ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

THE STABILITY OF THICK ACCRETION DISKS

Thesis submitted for the degree of

"Doctor Philosophiae"

CANDIDATE SUPERVISOR

0.M. Blaes M.A. Abramowicz

September 1986

TRIESTE




- THE STABILITY OF 1HICZ ACCRETION DISKS

Thesis submitted for the degree of

"Doctor Philososphiae"”

CANDIDATE ~ SUPERVIEOR

0.M. Blaes : M.A. Abramowicz

September 19&6



Chi arriva a Tecla, poco vede della citt4, dietro gli steccati di tavole, iripari
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sgretolarsi e a andare in pezzi, soggiungono in {retta, sottovoce : - Non soltanto la citta.
- Se, insoddisfatto delle risposte, qualcuno applica I'occhio alla fessura d’una

staccionata, vede gru che tirano su altre gru, incastellature che rivestono altre incastella-

ture, travi che puntellano altre travi. - Che senso ha il vostro costruire? - domanda. -
Qual é il fine d’una citta in costruzione se non una cittd? Dov’é il piano che seguite, il
progetto?

- Te lo mostreremo appena termina la giornata; ora non possiamo inter-
rompere, - rispondono.

Il lavoro cessa al tramonto. Scende la notte sul cantiere. E una notte
stellata. - Ecco il progetto, - dicono.

Italo Calvino - Le cittd invisibili
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ABSTRACT

The theory of geometrically thick accretion disks in its current form
is reviewed and preliminary calculations concerning their possible secular
evolution are presented. These disks are now known, however, to be subject
to global dynamical instabilities discovered by Papaloizou and Pringle. How
far the theory has to be modified to account for this, and indeed the very
existence of thick disks themselves, are as yet unanswered questions.

All work done on exploring the consequences of the instabilities and the
many suggestions as to their physical cause(s) are reviewed here. The driving
force of the instability appears to be a tapping of the shear energy of the
differentially rotating fluid by modes which transport angular momentum outwards.
In the most violent modes this is achieved through interactions between waves
propagating around the rotation axis near the inner and outer radii of the
toﬁus.

No general global stability Ctiteria exist, but what can be gleaned from
the theory of rotating stars is presented here. 1In particular the general
limits on instability growth rates and "almost" corotation theorems are still
valid, and both of these can be improved ﬁpon for partiéular classes of tori.

In the special case of non—self—gravitatiné, constant specific angular
moﬁentum, homentropic slender tori one may calculate the full normal mode
oscillation spectrum and this gives a complete analytic deécription of the
inétability for this case. This is in fact the most violent mode and is now
known to be stabilized in Newtonian slender tori when the specific angular
ﬁémentum distribution is steepér than IIszIEi This result is generalized
to pseudo-Newtonian tori, which could be of some practical significance if
the less vivlent modes which exist beyond this point do not actually disrupt
the tofus.

The surface interaction nature of the instability is demonstrated by
studying two-dimensional annular flows. Pseudo-Newtonian cusps are found to
be 'stabilizing in incompressible flows because they cannot support wave motion
at the inner edge. The extra degrees of feedom existind in a compressible

flow are, however, immediately destabilizing.



Finally, the effects of accretion on the instability can be studied by
constructing a continuous sequence of two-dimensional relativistic models
going from a marginally bound annulus (which is unstable) to a pure radial
infallkfrom infinity (which is stable). The location of the marginal stability

point is still unknown at the present time.
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I. THICK ACCRETION DISK THEORY

The idea that accretion disks can be geometrically thick in the vertical
direction has received dreat interest from theorists in the past decade. The
natural astrophysical environment of such objects is around a black hole, and
they may turn out to be important for understanding the central engines of
active galactic nuclei and exotic Galactic sources such as SS433. Given
these proposed applications it is however understandable that observational
evidence for the existence of thick accretion disks is rather scarce. Indeed
evén the current theoretical models must be said to rest on. shaky foundations,
partly because they are extremely simple and contain a large number of un-
known free parameters and functions, and partly because they may be subject
£o dynamical instabilities. These instabilities will form the subject ofv
this thesis, but suffice to say for now that their role in real astrophysical
flows is far from certain at the present time.

This chapter reviews the theory of thick accretion disks, leaving aside
the question of their dynamical stability. At the heart of the theofy lie
the equilibria of perfect fluid rings rotating around a central mass. After
a full discussion of their propefﬁies, we briefly turn to the simplest imper-
fect fluid configuration, that of the thin Keplerian accretion disk. The
ﬁheory of thick accretion disks proper is then reviewed; concentrating pri-
marily on the radiation pressure suppdfted variety. Finally, alternative
models supported by gas pressure ate briefly discussed.

Earlier reviews of thick disks have been written by Paczyﬁski (1982)
and Wiita (1982h. For applications of the theory to active galactic nuclei
seé Begelman (1984); Begelman, Blandford and Rees (1984); Blandford (1985)
and Rees (1984). Calvani and Nobili (1981) have applied £he theory to S$S433
and Margon (1984) cites observations which indicate that this system may

contain a thick disk.

I.1 Perfect Fluid Tori

The relativistic equilibrium confiqurations of perfect fluid tori rotating
around a black hole have been. derived and discussed by Fishbone and Moncrief

(1976); Fishbone (1977); Abramowicz, JaroszYﬁski and Sikora (1978); Koztowski,



Jaroszyfski and Abramowicz (1978) and Chakrabarti {(1985).
Consider the Newtonian case to begin with, first discussed by Fishbone
and Moncrief. Here the fluid obeys Newtonian hydrodynamics and rotates around

a central point mass M. Hydrostatic equilibrium requires
1 . ~
-S,-Yp = egr = ‘E’_@* )'Z'oo@ (1.1)

where gqg- is the effective gravitational acceleration due both to gravity and
centrifugal forces (figure 1-1).

Virtually all discussions of the equilibrium structure of thick disks
assume that they are barotropic, i.e. that surfaces of constant pressure

and constant density coincide:

b= p(f) . (1.2)

This assumption simplifies the problem enormously, as J.4 1S then the gradient
of a potential and the specific angular momentum Q\ and angular velocity 7Z
are constant on cylinders centred about the rotation axis (the Poincaré - Wavre

theorem, see e.g. ch. 4 of Tassoul 1978):

1-271-4 @ (1.3)

Defining a rotational potential éié o and the total effective gravitational

pofential w by

3\63\\‘*' 3

rodins 7O
Figure 1l-1. The balance of forces in a torus (adapted from Paczynski 1982).
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(1.4)

j_s_f’. (1.5)

then equation (1.1) is easily solved to give

rét"‘

lH

=q2+ §M+C (1.6)

where C is a constant.

Specification of the rotation law (1.3) and the gravitational field
determines the shape of the isobaric (or "equipotential") surfaces. The
problem is usually simplified still further by assuming that the torus self-
gravity is negligible compared with the gravitational field of the central
mass. Figure 2 illustrates the equipotential surfaces for non-self-gravitating
tori with l= (GMGDO)I/Z = constant and X= (G ) ('co/oo 45.

At Cu3=300,z=0) the pressure gradient vanishes as fluid elements rotate
with the Keplerian angular velocity - this is the central pressure maximum
of the torus. Depending on the actual p=p(j7) relation, the fluid will fill
one of the toroidal equipotentialysurfaces around‘ZDo. Inside the pressure
maximum, Xﬁ;>(GMZD)%, so that the pressure gradient forces must be directed
inwards to balance the excess centrifugal force. Outside Tﬁ%, UX}(l(GMTD)%,
and the situation is reversed - pressure acts outwards to make up for the
deficient centrifugal force. Note that increasing the slope of Q~ tends
to stretch the equipotential surfaces out in thé radial direction. If one
continues increasing the slope towards a Keplerian distribution one is left
with the classical thin disk discussed later in this chapter.

Figure 1-3(a) depicts the specific angular momentum distribution near
the pressure maximum. Another interesting topological feature occurs when

1 1
’1 > (GMED)é outside a Keplerian point’CCLdP and _Slf(f(GMZI))/2 inside.
Here the pressure gradients are reversed and one has a cusp in the equipotential
surfaces. Figure 1-4 depicts a case where both Keplerian points exist. One
ﬁaY‘continue to play with‘i_VE)) and produce other topological features,
further discussion of which may be found in Abramowicz, Calvani and Nobili

(1980).
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The equipotential surfaces for a Newtonian potential apd
specific angular momentum ﬂ. given by (a) }\ = (GMGDO)/2 and
(b)y L = (GMZO ) (W/ W )" ~. Distances in the figure are
scaled with respect to the radius CDO of the central, pressure
maximum ring.
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Figure 1-3. The distribution of specific angular momentum'ﬁ and the

equipotential surfaces near (a) the pressure maximum and
(b) a cusp.
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Fully relativistic tori rotating in stationary, axisymmetric spacetimeg
have broadly similar properties. The usual barotropic assumption is that

the surfaces of constant pressure and constant total energy density coincide:

p=p(T) (1.7)

1
This again implies that the surfaces of constant X~ and constant )\L_coincide

L=gou (1.8)

However, the spacetime geometry distorts these surfaces (the so-called
"von Zeipel surfaces") from their Newtonian cylindrical shape, though they
still retain a cylindrical topology (figure 1-5).

For a static gravitational field, such as that of a Schwarzschild black
hole, the von Zeipel cylinders are independent of the relation \2\= JK(]TJ.
This is not the case for a stationary field such as that of a Kerr black
hole (or a self-gravitating torus).

As in Newtonian theory both VQ (J1) and the gravitational field are
required to determine the equipotential surfaces. Figure 1-6(a) depicts
the case X = constant and a Schwarzschild metric, again neglecting the fluid
self-gravity. An inner cusp is present, due to the fact that the specific
angular momentum of a Keplerian orbit is non-monotonic (figure 1-6(b))

This makes the cusp a generic feature of general relativistic fields, in
coﬁtrast to the Newtonian case where cusps are produced only for special
chéices of ,l . !

The cusp equipotential surface is the largest that a fluid in hydrostatic
equilibrium can £ill. 1In fact, if the cusp lies inside the marginélly bound

test particle orbit TXO,,, then the fluid cannot even fill this surface.

1 .
In the present discussion .Q and ;rl_are defined by

: )
= - Yg =Y
‘2 Uy ‘Zl u?
where u’ is the four velocity of the fluid in the standard, spherical polar
coordinate system. For coordinate independent definitions see, e.g., appendix
1 of Koziowski, Jaroszyfiski and Abramowicz (1978).

In papers on thick disks the word "Keplerian" often simply refers to a
circular test particle orbit, regardless of the gravitational field. This

is a common source of confusion, especially with those who study, say, rotation
curves of disk galaxies.

o
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Figure 1-5. The von zeipel surfaces for a Schwarzschild spacetime. Note the
TO== constant behaviour as one goes away from the hole, in agree-
ment with Newtonian theory. (Inside the critical surface P
the surfaces do not have cylindrical topology, but they lose
their significance here because matter cannot rotate in
hydrostatic equilibrium in this region)
(from Koztowski, Jaroszyfiski and Abramowicz 1978)

wea lms<‘ <lmb

, ‘ ' 1 Figure 1-6. (a) Equipotential
' surfaces and (b) the specific
anglular momentum distribu-

tions for an X =constant

’///// test fluid rotating around
a Schwarzschild black hole.

w)o

(a)

(fig. a from Abramowicz,
----- ~ . - e Jaroszyfiski, and Sikora 1978)
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'I‘hlis is because surfaces whose inner edges are inside this radius are open
at infinity, regardless of the spacetime and regardless of the specific angular
momentum distribution,(atleast provided it is continuous and stable).

Consider a confiquration which fills the cusp equipotential surface.

If in addition to being outside TIL$ , the cusp is inside the last stable
test particle orbit 1ZDMS, then a process similar to Roche lobe overflow

in close binaries occurs. A fluid ring at the cusp rotates in a Keplerian
orbit. This orbit is unstable if'33w6;<i2%, because on perturbing the fluid
axisymmetrically inwards, its specific angular momentum is less than the
local Keplerian value and so it will continue to fall inwards. ©Note that
this overflow mechanism will not occur in Newtonian cusps, where ,KKqPis
monotonieaily increasing, or indeed in relativistic cusps if ., 7@,

Near an unstable cusp the assumption of hydrostatic equilibrium clearly
bréaks down. A stream of fluid will flow from the torus into the black hole
and, like in spherical accretion, this flow is transonic. Further discussion
of this process will be found in chapter VI of this thesis, where the stability
of accreting flows will be examined.

Paczyﬁéki and Wiita (1980) pointed out that the essential features of
a Schwarzschild spacetime with regard.! to accretion flows can be mimicked

with a pseudo-Newtonian potential

@ - —cu (1.9)

2 2%
(207 + )" - R

The specific binding energy and angular momentum of Keplerian orbits in such

a potential are

, TO - 2R,
Crap = LGM (1.10)
(TO - Rg)
(GM’(Z)3)1/2
and X'“r (1.11)
T - R
so that
de; W - 3R
e oy ¢ (1.12)



dﬂnq,: 5 T - 3Rg

and L(GMw) (1.13)

er———

d

(o - RG)2
Hence orbits are bound (e, 7> 0) if WP 2Re and stable (d Lug /A 0)
ifIDj>3RG. The pseudo-Newtonian potential thus prodﬁces the same marginally
stable and marginally bound orbits as a Schwarzschild black hole. 1In addition,
the specific binding energy is a maximum at the last stable orbit, just as
in the Schwarzschild case, and equals .0625c2 compared with the correct value
.057202. The equipotential surfaces also have very similar topologies to
those of the Schwarzschild case. Given the huge uncertainties in the physics
of real accretion, this potential has often been used to capture the essential
dynamical features of non-rotating black holes without the mathematical
pomplexities.
| Although the gqualitative discussion presented so far in this section
‘hblds even for self-gravitating disks, the figures have only illustrated
the non-self-gravitating case. Self-gravitating configurations are very
difficult to actually compute, as one must soive the Euler equations and
Pdisson's equation (or, in relativity, the full set of Einstein's equations)
simultaneously. Abramowicz et al. {1984a) have qualitatively examined the
gibbal consequences of self-gravity in Newtonian theory. Their discussion
centres on the fact that self-gravity changes the Keplerian distribution
of specific angular momentum. Figure 1-7, adapted from this paper, illustrates
éhis for a slender, self—gravitating ring. Inside the ring the self-gravity
is directed outwards, so that:a rotating test particle needs less specific
angular momentum to stay in equilibrium. Outside the ring the situation
ié'reversed. Note that the Keplerian distribution can be non-monotonic so
that self-gravitating Newtonian tori may have unstable cusps.
| Finally, it should be emphasized that all the discussion in this section
relies on the assumption that the configurations are barotropic. If this
is not the case (a "baroclinic" torus), constant presgﬂfe and constant density
surfaces do not coincide and the von Zeipel cylinders no longer have any
significance. A procedure for constructing baroclinic models adopted by
Frank (private communication) has been to assume pressure and density dis-
tributions and then work out the rotation law which gives hydrostatic equili-

brium. The configuration is then checked a posteriori for self-consistency.
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|
o w
Figure 1-7. The Keplerian specific angular momentum distributions for

non-self-gravitating (NSG) and self-gravitating (SG) slender
rings around a central Newtonian mass M.

This is a bit like specifying the potential of a self-gravitating configuration

and working out the density, though of course obtaining self-consistency

is much more straightforward.

Of course the perfect fluid tori which are of primary interest are those
which resemble the products of the accretion process, and it is to this

which we shéll now turn.
I.2 Thin Disks

Apart from the cusp overflow, the idealized fluid tori of the last sec-
tion are all nonaccreting. However, these configurations are differentially
rotating, and so actually viscous friction between the shearing layers will
produce a slow infall. Although quite complecated in general, the behaviour
of a viscous disk becoﬁes much easier to treat if the disk is thin. As al-
ready pointed out, this occurs if the rotation law is approximately Keplerian.
Indeed, vertical hydrostatic equilibrium gives the ratio of disk height to

radius as roughly

H \Y

e A— (1.14)
o VK{F

where v is the sound speed. A thin disk must have vy small everywhere,
and this implies that radial pressure gradients are small compared with
gravitational and centrifugal forces. The rotation law must therefore be

Keplerian.
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Thin accretion disks are the most widely studied models of accretion
with angular momentum, and they are reasonably successful in interpreting
observations, particularly those of cataclysmic variables. The standard
model of such disks was developed by Pringle and Rees (1972), Shakura and
Sunyaev (1973) and Lynden-Bell and Pringle (1974). A relativistic treatment
was presented by Novikov and Thorne (1973). An excellent review of thin
disk theory is by Pringle (1981).

Inside the disk, gas rotates in circular orbits with the Keplerian
angular velocity. Viscosity slows down the rapidly rotating inner regions
and speeds up the slowly rotéting outer regions, causing an outward trans-
pott of angular momentum and energy. ' In addition viscosity dissipates mecha-
nical energy into heat, most of which is radiated locally from the disk
surface. If the disk rotates around a black hole, matter slowly drifts in-
wards until it reaches the last stable orbit. At this point the disk breaks
up and matter simply falls into the hole (the thin disk cusp overflow!).

‘ Because the disk is thin, it is convenient to distinguish between its
vertical and radial structure. The latter is determined by height-averaging
the disk and imposing local mass, angular momentum and thermal energy balance.
Then, at every radius, one computes the vertical structure from hydrostatic
equilibrium and the vertical energy transport required to balance the viscous
heat generation with the heat losses at the surface.

The greatest problem in disk modelliné is the unknown nature of the
viscoéity. The most widespreaé conven£ion is to lump all the uncertainty

info a single parameter p{ defined by
V = oK Hyg (1.15)

where UV is the kinematic viscosity. For a Keplerian disk this is roughly
equivalent to taking the T g component of the viscous stress tensor to be
proportional to the pressure. General physical arguments imply 0< & < 1.
The standard stationary black hole disk model of Shakura and Sunyaev
(1973) and Novikov and Thorne (1973) assumes an alpha viscosity and radiative
energy diffusion in the vertical direction. Depending on the centralvmass

and accretion rate, the disk model may be broadly divided into three zones.
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In the outer two wones the diskVis gas pressure dominated, while in the inner-
most wone radiation pressure dominates. The opacity in the two inner zones
is‘eléctron scattering dominated while in the outermost wzone free-free absorp-
tion and other mechanisms are important.

Real disks need not be stationary, as either the external mass supply could
vary or the disk itself could be unstable. There are several different evolu-
tion timescales: the dynamical, the thermal (the time it takes the heat
content to be viscously generated) and the viscous (the time it takes a

fluid element to be viscously transported through the disk):

-1 -1 -1(H
Edyn =~)-ZK‘F Ettaen. = OXtu e = OX (;;;) Eagn (1.16)

Note that tu B> ty, . 2 tug. -

Pringle, Rees and Pacholczyk (1973), Lightman and Eardley (1974) and
Lightman (1974) discovered‘that stationary accretion disks are subject to
local instabilities. Shakuré and sunyaev (1976) unified the previous studies
infan analysis of the standard model. Assuming that the perturbations are
axisymmetric and have a wavelength JAL in the range H<3ijl<3itb ;, then the
only relevant equations are those for radial viscous mass diffusion and
thermal energy balance. Two modes of instability, thggmal and viscous, were
fognd in the inner radiation pressure dominated region. Piran (1978) considered

more dgeneral models and found two necessary conditions for local stability:

d 1ng’ d 1ng (1.17)
d 1nH d 1nH

z z
2 )| o (1.18)
ST 2

Here Q+ and Q_ are the local heating and cooling rates and 2. is the surface
density. The first condition‘expresses the fact that if a perturbation in

the disk height causes Q+ to increase faster than Q- then the disk will heat
and swell further (thermal instability). The second condition is simply a
statement that the perturbed mass diffusion coefficient is positive. Violation

of this criterion means that regions of high density will get denser while
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regions of low density will become more rarified, and the disk will there-
fore tend to break up into rings.

These instabilities have since been the subject of intense theoretical
study in the hope that they can help explain the outbursts of cataclysmic
variables (see e.g. Smak 1984 for a review).

It should be emphasized that the above criteria are local in that perturba-
tiqns are assumed to be concentrated at a given radius. Taam and Lin (1984)
have studied the global, nonlinear evolution of locally unstable disks. Radial
energy transport by advection and radiative diffusion were included and it
was found that this could stabilize the disk even when the local criteria
were violated. Piran (1978) also noted that mass loss in the form of a wind
could have a stabilizing effect. For disks around black “holes, Abramowicz
(1981) used this idea to show that mass loss at the inner disk boundary is

stabilizing.

I.3 Radiation Tori - Formation and Stationary Structure

In the inner radiation pressure dominated zone of the standard thin
diék»model, the ratior of height to radius reaches a maximum value which
satisfies (Shakura and Sunyaev 1973; Jaroszyfiski, Abramowicz and Paczyfdski

1980, hereafter JAP)

i j:; 4 " (1.19)
[ow) 9 ME
nex
where ME is the "critical" accretion rate required to produce the Eddington

luminosity,

4 v GMcC
E= 7k

(1.20)

Clearly, the disk cannoct remain éhin and in hydrostatic equilibrium if the
accretion rate is too high. 1In addition even subcritical radiation pressure
dbminéted thin disks may be subject to thermal instabilities which will tend

to make the disk puff up. Two thingscan happen - either hydrostatic equilibrium

breaks down and material is blown off in a wind driven by radiation pressure
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(Shakura and Sunyaev 1973) or the thinness assumption breaks down and a
thick radiation pressure supported disk is formed. Assuming the former
possibility to be the course which nature chooses, Meier (1979, 1982 a,b,c)
has made detailed models of supercritical winds. 1In this section the latter
‘possibility will be discussed. The real situation might of course lie some-
where in between, with both a thick disk and a wind or jet, but 2D radiation
hydrodynamical simulations are required to explore the matter fully.

