ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

HYDROGEN IN SILICON:
A FIRST PRINCIPLES
MOLECULAR DYNAMICS STUDY

Thesis submitted for the degree of
“Doctor Philosophiz”

CANDIDATE SUPERVISORS
Francesco Buda Prof. Roberto Car
Prof. Michele Parrinello

December 1989

TRIESTE

e

g






International School for Advanced Studies
Trieste

HYDROGEN IN SILICON:
A FIRST PRINCIPLES
MOLECULAR DYNAMICS STUDY

Thesis submitted for the degree of
“Doctor Philosophia” -

CANDIDATE SUPERVISORS
Francesco Buda Prof. Roberto Car
Prof. Michele Parrinello

December 1989

VI






Contents

Introduction

1 The Car-Parrinello method

1.1 Introduction . . . v v v v v v v e e e e e e e

1.2 Minimization of the energy functional: the Born-Oppenheimer

SUTTACE & o v v v e e e e e e e e e e
1.2.1 Dynamical simulated annealing . . . . .. ...
1.3  Ab-initio Molecular Dynamics . . . . .« v o« ¢ o 0o
1.3.1 An illustrative application to ¢-Si . . . . . . . . .
1.3.2 Ab-initio MD for metallic systems . . . . . ...
1.4 Technical details for the implementation . . . . . . ...
1.4.1 Periodic boundary conditions and basis set
1.4.2 Brillouin Zone sampling: the use of I point . .
1.4.3 Core-Valence electrons interaction: first principles

pseudopotentials . . . . ...l

2 Thermodynamic properties of crystalline silicon
91 Introduction . . . . « o« o o oo
2.2 (Constant Pressure MD . . . . . . . . oo v oo oo
9.3  Structural T=0 properties and details of the calculation
2.4 Thermal expansion of ¢-Si . . . . . . o .o

25 CONCIUSIONS .« « v v v v v v v v e oo

10
13
15
17
17
18

20



3 H diffusion in c-Si

3.1 Existent results . . . . . .. ...
3.1.1 Experimental analysis and results. . . . . . ...
3.1.2 Theoretical approaches and results . . . . . . ..

3.2 Results of an ab-initio MD simulation . . ... ... ..

3.2.1 The SiH molecule: testing and checking the pa-
TAMEEEIS . .« + v v v v e e e e e e e e e e e e

3.2.2 Static results: details of the calculation and con-

vergence tests . . . . .. .. oo
3.2.3 Dynamical results . . . .. ... ...
3.2.4 Discussion and open questions . . ... .. ...

4 The structure of Hydrogenated Amorphous Silicon

4.1 Introduction. . . . . . .. .o oo
4.2 Short-rangeorder . . . . . .. ...
4.2.1 FExperimental probes for SRO . . . ... .. ...
4.3 Computer generation of an a-Si:H sample . . ... ...
4.4 SRO of simulated sample . .. ... .. .........
4.4.1 The Si-Si distribution function . . ... ... ..
4.4.2 The Si-H distribution function . .. ... .. ..
4.4.3 The H-H distribution function . ... ... ...
4.5 Coordination defects and bond angle distribution . . . .
4.6 Vibrational properties . . . . . .. ... ...
4.6.1 Si-related VDOS ... ... .. ... 0oL
4.6.2 H-related VDOS ... . .. ... ...
4.7 Conclusions and discussion . . . . . . ... ... .. ..

5 Conclusions

A Cut-off parameters

i

34
34
34
40
43

44

48
55
66

69
69
70
71
73
75
75
78
79
80
83
83
86
87

91

93



B The Verlet algorithm
Acknowledgments

Bibliography

il

94

96

97






Introduction

The role played by hydrogen (H) when incorporated into semiconducting
materials, has recently attracted a vast interest. This stems from the
fact that the presence of H causes important changes in the electrical
and optical properties of semiconductors, both in their crystalline and
amorphous phases. A clear understanding of these phenomena is of
great technological relevance. '

In crystalline semiconductors an important phenomenon is the abil-
ity of H of passivating the electrical activity of shallow acceptor and
donor impurities [1]. Because shallow levels determine the doping of the
semiconductor, and therefore its characteristics in electronic devices, it
is essential to be able to understand and then to control the effects of
the presence of hydrogen.

In amorphous silicon (a-Si), the key role played by hydrogen is the
saturation of dangling bonds. Indeed, pure a-Si contains many dan-
gling bonds that give rise to a large density of localized states within
its energy gap. Hydrogen saturates these dangling bonds and therefore
sensibly reduces the density of gap states. This confers semiconducting
properties to the material, which makes it possible to dope it. This
property has increased enormously the interest in hydrogenated amor-
phous silicon (a-Si:H) and allowed for a technological application of this
material to fabricate thin-film electronic devices, including solar cells [2].

It is only recently that theoretical efforts have been devoted to the



understanding of hydrogen behaviour in semiconductors. Indeed, only
in recent years, theoretical instruments have become available, which
allow for reliable investigations of these complex materials. In particu-
lar, ab-initio total energy calculations within Density Functional Theory
(DFT) [3,4] have proven to be very accurate and successful for the study
of different properties of semiconducting systems [5]. Recently, total en-
ergy calculations have allowed to describe the energy surface for H both
in pure and doped crystalline silicon (c-Si) for different charge states [6].

However, this theoretical approach suffers two basic limitations: (i)
it is restricted to the study of static (zero temperature) properties; (i1)
the structure of the system to examine must be an input of the problem.

The latter is a strong limitation expecially when studying disordered
systems, as in the case of amorphous semiconductors.

Few years ago Car and Parrinello [7] extendec-l the applicability of the
DFT approach to a larger variety of condensed matter systems. They
proposed a method that combines the DFT formalism with Molecular
Dynamics simulations. This scheme allows to describe the dynamics
of the ions (treated as classical particles), under the action of forces
generated directly from the ground state electronic energy, according to
the Born-Oppenheimer approximation. Therefore within this approach,
structural and dynamical properties at finite temperature become ac-
cessible to first principles calculations. Furthermore, it is possible to
generate via thermal treatment disordered systems, and to study de-
tails of their local order that are in general inaccessible to experiments.

In this thesis we focus our attention on silicon and on the effects of
hydrogen incorporation both in its crystalline and amorphous phases.
The outline is the following:

In the first chapter we discuss the basic ideas of the theoretical ap-

proach for ab-initio molecular dynamics, and illustrate how it works.



Chapter 2 discuss the properties of pure c-Si at finite temperature: it
is shown that thermodynamic properties can be calculated with an ac-
curacy comparable with that usually obtained for equilibrium structural
properties.

In Chapter 3 we present a study of the diffusive behaviour of an
isolated positively charged H in c¢-Si. This is a phenomenon of basic
relevance to the interpretation of the effects of H in silicon. We analyze
microscopic details of this process that are inaccessible to experiments,
and furthermore we can make a direct comparison with experimental
findings. Our results demonstrate the importance of dynamical effects
that previous theoretical works were not able to deal with.

In the last chapter the results of a recent simulation on an a-Si:H
sample numerically generated, are discussed. In particular, we analyze
the short range order and the vibrational praperties of this material.
The comparison with existing experiments shows a very good agree-
ment. Some insight on the diffusion of H in this material is provided by
observed relaxation phenomena. A possible explanation of a clustering

effect of H in a-Si:H, which is also observed experimentally, is given.



Chapter 1

The Car-Parrinello method

1.1 Introduction

A unified approach to Molecular Dynamics (MD) and Density Func-
tional Theory (DFT) has been proposed a few:years ago by Car and
Parrinello [7]. In this chapter, we briefly recall and discuss the main
ideas of this approach, which will be referred to, in the following, as the
MD-DF method.

Molecular Dynamics simulations are a powerful numerical tool for
the study of equilibrium and non-equilibrium properties of complex con-
densed matter systems [8]. Within this scheme, the classical equations
of motion for the atoms are explicitly solved and equilibrium statistical
averages can be computed as temporal averages over the MD observa-
tion time, according to the ergodic hypothesis. The MD approach can
represent a bridge between theory and experiment and allows for the
investigation of microscopic details of the atomic motion that are gener-
ally inaccessible to measurements. Since MD simulations usually treat
the atomic motion as classical, the conclusions that can be drawn from
this analysis are valid if quantum effects on the atomic motion can be
neglected, and if the Born-Oppenheimer (BO) approximation holds. In

other words, it is implicitly assumed that the electrons are always in the



ground-state corresponding to the instantaneous nuclear configuration.
These conditions are satisfied in most cases of interest.

The main problem connected with MD simulations is the choice of
an appropriate interatomic potential. Empirical potentials, containing
two-body terms, have been largely used for simulating simple systerfls
like rare gases. If these potentials can be useful for systems where the
electronic charge density is almost rigid around the atom, they become
unreliable when applied to systems where the distribution of the charge
density changes significantly in response to the atomic motion, as is the
case for semiconductors. Effective potentials for tetrahedral semicon-
ductors containing 2- and 3-body terms [9,10,11] have been recently con-
structed, whose parameters are fitted to experimental data. Although
partially successful in reproducing some properties of these systems,
they suffer some basic limitations: (i) it is difficult to assess the trans-
ferability of the potential to thermodynamic states different from that
used for its generation; (ii) this approach completely misses the impor-
tant correlation existing between local electronic structure and atomic
dynamics.

The basic idea of the MD simulation scheme proposed by Car and
Parrinello is to obtain the interatomic potential directly from the adi-
abatic (Born-Oppenheimer) electronic ground state, corresponding to
the instantaneous ionic configuration. Situations in which the electrons
do not follow adiabatically the ionic motion (non BO dynamics), cannot
be accounted for within this scheme: in this case one should treat both
ions and electrons with quantum mechanics.

