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ABSTRACT

We investigate the recuperation of expected invariant behaviours in a pregeometric gravity
theory in which the fundamental degrees of freedom are fermions ¥; and the spin connection
wﬁb, and the full general relativistic invariance is b‘roken‘spontaneously. We show how dangerous
increasing energy behaviours of physical amplitudes cancel in a highly nontrivial way. This evi-
dences the expected loss of the vacuum generated scale in the UV regime and gives support for
the consistency of spontaneously broken gravity theories.

This class of theories are characterized by a generic “potential” which depends on 1[; <.

We find that the requirement of the additional local symmetry: 1/)(:1:) — /\(a:)‘t,[i(w), uniquely

determines it. The resulting action is

det %(&"fﬂﬁuﬂ/’ - KZ_"‘E#A/%&)
(- b)* ’

We argue that this action defines a consistent (UV well-behaved (plausibly finite), unitary, etc.)

A = const.

STta :A/d4m

quantum field theory which describes Einstein gravity as a spontaneous symmetry breaking of
conformal invariance.

Then we study the analogous theories in two-dimensional space-time. We find that in 2d
the connection with gravity theories can be established exactly. Within this framework, we show
that the Thirring model coupled to gravity can be derived from a theory in which the underlying
Lagrangian is zero (modulo topological invariants). This result is also interesting for our sake
since the Thirring model coupled to gravity is the precise 2d analog of our (spontaneously broken)

conformal invariant 4d theory.



I. INTRODUCTION

Probably inspired by a previous idea of Zel’dovich [1], long ago Sakharov [2] suggested
that the Einstein-Hilbert action may be not a fundamental action, but rather an effective
action induced by quantum structure. This idea influenced a number of authors, who at-
tempted to generate the graviton as a composite [3-8]. Akama et al [5] constructed a theory
in which no fundamental vierbein is assumed, and the only fundamental degrees of freedom
are fermions. Amati and Veneziano [7] extended this idea by providing, through the inclu-
sion of a potential, a mechanism for spontaneous symmetry breaking of diffeomorphisms
and local Lorentz symmetries. In a somewhat different context, Tomboulis [9] realized
that the (massless-) fermion quantum fluctuations induce an R2-type gravity action and
hence [10] lead to a power counting renormalizable and, through the implementation of

the Lee-Wick mechanism [11], unitary (ghost-free) theory.

The theory discussed here is very similar to that of ref. [7], but not exactly the same.
Instead of introducing the spin connection as a composite field of fermions, it is defined as
an independent field, perhaps for the sake of simplicity, or (and this reason may be implied
by the former) just because the theories of spin 1-particles -unlike spin 2- are perfectly
consistent and therefore it makes sense to speak about fundamental spin-1 particles. In
any case, as far as the essential conclusions are concerned, we do not expect any change

for a theory with a composite spin connection.

Among the vast number of possible models of this kind, we will find that the require-
ment of conformal invariance selects only one. This model is interesting because also Weyl
invariance is spontaneously broken (there is higgs mechanism, etc.) and the low energy
theory still reproduces Einstein theory of gravity. This is a surprise since the sponta-
neous generation of a Planck mass is unexpected in a Weyl invariant theory (it might arise
through Weyl anomaly, but in D = 4 it starts at 2-loop level [12]). On the other hand,
there had been hitherto no way to eliminate the ghosts from conformal gravity. In the

present case, the original action is linear in time derivatives, so the troubles characteristic

8



of higher derivative theories should be absent in physical quantities. Indeed, the R* terms
induced by integrating out fermions do not introduce ghosts, as remarked by Tomboulis
[9]-

Pregeometric theories of gravity might provide a suitable framework to describe the
unbroken phase of quantum gravity, which in the usual treatment corresponds to an un-
tractable g,, = 0 classical value [13,14]. The general idea is that at short distances the
theory possesses full gauge symmetry implemented by a non metric action which is broken
spontaneously by a vacuum induced length beyond which a space-time metric emerges,
with the dynamics dictated by the Einstein-Hilbert action. The gauge symmetry includes
at least diffeomorphisms and local Lorentz invariance required by general relativity, and
may be larger, as proposed in specific approaches (see, e.g. [15]) or as it is conjectured for
superstring theories [12,16].

There is a general consensus that the symmetric theory should have a good UV be-
haviour and that this should not be spoiled by the spontaneous breaking. But while this
is proven correct for YM gauge theories where both symmetric and spontaneously broken
realizations are renormalizable, the expectation is much less firmly grounded for theories
including gravity.

As well known, the Einstein-Hilbert action, when treated as a fundamental quantum
action, leads to a nonrenormalizable quantum field theory and to scattering amplitudes
with unitary-violating increasing energy behaviour. Here we will show in that the present
theory, for energies much greater than the vacuum generated scale (associated to the Planck
mass), scale invariance is restored; highly non-trivial cancellations occur confirming the
expected good behaviour of the theory and the renormalizability by naive power counting.
This is much the same of what happensin spontaneously broken YM theories where scalar
particles, with couplings exactly as in the Higgs model, are required to cancel the unwanted
increasing energy behaviour of certain tree-level 4-point amplitudes [17,18]. Indeed, we
shall show how “tree” 4-point amplitudes satisty this unitary bound in accordance with

the “good” scaling behaviour.

Masses, couplings and propagators of all states are explicitly predicted by the theory
and consistently computable in a loop (1/N) expansion. The correct high energy behaviour
found at the leading order is thus a clear sign of the expected consistency of the theory in

which Einstein gravity arises as a low energy aproximation.

Finally, we will move on two dimensions, where it is possible to analyse the theory

9



in the unbroken phase and, as we will see, the connection between these induced gravity

models and gravity can be established exactly. Some unexpected issues will be met.

10



II. SPONTANEOUS SYMMETRY BREAKING
OF GENERAL COVARIANCE

I1.1 DEFINITION OF THE CLASSICAL THEORY

Let us take as fundamental degree of freedom 1 Dirac fermion and the §O(3,1) spin

connection w, q5. The invariances are postulated to be diffeomorphisms and local Lorentz

transformations ¢. The starting action is [5,7]

S = /dém det W V(dbep) , (I1.1)

1, - = P
W Du =¥ D p7%) s Dp= 08+ 0" wpas -

Under SO(3,1) infinitesimal local transformations of parameter 72°, the fields change

W’;‘ =

according to

1

b(a) — (1= gowm™(2))4 ()

P(z) — P(z)(1 + %aabr“b(z)) | (I1.2)

b

1 1
. _ac c
Wpab — Wyab + =0uTab + (T Wpes — T Wyca)
4 2

Under diffeomorphisms, ¢ transforms as a scalar and the spin connection transforms as a

vector.

Remark: It is possible to add other terms like

I= / Atz g(P)e™ PO capea WE WL RS (W) + a(hh)e* P B2 Rpoap +ete.,  (11.3)

@ As described in [7], further gauge symmetries can also be incorporated. They are

inessential to the present research and thus we will not consider them here.
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while preserving diffeomorphisms and local Lorentz invariance. We will not attempt the

introduction of these additional terms e

It is straightforward to extend the single spinor case by introducing N fermion replicas
in order to define a 1/N expansion. To explore the spectrum of the theory and the low
energy effective theory we introduce composite operators® and corresponding Lagrange
multipliers in such a way that fermions can be integrated out (we follow the approach used

in ref.[7]):

N— ; & . —_
S = / d*z det VV[V(p)—rf“aVV#a-{—gﬁp—%—Z(%ﬁ“aJ)i('yaﬁ#— D e )b —a;dib;-b;] . (I1.4)
i=1

Note that #;, « = 1,...IN are N adimensional spinor fi:'ds and the relative weights a;
with which each of them contributes to the composite p aiid W represent N adimensional

parameters.

I11.2 (¥3)~* MODEL

The potential ¥V can be an arbitrary function of ¥; the requirement of diffeomor-
phism and local S0(3,1) invariances gives no restriction on V. However, if we require an

additional gauge invariance

P — 6_0/2¢ ) IZ — e—g/gi ’ wab - wzb ) (IIS)
the potential V' is uniquely fixed and the resulting theory is defined by the action

Ste = A/d4m (%t—g)/—; , A4 = const. (11.6)
As we shall see later, the transformation (II.5) exactly corresponds to Weyl invariance in
the induced gravity theory. In sect. V we will see that this theory is the precise 4D analog
of the Thirring model coupled to gravity (hence the notation Stg). We will refer to this

model as the (¢%)~* model or simply 4D TG theory.

® The formal definition of such operators as the product of Dirac fields is ambiguous,
just as in standard 4d theories. Usually these ambiguities are eliminated by demanding

that the composite operators satisfy the proper Ward identities.
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The gauge invariance (IL.5) also constrains the c-model (in N-dimensional space)

couplings in (IL.3) to be given by g = B/(¥%)? and o =const., etc.
For V(¢) = A/( - 4)*, S' has correspondingly the additional local symmetry

—o/2 T —-o/2 7 - ab ab
T,bi—iea/’l'/)i,’(ﬁi—*EU/‘l,bi,I’V#a—~‘r€ VV;LG.)w,_L_*w/,L?

£ — 78R | p e, $ G (I1.7)

II.3 VACUUM PROPERTIES

Let V be a generic potential. The theory can now be studied within the 1/N expansion
provided by the fermion loops. Expanding the bosonic fields around their VEVs, the
fermion loops provide linear terms in the fluctuations whose vanishing conditions determine
the vacuum. Likewise, fermion loops provide bilinear and higher order terms in the bosonic
fluctuations all proportional to V. Bilinears give the induced kinetic and mass terms; their
diagonalization leads to boson propagators proportional to 1/N, which implies that bosonic
loops will generate non leading 1/N contributions.

