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Introduction

The aim of this thesis is the study of Supersymmetric Grand Unified models (SUSY
GUT) from the phenomenological point of view. The present Introduction is an overview

of the subjects studied, in which the lines of approach followed are explained.

In the first Chapter the basic theory of supersymmetric models is reviewed. Particular
attention is devoted to settle a formalism suited for studying the general supersymmetric
theory: derivation of lagrangians, analysis of the quantum structure, renormalisation
group equations. This part can be considered a sort of “operating system” for the study

of the phenomenology.

Then I pass to define the Minimal Supersymmetric Extension of the Standard Model
(MSSM). I believe that some care is needed to allow readability of the results, and also to
avoid misunderstandings. Important formulae for the masses of supersymmetric particles

and for their interactions with the standard ones are derived.

The third Chapter is devoted to the study of possibility of embedding the MSSM in
a SUSY GUT, or in other words to spelling out the most direct predictions of this kind of
models. In this discussion virtues and vices of the model become apparent. It is noticeable
the possibility to predict correctly aj, to address successfully b — 7 unification (with some |
proviso), to have a consistent picture of CP violation and a beautiful mechanism to
explain the electroweak breaking; but the difficulty to predict for sure the observation of
supersymmetric particles—except for the lightest higgs—in large regions of the parameter
space is surely not a virtue of the model. In fact the key point is how to probe the space of

supersymmetric parameters. Important technical tools needed for this aim are discussed.

The last Chapter can be considered a partial answer to the problem of the explo-
ration of the parameter space, that uses interesting theoretical means and it is in a sense
complementary to supersymmetric particle searches. Two processes that are forbidden
at the tree-level in the Standard Model are studied in the context of SUSY GUT: the
first (the electric dipole of the neutron) is related to the CP violatiné sector, the second
(the b — sv decay) to the Flavour-Changing Neutral Currents (FCNC) of the theory.
- While the first test is passed for what matter present day phenomenology, the latter is
not automatically; in fact experimental observations require strong restrictions to the
parameter space of the model, whereas SM, even if with large theoretical uncertaiﬁties,

fits the data. This is clearly not a failure of the MSSM models, even if the question of



a natural explanation of such constraints is in my opinion important. Future theoretical
progresses, restricting the parameter space or giving reasons of the elusiveness of SUSY

world, or hopefully experimental findings are eagerly awaited.
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1. Generalities of the supersymmetric models

In this Chapter we review the general\' formalism of N = 1 supersymmetric field
theories, namely we discuss: supermultiplets, supersymmetric lagrangians, soft breakings,
1-loop quantum structure. Together with Appendices A and D this Chapter sets the
notations followed; it is meant to expose the technical tools needed in phenomenological

applications of supersymmetry.

1.1. Supermultiplets

Supersymmetry relates bosons and fermions in the same representation. Building
the infinitesimal transformations, one realizes that to maintain the commuting character
of (for instance) a boson fields, the parameters of supersymmetric transformations are
necessarily fermionic in character. These parameters are in fact related with fermionic
generators, that enlarge the Poincaré algebra; the resulting mathematical structures are

called graded Poincaré algebras, or Poincaré superalgebras.

The representations of this superalgebra can be build as functions on the superspace,
in much the same manner in which the functions on the ordinary 4-dim space are repre-
sentations of the Poincaré group. In fact, regarding to the Poincaré group as a topological
group, the 4-dim coordinates x, of the ordinary space can be regarded as the coordinates
of the coset space, when the Minkowsky subgroup is factorized. The space spanned by the
anticommuting coordinates and by the usual 4 parameter of the translations is called the
superspace, and can be thought as the the analogous coset space: superspace = Poincaré

supergroup / Minkowsky subgroup.

The functions defined on the superspace, called superfields, carry the SUSY repre-
sentation obtained transforming the superspace coordinates. After expanding in series of
the anticommuting parameters § and @, these functions are shown to be equivalent to a

finite set of ordinary fields of different spin; these sets are called supermultiplets.

In fact, only the simplest superalgebra, with a minimum number of fermionic gen-
erators, can be relevant for the low energy phenomenology, because only in this case the
supermultiplets can have a chiral structure, needed to describe properly the weak inter-
actions. More specifically only two kind of superfields bear importance for low energy

phenomenology: the vector and the chiral superfields. The vector superfield contains a



Majorana fermion An(z) and a real vector field V.(z), and it is obtained from the most

general superfield imposing reality:
1 .
V(2,0,0) = C(x)+[0¢(: )+ 02 M (x)+ 620 (—1/\(1))—[-11 c.]+ 000V, (r7)+¢9292;)—D(ar) (1.1)

(the field A in the previous equation is in fact a Weyl field, but also A is present, and a
Majorana field can be reconstructed). The chiral superfield contains a Weyl fermion P(x)

and a charged scalar z():

O(2,0) = z(2) + V2 () + 0% F(a) (1.2)

To build the generating functional. we have to represent supersymmetry also off-shell,
that is without the constraints of the equations of motion. This requires the presence of
the so called auxiliary fields, that is fields that are needed to represent supersymmetry,
but that have no dynamic role. In particular let us note that the mass dimension of the
fields F'(x) and D(z) is two, assuming Vi(z) in eq. (1.1) and ¢ (2) in eq. (1.2) to have

canonical canonical mass dimensions.

1.2.  Supersymmetric lagrangians
1.2.1. Propagation of the gauge fields

The derivation of the gauge field lagrangian in the formalism of the superfields re-
quires the use of the covariant derivatives, needed to build the supersymmetric and gauge
invariant term W4 W,. Taking the projection over 62 we build the lagrangian containing
the term for the (covariant) propagation of the gauge fields and the gauginos propagating

in the usual way:

G2
ﬁg = - _LO‘ + l‘/\Q(D/\)C,, (]..3)
auxr D?ﬁ :
L= 5 (1.4)

It is very important to resort to the Wess-Zumino gauge for a partial elimination of
the auxiliary fields. This is a choice of the chiral superfields used as gauge parameters
such that the auxiliary fields C, &, M of eq. (1.1) disappear; the usual gauge invariance
of the vector field is left. The price to pay is that neither supersymmetry or generalized

gauge invariance are separately present in the previous lagrangian.
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A final observation to clarify the role of the D field in a renormalisable lagrangian.
Since its mass dimension is 2, it cannot propagate. Besides that in the quadratic term in
eq. (1.3), it may appear linearly, eventually multiplied by scalars with canonical dimen-

sion, but also alone, if it is connected to a U(1) gauge group:

1.2.2. Gauge interactions of matter fields

To find the interaction terms between matter and gauge fields we first have to render
invariant the kinetic term of the chiral superfields; then we have to expand the super-
symmetric expressions in term of the ordinary fields, taking the projection over the 620?

component (we will always work in the Wess-Zumino gauge).

The first step is realized building the term dtexp(gV)®, where the superfield
belongs to some representation of the gauge group and V is the vector superfield. The
compounent lagrangian can then be found by a straightforward application of the rules in

Appendix A:

Egm = !Dusalz + ?J‘a(ﬁd’)a + iﬁg(zz)‘abd’b - &aj‘abzl)) (16)
Lowd = FiFo+ 972Dz (1.7)

where the index a spans the gauge multiplet. I supposed to have a simple group (so only
one gauge coupling constant is present) and I have included the group generator in the
definition of the gauge superfields; that is in the vector field, in the gaugino A and in the

auxiliary gauge field D (Dgy = D* T3;: similarly for V), X and also X.).

1.2.3. The SUSY flavour sector

The terms that extend the usual Yukawa sector in a SUSY fashion are built out of
monomials in the chiral superfields of degree at most three; the projection over the 62
component produces in this way terms of mass dimension at most four. The polyno-
mial of chiral superfields, that is a chiral (composite) superfield by itself, is called the
superpotential:

F(@) = 0, + 28,3 + 10, 0,0. (1.8)



As for any lagrangian, we need just to insure the global invariance of our SUSY flavour
interactions to obtain also the local invariance, since no derivatives enter this part of the

lagrangian.

The @, are the component of the multiplet ®, that contains all the chiral superfields
in the model under consideration; ® belongs to some representation (in general reducible)
of the gauge group. The indices «, b, ¢ identify the field components within this multiplet,

e.g. « = HY; the coeflicients [, 1% are symmetric functions by definition.

Applying the formulae in Appendix A we derive

f(@) = ..+¢ ZF—a—.—lzgz,d)b_f_ f(2)
Sl - aasa 2 ~ a 8Zaazb J\<

> taths f“"(,z)) (1.9)

a,b

D} =

ot 07 (Z Fof*(z) —

where I used the notations

of o f
¢ = , — 1.10
f 0z4 02,0z (' )

It is always apparent from the context when f is considered as a function of the scalar

fab —

field =z or of the corresponding superfield ®. To summarize, the resulting terms in the

lagrangian describes ordinary Yukawa terms and interactions of scalars:

fr =~ £ e (L)

L3 = F, f* + h.c. (1.12)

1.2.4.  Elimination of the auxiliary fields

The last step to build the supersymmetric part of the lagrangian consists in the
elimination of the D and F fields (eqs. (1.4), (1.7) and (1.12)). Since they appear
quadratically in the lagrangian, they can be integrated away from the functional generator.

The result is a contribution to the scalar potential of the form:

. 1o ar: :
Viusy = 517 + |7 (1.13)
where f* is as in eq. (1.10) and
d* =g zXT5 2. (1.14)

with a possible addition of a £ term. as in eq. (1.5). Summarizing the results of this

section, formulae eq. (1.3), eq. (1.6). eq. (1.11) and eq. (1.13) we have

Esusy = ,Cg + Lgm + EY - ‘/;usy (115)



1.3. Low energy supergravity models
1.3.1. Soft breaking of supersymmetry

The supersymmetric lagrangian described in eq. (1.15) turns out to be too restrictive

if we want to use it to describe the phenomenology of the electroweak-scale energies.

This lead theorists to consider the possibility to break the supersymmetry, without
spoiling the cancellation of quadratic divergencies, attracting feature of supersymmetric
model discussed in some details in the following. The soft terms have been catalogued by

Girardello and Grisaru [1] and are of the form

mizz* mPz m?zt omz® A (1.16)

where = is a scalar from a chiral superfield and A is a gaugino, and I used m and p
to emphasize the fact that the couplings are dimensional. We can also notice that this
terms are the lowest dimension component of the monomial of superfield used in the
derivation of the supersymmetric lagrangian; the first comes from the kinetic term =P
of the chiral superfields, the last from the kinetic term W24 W? of the vector superfields,
the others from the “favour” part (cfr. eq. (1.8)). When we consider a realistic model
building an important requisite is to have soft terms that are gauge invariant; the previous
observation connects the gauge invariance of the soft terms with the gauge invariance of

the corresponding supersymmetric monomials. We will use:

ﬁsoft = ‘C,\,\ - ‘/;oft (117)
1

Ly = +5 ch/\af\a + h.c. (1.18)

’fsoft = [7](:) + hC] + Vicatar (119)

where the two terms of the scalar part V5,5 are:

bd 2 = P
"‘scalar = Myp=g~h (120)

1 1 e
Mz 2+ =™z 2, (1.21)

n(z) = Loz + 31 ;

I defined the dimensionful couplings in 5 in analogy with the terms in eq. (1.8); notice
also the apparently unconventional sign + in the gaugino mass term (this is due to the

fact that we use conventionally —i) in the vector superfield, as in eq. (1.1)).