Tidal disruption of individual stars by black holes with mass §;; 106 Mg
has also been suggested as a mechanism for producing radiation supported
tori (Frank 1979).

The assumption of hydrostatic equilibrium immediately places a great

constraint on the viscosity in a thick disk (JAP). Rough calculations of

the accretion velocity give

S HH
LA QTN (—_a;> (1.21)

where & 1is the viscosity parameter. Because the disk is thick, equation
(1.14) implies that v is now of order Viep (pressure gradients are dynamically
important), and so ¢ must be small in order for hydrostatic equilibrium

to remain valid. This is in contrast to the thin disk case where the small-
ness of HAS and v; ensured dynamical equilihrium.

| Modelling thick accretion disks is a much more difficult business than
in thin disks because mass, energy and angular momentum will in general

be transported both vertically and radially. The initial approach adopted
in the early works of Paczyﬁski and Wiita (1980, hereafter PW); JAP and
Ab;amowicz, Calvani and Nobili (1980, hereafter ACN) was to drop entirely
any discussion of the disk interior and to use instead global conservation
laws to elucidate general features. They envisaged a stationary configura-
Eion consisting of a thin Keplerian outer disk which swelled into a thick
disk at radius (.4 . This in turn extended down to an unstable cusp where
a;thin stream of matter overflowed into the black hcié (figuret8). Full
genefal relativity was used by JAP whereas Newtonian and pseudo-Newtonian

potentials were used by ACN and PW.
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Figure 1-8. (taken from JAP) The supercritically accreting disk model
of PW, JAP and ACN. The left hand panel illustrates the
possible fates of radiation emitted in the inner funnel
region. The bloated form of the thick disk which is illus-
trated here was not in fact a general feature of the models.
PW calculated several cases in which the disk height increased
monotonically with radius.

Assuming that the disk surface can be well approximated by a zero
pressure surface, its shape can be calculated given the inner cusp radius
(tDM&S;YZlh$:TZhﬁ)[ the height at the cusp, and the surface distribution
of specific angular momentunl‘Q(TD). Because the thick portion is every-
where radiation pressure dominated, the above papers also assumed that its
surface was radiating at some given fraction C(T) of the local Eddington
flux Eﬁ#l = -cger /K, which is already known once the shape of the surface
ig known. Integrating the flux over the surface gives the radiated luminosity.

The outer thin disk can be modelled in the way outlined in the previous
section using local conservation of mass, angular momentum and energy. In
the thick portion, where details of the accretion flow become uncertain,
global conservation laws may be invoked . Neglecting winds from the disk
surface, the rate at which mass enters the disk through ™, 4 must equal
the rate at which it flows out at TQ, . The viscous tdrque applied to the

thick disk must equal the net rate at which angular momentum leaves by ad-

vection and radiation. Finally, neglecting the advection of heat into
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and out of the thick portion and additional possible internal sources such
as nuclear burning, then thermal equilibrium implies that the thick disk
luminosity is equal to the rate of work done by the viscous torque on the
disk plus the rate at which mechanical energy is lost in the flow from TO_ 4
to THha .

Neglecting the viscous torque produced by the transonically accreting
stream, the above laws enable one to determine the stationary accretion
rate and the viscous torque attﬁgd.. If one also assumes that the luminosity
produced by the stream is negligible, then applying global thermal equilibrium

to the whole (thick and thin) disk configuration gives the total luminosity:
L = Me,, (1.22)

where e, is the binding energy at the cusp. Note that thick disks will
in general be less efficient than thin disks in converting rest mass into
radiated energy because the binding energy of a Keplerian orbit decreases
inside the marginally stable orbit TO,s. Of course equation (1.22) does
not take into account the fate of the radiation after it initially leaves
the surface (see figure 1-8).

Even though thick disks may be inefficient, their total luminosities
can in principle exceed the Eddington limit by as much as a hundred in the
case of a 108 Mg black hole (ACN). ACN have also shown that this is not
due to the nonspherical geometry of the torus, as one might initially gquess,
but to the centrifugal contribution to the effective gravity. Indeed,
configurations with big shear and small vorticity can easily have luminosities
in excess of equation (1.3) and still remain in hydrostatic equilibrium.

Most of the luminosity is radiated in the central funnel region and
this fact is the source of most interest in thick disks. Lynden-Bell (1978)
proposed that the intense radiation field in the funnel region could accelerate
a pair of collimated jets, and that radiation pressure supported thick disks
could thus be the central powerhouses of some active galactic nuclei and

quasars. . (For further work in this area, see Nobili, Calvani and Turolla

1985 and references quoted therein.)
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The approach adopted by ACN, JAP and PW is useful but only zeroth order.
No assumptions about the viscosity mechanism (except that it must be small)
and the equation of state or flow pattern in the interior were made.3 How-
ever, this is done at the price of specifying two free functions‘ﬂ(co) and
C(™) on the disk surface, in addition to the height at the inner edge.
Topological and stability (d R /d®@ T>0) arguments can restrict ,K (70) some-
what, and PW also use local thermal equilibrium at €J,; to provide an addi-
tional constraint. Clearly, though, it is the accretion flow which deter-
mines these functions, and one must study the disk interior to proceed further.

The earliest attempt to model the accretion flow was by Paczyiski (1980).
Using a pseudo-Newtonian potential, he considered an extreme case where
the viscosity was large only clcse to the disk surface, so that the flow
was confined to a thin layer there. Hydrostatic equilibrium was assumed
to hold; and the shape of the disk was again determined by specifying the
surface distribution of X~(tb). However, ,X(va) was in turn determined
by the structure of the accreting layer.' This layefw{sylike a thin disk
tacked onto the thick disk, and local conservation of mass, energy and angular
momentum determine its radial structure. All the heat dissipated in‘the
layer was assumed to be locally radiated out of the disk at a constant
fraction C of the Eddington flux. The inner cusp boundary was assumed to
have zero height while at large radii the solution was matched onto a thin
disk.,

Given these assumptions the disk height, surface angular momentum
distribution and inner radius could be calculated once (M/C), or equivalently
the outer transition radius, was;épecified. Beyond the fact that it did
not participate in the accretion, no assumptions were made about the disk
interior. Subcritical (with C=1) models all had ¢d, =00, as in thin disk
models, whereas To,, gradually moved inwards toTQ,.at higher supercritical
accretion rates. At the same time the disk became tﬁicker with narrower
funnels. At very high accretion rates regions were formed in which CLQ/dID<(O

and which were therefore dynamically unstable.

3 . .
PW sctually assumed that the disk interior was barotropic. However,
none of their results depend on this assumption.
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Paczyfiski and Abramowicz (1982) studied a complementary model in which
viscosity was assumed to be important only on the equatorial plane of the
disk. They proposed that in such a case the disk would be convectively
unstable, and argued by analogy with stellar interiors that the convection
would be very efficient in transporting heat and angular momentum. This
means that along a convective flow line the fluid would be very close to
its marginally stable state, i.e. the specific entropy and specific angular
momentum X would be constant. - They were thus led to consider so-called

"gyrotropic" configurations:
s =s({) (1.23)

As convection occurs primarily in the vertical direction, the constant entropy
surfaces have the topology (but not the exact shape) of cylinders. Assuming
hydrostatic equilibrium over long enough timescales, pseudo-Newtonian gravity,
an (K -viscosity and a mixture of perfect gas and radiation they were able

to construct models with critical and twice critical accretion rates. Both

of these turned out to be stable to the Hgiland criterion (even radially)

and they were able to confirm a posteriori that the contribution of nuclear

burning was negligible.

Some of the most detailed models constructed so far were by Wiita (19829.
Taking the models of PW, he beefed them up by placing uniform and exponential
atmospheres on the surface, adopted a polytropic interior, and assumed explicit
PA-viscosity laws. This permitted an investigation of the structure of
the interior and checks to be made on its self-consistency, in particular
the assumptions that nuclear burning and éelf-gravit§‘&ere negligible. 1In
addition, one set of models was constructed under the assumption that the
ratio of gas to radiation pressure was constant in the atmosphere.and then
the distribution of o« was calculated, permitting a check on whether it
was low. In another set of models the reverse procedure was taken whereby
a distribution of X was assumed and a check was made on whether the atmos-
phere would be radiation pressure dominated.

In both sets of models the most serious constraint was caused by self-

gravity, a problem which became :.~worse:'  : as the inner edge moved closer

to' the marginally bound orbit. ‘Indeed it was claimed that it was hard to
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have non-self-gravitating disk models around non-rotating black holes more
massive than about 107 Mo+ although more elaborate models might change this
conclusion.

Finally, Begelman and Meier (1982) examined the extreme case where
the accretion rate is very supercritical, so supercritical in fact that
the trapping radius R4 (the radius below which photons are advected with
the accretion flow faster thatn they can diffuse outwards) lies well out-
side the cusp radius. Inside Ry most of the heat would be advected with
the flow except in the surface layers. 1Investigations were made of the
region well inside Ry and outside the cusp and pressure maximum under the
assumptions that the flow would be self-similar and that infall velocities
would be small enough to maintain hydrostatic equilibrium. Diffusion of
radiation was neglected compared with advection, but allowance was made
for the diffusive surface regions by treating them as a boundary layer.

The models depended on essentially fivelparameters which measured the
pressure gradients, the spatial variation of viscosity, the thickness of
the diffusing boundary layer, and the degree of pressure support. Extensive
humerical exXploration of this parameter space was made. Vertical as well
as radial shear was fully allowed for in the self-similar form of the rotation
1éw, and a generic feature of the models was the high vertical shear near
the surface. Other interesting features included models in which the angular
vélocity actually changed sign in the disk and possiblé thermal instabilities
in the surface layers. Also, all disk models were convectively unstable
(to the Hgiland criterion) in part or all of their volume.

Apart from detailed models, radiation tori have also been studied
phenomenologically by workers investigating their utility as models for
the central engines of active galactic nuclei. Figutre (1-9), from Begelman
(1984), illustrates the physical state of the'intefior near the pressure
maximum for various central densities and black hole masses. The upper
region of the diagram is excluded for all the brevious models because nuclear
burning is expected to be an efficient source of energy of self-gravity
becomes important.

Lines of constant opticél depth and constant® (computed by assuming

!
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Figure 1-9. (taken from Begelman 1984) The physical state of the interiors
of radiation-supported thick disks around supermassive black
holes.

that viscosity is generating approximately an Eddington luminosity of heat

per unit volume near the pressure maximum) are also plotted. Radiation

supported tori are completely excluded from the lower left hand corner

where the optical depth becomes less than unity (and ¢ exceeds unity).
Finally, lines of constant photospheric temperature are also shown.

These were computed by assuming a homentropic torus, though a stable entropy

gradient would simply shift these lines further upwards. If the so-called

"blue bump" that is séen in some quasars is thermal radiation with temperature

of order 104 K, then &X must be exceedingly small (§§'10—8) in order for

a‘radiation torus to produce it. Note also that even LTE requires 0(5;10—3

(see also Rees 1984). Hence if the instabilities to be discussed in this

thesis do not actually destroy the disk but form turbulence in the nonlinear

regime, the effective viscosity thereby produced may be high enough to rule

out radiation tori as viable quasar central engine models.



21

I.4 Radiation Tori - Secular Evolution

There is of course no reason why the infall of material into a thick
disk should exactly compensate the radiative losses and outflow of material
through the cusp, as is assumed in the stationary models of the previous
section. 1Indeed, one could even imagine an isolated torus left as a remnant
from the collapse that produced the black hole or produced by individual
tidal disruptions of stars (Frank 1979, Rees 1983).

From equation (1.16) the .secular evolution timescales in a thick disk
(H/o~ 1, X<< 1) are much longer than the dynamical timescale. This led
Abramowicz, Henderson and Ghosh (1983)4 to suggest a simple method for
computing the evolution of tori which has been recently implemented, with
some modifications, by Abramowicz, Blaes and Turolla (1986, in preparation).
Briefly, it assumes that the disk is always in a state of dynamical equi-
librium which can be well approximated throughout its evolutionary history
by a four parameter pseudo-Newtonian model. For disks without cusps and
which are therefore nonaccreting these "structural" parameters are

re: the ratio of the Schwarzschild radius to the inner radius of the disk.

>\: the ratio of the specific angular momentum at the inner edge to
the Keplerian value at this radius.

B : gives the power of the assumed specific angular momentum distribution

L= N A0 @ /w02

4ﬂ : the ratio of gas pressure to total pressure, assumed constant
throughout the disk. ‘ Cou

(1.24)

Accreting tori with cusps automatically have )ﬁl and for these cases >\
is replaced by h;, , the height of the disk surface at the cusp, as a structural
parameter. Evolution is then determined by bockkeeping the total mass M,

angular momentum J, internal energy E;y and mechanical energy E, using the

equations
dam oM . dJ DI .
T T T X% = Dy T = T— % = Dy
dt "%, dt B X;
dEr “DEr. dE,, E,..
T s w T Des at T x5 7 Den (1.25)

This paper, by the way, contains an enormous number of errors - the
interested reader should be wary.
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where x: (i=1,2,3,4) represents the four structural parameters. The D's

and the partial derivatives are all functions only of the x{/s so that equations
(1.25) form a closed set which may be integrated numerically from any initial
data { x;} . D, and Dy are simply the rate of mass loss and the rate of
angular momentum advection, respectively, through the inner edge. 1In ad-
dition to advection, D, and Dg; include the viscous dissipation of mechanical
energy intb heat, modelled using an (< -prescription with constant & . Finally,
the torus is assumed to be radiating at the local Eddington flux (with an
electron scattering opacity) over its entire surface and D¢, also includes

. this.

Equations (1.25) thus describe the evolution of an isolated torus without
external viscous torques oy the accretion of material from an external supply
such as a thin disk. Given some prescription for handling these effects,
they could easily be included in the scheme (though this has not been done yet).
| The structural parameters g, )\ and B determine the equipotential
function and span only a limited range of values determined by local stability,
, ﬁ)njzaiD“¥, and CDN¢<iOG .“The quantity /Q , on the other hand, is limited
by the self-consistency of the model. It cannot be too high, otherwise
the torus would be self-gravitating, and it cannot be too low or the torus
WOﬁld no longer be optically'thick. Typically,/GAu 10-4 for 108P40 black |
holes. In any case the code checks at every timestep that the torus is
sufficiently optically thick (T >5000) and non-self-gravitating. The height
at the inner edge is in addition required not to be too large, as otherwise
the assumption of hydrostatic equilibrium would breakéaown. The only other
parameter which needs to be specified initialiy is £ - the'consistency‘
fequirements of the previous ngtion give an upper 1imit’\/10~4.

A full exploration of the initial data spéce has yet to be made, but
it is already clear that nonaccreting tori have only two basic evolutionary
behaviours determined by the relative importance of viscous heating to
radiative cooling. If heating is dominant, then the specific angular momen-
tum distribution steepens towards Keplerian and the torus inner edge moves
inwards and forms a cusp. ‘This is in agreement with the intuitive idea

that viscosity is acting to transport angular momentum outwards (even though
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this is not explicitly forced by the scheme). If cooling is dominant then
the reverse tends to happen - ,Q gets flatter and the torus inner edge retreats
from the black hole. At the same time, however, /§ tends to increase which
in turn strongly increases the heating (which goes as /64). Provided &<
is not too low and the torus starts off far enough away from the bounds
on the parameter space, its evoclution thus reverse$ and it moves to an
accreting state.

A full evolution with an accreting transition is depicted in figures
1-10 and 1-11. The starting parameters were r65=.35, B=-1.6, 0<_=10_4,
>\,=l.028 and/éL =10—4. Time is measured iﬁ units of 1.8x107seconds£2.% year.
As the disk makes the transition to an accreting configuration, the height
at the inner edge and the accretion rate grow rapidly but then stabilize.
As time proceeds, the torus loses mass and shrinks down towards a Keplerian
thin disk until the height at the inner edge is no longer negligible com-
pared to the torus height. At this point the accretion rate grows rapidly
and the torus presumably gets rapidly swallowed by the black hole.
'ijh.Thesé*reSult§iareipreliminaryfandffurthéﬁ work is in prodress. The
method is of course very naive and a number of objections may be raised.
First and foremost is that constfaining the disks to remain within a four-
parameter family may be far too inadequate to model the possibly complicated
evolutionary behaviour of real disks. A second criticism is that B 1is
assumed to be constant. The fact that (& could vary spatially inside the
torus does not really matter as the scheme only uses & as a global conversion
factor from the integrated product of stress and strain to the actual heat
ptoduction. The assumption that &{ is a constant in time may, however, be
ﬁuch more serious. Finally, the dynamical instability to be discussed later
must be taken into account, if indeed there are any configurations which
are stable enough to evolve on a secular timescale.

Blandford, Jaroszyfski énd Kumar (1985) have examined the local secular
stability of radiation tori in full general relativity. They find that

the Goldreich-Schubert-Fricke instability should be sufficient to maintain
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barotropicity in a radiative zone provided it is sufficiently optically
thick. Also, they confirm the assumption made by Paczyﬁski and Abramowicz
(1982) that anghlar momentum and entropy transport should be efficient
enough to maintain a convective zone in a ngotropic state, atleast in the
deep interior. Suggestions were made as to how these results could be used
to construct an alternative numerical scheme for the secular evolution of
tori.

I.5 TIon Tori

Rees, Begelman, Blandford and Phinney (1982) pointed out that most
extended radio galaxies emit very little radiation from their nuclei even
though they produce highly energetic jets which transfer an enormous amount
of power to their radio lobes. A radiation supported torus is highly unsuited
to perform such a task because even though it might be able to accelerate
the jets, it would inevitably produce too much isotropic emission (~Lg)
to remain below the observed upper limits on the core luminosities. These
authors proposed instead that a hot, optically thin gas pressure supported
torus might be involved.

The temperature required for gas pressure to be dynamically significant
ahd'support a thick disk is given roughly by the local virial temperature
Tyie = (GMmp/3ko ). 1Inside W~2000 Ry, however, this temperature exceeds
that associated with the electron rest mass energy and electrons will then
be subject to very efficient relativistic cooling processes, particularly
Compton scattering. Therefore to maintain a thick diék the ions must not
be able to transfer their thermal energy to the electrons.

k Coulomb interactions alone are insufficient to couple the electrons

and ions if M is low enough to satisfy

i < 501 (1.26)
Collective plasmaprocesses may do’the job,-:-but these are apparently so
pQOElYiunderstood that Rees et al. contented themselves with assuming that
it EE_poss;ble for the ions to be much hotter and s6 support the torus.
ﬁnlike the radiation torus, the ion torus is a very inefficient radiator,
but it could nevertheless provide the catalyst for tapping a rotating black

[
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hole's spin energy in order to accelerate a jet.

Note from equation (1.26) that &< cannot be too low otherwise the disk
would cool. Hence if the plasma physics works out, ion tori may be less
vulnerable to any turbulent viscosity which may be generated by a nonlinear

saturation of Papaloizou and Pringle's instability.
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II. REVIEW OF THE PAPALOIZOU AND PRINGLE INSTABILITY

The thick disk models of the previous chapter cover a reasonably wide
range of physical possibilities concerning the physical state of the plasma,
the viscosity distribution, energy transport and the accretion flow pattern.
All of them, however, rest on the fundamental (and untested at the time)
assumption that thick disks can actually exist in stable dynamical equilibrium.
To help ensure this the more detailed models were all checked against the
Hgiland stability criterion (see section 3.3 below) and some, particularly
the self-similar flows of Begelman and Meier (1982), were found to be un-
stable. However, this criterion is simply a check that local buoyancy and
centrifugal forces act to push individual perturbed fluid elements back
to their equilibrium positions, and although it is a necessary condition
for stability for perfect fluids in pure rotation, it is certainly not suf-
ficient. 1In addition, its applicability to thick disks is limited to regions
where the flow pattern is to a good approximation azimuthal, and it there-
fore says nothing about the fluid near an overflowing cusp.

With the view of exploring the applicability of this criterion further,
Abramowicz et al. (1984b) derived a gigantic generaiﬂfocal dispersion relation
for axisymmetric perturbations on non-self-gravitating fluids. This relation
is only valid if the perturbation wavelengths are much smaller than ény
lbcal scale height, but interesting results could still be found. Aithough
straightforward to derive, however, its sheer size and complexity have meant

that a full exploration of the solution space has not yet been performed.