In the MD-DF scheme, the electronic ground state is treated within
the DFT [3,4]: in such approach the complex many body problem is
converted into the solution of a set of self-consistent single-particle equa-

tions. These equations have been most commonlyisolved by using the



Local Density Approximation (LDA) for the exchange and correlation
energy [4,12]. In the MD-DF scheme, the single particle electronic or-
bitals (expanded on a basis set) are treated as classical degrees of free-
dom on the same footing as the ionic coordinates. The fictitious dy-
namics that governs the motion of electrons is such that the electrons
are at any time very close to the ground state relative to the instanta-
neous ionic configuration. In this way the ions move on the BO potential
surface and finite temperature ionic properties can be computed. More-
over, MD-DF simulations allow at the same time for the calculation of

the variation of the electronic properties due to the ionic motion.

1.2 Minimization of the energy functional:
the Born-Oppenheimer surface

Within DFT, the problem of computing the total energy ground-state
of a system of interacting electrons and nuclei corresponds to the séarch
for the minimum of a unique functional E[n(r), {Rr}] of the electronic
density n(r), for every fixed nuclear configuration {Rr}. Followiné the
idea of Kohn and Sham [4] (KS), the electronic density n(r) can be

expressed in terms of occupied single-particle orbitals:

n(r) = Zfi | ¥i(r) |? (1.1)

where f; is the occupation number of the orbital ;. Therefore, in
principle, the BO potential energy surface for the nuclei ®({R;}), can
be obtained by minimizing the functional E[{¢;}, {R1}] with respect to

the electronic degrees of freedom {¢:}:

({Rr}) = mingyy E[{:}, {R1}] (1.2)

The explicit expression of the functional E is:
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where atomic units have been adopted. V! is the electrostatic po-
tential of the nuclei felt by the electrons, Z; is the nuclear charge and
E®¢[n] is the interaction energy between electrons beyond the Hartree
term, that is the exchange and correlation energy, which is expressed
as a functional of the charge density n(r). In practice, in most DFT
calculations, and in particular in the MD-DF scheme, this functional is
written within the LDA, i.e. the exchange and correlation potential at
the point r is assumed to depend only on the charge density at the same
point. This approximation has been proven to be very reliable for the
prediction of many properties, such as the equilibrium lattice structure,
phonon frequencies and elastic constants (13], of a variety of systems.

A further simplification often used in DFT calculations is the in-
troduction of pseudopotentials. The core electrons are assumed to be
frozen in their atomic configuration and not to take part in the chem-
ical bonding. The nucleus plus the core electrons are then replaced
by a “pseudoion” of charge Zy, corresponding to the valence charge;
the interaction between the valence electrons and this pseudoion is de-
scribed by an appropriate effective potential. Within a pseudopotential
scheme, in Eq. (1.3) the external potential V¢ is substituted by a sum
of ionic pseudopotentials and the nuclear charge by Zy. State-of-the-
art electronic calculations adopt generally nonlocal, norm-conserving
pseudopotentials, generated from all-electron first principles atomic cal-

culations [14,15]. Such pseudopotentials have been shown to have good



transferability properties from one chemical environment to another, for
many systems of interest.
The minimization problem stated by Eq. (1.2), with the constraint

that the wavefunctions be orthonormal:
[ drpi(s(x) = 5 (1.4)

has generally been faced by solving the associated Kohn-Sham [4] equa-

tions:

[—5 V7 + VIi(e) = esti() (1.5)

where V is the sum of three terms: the external potential V**(r),

the Hartree potential VH(r) = [dr’ ) and the exchange-correlation

[r—r'|
potential p®¢(r) = 8E%[n] Since V depends on the actual electronic den-
H &n(T) p

sity n(r), equation (1.5) must be solved self-consistently. If the orbitals
;(r) are expanded in terms of a basis set (for instance plane waves),
the solution of the Kohn-Sham equations can be converted into a matrix
eigenvalue problem, to be solved by iterative diagonalizations. However
this approach becomes quickly too demanding computationally, as the
size of the system is increased. Furthermore it results particularly inef-
ficient if the geometry of the system is also an unknown of the problem.
Indeed, in this case the search for the global minimum of the functional
of eq. (1.3) with respect to Ry, requires the whole self-consistent proce-

dure to be repeated several times.

1.2.1 Dynamical simulated annealing

The minimization of the energy functional (1.3) can be thought of as
a complex optimization problem, which can be handled with statistical
mechanics techniques. In the MD-DF approach, the concept of simu-
lated annealing introduced by Kirkpatrik et al. [16] has been used, but



within an MD strategy rather than within a Monte Carlo (MC) proce-
dure, as first proposed in ref. [16].

Within this scheme, it is possible to obtain simultaneously the self-
consistent electronic ground state and the global minimum of the energy
functional E. Both the ionic and the electronic degrees of freedom
are considered as classical time dependent variables. An appropriate
Lagrangian is introduced for the coupled electronic and ionic system,
in which the potential is just the energy functional which needs to be
minimized. From this Lagrangian, a classical dynamics is generated,
according to which the system, at a given temperature, explores the
associated configuration space determined by its total energy. If then
the system is slowly cooled down by subtracting kinetic energy, the
regions of configuration space that can sampled are gradually reduced
and, when the temperature goes to zero, the point of minimum potential
1s eventually recovered.

The simulated annealing scheme for computing the minimum of the
Energy functional is necessary when the hyper-space of the degrees of
freedom of the problem is particularly complicated, and various local
minima in which the system can be trapped are present. This is the case,
for example, in the search of equilibrium geometries for microclusters:
the dynamical simulated annealing method has indeed been successfully
used for a variety of small clusters [17,18,19,20,21,22].

However, when the potential energy of the system does not present
local minima, the annealing process appears to be unnecessary. Ex-
perience has shown that, if the ionic positions are kept fixed (i.e. in
the case of simple electronic optimization), only a single minimum is
encountered in LDA calculations. Therefore in this case, the use of a
simulated annealing technique is inefficient, since the convergence to the

minimum would be rather slow. More efficient dynamical techniques can



be adopted, like steepest descent (SD) or conjugate gradient (CG). We
will not enter into the details of these procedures here, but refer to the
work of ref. [23], where an accurate analysis and a comparison of the
various algorithms is presented. We want now to discuss the idea of
using the dynamics not just as an alternative way of finding the ground-
state total energy of a system, but for simulating real BO trajectories

for the nuclei.

1.3 Ab-initio Molecular Dynamics

The MD-DF method is based on the introduction of a fictitious classical
dynamics for the coupled evolution of the ions and the KS orbitals. The

dynamics is generated by the classical Lagrangian:

L= Z#/ﬂ dr| 9 | + ; %MIR% — B[{%:}, {Rs}]
+50 ([ dri(5(x) - &) (1.6)

where M are the ionic masses, u is a fictitious mass associated to the
time dependent KS orbitals ;(r,t), that controls the time scale of the
electronic motion; the dots indicate time derivatives; A;; are Lagrangian
multipliers used to impose the orthonormality constraints on the 1;,
is the volume of the system and E[{#;},{R}] is the energy functional
defined in eq. (1.3). The classical equations of motion derived from the
Lagrangian (1.6) are:

- 6F
pib; = N + ; Aijpi(r,t) (1.7)

OF
aR(1)

MR = -

10



The second term on the right of eq. (1.7) represents the constraint
force acting on the ;. Eq. (1.7) has a form analogous to that of the
equations of conventional MD for molecules, in which the separation
between the atoms is kept fixed during the dynamics. The constraints
expressed by Eq. (1.4) can be interpreted as rigidity constraints: They
are time-independent, holonomic constraints and they do not lead to
any energy dissipation. The way for treating such constraints has been |
studied within conventional MD by Ryckaert et al. [24]. These authors
have developed an algorithm which allows the constraints to be satisfied
at each time step during the simulation, and the system to be conser-
vative.

The question is how the above equations of motion can be useful to
generate physical trajectories for the ions. Suppose we have performed
a dynamical simulated annealing, or whatever else dynamical procedure
for reaching the minimum of the energy functional (1.3). In any case, at
the end of the minimization all the velocities 1/;1' are zero, and therefore
the kinetic term associated to the electronic degrees of freedom, K. =
Y b fq dr| b; |2, is also zero. Furthermore the functional E[{#;}, {R}]
coincides with the BO potential ®({R;}) (here {R;} does not necessarily
coincide with the equilibrium configuration for the system). We note
that, during the minimization procedure, the value of the masses M
and p used in the equations of motion can be chosen freely in such a
way as to optimize the convergence of the algorithm to the minimum.

Once the previous conditions have been reached, the real dynamics
for the ions on the BO potential surface can be started. To this end,
a “metastable” situation is devised, in which the electronic degrees of
freedom follow adiabatically the ionic motion, without significantly ac-
quiring kinetic energy (K.). K. is in some sense a measure of how much

the 1¥’s deviate from the BO surface, during the dynamics. The mass M;

11



appearing in Eq. (1.8) is now the physical ionic mass, and the choice of
i becomes relevant in order to make the ionic and electronic subsystems
decoupled. In practice, the ratio ML; should be much less than 1; in such
a way the characteristic frequencies of the fictitious electronic dynamics
are very high with respect to those associated with the ionic motion,
making the two subsystems decoupled. A numerical consequence of this
choice for the parameter p is that the time step At used in the numer-
ical integration of the equations of motion must be smaller (typically
At ~ 107'%sec) than, e.g., the time steps adopted in conventional MD
simulations.

