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INTRODUCTION

Since this work has been written as a Phd thesis, one of its main purposes is to present
the author’s researches; on the other hand, it contains an attempt of systematizing the
present state of art. Of course, this work is mostly dedicated to the author’s results. The
author apologizes for this with the reader in advance.

The objective of this work is to discuss problems related to the existence and multiplicity
of periodic solutions to conservative systems of the type

—& =VF(z);

in the case when the potential F' presents a singularity at zero of attractive type; in
order to fix your mind, think of the model potential F(z) = l—;—l"';

The first example of singular potential is the Kepler potential F(z) = T_EIT related to New-
ton’s law of gravitation. In the early 17th century, Newton himself solved the associated
motion equation and found that every orbit with negative energy is periodic, the period
depending on the energy, the mass and a universal constant. From then on, the interest
in this problem and the related N-bodies problem has always been alive. More recently
a new method of approaching the problem has been provided by the use of variational

techniques. A new development of the critical points theory has been necessary for the
application to this field.

We shall mainly deal with the following problems:

The fized period problem

given a period T' > 0, look for solutions to

—Z = F(z)
(Pr) z(t+T) = =(t) VteR
z(t) # 0 VieR;

and the fized energy problem

given an energy E € R, look for solutions to

—z = F(z)
e’ + F(e) = E

(Pz) z(t + X) = 2(t) VieR
z(t) # 0 Vte R




(in the fixed energy problem the unknowns are both the function z and its period A).

In this thesis, existence and multiplicity results are proved by means of variational meth-
ods. To this end, we shall associate to (Pr) and (Pg) suitable functionals, whose critical
points correspond to the solutions to each problem. Then, existence and multiplicity of
solutions to both (Pr) and (Pg) are provided by proving existence and multiplicity of
critical points of the associated functionals. Generally speaking, our assumptions on the
potential F' take the form

(H1) — < —F(z) < —
(H2) —a1F(z) < VF(z) -z < —ap F(z) .

Different variational principles will be applicable, depending on the value of the expo-
nent a. We shall treat separately the following cases:

o > 2 (existence and multiplicity of solutions for both (Pr) and (Pg));
1 < a < 2 (existence and multiplicity of solutions for both (Pr) and (Pg));
0 < a < 1 (existence of solutions for both (Pr) and (Pg)).

As far as the case a = 1 is concerned, we shall see that a structural degeneracy occurs
and that the variational approach under assumptions (H1)-(H2) fails. Therefore, pinch-
ing conditions on the coefficients a, b (and sometimes on ai, ay) are expected when «
approaches the value 1. (for pinching condition we mean additional assumptions to (H1)-

(H2), of the type 2 < &(a), with limg—; ®(a) = 1).

In recent years, many results have been obtained by several authors about problems with
singular potentials in a variational framework (mainly about the fixed period problem);
we quote the most relevant to this work. Concerning (Pr), we first recall Gordon’s works
[27],(28], about the planar case (o > 2 and « = 1); next Ambrosetti and Coti Zelati, [1],
treated the higher dimensional case, when a > 2, and found an infinity of solutions, by
means of a result by Fadell and Husseini about the category of the noncollision loop space
in itself; more recently the same result has been used by Majer to generalize the theorem
of Ambrosetti and Coti Zelati. A simpler approach was introduced by Greco, [29], in
proving the existence of at least one solution to (Pr) in the case a > 2, and by Bahri
and Rabinowitz, [10]. The case 1 < a < 2, under assumption (H1), has been treated by
Degiovanni and Giannoni in [25], where they proved an existence result under a pinching
condition on the coefficients a and b; for this case, other results (with different assumptions
from (H1)) are provided in [21], [22]. A counterexample has been provided by Capozzi
Solimini and the author in [19], where a strong limit to the variational approach to (Pr)
when « = 1 is shown. An entirely different approach has been used by Ambrosetti and
Coti Zelati in [5], where they obtained a multiplicity of solutions to (Pr) in the case of
small perturbations of the radial potential F(z) = e (for every a # 1), by means of a

z

bifurcation argument. Multiplicity results for both cases @ > 2 and 1 < a < 2 have been
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obtained by the author in [39]. Finally, the cases 0 < a < 1 has been successfully discuss
in a variational framework by Ramos and the author [34].

Concerning the fixed energy problem, existence results have been obtained by Benci and
Giannoni [15], when « > 2 (in [15] also the case a < 2 was examined, under assumptions
very far from (H1)-(H2)). The problem of the existence of at least one solution to (Pg) has
been treated, under assumptions (H1)-(H2), by Ambrosetti and Coti Zelati in [6] where a
new functional has been introduced; the results there cover the case a > 2 and the case
0 < a < 2, when the generalized solutions (i.e. possibly passing through the singularity)
are considered. Existence and multiplicity of noncollision solutions in both cases o > 2
and 1 < a < 2 are provided by the author in [40] and [41]. The case 0 < o < 1 has been
examined by Ramos and the author in [84]. Concerning the case o = 1, existence and
multiplicity results have been obtained by Moser [82], in the case when the potential F
has some symmetry properties.

In the last part of this thesis we shall be concerned with a three body type problem. This
topic has been so widely studied that it is impossible to give an exhaustive bibliography,
we refer to [33] and the references therein contained. Concerning the variational approach,
we quote the recent works of Coti Zelati and Bessi and Coti Zelati [23],[24],[17] where
symmetrical potentials are considered; in these papers, existence results are given for so-
lutions free of triple collisions (actually the N-body problem was examined, and existence
results are given for this more general situation). In the non symmetrical case we recall a
very recent work of Bahri and Rabinowitz, [11], about the three body problem in R®. In
Part 6 we shall give the results about this problem obtained in collaboration with Serra in
[35] and [36].

This work is organized as follows:

Part 1 is an introductive part, where the solutions of the motion equations

. aaz
—r = |z]a+?

are discussed. The phenomenology provided in Part 1 will be taken as a guide in the fol-
lowing discussion of (Pr) and (Pg) when the potential F' does not have a radial symmetry.

Part 2 is devoted to the study of (Pr) when the problem of the existence of at least one

solution is considered. We look there for solutions of (Pr) as critical points of the action
integral

T
I(m)_—./o %1@[2—1«*(:3).

It is known that the solutions of (Pr) are critical points of I in the subset of H = {z €
Hlloc(R)RN) [z(t+T)==z(t),vt € R}



A={z € H/z(t) #0,Vt € R}

Let us consider the assumption (H1): then the main difficulties we find in looking for
critical points of I are the following

a) I is not coercive

b) A is open.

Moreover, of course, the minimization approach fails, since infy I = 0 is not attained.
Therefore, some minimax arguments are needed in order to find critical points of I.

The first chapter of Part 2 is devoted to the case @ > 1. We collect there some of the
results contained in [1], [29],[10] and [25]. Let us roughly explain the common abstract
setting of these works. ‘

We first give a definition: we say that a subset A C A is contractible if there ezists a
continuous homotopy h : A x [0,1] — H, (homotopically equivalent to the identity) such
that h(A,[0,1]) N OA = 0 and h(A4,1) is contained in the spaces of constant functions.

Then the properties one requires for I are the following.

(2) I has a positive Ls.c. extension to the whole of H ;

(22) 0 is the only level where the (PS) condition fails;

there is € > 0 such that the sublevel

(i) { I°* = {z € A / I(z) < €} is contractible

{ there is a non contractible compact set A C A such that:

(iv)

supy I <infgp I.
Critical points in A can the be shown to appear at the level

c= inf supl
AEA 4
where
A = {A C A compact / A4 is not contractible ,sup < iglAf I}.
A

The fundamental step consists in showing that (iv) is fulfilled. Under assumption (H1),
this procedure succeeds when a > 2 without any additional hypotheses on a and b ([1],
[29]) and when 1 < a < 2, provided that the coefficients a and b satisfy a condition of the
type g- < ¥(a), with img—1 ¥(a) =1 and limy—2 ¥(a) = +oo ([25]).

On the other hand, whenever 0 < a < 1, this method is not available ((iv) is in general
false). However, critical points are found via the application of Rabiniwitz’s Saddle Point
Theorem at levels where no solution crossing the singularity is allowed. The results about
this case are contained in [34].

In Part 3 the existence of at least one periodic solution with prescribed energy is
investigated. We are concerned there with the following cases

4



a>2and E>0

l1<a<2and E<O0

0<a<land E<O0.

The conditions on the energy sign are necessary for the solvability of (Pg) when (H1)-
(H2) hold with ay > 2 (case a > 2) or a3 < 2 ( case a < 2).
The functional associated to (Pg) is then?

@ I(z) = (% /01 |:iz|2> (/OIE-—F(z)).

In fact, up to the rescaling of the period, each critical point of I in A at a positive level
solves (Pg) (and conversely). Depending on the sign of the energy, the functional I is
positive or unbounded (above and below).

When a > 2 and E > 0, the features of I are such that the same argument (minimax over
classes of non contractible sets) as the one used for the fixed period problem is applicable
(except for some technical difficulties arising from the fact that liminf,_ga I = 0). This
fact has already been pointed out in [15]; the existence result given in 3.I is just a slight
modification of a result there.

When a < 2 and F < 0, the main problems arise from the fact that the functional I is
not definite; for this reason one has liminf, g4 = —co as well as limsup,_,53 = +c0. On
the other hand, looking at the restriction of the functional to a set of the type S, = {z €

H/ fol |z|> = p}, the same properties as those of the functional in (1) hold. A natural
approach seems to be then to combine intersection properties with the techniques used for
the fixed period problem.

First, the case 1 < a < 2 is discussed. Taking into account the features of I restricted to
S,, a new inf-sup class is introduced, joining intersection properties with noncontractibility
arguments. Roughly speaking, the main property one requires of the elements of this class
is that their intersections with the set S, are not contractible sets. This method has been
developed by the author in [39].

As far as the case 0 < @ < 1 is concerned, the existence result is obtained by a linking
type argument.

Part 4 and Part 5 are devoted to the problem of finding multiple solutions to (Pr)
and (Pg). To this end, the variational methods used in proving the existence of at least
one solution are combined with the theory of the geometrical indices. A geometrical
index related to a group of symmetries gives, in some sense, a way of measuring the
size of a set; this concept has been widely used in searching multiple critical point for
coercive functionals invariant under a group of unitary transormations ([ 31],[13],[12]). In

'In [8] the functional associated to (Pg) was
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particular, we shall exploit the invariance of both the functionals in (1) and (2) under the
compact group G = {T, P, },¢(o,1], Where Ty(z)(t) = z(s +1t) and Py(z)(t) = z(s — 1)

The homotopical index of a set A C A measures (in terms of the geometrical index)
the minimal size of the subset one has to remove from A in order to make it contractible.
This theory is a convenient tool for finding multiple critical points of bounded functionals
having a singularity and a lack of coercivity at the level of the large constant functions.
This is the situation when dealing with the fixed period problem (a > 1) and the fixed
energy problem when o« > 2 and E > 0.

In the fixed energy problem when 1 < a < 2, this approach fails, since the associated
functional is not bounded from below. However, we have already pointed out that positive
critical point can be found by joining intersection set properties with non contractibility
arguments. These techniques can also be combined with the geometrical index theory:
an homotopical pseudo-index can be defined. Roughly speaking, the homotopical pseudo-
index of a set is the homotopical index of its intersection with a given closed subset of
the function space (in our case with S,). This procedure has been applied in proving a
multiplicity result for (Pg), when 1 < a < 2 and (H1)-(H2) hold in addition to a pinching
condition involving a, b, @; and «j».

In Part 6 problem (Pr) is examined in the case when the potential F'is even (i.e.F(z) =
F(—z)). In this case, as it has been already shown out in [DGM]?, the degeneracy ocurring
at @ = 1 can be overcome by the introduction of some symmetry constraints on the function
space. We shall be concerned there with the problem of finding noncollision solutions under
local assumptions on the behaviour of the potential in a neighbourhood of the singularity.
We next consider a three body problem:

(—midi=Y)_| VFij(e:i - ;) i=1,2,3
i
(3b) z;(t+T) = z(t) i=1,2,3, Vt
zi(t+ 1) = —zi(t) i=1,2,3, V¢
zi(t) # z;(1) i1#7,14,7=123,VieR

Existence results are given in the locally radial symmetric case. As a by-product of
our approach we will also be able to prove existence of periodic solutions under pinching
conditions of the type

with C < ¥(a, == i) Finally we will perform a theorem on the existence of infinitely

many solutions when F;i(z) = TLI‘Q + U; j(z), limz g |2|*U; j(z) = 0. The results of Part
6 have been obtained by the author in collaboration with Serra in [35], [36].

%in that paper, existence results have been proved under the assumption (H1), with a pinching condition
on a and b



NoTATIONS: Throughout this work we shall adopt the following notations:

BN ={z e RY / |z| < 1};

SN ={z €RY [ |z] =1}.

H denotes the Sobolev space of the 1-periodic functions:

H={ye H,(RRY) /y(t+1) = y(t) ,Vt € R},

endowed with the Hilbertian norm

el = [ 1w‘|4+/01 o]

we shall also denote by H the space of the T-periodic functions in H} .. This might look
ambigous but at the beginning of every part we shall specify the exact definition.
We shall consider the open subset of H defined by

A= {ycH/yt)#0,VteR},
and we shall denote

OA={yeH /3teR, y(t)=0}.

En denotes the subspace of H of all the constant functions. Moreover, in any metric
space X, and for every subset K C X,

VoK) ={z € X / dist(z,K) < ¢}
N.(K)={z € X | dist(z,K) < e}
Finally, since we shall deal with critical points of the functional I, we shall denote

K.={zeH/I(z)=c, dI(z) =0}

NoTa BENE: Each part of this thesis is divided in chapter each of one can be divided in
sections when necessary. The system of numbering formulas, theorems, corollaries, lem-
mas, propositions refers, if not otherwise specified, to the part in which it appears; the
roman numerals indicate the chapter, the secod cipher indicates the section and the third
cipher indicate the formula itself. For example, (I1.3.27) is the refence number of the 27th
formula appearing in the third section of chapter II (the part is omitted).

Acnowledgements. I wish to thank my family members: Emma, Benedetto, Lea,
Luisa, Lore e Rina and all my italian and french friends who helped and tolerated me
during my writing this thesis. To each of them this thesis is dedicated.




PART 1. THE CASE F(z) = 5%

In this preliminary part we shall study, by means of classical mechanics methods, the
basic properties of the solutions to the motion equation

. aazw
(1.1) —F = _—lwl“ ,

where a,a are positive numbers. Our objective is to provide a phenomenology for the
case F(z) = l—zal_"‘- that we shall use in the sequel as a guide in discussing problems when the

potential F' is similar, in some sense, to one of that form. The class of (periodic) solutions
of (1.1) we are mostly interested in is the one of the circular solutions (which always exist
in the case of radial forces); indeed, throughout all this work, our purpose will be the
search of periodic solutions to problems without radial symmetry, and the solutions we
shall look for will correspond (and possibly approximate) to the circular ones of the case
here.

1.I. Discussion of the Cauchy Problem

In what follows, for each pair of initial data (z¢,zo) € R%Y, with z¢ 7 0, the solution of
the Cauchy Problem

azr

2= o
(CP) z(0) = o
£(0) = &,

is the unique function z € C®((w1,w:);RY) satisfying (CP) and such that (w1,w;) is
the maximal interval of existence of z. In other words, w; can be finite if and only if
limy_,;z(t) = 0. Of course, the interval w;,w, is never empty when zo # 0. Because of
the radial symmetry of the equation, the solution of (CP) lies on the plane spanned by zg
and z¢; for the same reason, it lies on the straight line spanned by z¢ is o and z, are
parallel. We can hence restrict our discussion to planar equations.

Since the equation is time-independent, = verifies the energy integral:

a _ 1
lz(t)]* 2

a

lzo|®

and the radial symmetry of the force also implies the conservation of the angular mo-
mentum:

Z-'E, VtE(wl,wz)

|20 |® —

(1.2) S -



(L.3) #(t) x 2(t) = s X zo = B, Vi€ (wi,ws).

Therefore, if (p(t),0(t)) are the polar coordinates of z, by means of the above first
integrals, system (1.1) reduces to the system

. B? a __
(1.4) R
pzézB.

(here B = |B|). Also remark that p satisfies
B? ac

(15) P. = -;:—5_ - pa+1 .

1.IT. Some useful changes of coordinates

We first observe that, from (1.1) and (I1.2) we have that

1 -
Sfal? =82+ 5 = 5 - o =
||
2E+(2—a)|—f‘|—a- ,
Z
that is
1 - a
(IL.1) 27 =2B+(2-a)2.

Now let B # 0; then, because of the second equation in (I.4), the dependence (%) can
be reverted. From (I.5) we then obtain

a1 1 a 1
IL.2 &1 1 e 1
( ) diZ p B2 pa—l

Now we assume that « # 2, and we set

2 =/f%
=




Then, by (I1.1), p satisfies

d? B 2 1o
(11.3) —-Eﬁp=-—2(2—a)E,u. —(2-a)’a, Vs € )y o)

1.IT11. The case a =1
When « =1, in addition to the one of (I.2) and (I.3), we have the further first integral

(IIL.1) (ex8)xé+—=P,

||

called the Lenz’s vector. It is well known since the early 17th century that each solution
of (1.1), with a = 1, lies on the path of a conic section. The direction of vector P is the

symmetry axis of this path.
Indeed, if 4 is the angle between z and P, from (1.9) and (I.3) we obtain

z-P=—-B*+alz|,
that is,
(a —|P|cosf)p = B*,

which is, in facts, the equation of a conic section in polar coordinates. An easy compu-
tation shows that |P|? = a? — 2E B2, so that three cases are possible:
a) E > 0 (and therefore |P| > a): then the trajectory is a hyperbola;

b) E = 0 (and therefore |P| = a): then the trajectory is a parabola;

¢) E < 0 (and therefore |P| < a): then the trajectory is an ellipse with semiaxis
(=55 —%); moreover the motion is periodic of period T = 27 —=

(—2E)%

The computation of the period follows from the fact that %—B is the areal speed; hence,
if A is the area of the interior of the ellipse, we have

a B
—2E /223E '

As a consequence of the above discussion, the following proposition holds:

1
§BT:A:7T

ProprosITION 1.II1.1.. When a = 1, each solution of (1.1) having negative energy E is

periodic of period T = 2r—2%—5.
(—2B)%

REMARK 1.I11.2: Here the collision solution obtained when B = 0 is extended by peri-
odicity. Indeed, is not difficult to see that its maximal interval of existence (wy,wz) has

10



length T' = 2#2_—25)—9-.

The remarkable property that every solution having negative energy is periodic, the
period just depending on the value of the energy, is peculiar of the case a = 1; a direct
proof of it (without integrate the equation) can be made by means of the one-to-one change
of phase coordinates '

1
- b0 8) = o3 (Lpp) (LB - A5 ) —sin (5ZEpi) Jpo
I11.2 :

a3

$o,8) = sin (L)) (L — b ) + cos (L pi) oo

Indeed, by virtue of (1.1) and (1.2), (¢,%) satisfies the linear first order system

L (amt
$="2E0y

(1IL.3) .
§ =284,
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1.IV. Existence of periodic orbits

As a first straightforward consequence of formula (II.1) we can state the following

PROPOSITION 1.IV.1. Necessary condition for the periodicity of the solutions of (1.1) are

(a) E>0 fa>2;
(d) E=0 ifoa=2;
(¢) : E <0 fo<a<2.

Proor: Indeed, arguing by contradiction, (II.1) implies that ;;2 should have constant sign,
contradicting the periodicity of p.¢

Next propositions show an important difference between the case @ > 2 and the case
0 < a < 2. In the first case the only periodic solutions are the circular ones (with constant
angular speed and positive energy), and every other solution either is unbounded or crosses
the origin. In the case 0 < « < 2, all solution having negative energy is either periodic or
quasi-periodic (hence bounded); moreover a solution passes through the origin only if its
angular momentum vanishes. Thus we shall refer to the first case as the strong force case,
while the second will be called the weak force case.

ProPOSITION 1.1V.2. Assume that « > 2. The only noncollision solution of (1.1) are of
the form z(t) = Re™* (with w® = £%;) in some 2-plane of RY. Every other solution
either crosses the origin or it is unbounded.

PROOF: It is easily to see that a function of that form solves (1.1). Conversely, if a periodic
function z solves (1.1) then it is planar and, from (II.1), it has constant radius. One then
easily concludes that its angular speed is constant.

Now, from the first part of (I.4) we deduce that the motion of a solution is constrained in
the set

1 B? a
{PZO/E—é"p“;ﬂLp—aZO};

the proof is then complete by the discussion of the inequality Ep* — %sza—z +a 2> 0,
when a > 2.0

12



PROPOSITION 1.IV.3. Assume that 0 < o < 2. Then every noncollision solution of (1.1)
having negative energy is either periodic or quasi-periodic. Every other solution is un-
bounded. Moreover a solution can cross the origin if and only if its angular momentum
vanishes.

ProoF: It follows from (IL.1) that all solution having nonnegative energy is unbounded.
On the other hand, if the energy is negative, from the first equation in (1.4), the motion is
constrained in the bounded set

1 B? a
o/E-3 o+ =20},
so that the trajectory can cross the origin only if B = 0. Asin the case a > 2, all function
of the form z(t) = Re™* (with w? = 7%%;) in some 2-plane of RV is a periodic solution of
(1.1). Moreover, if E < 0 is the energy, and B is the value of the angular momentum of a
non circular solution, a necessary and sufficient condition for the periodicity is that

1 [P+ B
'"/ € Q)
T Jo_ py/2Ep? 4 2ap?~« — B2

where (p—, p+) is the unique pair of distinct solutions of the equation 2Ep? + 2ap -
B? = 0.0 :

1.V. Variational properties of the periodic solutions in the planar case

As we have shown in Chapter III, when « = 1, all solution of (1.1) having negative

energy is periodic with (minimal) period T = (———z-gér)—g We enclose in this set also the
-2 2 .
collision solutions appearing for zero angular momenta. Indeed, in this case, the energy

integral reduces to

1., a
Sy v, )
2p p b
so that 0 < p < %, and the time %— needed in going from —%; to 0 can be computed as

/—E \/é—m T (- 2;)2

therefore the maximal existence interval of the solution has length T = —22%

—2E)%

It turns out from the discussion of Cap III that, whenever o = 1, thé set) of all the
solutions of (1.1) having a fixed energy E < 0 is homeomorphic to the ball B? of R? of
radius a, up to shift of the time parameter. Indeed, to every value of the vector P, such
that |P| < a, there corresponds a solution of (1.1) satisfying (1.9). The circular solution

13



corresponds to the value P = 0, and the collision solutions (B = 0) to the values of P on
the sphere (|P| = a).

Of course, because of the relation T' = ( 2“;) T for each fixed T > 0, the same characteri-
-2

zation holds for the set of all the solutions of (1.1) having T' as minimal period. We shall
call a T-periodic Kepler orbit an element of this set.

Now we fix a period T'; it is a well known fact that each noncollision solution of (1.1) is
a critical point of the action integral

T a
(v.1) @)= [ 3+

||

defined on the open subset A = {z € H / z(t) # 0 Vt € R} of the Sobolev space of
T-periodic functions H = {z € H} _(R;R?) / z(t + T) = z(t) V¢t € R}. We can extend I

loc

over the whole of H, taking the value of the integral in (V.1) if I—}:—l is integrable, and +o0

otherwise. As such, I} is (weakly) lower semicontinous. Observe that A in H is actually

the set of all the collision functions of H: A = {z € H / 3ty , z(to) = 0}.

The following result has been proved by Gordon, [27]:

ProposITION 1.V.1. (GORDON). Let a = 1. For every fixed period T > 0, each non-
collision T-periodic Kepler orbit minimizes the action integral I} over the open subset of

A,
Ao={zeA/ d‘egomv# 0} .

Moreover, the collision T-periodic Kepler orbits minimize I} over A. The two minima
are equal and

3 2 1
V.2 inI! =minl! = = 3735 .
(V.2) mAana r%infa 5 (2am)* T

PROOF: First of all, since I} is coercive on Ag, the infimum is positive and it is attained
by a function z € Aq U 9A. Now, if z € Ag, then it solves (1.1), so that it is a noncollision
Kepler orbit (one can easily prove that 7' is the minimal period). If not, then z satisfies
(1.1) for every noncollision time, so that it is a collision Kepler orbit. In both cases we
obtain

(v.3) I} (z) = g(2a7r)% T3 .

On the other hand, every T-periodic Kepler orbit satisfies (1.14), and hence minimizes
I} over Ag UOA.o
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Hence, whenever o« = 1 we have a countinuum of T-periodic local minima, connecting
the circular solution to the collision ones. Now we turn to the case a > 0. We recall that,
for every a > 0, there always exists a circular T-periodic solution: indeed, the function
z(t) = Re™F* with R*+? = aa (%)2 solves (1.1). Moreover, if we consider the action

integral corresponding to the problem,

a

|zl

T
(V.4 HORY A

a collision T-periodic solution can be found by minimizing IS over JA.
Let us denote k

(V.5) 22(t) = (aa (.2-1.;)2) T

24+«
2c

(V.6) (T) = I¢(22) = ( ) (2m)7+ a s g THa T 37 |

The following proposition has been proved by Degiovanni and Giannoni in [25]: -

ProposITION 1.V.2. (DEGIOVANNI-GIANNONI). Let a > 1. For every fixed period T' > 0,
the circular solution z& is the strict minimum of I over Ag. Define

mingy I

(v.7) O me =T

then ¥ : (0,+00) — (0,+0c0) just depend on @ and moreover:

V¥ jis increasing if « > 1

¥(1) =1
lim ¥(a)=+4oo
a—2~

¥(a) =400 fa>2.
Proor: We first prove that

(V.8) inf I > minI¥, Va>1.
8A Ao

Indeed, by the strict convexity of the function s for & > 1, we have that
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T T «
(v.9) 12() 2 [ g1l 4ozt ( / ﬁ) = J2(2)

and the strict inequality holds unless ¢ has constant modulus. By arguments similar to
those used on the proof of Proposition 1.V.1, one can prove that

(V.10) min JS = min J& =cg(T) .

a

and it is attained by a set of T-periodic Kepler orbits of an equation of the type of (1.1)
with a =1, and the circular solution of this set is z%. Moreover, for the circular function
zg we have

17(zg) = Jg (2 — Aa) = c5(T)

while, for the collision solution, we have

r%ji\_nff > n;ji\n J&=c3(T).

Hence (V.8) is proved. We deduce from it that & is the strict minimum of I in A,.
Indeed it is the only solution of (1.1) having constant modulus and the strict inequality
holds in (V.9) holds unless z has constant modulus.

It has been proved in Proposition 1.V.1 that ¥(1) = 1. U is well defined (just depends
on «a) because of the same homogeneity of both terms mings IS and ¢J(T) in a and T.
Moreover one can prove that ¥ is continuous whenever it is finite valued, and that it is
increasing for each o > 1. Therefore, since ¥(a) = +o0, Vo > 2, we have

lim ¥(a)=+c0

a—2~

(see also [25]). The proof is then complete.o

Now we turn to the case 0 < o < 1. First of all, let us remark that, because of the
strict concavity of the function s® for 0 < a < 1, the same arguments used in proving
Proposition 1.V.2 can be applied to prove that the function ¥ of (V.7) satAisﬁes

V(o) <1, Vi<a<l.

Hence, of course, the circular solutions z do not minimize I over Ay.
On the other hand, we are going to show an other variational characterization of the Kepler
orbits. To this aim, let us fix some notations.
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In the following, we are going to identify the space E; of all the constant functions of
H with R%. For a fixed (large) R > 0, consider the class

(V.11) I'={vy:B* — H continuous / |s» = R-id|g,},
of all the continous deformations of the unit ball of E, in H, preserving the value at the

boundary. Let us consider Hy = {z € H / fDT:z = 0}. Thanks to Brower’s fixed point
Theorem we have both

(V.12) v(B*)NHy #0,VyeTl;
and
(V.13) Y(B*YNOA#0,VyeT.

For any functional I, we say that z € H has the saddle point type with respect to I and
T if

I(z) = inf sup I
@)=

and

Jv € T such that z € 4(B?) and I(z) = sup I.
¥(B?)

Then one can easily prove the following fact:

PROPOSITION 1.V.3. Let a = 1. For every period T, all the T periodic Kepler orbits have
the saddle point type with respect to I} and I' (provided R is chosen sufficiently large).
Moreover

1 1 el _ o7l

(V.14) c, = 'lrlég‘y;:zgz)fa(y) = {}_}f I, = ngllxnfa .

PrOOF: As we have pointed out before, the set of all the T-periodic kepler orbits can
be parametrized by means of the vector P of (1.9) as the image of a continuous function
f:B*(3) — H (here B(3) is the ball of radius 1), in such a way that f(0) is the circular
solution and f(.S')is the set of all the collision T-periodic Kepler orbits. This function can
be obviously extended to an element of T' (if R is large) in such a way that I%(y(z)) < c3(T)
whenever |z| > 1. The proof just follows from this fact, since, obviously

T oI5
(V.15) min [ > min / G+ 2 | =e3(T), Va>0.
’ e\ o (foTla:|2> 2

<

Next Proposition follows from Proposition 1.V.3 and from the strict concavity of the
function s* for 0 < a < 1:

17



ProPoOSITION 1.V.4. Let 0 < a < 1. Then for every period T, the circular solutions =&
have the saddle point type with respect to I and I'. Moreover:

(V.16) ca(T) =1inf IT = inf sup IJ > infI; .
Ey ~€r +v(B?) aA

VI. Collision solutions

In this chapter we shall deal with the case 0 < @ < 2. We say that z is a T periodic
collision solution of (1.1) if z € HE([0,T]; RY) solves

H) =25 Ve T\ e)
(VL1) %[:z:(t)[z - ]’;’éﬂ?x' =E Vtel[0,T]\=z*(0)
z(0) =z(T) =0

z(t) #0 a.e.

We are going to show that a collision solution can actually collide just a finite number
of times, depending on the value of the energy. Indeed, let 71 and T3 € [0,T] such that
z(T1) = z(Ty) = 0 and z(t) # 0, V¢ € (T3, T2). From the energy integral, since the angular

momentum of a collision solution vanishes, we obtain

|T2~T11:/0<=%)° L 4

5. JE+ =&
(V1.2) V3B
ai 2 % 2
= 33— sin9|3d9
CorEeh

(remember that, from (II.1), the energy F has to be negative).
Moreover, formula (II.1) implies that |z|? € C' (indeed, from the fact that z € H}

and the conservation of the energy, we have I—zll; € L'). Therefore a T-periodic collision

T T
/ wz:a/ .
0 0 [m[a

solution satisfies

so that

(VL.3) B (2 - a) (=)



Therefore, for each period T', all the T-periodic collision solutions having 7' as minimal
period have the same energy and the same value of the action integral. Since the collision
solution minimizing I® over A has minimal period 7', we can conclude from (VI.2) and

(1.29) that

2T 22-{?& —a
(VI.4) min % = (2+a> LI (/ |sin91%) aTHa Tia
A 2—« (ﬁa)m 0

From (V.6) and (V.7) we then deduce that

41——(1 1 27 2 5%5
(VL5) U(a) = ———— (—-/ | sin 9]5) .
0

(2 - a)aﬁ? T
Finally, for every period T > 0, let us consider the set of all the collision critical levels
of I% (i.e. the set of the values of the functional over the T-periodic collision solutions):
then this set consists in a sequence, each term of it corresponding to the minimum of I

over the subset of OA of all the T-periodic functions having %— as minimal period. More
precisely, denoting by ¢, the kth term of this sequence, we have

(VL6) ) = ke b = k7fe min I®

Let us remark that, for each a > 0, we have

. . 0 2a
(VLT) c(T) = n;zlonff < Juin, I? = ¢, = 27%+a rginfg .
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PART 2. THE FIXED PERIOD PROBLEM: EXISTENCE RESULTS

In this part we are concerned with the problem of the existence of one solution to the
problem

—& =V, F(z,t)
(Pr) z(t + T) = =(t) VieR
z(t) # 0 VieR,

where the period 7' > 0 is prescribed. To this end, we shall study the critical points of
the functional

T 4 A
(2.1) I(z) = / 5}:;42 — F(z,t) .
0
Since the potential F' will be singular at the origin, the natural domain of I is the subset
(2.2) A={ze H /z(t) #0Vte R},

of the Sobolev space of T-periodic functions H = {z € H (R;RY) / 2(t+T) =z(t) Vi €
R}.

i;r;: then the variational approach

Let us first consider our model potential F(z,t) =
to (Pr) presents two kinds of problems:

(a) the functional I is not coercive;
(b) the domain A is open in H

(the Palais-Smale’s sequences can converge to 9A).

As far as the cases « > 1 and 0 < @ < 1 are concerned, we are going to show that
suitable minimax techniques can be introduced in order to overcome problem (a). More-
over, in both cases critical points will appear at levels where no collision solution is allowed
(problem (b)). On the other hand, whenever a = 1, all these methods fail. In facts, we
shall see in chapter III that the counter part to the existence of a continuum of periodic
solution is its instability under perturbations.
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I.1 The strong force case (a > 2).

The notion of Strong Force has been introduced by Gordon ([28]):

3U € C*(RM \ {0};R) ,3r > 0 such that
(SF) lim,_ 0 U(z) = +o0,
—F(z,t) > |VU(z)|?, Viz| <7.
When the potential F' satisfies the (SF) condition, the associated functional I can not
be finite in a neighbourhood of A. More precisely we have the

ProprosITION I.1.1. (GorDON). Let F € C(RN\{0} x [0, T); R) satisfy the (SF) condition
in addition to

(I.1.1) F(z,t) <0, Y(z,t) € RV \ {0} x [0, 7]
Then

lim I(z) = +o0
z—+8A

PROOF: Assume on the contrary that there exists a sequence (z,), in A such that

z, — T € OA,

and

limsup I(z,) < +o0 .

n—0o0

Then we first deduce from (I.1.1) that fOT |zn]? < 2I(z,), so that im sup,,_, o, fOT lz]? <
+co. Moreover, the limit function T can not be identically zero.

Now let 29, 21 € [0,T] be such that Z(¢y) = 0 and Z(¢;) # 0. From (SF) we deduce that

tld

U(en(t)) = Uleatto)) = [ Z0(n(0)
<( / IVU(wn(t))P)% ( / lsanﬁf <( / VU ()P) o)t |

hence

T t 2 (1)) — Ul (22
/; ~F(xn,t)2/t —F(zn,t) > |U(zn(t )Q)I(m[j)( (t0))] o 4o,

o]
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since z, converges uniformly to Z. Remark that the same proof works whenever z,
converges to T in the weak topology of H.o

REMARK: When F' is of the form F(z) = ﬁ, the (SF) condition holds if and only if
a> 2.0

We are going to deal with potentials satisfying (SF) in addition to the following assump-
tions

F(z,t) <0  ¥Y(z,t) € RV \ {0} x [0,T]

lim F(z,t)=0, uniformly in ¢
(H) e oo () d
! llim V.F(z,t) =0, uniformly in ¢ .
z|—-+oco

Let us recall a basic definition in critical point theory. We say that I fulfils the Palass-
Smale condition at the level c if

every sequence satisfying
im I(z,)=c¢c
(PS.) i
im dI(z,)=0

n-—-+oco

possesses a converging subsequence.

We shall call a Palais-Smale’s at the level ¢ a sequence (z,) such that

m I(z,)=c

-} 00

lim dI(z,)=0.

n-—-+co

A Palais-Smale sequence is a sequence of almost critical points of I. This notion is moti-
vated by the fact that the minimax arguments we are going to apply provide the existence
of Palais-Smale’s sequences.

Assume that (H) holds; then, of course, I does not satisfy (PSg) condition. Indeed, just
take a sequence of diverging constant functions. However, 0 is the only level where the

(PS) condition fails:
PROPOSITION 1.1.2. Let F satisfies (SF) and (H). Then I fulfils the (PS) condition in A

at any positive level.

PROOF: The proof is contained in [1]. We sketch it here for the reader convenience. Let
(zn)n be a Palais-Smale sequence in A at level ¢ > 0, that is
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(1.1.2) I(z,) — ¢
(1.1.3) —&p = Vo F(zp,t) =0, inH .