The general form of the supersymmetric lagrangian with soft breaking terms is given

by the sum of the lagrangians eq. (1.15) and eq. (1.17).
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1.3.2.  Low energy supergravity models

Soft terms arise naturally in the context of supergravity theories (for a review and
an appropriate list of references see the basic work of Nilles, ref. [2]). The spontaneous
breaking of supersymmetry is supposed to take place in the so-called hidden (i.e. non-
observable) sector at a certain scale Mg, and the effects of the breaking to be commu-
nicated to the observable sector only via gravitational interactions. The partner of the
graviton, the gravitino, takes mass “eating” the goldstino ( super-Higgs effect); its mass is
of the order of My times the suppression factor M $/Mpiana (eventually squared, depend-
ing on the specific mechanism of SSB). In the flat limit My — 00, at fixed gravitino

mass, we are left with soft breaking terms in the observable sector [3].

Spontaneously broken N = 1 supergravity, in its minimal formulation!, allows also to
reduce the number of couplings that appear in the previous equations; making reference

to eq. (1.8) and eq. (1.21) we have:
2 2 a __ 170 rab __ ab abe __ 4 rabe 1 99
Mgy = M3pp0a  L* = mg,C1° M = M3 Bu®™ 0™ =mgpAf (1.22)
where my/; is the gravitino mass and

B=A-1, C=A-2. (1.23)

For the following we will assume that at the grand unified scale Myyr =~ 1018 GeV
local supersymmetry is already broken and we have effectively a global supersymmetry
theory with explicit soft breaking characterized by the TeV scale. To exploit the model
1t is necessary to rescale the parameters in the lagrangian with a renormalisation group
analysis down to the low energy region; this situation is exactly the one that we meet
studying GUT theories. This clearly entails an analysis of the quantum structure of the
theory. This kind of analysis has been performed by different authors[4]: 1 will briefly
discuss in the next section a very beautiful and simple method to obtain the 1-loop

renormalisation group equations based on the effective potential.

'Namely it is assumed that the matter superfields have minimal kinetic terms-a flat Kahler metric.



1.4. 1-loop quantum structure of supersymmetric theories
1.4.1. The effective potential method

For any renormalisable Yang-Mill theory with scalars, Weyl fermions and gauge vec-
tors (not necessarily supersymmetric) we find, regularizing the theory with a momentum
cutoff A, the following “structure of infinities” in the scalar sector at 1-loop[5] (using the

Landau gauge)

;
Voo =

1 1 : 4
Str [A} (m A— -—) 4 AZM2(z) — In A M%:)] (1.24)
3272 4 '
the mass matrices M?2(z) are the generalized mass matrices for each particle in the theory.

This formula allows us to extract a lot of informations about the dependence of the
bare parameters of the scalar sector on the renormalised parameters, by performing el-
ementary (but for the general case quite long) algebraic computations of supertraces of
mass matrices, without computing Feynman diagrams; in fact one lacks only the infor-
mations about the wavefunction renormalisation. For the purpose of obtaining 1-loop the
RGEs the best way to use this formula is the following. Consistently with the order of
approximation used we write Vi(zR,.--gr) = Vio(zB,...gB), in terms of the bare and of
the renormalised quantities respectively. Then we solve for the renormalised parameters -

the following equation

V(s 1% g) = V(eh 15 g3) + Ve (25 1 -95) (1.25)

This method is particularly suited for the supersymmetric lagrangians, ([6], [7]) since
many parameters of the fermionic sector appear also as parameters of the scalar sector
(for instance the Yukawa couplings and also the gauge couplings appear in 4-scalar in-
teractions). In fact, we can obtain all the SUSY RGE with this method (except for the

gaugino masses) just feeding some information about the field anomalous dimensions.

1.4.2. Absence of quadratic divergencies and mass matrices

When applying eq. (1.24) to SUSY theories, the fact that we have the same number
of fermionic and of bosonic degrees of freedom implies that we have no quartic constant
divergencies; that is the 0-point Green function, to be interpreted as a quantum-induced

cosmological constant, is at most quadratically divergent.
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From eq. (1.24) we can appreciate that the absence of quadratic divergencies is
equivalent to the sum-rule StrM? = 0. To show that this is indeed the case, for each

supersymmetric theories, we just need to work out the generalized mass matrices.

Let us set some useful notation: we will distinguish a field from its conjugate with

the position of the representation indices:

= = (2,)7, U = (0,), AT = (A7, fa(z) = [ (") .. (1.26)

in the last example I recalled the notation of eq. (1.10) for the partial derivative of the

superpotential f(z), that I will use widely in the following.

Now we separate out the terms in the lagrangian that give rise to the mass matrices
for the different fields, as follows

1 | i
Lomaser =5 { Vi ME- V¥ — [0 My - 0+ he|— 2t M;-Z} (1.27)

We use the quotation marks for “mass” to stress that we are treating generalized masses.
Before proceeding it is convenient to list the relevant functions of the scalar fields we have

encountered (equations (1.14),(1.8), (1.21)) using the convention eq. (1.26):

d(z%z,) = ¢T3,
. a 1 ab 1 abe
flza) = 1Pz, + SH" ez + Ef ZaZpZe
o 1 1 ..
n(ze) = Lz, + 3114'[‘1{’:&:1) + ETIQbLZa.szc

The intermediate vector bosons take their mass after spontaneous symmetry breaking

(55B) from the first term in eq. (1.6); one verifies that the mass term can be written

M} = d*d? 4 d«d® (1.28)

Collecting the bilinears in the fermions in the egs.(1.6). (1.11). (1.18) we are lead to

the following fermionic mass matrix:

ab D) Z/Ba 'd’a ‘
Mpp=| R T (1.29)
\/i)‘d&b /I‘O 5Q/3 . —‘i/\a

Finally, using eqs. (1.13) and (1.19) we can write the scalar mass matrix as:

A[g _ facfcb + 771%0' + (ozad? + dbaa(a fabcfc + ”ab + (:radab . (130)
Jabe €+ Nap + d df Facft +m2 4 dod™® + d3°d”

10



where the field Z = (2%, z,) contains all the scalar fields in the theory.

Notice that the presence of a ¢ term, eq. (1.5), leads to an additional constant

contribute to the scalar mass matrix of the form:

A2 =& ( &0 ) (1.31)

o'b
0 d¢
where the index o' Tuns over the U(1) generators Yo

In terms of the generalized mass matrices, previously introduced, the supertrace
reads: '

Str(M?) = te(MF) — 2 tr(M,My0) +3 tr(M?) (1.32)

and can be easily computed to find

Str(M?) =2 ¢ g™ tr (YY) + tr(m?) — >0

«

2} (1.33)

We can now prove an important sum rule, first obtained by the authors of [3]; in the case
in which the soft breaking terms m§ and p, and 7 are zero, and the trace of the U(1)
generators is zero (it is the case of the standard model hypercharge, and it is necessary if
we want to embed the group in a simple GUT) also the supertrace of the square of the
mass matrix is zero. In the more general situation in which those contributions are present -
[9], the supertrace gives a constant term, meaning that only the cosmological constant.
but no field depending term, is subject to quadratic divergencies [10]. This result is true

in any supersymmetric theory.

Let us end this section with a phenomenological comment on this important sum
rule. It is easy to convince oneself that a realistic spectrum cannot be reproduced, if
one would suppose the ordinary particles and their SUSY partners to be the spectrum of
the theory. On the other side it is clear that, in a softly broken supersymmetric theory.
the phenomenological requests on the SUSY spectrum can be taken into account easily.
Let us stress in any case the fact that this sum rule is valid only at the tree level. The
alternative attempts to use the ¢ terms to evade the phenomenological bound lead to a
new U(1) with non zero trace; and one finds that the condition of absence of anomalies
requires an enormous number of particles [11]; that is why this kind of models are not

pursued.
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1.4.3.  Renormalisation group equations

The problem of deriving the RGE is reduced to the computation of M*(z). In fact
the task can be usefully divided in the computation of the RGE for the supersymmetric
parameters (gauge, Yukawa, massive supersymmetric couplings), and that for soft hreak-
ing terms; further simplifications result from focussing time to time on the effect of a
set of parameters (for instance the effect of the gauge+Yukawa couplings on the Yukawa

couplings itself).

The reader interested is referred to Appendix D in which some details of the derivation
can be found. The method is applied to derive the RGEs in the minimal supersymmetric
extension of the Standard Model. with a particular attention to the matricial structure.
The study of the renormalisation group equations is the subject of the third Chapter of

this thesis.




2. From SM to MSSM

In this Chapter we focus on the minimal supersymmetric extension of the Standard
Model (MSSM). The particles and the parameters present in the model are here discussed;
mass matrices and the interactions are derived. The study of the parameter space of SUSY
GUT model, requiring the use of renormalisation group techniques, is performed in the
next Chapter; but let us remark that yet at this stage it is possible to start important

phenomenological analysis of supersymmetric models.

2.1. Supersymmetric extension of the Standard Model
2.1.1. Notations

We will, after Haber and Kane, use a tilde to distinguish the non-standard fields
in the supermultiplets: all the scalar quarks and leptons (called squarks and sleptons),
and the fermionic partners of Higgs and gauge vector bosons fields (called higgsinos and

gauginos) will be tilded in the Minimal Supersymmetric extension of the Standard Model

(MSSM).

Let us set some notations useful for supersymmetric model building. As we have |
clarified in the discussion following eq. (1.8) the superpotential must be built with chiral
superfields only; this kind of fields contains Weyl fermions of the same chirality of the 0
parameter, by convention a left bispinor. This means that a right-handed fermion field
enters the superpotential only after being conjugated. Let us exemplify the formalism

considering the case of the up-quarks. The left component belongs to the superfields
Up(x,0) = ap(e) + V2 fug(x) + 0% Fu (@) (2.1)

The right component of the up-quark is instead a component of an antichiral superfield
Ur(z,0):

Un(e,0) = @r(z) + V2 Bup(x) + 0 Fupla) (2.2)
We define another superfield U (x,8) whose fermionic component is the left bispinor
ug(2):

Ui(x,0) =ag(x) + V2 us (x) + 0% Fue () (2.3)

and then relate its conjugate to Ugr(x,8) (in Appendix A the conjugation in the # space

13



is defined and discussed)

Ur

i(z,0) = Ug(z,0) (2.4)

This relation in components reads:

Ur = uj
tp = u§ (2.5)
FuR = Fui

Finally, we note that with this notations one can write
ur = (u)g (2.6)

where in the right-hand-side we have the left-component of the charge-conjugate up-quark
four component spinor, written in the chiral representation of the gamma matrices, that

is regarding the left bispinor as a four-spinor with zero right-handed part.

2.1.2.  MSSM particle content

Applications of supersymmetry, in the context of extending low energy gauge the-
ories, respect the following principle: the gauge transformations must commute with _
the generators of supersymmetric transformations. This observation implies that the
gauge assignations are given on supermultiplets; that is every ordinary particle must have
a superpartner with the same gauge assignment. In fact let us suppose the contrary;
considering the commutator of a local gauge transformation and of a global fermionic
transformation, we would recognize the need to have in the theory a local fermionic
transformations. That would imply a local translation, i.e. we would be lead to consider
gravity, since the anticommutator of two fermionic generators in supersymmetry yields a
translation. This is the reason why we believe that such gauge assignments cannot be of

relevance whenever we consider scales of energies much lower to the Planck scale.

In the MSSM two Higgs superfields are present. An even number of Higgs superfield
doublets with opposite hypercharge is in fact needed, since each higgsino contributes to
the anomaly. Moreover, we will see in the following that we need at least two Higgs

superfields to build a realistic supersymmetric lagrangian.

14



Let us finally list the particles of the MSSM, writing also their quantum numbers:

qL qL (3,2,+1/6)

s a (3%,1,-2/3)

ds, s (3%,1,4+1/3)

I L (1,2,-1/2)

e é (1,1,41) 27
hy hy (1,2,—1/2) |

ha ha (1,2,+1/2)

G, G (8,1,0)

A, A (1,3,0)

B, B (1,1,0)

These fields are interaction eigenstates, that is the ones that we use to write the gauge
invariant lagrangian. The mass eigenstates are mixed states of these fields, as we will
discuss in some detail in the following. Exactly as in the SM quarks and leptons are

replied in three families.