Fermion loops give rise to adimensional integrals that have to be regularized. We will -
compute them by dimensional regularization.

Consider the bosonic effective theory which remains after integrating out fermions.-
The vacuum equations essentially admit two solutions, both of vanishing action: the trivial,

(Wya) = 0; the non trivial or non symmetric solution given by

<§#a> = A_lﬁ’m, <VV/M1> = bAT/#av <¢> =, (,0) = Db/v ’ (wzb> =0, (IIS)
with
(Wea)(§*) = (@)(p) = DV ((p)) = Db, (¢) =—=V"({p)), (11.9)
ol dPr r?
D+1
pP+1 = ;/(ZW)D el (I1.10)

Note that A has dimension of mass. We will assume that the dynamics selects the non
symmetric vacuum. The symmetric phase will only be considered in sect. V, in the case

of two-dimensional space-time.
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From egs.(I1.4,8) we see that we may identify in ¥; = b A3/21); the usual 3/2 dimen-
sional spinor fields and in m; = va;A their lagrangean masses. We also see that small

fermion masses are protected (a; << 1).

It is convenient to separate the fields W, and p into classical and quantum fluctuation

parts:
VV/_LU. = Pv—ﬁa, + I’:-V;,La, y P = Po +/5 (II].].)

where W'ﬁa and p° are the solutions of the classical equations of motion, i.e.

Era(Vip) +dp) - (I1.12)

Qv =

V() ==, Wi =

Inserting into the bosonic effective action (cf. (I1.4)) one obtains

S = [ dtaldes ) ((Vol9) L épm(8)) ) +0(7%)+O07)

N .
1 e — —
—%—Ztrlog[—é{“ (va Dy — D uva) — aid] - (I1.13)
1=1

The quantum fluctuations p and T’VM will be relevant in loop calculations. Indeed, T/VW
and j are not coupled to fermions and thus acquire kinetic terms only at higher order in
1/N. This means that their masses will be of the order NA so they will not contribute to

the order we shall explore here.

In the Weyl invariant (¢)~* case (I1.6) the vacuum values obey the relations

()(p)° =44 £ 0, b == (I1.14)

and the bosonic effective action (I1.13) reduces to

A 4 -9 12 : a 5) b)) 5
$1G = 3z /d”‘m(deté‘l)é‘ L)+ O(T%) + Y telog( 584 (e D = Dua) = @:9)

i=1
(I1.15)
Now let us expand action (II1.13) around the vacuum values:
b=uv(l+d), €% =AT"(n""+E). (I1.16)

14



We obtain

V'({e))
(P V" ((p))

1 Fua Fu
) + a(n#dnub + 77;1.45771/0.)6“ gc b + ]

S = /d4z BPA[1 — 4482 + 2552(1—56- + 5

—_—

N .
—11t o abc Fua ) = Z ”
+ E trlog A 1[57 00— aivA + wy apysyee” b¢ 4 ¢t (v, D, — D yve) — asvAe] (I1.17)
i=1 .

Expanding the logarithm in powers of the quantum fluctuations E,q‘é, w one can obtain

propagators and n-point interactions which characterize the effective theory.
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III. EFFECTIVE LAGRANGIAN AND HIGGS PHENOMENON

I11.1 COMPUTATION OF QUADRATIC TERMS.

Let us now discuss the quadratic terms in the field fluctuations é, £#® and Wy ab
around their VEVs. They have been discussed in [7] as a low momentum expansion. Since

we want to investigate the high energy regime, it is useful to have the exact expressions

for the bilinear terms.

The integrals that we have to compute are the following ones:

. d*

(€ua(a)Eun(~ Z / ZWZ Dp’g’:qu[~/a(ﬁ+-;-g+mi)%(p—-;-wmi)}, (II1.1)
Guaon = =3 [ T BTyt g b maals il (I
sehos == 2 | Gy DD, ¢ TRt T TR T

i a dtp  m3 1, ,
e =3 [ gy prp il + g +ma)ld = 54 ) (I11.3)

d'p p ;L1 .1 .
(Wyabuciog = Zeﬂabdy/ ——“—tr[”/c(P+ Sd+mi)ysy (B — 54+ )] (1115)

(wp,abqghog = -




where

1., R
Dig=(p=x 5(1)‘ —mj

It is convenient to decompose £#* into symmetric and antisymmetric parts, gre =

gre 4 Eff‘l A somewhat long calculation leads to the following results:

o 1., , 2 2,
<§#a(Q)€ub(—_Q)> = qu(?’f(q—) + 2g(qﬂ))(9/‘w0ab + epbea.u - geyaeub) + ggug(qa)epaeub 3

(III.7)
(&.8) = —2¢°9(¢*)0pa (III.8)
(36) = 64°9(¢*) + ¢, (II1.9)
(Ea(@Es(—) =0, (E,(0)E(—0) = f(0)a°0 €papctrss © 5 (111.10)
(wu,ab@ =0, (fp.a.wu bc> = 4f( )q €uapoypc “, (IIIll)
2 q°q° 29797
(Wiab@y,cd) = €uabpeveas(16£(a7) (0" ~ 2 ) —244(q”) o ] (111.12)
where 0,0 = Nua — ¢ug./q> and
N q3 2 m2
(4m)* f(g*) = 21‘2‘[1 glaiv?/dm) + J(¢*/mi)] + 5 Lo g(aiv? [4m) + =3 LI ml)
=1
(IT1.13)
1 N
(47)%g(q%) = _gsz[lo g(aiv? /dm) + J(q° /mf)] , (II11.14)
i=1
- He) ( V'(p)) 1
drie =" 4mtlog = . o), II1.15
(4m)*c ; m; log = — ((p)V”((p)) 5) ( 5)
with L .
J(z) = 2/ dylog(1 + -‘2 —zy?)=—2—4"%logB , . (II1.16)
0
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4 2
A=1+4+=—, B=1+ (1 4Y%.
T

o] 8

These lengthy expressions when expanded to second order in g reproduce the small
momentum regime analysed in [7] (see subsect.3).

We have absorbed the 1/(D — 4) infinity into a renormalization of

p— 27, € — 27N logZ=1/(D—4).

Thus (Z' = Zl/s)
p—=Z'p, Wia = Z'Wya , w2 —w (II1.17)

7

which in the original action just amounts to a wave function renormalization: b —
Z2 Wy — Z" 2, Generically, this implies a renormalization of the constants
appearing in the potential V. In the 4D TG model, instead, the renormalization constant
Z actually cancels out because of Weyl invariance (cf. eq. (IL.7)). This will be interpreted

in sect. VI as a sign of finiteness of the (Y1) ~* theory.

II1.2 HIGGS MECHANISM

The fw sector is diagonalized by

B2y + ... (III.18)

Bab = wyap +

4
where dots represent the non abelian part which is irrelevant for the bilinears we are
discussing. Eq.(II1.18) shows the emergence of the Higgs mechanism found in [7], caused
by the spontaneous breaking of the local Lorentz symmetry. Indeed, éi“l can be completely
eliminated from the theory by a SO(3,1) gauge transformation with parameter 7% =

—3&k%. The Lorentz connection becomes massive having eaten the six Goldstone bosons

Eg“‘. This shows that the breaking is really of spontaneous nature.

In the (¥¥)~* model (I1.6), also the symmetry (II.5) or (II.7) is broken by the vacuum
values. We would like to see whether this breaking is of spontaneous nature as well.
Inserting the 4D TG potential V = 4/(bd)* into eq. (II1.15), we find that c is identically

zero. In this case @ can be completely eliminated by fixing the additional symmetry,
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£l =&, +abua, P =0+a, (I11.19)

in the “unitary” gauge o = —@. The symmetry (I11.19) is nothing but the infinitesimal
version of (I1.7) €. The low energy analysis (see subsect.3) shows that the mode A{H* is
nothing but the usual vierbein. This means that the symmetry (11.5) indeed corresponds
to Weyl invariance in the usual sense. The mode ¢ plays the role of Goldstone boson. We
thus arrive at the desired point: the 4D TG model is a conformal invariant theory in which
also Weyl invariance is spontaneously broken.

Let us introduce the notation €5, = ., — QIBGM. What remains for the quadratic terms

of the Lagrangian in the é‘m& sector is just

1- a ~V 1 2 2 2 4 2 2 2
}_)_eéb (Q)esb(—Q)[gq (?’f(q )+ 2g(q“))(9“zj9ab + Q;nga,u - ggy.aeub) + gq g(q )gyagub] -

(II1.20)
For any other potential V', c is non vanishing and therefore the theory is no longer
symmetric under the transformations (I11.19). Diagonalization of the quadratic terms leads

to an additional term %cqﬁg. The mode ¢ remains, but it does not propagate at this order.

1I1.3 LOW ENERGY EFFECTIVE ACTION

Now we would like to learn what is the low energy physics predicted by this theory,
where by “low energy” we mean energies much less than the Planck mass, which in this
theory can only be proportional to A, the scale that has appeared upon the symmetry
breaking. So the strategy is to expand the quadratic lagrangian in powers of ¢>/A*. In

doing so we get

1 2 =s -3 2 c 4 2-
Lot = 75 MBE(2)E (=08 (Busas + DuoBew = Wpobus) £ O(2°[A7)]

B,B.[8MEn® + 0(a*)] + 5¢0° (II1.21)

!
]

SO E e

SR el

¢ Because of the residual invariance under linearized diffeomorphisms, one can also
write the transformation (II1.19) as —#'a = E;a + OTya s 3 = é + « , which is the direct
linearization of (IL.7). We have preferred the form (I11.19) since it is naturally read from

eqs. (I11.7-9).
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where we have defined B, = e“”aﬂBu’aB which is the only component of the spin connection
that propagates to this order in 1/N. We see from eq. (II1.21) that B, has a mass of order
Mp. The mode ¢ (absent in the (¥1)™* theory) will get a kinetic term at higher order in
1/N. This means that its mass will be of order NA.

