definition 2.15. By a solution of (2.8) we mean any absolutely continuous function x:I—
X satisfying x(0)=¢ and x(t)e F(t,x(t)) a.e.in L

Definition 2.16. By an approximate solution of (2.8) we mean any absolutely continuous
function x: I— X such that t—)p(t):=d()}(t), F(t,y(t)) is integrable.

Several results in the next chapters concern multifunctions satisfying the following:

Assumption 2.17: F: IxX — 2% takes closed nonempty values and satisfies:

(Hl) t — F(t, x) is L-measurable, for all xe X,
(H?.) there exists ke LI(I,R) such that d(F(t,x), F(t,y)) < k(t)lix — yll, for all x, yeX, a.e.

in I,
(H3) there exists Pe Ll(I, R) such that d(0, F(t, 0)) < B(t), tela.e..

We say that F is Lipschitzean in x if it satisfies (1-12).

Between solutions and approximate solutions of (2.8) when F is Lipschitzean in x we
have the following relation proved by Filippov [28]:
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Proposition 2.18 If F is Hausdorff-continuous in (t,x) and Lipschitzean in x then :

()  there exists a solution x(.) of (2.8) if and only if there exists an approximate solution
() if y()is a given approximate solution then there exists a solution x(.) of (2.8) such that

t

t
(2.9) Jlly(u) — x(wlldu < JeK(t)'K(S)p(s)ds

' t
where K(t) = Jk(s)ds.

The above result was improved by Himmelberg and Van Vleck in [37], replacing continuity of
F by measurability.
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3. WELL POSEDNESS FOR LIPSCHITZEAN DIFFERENTIAL INCLUSIONS.
3.1 INTRODUCTION.

Consider the Cauchy problem
(3.1.1) xeF(t, x) , x(0)=§&

where F is a multivalued map from IxR™ into the closed nonempty subsets of R", Lipschitzean
in x, without any convexity or boundedness assumptions, and I=[0,T].

The existence of a solution of (3.1.1) has been proved by Filippov [28] and improved by
Himmelberg and Van Vleck in [37]. A continuous version of Filippov's result is due to Ornelas
[47] and asserts that if y(.,£) varies continuously in L! (LRM) , with respect to & in a compact
subset Z of R™ and if 8>0 is given then a solution x(.,§) of (3.1.1) verifies the folloving

(relaxed) inequality

t t

(3.1.2) Jny(u,g) — x(uE)ldu <5+ Oj<=,K(‘>'K(~°’)p(s,g)ds .

where p(t,£):=d(y(t,E), F(t,y(1,£)). Clearly this implies the existence of a solution x(.,§) of
(3.1.1) which is continuous with respectto & in Z.

For € in Elet T (&) be the set of solutions of (3.1.1) and let ,’»’Lr(&):={x(T) :x()eT (&)} be
the attainable set at time T. In this way we associate to F two new multifunctions T() and
}ZIT(.) from = into the subsets of AC(I,R") and Rn respectivelly, with values T (£) and }’IT(F,)
which are in general nonclosed, nonconvex [34]. Moreover, in general, the map T(.) is neither

upper nor lower semicontinuos. When the map F is upper semicontinuous with compact convex
values then the map T (.) is known to be upper semicontinuous with compact connected values

([4], [25D.

The first result asserting the existence of a continuous selection from T() and FLI.(.) was

proved by Cellina [14], under the assumption that 2 is a compact subset of R" and F is

Lipschitzean in x with compact (non necessarily convex) values contained in a bounded subset
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of Rn. The proof is based on the Liapunov's theorem on the range of nonatomic vector
measures. The assumption on F was relaxed and the proof was simplified by Cellina and
Ornelas in [16], proving the same result for F Lipschitzean in x with closed nonempty values.

A generalisation of this results has been obtained in the joint paper with Colombo,
Fryszkowski and Rzezuchowski [24] where the Cauchy problems

(3.1.3) xeF(t, x,5) , x(0)=&(s)

was considered, with F Lipschitzean in x and Ls.c. in s, and &(.) continuous. Denoting by T(s)
the set of solutions of (3.1.3) we have proved the existence of a continuous selection from the
multivalued map s—7T(s), passing by a fixed point of graph (T). Remark that the existence of
such a selection implies that the multivalued map s—7T(s) is lower semicontinuous ([4], p.80),
hence it implies the result by Naselli Ricceri and Ricceri [45]. Remark that our result contains
also as particular cases the selection theorems by Antosiewicz and Cellina [1], Bressan and
Colombo [9] and Fryszkowski [31]. Using this result Fryszkowski and Rzezuchowski have
obtained in [33] a continuous version of Fillipov-Wazewski relaxation theorem for the problem
(3.1.3).

The proof of this result, which we present in section 3.2, is based on a continuous
selection theorem obtained by Bressan and Colombo in [9].

Following [52], in section 3.3 we prove an analogue of Michael's extension theorem [42]
for solution sets.

Section 3.4 contains a result proved in [19]. Here we consider a multifunction F defined
on RxC, where C is aclosed subset of R", and satisfying a tangentiality condition, and we
prove the existence of a continuous selection from the map assigning to an initial point the set of
solutions (with values in C) of the Cauchy problem (3.1.1).

Remark that the (generalized) successive approximations process that is the base of the
construction, in the case under consideration requires at each step a projection over the (in
general, non convex) set C, since F is not defined outside C, and that this projection is not
continuous. Moreover, the lack of an argument allowing the extension of a multi-valued
Lipschitzean map from a closed set to an open set containing it, prevents the possibility of
exploiting the available techniques for the present case.

As a side result we obtain the convergence of the sequence of generalized successive
approximations for any initial function xg .

In the last section of this chapter we shall use the selection theorems in Sections 3.2 and
3.4 to prove the arcwise connectedness of the set of solutions and of the attainable set. We
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show also that any two continuous selections from the map assigning to the initial point the set
of solutions, are linked by a continuous homotopy with values in the solution sets.

3.2 WELL POSEDNESS FOR DIFFERENTIAL INCLUSIONS ON OPEN
SETS.

In this section I is the interval [0, 1], S is a separable metric space and X is a separable
Banach space. Consider a multifunction F:IxXxS—2X satisfying ' '

Assumption 3.1: F takes closed nonempty values and:

(A;) F is L®B(XxS)-measurable,
(Ay) there exists a continuous map k : S—SLI(I, R) such that k(s)(t)>0 and for all x, ye X
and se S :

d(F(, x,s), F(t, y,8)) < kS)(®) Ix—yll ae. in I,

(Az)  for any (t,x)e IxX the multivalued map s—F(t,x,s) is Ls.c..
(A4)  there exists a continuous map B : S—LI(I, R) such that for every s:

d(0, F(t,0,s)) < B(s)(t) ae.in L

For s in S consider the Cauchy problem
(3.2.1) xe F(t, x,8) , x(0) =&(s)

where E(.) satisfies

Assumption 3.2: & :S—X is continuous.
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Denote by T (s) the set of solutions of (3.2.1).

The main result of this section is the following

Theorem 3.3. Let F and & satisfy Assumptions 3.1 and 3.2, respectively, let spe X and let
xg€T (sp) be given. Then there exists x(-, -) : IxS —X with the following properties:

@  x(-, s)eT(s) foreach se8;
(i) s-—x(,s) iscontinuous from S into AC(I, X);
(i) x(-,80) = xo(") .

Proof. Remark that we may assume &(s)=0 and x(t)=0 for all tin I and s in S. In fact, set
F*(t,2,8)=F(t,2+§(5)-§ (50)+x0(1).5) = Xo(1)
and consider the Cauchy problem
(3.2.2) ze F*(t, z,s) , z(0) =0.
Then F* satisfies Assumption 3.1 with
Bx(s)(t) = lIxg()Il + B(s)(®) + k(s)(DNE(S)-E(s0)+X0(DI,
and Oe F*(t,0,sy). Moreover x(.,.) given by
x(t,8) = z(t,8) + &(s) - E(s) + xo(D),

satisfies assertions (i), (ii) and (iii) in the theorem whenever z(.,.) do so for the problem (3.2.2)
and XO =0.
In the following we assume that x3=0, hence O0e F*(t,0,s(), and we prove the theorem for the

problem
(3.2.3) xeF(t, x,s) , x(0)=0.

Let F, : IxXxS—2X be given by
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F(t,x,s) if s#sg

F (t,x,5) = { )
{O} if $=8p

and remark that d(0, F,(t,x,s))=d(0, F(t,x,s)) and, clearly, F, satisfies Assumption 3.1.

. n+l
Fix € >0 and, set g=¢ -n—+§,neN.

Let x,(t,5):=0 and define the multivalued maps Gy: S—2L'X) and Hy: S—2L'@X) by

Gy(s) = {ve L', X) : v()e F, (1, xo(t, 5),5) a.e. inl},

Hy(s) =cl{ve Go(s) vl < P(s)(t) +gg ae.inl}.

Then by (A 4) in Assumption 3.1 and by Lemma 2.12 we obtain that Gy(-) is Ls.c. from

Sinto D and for all se S the set Hy(s) is nonempty. Then by Lemma 2.13 it follows that there
exists hy:S— Ll(I, X), a continuous selection from Hy(-), hence such that:

ho(s)(He F(t, xq(t, s),5),
hO(SO)(t)z()’

and
llho(s)(OIl < B(s)(t) +¢€y ae.inL
Define
t
x4(t, 8)= tho(s)(u)du
and notice that

t t
I1x;(t,8) — xq(t, )l < 0‘[ llhg(s)(u)lldu < J.B(s)(u)du + €5 < By(8)(D),
0
where, by definition,

t n-1 n-1
(3.2.4) Ba(s)(®) = JB(s)(u) [K(t’szfl(ﬁ’s)] du+ ”i‘é’ff}z

and
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K(t,s) = th(s)(u)du.

Remark that since [ is continuous from S into Ll(I,R), by (3.2.4) it follows that also B, is
continuous from S into LI(I, R).

We claim that we can construct a sequence of successive approximation {xn(t,s)}neN

such that x,(.,s)e AC(LX), x,(0,s)=0 and, for eachn=1:

(@ s—x,(- s) iscontinuous from S into AC(,X);
() x,(t,s)eF(t, x,(t,s),5) ae.inl;
© IE{n(t,s) - kn_l(t,s)ll < k(s)(®) Byi(S)(®), ae.inl;

@ xu(, sp=0.