The Higgs doublet hy has the same gauge numbers as the leptonic doublet Iy =
(v, ep). The attempts to use the scalar sleptons as an Higgs doublet were not successful,
firstly because the electroweak breaking would imply a violation of the lepton number as

well.

It is also worthwhile to notice that the L,R suffixes of the scalar fields are not only
conventional, but also useful; for instance the gaugino interactions can transform uy in ug
but not in @p, in the same manner in which the gauge vector hosons interactions cannot

flip the helicity of ur.

The possible presence of three right handed neutrinos in the spectrum can be con-

sidered, in much the same way that in non-supersymmetric extensions of the SM:

i (1,1,0) (2.

o
[07]

2.2. The lagrangian of the MSSM
2.2.1.  MSSM superpotential and R symmetry

Let us first discuss the other argument requiring the introduction of a second Higgs

field in the MSSM. In the SM the mass terms of the fermions is generated coupling them
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to the Higgs doublet. We have to use the Higgs doublet together with its conjugate in
the lagrangian, since the up and down type of quarks require doublets with opposite
hypercharge. This cannot be done in the MSSM, because the conjugation transforms a
chiral superfield in a antichiral superfield (a different representation of the supersymmetry
group), that would spoil the supersymmetric character of the superpotential: two different

Higgs doublets must be introduced.

Knowing the representations in the MSSM, it is a simple group theoretical task to
build all the possible low energy SUSY invariants. Since all chiral superfields can be
a priori combined in gauge invariant monomials, and we have also an additional Higgs

doublet, we understand a priori that we can obtain more invariants than in the SM.

Using the compact superfield notation the welcome invariants are (an antisymmetric

S L(2)-covariant matrix where needed is intended):

H\LE°, HQD*, H,QU*, H, H, (2.9)

The first three terms are the supersymmetric extensions of the SM Yukawa terms, while
the third is “new” and controls the global invariance in which the Higgs fields pick a com-
mon phase (that could generate a Goldstone boson after spontaneous symmetry breaking).

On the basis of gauge invariance alone other terms are possible
L*ES HIE®, LQD*, LH;, €qpy U D*® D (2.10)

All but the last term arise from the terms in eq. ( 2.9) because L and H; have the same
quantum numbers. The conclusion is that in the MSSM, at difference that in the SM,

lepton and/or baryon number conservation are not automatic.

Still we can conveniently study the behaviour of supersymmetric theories not only
under global [7(1) rotations, but also under the so called R rotations. These are global

transformations compatible with the supersymmetric ones: they act on a superfield as

®'(x,0,0) = exp(—iRs a) - ®(x, exp(ia)d, exp(—ia)d) (2.11)
The integer Ry is the R charge of the field ®; notice that the coinponent fields rotate
in different manners. The reality constraint for the vector superfield implies Ry = 0.
A monomial of the superpotential transforming with chiral charge 2 give rise to an R
symmetric term in the lagrangian. Asking that the Higgs superfields have zero chiral
charge (no goldstone bosons), the terms of eq. (2.9) are allowed iff R 4+ Rg- =2, Rg +
Rye = 2, Rye = Rpe; the first four terms of eq. (2.10) are excluded iff R, # Ry = 0,
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and the last iff Rye # 2/3. The most direct and symmetric solution of the previous
constraints is to give charge 1 to each quark and lepton superfield. This is often referred
as R symmetry (and it is a property of the superpotential that we will assume in the

following).

In fact the most economical way to exclude this terms is just to impose a matter parity,
under which only the matter superfields transform (not the higgs); in all unwanted terms
the number of matter fields is odd, while is even in the others. Notice that this implies
that the the lightest supersymmetric particle (LSP) is stable (or better can disappear
only annihilating with its antiparticle), and also that SUSY particles must be produced

in pairs in accelerators.
The superpotential for the SUSY SM reads:
forr = T[T HygLoiES + T3 Hi,QriDS — T HagQrily + p Hio Hosl (2.12)
where I have written the SU(2)r indices, and left the SU (3). ones implicit.

With the notations of eq. (1.8) one writes:

fHielnBS i o
FLECET L
FHQU T T G
JFinde e (2.13)

This form is particularly useful when deriving the RGE for the MSSM form the general

expressions.

A final comment about the right-handed neutrinos. If gauge singlets are present we
in general have to add two new terms in the superpotential, obtained by multiplying the
singlets by the two bilinears Hy H> and LH,, together with the three monomial in the

singlets. Matter parity, obviously extended, leaves only
.. N 1 . . )
fon = —€7 T} Hoo LoiN; + 5 Mp NING (2.14)

the last term gives rise to a Majorana mass for the right-handed neutrinos.

2.2.2. Masses and mixing angles of observed fermions

1. The angle 3
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The parameters I'y in the previous equations have to be identified with the conjugate

of the usual Yukawa couplings, that is
Iy =YY% X=EUD (2.15)

(we neglect for the moment the right-handed neutrinos) where —}'}éj h lp;er; defines the
leptonic Yukawa coupling, as it appears usually in the SM lagrangian. To prove this
statement we extract the terms in the MSSM lagrangian in which an Higgs field interacts
with two matter fermions; for instance from the first term in eq. (2.12), using the notation

eq. (2.5) and the rules in Appendix A we find

L3 T4 hylpieg; + h.c. (2.16)

The main difference between the SM and the MSSM Yukawa couplings is obviously
due to the fact that in the MSSM we have two Higgs doublets, that a priori have two

different vacuum expectation values:

<h> = vy : (2.

<hy> = v (2.

The constraint due to measurement of the Z-mass,

t)

&

2 2
Y I (2.19)

where v? = v? + v, leaves in fact undetermined the angle

tan § = -2 (2.20)
o

When asking the perturbativity of the Yukawa couplings up to GUT scale, as it is proved

in the following, the angle 3 is restricted in the range [r/4.7/2], that is: tan 3 € [1, co].
2. Choice of basis in flavour space and the CIXM matrix

Let us now discuss in details the structure of the Yukawa matrices in the MSSM. In
close similarity with the SM arguments we perform redefinitions on the flavour multiplets.

that is we choose a base in flavour space. By writing the matrices I'y in biunitary form,

I'x = Liyx Ry (2.21)

where vy are diagonal non-negative matrices; and making unitary redefinitions of the

quark and lepton superfields, one finds that the parameters in eq. (2.12) can be chosen
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to be:

I'e = &
'y = Ky (2.22)
I'p = 1
(down-diagonal basis) where .
K =Ly L} (2.23)

‘< the 3 X 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix [12].

The matrices vx are related to the ( liagonal) mass matrices for leptons and quarks

as following

7g = Mg/(v cosf3)
vp = Mp/(v cosf) (2.24)
YU My /(v sinf3) '

This basis is very useful when performing the RGE analysis since the initial conditions are

I

given in terms of masses and CKM mixings and it leaves the SU (2)r symmetry explicit,

having applied the same unitary rotation to the U and D superfields.

To switch to the superfield basis in which the terms of the superpotential with the
neutral Higgs superfields are flavour-diagonal (i.e. the quark mass eigenstate basis), we

just have to redefine the Uy flavour multiplet of superfields as
U, — KU . (2.25)

In this basis the mixing matrix i’ appears

i) in the interactions involving the charged vector superfields
ii) in the interactions of the charged Higgs superfields in eq. (2.12),

iii) and in the analogous terms for the charged Higgs fields in soft-terms interactions.

3. Final comments and remarks

Since the fermion masses are at present experimentally known, at least to a certain
extent, the main indeterminacy on the Yukawa couplings comes from the angle B, that
affects the overall size. More specifically, the behaviour with tan 3 is the following: if
tan 3 ~ 1, all the MSSM Yukawa coupling constants are /2 times larger than the corre-
sponding ones in the SM, while if tan 3 is large the up Yukawa couplings in the MSSM are

approximatively equal to those in the SM, while the other couplings are approximatively
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tan  times larger. For these reasons a direct determination of these parameters would be

of the maximum relevance.

Let us remark that the Cabibbo-Kobayashi-Maskawa matrix with three families in
the MSSM, exactly as in the SM, contains a physical phase that may describe CP violating
phenomena. In effect in the MSSM we could have others sources of CP violation, that we

discuss in the next section.

Finally a comment on the choice of basis in family space if right-handed neutrinos
are present, as in eq. (2.14). Starting from the previous choices of basis, in which I'g is
diagonal, it is useful to further diagonalize the symmetric complex matrix Mg = R' mg R
redefining the neutrino superfields. It is remarkable that the number of physical parame-
ters of the matrix I'y is not 18 (completely arbitrary matrix) but 15, since the L superfields
can still absorb three unphysical phases (the E€ superfields must transform with the con-
jugate phases). In this manner we see that the leptonic part of the superpotential contains

nine masses, six mixing angles and six physical phases?.

2.2.3.  Soft breaking terms and CP invariance

We focus now on the parameters of the supergravity-derived SUSY extension of the
SM, concentrating in particular the considerations on their GUT-scale values. According
to the discussion of formula (1.22), at the scale of supersymmetry breaking, that we
assume to be the SUSY-GUT scale required by gauge couplings unification, all the scalars
get an universal mass term mZ (that in fact is the gravitino mass in the case of flat INahler
metric). Let pg be the value of the i parameter at this scale. To each Yukawa interaction
I' @3 term in the superpotential correspond an interaction in the scalar potential AgT'z%;
similarly a term Bgughihs is induced. We will assume also that the three gaugino masses
are equal at this energy scale: A, = Alg. Notice that, in accord with the discussion
following eq. (1.16), the soft breaking parameters all break R symmetry. So for this

lagrangian it is better to speak of R—rotation instead than of R—symmetry.

An important observation about the parameter Bg in the context of SUSY Grand
Unification has to be done. The relation Bg = Ag — 1 (implied by the assumption of flat

Kéhler metric) has been widely used to reduce the number of free-parameters in studying

A different choice would be: make My diagonal (redefining Ng), then render I'y hermitian (re-
defining L) and finally make also 'z hermitian (redefining £°); the physical parameters are clearly only
redistributed.




the phenomenology of the low-energy supergravity model. In fact this relation holds for
the observable sector before the path integration of the heavy (GUT scale) degrees of
freedom; see [13]. Giudice and Roulet in ref. [14] have recently reconsidered the issue,
and concluded that the path integration in the interesting class of SUSY GUT models with
(i, = 0 gives an effective theory in which the original relation B = Ag —1 translates to

|Bg| = 2 (the prime indicates the parameters in the complete theory), and in all generality
|Bg| = 2 (2.26)

A calculable model dependent pg term is then generated as a function of the original
parameters, but this value depends on the detailed structure of the SUSY GUT theory.
For these reasons the following analysis considers the case |Bg| = 2 leaving e arbitrary,

and compare it with the case Bg = Ag — 1.

The 4 parameters A, Bg, Mg, pe can be a-prior complex parameters. Using an
appropriate R—rotation the gaugino mass parameter Mg can be made real; moreover,
multiplying by a common phase the 2 Higgs superfields (with opposite hypercharge) Bg -
(i becomes real as well (notice that the argument invoked in the choice of flavour basis
goes through after those redefinitions). We conclude that, in addition to the usual CIKM
phase, there are at most two typically supersymmetric phases that are physically relevant,
say

7)7

These two parameters may have an important impact in the phenomenology of CP vio-

[

arg(Ag) and  arg(Bg) = — arg(pia)- (2.

lation.