In coordinate space the é quadratic term reads

1
6

By associating Mp to the Planck mass and identifying & with the fluctuation of the usual

M [O)(e#26,, — ehel) — 20,0585, + 20,8,8"°¢E}] (II1.22)

vierbein, eq.(II1.22) coincides with the bilinear term in the expansion of the Einstein-

Hilbert action. Therefore, the low energy (LE) theory will have the following form

Sip = — /d‘*mdet eR(e) + O(CP) (IIT.23)
167G

N
Gt = A® (I%:\: Z(ai'v)z log(aZv® /4m)) ,
T i=1

which implies that the physics described by these models is in agreement with the observed

phenomenology.
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IV. HIGH ENERGY REGIME AND UNITARITY BOUNDS

IV.1 PROPAGATORS AND “GHOST” FREEDOM

It is convenient to separate €¥® in the following way:
ghe = eh® + 600 (IV.1)

where &%8,, = 0 and gh® = &y (hence o = %ég‘aﬁya}.

The inversion for the & quadratic term needs the elimination of the zero mode implied
by the residual invariance under lLinearized diffeomorphisms §&¢% = Opeq + Oa€p + O(e?) .
This is fixed in the standard way by requiring 9,e{* =0 through the addition of the usual

gauge fixing term. The quadratic Lagrangian becomes

1_ 0, \-y
Equad -5 g (9)‘301)( ){

4

F

(3f(q ) ( 2))(9#”945 + 9#’-590-1/ - gg/.uleub)

U"Ib——‘

—II—A(G[_LVqub + Qabq;LQV + be%% + HVGQqub + 4ql—bqaqvqb/q2 )]

q°q”

9.2 2y .2 1 9. P 9 qpqg ‘
+3¢79(¢" )e +-§BPBUD6fw )(n®7 = e ) — 249(g%) qz]' (IV.2)

The inversion of these quadratic terms give rise to the following propagators:

_ Mpv  qpdv 2f(q") +3 (q ) -
= (B,B —— > =, (IV.3
(BuB)™ T 16f(¢%) ¢ 48f(a*)9(d’) )
= (oo)7" ! (IV.4)

T = a = oo /L

’ 63*9(q?)

1 a 2 4 -

Tpa,ws(q) = 54‘1(Q“)(9#u9ab + 0up0a0 — 59%9@ — 0,0,9.95/0) (IV.5)
where {we choose the Landau gauge, A — o)

o 5 N
Alg) = . -— . (IV.6)



In the high-energy regime we have (see eq. (II1.16))

J(¢*/mi) ~ =2 +1log ¢*/mi, ¢*/mi >>1, (IV.7)

hence we obtain (see egs. (I111.13,14))

2

15

(4m)*f(¢*) = (=2 +log )+ O(A?), (47)%g(q”) = O(A?) . (IV.8)

12 47 A2

Inserting into eq. (IV.2) we get a term of the form

2

F

§9W9ub) (IV.9)

_pa; Nsv 1 q
661' (Q)EOb(“Q)q4(1 - é— lOg 47”\2 )(g#vgab -+ epbga.u -

This resembles the bilinear term in the expansion of the conformal invariant action around
pa __ cua i SHE,
ey = 0M% ey

This is a theory which classically has indefinite energy and quantum mechanically has an
indefinite metric Hilbert space with ghosts. None of these troubles are expected in the
present theory. The original action (II.1) is linear in time derivatives. This means that,
unlike R? theories, the initial value problem is well defined. On the other hand, eq. (IV.9)
contains logarithms which pick an imaginary part as soon as ¢° is greater than four times
the square mass of the lightest fermion (cf eqs.(I11.13,14)). Hence there are no real bound
state poles, but a complex conjugate pair of unstable, unphysical particles [9]. Therefore
such pair does not contribute to the absorptive part. It is well known [11] that in this
case a unitary S-matrix defined between physical particle asymptotic state exists. The
price that one has to pay is that the usual global analytical properties of the § matrix
are modified by the extra poles and cuts. This is the Lee-Wick mechanism [11] and it
was implemented in the context of induced “R?" gravity terms by Tomboulis [9] (further
discussions can be found in refs. [12,19]).

The “non analyticity” of the S-matrix will lead to the occurrence of non causal effects.
This point was also discussed in ref. [9]. The author concludes that no logical paradox
could arise in a scattering experiment (one has well-defined S-matrix between in and out
physical states). As the energy increases, the complex ghosts produce more important

effects but, at the same time, the interaction decreases due to the asymptotic freedom
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of the theory. The fact that the theory is asymptotically free (which can be seen from
eq.(IV.9)) is consistent with the 1/N approach and the introduction of composite fields.

IV.2 CALCULATION OF EFFECTIVE INTERACIONS

Unitarity also requires that an m-point tree amplitude, with the ratio of all invariant
fixed, should be bounded by E™~* in the limit £ — co. A violaiion of such a bound
would lead to incontrollable divergences in loop diagrams. One of the celebrated issues of
spontaneously broken YM theories was in fact to realize that the precise, predicted cou-
plings involving Higgs are exactly what is needed in order to “magically” cancel unitarity-
violating behaviours in 4-point amplitudes [17,18]. In this section IV we will show that
the 4-point amplitudes of the present theory satisfies such unitarity bounds thanks to even
more striking cancellations.

Much as happens for YM broken theories, it is possible to identify physical scattering
amplitudes such that when all kinematic invariants (s,¢ and u for 2 — 2 processes) become
large, i.e. much larger than the vacuum generated scale A, single exchanged particles give
rise to unwanted increasing energy behaviour. A similar mechanism should work here if the
spontaneously broken theory is UV correct as commonly expected. The leading amplitudes
contains fermion loops not only in the bilinear already discussed but also in trilinear and
higﬁer order terms appearing as effective interactions of the B, o and &§® fields. It does

not contain however loops of those fields; they will appear to next order in 1/NV.

As in the YM case, the potentially dangerous amplitudes are those involving longi-
tudinal massive bosons B, i.e., with polarization ¢, = ?r?l;P# , p° = m%, where mp
is the mass of the boson B, which, to this leading order in 1/, is just given by the
zero of the function f(g*) (cf. eq. (IV.3)). It is convenient to introduce the notation
Biong. = —ml—Bp#B”. Let us now compute the B, Biong Biong. effective interaction (see fig.
1), which will be used in the analysis of the processes considered in the subsects. IV.3 and

IV.4. It is given by

(B,LLBlong.Blong) -

N

21 d*k 1
_m—zB Z/ (27): Dy D1 Ds tryspy (B +mi)vsDa(k — P2 + mi)vsvu (B + p1 +mi)], (IV.10)

i=
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where
Dozkz—m? y Dl_:_(k—}—pl)z——mf y DgE(k—pg)Z—mf . (IV].].)
Expliéit computation of the trace shows that

<B,U,Blong.Blong.> =0 (IV12)
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Fig.1: Diagrams contributing to the B, Biong. Biong. effective interaction.

Fig.3: Diagrams contributing to the qulong,Bzon,g_ effective interaction.
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Now consider the gBlong,Blong_ effective interaction. The diagrams which contribute
are depicted in fig.2. This interaction can be decomposed as: Vyo = (EpaBlong,Blong_) =

Vﬁi) + Vjﬁ’, where

' N " ) R
v = - b5 [ R C B Pl g (p o maepa(E el mal
i=1

¢ my Do D1 D
' (1V.13)
(2 1 d*k 1 , 1 .
VLE;) = — T~ (n#aplp npaplu Z/ DmD_pq [*/51?2(]6 + 5}52 -+ mi)
P 1 : | 7
577 (k — 5252 +m;)] + (p1 — p2) (IV.14)

where D+, was defined in sect. III. A somewhat long computation gives

e (pr +p2)° 2 L 24 2 . 2 '
Vil =12 2 gl(pr + 02) 1Mue + —5 (9(mB) — gl(p1 + P2) 1)(P1uP2e + P2uP1a)
TTZ.B mB
16 2 . 2 .
——9(mz)(P1uP1a 4+ paupea) + O(A7) (IV.15)
2 ,
~(2° 8 o ; . .
Via = Ry (m%)(2n4ap1 - P2 — P1uP2e — P2uPia) - (IV.16)
B .

The function g(g*) was defined in eq. (I11.14).
Another vertex we need is the gz-')Blong_Bzong_ vertex (sée fig.3), which we will denote

by V4. It is given by the following integral

} d*k m; , ) . S, o
Vs = —m% LL_:J/ o)t DngDq tr{yspr (k- my)yspa(f — P +ma)(k+ B +ma)] . (JVT)
We obtain
=B oY) (1v.18)
TTLB
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The physical modes which diagonalize quadratic terms in the §—¢7> sector were found
in sect. III to be &, = Efm — q@&w and ¢' = #. In the Weyl invariant (1)~ case the
mode ¢ was completely eliminated from the bilinear terms upon this transformation. If
the Weyl symmetry is to really be a symmetry in the effective 4D TG theory, the mode é
should automatically disappear also from all n-point interactions?; in particular, from the

(three-point interaction) terms we are analysing, namely

&Biong. Blong. Ve + EZaBzong.Bzong.V“a = ¢Biong. Blong. (Ve + 0, V**) + &,a Biong. Biong. V"

(IV.19)
Moreover, since at the order we are considering these three-point interactions do not depend
at all on the potential, the mode é should actually disappear from eq. (IV.19) for an
arbitrary potential. To check this, we use egs. (IV.15,16) to compute

(p1 +p2)’
%
Therefore Vi + 0,.V** = 0. Q.E.D. (cf. eq.(IV.19)).