Remark that the above holds for n=1 and also that by (c) we obtain
t

t
1ixp(t, 8) = X G < Jlb'(n(u,s) — X, sl du < Ojk(s)(u)ﬁn_l(s)(u)du=

t t
t n-2 n-2
K(t,5)-K(r, K(,
625 = [Bow ufk(s)(r>[ e + e Ofk“)[-%fz'))']r‘d“

! n-1 n-1
Jpow BETKGIT gy e, ELHT < g0

hence

©) Ixp(t, s) — x, (&I < B(s)(t) ae.inlL

Assume we have constructed x,, ..., x, satisfying (a)-(d) and let us construct x ;.
Observe that by (b) and (A2) in Assumption 3.1 we obtain

d(x,(t,8), F(t, x,(t, 5),8)) < d(F(t, x,.1(t, 5),8), F(t, X,(t, 5),8)) < k(s)()Ix(t, 8) — x;,.1 (£, )l
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and by (e) it follows that

7 (3.2.6) d(x,(t,8), F(t, x,(t, 8),8)) < k(s)(t) B(s)(t) a.e.in]

Define the multivalued maps G,: S—2L'@X) and H,: S—2L'0X) by

(3.2.7) G,(s) = {ve LI, X) : v(D)e F,(t, x.(t, 5),5) a.e.inI},
and
(3.2.8) H,(s) = cl{ve G,(s) : IV(t) - X, (6,9l < k(s)(t) B(s)(t) a.e.inT} .

Then by (3.2.6) and Lemma 2.12 it follows that Gp(.) is 1.s.c. from S into D and for all se S
the set Hy(s) is nonempty. Moreover, by Lemma 2.13 it follows that there exists
hn:S—-)Ll(I,X), a continuous selection from H_(-), hence such that:

h,(s)(De F(t, x,(t, s),8),
h,(sp) (1)=0,

and
Ith,,(s)(t)- kn(t,s)ll < k@) By(s)(®) ae.inl
Define

Xne1(t, 5)= G[hn<s><u>du

and notice that it satisfies (a)-(d) in our claim.
By (c) and (3.2.5) we obtain that

[Ilk(s)lll]n
(3.2.9) l%541(8) = Xq (-, 9, o < By () < T(IIB(S)HI +¢).

Since the functions s— llk(s)ll1 and s— Il[iS(s)lI1 are continuous they are locally bounded, hence,
by (3.2.9), the sequence ({x,(., s)} N satisfies the Cauchy condition locally uniformly with
respect to s. Hence if we set x(t,s) = lim x,(t, s) we obtain that s—x(.,s) is continuous from S
into AC(IL,X). Moreover since x,(., sg) = 0 for any ne N we have that x(., sg) = 0.

To see that t—x(t,s) is a solution of (3.2.3) it is enough to notice that

d(x,(6,5), F(t, x(t, 5),5)) < k(s)(Olx,(t, 5) — x(t,5)l
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and F has closed values. ' ¢

Corollary 3.4. Let F: IxX—2X satisfies Assumption 2.17 and for & in X let T (&) be the set
of the Cauchy problem

(3.2.10) xeF(t, x) , x(0)=E.

Let e X and let xgeT (&p) be given. Then there exists x(-, -) : IXX —X with the following
properties:

i  x(,&eT(E) foreach EeX;
@@ &— x(, &) is continuous from X into AC(, X);

@) x(-Eo) =xo() .

Proof. Since F satisfies Assumption 2.17 it follows that Assumptions 3.1 and 3.2 are satisfied
for F(t,x,8)=F(t,x), S=X and &(.) = the identity. Therefore the Corollary follows from Theorem
3.3. ¢

Remark 3.5. By Theorem 3.3 it follows that the multivalued map s—T (s) is locally
selectionable (Definition 1 in [4, p. 80]), hence by Proposition 1 in [4, p. 80], it is lower
semicontinuous. Therefore the result of Naselli Ricceri and Ricceri in [45] is a consequence of
Theorem 3.3.

Corollary 3.4 contains as particular cases the selection theorems by Cellina [14], Cellina
and Ornelas [16] and Ornelas [47].

As a corollary of Theorem 3.3 we obtain also the continuous selection theorem by
Bressan and Colombo [9], which generalises the selection theorems by Antosiewicz and Cellina
[1] and by Fryszkowski [31].
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Corollary 3.6. Let F be a lower semicontinuous multivalued map from S into D. Then it

admits a continuous selection.

Proof. Obviously F(t,x,s)=F(s) satisfies Assumption 3.1. Let T (s) be the set of solutions of
the Cauchy problem

xeF(s) , x(0) =0,
and let T'(s) = {x : xe T(s)}. Then by Theorem 3.3 there exists a continuous selection from
s—7T (s), hence also from s—T (s) and s—F(s). 3

The folloving proposition was proved in [52] and gives the existence of solutions for a class of
boundary value problems.

Proposition 3.7. Let F as in Corollary 3.4, let K be a nonempty compact convex subset of X
and assume that T(K)(T)cK, where T(K)(T)={x(T): xe T(§), Ee K}. Then the boundary value

problem

(3.2.11) xeF(t, x) , x(0)=x(DeKkK,

admits a solution.

Proof. Let 9:X—AC(1,X) be a continuous selection from T(€) given by Corollary 3.4 and
define y:X—X by y(§)=¢(&)(T). Then y is continuous and W(K)cK, hence by Schauder's
Theorem there exists E:,Oe K, a fixed point of y. Then (p(&o)(l‘ )=§O= (p(éo)(()) and so x=q)(§0) is

a solution of (3.2.11) . ¢
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3.3 AN ANALOGUE FOR SOLUTION SETS OF MICHAEL'S EXTENSION
‘ THEOREM

In this section I=[0,T], X is a separable Banach space, F: IxX — 2% is a multifunction
satisfying Assumption 2.17 and T(§) stands for the set of solutions of the Cauchy problem

(3.3.1) xeF(t,x) , x(0) =&.

The Michael's theorem [42] asserts that if A is a closed subset of X, Z is a Banach space,
G:X— 22 is a lower semicontinuous multivalued map with closed convex nonempty values
and g: A—7Z is a continuous selection from G on A (i.e. g(x)e G(x) for all xe A) then there
- exists a continuous extension g*: X—Z of g such that g(x)e G(x) for all xe X

We present here an analogue of the Michael's result for the map E—T (§) , obtained in
[52]. To prove it we shall use a result in [8].

Theorem 3.8. If Y is a closed nonempty subset of X and ¢:Y—AC(,X) is a continuous map
such that @(&€)e T(§) forall EeY then there exists ¢*: X—AC(L,X), a continuous extension of
@, such that @*€)eT(€) for all Ee X.

Proof. Let T'(E)={x: xe T(£)} and set ¢'(€)=[@(E)]. Then ¢': Y—=LI(I, X) is continuous
and satisfies ¢'(§)e T'(€) for all Ee Y. By Theorem 1 in [9] there exists A: X—L1(I, X) a
continuous extension of @' and by Theorem 2 in [8] there exists a continuous map
y: XxLI(ILX)—LY(ILX) such that :

@  wEuweT'(€) for each ue L1(1,X),
() w(,u)=u foreachueT'(€).

Define n: X—LI(I, X) by n(&)=y(§,M&)) and, by (i) we obtain that n(€)e T'(§) for each Ee X.
Moreover, since for £ Y we have A(E)=¢'(E)e T'(§), by (ii) it follows that for all £eY we
have N(E)=w(&,¢'(€))=¢'(€). Therefore 1(.) is a continuous extension of ¢'(.) and N(€)e T' (&)
for each Ee X.

Setting
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t
P*E)D =& + G[n@mdc

we obtain that ¢*(.) is a continuous extension of @(.) and @*(§)e T(E) for every &g X. ¢

Corollary 3.9. Let &0, éle X, E_,O;é &1, and let X)€ ‘]'(EO), X, € ‘T(&l). Then there exists a
continuous map A:[0,1]— AC(I,X) such that: l(O)=x0, 7\.(1)=x1 and, for ae [0,1],
AMo)e T(Ea), where §a=(l-a)§0+a§1.

Proof. Let Y={§0, &1} and ¢:Y—>AC(,X) be given by (p(&o) =Xy (p(él) =x,. By Theorem

3.8, there exists a continuous extension @*(.) of @(.) such that ¢*(&)e T(§) for every &e X.
Then the map A:[0,1]— AC(I,X) defined by k(oc)=(p*(§a), has the properties stated in the

corollary. ¢

3.4 WELL POSEDNESS FOR DIFFERENTIAL INCLUSIONS ON CLOSED
SETS.

Let Ibe the interval [0, T] and let C be a closed nonempty subset of R?. For xe C set
dc(x):=d(x,C) and let

Tc(x) = {veRn : lim inf do(x + hv) = 0}

h—0t

be the contingent cone to C at x. Let F:IxC—2R" be a multivalued map satisfying the
Assumption 2.17 and

Assumption 3.10: F(t, x)cTc(x) forall (t, x)e IxC.

For £ in C consider the Cauchy problem
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(3.4.1) xeF(t, x) , x(0)=§

and denote by T () the set of solutions (with values in C) of (3.4.1).
Let e C andlet xge AC(I, Rm) be such that xy(0) = &;. Let zy(-) be a measurable
selection from t — m(xg(t)) ; let v;(-) be a measurable selection from t — F(t, zy(t)) such
that '

liv1(t) — xo(Oll = d(x¢(t), F(t, z9(t))) a.e.in I,

and let x,(-) be given by
4
xq(t) = &g + Ojvl(s)ds :

We call x,(-) a (first) successive approximation from x.Remark that, when x is already a

solution to (Pg,) (with values in C), we have zj = xy and v; = Xg » SO that the sequence of

successive approximations consists of the point x; only.

We shall prove the following

Theorem 3.11. Let CcR" be compact, &ye C and let xpe AC(I, R®) be such that x4(0) =
Ey.Let F:IxC — 2R satisfy Assumptions 2.17 and 3.10. Then there exists x(-, -) : IxC—C
with the following properties:

@ x(¢,&eT(E) foreach EeC;

() & — x(-, &) iscontinuous from C into AC(, R");

(i) x(, &) islimitof a sequence of successive approximations {x,(-, £g)}>p With
x0(-,60) = xo() . In particular if xge T (€y) then x(:, &g) = xo(*) .