We first remark that ||z||z: is bounded, so that if the sequence of the mean values of
T, is bounded, then (I.1.3), together with standard compactness arguments, leads to the
existence of a converging subsequence (remember that, by Proposition 2.1.1, a sequence at
bounded level can not converge to A). On the other hand, assuming on the contrary that
the sequence _fOT z,, is unbounded, we obtain that iminf,— e inf; |zn(t)] = +oo0; from
this fact and (I.1.2), (I.1.3) we can conclude that I(z,) — 0.0

A more detailed description of the behavior of the functional near the level of lack of
compactness is given by the following

ProposSITION 1.1.3. Assume that (H) holds. Then there exists ¢ > 0 such that the sub-
level I* = {z € A / I(z) < ¢} can be contracted in a continuous way into the set of large
constant functions, without crossing the boundary of A.

ProoOF: From (H), we deduce that for every M > 0 there exists ¢ > 0 such that I¢ C
{z € A/ |z(¥)] > M ,Vt € [0,7]}. Therefore, for large values of M (and hence small es),
the homotopy h(z,0) = (1 — o)z + ok fOTa: can be performed, contracting I¢ in a set of
large constant functions, without crossing the boundary 9A.

One of the first results about existence of periodic solution to singular dynamical sys-
tems is the following Theorem 2.1.1, due to Ambrosetti and Coti Zelati ([1]). They make
use of a result of Fadell and Husseini about the category of A in A. We shall not enter
in the details of their approach here; however, we wish to point out that from the result
of Fadella nd Husseini one deduces the existence of sets which cannot be contracted in a
continuous way into sets of large constant functions, without crossing the boundary of A.
One then obtains the existence of Palais-Smales’s sequence at positive levels by deforma-
tions techniques.

THEOREM 1.1.1. (AMBROSETTI-COTI ZELATI). Assume that F € C*(RM\ {0} x R;R) is
T periodic in t and satisfies (SF) as well as (H). Then (Pr) has infinitely many solutions.

1.2. The case a > 1



The approach used in proving Theorem I.1.1 just work when lim,—9a I(z) = +oc0. On
the other hand, when o < 2, the functional associated to a potential of the form F(z) = T’—;f;
has always finite infimum near the boundary of A (cfr 1.VI). In order to overcome this
difficulty, let us state an abstract result.

The following definition has been implicitly given by Greco ([29]):

DEFINITION 1.2.1. A closed subset A of A is contractible (into a set of large constant
functions) if there exists a continuous homotopy h : A x [0,1] — A such that h(-,0) = id|4
and h(A,1) C Ey, where Ey C H is the subset of the constant functions. A subset of
A is non contractible if it is not contractible, that is if for every continuous homotopy
h:Ax[0,1] = H such that h(-,0) =1id4 and h(4,1) C En, then h(A4 x [0,1]) N OA # 0.
We shall denote

(I.2.1) Ho(A) = {h: A x[0,1] - H continuous / h(-,0) =1id4 , h(A,1) C En} .

THEOREM 1.2.1. Let I € C!(A,R) admit a lower semicontinuous extension I : H —
R U {+o0}. Assume that:

(2) I(z) >0 Ve € H
(12) 0 is the only level where the (PS) condition fails;
(131) there is € > 0 such that the sublevel I° is contractible;
(iv) there is a non contractible compact set A C A such that:
sup] <infT.
A BA

Then I has at least one critical point in A at positive level.

PROOF: The proof can be carry out by the usual deformation techniques (see [29]). Indeed,
assuming that I does not admit positive critical levels, an homotopy (gradient flow) could
be performed contracting the sublevel {z € A / I(z) <infas I} into I¢, in such a way that
the value of the functional strictly decreases along the homotopy. Therefore, by (iii), the
compact set of (iv) should be contracted into I and then into a set of constant functions,
without crossing JA, in contradiction with Definition 2.1.1.

Let us point out that a positive critical level is expressed by

1.2.2 i
(1.2.2) nf, SEPI ;

where

24



(1.2.3) A = {A C A compact / 4 is non contractible ,sup < ianAf I}.
A

<
Now, natural questions are if A contains non contractible sets and how to compute their
maximal level. To this aim we prove the following

PROPOSITION 1.2.1. Let (eq,...,en) be an orthonormal system of RY and let SN=2(e1) =
{zeRY /|z—e|=1, z-ex =0}. Define

2 . 2T
(1.2.4) Ay = U {4z + (z — e1) cos —T—t + ey sin —T-—t}
z€SN—2(ey)
Then Ay is a noncontractible set.

ProoF: Let f:SM~2(e;) — A be the continuous parametrization of Ay defined by

f(z)(t) =4z + (z — e1) cos g:%r—t + ey sin gTEt , Vz e SV 2(e),

and let F': SN72(e;) x ST — RV \ {0} be defined as

F(z,e*) = f(z)(t) .
F is continuous and has degoF' = 1 (or degoF = —1, depending on the orientation
chosen for RN). Corresponding to each h € Ho(Ap), there are the extensions of f and F,
respectively f: SV ~2(e;) x [0,1] — H and F: SV~2(e;) x B! — RY, given by

f(z,0) = h(f(z),0) ,
F(z,re" = f(z,1 7).
The second definition makes sense since, from the definition of Ho(4o), one has f(z,1) €
En,Vz € SN2(e;). From the fact that dego F' = 1 one deduces that 0 € F(SV~%(e;)x B'),
that is that h(4,[0,1]) N OA # 0. Since h was arbitrarily chosen in Hg(A4o), one finally

proves that A is a non contractible set.o

REMARK 1.2.1: One obviously has that pA, is non contractible for every p > 0. Remark
that, in the radial case, we have

(1.2.5) inf supIZ = sup Iy =cJ(T),
P>0 54, 4R Ag

where (R2)*T = aqa (%)2.0

The following theorem has been proved by Degiovanni and Giannoni ([25]).

25




THEOREM 1.2.2. (DEGIOVANNI-GIANNONI). Let F' € CY(RV \ {0} x R;R) be T-periodic
in t and satisfy (H) in addition to

dJal<a<2,362>2a>0,

(1.2.6) |—£|; < —F(z,t) < |~:Eb|_a V(z,t) € RV \ {0} xR,
(1.2.7) (g) < u(a).

(the function ¥ is defined in (V.7) of Part 1. Then (Pr) has at least one solution.

PROOF: The proof is a direct consequence of Theorem 1.2.1. We proved in the previous
section that (H) implies that (i), (ii) and (iii) of Theorem 2.1.2 are fulfilled. Moreover,

by Proposition 1.2.1 and the Remark, the set A = 4RA4,, with R*T® = aa (%)2 is non
contractible and satisfies (by (1.2.5)):

(1.2.8) min [ > minI$ > ¢f(T) =suply > supl,
A A A A

indeed, (1.2.7) leads to mings I& > ¢¥(T'). Therefore , the sublevel {z € A / I(z) <
infgp I} contains at least one non contractible set; hence Theorem 1.2.1 can be applied,
finding a critical point of I in A, that is a solution to (Pr).c
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2.J1I. Thecase 0 <a<1

As we have remarked in 1.V, when F(z) = ﬁ, a >0, and 0 < a < 1, the variational
problem associated to (Pr) can be handled bay means of saddle point theorem type argu-
ments. Let us start this chapter by the variational characterization of the circular solutions
in the case 0 < a < 1:

ProrosiTiON II.1. Let F(z) = —%, witha > 0 and 0 < o < 1. For a fixed R > 0,

Izla b
consider the class

I'={y: BY — H continuous / Yisv-1 = Ridg, } .
Then, for any large R,
c(T) = inf sup I .
(1) inf sup L

Here Ey is the subset of all the constant functions of H: up to an isomorphism we have
En =RY.

PROOF: It is a generalization in higher dimension of the planar case of Proposition V.4.
of Part 1 First, by Brower’s Theorem we have

YBY)NHe #0, Vyer,

(Ho is the subspace of H of all the function having zero mean value) and hence, by
(V.15) of part 1,

inf sup IJ >infIJ =cJ(T).
Y€ ~(BN) Hy
Now we have to prove the reversed inequality, that is, we have to find v such that
c(T) = sup,prvy Ig. If N =2, such a v : B> — H was found using the property of the
set of the T-periodic Kepler orbits of the case & = 1 to be a 2-manifold homeomorphic to
the ball (cfr Proposition 1.V.4). More precisely, let us consider the set of all the K-orbits
of the problem

l—a

(IL.1) -z = aa (aa (%)2) e T;? z € R?
e(t+T) =z(t) .

Taking into account of the results of Part 1, chapter III, we know that the set of all the
solutions (possibly crossing the origin) of (IL.1) is (up to the S! symmetry) a 2-manifold
homeomorphic to the ball B2. Moreover, each K-orbit z verifies
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(11.2) /OT &> =T (:2%> e (aa)™=

s [ (@)™

Now, let us consider the continuous v : B2 — H defined as

1
(aa (5’{;)2) relhe gamit ifz=0
elliptic T-periodic Kepler orbit with
oz if0<|z] <3
(IL.4) ~(2)(t) = { symmetry axis l_;l
collision T-periodic Kepler orbit if |z] = 3
Z z 2 ‘jl;a .
21 - o)y (7) () + 21l = D2 (aa (£)) ™7 i3 <)ol <15
We then have
T , . T 4 «
I(v(z S/ v(2)|* + aT" 7 /———-— < cg(T)
G < [ R 5
Moreover, v admits a continuous extension 7 : B? x BV=2 as
_ 7(2) + Cy if [y < 3
(115) 7(Z,y) = y Y r 1 2
21 = lylg(z 5f5) + Qlyl = 1)CF if g <[y[<1.

It is clear that, when the constant C is chosen sufficiently large, we have, for every
(z,y) € B* x BN~27

| T T <
(IL7) I(y(zy)) < / (z,9)[? + Tt ( / I—i———) < c&(T)

7(z,9)]

The proof is then complete, since B* x BY~2 is homeomorphic to the ball BN .0

The following results is on the line of Theorem 2.1.3; it has been proved in [34]:
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THEOREM 2.II.1. Let F € C*(RY \ {0};R) satisfy (H) in addition to

da,a1 ,00 >0 a1 <a<ay<1,36>2a>0,

(IL.7) B% < —F(z) < E’b—l; vz € RV \ {0},
(1I1.8) —a; <VEF(z) -z < —aF(z) Vz € RY \ {0};.

Then there exists a function ¥ : (0,1) — R such that if

b(2 - 011)(2 + az)
a2+ a1)(2—a—2)

(1.9) <o),

then (Pr) has at least one solution. Moreover ¥ fulfils the properties:

() > 1, Voi<a<l
0)=9(1)=1. ,
PROOF: We first apply Rabinowitz’s Saddle Point Theorem ([8]) with I' as infsup class,

obtaining the existence of either a solution to (Pr) or a generalized solution of (Pr). We
say that z is a generalized solution of (Pr) if z € Hi ([0, T];RY) satisfies

b7
v

: —#(t) = VF(z(t)), vt ¢ z71(0)
(11.10) sle)| + Flz(t) = E, VYig¢271(0)
z(t) #0, a.e. in [0,T7] .

Indeed, although I is singular, we apply the Saddle Point Theorem to the one parameter
family of functionals of the form

T
L) = [ 5P =R,

where F, € C*(R™;R) are regular truncations of F' such that:

(I1.11) F.(z) = F(z) if |z|>¢
(I1.12) . 0<VF.(z) -z < —ayF.(z) VYzeRY
(I1.13) —F.(z) < ljl_ VzeRY

T (04

there is a non decreasing f : R — R, with
(IL.14) flzl) 2 & iflz[<e
such that — F.(z) > f(|z|) Vz € RV .
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Since the critical levels corresponding to I' are positive and, by Proposition 2.1.2 (since
(H) holds)), I. fulfils the (PS) condition at any positive level, the Saddle Point Theorem
can be applied to I., for small values of ¢.

Hence, for every ¢ sufficiently small, a critical point z. of I. is found such that

(I1.15) e(T) < I(ze) < I(ze) < cp(T) .

Now, since (z. ). is uniformly bounded, it possesses a sequence (z., )n, weakly convergent
to some limit z in H. Since the z. satisfy

—z. = VF.(z.)
(I1.16) %[i:5|2 + Fe(z.) = E.
z(t+T) =z(1),
and the energies E. have a bound independent of ¢, we can conclude that the weak

limit z is either a solution or a generalized solution of (Pr), and it satisfies (II1.10) with
E =limp_ .4 E.,. Of course, by (I1.15) and the weak lower semicontinuity of I, we have

(IL.17) I(z) < ¢(T).

We claim that the convergence actually hold in the strong topology of H, so that, from
(I1.16), we can conclude that

T T
/ |2]* = lim |2, |2
0 n—To0 Jo
(I1.18) T -
F(z)= lim F. (ze,) .
0 n—+oo Jo

In order to prove the claim, we are going to prove that, setting Q. = {t € [0,T] / |z(?)] <
¢}, there are constants C; and C; independent of € such that

2-a

/ |22 < Che® + Cae
(11.19) e

2—a

/ [i?slz < Cl€a + 026 2
Qe

This fact, together with the uniform convergence of z., to z in [0, T]\ Q2,, will prove the
claim. From (I1.7), (II.17) and Tchebicev’s inequality we have

(11.20) meas Q. < C3e®;
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Now, from (II1.8) (II.10), and (I1.12), (I1.16) we deduce

> .,
a;]m] >2E — (2 — a2)F(z)

(IL.21) o

@1:&5]2 >2F, — (2 — a3)Fe(z.) ,

so that local maxima can not be in ), (if ¢ is small). Since the kinetic part are bounded,
we can then deduce that the number of connected components of (., has an upper bound
independent of ¢; moreover, the energy integral implies that

o

(11.22) lz(t) - 2(8)] < |2(D)||2(¢)] € Cae 3, VEeQ.,

(and the same estimate holds for z.). Therefore, from (I1.20), the integration of (II.21)
leads to

(I1.23) / “F(2) < Coe® + Cre5®
Q

£

and the same estimate holds for z.. By the energy integrals and (I1.23), (II.19) is easily
proved.

Hence we have found a generalized solution z to (Pr) satisfying the further estimate

(1L24) S(T) < I(2) < 5(T) -

Next step consists in showing that a function ¥ exists such that if g‘z; < @(a), then
(Pr) does not admit generalized solutions satisfying (I1.24).
Let us call p(t) = |z(¢)|: then p satisfies

(IL.25) ot +T) = p(t) Ve R
olt) > 0 VeR,
where
(9P (1)) — U F (o) - a(e)) [ JED )
(11.26) ) = (~2(e() - VF(a(2) 2(0) (22 ) |

¢ is T-periodic and, by (II.7) and (I1.8), has the bounds
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2 — as b(2—a1)
. =~ < < —7 teER.
(IL.27) e S STy Ve

We point out that, from the energy integral, ;;2 is absolutely continuous. Therefore,

from (I1.10), z satisfies
» T T
/ 2 = / VF(2) 2,
0 0

hence, from (I1.8) and (II1.24) we obtain

2 —ay cd(T) <_E< 2 —ay cg(T)

2+a2 T - _2+a1 T

(IL.28)

Setting u(t) = (%—::—g—‘ i%(,})q ) : p(T't) , we find that p solves

Tt = —2kgep(1) + B
(I1.29) p(t+1) = p(?)
p(t) >0,
where
2-a M)\ T .
- T2c(tT
Alt) <2+a~ET2> <(tT) 5

therefore, irom (I1.27) and (I1.28) we obtain

(11.30) Eoe)@ e ) Eoo)@ra)e
(2-e2)(Zta)a~ T 2- )@+
Finally, since p'2 is absolutely continuous, so is ,ujz. Next proposition will end the proof:

PROPOSITION I1.2. Forevery 0 < a < 1 there exists ho(a) > 0 such that, if h € L*([0,1])
has ||h|oo — 1| < ho(e), then the problem

- —o 2—a)h
L = —aZzcn(1) + (220
p(0) = p(1) =0

(I1.31) 00

;4.2 absolutely continuous;,
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has no solution.

PROOF OF PROPOSITION IL.2: First of all, the following problem has no solution with

absolutely continuous p2:

bt = —oier(n) + G2
pE+1)=p(1)=0

(11.32) p(0) = p(1)=0
u(t) 20

L /.iz absolutely continuous,

Indeed, if a solution exists, it should be the modulus of a generalized solution of

—% =g
(11.33) ’;—l$| - '('Elr&' = —'%;—36(11(1)
z(0)==2(1)=0
z(t) #0 a.e. in [0,1] .
at level

1 , 1
z]* + —— =c7(1).
All !xla 1()

On the other hand, we know from 1.VI that 1-periodic collision solutions satisfying

(I1.33) can appear only at the levels

1
2a 1
k'l-i—cxmill(/ l(ﬁlz'{"““‘“) N k:l,z,--. .
ar \Jo |z|*

Moreover, as we have pointed out in 1.VI, we have

1 1
: 12 1 20, : 1
min (/ 2] + — } < (1) < 2%2+a min / 2> 4+ —— ) .
a8 \ J, |z | 88\ Jo ||

Therefore (I1.32) does not admit any solutions.
Now we turn to the proof of Proposition 2.I1.2; to this aim, we assume on the contrary

that there exists a sequence h, in L™ such that

(I1.34) hn — 1 uniformly
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and such that, for every n € N, (II.31) has a solution u, with absolutely continuous 2.
Of course the proof will be complete when we shall prove that u, has a converging sub-
sequence such that N% converges in the strong L' topology: as a matter of facts the limit
should satisfy (I1.33). We first deduce that /1,% is bounded in L!, and therefore p, has
a subsequence uniformly converging to some p. By arguments similar to the ones of the
Proof of Theorem 2.I1.1, we can prove that, setting Q. = {t € [0,1] / u(t)| < €}, there are
constants C'; and (s independent of € such that

1 —a
/ — < 0160‘-%-0251—2— ;
Q. H

and this fact implies the convergence of ;LEL in L.

We finally define hq as

(I1.34) ho(a) = sup{C > 0/ (11.31) has no solution for ||hlec — 1| < C} .

%
END OF THE PROOF OF THEOREM 2.1I.1: Let hy(a) be given by (1I.34). Define

_\f(a) =1+ ho(()éo 5
so that (I1.9) implies both

(2—01)(2+ az)b (2 — a2)(2 + a1)a
((2 —)(2+al)a 1) < hola) ;and (1 -2+ ag)b> < ho(a) -

From (I1.29), (I1.30) and Proposition 2.I1.2, we can conclude that the solution z can not
interact with the singularity, that is that z solves (Pr).o
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2.I11. The case a=1

In this chapter we are going to show that results in the line of Theorem 2.II.2 (case
1 < a < 2) or Theorem 2.I1.2 (case 0 < a < 1) can not be proved when o = 1.

A sequence of planar potentials potentials F, € C'(R?\ {0};R) can be defined in such a
way that

1+4+en
|| lz|
VE,(z) -z =—Fy(z), VzeR?\{0}

im ¢,=0,
n—+ oo

1=¢n Ve € R\ {0}

< _Fn(z) <

and such that

Lm inf  I(z)=+4oc0.
n—+00 z solves (Pr)

Therefore, in the following counterexample, both the variational methods used in prov-
ing Theorem 2.I.2 (local minimization in the planar case) and Theorem 2.II.1 (infsup
arguments) lead to the existence of collision solutions.

In other words, the set of T-periodic Kepler orbits is not stable under some kinds of
perturbations.

DEFINITION 2.III.1. In a polar system of coordinates (p,8) of R?, we say that Fiis a
K-type potential if

and M is defined in the following way. Consider the partition of R? induced by two
straight lines. We denote 0 < 2u < w, v = m — 2u the amplitude of the angles between
the two straight lines. We denote by I_ and I, the two sectors of amplitude 2u and we
set M(0) = M, in I, and M(0) = M_ in I_, where My and M_ are positive constants
such that M_ < M. In the sectors I; and I, of amplitude v, the function M varies in a
continuous and monotonic way between the values M_ and M.

The following results have been proved in [1°9]:
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ProrosiTioN 2.111.1. If F' is a K-type potential, there are no non collision solutions of
the motion equation

—Z = VF(z)

with angular speed of constant sign, when v is sufficiently small.

THEOREM 2.II1.1. There exists a sequence of K-type potentials F,, such that the corre-
sponding sequence M, converges uniformly to the constant function one and such that,
for every fixed period T > 0,:

every sequence ¢, of T-periodic solutions of the problems
En = VEFy(z,)
(P}) zn(t+T) = za(t) , VieR
' z(t) # 0, VieR,
(if any exists) converges uniformly to zero. Moreover

im I,(z,)=+o0o,

n—-+oo
im E,=-c0,

n—-+4co

where I, is the functional associated to (P}) and E, is the sequence of the energies of
zn. Moreover, large values of n, (P}) has no solution having non zero topological degree,
with respect to the origin.

The phenomenon described in Theorem 2.II1.1 shows the strong limitation to the vari-
ational approach to the fixed period problem, in the case @« = 1. The same degeneracy
holds whenever the fixed energy problem is considered:

THEOREM 2.II1.2. There exists a sequence of K-type potentials F,, such that the corre-
sponding sequence M, converges uniformly to the constant function one and such that,
for every fixed energy E < 0,:

every sequence ¢, of periodic solutions of the problems
Ln = VEF,(z,)
(PE) %’i’nlg + Fo(zn) = B
z(t) # 0, VieR,
(if any exists) converges uniformly to zero. Moreover
lim 7T, =+,

n—+-+4co
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where T, is the associated sequence of the minimal periods. Moreover, for large values
of n, (P2) has no solution having non zero topological degree, with respect to the origin.

The degeneracy occurring at o = 1 can be overcame when F' possesses some symmetry
properties ([26]), for example when F is even. We shall discuss this case in Part 6.
The proof of these results is quite long and consists in a very detailed analysis of the
solutions to the associated Cauchy problem. We refer to [19] for proofs and comments.
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PART 3. The fixed energy problem

In this part we are concerned with the problem of finding one solution to

—i = VF(z)
2P+ F(z)=E

() z(t+ ) = z(t) VieR
z(t) £0, VteR,

where the energy E € R is prescribed. Here the unknowns are both the function z and
its period A.
The variational approach to (Pg) can consist! in looking for critical points of the associated
functional

(3.1) =5 [ 1 ) ( B- F@)) |

at positive levels. As a matter of facts, if a 1-periodic function z is a critical point of I
at level I(z) > 0, then, setting

1,.¢0
,\2= _12-f0 lml‘

folE“F(m)

I

the function y(t) = z(A7'¢) is a A-periodic solution to (Pg).
Since the potential F' is assumed to be singular at the origin, the suitable domain of I
will be the function set

(3.2) A={zeH/z(t)#0,vteR},
where H is the Sobolev space of all the 1-periodic functions of H} (R;RM).

As usual, the behavior of our potential will be assumed to be similar to the one of a model
potential of the form F(z) = ﬁ?—; Thus , taking into account of the results of 1.IV and

2.III, we shall be concerned with the following cases:

! Another variational approach to (Pg) has been used in [6]
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(1) a>2 (and E > 0) 5
(IT) l<a<?2 (and E < 0) ;
(III) 0<axl (and E < 0) .

As far as the case a = 1 is concerned, we have seen in 2.III that a structural degeneracy
occurs. Concerning the case a = 2, Proposition 1.IV.1 leads to the choice F = 0, so
that the functional in (3.1) has the invariance I(pz) = I(z), for every p > 0 and z € A.
Therefore the problem is not well posed.

I. The case a > 2

When E > 0, the functional of (3.1) has more or less the same features as the functional
associated to the fixed period problem (2.1). Thus we are going to prove the existence
result by the application of Theorem 2.1.2. On this line, an additional difficulty arises from
the fact that, since the functional I vanishes identically on the space of constant functions,
we have limy . gp I(z) = 0. Therefore we are going to apply Theorem 2.1.2 to a family of
functionals of the form

L) =16)+ [ Vile),

where the term V, induces the strong force. By virtue of an a priori estimate we shall
be able to insure that, for small values of ¢, the critical points of I. are actually critical
points of I. This approach is just a slight modification of the one of [15], where a result
very similar to the following Theorem 1.1 was proved.
Let us consider the following assumptions:

da > a1 > 2 3b > a > 0 such that

(1) TS -F() < T;F/“ ve e BV \ {0)
(H2) VF(z) -z > —a; F(z) vz € RV \ {0}

The main goal of this chapter is in the following result:

THEOREM I.1 (BENCI-GIANNONI). Assume that (H1) and (H2) hold. Then (Pg) admits
at least one solution if and only if E > 0.

Before proving the theorem, we need some preliminary results.
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DEFINITION 1.1. For any ¢ > 0, V. € C*(A;R) denotes a function such that

1
. > ; <
(I1.1) Ve(z) > BE fo<jz|<e
(1.2) Ve(z) > 0 if0 < |z| < 2¢
L3) V.(z) = 0 if |z] > 2¢
(1.4) VVe(z) -z < =2V (z) vz e RV —{0}.
Define

ProPOSITION I.1. (A priori estimate). Assume (H1) and (H2) hold, and let ¢ € A be a
critical point of I, such that I.(z) > 0. If

o (a1 —2)a
then
(1.6) lz(¢)] > 2¢ Vtel0,1].

PRrooF: Let z be such a critical point. We have

(L.7) (é— /01 |;'c12> (/O-IE—F(:::)) +/01V€(:c) =C>0

(1.8) -/OlE— F(z)z = G /01 1:3]2) VF(z) - VV.(z) .

First, we deduce from (1.7), (1.8), (I.2) and (I.4) that z is not constant. Associated with
the time-independent equation (I.8), we have the energy integral

(L.9) %]:&;2</01 E -~ F(:c)) + F(z) (% /01 ]:b|2> ~Ve(z) = h,

and by integrating it we find the upper bound to A,

(1.10) h:E(% /01 |a':;2> -/Olm(:c) < E(% /01 Iélz),
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since V,(z) > 0.

Let ¢ € R such that |z(tm )| = minier |2(t)|, we have

d’ 1 2 . 2 .
5 3leltn)? = [8(tm) + 2(tm) - Eltm) 2 0.

From (H2), (I.4), (1.8) and (I.11) we obtain

(1.11)

(3 7] VF(a(tm)) - 2(tm)
i B~ 7))

1

+<£E—Fwﬂ

(3 5 wer) e
i B - o))

- L Vi(a(tm))

(fr2-r@)

< la(tn)l® -
(

VVe(2(tm)) - 2(tm)

< Je&(tm))? + e
(

and by substituting in (1.9),

(112) e (%) @ /0-11:el2> Flz(tn)) .

Taking into account of (H1) and (1.10), (I.12) leads to

a 2
PRI ),

£,

that is (from (L.5)),

o —2)a 1/
MWiZh%ﬂl2<L3fﬁ> > 2.

o

By virtue of Proposition 1.1, looking for critical points of I is equivalent to looking for
critical points of I, provided that (1.5) holds. We are going to show that I, satisfies the
assumptions of Theorem [.2.1 of Part 2.

41




PROPOSITION 1.2. Let E > 0, and let I, be defined in Definition I.1. Then

(I.13) zl—lng I.(z) = +oo.

PRroOF: Indeed, by definition, we have

(19 e 2 3 [+ [ v,

and, from (3.3), V; satisfies the “strong force” condition. This fact (see Proposition 2.1.1
and Remark 2.1.1) implies (I.13).0

ProrosiTiON 1.3. Assume (H1), (H2) hold, and let E > 0. Then, for any ¢ > 0, I,
satisfles the (PS). condition.

PRrROOF: Let (z,), be a Palais- Smale sequence in A, that is

Tz, €A

(I.15) I(zpn)=cn — ¢c>0

(L.16) ‘(/01 E- F(Zn)) En = (% /01 linP) VF(zn) = VVi(2n) + hn
with h, —0 in H'.

From Proposition 1.2 we deduce that

(I.17) IM >0 suchthat d(z,,0A)>M (VneN).

From (I1.14) and (1.15) we then deduce that a constant C' > 0 exists such that

(I.18) ENEE ¥ for n large .

Let m, = minseg |z,(¢)]. Now, if (m,), is bounded, then, up to a subsequence, it
converges uniformly to some limit z € H. Moreover, from (1.16), we deduce that (z,).
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actually converges strongly in H, so from (L.17) we conclude that z € A.

Assuming by the contrary that (m1n)n is unbounded, then (up to a subsequence) we can
assume that

so that both (VF(z,)), and (VVe(zn))n converge uniformly (and hence in H~?) to zero.
Moreover, since

1
im [ E—-F(z,) = E>0,
0

L=+ 00

(1.6) implies that (=&, ), converges to zero in H . Hence ||£,||z: — 0 and therefore
I(z,) — 0

(indeed, for n large fol Ve(zn) = 0), which contradicts (1.15).0

ProrosITION 1.4. For every € > 0, there exists § > 0 such that the sublevel I¢ ='{:z: €
A/ I.(z) < 6} is contractible.

PROOF: When § is sufficiently small, then sup, ¢ s fol |£|* has to be very small and more-
overinf, ;s infier |2(¢)] has to be very large. The homotopy A(z,0) = (1—0)z+0o fol z can
then be performed, contracting the sublevel into the space of constant functions, without
crossing the boundary of A.o

PROOF oF THEOREM I.1: We first prove the existence of one solution for positive values
of the energy. To carry out the proof, we are going to apply Theorem 1.2.1 of Part 2 to a
functional of the family I, for a suitably small ¢. The proof will be then complete after
the application of Proposition I.1. We first extend the functional I, to the whole of H
by setting Te(m) = o0, for z € A. Of course I, is (weakly) lower semicontinuous, and
infgr I, = +oo. Finally, the above Propositions make all the assumptions of Theorem
1.2.1 of Part 2 be fulfilled.

Now we prove the reversed implication. Assume on the contrary that a negative energy
E < 0 exists such that (Pg) admits a solution z. From (H2) and the conservation of the
energy, we deduce that

1 d2
5Tl 2B+ (2 - an)F(e(t)) <0, VieR.

This fact contradicts the periodicity of z.o
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3.J1I. The case 1 <a <2

We have seen in Proposition IV.1 of Part 1 that, for potentials of the form F(z) = Tg—l%
with 0 < a < 2, a necessary condition for the solvability of (Pg) is that the energy E is
negative. The natural variational setting of (Pg), in this case, then leads to work with
unbounded (above and below) functionals. A further difficulty arises from the fact that
we have liminf, .5 I(z) = —oo as well as limsup,_,g4 I(z) = +o0o. Therefore, results on
the line of Theorem 1.2 .1 of Part 2 (used for the case a > 2) are not applicable in the case
0 < @ < 2. On the other hand, we are going to show that, whenever « > 1, the restriction
of I over a set of the type S, = {z € H / fol |£|? = p} satisfies (for suitable values of p)
the assumptions of Theorem 1.2.1 of Part 2. A new infsup argument is then introduced,
joining set intersection properties with non contractibility properties. Roughly speaking,
we are going to work with classes of sets whose intersection with a given closed subset
subset of H can not be contracted in a continuous way into sets of constant functions,
without crossing the boundary of A.

We shall consider the following assumptions on F":

Jda,ai,as, ,1 <d1 <a<as <2, db>a > 0such that:

(H1) ﬁ; < —F(z) < # vz € RV \ {0}.
(H2) —a1 F(z) < VF(z) -z < —az F(z) vz ¢ RV \ {0} .
(H3) S <3 E >

The following theorem can be proved by means of the above mentioned infsup argument:

THEOREM IL.1. Let F & C*(RN \ {0};R) satisfying (H1),(H2),(H3). Then there exists a
function @ : [1,2) — R such that, when

(H4) b (

then (Pg) has at least one solution if and only if E < 0. Moreover, ® fulfils the following
properties:
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e(1)=1
® is increasing
lim ®(a) = +oo .

a—2
This result is on the line of Theorem I1.2.2 of Part 2, where the function ¥ defined in
Part 1 (V.7) was used as bound for the pinching condition. We wish to point out that the
functions ¥ and @ are related by

2ta

B(a) = (¥(a)) * ,
so that, by (V.7) of Part 1, ® can be computed as

1 ]. m 2 o
B(a) = (, hat in 6|%doV> .
(Q{) 20_1(17(2 _ a)242—a {71' /{; ISIH ] }

Since ®(1) = 1, condition (H4) is never satisfied for « = 1. On the other hand, we know
from 2.III that a result similar to the one here can not be proved in this case. However,
the pinching condition is not empty for each 1 < @ < 2 and its field becomes larger and
larger when a converges to 2.

REMARK II.1: The fact that F < 0 is a necessary condition for the solvability of (Pg) can
be proved as follows: let t; € R be such that |z(y)|> = min¢er |z(¢)|*. Since z is regular, we

have (—;’%le(to) < 0. Thus (H3) leads to 0 > |2(¢o)|* + a2 F'(z(t0)) = 2E — (2 — a2) F(z(t0)),
so that, from (H1), we can conclude that E < 0.0

REMARK II.2: From (H1), the trajectory of every solution of (Pg) is constrained in the
set {z € RV\{0} / = F(z) > —-E} C {z e RN\ {0}/ l"z‘br; > —FE }. Therefore, hypotheses
(H1) and (H2) can always be assumed to hold true just for each z in this set.c

Therefore, the following result easily follows from Theorem II.1

COROLLARY IL.1. Let U € C*(RN \ {0};R) satisfy
llilmo |z|*|VU(z)| =0,
and let

F(z)= — +U(z), VYeeRY\{0}.

|z[=

Then there exists E < 0 such that for any E < E, (Pg) has at least one solution.
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We shall see in the proof of Theorem II.1 that (H4) implies an a priori lower bound
for the minima of the modulus of the solutions at suitable levels of the functional. In the

model problem with F(z) = [z]> one can ea.sily prove that (Pg) always admits a solution
24a
(wayz(t) = pgeivst) with p, = ((2 a)a> “ and wy = %5— ((2:2‘:2") ® . Now we wonder

whether assumptions (H1) and (H2) allow estimates of the minima of the modulus of the
1
solutions in terms of ((l—g%)-ﬁ> :

We shall prove the following estimate:

COROLLARY I1.2. Under the assumptions of Theorem II.1, there are functions ®* : [0,2) —f
Rando:(1,2) x (1,400) — (0,1) such that, if

(H5) (%)2 < ®*(a),

holds, then (Pg) admits at least one solution = with

lz(t)] > o (a, g — al)b) <(2 — a)a)% vteR .v

—asz)a —2FE
Moreover, o fulfils the properties:
- —a1)b

lim o | o, Q—al)é =1 if—(-?———g-l—l— remains bounded;

a— (2 = az)a
and

—ay)b
im o <a, M) =1 for each fixed a € (1,2) .
1

et (2= ea)e

The function ®* of (H5) can be estimate as

3*(a) > 5&- (2 _2_ a>~ {%/02W|sin91%de}

The value of o is defined in (I1.5.25).

2

Qv

REMARKIIL.3: One can easily see that ®*(1) = 1, so that (H5) can never be satisfied at
a = 1. However, since limq 5 2*(a) = 400, the field of condition (H5) is nonempty. It is
possible that ®*(a) > 1, V1 < a < 2, but we were not able to prove it.o
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REMARKII.4: In the model problem with F(z) = [z]=, one can easily prove that (Pg)
2ta

1
always admits a solution z(t) = pge®+? with pg = (th%)—a * and w, = ;4;_:. ———-(2_"2"~E)° .

The meaning of Corollary 3.I1.2 is that the solution of (Pg) found by Theorem 3.IL.1 cor-
responds (in a variational sense) and approximates the circular solution of the radial case,
(2—a1)b
(2—0(-3)0, '

in a way just depending on « and on the fraction

The proof of the results is organized as follows:
IT.1. The variational principle

I1.2. Some lemmas about the case F(z) = =2

lz|=

I1.3. A first a priori estimate
I1.4. Proof of Theorem 3.II.1
I1.5. Proof of Corollary 3.I1.2
I1.6. Appendix

3.I1.1. The variational principle.

The first purpose of this section is to state an abstract min-max theorem (Theorem
I1.2.1) concerning existence of critical points for indefinite functionals.
Roughly speaking, we are going to work with a class of subsets of H having the property
that their intersection with a given closed ¥; C H cannot be contracted in a continuous
way into a set of constant functions, without crossing the boundary of A.
The second goal of this section (Theorem II.2.2) consists in showing that this min-max
class is not empty.

Let us fix up some notations. We denote by H the set of all the continuous homotopies
of H homotopically equivalent to the identity:

H = {heC(H x[0,1;H) / h(-,0) = id}.