II.1 The Discovery

Hacyan (1982) studied the stability of thick disks from the (much more
difficult!) global point of view. Lagrangian displacement trial functions
which were linear in the Cartesian coordinates were used in the variational
principle of Lynden-Bell and Ostriker (1967) to obtain approximate normal
mode eigenfrequencies. Non-self-gravitating polytropic tori with adiabatic
index )/=4/3 and different specific angular momentum Aistributions were
studied, and it was found that all these models were subject to instabilities

with growth rates
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1/4
ImT =23 (B /W) / ﬂin (2.1)

where A is a slowly varying function of 00,./W,+ and is of order unity.
The instabilities thus act on the dynamical timescale and pose serious
problems for the self-consistency of thick disk models. However, the re-
sults are uncertain due mainly to the choice of trial function. This is
in fact an exact solution for uniformly rotating, homogeneous bodies but
is unlikely to be accurate for strongly differentially rotating, inhomo-
geneous configurations like thick disks (see e.g. chapter 6 of Tassoul 1978).
Papaloizou and Pringle (1984, 1985; hereafter PPI and PPII respectively)
made another attempt with a study of non-self-gravitating, homentropic tori.
In contrast to the previous approach of Hacyan, they used the Eulerian
perturbation equations and actually attempted to solve them. 1In this way
tﬁey were able to demonstrate conclusively the existence of a global non-
axisymmetric instability which operates on the dynamical timescale. Tori
subject to such an instability are unlikely to survive ‘it and they concluded
"These results imply that models of quasars which invoke accretion

tori and models which imagine that centrifugal force can vacate a funnel
up the rotation axis along which jets might originate are not viable."

-PPII

Subsequent work has shown that this assertion may have been made a bit
hastily, but even so thick disk theory will never be the same again.

PPI was confined to the Stﬁdy of constant specific angular momentum
tori, for which the perturbation equations are much simpler than in the
general case. Of course these configurations are only marginally stable
to loéal éerturbations anyway, but the global instability which was found
has nothing to do with this. The actual results of this paper were as
follows:

(1) By imposing artificial boundary conditions on tori with nonzero
surface pressures, it was proven that incompressible ‘tori are stable, and
so any instability must somehow result from the fluid having a finite sound
speed.

(2) An ingenious though rather tortuous argument was presented which

demonstrated that every configuration is unstable to modes with high enough



30

azimuthal wavenumber.

(3) Two analytic calculations were performed on simple, but unrealistic,
equilibrium models. Instabilities were found which grow on the dynamical
timescale.

(4) Numerical calculations of the growth of arbitrary perturbations
in realistic tori revealed the fastest growing unstable modes which grow
on the dynamical timescale.

The first result is now known to be completely incorrect (Blaes 1985;
Goldreich, Goodman and Narayén 1986 ,hereafter GGN) due to the fact that
the effectively rigid boundary conditions precluded the existence of gravity
waves on the (actually free} surface of the torus. 1Indeed, it is these
surface waves which provide the key to understanding the most destructive
mode of the instability.

' The second piece of analysis, although proving the existence of insta-
bilities, does not give any indication of their growth rate. Moreover,

it again relies on the same incorrect bodnda}y conditions and thus produces
a criterion which requires compressible flow for an instability. PP support
their choice of boundary conditions by arguing that if the density is low
éﬁough on the surface, it should not matter what precise boundary conditions
afe adopted, providing the perturbations are regular. Subsequent calculations
do in fact support them on this, but of course it only works for compres-
sible configurationsl. This is important, however, because it shows that
the inevitably complicated surface structure of a real thick disk will not
have much effect on the instability.

Of more practical interest are the analytic calculations, but these
have been superseded by later analytic work which will be discussed below.
This leaves the numerical results which are worth describing in some detail.

The technique involved following the time evoluticn of arbitrary initial

e

lIt's not that incompressible tori are actually supposed to be realistic,
but that they give an easy physical understanding of the nature of some
of the unstable modes. To state that the instability is due to finite sound
speeds, simply because one can alter the boundary conditions in compressible
tori and thereby rule out unstable incomprssible tori with the same altered
boundary conditions, is clearly misleading.
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perturbations corresponding to a particular azimuthal wavenumber m. After

a period of time the fastest growing unstable mode dominates the perturbations
and one can measure its growth time from the rate of increase of the per-
turbation amplitude.

In order to check the results, two different grids were employed in
the spatial difference scheme. One (grid A) was a rectangular (TD ,z) grid
and the other (grid B) used an orthogonal coordinate system in which one
of the coordinates (f) was proportional to the effective potential (fig. 2-1).
The boundary conditions employed on the torus surface were also different
in the two cases.

Figures 2-2 and 2-3, taken from PPI, illustrate the structure of the
fastest growing modes for various m and torus thicknesses (represented here
by a parameter /g which approaches zero for slender tori and unity for infinitely
thick tori). Both methods give more or less the same results. The contours
are lines of constant absolute value of the perturbed velocity potential
normalized such that the maximum value is one. Only modes which are sym-
metric with respect to the equatorial plane were considered. The most
striking fact is the lack of vertical structure, especially in ths slender
tori. 1In all cases the perturbation is concentrated towards the inner and
outer radii, this effect becoming more pronounced as the torus becomes
thicker (/g increasing) or as m increases.

The growth times for each of the cases are listed in table 1 - all
are within an order of magnitude of the dynamical timescale. Note that
the higher m modes are faster in the slender torus. For the m=2 mode, the
growth rate first increases with /é but apparently seems to fall again
as the torus gets even thicker.

| PPII extended the analytic work of the first paper to configurations

with power-law specific anguldr momentum distributions:

2
Contrary to what is stated, PPI actually used the correct free surface
boundary condition in grid B, because they require

D
(f“ ——W—) = 0
' _ f [#=o l-n .
This rules out unphysical solutions because they go as f (see section

4.2 below).
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The upper and lower frames correspond to grids B and A respectively.

Figure 2-2. Structure of the fastest growing modes in the /§
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/é =0.333

and (b) /6 =0.707 tori. The upper and lower frames correspond

to grids B and A respectively.
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2=
A = Lo (wrm,) 78 . 1.5<q<2 (2.2)

The results were as follows:

(1) All unstable modes must corotate with the equilibrium flow somewhere.

(2) Perturbation theory was employed near the (g=2) constant specific
angular momentum limit to show that the instabilities of PPI were not an
artifact of the special choice of rotation law, but persisted in a continuous
manner when the rotation law was changed.

(3) For slender tori there exists a mode'which is symmetric with respect
to the equatorial plane and is stable for q<QJ§‘while unstable for qtzr;;
Antisymmetric modes, on‘the other hand, are stable. This apparently innoc-
uous result turns out to be of absolutely vital practical importance as we
shall see later.

(4) High m modes in near-Keplerian thin disks are unstable, but no
indication of their growth time was given.

PP interpreted thesé,{nstabilitieSEaS“being'of two types, one sonic
in origin and the thef simply a compressible version of the classic Kelvin-
Helmholtz instability. This viewpoint was taken on the basis of thé impor-
tant work by Grinfeld (1984) on the stability of compressible plane parallel
sheaf flows. PPII presented an extension of this analysis to two-dimensional
rotating flows and the following sufficient criterion for stability was

derived. 1If there exists a constant quantity.;yztfor which

J1- h%( )>0 (2.3)

: 2 2 2
and T JT-ToH < v (2.4)

throughout the fluid, then the flow is stable. 1In the first inequality ¢
is the vorticity, and this condition can only be violated if the gradient
of: QJ,/S vanishes somewhere in the flow. This generalizes the famous

3
inflexion point theorem of Rayleigh to rotating, compressible flows./ The

3 . . . .
~ This theorem was originally derived for a two-dimensional plane-parallel
shear flow of incompressible fluid confined between two rigid plates. It
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second inequality has no such analogue, and indeed rules out instabilities
in zero vbrticity (i.e. constant specific angular momentum) incompressible
flows. As already stated above, this is incorrect, and it again arises
because these stability criteria were derived under the assumption of rigid
boundary conditions.

It can be shown, however, that the same criteria result from free
boundary conditions, provided the fluid is ‘incompressible. 1In this case,
though, inequality (2.5) is always violated and the full criterion, which
is only sufficient for stability, loses its utility. PP's physical inter-
pretation is terms of these criteria is again misleading, and indeed GGN
have shown that the so-called Kelvin-Helmholtz mode near g=_) 3 is in fact
the same mode which is present in the slender constant specific angular

momentum torus.

I;.Z The Energy Source

Papaloizou and Pringle's instability is dynamical - after the torus
is slightly perturbed it will thereafter preserve its total energy (and

angular momentum). An exact (nonlinear) expression for this is

Byg = %(Svﬁ + gvf)dm +J [ l/z(V¢+%V,,)2 + (u+ S u) +§2\J dn= E|+E, (2.5)
Mag Mrat

where v , u and g? are time-independent distributions of azimuthal velocity,

specific internal energy and gravitational potential energy of the original

equilibrium torus. The perturbations and mass distribution are of course

time-dependent. Note that the first integral El is non-negative. Initially

its magnitude will be close to zero but if there is an instability then

it will grow. The energy reservoir to fuel this growth is contained in

the second integral EZ' which initially has a value close to the total

equilibrium energy.

Another property of the unstable modes is that they are non-axisymmetric

‘- all the m=0 modes are stable provided the Hgiland criterion is satisfied

states that a necessary condition for instability is that the flow velocity
have an inflexion point somewhere or, equivalently, that the vorticity gradient
vanish at some point (see e.g. Drazin and Reid 1981).
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throughout the torus (Fricke and Smith 1971). The main difference between
axisymmetric and non-axisymmetric perturbations is that the former conéerve
a fluid element's angular momentum whereas the latter do not. This fact
led to a telling remark made at the end of PPI:

"It is the ability of non-axisymmetric modes to transfer angular
momentum which enables the tapping of the shear energy and so the
growth of the mode."

-PPI

To understand the meaning of this statement, consider how one might
reduce E2 in order to increase El. Suppose the density and specific internal
energy distributions are kept constant. Then the only way to vary E2 is

to reduce the rotational kinetic energy term

2
T=f‘zzgv¢dv (2.6)
\'

where, for the sake of brevity, vy is now the actual azimuthal velocity
of the perturbed fluid. Because the density distribution is fixed, the

moment of inertia

I =j Slav (2.7)

Y

is fixed. From the Schwarz inequélity,

2
TI = % jjv,,dv J

2
§%av > 5 jf vodv| = 0° (2.8)
v N v

where J is the total conserved angular momentum of the torus. Therefore
J
T2 — (2.9)

with equality occurring only if v, and TO are linearly dependent, i.e. the

fluid is uniformly rotating U@OCTD). Hence every differentially rotating

fluid has "shear energy" which can be tapped to fuel the growth of pertur-
bations. Note that this does not depend on the fact that j’ and u were

kept fixed - they could be changed as one pleased but if the flow were
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still differentially rotating one could extract further energy from it by
making it rotate uniformly.

For tbri which have angular velocities which decrease outwards, it
ié therefore possible to release energy by transferring angular momentum
from thé rapidly rotating inner regions to the more slowly rotating outer
regions, something only non-axisymmetric modes can do. Students of accretion
disk theory will recognize this energy argument from Lynden-Bell and Pringle
{(1974). Viscosity dissipates‘mechanical energy in an accretion disk for
precisely the same reason.4 The corotation theorem of PPII (and generalizations
discussed in chapter III bélow) gives an intuitive confirmation that this
is indeed the driving force behind the instability, because inside the
corotation radius the perturbations will be moving more slowly than the

equilibrium flow; while outside they will be moving faster.

1I.3 The Tapping Mechanism

Having identified a possible energy source, one still needs to discover
what are the essential global conditions which allow some non-axisymmetric
modes to tap it. 1In order to shed some light on this problem, Goldreich
and Narayan (1985) studied isothermal perturbations on an infinitely thin,
homogeneous gas sheet with a constant velocity gradient and an artificial
Coriolis force to simulate the effects of rotation. For such a system the
perturbation equations may be solved exactly, with the wave-like asymptotic
forms of the solutions being used to impose boundary conditions and determine
the eigenfrequencies. The entire procedure is essentially equivalent to a
WKB analysis of a differentially rotating disk and has been used in the

study of spiral arm formation in disk galaxies (Goldreich and Lynden-Bell 1965).

‘ 4Indeed, this discussion is actually a consequence of a rather profound
fact - fluid equilibria are not necessarily configurations of extremal energy,
as there is no unconstrained action principle for the fluid equations in
Eulerian variables (Schutz and Sorkin 1977). If the perturbations conserve
particle number, entropy, and are axisymmetric, then the energy of an axi-
symmetric rotating configuration is an extremum. This is why one can derive
energy principles for axisymmetric stability (Tassoul 1978, ch.6) but also
why they do not work for nonaxisymmetric perturbations - such a principle
would be impossible to derive.
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Goldreich and Narayan found that if reflecting boundaries were placed
on either side of the corotation radius then an instability was generated.

If the reflection coefficients were reduced then the growth rates decreased.
This is simply the standard wave amplifier of spiral density wave theory
(Mark 1976) and can be intuitively understood as follows (see figure 2-4).

A wave incident on the corotation region from the inner parts of the
disk will produce a reflected wave and a transmitted wave. Now, the incident
and reflected waves have negative angular momentum relative to the equili-
brium flow because their pattern speeds are lower. The transmitted wave,
on the other hand, has positive angular momentum. Because of angular momentum
conservation, the outward angular momentum transfer to the transmitted wave
causes a reduction, and therefore amplification, of the reflected wave. A
reflecting boundary at the inner edge is needed simply to provide a feed-
back so that the process can éontinue. Alternatively, a reflecting boundary

at the outer edge will produce similar results, while two reflecting boundaries

could produce correlaﬁed amplification on both sides of the corotation region.

|
}
l
|
|
|
i

/] | l |
; |Forbicllden |
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Figure 2-4. The wave-amplifier picture of Goldreich and Narayan (1985).
Outside the so-called "forbidden region" the perturbations
have a wave-like character, and it is the interaction of
these waves across the corotation radius that drives the
instability.
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That is the physical idea, but whether or not it actually works in
more general configurations than that considered by Goldreich and Narayan
was studied by Drury (1985). By examining conditions near the corotation
rédius in cylindrical but otherwise quite general non-self-gravitating flows
it was found that a necessary condition for this region to be able to amplify

waves is that
ri<< 1/4 (2.10)

where Ri is the Richardson number defined by

2 2 2 2 2.2
QD )N k '

Ri= (ke + M /2 N+ ‘;{ . (2.11)
n(aJ) 1/dw)

Here kgis the vertical wavenumber, N is the Brunt vaisala frequency and K
is the epicyclic frequency. This criterion is well-known as a necessary
condition for instability in flows between rigid boundaries (Sung 1974).
prury shows in addition that a sufficient condition for the corotation region
to act as an amplifier is that Ri vanishes there. Note that for modes
which are approximately independent of height (kysmall), condition (2.10)
can be satisfied if N2 is small, i.e. either the specific entropy gradient
or the pressure gradient vanishes locally.

1f the wave amplifier picture works in fully three-dimensional tori,
then it would suggest that instabilities would always be present as the
Richardson number can be made as small as one likes by taking high m modes
corotating near the pressure maximum (NZ”J 0). However, in addition to
a corotating amplifier, "reflecting boundaries" are required. Goldreich
and Narayan state that if thé density cuts off near the inner and outer
surfaces of the torus on scales shorter than the radial wavelength of the
mode, then they will pbehave as perfect reflectors. This is probably correct
if the WKB waves are sonic in character.

The main trouble with these ideas, however, is that the fastest growing

N

perturbations tend to have characteristic radial scales which are much larger
" ‘than the entire torus cross-section! It is therefore difficult to interpret

them as waves - a more realistic discussion would centre around how the
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true boundary conditions act to set up a corotating eigenfunction which by
its very nature would transport angular momentum outwards and be self-ampli-

fying. Fortunately, there now exists such an interpretation.

II.4 The Instability as a Surface Wave Interaction

In the special case of a slender, non-self-gravitating constant specific
angdlar momentum torus one can calculate Ell the normal modes analytically
(Blaes 1985b, Jaroszynski 1985, chapter IV). The fundamental mode corotates
with the equilibrium flow and exists for every value of the azimuthal wave-
number. It is this mode which causes the instability in slender tori, and
calculationé of the growth rate and perturbation amplitude agree well with
the numerical computations of PPI. However, in contrast to the statements
made in PPI and II, this mode is not sonic in character and does not go away
when the incompressible limit is taken.

The realization that incompressible configurations could share the same
unstable behaviour as tori led Blaes and Glatzel (1976) and GGN independently
to study two-dimensional incompressible annuli (chapter V). Their methods
of treatment differ, but the essential point is the same. For a given azi-
muthal wavenumber there exist four modes which, when the boundaries are
sdfficiently far apart, represent surface ‘gravity waves’propagating upstream
and downstream at the inner and outer edges, the amplitudes of the waves
decaying with depth inside the annulus.

Due to the differential rotation, the two inner modes have much higher
"pattern speeds" than the two outer modes. The slower upstream inner mode
and the faster downstream outer mode have the closest speeds, and each of
thése two modes has a corotatidn point inside the annulus. As the boundaries
are brought closer together,vthe faster outer mode catches up with the slower
inner mode, their corotation points coincide, and they merge to form a single
ﬁodé which has high amplitude at koth edges and a corotation point in between
- this mode is unstable.

Of course the boundaries play a crucial role here simply because the
annulus is incompressible, and so wave motion can only be supported at the

free edges. Indeed, the instability can be killed offlin this case by placing
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the inner edde on a cusp. The effective dravity then vanishes there and
no wave motion can be supported.

That compressible, three-dimensional tori share the same instability
was shown convincingly by GGN. These authors were able to construct a con-
tinuous sequence of models from two-dimensional incompressible annuli to
compressible three dimensional tori by height-averaging the perturbation
,equatibns. Figure (2-5), taken from this paper, illustrates the behaviour
of this mode in a torus with polytropic index n=3.5 Contours of constant
Qrowth rate (scaled with the angular velocity at the pressure maximum) are
- plotted, and it is clear that Eﬁiﬁ is the mode which is stabilized in slender
tori at q%J_?. Moreover a comparison between table 1 and this figure shows
that this is the mode which was found numerically in PPI's two slender models.

Note that the eigenfunctions of figures (2-2) and (2-3) are in agreement

mp
0.0 0.2 . 6 .8 1.0
2.0
Figure -5, The
1.9 | surface interaction

mode in a compres-
sible torus (from
GGN) .

5

Note that the curves in this diagram depend on the product of m and the
thickness parameterfg , and not on m alone. This is a consequence of the
fact that GGN's analysis is strictly valid only for high m modes in slender tori.
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with the surface interaction picture.

As the torus becomes thicker the surface interaction modes stabilize,
with the low m modes surviving the longest. In a numerical study of thick,
two-dimensional annuli with polytropic index 2.5, Glatzel (1986) has shown
however that the additional modes present in a compressible fluid can play
the same game, and this extends the instability to even the thickest config-
urations (figure 2-6, see also section 5 of GGN). The first hump in each
diagram represents the incompressible interaction while the later humps are
produced by the compressible ﬁodes. Slower instabilities of a completely
different character were also found (the smaller humps in the m=2 and 10
diagrams) and it may be possible to interpret these in the way that PP ori-
éiﬁally imagined. These latter instabilities are not removed by angular
momentum gradients although their growth rates are decreased.

Specific angular momentum gradients do kill off the surface interaction
modes and this occurs faster if the annulus is thick. Figure (2-7) depicts
the value of g required to stabilize an infinitely thick configuration.
(Glatzel could not find any other unstable modes in the infinitely thick
configurations - it could be that such configurations are absolutely‘stable
beyond a certain angular momentum gradient.)

Kojima (1986) has shown that thick compressible tori have qualitatively
similar behaviour (see figure Z—é, taken from this paper). The main differ-
ence is that the growth rate aﬁpears to decrease with the torus thickness
(éompare the m=1 modes in figures 2-6 and 2-8). This behaviour has also
been fbund in numerical calculations by Frank (private communication), who
hés in addition explored true baroclinic configurations with a variety of
boUndary conditions. The latter do not appear to affect the instability in
any serious way. Nonzero entropy gradients, however, can drastically alter
the structure of the instability, though they never actually remove it.

To summarize, the principal unstable mode of Papaloizou and Pringle's
instability in neither sonic nor Kelvin-Helmholtz in origin, nor does it
arise from "reflecting boundaries". Instead, it seems best to interprét

it ‘as an interaction between two surface modes. It is stabilized by specific
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index g required to stabilize the "surface interaction mode"
in an infinitely thick n=2.5 annulus. (No other modes were
found in these configurations!)
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Figure 2-8. (from Kojima 1986) Unstable growth rates in a constant specific
angular momentum, n=3 torus. The left and right hand sides
correspond to infinitely thick and infinitely slender tori
respectively.
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angular momentum gradients, this becoming easier as the configuration gets
thicker (atleast in the 2D models by Glatzel). Slower instabilities may

generally exist in tori, however.

II.5 Nonlinear Evolution

zurek and Benz (1986) hav studied the development of the instability
into the nonlinear regime using a 3D smooth particle hydrodynamics code.
Nén-self-gravitating, polytropic (n=3) configurations rotating in a Newtonian
pgfential well were investigated. Two simulations were presented which
started with constant specific angular momentum tori of two different thick-
nésses Sﬁ? = 0.74, corresponding to Tha/TOn~ =6.7, and/é =0.88, corresponding

té W,q /O =15.7). Both of these were violently unstable, with perturba-

(ON N o d —

0.0 - ! : | . 1 . | .
0 | 2 3 4

Time [27/0,]
Figure 2-9. The development with time of the (power-law fit) specific

angular momentum index in the three simulations of Zurek
and Benz (1986).
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tibh rise times in good agreement with the linear theory. Within two rotation
periods tﬁe tori’evolved to configurations with approximately q;Jﬁglpower—law
specific angular momentum distributions, after which the evolution time drama-
tically increased to -~ 10-20 rotation periods. Moreover, a third simulation
of a torus starting off with g near\r§' exhibited similar slow unstable growth
times (see figure 2-9).