Proof.

t

Set xo(t, £) to be §+J5<0(s)ds , so that xq(t, Eg) = xg(t) . For & in C let zy(-, &) be

a measurable selection from t — T(xg(t, &)) . Then
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d(xo(t, &), F(t, zy(t, £))) < lixg(Dll + (0, F(t, 0)) + k(1) lizg(t, EII <
< k(D1 + B(t) + MK(®) = 8(1) ,

where M :=sup{li€ll : EeC} .
By Proposition 1 in ([4], p. 202) we have that

& [de(xolt, B < dGo(t, &), Te(eliolt E) <

< d().(()(ta E.o)’ TC(ZO(t’ &))) < d(k()(ta €)3 F(ZO(t’ &))) < 80(0

and, since de(x¢(0, £)) =0, we obtain

t
de(xolt, £)) < d[a()(s)ds .

Following ideas in [1] and [16], let N :=%— and, for § in C, set

p1(§)=min{n, € —Eyll2} if §=&, p1(E) =" .
Cover C with balls B(E, py(€)) and let (B(E, p1(§;)):0<j< Ny} be a finite subcovering
with 3;(1, =&, . Let {pj1 :0<j<N;} be acontinuous partition of unity subordinate to this

subcovering and define

1,&) = [0, Tpy&)] »

3 .
HEE ]TSp}((&) , Tipi@)] for 0<j<Ny.

k=0 k=0

Since &; belongs only to B(&, p;(&;)) we have that I(l)(ﬁo) =[0,T].

Let v;(-, &) be a measurable selection from t — F(t, zy(t, £)) such that

lIvy(t, &) — xo(t, E)Il = d(xq(t, &) , F(t, z(t, 8))) ,

and set
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¢ N

1
Xt &) =8+ oj Z xI}(g)(s)vl(s, §j1)ds .
0

t

Remark that x;(t, xg) = &g+ Ojvl (s,§0)ds , hence it is a (first) successive approximation from

Xg - Moreover,
t

llx, (t, &) — xo(t, E)I < Jn&l (5,E) — Xq(s,E)llds <

r Np
soj Z xljl_(é)(s)llvl(s, E) = Xo(s, £l ds <
j=0
t Ny
< 2 X1 (vils, £ — kols, EDI+
0 Ii(&) J J
j=0
¢ N1 t
+ oj 2 xljl_(&)(s)llko(s, &}) — Xq(s, E)ll ds < JSo(s)ds .
j=0

Let z;(-, &) be a measurable selection from t — Tc(x(t, &) . Fix teI and let j be such that
teL;(€) . Then:
dx1(6 &), Ft, 2 (6, €)) = d(vy(t, &) , F(t, (4, E)) <
< A(EG, 20t &), F(E, 2yt ) S k() lzglt, &) = 26, §II S

< k(O[2de(xo(t, £) + 2lixg(t, &) — xo(t, O +
+ k(O[de(xo(t, £)) + de(x4(t, £)) + x4 (t, &) — xq(t, EMI] <
L

S k(®)[de(x;(t, £)) + 3dc(xo(t, €)) + 0J-?So(s)ds +2n] £
t
< kOdc(xy (8 ) + 4 J So(s)ds + 311,

and this estimate is independent of j, hence it holds on I.
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As before do(x;(0, &)) = 0 and

el (t, BT < Gyt &), Ft, x,(6, ) <

t
< k(1) de(x(t, &) + k() [40]80(s) ds +3n],

so that
y tk( Ydt >
de(x4(t, &) SJ CJ k(s)[4oj80(u)du +3nlds =
t
=4 [84(s) e 11+ 3mied 1
0
and
’ t
. k(t)dt k(t)dt
d(xg(t, &) , F(t, zo(t, £))) < k(t)[4oj50(5) fJ ds+ 3116(" 1.

Set

t
K@) = Ojk(«:)dr

and, as in [46, pag. 121], set 3,(t) to be the essential supremum of the family

{t = d(x;(t, &), F(t, z(t, £)) : Ee C, z(-, &) measurable, z(t, £)e (x4 (L, &)} .

Then, for a.e. tel,
t
8,(1) < k(t)eK(‘)[4J80(s)e‘K(S)ds +3m].

Finally set
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o (1) = sup{Iwy(t, & —vi(t EDI: 0 <4, § <Ny

J .
and remark that a;eL1(I, R) and, since all of the functions & — kzop }((Ej,) are uniformly

continuous on C, forevery € >0 there exists p >0 such that

IE'—Ell < p implies Ik (t, &) — %, (t, EN < oy () % (D)

for some Ecl with p(E) <e.
We claim we can define sequences of functions {x,};5;, {8,}p>1 and {o,},s; with the
following properties:

@ o,e L1, R) is such that for every € >0 there exists p>0 such that

IE'—Ell <p imphies lxy(t, &) — Xp(t, EN < 0y (OXE(D)
for some Ecl with WE) <e;

() x4, &y isa n-successive approximation from xy(-) ;
t

t
(iii) Jllkn(s,ﬁ) - Xp1(s, E)lids < Jﬁg_l(s)ds + M0
where
3,(t) = ess sup{d(x4(t, &, F(t, z(t, E))) : Ee C, z(:, &) measurable,
2(t, Demc(xy(t, £)) ae.};
t
(iv) delry(t, B) < Oj 8,(s)ds ;

n-1

t
K@) - -1 4K(D)Ti
V) 8y(0) < k(DeKO[4n Ojsg(s)e—ms}s RO s + 3 . Oil—![—iln‘] :
i=

For n=1 the above holds. Assume itholds up to m and let us show it holds for m+ 1.
By (i) of the inductive assumption ther exist o,eLI(I, R) and p,,,; >0 such that

IE' — Ell < ppyq implies lxp(t, &) — xp (¢, EN < o (DYE®
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with Jocm(s)ds < qm+,
Define, for § in C,
Pme1(®) =min{ppq , 1§ ~Egll2} if €&y, Pmr1(€o) = Pt
and let (BE™, pre1(E]) : 0 <j <Ny} be afinite covering of C with & =& .
Set for simplicity N:=N,,; and §;= &;"ﬂ ,0<j<N.Let (p;: 0<j<N} be acontinuous
partition of unity subordinate to this covering and define

To(€) = [0, Tpy(&)],
L _
L) = ]TJEPk(é) : Tipk@)] ,0<j<N.
k=0 k=0

Since &; belongs only to B(&g, pm1(&p)) we have that Iy(€g) =1.
Let z,(-, &) be any measurable selection from t — ®c(x,(t, &) and let v 1, &) bea
measurable selection from t — F(t, z,(t, €)) such that

IV 41(t &) = Xp(t, Ol = dxp(t, &) , F(t, 2y (t, ©))) -

Set

t N
Xma1(t, §) =&+ J 2 X)) Ve (S, &jds
=0

and remark that

t

Xm+1(t’ g()) =§ + G[Vm+1(ss E_.())dS

so that x,,;(-, &) isa (m+1)-successive approximation from xg(-) .
By the construction, X.,,;(-, §) is absolutely continuous and x,,; satisfies (i) of the inductive

assumption with

Ol 1() 1= SUP (V4 (& Ep) = Vin g (6 EDIN 1 0 <, j SN
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Moreover,

t

X1 (t, &) — Xp(t, OIS Jllkm+1(s, E) — X (s, E)llds <
' N
< [ Xt [ Winr(5 &) — s, B+ ey 5, ) = (s, 1 ] s <
=0
t t
s J 3, (s)ds + xJozm(s)ds < 0‘[Sm(s)ds +nm+l |

Let z,.1(-, &) be a measurable selection from t — WXyt §)) . Let tel be fixed and let j
be such that teI(€) . Then

d(Xp(t, &)  F(t, Zpyg1 (8, E))) = AV (t; §)) s F(t, zippn (8, £))) <
< A(F(t, 2, &) 5 F(t, i (4, §)) S k() Nz (t, €) ~ zppg (8, Ol <
<K(®) [ Nzpn(t, &) — 2 (t, O + Nz (8, &) = 2y (&, N T S
k() [2dc(Xp(t, €)) + 2lxp(t, §) = Xpa(t, EYIT + k(O) [dexp(t E)) +
+ e (t &) + g (8 &) =%t O <K [de(Rpen (t ©)) +

t
+3dc(Xp(t, £) + Ojsm(s)ds + 3+ |
and, since
t
de(xem(t, £)) < Ofsm(s)ds,
we have, for tinl,

. t
A1t &) s F(t, Zipq (8, 8)) k() de(ppa (. 8)) +k() [4J5m(5)ds + 3nmH].