En = RY denotes the space of all the constant functions of H. For any A C A we
denote

Ho(A) = {heH /h(4,1) C En},

and, according with the notations of 1.2 of Part 2, we denote

Ay = {ACA/R(A0,1)NOA£D, Vhe Ho(A)}.

Let 3,52 C H be closed such that £; N X, = 0, and let
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Hs, x, = {R€H/h(,s)is an homeomorphism,
(IL.1.1) h(z,s1 + s2) = h(h(, 1), 52)
h(z,s) =z Ve € (1 NOA)U X,,Vs € [0,1]},

Define

(I1.1.2) A%z, = {A € H compact / h(4,1)NXE; € Ay, VREHE, 5,7} -

The following Theorem holds:

THEOREM II.1.1. Let I € C'(H;R). Assume that there exist 1,52 C H closed, and
¢ > 0 such that

(IL1.3) )

(I1.1.4) supl >¢>0, VACZIZ; ,A € A.
A

Then the number

*

¢ = inf sup [
ACAG 3, A

is well defined. Assume moreover that

I1.1.5 i *
( ) E:ggAI>c >s)1312pI

I satisfies the condition (C')c+ of Cerami; namely

every sequence (u,)n in H such that

(1116) hm I('lbn) = CE.=

n—00

Lim (1 + [fwn|[)]|dI(un)]] = 0

possesses a COIIVGI‘giIlg subsequence.

Then there exists a critical point of I at the level c*.
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PrOOF: The theorem can be proved by the usual deformation techniques (see for example
[37]). As a matter of fact, one can construct a pseudogradient flow 7 such that n € Hg, 5, .
Therefore the class A3, 5, is invariant under this flow and, by the deformation lemma one
proves that the set Ko« ={z € H / I(z) = ¢*, dI(z) = 0} has to be nonempty.o

We shall apply Theorem II.1.1 in the following situation:

Let p > 0 be fixed: as X; we shall take

1t
(I1.1.7) ¥y, = {z€H/ 5/ |2|* = 27 p®}
0

Let 0 < & < 1; let (e1,...,exn) be an orthonormal system of RN and let SVN~2%(e;) =
{z€RYN /|z—e|=1, z-en = 0}. Define

(I1.1.8) Y, = U U {0p(4z + (z — e1) cos 2wt + ey sin 27t)}.
z€SN~2(ey) 0€{e,e1}

One easily sees that ©; N ¥, = (. Consider

(I1.1.9) Ay = U {ep(4z + (z — e1) cos 2wt + ep sin 27t)}.
zESN -2(ey)
(I1.1.10) A% = U U {0p(4z + (z — e1) cos 2wt + ep sin 2mt)}.

z€ESN-2(ey) 0€[e,e 1]

The second goal of this section is the following result:

THEOREM I1.2.2. For any p > 0 and 0 < € < 1, let £1,%, and A be defined as before.
Then

(1) Ao € Ao
(i) A" € A5 5.

PROOF: i) was proved in Proposition 1.2.3 of Part 2
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ii) According to the definitions of the above mentioned Proposition, in order to prove the
claim, one has to prove that, for any hy € Hy, 5, and for every hy € Ho(h1(4%,1) N Z1),
then

(IL.1.11) ha(hi(A*,1) NS4, [0,1])NOA £ 0.

First remark that hy can be extended to an hy € Ho(h1(A*,1)) by the application of
Tietze-Dugundji’s extension Theorem.
Moreover, since 4* N (X; N9A) = 0, one has

(I1.1.12) hi(A%,[0,1)N (21 NIA)=10.
Let g: SV=2(e;) x [0,1] — A the continuous parametrization of A* defined by

g(z,0) = (ep+ 0p(c™! — €))(4z + (z — e1) cos 27t + e sin 27t)
and let §: SMV=2(e;) x [0,1] x [0,2] — H be defined as

(2,0, 5) = { hi(g(z,8),s) if 0<s<1;
TED = Ralhalg(z,0),1),s —1) if 1<s <2

§ is continuous and has §(z,6,s) = §(z,s) when 6 € {0,1} and s € [0, 1], because of the
fact that of Ay € H%, x,- Moreover, since §(z,0,2) € En, ¥(z,0) € SN=2(e;) x [0,1], it
makes sense to define the continuous G : SN ~2(e;) x [0,1] x B* — RY as

Gz, 0,me") = §(z,0,2(1 — 7))(2).

Note that, by definition, 0 ¢ G(SV~2(e;) x [0,1] x S1). Up to a small C° perturbation,
we can assume that G is C' and that G, G|sv-2(¢e,)x{0}xB* a0d G|sN-2(e;)x{1}x Bt are non
degenerate at the value zero. Hence one has

a) G71(0) is a finite union of 1-manifolds either homeomorphic to S* or connecting two
points of S¥2(e;) x {0,1} x B'. One can assume without loss of generality that each of
them intersect the boundary in a transversal way.

b) both degy G| sr-2(e;)x 0} x5 and degoG|sv-2(e;)x{1}xB1 are equal to one (or minus one,
depending on the orientation chosen for RY). Anyway, both (GlsN—Z(el)x{o}xBl)_l(O) and

(GlsN-—z(el)x{l}xBl)—l(O) consist in an odd number of points.

Hence one deduces that there is at least one continuous functions ¢ : [0,1] — SV =2(e;) x
[0,1] x BY, £(A) = (z(N),8(N), 7(N)e*™ M) such that £(0) € SV=2(e;) x {0} x BY, £(1) €
SN=2(e;) x {1} x B! and G(£())) = 0.

Now consider the function ¢ : SV¥=2 x [0,1] x [0,2] — R defined as

@
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(z,8,8)]*, if 0<s<1y
(z,6,1)?, if 1<s<2,

{ E-x
'gb(:c,ﬁ,s) =
SF :

and let 9 : SV=2(e;) x [0,1] x B! — R be defined as 9(z,8,7e) = ¢(z,6,2(1 — 7)).
One has $(£(0)) = 2n2e2p? < 2n2p? < 272~ 2p? = $(£(1)), so that there is a A, € [0,1]
such that $(£(\,)) = 272p?. From (I1.1.12) on deduces that 7(A,) < 3.
Finally one can conclude that the function g(z(A.),8(A.)) satisfies
hi(g(z(X.),8(A)),1) € T and halhi(g(z(As),8(A4)),1),1 — 7(A)](E(A4)) = 0 and this

fact proves (IL.1.11).0

3.I1.2. Some lemmas about the case F(z) = &-

In this section we are going to show that, when F(z) = w1 <ea <, then the

associates functional fulfils the assumptions (II.1.4) and (II.1.5) of Theorem II.1.1. To this
end, let us introduce some more notations:
For every p > 0

1
SP:{zEH/E/ |2 = p*}
2 Jo
= {AC S,NA compact / A € A}

1
1
J = inf —
(e,p) :cég,}ﬂﬂf\./ﬁ |z|™

1
1
K = inf
or) = jghnm ),

J(e, 1)
K(a,1) "

P(a) =

ProposITION I1.2.1. For every o, 1 < a < 2, and for every p > 0, we have

(i) J(e;p) = J(@,1)p™"%

(i) K, p) = K(a,1)p™%;
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| . (\/57")& 1 2 . 2 !
(ii1) J(e,1) = 2‘1"104%(2——&)2';0‘{; i | sin 0| = d }
(v) ®(1)=1;

(vi) P(a) > 1, ifl<a<2;

(vii) lim ®(a) = +oo .

PROOF: i) and ii) are easily verified.

iti) Let us denote, for any A > 0

(11.2.1) (1) = inf { / |m|2+/\/01——1—}.

2€OA 2 |z|«

It is shown in 1.V that ¢§(1) is homogeneous of degree 52— 2+ in the variable A. Moreover,
for any constant vector e; of unit norm, there is a minimizer z € A of (I1.2.1) such that

z(t) = p(t)er
p(0) = p(1) =

p(t) >0, vt e (0,1)
Ao
_/3 o n (071)
pCY
1 N2 A . 2 — Q_,
(11.2.2) 5 ()~ T Tan —cx(1)
Thus we find .
1/ 12
=/ 12" = NOE
2 Jo A

moreover, we obviously have that

-_-%/01 |i:]2+AJ(a,<;;—/Olli=[2> ),

[S1E

and hence



so that

T(e,1) = (zja) (2jj) @) .

Therefore, by definitions of ¥ (V.7 of Part 1) and ¥, we deduce

(I1.2.3) B(a) = (T(a)) T

We can then conclude by the direct computation of €(a,1).Indeed, from (I1.2.2) we find

that
1 (2+0‘ 6, 1)) 1 (2+cx (e, 1)) ’ 1
- = / —dp = / dp
2 0 p 0 \/5\/ Feb(enl) + 5 L

2+ e

hence, by a change of variables in the above integral, we can calculate the value of ¢(e, 1).

iv) Let us consider

1, 2 ol
11.2.4 a) = inf supq= / z|” + = / .
( ) {70( ) AEAq AP{Q' o I 1 a(\/iﬂ) 0 |wla}
Following the arguments of Theorem I.2.1 of Part 2, we can prove that, whenever a > 1,
¢(a) is a critical value for the functional in the right hand side of (I1.2.4).
Moreover, as we have seen in .V, the critical value (minimum) corresponds to the circular
solution, so that we have

1 2 9 2+a
pla) = inf |- (27)" R 4+ ————| = ;
@ = e e L] = 5

and it is achieved (for example) on the set

4 1

Ay = —— + —— ((z — e ) cos 27t + ey sin 27t) ¢,
0 M') { S \/571‘ (( 1) N )}
z€SN~2(ey)
where (e1,-++ ,e,) is an othonormal system of R and S¥?(e;) = {z € RN / |z —e;| =

1,z - ey = 0}. It follows {rom Theorem 2.2.i) that 4 € Ay N A}, so that

1

ple) = inf. S‘JJ’{ e W)a [

= 1+ K(a,1).

(f )"
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From (I1.2.3), v), vi) and vii) are direct consequences of the results of Proposition 2.1.7..0

ProposiTiON I1.2.2. Let F' be of the form F(z) = & with 1 < a < 2 and a > 0.

Let p* = %)—9, Y1, By be defined in (I1.1.9) and (I1.1.10) and let A%, y, be defined in

(II.1.2). Then:

2__a 2-a
I1.2. inf inf I = n*a**a ® I.
(I1.2.5) Ei%aAI > A€i‘1§1,zz sip 7 a a(“2E) > S;JJ;}D

ProoF: Indeed, from the results of Proposition I1.2.1, the infsup term is achieved on the
set A* € A5 g, of (I1.1.10), as well as on Ag = A* N Z;. Therefore we have

inlemaA I
ian€A§1.2~> supy I

= &(a).

On the other hand, we can easily verify that
sup I > sup I, vl € le, e,
A*NET, A*n0%,

and the strict inequality holds for each 6 # 0.0

ProrosiTioN I1.2.3. For every p» > py > 0, for every v > 0, there exists () such that,
for every 0 < ¢ < () and for every p € [p1, p2], then

1
1
(11.2.6) ini / Lo () -7~
z€S, 0 [mla P
|20) == (1)|==

ProoF: It is just a consequence of the weakly lower semicontinuity of the functional
I(z) = fol .‘;:1!—@ and the weak compactness of the constraints.o

The following Proposition will play an important role in the proof of Corollary 1.

ProrosiTiON I1.2.4. Let ES. = {c € H}(R;R) /z(t +T) = z(t) , VIt € R, foTa: = 0},

endowed with the Hilbertian norm (jOT Mz) . For any v > 1, let S(v,T) denotes the

best Sobolev constant of the injection E% — Lg:’. Then
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5%*(v,T) = min
EO

27
} (L)~ { ]sin@ll_ifid(?}z.
T T 0

However, since we did not find a reference, let us sketch
—(1:'7) in the variable T'.

—
2=

PRrROOF: It is a classical result.
the proof. It is clear that S%(v,T) is homogeneous of degree

First remark that one actually has

1 .12
5%(y,1) = min ——~—f—0—E—L—- ,

(3 Jel)

where Ef = {z € E} [ z(t + Ly = —z(t) vt € R}, s0 that the minimum is attaint and

satisfies

Q=

—& = Az

for some Lagrange multiplier A € R. Assuming that fol |z|>Y = 1, by taking the L2
product of the above equality, one finds that

S (v, 1) =X

From the energy integral one has

1

Sl e =

and by integrating one finds

One can easily see that, up to a shift of the parameter,z is increasing in [0, %], because

of the fact that it is a minimizer. Therefore one has

/ (v +1)% L
P . = .
2 —(y+1) 7 V2. /c— %[m\”

By the above equality and by a change of variable on the above integral one can conclude

the proof.c




DEFINITION 11.2.4. Let us define

' _ 1 (7+ 1)52(7a1)
(1127) Q('y) = Z;E 2
One can easily prove the following estimates:

ProPOSITION I1.2.4. Q : [1,+00] — R has the following properties:

(i) Q1) =1
(1) Jm Q(7) = +oo

Remark that Q(a) = Q(52;) (cfr. Assumption (HS))

I1.3. A FIRST A PRIORI ESTIMATE

In order to overcome the discontinuity of I, we first introduce a class of truncated func-
tionals I, which are defined and regular on the whole space H. Next step consists in
showing that the critical points of the I, at suitable levels are actually critical points of I.

DEFINITION 11.3.1. Assume that F satisfies (H1),(H2). For any ¢ > 0, F, denotes a
function such that

(11.3.1) F, € C¥(RY;R)

(11.3.2) F(z) = F(z) if |g|>¢
(11.3.3) 0K VF,(z) -2 < —ayF(z) VzeR¥
(I1.3.4) ~F,(z) < ‘—;F VzeRY

there is a non decreasing f : R — R , with
(I1.3.5) fleh 2% iflz|<e
such that — F,(z) > f(lz]) VzeR¥.

L(z) = (% /Olke[?)(/oly-m(z)) VzeH.
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ProposITION I1.3.1 (A PRIORI ESTIMATE). Let F' satisy (H1), (H2), (H4), and let Fe,
I, as in Definition IL3.1. Let ¢; > 0 be fixed. There exists € > 0 such that, for every
0 < ¢ <%, if o is a critical point of I, at level

2 - j—u
(I1.3.6) 6 < Liz) < @< e (2],
—2F
then
(1L.3.7) lz()] > ¢ ViER.

In order to prove the Proposition I1.3.1, we need the following lemma :

LEMMA 11.3.2. Assume that F satisfies (H1), (H2) and let F ag in the Deﬁmtxon I1.3.1.
There exists a function &§(¢) = &(¢,c1,¢2) with )

lim §(¢) = 0,

t=0

such that if z is a critical point of I, satisfying (I1.3.6), then

(1L3.6) ( /0 IB‘-—F,(:B)) ( /0 1 lil’) > (% fo 1 |5,-|’) ( /0 : —a1F,(:c)) _5(e).

The proof of Prdposition I1.3.2 is given in the Appendix; let us show how Proposition
11.3.1 follows from Proposition I1.3.2.

PROOF OF PROPOSITION I1.3.1: Let z such a critical point of L. First, from (I1.3.3) we
deduce that

fE F(s) < ‘°‘2E,

a2

and therefore

(11.3.9) = | 18P 2 (=) (=

It follows from (IL.3.8) that
/ B F —alE & ( )’

2—-a

where 6*(¢) = -J—.,Q-— has lim, ¢ §*(¢) = 0. Therefore
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(IL3.10) / B < (=) ( ale' a;‘(e))

From (11.3.5) we deduce that, for every p > 0, we have

1
(1L3.11) inf _F(s) > / _
€S, 0 ses el
I=(Olmie(D=e e (Olmie (D=

From (H4) and the fact that ¢(a) = (\/fx)—a J(a,1), we can fix v and ¢ small enough

to have

— T /9 _a\ T
(I1.3.12) (2 led)-7  be (f-) ( a) :
2+¢ (V2r)° aa; \az 2-ay
We apply Proposition I1.2.3 with p? = “E 2210 and p2 = Tfs‘—fg.—(?jc% finding an

e(7) such that (I1.2.6) holds for every ¢ < ¢(y) and p € [py,p2] (it is possible since
lim, 0 6*(¢) = 0). From Lemma II.3.2 we can take ¢ so small that

5(e) < {le(=),

so that (I1.3.8) becomes

(I1.3.13) 2+ 6L(z) > (% /0 : |5|2) ( /0 : —alF,(:c)).

Assuming that minyo,q)|2(1)] < ¢, from (I1.3.11),(I1.3.5), (I.2.6) and Proposition
I1.2.11) we obtain

1
(o)

and therefore, from (I1.3.9) and (I1.3.13), (I1.3.14) leads to

(IL3.14) o /0 Fi(s) > asa(7(e,1) - 1)

248 1(s) 2 (-1- /01 lilz)’-?iala(f(a:l)—v)

2
()] T ma(I(a,0) 7).

The above inequality, together with (I1.3.6) contradicts (I1.3.12) (that is (H4)).0

v
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3.11.4. ProoF oF THeEOREM 3.I1.1

In order to prove Theorem 1, first of all we are going to replace the "singular” F with a
regular Fe, in accordance with Definition I1.3.1. Then, because of the estimates of Section
3, we shall be in a position to apply the results of Section 2. Finally from the a priori
estimate (Proposition I1.3.1) we shall conclude that the critical point of I, found by the
application of Theorem 2.1 does not interact with the truncation, that is, it is actually a
critical point of 1.

According with the notations of section II.1,let 0 < € <1 and let

(2- o‘)b] :

m=] —F

1
Ti={z€H/ %/ |2]* = 22 pf}
0
Dy = U U {pr (42 + (= — e;) cos 2zt + ey sin 2x1)}
T€ESH-1(e;)8€{e,e 1}

A’ = U : U {005 (42 + (z — e1) cos 271 + ey sin 2x1) }
s€85¥-3(ey)8€[e,e~1)

+ L
A=Ay s

It follows from Theorem I1.1.2 that A* # @, for every 0 < ¢ < 1, 50 that (II.1.3) holds
true.

We replace F' with F, and I with I, as in Definition I1.3.1. € is taken so small in such
a way that Proposition II.3.1 holds and (II.3.8) and (II.3.9) hold too.

Taking into account of (H4), let us fix ¥ > 0 so small that

Ho-y v 1 b
2SS

and let ¢ be given by Proposition I1.2.3 so that (II.2.5) holds; then we have

) L |

mf L >  mf 26 (E f _._)

Zinda - €8, P ta 0 le"
(IL4.1) =(0)|=]=(1)]=e

= A (E + a—%—%) > 2bta (2__'2'5) =

From (H1), Definition I1.3.1 and Propositions II.2.2 and II.2.3, we deduce that, for any
small ¢,
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inf  supl. > inf sup I.

AE‘A21 o A AEAzl P 14021
!
(I1.4.2) > max inf  sup,  inf 2m% o} (E -+ a/ ~——;>
AEAEI B, AN, €L, 0 llfl
|z(0)|=]=(1)|=¢
2 —

2w ot/ 2E>

On the other hand, from (H1), Definition II1.3.1 and Proposition II.2.2 we deduce

(I1.4.3)

! b 2 — o 2ze
< inf su 2) (/ E—{-———)—Trbz/aa @
it s (5 [ er) ([ B 252)

Moreover, we can fix ¢ small enough to have

(IL4.4) L < (1/1”2) (/1E+ b )< 2 g2l g (22050
4. supl, <sup| — T —_— ™ a .
oy v \2 Jo 0 || —2F

Hence I, verifies assumptions (II.1.3), (I1.1.4) and (II.1.5) of Theorem II.1.1. Finally we
have to check the condition (I1.1.6). To this aim we prove the following Proposition.

ProrosiTIoN I1.4.1. Assumé that F"satisfies (H1) and (H2), and let F, as in the Defini-
tion I1.4.2 with € < —%-. Then I, satisfies the condition (C) at any strictly positive level.

PROOF: Let (z,), be a sequence such that

(11.4.5) I(zn)=cn — ¢>0

(I1.4.6) - (/DlE F("’”z)) En = G /01 lfb|2> VF(2n) + hn

with A, —0 in H7?

(T1.4.7) l(% /01 ;:;;|2> (/OIE—FE(Q:TL)>~<% /01 W) /Olvpe(mn).mn
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We claim that (Hi',nHLz)n is bounded. Assuming by the contrary that imsup,,_, ., |||z :i
+00, up to a subsequence, we get from (I1.4.5) that

1
(1I1.4.8) lim / E—F(z,) = 0.
0

n—-4oo

Setting A, = {t € [0,1] / |zn(t)] > €}, we get from Tchebitchev inequality that

(I1.4.9) lim sup meas(4,) > 0

n—-4 oo

Fe(zy) > % (1 — meas(A4,)) ). From (I1.3.2), (I1.3.3) and (H2)

g

(indeed we have f[

we obtain

(I1.4.10) 2en > (% /01 |g;~n|‘2> (/A ——alFe(mn)> + 6.

with im,, 4o 6, = 0.

0,1\ A,

Setting M, = maxy¢[o,1) |z ()], from (H1), (I1.4.10)leads to

I 1
(I1.4.11) 2en 2> (5/0 |:cn|2) (alameas(An)MZ> + bn -

Since, for every n, fol —F(z,) > —E, we have

1
(11.4.12) M2 < 41%—/ lEn]? +da
= 0

for some di,d; € R independent on n. Taking into account of (I11.4.9), (I1.4.11) and
(I1.4.12) imply the boundness of (HanHL»)n This fact and (11.4.12) imply the existence

of a subsequence (2, )r uniformly convergent, and by (I1.4.6) we can conclude that (z,,)
converges strongly in H},. o

END OF THE PROOF OF THEOREM 1: For ¢ small enough, by the application of Theorem

2=
2.1, we obtain the existence of a critical point z. of I, at thelevel ¢* € [cl,'irzbaz“a (2_;—; * ]!

Since we can choose £ so small as we like, from Proposition 11.3.1 we can conclude that z,
is actually a critical point if I in A.o
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I1.5. Proof of Corollary 3.11.2

We are going to prove Corollary II.2 as a consequence of Theorem IL.1 and of the
estimates here. Let z be the solution found by the application of Theorem 1: the main
idea in proving Corollary II.2 consists in estimating some L?>7 norm of the derivative of

2ta
lz(&) 7=
Throughout this section, z € A is a critical point of I such that

2—a

2 2 — «
(IL51) 0 < I(z) < n’bra ( O‘)

—2F

(I1.5.2) %= AVF(z);

Hence we have -

(11.5.3) %m? + A\ F(z) = AE ;
where
1 1.9
(IL5.4) oo ah EE
fo E - F(z)

Taking the L? inner product of (I1.5.2) by z, from (I1I.5.1) and (II.5.4) we obtain

mey e sn (S5) <GS ()

Setting y(t) = z(A7'¢) and p(t) = |y(t)], then p satisfies

—5pt = 26— (2~ al)c,fi)
(I1.5.6) p(t+ ) = p(t), Vi
p(t) >0, vt,
where
oft) = 5=—[=2P(u(®)) = V(1) - u(e)llv(2)I
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so that (H2) imply

2—012

(I1.5.7) a<c(t)<b,VteR.

2—~C¥1

We set ¢(t) = g:zfa(l + ¢o(t)) with

(11.5.8) 0 < coft) < (2= a)b

- t.
T (2-az)a L,V

By the change of variables s(t) = fot —’};, and p(s) = p>~*(s(t)), (I1.5.6) becomes equiv-
alent to the system

- —p'=-202-a)Ep” - (2 = a)(2 — az)a(l + co(s))
(I1.5.9) pls+w)=p(s), Vs
p(s) >0, Vs,

where () denotes the derivation with respect to the variable s and

(I1.5.10) =
Moreover, from (I1.5.6) and (I1.5.7) we have

A1 —92E
— <

e — X .
o P* T (2—az)a

(I1.5.11) w =

We denote v = u' By derivating the equation in (II.5.6) and by taking the L? inner
product with v and taking into account of (II.5.10), we obtain

(I1.5.12) / (v')ds = ——20:E/ Y tids + (2 - a)(2 - Otg)&/ cov'ds .
. 0 0 0

From Holder inequality, taking into account of (I1.58), (I1.5.12) leads to

/ (v')ds <
(11.5.13) ’ R

- 2aE (/ ;ﬂds) ’ (/ v”ds) Ty cray/w (/ (v')2d3> .
0 0 0
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where

(15.14) o= (2-a)(2-an) ((Toad-=1)

| (2 — az)a

By integrating the equation in (II.5.9) and from (IL5.8) we deduce that [~ p7ds <

(2:201[;)1)“’; thus, for any 0 < § < 1 we have

w 2 2 1=t w 1
N2 cia’w (2 —a)b 8] / 2 g
5. - < d .
(IL.5.14) 6/0 (v')°ds 15 S 2aE( Y i v“7ds

Assuming that g is not constant, from Proposition I1.2.3, Definition I1.2.4 and from
(I1.5.14),(I1.5.11) and (I1.5.5) we obtain

(I1.5.16) 5 — 209 - < ( (2 a)b) @*1 :
(1 _ 5)@*(a) (fo“’ (v)“ds) ¥ (2 - ag)a (a)
where
212
(IL5.17) cy = 5 acl ,

where (according with the notations of Definition I1.2.4),

=

0°(a) = 27) =25

5 (s221)
= e —a

=51+ (67) 5

(note that, by (H5), 0 > § > 1), so that (II.5.16) becomes

Now we fix

1
(I1.5.18) ( / vz"ds) <egatw 5,
0

with
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. 462
(2—a)b \2 2 .
— 1 *
(1 - ((2-—&2)&) §*(a)> Q (a)
By an easy computation one finds that

([ (@o)a) = (B2 ([ wra)

so that,from (II.5.18), (II.5.19) and (II.5.11) we get

(11.5.19) cs =

.
A 2y ¥ e
d 24« 2 —2E @ 24+«
5. — < P ATa
(11.5.20) (/0 (dtp 2 ) dt) < ca ((2—a2)a) )
where
— H 2+a \?
{is.21 =\59 .
) «=(37)
L1
Let us write p, = ((_2_:70%_)2 . Remark that p, is assumed by the function p(t), since,

from (IL.5.6), every local minimum p(to) has p(to) < p«.From (I1.5.20) and (II.5.5)we
deduce

P52 (1) - pi |</ |2 o7

1

d 2ta > o 1—-L
< — dt AT

2ta

—2F 2a
< e 2
<va (g oae)
sie ‘
SCSP*2
where
2 2tea 2
b\ (2—a)\ = [af2—0a)
11.5.22 — - \s
(11:5.22) a=va(z) (7)) " (Ges)

Finally we get

65




NI
(I1.5.23) p(t) > o1ps =0 (2-a)a vVt € R,
—2F
where
2ta
(] P =1- Cs ,
and
5 1
J— a a
(I1.5.24) o= ( 5 az) oy

Finally, from (1I.5.22),(11.5.21),(I1.5.19),(I1.5.17) and (I1.5.14) we get

T e MON (=2
- L
(IL5.25) @*(a)\fﬁ(—g;);)z 13 (22 — )

The above equality and (I1.5.23) prove Corollary 3.I1.2, taking oas in (I1.5.25).

APPENDIX : Proof of Lemma I1.3.2.

Throughout this section, z € H is a critical point of I, satisfying

(A.1) 0 <c <I(z) Lec.
Therefore, setting
1.
TR
JE—-F.(2)’
z solves
(4.2) —& = MNVF,(z)
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(4.3) —;—|a’:|2 +AF.(z) = ME.

Taking the L? product of (A.2) by z, and from (IL.3.3), we get

(4.4) / Fe) £ 5=,
so that
(A5) Z a (~—a2E)
STEP 1: For € > 0 small enough, we have
1, 2+
. - c|” <
(4.6) | T

PROGTF: Let us denote .
£ = / E - F.(z),
0

and
= {te€[0,1] / — F.(=(t)) > —2E}.

It follows from Tchebicev inequality that
4

meas(4) < —5-

Moreover, for ¢ > 0 small enough we have F.(z(t)) = F(z(%)), V¢ € [0,1] \ 4 ; from
(I1.3.2),(I1.3.3),(H2) and (A.2) we deduce that

/01 32 = lff" i / VE.(z) 2 1f° £ / —aF.(z)

so that
26 > —al/ F.(z) > —a1E[l —meas(4)];
[0,1\4
therefore >
> o
6 - (2+C¥1) ’

and (A.6) follows from this fact, since fol |z|? = I‘é”). Moreover we have

(A.7) A2 < c2(




o
STEP 2: Assume that ¢® < (_2:—_9;)3 and

2E
. — 3 < .

|2(0)] in |z(t)] < ¢

Consider
Q = {[ts,tia] €[0,1] / [2(t:)l = |2(tira)l = ¢
and |z(t)| > e, Yt € (ti,tis1)} -

Then )

(2 —ar)a\1/a T 24 o

dQ = < ; ) — £ —2—( ) .

—OllE
PRrOOF: From (II.3.2) and (I1.3.3) we deduce that if ¢ € [t1,%;41] is a local maximum, then

O e —

Therefore, from Hdélder inequality, we get

o= ([1) 2 fle [
. [<—2—i2~%"—-—>”“-e} ;

the claim follows from this inequality and (A.6).0

STEP 3: For 0 < ¢ < € (¢ small) there is a function é;(¢) such that
lin}) 61(s) =0

and, for any critical point of I. satislying (A.1), if

= {te[0,1]/[z(t)] > ¢}
then
(A.8) / CF.(2) < 6i(e) .

[0,1\B
ProOF: From (A.3), (I1.3.2), (H1) and (A.7), if |z(¢)| = €, we deduce that

#]2]* = 22 Elef’ — 2X°F.(a)e’

(AQ) A 2.2 | n\27.2—a 2
< 2NPET +20°bP T = (62(e))
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with lim._, 62(¢) = 0.
Let Q as in the step 2, and let n = §Q. From (A.2), (A.7) and (11.3.3) we have that

%m ci(t) > AM2E — (2 — an)Fu(2(t))),  ,Vte[0,1].

By integrating the above inequality and from (A.9) we deduce that

(4.10) (2 — as) /[O o @) S 2B meas(B)) + Al—zmsz(s)

From (A.4), (IL.3.5) and Tchebicev inequality we deduce

(4.11) 1 —meas(B) <

so the thesis holds from (A.10), (A.11) and (A.5), just by taking

(51(6) = ! [

2—0.‘2

(—2E)?

2-—&2

1

O
: (
a Cy

—agE

2~—C¥2

)2 7152(5)} 5

(2—(:!2):1)1/‘3\"<>

since n has an upper bound independent on ¢ if ¢ <7 < ( — 7

END OF THE PROOF: From (I1.3.2), (I1.3.3) (H2) and (A.2) we get

([ -raw) ([ )
> (3 [ 6r) ( [ ()

Hence, from (A.6), (A.8) and the above inequality we have

frre)(f )
2 (3 f ) (] omm) = (5[ 68) (e 700)
> <% /01 Illz) (/: —alFs(w)> — ¢y <ii;§) abi(e) . |

Hence Lemma I1.3.2 holds with §(¢) = ¢ <‘)fg1> §1(¢),by virtue of the Step 3.0
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3.JII. The case 0 < a <1

The discussion of 1.V shows that, when 0 < a < 1, Proposition II.2.1.iv) does not hold;
therefore, the circular solutions to (Pg) do not correspond to the variational approach de-
scribed in Theorem I1.1.1. In this chapter we are going to show that the Linking Theorem
can be applied to this situation. Moreover, an estimate similar to the one of Theorem 2.1I.1
will allow us to avoid the collision solutions. As for the fixed period problem, the case a = 1
is a limiting case, where both the two techniques are applicable; of course, in that case, no
estimate is available in order to exclude the collision solutions (see also Part 2, chapter III).

We shall be concerned with the following assumptions:

da,a1,as, ,0<a; <a<ay; <1, 3b>a>0such that:

(H1) —a S -F(z) < vz € RV \ {0} .

(H2) —a1F(z) < VF(z)-z < —ayF(z) Ve e R\ {0}.

The the main goal of this chapter is the following:

THEOREM 3.II1.1. Let F € CY(RN \ {0};R) satisfying (H1),(H2). Then there exists a
function ® : (0,1) — R such that, when

(H3) b 3,

a

then (Pg) has at least one solution if and only if E < 0. Moreover, ® fulfils the following
properties:

®(1)>1 Voi<a<x<l
liml@(a)———l
lim ®(a)=1.

a—0

As for the case 1 > o > 2 (Remark II.1), it easy to see that (H1) and (H2) imply that
E < 0 is a necessary condition for the solvability of (Pg). Therefore, throughout this
chapter,E will denote a negative energy.

70



III.1. The variational principle

Before recalling the Linking Theorem, let us give the following

DEFINITION III.1.1. Let X be a Banach space, and let 3, and @ be two closed subset of
X. We say that ¥, and 0Q link if

V continuousy : Q@ — X such that yj5q = id

(IIL.1.1) Q)T # 4.

The following Theorem shows a relation between set intersection properties and the ex-
istence of critical point for (possibly unbounded) functionals. It is a generalized form of
the Mountain Pass theorem and of the Saddle Point theorem ([8]).

THROREM III.1.1 (LINKING THEOREM). Assume that

(II1.1.2) ¥, and Q link
and let I € C*(X;R) satisfy
(I11.1.3) inf I > supI
Z: 8Q
Define
I' = {v:Q — X continuous [ vj9q = id} ,
and

¢ = inf sup’,
€T (Q)

and assume moreover that I fulfils the Cerami condition at level c, (C.). Then I has at
least ome critical point at level c.

We refer to [8] for the proof.
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IT1.2. Some lemmas about the radial case

In this section we are going to define suitable @ and %; in such a way that, for the
functional associated to the potential F(z) = [s[¢» the geometrical assumptions (I11.1.2)

and (II1.1.3) of Theorem III.1.1. are satisfied. It will turn out that the corresponding
critical level is the level of the circular solutions.

Let us consider the set of all the K-orbits of the problem

(I11.2.1) { —& = (2m)? (9_——2%)3); 2
z(t+1) = =z(t) .

Taking into account of the results of Part 1, chapter III, we know that the set of all the
solutions (possibly crossing the origin) of (II1.2.1) is (up to the S* symmetry) a 2-manifold
homeomorphic to the ball BZ. Moreover, each K-orbit z verifies

(II1.2.2) f 4[2 = (2)? ((2 22“)

(m2.3) [ &= () "

Now, let us consider the continuous g : B2 — H defined as

, P
(—(2:;})“) * e2mit ifz=0
elliptic 1-periodic Kepler orbit with
if0<|z| <2
(IL24)  g(z)(t) = { symmetry axis ‘_z_| 2l <3
z
collision 1-periodic Kepler orbit if |z| = 5

21—zl (57) (0 + (2lel ~ V=5 <2 <15
g admits a continuous extension g : B2 x BN~2 as

1

9(z) +2 (“_;2") Yy if ly] < 1

21~ |sDg(e o) + 2ol - 1) (522) " it <pl<1.

(II1.2.5)  g(z,y) =

[~

We observe that , for every (z,y) € B? x BN -2
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/ ]dtg(z’y)(t)lz < (27)? ((2 E) )a’-

(I11.2.6) o on
/0 l9(z,y)(2)|* = (/o li(z,y)(t)l) =3a
We define
(I11.2.7) QF = [, Rlg(B* x BN %) .

Our first goal is the following result:

2
a

ProrosiTION II1.2.1. Let ¥, = {z € H / jol 2> = (2m)? ((2"")“) , folz = 0}.
Then , for every small ¢ and every large R > 0, 3; and 0QZF link.