These results are in good agreement with expectations from the linear
theory, which shows that the most violent "surface interaction" instability
is stabilized at q=~f§.. It is however somewhat surprising that the nonlinear
evolution should produce power-law distributions of specific angular momentum
- these were only chosen for convenience in the linear analyses.

Beyond q=.I“, other slower dynamical instabilities act. Zurek and
Benz point out, however, that their existence could be a numerical artifact
of the "molecular viscosity" associated with the smooth particle hydrodynamics
scheme, and much more careful numerical work needs to be done to explore
and understand the nonlinear regime.

This completes the review part of the thesis. The next chapter will
present all the mathematical linear stability thebry along with the most
géneral results which have been obtained. Chapters IV and V then explore
the particularly simple configurations of slender tori and annuli from which
moét of the current physical understanding is based. A pseudo-Newtonian
potential is used wherever possible to gauge the effects of relativity.
Chapter VI then outlines a way of approaching the probliem of accretion,
which is likely to modify the instability drastically. Finally some tentative

conclusions are presented.
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ITT.. LINEAR STABILITY OF PERFECT FLUID TORI - GENERAL THEORY AND RESULTS

Most of the woitk on the stability of thick accretion disks has concen-
trated on the non-accreting, perfect fluid tori of section (1.1). The
stability theory of rotating fluids, and especially rotating stars, can
be used to obtain some general results for these configurations (see Tassoul
1978 and Schutz 1983 for two complementary reviews). However, this theory
is still in pretty poor shape, especially with regard to non-axisymmetric
perturbations on differentially rotating fluids, and there are no general

' global stability criteria. This chapter is devoted to a derivation of the
perturbation equations and a discussion of the general results which may

be applied to perfect fluid tori.

III.1 The Perturbation Equations

All discussion in this chapter is based on the Newtonian equations
of motion for an ideal fluid (for the relativistic equations, see e.g.

Blandford, Jaroszyﬁski and Kumar 1985).

:?g +'§Z-(j>v) = (mass conservation) (3.1)
Yyt
v 1 . F .
— +.Z'Q2 +=Np +<_7ﬂ( @ hy @ ~t-) = 0 (momentum conservation)(3.2)
}t S B -
Eii +;1fEZs =0 (adiabatic flow) (3.3)
Yt
p = p(\f,s) (equation of state) (3.4)
2 , . .
Q Qj 4nG§ (gravitational field) (3.5)

Here D, is the gravitational field due to the thick disk itself while
. . ; . . . 1
-§>Qx+ is the fixed external gravitational field of the central mass . all

other symbols have their usual meanings (see appendix E).

. l ) . .
Throughout this thesis it is assumed that the central mass is unaffected

by the evolution of the torus. For completeness we retain the torus self-

gravity in this chapter - it will be neglected in the remainder of the thesis.
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Suppose now that one has a stationary perfect fluid disk and that at
time t=0 the flow is everywhere perturbed by infinitesimal amounts. The
equations describing the initial evolution of these perturbations, written

out in cylindrical polar coordinates (%,¢,2), are

N +ﬂ_}§i +<- (§ S =0 (3.6)
R X

PoVes TN 9o\ Lo ANSP L, YN8y (3.7)

SUIST TR s e RS ’
VoV + ]‘LS'?VH Sv Qy\ + 1 >5p +i_‘>§§~»~‘= 0 (3.8)

ST 7N AN Y

S%Mﬂ\?w L2 gp + 10%P L NS Dy - g (3.9)

St e TS TS

S’Z’S ‘)_\L%'Fg vels = (3.10)
t 8

S p = (%—?)sqf + (:;—Zt)gs | (3.11)

£

QZ@‘ZLmGS‘K (3.12)

where S;Q represents the "Eulerian change" in a fluid variable Q, defined
as the difference between the values of Q evaluated at the same time and

place in the perturbed and unperturbed flows:

(-' — —
s Q(r,t) = Q‘(:ghi';)\_m Qf..{,Lt) o (3.13)

Another useful way to treat perturbations is through the "Lagrangian
change"szQ. This is the change in Q as one goes from an unperturbed fluid
element to the corresponding perturbed fluid element at the same time t.

If these two elements are connected by a vector ?i, called the Lagrangian
displacement, then the two types of perturbation are related in the following

way (Friedman and Schutz 1978a):

Ao =% Q+,{Q (3.14)
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2
where Z? is the Lie derivative . The Lagrangian displacement itself is

related to the perturbed velocity field by
Av=2>3 (3.15)
or % Veo =§§m + ) l\?’* (3.16)

<;‘v¢ =‘>§r +§7\<§1’—m§; QT‘L (3.17)

Nt d4
q"z - %, +V)7\'\‘§4. (3.18)
Nt Y

Because the equilibrium tori have zero pressure surfaces, the perturbed
surface must also remain at zero pressure. This gives the boundary conditdoen

that the Lagrangian change in pressure vanish on the equilibrium surface:

Dol - Sp + §;f§lp)§ =0 (3.19)
P:Q

? R
In addition, the gravitational force must be continuous across the

pérturbed'boundary, so that AQ><;Zgé must be continuous on the equilibrium
surface.

The partial differential equations (3.6) - (3.12) and (3.16) - (3.18)
together with the boundary conditions form a closed system for the evolution
of any arbitrary initial perturbation data3. Note that this system is both
linear and homogeneous - a consedquence of the assumption that the initial
perturbations are infinitesimal, and therefore nonlinear terms are negligible

and have been dropped.

2Thus tensor components are measured with respect to a Lagrangian frame,
i.e. a frame dragged by the pérturbed flow. This choice of frame is not
necessary, but it is perhaps more natural than an Eulerian frame where one
would simply use the Taylor expansion N\= $ +§_°Q. and A‘l = 35 /at o+ y'q;,(é:. .

»3In fact there exists a set of trivial solutions to these equations in which
the Eulerian perturbations vanish but § remains nonzero (Friedman and Schutz
1978a). Physically this simply correséands to a relabelling of fluid elements
in the equilibrium flow. Provided we continue to work with the Eulerian vari-
ables, however, this will not cause problems.
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If there exists a single set of initial perturbations which produces
a solution of these equations which grows with time then the equilibrium

configuration will be linearly unstable and nonlinear terms will have to

be included to determine its eventual fate. On the other hand, if all sets
of initial perturbations produce solutions which oscillate or decay with

time, then the configuration is linearly stable and is a physically realizable

possibility in nature. Note that even unstable models can be interesting
from a physical point of view, provided the growth timescale of the instability

exceeds that of other physically interesting timescales.

11I.2 Symmetries and Normal Modes

The equilibrium tori all possess two symmetries which make it useful
to split any arbitrary initial perturbation into certain fundamental compo-
nents. Axisymmetry implies that all the coefficients of the perturbation
equations are independent of @. It is therefore sensible to Fourier analyze

the perturbations such that’
S A~ exp(img) (3.20)

where m is an integer. Similarly, the equatorial symmetry of the tori makes
it useful in some cases to consider the perturbations to be even or odd
functions of z. No loss of generality occurs here as any arbitrary perturba-
tion can be expanded in terms of these fundamental components.

There is, of course, another symmetry in any equilibrium configuration
- the time invariance. Again this implies that all the coefficients in
the above equations are independent of time so that one is naturally led

to consider "normal mode" perturbations of the form
G Q ~~ expliot) (3.21)

where Cr:is treated as an unknown complex eigenvalue. Clearly, if Imes< 0O
for any seiution of the perturbation equations, then the configuration is
linearly unstable. On theVother hand, even if Imcr:2 0 for all the solutions
of the form (3.21), it cannot be argued that the model is linearly stable

to arbitrary initial perturbations unless the solutions form a complete set.

“
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The usual method of treating the time dependence in greater generality
is to apply a Laplace transform to the perturbation equations, assuming
that the time behaviour is not too extreme so that the transform converges
in some region of the transform plane. Then on inversion, the singularities
of the transform solution give rise to individual modes in the time-dependent
solution. Simple poles give rise to the usual complex exponential normal
modes, but higher order poles give rise to polynomials in time multiplied
by complex exponentials and other singularities produce further complications.
pyson and Schutz (1979) adopted this approach to investigate the com-
pleteness problem in rotating stars. They showed that provided the density
vanishes in addition to the pressure on the surfaces of the equilibrium
configuration, then every solution of the perturbation equations is bounded

in time by exp(j\ot), i.e.
- N
2 -2\t
fIS'le e °dt<OO (3.22)
0 5

WHere 3% is any real number greater than the largest (-Im<& ) to bé found
amongst the normal mode eigenvalues. In particular, if Im o 20 for all
eigenvalues, then’there can be no exponentially growing perturbations.
This does not, however, preclude the existence of pefﬁhrbations which grow
more slowly with time. A common example are those modes which have a poly-
nomial dependence on t, associated with points of normal mode "marginal
stability" (Schutz 1980).

With the boundedness condition (3.22) in hand I shall for the most
part limit the discussion to normal modes from now on. The perturbation

equation set (3.6) - (3.12) and (3.16) - (3.18) becomes

1698 + NY-( S =0 | (3.23)

s,

15 v, - 228y, - >~S L 1DSP L NSP, VA (3.24)
f e § \m

15 vy +%§;X.Q;\ +.§§‘;$p N (3.25)
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icSs + Sv-NVs =0 3-27)

Sp = (%%.)f{&? + Q—)i) Ss (3.28)

\"Sg

‘72§§-.“f = 4w %S ' (3.29)

5 5w g, .Y (3.31)

where S= o+ m) L (3.33)

and all the perturbations are now functions of T and z only. Note that
E; is also a function of T and z because of differential rotation.

It is straightforward to show that given the solution

. . - A X N
(G‘,N,SS tg PI%SI%&P%\-& Igvmlgvy- ICBVZ{I i::m' '3,’\1 Sy)

then
(S ym, g ISplgsl Q'Iv\“‘ ,-§vm,\;v’ ™3V; S —391 54.)
<« - @ 5 o«
("o’r"mrgs I%PI $ S,y %@m+ I..SV!DISV} ,‘SV%, S= 7 Syr Sa)
: o - praied * g P S B 4
(—a-myigﬁvgplisf i@hd ISergv, Ig rivrcbn[ r D)
are also solutions. (The asterix denotes complex conjugate.) Hence to every

growing (Im &< 0) solution with given azimuthal wavenumber m there exists a
damped (Im<7::70) solution with the same m. In addition, to every growing
(démped) solution with given m, there exists ancther éblution for (-m) with
exactly‘thé éame growth (damping) rate. Finally, note that all four of the
above solutions have the same "pattern speed"JTY;E(—Recr/m).

These conclusions, based simply on the mathematical nature of the normal

mode equations and boundary conditions, have been in dispute recently (Drury

§ = “éé sng , (3.30)
<

vy » (3.32)

53



54

1985; GGN and Glatzel 1986). These authors argue that corotation singularities
in the equations (section III.4) mean that damped solutions require special
treatment and so the symmetry between damped and growing solutions is broken.

I do not wish to enter into details here because, however fundamental it

may be to the general theory of stability, it is somewhat academic for the
problem at hand: growing modes are completely unaffected and the m-—% -m
correspondence remains valid. Given the latter fact, only non-negative

azimuthal wavenumbers will be considered in the remainder of this thesis.

11I.3 Local Stability and the Hgiland Criterion

Consider now a local analysis of the above system in which

S0 cC exp[i(k,ﬁbﬂ“ kgzﬂ (3.34)

and the wavenumbers ke and k. tend to infinity. In such a case one may -
neglect spatial variations of the equilibrium quantities alorgwith the boundary
conditions and obtain the following dispersion relation from equations (3.23)

- (3.28):

EaY

p 1 /e
(}S),(k XI%) (k xgi ) ——g* (‘a?) (k x<¥ p).(k x I 's)

= (3.35)

+ kaz is the wave vector. Transforming the quadratic form

2}2

19>

where k = kg

in the numerator to principal axes, one obtains

—_2 ol .k +.
o = 2(“ (3.36)
[k
where kt are the wave vector components along the principal axes and
2
o=Aa+ (A + B)!i ‘ (3.37)
_ Y1 o~ 2 1 “
with AT s (o N +§-§2p.(§@_§ p) (3.38)
w:-)’ - YP
~ 2
(Up x@) (V1" xNs) (3.39)

and where use has been made of the equation
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1 1 2 2
Q(—g) xVUp= JI"x® (3.40)
derived by taking the curl of the hydrostatic egquilibrium equation (1.1).
—2
Stability requires &5 >0 for all k with |k| large. Hence A and B must

be positive or

1 A A
—_—( T -Ui ) +--ﬂp (——Q p >0 (3.41)
w 3 s

and (Up x2). (VL *0 s) >0 (3.42)

where \X'—-—' <:§) is the adiabatic index. This is the well-known Hgiland
stability crlterlon. Although derived here through a local stability
argument, the criterion in fact gives necessary and sufficient conditions

for global stability to axisymmetric perturbations, provided the self-gravity
of the fluid is negligible (Fricke and Smith 1971).

Note that the first inequality (3.41) may be rewritten

2 2.
W+ 870 (3.43)
BTN 2
where &:2 - jégﬂ = 231(2J7_+12;321) (3.44)
B’ ™ Pl

is the square of the "epicyclic frequency" of the torus and

N’ - —-Vp ——»QS ,_s:}p) (3.45)
Tp

is the square of the Brunt-vdisdla frequency. These represent the cﬁaracter—

istic local oscillation frequencies of rotating and stratified fluids res-

pectively. The full Hgiland criterion results from the combined effects

of centrifugal and buoyancy forces. Together with the equilibrium condition

(3.40), it places stability constraints on the vectors :lﬁz, izp and ﬁls.

For the relativistic version see Seguin (1975) or Blandford, Jaroszyﬁski

and Kumar (1985).
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If the Hgiland criterion is satisfied, then equation (3.36) implies a

is real and lies in the range

Jo < T < - Ju (3.46)
or ,{EZ? <<: E§'<<:~XZZL (3.47)

depending on the ratio of the wavenumber components. The fact that this
ratio..can take any real value‘while keepingxlh\ large suggests the existence
of a dense or continuous real spectrum of :global modes with frequencies satis-
fying (3.46) or (3.47) for every point in the torus. Now B, and therefore
4., always vanishes somewhere in the torus (e.g. at the centre), so that

this spectrum will actually cover the range

- (max o(.,)l/z< &< (max &,)% . (3.48)

This generalizes the discussions of Papaloizou 56& Pringle (1982) for
the case of uniform rotation and PPI for the case of homentropic configurations.
The mathematical and physical significance of these inequalities will be
discussed in the next section where particular classes of tori are examined.

The local analysis of this section considered the |k|=>o2 1imit, and
thus the results obtained here age generally valid for any rotating perfect
£luid. Further useful results can be obtained by considering higher order
terms in the dispersion relation, but for consistency |k| must always be
much greater than the reciprocal of the local scale height, and this necessarily
iﬁplies an examination of individual classes of configurations. Such an
analysis for accretion disks and tori was begun by Abramowicz et al. (1984b)
and much more work needs to be done in this area. The instabilities discovered
by Papaloizou and Pringle cannot, however, be analyzed in this way as their

lengthscales are typically much greater than then any scale height.

III.4 Equations for Particular Cases and Corotation Theorems

We turn now to the eguations describing particular classes of tori and

some general results associated with them.
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(a) Non-self-gravitating, homentropic configurations ( 32s=0, c=0)
This was the case treated originally by Papaloizou and Pringle in PPI
and PPII. They succeeded in deriving a single perturbation equation by de-

fining a quantity W as

W

i

-
2P (3.51)
S—.

Equations (3.24)-(3.26), (3.28), and (3.30)-(3.32) may then be solved to

express all the perturbations in terms of W:

Sp=3&u (3.52)
%S = f\_;?_w (3.53)
p
< =,_‘_.D ,&1\% + K;\-_C;_\:t] (3.54)
‘5V.s=-‘6 '”"_2_“;‘;:_‘ - (3.55)
S vy = }%\l (3.56)
1:%16"% + %—j\/—;’“ (3.57)
3 A {mEW —&D\nz:%}] (3.58)

(3.59)
=

where DT HF - H:k . (3.60)

The perturbed continuity equation (3.23) and the boundary condition

(3.19) may now be written

A AR R

_ ’Lz; —«‘L )
§g\1 5’] e (3.61)
w
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]

(\/\/56”-4”">W \,-P—é *’—l—-%\ﬁg@i + W Op L)<
D §IR> S [CE £3 = =D ﬁi; = T (3.62)
pee
These two equations constitute the eigenvalue problem for ¢ .

The Hoiland criterion for local stability in this class of tori reduces

simply to the Rayleigh (or Solberg) criterion:

U — ___‘__%{L >0 (3.63)
which is easy to understand physically. If a fluid element is perturbed
outwards such that it conserves its angular momentum in a region where
condition (3.63) is violated, it will have more angular momentum than its
surroundings. Excess centrifugal forces will therefore drive it further
outwards.

Inequalities (3.46) and (3.47) also suggest that in this case the above
eigenvalue problem will produce a dense or continuous set of eigenfrequencies
in the range

<o <K

for every point in the torus.

(3.64)

" Further properties of equation (3.61) have been elucidated by Balbinski
(1985). Considering © to be real, he examined the equation for the charac-

teristic surfaces,

Ado\r
D(:F;) +o- =0 (3.65)

and found that the perturbation equation is in general of mixed type, depending
on the value of ¢~ (figure 3-1). The surfaces across which the type changes

correspond to the classical resonances of spiral density wave theory (Toomre

1977):
Corotation Resonance JVIP::JTNL or 5= O (3.66)
Inner Lindblad Resonance ﬂ)\lﬁzi7\2" E: h (3.67)
Quter Lindblad Resoﬁance )rl?::~>\l*"‘ Jr T:)::(:D (3.68)

Here ]7‘ —CT/m is the "pattern speed" or angular velocity of the mode.
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Figure 3-1. The inner Lindblad, corotation and outer Lindblad resonances
for a homentropic torus.

Outside the two Lindblad resonances (D7?0) the characteristics are
complex and the equation is elliptic. 1Inside the Lindblad resonances (D<0)
the characteristics are real and the equation is hyperbolic, apart from
the corotation cylinder. This is itself a characteristic. surface because
both & and dw/dz vanish here. Solutions in the neighbourhood of this
surface are therefore non-analytic unless special conditions are imposed
to avoid this. Because the torus is differentially rotating there is a
continuous range of pattern speeds, and therefore of @~ , which will be
corotating. There will thus be a corresponding continuous set of singular
eigenfunctions. Although each of these eigenfunctions might at first be
thought unphysical,when combibed together they represent nonsingular pertur—
bations which must be included in a complete normal mode analysis. (Case
1960 and Balbinski 1984 emphasize this point and present simple analytic
problems which illustrate it.)

Balbinski (1985) also suggests that the hyperbolic region may in general
be related to the existence of a dense or continuous spectrum of modes as<
in (3.64) above. It is interesting to note that this inequality has also
been found in the context of tightly-wrapped spiral denstitywave theory
(Lin, Yuan and Shu 1969) where the waves are known to be trapped between
the two Lindblad resonances.

Finally, it has been shown in PPII that, for power law distributions.

of specific angular momentum, any unstable mode must corotate with the equi-
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‘ librium flow somewhere, i.e.
If Im(G) # 0, then Re(&) = -m)L@D) (3.65)

at some radius TA inside the torus. It is still unknown whether or not this
result applies to other forms of rotation law.
(b) Non-self-gravitating, constant specific angular momentum, pseudobarotropic

configurations (IQL=0, G=0)

Thé géneral baroclinic torus is quite difficult to treat due to the
geometrical complications which arise when surfaces of constant pressure
and density do not coincide. However, if one assumes that the specific
entropy is constant along isobaric surfaces (a "pseudobarotrope") then density
will also be constant along these surfaces and the geometrical simplicity
6f a barotropic torus (i.e.;rl =;Vl(ta)) will be maintained. As mentioned
in chapter I, gyrotropic configurations (i.e. with surfaces of constant
specific entropy and constant specific angular momentum coinciding) may be
more likely, but khis is much more complicated and it seems reasonable to
consider the pseudobarotropic case first.

For simplicity consider a constant specific angular momentum torus

which has constant equilibrium adiabatic index =S/ (yp/>S )- Then

one may generalize the definition (3.51) of W to be

W=§p (3.66)
. P&
It proves convenient to transform equations (3.23) - (3.32) from (T ,2)

coqrdinates to a system where one of the coordinates f is constant on equi-
potential surfaces and the other is an orthogonal, angle-like, coordinate
measured up from the inner equatorial plane and around the isobaric surfaces
(see figure 2-1(b) for a diagram of the (f,0 ) coordinates). In a similar
fashion to the previous section one may then derive the following perturbation

equation

[9r 1 190 P (m wn pr 3 ms)
™ S TRel T F o ST

D (wi¥el pTawl) | PrE g
+<°,e_( — Y; <5 +\/‘J v Svoﬁ =0 (3.67)
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with boundary condition

' i — s 3 ”( J ' * =
Fﬁ FW + j} 5(?‘— = 25 T{ Nl © (3.68)

P=o

The H@iland criterion for these tori reduces to the familiar Schwarzschild

criterion for convective stability:

‘:l.f»"(—'sr‘l S"’—:(!F-_“?)'>O (3.69)

|-

or Gaeds >0 (3.70)

where.g%T is the effective gravitational acceleration. Physically, if a
fluid element is adiabatically perturbed outwards in a region where condition
(3.70) is violated, then it will have a higher specific entropy than its
surroundings. Because it must remain in pressure equilibrium it will therefore
haver a lower density which will result in buoyancy forces driving it fur-
ther outwards. Centrifugal forces play no role here because if the perturbed
fluid element preserves its specific angular momentum, it will never have
an excess of this over its surroundings as ‘Slg

One may carry on and derive-analagous: results:to-the previoustsection.
A dense or continuous spectrum of real modes is expected from inequalities

(3.46) and (3.47) in the range
N SN . (3.71)

In addition equation (3.67) is again of mixed type, being hyperbolic in the
above range of O and elliptic outside it.