We call the metastable situation in which the electronic degrees of
freedom do not thermally equilibrate with the ionic omnes, a classical
adiabatic dynamics. In fact, if the system evolves dynamically for a very
long time, eventually thermal equilibrium will be reached. In practice,
the rate at which this equilibration takes place is required to be slow
with respect to the typical observation time of an MD run. In such a
way, one can evaluate temporal averages for quantities of interest, along
trajectories that lie very close to the BO surface.

Experience has shown that, for both crystalline [25] and disordered
systems [26,27], this classical adiabatic dynamics is very well accom-
plished for insulators and semiconductors: The kinetic energy K. has
been found to stay very small, and on average constant, over entire MD
runs (typically for times of the order of 1 psec or more), to indicate that
no transfer of energy between ionic and electronic degrees of freedom
was occurring. Furthermore, this behaviour does not seem to depend

strongly on the temperature of the ionic system.
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1.3.1 An illustrative application to c-Si

To illustrate more in detail the way in which the adiabatic dynamics
works, we have considered a system consisting of 16 silicon atoms in
an FCC box with periodic boundary conditions. The silicon atoms are
placed initially in the perfect crystalline configuration. The single par-
ticle electronic orbitals are expanded in plane waves up to a cut-off
in energy of 6 Ry. The Brillouin zone has been sampled with the T’
point. The equations of motions (1.7) and (1.8) have been numerically
solved by using the Verlet algorithm [28] (see Appendix B.) with a
time step At = Ta.u.. We set the mass parameter . = 300a.u.. The
ionic subsystem has been heated up to ~ 400K by simply rescaling the
velocities and then the system has been allowed to evolve freely under
the action of the Lagrangian (1.6). The dynamics starts with the elec-
tronic degrees of freedom at the ground state relative to the initial ionic
configuration. The algorithm of ref. [24] has been used for the orthonor-
malization procedure. In fig. 1.1(upper) we plot the ionic kinetic energy
K; =Y MR, E[{;},{R;}] and their sum U}. On the scale of the
picture U; = constant. However if we enlarge the scale by two orders of
magnitude as in fig. 1.1(lower), U} shows some variations. These are ex-
actly compensated by the electronic kinetic term K., also shown in the
picture, leading to constant U, = U} + K, within numerical accuracy.
This demonstrates clearly that, as expected, the dynamics generated by
the Lagrangian (1.6) conserves the total internal energy U.;. The varia-
tions in U; are much smaller than the typical variations in either K or
E[{#:} ,{R:}]. No canonical drift in Uj is observed. This corresponds
to a metastable situation in which the temperature of the electrons is
much smaller than that of the ions. The life-time of this metastable
state is much longer than typical ionic relaxation times. Indeed we have

continued the run for a time of about 1.5 psec and we have not ob-
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Figure 1.1:
Time variation of electronic and ionic properties for a segment of 2000
time steps of a much larger run (At = 7 a.u., # = 300 a.u.). (upper
part) Ky (dotted line), E [{s:},{Rr}] (dash-dotted line), Ut (full line);
(lower part) K, (dotted line), U} (dash-dotted line), U (full line). E,
Ut, Uer are measured relative to the initial value U = —61.62887 a.u.
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served any appreciable drift in U}. As a consequence of this adiabatic
behaviour K, in our run remained very small with no appreciable drift.
Since K. measures the deviation from the Born-Oppenheimer surface,
this implies that during the run E [{¢;},{Rr}] = ® ({Rr}). We have
numerically checked that this was the case. The smallness of K, ensures
adequate evaluation of the ionic forces.

In order to have adiabatic behaviour it is essential to have overall
conservative dynamics. The use of orthonormalization schemes differ-
ent from the one used here would break energy conservation [29,30].
We performed a dynamical simulation for the same system in which,
starting from the same initial conditions, we used the Gram-Schmidt
orthonormalization scheme. After the same time as in fig. 1.1, the elec-
tronic kinetic energy K. is equal to ~ 0.6a.u., the total internal energy
U.; is no longer constant and the ionic trajectory rapidly diverges from
the correct one. Either alteration of the original scheme led to non

Born-Oppenheimer trajectories after a rather short time.

1.3.2 Ab-initio MD for metallic systems

For systems where the density of electronic states at the Fermi energy
becomes significantly different from zero, it has been observed that the
electronic degrees of freedom progressively acquire kinetic energy. Al-
though the time for equilibration between the two subsystems remains
quite long, two unpleasant consequences of this coupling are detected:
(i) The forces on the ions become incorrect, and (ii) the ionic system
cools down affecting the correct computation of equilibrium properties.

Indeed, the characteristic frequencies of the electronic degrees of free-
dom appear to relate to the properties of the single particle spectrum of
the physical system; in particular they seem to be related to the ratio

E,/u, where E, indicates the optical gap [31,32]. For metals, the time

15



scales of the “electronic” and ionic motion can become comparable and
therefore the two subsystems become strongly coupled. Nevertheless,
the fictitious dynamics of MD-DF simulations has been proven success-
ful also for metallic systems [33,34], provided periodic minimizations of
the electrons to their BO surface are periodically performed. A scheme
particularly convenient to compute thermodynamical properties of met-
als has been found to be the constant temperature-constant volume MD
technique, originally proposed by Nose [35,36] for systems described by
classical potentials.

Following the approach proposed in ref. [35,36], a Lagrangian £ for
an interacting system of electrons and ions is introduced, with the ions
only in thermal equilibrium with an external heat reservoir of fixed

temperature 1.,;:
1 _/38\?
L= Lo+ §Q(;> — gK5Teuln(s) (1.9)

where L. is given by Eq. (1.6). s is the degree of freedom associated with
the external reservoir in thermodynamic equilibrium with the A ions of
the system; @ is a parameter of dimension (energy)-(time)? which plays
the role of a mass for the motion of s. The second and third terms of
the right hand side of Eq. (1.9) are respectively the kinetic and potential
energy for the variable s, where g is equal to the number of ionic degrees
of freedom (3 - M) and Kp is the Boltzman’s constant. Since the ions
only are coupled to the external system, the equations of motion for {#;}
are the same as those derived from the Lagrangian (1.6); the equations

of motion for {R;} and s are:

d .
]Vflgi(SRI) = —s-Vg,E (1.10)
d /$ -2
QZ— <—) = ZMIRI - gKBTemt (111)
t \s T
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We note that, unlike Eq. (1.8), Eq. (1.10) contains a friction term de-
pendent upon the ionic velocities.

This computational scheme makes it possible to keep the average
temperature of the system constant during the MD runs. In addi-
tion, the electronic coordinates must be periodically quenched, in order
to accomplish a correct computation of time averages. Unlike other
constant-temperature MD techniques proposed in the literature, the
Nosé approach allows to reproduce the canonical probability density

in the phase space of the nuclei.

1.4 Technical details for the implementa-
tion

The ideas described so far are quite general and do not depend on the
particular basis set we use for the electronic structure description; now
we want to be more concrete and we will describe some technical points

that are important in the following presentation of the results.

1.4.1 Periodic boundary conditions and basis set

In simulations for bulk systems, the MD box is periodically repeated to
infinity, in order to avoid surface effects. This choice is quite natural
for a perfect crystal, since the primitive cell containing only few atoms
is perfectly replicated in all spatial directions. However even for disor-
dered systems (glasses, liquids), whose Hamiltonian does not have any
translational symmetry, periodic boundary conditions (pbc) can still be
adopted, provided the MD box is chosen large enough that the imposed
periodicity does not affect the dynamics of the system.

Therefore the techniques developed in solid state calculations within

DFT, which make explicit use of the translational symmetry of the

17



hamiltonian, are useful also in the context of MD-DF simulations of
both ordered and disordered condensed matter systems.

As a consequence of the periodicity introduced by pbc, the single
particle orbitals of eq. 1.1 satisfy the Bloch theorem and can be expanded

in planewaves:

Yo(r) = kT Z c”'k(G)eiG'r (1.12)
G

where G is a reciprocal lattice vector of the supercell used in the
simulation. In the MD-DF scheme, the Fourier components ¢™*(G) of
the wavefunctions are treated as time dependent degrees of freedom.
The wave vector k lies within the Brillouin Zone (BZ) of the reciprocal
lattice of the supercell. For each k, the sum over G is usually truncated
to include only those plane waves that have a kinetic energy Erin =
2(k + G)? less than a given energy cut-off Ecut. The choice of Ecut
determines the accuracy of the calculation. More technical details on the
plane waves expansion of wavefunctions, charge density and potentials

are given in Appendix A.

1.4.2 Brillouin Zone sampling: the use of I' point

The computation of the electronic density, and then of the total energy,
requires an integral over the BZ: n(r) = Ykepz Wk Son fok | ¥nk(r) |2
In principle, the sum over the BZ would require an infinite number of
calculations for every k-point. This is of course not possible to accom-
plish in practice, and only an appropriate small number of points are
considered in the sum. If these are chosen according to precise sym-
metry criteria, a rapid convergence of the sum can be achieved. Sets
of special k-points have been computed [37,38,39] for supercells with

different symmetries (simple cubic: SC, face centered cubic: FCC, etc.).

If only the single point k=(0,0,0), i.e. the I' point is considered,
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the wavefunction has the periodicity of the cell. In ordér to include
components of longer wavelengths, k-points other than I' need to be
introduced or, alternatively, the size of the cell has to be increased.

Let us consider, as an example, a Silicon crystal described by the
unitary SC cell containing 8 atoms: if the I' point only is used for
sampling the BZ, the diamond structure is not found to have the lowest
energy. The use of the Baldereschi point [37], k = (3,3,1), allows
instead for an accurate description of the structural properties of the
crystal (the computed lattice parameter is within one percent of the
converged value and in good agreement with experiment [40]). However
a similar accuracy can be obtained by using only I' within a larger
supercell containing 54 atoms [25].