PROOF: First, the boundary QE = §[e, R|g(B? x BV ~2) = eg(B? x BN ~?)Ule, R]6g(B? x

BN- 2)UR_(B2 X BN=2). We observe that g(B? x BN~2) = §(8(B? x BN~2)) is a subset
of the space of all the constant functions, such that the identity has topological degree one,
with respect to zero. Now let v € T, a.nd let us consider Py, the orthogonal prOJectlon of H
into the space Epn of all the constant functions (remark that P, *(0) = {z € H / fu z =
0} = Hy). We consider the continuous function f : [¢, R] x B2 x BN=2 — En defined
as f(r,z) = Py o y(rg(2z)). Up to a small C° perturbation, we can assume that f~1(0)
consists in a finite number of compact 1-manifolds. Moreover, since deg, f(r,+) = 1, for
every r € [¢, R], and f(¢,-)1(0) = f(R,-)~*(0) = 0, we can conclude that there is a unique
connected component of f~1(0) connecting {e} x (B2 x BN~2) with {R} x (B? x BN—2),
Let us call (r(}),z(A)) (A € [0,1]) a parametrization of such a 1-manifold; then we have
r(0) = ¢, r(1) = R, and 2(0) = z(1) = 0 (since the circular function are the only
functions having zero mean value of Q®). Now, by (II1.2.4) and (II1.2.5), we ha.ve

thet L rO9O)F = (2 (535)  and 1] 2 0B)F = (2nmy (252
therefore a A* € (0,1) exists such that fol la‘%‘r( (,\*)g(z(,\*)))lz (27r)2 ((2.-2030) *  Hence
(r(X*)g(2(A*))) € Z1.0

REMARK II1.3.1: Of course, 8QF and 6%, link for every 8 € (¢, R).o

In order to estimate the critical level, we have the
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ProrosiTION I11.2.2. Let I(z ( fo |z| ) then, for each € small and each R > 0 large
enough, we have

2—a,2==
—_ 2 2/(! a
(111.2.8) zg;}:: I< 1§1fI 7 a* % a( Y ) ,
and moreover
2 2-a
111.2.9 inf sup I =supl = 12 a?/®a .
w20 it sap 7= up &

PROOF: We first observe that, by the convexity of the function ;1;, then

) 1 ) 1 —2F
5 e T

and therefore, since ¥; and 0QF link, we deduce that

2_ 2—a
mf supI>1an—1r2a2/°‘a( o

'YQR s —2F ) '

On the other hand, for small values of ¢ and large values of R, we have

sup I < Cye*7%,
QR

where C; depends only on the values of F and a.
Now let = € A be fixed: the computation of sup,.q I(rz) leads to

wprea =2 (52) 7 (3L 1r) ([ 5)

Therefore, from (II1.2.6) and (II1.2.7) we deduce that

supl = sup I
QF [e,R]g(B?xBN~?)

2—a 2
a(2-—a) * 1/1 -2) (/1 a>a 2 2/a (2022
— sup - T . =T a o
F(B2xBN- 2)2 (“‘2E> (2 0 1 o |zl® (“2E)

I11.3. Proof of Theorem III.1
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As for the fixed period problem (cfr Part 2, chapter II), we are first going to show that
(Pg) admits a generalized (i.e. possibly crossing the singularity) solutions. Then we shall
exclude the collision solutions by means of some estimates on the level. To this aim, we
consider a family of truncated potentials F,, as defined in Definition I1.3.1, and we denote
by I. the family of the associated functionals.

Our first step consists in proving the following result:

PROPOSITION I11.3.1. Assume (H1) and (H2) hold, and let I, be as in Definition IL.3.1.
Then, for every € small, I, has a critical point z. satisfying

2—qa, ==
=25

(111.3.1) w2 azlaa(2 ;g)z:&g_ < IL(z.)<n* bzlaa(
PROOF: We are going to apply Theorem II1.1.1, together with the results of section I11.2.
Indeed, by Proposition III.2.1, assumption (III.1.2) is fulfilled (provided that € is suffi-
ciently small and R sufficiently large). Moreover,from (H1), (H2) and Definition II.3.1 and

from Proposition II1.2.2. we deduce that

2—qa, ==
s f . < 2 2/(1 «
E’Iér'v?gg)l s a(“zE)

2—-a
and moreover, since infs, nap Ie > 72 a?/* o (3_12'%) "= (see also 1.VI), from Proposition
I11.2.2 (taking into account of Remark III.2.2), we obtain
2—a, iz

inf sup I, > 72 a?/? o = > Ce27 > sup I
T 5(QF) S sQF

Therefore, since by Proposition II.4.1, the condition (C) of Cerami holds at any positive
level, I, has at least one critical point z, satisfying (III.3.1).0

PROPOSITION I11.3.2. Let z, be as in Proposition ITL.3.1. There exists a sequence (z., )n
converging in the strong topology of H to a limit . Moreover z satisfies:

2—a, 2=
)

2—-a, 2=
a < 212/ a
Y <I(z) <m? %o )

I11.3.2 2 g2/«
( ) w? % o ( %

9 _ 2 _ 2-a 1 1).42
(_ 22\ 2 .2/a, (2-‘ a) =<2 Jo 12l
b 2E Jy E—F(z)

2 — o 2 212/ 2 —qa, ==
< | —_—— a a
_( E) ™o a(——2E) )

(I11.3.3)
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PROOF: By the estimates of I1.6, one first prove that the H-norm of the z.s has a bound
independent on ¢ if ¢ is sufficiently small. Therefore it admits a sequence uniformly con-
verging (and H-weakly) converging to a limit z € H. Of course, if z € A, then z is a
critical point of I and therefore (II1.3.2), (II1.3.3) obviously hold. If not, by the estimates
of I1.6, we can deduce that the convergence actually holds in the strong topology of H,
and also that the terms F,(x. converges to F(z) in the L! topology. Then (IIL.3.2) and
(II1.3.3) easily follow from (II1.3.1) and Proposition I1.3.2 (?).0

ProoF oF THEOREM III.1: Up to now we have found a strong limit z of a sequence of
critical point of the truncated functionals satisfying moreover (I11.3.2) and (II1.3.3). Now,
if ¢ € Lambda the proof is complete, since = is a critical point of I. Thus we assume by
the contrary that z € A and we are going to apply Proposition II1.2 of Part 2 to find a
contradiction. To this end, we set

1.
(II1.3.4) A2 = M .
fol E - F(:c)

then z solves

—(t) = A VF(2(t)) Vit¢z1(0)
(I1L.3.5) 21E@)* + N F(z(t)) = ¥E Vig¢az"'(0)

z(t +1) = 2(t) VieR

z(t) #0 a.e. in [0,1] .

Setting p(t) = |z(t)|, from (II1.3.5) we deduce that p satisfies

%;;2 = )\2 (2E +(2- a)afgz)

(I11.3.6) Pt +1) = p(t) vieR
p(t) >0 VteR
p? absolutely continuous,
where
(e - VE(a(t) oty (DL Y |
(L3.7) et) = (2P (e(t) ~ VF((0) -2(0) (732 )
of course (H1) and (H2) imply
(I11.3.8) 22__0;2 <) < 12(22“__6;1)) VieR



1
Now let p = (%) *: then p satisfies

%ﬁz — —-2""’—"c‘1"(1) + (2—z2h(t)

24«
(IIL3.9) pt+1) = p(?)
p(t) 20
,u:2 absolutely continuous ,
where
2+a
(2—o)ef 1)\ 7 |2

3 so that by the definition of c{{(???))and (II1.3.4), (IIL.3.3) and (II1.3.7) we deduce that

2(2) (=) g (Geey i

<< (Goa) T (3) (623

Now let ho(a) be as in Proposition II.2 of Part 2: we define

, 3(0‘) =1+ ho(a),
in such a way that, when (H3) holds, then both

(HE) (5] s (32

)"

(2 - az)
(2 - al)

1

)a“)) < ho(e) i |

hold too. Hence, whenever f}‘_% < &(a), Proposition I1.2. of Part 2 says that (II1.3.9)

does not admit any solution; hence we have a contradiction.o
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PART 4. MULTIPLICITY OF PERIODIC SOLUTIONS
TO THE FIXED PERIOD PROBLEM

This part is devoted to two main purposes: the first one is to define a tool (homotopical
index theory) which provides multiple critical points for functionals having a singularity
and a lack of compactness. The second one is to apply the abstract results in order to find
a multiplicity of periodic solutions to a class of dynamical systems with singular potential.

We shall deal with the problem of finding a multiplicity of solutions to the problem

—i = VF(z)
(Pr) z(t+T) = =z(t)
z(t) e RN\ {0}, N >3

where T' > 0 is fixed and F € C}(RY \ {0},R) is a singular potential of an attractive type,

that is, F'(z) behaves like l;—ﬁ,, for some a > 0 and a > 1. If F(z) = ﬁ:‘;, we know that
the problem (Pr) admits an infinity of solutions : indeed, for a fixed period T' we have all
the planar circular solutions z(¢) = Re'“! (with w = 2—;’,—& ,and R*t2 = aa(%)z) having
%— as minimal period. For a more general potential F, we are interested in finding the set
of the solutions of (Pr) corresponding in a variational sense to those of minimal period T

4.1 The homotopical index theory

In this chapter we are going to introduce a tool (homotopical index) which will turn out
to be fit to treat the problem of the search of multiple critical point for singular functionals
presenting a lack of coercivity at the level of the large constant functions.

Roughly speaking, we are going to work in the following situation:

As usual A denotes the subset of H of all the noncollision functions:

A={z e H/=z(t) #0Vte R}

I'is a positive functional of class C! in A, admitting a lower semicontinuous extension

I:H — RU{+co}. The features of I are such that
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i) I(z) > 0, for every z;
ii) 0 = inf, I is not attained;
iii) 0 is the only level where the Palais-Smale condition fails;
iv) I is invariant under a group G of symmetries acting on H;
v) there is an ¢ > 0 such that the sublevel {z € A / I(z) < €} can be contracted into Ex in
a continuous and symmetry-preserving way, without crossing A = {z € H / 3t ,=(t) = 0}.

In this setting, it has been showed in Theorem 1.2.1 of Part 2 that positive critical levels
can be found as inf-sup levels of classes whose elements cannot be contracted in a contin-
uous way into subsets of Eny without crossing 9A.

We are going to make use of this kind arguments, together with the theory of the
geometrical indices of [12].
Consider an index associated to the group G, that is a function 7 : B — RU {400} (here
B is the class of all the subsets of H which do not contain fixed points of G), satisfying

(2) AC B= i(4) LiB)
(23} i(AUB) < i(4) +i(B)
(i22) if h: A — B is continuous and G equivariant
=> i(4) <i(B)
(iv) A compact = i(4) < +o0
(v) A compact = e > 0such that i(N.(4)) =i(4) .

The homotopical index j of a set A C A measures (in terms of the geometrical index 1)
how big is the set that one has to take off from A, in order to make it to be contractible
into a subset of Fpn, without crossing the boundary of A. The homotopical index will be
shown to enjoy the following properties:

(2) AC B= j(4) <j(B)
i) J(AUB) < j(A)+i(B)
(13t) if h: A x[0,1] = H is a continuous and G-equivariant homotopy,

with h(A4,[0,1]NOA =0,
= j(4) < j(h(4,1))
(iv) A compact = j(4) < +o0
(v) A compact => J e > 0such that 5(N.(4)) =j(4),

for any closed A, B € BN 2. Then multiple critical points will appear at the inf-sup
levels of the classes '} = {4 € BN 2% compact / j(4) > 7, supy I <infpa I }.

In order to obtain multiple solutions to the problem (Pr), we are going to exploit the
invariance of the problem under the compact group of symmetries

G = {P,(x()) = (s — ), Tu(a()) = 2(s + Vhoeiorr -
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The index of S symmetry related to the subgroup of G, {T,(z(-)) = =(s + V}selo, 1
has been introduced by Benci in [13] where he proved a multiplicity result for problems
without singularity (superquadratic and subquadratic potentials).

I.1. Some technical preliminaries

Let us recall, for the reader’s convenience, some variants of classical results on minimax
and deformations, which will be used in working with singular functionals. Although they

have been implicitly used in several papers concerning singular potentials, we prefer to
recall them here.

In this Section, I € C'(A;R) admits a lower semicontinuous extension T : H — RU {400},
and we denote

(I.1.1) co=infT.
As usual,

K.={zecA/I(z)=c, VI(z) =0}.
Consider the gradient flow (in A) associated to I; when I € C2(A;R)then 7 is defined by

dng _ _=VI(n)
(1.1.2) { do " 14[|[VI(n)]|

n(z,0) =z,

if not, one can define a locally Lipschitz continuous pseudogradient field, and 7 as the

solution of associated Cauchy problem (see, for instance [12]). Since A is open, for each
z € A, n(z,0) is defined for all o € [0,¢(z)) for some e(z) > d(z,0A). Moreover, for every
z such that I(z) < ¢q, n(z,0) is defined for every o € [0, +c0).
Therefore, in the sublevel {z € A / I(z) < co} one can still make use of the deformation
techniques. One can then prove the following theorem:

THEOREM L.1.1. (MIN-MAX PRINCIPLE). _
Let I € C*(A;R) admit a ls.c. extension I : H — RU {400}, and let ¢y as in (I.1.1).

Consider a class A of compact subsets of A satisfying :

(I1.1.3) supl < ¢, VAc A,
A
(I.1.4) n(4,0) e A, VAcA,Voel0,+o0).
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Let

= inf I
o= ioE e

(0 < ¢ < ¢p). Then there exists a sequence (£ )n such that :

(1.1.5) zn, €A , VYneN
(1.1.6) I(z,) — ¢
(I.1.7) dI(z,) — 0.

PRrOOF: Indeed, two cases are possible:

a) ¢ < co. Then, from the lower semicontinuity of I, and from the fact that I decreases
along the flow 7, one deduces that, for every 0 < £ < co — c, there exists a constant M > 0
such that the set {z € A / I(z) < ¢+ ¢, d(z,0A) > M} is invariant under the gradient
flow. Hence the usual arguments can be applied to conclude the proof (see for instance
57). |

b) ¢ = co. Then one has that A N K., # 0 for every A € A. Indeed, if not, a small
deformation can be performed making the functional decrease (indeed I(n(z,-)) is strictly
decreasing unless VI(z) = 0, and A is compact). ¢

For any ¢ € R, we call a Palais-Smale sequence in A at level ¢ a sequence satisfying
(I.1.5),(1.1.6),(1.1.7). We recall the compactness Palais-Smale condition: ¥

every Palais-Smale sequence in A at level ¢ possesses
(PS.)

a subsequence converging to some limit in H

REMARK I.1.1: If ¢ < ¢o then the condition P.S. is equivalent to

every Palais-Smale sequence in A at level ¢ possesses

a subsequence converging to some limit in A,

because of the lower semicontinuity of .o

A straightforward consequence of Theorem 1.1.1 is the following corollary:
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CoROLLARY 1.1.1. Under the assumptions of Theorem I.1.1, assume moreover that PS.
holds. Then K. # 0.

Finally, let us state the suitable version of the deformation lemma (see [12]):

LEMMA I.1.1 (DEFORMATION LEMMA). Under the assumptions of Corollary I.1.1, for any
€ >0, let N = N.(K.); then there is an € such that, for every ¢ < € there are some § > 0
and o > 0 such that:

(if e < co) supl < c+é6 = sup I < c-§,
A 7((A\N),o)

sup I <e, VAe A,
(zf c = CO) Cl("l((A\N):U))

ANK.#0, VAeA.

1.2. The geometrical index of symmetry 7,

The purpose of this Section is to define a geometrical index (in the sense of [12]) related
to the group

G = {PuTa}aE[O,T] )

where P, and T, are the unitary transformations of H respectively defined by :

y=Py(z) < y(t)=2(s—t) Vitel0,T],

(I.2.1) y=Ty(z) < y(t)==z(s+t) Vte[0,T].

Remark that the P, and T, are actually defined by periodicity for all s € R.
Consider the relations of H defined as

yPz <= Js€[0,T] suchthat y= P(z)

yTe < Js€[0,T] suchthat y=T,(z).

(1.2.2)

We point out that P and T will play different roles in the definition of our index; actually
this index will be defined on the quotient space H/T.
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At the end of this section, we shall prove a first ”singular” multiplicity theorem, convenient
to treat cases of coercive functionals. This result can be viewed as a slight generalization
of the usual multiplicity theorem that one can obtain in the nonsingular case (see [12],
Theorem 2.4).

We need to fix up some more notations. If A C H, we denote P(A) = {z € H /[ Jy €
A, zPy}and T(A)={c € H/Jy€ A, =Ty}. A set A is P-invariant if P(4) = 4, and
it is T-invariant if T'(4) = A. ‘

A function h : H — H is said to be G-equivariant if hog =goh , V g € G; for any
set X, a function h : H — X is G -invariant if hog=h , Vg€ G. Aset ACHis G
-invariant if g(4) = A, V g € G. Two functions z,y in H are geometrically distinct if
y # P,(z) and y # Ty(z) , ¥V s € [0,T]. Fy denotes the set of all the fixed points of P :

(1.2.3) F, = {z€ H/zPz}.

Remark that, by definition,

P,=T,0P, Vscl[0,T]
T,=P,0P,, Vs€l0,T]
P:=id.

Let us first state the G' -equivariant version of Dugundji’s extension Theorem:

LEMMA 1.2.1. Let A C H be closed and G -invariant. Let f : A — R* be any continuous
function satisfying

(1.2.4) Py = f(z) = —f(y) Vz,y € A

Then f admits a continuous extension f : H — R* satisfying

(1.2.5) 2Py = f(z) = —f(y) Ve,ye H.

PROOF: We remark that (1.2.4) is equivalent to

f(PJ(z))“_‘"f(m)a Vze A,Vse€l0,T],
which also implies that
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f(Ts(z)) = f(=), Vee A,Vse[0,T].

Since R* is convex and A is closed, by virtue of Dugundji’s extension theorem we can
find a continuous f; : H — R such that fi|A = f. Let f, : H — R* be the continuous
function defined by

T
f2(z) = —;—,‘/; f1(Ts(z)) ds Vz € H;

then one has f3(T,(z)) = f2(z), Ve € H,¥s € [0,T], and moreover f, extends f too.
Finally we define f as

= 1
f(z) = 5(f2(2) - fa(Po(=)), VzeH.
Then obviously f extends f, and moreover, since P, = T} 0 P, (Vs € [0,T1]), one has that

F(Py(2))=~f(z), Veed,Vsel0,T],
which is equivalent to (I.2.5). o

We are going to define the geometrical index as a function defined on a class of admissible
sets and taking values in NU {+co}. Let

(1.2.6) B = {AC H closed/ A is G-equivariant, A N F = 0},

and, for a fixed integer k, let

(1.2.7) Fr = {f: H— R* continuous / 2Py = f(z) = —f(y)} .

DEFINITION 1.2.1. The index i is the function i : B — N U {+oo} defined by :
(1.2.8) i(0) = 0
(1.2.9) i(A) = 400 < VEkeN,VfeF, 0c f(4)

i(A) = k <= kis the smallest integer

(1'2‘10) such that 3 f € Fr, 0 ¢ f(A) .
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REMARK 1.2.1: Because of Lemma 1.2.1, it is enough to check (1.2.9) and (1.2.10) for every
continuous f : A — R* such that 2Py = f(z) = —f(y).¢

REMARK 1.2.2: It follows from Borsuk’s theorem that the definition of i is equivalent to

u i(0) =0
i(A) = 400 < for every closed finite T-invariant
covering of A, Ay,..., A , there exists r
such that 4, N P(A4,.)#0 .

i(A) = k <= k is the smallest integer such that there exist k
closed T-invariant sets 41,...,Ar with
A.NP(A)=0 (r=1,...,k)and
{A,U P(4,)}- is a covering of A.

The next proposition shows that an index i is an index in the sense [BBF], Definition
2.5.0

ProrosITION 1.2.1. Let A,B € B, then

(2) AC B= i(4) <iB)
(i1) (AU B) < i(4) +i(B)
(2i) if h: A — B is continuous and G equivariant
= 1(4) <i(B)
(iv) A compact = i(A) < +o0
(v) A compact = 3 & > 0 such that i(N.(4)) = i(4)
(v7) if A contains only a finite number of geometrically

distinct orbits then i(4) =1 .

PROOF: (i),(iii) and (vi) easily follow from the definition of 1.

(i) If either i(4) = 4oo or i(B) = +oo, the claim is obviously true; if not, let
fa € Fya) and fp € Fiym) such that 0 ¢ f4(A) and 0 ¢ fe(B) as in (1.2.10); then,
taking f : H — R¥{A*¥B)| f = f, x fp, one has that 0 ¢ f(AU B).

(iv) Indeed from the compactness of 4, and from AN Fy = §, for every € > 0 small
enough, we can find a finite set {z;,...,zx} such that N, (T({z.}) N N.(P({z.})) = 0,
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and (N.(T;) U N.(P{z+}))r=1,..,k covers A. Therefore it follows from Remark 1.2.2 that
i(4) <k.

(v) Obviously i(N.(4)) > i(A); on the other hand, one can cover A with k pairs of
compact sets 4; UP(A;),...,Ar UP(Ag), with A, NP(4,.)=0, (r=1,...,k). Fore >0
small enough we have N,(A4,) N N.(P(A,)) = 0 and the proof is complete. ¢

Now we are ready to prove our first multiplicity theorem. A nonsingular variant can be
proved just by applying Theorem 2.4 of [BBF].

THEOREM 1.2.1. Let E C H be a closed, G-invariant subspace, and letIT€ C?*(ANE;R) be
a G invariant functional, admitting a lower semicontinuous extension I : E — R U {+cc}.
We assume that |

(1.2.11) I>0, VzeckE

JA e Bn22*"® | 3k > 1 such that

(A) > < co= inf T.
z(A)_k,sipI_co zleIlafAI

(1.2.12)

Hence, for 1 < r < k, the classes
Iy = {A€Bn2*"F compact / i(A) >k, supI < ¢}
A
are nonempty and we define
cr——-Aiin"' sipI, r=1,...,k;

then one has that 0 < ¢y <.+ < ¢ < ¢g.

Assume moreover that

(1.2.13) (P.SYA  (r=1,...,k)

Ccr

(1.2.14) KoNFo=0. (r=1,...,k).

hold. Then I has at least k geometrically distinct critical points in {z € ENA [ ¢; <
I(z) < ci}.
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PRrOOF: First, by virtue of Corollary 1.1.1, the ¢,’s are critical value of I in A, that is
K. #0,(r=1,---,k). Thus,if ¢; < ¢z < --+ < cg, the proof is complete. We assume
then that, for some r,h > 1, ¢, = +++ = ¢p41 = ¢, and we consider the two cases:

a) ¢ < ¢g. Then the (P.S)? assumption implies that K. is compact. We are going to show
that ¢(K.) > h + 1.

Indeed, from Lemma I1.1.1, for each fixed ¢ sufficiently small, we can find a ¢ and an
A€ 1",.+h such that, settmg N = N,.(K.), then

sup I<ec.
cl(n(A\N,0))

Hence one necessarily has that i(cl(n(4 \ N,o))) = i(cl(4A \ N) < r —1; therefore one
deduces from Proposition 1.2.1.ii that (V) > h + 1. Moreover, is € is small enough, then
i(N) = i(K.) (Proposition 1.2.1.v). This fact ends the proof by virtue of Proposition
I.2.1.vi.

b) ¢ = ¢ Then the (P.S)4 assumption implies that AN K, is compact, for every A € I'ry4.
Arguing as in the case a) (but applying the second part of Lemma I.1.1, one finds that
iW(ANK.)>h+1,VA € T 1p. This fact ends the proof by virtue of Proposition 1.2.1.vi.o

The following result provides example of subsets of A having nontrivial (i.e. different
from one) geometrical indices. This result will be used in proving the Theorems of chapters
IT and III.

THEOREM 1.2.2. Let SV~ be the unit sphere of RN with N > 3 odd. We consider
= {h€ E [ h(t) = zcoswt + ysinwt
2
withz -y=0, z,ye SV !, w= W.}

Then i(Cny) > N.

PRrOOF: We are going to show that Oy contains a subset having an index larger or equal
to N.

Let (e1,...,en) be an orthonormal system of RY, and let SN2 ={z € SN /z-en =
0}. Define ¢> SN=2x 81 5 Cp as

¢($1, cee y LN —1, 9)(t)
(1.2.15) = (cosfen + sinfe;) coswi+

+ [z1(—sinfeny + cosfey) + z2e2 + .. .TN-1eN—-1] sinwt .
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Note that ¢(—z1,---,—zn-1,0) = Po(é(z1," ,2N-1,9)), Y(z1, -+ ,ZzN-1,6). We
claim that i(T(¢(SV~2 x S'))) > N. Assume by the contrary that there exists f €
Fn-1(Cn) such that

(1.2.16) 0 ¢ fop(SN2xSY).

Consider ¢ = f o ¢. From (1.2.7), for every 8, ¢(-,6) is a continuous odd function, so we
deduce from Borsuk’s theorem and from (I1.2.16) that

(I1.2.17) degy ¢(-,0) is odd and does not depend on 6.
From (I.2.15) we have

¢(z17'-' yEN-1,0 +W)(t) = ¢(217_321"' - mN-—hg)(W +t) ’

and therefore

(1.2.18) o(z1,..,2N-1,0 +7) = o(z1,—22,...,~TN-1,0) .
Let A be the linear isomorphism of RV~! defined as A(z1,y...,zN-1)
= (%1,~Z3,...,—ZN—1). Since N is odd, then deg A = —1, so from (I1.2.18) follows that

degy ©(+,8) = —degy ¢(+,0 + 7), in contradiction with (1.2.17). o

1.3. The homotopical index related to the geometrical index

It should be clear by the setting of the problem that the main property one requires
to the homotopical index is to be invariant under homotopies of A in A and to be not
invariant under homotopies contracting subsets of A into sets of large constant functions.
Although we are going to define the homotopical index related to the geometrical index
introduced in section 2, it is clear that to each index (i.e a set function satisfying i),..,v)
of Proposition 1.2.1 for some group G) there corresponds an homotopical index.

We denote by H the class of all the G -equivariant homotopies homotopically equivalent
to the identity:

H = {h:H x[0,1] — H continuous such that
(1'3'1) h(:c,O) =z ,h(g(m),a) = g(h(m7a)) , Vee H,
Voel0,1],VgeG}.

REMARK 1.3.1: If the functional I is G-invariant, then the flow 1 as defined in (I.1.2)
belongs to H.
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DEFINITION 1.3.1. Let A € 2% be G-invariant. We say that A is G-contractible if there
exists h € H such that h(z,0) € A and h(z,1) € EN\ {0} ,Vz € A, Vo e[0,1].

DEFINITION 1.3.2. For a given compact A € BN 24, let

(1.3.2) Ho(A) = {heH /h(z,1) € En, Vz € A}.

We say that the homotopical index of A is k (j(A)=k) if

(1.3.3) k= hel:%})%A)z({z €A/ H(m,»[O,l]) NOA #0}).
The following Lemma shows that Hy(A) doesn’t actually depend on A.

LEMMA 1.3.1. Let A € B be closed and let h € Ho(A). Then h|4x[o,1] admits a continuous
extension h such that h € Ho(H).

PROOF: By the application of Dugundji’s Theorem one first extends hj4x {1} to a continu-
ous hy : H x {1} — Ex. Then the function hy : (4 x [0,1))U(H x {0})U(H x {1}) = H
defined as

h(z,o) if (z,0) € A x [0,1]
hy(z,0) =< = ifo=0
hi(z) ifo=1,

is continuous and extends A too. Hence h, admits a continuous extension hs defined on
the whole of H x [0,1]. Remark that h3(H x {1}) C En.
Fina]ly we define (see also the proof of Lemma I.2.1)

T
ha(z,0) = 511—/ Tr—shs(Ts(z),0)ds V(z,0) € H x [0,1],
0
and

R(z,0) = 5 (ha(2,0) + Po (ha(Po(2),0))) -

One easily verifies that h is the desired extension of H.¢

REMARK 1.3.2: If 4 is G -contractible obviously j(4) = 0. If A is not G -contractible,
the homotopical index measures (in the sense of the geometrical index) how big is the set
that one has to take out from A to make 4 be G-contractible. This can be used as an
equivalent definition, as is shown in the following proposition.
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ProposiTION 1.3.1. For every compact A € BN 2% we have

i(A) = min{i(B)/B € B

1.3.4
( ) B C A and A\ B is G -contractible} .

PROOF: Let us call j(A) the right hand side of (I.3.4). For every h € Ho(A), the set

B = {z €A/ h(z[0,1]) N 8A # 0}

is closed and A \ B is G-contractible, that is j(4) > j(4). On the other hand, for a given
closed B such that A D B and A\ B is P -contractible, we can take B' = N.(B) in such
a way that i(B') = i(B) (Prop. 1.2.1.v)), and cl(4 \ B') is G-contractible ; hence there
exists h € Ho(cl(A \ B')) such that h(cl(4\ B'),[0,1]) N A = §. From Lemma 1.3.1 we
can find an h € Ho(A) such that k(z,0) = H(z,0), for every (z,0) € cl(A\ B") x [0,1].
Therefore i(B) = i(B') > j(A), and hence j(4) > j(4). o

ProprOSITION 1.3.2. Let A € BN 24 be closed and let B be a closed subset of A. Then
i(4) < j(cl(A\ B)) +i(B).

ProoF: If C is closed subset of cl(4 \ B) such that (cI(4\ B))\ C is P -contractible then
A\ (BUQ) is P -contractible ; therefore, by Proposition 1.3.1, j(4) < i(B U C), and,
from Proposition 1.2.1.(iv), j(A4) < i(B) +1i(C). By Proposition 1.3.1, this fact proves that
3(4) < §(el(A\ BY) +(B). o

PROPOSITION 1.3.3. Let A € BN22 be compact and let h € H such that h(4,[0,1])NOA =
0, and h(4,[0,1]) N Fy = 0. Then j(h(4,1)) > j(A).

PROOF: Assuming on the contrary that j(h(4,1)) < j(A4), we can find a closed subset
B of h(A,1) such that h(A,1) \ B is G-contractible, and i(B) < j(4)—1. If C = {z ¢
A [/ h(z,1) € B}, it follows from Proposition 1.2.1.iii) that i(C') < i(B) < j(4) — 1. On
the other hand, C is closed and obviously A \ C is G-contractible, so i(C) > j(4). o

Now we are in a position to prove the main result of this section:

THEOREM L.3.1. Let I € C*(A;R) be a G invariant functional, admitting a lower semi-
continuous extension I : H — R U {+o0}. Assume that

(1.3.5) I>0, VzeH
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JAeBNn2*, 3k >1such that

(1.3.6) j(A) >k, supI < ¢ =infl.
4 8A

Hence, for 1 < r < k, the classes

I‘Z = {A eBn 9ANE compact/j(A) >k, st‘ipI < CO}
are nonempty and we define
¢, = inf supl, r=1,...,k;

A€l 4
then one has that 0 < cf < - < ¢ < co.

Assume moreover that

(1.3.7) (P.S)s  (r=1,...,k)

(1.3.8) KanNF, =0. (r=1,..,k).

hold. Then I has at least k geometrically distinct critical pointsin {z € A / ¢f < I(z) <
e}

PROOF: First c* are critical levels for every r = 1,...,k. Indeed the classes I'] are in-
variant under the gradient flow 7 as is defined in (I.1.2), and the Palais-Smale condition
is fulfilled at every level c¢* ; therefore it follows from Corollary I.1.1 that K.: # 0.

Hence, if ¢} < --- < ¢} the proof is complete. We assume that for some r,h 21, 7 =
-e+ = ¢y, = c*, and we consider the two cases:
a) ¢* < ¢o. Then from (1.3.7) one deduces that K. is compact.We are going to prove that
i(Kc+) > h+ 1 (remark that (I1.3.8) implies that K- € B). Indeed it follows from Lemma
I.1.1 that for every fixed € > 0 small enough, we can find a ¢ > 0 and an A € I'},, such
that, if N = N.(K.-),then

(1.3.9) sup I < c*.
cl(n(A\N),0))

Let A' = cl(n(A\ N,0)); then (1.3.9) implies that j(A4') < r — 1. Moreover, it follows
from Proposition 1.3.2 and Proposition 1.3.3, that j(4) < j(4") +i(N) < r —1+4+4(N);
therefore i(N) > h + 1. The proof is then complete by virtue of Proposition 1.2.1.v and vi
(indeed, for ¢ small, one has that ¢(N) = i(K,.)).

b) ¢* = ¢o. Then, arguing as in the step a) (but applying the second part of Lemma I.1.1),
one finds that (AN K) > h+4+1,VaeTl;, ;.0
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I.4. Computation of the homotopical index

In this Section we provide example of sets having non trivial homotopical index.

THEOREM 1.4.1. Let SN~ be the unit ball of RN; we consider the set of all the great
circles of SN—1,

2
(I41) Cn = {z€ H/ 2(t) =zsinwt +ycoswt , w = % ,z,ye SN 2.y = 0} .

Then j(Cn) > N — 1.

ProOF: The proof consists in two main pdrts. In the first one we show that proving
Theorem 1.4.1 is in fact equivalent to find zeroes of functions having some symmetry
properties. In the second one we prove a convenient Borsuk Ulam type theorem.

~ Let e; be a unit vector of S¥~! and let SV—2 = {z € SN-1 /
z-e; = 0} : we consider the continuous function F : SN=2 % GN—-2 61 _, RN defined as :

(I.4.2) F(z,y,e"") = zcoswt + (z-yes + (y — (y - z)z)) sinwt ,

which gives a parametrization of Cy. We denote by F' the associated continuous
F':§N=2 % gN=2 _, Op.

In order to prove that j(Cn) > N — 1, we have to prove that, for every h € Ho(Cn),

(I.4.3) i({zeCn /3o €l0,1], h(z,0) €0A}) > N —-1.

To every h € Ho(Cn) we can associate a continuous extension of F, & : SN-2  §N-2 «
B? — RN of F in the following way :

(1.4.4) ®(z,y,pe") = h(F'(z,y), 1~ p)(t) ,
and hence (1.4.3) can be written as

i(F'({(z,y) € SV 2 x SV

(L4.5) " .
3 pe’t € B?, &(z,y,pe*) = 0})) > N —1

From Definition 1.2.1 we have to prove that for every f € Fn—2,
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0 € f(F'({(=,y) € SN2 x 8N/

1.4.7 . .
(L4 3pete B, ¥(z,y,pe’t) =0})) .

Solet f € Fyn_z : we define ¢ : V72 x SN-2(xB*) — RV =2 as

(1.4.8) e(z,y,pe") = f(F'(2,9)) ;
Finally we have to prove that
0ed xp(SVN2x8V2x BY).

Consider the equation

(1.4.9) ® x o(z,y,pe™?) = 0.

From the symmetry of the problem, if (z,y,pe™?) is a solution, then (z, —y, pe” "),
(—z,—y+2(y — (y - 2)z), ™), and (—z,y — 2(y — (v - z)), ¢*(7+1)) are solutions too.
We are going to prove that, in a nondegenerate situation, the equation (1.4.9) has an odd
number of 4-ples of solutions of the type {(z,v, pe’?), (z, —y, pe "), (—z,—y +2(y — (v~
z)z), e D)) (—z,y — 2(y — (y - z)z), e*“(""V)}. Moreover, we shall see that the nonde-
generacy can be assumed without loss of generality, taking a special symmetry preserving
perturbation of & X ¢. To the aim of solving (1.4.9), we are going to introduce a special
extension of F, say ®;, for which (1.4.9) has an odd number of 4-ples of solutions for almost
every ¢. Next we shall prove that, for a nondegenerate homotopy ((1 — A)@1 + A®) x ¢,
the oddness of the number of 4-ples of solutions also holds at A = 1.

The proof is divided in several steps :

STEP 1: By definition, F enjoys the following symmetry properties :

F(z,—y,e"") = F(z,y,e”")
F(—2,y - 2(y - (y - 2)2), ") = F(z,y,e™ ™)
V(x,y,ei“t) € SN—-Z % SN—Z % B? ,
then the G -equivariance of h implies the symmetry properties of @:
&(z,—y, pe") = B(z,y,pe”")
(1.4.10) &(—z,y — 2y — (y - 2)z),pet) = (z,y,pe V)
v(w’y’peiwt) c SN—2 % SN—2 X Bz .
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Moreover, from the symmetry properties of f (1.2.7) and from (1.4.8), we deduce

iwt) — iwt )

‘P(z?"'y)f)e _‘P(mayape
(1.4.11) p(—z,y — 2(y — (y - z)e), pe™*) = p(z,y,pe
v(x,y’peiwt) € SN—Z % SN—Z x B2 .

tw(m+t) )

STEP 2: We consider the continuous ®; : SV~2 x §VN=2 x B2 - RV defined by

Ql(zv y’peiwt)
(1.4.12) { —8(1 — p)er + F(z,y, ™) if<p<1
| —dey + 20F(z,y,e™?) ifo<p<i.