Since de(xX41(0, €)) = 0 and
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gf[dc(xm+l(t’ N1 < dxpea (4, &) 5 Te(me(pmaa (t 8))) < Ay (& €) 5 F(t, 2y (1 8)))

we obtain

t s
(t
de(Xpma(t, €)) < a[ € -[ ‘ )mk(S)[4 Jﬁm(U)du +

t
+ 3nm+l]ds = 4 JSm(u) (eK®KW _ 1)du + 3nm+1[eKO — 1]

and

dXm41(t &) » F(t, Ziq (8, &) S k(O de(Xpa (6, E)) +
t t
+ k() [4Ojsm(u)du + 3™ < k(1) KO [4 [5,,(u) eK® du + 3nm+1] .
0

Therefore, setting
Bms1(® = ess sup{d(X,(t, &) , F(t, z(t, §))) : Ee C, z(-, §) measurable,

z(t, £)e Te(X 41 (1, §)) ae.),
we have that de(x,q(t, £)) < Oj5m+1(s)ds and

t
841 (1) < k()eK® [46[5m(u) eK) du + 3nm+1]

Finally, by using (v) of the inductive assumptions, we obtain

t s
Bme1(t) < k(DeKO {4JC_K(S) k(s) eK®)[4m Ojso(u)e—m) @%frl;—ll%lf“_l du +

fury

m- . t
+3nm Z%,— [i"-gnisl]‘] ds + 3nm+1 } =k(t) eKO { 4m+1 Ojao(u)e—K@) :
i=0
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t mel ¢ m-1 i
] EOK@Y Ty 45T du+ 4 - 3nm JRO ZIIT [552] ds + 3nm-t } =

(m-1)!
i=0
t m
m 1 r4r®7i
= k(t)eK® { 4m+1 Jso(u)e—K(u) E(Eﬁl'(&l)l du + 3mm+l 21_'_ [ Jng] }
i=0

and the proof of our claim is complete.
Remark that as a consequence of (i) each map & — x,(-, &) is continuous from C inio

AC(I,LRm) . Also, from (v),

4K

(3.4.2) 8,(t) < 4k())eK® (‘—;'n%%%l“'l I8l +3nne M

so that, by (iii)

T
X1 G, ) = Xy, ENlo < Gjﬁn(t)dt + <

4K(T)

< 4eKM) %‘i—%,ﬁ‘“l ISll, +3Tnne M 4+ mn+l

The sequence ({x,(-, &)}, is Cauchy in AC(I, R") uniformly with respect to & and it

converges to the map & — x(-,£) continuous from C into AC(, R®) . Since, from (3.4.2),
t

{8,(t)}, converges to O for tin I and dg(x,(t, £)) < jﬁn(s)ds , from the dominated
i

convergence theorem we infer that x(-, ) takes valuesin C.
The function x(-, &) is a limit of a sequence of successive approximations from x(-)
(in particular if xy(-) is a solution to (Pﬁo) , X(, &) = x¢(+)). To show that x(-, £) is a

solution for every & choose z,(-, ) a measurable selection from t — ma(x,(t, €)) and
remark that

d(xn(t, &) , F(t, x(t, £))) < d(x,(t, €) , Flzy(t, E)) +
(3.4.3) + k(1) [de(xq(t, E)) + llx,(t, &) — x(t, E)I <
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t
<5_(t) + k(1) [G[SR(s)ds + Ik (t, E) — x(t, E)II] -

Since {x,(-, )}, is Cauchy in LI(I, R®) , a subsequence converges pointwise a.e. to
5{(-,&) . Passing to the limit in (3.4.3) we obtain that x is a solution, since F has closed
values. ¢

3.5 ARCWISE CONNECTEDNESS OF SOLUTION SETS.

Solution sets to ordinary differential equations without uniqueness defined on open sets
are known to be connected but not (in general) arcwise connected. In the case of solutions to
differential inclusions on closed sets the difference between continuity and Lipschitz continuity
is even more striking: example in ([4], pp. 203) shows that the solution set to (3.5.3) for
x—F(x) single valued, continuous and independent on t, may consist of exactly two solutions,
a disconnected set. In this section we show that for Lipschitzean and time independent maps,
the set of solutions are arcwise connected.

Assume to have a multifunction F satisfying one of the following assumptions :

(3.5.1) F:X—2" is Lipschitzean with nonempty closed values and X is a separable

Banach space

(3.5.2)  F:C—2R" jsLipschitzean with nonempty closed values and C is a compact
subset of R".

For F satisfying (3.5.1) (resp. (3.5.2)) and for & in X (resp. in C) consider the Cauchy

problem

(3.5.3) xeF(x) , x(0) =& ,
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and denote by T(E) the set of solutions of (3.5.3) defined on the interval I=[0,T], with values in
X (resp. in C). Fix (io,xo)e graph (7). Then by Corollary 3.4 (resp. Theorem 3.11) there

exists a continuous selection ¢:X—AC(LX) (resp. (p:C—)AC(I,R")) from E—T(E) such that
(p(§0)=x0. We derive from this the arcwise connectedness of the solution sets T(E).

Theorem 3.12. Let F satisfy (3.5.1) (resp. (3.5.2)). Let £— XO@) and E— xl(i) be two

continuous selections from &—T (). Then there exists a map H from [0,1]xX into AC(I,X)
(resp. from [0,1]xC into AC(®LR™) with the following properties:

(i) H is continuous,
(i) H(0,8)=x,(&) and H(1,§)=x, (%),
(i) for A in [0,1], H(AE) isin T (€).

Proof. Set xo( E)= xO( E)(t) and x,( E,t)= x,( E)(t) and define H(.,.) by

xl(ﬁ,t) if 0<t<AT

HA.8)(®) =
X o (x; (§AT),t-AT) if AT <t <T

Then H(.,.) is well defined, H(O,§)=x0( £), H(1,§)=xl( €)and HAE)isin T (§).
Fix : >0, 7‘0 in [0,1], E‘O in X (resp C). Then

T
(3.5.4)  IH(AE) — H((A E N, = IEE Il + J| H'(LE)) - H(L & )(Dldt,

where ' means derivative with respect to t.
We perform the estimates for the case ).<7»O.

T AT

JIIH'(K,E,)(t) - H'(M & )lldt < Jnxl'(&,t) - x,'(EDldt +
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'A.OT

355 + J'uxo'(xl(g,n),t-m) - xEg il dt +
AT
T
+ jnxo'(xl(g,m),t-n)—xo'(xl(go,xOT),t-xOT)l| dt .
AT

Denote by U, V, W the first, the second and the third term of the right hand side of (3.5.5)
respectivelly. '

. . €
By the continuity of &-——)xl‘(ﬁ) in &0, it follows that U is less than 7 for H&—T;Oll < 61.

For V we have the following estimations
AT (Ay-MT

V< J.lel'(E_,O,t)ll dt + Jnxo'(xl(go,xOT),s)u ds +
AT 0

lOT

+ J'nxo'(xl(go,xo'r), tAT)-x, (x (EGAT), tATH dt +
AT

XOT

+ J'nxo'(xl(go,xr), tAT)-x, (x, EAT), tAT)I dt <
AT

lOT ; (XO-X)T

< Jllxl'(ﬁo,t)ll di + f I, (¢, A D ds +
AT 0

Ik (% (€A g T)=X ) (%, (€ AT i ) (x, (B AT (x, GAT)I.

Hence, by the integrability of xl'(io) and of xO'(xl(ﬁo,lT)), the continuity of the maps

(t,&)—%xl(ﬁ,t) and n—éxo'(n) we obtain that V is bounded by % whenever IIK—?»OII < 82 and
IE~& Il < 8. Define the translation operator U : L' 5>L' by U (x(9)= x(t+1). Then W is
bounded by
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T-AT

Jll(xo’(xl(é,XT), ) —xo (x, (EA,T), S)INds. +
(XO—X)T

T—XOT

+ Jnxo'(xl(g,xo'r), s+, MT) - %', (EA,T), 9lids <
0

Sllxo'(xl(ﬁ,XT))—-xO'(xl(Q,XOT))III+
T-l.OT

+ J'MUQO-MT(XO'(xl(@,XOT)))(S) —x,'(x (E A T)(s)lds.
; |

By the same argument as before and recalling that HUT(x)-xlll—>0 as T—0, term W can made

smaller than g— for IIK—KOII < 83. Hence by choosing d=min { %, 51, 82, 83}, by (3.5.4) and

(3.5.5) we obtain that IIH((A,E) — H(O\.O,F,O)II ACSE whenever l!?&—i\.OH < dand llé’;—&oll <d. ¢

Corollary 3.13. For every &eX the set T() and the attainable set A (§) are arcwise

connected.

Proof. Fix F,Oe X and let x,y bein ‘T(E_,O). Let ¢ be a continuous selection from §—T (&)
such that q)(io)zx and define for Ac[0,1] .

y(t) if 0<t<AT
xx(t)=
O(y(AT)(t-AT) if AT <t <T

Remark that xO(.)=x(.), xl(.)=y(.) and X, € T (xx). From the proof of Theorem 3.12 it

follows that A— Xy is continuous from [0,1] into AC. ¢
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Theorem 3.12 and Corollary 3.13 have been proved in [19] for F satisfying assumption
(3.5.2). For F satisfying assumption (3.5.1) the statement of Corollary 3.13 has been proved in
[54].
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4. EXISTENCE AND WELL POSEDNESS FOR EVOLUTION EQUATIONS.
4.1. INTRODUCTION.

Differential inclusions of the form
(4.1.1) x(De —Ax(t) + f(t)

where A is a maximal monotone (in general, unbounded) map, have been extensively studied
(see Brezis [11]), both in finite and in infinite dimensional spaces.
Existence of solutions follows, to some extents, from the basic relation

(4.1.2) SO =2 <x(0, x()>

(whenever meaningful), that applied to two solutions of (4.1.1), by the monotonicity of A and
the minus sign on the right hand side, yields that their distance is nonincreasing. This
reasoning allows the construction of a Cauchy sequence of approximate solutions, converging
to a solution.

The existence of the right approximate solutions is supplied by the maximality of A , that
permits the use of the Yosida approximations. Hence existence is a result of completeness, of
having the sign minus at the right hand side, and of maximality.

The same conditions have allowed to prove existence for several classes of perturbations
of (4.1.1) to

(4.1.3) x(t)e — Ax(t) + F(t, x(1))

by Benilan-Brezis [6], Attouch-Damlamian [3], Cellina-Marchi [15], Colombo-Fonda-Ornelas
[21], Mitidieri-Vrabie [44], Mitidieri-Tosques [43], Colombo-Tosques [22], Kravvaritis-
Papageorgiou [39], Papageorgiou [49],Tolstonogov [57].

On the other hand, in [7] the problem

(4.1.4) x(H)e Fx(£)caV(x (D), x(0) = xg
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has been considered, where F is a monotonic upper semicontinuous (not necessarily convex-
valued, hence not maximal) map contained in the subdifferential of a locally bounded convex
function, and x is in a finite dimensional space.

Here the basic relation (4.1.2) (and the lack of the minus sign in (4.1.4)) yields that the
distance among solutions increases and typically there is no uniqueness. Existence of solutions
depends on arguments of convex analysis.

This result has been generalized by Ancona-Colombo [2] to cover perturbations of the
kind

x(D)e F(x(t) + £(t, x(1))

with f satisfying Carathéodory conditions.