We note that a source of computational saving in BZ sampling with
special points is the symmetry of the crystal. Following the previous
example, a single calculation with the Baldereschi point provides a sam-
pling of the 8 k-points contained in the corresponding star. However, for
a general lattice distortion, the point-symmetry of the lattice is broken.
Therefore, to the purpose of computing finite temperature properties in
MD simulations, the symmetry of the BZ is not a substantial aid and the
use of the T point with large supercells appear to be the most efficient
choice. 4

We finally point out a computational advantage in using the I' point:
since the phase of a wavefunction is arbitrary, at I' this can be chosen

to be real. The symmetry ¢(—G) = ¢(G)" can be used to reduce the

Fourier components, i.e. the basis set, of a factor of two.
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1.4.3 Core-Valence electrons interaction: first prin-
ciples pseudopotentials

As mentioned in parag. 1.2, the potential operator V** which describes
the interaction between the ionic cores and the valence electrons is ex-

pressed as a sum of ionic pseudopotentials:
V(@) =3%,.(F— R)) (1.13)
I

In the formulation proposed by Hamman Schluter and Chiang [14] (here-
after referred to as HSC), ¥, is a norm-conserving, angular momentum
dependent pseudopotential, obtained from first-principles atomic com-
putations. Its explicit form 3, is:

<O

57 = Y u(r) B - (1.14)

=0

where P, is the projector onto the l-th angular momentum. For most
elements of the periodic table, it is a good approximation to assume
vi(r) = vy for | > [, where [ is taken to be either 1 or 2. In the former
case, s-only non locality is included in the total pseudopotential, whereas

in the latter, (s+p)-non locality is included. Eq. 1.14 becomes:

-1
Tps (7) = Vtoear(7) + ;[W(T) — P (1.15)

The second term on the right hand side is called the semilocal part of the
pseudopotential (Vs ): the term semilocal indicates that Vs acts in a
different way on different angular components of the wavefunctions (and
in that it is non local), but it is a multiplication operator, as far as the
radial part of the orbitals is concerned. Av(r) = [v(r) —vy] is the radial
part of ¥,, which is a short ranged function, usually expressed as a sum
of a small set of gaussian-type functions (ezp(—a;r?) and r?ezp(—a;r?)

y © = 1,3). The matrix element of Vs; between two plane waves of
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wavevectors q and ¢’ is given by:

< q|Vsi|q' >=4r > (20 + 1)Pi[cos(8,,¢] / drr?ji(qr)i(q'r)Avi(r)

l (1.16)
where P is the Legendre polynomial of order !, j; indicates a Bessel
function of the first kind of order [ and 6,4 is the angle between the
momentum vectors q and q'. In order to evaluate the contribution
to the total energy of the semilocal part of the pseudopotential, m -
N(N + 1)/2 integrals of the kind of those entering in Eq. (1.16) need
to be evaluated, where m is the number of k points used to sample
the BZ, and N indicates the number of plane waves adopted for the
expansion of the wavefunction. This usually amounts to a very large
number of integrals, making the evaluation of matrix elements (1.16)
computationally very demanding. The comiautation of these matrix
elements can be considerably simplified if they can be expressed in a

separable form:

<qlVszla' >=2_ fi(a) - 9i(d) (1.17)

where f; and g; are appropriate functions, each depending on only one
wavevector component. A particularly effective way to accomplish this
separability has been proposed by Kleinman and Bylander (KB) [41]. In
their formulation, thé semilocal pseudopotential Vsy, is substituted by a
fully non local (N L) operator (that is an operator which acts in a differ-
ent way both on the angular and the radial part of the wavefunction),

given by:
)i >< Bpmur(r)]

< B |1 Bpm >

Vv = il

where ®;,, = ¢(7)Y;m is an eigenfunction of the atomic pseudohamilto-

(1.18)

nian in which the core-valence interaction is replaced by the pseudopo-
tential v;. The form of Vi allows to reduce the number of integrals

that need to be evaluated to mN and then a considerable reduction

21



in the computer time required to evaluate the pseudopotential energy
and potential. In the calculations which will be presented in the follow-
ing chapter, the fully non local form of the pseudopotential has been
adopted. Several computations on tests systems (such as the silicon
crystal in the diamond structure and the S, molecule) have shown that

the KB pseudopotential give the same result as the semilocal HSC one.
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Chapter 2

Thermodynamic properties of
crystalline silicon

2.1 Introduction

The ab-initio calculation of properties of semiconductors is a central is-
sue in present day theoretical solid state physics. In the last 10 years
a major progress has been made with the advent of accurate total en-
ergy calculations based on the local density approximation for exchange
and correlation within density functional theory (DFT). These calcula-
tions have shown that it is possible to predict accurately properties like
the equilibrium lattice structure, the elastic constants and the phonon
spectrum [13].

However even relatively simple thermodynamic properties like the

thermal expansion coefficient,

1 (69 1 (0P
_ — [ T e e 2.
TS (a:r)P 3B (a:r)n 1)

where {2 is the volume, P the pressure , B the Bulk Modulus and T
the temperature, have not been calculated with ab-initio methods. The
basic reason is that o is dependent on anharmonic effects and therefore

its evaluation can hardly be reduced to a small set of total energy cal-
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culations as has been the case for the properties listed above. Even if
one uses the well known quasi-harmonic approximation for a:

1 -1 0 g

= gE ;—%—wk,,ﬁf((ﬂk,,,j—,) ' (2.2)
k,s I

[0

where e(wy s, T') is the internal energy of an oscillator of frequency
wg,s at temperature T, one is faced with the difficult task of evalu-
ating, in the whole Brillouin Zone (BZ), the phonon frequencies wy,
and their volume derivative, i.e. the so called Griineisen parameters.
The integral over the BZ can be simplified by the use of sets of spe-
cial points [37,38,39], but still the calculation of phonon frequencies at
such points would be difficult since it requires the introduction of pro-
hibitively large supercells. Such difficulty is circumvented by the use
of molecular dynamics methods [8] that take fully into account anhar-
monic effects and do not require explicit evaluation of the whole phonon
spectrum. Since however these methods are based on the classical ap-
proximation for the ionic motion, they will correctly determine o only
for temperatures T larger than the Debye temperature ©p (Op ~ 645K
for Si), where quantum effects can be neglected. In this limit eqn. (2.2)
predicts a temperature independent .

In this chapter we show that thermodynamic properties of semicon-
ductors are accessible to first principles calculations and can be com-
puted with good accuracy within ab-initio MD simulations. In partic-
ular we calculate the thermal expansion coefficient of crystalline silicon
at high temperatures with both constant volume and constant pressure

MD simulations.

24



2.2 Constant Pressure MD

In the original formulation of the MD simulation method, the classical
equations of motion for N particles in a fixed MD box of volume (2, are
solved numerically. Time averages calculated over sufficiently long tra-
jectories are equivalent to averages over the microcanonical ensemble.
In the last decade, a notable effort has been devoted to generalize the
MD method to allow for the study of static and dynamic properties of
systems represented by different statistical ensembles. The first contri-
bution in this direction is due to Andersen [42]: he suggested a way of
introducing volume fluctuations into MD simulations which allows to
describe a system in the isoenthalpic-isobaric ensemble. Subsequently,
Parrinello and Rahman [43] modified the Andersen’s formulation so as
to allow for changes not only in the volume, but also in the shape of the
MD cell. This new formulation has been successfully applied to study
polymorphic transitions in single crystals [44]. Finally, Nose [35,36]
proposed a generalization of the MD method suitable for constant tem-
perature simulations, which has been discussed in the previous chapter.
Here we describe in some detail the Andersen method for constant
pressure MD (CPMD), which has been implemented within the first-
principles MD scheme. The simulation of a system at constant pressure
requires the introduction of volume fluctuations. Therefore the volume
in CPMD is treated as a dynamical variable. Following the approach of
ref. [42], we added the following terms to the lagrangian in eqn. (1.6)

%WQZ + PQ (2.3)

where P is the external pressure imposed on the system, and W is a
parameter of appropriate units adjusted to set the time scale for volume

fluctuations. The classical equations of motion for the ions and for the
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volume derived from this new lagrangian are the following:

. 2 e
N 8E 1 2/0\° O
S - 20Z) - = 2.4
MiR1 = ~3R.® g MR 3((2) Q0 (2:4)
L 42
. OE Mi[. 1.8
W = -——8—9- -+ ; ﬁ[RI - §RI§} - P (25)

These equations couple the dynamics of the particles to that of the
volume. The equation of motion for the electronic degrees of freedom
is unchanged by the introduction of these new terms in the lagrangian.
Andersen [42] has proved that the time averages calculated along the
trajectories generated by these equations of motion, are equivalent to

averages in an isoenthalpic-isobaric ensemble in which the pressure is P.