For every z € BY such that z-e; > 0 the set

{(z,y,pe?) € SN2 x SN=2 x B? | &,(z,y,pe™?) = z}

can always be parametrized by means of two continuous functions g1,g2 : SV™2 — §V¥N-2x
SN=2 % B? as

gl(m) = (z7y1(z))P(z)eiwt1(z)) 0< tl(z) <

1.4.13 |
( ) 92(z) = (z,32(2),p(2)e* =) 1 <ti(z) <2,

where p(z) is the unique positive solution of the equation
|z +16(1 — p)z-e1 +64(1 —p)? = 1;
let us set

w = z+8(1—p(z))er ,
note that |w - z| # 1; then (1.4.13) are defined by

costi(z) =w-z , 0<ti(z)<m

costa(z) =w-z , w<iy(z)<2m;
1

yi(z) = m(w—m-wz~w-elel+w-elx)
-1

y2(z) = m(w—m-wx~w-elel+w-elm).

We remark that
vi(—2) = —vi(z) +2(yi(z) — 2 - i(z)z) i=1,2,
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so that, from (1.4.11), ¢ 0 g;(—2) = —p o gi(=),i = 1,2. Moreover remark that
ta(z) = 2m — t1(z) .

STEP 3: Even if Sard’s Theorem doesn’t apply directly without breaking the symmetries,
we are going to prove a symmetry preserving modification of Sard’s Theorem. More pre-
cisely we are going to show that, for every ¢ > 0, we can find a small perturbation ¢, of ¢
satisfying (I.4.11), and we can find a small z, € BY such that z. - e; > 0, such that (0,0)
is a regular value of (&1 — z.) X .. : :

To this aim, let us denote &;,¢s,8s,¢s : SV™2 x SN2 - §N=2 x SN-2 the functions:

51(27’3/) = (m"y) ) 62(1’»3/) = (xa_'y) ) 53(may) = (~z,y — 2(y ) a:):z:), fs = (z,y) =
(—z,—y + 2(y - z)z) ; we can find an integer M and M closed sets Ci,...,Cpm such that
E(C)NEm(C:) = 0 for £ # m, and {£(C;) , 1 < £<4,1< i < M} covers SN2 x SN-2,

We remark that by virtue of (1.4.10) and (1.4.11), if (2,c¢) is a regular value for @; X ¢
then (z,—c) is regular too.
For every i = 1,..., M, let p; ; a C* function satisfying
1 ifz e C;
p1i(z) = .
0 if z € &(Ch) U &(C) U £4(Cs)
and let p.; = p1 ;0 €%,
From Sard’s Theorem there exists a pair (2, c!), with |21|+|c}| < € and 2} -e1 > 0,which
is a regular value for ®; X ¢ ; therefore, setting )
@: = ¢ —(p1,1 — P21 + P31 — pai)es
(0,0) is a regular value from (3! — 2! , ¢!) on the domain
U= €2(C1) x B*.

Remark that ¢! still satisfies (I1.4.11). Arguing by induction, we assume that we have
found a very small z5=! (with z*~ . e; > 0) and very small ¢, ... ,ck~1 very small, such

that, setting

k-1 4
D = |J &) x B,
=1 {=1

and
k-1 .
(Pf—l = - Z(pl'i — P2, —P3,i —p4’i)c: ?
=1

then (0,0) is regular for (& — 2¥71) x ! on Di_;.
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k

From Sard’s Theorem, we can find a (zF, c¥) satisfying both the following conditions :

1) (0,0) is regular for (® — z* , p*~1 — c¥) on SV-2 x SN=% x B2,

£

2) z* is so close to zF~! and c* is so small that (0,0) is still regular for (21 — 2F) x ¥

z
on Dy, where

(Pe = (Pﬁ—l - (pl)k _psz +p3)k —p4)k)c7¢ ?

and

4
Dy = (U £2(Cr) x B") UDg_; -
=1

Thus (0,0) is a regular value for (&; — z*) X ¢¥ on the whole of D;. Arguing by

recurrence, for k = M, one has found that (0,0) is a regular value for (&; — 2) x M on
SN-2 « §N-2 x B2,
STEP 4: First we remark that [(®; — z.) X ¢.]7(0,0) # 0, because ¢, 0 g1 and . 0g> :
SN-2 _, RN~2 are continuous and odd, by virtue of (1.4.11). Moreover, since (0,0) is a
regular value of (®; — z.) X ¢, it is the union of a finite number of symmetric 4 -ples
{91(2), 91(—2), 92(z), 92(—z)}. We can take another small symmetry preserving perturba-
tion of ¢, in such a way that 0 is a regular value for both ¢, o g; and ¢, 0 g2. Hence, it
follows from Borsuk’s Theorem that [®; — z.) X ¢]7%(0,0) is the union of an odd number
of 4 -ples {g1(z),91(—=),92(z),92(—2z)} : indeed there is an odd number of counterim-
ages of 0 of ¢, o g; for every half sphere S¥N2N{z € R¥~! / z-e > 0} such that
(pe0g:)720,0)N{z e RN /z.e=0}=0.

STEP 5: We consider the homotopy % = [(1—A)®; +A®]xp. : [0,1]x SV 2x SN2 x B —
RY x RV—2, and, by the same technique introduced in the Step 3, we can assume without
loss of generality that (0,0) is a regular value of 1. Then ¢ ~1(0,0) is the union of a finite
number of compact 1 -manifolds. It is well known that a compact 1 -manifold imbedded
in a compact manifold either is homeomorphic to S? or it starts and dies on the boundary.
Since 1 = ®; X on the set [0,1]x SV 2x SN=2x §1 | 471(0,0) can intersect the boundary
of the domain only in [{0} x SV =2 x §¥=2x B2JU[{1} x SN2 x SN~2 x B%|. Remark that
one can assume without loss of generality that each 1-manifold intersect this boundary
in a transversal way. From the previous step we know that there is an odd number of
symmetric 4 -ples of 1 -manifolds of ¥ ~1(0,0) starting at A = 0. From the symmetry of
the problem every 4 -ple is of the type {(z,v,pe’?) , (z,—y,pe" "), (—z,y — 2(y — (y -
z)z), pe(™tD) | (—z,—y + 2(y — (y - 2)z), pe*("~ D)}, so two symmetric (i.e. belonging
to the same 4 -ple) 1 -manifolds can not intersect. Therefore we can conclude that at least
one 4 -ple of 1 -manifolds of ¥ ~1(0,0) has to intersect {1} x SN2 x §¥~2 x B2,

o
REMARK 1.4.1: It should be clear that we have actually proved the following fact:
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PRrOPOSITION L.4.1. Let & : SV-2x SN-2x B2 - RN and p : SN "2x SN-2xB* — RN 2
be continuous satisfying (1.2.9), (1.2.11) and (1.2.12). Then

(2) 0edxp (SN 2x5VN?xB?),

V|z| < 1,¥8§ > 0 325 and ;s satisfying (1.2.12)
(33) such that |z5 — z vert < &, |ps — |40 < 6 ;and
((® — 25) % w5) " (0) consists in an odd number of 4-ples of the type of (1.2.13) .
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4.II. THE STRONG FORCE CASE (a > 2)

In this chapter we deal with the problem of finding a multiplicity of solutions to (Pr)
when the potential F' behaves in a similar way that one pf the form F(z) = I_;—I%’ with
a 2> 2. To this end, we shall apply the abstract multiplicity theorems of the last chapter.

Of course we are going to look for solutions of (Pr) as critical points of the action integral

T
1) = [ 5P -FG),

where

A = {zc HY(R/TZ;RY) / 2(t) #£0, YVt e [0,T]}.

We consider the following assumptions on F:

da,b>0and a > a; > 2, such that

(1) oF < -FE) < oz, VeeRV\{o
(H2) VF(z)-z > —a1F(z), Yz e RV\ {0};
(H3) |zl]ir§°°|VF(z)| =0.

Remark that (H1) implies that

Ii(z) < I(z) < Lf(z), VzeA,

where, for any constant a > o,

T
o 1. a
(IL.1) I(z) = /0 §|9312 + T
For a potential of the form F(z) = ﬁ , (@ > 0,a > 1), the planar circular solutions
of (Pr) having minimal period T have the property of minimizing I® on the set of all the
solutions (see 1.Part 1, chapter V). According with the notations there, for every a > 0,

we denote by cJ(T) the smallest critical level of I®: we recall that their the values are
given by

(11.2) 2 (T) = T(50)




Indeed ¢¥(T) = I¥(z,), where z, = R,e™* with w = 2%, and R2*? = ca(%)%

If F(z) = Ts]s> We know that the problem (Pr) admits an infinity of solutions : indeed,
for a fixed period T we have all the planar circular solutions z(t) = Re™* (with w = 2z%

, and R*T? = aa(zwk) ) havmg 1 as minimal period. For a more general potential F',
we are interested in finding the set of the solutions of (Pr) corresponding in a vanatmnal
sense to those of minimal period T' (that is to those at level ¢Z(T')).

Our first goal is the following

THEOREM IL.1. Let F € C*(RV\{0};R) and assume that (H1), (H2) and (H3) hold. Then
(Pr) has at least N —1 geometrically distinct solutions zj such that ¢(T) < I(zx) < ¢g(T).

Under some more restrictive assumptions we can obtain informations on the minimal
period of the solutions found by the application of Theorem II.1:

COROLLARY IL.1. Let F € C*(RN \ {0};R) and assume that (H1), (H2) hold. Assume

moreover that F' satisfies

3 ay > o such that

H4
(#4) |VF(z)| < a0 T 5 Vz e RV \ {0},
with a > 2 and a,b, a, a3, satisfying
at2
a2 b/ fay\ e
Hs = — 4.
( ) 0.’% a2/« (al) <

Then, for every fixed T, (Pr) has at least N — 1 geometrically distinct solutions having T'
as their minimal period.

As an straightforward application of Corollary II.1 we have the
COROLLARY I1.2. Let U € C*(RY \ {0};R) satisfy

|]im |z|* T VU (z)| = 0

for some a > 2, and let F(z) = e I“ +U(z). Then there exists T > 0 such that for every
T < T, (Pr) has at least N — 1 geometrical distinct solutions having T as minimal period.

We are going to prove Theorem II.1 as a consequence of Theorem 1.3.1. To this aim, we
prove some preliminary propositions.
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PropPoSITION II.1. Let F € C*(RN \ {0};R) and assume that (H1) holds. Then

Iim I =+c0.
z—0OA

Moreover, I has a natural ls.c. extension I, which is defined in the whole of H and
takes values in R U {+o0}, such that infgp I = +oc0.

PROOF: As we have pointed out in I.1 of Part 2 , a potential of the form F(z) = B

fulfils the strong force condition (SF) if and only if a > 2. As a natural extension of I we
can take I(z) = 4oco for z € A0

PrOPOSITION I1.2. Let F € CY(RY \ {0};R) satisfying (H1) and (H2). Then I fulfils the
(PS.) condition at any positive level.

ProOOF: Indeed, (H1) together with (H2) is stronger than the set of assumption (H) of
2.1. Therefore Proposition 1.1.2 of Part 2 can be applied. ©.

PROPOSITION I1.3. Assume that (H1) holds. Then there is ¢ such that the sublevel
I* = {z € A |/ I(z) < €} is G-contractible. Therefore each class of non G-contractible sets
has a positive infsup level.

PRroOOF: Let I(z) < € with a very small e. Then one obviously has

T
1.,
—lz|° Leg,
IR
T
/—F(z)ge.
0

1 /T .
2= i _
and that | foT z| has to be very large. We define the homotopy h as h(z,0) = (1 — o)z +

o fOT:c (of course this homotopy is G-equivariant) . ¢

Therefore one deduces that

< VTe,

ProPOSITION 11.4. Assume that (H1) and (H2) hold. Then if z solves (Pr), = ¢ Fo.

PROOF: Let z be a solution of (Pr) and assume that = € Fy. Then there exists a ¢y such
that z(to —t) = z(t) , V¢t € R, and hence @(¢y) = 0. Let E = $|¢|* + F(z); then, since
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F(z) < 0, we have E <0.

On the other hand, it follows from (H2) that B 2> 0. Indeed let p(t) = |z(t)], and let
pm = p(tm) bea point of minimum of p ; then 1l;:—f;r(tm) > 0, that is |&(tm)I* 2 VF(z(tm)):

z(tm) = —a1F(z(tm)), and therefore E = %\:i:(t.m)\2 + F(z(tm)) 2 —(% - 1)F(tm) > 0.0

proposiTioN 1L.5. Let I = I¢ for some a > 0 and o > 1. Then all the assumption of
Theorem 1.3.1 are satisfied. Moreover

.f a::a —_—1-.-N._1.
AlgI‘;SiPI"' c(T) r=1,

PrOOF: Indeed, let

(1L.3) Ao = (aa( T )ZYI:E On s

o

then from Theorem 1.4.1, Ag € T%_,- Moreover, from Propositions 1.V.2 of Part 1 and
1.1.1 of Part 2we have that

supI® = c5(T) < inf IS = +o0 .
Ao 8A

From this fact and the previous Propositions, we easily see that all the assumptions of
Theorem 1.3.1 are fulfilled. Thus

¢k = inf supIﬁ‘SsupIﬁ‘:cz(T) r=1,---N-1.
AETE: A Ao

On the other hand, the cis are critical levels for I, sO that, from Propqsition 1.77 we
deduce that

cf,Zcﬁ(T) r=1,--N-1;
hence the equality holds.¢

Now we are in a position to prove Theorem IL.1:
PRroOF OF THEOREM 1: We are going to prove Theorem 1 as an application of Theorem
1.3.1. Indeed, by Proposition 1.1, (1.3.5) is satisfied. From Proposition IL.1 and from The-
orem 1.4.1, also (1.3.6) is fulfilled. Then the critical levels ¢& (r =1,-" , N — 1) are then
well defined ad positive, because of Proposition 1I.3, so that (1.3.7) follows from Proposi-
tion IL.1. Finally Proposition I1.4 makes (1.3.8) be fulfilled. Remark that (H1), together
with Proposition IL.5 leads to c2(T) L <5 ,<ewvo1 S c2(T).0

Corollary I1.1 follows from Theorem 1L.1 and from the following Proposition:
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PROPOSITION I1.6. Assume that for some a > 2, (H1),(H2),(H4) and (H5) hold. If ¢ is
such that '
c<cg(T),

then every critical point of I in A at level ¢ has minimal period T'.

PROOF: Let z be a critical point of I at level ¢ < ¢gf(T'), and let

(11.4) E = -;-lv'slz+F(w)

its energy (remember that (P) is autonomous). Let p(t) = |z(¢)|?, and let par = p(tas) be
a point of minimum of p : then %Z—Q(tM) > 0, that is |2(tar)|* — VF(z(tm)) - 2(tar) > 0.
Therefore it follows from (H1) and (H2) that

1
|z (tar)|™

2

01—2

< ()%

By multiplying both sides of —Z = VF(z) by = and by integrating we get

/0T|¢]2 _ /OTVF(:c)-a: < —aZ/;TF(x),

(IL.5)

and therefore

T T
(IL6) ¢ = /0 Sl — F(z) < —(5‘21+1)/0 F(z) .

On the other hand, by integrating (I11.4) and from (II.6), we get

i |
TE = c+2/0 F(z) < (1-~2(2 +1) e

02—2 a2-2
= < T).
a2+2c— a2+2 ( )

(IL7)

Now assuming that the minimal period of z if %—, with £ > 1, from Wirtinger inequality
and (H2) we have

(IL8) /OT > (2—“’3) /OTW _.a(g’i’f) / Flz).

In the other hand, from (II.5) and (H4),
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T T
/ 57 = / IV F(=)?
0 [4]
T 2 2 T
1 asa 1
11.9 < a 2/ < 2 /
(IL9) =y T S R0 o

!:c(tM)zla+2 / F().,

and therefore, taking into account of (I1.2) and (IL.5), (I1.8) together with (II.9) lead to

et2
27k |2 —ala 1 al 2 E| =
()" < < 2| )~
(s3] lw(tM)ch-z o a1—2 a
«t2
< a"z’a,( 2 )_1_a2~—2c§‘(T) a
T o |ta—2'aay+2 T
at?

< 9:_%1)2/0‘ (az —-2) a (gz)z
T afa?e \ey—1 T
Therefore (H5) implies k < 2, thatis k =1. ¢

PROOF OF COROLLARY II.2: Under the assumptions of Corollary II.1, the trajectory of
a solution at level ¢(T') < I(z) < c5(T') satisfies

« as)b
s < @22
where. by (I1.1),
E 2 oy — 2¢ (1)
(5} -+ 2 T2+cx

Hence we obtain that

[2(t)] < C(o, o, 0)T 75

Therefore it is sufficient to assume that (H1), (H2) (H4) (with (H5)) hold in a small
neighborhood of zero (and this is the case of the potential in Corollary II.2), provided that
the period T is chosen sufficiently small.c
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4.II1I. The weak force case (1 < a < 2)

As we have pointed out in 1.2 of Part 2, the case 1 < a < 2 presents an additional
difficulty due to the fact that liminf, .95 I < +oco. However, the meaning of the pinching
condition introduced in Theorem 1.2.2 of Part 2 is that the functional evaluated over a set
of great circles is less than the minimum value over all the collision solutions. Therefore
Theorem 1.3.1 still apply to this situation.

In this chapter we shall use the notations of the previous one. Moreover, according with
the discussion of Part 1, ch. V and Part 2, 1.2,, let us recall the definition of ¥:

} Tq,.
mingeon [; 3l21* + R

(IIL1) ¥(a) = =) ,

where ¢%(T') is the smallest critical level of the functional corresponding to the potential
F(z) = I;-I(‘l’ . let us recall that the value of ¢(T') corresponds to the circular solutions and

2

ita 2
(ITL.2) (T)=T (2—") (2 ks o‘) aTEaHE |

T 2c

We consider the following assumption on F":

Jda,b>0and 1< a< 2,such that
a b

(H1) WS—F(:C)SW’ VzeRY\{0};
(H2) —2F(z) —VF(z) -z < (2——a)1—£l—(;, VzeRY\ {0};
(H3) lim VF(z)=0.

|| —+oc0

Then the following Theorem holds:

THEOREM III.1. Let F € C}*(RV \ {0};R) and assume that (H1),(H2), (H3) hold with

(ITL3) b
a

< ¥(a).

Then, for every T > 0, (Pr) has at least N — 1 geometrically distinct solutions z such
that 2(T) < I(w4) < c(T).
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The assumption (H2) is a technical one and it is introduced in order to avoid the fixed
points of the symmetry.
In order to obtain an estimate on the minimal level of the solutions, an additional pinching
condition has to be introduced:

CoRroLLARY IIL.1. In addition to (H1) and (III.3), assume that

Jas ,a1 < 2 ,a3 > a > a7 such that
(H4) — a1 F(z) < VF(z) < —azF(z), vz € RV \ {0}

(H5) . [VF(QJ)I S GQZW 3 Vz € RN \ {0} B

Then there are three functions E(a), 01(%, a,a1,az) and 02(%, a, oy, az) such that when

(ITL.4) (%) : 22”_‘;2 (g = Zigfja‘g) = (),

1

(1115) 0'2('11,61,(11,&2) (2 - a1> « <1 ’
a 2
and
p2le o2 (2—a1)(2+ a) ite b 2+o
II1. 2 4 b 7
_— a?/* oo ((2“02)(2+C¥1)) < (al(a’a’al’az))

then, for every T > 0, (Pr) has at least N — 1 geometrically distinct solutions having T
has minimal period.
Moreover, £ and o enjoy the following properties:

E(a) > 2, Vi<a<2
Iim Z(a) = +o00;

a—+2

0(210"&170‘2) >0

b
im o(—,a,a1,a2)=1 for every fixed «
T L a

N (2 - al)b
(2 - ag)a

The following result is just a streightforward consequence of the above Corollary:

b
lim o(—,a,01,02) =1 if remains bounded.
a

o—+2
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CoRroLLARY III.2. Let U € C}(R™\ {0};R) satisfy
i J= (VU (2)] = 0,

and let F(z) = ﬁ, for some a > 0 and 1 < a < 2. Then there exists T such that, for

every T < T, then (Pr) has at least N — 1 geometrically distinct solutions having T' as
minimal period.

Let us start by proving Theorem III.1:

PrOOF OF THEOREM III.1: To carry out the proof, we are going to apply Theorem 1.3.1,
together with Theorem I.4.1. First of all, I has a natural (weakly) l.s.c. extension as

Ty = { Jo 3R -F@), iy —F(e) < oo
r) =
+o0, if fOT —F(z) = 400 .
Arguing as in the proof of Theorem II.1, one easily checks that assumptions (I1.3.5) and

(L.3.7) of Theorem 1.3.1 are fulfilled. As far as condition (I.3.6) is concerned, one just
consider that, by virtue of Theorem 1.4.1, the set

1
T 2 24a
Ao = (ba <——> ) CN
27
belongs to I'y,_;, and, from (H1) and (IIL.3), it enjoys the property that

SJ:OpI < (T) <L 18nAfIa < 1§1AfI .

Indeed, A, is the set of all the circular critical points of I*. Then the proof works as
the one of Theorem II.1. The only difference consists in proving that (H2) implies (1.3.8).
This fact can be proved as follows:

Let E = 1|¢|2 + F(z); then, since F(z) < 0, we have E < 0. Moreover, since —& = VF(z),
it follows from (H2) and the energy integral that

2

(I1L.7)

—50" = 4E—4F(2) —2VF(z) -2 32(2E+(2—a)£—2),

where p(t) = |z(t)|. Therefore, if # is such that |(¢9)] = 0, and then E = F(z(t;)) <
l_m'(goi)l'“— it follows from (II1.10) that p(Z9) is a strict local maximum of p. Hence, p(¢) < 0
for every t € [to,11], for some ¢; > %9, such that p(¢;) is a local minimum. By multiplying
(IIL.7) by p and by integrating, we obtain
1, . -
Z(pz)z —2Ep? — 2ap*~* > —2Ep(t)? — 2ap(t)*™* > 0;
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hence p(t;) = 0. Therefore z € A while, condition (III.3) does not allow critical point at
level less than ¢f(T') in OA.

We are now in a position to apply Theorem 1.3.1,finding at least N-1 critical points of the
functional I in A such that c2(T') < I(zx) < ¢§(T). ©

We remark that even a very small perturbation of the Keplerian potential (e =1) can-
not be included in this discussion. Indeed if @ = b, then ¢y = ¢, = cb, and no perturbation
is allowed, as is shown in chapter III of Part 2.

PROOF OF COROLLARY III.1: Corollary III.1 follows from Theorem IIL.1 and the follow-

ing proposition:

ProOPOSITION III.1. Let (H1) and (H4) holds. Then there are functions =, o1 and o3,
satisfying the properties of Corollary III.1, such that, when (II1.4) and (IIL.5) hold then
each solution z of (Pr) satisfying

(I11.8) c(T) < I(z) < cg(T));»

has T as minimal period and can not belong to Fy.

In order to prove Proposition III.1, some preliminaries are needed.

Let z be a solution of (Pr) such that (IIL.8) holds. Then z solves

(I11.9) — %= VF(z)
(I11.10) - -;-|:b|2 +F(z)=E

where, from (II1.8) and (H1),(H4), the energy E has the bounds:

2 — ay c(T) 2 —a; c(T)
I11.11 L < <
( ) 24+ay, T — Es< 24+a; T
Let us denote
(I11.12) p(t)=ly(t)|, VieR

and
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(WL18)  eft) = S u( (-2F((D) - VFG() u() , ViR,
Then from (H4) we deduce that

(2 — al)b
. <c(t) < 22 teR.
(IIL.14) IS S Gob, Ve
Moreover, from (II1.9) and (II1.10) we have
—3p? = 28— (2 - )<2 VteR
(IIL.15) p(t+T) = p(t) VteR
p(t) >0 ViteR.

PROPOSITION IIL.2. Assume that (H1) and (H4) hold, and assume moreover that & <
2_2&1. Assume that z € Fy. Then there are Ty and Ty, with Ty — T} < %—1, such that

P(Tl) = P(Tz), P(Tl) = f’(Tz) =0, and minte[Tl,Tg] |y| = 0.

PROOF: By definition, z € Fy implies that there exists s € [0,1] such that

z(s —t) = z(¥), VieR,
or, equivalently
s s
o) =z(2 VieR.
:c(2 t) :c(2+t), €
One easily deduces that

T T
z(‘“; ——i)::z:(s—; +1), VteR,
and therefore that
s+ T

| #(5) = (=) =0.
Hence, it follows from (II1.10) that

F(e(3) = Fle(*£1) = B,

so that (H1) implies

22 2, and o(CE > 2

From (IIL.15), we can conclude that both |z(2)| and |2(22T)| are strict local max-
ima for |z()|. One then deduces that there is at least one local minimum [z(t*)|, with
t* € [$, 22T, Assuming for example that ¢* — 2 <1, one finds that p(t*) = p(s — t*) and
p(t*) =p(s —t*) = 0.0
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PROPOSITION I11.3. Assume that (H1) and (H4) hold. Assume that the minimal period
of z is %, with k > 2. Then there are Ty and Ty with T, — 11 < %, such that p(Ty) = p(T3),
A1) = H(T3) = 0.

PROOF: In an obvious consequence of the fact that p(t + T) = p(t), Vi € R.o

PROPOSITION II1.4. Under the assumptions of Proposition II1.2 (respectively Proposition
I11.3), there are three functions o1, a3 : (1,2)x[1,+00) — (0,+00) and E : (1,2) — (1,400)
such that, if (II1.4) holds, then

Qi

b 2 —
P02 (2 anaan) (P2)T e m,

and

R

b 2 —az)b
p(t) SUZ(Z’a%a)al) (L“:_EE?—)"') N YVt e [Tl,Tz] .
Moreover, the following properties hold:

Ela) > 2 Va € (1,2);
lisz(a) = 400 ;

) b

Lim ai(;,az,a,al)-—-l , Va € (1,2)

b
e

— )b
lim ai(-ll,ag,a,al) =1, if Q——(ﬂ)— remains bounded .

a—2 a (2 - Oéz)a

ProOOF. STEP 1: By the change of variables s(t) = fot ;1;, and p(s) = p?~%(s(t)), from
Proposition II1.2 (resp . Proposition II1.3), (I1II.15) becomes equivalent to

—u" = —2(2 - @)EpP — (2 — a)?c(s)

(I11.16) #(0) = p(w) »
p'(0) = p'(w) =0
p(s) >0, Vs.

Where (-)' denotes the derivation with respect to the variable s

(I11.17) 8=

and
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T, 1
(ITL.18) w = / .

T, P

Note that, by Proposition III.2 (resp. Proposition II1.3), by integrating the equation in
(II1.15) one obtains

T - —2E T
(IIL.19) w= / ia 25

T Ty < 2
i (2—az)a (T2 1) < (2 —az)a 2
We set c(s) = (1 + co(3)), so that, from (II1.14) we have

(I11.20) 0 < co(s) < (Z-a)b

S 2 a)a’ Vs € [0,w] .

By derivating the equation in (III.16) and by taking the L? inner product with p' we
obtain

(II1.21) / (£")ds = ——2aE/ pP () ds + (2 — a)(2 - az)a/ copds ,
0 0 0
and, from Holder inequality, taking into account of (II1.20),

(I11.22)

/0 S (wyds

S_2aE/;wpﬁ—1(#')2ds+(2—a)(2—~a2)a(8 al)b ) (/ ()“”)2(13)

Now, for any 0 < § < 1, the inequality
2

2
— <
R TIp

z‘ —dz, Ve, deR,
together with (II1.22) imply

(I11.23)

2

w (2 —a)®"2 — ay)2a? Q—E%)—z—l w w

5/ (p»)st _ ((2 2) ) < -—2aE/ p,ﬁ_l(/,l,')2ds
0 4(1 - 96) 0

STEP 2: Let us denote by H?2 the Sobolev space {u € H*(R;R) / u(s+w) = u(s) Vs € R}.
Let us consider, for every 8 > 1
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a1 .
(fow |u!ﬁ) ? fow l“|2

(I11.24) =(B,w) =inf I P lulp-1
and
w w” 2
(IIL.25) 0°(6w) = ing, 0 )

w€H? (fow (u:)zﬁ) 5o

The following properties hold

(II1.26) = (6,0) = - ;;f_ =*(8,1),  VBeql ,Vu > 0;
(I11.27) Q*(B,w) = ;—}%1-9*(5,1)) VB> 1,Vu>0;
(111.28) 2(8,1)> 0'(8,1), VB21;
(II1.29) 031 = 5 (Hg)%ﬁ {/02W|sin9|%ﬂd9}2.

Taking into account of (III.17), we set

4 .
(2m)2(2—a)” ‘2 -«
%) = G Goa )

Ela) =

? ]‘) ?
(I11.30)

The proof of (I11.26) and (II1.27) obviously follows from the definitions. Formula (III.28)
follow from the definitions and Holder’s inequality. Finally (II1.29) was proved in 3.IL. Re-
mark that = fulfils all the properties of the claim of Corollary III.1

Now, from our change of variables we have

(I111.31) / PP =TT .

0
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Hence the inequality (II1.23) can be rewritten as

2
o (2-aP(2- a)e (=2 - 1) w
§ [ wras - :
W)

4(1-8)
(111.32) N
< —2aF (§> W .

Assuming that p is not constant, from (II1.32), (I111.23) (II1.26), we deduce

2
—aq)b
5 (2 - a)’(2 — az)’a (g—_——a—;%;—l) w

(I11.33) 4(1-8) [y (w)?
B—1
TN\ # 1 148
< -2E(%) ——w,
B (2) £*(8,1)

and therefore from (II1.17), (TI1.18),(I11.10), (II1.2) and (II1.30), we obtain

(2—a)?(2— az)%a <(—2;°'—Qé — 1>2w

5 (2—a2)a
(IT1.34) « 41-8) Jy (w)? »
b\ 2-a; ((2—a)2+a)\ = 1
< (3) Tr(ehered) =
Now, from (III.4) we have
b %2—042 (2—a1)(24+ ) = -
(IIL.35) (;> T ((2 T a1)> < E(a).

Let us denote

2

i aibenne- (2)! 322 ()

We set

6§ =

SR

él(é,a%aaal)
1 & ;
( e )

112



it follows from (III.4) that 0 < § < 1. Now (II1.34) becomes

w
(w")?
0

2 AE a2, 0, Q3 ~
S(2—a)2(2—a2)2a“-’ (g{}gﬁ%—l) (1_ €1((¢1:€(a) )) )

and hence, from (II1.27),

(I11.37)

(I11.38)
([ (p’)’ﬂ)ﬁ
(2 — a1)b G((3, a2, 0,01)

< - e eete ™ (G250 - 1)2(1“ =(e) )

Now, an easy computation shows that

(7 o)) - () ([oms)’

so that,from (III.38), (III.17) we obtain that

oy

3 2ta 2te
(I11.39) /Tz g—pﬁz:2 ? dt ’ <& ( , 02,0, 01 )a? _=2B N\t (L)
T, \dt ' (2—az)a) 2 ’
where
- b

52(5,02,0,01)

= (2((2;02))2 Q(la)@ — @)*(2 — ay)? (——g :Z;)): - 1)2 (1 - i(z s, @, al)_(la))~2 |

has the following properties:

= b
lim ﬁz(z,az,a,al) =0 Vl <a<?2

(Z—al)b -1
(I11.40) (3-az)a .
~ b 9
lim & (-, az2,0,a1) =0 if —(—ﬁ}l—- remains bounded
a=2" '@ (2 - az)a

113




1
QE%_Z#) “. Remark that, since, from (II1.15), every local maximum

p(to) has p(to) > p, then either p, is assumed by the function p(t) of p(t) > p., Vi.From
(II1.39) we deduce

Let us write p, =

d ..:}:~
0 o< [ 1
Ty

T: 75
2 d 2+a 1_____
< — T 732
<[ (@) a) e
._.2E 22aa (2)2
<vé (2—aa) “\2

Now, (III.11) implies that

—2E <(§)=+’a —ay 2%(1) 1
2

(2—az)a ~ —az 2+ ay (aTz)z—%; ’

so that the above inequality leads to

24a 24a ~ (2-—&2)(1 2-2:%‘2 - 2ta
(1IL.41) P - <h (B5R) T e

where
2+a

53(3‘,&2,&,01): \/f—z(a>§ ((2 +(L)1()( _ajx)z)) " II1.42

still satisfies

b
lim 63(5,012,(1,&1):0 V1<a<2

(II1.40) ez ,
clxlglz €3(—,az,0,a1) =0 if %—:——gi); remains bounded

Finally obtain

(IIL.44) p(t) 2 o1ps =0 (%) ) vie [T1, T2,

and
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o ala)
(111.45) o) Soape =0 (B2200)7 vicn,m)
where
b R
Ul(zsa2)a7a1) - "63(;)a21a7a1) 3
and

2ta

b 2 - b
(02(;,02,%&1)) =1-§3(E,az,a,al),

From (II1.43), both &7 and o, satisfy

b
im o=, 02,0,01) =0 Vi<a<?2
a

(2—ay)b -1
(I11.46) (2=az)e ; @ b
. . - .
3_1_1:12 a’i(;,az,oh o) =0 if —(-2—:—;—;1—5; remains bounded

Hence Proposition II1.4 is proved.

ProoF OF ProproOsSITION III.1: Assume first that z € Fy. Then Proposition II1.2 says
that there is ¢ € [T1,T%] such that #(f) = 0. We then deduce from (III.10), (H1) and

Proposition II1.4 that 0'2(‘3‘,0(2,(1,(11 ) < -2—2—011’ that is a contradiction.

Now we assume that the minimal period of z is %, for some integer & > 2. Then
Wirtinger inequality leads to

(II1.47) (?Z’f’i)z/OTw g/oTwz.

On the other hand, from (H2) we have

T T
(I11.48) / |£)? > - / F(z)
0 0
and, from (H1), (H5) and Proposition III.4 we obtain

(IIL.49)
T T T T
1 —2F a 1
1D 2 2 2
= VF < - < S — —_ -F .
/0 B /0 IVF()]? < a;,/o e < oo ((2_al)a) af+a/0 ()
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From (II1.48) and (II1.49) we deduce

2k\? _ (2B \F 1
T S aay (2-—&1)(1 0_?-}-&.

Therefore the estimate in the energy (III.11), together with (III.2) implies

2tea
, b o2 ((2——a1)(2+a)) g 1 <d

k< -
- a,2/°‘ a;a (2—a2)(2+a1) o‘f+a

Therefore k = 1.0

PROOF OF COROLLARY III.2: It is a matter of facts that, under the assumptions of Corol-
lary II1.1, each solution satisfying (II1.??) is constrained in the set {z € RY / |z|* < =
Therefore (II1.11) implies that each solution satisfying (II1.???) has the bound |z(t)|* <
‘@—(:%TT?E' Thus, it is enough to assume that (H1), (H4) and (H5) hold in a small
neighborhood of the origin, provided the period is chosen sufficiently small. Now a poten-
tial of the form of the one in Corollary IIL.2 obviously fulfils (H1), (H4) and (H5) with 2

and %f as close to one as we want, in a sufficiently small neighborhood of zero. ¢
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4.IV. THE EVEN CASE

As is should be clear from the results contained in Part 2, chapter III, the approach of
the last chapter apply strictly when a > 1. In facts, the pinching condition of Theorem
IT1.1 becomes % =1, when o = 1. However, as it has been shown by Degiovanni, Marino
and Giannoni in [26], when F has some symmetrical properties, one can overcome the
degeneracy occurring at « = 1. We shall see in Part 6 other interesting properties of
the symmetrical case. We are going to use the approach of [26] in order to exclude the
collision solutions. As we shall see, the symmetry constraint allows to work with coercive
functionals. In such a situation, the multiplicity result will be proved via the application
of Theorem 1.2.1.

Throughout this chapter, the potential F' is even, that is it satisfies

(S) F(-z) = F(z) , VzeRY\{0}

Then it is a well known fact that the critical points of the associated functional I
constrained on

Asz{:cEA/m(t—}-%):—z(t),VtER}

are actually critical point of I over A and hence they are solutions of (Pr). Moreover,
the quadratic part of the functional is coercive.
The main goal of this section is the following:

THEOREM IV.1. Let F € C}(RY \ {0};R) satisfy (S) in addition to

da,b > 0and a > 0, such that

(H1) e S ~F) < ‘—f’|— Vs € RV \ {0};
with
(Iv.1) bese

Then there exists a function V¥ : (0,+00] — R such that when

(IV.2) 2— < ¥(a),
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then (Pr) has at least N-1 (N if N is odd) geometrically distinct solutions having T as
minimal period. Moreover, ¥ enjoys the properties:

hm0 ¥(a)=1

W is in creasing

lim ¥(a) =

a—1

In order to prove Theorem IV.1, some preliminary proposition are needed.