Finally, one may prove that the corotation theorem (3.65) is also valid

*
in this case. Multiplying (3.67) by o and integrating over the cross-

A

sectional area of the torus, )
funjfmp’. S Km £ Pm 5* \V\J.
AN GRS

S wefec.

S Seecfonn (3.72)

61
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Integrating the first two terms by parts,
Jies S P Q;Ml‘ L

*X £ eardea -
=Yl 7 5 — P et et W
: — N
“[ I:V\j*:( lglzal ‘f 1“‘Fd g CKEB o JYe S Aé:i“th ! wﬁr/

woteoRe

{;M;&K

T ] slie

2 }V\;r%h’\ ‘1{\” _ S‘T

(3.73)

where use has been made of the fact that W must be periodic in QQ,.

At the central pressure maximum of the torus the (f,Q) coordinate system
is singular; [|©| blows up while ¥ £] ™ W/ £ remains finite. Hence the
feonde. term vanishes.

One might at first think that the f,  _q.. term also vanishes as p=0 and
Nz'generally blows up there.v However, the density may also vanish and W
could in principle blow up. If we take the equipotential function f to be

simply the pressure, then the boundary condition (3.68) implies

(T 1) o7 F W™
f; LW’ (m(%\ %3’“ s—?—w‘%ﬂ%ﬁ A9

S

__ R oy T . 5
jo IF l\/\” > \QFHQGJ‘&;* (3.74)

and hence the imaginary part of equatiocn (3.73) is

—J\Im(b’) J"“Y 1"”i\l\}l-vo A6

NVHUG
2m thd& A
+f J E. w AN J B
() 1
\‘“N‘l SFL e mmme;( wthr T4 i
— O (3.75)
Hence if Im(&™) # O then Re(a=) = -mJ2A® ) at some radius O in the torué,

because'-the { }' factor would be positive definite were it not for the

presence of (Re(o™) + mJl) in the two integrals.

4 ) 2 A
Assuming N :70 for local stability.

o
]
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It is not yet known whether or not the corotation theorems proved for
these two classes of tori are generally valid. As already mentioned in chapter
II, corotation points are extremely important physically and this suggests
that a general theoreﬁ may be lurking somewhere. There does exist an "almost"

corotation theorem (Friedman and Schutz 1978b) which states

L a -—) </t <')‘L(1 +—) (3.76)
[1glrs AV
JigprsdaV

is a mass-weighted angular velocity. Use of the mean value theorem then

where (3.77)

implies

1 1
L1 -—H-‘)gflv@wg =) (3.78)

III.5 General Limits on Growth Rates

Dyson and Schutz (1979) derived general limits on the growth rates of
unstable normal modes for configurations in which the density vanishes in
addition to the pressure on the surface. These constraints are not very
strong, especially for high m modes, but they are nevertheless useful in
checking numerical results and have theladvantage of being reasonably general.

Define the quantity

S

sz m+ LITT_ T YRGS =N L
B

where, as mentioned previously, m is considered to be positive and the sub-
scripts "min" and "max" refer to the minimum and maximum values, respectively,
inside the torus. Dyscn and Schutz proved that any complex normal mode fre-

quency must satisfy

|Reo~ | < (m + l)hm@‘» (3.80)
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|s it syo0
and lerlig (3.81)
0 if sg0

One may strengthen these constraints still further by adding the coro-
tation theorems of the previous section. In the most general case (figure

3-2(a))
m- 1)L, |Rea | S (m+ 1) T Lo (3.82)

which together with (3.81) implies

22 ) %
| 1m o | QYS - (m - 1) ﬁm.n‘ ‘. (3.83)
For strict corotation (figure 3-2(b)},

nJ L. |Re o | < m ) Lo (3.84)

implying |Im &7 | <[S - rnz,hzm-,: g . (3.85)
Finally, in the very special case of the non-self-gravitating, constant

specific angular momentum, homentropic torus, one may replace inequality

(3.81) with the stronger - constraint (Blaes 1985a, Appendix A,

figure 3-2(c¢))

ol < mJ Lo (3.86)

2 2 %
implying Imo | < ntY_, - (3.87)
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IV. SLENDER TORI

The normal mode equations of the previous chapter are generally impossible
to‘solve analytically because of the lack of separable coordinates for tori,
the nonlinear nature of the eigenvalue problem (as formulated, e.g., by equations
3.61 and 3.67), and the presence of corotation‘singularities. Most of the
analytic and quasi-analytic approaches have overcome these problems by studying
simplified configurations. Slender, polytropic tori are considered in this
chapter, while in the next chapter the vertical dimension is removed by studying
annuli. Surprisingly, these two geometrically different models share many

common features.

IV.l Equilibrium Configurations

The equilibfium equation (1.6) may be rewritten as

w=wo+(§—§o)+(§fq_ aénﬂo) (4.1)

where the subscript zero denotes the value at the central pressure maximum.

For polytropic tori,

r
o=k §IYM kS (4.2)

where k, n, and f1 are constants. It is convenient to introduce the Lane-Emden

function £ by
n +1
§= 5.t and p=opf . (4.3)

Equations (1.5), (4.1) and (4.3) then imply

£-1 -———L——I('?.é -3 (P, - ?ﬁd@’] : (4.4)

(n + 1)p,

The function f is one at the central pressure maximum of the torus and zero

on the surface. It is also convenient to define a quantity YL by
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£f=1- YL (4.5)

such that VL is zero at the centre and one on the surface.
Throughout this chapter and the next we shall consider pseudo-Newtonian
configurations (cf section I.1) with power law distributions of specific

angular momentum:

@ o (4.6)
2 2 :

(TO + 2 ) - Rg

N

3
q (GMTO

2- K 2-
1= A/, L (O ) (0 )T (4.7)
ﬂ(‘o o (mo __R(}) o

2 -
where Ry = 2GM/c” is the Schwarzschild radius. Using equation (1.4) for é@ e
¥

equation (4.4) may now be written

2-2
1 1 - o

2 1 ‘
£f=1-— - + (4.8)

2 1 - 2 2 % 2

J I Re (%4 39" R 2- 20 -

where

w L, ~> =FRe (4
- Tl m— - .9)
. 9 W |y

]

are the radius, height and Schwarzschild radius respectively scaled with the

pressure maximum radius, and

/gz_. 2(“3“;”9" (Do, /Gn) (4.10)

is a parameter measuring the ratio of thermal to kinetic energy at the pressure

maximum. The topology of the equipotential surfaces is determined solely by
g and VQQ, whereas the actual equipotential surface which the torus fills
is determined by /@ . AS/§“4>'O the tori collapse to infinitely slender rings
at 70 =t ,, and it is this limit which will be studied in this chapter.
To do this one must work in a coordinate system which itself collapses

with the torus. One such is the orthogonal (f orvl ,63) coordinate system
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Figure 4-1. The (a,b) and ( 1—, 9) orthogonal coordinates.

of figure 2-1 and used in the pseudobarotropic equations (3.67) and (3.68).

The cylindrical polar coordinates (r,ﬁs ) are also useful however and one

-may define a collapsing version (a,b) by

1-r  (D,-™)

/fsmo

)
1

o
i\
(>4

ﬁ /§ZD0 |

These coordinates are illustrated in figure 4-1.

Expanding equation (4.8) about the slender /@ =0 limit,
2 2 2
b + (29 - 1)a 2a
- - \ +G'</@)
(1 - "R,) (1-"R)

Hence the surface of the torus is an ellipse with semimajor axis

£=1-

3
(1 - R %

(2g - 1)(1 =R, -2

and semiminor axis

b, =1 -Ra .

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Equation (4.14) plus the fact that }L must increase outwards for local
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stability implies that g must lie in the range

<ax<2 .  (4.16)

The lower limit is in fact the value of g for which‘x is locally Kepleriane.

This inequality further implies

0 R.<1/3. | | (4.17)

As 'Fl—é> 1/3 the torus lies on the marginally stable orbit and g can only

take the value 2 because ﬂw?, has a minimum there.

IV.2 The Oscillation Spectrum of the Newtonian ‘;}lz §25= 0 Slender Torus

Constant specific angular momentum, homentropic tori are marginally
stable to the Hgiland criterion and for them the perturbation equations are
A
much simpler. From either the K™~>» 0 1limit of equations (3.61) and (3.62)

2
or the N =® 0 limit of equations (3.67) and (3.68) one may write

5;2 52
.S w o+ W=0 (4.18)
R
1
(W= +-§§{w‘,ﬂ p) =0 (4.19)

where, because Ys=0, Y is equal to the polytropic value r‘=l+l/n. The
complicated mathematical structure of the more general cases disappears here
-kthe equation is now entirely elliptic, there is no dense spectrum of modes
(see~also PPI), and there is no corotation singularityul The reason these
equations are simple is that the Sl&==<gs =0 torus is a potential flow, and
in fact in this case W is simply the perturbed velocity potential, as may
be seen from equations (3.54)-(3.56) with K?=U.

As PPI point out, equation {4.18) is tantalizingI§ close to being a
standard linear eigenvalue problem - the thing that prevents it is the dif-

ferential rotation which makes O~ a function of © . However this problem

=2
Note that a O has been cancelled out in passing to this limit so that
a corotation continuum may still exist, though it does not affect equations
(4.18) and (4.19).



70

completely disappears in the slender torus limit as then the variation in
J\L across the torus vanishes.
Another fortunate thing occurs in the Newtonian (?2b=0) case. Equation

(4.13) then implies
2 A
f=l—vlj=1—(b +a2)+(‘5’(/ﬁ> (4.20)

so that the equipotentials have circular croés—sections! (This can be seen
immediately from the central contour of figures 1-2(a) and 2-1). This extra
symmetry makes the perturbation equation separable so that all the normal
modes may be found analytically in the /§J>0 limit (Blaes 1985).

In ( VL, © ) coordinates, thef]25=0,/$‘> 0 limit of equations (4.18) and

(4.19) is

2 2 W 2 ™ 2 W
1(1 -0 e + (1(- ) §§+1Y\(1 - - VL]W

2w 2w
+ 2n vL(-'z)H mw. =0 (4.21)
2
n 2 2 nwW
PP m) W 20 E W =0 (4.22)
NE
£=0

where the superscript (0) denotes the infinitely slender limit and "}/ is the
ratio of & to the angular velocity at the torus centre,flwu Equation (4.21)
cléarly admits even and odd (wifh respect to the equatorial plane) solutions
of the form |
cos k ©
@

W = V,.(vy) (4.23)
K ®
VL sin k ©

where k is a non-negative integer and V(vl) satisfies

2(1 - 2) dzv +I (1 —. 2) —‘ 2n ﬁ v + TZn ! 2( v+ m)2
VL yl. deZ VL YL YL dvWL . 1

2 2"
-k (1 - Vl'{} v=0 . (4.24)

If we let
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k
V = VLU(U) (4.25)

2
where uEvL, then equation (4.24) becomes

2

d du ’ Ca 2 -
u(l—u)—g-+l(k+1) - (k+l+n)u]-_ +—r2l (VY '+ m) -kJU:OU

du du (4.26)

Provided n»0, this equation together with the condition that U and its deriv-
atives be finite at u=0 and 1 is a standard eigenvalue problem whose only
solutions are the Jacobi polynomials Gj(k + n, k + 1, u) (Abramowitz and
Stegun 1972). For nonzero k it might be expected that there are additional
solutions of interest because really V and not U is required to be regular
at VL =0. That this is not the case may be seen by performing a Frobenius
series solution around u=0 in equation (4.26). Any alternative solution
musti:have a leading term Vl: k (or lnvl if k=0) which will make V (as well
as U) blow up. Similar worries might be attached to the surface boundary
condition {(4.22), but a Frobenius series around u=l in equation (4.26) shows
that any additional solutions for W would have a leading term fl—n (or 1In £

2
for n=1) so that this condition would be violated.

The full eigenfunctions and corresponding eigenfrequencies are

o
. K 5 cos k . .

W('km = A_k YLGj(k + n, k + 1, Vl ) expll(crt + myﬁ)] (4.27)
J J . sin k©
o) 1 .2 , . ) %

’Lka = -m & | =(237 + 23n + 23k + nk) (4.28)

where the A's are constants. The three parameters j (a non-negative integer),
k (a non-negative integer) and m (an integer) completely describe the solution.
For k>0 there is both an even and an odd eigenfunction associated with every
eigenfrequency ”Vb, so there is a degeneracy. Note aldéd that for every nonzero

j or k, there are two eigenfrequencies associated with each eigenfunction,

2 . . ‘ . .

This is true even in thick tori (without cusps) as is easily seen from
equations (4.18) and (4.19). Hence provided n3»0 one may always adopt the
boundary condition that W and its derivatives be finite at the surface.
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an ambiguity which arises because in the infinitely slender torus limit equation
(4.21) is an eigenvalue problem for (“Y“+ m)z, not Y. One therefore expects
that each zeroth order eigenfunction is the slender torus limit of two similar
but distinct eigenfunctions with different frequencies. The pattern speed

for each eigenfrequency 1is

L

' 2
_ﬂp =J‘l°§1 ﬂ—rl;(zj + 2jn + 2k + nk)] : (4.29)

showing that‘each eigenfunctioh is the limit of two modes propagating with
similar speeds upstream and downstream relative to the equilibrium flow.

The spatial structure for given g and t of three typical eigenfunctions
is‘illustrated in figure 4-2. The significance of k is obvious - it is simply
the number of wavelengths on a given isobaric surface so that there are 2k
nodal lines radiating from the torus centre at %1f0. In addition to the node
at vL=0 which occurs for k#0, there are nodal surfaces at j other distinct
values of VL inside the torus.

Jaroszyfnski (1985) has classified the modes calculated here by analogy
with the oscillations of nonrotating stars (see e.g. chapter 17 of Cox 1980).

The k=0 modes are termed "radial"™. The j=0.modes have the special property

()

Figure 4-2. The spatial structure in a given cross~section of the torus
for (a) the j=1, k=0 (radial); (b) the j=0,.k=1 (f) and (c) the j=2, k=2
(p) evén modes. The dashed lines indicate nodes of the eigenfunctions.
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W ity £247 G - (A
NS §§+§°§S= J75 p IS 1T NS =0 C (4.30)

and hence the modes behave incompressibly. These are the Kelvin or "f-modes",
and are the only solutions which survive the incompressible n-—> 0 limit with
finite eigenfrequency. Finally, the remaining j#0, k#0 eigenfunctions are
termed "p-modes". Jaroszyhski has also generalized the dispersion relation
to includei:gravity of "g-modes" in the case of stratified tori.

- Note that the expression under the square root in equation (4.28) is
non-negative so that Y™ is real and all the modes are stable in this limit.
This is fully expected from inequality (3.87) as there is no differential
rotation in the slender torus. The fundamental j=0, k=0 mode is however only
marginally stable:

[

- —m)] 4,31
00m T ( )

\f\lom Aooexpi;}m(ﬁ _~jlo£ﬂ (4.32)

and corotates with the equilibrium flow. In the next section it will be

A

shown that as the torus thickens this modevsplits into a complex conjugate

. . . - . .3
pair, producing the instability found in PPI.

[

IV.3 The Papaloizou and Pringle Instability in the TQQ\==:ZS=O Slender Torus

Ignoring the (t,d) dependence, an important property of the zeroth order
eigenfunctions is that they form a complete orthonormal set with respect to

the inner product

3The slender torus is in fact stable only to:exponentially growing modes.
The fact that the zeroth order corotating mode is the marginally stable limit
of a complex conjugate pair indicates the presence of a Jordan chain of unit
length (a mode which grows linearly with time; Schutz 1980 and private com-
munication). 1Indeed a Laplace transform treatment of the slender torus initial
value problem shows the existence of modes that grow with time as t (N=1,2,3).
These may either represent some limiting continuum spectrum or be a result
of the fact that the Slﬂ= st=0 torus is itself marginally stable to the
Hgiland criterion. All this just shows the limitations of a normal mode analysis.
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TR
(LS @, — 2 n-1 @ w> I
W. JW,../ = [2nn (1 - ) W. W, do =y, .2 .
<Q 3k’ J’k7 jj 1 T " <;33’ %k (4.33)
T <
where the A.k's have been chosen to satisfy
J

. . 2 .
(29 + K + n)f (23 + k + n) for k £ 0

2 B nTw g+ k)!‘r[(j +.k +n)r‘(3 + n)
(23 + )77 (23 + n) - for k = 0

. 22
2nw (30 T3 + n) (4.34)

The completeness property may be seen from the well-known fact that the set
{ exp(ik® ) : k=intege{} is complete as this is just a Fourier series. 1In
addition, equation (4.24) together with the reqularity conditions at q‘=0
and 1 constitute a Sturm-- Liouville eigenvalue problem, so that for every
given k the set of functions ij=Ajk»1ij(k + n, k + i, Vlz) is complete.
Any arbitrary piecewise continuous function F(“-,G)) defined over the
torus cross-section and which is regular at vl=0 and 1 and periodic in o

may thus be expanded in terms of the eigenfunctions:

F( w[ , © ) ='2 ajkw";’k (4.35)

where

ajk = <ij, F7 . (4.36)

This means that perturbation theory may be used to tackle configurations away
from the limit /§ =0.

Equation (4.18) may be rewritten

2.2 n'mnip?
ﬁW+[2nvL’y —__jjbf:}w=0 (4.37)

r

where f. is a differential operator in vl and © and P=(V + mjzzi. Expanding

o

the various quantities about the slender limit,
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W= +/€,WUJ+ /QZW%+ 5(/53
'7=:V% +ﬁ/—l7b+/@2“§%+ Cy(/z?'?)
£ =

£, +/; i +/€2Nu+ O—(/@3) (4.38)

one may split equation (4.37) to different orders in /§ ;

' w (W —2 w
/%0 : BT+ 2nw12"V"W =0 (4.39)
l D« @3 | 2""\‘— 78 2-2 3
/" s W+ £TWY 4 4nv PR+ 2nn 2w’ =0 (4.40)
2 o3 (n
f : £+ £ 4 MW +I4n1 1)+2nmvh~n\1 ]
+ 4n yl' V“‘b"w + 2nvl ;/" W= . (4.41)

Equation (4.39) is simply the slender torus equation (4.21) and was solved
in the last section.
The higher order eigenfunctions must be regular at VL=U and 1 (see foot-

note 2) and so may be expanded:in terms of the zeroth order eigenfunctions:

[&F) @) ay $ o
W o= 7; a W, W = ; b, W (4.42)
LA SRELE

The first order equation then becomes

[ff' + 4nVL AV Jw + an. z 'D;"kz)wjk =0 . (4.43)

. 2 ;
Dividing by 2n and taking the inner product of this equation with an arbi-
1

trary mode W;k, we obtain

- 2 -1 e -2 =
<ij.[ (2n¥L ) &+ 2nV “JW> + ajk(’v** - ’Lgl'(.z) =0 (4.44)

With the exception of the corotating fundamental, this equation may be

used to calculate the first order changes is any zeroth order mode. The fact
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that ’V” is degenerate to even and odd pairs of modes is no problem as the
equatorial symmetry of the torus ensures that the eigenfunctions remain even
or odd to all orders. Note that equation (4.44) has real coefficients so
that ‘1;uand ajk are real. This property of course extends to the higher
order equations so that these modes remain stable to all orders.