Writing, as in eq. (IV.1), é** = &;® + §#°, we thus have

Oua VI =24 gl(pr + p2)’] (IV.20)

<é€aBlong-Blong.> = Via (I'V.21)
L na)2 Y ,
(UBlong.Blang.> = —-V’d, = 24(—13—1‘;{2—;)‘—)_9[@31 _:__pz)-} + O(_/\~) (IV22)
B

V.3 ANALYSIS OF THE PROCESS ¥;¥; — Biong. Biong.

Let us first discuss the physical process 'll’j’I,Zj — Blong.Blong. 10 2 kinematical con-
figuration in which s,t and u (s +t+ v = 2m§ + 2m%) are proportional to E? >> A?
(ie. s,t,u >> m?,sz). The diagrams contributing to the leading 1/N amplitudes are
depicted in fig.4. We could expect, in principle, leading E? and non leading E behaviours

which should be absent in the whole amplitude.

¢ Provided we add the proper O(¢?) corrections in the definition of €, which make ¢
exponentiate (cf. eq.(I.7)). In the present case we look at a vertex which is linear in & so

such corrections are irrelevant.
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Fig.4: Tree-level diagrams contributing to the process Yjt; — Biong. Biong.-



Using eqs. (IV.4,5,6,8,12,21,22), it is now a simple matter to evaluate the four contri-
butions of fig.4. The results are

Vo

T, = Zw(g)u(e) +O(1) (1V.23)
mB .
T, =0, (IV.24)
T.=0(1), (IV.25)
Ty = — 50, u(gr) + O(1) - (IV.26)
mp

In the present high-energy regime (g2 )u(q1) o E for all spinor polarizations. The leading
2 behaviour has cancelled between the two diagrams of fig. 4d. zo-exchange gives regular
contribution due to the 1/¢* high energy behaviour of its propagator. The remaining
subleading contributions finally cancel in T' = T, + Ty +Te+ Ta-

The whole amplitude thus satisfy the required unitary bound.

IV.4 ANALYSIS OF THE PROCESS Biong.Biong. = Biong.Biong.

A more striking cancellation takes place in the analysis of the process Biong. Blong. =
Biong. Biong.- Besides the tree diagrams of figs.5a-c we find a contribution from an effective

AB interaction (fig.5d) that arises from the box diagrams of fig.6.
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Fig.5: Tree-level diagrams contributing to the process Biong. Biong. = Blong. Blong.-
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Fig.6: Effective 4-point interaction for Biong.. The permutations of external lines give the

six non equivalent box diagrams.
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Again, the & exchange gives regular contribution T, and the B exchange contribution
T, vanishes. Using egs. (IV.4,22), we find that the o exchange of fig.5¢c gives instead

T, = 2 (sg(s) + ta(t) + ug(w)) + O(1) . (1v.27)

B
We see that T increases with the energy as E2/A? (cf. eq.(IV.9)). The box diagram of

fig. 6 is given by

1 L dk 1
Td - <Blong.Blong.Blo'n.g.Blong.> = ;{"‘ Z/ (271_)4 D.DDD]_.D‘)

tr[yspy (B +mi)vspa(k —Bo +mi)ysda (B + 51— d1 +mi)7s d1(F +P1 +ms)] + perm. , ([V.28)

where D = (k 4+ p1 — q1)*> — mi.
The computations are quite long and most of them have been made by computer. The

- result is (we give only one channel; V; : Ty = Z§=1 Vi)

Vi = V‘éi) + Vflz) +0(1) (I'V.29)
where
1 1 , ,
VD =~ —_(h(s)s> + 2h(s)st + 2h(t)st + h()t?) (1V.30)
12m7p
(1) 1 1 5 1
VED = —— (h(s)s+h(u)u) + g | —12g(mB)(s +1)— 5 (9()t+9(s)s) +11(g(s)t+g(t)s)
Imyp Imy 2
(IV.31)
where
N 22>
(4m)?h(s) = —»  (log — J(s/m?)) (IV.32)

=1

Each box diagram gives a leading E* contribution. Sumiming over all channels we find

;V“) :—g :},B(h(s)s-{—h(u)u+h(t)t) (11.33)
G 24 -
S Vi = 3 %(h(s)s + h(u)u + h(t)t) — ; (sg(s) + tg(t) + ug(w)) (IV.34)



We see that the leading E* contribution has cancelled in the sum. It has remained a
subleading E* contribution. From egs. (IV.33,34) we finally find that the total 45 effective

interaction is

& LSRRI 24 , .
Ty=Y Vi= > Vel + > B ro(1) = —Eg(sg(s) +tg(t) +ug(w)) +0(1) . (IV.33)
=1 =1 1=1

Now, using eqs. (IV.27) and (IV.35), we see that the total amplitude T = To + Ty +Tc + T
is again regular, i.e. T' = O(1), due to a cancellation of terms growing as E? coming from
4B effective interaction and (graviton’s trace) o exchange.

We thus find a correct high energy behaviour of 4-point tree amplitudes. This is a
strong evidence of the consistency of this spontaneously broken theory and a non trivial

sign for renormalizability.



V. 2d INDUCED QUANTUM GRAVITY AND TOPOLOGICAL
PHASE OF THE THIRRING MODEL

V.1 PRELIMINARIES

The usual way to avoid the enormous mathematical complication of a quantum field
theory is to study it in two space-time dimensions. In 2d we will be able to establish an
exact relation betwen the fermion and the gravity theory [20].

A very familiar example of induced gravity in two dimensions is the Polyakov ansatz
for string theory [21] (see also ref.[22,23]), where integration of scalars (and fermions, for the
fermionic string) gives rise to the Liouville lagrangian (or its supersymmetric extension)
which in the critical dimension cancels against the contribution coming from the Weyl
anomaly.

Another possible approach for two-dimensional gravity is that of “topological gravity”,
which arises by starting from the classical “trivial” Lagrangian Lg:., = 0 and fixing an
enlarged gauge invariance by introducing appropriate ghosts and second generation ghosts
[24]. A somewhat similar case we will meet here: the Thirring model [25] coupled to 2d
gravity can be described in terms of a theory whose underlying Lagrangian is a topological
invariant.

Here we will consider the 2d analog of the theory considered in previous sections. The
only degrees of freedom are Dirac fermions and the action is invariant under local Lorentz

transformations and diffeomorphisms:

> = / e e eay V7" T 1 72D b V() | (V1)

In two dimensions the spin connection does not contribute. The Dirac matrices obey

{7*,9°} = 2n®, where n%° has signature = {1,=1}. Our notation is as follows:

)00 () o
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V.2 1/N APPROACH

Tt is amusing to first study the two dimensional theory with the same tools that we
have investigated the four dimensional case. In passing, we will check the consistency of
the method. Extending the action (V.1) to describe N Dirac fermions (so as to define a

1/N expansion) we have (cf. eq.(11.4))

¢pa 7,

5 ¢’i7a?p¢’i - aiQé%Zi . ’¢‘1.>] (Vg)

7=

lL

[N

S = /dzw det I/.V[V(P) - éuaVvaa + QZ,)P + (

i

In four dimensions, we have seen that the low energy effective theory reduces to
Finstein theory. In the high energy limit, the expectation is that scale invariance should
be restored. In fact, we have seen that in this UV regime the 4d effective theory in the
gravity sector is described by the conformal invariant action fﬂ(BR“”RW — Rz). In
two dimensions the situation is slightly different: it is the Einstein-Hilbert action that is
conformal invariant; so it should emerge as the high energy limit of the effective theory®.
Let us see that this is indeed the case. The 1-loop computation of the graviton two-point

function from action (V.3) yields (the details of the derivation are omitted ):

(& (8 (—)) = AG) (O + OusBas = 2Wpabis) + B Wuan s (V4)
where
N1, di(e)? 1
am)d =S ¢ log “——— + =(¢" A *fmi)+2),
(4m) ZGq 08— 6(q +8m?)(J(g*/mi) +2)
N
(4m)B = —2 5 mi(J(g/md) +2) , mi = ai(d)h (v5)
=1

The function J(z) has been defined in eq. (111.16). In the limit ¢*/A* — oo, the first
term in (V.4) dominates (4(¢*) ~ ¢ log(g* /A7) B(g®) ~ A? log(g®/A?)) and it can

be identified with the bilinear term in the expansion of the Einstein-Hilbert lagrangian.

Q.E.D.

e As well known, in two dimensions the Einstein-Hilbert lagrangian is a total derivative;
dynamics comes from the induced Liouville action fRA‘lR. What is intended to prove
here is that, in the high energy limit, the quadratic part in the lagrangian reduces to that

coming from Einstein-Hilbert lagrangian, as required if scale invariance is to be restored.
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V.3 CONNECTION WITH GEOMETRY

The quantum theory which follows from the action (V.1) is equivalent to the quantum

theory which follows from

S' = /d% e (U(pd) + ée#%yﬁﬂ/}) , (V.6)

where U = %V‘l and an auxiliar zweibein field e,, has been introduced. To prove this, we
write ee”® = e,;¢*"€*® and observe that the dependence of ' on each component of the
zweibein is linear. It is a straightforward exercise to integrate out e,, exactly, component
by component, since two of them can be treated as Lagrange multipliers. One easily

obtains

exp(—9) = /De exp(—S'), De = DeggDeigDeg; De;; . (V.7)

All symmetries have been preserved. Eq. (V.7) is an exact result and it holds true also
for N > 1 Dirac fermions. But it does not hold in higher dimensions and it does not hold

either as soon as one incorporates scalar fields.