PRrROPOSITION IV.1. Let F(z) = ﬁ, for some a > 0 and a > 0. Then

PROOF: First of all, the functional IZ(z) = foT Tz + Tz]= 2dmits a natural weakly lower

semicontinuous extension to the whole of HS = {z € H / z(t + L) = —=z(t) ,V¢ € R};
we shall still denote by I this extension. As such, I is coercive, so that is minimum is
attained. Moreover, by the convexity of each function 3% we have

T
(IV.3) I;"(::)Z/ HETLRE o S
0

(foT |2:|2) 5

and the strict inequality holds, unless z has constant modulus. From (IV.3) we deduce
that Proposition IV.1 holds and moreover that the function

ca(T)
ming, s (foT e+ |:|a)

(IV.4) ¥(a) =

fulfils all the desired properties.c
PROPOSITION IV.2. Assume that (H1) holds. Then I satisfies the (PS) condition (in H*)

at every level.

PROOF: It is an easy consequence of the fact that ¢ is coercive .o
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ProrosiTiON IV.3.
FynHS C8A°

ProOF: Indeed, if ¢ € Fy N HS there exists s such thatz(s — t) = z(t), V¢ € R; on the
other hand, since z(¢ + T) = —z(t), Vt € R, we deduce that, when s — 1, = %o +7Z 5, then
(C(to) = 0.0

PROPOSITION IV.4. Assume that (H1) and (IV.1) hold. Then every critical point of I in
AS such that I(z) < ¢; has minimal period T.

PROOF: We assume on the contrary that the minimal period of z is -kz, for some integer
k > 2. We first deduce that k is odd, and therefore that k > 3. Hence, from (H1), we have

’ T
1
. > Sl 4 ——
(Iv.5) I(z) 2 ’,?;‘?f;i& (/o 5181 o |a)
Now, is is clear from Proposition IV.1, and from the value of ¢Z(T') that the right hand
side of (IV.5) is equal to 33%ca°‘(T ). Condition (IV.1) then implies that k = 1.0

Now we are in a position to prove Theorem IV.1:

PROOF OF THEOREM IV.1: We are going to prove Theorem II.3 as an application of
Theorem 1.2.1. It follows from Theorem I1.2.2 that the set

1
T 2 2+a
Ao = (ba ('2—;> )

has index larger than N-1 (N if N is odd). Therefore, from (H1), (IV.2) and the definition
of ¥ we have that Ay belongs to I'y—; (I'y if N is odd), since

T b
supl < sup/ || + — = ¢} .
Ao 40 Jo |z|°
Moreover, by Propositions IV.2 and IV.3, assumptions (??) and (???) of Theorem I1.2.1
are fulfilled. Hence Theorem 1.2.1 can be applied, and N-1 (N is N is odd) geometrically
distinct critical points of I are founds.
The above inequality also implies that these critical points are at level less or equal to
c(T'); therefore from Proposition IV.4 we deduce that their minimal period is exactly T'.¢
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PART 5. MULTIPLICITY OF PERIODIC SOLUTION
TO THE FIXED ENERGY PROBLEM.

For a given potential F € C}(RY \ {0};R) and a fixed energy E, we look for multiple
solutions to the problem

—& = VF(z)
Ll + F(z) = B

(Fe) z(t + A) = z(t) VieR
z(t) #£0 VteR,

where the unknowns are both the function  and its period ).
As usual, the potential F' presents a singularity at the origin and it behaves like a potential
of the form F(z) = 1z]« for some a,a > 0, behavior that will be clear from the assumptions
of the theorems in chapter II and III.

Taking into account of the necessary and sufficient conditions for the solvability of (Pg)
contained in Part 3, we shall treat separately the two cases:

(1)a>2and E>0;
(2)1<a<2and E <0.

Of course, we shall look for solutions of (Pg) as critical points of the functional

o= (3 1) ([ +-r0)

over its natural domain (taking into account of the singularity of F)

A={zeH/z(t)#0,VteR}.

As for the fixed period problem, in order to obtain a multiplicity of critical points, we
shall exploit the invariance of the functional under the group of symmetries G = {7}, P,}
where T,(z)(t) = z(s+1¢) and P,(z)(t) = z(s —t). In this order, a convenient tool to treat
the problem in the case (1) will turn out to be the homotopical index related to the group
G, which has been defined in 1.1 of Part 4. In facts,when a > 2 and E > 0 the features
of the functional associated to (Pg) are similar to the ones of functional associated to
the fixed period problem; in other words, I is positive and it presents a lack of coercivity
only at the level of the large constant functions. Therefore the results of 1.3 of Part 4 are
(almost) applicable.
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As far as the case (2) is concerned, an additional difficulty arises from the fact that, when
the energy is negative (and it is the natural choice when o < 2), then the associated func-
tional is unbounded (from below and from above). To overcome this, a new homotopical
pseudo-index theory is introduced. Roughly speaking, the homotopical pseudo-index of a
given set is the homotopical index of its intersection with a given closed set of the function
space. This approach will turn out to be profitable to treat the case (2), since the restric-
tion of the associated functional to each set of the type {z / fc |£|2 — p?} is bounded from
below and it presents a lack of compactness only at the level of the large constant functions.

5.I. The homotopical pseudo-index theory

5.1.1. Definition of the homotopical pseudo-index
and abstract multiplicity results.

The first purpose of this section is to define the homotopical pseudo-index related to
the homotopical index of 1.2 of Part 4 and to state its basic properties. The notion of
homotopical pseudo-index has been introduced in [41] in order to study critical points of
inde finite singular functionals. Our second goal consists in use the homotopical pseudo-
index as a tool in order to prove an abstract multiplicity result.

Altough we are going to defined the homotopical pseudo-index related to the group G
defined in 1.1 of Part 4, it will be clear from the definition that to any homotopical index
one can associate an homotopical pseudo-index and that a multiplicity theorem ana.logous
to Theorem 1.3.1 of Part 4 holds. i

In this chapter we shall make use of all the notations and results of the first chapter of
Part 4. According with the definitions there, let us consider

= {h:H x [0,1] — H continuous such that
Ly h(z,0) = 2, h(5(2), ) = o(h(z,0)) , Ve € H ,
Voel0,1],VgeG}.

and, for any A eBn2*

(I.1.2) Ho(A) ={h € H / h(4,1) C En}.
We assume that two closed G-invariant subsets of H, say ¥; and ¥, are given such that
21 N 22 = @ ;
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and we consider

Hsz,», = {h€H/h(s)is a G-equivariant homeomorphism,
(1.1.3) h(z,s1 + s2) = h(h(z,s1),32)
h(z,s8) =z Vz € (1 NIA)U Z,,Vs € [0,1]},

The homotopical pseudo-index related to Hg, 5, of a set A measures the homotopical
index of AN h(X;); more precisely

DEFINITION 1.1.1. Let A€ B, AN (21 NOA = (. We say that the homotopical pseudo-
- index of A is k ( and we denote j*(A) = k) if ~

11.4) - min 1 .
(L1.4) k heg@g?zz](h(“i,)ﬂ&)

REMARK L.1.1: This definition makes sense;indeed, from (I.1.3) one has that h(4,1) N
(%1 NJA) =0, for each h € HS, 5,0

PROPOSITION 1.1.1. Let A, B € B be such that (AU B)N (Z; NGA) = 0, then

(i) AC B= j*(4) <j*(B)
(49) 7*(AUB) < j*(4) +i(B)
(%) if h € Hg, x,
= 7" (4) = j*(h(4,1))
(iv) A compact = j*(4) < +o0
(v) A compact = 3J ¢ > 0 such that j*(N.(4)) = j*(4) .

PROOF: i) As a matter of fact, for any h € H%, x, one has that h(4,1) C (B, 1), so that
by proposition the monotonicity of j one deduces that

J(R(4,1)NE;) <j(R(B,1)NZy).
One concludes just by taking the minimum of both sides for every h € Hg, x,

ii) Let h € Hz, 5, be fixed. From Propositions 1.3.2 and 1.3.3 of Part 4 one has that

7 (R(AUB,1) N 5y) < 5 ((h(4,1) N 1) UR(B,1))
7 (R(A4,1) N %) + i(h(B,1)) =5 (A(4,1) NZ1) + i(B).

As before, one concludes by minimizing for every h € H3,, sigmas-
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iii) easily follows from the fact that H3, g, is a group.
iv) is a direct consequence of the following inequality:

77(A) <j(ANnZXE) <i(4nX;).
v) easily follows from the properties of j of 1.3 of Part 4.0

Let us recall a weaker condition than the Palais-Smales’s, but still sufficient to have a
deformation lemma: the Cerami condition (at the level c):

every sequence (z,)n in H such that
im I(z,)=c
(Oc) - n—:+oo
lim (14 [lzall) ldI(e)l| = 0

possesses a subsequence converging to some limit in H.

- Condition (C.) will turn out to be easier to verify in the setting of Theorem IIL1.

In the following, we shall denote

K. ={zeH/I(z)=c, dI(z) =0}.
NQW we state the suitable version of the Deformation Lemmas:

PROPOSITION 1.1.2. Let I € C'(H;R) be a G-invariant functional. Let c € R such that

I.1. i * .
(1.1.5) ze)13111&;’!&1*(:::) > > 2:s;lzsz(:c)

Assume that, for some v > 0, I satisfies the condition (C)., for all ¢ € [¢* —7,¢* +7].
Then there exists €g such that, for every € < eq, there are § and n € H3,, v, such that, if
N = N.(K.-), then:

(1.1.6) supl <c"+§ = sup I<c"—6.
A n(A\N,1)

Moreover, if K.« = {, then

(I.1.7) supl <c*+§ = sup I<c"-6§.
A n(4,1)

PROOF: The proof is standard (see for instance [12]).0
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Now we are in a position to prove the main goal of this section: for every integer r we
denote

I't = {4 €Bn2* compact / j(4)* > r}

THEOREM I.1.1. Let I € C'(H;R). Assume that there exist £1,%, C H closed, k € N,
and ¢ > 0 such that

(L.1.8) * £ 0.

(I1.1.9) supl >¢>0, VACZE;,j(4) > 1.
A

Then the numbers

* .
¢t = inf sup I
r Aers AP

are well defined. Assume moreover that

1. ' . =1,....k
(I.1.10) E:%EA I>c > sglzp I, (r =1, )
and that
(I.1.11) (C)ex (r=1,...,k)
(1112) Kc: ﬂFo = 0 (T=1,...,k) .

hold. Then I has at least k geometrically distinct critical points in {z € H | ¢} <
I(z) < ct}.

PROOF: First of all, we claim that the ¢}’s are critical levels for every r = 1,...,k. In-
deed, the classes I'f are invariant under all the homotopies of H%, 5, Hence, assuming

that K . = () for some r, one deduces from the second part of Proposition 1.1.2 (which can
be applied because of (I.1.10) and (I.1.11)) that there is A € I’} such that sup, I < ¢, in
contradiction with the definition of c.

Hence, if ¢f < --- < ¢} the proof is complete. Now we assume that, for some r,h >
L, cg=---=cy,, = c* holds, and we claim that i(K.») > h+1 (observe that, by (I.1.12),
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the index i of K- is well defined). This fact will end the proof, taking into account of
Proposition 1.1.vi).

Let us fix € > 0 such that Lemma 2.1 holds, and let A € T}, be such that supy I <
¢* + 6. Let N = N,(K.-) and 7 be as in Proposition 1.1.2: then one deduces from (I.1.6)
that j*(cI(7(A \ N,o))) < r — 1. Remark that, from Proposition 2.3.iii)?, one has that
7*(cl(n(A\ N,1))) = j*(cl(A \ N)), since n € H, 5, On the other hand, it follows from
Proposition 2.3.ii) that j*(4) <j (cl(A\N))-{-t(AﬂN), so that i(N) > i{(ANN) > h+1.
The proof is then complete by virtue of Proposition 2.1.v ?(indeed, for ¢ small, one has
that i(N) = i(Kc+)).0

1.2. Computation of the indices

In this section we provide examples of sets having nontrivial (i.e. different from 1) ho-
motopical indices. To this end we shall make use of some results of about the homotopical
index contained in Part 4.

We denote by C the set of all the grat circles of SV~ :

Cn = {z€ H/z(t) = z sin 2wt + y cos 2

1.2.
(L21) 2= yl=1, -y =0)

Let us fix up some more notations: let p > 0 and 0 < ¢ < 1 be fixed and consider

1.
(1.2.2) T = {z€H/ 5/ |2]* = 27%p%},
0

(123) 3 = {ocH/~ / 62 = 202 %2} Ufz € H | %/0 ]2 = 202 p2e 2}

and let

(1.2.4) Cx = le,e pCn .

The following theorem holds:
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THEOREM 1.2.2. For every p > 0,0<e < 1and N € N,

(I.2.5) JF(CN)=N-1.
PROOF: It is not difficult to see that j(C%) < j(Cn), and hence, from Theorem 1.4.1 of
the part 4, that 7*(C'%) < N — 1. Thus we have to prove the reversed inequality.From the

definitions of the homotopival pseudo-index (Definition I.1.1) and from Definitions 1.2.1,
I.3.1 (recalling Lemma 1.3.1) of Part 4, proving it is equivalent to prove that

Vhy € Hs, x, , Vhe € Ho(H) , Vf € FN-2,
(1.2.6) 0 € f({z € ha(Cx,1) N1 / ha(2,[0,1]) N OA # 0}) .

Let h1 € Hx, 5,, h2 € Ho(H) and f € Fy_z be fixed. Let e; € SV-1 and consider
SN2 ={z2ec8N-1 )g.¢; = 0}, and consider the continuous F* : SV~2 x §N-2 x g1 x
[ep,e71p] — RV, defined by
(I.2.7) F*(z,y,e*™ X) = X (z cos 2nt + (z-ye1 + (y — (y - z)z)) sin 27t)

F* induces a parametrization of C};, F' i 5N-2 5 gN-2 [ep,e1p] — C%. Define the

continuous &* : SN=2 x SN2 »x B2 x [¢p,e71p] — RN, say o* : SV-2 x SN-2 x B2 x
[ep,e™tp] = RNV=2 £ : SN=2 5 §N=2 5 B2 x [ep,e1p] — R as

hi(F (2,9, )),2 — 27)(2) if
f

(I.2.8) Q*(z,y,’rez"it,A) = { e )
h2(h1(F (z7ya A)’l)al - 27) 1

The continuity of ®* follows from (1.10) and (1.12).

(1'2'9) (P*(zayaTeZﬁt’/\) = f(hl(F*(zvy) )‘))1)) )

and

follgdt_(hl(ﬁ*(w7y1)‘)v2—27')12 dt lf%— <p<1,

(1210) E*(z,y,,’_eﬂwt’/\) - { —k
S | & (F (2,9, 0),1)7dt f0<p< ).

We claim that if

(I.2.11 0,0,2mp?) € ®* x * x £*(SV 2 x SN2 % B® x [ep,e™1p]),
14
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then (I1.2.2)0 is satisfied. Indeed, let ®* x ¢* X £*(20, Y0, T0€2™, Xg) = (0,0,27?). Then,
from (1.12) and (I.2.8) (remember that h; € Hg, s, ), we obtain that 0 < 7o 2 %. Setting

20 = h(F (20,90, 0),1)
, from (1.2.8), (1.2.9) and (I1.2.10) we deduce

f(zo) = 0
z € hi(Cn,[0,1]) N2y
ha(z0,1 —270)(t0) = 0;

that is (I.2.6 ) holds.

In order to prove (1.2.11), we first remark that, by the G -equivariance of k1 and ha,
and from (1.5), the following symmetry properties hold:

@*(a}, —-Y Teiwt, A) = (I’(za yaTe—iwt, A)
(1212) Q*("ﬂl,y _ 2(y - (y . m)x),,reiwt’ A) — @*(w,y,,’_eiw(w—i-t)’ )\)
V (z,y,7et,A) € SN2 x SN2 x B x [ep,e 1 p)

and

(P*(ma —Y, Teiwta )‘) = "‘P*(zayﬂ-eiwta A)
(1.2.13) <p*(—:c,y — 2(y _ (y B :C):Z:),Teiwt,A) — (,D*(:B,‘y,Tew(w_H)’}‘)
V(z,y, 7, 2) € SN2 x SV x B x [ep,e M p] -

By the same perturbations arguments used in proving Theorem 1.4.1 of Part 4 for every
§ > 0, one can find z5 and ¢} with z5 < §, |@; — ¢*|e < & and ¢} still satisfying (1.2.13)
such that:
a) (0,0) is a regular value for (®* — z5) X ¢5;
b) (0,0) is a regular value for both
((®* — 2z5) x ‘P;)lsN"’xSN“? xB2x{ep}

and

((@* - Z5) x Soz)lsN—zst—szzx{c—xp}

Indeed, one is in a position to apply Proposition 1.4.1 of the part 4.
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Hence ((®* — z5) x ¢})”" (0,0) consists in a finite number of 1-manifolds. From the
symmetry of the problem, these 1-manifolds appear in 4-ples of the type

{(z(a)’ y(a), T(U)eiwt(a))a (:B(O'), -——y(d), T(a)e—iwt(a))'7
(1219)  (c2(o),~3(0) + 2a(o) ~ (u(e) - 2(o))e(o) r(e)e T4,
(=2(2),4(0) = 2(y(0) — (y(0) - 2(e))2(0)), e LM} 0,15 -

It is a well-known fact that a compact 1-manifold imbedded in a compact manifold is
either homeomorphic to S* or it start and die on the boundary. From (I.2.8), each 1-
manifold can intersect the boundary only in SV=2 x §¥N=2 x B2 x {ep,e~1p}.

Moreover both ((®* — z5) x 902)|T91N-?st-2xB2x{sp} and

((2* — 25) x 9"§)|—51N—2x51"-2><33x{e-1p} consist in an odd number of 4-ples of the type of
(I.2.13). One can assume without loss of generality that the 1-manifolds starting at the
boundary intersect it transversally.

Since two symmetric 1-manifolds (i.e; belonging to the same 4-ple) can never intersect, one

can conclude that at least one 4-ple of solutions has to connect SV 2 x §V-2 x B? x {ep}
with SV=2 % §N=2 » B2 i {¢~1p}.

Let us denote by (x(a’),y(a),p(a’)ez"“("),/\(a))ae[O’l] one of such 1-manifolds: then one
has that A(0) = ep and A(1) = e~p, so that from (1.2.10) one deduces that

£ (2(0), (0, p(0)e>™(V, X(0)) = 2m%ep? < 20%p? < 2m2e~2p2¢* (2(1), y(1), p(1) €™, A(1))
. Hence a o € [0,1] exists such that
£*(2(00),y(00), p(70)e* 470 (o)) = 27?9
. Therefore
& x " x £*(2(00),y0(0), p(0)e* ™), X(a9)) = (0,0,27%p?)

, that is, (1.2.11) is satisfied.o
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5.I1. The strong force case .

We have seen in Part 3, chapter 1, that a natural condition for the solvability of (Pg),
when o > 2, is that the energy is positive. For this reason, the associated functional will

be positive, and the homotopical index theory introduced in 4.I will be the suitable tool
for the search of multiple critical points.

We are going to prove the following results:

THEOREM IL.1. Let F € CY(RN \ {0};R) satisfy:

3b>a>0,3ay > a>a; >2, such that

(H1) EERHORSrR Vo € RN\ {0}
(H2) — a1 F(z) < VF(z)¢ < —aa F(z) vz € RY \ {0}
(H3) VF@) < vz € RV\ {0},

and assume moreover that a, b, as, «, oy satisfy

| R 2/a _ 2 :
(IL1) LA (“2 2) < 4.

a?/* a; \ a—2

Then, for every positive energy E, (Pg) has at least N-1 geometrically distinct solutions
having minimal period in the interval

(I1.2)
[ (e —2)a\? (2m)? 2o [ —2 N (a3 — 2)a\? (27)? pala & -—-2)%]
(e —2)ay a 2E " \(a —2)a, a 2E |
REMARK: It it not difficult to see that, when (H1) and (H2) hold, the solutions of (Pg)

1
are constrained in the ball of radius (E%;EE)_”) a, so that the following Corollary easily
follows from Theorem II.1:

COROLLARY II.1. Let U € C*(RN \ {0};R) satisfy

Ja > 2 such that
lim o[>+ |VU(2)| = 0,
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and let F(z) = ﬁ for some a > 0. Then there exists E > 0 such that, for every E > E,

then (Pg) has at least N-1 geometrically distinct solutions having minimal period in the
interval (I1.2).

From now on, the energy F is fixed positive. To carry out the proof of Theorem II.1,
we are first going to add to the functional I a term inducing the strong force. Then we
shall prove some preliminary propositions, that will allow the application of Theorem 1.3.1
of Part 4. By virtue of an a priori estimate (Proposition II.1) we shall be in a position to
conclude that the critical points found by Theorem 1.3.1 of Part 4 are actually (up to the
rescaling of the period) solutions of (Pg).

To this end, we start with the following:

DEFINITION II.1. For any ¢ > 0, V, € C2(RN \ {0};R) denotes a function such that

(IL3) Vi(z) > ’-% 0 <o <e
T
(I1.4) Ve(z) > 0 iIf0<|z| <2
(IL.5) Ve(z) = 0 if 2] > 2¢
(11.6) VViz) -z < —2Vi(z) VzeRY-{0}.
Define

L(z) = I(z) + / V.(=)

In the following we shall make use of some results which have been proved in chapter I
of Part 3. For the reader’s convenience we are going to recall them here.

ProposiTioN II.1. (A priori estimate). Assume (H1), (H2) hold and let = € A be a
critical point of I., such that I,(z) > 0. If

a (al - 2)(1
then
(IL.8) lz(t)] > 2¢  Vitelo,1].

Proposition II.1 is nothing else than Proposition 1.1 of Part 3; also Proposition I1.2, I1.3
and I1.4 were proved in Part 3, chapter I. By virtue of Proposition II.1, looking for critical
points of I is equivalent to looking for critical points of I., provided that (II.7) holds. We
are going to show that I, satisfies the assumptions of Theorem 2.1.
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ProproSITION I1.2. Assume that (H1) holds. Then

(I1.9) 3113(1;1\ I.(z) = +oo.

PROPOSITION IL.3. Assume (H1) and (H2) hold. Then, for any ¢ > 0, I. satisfies the
(PS.) condition.

PROPOSITION I1.4. Assume (H1), (H2) and (IL7) hold. Let @ € A be a critical point of
I, at positive level. Then z ¢ Fy.

PRrROOF: Let = be such a critical point; by Proposﬂ;lon 11.1, we know that z is actually a
critical point of I, so that it satisfies

—i=MVF(z),
|£]2 + A2 F(z) = E,

where

1.
22 = 3o 12
=
Jy E—F(z)
since I(z) > 0. Now assume that z € Fy, that is that there exists s such that

z(s —t) = z(t), Vt € R. Therefore £(s) = 0. One then deduce from the conservation
of the energy that F(z(s)) = E, and hence, from (H1), that £ < 0.0

PROPOSITION I1.5. Assume (H1),(H2),(H3) and (II.1) hold. Let z be a critical point of I
such that 4

a—2

2F | a-2
a—-.?.) )

(I1.10) 0 < I(z) < n*b*/*a

Then z has 1 as its minimal period.

PROOF: First, arguing as in the proof of Proposition II.1, we deduce from (H1) and (H2)
that
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(IL.11) lz(t)]* > 5(—"2—;-2—) VteR.

Since z is a critical point of I at positive level, we have

. 5 Jy I
I1.12 — = VF(z
12) Jy E—F(z) )

and taking the L? product of (I1.12) by z, from (H1) and (H2) we obtain

[ < kB [ k@),

E F(z)

and hence

1 s
(11.13) / E-F(z) > (

0 B—
Setting

1.

(IL.14) oo ah B ),

R E-FE) (folE—F(m))z

from (II.13) we deduce

(I1.24) 3 < (& — ) I(z) .

(I.12) and (H3) lead to

2 4
/H <’\aa2/ |z!2(a+1)’

hence, from (I1.12) and (H1) we obtain

at2

(IL.15) /01 2" > Xaoj [(g%] a

/0 1 —F(z).

Since ¢ has zero mean value, Wirtinger inequality says that
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(IL16) /0 P > (2k)? /0 g

where 7 is the minimal period of  ; therefore, from (I1.12) and (H2) we find

1 1
(11.16) 2|2 > (2km)? N / —a; F(z) .
0 0

(I1.15) together with (II.16) lead to
at2
EIPIE L Y B
a1 (2r)? (1 —2)a

and therefore, from (II.14) and (II1.10),

k2<b2/a_‘i o =2\’
~ a?e a; \ a—2

Hence (II.1) implies that k? < 4, and therefore (k is an integer), k = 1.0

Now we turn to the proof of Theorem 1.

PROOF OF THEOREM II.1: To carry out the proof, we first replace the functional I with
I, as in Definition I1.3, with ¢ so small that (II.7) holds. Then, by virtue of Proposition
I1.1, the critical points of I, at positive levels are solutions of (Pg), up to the rescaling
of the period. In order to find multiple critical points of I, we shall apply the results of
sections 2 and 3. :

We claim that I, satisfy all the assumptions of Theorem 1.3.1 of Part 4. Indeed, from
Proposition I1.2, I, admits a lower semicontinuous extension to the whole of H as I.(z) =
+oc0, when z € GA Then (1.3.5) (Part 4) holds. Moreover, Proposition IL.2 also implies
that infgp I. = +o0, so that, by Theorem 3.1, (1.3.6)(Part 4) is satisfied. By Proposition
I1.4, (1.3.8)(Part 4) is fulfilled too. In order to check (1.3.7)(Part 4), from Proposition II.3
we have to prove that the critical levels are positive.

To do this, we assume on the contrary that, for some r, ¢, = 0. Then there is a sequence
(An)n in Tg such that sup, I, — 0. We are then going to find a contradiction proving
that, for large values of n, the Ans are G-contractible sets. Indeed, from (I1.77) we deduce
that sup 4 fo |£|> — 0 and inf 4, min, |z(¢)| — +oco. Therefore, for large values on n, the

G-equivariant continuous homotopy h(z,0) = (1 — o)z + ¢ fol z can be performed, con-
tracting the Ans into a set of large constant functions, without crossing the boundary of A.
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Hence Theorem 1.3.1 of Part 4 can be applied, providing the existence of at least N —1
geometrically distincts critical points.

We remark that, taking R, = [(—%—z—)—é] l/a, from (H1) we have
1 [ ! b
sup I, = sup I < sup{(—/ im|2>(/ E+ a)}
Ry Cn RyCn RyCn 2 Jo 0 ||
= 2252/ o ( 2E )9‘5‘“ )

a—2
a=2
Therefore, from Theorem 1.3.1 of Part 4, cy—1 < 72 b2y (f:E—z— ® . so that from

Proposition I1.5 we deduce that the minimal period of these critical points is exactly one.

Now, we point out that the same method apply to the functional corresponding to the
potential F(z) = —alz|*. It is not difficult to see that, in that case ¢c; = -+- = cy-1 =

a—2
m2a?/*a (2E)"% (see also II1.3 of Part 3). Hence, from (H1) we deduce that
2E

o — 2

2F | ac2

rzaz/o‘a( )g“:zgc,.f_wzbz/aa( )T, r=1...N—-1.

a—2

Finally, arguing as in the proof of Proposition II.5, from (H2) the periods of the solutions

satisfy
2 2
Qg — 2 2 o — 2
< < )

Qg Qa2

hence we deduce from the above discussion that the minimal period of these solutions
belong to the interval

' at2 at2

() e ()™ () e (a))
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5.ITI. The weak force case

When the weak force case is examined from a variational point of view, the main dif-
ficulty arises from the fact that, when the energy is negative (and, from the results of
Part 3, chapter II, it is the natural choice when a < 2), then the associated functional
is unbounded (from below and from above); moreover both liminf, . I(z) = —co and
limsup,_, 55 I(z) = +00. However, as we have seen in Part 3, chapter II, when 1 < a <2
the features of the associated functional are such that its restriction to each set of the type
{z/ fol |#|2 — p2} is bounded from below and it presents a lack of compactness only at the
level of the large constant functions. The homotopical pseudo-index theory seems then to
be a profitable tool in order to obtain a multiplicity of solutions.

We shall prove the following results:

THEOREM IIL.1. Let F € C*(RY \ {0};R) satisfies:

F3b>a>0,,32>a; > a>a; >1, such that
a b

(H1) e S @< | vz € RV \ {0}
(H2) — a1 F(z) < VF(2)¢ < —a; F(2) Vz € RV \ {0}
(H3) IVF(z)| < ﬁ}j—l | Vz € RV \ {0} .

Then there exist three functions U*(a) and 01(2, a3, @, 1), 0'2(%,a2,a,a1) such that,
when o

b/(2—-e)a\® 2—a
1.1 - *
(IL.1) a((2——a)a1) 2—az < ¥(a),
b 2—ay\®
(111.2) 0‘2(;,0‘,&1,02) ( > 1) <1,
and

2/a o2 /(9 279 o\

(I11.3) % oy (2 an)a)’ (2-a <4,
a?/* o \ (2 - a)a; 2—a; olite
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then, for every negative energy E, (Pg) has at least N-1 geometrically distinct solutions
having minimal period in the interval

2—-a«a = 2 — s\ 2—«a = 2 —a;\?
II1.4 22/ : 2p2/e =) ].
( ) [W @ o ( ——2E) (—-CZQE T b @ —2F ~‘Ol1E ]

Moreover ¥*, o1 and o, enjoy the following properties:

U*(a)>1 Vi<a<x<l1
(1) =1
]im2 ¥*(a) = 400

b

a’i(;)a27a7a1) >0

. b
m  oi(—,az,a,01) =1 Vfixed «
(Z—al)b t a, EE et At

(2—a2)a.‘1

b 2 —a1)b
im oi(—,az,a,01) =1 if(——a—l)

fm oi(~ (2= a)a remains bounded.

The properties of $*, o1 and o, simply mean that, for each fixed 1 < a < 2, the field
of conditions (II1.1), (II1.2) and (II1.3) is non empty, and that, when o — 2 they converge
to the limit condition:

e ol ((2—a)a 2 9 g <4
a?/* a? \ (2 - a)ay 2 —ay

REMARK: It is immediate to check that, when (H1) holds, the motion of each possible
1

solution of (Pg) is constrained in the ball of radius :%) ®. Therefore all the hypotheses

of Theorem III.1 can be assumed to hold true just for every z in this ball. Therefore, the
following result directly follows from Theorem IIL.1:

CoRrOLLARY III.1. Let U € C}(RY \ {0};R) satisfy

Ja,1 < a < 2 such that

(L5) lim [¢]*+[VU(2) = 0,

and let F(z) = [z]= for some a > 0. Then there exists E < 0 such that, for every E < E,

then (Pg) has at least N-1 geometrically distinct solutions having minimal period in the
interval (II1.4).
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III.1. Proof of Theorem III.1

To carry out the proof of Theorem III.1 we shall apply the results of chapter I about the
homotopical pseudo-index. First of all, we are going to replace the ”singular” F' with a
regular F,, which is defined and smooth even at the origin. Next we shall provide estimates
which will allow us to apply Theorem I.1.1. Finally from the a priori estimate (Proposition
I11.1.1) we shall conclude that the critical points found in this way do not interact with
the truncation.

Although some of the estimates below were proved in 3.II, we shall recall them here for
the reader’s convenience.

We start by defining the suitable truncation of F':
DEFINITION II1.1.1. Assume that F satisfies (H1),(H2). For any ¢ > 0, F. € C*(R™;R)

denotes a function such that

F.(z) = F(=) if |z|>¢€
0<VF,(z) -z < —azF.(z) VzeRY
— F,(z) < I—b|—— VzeRN
T [s4
there is a non decreasing f : R — R, with
f(zl) =2 & if|z] <e
such that — F.(z) > f(|=]) Vz € RN .

* We set

L(z) = (% /01|::':|2)(/01E—F;(z)> VeeH.

The following proposition provides the above mentioned a priori estimate: (notice that
Proposition II1.1.1 is nothing else than Proposition II.3 of Part 3)

PROPOSITION II1.1.1. (A priori estimate) Let F satisfy (H1), (H2), and let F¢, I, as in
Definition II1.1.1. Let ¢; > 0 be fixed. There exist € > 0 and a function ¥y : [0,1] —
[1,400) such that if

(IH.I.G) | g (EZ : Z;B:) 2 22:;: < lI’l(Ol) ;

then, for every 0 < € < €, each critical point of I, at level

2— o, iz=

)

(IIL.1.7) a < L) < e < 7?0 af
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satisfies
lz(¢)| > € VteR.

Moreover, ¥, fulfils the following properties:
‘I’l(l) =1 H
¥, is increasing;
]JID.2 ‘I’l(a) = 40c0.

It is clear from Proposition IIL.1.1 that finding critical points of I. such that (II1.1.7)
holds is in fact equivalent to finding critical points of I.
According with the definitions of I.1 and 1.2, let us define

(2—a)aq2
II1.1. = ||
( 8) Py [ —92F ] )

1 1
(II1.1.9) Si1={z€eH/ 5‘/(; |£]? = 272p2} ;
(I11.1.10) Ty =ep,CnUe ' pCn ;
(IH.l.ll) Cn = [pr,s_lpb]GN .

Let us recall some other results of Part 3, chapter II:

ProposITION II1.1.2. Let ¥y be defined in Proposition III.1.1 and assume that (HI)
holds with ;2 < ¥y(a). Then there exists € > 0 such that, for every 0 < € < &, then

2—a

_ 9 _ =
(II1.1.12) inf I, > 27r2p§ (E + ( 2E )) = n2p2legy ( a) <supl. .
£1N8A ch

2 -« —2F

ProrosiTioN 1I1.1.3. Let F(z) = ﬁ, for somea > 0 and 1 < a < 2. Then the smallest

2—a

positive critical level of the associated functional I in A is 72a%/%« (%—;—%) °

ProrosiTioN II1.1.4. Let F(z) = ﬁ, and let I, be as in Definition 4.1.For any p > 0,
consider the class
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={AeBn2/jA4NnS,) >1};

and let us define

1
(I11.1.13) K(a,p) = inf sup/ F.(z).
A€ ‘Ap A Jo
Then,
(111.1.14) K(a,p) = K(a,1)p™%, Vp>0,Vi<a<2;
(I11.1.15) K(e,1) = a(v2r)*, Vi<a<2.

PROPOSITION III.1.5. Assume (H1),(H2) hold and let I. be defined in Definition IIL1.1.
If ¢ is sufficiently small, then, for every 0 > ¢; < ¢z and every c* € [c1,¢2], I. satisfies
condition (C).=.

The proof of next proposition is very similar to the one of Proposition III.1 of Part 3.
For sack of completeness we shall give it in the next section.

PropPoSITION III.1.6. Let (H1) (H2) and (H3) ho]ds Then there are functlons =, o1 and
o2, such that, when

b((2—ai)a\® 2—« — —
I11.1.16 - = (),
( ) a ((2——a)a1> 2—ay < E(a) <E(e)
b 2—a\*
(II1.1.17) Ug(z,a,al,a2)< 2a1) <1,
and
24a
b2/« aal (2— o 2/2-a\ = 1
(III.1.18) o2/ ai (2—&) (2__0[2) ;F<4,

then, for every energy E < 0, each critical point of I at level
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2—-a

2—a) ° 2 -« =
2 2/a < < p2p2/a .
(II1.1.19) T“a a( 2E> < I(z) <7*b a(_2E) -

has 1 as minimal period and can not belong to Fy.
Moreover, E and o enjoy the following properties:

Ela)>2, Vi<a<2

]_im2 Ela) = +4o00;

b

0'(';,(!,&1,(12) >0

b
Im o(—,0,a1,a2)=1 for every fixed «
2_2_2_,1 a

- (2 - al)b
(2 —az)a

Now we are in a position to prove Theorem III.1:

b .
lim o(—,a,a1,a2) =1 if remains bounded.
a

a—2

ProoOF oF THEOREM III.1: To carry out the proof, we are going to apply the results of
I.1 and I.2 about the homotopical pseudo-index.

We are going to define ¥*(a) = min (‘I’l(a),E(a), 2—_2—&-), in such a way that the as-

sumptions of all the above Propositions are satisfied.