After some definitions and preliminary results on evolution equations recalled in section
4.2,1in section 4.3 we present a result, proved in [18], concerning local existence of solutions
for the Cauchy problem

(4.1.5) k(t)e —V(x(1)) + F(x(t)) , FR)cdW(x)
x(0) = g,

where x is in a finite dimensional space, V is a lower semicontinuous proper convex function
(hence its subdifferential 0V, is a maximal monotone map), W is a lower semicontinuous

convex function and F is an upper semicontinuous compact valued map defined over some
neighborhood of xg (this last assumption implies, [7], that locally W is Lipschitzean). Remark
that at the right hand side of (4.1.5) is defined by a maximal monotone map with a minus sign
and a bounded monotone but not maximal monotone map with a plus sign.

Sections 4.4 and 4.5 are devoted to the well posedness for evolution equation and contain
two results proved in [52]. In the first one we consider the Cauchy problem

(4.1.6) x(t)e —Ax(t) + F(t, x(®) , x(0) =Eecl D(A),

where A is a maximal monotone map, with domain D(A), on a Hilbert space, and in the second
one we consider the Cauchy problem

(4.1.7) x(He Ax(t) + F(t, x(©)) , x(0) =&
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where A is infinitesimal generator of a C,-semigroup on a Banach space. In both this sections
F: IxX — 2" is assumed to satisfy Assumption 2.17.

Denoting by T(E) the set of all weak (resp. mild) solutions of (4.1.6) (resp. (4.1.7)) we
shall prove the existence of a continuous selection of the multivalued map E—T(§). To do this
we adapt the construction presented in Section 3.2. For properties of the solution sets T(§) we
refer also to [30] and [57].

4.2. SOME DEFINITIONS AND PRELIMINARY RESULTS.

Let X be a real separable Hilbert space with scalar product <.,.> and norm |l . Il and let
A:X— 2% be a multivalued map. Let Ax := A(x), the value of A at x, and let D(A) = {xe X:

Ax # @} be the domain of A.

Definition 4.1 A is said to be maximal monotone on X if:

@ forall X, X,€ D(A) and all V,EAX,, V€ Ax2 we have <y —y,, X, —X,>2 0;

2
(i) for every yeX there exists xe D(A) such thatx + Ax =y.

We say that A is a monotone map if it satisfies (i) in the previous definition.

As it is well known (see [11]) if A is maximal monotone then ¢l D(A) is convex, and for
each xe D(A) the set Ax is closed and convex.

Let V :X— (—oo, +o0] be a proper convex lower semicontinuous function, let
D(V)={xeR": V(x) <} ,and letdV : X — 2% be the subdifferential of V defined by

4.2.1) V) ={€eX : V(y) - V(x)2<€,y—x>, VyeX}.

It is known (see [11], p. 21) that x — dV(x) is a maximal monotone map and D@V)cD(V).
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Definition 4.2. A multivalued map A : X— 2% is called cyclically monotone if for every

cyclical sequence
Xgs X155 o0 AN = Xp (N arbltrary)

in D(A) and every sequence y;eF(x;),i=1,...,N, we have

N
Z<yl, Xi - Xi_1> > 0.
i=1

About cyclically monotone maps we have the following result (Theorem 2.5 in [11]):

Proposition 4.3. Let A : X— 2% be a monotone map. Then A is cyclically monotone if and
only if there exists a proper convex lower semicontinuous function V : R™ — (—oo, 4o], such
that for every x : F(x)cdV(x) .

Let A:X— 2X be a maximal monotone map, Ee cl D(A), and let fe LI(I,X), where
1=[0,T]. Consider the Cauchy problem '

(Pp) x()e —Ax(D) + £(t) , x(0) =§.

Definition 4.4. A function x : I - X is called a strong solution of the Cauchy problem (Py)
if it is continuous on I, absolutely continuous on every compact subset of ]0,T[, x(0) = & and

for almost all te I we have x()e D(A) and x(t)e —Ax(t) + f(t) .
A function x : I — X is called a weak solution of the Cauchy problem (Py) if there exist
two sequence {fn}ne NCL1 I, X) and { xm}ne Nc:C(I, X) such that: x,, is a strong solution of

(an) , f, convergesto f in LI(I, X), and x, convergesto x in C(I, X).

By Theorem 3.4 and Lemma 3.1 in [11] we obtain the following
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Lemma 4.5. Let A be a maximal monotone on X. Then for each Eecl D(A) and fe LI(I, X)
there exists a unique weak solution xf(.,é) of the Cauchy problem (P;) . Moreover if f,
geL'(I, X), and x'(,£), xB(,£) are the weak solutions of the Cauchy problems (Py), (P,)

then, for any 0 <s<t< T, we have

t
(4.2.2) IxK(t,€) — xEELON < lx(s,E) — x8(s,E)l + [lIf(u) — g(u)lidu .

Remark 4.6 In the particular case when A is the subdifferential of a convex function and
fe LZ([I,X) any weak solution of (Py) is also a strong solution of (P) (Theorem 3.6 in [11]).

Set XO =cl D(A).

Remark 4.7. The map & — xf(.,ﬁ) is continuous from X, into C(I,X). Indeed, since

S8 )X EDIP = 2 < KK (LED-FOH) - X089, X (1) — X (08> <0,
we have Ix'(t,E,)-x"(t,E )N < 11x(0,8,)-x (0,E,)Il = IE -E,ll for all te I, which implies the

continuity of the map & — xf(.,ﬁ). .4

Remark 4.8. Let xo(.,é) be the unique weak solution of (P;) with f=0. Then, by Theorem
3.2.1in[4]:

X8 =-m(Ax’(18) and t - Im(AX(LENI is nonincreasing,

(where m(Ax) is the element of minimal norm of the set Ax).

Therefore, for any te [0, T,

t

t t
1x%(t,8) — Ell = IIJko(s,c‘,)dsH < Ojnm(Ax"(s,E,))nds < Ojum(Axo(o,g))uds :

hence




(4.2.3) Ix0(t,E) — ENI< t IIm(AEN .

On the other hand if fe LI(I, X) then by (4.2.2) and (4.2.3) it follows that

t
(4.2.4) fo(t,&) &< Jllf(s)llds + tlim(A&)I. ¢

If the maximal monotone map is the subdifferential of a convex function then we have the
following result (Theorem 1.3 in [3]) which will be used in the next section.

Lemma 4.9. Let V : X— (—oo, +o0] be a proper convex lower semicontinuous function and
let dV be its subdifferential. Then:

(i) forevery xpe D(dV) and fe L2(I, X) there exists a unique strong solution x5 I-X to
the problem

(Pf) x(he—0aVx(®) + f(t), x(0) = Xg -

(i1) t——)V(xf(t)) is absolutely continuous on I (hence it is differentiable a. e. on I)

f f

(i) I ix(—h(i) 1% = —%V(xf(t)) + <f(t), d’zh(‘)>
f
(iv) %—e L2, X) and, if V=0,
T ; T
(4.2.5) [ f 10 2 g2 (Gfllf(t)llz A2 + YV Ky .
0

Consider now the Cauchy problem
(4.2.6) x(t)e —Ax(t) + E(t, x(t)) , x(0) =&,

where F: IxX — 2" is a multivalued map and &e X,
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Definition 4.10. A function x(-,£):1— X is called a strong (weak ) solution of the
Cauchy problem (4.2.6) if there exists f(-,€)e L@, X), a selection of F(., x(., €)), such that
x(+,€) is a strong (weak) solution of the Cauchy problem (Pf(_'g)).

4.3 EXISTENCE OF SOLUTIONS TO EVOLUTION EQUATIONS HAVING
MONOTONICITIES OF OPPOSITE SIGN.

In this section consider the space R" endowed with the Euclidian norm Il . Il and the scalar
product <.,.>. Consider the Cauchy problem

(4.3.0) x(t)e -0V (x(t)) + F(x(1) , x(0) = Xg -

where V : R"— (—e, +o<] is a proper lower semicontinuous function and F is a multivalued
‘map defined on a neighborhood of x, .

Given any compact set K containing x, , inf {V(x): xe K}=V(x*) for some x* in K.
Since A(V(x)-V(x*))=0V(x) we will assume that V=0.

The following result gives the local existence of solutions of (4.3.0).

Theorem 4.11. Let V be a proper lower semicontinuous function and x, be in D(3V); let
F be an upper semicontinuous cyclically monotone map with compact nonempty values defined
on a neighborhood of xg. Then there exist T>0 and x : [0, T] — R", a strong solution to
the Cauchy problem (4.3.0).

Proof. Let xoeD(dV) and let W: R" — (—oo, +oo] be a proper convex lower semicontinuous
function such that for every x : F(x)cdW(x) . As in [7] we can assume that there exist r >0
and M <o such that W is Lipschitzean with Lipschitz constant M on B(xg, 1). It follows
that F is bounded by M on B(xg, 1) .
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Let m(dV(xp)) be the element of minimal norm of dV(xg) and set

T
T< .
M-HIm@V )l

Our purpose is to prove that there exists x : [0, T] = B(xg, 1) , a solution to the Cauchy
problem (4.3.0).
Let neN and setfor k=0, 1, ..., n, t;:=k;[1‘-‘ Take yjeF(xg) and define f]: (g , ;] - R"

by £t) = ya. Then fleL*([, 3], R") and by Lemma 4.9, (ii), there exists x]: [tg,(;]=>R",
the unique solution to the problem

(P}) x(De-aVx®) + 1) , x(0) =xg.

t

By (4.2.4) we obtain that for any te[ty , ;] , IIxj(t) — xgll < Jnf;‘(s)uds +t Im@V(x)ll <

< Z(M +Im@EVxo)I) < &, hence xX(0eB(xp, D .
Analogously for k=2, ...,n take y§ e F(xp_,(t_;)) set It = (t_; , t]; define f :I -R"

by fi() =y, , andset x;: I} — B(xq, k -Ir;) to be the unique solution to the problem
(P x(De-aV&(D) + (0 , x(G_) = x5, -

Remark that from x,. ;(t;_;)€ B(xq, (k-1) %), (4.2.3) and from (4.2.2) applied for s=t_, it

follows that x; (I )B(xo, k .
Define for te[0, T] :

n

X = 2 x50 %100) , £,0 = kZI F(0 %700, 2,(0) = EL} et 270

By construction we have

(4.3.1) X, (De-0V(x, (D) + (1) ae. on [0,T],
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(4.3.2) f,(DeF(x, (ay(t))) a.e. on [0, T]
(4.3.3) ’ X,()eD(@V)NB(xg, 1) a.e. on [0, T].

and by (4.2.5) we obtain
T T
(fr=te a)e (Jn £ I a)? + YRy <
0

< MWVT + yV(xg) = N.