In the conformal gauge [23], epa = €774, the connection with the quantum theory
defined by action (V.1) is not evident. It is plausible -but not obvious- that the correspond-
ing gauge choice (which picks the same integrand, Liouville action, etc.) in the functional
integral of theory (V.1) should be of the form ?Z”/a?u¢ ~ e"/n#a, with the identification

o~ .

Thus we see that in two space-time dimensions theories defined by action (V.1) can be
expressed in more familiar terms, where geometry appears in a standard way. For example,
in the simplest case, U = 4 =const., egs. (V.6) and (V.7) imply that the theory (V.1)

describes a “free” Dirac fermion (¢ = 1 matter) coupled 2d gravity.

V.4 TOPOLOGICAL PHASE OF THE THIRRING MODEL

To quantize the theory one can start either from action (V.1) or (V.8). It is somewhat
similar to the operator quantization of Nambu-Goto or Polyakov string. There is no time

derivative of e, in eq.(V.6) so its equation of motion is a constraint:



epa = —14V 72 8 L0 - (V.8)
Local Lorentz symmetry can be fixed by eliminating the antisymmetric part of the
sweibein. Diffeomorphisms are then fixed by demanding that eue = €77 ,a. The resulting

equations of motion are

1 1
O+ + 58—”¢’+ = U, Opip— + 5040¢- = Uy (V.9)
*® 1 E o ! ES * 1 £ =2 I 1% 4 A
oL + 58—01'[’-} = —eU'ps , 04 + §5+a'z,b_ =e? Ul . (V.10)
Eq. (V.8) implies:
i) “Lorentz” condition:
¢ e =910 vy (V.11)
ii) “Virasoro” conditions:
W T =0, P10 =0, (V.12)
ii1) “Weyl” condition:
BT bl AL e = 417U (V.13)

The constraints (V.11-13) are (normal ordered) operators and they are imposed by declar-
ing that a “physical state” is a state of the Fock space of solutions which is annihilated
by the constraints. Note that the Lorentz condition (V.11) is identically satisfled for any
state belonging to the Fock space. Inserting the equations of motion (V.9,10), the “Weyl”

condition becomes

G U =20 . (V.14)

For a generic U, this constrains the value of . However, there is a special case of
potential U which deserves a separate treatment. If we regard (V.14) as a differential
equation for U (in other words, we are requiring that (V.14) holds for arbitrary ¥ -a new

gauge symmetry) one finds

U(&qﬁ) = C(2 ) = 20—, (! = const. (V.15)
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This interaction corresponds to the Thirring model [25]. The Thirring model was exten-
sively studied and we will not reproduce the usual treatment here (see, e.g. ref. [26]). For
this particular value of the potential the action (V.6) is invariant under Weyl transforma-
tions eya — A(2)eua, ¥ — AMz)7 /29, ¥ — A(z)~1/2%. The fermion contribution to the

central charge is 1 [27].

We have seen that e,, can be exactly integrated out to give rise to the fundamen-
tal action (V.1) which, when U is given by (12), is still Weyl invariant under ¢ —
M) 2, & — A(z)"1/%4. Tt is this new invariance which renders the theory “topo-
logical”. A short way to see that the classical theory has only topological degrees of

freedom is by writing the action (V.1) in components:

S = 4/(1% R IR TR T (V.16)
Inserting eq. (V.15) we obtain

?

2 [ .
Sty = E/d‘m 0, log %BU log:’j}

’*

; e (V.17)

In terms of the closed form idf. = dlog(w+ /%) eq.(V.17) reads

2
Ste == | df.Ado_ (V.18)
C Jm

This is a topological invariant, the degree (or “winding number”) of the map © : M —
S''x 8§, 0 = (i64,16_). As a concrete example, let M be a Riemann surface of genus g

with p punctures. Using Cauchy theorem on the “cut” Riemann surface [28] one gets

2 </ 2 <& g2 _
St = = </ d9+/ do_ —/ d8_/ d9+> +23 j?f rdf_ = —n, (V.19)
¢ i=1 a; b a; b , ¢ k=17 Cr &

where n € Z. In particular, if M is topologically a two-sphere, then St = 0.

Omne possible approach to define a meaningful quantum fleld theory starting from
STy 1s to derive a “cohomological” theory (see, e.g., refs. [29,30]) by an appropriate BRST
gauge fixing of (V.18). This idea was explored for pure 2d gravity in ref. [24] (see also [31]).
Eq. (V.18) suggests that the present theory (for M compact and oriented) is a particular

case of the topological sigma model considered in [29]. This would imply a relation between
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¢ = 1 conformal theories coupled to 2d gravity and the topological sigma models of [29].
An argument in favor of this unexpected issue is the following: the Thirring model can be
thought of as representing a free Dirac fermion with twisted boundary conditions. This in
turn is equivalent to a scalar field compactified on a circle. On the other hand, the action
of 2d gravity basically contains the Liouville mode (contributing with ¢ = 1) plus ghost -
terms. The whole action is thus similar to the topological action which results from the
BRST quantization of (V.18). This is just an argument, as the one given by Distler [31]
to establish a possible connection between the ¢ = —2 conformal theory coupled to gravity
and topological gravity. But here we have performed a further step towards a rigorous
proof: we have shown that the classical action is a topological invariant and coincides with
the corresponding action of the topological sigma model. We know what is the convenient
gauge to choose -9,6a self dual- in order to get an identical topological sigma model action

through BRST quantization of (V.18). This is under current investigation.

V.5 REMARK ON CLASSICAL THEORIES

A curious result comes out in the classical analysis of the more general case U =
A+ Bd -+ O -¢)?. This is a massive Thirring model with cosmological term (cf.
eq.(V.6)) (for a study of what is usually called the massive Thirring model see, e.g., ref.
[32]). Rescaling the fermion fields as © = €7/24 the equations of motion (V.9), (V.10) take

the form
0 . = —Be"p_ +2iC¢p oo, Orp-=DBeor+ 21C0 -9+, (V.20)
O_pT = —Bepl — 200t , Orpl = Belph —21Co oo (V.21)

By inserting egs. (V.20), (V.21) into eq. (V.13) one obtains

. B # E h 3
e = —iglpiy-— plos) . (V.22)

Substituting e into the equations of motion (V.20), (V.21) we learn that this model,
which is not manifestly Weyl invariant, is classically equivalent to a massless Thirring
model with coupling C' = C' — B?/4A. Moreover, when the rate between the square mass

and four times the cosmological constant, B?/4A4, equals the coupling of the four-fermion
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interaction, the classical theory transmutesinto a “free” fermion theory coupled to gravity.
This is readily extended to the case of N Dirac fermions (Gross-Neveu model [33]).

In the quantum theory these relations are no longer true. These are the consequence
of the classical equation of motion for A (= 7). But if we intend to perform an integration
over A, we pick up a Jacobian with extra A-dependent terms -coming from the Liouville

action- which do not permit the naive “gaussian” integration.
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V1. OUTLOOK:

The underlying ideas behind induced gravify theories are, like the Burkean Founda-
tions or the Christian Democratic tradition, extremely conservative. Gravity is not postu-
lated as a fundamental force, but as a derived phenomenon. These theories are somewhat
conceited: they pretend to explain the bizarre phenomena underlying general relativity
(space-time deformation, black holes, etc.) just with the tools of gauge theories, without
adding anything new. But, truly speaking, gauge theories are perfectly consistent and pro-
vide the most accurate description of natural phenomena ever known. On the other hand,
nature is full of examples which resemble “long-distance” or “derived” or “induced” effects.
These facts render the idea of induced gravity enormously appealing. A familiar example
of long-distance effect can be found in history: for thousands of years people believed that
matter was continuous. An example of derived phenomenon is provided by the Van der
Waals force between atoms. It is not a fundamental force but a residue (or “dipole”) of
the electromagnetic interaction. Another example is Fermi theory of weak interactions.
As expected for a theory with a dimensional coupling constant, the Fermi theory is non-
renormalizable, and repeated attempts to quantize the weak interactions starting from the
Fermi theory as the fundamental quantum action have met with frustration. It is now
known that the Fermi theory is only a long-wavelength effective theory. The fundamental
quantum theory for the weak interactions is the renormalizable gauge theory of Glashow,
Salam and Weinberg. What about gravity? That symmetries of gravity are spontaneously
broken is an experimental fact: the vacuum expectation value of the vierbein, (ena), 18
the minkowski metric 7,4, breaking local Lorentz transformations and diffeomorphisms
down to linearized diffeomorphisms. The standard lore of spontaneously broken theories
is that at short distances the theory should look as symunetric, i.e. invariances should be
restored. But in Einstein theory such restoration is definitely not possible, for the ap-
pearence of the inverse metric g#” which makes the unbroken phase unavalaible [13,14].

The phase det{e,,) = 0 may be explored in the first-order form. This formalism of gravity
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is equivalent to quantized Einstein theory only in the phase det(e,s) 7 0 [13]. One may
wonder why solutions with det(e,,) = 0 are to be considered physical at all. We have not
an answer to such a question, but it would be unnatural to exclude such configurations
from the path integral (Hawkings pointed out that changes of space-time topology occur
through these degenerate metrics [34]).