Let us finally remark that different specific and more restrictive choices of those
supersymmetric parameters have been studied in the literature, like those models in which
the gaugino masses M, are very small (models with light gluinos), or models in which
the parameters m?, M, and A are related at the GUT scale (this noticeably happens n

string-inspired scenarios).

2.3. Mass matrices and vertices

In the last part of this Chapter we set the basis for the study of physical processes,
deriving and discussing mass matrices and interaction terms. Most of the results presented
here are in effect valid in the generic supersymmetric model, sometimes called minimal

supersymmetric extension of the SM; instead, the procedure to implement non trivial
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constraints due to grand unification and supergravity, and the results, both numerical
and analytics, will be discussed in details in the next two Chapters®. Let me remark
that the selection of the material discussed here is done having in mind the physical

applications of last Chapter.

2.3.1.  Scalar quarks mass matrix

1. General formalism

Let us treat in some details the up squarks mass matrix. Defining the 6 dimensional

- ur,
= .
URr

we write the term in the lagrangian using the 6 x 6 scalar quark mass matrix AfZ :

vector

(2.28)

L> —iﬁ]\:fgﬁ. It is useful to define the of 3 x 3 submatrices as follows:

M2, M:? .
M= | Wb T GLR (2.29)
11[-,RL ‘Z\‘/[S,RR

w

The basis of squark mass eigenstates is reached using the unitary rotation S;, defined by:

Saﬂ’[?Sg = diag(m? ) (2.30)

i U, .

We can finally split S; into two 6 x 3 submatrices
Sa = (54,1, 5%,R) (2.31)

which relate the the scalar partners of the left and right-handed quarks to the scalar mass

eigenstates.

Let us write for future use the form of the generalized mass matrices, keeping explicit
the dependence of the mass matrices from the the neutral Higgs fields. The L — L and
R — R blocks are determined by summing the (renormalised) direct contribution to the

scalar mass? méL and 1715-}?. with the tree-level and the D term contributions;

2 1 1 .
M2y, = md + Myl + <5g§ - ng) (1A% = 1K) 1 (2.32)
. | 1 <
M2pp = mi + MMy + St (18917 = 18SP2) 1 (2.33)

3In particular the Higgs sector, being at the hearth of the low-energy supergravity model, is discussed
at the end of next Chapter, together with the radiative symmetry breaking.

4The matrix mi;, is defined as the transpose of m., according to ('&”L)*m'g’,g g = (&r)*my_iig.
L
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The L-R block is instead
Mip = (Au R+ h9) Yu (2.34)
After spontaneous symmetry breaking the Higgs fields give rise to ordinary mass terms.

Let us comment on the L-R block of the matrix. This is iniportant in particular
since it is involved in the supersymmetric contributions to the phenomena in which the
chirality is flipped, in particular to electromagnetic dipole amplitudes of quarks. Since at
the GUT scale the Ay matrix is proportional to identity we easily realize that the larger
clement in the L-R sector is by far that connected to the top Yukawa coupling, that is
we could have sizeable mixing effects for the stop squarks only. The accuracy of this
approximation will be discussed in the following for the model under consideration, but
let us remark here that, since only small out of diagonal contributions arise as a result of
the renormalisation group evolution, only a departure from the universality assumption
Y = AgYy at the GUT scale could imply large contributions. So we turn to spell out

the consequences of this fact.
9. “Stop block” approximation of the mass matrix

It is in useful to work out the approximation in which the three blocks of the matrix
(2.29) are assumed diagonal, and in particular the block L-R has only the 3-3 entry -

non-zero, that is assumed to be real.

The only nontrivial block of the 6 X 6 matrix is the 2 x 2 stop part,

m? n? v
it ! VLR (2'35)
Mir MiRR
The mixing matrices Saz,r are simply:
< diag(1,1.cosf) <. diag(0, 0, sind) (2.36)
Pal = : ; DaR = ) 2.36
diag(0,0, —sinf) diag(1,1, cosf)
g g
The angle 6 obeys:
Dy 2
tan20 = —— LR (2.37)
mi . — Mipp
sign(sin20) = —sign(mip) (2.38)

The first condition guarantees the diagonalization of the mass matrix, that is eq. (2.35)

becomes dlag(m- m? ); the second that mg is the lighter stop. The determination of ¢

23




that I use is to have cosf positive, that is sind with the sign of sin20. The two stop masses:

1 .
2 2 2 2 22 _ 4t
miL, =3 [(mELL +mipp) F \/(mZLL +mipn)? — 4mt-LRj (2.39)
Anticipating the results of next Chapter, m%,, — mi,p is usually smaller than m¥ p

also after renormalisation group analysis (at GUT scale is zero). For this reason tan 26 is
typically large number, so that § ~ 7 /4 if m?LR < 0, or ~ 37 /4 in the opposite case. For

future uses to write this result as:

1

cos?f ~ sin @ ~ 3 (2.40)
v 1
sinf cos § ~ —sign(m?, 5 5 (2.41)

2 m? s with m2 - 4 m2. i ‘mula: thi .
Instead 2 mZ, , compares with m2, . +m np 10 the stop mass formula; this latter must be
2

larger than the mixing term. From eq. (2.34) we deduce in particular that m % g 1s larger

if A; and pp have the same sign; lower {; masses are then implied.

This observation is of some importance since the sign of u is a renormalisation group
invariant, (and at present a theoretically undetermined quantity) while the sign of A, for

 large top Yukawa coupling is fixed to be that opposite to the gaugino mass:
-mtg1 lower (larger) if sign(pg) = —sign(Mg) (+sign(Mg)) (2.42)
It is worthwhile to specify these results in the large tan 3 scenario. In fact in this

case the L-R mixing coincides with m,A;, since v; — 0 as results from eq. (2.34); we can

recast eq. (2.41) as
sin 6 cos § ~ sign(Alg) % (large tan f3) (2.43)

For the same reason we remark a substantial independence of the stop mass from the sign

of u.

2.3.2.  Chargino mass matrix

1. General formalism

The charginos are the mass eigenstates of the charged higgsinos and winos mass
matrix M. The mixing is due to the fact that the wino-higgs-higgsino gauge interaction

turns out in a mass term after spontaneous symmetry breaking. Then we have the direct
y A
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mass contributions due to the soft breaking gaugino masses and to the supersymmetric p

term. With our conventions of signs the matrix reads

. \, v, A |
— (W™hRT) My gea I/.]. + h.c (2.44)
gvi —UR hi

where following ref. [15] we define Wt = —i(ﬁl T iA;)/v/2, and all the parameters are

taken at the weak scale (Mg — My, g — KR)-

The matrix can be diagonalized using the biunitary transformation:

. W
\—f = V ( 7+ )
'z (2.45)

‘//Ar"l
TT' = U _
‘\L ( i )

The two mass eigenstates are the four dimensional spinors

o= ( XLL2 ) (2.46)
XR1,2

where I defined Xg = 3.

Let us notice in particular that in the special case in which tan 3 = 1 and M; =
1tr = 0 the two charginos masses are determined by the wino-higgsino mixing term, and

in fact coincide with My .
2. “Pure higgsino-wino” approximation of the mass matrix

The opposite situation, that considers the possibility that some of the supersymmetric
masses be at the TeV scale, leads to the approximation of the chargino mass matrix in

which the mixing terms are neglected:
M, = diag(M;, —pR) (2.47)

This approximation holds when [MZ — whk| > m%, and M2, pk = miy. Notice that
these requirements are consistent with one of the eigenvalues, say |{ gr|, being of the order
of my, while the other remains much heavier. The approximate mass eigenvalues are
simply given by the absolute values of the parameters M, and pg, and the two unitary

rotations which “diagonalize” the chargino mass matrix are diagonal too:

U =~ diag(sign(M2), —sign(xr)) ,

(2.48)
Vo= 1



A similar approximation can be devised for the 4 x 4 neutralino mass matrix; notice that
when it applies strong are the simplification in the dependence of the spectrum on the

SUSY parameters.
3. Comment on the sign of i in the literature

To compare our definitions and results with the literature it is worthwhile to comment
on the sign of the parameter u. This parameter appears also in the mass matrices of the
neutralinos (zino, photino and neutral higgsino mixed states), of the scalar particles and
in many interaction terms. Our conventions coincide with those of ref. [15], except
for a minus sign in front of the 4 entries in the chargino and neutralino mass matrices.
Alternatively, one may want to keep the plus sign in the fermion mass matrices and change

the sign of  in the scalar mass matrices and Feynman rules.

2.3.3.  The chargino-quark-squark vertex

As an important example of Feynman vertex of the theory let us consider the chargi-
no-quark-squark vertex, that involves the mass matrices that we discussed. Two different
contributions are present, namely that originating by the interaction with the wino (that
according to the vector nature of the gauge interactions connect a left quark to a “left”
squark), and those involving AT andv]\z'{ originating from the superpotential (that flip a A
left quark in a “right” squark and viceversa). A direct computation of the terms in eq.
(1.6), and those in eq. (2.12) gives, in the fermions mass eigenstate basis defined by eq.
(2.22) and eq. (2.25):

Eﬁf&LdL - ‘_gﬁ}-*-i'lz_[{(l[, + h.c. (2.49)
hragd, = -]E'&z[\")’DdR + h.c. (2.50)
ﬁizl_ﬂ'LdL = E;’I‘L}}’)“UIX’CZL + h.c. (2.51)

Turning to the squark and chargino mass eigenstates, according to eq. (2.30) and eq.
(2.45), and converting the bispinors in Dirac spinors according to the rules of Appendix

A the lagrangian reads the following:

Liaa = Ny o' [ Po(=V3Sar g+ ViSumio) N
+ Pr(UsSarhyp)]d + h.c.

—
S
Ot
(8

N—

The importance of this interaction resides in the fact that in many loop-induced

processes involving the quarks as external particles, the W, the charged higgs and the
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chargino exchange amplitudes are all present, and the supersymmetric contribution can
behave very differently from the SM one, also because of the presence of the Yukawa
couplings in the vertices. We present in the next section the vertex in which the quarks
interact with the charged higgs to have a complete picture of the charged interactions in

the supersymmetric extension of the SM.

2.3.4. The charged higgs-quark vertex

This vertex is in a sense non-supersymmetric: it is in common with the non-supersym-
metric two Higgs doublet extensions of the Standard Model. Precisely, its supersymmetric
counterpart is the higgsino-quark-squark vertex previously discussed, that, even if mixed
with the wino in L;44, can be “identified” as that part of in which the Yukawa couplings

are entailed.

It is easy to derive the lagrangian in which the charged scalar higgs AT, h7 interact
with the d quark, repeating the three steps done for the chargino: write the Yukawa
couplings in the quark mass eigenstate basis, compute the bispinorial part that involves

d; and dg, pass to four spinor notations. The result is:

Lhyhpad = U [ Pr(h7 )" K~vp + PLII;-")’UIX' ] d+ h.c. (2.53)

In this case this is not the end of the story, since the unphysical degrees of free-
dom, that is the “Kibble” excitations have to be subtracted. Let us compute the di-
rections in the weak isospin space in which this excitations lie. The Higgs multiplet
H = (h$,h2,h9,h7) (thought as a S-dim real vector) develops the vacuum expectétion
in the direction V = (0, vs,v1,0). The three directions ¢ T a}/ are those of the zero mass
modes; the remaining five modes (orthogonal in the 8-dim space) are in general massive.