It follows that ” %‘i ”2 < N and since lix ll,, <1+ lixgll, we can assume that (x, kn)

is precompact in C([0, T], R") x Lz([O, T], R , the first space with the sup norm and the
second with the weak topology. Therefore there exists a subsequence (again denoted by) x,
and an absolutely continuous function x : [0, T] = B[xy, r] such that

(4.3.4) X, converges to x uniformly on compact subsets on [0, T]

(4.3.5) xn converges weakly in L2 to x .
Since lIf ()1 <M on [0, T], we can assume that
(4.3.6) f, converges weakly in 12 to f.

By (4.3.2) we have that
d((xp(1) , £4(0) , graph F) < lIx;(aq (1)) — x, (0l
and, since a,(t) =t and x, — x uniformly , we obtain that

d((x,(t) , £,(t)) , graph F)) — 0 for n — o,

Then by (4.3.4), (4.3.6) and the Convergence theorem ([4], p. 60) it follows that
f(t)e coF(x(1))coV(x(t)) and by Lemma 3.3 in ([11], p. 73) we obtain that g—t- W(x() =

<x(0), f()> , ie.,
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T
(4.3.7) J<i(s), f(s)>ds = W(x(T)) — W(xg) .
By the definition of dW ,
I
W, () = W(xa(te 1)) 2 <yg_; j Xp(s) ds> =
‘11;—1
t
= J. <f,(s),x,(s)>ds .
‘]1:~1
Adding for k=1, ...,n we obtain
T
(4.3.8) W(x,(T)) - W(xg) = j<fn(s) , X (s)>ds .

o]
Comparing (4.3.7) and (4.3.8), using the continuity of W in x(T) and the convergence of x;
to x, it follows '

T T
(4.3.9) lim sup J<5<n(s), f (s)>ds < J<5{(s), f(s)>ds .

N—>00

By (4.3.1) and Lemma 4.9 (iii) we obtain

T T
(4.3.10) Jni(n(s)n2 ds = (’[<fﬂ(s), x,(s)> ds — V(x,(T)) + V(xg) -
Let
(4.3.11) 8.(1) = £,(t) — x, (1)

(4.3.12) 8(t) := £(t) — x(1).
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Then &, convergesto & weakly in L2 (by (4.3.5) and (4.3.6)), 3,(t)e dV(x,(t)) and, since
X, converges to X , it follows that &(t)e dV(x(t)) , hence, by Lemma 3.3 in [11],

LVx(®) = <6, XO> - KOI.

By integrating we obtain
T T
(4.3.13) Juk(s)uz ds = J<f(s), x(s)> — V(x(T)) + V(%) .

By (4.3.10), (4.3.9) and the lower semicontinuity of V it follows that

T T
lim sup Jllicn(s)llz ds < limsup |<f,(s), X,(s)>ds —
n—yee n—e ¢
I
— lim inf V(x(T)) + V(xg) £ |<f(s), x(s)>ds —
n—yeo ¢

T
—V(x(T)) + V(xg) = Jn:k(s)n ds .

Hence

lim sup lix Jl, < lixll, .

T—o2

Since, by the weak convergence of x, to x, liminf lix,ll, > lixll, we obtain that
n—eo

lim Ix,ll, = lxll,.

N30
Hence xn converges to X in Lz-norm, and (Theorem IV.9 in ([12], p. 58)) a subsequence
(denoted again by) x, converges pointwise almost everywhere on [0, T] to x and there exists
Ae L2([O,T],R") such that Iix (DIl < A(t).
Now we apply Lemma 2.13 for &, given by 6,(t) = f,(t) — f(n(t) . By construction,
8n(t)e F(x,(a, (1)) — x,(t) , hence IS (DIl <M + A() =: o) .



50

Set G(t) := F(x(t)) — x(t) and obtain
d(@,() , G) = d@,®) +x(1) , Fx®) <
<y (®) — XN + d” (Fla(an(0)) , Fx(®)) ,
Since x,(t) = x(t) , x,(a,(t)) —> x(t) and F is upper semicontinuous we have that
d(d,(t),G(t)) » 0 for n — oo
Then, Lemma 2.9 implies that

W) = N cl( U.{Sn(t)})

ieN n2i

is nonempty, compact, contained in G(t) and t — y.(t) is measurable.
Taking G*(t) =9V(x(t)) N B(0, o(t)) we have that 3 (t)e dV(x,(t)) N B(0, a(t)) and since
x = dV(x) N B(0, a(t)) is upper semicontinuous, it follows that

d(8,(t), G (1) = 0 for n — oo

and, by Lemma 2.9, y«(t) < dV(x(t)) N B(0, a(t)) .

Let o(-) be a measurable (hence in Ll([(), T], R™) selection of «(-) . Set g(t) := x(D)+0(t) .
By definition of G, g(t)e F(x(t)) . Therefore x(t) =—o(t)+g(t)e -0V (x(t)) + g(t) and the proof
is complete. ¢

Example 4.12. As an illustration of the previous theorem in the case n=2, let V be indicator
function of the closed unit disk D ; let F(x;,x,) be {(sign x;,0)} where

-1 if x<0
sign x={{-1,1} if x=0
1 if x>0.

Since F is uniformly bounded on D solutions exist on [0,+ee[, and converge to either (-1,0) or

(1,0). So the two invariant points (-1,0) and (1,0) attract solutions from every initial point in the
disk D. ¢
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4.4 WELL POSEDNESS FOR EVOLUTION EQUATIONS IN HILBERT
SPACES.

Consider the Cauchy problem
(4.4.0) | x(t)e —Ax(t) + F(t, x(1)) , x(0) =&,

where A: X — 2% is a maximal monotone map, X is a real separable Hilbert space, F: IxX—2"
satisfies Assumption 2.17 and &e Xo:z cl D(A). Denote by T(&) the set of all weak solutions

of (4.4.0) (in the sense of Definition 4.10 ).
We shall prove the following theorem.

Theorem 4.13. Let A be a maximal monotone map on X and let F: IxX — 2% satisfy
Assumption 2.17. Then there exists a function x(-,-):IX X0 — X such that :

) x(-,£)e T(€) for every &e X
(i) & = x(, &) is continuous from X into C(, X).

Proof. Fix €>0 and, set g, = %, ne N. For &e XO let xo(.,&): I — X be the unique weak
solution of the Cauchy problem
(Po) x(he—-Ax(t) , x(0) =&,

and, for k and B given by (Hz) and (H3) in Assumption 2.17, define o: X, — L'@, R) by

(4.4.1) a(€)(1) = B(t) + k(t) lIxy(LE .

Since, by Remark 4.7, the map §—x(.,£) is continuous from Xo into C(, X), from (4.4.1)
it follows that o(-) is continuous from Xo into Ll(I, R). Moreover, as consequence of (H2)

and (H3) in Assumption 2.17, for each &e XO we have:



52

(4.4.2) d(0, F(t, xo(t,8)) < a€)(t) ae.in I .
Define Gy:X,—2L'@X) and Hy:X =2l @X) by
(4.4.3) Go(&) = {(ve L', X) : v()eF(t, x(t, &) ae. tel},

(4.4.4) Hy(€) = cl{ve Gy(&) : Iv(Hil < a(&)(1) + &y ae.tel}.

Clearly, by virtue of (4.4.2) and Lemma 2.12, Gy(-) is l.s.c. from XO into D and Hy(§)= @
for each &e XO . Hence, by Lemma 2.13, there exists hg: XO——> L', X), a continuous
selection of Hy(-). Set f(t, &)=h(&)(t). Then f(.,E): XO—->L1(I,X) is continuous,
fo(t,8)e F(t, xO(t £)) and lify(t, §)l| <a@) () + gy for telae..

Set K(t) = gk(u)du and define, for E,EX n>1,

t n1 -1
(4.4.5 Bu0 = oo BB qu 7 (T BOL- e,

Since () is continuous from XO into LI(I,R), by (4.4.5) it follows that also B,(.) is
continuous from XO into Ll(I, R).

Let x;(.,.£): I = X be the unique weak solution of the Cauchy problem (Pfo(,,};)). By (4.2.2)
we have

t t
l1x,(t,E) — xq(t, E)I < 0jnfo(u,&)ndu < 6joc(g)(u)du + 4T < BLE)D),

for each &g XO and te I\{0].
We claim that there exist two sequences [fn(.,ﬁ)}neN and {xn(.,ﬁ)}neN satisfying, for

each n 2 1, the following properties:

@ &-f(,&) iscontinuous from XO into Ll(I, X),

(b) £t E)eF(t, x,(t, §)) foreach Ee XO and a.e. tel,

© ME(LE) —f, (6 EN < k(t) PE)D), for ae. tel,

(d xp(, &) is the unique weak solution of the Cauchy problem Pr_ 8 -
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Suppose we have constructed fy, ..., f, and xy, ..., x, satisfying (a)-(d).
Let xp,,(-,&): I>X be the unique weak solution of the Cauchy problem (an(_'g)). Then, by

(4.2.2) and (c), we have for te I\{0},

i t
lix 1 (6 E) —x (L < Jilfn(u,ﬁ) —f,_ (uE)idu < Ojk(u)ﬁn(g)(u)du =

t n-1 n-1
- K
(4.4.6) = Ja@)(u) fk(r) H'{—(—Q(———fl(f!ll——d du +T( z &) fk( y IR@I (r(fi]), dt =

t

= [oeywy QKWL 4, 7 3 &) S < B0 -

0

Hence, by (Hz) in Assumption 2.17,

(4.47)  dA(f,(t,8), F(t, x,1(t, &))) S k() lxp 1, &) — x,(t, EI < k(t) By (E)O) .