2.3 Structural T=0 propefties and details
of the calculation

We used a periodically repeated MD cell with the silicon atoms arranged
in the diamond structure. In most of our calculations we used a 54 atom
FCC cell and an energy cutoff Ecut = 8 Ry for the expansion of the ¥’s
in plane waves. BZ sampling was performed with the I' point of the
MD cell. The pseudopotential was taken from ref. [15] considering only
s-nonlocality and using the Kleinman-Bylander representation [41]. We
have checked the convergence of our results by making additional static
and dynamic calculations with larger energy cutoffs and including p-
nonlocality. The dependence of our data on the MD cell was inves_tiga,ted
by repeating some of the calculations with a larger 64 atom SC cell.
In all our calculations we have kept fixed the number of plane waves
(NP¥) when varying the volume of the cell (we used N¥% as defined
by the theoretical equilibrium volume at a given Ecut). This gives rise

to a slower convergence with respect to cutoff, than working at fixed
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T = 0 lattice param.(a.u.) | Bulk mod.(Mbar)

Experimental 10.263 0.992
Theory: ref. [46] 10.204 0.93

Our results:

54 at. FCC cell s-nl sp-nl s-nl sp-nl
Ecut = 8Ry 10.00 9.96 1.53 1.32
Ecut = 12Ry 10.22 10.09 1.21 1.18
Ecut = 24Ry 10.41 10.21 0.89 0.97
64 at. SC cell s-nl sp-nl s-nl sp-nl
Ecut = 8Ry 9.92 1.35
Ecut =12Ry 10.04 1.20

Table 2.1: Convergence study of equilibrium lattice constant and bulk
modulus of crystalline silicon. Owur results are obtained from pressure
calculations within a constant N¥W procedure, as in ref. [46,47,48]. The
experimental values and the theoretical results of ref. [46] are also pre-
sented for comparison.

Ecut [45]. However in our MD simulations, particularly at constant
pressure, we are forced to adopt a fixed NF% scheme.

The results of our static convergence tests, for the lattice parameter

and the bulk modulus B at T=0, are reported in Tab. 2.1.

The main factor affecting the convergence of our results is Ecut,
while a better sampling of the BZ as done in ref. [46], has only minor
effects. These results give a strong evidence that the I' point works well
with sufficiently largé supercells. Indeed our 24 Ry calculation compares
well with that of ref. [46] when we include p-nonlocality (sp-nl), whilst
using only s-nonlocality (s-nl) we overestimate the bond length by =~
2%. Similar conclusions on the effect of p-nonlocality were obtained in
ref. [49].

The integration of the equations of motion was made with the Verlet
algorithm [28] using a fictitious mass p = 300 a.u. and an integration
time step At ~ 1.7 x 107%%sec. Such a value is only a factor ~ 2

smaller than the At used for instance by Broughton et al. [50,51] in a
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conventional MD simulation for silicon based on empirical interatomic
potentials.

We performed two kind of simulations, one at constant volume (CVMD)
and the other at constant pressure (CPMD) [42]. In our simulations we
set P = 0 and took W = 0.05 a.u.. In every run the system has been
heated up and then has been equilibrated for at least 500At before
taking cumulative averages. An analysis of the data showed that, for
the quantities of interest, 3000A¢ were sufficient to compute accurate

averages.

2.4 Thermal expansion of c-Si

In order to check that the BO dynamics can be evaluated correctly
from the lagrangian (1.6), we have calculated the internal energy of the
system as a function of temperature. We calculate the ionic internal

energy as

UHT) =< ¥ LME 4 Bl{w (RN > (26)

where the angular brackets indicate temporal average on a conve-
nient finite observation time, and the (ionic) temperature T is related
to the equilibrium value of the kinetic energy < Ky >=< % ; %]VI IR% >
by suitable normalization. In the hypothesis of adiabatic behaviour of
the coupled dynamics for Ry and v’s during the observation time, U}(T')
as defined in eqn. (2.6) should be a good approximation of U(T) =<
> %IVIIRfr + ®({R}) >. For a classical highly harmonic system, which
is the case here, U(T') is given by the equipartition law : AU(T) =
U(T) = U(0) = NkgT, where kp is the Boltzmann constant and N is
the number of degrees of freedom of the (ionic) system. It is seen in

Fig. 2.1 that this is indeed the case and that CVMD and CPMD give

28



consistent results. This result provides further evidence that the elec-
tronic degrees of freedom follow the ionic motion without acquiring a

significant kinetic energy. In MD simulations the thermal expansion co-
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Figure 2.1:
Variation of the internal energy U} of crystalline Si with temperature.
Results of both CVMD (solid squares) and CPMD (solid circles) are
displayed. Horizontal and vertical bars are error bars. The exact result
for a classical harmonic crystal is represented by the straight line

efficient can be computed directly from the definition o = 5%(2—%)}) or

a = é(g—g)n if CPMD or CVMD are used, respectively. The deriva-
tives are calculated numerically by making a finite temperature change
AT, either at constant P or at constant {2, with respect to a reference

equilibrium thermodynamic state, which we have chosen to be the state
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at T=0, P=0. This is adequate even at high T since we found that both
Q2 and P vary linearly with T within the accuracy of our calculations,
confirming the prediction of the classical quasi-harmonic theory. Notice
that both Q and B vary little with T: for instance,  changes by about
1 percent for AT ~ 1000K. The results of our calculation are displayed
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Figure 2.2:
Thermal expansion coefficient « of ¢-Si as a function of temperature.
Experimental values, indicated with triangles, are taken from ref. [52];
the dotted line is just a guide to the eye. Theoretical values: squares
and circles indicate CVMD and CPMD results respectively. The error
bars are also shown. The Debye temperature ©p is indicated by the
arrow.

in Fig. 2.2 together with the experimental curve. The experimental data

show for T' < ®@p a rich structure which includes at low temperatures
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ax 1075 K1
Experimental (T' > ©p) | 3.9+44
SW potential: ref. [51] 2.0
Our results:
54 atoms FCC cell s-nl | sp-nl
Ecut = 8Ry 4.9 4.4
Ecut = 12Ry 5.6 4.5
64 atoms SC cell s-nl | sp-nl
Ecut = 8Ry 3.1
Ecut =12Ry 3.4

Table 2.2: Thermal expansion coefficient o of ¢-Si. Our results are
compared with the experimental values for 7' > ©p. The theoretical
data are from runs at different T in the range 400 < 1100K. The result
obtained in a computer simulation using the classical Stillinger-Weber
(SW) potential (ref. [51]) is also shown. '

also a region of negative expansivity. This behaviour of quantum nature
is completely missed by our classical calculation which predicts an ap-
proximately constant «. Therefore our data should be compared with
experiment only in the high temperature range (I' > @p). Already with
a cutoff of 8 Ry there is a satisfactory agreement between theory and
experiment. Furthermore constant pressure and constant volume data
are consistent. \

We have checked the stability of our calculation with respect to N*%
(Ecut) and the size of the MD box. We have also studied the effect of
the inclusion of p-nonlocality in the pseudopotential. In Tab. 2.2 we
summarize our results.

These calculations were performed with CVMD simulations because
they are slightly less expensive computationally than CPMD (by about
10%).

As to the effect of Ecut we note that the variation from 8 to 12 Ry is
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not dramatic expecially when also p-nonlocality is included. Although
the full convergence in the T=0 properties is reached at larger Ecut, in
the evaluation of o there is a compensation between the variation of B
and of 9P /0T with Ecut. Therefore the result at 8 Ry can be considered
satisfactory even though not fully converged.

The second point that we considered, is the importance of a more
accurate treatment of the non local part of the pseudopotential with the
inclusion of both s- and p-nonlocality (sp-nl). From Tab. 2.2 we see that
o is quite sensible to p-nonlocality especially for the highest Ecut (there
is a reduction of 20%), and the agreement with experiment is improved.

Another important feature that one would like to investigate is the
dependence of our results on the MD cell. Since computer limitations
do not allow at present an extensive study of the size dependence of our
simulations, we have only repeated some of the calculations with a 64
atom SC cell. On going from the 54 to the 64 atom cell the variation
of the T=0 structural properties is very small, while the variation of
« is not negligible (more than 20%) and results in a somewhat worse
agreement with experiment. We suggest that this is a consequence of
the different representation of the phonon spectrum that is achieved
with the 54 FCC and with the 64 SC cell respectively. While the FCC
cell samples only phonons in the interior of the diamond BZ, the SC cell
samples several zone-boundary phonons which have the largest negative
Griineisen parameters [52]. This leads to a reduction of the calculated «
values (Tab. 2.2). For comparison we also show in Tab. 2.2 the result of a
recent calculation of a based on the Stillinger-Weber empirical potential,

which leads to a significantly larger underestimate of o [51].
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2.5 Conclusions

In this chapter we have presented an ab-initio MD simulation of c-Si at
finite temperature. This study indicates that thermodynamic properties
of semiconductors are accessible to first-principles calculations.

We implemented the scheme of Andersen [42] for constant pressure
MD, within the original approach for ab-initio MD simulations.

By using both constant volume and constant pressure MD simula-
tions, we calculated the thermal expansion coefficient at high temper-
ature. Consistent values and in good agreement with experiment were
obtained in the two cases.

Finally, this work provides further evidence of the feasibility of a

classical adiabatic dynamics for the ions.
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Chapter 3

H diffusion in c¢-Si

3.1 Existent results

In our thesis we are interested mainly in understanding the microscopic
mechanisms for the diffusive properties of H in ¢-Si. This represents
a basic achievement toward a more profound insight of the phenomena
associated with hydrogen incorporation in silicon. Therefore, in this sec-
tion we discuss the existent experimental and theoretical results directly

or indirectly related to this issue.

3.1.1 Experimental analysis and results

The behaviour of hydrogen in c-Si has been the ob ject of extensive ex-
perimental investigations because of its technological importance, aris-
ing mostly from the ability of H to passivate defect-related states (1]. A
variety of techniques have been used so far both to realize the incorpo-
ration of H in the crystal, and to subsequently investigate its electronic,
structural and dynamical properties. The aim of this paragraph is to
critically review the principal experimental techniques used so far, and
to discuss the most important results.