Concerning the charged sector we can write

by o= SLHT 4 R (2.54)
v v
hi = %(H‘“)*—%(K’f)* (2.55)

where I+ is the Kibble boson and H* the physical charged Higgs field. This form is
particularly suitable to pass to the unitary gauge: just replace the two charged higgs with
these expressions, and set ' = 0. The interaction lagrangian expressed with the physical
fields reads:

Lp+ga=HT @[ Pr K%'}’D + P %’)’UK | d+ hc. (2.56)
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Comparing this interaction and its supersymmetric counterpart, eq. (2.52) an im-
portant difference emerges. In the large tan 3 regime, the less Standard Model-like, the
terms in which yp appears grow linearly, while those in which v appears have two dif-
ferent behaviours: they tend to a non-zero limit in the charged higgsino lagrangian, while
they tend to zero as 1/tan 3 in the charged higgs lagrangian. This observation, done at
this point, may suggest how the signatures of the MSSM can depart from those of the
Higgs doublet extension of the SM; its actual relevance will be evident in the last Chapter,

devoted to the study of physical prbcesses.

B
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3. Matching the Low and the High Energy Pictures

In this Chapter we begin the study of the SUSY GUT models. After exposing the
strategy, the key subject of gauge couplings unification is discussed in details. Then
we twrn to masses of observed fermions, focussing in particular on the predictions of
b — 7 mass ratio. The main role of top quark coupling, and possible important role
of tau neutrino are stressed. Mixing are described in general terms. Then we prove
the consistence of “CP conserving” supersymmetric model, and finally we discuss the
beautiful mechanism of radiative symmetry breaking: after an effort to enucleate the
original idea from technicalities, we show how to improve the scenario considering the
1-loop corrections to the Higgs potential. The renormalisation group equations are listed

in the last part of Appendix D.

3.1. Renormalisation Group Equations

It is interesting to notice that the RGE have a “modularity” character, in the sense

that at 1-loop we have (formally)

6(gauge) = gauge
6(yukawa) = gauge, yukawa

§(n) = gauge, yukawa, p
while for the soft terms

§(M) = gauge, M
§(A) = gauge, yukawa, M, A
§(B) = gauge, yukawa, M, A

§(m?) = gauge, yukawa, M, A. m?

Let us stress in particular that it is possible to study the gauge coupling renormalisation
alone, but its study is in any case needed to proceed. The analysis of the parameters
can be arranged in order of increasing number of RGE involved: gauge couplings (and
gaugino masses); Yukawa couplings (and p); A, B parameters; soft masses m?. This is
reflected in the order of topics of the present Chapter: gauge coupling unification; quark
and lepton masses; complex parameters; masses of the scalar sector, (in particular Higgs

potential).



A possible objection is that for more sophisticated studies of the MSSM the “mod-
ularity” must be abandoned; for instance when considering threshold effects, the m?
parameters could be “felt” yet by gauge couplings through the sparticles masses (similar
is the case of 2-loop Yukawa couplings modifications of the gauge couplings running). In
any case the simpler program of analysis above described is needed as a first step; if not
conceptually, from the point of view of the practical approach. In fact I believe that this
refinements should be judged case by case, since, from the phenomenological side, some
of the parameters are totally unknown at present; the judgement should also consider the

significance of these refinements in the whole theoretical picture.

3.2.  Unification of the gauge couplings
. 3.2.1. Prediction of one gauge coupling constant

Let us consider the simple gauge unification group &, which undergoes a SSB at the
scale Mgyr. When studying processes in which the typical momenta ¢ are larger than
Mgy, the theory is in the symmetric phase and it is described by a single (running) gauge

coupling constant.

The situation is different in the other regime, ¢ < Mgyr, when the spontaneous
symmetry breaking of the group G down to H = I; G; has taken place. The running of
the gauge coupling constant of subgroup G}, related to IVBs that have remained light, is
ruled by the fluctuations of the light particles only; this mechanism produces in general

different coupling constants below Mgye.

In this framework we can formulate the grand unification program for the gauge
coupling constants in the SM, or in the MSSM: evolving two gauge coupling constants,
their crossing point identify Ayyr and the value of the unified gauge coupling constant

Qgur; starting from this point, the third gauge coupling constant can be predicted.

Since the generators of the residual symmetry group are the same that in the unified
theory, they are normalized in the same way within each representation, in agreement with
the universality of the charge. So the gauge coupling constants of different subgroups must
be confronted after proper normalization of the generators. Specifically, in the context of
SU(5) grand unification (but also for S0O(10) and Fg), the SM hypercharge generator has
to be multiplied by +/3/5.
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3.2.2. 1-loop prediction

Integrating the 1-loop RGEs® we arrive to the prediction:

it by = g (34 %) + (10 - %) ] (3.1)

a3

where ng is the (even) number of Higgs doublets that we assume. The fact that in
supersymmetry we have fermions and scalars in the same supermultiplet implies a strong

dependence on ng. Using the experimental inputs[16]:

—L_ = 127.9+£0.1
Q(Alz) (3.2)
as(Mz) = 0.12£0.01
we derive
sin? Q;‘V(AIZ) =0.230,0.252, ... £0.003 for ng = 2,4,... (3.3)
where the errors come mainly from as; the SUSY SM with ng = 2 is noticeably in

agreement with the experimental value:

sin? Oy (Mz) = 0.2324 £ 0.0003. (3.4)

~ Also the unification mass in the MSSM«s SU(5) GUT scheme (at variance with the
non SUSY SU(5)) is large enough to agree with the the negative searches for decay of the

proton; in fact
Maur = 2.4 x 10%6,1.2 x 1015, ... for ng = 2,4, . (3.5)

This results are obtained using the central values of eq. (3.2). The inclusion of the error

in a3 can double or halve the prediction on Mgyr.

3.2.3. Refining the 1-loop predictions

Even if the large error on as seems to swamp out the sensitivity of the predictions to
a closer analysis, it is good policy to know and to keep under control finer details of the
theory, also in view of better determinations of the strong coupling. Moreover to clearly
diéentangle the two issues (theoretical and experimental progresses), recent papers on the

subject quote the prediction of the strong coupling os.

5The 3 functions for the gauge coupling can be found in Appendix B.
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We begin the analysis modifying the I-loop formula for the running, by adding cor-

rection terms as follows (defining 7' = +=1In ‘—5\%’—1)

= 077 f AT Alw Aok D psUSYp i=1,23  (3.6)

2 Qgur

The term 6; in the previous equation is due to the 2-loop gauge coupling effects;
consistently with the order of the approximation we can derive an analytical expression

in which the 1-loop formula is modified by log(1-loop) terms. The result for 6 is

b;; g
Hi — i GUT 3.>-
; dmb; " ( a; ) e

At 2-loop level also the Yukawa couplings enters the gauge coupling evolution; notice the

estimation of this effect depends on tan 3. The term A®™ is the conversion factor to
the renormalisation scheme DR, that is a modification of the 't Hooft-Veltman scheme
in which the y matrix and the metric tensor are kept in 4 dimensions. Its use is due to
the fact that supersymmetry is specific to the 4 dimensions. The third correction term in
eq. (3.6) is a sum of two contributions: the first is due to the spread of supersymmetric
particles above the My scale (low energy thresholds effect). Their collective effect can be

described as a “SUSY deficit” in the range between Mz and M,

SUSY 1 M;
ASUSY _ = (1SUSY SM 3
A 27 (0 — b )n ( UZ> (3.8)

where the mass M; is a geometrical average of the various thresholds, weighted propor- -

0]

tionally to their contributions to the beta function of the i*"-gauge coupling. The second
contribution to A" is due to the top, since the value of sin29W(ﬂ~[ 7) 1s extracted from
the experimental data assuming a reference value of the top mass (in formula (3.4) the
value m; = 138 GeV is assumed). The residual error is due to systematics and to the
uncertainty on the value of the Higgs mass. The last term is the high energy thresholds
effect, that brings in a dependence of predictions on the spectrum of particles at the GUT
scale, whose impact on the prediction can be analyzed similarly to that of low energy
SUSY particles. We will assume for concreteness the spectrum of Georgi SU/(5) : the
vector superfield V, charged triplets of color; the physical Higgs @ in the adjoint repre-
sentation; the 7" and T triplets, that appear together with the two hght higgs doublets in

the symmetric phase.

The result of the previous analysis can be summarized with the following formula:

-

o . . .
3 = ; 1+ da loYa%
“s 15 Sillz Hyv — 3( + as & Q)
28a?
0.012 3.9
+ + (60 sin? Gy — 3)?m (3.9)
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where the first line stays for the 1-loop results; the first term in the second line is the

effect of the “pure” two-loop term, and the other corrections have been summarized in A:

Msusy ) My My
A=1-191 ( >+181 _Mr +H(—_——> 3.10
M " ( o M2 M@) My (340

The unit constant is the effect of the conversion from M5 to DR, the rest are threshold

effects; in particular Msysy is a function, through the masses M; defined in formulae
(3.8), of the individual supersymmetric thresholds; the function H(x) includes the top
effects:

H(z)=47.3(a* = 1)+ 7.60Inx + 3.89 (3.11)

Let us assume that the top mass is in the range 140190 GeV; suppose also that the
logarithm that describes the low energy threshold effects is smaller than two in module
(this is implied if the supersymmetric spectrum does not exceed the TeV scale); estimate

that the logarithm of the GUT masses have the same size.

The predictions take the following form:

-+0.003

az(Mz) =0.128 & 0.001 + (i0.00E) + 0.005) (3.12)

—0.004

where the central value is for m; = 170 GeV, Msysy = Mz and no GUT threshold effects;
the first uncertainty reflects the experimental uncertainty on sin? By. Those in brackets

are theoretical uncertainties, that is: sparticles, top and GUT scale threshold corrections.

The accord with the experimental determinations of az 1s fairly good and may be
interpreted as a success of SUSY grand unification. The theoretical uncertainties and the
experimental error on as are of similar sizes; this fact points to the need of both better
experimental inputs and theoretical improvements, in view of a finer test of the SUSY
SU(5) theory.

Let us discuss finally the “trends” of the prediction. The predicted values of as

decreases if 1) Msysy > Mz, i) my < 170 GeV, i) Mr <

_ ¢ MEMg. To discuss
properly the first feature we clearly wait for experimental (115COV61‘§' of SUSY particles,
but indirect constraints can help. The second feature is at present interesting, in view of
the possibility of a refinement of the experimental determinations of the top mass at CDF
and at LEP. The control of the prediction is weaker for what matter the last contribution,
but in any case it involves the mass of the higgs triplet, which may play a crucial role

for proton decay in SUSY GUT, through effective dimension 5 operators, if lighter than
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10'% GeV : in other words also GUT thresholds could be~to a certain extent—constrained

by experiments.

3.3. Fermion masses
3.3.1. The IR quasi fixed point of the top Yukawa coupling

1. Top Yukawa coupling evolution

The top coupling evolution is substantially independent on the other Yukawa coupling

constants if the value of tan3 is small, say less than 10. Defining

HT) = yl(_T) (3.13)

where T' = 1/2r log(Msyur/q) the top evolution is determined by

i(T) = (B T) — 6 4T)) {T) 1)
1(0) = tg
The integration of equation (3.14) gives us
{T) = teEu(T) (3.15)

The function £,(T") summarizes the effect of the gauge coupling constants on the top run-
ning, namely we have F,(T) = Hi(aGUT/a;)bf‘/b"; its integral is the function F,(T"). A useful
auxiliary function is the denominator of the previous expression, Dy(7T) = 1+ 6 tgFu(T).

that allows to express t(1") as a derivative: t = (log D;)'/6.

The definition of the IR quasi fixed point (sometimes termed “pseudo-fixed point”)

of the top [17] is obtained by letting formally ¢tg — oco®

IRy Eu(T) : -
t (T)————~—~—6 F.(T) (3.16)

This limit is physically interesting for the reason that the second term of the denominator
of eq. (3.15) is large with respect to the first, even for moderate t¢; namely, since F,(Tz) ~

23, where Tz = 1/27 log(Mgvr /Mz), it is enough to have t¢ = 0.1.