Let us first replace F' with F, as in Definition III.1.1. ¢ can be taken so small that all
the previous Propositions hold true. Then we claim that the associated functional I, fulfils
all the assumptions of Theorem 2.2. Indeed, let Z;, I, be defined in (II1.1.9), (II1.1.10).
Then, from Theorem 3.2, we know that C} as defined in (IIL.1..11) belongs to I'},_,.
Moreover, we deduce from (H1) and Proposition II1.1.4 that, for every A C 3y, j(4) > 1,
we have

2a
> - 2,2 — .
stlipI,__ 2 py B ((2—a)b 1) >0

So that (I.1.8) and (I.1.9) hold true. Moreover, by Proposition III.1.2, when ¢ is small,
then

2-a
(I11.1.20) inf I, > 7*5*/%a (:‘;) > r=1,..N-1,
while, Proposition II1.1.4 leads to
(II1.1.21) cy > inf > -27°piE (——————?a———) > supl., ; r=1,...N -1,
ACY, (2 - a)b -1 )3
i(4)21
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(indeed, supy, I. < C1£2~%, for some constant C; independent of ¢). Therefore (I.1..10)
is fulfilled and, by Prop031t10n II1.1.5, also (I.1.11) holds true. Finally, from the above
inequality, Proposition III.1.6 allows us to exclude the existence of elements of Fp at the
critical levels ((I.1.12)). Thus Theorem I.1.1 provides the existence of at least N —1
distinct critical points z, (r = 1,...N — 1) of I,. Let us observe that the same method
provides critical point for the potential ;I‘: , so that from (IIL.1.20) and Proposition IIL.1.3

we deduce that the following estimate holds:

' 2-a : 2~
2—a\ © 2—a\ ©
212/ > > 2 2/0:
w“b a(~2E) I(z,.) T (—-2E)

By virtue of Proposition III.1.1, we can say that these critical points do not interact
with the truncation, that is, they are critical point of I. As such, up to the rescaling of the
period, they are solutions of (Pg) having minimal (because of Proposmon III 1.6) period
in the interval

() oo ()™ () oo ()

II1.2. Proof of Proposition III.1.6

In this sectlon we turn to the proof of Proposﬂnon III 1 6. To do thls, some prehmmarles
are needed.

Let = be a critical point of I such that (II1.1.19) holds, and let y(¢) = z(A7't) be the
corresponding solution of (Pg). We shall actually prove that y ¢ Fy and that the minimal
period of y is A.

From (H2) and the estimate on the level of z, we deduce the following estimates on the
period A of y:

(1I1.2.1) n*a*/*a 2—a\'" (2-a 2<A2<7r2b2/aa 2—a\* (2-a1\’
—2F —azE - — DY —alE

As a solution of (Pg), y satisfies

(m2.2) —§=VF(y)
(112.3) SIil* + F(y) =

Let us denote
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(I11.2.4) p(t)=ly(t)|, VieR

and

(0.25)  eft) = o= lyf* (~2F) - VFG) -3(1) . VeER,

Then from (H2) we deduce that

(2 - al)b

2. <e(t) < P2 wieR.
(I11.2.6) | 1<e(t) < (2—a)a €
Moreover, from (II1.2.2) and (II1.2.3) we have
—3p2 = 2B — (2 ay)a%2 VteR
(I1L.2.7) p(t+ ) = p(t) VteR
p(t) >0 VieR.

PROPOSITION II1.2.1. Assume that (H1) and (H2) hold, and assume moreover that £ <
2 Assume that y € Fy. Then there are A1y and Ay with Ay — A} < 52\—, such that

2—(11

P(A1) = p(A2), p(A1) = p(A2) = 0, and minyepa, 2, 9] = 0.

PROOF: By definition, y € Fy implies that there exists s € [0,1] such that
y(s—t)=y(t), VteR,
or, equivalently
s s
——t)=y(= +1 VieR.
vz =t =y(5+1), €

One easily deduces that

—t) = teR
5o 0=y 4y, VieR,

and therefore that

i) =2 =0,
Hence, it follows from (II1.2.3) that
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F(y(3)) =

so that (H1) implies

8. .q a s+1
Iy(-)l 25 and |y

From (II1.2.7), we can conclude that both ly(5 )| and |y(2 "’H)I are strict local max-
ima for |y(t)| One then deduces that there is at least one local minimum |y(¢*)|, with
t* €3, ] Assuming for example that t* — £ < %, one finds that p(t*) = p(s — ¢*) and

p(7) = pls — ) = 0.0

ProrosITION II1.2.2. Assume that the minimal period of y is 2, with k > 2. Then there
are A\; and Ay with Ay — X\ < , such that p(A1) = p(A2), p(A1) = p(X2) = 0.

PROOF: In an obvious consequence of the fact that p(¢ + —k—) = p(t), Vt € R.o

PROPOSITION II1.2.3. Under the assumptions of Proposition III.2.1 (respectively Propo-
sition IT1.2.2), there are three functions o1, : (1,2) X [1,+00) — (0,4c0) and E : (1,2) —

(1,400) such that, if
b (2 — al)a «
a ((2 - a)a1> 2—a, < Ea),

holds, then
b 2 —ap)a) @
p(t) 2 01(;,a2,a,a1) (—(__:ZE—l)> N Vi € [Al,)\z] y
and
b 2—ay)b
P(t) < Gz(;,ag,a,al) (( 25) ) , Vte [Al,)\z] .

Moreover, the following properties hold:

Ela) 21 Va € (1,2);
= is increasing

lim E(a) = 400 ;

b ,
im o;(—,az,,01) =1, Ve € (1,2)
a

e
b 92—
3_1112 ai(;,az,a,al) =1, if %5—_—321—))—— remains bounded .
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PROOF. STEP 1: By the change of variables s(t) = fot —5—;, and p(s) = p?~%(s(t)), from
Proposition II1.2.1 (resp . Proposition 111.2.2), (II1.2.7) becomes equivalent to

—p" = =2(2 - a)Epf — (2 - a)’c(s)
#(0) = p(w) ,

p'(0) = p'(w) =0

p(s) >0, Vs.

(111.2.8)

Where (-)' denotes the derivation with respect to the variable s

a
I11.2.9 _—
(m.29) e
and
A2 1
(I11.2.10) w= —
PR

Note that, by Proposition II1.2.1 (resp. Proposition II1.2.2), by integrating the equation
in (II1.2.7) one obtains

! —2E —2E X
I1.2.11 = — <L (A - ) .
( ) w AI pa——(z“az)a(z 1)—-(2_a2)a2
We set ¢(s) = (1 + co(s)), so that, from (IIL.2.6) we have
(2 - al)b
111.2.12 < < - .
( ) 0 <co(s) < (2" an)a’ Vs € [0,w]

By derivating the equation in (II1.2.8) and by taking the L? inner product with p' we
obtain

(111.2.13) / (u")ds = —QaE/ PP )2ds + (2 - a)(2 - ag)a/ cop’ds ,
0 0 0

and, from Holder inequality, taking into account of (II1.2.12),

(I11.2.14) /0“’ (7)o = (2 = )2~ ea)e (5‘22‘—_-_2:))_2 - 1) Ve </ow (u”)zds)%
< —2aF /: #3~1'(/L’)2d3 .

144



Now, for any 0 < § < 1, the inequality
a2
41— 6)

together with (III.2.14) imply

§z? —

< z?—dz, Vz,d € R,

2
w (2—a)2(2——a2)2a2 (QE—O—“—)'E}' -—1) w
6/ (") ds — Zooa)e
(111.2.15) 0o | 41 -9)

< -ZaE/ pP (') ds .
0

<

STEP 2: Let us denote by H? the Sobolev space {u € H(R; R) / u(s +w) =u(s)Vs € R}.
Let us consider, for every § > 1

E_:l
’ (WP Sy e
I11.2. CH = 0 0
( 16) (B,UJ) 1}}; fow "l'l,lzl'lLlﬁ_l
and
! ' W 1m\2
(II1.2.17) Q*(8,w) = inf __f-"——(ﬁ—)—f :
N <€ ([ o)’
The following properties hold |
(I11.2.18) E*(B,w) = ;ﬁE*(ﬂ,l) , VA <1,Yw>0;
w B
(I11.2.19) Q' (Byw) = —a O (B,1), | VB21,Ye>0;
. w P
(HI‘2'20) E*(:Bal) 2 Q*(.B,l) ) VB21;

1+8
B

148 2T
(IIL.2.21) 0 (8,1) = — BEA T ¢ / |sin 6] a8} .
w B 0
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Taking into account of (II1.2.9), we set

2 4 «a
E()= = =3 B (1),
(I11.2.22) (22) (2-a) az a
Ya) = (27‘_)2(2~a)ﬂ (2_a,1) ) -

The proof of (II1.2.18) and (II1.2.19) obviously follows from the definitions. Formula
(IT1.2.20) follow from the definitions and Holder’s inequality. Finally (II1.2.21) was proved
in 3.I1.77

REMARK I11.2.1: From (IT1.2.22), one deduces that

‘ 4 m :
> —_— .
) 2 w2 (2-—04) ’

=(a) 2 (%)a 2ja '

since the right hand side of the above inequality is increasing, we deduce that Z fulfils
all the properties of the claim of Corollary II1.2.7771

and then that

Now, from our change of variables we have

(I11.2.23) / 1B = — ).
0

Hence the inequality (II1.2.15) can be rewritten as

2
w , (2 - a)’(2 — az)?a (%;—g-:—g-g—l) w
) (n”)ds —
0

(I11.2.24) N _41(1 )
7 o (W) p
S —2aF (5) W .

Assuming that p is not constant, from (I11.2.24), (II1.2.15) (II1.2.18), we deduce

| 2-af-e)a (B - 1) w

(2—az)a
(T11.2.25) 41-6) f; (w)
g1
A\ 7 1 148
< —2aF | = p w s,
<-22(3) " 5



efore from (I11.2.22), (111.2.9), (I11.2.23) and (I11.2.1), we obtain

and the
5 (2-a)(2- az)’e ((2_‘;3“ 1) w
| s1-8) Jy W)

(IIL.2.26) N (2 a1)o)
< (;) (2—a1)a1) ( —az> (u(a))“.

3, we assume that

Now, according with the claim of Proposition 111.2.

(2 —a1)a “2—a —
111.2.27) —_ = < & .
( ) a (2 - a)a1 2 — s (a)

Let us denote

o b= (0 (AR (B2
We set |

5= (1 + E———"“”‘l(%’az’a;al)) ;
2 (B

it follows from (IIL.2.4) that 0 < 6 <1. Now (I11.2.26) becomes

-/;(‘L”)2
(111.2.29) . by e\
- o apr e (22 Y (1 S )

and hence, from (111.2.19),

[m230)
(f (u’)“’)F <
! (2 - a)P(2— w) (%{—%% - 1)2 (1

<
= 72(2 — o))

Now, an easy computation shows that
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A2/ d ata 28 5 2+ «a) 9
2,45 - Pd
(L o) ) = (=) ([omas)
so that,from (II1.2.30), (111.2.9) we obtain that

A 28 5 . 2fae ite
2 d 2ta b 9 _2E « A a
s —p 3 < — [ — ,
(111.2.31) </A1 (dtp ) dt) _fg(a,az,a,ou)a ((2——a2)a> (2

where

52(;)‘12’(1)&1) =

2+ ) 2 1 2
B (2(2——04)) Wzg(a)(2“a)(2—a2) .

() (- G)

has the following properties (see Remark II1.2.1):

Lim 52( ,o,a,a1) =0 Vi<a<?2

(2—ay)b -1
(111.2.32) (2= az)e , )
ilglz 52(—b~ az,a,01) =0 if -((—é%g—:—%; remains bounded

(2-23)e)* Remark that, since, from (II1.2.7), every local maximum

Let us write p. = ( — 5
p(to) has p(te) > pa, then either p, is assumed by the function p(t) of-p(t) > ps, Vi.From

(II1.2.31) we deduce

A
2ta 2 Cl 24a
P55 (1) — pu l_/ 5P = ldt
A

Az 28 5% L
< (/ (_ii_pz%g) dt) A\~
n \dt |

<& (ga) ()

and hence, from (III.2.1),

(111.2.33) P W) — it < & (Q{-é%ﬁ) R o
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where

2ta

(fome) (3=2) "

flw

b w2 /b
(I11.2.34) 6(2 ez 0 0m) = Vo (-)

still satisfies

LEm fg(ﬁ,az,a,a1)=0 Vi<a<?2
a

(2—a])b —1
(I11.2.35) (3-az)e , ) ;
il—n}z 63(;,a2,a,a1) =0 if ((é—-isi—)); remains bounded

Finally obtain

o_ 2
(111236) p(t) Z O1px = 01 ('(——%32')2) Vt S [/\1,)\2],
and
(I11.2.37) p(t) < o2ps = o (%} T Ve P,
where
24a

b 2 b
(‘71(;"1270‘)051)) "—"1'—63(";,0!2,&,041) ’

and
24a

b 3 b
(az(g,az,a,cn)) =1+£3(;,az,a,a1),

From (II1.2.35), both oy and o, satisfy

b
(2_]ir% oi(—,az,a,a1) =1 Vi<a<?2
(II1.2.38) “-“3’“': ‘ .
il_]f_]:lz o'i(;,az,a,al) =1 if %5—%; remains bounded

Hence Proposition II1.2.3 is proved.
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PROOF OF PROPOSITION II1.1.6: We assume that (II1.1.16) (I11.1.17) and (II1.1.18) hold
with &, 01 and o respectively defined in (I11.2.22), (I11.2.36), (II1.2.37). Assume first that
Yy € Fy. Then Proposition III.2.1 says that there is ¢ € [A1, A;] such that (%) = 0 We then
deduce from (III.2.3), (H1) and Proposition I11.2.3 that 02(%,a2,a,a1)°‘ 5=, that is
a contradiction.

—ay?

Now we assume that the minimal period of y is 7, for some integer & > 2. Then
Wirtinger inequality leads to

(I11.2.39) (Me) / 91> < / 1 .

On the other hand, from (H2) we have

A
(I11.2.40) /0 AIzJI2 > - /0 F(y)

and, from (H1), (H3) and Proposition II1.2.3 we obtain

/ 5 = / lVF(y2)|2<a / I
< oo ((2—2fz>a)a = [ -F).

From (III.2.40) and (III.2.41) we deduce

27k 2< . —2E \ = 1
h\ S aa, (2_~ az)a o_iH-a .

Therefore (I11.2.1) implies

(IT1.2.41)

24a
k2<bz/°‘ ad (2—ay\ [ 2-a)\ = 1 <4
~ a?/e od 2—« 2 — as 012+°‘ ’

that is (k is an integer) k = 1.0
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PART8 SYMMETRIC CASES
A THREE BODY PROBLEM

As we have already pointed out in Part 4, chapter IV, one can overcome the strong
degeneracy occurring at o = 1, provided that the potential F' possesses some symmetry
properties. As a matter of facts, the symmetry of the potential allow the introduction of
some symmetry constraints in the function space. The first effect of this constraint is that
the functional becomes coercive on the space of the symmetric functions; for example, we
have seen in IV of Part 4 that, when F is even, the natural domain of the functional is the
space of all the functions in H such that z(¢ + —2"':) = —z(¢), Vt € R. The main problem in
solving (Pr) then becomes to avoid the collision solutions. In all this part, our abstract
setting will be the following. A is an open and dense subset of a function space H, where I
is defined, coercive and (weakly) lower semicontinuous; moreover I is regular (of class C?)
in A. Of course A is the set of all the noncollision functions, and the problem of avoiding
collision can be faced by wondering whether

(1) inf I <inf .
A 8A

When F(z) = I—zzl%‘—’ we have shown in IV of Part 4 that the symmetry constraint

z(t + %) = —z(t) implies that (1) holds, for every a,a > 0 This fact has been showed
m |26], where a pinching condition is introduced in order to treat potentials similar to the
ones of the above form (see also Part 4, chapter IV).

We are going to show that the minimization approach provides noncollision solution
under local assumptions on the potential near the singularity.

In this part we shall be concerned with the following problems: in chapter I we shall
treat the problem

~% = VF(z,t)

z(t +T) = z(t) qquad Vi
z(t + L) = —z(t) vt
z(t) £ 0 vt,

when F' is T-periodic in ¢ and satisfies some symmetry properties, as well as the the
problem
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—z = VF(z,t)
z(0) =zo , 2(T) =z,
z(t) #0 vt

We shall show that, under suitable local assumption at zero, the associated functionals
fulfils (1).

The method introduced there will turn out to be profitable also in treating a restricted
two body problem; more precisely, we assume that the trajectory of two bodies z; and z,
is fixed T-periodic and such that z;(t + %) = —z;(t), Vt € R. We assume moreover that
z; € C*(R\ (z1 — z2)71(0);R?), and we consider the problem

( —2 =VFi(z—z,)+ VFE(z — z2)
e(t+T)=z(t) Vi

{z(t+ 1) = —2(t) A

z(t) —z1(t) #0

L z(t) —z2(t) # 0

Finally we shall consider the three body problem

Vi g (z1—=2)77(0),

(—%; = ZL; VEF; j(z; — z;) i=1,2,3
7=1 |
£ :cz(t-}—T):::x,(t) Vt,i=1,2,3
z(t+ L) = —=z(t) Vt,i=1,2,3
L zi(t) —z;(t) #0 Vi, i=1,2,3.

Also this problem will be treated under local assumptions on the potentials Fj; near
the origin.

I The symmetric case

In this chapter we are concerned with some classes of conservative differential systems

with boundary conditions and singular potentials of the type F(z) = Tsj=> @ > 0 and
0 < a < 2. The existence of solutions to this kind of problems can be derived from the
minimization of a suitable functional, the main difficulty being to avoid the ”collisions”,
that is, the functions which pass through the singularity of the potential.

As we have already pointed out, the main purpose of this chapter is to show how one can
make use of local hypotheses on the potential (in some neighborhood of its singularity) in
order to get existence of at least one noncollision solution. We wish to point out that our

argument will provide orbits which remain only for a very short time in the neighborhood
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of zero where we make our assumptions; therefore our method cannot be viewed simply as
a perturbation technique.

We begin by fixing some notations: for a fixed F' € C2({RN \ {0}} x R;R) we write

—a :
F(z,t) = l;l'z +U(z,1)
for some a > 0 and 0 < & < 2.
Concerning U we shall make the following assumptions:

(H1) | lilm‘ SI;p lwlal%g(:c,t)l < 400  uniformly in t;
(H2) llilm0 |z|*T2|V?U(=,t)] =0  uniformly in t;

U(z,t) = %l“’lz + V(=,1) for some AeR, and

Lm |VV(z,t)|

(H3) ,
=0 uniformly in t.

REMARK I.1: It is easy to see that (H2) implies the following growth conditions for U at
zero:

I]i|m0 |z|*T|VU(z,t)] =0  uniformly in t;

llilm0 |z|*|U(z,t)] =0  uniformly in t.

<

Suitable conditions on ) will be imposed later in order to ensure the coercivity of the
associated functional.
Our main results are summarized in the following theorems. Although these are formulated
for N > 3, we will show in Section 1.2 that the case N = 2 can be treated with similar but
more restrictive hypotheses. We remark that the theorems contained in this paper are still
true when o > 2, but, as is well known, this case permits a standard approach to avoid
collisions ([28]), and therefore we shall not consider it here.
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THEOREM I.1. Let F be defined as above, for some N > 3,a > 0 and 0 < a < 2. Suppose
that F' is T-periodic in t and satisfies the symmetry condition

(S) F—a,t+ *12:) _ F(z,f) VzeRN\{0},vtcR.

Assume moreover that (H1), (H2), (H3) hold with A < (%)2 Then the problem

—% = VF(z,t)

) z(t 4+ T) = z(t) VteR
z(t+ L) = —=z(t) VieR
z(t) #0 VteR

has at least one solution.

COROLLARY I.1. Under the hypotheses of Theorem 1.1 assume that F does not depend
on t. Then, VT > 0, problem (1) has at least one solution having T' as minimal period.

THEOREM 1.2. Let F' be defined as above, for some N > 3,a > 0 and 0 < o < 2. Suppose
that F is T-periodic in t and that (H1), (H2), (H3) hold with A < 0. Then the problem

—% = VF(z,t)
(2) z(t+T) = =(t) VteR
z(t) #0 VieR

has at least one solution.

THEOREM I.3. Let F be defined as above, forsome N > 3,a > 0and0 < a < 2. Let T > 0
and z,,z; € RY \ {0} be fixed. Assume that (H1), (H2), (H3) hold with T?) < A(z1,25),
the best Sobolev constant of the injection of {z € H*([0,1];RN) / z(0) = 2, , z(1) = z3}
into L?. Then the problem

_§ = VF(z,1)
(3) z(0) =21, z(T) =z,
z(t) #0  Vie[0,T)

has at least one solution.

REMARK 2: Problem (3) becomes nontrivial when the angle between z; and z, is not too
small.c

154



REMARK 3: Hypotheses (H1) and (H2) are obviously fulfilled if U is regular (of class C?)
in the whole of RY; therefore we can solve (1) whenever F(z,t) = 3|z|* — wE T V(z,t) is

such that V € C2(RN x R;R), A < (—:’1'—,)2 and VV/(z,t) is sublinear at infinity.c

Solving problems (1), (2) and (3) is equivalent to finding critical points of the functional:

T
1) = [ GHF + i — Ul 0ha

respectively on the sets
T
Ay ={z € HY(R;RY) / 2(t + T) = =(t), =(t + -é—) = —z(1), z(t) # 0Vt € R},

Ar={z€ HI(R;RNj/z(t+T) = z(t), =(t) # 0Vt € R},

Ay ={z ¢ Hl([O,T];RN) / z(0) = z1, =(T) = =2, z(t) # 0Vt € [0, T}

In the setting of Theorems 1, 2 and 3, the functional I is weakly lower semicontinuous
and coercive, so that its infimum is always attained in A;, A; and Aj respectively.

The main problem being to avoid collisions, we shall use the following argument: first we
perturb I with a suitable ”strong force” term in a neighborhood of zero, thereby obtaining
a noncollision minimum for the corresponding functional; next we prove that any such
minimum cannot interact with the perturbation, and therefore is a critical point of I in
A;, ¢ = 1,2,3. To this end the main estimate consists in showing that if the minimum
approaches too much the singularity, then a small variation can be performed making the
functional decrease.

As a by-product of our approach we shall show in Section 4 that in each case one actually
has

infl >infl,:=1,2,3.

BA; A;
N.B.: the three theorems can be proved with nearly the same argument and the same
technical lemmas. An additional difficulty arises in the proof of Theorem I.1 because the

variation mentioned above has to be symmetric. This is the reason why we perform only
the proof of Theorem I.1.

NOTATIONS: Throughout this chapter we shall denote by B, = {z € RV / |z| < r}, the
ball of radius r in RN (centered at zero), and by SN¥~! the unit sphere: SV~ = {z €
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RN / |z| = 1}.
The sets A;, 7 =1, 2,3, defined above are open and dense in

H ={z¢€ HI(R;R‘N) [ z(t +T) ==z(t), =(t + %) = —z(t), Vt € R},
H, = {z € H(R;R™) / 2(t + T) = =(¢), Vt € R},

H; = {z € H*([0,T);RY) / 2(0) = 21, (T) = z3, },

respectively. Therefore A; and 0A;, are to be considered in H;, 1 = 1,2, 3.
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1.1. Locally radial potentials

In this section we prove Theorem 1.1 under the additional assumption that the potential
is radially symmetric in 2 neighborhood of the singularity- This result will be used in the
proof of the general case of section 1.2. We wish to point out that in presence of local radial
symmetries, the assumption (U2) considered here is weaker that (H2), so that Theorem
1.1.1 is not just a particular case of Theorem L.1.

According to the notations of section 1, we write

(L.1.1) Fle,t) = o+ U@ Y (z,8) € RV \{0}) xR

|z

and we suppose that the function U satisfies the additional assumptions:

Je>03¢:(0,e] » R of class C? such that

(o Uls,t) = ¢(le)  ¥2,0< || <¢c,VteER
(U2) | tm 5=14/(5)] = O

Remark that (U2) implies that

Hm s*|p(s)l =0
Then we have the {following ’

TugoreM 1.1.1. Let F be as in (1.1.1) witha>0, N =2 and 0 < o < 2. Suppose that
F is T-periodic in t and satisfies the symmetry condition (S). Assume that (U1), ( U2) and

(H3) hold with A < (%)2; then problem ( 1) has at Jeast one solution which minimizes I in
Al-

PROOF: Consider the functional defined in A1

T
(1.1.2) I(z) = /0 {15\:0\2 + EGF — U(z,t)}dt -

Because of the symmetry properties of F, the critical points of Iin Ay are solutions of

(1). Assumption (H3) together with the fact that A < (%)2 jmply that I is coercive, that
is there are constants j, V > 0 such that:
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(1.1.2)  I@) > ulEE-v, Veeh.

For each § > 0 we take a function f5 € C?((0,+00);R) such that

. 0, fs>4é
) ={20 o<
() A0 e8],

It is immediate to check that such a function exists for every § > 0. Now we define

Fs € C3(RN \ {0};R) as Fs(z) = fs5(|z|) and we consider the functional

(L1.3) Ts(z) = I(z) - /0 " Fi(e)it

The term Fy induces the strong force and therefore, as is well-known, inf,epp, J5 = +00,
so that no critical point of Js at a finite level can cross the singularity. Since (I.1.2)
holds for Js as well we can conclude that there exists zs € A; such that infyep, Js(u) =
Js(zs). In order to prove that zs is a solution of problem (1) we are going to show that
mingeo, 1) |25(t)| > 6 if 6 is sufficiently small.

To this aim we suppose that for every § > 0, the minimum zs found above satisfies the
property minyepo 17 |25(¢)| = |z5(¢5)| < § and we show that this leads to a contradiction.
In what follows the C; ’s, j=1,2,... will denote real constants independent of 4.

Now, since z5 is an absolute minimum of Js on A, there exists C; such that

(1.1.4) I(zs) < Js(zs) < C1

then from (I.1.2) it follows that there exist C; and Cj such that

(1.1.5) l|25]]3 < Ca
and
T
(1.1.6) / 2 dt<Cs.
0 |736|a

Therefore there exists an €' < ¢ (independent of §) such that, if A = {t / |zs(t)] <
e'}, then meas(4.) < Z.
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At this point we can take an interval [to,t1] C [0, 7] such that
i) |zs(to)l = lzs(t)l = g, [t —tol < z;

i) |es(t)] <€, VIE (o,t1) 3

iii) mingeso,t 126(H) <6

Moreover, from (I.1.5) it follows that there exists Cs such that
T
(117) Cs < ‘tl — to‘ < -é' .

Repeating the above ar ument for & we can find another interval [so,s1] C (fo,t1
) , )

such that |zs(s0)| = lzs(s1)l = T » Vt € (s0,81) and mingelse,s:) |zs(t)] < & - Exactly as
above,then, there exist Cs, Cs,Cr such that |81 — 0| = Cs ,|to—s0| = Cs ,|t1—s1] = Cr .0

steEP 1 (N > 3): Now, since the potential is radial in B, \ {0}, zs is planar in the same
set, and precisely it lies in the plane spanned by z(to) and £(to). Assuming that N > 3,
then there exists a vector vs € SN-1 orthogonal to zs in [to,t1)-

We are going to use vs to show that there exists at least one direction along which the
second derivative of Is is negative.

To this end, let & : [0,T] — [0,1] be a continuous, piecewise linear function which satisfies

s wo={3 s

we extend &5 by periodicity to R and we let ws = (£5(2) — Es(t+ %—)) vs: it is clear that
ws + x5 € Ay; moreover, we claim that V2 Ja(zg)(wg,ws) < 0, contradicting the fact that
5 is a minimum point in A;. To carry over this estimate we need to analyze the form of
V2J5(zs)(ws, ws). An easy computation shows that

T T cwe )2 T 2
V2T 5(r5)(ws,ws) = / is[2dt + ace(cx + 2) ———————(T‘S lsz dt — ac / ————lw” dt
(1.1.9) 0 0 L 0

T
_/ {VZU(zg,t)(w,g,'wg)+V2F5(x6)(w5’w5)}dt .

0

Notice that whenever ws(t) # 0, we have |zs(t)] < €', so that we can substitute U with
¢. Now, it is easy to see that in B. \ {0},

(11.10) 924(1e))(6,0) = K(@)(z -0 + %‘fﬁw ,
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for some suitable K € C°(B.\{0};R), and for all { € R"; moreover, a similar expression
holds for V?Fy. Thus, since by definition ff(|z|) > 0 for all = # 0 and zs(t) - ws(t) = 0 V¢,

we get, also taking into account the symmetry of z5 and wyg,

2 T 2 T ]
V2 Js(z5)(ws,ws) < —g—- + — - aa/ s dt — lealzdt <
Cs 0

a2
1w 1 36 .
—+ — — 2aa/ —dt — / s|°dt .
Cs Cn to  |Zs] Tleal

Without loss of generality we can suppose €' so small that by (U2) — Iz:lg - ol l(zlj«’sj) <

—]‘;;']'s&q_—f for some S > 0 and all z € B, \ {0}, so that

(1.1.12) V2 Js(zs)(ws, ws) < F to 25/ !:cg[ avi?

This completes the proof since, as is well-known, if mingef,+,]|2s(t)] < § — 0, and
f |£5|% is bounded, then

81 1
(1.1.13) / et ——dt - +oo ,

which means that for § small enough V2Js(zs)(ws,ws) < 0, that is, z5 is not a minimum
point for Js in A;.0

STEP 2 (N = 2): The case N = 2 can be proved as follows by the estimates until the
step 1, one has that

[ {gw 2 fleel) — Fallel)

~ min {-|y|2+||a #(lyl) - Fs(u)} ,

yezz tO

(1.1.14)

where
T2 = {y € H'([to, t1];R?) / y(to) = zs(to) , y(t1) = =(t1)
ly(¥)] < €' ,Vte [to,t1]}.

Now, since the potential in (I.1.4) is radial, we can immerge the minimization problem of
(I.1.14) in a higher dimension, that is we consider a minimizer 7 of the integral in (I.1.14)
on the set
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Iy = {y € H([to,t1;RY) / y(to) = z5(t0) , y(t1) = =(t1)
ly(t)] < €', Vi€ [to,ta]} |

for some N > 3. Again, because of the radial symmetry of the potential and of the
constraint, we can assume that 7 is planar, and precisely it lies on the same plane that the
one of z5, so that Z minimizes the integral of the right hand side of (I.1.14) on Z, as well
as z5. Therefore one has z5 = Z in [tp,%;]. Finally we know from step 1 that (for § small)
T cannot interact with the strong force perturbation.

We have thus proved that there exists a solution of Problem (1) which is a local minimum
for I in A;. We shall show in section 4 that this solution is actually a global minimum for
Iin A]_.O

We remark that the argument used in the above proof can be repeated with some
straightforward modifications (actually simplifications) to obtain the following results:

THEOREM 1.1.2. Let F be asin (I.1.1) witha >0, N > 2 and 0 < « <2 Suppose F is
T-periodic in t and (U1), (U2), (H3) hold with A < 0. Then problem (2) has at least one
solution which minimizes I in A,.

THEOREM 1.1.3. Let F be as in (I.1.1) witha > 0, N > 2 and 0 < a < 2. Suppose F
is T-periodic in t and (U1), (U2), (H3) hold. Let z;, =5 be fixed points in RV \ {0} and
let T > 0. Assume T?)\ < A(z1,%2) as in Theorem I.3; then problem (3) has at least one
solution which minimizes I in As.
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I.2. The general case (Proof of Theorem I1.1)

In this section we turn to the proof of Theorem 1.1. To this end we shall make use of the
results of section 2, since we shall first work with a truncated potential which is radially
symmetric in a neighborhood of the singularity. Then we shall obtain a more precise es-
timate on the behavior of the minimum found by the application of Theorem I.1.1. With
the aid of these estimates we shall show that any such minimum cannot interact with the
truncation by the construction of a suitable variation along which the functional decreases.

Throughout this section é is the radius of the neighborhood where the truncation is
located, and therefore § can always be taken less than one.

DeFiNiTION 1.2.1. Let ¢ € C*([0,+00);[0,1]) be a fixed function satisfying

(1.2.1) o(s) = { (1) ’:1:‘: ; :
Define
(1.2.2) es(s)=v (), Vse[o,+oo)
(1.2.3) Us(z,t) = ps(|z|)U(=,1) ,
(1.2.4) Fs(z,t) = ]-';:% + Us(z, 1)
and
(1.2.5) / {514 — Fy(z,0)dt Ve Ay .

PRroOPOSITION 1.2.1. Let U satisfy (H1) and (H2). Then Us satisfies (H1) and (H2) too,

uniformly in §.

Proor: (H1) is obviously fulfilled. Concerning (H2), remark that since ¢ is of class C?
and its derivatives have compact support in [0,1], then there exist constants d,d' > 0 such

that |Ves(|z|)] S and |VZps(|z|)| < 52 To complete the proof, just consider that
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|V2Us(z, 1)l < U (=, 1)|[V2es(l=)l + 2|VU (2, t)|[Ves(leDl + leU(w,t)\lsoa(iwl)l :

From now on the C ;'s will denote constants independent of 6.

By the application of Theorem 1.1.1 and by Proposition 1.2.1 we can find an s e A
such that:

x5 is a local minimum for Is and it minimizes I

(1.2.6) 5
, on aset {z € A1/ |z(t)| > p} for some p <3

(1.2.7) 3¢, such that Is(zs) < Ci -

The following proposition contains the main estimate which will be used in the proof of
Theorem 1.1. :

ProposITION 1.2.2. Assume (H1), (HZ), (H3) hold. Then there exists 0 > 0 such that
V6> 0 , every z satisfying (1.2.6) and (1.2.7) verifies

(1.2.8) tg[xg%'] |z(t)| = o8-

PRrOOF: Let = besucha local minimum, assume that

(129) o] = i, (0] < .

and take an interval [to, 1] C [0,T1, containing  and such that |z(to)| = \m(t1)| =3,
|z(t)] < —g- for t € (to,t1)- Then we have

ac

(1210) -z = Wﬂ: in[to,tl] 3
(L2.11) Lap— S =B il
2 ||
(1.2.12) 5= VFs(z,t) (0T,
i
(1.2.13) Lo 4 Fale,) = B+ ] ng(m,s)ds n[0,T] -
to

Let us set w =11 — to-
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STEP 1. There exists Cy such that

(1.2.14) |E| < C, .

PROOF OF STEP 1: Because of the growth assumptions on Us at infinity and at the ori-
gm and Prop031t10n 1.2.1, the boundedness of Is(z) implies the boundedness of each term

fo |z|2dt, fo Toy= dt, fo Us(z,t)dt with constants independent of §. (1.2.14) then follows
from (1.2.13).0

STEP 2. There is a constant Cs such that

(1.2.15) w < C36°F

PROOF OF STEP 2: First remark that by (1.2.10),(1.2.11)

1d

(1.2.16) 5 77

]:c|2 =2E+(2— a)l = in [to,t1] ,

so that |z|? is convex in [tg, ;] if & is small, and that, by construction, one has

(1.2.17) 2(to) - #(t) < 0 and z(4;) - #(£,) > 0.

Taking the L? product of (1.2.10) by z one finds that

/: 41 = /t:l ﬁ; —a(to) - (ko) + (1) - 2(t1)

11
> a/ 2 > aw2® 2,
to |z|= 6«

Moreover from (I.2.6) we deduce that

(1.2.18)

1219 o) = [+ ) = mi —ig [ (GP + 5,
where

D= {y e H({ts, 4l RY) / ulta) = 2(ts) , y(t:) = 2(t) o < Iy(2)] < 2},
so that
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2,2
§°m +a2°‘-—w—

(1.2.20) e(to, 1) < 4~ g )

(just take the circular path joining z(t¢) and z(%1)).
Finally from (1.2.18) and (I.2.20) we get

2 c24a
726
w?2<2e

b]
8aa

which implies (1.2.15).0

STEP 3. There exists a constant C4 such that

N
[
ro
b
Jomd

e

tl 2—a
/ &P < Cué7T .
t

0

PROOF OF STEP 3: First remark that, from (1.2.11) and(1.2.14), one has
|2(2:) - 2(2:)] < |=(2:)l|2(2:)] =
2 2—a —a
= \/2}_7}-5:1- +2a (g) <cis™T, i=1,I1

By integrating (1.2.16), and by Steps 1 and 2, one finds

11 2—a
/ e ———1———[——2Ew — z(to) - &(to) + 2(t1) - 2(81)] L C677
to ‘Zla 2 - Q
hence
t1 t a 2—-a
/ 122 =2Ew+2/ LD YoR
to to [zla
<o

STEP 4. There exists a constant Cs such that

(1.2.22) w> Cs6° 5.