In order to investigate the behaviour of H in Si the first step is to

realize its insertion into the crystal. The two main techniques used for
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this purpose, are the exposure of the sample to hydrogen (deuterium)
plasma, and the ionic implantation. In the first technique the plasma
is excited from H, (or D in case of deuterium implantation [53]) gas
by using low frequency (~ 30K Hz) or radio frequency power coupling
[54,55,56,57,58]. The HT implantation is instead obtained bombarding
the sample with ion beams with energies ranging from < 1 keV [59], to
10 + 13 keV [60,67], or even 50 <+ 100 keV [57,61]. The use of the second
technique gives rise (expecially for the highest implantation energies) to
a large amount of damage in the surface and near-surface of the sample.
This fact could make the interpretation of the results somewhat difficult.
It has to be mentioned that in the pioneering work of Van Wieringen and
Warmoltz [62] (VW), hydrogen was inserted via permeation of H, gas
at high temperature. It has also to be noted that quite often unwanted
presence of H in crystals is due to unintentional insertion during simple
cleaning or fabrication processes (such as boiling in water etc.) [1].

Many techniques have been used both to detect the presence and to
study the behaviour of H (D) in ¢-Si. Some of them reveal directly the
presence of H (D), others study the variation of the electronic proper-
ties of the material after hydrogen insertion. Among the first type we
will mention Secondary Ion Mass Spectroscopy (SIMS) and ion chan-
neling, between the others: Deep Level Transient Spectroscopy (DLTS),
and capacitance-voltage (C-V) measurements [63,59]. Almost all the
techniques that look to the variation of the electronic properties of the
material after H insertion are based on the capability of H to neutralize
defect-related states. DLTS in particular looks at the ability of H to
passivate metal-center related (deep) states.

For a comprehension of structural and dynamical behaviour of H in
¢-Si the experiments have tried to answer two essential questions: where

H (D) is preferentially located in the host lattice, and what is the dif-
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fusion coefficient D of this defect inside the material. Knowledge of the
detailed lattice location is of crucial importance for the understanding
of hydrogen-defect interactions. The first evidence of Si-H;-like centers
in c-Si has been obtained by means of infrared measurements of H (D)
implanted at 80 K [61]. Different groups [65,66] attempted to extract
from the lines appearing in these infrared spectra, information on H
location in c-Si.

The only technique able to observe the deuterium location in c-Si
is ion-channeling. This technique have been employed the first time by
Picraux and Vook [67] in 1978. Implanting deuterium (D) at 13 keV in
a single crystal Si at room temperature, the authors found that D was
predominantly located in a single interstitial site 1.6A from a Si atom
along the < 111 > antibonding direction. 1.6A_ is close to the molecular
SiH bond. This “distorted” antibonding site (the geometrical being at
~ 1.2A from the Si atom still in the < 111 > direction) will be referred
to in the following as the AB site.

Some years later B.B. Nielsen [60,68] used the same technique with
an implantation energy of 10 keV at 30 K. The result was that in the as-
implanted sample, 80% of D was located close to the bond center (BC)
site and the remaining 20% close to the tetrahedral (Td) site. In the
same work it is shown that annealing of the sample up to ~ 200K causes
a variation of the relative population of near-BC and near-Td sites: The
near-T4d site increases its population up to ~ 30+40%, and correspond-
ingly the near-BC site decreases down to =~ 60 + 70%. From these data
a clear assignment for the equilibrium site is problematic, even though
the BC site appears the most likely. This difficulty arises mainly from
the damage induced by the implantation and the consequent presence
of defects (as vacancies) which can trap H.

Recently Kiefl et al. [69] have demonstrated that anomalous muo-
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nium in ¢-5i is located at the BC site. From our knowledge this is all
what is known on experimental determination of H (D) location in c-Si.

More efforts have been devoted to measure the diffusion coefficient
D of hydrogen in ¢-Si. Van Wieringen and Warmoltz [62] in their work
analyze the behaviour of the diffusion of H in ¢-Si at high tempera-
tures. The measurements have been made using a simple permeation
technique. An H, gas was inserted in a permeation cell made by a single
silicon crystal. The temperature was kept fixed at a high value with very
good accuracy. The presence of H after the passage through the perme-
ation cell was revealed by using a mass spectrometer. Hydrogen showed
a very high mobility with a diffusion coefficient D ~ 2 x 10~ %cm?/sec at
T >~ 1470 K. The temperature scan was not very large, running from
1245 K up to 1480 K. In spite of that it was quite evident that the
diffusion of H was exhibiting a typical Arrhenius behaviour, from which
the authors were able to extract an activation energy of 0.48eV within a
10% error. Molecular diffusion was discarded analyzing the dependence
of hydrogen permeation from pressure at the entrance wall. Although
the charge state of the diffusing species was not clear, they concluded
that, at the investigated temperatures, hydrogen consists mainly of neu-
tral atoms or protons.

Other estimates of the diffusion coefficient of deuterium can be made
using SIMS. By a temporal analysis of the depth profiles and by fitting
the data in terms of gaussian diffusion, one is able in principle to ex-
tract a value for D. The authors of ref. [70], by using a scheme of this
type, analyzed a large amount of SIMS data and extracted activation
energies much larger than that of VW. In particular an extension of the
Arrhenius plot of VW to room temperature gives values that are 7 order
of magnitude larger than the prediction of ref. [70] for diffusion of D+

at the same temperature and 10 order of magnitude larger than that



predicted for D. These differences are at least puzzling.

A completely different approach to measure the diffusion coefficient
of H is to take advantage of its capability to saturate defect-related
states. In ref. [54], DLTS spectra (together with Thermally Stimulated
Capacitance (TSCAP) scans) of deep gold donor and acceptor levels in
silicon have been measured. Hydrogen was inserted through exposure to
radiofrequency hydrogen plasma. Assuming that H diffusion is propor-
tional to the deactivation of Au centers and having from DLTS spectra
the depth profile of Au levels, the author of ref. [56] was able, using a
scheme similar to that previously traced for SIMS, to estimate the val-
ues of D for a very large temperature range. These estimates are once
again much lower than that predicted by the Arrhenius plot of VW. A
possible explanation for this difference is the fact that hydrogen can be
trapped in the material by impurities other than Au. This quantity of
trapped hydrogen is not taken into account in the analysis of ref. [56]. It
is clear from the fig. 3.1 that is very hard to extract a single Arrhenius
behaviour from data in ref. [56].

Recent G-V measurements [63,59] determined the value of H diffu-
sion in ¢-Si [63] and in Schottky metal-insulator-semiconductor capac-
itors [59]. The insertion of H was obtained by wet chemical etching
technique in ref. [63] and more conventional exposure of the sample to
low energy ion beams in ref. [59]. After H insertion, C-V measurements
were used to profile the electrically active acceptor density. Assuming
that H is trapped only by the Boron centers, is not difficult to restore
from these profiles the value for the diffusion of H. The fact that the
measurements of acceptor levels profiles were performed immediately
after the hydrogenation process (called real time detection) allows to a
rather accurate estimates for D. Both measurements agree well with the

extrapolation at room temperature of the VW data. In the experiment
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Figure 3.1:

Diffusion coefficient for hydrogen in c-Si as a function of inverse temperature.
Solid circles: present calculation for H*. Error bars are indicated by vertical
bars. Solid line: D = 9.41 x 10~ 3exp(—0.48 eV /kgT) cm? sec™! as obtained
by VW (see text) in the temperature range 1240+1480 K; extrapolation outside
this range is given by the dotted line. Dash dotted line: D =4.2X 103
exp(—0.56 eV /kpT) cm? sec™! tritium diffusion from data in the temperature
range 670 = 770 K [64]. Squares: experimental data from ref. [56]. Diamond:
experimental measurement at room temperature from ref. [63]. Triangles:
experimental diffusivity values in Au Schottky barrier sample [59].
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of ref. [59] a temperature scan from 330K to 270K was performed. Due
to large error bars in the data and the quite short temperature scan, it
was not possible to estimate a value for the activation energy of the
process. Very recently Jaworowski [71] reported that short term reverse
bias annealing at 400 K allows for a real time in-situ measurements of
hydrogen migration in the near-surface of silicon. This work further
confirms that the fast migrating hydrogen species is H*; the estimated
value of the diffusion coefficient at 400 K is again comparable to the
value obtained by extrapolating to 400 K the VW data.

These recent measurements [63,59,71] seems to indicate that a single
Arrhenius behaviour can be traced from room temperature up to high

temperature (T' > 1200 K).

3.1.2 Theoretical approaches and results

In the last few years a very large amount of theoretical work has been
devoted to a comprehension of the properties of hydrogen in crystalline
semiconductors [6]. In spite of that, due to the complexity of the prob-
lem, the ability of theoretical calculations to clarify this issue has been
limited and many questions remain open.

It is still debating the quantum nature of the motion of H. If the
assumption of classical motion, that will be our forced choice, is justified
at quite high temperatures, it has to be instead carefully motivated
before of any conclusion on H motion at low temperature. The zero
point energy for H* sitting in the low density region has been estimated
to be = 0.2 eV [72]. No anomaly, due to quantum diffusion, can be
found in the behaviour of Arrhenius plot (as in the case of e.g. metal
crystal [73,74,75]) due to the large spread in the experimental results
discussed above.