®The curve for which the beta function is zero, that is the textbook definition of fixed point, is less
interesting for phenomenological applications, but in this case, for T' ~ Tz, the two definitions give similar

results.
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From the previous considerations we understand the behaviour of a class of solutions
of the top RGE: each RG trajectory starting at Meayr with large values of tg “converges”
toward the value t™ at lower energies. This gives in a sense a dynamical determination

of the value of the top Yukawa coupling.

Alternatively we can look at the IR fixed point curve as the bound of the region
in which the perturbativity approach can be pursued. This is most usefully done in the

plane (M;,tang) (for large values of tanf the contributions of the other Yukawa couplings

must be included, since the possibility of them to be large must be considered).

The value of the parameter tg could be worked out formally comparing t(Tz) and

#®(T) (t and ™ for short). But from the formula for the ratio t/t™:

3 = 6tGFu

= 3.17
R D, (3 ‘)

useful for following considerations, we derive tg ~ (1 —t/ t®)~1, that is an instability of

this value. The UV instability is nothing more than the other face of the IR stability.”

Why so much attention to the parameter tg? The point is that it plays a key
(indirect) role in the low energy supergravity models, influencing the evolution of the
other parameters under renormalisation group. In the rest of this Chapter we will discuss
the reasons why large values of tg are welcomed and also to a certain extent expected in .

this kind of models.
9. “Determination” of tan /3

The recent determination of the top mass, [18]:

M, =174+10 7 GeV (3.18)

—-12

allows to derive semi-quantitative (but crucially important) implications of this scenario.

The IR quasi fixed point corresponds to have:
M® = (200 &+ 10) sin? GeV / (3.19)

where the variation is due to a;(Mz) = 0.12-40.01; in the last formula 2-loops effects, that
corresponds to an upward shift of ~ 5 %, are included. This means that if this picture

is correct, that is if tg is large, we are able to determine the value of tan 3, namely for

TFor the actual computation of the ratio /t'™ the measurement of the top mass is not sufficient: the

determination of M]® requires the knowledge of tan 3 as discussed below.
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the central value of the top mass tan 8 = 1.5 + 2.3. It goes without saying that a better
determination of the top mass is needed; but let us remark that lower values of the top

mass are preferred by the analysis of the electroweak precision measurements.

3.3.2. Bottom-Tau Unification

1. Introduction

The unification of fermion masses, and in particular the masses of b—quark and

T—lepton [19] at the scale Mgur where the gauge coupling unify,
my(Maur) = m, (Mgyr) (3.20)

1s one of crucial issues of the Grand Unification. ‘This relation is not only characteristic
of SU(5), with 5-plets of higgs originating the masses via a renormalisable operator: it

holds also in SO(10) and in Es with Higgs 10-plets and 27-plets respectively.

In any case this issue is more model dependent than gauge coupling unification,
entailing the specific particle content in the theory. For this reason the study of the
implications of this relation are physically meaningful in the MSSM, in which this part of

the grand unification program can be successfully addressed.

Let me describe the procedure adopted. The parameters involved in the study are
the Yukawa couplings of the third generation and tanf. The three mass parameters re-
lated to the Yukawa couplings are constrained by the experiment, so that we have three
experimental informations (considering known the top mass). In this way, enforcing the
equality of y, and y, at the GUT scale, we can fit all the parameters, or (eventually) we

can discard the model (in fact the parameters are known only within the experimental

errors, and the theoretical sources of uncertainties should be taken into account). More

informations on technical details are presented in Appendix C.
2. Yukawa RGE

Since the mixing angles with the third family are small, and because of the hierarchy
of the Yukawa couplings, the effect of flavour mixing can be neglected: we can consider

the renormalisation effects of particles from the third family only.

It is convenient to write the renormalisation group equation (RGE) for the couplings:

_ %

Qp =
47

(x=1t,b7), (3.21)
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being the analogous of the gauge coupling constants. In terms of a, the masses of the

quarks and leptons at the ZO-mass scale can be written as:

e, (Mz) = yfAmou (M2 )ﬁ_—%ﬂﬁv
my,(Mz) = 4”“’>7T<Z\Jz)ﬁv°

Here v = /v + v3.

Applying, for instance, the method of the effective potential of ref. [7], one finds the

RGE for the couplings a.:

R (Z bi a; — 6oy — o)y (3.23)
a, = (Z bil a; — bap — o — o) : - (3.24)
o = Qb ai—dar — 3ap) e, » (3.25)

The signs in the eqs. (3.23-3.25) reflect the fact that during the evolution from the high to

the low energy scale, the effect of the gauge coupling constants is to increase the Yukawa

couplings, while the effect of the Yukawa itself is opposite.

Using (3.23-3.25) one derives the RGE for the mass ratio:

mp

SO(b — bL) i = 3(an — ay) — at> (——) : (3.26)

<mb)’ _ l
M 2 my

The coefficient 1/2 reflects that m ~ J/a. The following conclusions can be drawn from

3

eq. (3.26) immediately. (i) The increase of oy, or of ay tend to decrease the ratio. This
is a key ingredient to achieve the b — 7 unification. (i¢) The gauge coupling a; works in
opposite direction: the predicted value of the my/m, ratio increases with a,. (i17) The
tau lepton gives only a partial compensation of the bottom effect, since in this case there

is a factor 3 of enhancement (this is relevant for large tan 3 only).
3. Perturbative b — 7 unification

The system egs. (3.23-3.25) allows the study in the whole range of tan /3 of the
perturbativity condition of the Yukawa couplings, that is the requirement that the Yukawa
couplings stay perturbative (this study completes the treatment of the low tan /3 region
done in previous section). The results are usefully presented in the plane (m, tan 3), in

which at each point corresponds a certain value of the Yukawa couplings at the grand
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unification scale®. The curve of points in which they diverge marks the region in which
the perturbative approach is valid; above this line the mass m, blows up before grand
unification scale. The increase of gauge coupling a;, results in a decrease of the a; at large
scales, and consequently, relaxes the divergency bound on m;(Mz). The Yukawa couplings
have an opposite effect. This causes the bending of the curves for large values of tan /3
(according to egs. (3.23-3.25) an increase of tan § corresponds to increase of the bottom

coupling «y).

The b — 7 unification curves lie very close to the divergency lines especially for low
values of tan 3. This fact means that the ratio m; /m; has to be dumped substantially by
Yukawa renormalisation effects to achieve experimentally acceptable values. In fact for
large values of the strong coupling constant, a, = 0.125, it is possible that the unifica-
tion and the divergency curves meet in a point, denying the possibility of perturbative

unification for a certain range of values of tan 3 (namely lower values).

For relatively small values of tan 3. in the same approximation of eq. (3.14), it is

possible to write the explicit expression for the mass ratio:

me A E (T7) 12 1 o e
= (= , 3.2
m, 12) <EE(TZ)> DT, (3.21)

where the renormalisation effect of the top Yukawa coupling is summarized in the functions

Dy, while the three functions E, describe the gauge interaction effects:

bi/b;
Qgur
EIT :H,‘ — ;TZ',ZG 3.28
For tan 8 < 10 the approximate solution coincides with the result of numerical integration

of the system (3.23-3.25) within few percent.

Let us come to conclusions and comment. The main result is that b — 7 unification

is possible, but at the large Yukawa coupling of top (and/or of bottom) quark only, so

that the renormalisation effect due to the Yukawa interaction appreciably suppresses the
value of my at low scale [20]. This issue is particularly interesting at present. since in this
context we have the possibility to predict the value of tan 3 from the mass of the top.
Moreover, from the theoretical point of view it furnishes physical motivations to consider

seriously the IR fixed point scenario for the top quark.

8From the point of view of the procedure this problem is equivalent to b — 7 unification, once the
maximum value of the Yukawa coupling at the GUT scale is stated, that is once we have an input at the

GUT scale. The actual procedure I adopted is discussed in Appendix C.
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3.3.3. Massive neutrinos in SUSY GUT

1. Introduction

Studies of the solar, atmospheric, as well as relic (hot dark matter, large scale struc-
ture of the universe) neutrinos give some hints of the existence of nonzero neutrino masses
[21]. The required values of masses can be naturally generated by the see-saw mech-
anism [22] if the Majorana masses of the RH neutrinos are at the intermediate scale:
Mg ~ (10" —10"?) GeV. In particular, for the tau neutrino to be in the cosmologically

interesting domain, m, ~ 3 — 10 eV, one needs

Mg < m?/m, ~ 10" GeV. (3.29)

The same scale of masses 1s required by mechanism of the baryon asymmetry gener-
ation based on the decay of the RH neutrinos [23]. Much lower masses: Mg < 10" GeV,
are implied by the Primordial nucleosynthesis in the supersymmetric models with spon-

taneous violation of lepton number [24].

‘The possibility of having a scale Mg much lower than the GUT scale is particularly
interesting when considering renormalisation group effects in the region of momenta Mg <
g < Mgur, that is when neutrinos are coupled to the other particles [25]. In the following
analysis the Yukawa coupling of the neutrino are not supposed to be small, being related
naturally to the up quarks Yukawa couplings in such schemes. This entails naturally the
possibility of large renormalisation effects not only on the tau neutrino Yukawa itself, but
also, indirectly, on the other parameters of the theory®. We will discuss in the following

the impact of these considerations in the prediction of the b — 7 mass ratio.
9. Renormalisation Group Equations with RH neutrinos

The renormalisation group equations are easily computed with the method of the

effective potential. The system eqs. (3.23-3.25) is modified in the following manner:

af = (b, ai—bar—ap—au Or)oe . (3.30)
ap = (b ai=6a —ar—ar)a (3.31)
o, = (b, ai—day, Op—ar - 3as) . (3.32)

9The right-handed neutrinos, being gauge singlets, do not influence the gauge coupling constants

evolution at 1-loop level; the 2-loop effect is estimated to be small.
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—ﬂ

of = (Z by ai —4a; — o, Or — 3a)ar, (3.33)

where Og(T') is the step function 8(T'—Tg), which describes the effect of the vz decoupling

At Mgyr = Mp the system reduces to the system eqs. (3.23-3.25), decoupled from the
neutrino influence, but influencing the evolution of the neutrino itself. It is worthwhile to
notice that this evolution coincides with that of the mass operator, in the supersymmetric

case, found recently in [26].
3. Large neutrino Yukawa coupling and b — 7 unification

Using (3.30-3.33), or also, modifying formula (3.26) keeping into account the quark-

lepton symmetry of the lagrangian, one finds the RGE for the mass ratio:

() -1 (z(bg —8) @i — 3y — ar) — (o — o, 0R)> (2). e

m, - My

p4

The neutrino renormalisation results in increase of my/m,. Therefore to achieve the
mass unification one should take even larger values of oy to compensate the effects of

neutrino. To quantify the effect we assume in the following that at the GUT scale
yt(ﬁ;[GUT) = Yo, (]UGUT) (335) V
This relation holds for instance in SO(10) GUT schemes if only Higgs ten-plets give mass

to the third family.

Let us first review the perturbativity region in the (tan 3, m;)-plane. Fig. 1 shows
clearly that the effect of the right-handed neutrinos is that of reducing the allowed pa-
rameter space, or in other words to lower the value of the IR quasi fixed point. This effect
is numerically of the same order of magnitude of that due to ranging a, up to lowest

allowed values (discussed in previous section).