The theories investigated here were shown to reduce to Einstein theory for energies
much less than the Planck mass and they are known [7] to have room to naturally in-
corporate the other interactions, e.g., by including a Grand Unification gauge group like
S50(10), etc. The next and most important question is whether a consistent quantum field
theory can be defined from action (II.1) and this is precisely the point on which we have
focused our attention throughout this work. We have seen that all physical quantities can
be computed within the frame of 1/N expansion and that one has well-defined S-matrix
between in and out physical states. The cancellations we revealed are a strong indication
that the theory is consistent and renormalizable in the 1/ expansion. Unlike Einstein
theory, scattering amplitudes grow at most as a logarithm as the energy increases, which
proves tree-level unitarity and guarantees “good” loop behaviour (power counting renor-
malizability). In particular, this implies that when all energies overcome the breaking scale
the scale is lost, thus meaning the absence of E/Mpianck singularities for Mpiancx — 0 or,
in other words, a restoration of scale invariance at short distances.

It is interesting to recognize that the mechanism of these cancellations involve the
massive connection B, and the scalar o (graviton’s trace), much as in spontaneously
broken YM theory. The eg-gravity sector has the same power counting and invariances as
conformal invariant gravity theory, which is known to be renormalizable [10].

We have seen that, among the class of theories parametrized by V', there is a special
case in which the theory is also Weyl invariant. Furthermore, we have identified a Higgs
mechanism corresponding to the spontaneous breaking of Weyl invariance. The Goldstone
boson is the (“dilaton”) mode ¢ which completely disappears in the unitary gauge. Einstein
gravity still arises in the low energy regime of this theory and -since the computations of
sect. IV were made for an arbitrary potential- this theory possesses good ultraviolet
behaviour as well. There is some indication that this theory might even be finite ®. This
is strictly true at the 1-fermion loop order we have analysed. In fact, the renormalization

$ — Z¢@, etc. is unnecessary in this case since, as we have remarked in sect. III, the

¢ Provided potential two-loop conformal anomaly somehow cancels (see, e.g., [35])
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renormalization constant Z cancels out because of Weyl invariance. Consider the case
N = 1. In this Weyl invariant theory, renormalizability, if true, implies finiteness. Indeed,
renormalizability of this theory means that at any loop order all infinities can be absorbed
into a renormalization of ¥ — Z% in action (I1.6). But since the 7 factor cancels out,
again, no counterterm 1is induced implying finiteness.

In the non conformally invariant case, Weyl invariance is broken explicitly through
the terms of the potential V (see eqgs.(I1.4 ,7)). In this case, one has to renormalize the
parameters defining the potential, which are therefore expected to run. For example, if
V = Ay + By, then Ag = Z"* Ay, Br= 75 By (see egs. (I1L.4) and (IIL17)).

Although a rigorous proof of renormalizability might seem straightforward f, such a
proof coud not be accomplished without performing 2-loop computations for the kinetic
terms of the W, p- sector, which we have not explored in this work. Such a computation
is extremely involved (it would be comparable with a three loop calculation in Einstein
gravity) and probably insufficient to prove renormalizability.

We believe that the next step is to give up the 1/N expansion and try an understanding
of the theory in the unbroken phase. We have partly succeeded in doing this in two space-
time dimensions, where it was shown that it is possible to describe the Thirring model
coupled to gravity in terms of a theory in which the underlying lagrangian is a topological
invariant. Unfortunately, in four dimensions things are not so straightforward (there is
no direct connection with geometry, it is not possible to choose a conformally flat metric,
etc.). But it is a fact of life that, if we really intend to understand the short-distance
structure of induced gravity, we have to learn how to deal with the seemingly unseizeble
unbroken phase, where there is no metric, and the merely fermionic nature of the theory

emerges.

f One starts from action (I1I.4) and define the quantum action by adding gauge-fixing

and corresponding ghosts terms, e.g.
Sg=25 +/ [ (0-w) + ;(a W) +BE~Dc+8uﬁa(E)UW§+I'V§B}L)n”] ,

write down BRST transformations associated to diffeomorphisms and local SO(3,1) in-
variances, derive corresponding Slavnov identities for the generating functional of proper

vertices which restrict the possible counterterms, etc.
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OTHER RESEARCH LINES

Here we describe other research lines performed during the period of studies at SISSA.
Sect. A contains an example of the construction of a global operator formalism for
conformal field theories on Riemann surfaces, subject dealt in a Master Thesis [A1-A5].
In refs. [A6-A8], which are consecutive of that Thesis, some applications of this formalism

have been implemented. The operator formalism is illustrated by showing a direct appli-
cation in a simple example, namely the scalar field which takes values on a circle. This is
then used to construct vertex operators and to derive bosonization formulas.

The sect. B outlines the investigations performed in collaboration with Prof. A.
Tseytlin. We have studied the renormalization of tadpole divergences in string theory and
the correspondence with the effective action, and made several non trivial checks of the
renormalizability by explicit calculations at genus 1, 2 and 3. This is the first nontrivial
sign that there exists RG in string theories. The fact that the renormalization group
acts within the first quantized string theory, by relating different loop orders, is crucial to
understand the structure of string perturbation theory. This seems to be highly nontrivial
and may provide a hint to understand second quantized string field theory [B4]. Besides,
the renormalization group implies a differential equation for the partition function which
expresses its divergent part in terms of the finite one (the dilaton potential). This is a linear
“evolution” equation and hence can be solved explicitly. In particular, the resummation
of the leading tadpole divergences is found to be diexp(—3;Ddig’ loge), where d; is the

genus one vacuum amplitude and g is the string coupling.
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A. GLOBAL OPERATOR FORMALISM FOR CONFORMAL FIELD THE-
ORIES ON RIEMANN SURFACES

A1 INTRODUCTION

In this section we illustrate the global operator formalism (developed in collaboration
with the people listed in the references) by applying it to the study of Fermi-Bose equiva-
lence (we follow sects. 2-4 of ref.[A8]). We show by explicit computation that the central
terms , as well as correlation functions, corresponding to the Bose and Fermi models agree
at arbitrary genus.

The construction of this operator formalism follows the standard procedure (the equa-
tions of motion are linear): a) obtain the classical equations of motion from a variational
principle or from a hamiltonian; b) express the most general solution in terms of a basis;
¢) promote fields to operators acting on a Fock space and obeying canonical commutation
relations. We use the bases introduced in refs. [A12,A13]. In ref. [A1] we have generalized
the algebras and bases to treat the supersymmetric case. In ref. [A2] we apply this formal-
ism to perform the Sugawara construction on arbitrary Riemann surface. In ref. [A3] we
obtain explicit expressions (in terms of theta functions, prime forms, etc.) of the bases and
construct the operator formalism for bc systems of arbitrary weight A € Z, Z+1/2, and
compute correlation functions. All results are expressed in terms of globally well-defined
tensors. In [A4] we construct the operator formalism for string theory (scalar matter). A
hamiltonian dictating time evolution is introduced; the standard two-point functions nat-
urally arise. The formalism for superstring theory is constructed in [A6], where it is also
obtained an interesting expression for the world-sheet supersymmetry generator at higher
genus. In ref. [AT7] it is shown that the operator formalism naturally carries an Arakelov
metric (with respect to the Bergmann metric in the two-punctured Riemann surface).
Tachyon amplitudes are computed in detail; a discussion about the residual U(1) =< U(1) of
the torus is given. In [A8] these techniques are applied to the study of bosonization. Some
interesting issues emerge. Refs. [A9-A11] are reviews. Refs. [A14-A15] are some works of

other people on this subject.
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A.2 GLOBAL QUANTIZATION OF THE SCALAR FIELD ON A CIRCLE

We parametrize the Riemann surface & by using a “time” defined as follows

P
T(P):Re/ dt : Py,Pex (4.1)
Po

where dk is the third-kind abelian differential with simple poles at two points P, and P_-
in general position with residues +1 and -1 respectively , and such that its periods over all
cycles are imaginary *. Under these conditions the one-form dk is uniquely determined,

and in terms of prime-forms and #-functions reads

Py
v = 2 (1og DT ) - (07 [ (- ) (4.2)

where 7, are the g abelian differentials normalized according to fad 76 = Oab ; 995(‘ 75 = as.
It follows from eq.(A.1) that 7(P) goes to Foo for P — Pi. The level curves of the function
7(P) are conventionally called C-.

Our starting point is the equation of motion for a free scalar field which takes values

on a circle of radius one:

00p(P)=0; PeX%, P#Ps (4.3)
This implies that dp(P) (d¢(P)) is an everywhere holomorphic (antiholomorphic) one
form excepting the points Pr. Let {w,} denote the basis for meromorphic 1-differential,

holomorphic outside P, obtained in [A12]. Then we can expand

g

Ow(P) = D Cnwn = Z €;m; + Z Cnln (4.4)
n =1 ngl

_ g

Bp(P) = Gnln = » &+ »  &nln (A.5)
n =1 n}%[

* These points are the analog of z = 0, oo in the sphere. The time parametrization given
by 7(P) was already used by S.Mandelstam (Phys. Rep.C13,(1974)259) for the Light cone
interacting string. dk is the 1-form implicit in this work and studied in greater detail by
Krichever and Novikov [A12] and S.Giddings and S.Wolpert (Commun. Math. Phys.109,
(1987)177).
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where [ = [—g¢/2,9/2) and wgy/2 = dk. Since ¢ € R/27Z, the following conditions must be
imposed

7{ do = 2xl jl{ de = 2mn, 7{ dp =2mmg, ; lL,ng,mg €7 (A.6)
C, a

@ @

Insertion of the expansions (A.4), (A.5) into the above conditions gives

=~ —_ . [~y — g
Qg2 = Qgyp = =il g+ bgyn = —ip

-

_ e . -
€q + &y = 27N, — N (anal + @nal)

nel i (A.7)
Ebea + &y = 2mmg — Z(anb:‘ + a'r'z.b(:;,)
ngl
where a2 = fa Wp, b% = 356 wrn. This can be regarded as a system of 2¢ + 2 equations

a
k3
{

with 2g + 2 unknowns ., &,, Qg/a2, &g/2. Inserting the solution into dy and then integrating

we obtain
_ P
@(P) =¢ —ip7(P) + lo(P) + mi[Q7 ({(n — m)/ n — c.c]+
Py
D (@ndn(PPL)+ Gnfu(PP)) 4+ > (0nbn(P,Py) + Gndn(P, Ps))
n>g/2 n<—g/2
(A4.8)
where ¢,(P, Q) are harmonic (single-valued) functions given by
P - .
Ql)n(P, QD) = / (wn - (Fnana -+ Gnaﬁa)) ("19)
o}
with ‘ ‘
Fna = i(ﬂgl)ab(ﬁbca’fm - bi) ’ GT‘LG- = i(Q;l)ab(QbCa‘; - E?z) (‘410)

2 2

Using the results of ref [A3] for the w, and 7a, ONle can obtain explicit expressions for the
present ¢,(P, Qo) in terms of prime-forms and #-funtions. o(P) is an angular variable
given by o(P) = Im f;(dk — 2F,4/2ma). This new variable is a harmonic single-valued
function on the Riemann surface without P+ and a slit from P. to P_.