Because of technological relevance, related to hydrogen ability to
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passivate defect related states, many of the theoretical investigation have
been devoted to understand the structural and electronic behaviour of
H close to a dopant impurity in ¢-Si [76,77,78,79]. This subject lies
somewhat away from the main thrust of the present work and will not
be discussed further. v

In pure c-Si the attention of theoretical work has been mostly de-
voted to predict equilibrium site for an isolated H impurity. This aim
can be reached by means of total energy calculations. Two different
approaches can be used to compute the total energy surface of a given
system: The supercell and the cluster methods. In the first, the en-
ergy is computed for a periodically repeated cell containing a number
of silicon atoms and one impurity. The use of periodic boundary con-
ditions (pbc), helps in reducing possible surface effects, but introduce
a spurious (fictitious) interaction between the. impurity and its images.
This effect can be removed by using larger cell. In the cluster approach
the impurity is surrounded by as many as possible atoms of the host
lattice without imposing any boundary condition. The dangling bonds
of silicon atoms that remain uncoupled at the surface of the cluster, are
usually saturated with H atoms. Different way of saturation may lead
to qualitatively different results [84].

The importance of the relaxation of the silicon host lattice has been
understood only recently [81,82,83,84]. In spite of the presence in di-
amond lattice of regions in which the valence electron charge density
is quite poor (low density region: LDR), hydrogen prefers to sit at the
center of a Si-Si bond (BC site) [81,82,83,34]. In this region there is an
high valence electron charge density (high density region: HDR). This
minimum in the energy surface is associated with strong relaxation in
the silicon lattice (&~ 0.5A for each neighbouring silicon atom). This

founding is the most relevant common feature of all the calculations in
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which the Si atoms were free to relax [81,82,83,84].

In the work of ref. [85] a comparison between unrelaxed and relaxed
energy surface is presented for H*. The unrelaxed surface is very similar
to that presented by Stoneham and Mainwood [72] and Pennetta [86].
These results show that without relaxations this case the HDR lies very
high in energy by respect to LDR.

Although all the papers mentioned above argue that H (H™) prefers
to sit in HDR, the energy differences between HDR and LDR are quanti-
tatively very different. Cluster calculations [84,83,81] overestimate this
difference by respect to the supercell method [82,87]. Moreover the fine
details of the energy surface in both regions differ from one work to
another.

In the rather accurate supercell calculation of ref. [82,85], the au-
thors found the HDR lower by more than 0.5¢V by respect to LDR, as
can be seen in fig. 3.2. On the basis of these T' = 0 calculations, many
authors have tried to extract informations on possible diffusive path fol-
lowed by H* [81,82,83,84]. In particular the authors of ref. [82] predict
as the most likely the path connecting adjacent BC sites with the in-
terstitial C site. This path lies entirely in the HDR and requires large
and concerted ionic relaxation of the host lattice. The paths lying in
the LDR, although requiring negligible ionic relaxation, were discarded
as energetically unfavourable.

We want to stress here that it is impossible to infer from static cal-
culations unambiguous information on the dynamical behaviour of H.
At finite (high) temperature in fact dynamical effects could significantly
modify the picture extracted at 7' = 0. At low temperature instead pos-
sible quantum effects of H motion could become important in determine

H localization, and have to be carefully evaluated.
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Figure 3.2:
Contour plot in the (110) plane of the total energy surface for H* in c-Si [82].
Balck dots indicate atomic positions. The energy difference between adjacent
contours is 0.1 eV. the zero of energy is chosen at the tetrahedral site.

3.2 Results of an ab-initio MD simulation

In this section we separately discuss the “static” calculations and the
dynamical simulation runs.

Here with “static” we mean total energy calculations performed to
investigate the total energy surface for H in the host lattice. We want
to stress that the knowledge of this static (zero temperature) energy
surface cannot give rise to definitive answers about the dynamics of
the diffusion process. Since the diffusion occurs at finite temperature,
only including the enthropic and/or dynamical eflects we can describe
correctly the physics of this process. Therefore a statistical mechanical
approach is the most adequate to face with this problem.

However, these static calculations are necessary as the first step be-
cause they allow us: (i) to identify the more stable locations for H and

the energy barriers between different sites; (ii) to test the convergence
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of our results with respect to different parameters of the calculation
(size of the MD box, energy cut-off, sampling of the BZ) and then to
establish the degree of accuracy of our description of the potential that
determines the dynamics. In addition we have the possibility of com-
paring our results with the total energy surface obtained theoretically in
ref. [82,85] where conventional DFT calculations have been performed.

Then we will describe in detail the dynamical behaviour of H for dif-
ferent temperatures pointing out to the importance of dynamical effects
on the diffusion process, and we will present numerical results for the dif-
fusion coefficient and the activation energy, making a direct comparison

with experimental data.

3.2.1 The SiH molecule: testing and checking the
parameters '

The study of the SiH molecule can be useful as a first step in the analysis
of the accuracy of our calculation in describing both the bonding and
the dynamical properties of Hydrogen within a Silicon network. In par-
ticular with this test calculation we can investigate: (a) the accuracy of
the pseudopotential; (b) the convergence with the energy cut-off (Ecut)
used in the plane wave expansion of the electronic pseudo-wavefunctions;
(c) the choice of the mass parameter i necessary to have an accurate
adiabatic dynamics of the ions.

We consider a SiH molecule in a periodically repeated simple cubic
(SC) supercell. The size of the supercell is 20.a.u. which is sufficient to
have a negligible interaction between nearest images, as we have explic-
itly tested by using larger supercells, so that the molecule can be indeed
considered as isolated.

The interaction between valence electron and pseudoion (nucleus

plus core electrons) is described by an ab initio norm-conserving nonlo-
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cal pseudopotential of the Kleinman and Bylander [41] form constructed
from the pseudopotential of ref. [15]. We treat H as purely local, i.e. we
use only the s potential (V;). This potential coincides with the Coulomb
potential 1/r for 7 > 0.7a.u.. For Si we consider s and p potentials. In
the Tab. 2.1 we have seen the effect of the inclusion of the d potential
(p nonlocality) on the equilibrium lattice constant and bulk modulus of
crystalline silicon. We will show that the effect of p nonlocality in the
molecule is very small and therefore in the following we will discard this
contribution that is instead computationally relevant.

We compute the equilibrium distance d, and the characteristic fre-
quency v of the molecule. A study of the convergence of the results with
Ecut allows us to establish a reasonable energy cut-off for our purposes.

For the computation of de, we can relax simultaneously the atomic
coordinates and the electronic degrees of freedom. In this simple case
there is no risk of being trapped in local minima and therefore we can
converge to the minimum with a simple SD procedure for both ions and
electrons. For the computation of the frequency v we perform an MD
run in which we leave the molecule free to oscillate around its equilibrium
position and measure the oscillation period T' = 1/v.

As we discussed in parag. 1.3, the choice of the mass parameter p
becomes essential when performing an MD simulation: we must use a
small enough value of 1t to keep the two subsystems uncoupled (adiabatic
dynamics); at the same time we want to use a reasonably large time step
At. Tt is difficult to give some “a priori” criterion for this choice, that
has to be done after direct numerical checking of the adiabaticity. We
found that a good compromise in this case is reached with the values of
p = 200a.u. and At = 5a.u. = 1.21 x 107"®sec. Note that the mass of
H is about an order of magnitude greater than p.

The computation proceeds in the following steps: (a) we keep ini-

45



Experiment Theory

5 Ry | 8 Ry | 12 Ry | 20 Ry
deg(a.u.) | 2.87 3.062 | 3.055 | 3.061 | 3.036
v(THz) | 61.2 60.8 | 53.0 | 52.6 | 54.4

Table 3.1: equilibrium distance and vibrational frequency of SiH
molecule for different cut-offs.

tially the ions fixed at a distance slightly different from the d.q and take
the electrons on the BO surface (in this case the BO potential is simply
a curve as a function of the molecular distance); (b) then we start with
the dynamics according to the equations of motions 1.7,1.8.

In fig. 3.3 we show the result of one MD run for Ecut = 8Ry: the
distance between Si and H oscillates around its equilibrium value and
correspondently the kinetic energy oscillates with a frequency twice as
great. The dynamical behaviour is highly harmonic and the frequency
can be computed directly. The results for different Ecut are presented
in Tab. 3.1.

We have repeated the calculation for Ecut = 12Ry, including also
the p nonlocality in the pseudopotential of Si: the result changes of
less than 1% both for de; and v. The convergence with Ecut is shown
in fig. 3.4, where we report the total energy computed at the theoret-
ical equilibrium distance d.,: a full convergence appears to be reached
for Ecut = 20Ry. In all these calculations Gan’ = 2G ez’ (see Ap-
pendix A). If a different choice is adopted we will explicitly mention
this.

The conclusions that we can extract from this analysis are the follow-
ing: (i) we have determined the most suitable choice for the parameter
p and we have tested that a good adiabatic dynamics can be obtained.

(ii) the study of the convergence of the equilibrium distance and of the
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Figure 3.3:

Kinetic Energy (lower part) and intermolecular distance (upper part) as a
function of time for SiH molecule.
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Total energy for SiH molecule at the equilibrium distance as a function of the
planewaves cutoff.

frequency with Ecut, see;ms to indicate that a reasonable description of
the Si-H bond is obtained already with a cut-off of 5 Ry although a full
convergence in the total energy is obtained at 20 Ry. (iii) the effect of
the inclusion of the d potential for Silicon appears to be negligible.

3.2.2 Static results: details of the calculation and
convergence tests

Our final goal is a microscopic understanding of the diffusive behaviour
of H in crystalline silicon. Before starting with the dynamics we have to
be familiar with the energy surface of H in the host lattice: this energy
surface is defined as the potential energy E(Rpy) obtained by putting H
in the interstitial lattice position Ry and allowing all the Silicon atoms
to relax. The relaxation is larger for Si atoms close to H impurity, but,

for some H location, is appreciable even up to the fourth shell of silicon
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atoms (see Fig. 3.5 that we will discuss below). It has been noticed that
the host lattice relaxation is essential for having a correct description
of the energy surface when H lies in the high valence electron density
region (BC, M, C), whereas introduces negligible effects if H sits in the
low valence electron density region (Td, Hex) [82,85].