By (4.4.7) and Lemma 2.12, we have that the multivalued map G,, +1:XO——>2L1<LX) defined by

(4.4.8) G (&) = (veL'(I, X) : v(DEF(t, x,1(t, £)) ae.in I},

is 1.s.c. with decomposable closed nonempty values and, by (4.4.7),

(4.49)  H,(8) =cl{ve G, &) : Iv(t) - £,(t, Ml < k(©).B,,(E)®) ae.in I} .

is a nonempty set. Then, by Lemma 2.13, there exists h,,; : X)= LI, X) a continuous
selection of H, (). Setting f, ,(t, &) = h,;(E)(V), for Ee X t€1, we have that

satisfies properties (a), (b) and (c) of our claim.
By virtue of (c¢) and (4.4.6), we have

T

I (-,8) — £,1C, E)II; = Gjufn(u &) —f._;(u,E)ldu < fa@( ) [K(T)— K(u)] ot

0
(4.4.10)

4T 3 ey KL <0 Gy +Te).
i=0 ! -
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Since & — llo(€)Il; is continuous it is locally bounded. Therefore (4.4.10) implies that for
every Ee X, the sequence (f,(-, £)) e N satisfies the Cauchy condition uniformly with respect

to &' on some neighborhood of &. Hence, if f(-, £) is the limit of (f,(-, &))pen then E1(-,5)

is continuous from XO into Ll(I, X).

On the other hand, using (4.4.6) and (4.4.10), we have

Ry &) = Kl Bl STELCL E) = £y Oy < L (@l + T

and so, as before, (x,(-, &))yen is Cauchy in C(I, X) locally uniformly with respect to &.
Then, denoting by x(-,£) its limit, it follows that the map & — x(-, §) is continuous from XO

into C(,X) .
Since x,(-,€) converges to x(-,§) uniformly and

d(fn(t,lf,), F(t, x(t,£)) < k() lIx,(t, &)-x(t,EI

passing to the limit along a subsequence (f; Jxen of (fnen converging pointwise to f, we

obtain that

(4.4.11) f(t, £)e F(t, x(t, £)) foreach &e X,andtel ae..
Let x*(-, £) be the unique weak solution of the Cauchy problem

(P8 x(He -Ax(t) +£(t, £) , x(0) =&.

By (4.2.2) we have

t
x4 (t, &) — x*(t, E)I < G[ufn(u,g) — f(u,E)ll du

from which, letting n — oo, we get x*(.,£) = x(.,£). Therefore x(-, §) is the weak solution of
(Pg.£)) and, by (4.4.11), it follows that x(-,§)e T(§) for every e X, - ®
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4.5 WELL POSEDNESS FOR EVOLUTION EQUATIONS IN BANACH
SPACES.

In this section X is a separable Banach space and {G(t) : t 2 0}cL(X,X) is a strongly

continuous semigroup of bounded linear operators from X to X having infinitesimal generator
A.

Consider the Cauchy problem

(4.5.0) x(te Ax(t) + F(t, x()) , x(0) =&,

where F: IxX— 2% is a multivalued map satisfying Assumption 2.17 and £ X.

Definition 4.14. A function x(-, ) : I = X is called a mild solution of the Cauchy problem
(4.5.0) if there exists f(-, £)e L}(I, X) such that

@) f(t,.E)e F(t, x(t, &)) for almost all tel,

t
@  x(t & =GO+ [GuftE)dr, foreach tel.

Remark 4.15. If X is finite dimensional and G(.) is the identity, then every mild solution of
(4.5.0) is an absolutely continuous function satisfying

x(tE)e F(t, x(tE) , x(0,8) =& .

We denote by T(€) the set of all mild solutions of (4.5.’0).

Theorem 4.16. Let A be the infinitesimal generator of a Co-semigroup {G(t): t 2 0}, and let
F satisfy Assumption 2.17. Then there exists a function x(, -) : I xX — X such that

) x(-, £)e T(E) for every EeX
(i1) & — x(-,&) is continuous from X into C(, X).




56

Proof. Let € > 0 be fixed and, for neN, set g, = . Let M =sup{lIG(t)ll : teI}, and for

Ee X, define x4(-,£) : 1 = X by x,(t,E)=G(1E.

Since
”XO(t,gl) - Xo(t,az)” < lIG(t)IIII?;l—E;QH < M”&l—ézu

we have that & — x,(-,£) is continuous from X into C(I,X). For each &€ X, let a(§): I — R be
given by

a(€)(t) = B(t) + k(t) lixo(tEI.
Clearly a(.) is continuous from X into Ll(I, R). Moreover, for each e X,
4.5.1) d(0, F(t, x,(t,8))) < a@)(®) forae. tel .

Let Gg:X—2L'0X) and Hy:X—2L'@X) be defined by (4.4.3) and (4.4.4). Then as in Theorem
4.13 one finds hy: X — LI(I, X), a continuous selection of Hy(+).
t

Set K(t) = fk(’c)dt and, for n>1, define B: X — LI(I, R) by
0

t n-1 n-1
@52 B.E® =M [a@m@ [K(t)(fl()“!)] du+ M"T (Ze) [Iél(t)ll), . tel.

Set f(t,€) = hg(€)(t), and define
t
x1(t, =GO + [Gt-Dfp(tE)dr , tel.
(o]
Then fo(tE)eF(, xo(t, £)), llfy(t, )l < a(s)(t) + &g and, for te I\{0},

t t t
Iy (6, ) = xot, O < [IGE-DLIEtENdT <M [lifg(tE)IdT <M [auE)()dt +MTeg <
o ) 0

<&M .

We claim that there exist two sequences {fn("é)}neN and {xn(.,i)}neN satisfying for

each n 2 1 the following properties:
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(@ & —1f(,& iscontinuousfrom X into Ll(I, X)
(b) £t E)eF(t, x,(t, &) for each Ee X and aee. te1,

© N (E) —f,_1(t E)I < k(t) B EXD), for ae. tel,

t
@ Xt E)=GOE + [Gt-D)f,tE)dt for tel.

Suppose we have already constructed fy, ..., f, and xy, ..., x, satisfying (a)-(d). Define
Xpt1(5E) : T = X by

t
Xp1(t, 8) = GOE + [GE-Df,(TE)dT, tel.
Then by (d), (c) we have, for te I \{0},

t t
I, (6 E) — %, (8, EMI < JMG(t.u)lLufn(u,g) —f_ E)ldu <M Jllfn(u,é)—fn_l(u,é)lldus

[K(D) K(T)] &) [K(t)]

(4.5.3) _MJk(u)Bn(é)(u)du =M™ fa( )(T) dT+M™ 1 T( z

<PBnu1®O

and

(4.5.4) d(fy(t,8) , F(t, xpq(t, E))) S k() x4t &) = x,(LEN < k(D) BryqE)D) .

Let Gp,q:X—2L 0%, H,;:X—2L10X) be defined by (4.4.8), (4.4.9) respectively.

By (4.5.4) and Lemma 2.12, G,;(-) is Ls.c. from S into D and H,;(§) # @ for each
Ee X. Hence by Lemma 2.13, there exists h,,; : X—LXI, X) a continuous selection of
Hy41(). Then f,(t,8) = h,,(E)(t) satisfies the properties (a), (b) and (c) of our claim.

By (c) and (4.5.3) it follows that

[M.Hklll]n

1G5 §) = X Bl € MIE( E) = £y, By S ———— (Mllou(®)lly + MTe) .
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Therefore (£,(-, &)neN and (X5(-» E))nen are  Cauchy sequences in L'(1, X) and C(I,X)
respectively. Let f(-,§)e Ll(I, X) and x(-, £)e C(I,X) be their limits. Then as in the proof of
Theorem 4.13 one can show: £E— (-, €) is continuous from X into Ll(I, X), & > x(-, &) is
continuous from X into C(I, X) and, for all £ X and almost all te I, f(t, E)e F(t, x(t, §)) .

Passing to the limit in (d) we obtain

t
x(t, =GO + |G(E-Df(t,E)dt for each tel.

completing the proof. ¢
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5. WELL POSEDNESS FOR A CLASS OF NON-CONVEX HYPERBOLIC
DIFFERENTIAL INCLUSION.

5.1. INTRODUCTION.

Let Q=[0,1]x[0, 1], I=[0,1] and denote by L the c-algebra of the Lebesgue measurable
subsets of Q.
By C(Q, R™ (resp. LI(Q, R™) we mean the Banach space of all continuous (resp.

Bochner integrable) functions u: Q — R" with the norm llull_ = sup{llux,yll : x,y)e Q}
11
(resp. IIuII1=0[ Jllu(x,y)lldxdy), where ILIl is the norm in R". Denote by @ the family of

decomposable subsets of LI(Q, R™). Consider the Banach space
8 ={(a,B)e CLRMXCER™: a(0)=P(0)}
with the norm

[I(oe, B)||=loll o +HIBI...

Let F : QxR"— 2R™ be a multivalued map satisfying the following assumption:

Assumption 5.1: F takes closed nonempty values and:

(Hl) F is L&BR"™)-measurable
(H2) there exists L > 0 such that d(F(x,y,u), F(x,y,v)) <L llu-vll for all u, ve R", ae.in Q.
(H3) there exists a function 8e LI(Q, R) such that d(0, F(x,y,0)) < 8(x,y) a.e.in Q.

For such an F and for (o.,B)e §, consider the Darboux problem

(D(XB) uxyeF(x,y,u) , u(x,0)=a(x), u(0,y)=L(y).




Definition 5.2. u(.,.;a,B)e C(Q,R™) is said to be a solution of the Darboux problem (DaB)
if there exists v(.,.;a,B)e Ll(Q, R™) such that

@  vxyeBleFx,yu(x,y;a,pB) ae. inQ,
Xy
(i) uxy;e,B) = a(x)+B(y)-a0) + OI g v(€,n;a,B)dEdn , for every (x,y)e Q.

Denote by T(ct,B) the set of all solutions of (Daﬁ).

As it is well known (see [20]) if F(x,y,u)={f(x,y,u)}, and f: QxR"—>R" is continuous,
Lipschitzean with respect to u then there exists a unique solution of the problem (Daﬂ)'

Moreover, in [27] it has been proved that if f is measurable, continuous with respect to u and
integrably bounded, then the set T(a.,B), of all solutions of (Daﬁ), isa Rs-set in C(Q,RM.

The case when F is a multivalued map with convex values case has been considered in [27] and

[56]. Properties of lower semicontinuity and Lipschitzeanity of the multivalued map
(o,B)—>T(a,B) , for F Lipschitzea, have been obtained in [41].