For the corotating mode ;i§z=0 so that th%s equation cannot be solved
for ‘1f”. In addition W;B is constant so that all the ajk's must be zero

and the eigenfunction remains unchanged to this order. One must therefore

proceed to the second order equation. Following the same procedure as before,
: 2 -1 _— e T 2 M
<w“f° , I—(Zn\fL ) T2 4 2 VP - nfe/on w“f“>
(Y] 2 =1 —_— (1 - 2 T 2
+<W [(Zn‘ L+ 2=y “ij + b, (P - P° =0 4,45
jk' 'L ) 14 ik V ij ) ( )
Hence for the corotating mode,
[ — 2 2 s T 2
W (. 2n)w - b =0 446
< o P - eam Vo (4:46)

For j=K=0, this gives

TR o (4.47)
= iam 2(n + 1) ’
while for § or k different from zero, it implies
< g (4n + 1)nm m2A A (B‘ < o 4TmA A
b = 00 10 + ). 00 01
jk ka 3 3 kl\BjO V e
2(n + 1) (n + 2) (n % 1)
27 2A A
m
+ 00 02 . 4.48
Q040 0 e

(n + 1)(n + 2)

Hende the zeroth order corotation mode splits into two modes:at first order,
one growing andtone decaying with time. This procedure may be repeated with
the higher order equations, though further mode-splitting will not occur

because all the equations will be linear in the unknown quatities.
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The complete eigenfunction and eigenfrequency are

. , 2 L
22 2 2 37 4n + 1 3
W=AUO 1+/§m[2vl/cose- 1 —_(.-———).27341(__‘. *lcose
4(n + 1) 4(n + 1) 2n + 2

NFO'(/:P) (4.49)

V= -nm E: 1mf§ + Cj_(/gz) : (4.50)
2(n + 1)

Table 2 compares the predicted growth times from equation (4.50), neglecting
terms of order/g 2, with the numerically calculated values of the slender PPI
model, for which n=3 and/é =.0995. There is clearly excellent agreement, and
this is also true for the eigenfunction. Neglecting terms of order /33, the

modulus of W is

lw|== IA 1+ 2/@2m21~2vLcos S - l t4n + 1)2] : (4.51)

4(n + 1 4(n + 1)

Hence |W| should have a minimum at the torus centre Vk=0 with the relative
depth of the minimum increasing as m and/or /5 increase. In addition, the
vertical structure of |Ww| will be rather weak due to the dominating influence
of the 2 qfcoszéa term. These properties are illustrated in figure 4-3 which
should be compared with figure 2-2 from PPI. For thicker tori or higher
azimuthal wavenumbers one would expect less agreement with the truncated
eXpansions in equations (4.49) and (4.50) because higher order terms would
become more important. In addition it is possible that at some finite/Kf

two stable modes merge to produce a complex conjugate pair, or vice-versa
Table 2. Growth times in units of;rzo— analytic versus numerical.

m Predicted Grid A Grid B

2 8.2 8.0 8.5
4 4.1 3.9 4.7
6 2.7 2.9 4.0



« 1005 |,
N

0804

20603

0402

|

T

L ]
-9055 . 9385 9497 .

. . T
9653 .98%s:. 01001.03011.05021. 07031. 09041 - 1io0s
'S -

+hoos |
N
L0804 |

0803 L/

L0402

.020t /

BN

o

L0000 U_ || ]

L

P ) ]

S

' ' 1

«80SS .9235 ,g9497 -9653 .989g;
) R

07051.09041. 1105

2 L
81001.03011.0502] .

» 1005

N
L0804 |_ 45
_ )

’/
L0603 -5

L0402 [

L0331 ,"
| ! 1

.eo00

|

NN

-3055 .9253 ,34G7

9835 .2ac3, Jido1.03011. 05031 . 07371.09041.110%
®

78

Figure.4-3. Structure of the unstable eigenfunctions in the /g =0.0995,
n=3 torus from the analytic solution.
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(Schutz 1980); examples of this will be shown in the next chapter. Beyond
such a point the perturbation expansion used here would of course no longer
converge.
The perturbation in enthalpy <sp/g is given from equations (3.51),

(4.49) and (4.50) by

Sp/8 =&w =]l %ﬁ[zqaw@;ti(,j_ﬂ>]+ G]fz) (4.52)

Including the g-dependence, this has a phase

1, )
-1 3 N 1
tan + ( + mg (4.53)

2n + 2 2 vl.cos@

Examination of the surfaces where this is constant indicate that unstable
modes (the minus sign in this exptession) form leading spiral waves while
damped modes are trailing (recali from fig. 4-1 that vlcosEB increases on
moving inwards from the pressure maximum).

Strictly speaking, the analysis in this section is only valid for com-
pfeséible, nt70 tori. However, nothing appears to go wrong on taking the
n=>> 0 limit of equations (4.49) and (4.50), suggesting that incompressible
tori are also unstable - contrary to the claims made in PPI and PPII. 1In
Appendix B direct analysis of the‘n=0 case in the style of this section
shows indeed that this conclusion is correct. As already discussed in chap-
ter II, the reason for the discrepancy is that PPI and PPII invoked rigid
boundary conditions instead of using the more physical free surface condition
A p=0.

All the above results are valid only for Newtonian tori. Pseudo-Newtonian
tori are elliptical in cross-section so that the slender torus equation is
not separable and one cannot célculate all the zeroth order modes analytically.
Neverthéless, there still exists a constant corotating eigenfunction and
the zeroth order modes wili‘étill form a complete set. One may therefore

repeat most of the above analysis to show that the first order change in

4See also figure 3.3 of GGN for an excellent illustration of this fact.
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the eigenfrequency is given by

. —H2 2 -
<w‘6’5, 1 > - I fJW007 =0 (4.54)
(1 - K5 o

(Here "V is scaled with the pseudo-Newtonian angular velocity at the torus

centre ) !0.) Because the torus cross-sections are no longer circular, it

is convenient to rewrite the inner product (4.33) in (a,b) coordinates:

[CF] o aN=1l (& @
W, Wa, 7= £ W W,.,dadb = 0 (4.55)
< ik’ jk’> @ jk 3K

where £” denotes the /@~;> 0 expression (4.13) for f in terms of a and b.

One then finds

2k
Y=-m im/gI(l “RG RN, 0(/5“2) (4.56)

(2n + 2)(1 - 3%

For fixed /g, the unstable growtﬁ rate increases as'?& increases from zero
and relativity becomes more important. Note that as‘¥z;>1/3 the growth rate
Appears to blow up, but in factjé must be zero in this case as it is impossible
to have a'ﬁl& =0 torus of nonzero thickness on the marginally stable orbit
unless it has a cusp. We shall return to this point in the next chapter
where the effect of a cusp will be discussed.

To summarize, for <§ﬂ\= SIS=0 slender tori there exists one unstable
mode for every nonzero value of the azimuthal wavenumber m. These modes
are always symmetric with respect to the equatorial plane and represent
leading "spiral waves". Relativity, atleast in the pseudo-Newtonian approxi-
mation, does not remove the instability.5 Finally, the existence of these
modes has nothing to do with compressibility, contrary to the claims of PPI

and PPII.

1vV.4 \2.9\ #0, §s=0 Tori

Changing the rotation law makes the stability problem much more difficult

5 . .

Note by the way that it should be possible to treat slender tori in full
general relativity using the methods in this section as the equations have
a similar mathematical structure (Blandford, Jaroszyfiski and Kumar 1985).
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for the reasons outlined in section (3.4), in particular the presence of a
corotation singularity. This makes analytic results very difficult to obtain
and one must in general rescrt to numerical work to get anything useful. One
important analytic result was obtained in PPII, however - the fact that beyond
a certain value for the specific angular momentum index q=ﬂr5", Newtonian
slender tori are stable. 1In this section we outline the rather trivial
procedure of generalizing this result to pseudo-Newtonian tori.

Consider first of all the perturbation equations for this case (3.61

and 3.62) written in (a,b) coordinates,

+

l'-/g aqs:;- A Da :E;; <§;~

- n-:2 2. n=—2¢2 —2 _n-1
- K é -
. 'V/? :\3 £ m\ mfV L, 2nVE ! 0 (4.57)

l—ﬁaha 2070 /Gu—ﬁaﬂ (l—KHZ

1 D 'f"(l - /é a)“"v2 SW - fn\w’] .\

2w W s FE QWY £ X fn“)w}f ) WmﬁfnRZ NS
1 -Fa? A Na»a ¥ b b 2001 —/éa)3 Na

0 (4.58)

p=0

A~ .
where % and )z are @ and ) Z respectively scaled with the angular velocity
¢

at the pressure maximumj_lo. Similarly,

A,Z,._. Y\ -2
K'Z——=22-a0-af) (4.59)

D
and e =V - K . (4.60)

For n“;70, the boundary condition (4.58) may again be replaced with

a regularity condition on W. Taking the slender torus limit,

&n > 2 - =y B =
N kST Ly PR Fob
3a | (@%+ m° - 2(2 - a) da b Db

; 2
La."zn ( ‘151’+ m)

+ W : émn-l
(1 - ‘Rt.)

(4.61)

l
o
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As g—>2 this reduces to the SZ&=O equation (4.21). A complete analytic
solution to these equations does not exist but a few observations may still
be made concerning the oscillation spectrum of these tori:

(1) From the discussion of chapter III one expects a dense spectrum
of real modes with (-¥%+ m)2<:: 2(2 - q) for which equation (4.61) is hyper-
bolic. |

(2) The high order §2Q=0 modes have high (“V¥4'm)2 and so are unlikely
to be affected by the epicyclic frequency 2(2 - g) in the first term. Instead,
their frequencies will be modified solely due to the changing shape of the
torus. Note that equation (4.61) is elliptic for these modes.

(3) Ssome modes which are separable in a and b can of course be found
analytically (table 3). The first mode in the table is the only one which
is independent of height (apart from the corotating mode which will be exa-
mined shortly). 1Interestingly enough, its frequency is independent of the
angular momentum index g. Similarly, the second mode in. the table is the
only'bne which is independent of radius (apart from the last Lindblad reso-
nance mode). Not surprisingly, its frequency is independent of both qeband
d. The last two modes in the table have no match to any of the <gx=o,1€b=o
slender torus: modes, as they tend to corotating modes but without constant
eigenfunctions. These modes are in fact part of the dense spectrum and are
marginally stable at <;EQ=0 - there they take on the character of modes growing

as powers of t.

Table 3. some <JX#0, NI s=0 Slender Torus Modes.

2
(Y+ m) w q=2, =0 limit
g L 2 ) ,
Sy 1 - 3R,
(1 -R) +2(2 - q) = T__T_fi_ a j=0, k=1, even (f-mode)
ol 1 -
1 b j=0, k=1, odd (f-mode)
(1-2R)  Ta-28.)° 3
e 4 ————————5 -2{(2 - q) ab j=0, k=2, odd (f-mode)
1-K) Q@ -R)
2 - ‘
1'- 2 1-2% 3 o
( JPQ - ‘ﬂ(. ; -2(2 - q) “1 ab No exponential normal mode limit
(1 -%) (1 -Ko)
F(b) No exponential normal mode limit
2(2 - q) '
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Finally, multiplication of equation (4.61) by W®* and integration over
the torus cross-section indicates that there are no unstable modes provided
g< 2, i.e. the Rayleigh criterion is satisfied. The corotation theorem of
PPII implies that any /g:>0 instability must therefore arise from a zeroth
order corotating mode’Voé—m. Note that for such a mode equation (4.61) is
hyperbolic, implying that angular momentum gradients will affect the mode

drastically. Because the analysis of this section and that of PPIT is asymp-

~

totic for smallfg, li‘lz will always be much less than f(z, and this led
Papaloizou and Pringle to the erroneous suggestion that the slender torus
instability found in this case has a different physical origin (a "Kelvin-
Helmholtz" instability) from the'§1k=0 instability. GGN have however shown
numerically that these two modes are the Ssame. '

The zeroth order corotating mode must satisfy

~ T i nY w

9 =0 . (4.62)
N b “3b

The general solution which satisfies regularity on the surface is simply

an arbitrary function of a:
W= w(a) . (4.63)

The fact that W is undetermined at this level is purely a consequence
of the fact that in addition to being the limit of any discrete unstable
modes, the zeroth order corotation mode is also the limit of the corotating
continuum.

Provided g#2, the first order equation is also

p S NJ,HVDV\P
? =0 (4.64)
Jb d b

implying that W is unchanged to first order. The second order equation,

again provided q#2, is
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~ 2y —oel G 2 &5
- &n £ V o+ d
B ¢ YW P (Y + mga) W~

3b b Y a -2(2 - q) da

=0 ' (4.65)

Tl ) 2 B
--{-n(15”4-mqa)m\bé + 2n (V"4 qu} gl e
2 }a (1 - ”Rc )

W"may be eliminated from this equation by integrating it over b while

keeping a fixed. One than obtains after some algebra

2 =5 e 2+
2.d dag- 2mx 2 + 1 2(2 - 2 + 1 "
(1—x)§-(2n+1)xﬁ+ af2n + 1) 2( q)(nz)a‘ g'=0
d d ) “J+ 2, 1 - A
X X (Vv mgxas) ( ¥l ) (4.66)
' a
where K (4.67)
a&
and =W (V"+ mga) (4.68)

Equation (4.66) is difficult to solve analytically because of the coro-
tation singularity at Y= -mgXay. Which gives rise to a continuum. However,
following PPII one may ask whether there are any values of g for which the
torus is marginally stable, i.e.‘VHEO. For such a case equation (4.66) has
Gegenbauer polynomials C?(x) as solutions where j is a non-negative integer
and g must satisfy

2
- 2
2(2n + 1) _2(2 - q)(2n + llag _ j(j + 2n). (4.69)

2
q (1 =-"K.)

Eliminating a; from equation (4.14),

2 (3 -KRo)- . (3 -K.)

(L +2n)} g -_ . = j(j + 2n)q{:q - (4.70)
(L -1p) 2(1 -K.)

which should be compared wiﬁh equation (5.24) of PPII for the Newtonian«k;=0

case. The discussion there is also valid here - j=0 gives the only permissable

value of g which is

3 - Ky 5 ‘
Jerdt = (———| = (2q»,<,k§,) (4.71)

1 -B,
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Perturbation theory shows that for q™> g« this mode is unstable while

for q<<:qgﬁ+ it is stable (see figure 4-4). GGN and Glatzel (1986) have

shown numerically that this is in fact the same mode that was found in the
ﬁg& =<;Ls=0 slender torus, and which ié therefore removed by specific angular
momentum gradients. Other unstable modes exist, however.

Finally, it should be pointed out that the analysis of this section

and the corresponding one in PPII is actually valid for any analytic specific

angular momentum distribution, simply because for a slender torus one may

write

X: JQK,Toi-l +/nga + G—(/izi) (4.72)

where Ll is a constant. For the power-law distribution (4.17), L1=2—q and

the previous analysis still holds if q is everywhere replaced by 2-L_.

j

2.0

Unstable

/// Unphysical

e

e

1.5

0 R. 1/3

Figure 4-4. The critical value of the specific angular momentum index

below which slender tori are stable to the <2ﬂ‘=0 mode.
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V. ANNULI AND CUSPS

Perhaps the most serious difficulty with studying the global stability
of tori is the fact that one has to solve partial differential equations
on asymmetric geometries. Given the appfoximate z-independent structure
of theszss = 0 eigenfunctions from the previous section and Papaloizou and
Pringle's numerical results, it is strongly tempting to just kill the
z-dependence and work with two-dimensional annuli. In fact fluid dynamicists
studying parallel shear flows do this quite often by invoking an extremely
useful principle known as Squire's theorem (Drazin and Reid 1981). This
states essentially that disturbances in a three dimensional flow can never
be more unstable than those in a corresponding two dimensional flow.

Squire's theorem is not necessarily valid for rotating flows, however.
Névertheless the fact that studying annuli is so enormously easier than
studying tori enables one to explore a wide range of configurations and
gain some physical insight. In addition, GGN have shown that for slender
configurations there is a direct transformation from two-dimensional annuli
to three-dimensional tori.

This may easily be seen in the following way. ©No solution of equation
(4.57) can be exactly independent of height foé tori of nonzero thickness.

However, if one integrates this equation vertically over b for fixed a,

then the b-derivative term will vanish. Then assuming W is approximately

independent of height (which by equation 3.56 is equivalent to assuming
vertical hydrostatic equilibrium) one may take it outside the integrals.

Now because slender tori have elliptical cross-sections,

H(a) 1

2)n+§

2 2
£'db = (1 - a“/ag by (1 - x°) dx (5.1)

-H(a) -

2 2. %
where H(a) = be(l - a /ag )? is the height of the surface above the equatorial

plane. Similarly,

H(a) 1

n-1 2 2 n-% 2
2n £777ab = 2(n + %)L - a7 /a, )" T b (1 - x7)Max (5.2)
B S
-H(a)
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Hence provided the torus is slender and vertical hydrostatic equilibrium
is satisfied, the three-dimensional solutions can be obtained from the two-
1

dimensional solutions by subtracting % from the two-dimensional polytropic

index:
n =n_-% (5.3)

Only <Q,s=0 configurations will be considered in this chapter. Nonzero
entropy gradients may produce strong deviations from z-independence, unless

perhaps the torus is gyrotropic.

V.l The Oscillation Spectrum of 321#0 Slender Annuli

On removing the z-dependence, equation (4.61) for KQQ#O slender configura-

tions is easy to solve analytically. Changing the independent variable to
u = %(1 + a/ag) (5.4)

this equation becomes the hypergeometric equation

2 (0, N
° aw” 2nag o2
u(l - u)——; + n(l - 2u)— + W ___:____7A (V% m) - 2(2 -9g) =0 (5.5)
du du (1 -F)

Solutions which are regular at the boundaries a=iay occur only for

. 2
(P m? - L) —I}i‘) J(zn - 1 +J) +2(2 - ) (5.6)
2nag
where J is a non-negative integer. Note that a ( ¥+ m)2 has been cancelled
to obtain equation (5.2) - the corotating mode which is the source of
instabilities and the continuum cannot be determined at the zeroth level
if g#2, just as for I f #0 slénder tori.

Comparing equation (5.6) with equation (4.28) and Table 3 for slender
tori shoWé>that J=0 and J=1 give slender torus modes, with J=0 corresponding
to the (j=0,k=1,even) f-mode. Not surprisingly, these modes and the corotating
mode are the only height independent modes of the infinitely slender torus.
All other modes are lost or replaced with two-dimensional modes with different

frequencies. This fact should be born in mind when comparing annuli with
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tori. Instabilities involving the purely two-dimensional modes are likely
to be quantitatively different from the three-dimensional case, although

they might be similar qualitatively.

V.2 Equilibrium Configurations

Setting‘é =0 in equation (4.8), the Lane-Emden function for an annulus
is

2 1 1 1 - 2T
f =1 —— - + , (5.7)

2 —_— -, 2
y 1 -R., r-R (2-20(1-%)

of

The boundaries r,, and r.4 ©of the annulus are determined by setting £=0
in equation (5.7). Depending on the value of K., the thickest annuli are
of two types. Small values of K. imply small deviations from Newtonian
gravity and in these cases the outer boundary of the annulus extends to

infinity when

2q(1 -Ke) - 3 + 2R

%
. /é; = /gnw$= . — . (5.8)
(g - (1 -R) :

On the other hand, for large values of‘?& the inner boundary can reach a

critical radius where the effective gravity vanishes. This corresponds

to the cusp of three dimensional tori and occurs when

2-29

1 1 1 - 1l
Jﬁ? = /§<M,¢ =12 — - + . 5 (5.9)
1K rewe R (2 - 2001 =R

where r is found by setting (df/dr) =0. Thus, in addition to satis-
) s t’ N r'u FLE (a

fying constraints (4.16) and (4.17), annuli can only exist if

0<ﬁ><min(/&“ ,jéwgg | (5.10)

For constant specific angular momentum (g=2) annuli equations (5.8)

and (5.9) become

- 2R’ '
/é;w“x_ ; (5.11)
: (1 -K)



89

2 . )
1 1 l - r"m‘(
/éiﬂé =2 B . =3 - 5 (5.12)
. f l _'Pb rt,b;&f —Eb Zr'.b\s‘r (1 _.«R)
K . . 2. %
wien Ve = LS 2| 2 -Ro+ R -3EDT (5.13)
2(1 - K)

Note that/gugcvanishes at ¥, =1/3. 1In this case one has an infinitely thin
cylinder rotating on the last stable orbit. When ¥,=.191, /fnwa.=/§““P
and the thickest annulus extends to infinity while its inner edge lies on

the marginally bound orbit (cf section I.1).

V.3 The Incompressible,~ X =0 Annulus

This configuration, which when slender corresponds to a torus with
polytropic index -%, is perhaps the furthest removed from reality of all
the cases considered in this thesis. However, it is also the easiest to
solve and instantly gives great physical insight.

Taking 7“%960 in the perturbation equations (4.18)-(4.19),

2
2 1 dyaw m W
Jw=o _[t—]-— =0 (5.14)
r dr \ dr r
.2 aw |
VYV W+ g = =0 (5.15)
dr
P:b

where g is the dimensionless effective gravity:

" 2
1 1 -
,._39.1“:__3 _ Ke) (5.16)

?Dox)\(zo r (r ~Fo)’

9=

Recalling that W is the perturbed velocity potential if 9L =0 it is
clear that these are simply the equations for surface gravity waves at the
inner and outer edges of the annulus (see e.g. section 12 of Landau and

Lifshitz 1959). The general solution tpequation (5.14) is of course

: m i -m
Clr + C r , m # 0

W o= (5.17)

Substitution of this solution into the boundary conditions (5.15) at the
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two surfaces yields a quartic dispersimrelation for”V . For axisymmetric
modes this has the solution

Y. 4 G - r\" il
Y =0, 0, £|_ o9 n Sod . (5.18)

L. Lo (Inrog - inr,,. )

All four roots are real because the effective gravity is positive at the
inner radius and negative at the outer. Hence there are no exponentially
growing axisymmetric perturbations as is of course expected.