In the quantized theory the G, G are operators acting on a Fock space. The vacuum
state |0;p = 0 > is defined to be the state annihilated by an, @, with n > ¢/2; the dual
vacuum state < 0;p = 0f is annihilated by a,, &, with n < —g/2. From the canonical

commutation relations for ¢(P) it follows

[0, @m] = 29nm , [@n, @m] = 2Vnm , [Ctn, @Gm] =0, [@,p] =i . (4.11)

50



One may similarly treat the case of compactification on orbifolds by suitably modifying
the monodromy conditions (A.6) and by constructing the appropriate basis {w, }, according
to the number of punctures or branch cuts of the relevant Riemann surface. Further
restrictions (this time on the eigenvalues of p) may arise if one requires the “wave function”

e’?% 1o be single-valued.

A.3 BOSONIZATION OF FERMIONS OF SPIN A

It has been argued in ref. [A.16] that a fermion be-system of weights A, 1 — A is
equivalent to a bosonic scalar field coupled to a background charge @ = 2A — 1 described

by the action

1 - 1 , A
Stel = 5= [ (0eBe - $QVaRed™) (4.12)
The equation of motion is '
88y = i;—QﬁRdzz (4.13)

The quantization is performed as in the previous section; the additional background
term in the equation of motion is regarded as a perturbation. The energy-momentum

*

tensor corresponding to the action (A.12) is

T = —%5@6@ - %szazg(d;’)g (4.14)

The generalized Virasoro operators (or KN operators) will be therefore given by

1 - 1 - A
L, = —§Zlnm e s —§Q25mam (4.15)

— 1 — 1 7 T 21
where [T = fC,_ erwnwm and ST = 5= 596,7 €.V .wm. Now we would like to compare

the algebra (1.8) corresponding to a bc-system of weight A, 1 — A with the algebra of
Ln, ju ( j(P) = 8p = 3. anwn, and thus j, = a,) corresponding to the soliton field .
Using the algebra (A.11) of the mode operators one readily finds the desired result: the
algebras are identical, up to trivial cocycles.

Primary fields of conformal dimension (q(‘q;‘LQ), Q(QZ_ZQ)) are represented by a vertex

operator

* As usual, the conjugate counterparts are not written explicitely.
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Vo(P) = hrmio) AL LR (A.16)

where h = |w|? is the Arakelov-type metric induced by the operator formalism [AT7] and is

given by

.| B(P.P)
ol = E(P, P E(P,P_)

2 P
exp(— / (0~ )a(25)as / (=) (A17)

'
- T

Indeed, by following the same lines as [A14], it is an easy exercise to prove that

[L"” ’Vq} :‘Lean ) [Zrnv-q] = Léan (44.18)

Remarkably, the form to be used in the definition of the vertices is uniquely determined
(up to a multiplicative constant) by the conditions (A.18) which, as explained in [A4], are
needed for unitarity. That |w|?, which has been found by looking at scattering amplitudes,
is precisely the form which follows from conditions (A.18), has been shown in [A14].

In terms of the metric (A.17), the perturbation term in (A.13) reads
VIRd*z = —488log h(P) = —87n. (05 )asiie P # Py, P_ (4.19)

We see from eq.(A.13) that, in this case, 8¢ is proportional to the Bergmann metric on
the Riemann surface without the points Ps.

It is convenient to separate the soliton, center of mass, and quantum fluctuation parts
by writing ¢(P) = ¢(7) + wnm + ¢. Now, consider for example the case A = 1/2. Using
the algebra (A.11) and the definition of the vacuum Fock space one can show that the zero

soliton part of < V, V,, > is

< O[T{Va, (P1) Vg, (P2)}0 >g0=

Pg P,
= |E(P,, Py)|? (051 / (7 — 7)s] 28(as + )
Pl Pl

= (F(Pl,Pz))*qz%- 5(q1 + g2) (4.20)
where we have used the non trivial identity [A7] (see also [A4])
! A 1
5 2. D Yma®m(P5 Pi)oa(PyPo) + e =
n>g/2m<—g/2
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|E(P, P)E(P_,P)|" = < [7 v ro-1y = 40
E(P_,P))E(P;,Py)| 2 Z/ (7 = Malf; )ao/ (m—)s  (A21)

a,b=1 P P

¥

1

This kind of expansion generalizes the notion of Laurent series of the complex plane.
Eq. (A.20) is in agreement with well known results (see, e.g., [A17]).
Vertex operators with ¢ = &1 describe the fermi bilinears bb and cé respectively. To

show that this is in fact the case, let us consider the following correlation function
A(Py,..,Pr,P,Q) =

< OIT{(T] A} : e(P) Y(BA : &i9(P) Y (R17H s em0(Q) 1) c~5% [ viRe 30 >

- (4.22)
< OIT{(HI Ry :eielFi) 1) e—ﬁfﬁR¢ 0 >

The quantum fluctuation part is computed in a similar way as we computed (A.20), namely
using the algebra of modes operators and the identity (A.21). The soliton part coincides
with the ad-hoc expression given in [A17]. The average over all soliton sectors leads to a sum
over spin structures of the Fermi theory [A17]. Taking a particular even spin structure one
finds that the anholomorphic parts exactly cancel leaving a correlation function which is
the modulus squared of a meromorphic function in P;, @;. By using standard mathematical

identities [A18], the chiral projection can be written as

1 (E(P, p_)><”*1)<9‘1> (U(P) ) (A1) 9(Q — P +u(})) (4.23)
E(P,Q) \E(Q,P-) () 6(u(N)) o
which is the well-known be system correlation function < 0/T{b(P)c(Q)}|0 >, found in this

framework in ref. [A3].

Bosonization has been a useful tool in the study of string theory and conformal field
theories in general. It has been used, for instance, in proving the equivalence of the GS and
NSR superstring or in constructing the covariant fermion emission vertex, and it played

an important role in understanding the symmetries of the heterotic string.
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B. RENORMALIZATION GROUP AND STRUCTURE OF STRING PER-
TURBATION THEORY

B.1 INTRODUCTION

A remarkable property of string theory is that the tree level string dynamics is dic-
tated by the fixed points of the 2d renormalization group (RG) [B1]. The extension of this
equivalence to the string loop level would be important since it would imply the existence
of “non-perturbative conformal theories”, which move out of the tree level fixed point to
determine the true string vacuum structure. The mechanism to implement this idea was
suggested by Fischler and Susskind [B2], who observed that in general renormalization
of string loop tadpole infinities can be reinterpreted as renormalization of string o-model
couplings (for previous suggestions, see ref.[B3]; for a recent review and more references
see, e.g., refs. [B4]). However, it is by no means trivial that string combinatorics is such
that tadpole loop infinities can be consistently cancelled out by renormalizing o-model cou-
plings. In order for the renormalization group (RG) to be realized in a consistent way, the
coefficients of log™ e-infinities should satisfy certain relations, namely they should be ex-
pressed in terms of the log e-coefficients (S-function coeflicients). In particular, one should
check that log e infinities properly “exponentiate” (this was partly checked for external
leg infinities in ref. [B5]). There had been no discussion of multiple tadpole logarithmic
infinities and their “exponentiation”. In ref. [B6], we have checked the realization of
RG in string loops taking as an example the log® ¢ massless tacipole infinities in two-loop
tachyonic ampiltudes and in the three-loop partition function in the closed Bose string

theory.