In what follows we present a result in [53] concerning the existence of a continuous

selection (o,B)—u(.,.; a,p) from the multivalued map assigning to (o,B) in § the set T(,p)
of osultions of the Darboux problem (Daﬁ)‘

5.2. CONTINUOUS SELECTIONS FROM SOLUTION SETS.

Theorem 5.3. If F satisfies Assumption 5.1 then there exists u:Qx8 — R" such that

@) , u(.,.;o,p)e T(a,B) for every (o,p)eS
(i) (ot,B) = u(.,.;o,p) is continuous from § into C(Q,R™).

To prove this theorem we shall use Lemma 2.12 and Lemma 2.13 in the following setting (see
Remark 2.14):
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Lemma 5.4. Assume S is a separable metric space and F,: QxS — 2R" is L& B(S)-

measurable, 1.s.c. with respect to se S. Then the map s—G,(s) given by
Gy(s)={ve LI(Q, R™ : v(x,y)e Fy(x,y,s) a.e.in Q}, seS§,

is Ls.c. with decomposable closed nonempty values if and only if there exists a continuous
function ¢: S— LI(Q,R) such that d(0, F(x,y,s)) < o(s)(x,y) a.e.in Q.

Lemma 5.5. Let G:S— D be a l.s.c. multifunction and let cp:S—-)Ll(Q, Rn) and
W:S—)LI(Q,R) be continuous maps. If for every £e S the set

(5.1 H(E) =cl{ve G(&) : Iv(x,y) = oE)x I < y(E)(x.y) ae.in Q)

is nonempty then the map H: S — 9D defined by (5.1) admits a continuous selection.

Proof of the theorem. Fix € >0 and set ¢, = 5—’%—1—’ ne N. For (o,B)eS8 define

(.30, B):Q— R" by ug(x,y;0,B)=0(x)+B(y)-0(0) and observe that for all (x,y)e Q we have
Ihag(x,y5001,B1)-g (%,¥3 00, BN < llot; (x)-06, (M + 1B (y)-By(Il + oty (0)-ct, (O <

< 2 [I(otg,B1)-(0g,B)I-

This implies that (a,B)—ug(.,.;a,B) is continuous from § into C(Q,R™). Setting
o (0, B)(x,y)=8(x,y)+Llluy(x,y;c,B)ll we obtain that o is a continuous map from 8 into Ll(Q,R)
and

(5.2) d(0,F(x,y,up(x,y;a,B))<o(o,B)(x,y) a.e.in Q.

For (a,B)eS, define

Go(o,B) = {ve LY(Q, X) : v(x,y)e F(x,y,up(x,y;0.B)) a.e.in Q},

and
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Hy(a,B) =cl{veGy(a,p) : v < o(a,B)(x,y) + & ae.in Q}.

Then, by (5.2) and Lemma 5.4, it follows that Gy(-) is L.s.c. from 8 into 9D and, by (5.2),
Hy(at,B) # @ for each (o,B)e 8 . Therefore by Lemma 5.5, there exists hy: 8— LI(Q, RY),
which is a continuous selection of Hy(-). Set vo(x,y;at,B)=ho(a,B)(x,y) and observe that

vo(x,y;0,B)e F(x,y,uy(x,y;0,B)) and lvyx,pll £ o(a,B)(x,y) + &, for a.e. (x,y)eQ.
Define

Xy
u;(X,y,8)=ug(X,y;0,B)+ J JVo(im;a,B)d&dn ,

and, for n21, set

X Y (. n-1 ~ n-1 n n
63 oy L[ [ G Ere@pEm dan(e) S

Then, for every (x,y)e Q\{(0,0)}, we have

lhy (x,y;.00, B)-ug (X, ;00BN < Jx ijnvo(a,n,a,ﬁ)udgdn < f JYO'(OL,B)(&,T\)d&dn+80(x+y)<
<o (a.B)x,y),
and so
d(vo(x,y30B),F(x,y,u1 (x,y;,B)) < Lltuy (x,y;0,B)-ug(x,y;0,B)Il < Loy (o,B)(x,y).

We claim that there exist two sequences {v,(X,y;&.B) }en and {u,(x,y;,B)} N such that

for each n > 1 we have:
@ (a.p) = vy(.,.;a,B) is continuous from § into LI(Q, R
()  vy(x,y;0.B)e F(x,y,u (x,y;c,B)) forany (o,p)eS andae. (x,y)€Q,

©) Ivy(xy;0,B) — v %yl € Log(e,B)(x,y) ae.in Q.

Xy
(GY) un(x,y;a,B)=uo(x,y;a,B)+Of OIvn.l(&,ﬂ;a,B)d&dn-
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Suppose we have constructed vy, ..., v, and uy, ..., u; satisfying (a)-(d). Then define

L 4
Une1 (%,y30.B) = ug(xy; 0B+ | ()Ivn(ﬁ,n;a,ﬁ)dﬁdn :

Let (x,y)e Q\{(0,0)}. Using (c) we have

Xy

llun+1(x’y;a’ﬁ)-un(x’y;avB)“S(.)[ (jf ”Vn(g’n;a’ﬁ)'vn-l(g’ﬁ;avﬁ)”dadns

Y y

X -1
<L [ o@pEmisin=1" [ [oG@, B)(&,nxf";n“}). f‘y(n‘_’}), dv)dedn +

0

n Xy n
(e | G gean =1 J F B O By e ) dtan+

i=0 n!
(5.4)

n+2 n+2 _n+2
Tl (28) Gty (n+1)(n+2‘)y <L” [J J & &) (y Tl) ————o(a,B)(&,n) d€dn+
+ (28) ()((:4.})1 ] < Op(aB)x,y),

Then, by virtue of (5.4) and of the (H2) in Assumption 5.1, it follows that

55 d(vu(x,y;0,B), F(X,y,un41 (X,y;0,B))) < Lilug 1 (x,y;0,8),8)-u,(x,y;0,B)lI<
< L0n+1(a,B)(X,Y).

Since ¢ is continuous from § into LI(Q,R), by (5.3) it follows that also o, is continuous

from § into Ll(Q,R). Therefore, by (5.5) and Lemma 5.4, we have that the multivalued map
G, defined by

Gp(o,B) = {ve Ll(Q, X) : v(x,y)e F(X,y,u,,1(x,y;0,B)) a.e.in Q}

isLs.c. from § into D. Moreover, by (5.5), it follows that that

Hn+l(a:l3) = Cl{VE Gn+1(a:B): ”V(X,Y)'Vn(f;:n’a,ﬁ)“ < L0n+l(a’B)(x’Y) a.e. in Q}




is nonempty. Then, by Lemma 5.5, there exists a continuous selection h_; : §— Ll(Q, R") of
Hp.. Set v, 1 (x,y;a,B) = hy,;(a,B)(x,y) and observe that v,,; satisfies the properties (a)-
(d).

By (c) and the computations in (5.4) it follows that

(5.6) an(.,.;a,[})—vn_l(.,.;a,B)IIl < !-‘n-!-llo(a,ﬁ)llﬁe %I-‘!l—,
and
(5.7) »1un+1(.,.;a,[3)-un(.,.;a,B)u,,glvn(.,.;a,B)-vn_l(.,.;a,B)ll1SL;1—[HG(0L,B)III+8[2IIQ] -

Therefore {u,(.,-;0,B) }pen and {v,(.,.;&,B)} e n are Cauchy sequences in C(Q,Rn),
LI(Q,RH), respectively. Moreover since (a,B)—llo(o,B)ll; is continuous, it is locally bounded
hence the Cauchy condition is satisfied locally uniformly with respect to (a,B). Let
u(.,.;0,B)e C(Q,R™ and v(.,;a,B)e LI(Q,Rn) be the limit of {u,(.,.;&,B)} and {v,(.,;a,B)}
respectively. Then (a,B)—u(.,.;c.,B) is continuous from § into C(Q,X) and (ct,B)—v(.,.;0,3)
is continuous from 8 into LI(Q, RY). Letting n—e< in (d) we obtain that

XYy
(5.8) u(x,y;a,B) = ug(x,y;0,B)+ OJ OJV(ﬁm;oc,B)dédn for any (x,y)e Q.

Furthermore, since

d(va(%,y;0,B).F(x,y,u(x,y;0,B)) < Ll (x,y;0B)-u(x,y;0,B)l
and F has closed values, letting n—e~ we have

(5.9 v(x,y;a,B)e F(x,y,u(x,y;a,B)) ae.in Q.

By (5.8) and (5.9) it follows that u(.,.,s) is a solution of (DaB)’ which completes the proof.

Remark 5.6. Theorem 1 remains true (with the same proof) if R" is replaced by a separable
Banach space X and F is a multifunction from QxX into the closed bounded nonempty subsets
of X satisfying the Assumption 5.1.
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Remark 5.7. If (HZ) in Assumption 5.1 is relaxed, allowing F to be merely continuous, the

conclusion of the theorem is in general no longer true. To see this consider the Darboux
problem

@,y ny= V0, ux0)=a(), v0)=BO) C)EQ

Remark that f(u)= 2\73 is continuous but not Lipschitzean in a neighbourhood of 0 and, for
oco(x)=0=[30(y), the problem (DaOBO) admits as solutions:

ug (xy)= @__)3 2432 and ' ()= - @ 3,312 32

oo (L2 N3.3/2 - (L2 N\3.3/2 g+ N_0=R"
an(x)—(:wﬁ) x4, o7 (x) (3{5) x”1%, B (y)=0=B ().

Then (o), B 1), (@, B)eS and fie?, B D=l ;. B l= (5-%)3 therefore (ct ;,B7)

and (o ;1’ B ;1) converge to (OLO,B 0)=(0,O) in the space 8.

+

On the other hand the unique solution of the Darboux problem (Da; g.) (resp. of (D, p.))

is given by
. .
ul (xy)= @ 3x32(Z4y)32
(resp.

u; == (5) ¥,

which for n—ee converges to ug (resp. u 0 ).
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Suppose that there exists 1 : $—C(Q,X) a continuous selection of the solution map

(a,p)—>T(a,p).  Then, for n—eo, we have that r((a;, B ;))=u ; converges to u 8 and

r((o ;1, B ;l)) =u n converges to u 0 . This is a contradiction to the continuity of r. 'y
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