Fig. 2 shows the unification curves in the same plane. For RH masses in the cos-
mologically interesting range. these curves extend for large values of tan 2 only; it is still
possible to realize b — 7 mass unification, but not at low values of tan 3. This is due to
the fact that the unification curves meet for a certain value of tan 3 the perturbativity

curves, that is they exit from the perturbativity domain. An alternative point of view

19Tt is suggested that the effect of flavour mixing is negligible, and there is a hierarchy of the Yukawa

couplings, so that the renormalisation effects of particles from the third family is important only.
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is the following: the predicted value of the mass ratio is expected to be a decreasing
function of a;(Mgur); its steepness must diminish if neutrino renormalisation effects are
considered. This is presented in Fig. 3, where a comparison with the experimental value
is also made. We remark also that in the same manner as for eq. (3.27), it is possible
to devise an analytic expression of the ratio that, in the low tan 3 region, encodes the

neutrino renormalisation effects:

my BT\ Do (To)?
M (1) = (T7) o Zz -, (3.36)
mr E.(Tz)). Du(Tz)"
where the function D, is defined as:
N NS

EV(T)‘ - HJ;(;;(O)) o
E,(T) = Dt("T()l)/Q (3.37)
D,.(T) = 14+4a,(0) fy E.(2) fr(e) dv

For tan B < 10 the approximate solution eq. (3.36) coincides with the results of the

numerical integration of egs. (3.30-3.33) within 2 < 3%.

Finally we present in Fig. 4 the boundaries of the regions, in the plane (tan 3, M R)s
in which perturbative unification can be realized. The lower bounds on tan (and Mrg)
are obtained from the b — 7 unification condition (1\/[{,’016 < 5.2 GeV) and the convergency
limit for a; for different values of as. Let us remark a strong dependence of this result on

the strong coupling constant.
4. Prediction of tau neutrino mass

As a final issue we quote the prediction of the neutrino mass at m; = 174 £ 10 GeV :

12
m,, = (10%33) eV (QE%X) (3.38)

In previous formula tan /3 is supposed to be large. consistently with perturbative b—r

unification also for lower values of Mg.

An approximate analytical expression can be still derived:

E,(Tz) Di(Tz)'/* mi

3.39
E.Tz) D,.(Tz) Mr ( )

m,, =

the effect of gauge couplings renormalisation is ~ 0.145 F 0.01 for as(Mz) = 0.120 &=

0.005. That due to Yukawa renormalisation (top and tau neutrino together) amounts to
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a factor larger than two'!. For largest m; allowed in the model we find that the Yukawa

contribution is ~ 3 at Ay = 107*Mgyr; and ~ 8 for a decoupled neutrino, Mg = Myr.

The conclusions of this long section are the following. The presence of right-handed
neutrinos with masses in the intermediate region disfavours b — 7 unification, especially
at low tan 3 (in particular the IR quasi fixed point region). It is important to know if this
is the case, since this may testify for large GUT threshold effects, or even the absence of
b— 7 unification, but in any case non-trivial modifications of the assumptions considered.
The answer could come from experiments [27] projected for the observation of vy — Vs

neutrinos oscillation.

3.3.4.  Renormalisation group evolution of the mixing matrix

Let us first write the renormalisation group equations for the Yukawa matrix in full

matrix form. In analogy with the gauge couplings «; we define the matrices

ap = -4%1;-};1’ x=U, D, E (3.40)

A simple computation gives us:
dv = by a;i ay — 3o} — tr(3av) ay — %{acr,ap} - (3.41)
ap = by a; ap —3ab — tr(3ap + ag) ap — %{cm,ap} (3.42)

Notice that with this choice it is apparent that only the “left” matrices Ly;, Lp, defined

in eq. (2.21), matter in the Yukawa evolution:

ay = L}; diag(U) Ly (3.43)
ap = L}, diag(D) Lp (3.44)

where in passing I set the notation for 7 and D, useful in the following

diag(17) = l—l_ (3.45)
diag(D) = i% : (3.46)

that is U} = oy, Uy = a.. ete. . In fact the previous RGEs still contain non-physical
informations, since only the combination A = Ly LB, the Cabibbo-IKobayashi-Maskawa

matrix, is observable (up to rephasing invariance).

1¥or solutions corresponding to low value of tan /3, when they exist, the Yukawa contributions is

approximatively doubled.




It is in fact possible to derive a simple renor malisation group equation for the physical
variables only [28], [29] (even if it is possible to work with ~in present context— unphysical

Yukawa matrices: [30], [31]). We first write eq. (3.43) in the useful form
U= Ly av Li; (3.47)

Then we derive this equation with respect to T and use eq. (3.41). Considering the
diagonal matrix elements we find the evolution of the elements U,,
= (b ai =3 Uy =32 Us — 3 | Kap"Ds) Ua (3.43)
b b
while the out-of-diagonal elements give informations on the Ly evolution:

. 1 U, +Ub I
(LuLi)ar = 5 A (IxDIxT)a,b (3.49)

In eq. (3.41) only the anticommutator term gives rise to an evolution of the matrix
structure; this tracks back the origin of the factor 1/2 in previous equation. These steps

can be repeated for eq. (3.44).

The only information that we can get for the diagonal elements (ALxI-)L)M (x=U, D)
is that they are pure imaginary numbers, as it results from unitarity of L. In any case
this is enough to perform the last step, that is to derive the RGE for the squares | K|

(obviously rephasing invariant quantities) by direct computation:

Kl = (U7~ Z |Ks|*U. + Df — Z lKac\ZDc) | Kas|”
DgVac,ap — > UcVacun (3.50)
- Trowy )

The rephasing invariant Vaepd, termed also “quartet” is defined:
V;;c,db = I&’adfi’;‘dlfcbﬁ':b + h.c. (3.51)

In the case of three families it can be expressed as a simple function of | K% It is

noticeable that an element which is zero does not change under RG evolution.

It is particularly useful to reduce this formula taking into account the strong hierar-
chies Uy < Uy < Us, Dy < Dy € D3. Neglecting all but the third family couplings in the
right-hand side, and neglecting terms O(|Ky3|?) with respect to 1 a strong simplification

takes place:

lI\;.b|2 = { (at - ab) I*Kab‘z if ((L,b) = (173)7 (273)7 (372)': (1’3)

(3.52)
0 otherwise
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where we come back to the notation U = o, D3 = ay. This means that only the elements
connected to the third family evolve in this approximation. This can still be recast in a

more striking form resorting to the notations of Wolfenstein:

A= (@t A (3.53)
A= o0 (3.54)
p=0 (3.55)
no= 0 (3.56)

Three final observations: 1) for comparison with experiments the set of variables

. [ W] and the J arlskog parameter J of CP violation (whose

most useful is Ny, | Ny |/| K
evolution is easily found from J ~ A2)%y): in the approximation considered only the latter
two evolve; 2) these RGEs are of the same form of the Yukawa, RGEs, eqgs. (3.23-3.25):
only the Yukawa contributions are present, but in this case they enhance the mixings at
low momenta (would we have studied the evolution in the oM, we would have found an
opposite behaviour) 3) in the low tan 3 region the equations can be solved analytically;

1/12

in this second form A(7%z) = A(Tgur) D2

The real problem in giving predictions for the mixing matrices is in fact that of
assigning the GUT scale conditions on the mixing elements. This is at moment one really
interesting field of researches. but the approaches are very far one another. For instance it
has been proposed that some entries in the Yukawa matrices are zero as result of discrete
flavour symmetries in the GUT scale lagrangian; and also that all the Yukawa interactions
involving the light particles result from non-renormalisable interactions dictated by Planck
scale physics. We will not push further this study in this thesis, but simply quote the
interesting trend of the predictions, for which | Kus|/| e | tends to lie in the lower part of

the experimentally allowed range, whereas || follows the converse trend.

3.4. Complex parameters in the MSSM

The most conservative and natural assumption for CP violation in the soft sector is
that the two phases in eq. (2.27) vanish identically at the GUT scale. This could be due to
CP conservation in the sector responsible for SUSY breaking. However this case requires
a closer analysis, since an independent source of C'P violation (the CIXM phase) is present

in the model and it is involved in the renormalisation of the soft breaking parameters [32].
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3.4.1. Renormalisation group equations

The phases of the gaugino masses and of the parameter y do not evolve under renor-

malisation group, since the variation of these parameter is of the form

m = R(g,Y) -m (3.57)

7

where R is a real function involving the gauge and the Yukawa couplings (the Yukawa
enter as traces of hermitian combinations). In particular this implies that, in the case at
hand

sign(p), sign(p;) are RG — invariant (3.58)
o we concentrate the study on the coupled system of the Yukawa couplings Y; and of

the massive couplings Y;* and B.

It is worthwhile to use the following definition (x=D, EorU):

A, =YA 0] (3.59)
useful in measuring the mismatch between Y and Y;. Using the scale
T = o log( . ) (3.60)
we derive the following RGE:
Ap = — (3asM;+3a3My)I
— Tr(Agog + 3ADQ’D)I
— (5QEAE + AEa‘E)/Q
AU = - (l—;’:a31\-13 -+ 30‘211\42 + 1—933(,\1]\1[1)1
- Tl‘(3AUaU)I
— (BQ'UAU + Apay + apAu — Apap + QADCYD)/Q (361)
AD = - (1‘3@‘@31\[3 + 30’2]\{2 + -;I;Ollj\fl)l

—  Tr(Agag + 3Apap)!
— (5apAp + Apap +avAp — Apar + 24var)/2
B = — (3a3Mz+ a1M)
— Tr(Agag +34Apap + 3Avar)
The A, are a-priori generic 3 X 3 matrices, and the form of the initial conditions can be

rewritten as:

M; = Mg
A, = Agl
B = Bg (3.62)



Notice that since the system is linear one can study independently the two cases
a) Mg = 0, Ag # 0 and b) Mg # 0, Ag = 0. In particular the Ag contribution is
renormalised by Yukawa couplings only. The GUT value for B, namely Bg, is always

additive,

3.4.2.  Numerical analysis of the solutions

The study of this system has been performed with numerical techniques. The result
is that for any choice of the parameters at the GUT scale and of the Yukawa couplings
at the low scale the only complex entries of the matrix Ap p are the off-diagonal ones,
and that those matrices are hermitian up to a part per 103 — 10~ (clearly, since there
1s no source of lepton number violation in this model the Ar matrix remains diagonal).
The complex elements obey to the approximate hierarchy | Ays|/|A1z| ~ |Ass|/|A1s] ~ 10.
‘Their behaviour with'tan P is interesting. For small values of tan 3, the Ap;; are larger
but decrease up to tan § ~ 5, then they stay approximatively constant; the A are very
small for small tan 3, then they increase roughly as tan 42. This is due to the fact that
the evolution of the Ap off-diagonal elements is driven by to up Yukawa couplings, while

the down Yukawa elements drive the evolution of the Ap.

An important conclusion is that the hypothesis of CP conservation at the GUT scale -

implies the reality of the diagonal elements of the ¥* matrices, that are the larger ones;
the only induced CP violating terms change the flavour of the squarks (in a sense there
is a link between CP and the flavour changing phenomena). These last terms enter
the interactions of the squarks with the higgs scalars, but also the L-R squark mass
term, as in eq. (2.34). As such the processes involving squarks exchange are important
in the determination of the phenomenology of the C'P violation in the supersymmetric
standard model; we will come back on this issue in the last Chapter, when studying the

supersymmetric contributions to the electric dipole moments of elementary particles.

3.5. Large Top Yukawa Coupling and Radiative SSB

The discussion of the spontaneous symmetry breaking (SSB) of the electroweak sym-
metry through radiative corrections requires the study of the full system of RGE. Deep
insight on the nature of the phenomenon can be obtained studying the system in the

approximation in which the gauge couplings and the top Yukawa coupling only drive the
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equations, since analytical formulae can be in this case derived [33]: even if the mechanism
of radiative electroweak symmetry is general, it is much less apparent when studied with
numerical techniques only. In this section we will work out the analytic approximation,

paying particular attention to the case in which the top is close to the IR fixed point.