The dispersion relation for nonaxisymmetric modes,

2 - 2 -
m mg-,« - m MGrd
]j«1/ +-—§) ¢ L8 <¢/ r«—§> -
r. J AN S r

(728 PP |

2 . 2
2m m mg .. m mg.,
= (Lewd /L) (’[/ +—-.2) - M9 (’\/ +-—2.’) + _E_d (5.19)
' Lo LN Lo Lo

is not so trivial to solve. Consider first the case where the outer boundary

extends to infinity. Then only two solutions exist which are regular (Cl=0):

m Mg,
V=-—+4 g ) (5.20)

r, r

e i

These represent gravity waves propagating around the inner boundary with
equal and opposite pattern speeds relative to the equilibrium flow. We
shall denote the slower upstream mode (the plus sign in equation 5.20) by

ﬁ; and the faster downstream mode by f; . Equation (5.19) also has a double
zero root for which the eigenfunction blows up at infinity. This is in

fact the limit of two modes which for large r,,, have frequencies

l/z
m ~G
V=-—51 ! (5.21)
Lo .

and thus represent gravity waves propagating around the outer boundary.
As before we denote the slower upstream mode by f; and the faster downstream

‘ +
mode by fg.
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Another interesting case occurs when the inner boundary lies on the
2
cusp so that g,. =0. Then equation (5.9) admits a double root -m/r, in

addition to the two roots

SR

- ng 2m + rZm-
m MG, af Lo oot
’ - - + i _ed . (5.22)
w1/ 27 2m 2m
rv*d | Y L‘h - L.d

The latter pair are clearly the fj outer gravity wave modes modified by
the presence of the inner boundary - note that equation (5.15) indicates
kthat these modes have zero amplitude at this boundary. Nonzero amplitudes
at the inner edge only occur for the neutral, corotating inner modes because
there is no restoring force to support wave motion.l

These two cases are very similar in that the inner and outer gravity
waves do not influence each other - in the first case by separating the
poundaries by large distances and in the second case by killing off wave
motion at the inner edge. Note also that both of these cases are stable.

Figures (5-1) and (5-2) present the real parts of the eigenfrequency
solutions of the general dispertion relation for the m=1 mode (for which
ReV 1is simply minus theﬁgattern speed). The modes are well separated
in the above limiting cases for which /K =/6;@Aor/€cdi . Because the inner
edge of the annulus is rotating faster thaﬁ the outer edge, the inner modes
pave higher pattern speeds. AS the annulus shrinks, however, the faster
outer mode catches up with the slower inner mode and, voilé, the Papaloizou
and Pringle instability sets in - the two modes join together to form a
complex conjugate pair which corotate together with the equilibrium flow
at some radius. As/@"E> 0 and the annulus becomes infinitely slender, the
complex pair of modes join again to become the zeroth order corotating mode
which is marginally stable as there is no shear left to drive the instability.
On the other hand, the faster inner mode and the slower outer mode rotate
with equal and opposite pattern speeds around the slender annulus. These
are the pair of two—dimensionali=1 slender annulus f-modes (section V.l

- note that all these modes exist also in tori).

1

The inner modes are marginally stable. If they were given nonlinear,
finite amplitudes they would presumably go unstable and produce the cusp
overflow.



RECNUD

RECNUD

Figure 5-1.

T "-—"_{r’_‘_____.f
-1 --//<-__L\W_
-2 T
-3 T

-4 T
-5 T
-8 1
-7 t - } 1
9 a8 B8 25 8 Sa 475 | 88
BETA
\ ) I
0T —- f. —_
-‘_"_____.——'-.”:—“
_,dﬂ_—<i:jﬁﬁ '
. -“\*‘*-~\£-
—
-2 "—\\
N \
~
\ . ;
-4 7 ~ '
.1 !
.
-5 }
-7 t } t
8 8d @ 2% 8 se 8 75 | ag

BETA

The real parts of the m=1 eigenfrequencies for the WA =0

incompressible annulus with K. =0 (upper) and F@ =0.1 (lower). -
Relativity is unimportant here and the annuli extend to infinity

at/g=%%w~.



RECNUD

RECNUD

Figure 5-2.

BETA
[
,__—-———'Mfo

-2 ¥ ¥ T
8 a2 8 02 @ a4 Q88 q 88

BETA

The real parts of the m=1 eigenfrequencies for the O =0
incompressibhle annulus with 724 =0.2 (upper) and ﬁl =0.3

(lower). Relativity is important here and the annuli have

cusps at /g =/gw:.¢ .

93



Expansion of the dispersion relation about the slender annulus limit

leads to the growth rate

o

. 2 - L
limy | = m/é L(l -RT =R 7 + (j’(ﬂz) (5.23)
’ (1 - 3K) g

which is identical to the slender torus expression (4.56) when n=-%. Figure
5-3 shows the growth rate as a function of m and Q=/§m for the Newtonian
1& =0 case. As the slender annulus expands, the higher m modes grow fastest
and dominate the instability. This is probably due to the fact that these
modes are more efficient in transporting angular momentum. However, the
high m modes also stabilize faster with /g so that the thickest annuli which
are unstable are subject only to the m=1 mode. This is easy to understand
because the penetration depth for surface gravity waves decreases with
increasing m (cf equation 5.17) and so the inner and outer modes quickly
bécome independent for high m.

The most striking feature of figure 5-3 is that the growth rate is
almost purely a function of Q. Indeed the critical value of Q above which

a given mode is stable lies in the range
0.5164 = Qemt (m=1) Q & Q.o (Mm=0@) = 0.5218 (5.24)

In addition the value of Q which gives the maximum growth rate and the

maximum growth rate itself satisfy

0.292

Qn(m=1) KL 0 K 0 n(m=®) = 0.312 (5.25)

0.268 = [ImV | (m=1) L |1m ¥ |W<; |tmy |, (m=0?) = 0.308 (5.26)

This behaviour extends to the mli #0 case as well. Figure (5-4)
illustrates the critical values of /ﬁ, above which a given mode of wave-
number m is stable, as a function of K. . The dashed curve shows Q.. (m=e0 )
which closely follows the jgcﬁd(m=l)=Q¢ﬁ+(m=l) curve. A physical explanation
of this effect is still not known.

B That the results of this section apply to more general configurations
may be seen from the work of GGN and Glatzel (1986), already discussed at
length in chapter II. The two dimensional surface wave instability does

V)
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exist in tori, and it 1s thic mode which is stabilized by the critical angular
momentum gradient discovered by PPII and discussed in section IV.4 . The
main qualitative difference produced by conpressibility is the addition
of further modes of instability which exist above Qg.sd

The results of GGN and Glatzel were obtained for Newtonian configurations.
The question as to how far the cusp stabilization acts in compressible tori

will be addressed in the next section.

v.4 slender A =0 Tori with Cusps

A1l the slender torus analysis in the previous chapter is a priori
invalid for a slender cusped torus precisely because it is asymptotic for
small /§ , Whereas a cusp necessarily occurs at a finite nonzero /g . Indeed,
the cusp stabilization in the case of the incompressible annulus cannot be
seen from the asymptotic formula (5.23) for the growth rate, simply because
an asymptotic expansion would not converge at a marginal stability point.
All that one could derive from equation (5.23), and can derive from its
compressible cousin (4.56), 1s that asc%t%>l/3 and/éwa/i%&e (ﬁ1=1/3) = 0,
the instability vanishes - but this is simply because khat is the infinitely
slender torus limit.

consider a sequence of cusped Y =0 tori with varying 726. Equation

(4.8) then gives the Lane-Emden function to be

2
1 1 -t

2 1
£ =1- \___-_ - + : (5.27)
2 2 2. % - 2
K —- 7 o -
/6 \ 1Rt e Y. 201 -R)

As B,-® 1/3 these tori become infinitely slender cusped rings located at

the marginally stable orbit. Defining the parameter

wi+

)

i _"F{b"7/0 (5.28)

Then equations (5.12), (5.13) and (5.27) may be expanded around the limit

% =0 to give

2 243 _3 4
L= + O (L) (5.29)

2 4
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2 ,
lewe = 1 = 6T + OCT) (5.30)

£=1-b"-38 + 287+ Olg) (5.31)

where ¥ and’B are new collapsing radial and vertical coordinates defined by

—— 1l -r S~
¥ =__ " -3 (5.32)
1l -r, h,

and where h, is the height of the torus surface above the pressure maximum

1
]

3 4
547 + Qg

(5.33)

1}

, -1 2 .
1
h0 = - /g‘mr + -1
(1 — - L) xR

The shape of the slender cusped torus is illustrated in fiqure 5-5. TIts
inner cusp and outer radius are at ¥=1 and -% respectively.

W and "V may be expanded as
o : 2 3
e ew’ + W O

G 2\(1.\
VO TV LU 0"(23) (5.34)

W

Vv

and the perturbation methods of the previous chapter may be employed here.
The calculation is rather tedious and is presented in Appendix c. There
. . . . () . .
again exists a zeroth order corotating mode for which 1/lsatlsf1es
1

(1 =-73)
-%

2n-1 . N=} .2
TR 2TV L fay = o (5.35)
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and the eigenfunction is exactly independent of height for small f . Hence
GGN's transformation (5.3) is valid in this case as well.

For -4 £ n € 0 the integral (5.35) diverges near =1 unless Y"= -12m.
This is just the value required for the mode to corotate on the cusp, in
agreement with the incompressible annulus of the previous section. Figure
5-6 illustrates a numerical solution of equation (5.35) for nf) 0. Compres~
sible EEEE' even with cusps, are unstable.

This result should have been expected, as compressible fluids can support
wave motion near their inner boundary even if a cusp is present. The incompres-
sible torus cannot, as the unstable eigenfunction is independent of height and

so the cusp plays the same stabilizing role as in the incompressible annulus.

Figure 5-6. The imaginary part of V" as a function of polytropic index "
for the I =<J s=0 cusped torus.

V.5 ' Pseudo-Newtonian, =0 Annuli

Primarily for the purpose of investigating accreting tori (see chapter
VI), we have extended Glatzel's (1986) numerical integrations to pseudo-Newtonian
annuli. Figure 5-7 illustrates some of the results for n2=3 configurations,
and these clearly bear a close resemblance to Glatzel's results for Newtonian
annuli. Particularly important for the following chapter is the infinite,

marginally bound annulus. 1Its unstable growth rate may be found by extra-
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polating the curve in figqure 5-7(c) toV‘/g =/§MM =/g‘“f’ . It is through this

configuration that our investigation of accretion will take place.
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VI. ACCRETING FLOWS

All the analysis presented so far in this thesis and all published
work in the field has been confined to fluids in pure azimuthal flow. How-
ever, the fact that for thick tori the unstable eigenfunctions are concentrated
near the inner boundary and the general surface nature of the most unstable
mode indicate that cusp overflow could strongly influence the instability.
Unfortunately, this is even more difficult ﬁo treat than the nonaccreting
tori, as no analytic solutions for the possible stationary structures of
an accreting torus exist. 1Indeed, a glance at the results of Hawley and
Smarr's (1985) numerical simulations give an idea of the horrendous possi-
bilities.l

Given these difficulties, it seems reasonable to consider a simplified
model for a preliminary investigatioﬁ before going on to more realistic but
complicated flows. In the spirit of the previous chapter, we consider two-
dimensional accretion, because in this way a continuous sequence of models
can be constructed starting frbm pure rotation, which is unstable, and going
to pure radial infall, which is(étable. The location of the marginally stable
transition point is still u;known, however, and a numerical investigation

is under way.

VI.1l Stationary Structure of 2D Accretion Flows

In cylindrical polar coordinates, the equations of motion for a two

dimensional axisymmetric flow in an external gravitational potential g} are

;gé; ( giXD \Jm) =

(6.1)
wohve AT _—Lde AP
> dm ° § a do (6.2)

4
V""'I&E — : (6.3)

lUnfortunately, it has not been possible to review this important work
here due to lack of time, but readers interested in thick accretion flows
are strongly recommended to read it. The work of Eggum, Coroniti and Katz
(1985) is also of interest in this respect.
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\/pﬁ: (6.4)

If the inflow velocity v, is nonzero, equations (6.3) and (6.4) immediately
imply that the specific angular momentum and specific entropy are constant and
soithe flow is potential. This is an obvious result, as individual fluid
elements must preserve j\ and s in an axisymmetric adiabatic flow. Because
the case under consideration is two-dimensional, all streamlines are identical
and so ‘1_ and s must be constant throughout. Specific angular momentum
and entropy gradients were permitted in tori (and annuli) because the fluid
lines were closed - lerethey are not. This discontinuous behaviour between
the  two types of flow is of course an artifact of the perfect fluid assumption.
In real fluids the right hand sides of equations (6.3) and (6.4) would include
dissipative terms which would generally give nonzero dgradients in X and s
in addition to some radial infall.

Even in perfect fluids, however, one may obtain a smooth continuous
transition between the two flow types by considering a marginally stable,

‘:2}( =<;[s=0 rotating annulus. As this is in any case the most vulnerable
to Papaloizou and Pringle's iﬁstability, it is probably the most interesting
model to investigate.

Because the flow is hbﬁentropic, a polytropic relation between pressure

éﬁé density may be adopted:

W 1+1/n
p=kS§ = A (6.5)
Eduations (6.1) and (6.2) may then be integrated to give
2w Sov, = -N (6.6)

2
2

2T

2 .
Ly + nvg +_§é = E (6.7)
where v is the sound speed, M is the constant mass flux (assumed positive
for inflow) and E is proportional to the square of the sound speed at infinity,

assuming the flow starts off with zero infall velocity.
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Equations (6.6) and (6.7) are essentially the equations for Newtonian
spherical accretion (Bondi 1952) modified by the geometry and the presence
of the'angular momentum term. The latter is a crucial difference, however,
as centrifugal forces always dominate Newtonian gravity at small radii and
stop the accretion. General relativity is therefore essential here and for
simplicity the pseudo-Newtonian potential (1.9) will be adopted.

It is convenient to introduce a relativistic scaling whereby velocities

are measured in units of c and lengths in units of R :

o v, v —_
= v =2 a— — >\-; _;Q- (6.8)
- R - c e R, C

Then equations (6.6) and (6.7) may be written

°

2 e e
ra nv = - TVL (6.9)

2 \2 2 1 e

kv + + na - =
2r 2(r - 1)

(6.10)

whereﬁ?{ and ff are non-negative constants.

Equations (6.9) and (6.10) afe nonlinear algebraic equations which may
be solved numerically for the étationary radial velocity and sound speed
as functions of the radius. Apart from one modification they have been derived
~and their solutions investigated by Abramowicz and Zurek (1981, hereafter
AZ) and Lu (1985). The single difference is that these authors had an rz
in the mass equation instead of an r because they were interested in quasi-
radial, conical inflow. Such a three-dimensional flow is, strictly speaking,
inconsistent, but nevertheless it may be convenient to study it to gauge
the importance of three-dimensional convergence effects. We therefore rewrite

equation (6.9) as

N 2n
ra v = -771 (6.11)

where N=1 for two-dimensional flow and N=2 for conical flow. We now rederive

and elaborate on the essential results of the previous authors for the pur-
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poses of the current investigation.

As r~—»03 the infall velocity goes to zero while the sound speed is
finite, and so the flow is subsonic in the outer regions. On the other hand
as one approaches the event horizon the infall velocity blows up2 and the
flow is supersonic. The global flow is therefore transonic and imposition
of regularity at the critical sonic point gives the accretion rate as a
function offfand )\.

Differentiating equations (6.10) and (6.11) and solving for the derivatives,

Aol _ o N Y s
Ar @~ (Y Gy NV ~ (6.12)

J\V \/
A i >} v . (6.13
- - — ¥ . .13)
e r (& ) Y= A=) E /\\j‘\“

Therefore the flow can only be regular at the sonic point r=r, if the sound

speed there satisfies

al = \ [X‘:"f (=) =\ (6.14)

Mt

where :XE is the Keplerian specific angular momentum at the sonic point:
GL?

3
XL (vy) = 's

Kep ';\(\,&MDQ (6.15)

\

For a disk overflowing its cusp, equation (6.14) implies that the sonic point
will always lie inside the cusp ( >\<i>\n§.

2
Using equation (6.14) to eliminate a at the sonic point,
. ) a4 Y,
—_ N 3 >\ L8 ©
m=r, {Nrg ( e () =X )1

F = ORI TRl N
AN 1y AN - ey O

(6.16)

This is an artifact of the pseudo-Newtonian model, which is not a good
model for the inner supersonic f£low regime. However Lu (1985) has investi-
gated the problem for both cases and found only small quantitative differences
between the location of the critical points and the resulting mass accretion
rates in the two cases. As we are only interested in the subsonic part of the
flow, we believe the pseudo-Newtonian potential to be adequate.
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'GiVen any pair of values for }. and ff , equations (6.16) and (6.17) may
be solved to find the sonic radius and the accretion rate.

Figure (6.1) shows the location of the sonic point as a function of }\
and ff for the case n=3 and N=1. This is very similar to figure 1l(a) of
AZ, who pointed out the interesting fact that for gf<:g§qﬂ; 0.09 the sonic
radius is apparently not unique. However, Lu (1985) has shown that it is
in fact unique apart from discrete values of fk and ﬁ where it can jump.
His result was obtained in an elegant manner by examining the global topology
of the solutions with multiple critical points. It may also be quickly seen
using an analysis similar to that of Novikov and Thorne's (1973)3treatment
of Bondi accretion.

In the (v,a) plane, equations (6.10) and (6.11) define an ellipse and
a hyperbola, respectively, for every value of r, as illustrated in figure
iﬁ;é). As the radius changes, these two curves may intersect in zero, one
or two points. If for any pair of values of t\ and (ithere exists a radius
where the curves do not intersect, then no physical solution is possible
for this pair. Differentiating equations (6.10) and (6.11) with respect
to a at fixed radius implies that the curves intersect at only one point,
and are therefore tangent, if and only if that point is a sonic point.

If the curves intersect in two points, one always represents a supersonic
solution and the other a subsonic solution.

The values of a at points where the hyperbola and ellipse cross the

: 2 2
line v =a are

o Y Cann)
ac": (\,N) (6.18)

{ ( _ >s\ 4
= | ——— + — v ; '
ag, (n V) (C D\&Y -1) ’AY:;') (6.19)

fespectively. A necessary and sufficient condition for a solution to be

physical is a_ < a, everywhere, i.e.

3
I thank Roberto Turolla for bringing this treatment to my attention.
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200 0 20 9'49 alea o.as I’BG 1.29 1'40 nvsa nlaa 2 @9
LOGRS
The locatioﬂmbf the critical sonic point as a function of
)\ and €' for a twc dimensional flow w1th polytropic index
n=3. The region above the top )\ j\méfs) curve is unphysical
for accreting flows as the sound speed becomes negative by

equation (6.14).

a

The curves defined by equations (6.10) and (6.11) in the
(v,a) plane. The points of intersection give the actual’
solutions - A is supersonic and B is subsonic.
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77/( Al ’

\* - ' ‘ 1 ¥} 3
>\<D\r [C -+ m = (s )ﬂ(% N (6.20)

Equality occurs at sonic points, and hence a given model will start to become
unphysical if it admits more than one sonic point for the same values of 33,
9@\‘and Ef . Pigure "6-3 is a replot of figure 6-1 with céndition (6.20)
added.

Consider starting from the lower rightvhand corner and increase )3
while keeping Ef fixed. The sonic point slowly moves inwards until the con-
sistency curve is reached. At this point the solution Just satisfies equa-
tion (6.20), and there is another sonic point at an inner radius for the
same values of{fband }?. If )f increases still further the sonic point
must jump inwards.

This interesting behaviour is not actually relevant for the current
investigation. More important is the consistency curve itself which separates
the parameter space into physical and unphysical regions. Also important
are:the intersections of the Ef = constant curves with the Keplerian curve.
At these points equation (6.14) implies that the sound speed must be zZero,
and hence v must be zero everywhere. The Keplerian curve therefore represents
a disk in pure azimuthal flow. The "sonic" point in this case is simply
the inner, zero pressure edge of the flow. This edgebgs a cusp precisely
because >\ = Xh(,there.

Positive values of Ef on the Keplerian curve imply that the disk has
ndhzero sound speed at infinity ana must therefore have external pressure
Support. This corresponds to a /g=%iM5Yf?%§nuconfiguration in the notation
of the previous chapter. Negative values of (f imply negative values of
the sound speed squared at infinity, that is the disk does not in fact extend
to infinity but has a zero preséure boundary at a finite radius. These are
the/5 =fi“5f<< models of>£he previous chapter and they cannot smoothly
ttéhsform into accreting models unless matter is supplied at the outer radius.

The intersection of the{i =0 curve with the Keplerian curve is the crucial
point for this investigation. It represents an annulus with an outer, zero
pressure boundary at infinity and an inner cusped edge at r; =2 (or TO=2R ),

i.e. the marginally bound orbit. This is the‘/g=f§w«;/§0fconfiguration of
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. :JFigure 6-3. Only the unshaded portion of the diagram contains physical
K e L solutions. The upper left hand area where the angular momentum
is high and the sonic point is close to the hole is termed

the "disk-like" accretion region. "The lower portion of the
diagram, where the angular momentum is small represents
"Bondi-like" accretion. The /é = ﬁ;wagnon—accreting annuli

of the previous chapter all lie on the Keplerian curve. For
clarity, the region above the Ef =0 curve has been left unshaded.
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the previous chapter, and it is through this model that one may dinvestigate
the effects of accretion in a continuous manner on the Papaloizou and Pringle

instability.

VI.2 The Perturbation Equations

Almost all the general stability theory for rotating flows reviewed
in chapter III is inapplicable for accretion. Moncrief (1980) has however
written a classic paper on the stability of accreting potential flows (in
both general relativity and Newtonian theory) and one may use some of his
results for the problem here.