B.2 GLUING TOPOLOGIES BY THE RENORMALIZATION GROUP [B9]

The generating functional for the massless closed string amplitudes has the following

structure (see for details ref.[B4])

Z == ZD -+ Zloop 3 Zo = So + 0(10g E) 3 (Bl)
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5 = (a )D/“/d v/ G [—%(D-ZG)—%—OL(R-{-LL(@@))-Z- 1, (B2

Zloop = 7 + “momentum dependent” contributions , (B.3)
Z = (a')7P/2 /d%\/—w W= d,e*("h% (B.4)
n=1

dn contain logarithmic divergences corresponding to massless tadpole factorizations

dy = dn + }”‘ dFt*  t=loge, d,=Afnite, (B.5)

n
k=1

l

Le. W(2,0) =320 d,e?(" D% = V(3).
The basic assumption of renormalizability of Z, Z(G(e),®(e);e) = Zr(GF,3%) ,
implies that ) )
9z 56 07z
B OG .
The tadpole contributions to the 3-functions can be found from the single tadpole

factorization rule [B7,B4]*

oz
-8 =0 B.6
Ologe b o o (8.6)

ov

1
G
8@)

Ba =—2%(2V +

v 1 Guv s (B.T)

@___1__ 2@9 d _OQZ Bq
5% =~ 2DV + (D~ 2)51) (8.9

As aresult, the S-functions (B.7), (B.8) are related to the corresponding “potential” term

in the effective action

i i'aSpot- ‘
g *“J*’é’(;;— J (B.9)

Gap _ 2% 1D/2—1/2
D—Z))’k_ e o G ,

Sper () = Zal) = ()27 [ Pav/GV () (B.10)

k% is the matrix which appears in the graviton-dilaton propagator corresponding to the
tree effective action (B.2). Substituting (B.9) into (B.8) we find the following equation for
the partition function (B.3)

* An analysis of § functions accounting for both “local” and “modular” contributions

can be found in ref.[B10].
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Bt~ 9ot Byl
Rewriting (B.11) explicitly in terms of W(®,t) using eq.(B.4) we get

) Z = Z(Go’t) ’ ZR“O) = Z(Q0,0) . (Bll)

ow 1 .5 oV ow - aov oW .
————:——" — ———+2 — T V—‘ +4DVI/V H B'12
ot 5° (D255 55 +2P(5e "W +V5g) ] (5.12)
The explicit solution is
ow 0 i} tA
LSRN . = 4 B.13
r A(®, a@)T/V , W(,t) =V (2), ( )

l.e.

) 4 V., o
W(®,t) = exp (—Tlétezg [2D(2V 4 %) b (QDV + (D - 2)?—

a@)EED V(®). (B.14)

Eq.(B.14) gives explicit expression for the divergent parts of the partition function in terms
of its finite part V. In particular, we obtain for the log e-part W(1(®) of W (cf. (B.4),
(B.5))
1 ,a av ov 2
W (8) = - —e?®[(D - 2)(5=)* + 4DV == +4DV?] . (B.15

One can also find the resummation of the most divergent terms at each genus (d(lo) =d;)

W(®,1) =y dpHeinmvEnt, (B.16)

Ly

—

n=
Since the most divergent contributions correspond to the “maximal” factorizations on
genus-one parts the result for W is found from (B.14) by replacing V' by its one loop value

d; *

-~ 1 a9 -
W = dlexp(—zte“@Ddl) . (B.17)
The RG thus implies that the coefficients of the leading divergences at genus n should be
given by
gm0 - 2 (i)n—ldwn—l . (B.18)
" (n-=1)1" 4

* To find a similar expression for the sum of subleading (O(log™ *€)) divergences one

is to replace V by d; + e*%d, and linearize (20) with respect to da.
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This is a prediction from the renormalizability of the massless divergences. In ref. [B9]
it has been then analysed the leading logarithmic divergence in the closed string parti-
tion function at arbitrary genus n and showed (using Schottky parametrization) that its
coeflicient is proportional to D™ (D is the space-time dimension). This conclusion is

consistent with (B.18).

B.3 RENORMALIZATION OF MULTIPLE INFINITIES

Including a graviton and dilaton background we get the o-model action

1

4r

‘ 1 ,
I(G,®) = — [ d*2vVhh*9, X 0, X" G, (X) +

4!

/di’z RRP@(X).  (B.19)

Computing the amplitudes with the action (B.19) and regularizing the massless scalar
tadpole divergences with the help of a cutoff ¢ we should be able to check that all the ¢

dependence cancels out. In terms of the renormalized fields, the action (B.19) reads
I(G(e), ®(e)) = I(GF,d%) + 6I(GE, 8F; ). (B.20)

The counterterm action § will be given as an expansion in the renormalized string coupling

R
g = eFiconso) (dF is the constant part of the renormalized dilaton field) and a'. The

(const)

“tadpole” part of the counterterm will have the form

6T = —— @*zvVho. X*0° X §GE, + f— d*zvVhR* 6D F. (B.21)

C dra! T
Taking into account the (tadpole) counterterm, the scattering amplitude can be rep-

resented as
Ay =< Vi Ve ™ >+ < Vi Ve ™ >0 + < Vi Ve % >0 4. (B.22)

and should be finite. A4,; can be rewritten as (we shall restrict consideration to the g°*-

order. Note that the tree level contribution is ~ g~2)

Apr = (An)sinite + (Aar)loge + (Anr) g 1og e + (Anr) g2 10g7 (B.23)

One should be able to prove that all divergent parts are automatically cancelled upon
the insertion of the counterterms. Indeed, in [B6] we have proved that the log2e coun-

terterms are universal (e.g., the same counterterms provide finiteness both of two-loop
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scattering amplitudes and of the three-loop partition function) and are related to the loge-
counterterms (beta-functions) in the standard way dictated by the renormalization group.
We illustrate this by taking as an example the (Anr),2 1047« part. From the relations for
the counterterms implied by the RG and the correspondence with effective action, it turns

out [B6] that the log” ¢ part of the two loop amplitude should obey the following relation:

. di 4 i vr
< Vi Var >» — zt—;—g“log e < Vi..VigV, >1 : (B.24)
=40 log ¢

-

log= ¢
We would like to know whether string perturbation theory satisfies this requirement. This
two-loop check would imply that scattering amplitudes are finite even to the non trivial
order g?log® ¢ and it would confirm that the RG comnsistently acts on string loops. This is

important since, as we have seen in the previous section, the RG provides loop information

and may give a hint to resum string perturbation theory [B4].

It is convenient to use the “period matrix” representation for the two loop measure.

The two loop contribution to the M-tachyon scattering amplitude can be written as

M
< Vl...V]\/I >a= 6292 / d,ug / dzzi HF(:i,Zj)a/k{'kj (B25)
s i=1 ,

1<

where

<

}

f'—’(zi,z]')2 = ‘E(:i,zj)lze:cp[; [:j (wg — @g) /yzJ (ws ——c"ub)(.Q:,—l)ab] i Qe =1ImQ . (B.26)

N

t

Consider the limit Q15 — 0. The genus-2 Riemann surface degenerates to two torl

T1, T». The behaviour of the measure is displayed in eq.(A.6). As concerns the integrand,

we are going to use the following formulas, derived in appendix C of ref.[B6]:

E(z,w) — Ei(z,w0) + 0(93,), if z,w € Xy, (B.2T)
wi(z) — v(z) + 0(03,), if ze T, (B.28)

Qi2 0 (0y(z —pil7) 2
2(z) — — dz +0(Q7,), if z¢&€ Xy, B.29
wa(2) 2wt Oz (91(:—-plifr) +O(0,), ( )

where Eq(z,w) = Q%ﬁ%z—l(dz)“l/z(dw)"l/z, v(z) = dz are respectively the prime-form

and abelian differential on the torus &y and 7 = Q131 + 0(03,).



~

In particular, using eq. (B.27), we obtain

M
H |E(zi, ;)| %k [T1E(zi, )| 55 4 0(0%,) 5 20,2 € 5 (B.30)
i< L1<Llg

Using eqs.(B.28) and (B.29), it is a straightforward exercise to obtain

M

3 watkiky [ wa=0) [ 0s - an)(057)as =

i

x I 9.
kik; zj; — Zj;)? — — e — K (z;|7) K (2 B.31
j;lm [ 5 = 5" =~ g K (=) K (ilr) + ] (B.31)

. M
where we have also used energy-momentum conservation, > iz1 ki = 0. From egs.(B.30)

and (B.31), one can see that the amplitude (B.25) has the form

d*Q5 d*Qy,
4 + 2
¢ [Q12] ¢ |Q12]

The first term corresponding to a tachyon exchange * , the second term to a massless

< V1. Vpr >a~ + finite

scalar exchange, and the remaining to higher-level contributions. Explicitly, the massless

exchange contribution is

r c2 5, 4w 2.4 dzﬂgg /dgﬂlg
V...V o frend — q* —\=
S LT e /F Tm) A ), [P
M
d S211 ' k; ke
d?z; (z;
<(J;, mpeiage | Lo e
D o'kiks _
-3 16,jfx<w>ﬂ<zilr>J) (5.32)

We recognize the scattering amplitude of M tachyons and 1 massless scalar particle on the

torus. Eq. (B.32) thus gives

d; o
< Vi Vs >a = -¢'loge < Vi VoV >1 (B.33)
8]

loge

which proves (B.24) and thus establishes (AM)g: log?e = 0.

* We assume the analytic continuation prescription of ref. [B11] to eliminate the diver-

gences associated with the tachyon mode.
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B.4 CONCLUDING REMARKS

The present results give strong evidence -which was absent earlier- that the combina-
torics of string diagrams, with the particular choice of weights for string loop contributions
implied by the correspondence with the effective action, 1s precisely what we need in order
to have RG.

RG “glues” together different orders of the string coupling constant. This suggests a
reformulation of 1st-quantized string theory in which the RG is incorporated in a manifest
way (as in field theory) and perturbation theory is improved (i.e., we have automatic
“exponentiation”).

We have also seen that the very assumption of renormalizability determines all diver-
gent parts in terms of the finite part, and written down explicit expressions in some cases.
It is interesting to note that under some assumptions one can also get differential equations
for the finite part which, as in matrix models, might provide a nonperturbative definition
for V. For example (see ref. [B9]), if we assume that V € Ker(4) in eq. (B.13) we obtain

a differential equation with a “non-perturbative” (for D > 2) solution V(®) = b exp(a®),
—2/D

where a = }
VD+v2
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