3.5.1. The evolution of the massive parameters

At 1-loop order the gauge couplings ; and the gaugino masses [M; can be treated as
forcing terms in the other RGEs. The analytic integrals can be easily written with the
help of the auxiliary functions Iy (T), where v = u, dye i, QU H:

N. _ arN bas,i
/ Y bejeid = ME T

= Afg L\r,lr

In(agyr/ei) N =0
L(i/aaur)” N > 0 (3.63)

After showing the structure of the integrals I will come back to the notations of eq. (3.15).

Let us rewrite the integral top integral with this new notations:

t = tG eXp(IO,u)
1+6te fexp(low)

1
The supersymmetric mass parameter i has the same kind of RGE of the b and 7 Yukawa

couplings: \
exp(lo./2) (3.65)

f= 16— pi/a

For the RGE of A; (and of m?) in which ¢ enters as forcing term it is useful to
follow this procedure of integration: first, to isolate the i depending part, to arrive at
the form y' = 6t(F — y) (where F'is a known function), whose formal integral is y =
1/D [yo+J FdD]. Second, to extract the dependence on t¢ reconstructing in the function
F the derivative with respect to D of the function ([ I, dD)/D -or of ([ I, dD)?*/D)-

whenever needed.

The expressions obtained for the A and B RGEs integrals are

Ag 6t
At = “DCI' - AIG [Il,u - "‘])E'/GXP(IO,U.)II,LL} (366)

3t X u Jta -
B = Bo-Ased e;P(I”’ ) Mg (IW- %9 / exp(fo,u)fl,u) (3.67)




The three equations for m3,,mf, ,m}, can be decoupled,

my, = mg+ M g — é%f (3.68)
szs = mit+ ME Ly — 6%? (3.69)
my = mi+ M2 Ly — 57;7'2 (3.70)
and the term §m®, a pure top renormalisation effect reads:
§m? = 3771%-—————————~6tg I?P fo. + AL ————————-——6tG fle;'p Tou — 24AcMa bl fexggfo,u)h,u
e Gthexp(]o,u;)(Q Ly +17,) B (Gtc;fexpl()_fo,u)fl,,,)QJ (3.71)

(Tused Ing+ Iy + Ing =2 Iy, in the last line).

It is particularly interesting to study the case in which the top is close to the IR quasi
fixed point (that is the formal limit g — o). To this end we notice that the dependence
on tg comes together with the factor 1/D, so that it is possible to eliminate both t¢ and

D using formula eq. (3.17). We can rewrite the previous set of integrals in a suggestive

form:
‘ t 1/4 _
i = pe exp(lo,/2) (1 - -t——I-g) (3.72)
t t o oy
Ay = Ag (1 - ;ﬂ;) — Mg [Il,u - FEGUJ (3.73)
Ag t t G, _
B = B(;——?:‘ ;IE_.AIG {]1““_—751_R—2—} (314)
2
my, = m&+ME Lo — @g—— (3.75)
2
m%fs = m&i+ MZ Ly — fs%— (3.76)
2
772;‘);12 = m§+ M2 Ly — ﬁ;—]—— (3.77)
where
om? = t 3 m2 1 f AZ, — 24 G
m = —t—ff—t 3 M -+ — tI_R (‘ G T AAGdlg —711.)
t ’ -~
+ M2 (H — ?I;U)} (3.78)
The two functions G,(T') and H,(T) that have been introduced are defined as:
G feXP(IOV,u.)Il,u (3 79)
b feXp(.]O,u)
H feXP(IO,u)(2 I2,u + Ilz,u) (3 80)
¢ Jexp(lo,) RS
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(as a matter of fact G, can be expressed as TE,/F.— 1). The approximate numerical

values at T =Tz ~ 5.3

| )

exp(Io,u)\’ ~
exp(lon) ~ 19

L, ~ 06
L ~ 42
Lo ~ 7.2
Ly ~ 6.1
Ly ~ 05
F, ~ 23
Go ~ 22
H, ~ 14

In the limiting case t — t'™ any reference to Ag and to Bg disappears, but in the equation
for B itself (the parameter for the bilinear Higgs coupling), where the specific combination
Bg — Ag/2 enters. This is a typical IR fixed point behaviour: in the same manner in
which the top Yukawa coupling remains determined, whichever the value of tg is, the
massive couplings become insensitive to some initial conditions, namely to Ag or to Ba

separately!?.

3.5.2. Radiative Electroweak Symmetry Breaking

An exciting possibility that derives from egs. (3.68-3.70) is that m};, only be driven
negative, by the larger coefficient with which the negative top contribution enters (and
by the fact that the gauge contribution for hq, that is M2 Io g, 18 much smaller than the
corresponding other two. This has attracted a lot of attention on these kind of model,
since in a sense the SUSY SM supplemented with the the soft breaking terms has a built-in

mechanism to explain the breaking of the gauge symmetry.
1. The Z mass as a function of the SUSY masses

Clonsider the tree level Higgs potential in the MSSM:

2 1 ! ¢ 2 V a0
Vo = m2 Ry + m2|h9|? — (m3 KRS + h.c.) + —8-(g2 U |n91%)? (3.81)

12Formally the parameter p follows the same destine, but in practise it is much less influenced; €.g.
t/t'™ ~ 95 % implies w/ e ~ 70%.
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where the m} , (not necessarily positivel) and m? are
1

mi = my + i (3.82)
m; = my, + p? (3.83)
mi: = —Bpu (3.84)

As discussed previously the parameter m3 can always be chosen to be real; in fact, by
a proper choice of the sign of B (renormalised) can be chosen positive. Let us fix now
the angle § defined as in eq. (2.20). The location of the non-trivial extremum, expressed
with the parameters in the scalar potential is:
2 2
ms+ M5 /2 -
tan’s = __%j__g_/ (3.83)
m3 + M2 /2
) 2m?2 N
sin2f = —2 (3.86)

m% + m3

This conditions are sufficient to assure the SSB if the parameters respect two inequalities:

m% + mg > 2 m% (3.87)
m? m2 < (m2)? (3.88)

The first derives from the stability of the potential in the direction v; = vy, the second is

needed to exclude the symmetric vacuum.

Considering egs. (3.82-3.83) we can give a convenient alternative form to the condi-
tions expressed in eqs. (3.85-3.86):

, _ mi, —mp tan?B M2
o= , — (3.89)
tan?/3 — 1 2
m2 2 212 ,
B - _my + 7;2H2 +2p sin28 (3.90)
2

The first condition can be used to compute the value that is of . the second that of B. So
we succeed in the “net” elimination of 1 unknown parameter (tan 4 has been introduced).
essentially thank to the 3z mass condition!®. In fact the elimination can eventually be
performed for the GUT scale parameters. that is inserting in the minimization conditions
the results of the RGE scaling. The general conclusion is that the 5-dim parameter space 7
(G, A, Ba, Mg, m,) reduces to a 4-dim one, or to a 3-dim parameter space if a boundary

condition for By is taken into account.

13Notice in passing that the eq. (3.89), written in the form M7 = ..., requires upper bounds on the
supersymmetric massive parameters if large cancellations have to be avoided [34]; analogous bounds are

obtained if the lightest supersymmetric particle is the cold component of dark matter [35].
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Even more interesting is the specification of this result in the case of the IR quasi
fixed point scenario for the top quark: two parameters, for instance Mg and ma as in the
previous discussion, are sufficient to describe the spectrum and the interactions, without

the need to consider ansatzen for Bg.
2. 1-loop corrections

Tt has been shown that the 1-loop corrections to the Higgs potential are important
in determining the spectrum of the physical Higgs fields. For instance, from the potential
of eq. (3.81) one derives the important tree level prediction for the lighter neutral Higgs

particle h :

1 tan? 3 —1 ?
m; = 5 m? + m? — (m% + m?)? — 4mim? (m) (3.91)
where the CP odd scalar A has the mass:

m? = 771:;11 + m%? + 2u* (3.92)

Since m? is an increasing function of m4 and/or of tan f**, fixed the other variable, we

would conclude that my is in any case lighter than the Z boson.

The situation is particularly tough in the low tan 7 region, since the tree level bound -

reduces to
tan? f — 1

Mhmax =MZ T 273 L 1°
mas tan? g +1

Notice in passing that this s the case in the IR fixed point scenario, since low values of

(3.93)

tan B are selected; it is also interesting to observe that n this case the tree level bound is

actually saturated, due to the formal limit p — oo in formula (3.89) and to eq. (3.92).

Life is in fact easier for supersymmetrist: once radiative corrections are considered,
m? receives large corrections. More precisely, in the approximation 1n which only the top
and the two stops (in first approximation degenerate), that is the particles more strongly
coupled to the higgs, modify at 1-loop level the higgs 9-point function the correction terms
to eq. (3.93) have a very simple form:

w 3 :
512 e = 5 108 (37-—2) (3.94)

472 2 m;

141n fact this second property holds only if tan 8 > 1, that is needed if the top has to remain pertur-

bative; generic analysis of the model may release this constraint.
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This correction actually dominates on the tree level prediction on some regions of the
parameter space. Notice also that, at difference of the tree level contribution, it is inde-
pendent of tan f3; so the region in which my, is more strongly bound is still that of low tan /3.
This conclusion is confirmed by more complete analysis in which stop mixings are kept,
[36]; for instance if the IR fixed point scenario is correct, (and supposing M; < 170 GeV)
Mp,max ~ 100 GeV . This should allow LEP-200 to observé 1 higgs particle or to reject the
IR fixed point scenario'® that we recall is linked to the promising “low tan /3 solution” of

b — 7 unification.
3. The Effective Potential method

Having recalled the importance of 1-loop corrections for the physical spectrum, it is
easy to appreciate the fact that these corrections modify also the minimization conditions
eqs. (3.85-3.86). These are actually important when analysing the parameter space. So
we come back to the main subject, and describe a method to derive the correction terms
based on the Effective Potential. The resulting formulae are those used in the numerical

analysis described in next Chapter.

The 1-loop corrected scalar potential

V=V, £ AV (3.95)

1s the finite counterpart of the result (1.24), and can be expressed in general terms using
the generalized mass matrix M. Specifically in the AMS renormalisation scheme each
particle contributes according to
1 M? 3
AV = Str | M* [log—s — = 3.96
Gir? { (g@ >)] 390

where @) is the renormalisation scale. Let us stress that the Q-dependence of the la-

grangian is twofold; the explicit Q-dependence in the previous formula and the implicit
Q-dependence of the parameters of the lagrangian due to the renormalisation group evo-
lution; these two effects combine into a higher order dependence on @ of the resulting
effective lagrangian, and determine the greater stability of the predictions. Whenever
needed I will take ) = mz; the numerical results will include the 1-loop contributions of

the third family of quarks, leptons, squarks and sleptons.

The arguments exposed after eqs. (3.89-3.90) can be applied also for the 1-loop

15The same token applies to futuristic XXX-300 ete~ collider, but without restrictions on the top mass

and replacing “IR fixed point scenario” with “MSSM?”; see for instance [37].
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scalar potential, with the only proviso that the elimination of the parameters needs in the

general case the use of numerical techniques.

Finally let us remark that there are alternative ways to study the effects of the 1-loop
corrections. There is obviously the possibility of a full 1-loop analysis of the potential.
This method should be clearly the “first choice”, but at the same time it leads to very
complicated expressions. It has been used in very interesting phenomenological analysis
of the MSSM Higgs potential [37], but not yet in the more restrictive context of low energy
supergravity model. Then we shortly comment on the Renormalisation Group method.
Considering the case of the heavy coloured sparticles of a similar mass, we could integrate
them out from the theory at their threshold, and then consider the effects of the breaking
of supersymmetry using an extended form of the tree level potential of eq. (3.81), as we
would do in a two Higgs doublets extension of the standard model. This approach has
been pursued in ref. [38]; future null searches of supersymmetric particles could soften
the assumption that superparticles are not close to the Mz scale, even if at present this 4

could be questioned (hopefully by some experiment!).
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