Because the stationary flow is potential, Kelvin's circulation theorem
implies that if the initial perturbations in vorticity and specific entropy
are zero, then the perturbed flow will also be potential. Moreover, Moncrief
showed that even if one started with nonzero entropy and vorticity perturba-
tions over a region of finite extent, then these perturbations would simply
be advected into the hole and the flow would thereafter be potential. The
Newtonian version of this result follows immediately from the entropy and

vorticity equations written in the following covariant form

K%JF + f\i )(AJ:3 = '%—1_ (%-E')i (W;) SQ,S*‘Q\SQ&S)

(6.21)

(6.22)

where (/\)‘\) — qu AVA —Q‘ \/3 (6.23)
is the vorticity tensor and x; is the Lie derivative along the stationary

flow lines. Because the stationary state is potential, the perturbed forms

of these equations are

R+ 4eJ5e=0

(6.24)

(%? *751’“ )gw; = 3“7 (%EE)S L{jg §VSs _Q,‘ g<7§°j(6.25)

Equation (6.24) implies that the entropy perturbations will simply be advected
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with the stationary flow velocity into the hole. Hence if they were initially
nonzero over a finite volume, they will simply disappear after a finite period
of time. Equation (6.25) then implies that the vorticity perturbations would
do the same.

One may still gquestion whether this is good enough, as it says nothing
ébout the case wherei;s and S;LJH are nonzero throughout the flow, nor even
what would happen if an instability was somehow started and the flow went
into the nonlinear regime before it could return to being potential. How-
ever, it is good enough for the present purpose which is to investigate the
effects of accretion on the Papaloizou and Pringle instability. For a SH=
SI s=0 torus, this instability is caused solely by potential perturbations.

The only two equations of relevance then are the time-dependent Bernoulli

equation and the continuity equation. Following the scaling of the previous

N : 1 e
gg) ’f}’\(f‘\, W:O (6.26)

35
%‘F 4;“ 5/ (VM&“%?;) 4; %}"b (Gt“};[;*):O (6.27)

where "V’ is the velocity potential. 1In the continuity equation the density

section, they may be written

has been replaced with the sound speed using the polytropic equation (6.5).
In addition, the dimensional index N has been added to include the cases of
conical (N=2) and Cylindrical (N=1) flows. Finally the standard procedure
of using the gauge freedom of qﬂ to absorb the Bernoulli constant has been
adopted (see e.g. Landau and Lifshitz 1959).

Linearizing these equations about the stationary state,

< : — v
2 +V~}' : ”‘Lfé‘——\&‘; + W\ O ~ O
5 v 2175 (6.28)
N “',L —
' NS - N

S VR VO\ 5%« ol NV
-‘%—iou é; qif T <,5 +y~<5r;£ =0 (6.29)
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2
Eliminatingsa , one obtains a single perturbation equation for ??

R~ Yy - R () % )Y
N o~ Y ) CJW Sp L O NSy _
( %i g‘ﬁ ﬁﬁ T 7 - (6.30)

In the non-accreting case v=0 this kduces to the perturbation equation for

the SZQ =<J s=0 annulus.
Vi.3 Remarks

Moncrief showed that spherical accretion with no angular momentum is
absolutely stable outside the sonic point, and this proof can be trivially
extended to the )\=D, purely radial conical or cylindrical flow. It is also
known, of course, that purely rotating <ZL=O annuli are marginally stable
to axisymmetric perturbations by the Hgiland criterion. Accreting flows
may therefore be stable to axisymmetric perturbations and for completeness
this hypothesis should be checked before going on to the non-axisymmetric
ycase. In fact for the two-dimensional flows considered here it is possible
to extend Moncrief's proof for this purpose, and this is done in Appendix D.

An aétempt has been made to extend this result to three dimensional
flows but without success. The reason is that Moncrief's stability proof
fails when one allows equilibrium and perturbed velocity fields which are
tangent to the sound horizon. The two-dimensional approach of this section
may therefore be throwing away some important dynamics of three-dimensional
accreting flows, but again for the purposes of studying Papaloizou and Pringle's
instability it should be adequate.

Returning to nonaxisymmetric modes we Fourier analyze the perturbations

in the usual way to obtain

_.(g__ +‘~/<57 _‘_wxxx b?ﬂ—’":(’,\"jy‘-i 4,‘%/7)(%1-\&;; -f"jf)%ﬁ

- r\J*§<” ~ \%7<“- N ék '} Vh?-CLF ) ::(i)
T <7<‘?’£ N W“) " % T N4 (6.31)



113

If we also restrict consideration to normal modes this equation becomes

= E NPT d\’z X -~ Y ’ "A ¢ N
A - Y_""' A Hr

2. < 2 o N\ ™ U
+ A Ay - — L AN LA AR _nata!]
AN NS 4| YT T T «:xjgy;—;@
M dv)" Y-“": Y‘~
(6.32)
where =Y is the eigenfrequency scaled with R¢ /c and
A |
V= VT . (6.33)

Y

in deriving equation (6.32) use has been made of the equilibrium continuity
equation (6.9).
Though perfectly conventional, this last step is possibly dangerous
as there is no completeness theorem for the normal modes of an accreting
flow such as there was for a rotating flow (cf equation 3.22). It is hoped
that a normal mode treatment is nevertheless sufficient for the present analysis,
though it may turn out to be useful to solve the full time-dependent equations.
Equation (6.32) has a regqular singular point at the sonic radius and
an irregular singular point at infinity. Adopting a regularity condition
at the sonic point and a radiating boundary condition at infinity completely
defines the eigenvalue problem. This is now in the process of being solved
numerically, and it is hoped that interesting results will be forthcoming

shortly.
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VII. CONCLUSIONS

Thick accretion disks offered a very attractive model for the central
engines of active galactic nuclei and many theorists have been reluctant
to see them die. This explains most of the current interest in understanding
Papaloizou and Pringle's instability. Those who still hold thick disks close
to their hearts, and those who strongly oppose them, should bear in mind
the following points and unsolved questions:

(1) No compressible model yet studied (apart, perhaps, from Glatzel's
infinite annuli with small but nonzero specific angular momentum gradients)
has been proven to be absolutely stable. This holds for a wide variety of tori
with or without gradients of specific entropy and specific angular momentum.
However, there are indications (Frank, private communication) that infinitely
thick tori may be absolutely stable.l

| (2) Absolute stability isn‘t of course required for tori to be self-consis-
tent. A torus would be effectively stable if the growth time was as large or
latgér than other timescales‘expected to be important, in particular the
viscous timescale (this means that the general conclusions of PPI and II
concerning the existence of instabilities but without knowing their growth
times are of small practical interest). If one believes the phenomenological
limits on X , however, the viscous timescale is atleast 103 - 104 times
the dynamical timescale in radiation tori so that for all practical purposes
absolute stability is required. This is not true for ion tori, which can
suffer, indeed require, high viscosities.

(3) Viscosity will be more important for some modes than others. 1In
pafticular the very high m modes thch PPI and II argue to be so generic
and which are probably difficuit to find and treat numerically may be subject
to high damping and therefore be)of little practical importance.

(4) The nonlinear calculations of zurek and Benz indicate that the

"surface-interaction" mode really produces global, violent changes in the

1
cf Hacyan's (1982) original result in equation (2.1). There may yet be
a.vindication of this early work!
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torus. Other modes, however, act slowly and indeed on the gmescale of the
code's own inherent molecular viscosity. Could it be that these other modes
do not produce violent changes but simply turbulence, and if so, is the effective
viscosity thereby produced high enough to rule out radiation tori?

(5) The fact that the use of a pseudo-Newtonian potential does not change
anything substantial means that full general relativity is very unlikely
to produce any qualitative difference except perhaps in extreme and uninter-
esting circumstances (is a slender torus rotating in the ergosphere of a
maximal Kerr black hole stable?).

(6) All of the investigations have been limited to perfect fluid tori
because the major portion of a thick disk as conceived in current theory
is supposed to be in almost pure azimuthal flow. However, stationary thick
disks have a transonic stream at their inner edges whose dynamical consequences
for the global stabili£y of the disk are still unknown, but can and are being
in§estigated using the simplified treatment of chapter VI. Another question
one might ask is whether thick disks could have global meridional circulation
flows and what effect these could have on the instability. More conventionally,
éould an outflowing jet have any influence? These latter two questions, put
to me respectively by Antonuccio and Rees (private cdmmunications) are probably
too difficult to address at the present time.

The most favourable stand one could take (from the point of view of
wanting thick disks) is that most of the calculations have been done for
rather slender configurations and really thick, practically constant specific
ahgular momentum configurations may still be stable for timescales approaching
the viscous timescale, thus pefmitting narrow funnels with which to collimate
jets. Accretion through the cusp is likely to aid stability even further.
As_the torus evolves in the manner described in section I.4, it shrinks and
dynamical instabilities could then become important, either by producing
violent structural changes or by increasing oK via turbulence. Both cases
could be extremely interesting from the point of view of short time variability

in quasars.
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Although one might entertain these speculations, I would be reluctant
to make such assertions on the basis of our present knowledge. However, it
is not yet clear that thick disks are ruled out, and more work along the

lines suggested must be done to answer this most fundamental question.
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'APPENDIX A. GENERAL LIMITS ON THE EIGENFREQUENCY FOR A <J]l= NJs=0 Torus

The perturbation equation for this case is equation (4.18):

5w
( g}w)+ D ( }’N) —“Yh.mz'
+ &IV _o
TP (a.1)
and, for compressible tori, the boundary condition (4.19) may be replaced

with the constraint that W be regular. Multiplying equation (A.l) by W*

and integrating over the torus cross-section,

jfﬂ SRS l § o2 fw{]mo(ml%

MJ N w dzo g

(A.2)
where the first two terms arise from integration by parts.
The imaginary part of this equation is
- W ?Q_(cr)—i m«ﬂ)j
:l:tw&ﬁsj i l ( TDJVDA%-C> (A.3)

so“that if Im( &)#0, the perturbation must corotate with the flow somewhere.

This equation implies

TWE 2 (Re@) I =) f I (Ret) T, o,
_\(F >r (A.4)

The real part of equation (A.2) is

M R f—mrw«]w@%

(A.5)

or, using equation (A.4),
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“‘IS,Y,?U) lw}fz — (Kale)) i“”@_\fm(w)) ] pdwel

] ™ cA'ZD <Lg,

(A.6)

Therefore because the left hand side is postitive,

§Ir
- A [\PJ;‘Uo<kC®ak%
‘ ‘C‘"‘ § S (A7)
jSL'W ooz

and so the mean value theorem implies

2 292
| & < mﬂw (A.8)
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APPENDIX B. THE INCOMPRESSIBLE'<le='ils=0 SLENDER TORUS

It is straightforward to modify the analysis of sections IV.2 and 1IV.3
to treat the incompressible n=0 torus. In this case the perturbation equa-
tions (4.18) and (4.19) become

<%

(B.1)

_2
and S W+ Gagg o JW = 0 (B.2)

which, as noted in chapter V, are the equations for surface gravity waves
on the torus.
We restrict consideration to the Newtonian case. The slender torus

limit of these equations . is then
23w w\m . ] e
\VF' VL 1 (B.3)

i:(,ﬁpqv,qﬂ31'\NJ@D_~V1;\E%§%5 ‘T::(:> (B.4)

The general solution of (B.3) which is regular at VL=0 and periodic
in © is

" cos k@
W =3 (B.5)
VL sin k&

where k is a non-negative integer. The boundary condition (B.4) then implies
2
U+ m) o=k (B.6)

As expected, these are the Kelvin or f-modes of the compressible slender
torus. Note that for high k these modes represent short wavelength oscil-
lations propagating near the surface YL=1, confirming their physical status
as surface gravity waves.

The fundamental k=0 corotating modé is still present and it gives rise

to the instability as the torus thickens. The first order equations for
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this mode are

W, YW
Sop ' Ser VL<‘_‘I——O (B.7)

WL ®
2 \»ﬁ

(B.8)

i
implying that W~ is a constant and so the corotating eigenfunction is unchanged

to first order.

The second order equations are
ﬁl\\f% m\,J ~ A= O
TR R e
(B.9)

—Fy e '\f
1’\:; \/\J - %{]P:O

It is straightforward to verify by direct substitution that the n—»0 limit

(B.10)

of equations (4.49) and (4.50) are the solutions to equations (B.9) and (B.1l0).
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APPENDIX C. THE EIGENVALUE CONDITION FOR THE SLENDER Sﬂ = < s=0 CUSPED TORUS

The perturbation equation (4.18) and the boundary condition (4.19) may
be written in (ng) coordinates as (see ss¢tionV.4 for notation)
L . ~ — I — (“'—
(,\ “Yens “) % 6: i - Y‘gv\,&‘{) ( \ —a, T C\VZ‘,\E‘) \ AYZV\'T b@lw ; m\'
RN V\ RIVN :
+ %——L %E 4| TAn VT SR )= C
N == () . - ¥~ H - O
. L\b . ;b - - V\J

f‘““;s (ly:pﬂl ( [ & "'?UQM(:)L\ (c.1)

i2>jZi_:;i; h ' YUY )§7 o)
/gwr (FRY" ot ((\ “Vewrp) DR DK = 1“‘ \%L“\;:) Q(c.2)

To zeroth order in i:

(-3 02 i ANE TR DT WO

, (C.3)
@ .
.r\—~1— ®y Y \J\j \34?
A7 W 72 ] =0
=T Fo (C.4)
Changing the independent variable to
: o
u= (_g 3)}1 (C.5)
=R A
equation (C.3) becomes Gegenbauer's equation:
o Nﬂd\/\) 1 B\/\JD& _—-ZI 5, _
RPN rye Sateve + don 7 W o)

The boundary condition (C.4) as usual rules out any singular solutions so

that W is given by Gegenbauer polynomials

)»\--‘l

\/\)(a b)wj(OQC (W)

(C.7)

o K (K+ A1)

- 14 .
vt = 3A (C.8)

where g, is an undetermined function of & and k is a non-negative integer.
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In particular the zeroth order corotating solution is

P \jc)_,
\/ = (jv("”) (c.9)
For this mode the first order equation is

TR L M N s s
36 Xo- ' e am N o ST Qi T c10)

Mﬁlmay be eliminated from this equation by expanding it ih the complete set

of Gegenbauer polynomials

ay_

Z:QCZ"(& C:-Vl(u) (C.11)

and integrating the equation over b for fixed i (similar to the treatment

of section 4.4). Then

oA [( Do M ,]:O

CX (C.12)
The two linearly independent solutions to this equation are
d, =constant
" . ’ ""\"‘/
- N’k -’\.;'3 L L
go=j\ml~30\ v Q} A& (c.13)

The second solution is singular and must be rejected as it violates the boundary
condition at a=-%. Equations (C.10) and (C.1l) then together imply q, =0 for

all nonzero k, and so W¥’is an arbitrary function of a:

WU‘: (ZD(GL) (C.14)

The second order equation for this mode is
o\:‘Z qf L reyrWT W‘“)w“
.+ 3 .
36 Juk =y S { <J‘\:L 5\5 ’\: (C.15)
+ W R 6

Expanding ﬁ‘ in Gegenbauer polynomials and 1ntegrat1ng as before,
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nay,_ ek WS O s, o o AT
[(\u’%a‘. ’”“Acf )LA? L1 ,g )< ,17”"\0‘:) Q\“ + (‘A) (C.16)
= O

on integrating this equation over'g, the first term vanishes due to the

boundary condition

v, . -y Y A}‘L/»_c
I(_l”g&?+:&iv“ l(,*l I<A“]o -, (C.17)

-

and hence'ﬂ/”may be determined from

f (=35 () (0 ) = O o
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APPENDIX.D. AXISYMMETRIC STABILITY OF 2D ACCRETING FLOWS

Moncrief (1980) pointed out that equation (6.30) may be derived by

extremizing the functional

9= fgawuotc;é s {(m)b‘ (S +v 5 ——«o},)

A BV .
- " S%" (D.1)

N
where, for the sake of brevity, the comma notation for derivatives (e.g.3x1§§:%')

‘has been adopted. The Lagrangian density for this functional is

‘ - » S |
Z = J,D—:Y‘NS‘L(O\) (.g‘f’ﬂ *'\’%0”*?%/)“"’) ?,/, = /”L S (D.2)

Because the stationary flow is time independent and axisymmetric ;i has

no explicit dependence on g or t, and so there exist two conservation laws:

2085 -0) X %) S (L]0 .,

) \a/< — +\ ('\Z AAY4
<35 < oA o, =7 )=(0D.4)
>t }%’h 677" EURNIE B/r) 'h/*p (‘tﬁ%}’,\ >y /\) O

Not surprisingly, these equations correspond to conservation laws of energy

and angular momentum. The energy and angular momentum density are

- o . )

: 1 (o\‘ '%{)ﬂ ;(@\‘) (\/%a L(J\)%)&)l 4 \ 1n<;/]‘> +%—L£\;ﬂ<-/ ;
(D.5)
:) = (O:L - 25‘/971 (‘A Ly %‘j‘,r +A KY ) (D.6)

and the total perturbation energy and angular momentum outside the sonic

2y s
E=f [ erasp

point are
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N :J;J::)TNJWOWS (D.8)

- On._integrating the conservation equations (D.3).and (D.4) over the entire.
volume outside the sonic point, one obtains the rate of change of these

quantities with time,

o\E _
a\JF j"k?l(’ ()" RV x/)f(g/q +\/§/ajr +,..<gr> j

—r" o %)‘7’4%‘7] (D.9)

— a\ (}Z‘ rr\.’ C{__)r\

A F | -

- ﬁ; —_10 (D.10)
e S, S {\

/%‘i / ‘
For axisymmetric perturbations, all the derivatives of ;g must be inde-

pendent of @, implying thatlgjn must be of the form

’}u 4+ r. ¢ )= 57:9,\, (+v) C,Vj (p.11)
where C is a constant. Nonzero C means a perturbation in the specific angular
momentum which is everywhere constant. ¥e view this as an unphysical pertur-
bation, as it does not decay to zero at infinity. Moreover, equations (D.5)
and (D.7) imply that the perturbation energy would blow up if C#0. By "axisym-
metric" we therefore restrict consideration to S%f=0. Then equations (D.5),
(p.7) and (D.9) imply

ET ~ Lm RS- N~ 1,*"‘(' - o L a7 7
. T ) r ’—}\‘0\} )L%f, + (O\ - ") (J\;/)l‘, j",ﬂ&/'-"’—i-/@

(D.12)

A7

[P SR A L » . “ -
and ;[__ »J (el [\l %l/pﬁ + (,,\Ji '-C»C}(iu) cg 3 } t/, (D.13)
c ) [l

: 2 - 2, , i ) :
E is clearly non-negative as a ;7v in the subsonic region. ASsuming <§79

decays to zero fast enough at infinity to ensure that E is finite,
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— (N +S) —(n S

PR R

-~ N A
g}u Y 379;,;’\/ r (D.14)
where ng>0, then the surface integral at infinity vanishes in equation (D.13).

In addition, the second term vanishes at the sound horizon and therefore

because v<0,

dE
E>0  and —<{0. (D.15)

Hence E, viewed as a norm of the perturbations, must decay with time and

the flow 1is stable.
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APPENDIX E. MISCELLANEOUS SYMBOLS USED IN THE TEXT

a

Cci@)

w}

|~

[

sound speed scaled with ¢ (Ch. VI only)
speed of Iight
ratio of actual-flux to Eddington flux

-2 2
T - K

scaled Bernoulli constant = nai

Lane Emden function

effective gravitational acceleration (rotation and gravity)
gravitational constant

half-thickness of disk

Boltzmann constant

wavevector

specific angular momentum

luminosity

Eddington luminosity

azimuthal wavenumber (g(};N-expEimﬁz) , -
proton rest mass

central mass (usually, in section I.4 it is the torus mass)

mass accretion rate

Eddington accretion rate

(Ch. VI only) scaled accretion rate

polytropic index (n2=2D, n3=3D)

Brunt-vVaisala frequency

(Ch. VI only) dimensional parameter (1 for 2D flow, 2 for conical flow)
pressure

2-
specific angular momentum index, Qk=ﬁﬁf(73/iﬁs) 4

nf

4 2 . ‘
2GM/c” = Schwarzschild radius
R. /T,
specific entropy
time

sound speed
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j<

velocity

w effective gravitational potential

W g‘b’/gg_,%?/é{“&}n section III.4(b)

Z height above equatorial plane

w{ Shakura—éunyaev viscosity parameter

» e "
/é Yz(n+1)pjbdkﬂﬁigz = thickness parameter
;gM“ /é for which torus extends to infinity
/g‘Nie /%for which torus inner edge 1is on cusp
;{ .Q—Gaa):adiabatic index
P 8 s
Ty 1+1/n= polytropic adiabatic index
< Eulerian perturbation

/\  Lagrangian perturbation = S+X.
>

1
i

na (1-£)

= angular coordinate orthogonal to f (cf figure 2-1)
K opacity (Ch. I only)

{ epicyclic frequency

>\ ,X /R.C

v a/J L

?i Lagrangian displacement

Tv 3.14159...

P

> distance from rotation axis
O radius of pressure maximum

7 cusp radius

neSt
T, disk inner radius
fb‘bmarginally bound orbit

o, marginally stable orbit

T jdisk outer radius

(%

e .
S density

&~ eigenfrequency (SQ- exp{}q'gl)
o o+ m):{ = Doppler-shifted frequency
T optical depth

@ azimuthal angle



gravitational potential

—Jarf%aézb = "rotational" potential

velocity potential . e
vorticity

angular velocity

-Re(c)/m = pattern speed (azimuthal phase velocity of mode)

Lie derivative
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