PROOF OF STEP 4: Indeed by Hélder’s inequality and (1.2.21) one has

62 24
w 2 ————t——]:——_ Z 056;!;— .
16 ftol |z |2dt
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END OF THE PROOF OF PROPOSITION I1.2.2: Since the potential Fj is radial in Bg and

since z satisfies (I.2.11), then z(t) is planar in [¢,%;]. Let v € SV~ be a vector orthogonal
to the plane spanned by z(%y),z(%y). Following the argument used in the proof of Theorem

L11 (and taking a smaller § if it is necessary) one finds a function w such that w(t) =
Y(t)v ,o+w € A; and

0 {0 if ¢ ¢ [to,t1] U[to + £, + L]
w —
v iftE[to-*—%,to-}-%],
1
/ o [2dt < <8
to w

Let o = %minte[o,q-] |z(t)| = 2|2(?)], that is,

min _|z(t)| = o= .

t€lo,T] 2
The computation of V2Is(z)(w,w) leads to

2
V2Is(z)(w,w) < G _ ——Ct’—:——— (—197 - 1) .

w e e

2( 1 1 )</t112d1|
a \|[e@®)IF |e(t)lT/) = Sy, adile|
21 i t1 1 z
<(L ) ([ mm)
(L er) (U,
Since z is a local minimum and by the estimates (1.2.21) and (1.2.22), one finds

1 (Cs C. (1 2
< _——— =1 ;
0= &4 (Cs Cy (07 ) >

Ce Cq. (1 2
——-—(=-1} >0,
05 C4 (UT > -

and therefore, since that constant C,’s do not depend on §, ¢ has a lower bound inde-
pendent of §.0

Indeed one has

hence

We are now ready to complete the proof of the main Theorem.

PROOF oF THEOREM I.1: To carry over the proof of Theorem 1.1 we begin by making
a truncation of the potential according with Definition I1.2.1. By means of Theorem I1.1.1
the corresponding truncated functional can be shown to posses a local minimum satisfying
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moreover (1.2.6) and (1.2.7), and therefore one gets in this way a noncollision solution zs
for the corresponding differential problem. As before, the problem is to show that z5 does
not interact with the truncation, that is to say mingcp, 17 |25(t)| > &.

First of all we remark that the bound on the levels Is(zs) implies the following estimates
independent of é:

|Es| < Cy

‘U

< .
5 En (935,t)[ < C,

Consider now Bj(t), the angular momentum of zs: then we have

(1.2.23) Bs(t)-zs(t) =0, VieR,
(12.24) 1Ba(0)] = lae()PI g e
(1.2.25) %Ba(t)l < |VUs(zs,1)l|zs(t)] -

Define ps(t) = |zs(t)|. The energy integral can be written as

1 1B2(t) a * 9Us
(1.2.28) pr o — t)=E .
(1.2.28) 505+ 3 - + Us(zs,t) = Es + . Bl

PROPOSITION 1.2.3. Assume (H1) and (H2) hold. Then there are constants §o and p
(independent of §) such that

los(t) < 60 = Bi(t) 2 ples()7"

PROOF: Let o be as in Proposition 1.2.2 and let @’ > a" > a > o'’ > 0 be fixed constants
such that

(1.2.28) d"oc—d +d" > =c.

| e

Thanks to Proposition 1.2.1 and (H.2), there exists §, such that, for every § <1 and
every |E| < Cy,
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a

2E+ (2 - a)r—r — 2Us(z,t) — VUs(z,t) - = + 2C,
z x
(1.2.29) )
a
<2E+(2- a)—————lzla , lzl < 6oy
(1.2.30) 2E|z|* 4 24|z~ > 24" |z, |z|< &,

(1.2.31)  2E|z|® + 2a|z|*~® — 2Us(z,t) — 2C:|z|* > 2E|z|* + 24" |z|*™*, |z| < &,

(1.2.32) 2F +(2 — a)ﬁ; — 2Us(z,t) — VUs(z,8) -2 —2C2 > 0, |z <6 .

Since %pz = |z|* + z - &, then (1.2.28) and (1.2.29) imply

1

(1.2.33) 0< %p"z <2E+(2—a)= ifp<d.
pa

Now let  be such that p(f) < & is a local minimum for p; then we can assume that
p(t) > 0 for ¢t € [2,t*], with p(#*) > §. By multiplying (1.2.33) by 5? one finds

(1.2.34) -% Gp'?-z —2Ep* — 2a'p2*“> <0.
Hence we have
1- ] i}
(1.2.35) szz — 2Ep? — 2d'p** < —2Ep(?)? — 24’ p(1)* ™ .

Notice that if o is small enough, then the right-hand-side of (1.2.35) is strictly negative.
If we denote it by —B3 = —2Fp, then from (1.2.30) we have

\
(1.2.36) B} >2d"p(?)*" %,
and from (I1.2.26) and (1.2.31) we deduce that
2 1 o2 2 m _2-—-a
B(t) 2 —7p* +2Ep" +2a7p"7%;
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therefore, from the above inequality, (1.2.35) and (1.2.28) we find

(1.2.37) B%(t) > B} — 2(d' — a")p*™* > acp®™,

if t < t*. It is obvious that, by reversing the time, the same inequality holds for ¢ < ¢,
and for any local minimum p(%) < §.¢

Let now 6y be fixed and assume that
. do
< —.
dn l2()] < 5
Take an interval [t,%;] such that |z(t)| = |z(t1)] = éo, |2z(t)] < o in (to,%1) and
minepy 1) [2(2)] < %2, Define
w = tl - to .

Then we have the following estimate:

PROPOSITION 1.2.4. Assume (HI) and (H2) hold. There are constants (independent of §)
5, v1, v2 > 0 such that, for any 8, < § one has

2ta 2ta
néy? <w<b® .
ProOOF: The proof works essentially in the same way as that of steps 2,3,4 of Proposition
1.2.3. Just remark that by Proposition I1.2.1 the constants 14 and v, can be taken as close
as we please to the constants C3 and Cjs of that proof, provided we work in a sufficiently
small neighborhood of zero.o

END OF THE PROOF OF THEOREM I.1: Let us begin by fixing ép in accordance with
Propositions 1.2.3 and 1.2.4, and assume that z5 (6§ < %‘l) is a local minimum found via
the above arguments such that

mtin <l|zs(t)] £6.

‘Working as in the proof of Theorem 1.1.1, one considers an interval [tg,?;] such that

)
|25 (1) = [zs(to)| = —29' )
bo
les(t)l < 55 VEE(to,ta)
Next we consider f € (to,1) such that |z5(f)| = mingepy, ¢,) |25(t)|, as we have done be-
fore. Moreover, let us take the interval [so,s1] C [to,%1] such that |zs(s0)| = |zs(s1)| = £
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and |zs(t)| < &, Vt € (s0,31)-

Now we take a piecewise linear function 5 : [0,7] — [0,1] which behaves like {5 of
Theorem 1.1.1 on [t,%;] and we consider

Pi()) = (¥a)~¥s+ 3)) ot

It is clear from (1.2.23) that Ps(t) + zs(t) € Ay and that Ps(t) - zs(¢t) = 0 ,Vt € [0,T.
Moreover, from (1.2.24), (1.2.25) and (H2) one has that

S 2 ;2 |Bs()]?
|Ps(t)]* < Cs (W’él +|T6.s(5]_) )

so that

[or <o (s [ 28

with C(é) — 0 as § — 0 and C4 independent of §;.
From the estimate of proposition 1.2.4, one deduces that the fractions -jf—}f% and ﬁ{—x—
are bounded by a constant independent of §y, so that one deduces that

T . 1 1 C(6)
Ps(t)? < Cs | — / )
[ edor<os (g [7 20

with C5 independent of §;. Now we fix §; such that C58; < %*. Then the computation
of V2I5(z5)(Ps, Ps), together with the fact that zs is a local minimum of I5, leads to the
following estimate: ‘

aa [ 1
2. < 2 < —_—— —_——
(12 38) 0 s A% I&(:Eg)(PJ,P&) - 05 9 o |m6‘o¢+2 ?

with Cs depending on §, but not on § (if § < %Q). From Proposition 1.2.4, s; — sp has a
lower bound independent of §, so that the integral in (1.2.38) diverges whenever § — 0.0
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I1.3. Further results and comments

As it should be clear by now, the main idea in proving Theorems 1,2,3 can be summa-
rized in the following Lemma:

LEMMA 1.3.1. Assume the hypotheses of Theorems 1 (resp. 2 or 3) be fulfilled. Then for
any fixed C € R there exists a 6 > 0 such that, if ¢ € A; (resp. in A3 or Ag) is a local
minimum of I with I(z) < C, then |z(t)| > o , Vt €R.

The same result holds (with the same §) for the perturbed functional I5, where

Is(z) = / {—twlwl‘ja Us(z,t) — Fil|z|)}dt

(Fs is the strong force term as in (1.1.3), and Us is as in Definition 1.2.1).

REMARK 1.3.1: This result is false for N = 2. Indeed, assume that F(z) = T I ,let >0

2

be fixed, and let C = -3—(27ra)%T%. Let zo € R?, |zo] > as (%)3 be fixed. Then for
any value of the eccentricity 0 < e < 1, there is at least one elliptic function z. such that
z.(0) = z.(1) = z¢ with I(z.) = C. Moreover z. is a local minimum of the functional

T
1 a
I(z) = ~lz|2 + —
(=) /Ozlwl+|$|,
on the set

A ={z € ([0, T);R?) / 2(0) = =(T) = 20}

(see also [27]). It is clear that minggo, 77 |ze| — 0 as e — 1.
This fact does not contradict Theorem 1.1.3, since the absolute minimum of I is strictly
less than C, and it is attained on a path having topological degree zero, with respect to
the origin.o

Another consequence of Lemma 1.3.1 is the following estimate:

THEOREM 1.3.1. Under the hypotheses of Theorem 1,2 and 3 respectively, one has

. . 1 '
zlelgk.- I(z) > zlél{{ I(z) 1=1,2,3

PROOF: Assume by contradiction that

ci = :le%iz‘\ I(z) = m/{.- I(z) .
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Let us denote by K., the (compact) set of all the minima of I in A; U JA;. Then it
follows from Lemma 1.3.1 that

dist(A,-an,.,BA,-)::d,->0, 1=1,2,3.
Modify I to I* so that

(@) { I(z), if dist(z,A; N K,) > 4
z) = '
I(z)+¢, ifdist(z,AiNK;)< %,
d;
I*(z) > I(=) if dist(z,A; NK,;) < 7

Then ¢; = infoeoa; [*(z) = infoep, I*(z). With a slight modification of the arguments
used in proving Theorem I.1 (resp. 2 or 3) one easily proves that I* admits a minimum
z* € Ay, at level I*(z*) = ¢;, hence dist(z*,A; N K,,) > %‘-, so that =* minimizes I as well
and this is a contradiction .¢
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II. A restricted three body problem in R3

In this chapter we deal with a restricted symmetric three bodies problem; more precisely,
let z1,z2 € H such that z;,2, € C2(R\ (21 — z2)71(0); R®). We look for solutions to the
problem

( —%=VFi(z—z)+ VF(z —z2)

z(t 4+ T) = z(t) Vi
(P) { z(t+ )= —z(t) Vi
z(t) —z1(t) #0

L z(t) —z2(t) #£0

A situation of this type occurs, for example, when two bodies, say the Sun and the
Eart, are moving in a symmetrical way under the effect of a gravitational-type low, and a
third body, much more smaller that the first two, say the Moon, moves in the force field
generated by the Sun and the Eart.

This problem has a variationa structure, since each solution of (P) is a critical point of the
associated functional

Vi ¢ (z1 — z2)71(0) .

: T
(IL1) 1(=) _—./0 %—[:i:lz—Fl(:c——zl)-—Fz(:c—a:g),

in the subset of H,

(IL.2) A={zeH[a(t)—z1(t) #0,2(t) —22(t) # 0,V ¢ (21 — z2) 7 (1)} .

Throughout this chapter H is the space of all the T-periodic functions H} (R;R®) sat-
isfying the symmetry constraint z(¢ + %) = —z(1). i
We consider the following assumptions on z; and z,:

(I11.3) z1, 21 € HNC*(R\ (z1 — z2) 71 (0); R®)
and, on F; Fy:

() Fi(z) = Fi(2) i=1,2,Yz € R\ {0}
daj, a2 , @ > 0 3U;,U, ,such that

(H1) Fi(z) = I—‘—T— + Us(z) i=1,2,Vz € R®\ {0}

T a

(H2) lim |2|*T2|V2U(z) = 0 i=1,2.

(H3) im Y@L i=1,2.
|| —+o0 lz[
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Our main goal is the following Theorem:

THEOREM II.1. Let z1, =, be given such that (II.3) holds, and let F, F; satisfy (S), (H1),
(H2) and (H3). Then, for every period T, (P) has at least one solution having minimal
period T'. Moreover

(11.4) inf I is attained in A .

Proor: We first remark that, under our hypotheses, the functional I admits a natural
extension to the whole of H; as such, I is coercive (because of the symmetry constraint
on the function space) and it is weakly lower semicontinuous. It is clear that, when (II.4)
holds, the proof is done. Therefore we assume by tha contrary that (II.4) is false, that is
that I admits a minimizer in H \ A. Let = be such a minimizer: then z verifies

(1L.5) I(:c):ix}l{f[, ce H\A.

We shall make use of the results of the last chapter to find a contradiction. From (II.2)
saying that ¢ € JA is equivalent to

(IL6) 37 € [0,T)\ (21 — 22)7(0) , i € {1,2} / =(B) = (D)

Of course we can assume without loss of generality that ¢ = 1, so that at the time
t € [0,7T]\ (z1 — z2)"%(0) z collides with z;. Since z; and z; are continuous functions,
[0,T] \ (z1 — z2)7%(0) is open in [0,T]. Moreover, since the measure of the set {t €
[0,T] / z(t) = z:(t)} (¢ = 1,2) is zero, we can find an interval [ty,,] C [0,T] such that

z(to) # z1(to) , z(t1) # 21 (1)
(IL7) f’(tO) # 22(to) , z(t1) # z2(t1)
t € (to,t1)
lz1(t) —z2(t)| 2 C1 >0, Vi € [t1,12] .

Of course, z solves the minimization problem

11 1
(11.8) inf V (/ §|y|2 —-Fl(y—ml)-Fz(y——zz)) :
yEHl([tl,t;];Ra) tO
y(to)==(0) , y(t1)=2(t1)

Let us denote
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tll )
c(to,tl)z/ §|m|2~F1(z—ml)—F2(a:—a:2)
t

0

then we have

11
[ 617 < 2¢(t1, 22)

to
Just by taking a smaller interval (if necessary), we can assume without loss of generality

that (II.7) holds in addition to

1
2

(IIQ) (\/2c(t0,t1) + (L li:llz) ) (t1 — tz)% < % 3

so that z satisfies

(I1.10) |z(t) — z2(2)] > %1— , Vi€ [to,t1],

and the same estimate holds for every minimizer of (IL.8).
Now, by the change ov variable z = y — z;, the minimizing (II.8) becomes equivalent to
minimize

. S TP T .
inf (/ §]z] +'2'|931l — 2z
zEH([t1,t2];R?) to

z(to)=z(to)—=z1(2 )
(IL.11) z(fl))za'(fl)-_m((:l)

+'/; 1(—F1(Z)—F2(Z+(B1 —wz))+:E(t1)'il(tl)—'z(to)'il(to)) .

Although the term F; is not regular, thanks to (I.9) and (I.10) we can treat it as
regular, since every minimizer (or minimizing sequence) can not interact with the set of
the singularity of F5. Thus, from (H1), (H2) and (H3), the potential of the above integral
are exactly of the form of the ones of Theorem I.7. Indeed, up to the constant terms,
it has the form ﬁ,—} + Ui(z) + 2+ &1 + F2(2 + 21 — z2). Now Theorem 1.3 actually says
that the infimum of (II.11) is attained in the set of the z € H?'([t1,%2];R®), such that
2(to) = z(t0) — z1(t0) , 2(t1) = z(t1) — z1(41) and z(t) # 0, Vt € [to,t1]. Now, if z
minimizes (II.11), then y = z + z; minimizes (IL.8); therefore y(t) = z(¢), Vt € [to,%1],
and z(t) # z1(¢), Vi € [to, 1], in contradiction with our assumption that z(?) = z;(%). Of
course the same argument apply for every collision time ¢ between z and z;, or z and z,.
The proof is then complete. ¢
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III. A three body problem in R3

As a three body problem we consider

—md; = Ejzl VF; ;(z: — z;) i=1,2,3
J#i
(Pr) z;(t+T) = =z(t) 1=1,2,3, Vt
zi(t+ L) = —zi(t) i=1,2,3, V¢
\xi(t)%xj(t) i#j7i7j=1)2’3)Vt€R

where the potentials F; ; € C}(R?\ {0};R) have a singularity at zero of actractive type.
In order to fix your mind, think of the situations of three bodies subjcet to the mutual
effect of the universal low of gravitation:

mym s R
E:lx _;] i=1,2,3.
i Jj

J#z

This problem has a variational structure provided that

(H1) Fij(e) = Fji(-z), VzeR'\{0},i,5=1,2,3.

In that case, the functional naturally associated to (P) is

(ITL.1) I(z) = %/O Zm,]z,| — Z F; i(z; — z;)

i#E]
i,j=1

as for the restricted two bodies problem we shall deal with even potential, that is we
shall assume that

(S) F"y](w) = F‘)j(—z) ? Vz E R3 \ {0} ’i7j = 172’3 ;

then the natural domain of I is

(IIL2) A={X€H /X =(z1,22,23) , ,2:(t) # 2;(¢) , Vi #7 ,5,5 =1,2,3,¥t € R}
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Where H = {X € H'loc(R,R®) / X(t +T) = X(t) ,X(t + L) = -X(¢) ,Vt € R°}. We
shall write

3
F(X)= Y Fy(zi —z;)
i#]
i5=1

Our first result is concerned with locally radial symmetric potentials:

THEOREM IIL.1. Let F;; € C*(R?\ {0};R) satisfy (H1), (S) in addition to

da > 0 ,da;; > 0,such that

—ai,j .. . .
Fi,j l la]+UJ(m) 7'7.7=192a3727'é.7
Je > 0 3¢;; : (0,e] — R of class C? such that
(H2) Uij(z) = ¢i,j(Jz]) Vz,0<]z[<e,
(3) lim s[4} (s)| = 0.
(H4) M =0.

m
|g]—+o0 |2l

Then, for every period T > 0, (Pr) has at least one solution having minimal period T'.
Moreover

(I11.3) : mfI < inf T.
z€OA
We notice that, when F; j(z) = Fj;(z) = -_ﬁ%[‘af- then (III.3) holds. Therefore, pinchjng

conditions can be introduced in treating potentials without radial symmetry:

THEOREM IIL.2. Let F;; € C*(R® \ {0};R) satisfy (H1), (S) in addition to

Ja > 03a;,; > 0,3C > 1 ,such that

aij Ca; ;
|Ii_ ,J(z)_H], Ve e R*\ {0},

Then there exists a function ¥(a, 2, 244) such that, when
3 i,k

(I11.4) C<U(a, 2,200y | Wi, k=1,2,3.
mJ a;k
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Then, for every period T' > 0, (Pr) has at least one solution having T as minimal period.

Moreover ¥ enjoys the following properties:

U(a, =2, 2y 5 1 Vo> 0,
m; ik

mz ai
lim ¥(a, — "7) = 400
a—2 m;’ aik

m; a;
lim ¥(a, — =g —=) =
a—0 m] aik

REMARK: Thinking of Newton’s low of gravitation, a remarkable application of the above
theorem holds when F; ;(z) =~ a—%[—’- In that case, the pinching condition reduces to

C<¥(a,Bi)o

As direct consequences of Theorem II1.2 we obtain the following Corollaries:

CoROLLARY III.1. Assume that m; = m; = ms = m, and let F;; € C*(R®\ {0};R)
satisfy (H1), (S) in addition to

da > 03a,b > 0 ,such that
%< _F(2)< I—f’|— , VeeR\ {0},

<
=]~

Then there exists a function ¥(a) such that, when

(IIL5) > < ¥(a)

Then, for every period T > 0, (Pr) has at least one solution having T' as minimal period.

Moreover ¥ enjoys the following properties:

¥Y(a)>1,Va>0,
]jm ¥(a) =
hm Y(a)=1.

a—0

The following result is just an immediate consequence of Corollary III.1:
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COROLLARY II1.2. Let F;; € C?(R®\ {0};R) satisfy (H1), (S) in addition to

Jda > 0,3a;,; > 0 ,such that
—aij

Fi,j=—+Ui,j(z) iaj:17273a7:7£j

||

]in:}) lz|*|U;,;(z)| =0 4,j=1,2,3,i#]

Then, for every T > 0, (Pr) has infinitely many solutions.

ITI.1 Proof of the results

PROOF OF THEOREM III.1: We first observe that the associated functional I admits a
natural extension to the whole of H, just by taking the expression in (IIL.1) if it is finite,
and +o0o otherwise. As such, I is weakly lower semicontinuous and, from (H4), it is
coercive. Now we assume by sack of absurdity that infy I = infgp I = infy I. Then I
admits a point of minimum X = (z1,z2,23) € OA such that

I(X)=infI =infI =inf ]
A 8A H

From (III.2), X € OA just means that

(IIL.1.1) Jte [0,T],3,5 € {1,2,3},i#3J axi(z) = zj(z)
We say that 7 is a time of double collision if zx(f) # z:;(1) = z;(1), for k # 4, k # 7,
while % is a time of triple collision if zx(%) = z;(2) = z;(1), for k # 1, k # j. We are going

to treat separately the two cases.

We first prove the following result:

PRrOPOSITION III.1. Assume that (H2) (H3) hold, and let X be such that I(z) = infgy I.
Then X can not have double collisions.

PROOF: We assume by the contrary that there exist i # j such that z;(¥) = z;(¢) and
zr(t) # (%) for k # i, k # 7, say z2(%) = z3(?) and z1(?) # z2(%).
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We observe that z3 is a minimizer of the functional

T
1.,
Iy oy(23) = / §|-"33|2 — Fis(zs — z1) — Fa (23 — x2)
0

T
1,. .
+/ 5 (|21 + |22[%) — F12(z1 — z2)
0

over H = {z3 € HL _(R;R®) / z3(t+T) = z5(t) , zs(t + T) = —z3(t) ,Vt}. We can then
apply the results of Theorem II.1 (see also Theorem 1.3) to prove that ming I, z,(=3) is at-
tained by a function z3 which do not cross neither z1, or z, for all # such that z,(%) # z,(%).
Since this argument works for every instant of double collision, we can conclude that the
minimizer X can just have triple collisions.o

Next proposition will end the proof of Theorem III.1:

ProrosiTION II1.2. Assume that (H2) (H3) hold, and let X be such that I(X) = infx I.
Then X is free of triple collision. Moreover

1an< inf I
z€HA

The proof of Proposition III.2 will be given in the next section. Now we turn to the
proof of Theorem II1.2 and the related results.o

L
PROOF OF THEOREM III.2: By the change of variables z;(t) = <T2 M) e vi(%) we

Mjo

easily prove that

1T \ ai
. .12 1
”Alf’j/ Domilel + ) PR

4,j=1

m;
T2 a 3+a . f 1 2 Z
( 10 ko™ JO ln / Iwz‘ + Qi,, kolfl:z — Iy Ia

,Jl

and
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zlélafA_i/ thlztl + Z |z —z; |°‘

1.,_7-—1
1 3 3 .
1 1 m; .. aij
- (T2 “a zo kom?o e inf _/ E : - lmil2+ § : a
2€8A 2 Jy | “ mj, ! @i ko |Ti — 2]
i=1 i#j
i,j=1
Therefore, the right condition on C is that
Cz+a < ‘I’(a, mi ’J)
mJ aik
where ¥ is defined as
m; a
‘I’(a7 z7 w)
m;’ ai
. 1l 3 2 aij
lnfzeaA 2 fo ( '5*-1 m, I + E 1-#.7 a;o,k0|2;-—z5l“>
max i,5=
10,J0,k0

. 1 1 3 2 aii
lnfEEA 2 fo ( ‘_1 mJ I + Z t;ﬁj GigkglBi—2i|*
i,j=1

ProoF oF COROLLARY III.2: From the above discussion one easily sees that, under the
assumptions of Theorem III.2, a constant C; (depending on the masses and the values
of the a; ;’s) exists such that the minimizer X found by the application of Theorem III.1

satisfies || X |72 < C1T7%=. One then concludes just by taking a small T.o
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I1.2. Proof of Proposition II1.1.2

The purpose of this section is to show that a minimizer of I can not have any triple
collision. This fact implies that infa I < infgy I, since we have seen in Proposition III.1.1
that all minimizers are free of double collisions.

We are going to accomplish our goal by means of a main estimate based on a series of
preliminary lemmas. Some of these lemmas are almost immediate extensions of what is
classically known as Sundman’s Theorem. This theorem states that in the classical three-
body problem a triple collision orbit has zero angular momentum. The proof of Sundman’s
Theorem can be found in [33]. Since our arguments start by following the line proposed
there, we shall prove only the results which are not trivial extensions of those in [33],
otherwise we shall refer to it for proofs.

Since we are interested in the minima of the action integral, of course there is an instant
of triple collision which is isolated in [0,7] and therefore the motion can be assumed to
be regular in a neighborhood of that instant. Although we are going to prove that each
minimum is free of isolated triple collision, by a density argument, one easily concludes
that all minimizers are free of triple collisions.

DEFINITION II1.2.1. We set, for a generic orbit X = (z1,z2,z3)

Zm,|x,| and G=G(X)= Zm;lmtl2

The following Proposmon makes precise the kind of orbits we are dealing with.

ProrosiTION II1.2.1. Suppose X € H is such that I(X) = infg I; then

i) X is free of double collisions.

ii) X has at most two triple collisions, both at zero.

iii) 3 E € R such that T — F = E (conservation of energy).

1V)E,__1 miz; = Zf_:lm z; = 0, Vt € [0,T] (conservation of center of mass and

momentum).
v) Suppose that Vi € (a,b), Vi # j, |z:(t) — z;(t)| < e.
Then 3By € R3such thatVt € (a,b),
| 3
= Emii’i(t) X z,-(t) = By
i=1

(conservation of angular momentum for small distances).

PROOF: We set I(X) = fo L(X, X)dt andl, 3)(X) = f L(X, X)dt
We recall that the equations of motion assoc1a.ted to I are
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3
-—miféi = Z Vz,.F,-,j(a:i - :Bj).
j=1
Jj#i
i) See Proposition III.1.1
ii)Suppose that X has more than two triple collisions. It is not restrictive to assume
that ¢ = 0 and ¢ = T} are instants of triple collision such that X solves the equations of
motion in (0,T}) and moreover

2T
To 1) (X) < =5 I(X)

Setting V() = X(¢) — Dgmizi we have that V has only triple collisions at zero and
S

I(V) < I(X) (strictly if the center of mass of X is not zero)
Let U(t) = V(gllt) for t € [0, ] (and symmetrically in [2 ,T)); then U € H and

2Ty

1) = 57 0T1](v>+(~——-——-——-)2m, [ et < orTom(¥) < 100),

(and the strict inequality holds when X has more than two triple collisions). This is a
contradiction.

iii)Since F'is a function of the z;’s only, it follows immediately that if X is a solutlon of
the equations of motion, then

JE € R ,such that
(1IL.2.1) T-F=E.

iv) By summing the three equations of motion one obtains

Z ZVFzJ(mz" )

1,j=1
i#j

but since, by (H1)

VF;j(z; — zj) = =V Fj;(z; — i),

we have Ef___l m;&; = 0, which implies Zle m;z; = ct+ d, for some constants ¢,d € R®.
By periodicity, ¢ = 0, and by the symmetry condition (S), d = 0, which means that both
the center of mass Zle m;z; and the linear momentum ELI m;z; are identically zero
throughout the motion.

v)Indeed, Vi € (a,b), by virtue of (H3), we have
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3

Tj X T; ; X T

miT; X T; = E ozm,mj——————————l:c T + U(lm, mJl)I:c ey
j=1
JFi

Summing over ¢ one sees that the j-th term of the i-th equation cancels the i-th term
of the j-th equation. Therefore

3 3
B=%;miiiXmi=Zmiiini=O, VtE(a,b)
and B is constant in (a,b).

Now we state some preliminary lemmas.
LeEMMA II1.2.1. ¥y >0, 3o > 0 such that, if |z;| < 0y 1 = 1,2,3, then

3

(I11.2.2) Z

PRrROOF: We remark that equality holds in (II1.2.2), with v = 0, if F' is homogeneous of
degree —a; this is the case, for example, of the classical three body problem (o = 1).
In our case it is enough to compute (recall (H3))

3

mim; |
szamt z '—a“';;“:‘—'j‘i""f‘qﬁ J(]wz mjl)iwi"mg

).7.:.1
1<j

and to see that, for oy small, one has

3

OF
Z i Oz; )7

=1

1 [0
2 = {ymim; + ¢} ;(lzi — z5]) |z — 25T+
|z — z ;]
).7 1
1.<]
+ (e +7)¢i,i(|zi — zj5])|zi — 2|} > 0

thanks to the growth assumption (H3). |
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where p will be conveniently chosen later; extend W to R by periodicity and define

— T
w(t) =w(t) —w(t + 5—) .
Finally let V € H be the function

V(t) = (v1(2),2(2),v5(2)) = (@(2), 0, —0(2)) :

it is clear that v;(t) + z;(t) # vk(t) + zx(t), VJ # k, Vt € [-6§,6] and moreover that
ve(t) - zj(t) =0, Vj,k, Vt € R.

We are going to show that I(X + V) < I(X), contradicting the fact that I(X) is the
infimum of I over A.

We start by remarking that by symmetry and by the choice of V,

. A
I(X+V)-I(X)=2{>_ ﬁ;— /5 |&: + 0:f” — |2:[*dt+
i=1 -

3 s
1
+5 E / Fij(zi +vi —zj —vj) — Fy j(z; — zj)dt} .
2~ J_s
1,j=1
J#i

The estimate of the kinetic part leads to

3 5 3 §
(I11.2.4) Zm,-/ |2: + 9:]% — |&:[2dt = Zm,-/ |0:2dt < Cyp?
i=1 =6 . i=1 -6

where C; > 0 is independent of pu.

Therefore
IX+V)-I(X) <
3 §
1
(1I1.2.5) < 2{—2— z / Fij(zi +vi—zj —vj) — F j(z: — zj)dt} + Crp® .
i,j=1 6
J#i

We want to show that if u is taken sufficiently small, then this quantity is strictly
negative. To do this, we can certainly assume that § and p are so small that the potential
takes the form given by (H3) throughout the interval [-§, §]. In other words, if we set

T;+v; —j —vj|°‘

- — ¢y (|2 — z5)) dt

|z; — 2z — j|*

5
m;m;
T;,; =/5 (l ) + ¢ii(|zs + vi — 25 — vj|)—

(II1.2.5) becomes
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3
(I11.2.6) IX+V)-I(X)< > Tij+Cip’.
1,j=1
J#£I

Now we estimate the generic term T} ; of (II1.2.5):

& 1
d .
Tj = Fp) = (e — 25 + Av; — Avj|))dAdt

! /—6/0 d/\(|wi—2j+>\vi—/\vjl°‘+¢’J(lm zj + Avi — hvj))

_/6 /1 Alvi — v5]*
N -5 Jo I:Bi —zj+ Av; — A’Ujla'*'z
(amim; — ¢} ;(lzi — zj + Avi — dvj|)|zs — 25 + do; — Avj[*T1)dAdt .

Now for p and §small enough, the quantity in the round brackets is larger or equal than
Tam;m;, because of (H3). Hence

10 Alv; — v;)?
Tij <3 ~ — dAdt <
"7'—2/ / lz; — z; + Av; — Avj|at? -
2
am,m, Al
dA\dt <
/%/ |z: — zj + Avi — Avjlet? B
“m‘mf 2 1 ddi
/ _/ —z; + Av; — Avj|at? '

Now for ésmall enough, by Lemma II1.2.4, there exists C; > 0 such that

lz;| < C’zto‘+—?v+2 , 1=1,2,3,

for somey > 0, a+7 < 2; therefore we have |z;—z;| < p, for all £ such that 202t°+’27+2 <

78
Restricting the interval of integration to

S

aty+2 atr+2
2

p 2
) <'2—é;) ])
am;m; o

i ! —1 2—a+
2

where Cj; is a positive constant independent of p.
Summing the T} ;’s and recalling (II1.2.4) we obtain

we obtain
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LEMMA II1.2.2. Let t = 0 be an isolated triple collision instant for X. Then there exists
t > 0 such that

Vi e (—1,1)\ 0, B(t) = 0.

PROOF: By the conservation of center of mass, the triple collision can occur only at zero.
Moreover we can assume that X is regular of class C? in (—§,§) \ {0}, for some § > 0.
From now on the proof works exactly like that of the classical Sundman’s Theorem reported
in [33], pag 26. The only difference is that in our case one has to use the inequality

(I11.2.3) —;—G" >Q2-a—-7)T+(a+7)E.

This inequality (which is obtained by differentiating twice G and by using T'— F = E)
holds Vy > 0 such that a 4+ v < 2 if |¢| is small enough. We omit further details.

LeEMMA II1.2.3. Let X solve the equations of motion in (a,b) and suppose B(t) = 0,Vt €

(a,b).

Then the components of X, (z1,%2,3), lie on the same fixed plane of R® for all t € (a,b).

PROOF: See [33], pag 28.

Adding the fact that X is a minimum of the action integral, we can prove the following

ProrosITION III.2.2. Suppose (H1)-(H3) hold and let X € H' be such" that I(X) =
infs I. Assume that an isolated triple collision takes place at zero at time t = 0.

Then there exists X € H' such that I(X) = I(X) and %,,%,,%3 lie on the same fixed
plane of R® for all |t| < §, with § > 0 small enough. :

ProOF: By Lemma II1.2.2 we can assume B(t) = 0 in (—6,0) U (0,6) for some § > 0.
By Lemma II1.2.3 X is planar both in (—§,0) and in (0,§), but the two planes need not
coincide.

Set I(X) = fOT L(X, X)dt; it is not restrictive to assume that

z el
/ L(X,X)dt < / L(X, X)dt,
0 %

so that by the symmetry of X it follows

L B L(X,X)dt < / i L(X,X)dt.

3T

2 4
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Now consider the orbit defined by

X(t) ifte(0,2)u (%,
—X(—t) otherwisein [0, T];

X() = {

it is immediate to check that X € H,I(X) < I(X), and X(—s) = —X(s) for all s small
enough, which means that X minimizes I and enters and leaves the collision on the same
plane.

Next lemma provides an important estimate of the behavior of the bodies when ap-
proaching or leaving a triple collision. The fundamental ideas to prove this lemma are all
contained in [33], where it is actually proved for the keplerian case.

LEMMA II1.2.4. Let (H1)-(H3) hold and consider an isolated triple collision for X at time
t=0.
Then Vv > 0 such that a ++ < 2, 3C > 0 such that

lzi(t)] < t9+2+‘1, Vi =1,2,3 and Vt small enough.

ProoF: This proof too works like that of [33], pag.69, for the keplerian case. We just

add that one has to estimate %GH:H instead of E‘%G’g' and to use (II1.2.3) instead of
1F" = T + E. Otherwise no change is necessary.

Having gathered the estimates we need, we can now prove the main result of this section.
We recall that if X minimizes I, then it is free of double collision; we now are in a position
to show that X can not have any triple collision either.

ProposiTiON III.2.3. Assume that (S), (H1), (H2), (H3) hold and let X such that
I(X) = miny I. Then X can not have any triple collision.

ProOF: Let X be such a minimizer and suppose that X has an isolated triple collision
at time ¢ = 0. By Proposition 1 we can replace X by another minimizer (still denoted by
X) with the further property that X is planar in [—§, §], for some § > 0. Therefore, there
exists w € §? such that

zi(t) - w=0, Vi=1,2,3,Vt e [-4,46].
Let w be the piecewise liner function defined by

0 if t ¢ [~6, 8]
pw ifte["%)%])

w(t) = {
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I(X +V)=I(X) < Cip? — Cap 5

and, since 0 < 2—7—'—;‘—3’-’1 < 2, we have that I(X + V) —I(X) < 0, when g is small enough,
contradicting the fact that I(X) = inf, I.
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