Charge state

A's most impurities in semiconductors also H in Silicon can exist in differ-
ent charge states (H*, H® and H™). The preferred charge state depends
on the doping of the material. Here we focus on the H' case that has
been argued to be the dominant charge state, at least in p-doped mate-
rial, both experimentally [88,57,89,59] and theoretically [82]. Because
of the BO approximation, the MD-DF method does not allow at present
to deal with electron transfer processes, that may switch Ht into H and

viceversa in the actual diffusion process.

Size of the supercell and BZ sampling

As we discussed previously (see parag. 1.4.1) the supercell geometry is
a choice necessary to have the periodic boundary conditions (pbc) that
are used in MD simulations for bulk. The supercell geometry has be-
come the most used technique in electronic structure calculations, for
treating impurities in semiconductors. In contrast with the cluster ge-
ometry, in this case surface effects are not present; however the size of
the supercell must be sufficiently large to reduce the interaction between
the impurity and its periodic images in order that the impurity be con-
sidered as isolated. The effect of this fictitious interaction is that the
electronic level introduced by the impurity has a dispersion along the
BZ of the supercell. Such impurity band dispersion reduces when the

size of the supercell is increased, and in the limit of an infinite supercell,
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disappears. Therefore the problem of treating an impurity within the
supercell geometry has two aspects: (i) to treat correctly the interac-
tion between the impurity and the crystal; (ii) to reduce the fictitious
interaction between the impurity and its images. The first point is faced
sampling the BZ with a larger number of k-points for a given size; the
second aspect requires the use of larger supercells. It should be noted
that, for fixed k-point, the use of a larger supercell reduces the BZ and
therefore at the same time improves the sampling. It is not clear what
is the best strategy that reconciles these two aspects and gives the most
rapid convergence. We adopted the use of as large as possible supercells
using only the I'" point. This choice is also motivated by our purposes
that are mainly addressed to study the dynamics of the impurity. In-
deed from the point of view of the ionic properties there are several
advantages in using large supercells:
(a) one has a better representation of the phonon spectrum in a large
system. In a small system with pbc one can only excite a very restricted
subset of phonons: in particular phonons whose wavelength is larger
than the box size are absent. This point has been also stressed in the
previous chapter.
(b) The pbc can be seen as a fictitious constraint imposed on the sys-
tem. The effect of this constraint becomes negligible if the size of the
simulation box is sufficiently large, but can be relevant for very small
MD box.
(c¢) Furthermore the fluctuations in the thermodynamic quantities, like
the temperature, scale with the square root of the number of atoms in
the MD box; therefore with a larger supercell the host lattice is better
described thermodynamically.

In Tab. 3.2 we report the energy difference AE between two rep-

resentative configurations for H*: the tetrahedral (Td) and hexagonal
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AE74-Hes(€V)

No. of atoms . k =(0,0,0) Baldereschi point
(supercell) |6 Ry;m=2|6Ry;m=1 6 Ry; m =2
32 (BCQC) 0.41
54 (FCC) 0.0 0.08 0.41

64 (SC) 0.22 0.27 0.44
128 (FCC) 0.30

Table 3.2: Energy difference between the Td and Hex configurations
for Ht: results for different supercells and k-points are shown; m indi-
cates the ratio between the cut-off used for the potentials and for the
wavefunctions, 1.e., m = Cmas

mazx

(Hex) sites. The silicon atoms are not relaxed in this case.

These results show that the use of one special point (the Baldereschi
point) is sufficient to have a good convergence in the sampling of BZ
already with a supercell containing 32 Silicon atoms. The variation in
AE is only of 0.03 eV by using a cell two times bigger. The I' point
gives reasonably well converged results when using the biggest supercell
we can handle (128 atoms). Note that with the 128 atoms supercell the
separation between nearest impurities is of 15.36A. In this table the
effect of using the same G na. for wavefunctions and potentials is also

shown (see Appendix A) and it will be discussed below.

Plane-wave basis set

We have performed calculations with different energy cut-offs (up to
12 Ry) in the plane wave expansion of wavefunctions, on cells of 32
and 64 Silicon atoms. The variation in the total energy with Fcut can
be quite relevant and full convergence would require very large cut-offs
(~ 20Ry). However we are interested in energy differences between

different H* configurations within the crystal: In situations of this kind
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at least part of the error due to the truncation of the Fourier series
is expected to cancel out and therefore the convergence in the energy
differences should be faster.

We found that energy differences between sites in the same region
(high or low density) changes by less than 0.1 eV on going from 6 Ry
to 12 Ry. When we look at energy differences between sites in different
regions, the effect is slightly larger and is such that the energy distance
between the two regions is reduced. A cut-off of 6 Ry appears sufficient
for having a reasonable description of the energy surface for H+. A big
saving in computing time and in memory can be obtained by adopting
the same cut-off in the number of plane waves both for the expansion
of wavefunctions and potentials (see discussion in Appendix A). Asis
shown in Tab. 3.2, in our calculation with 6 Ry, the effect of this approx-

imation is small compared with the error concerning the BZ sampling.

Static results for Ht

From all the analysis and tests discussed so far we concluded that the
following parameters are sufficient to describe the energy surface for H*:

(i) FCC supercell containing 128 silicon atoms. The side of this box
is four times the lattice parameter of the silicon crystal (~ 4la.u.);

(ii) the I' point for sampling the BZ of the supercell:

(iii) an energy cut-off of 6 Ry both for wavefunctions and potentials,
corresponding to about 5000 plane waves at the I' point. This number
reduces by a factor of two if we employ the fact that the wavefunctions
are real at the I' point.

By using these parameters we calculated the energy of H* in dif-
ferent configurations by allowing a full relaxation of the host lattice:
within the supercell there are 7 complete shells of silicon atoms that

we relax simultaneously. We find the BC position as the energetically
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most favourable. In Fig. 3.5 we show the relaxation of all the silicon
shells around H located in BC, plotted versus shell radius. The decay
of the relaxation amplitudes is compared to a = behaviour. The relax-
ation of the two nearest silicon atoms is of 0.46A outward, so that their
distance from H* becomes 1.63A; the second shell including 6 silicon
atoms relaxes of 0.07TA; the following shells have a very small relaxation
if at all (noticeable the fourth shell including 12 atoms that splits in
two subshells of 6 atoms for each with a slightly different relaxation, as
visible in Fig. 3.5). By taking the energy at BC as reference, the M site
(see Fig. 3.6), also in the high density region, is found to be ~ 0.15eV
higher in energy. The relaxation of the two nearest silicon atoms is of
0.20A outward, and the distance from H* is slightly larger than in the
BC position. The relaxation of the successive shells is also important
for this site. The other highly symmetric site in the high density region
is the C site that we found at an energy of 0.32 eV. For the sites AB,
Hex and Td, in the low density region, we found respectively 0.54 eV,
0.55 eV and 0.85 eV. The relaxation of the host lattice when H* is
located in one of these sites is very little and induces a variation in the
energy differences of, at most, 0.01 eV. The AB site is not exactly the
geometrical one (Q in Fig. 3.6), but it results from a relaxation of Ht
outwards in the direction of the nearest Td site, so that the resulting
distance from the nearest Silicon atom is of about 1.6A, that is close to
the molecular SiH bond distance.

Our results for H* are overall similar to those obtained in ref. [82].
Although a full convergence in the energy differences would require a
more accurate BZ sampling (perhaps I" within a supercell two times
bigger) and higher cut-offs, we can conclude that our energy surface
contains all the important features and therefore reliable results can be

obtained by the dynamical study. Furthermore, when looking at the
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Figure 3.6:
Conventional unit cell of diamond lattice. Various impurity sites are indicated:
substitutional (S), bond center (BC), tetrahedral (T), hexagonal (H), geomet-
rical anti-bonding (Q), and C sites. The M sites are located in the middle
between two adjacent C sites.

finite temperature dynamical behaviour, details of the energy surface

within KgT are scarcely relevant.

3.2.3 Dynamical results

We studied the dynamical diffusive behaviour of a single proton in per-
fect crystalline silicon at high temperature (7' > 1000K). This choice
relies mainly on two reasons: (i) since we treat the ionic motion classi-
cally, we must consider high temperatures where quantum effects should
be negligible (we will come back at this point in the following); (ii) the
high mobility of H* at these temperatures allows to observe, during the
finite MD simulation time (typically of the order of few psec), sufficiently
long trajectories in order to have a good statistics on the sites visited

by the proton during its diffusive motion.
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We used a periodically repeated FCC supercell containing 128 silicon
atoms and performed microcanonical MD simulations: in particular the
volume of the box was kept fixed at the experimental value at T=0.
Therefore thermal expansion effects have been neglected. If we consider
that the lattice parameter of c-Si varies only by less than 1% at 1000 K,
and the ionic relaxation when H sits at BC is 10% of the bond length,
we can argue that indeed the thermal expansion effects do not induce
important changes in the diffusive process.

The parameters used for the description of the electronic density
and therefore of the BO potential are those described in the previous
paragraph. The Verlet algorithm (see Appendix B) has been used for
the numerical integration of the equations of motion. The values of the
time step and of the mass parameter p have been chosen as discussed
in the parag. 3.2.1 (At = 1.21 x 107%sec,u = 200a.u.). With this
choice we have verified that the total energy deviates from the Born-
Oppenheimer surface by less than 0.03 eV /atom after 4 psec, i.e. our

largest observation time.

Diffusive paths

Many MD runs havg been performed in a temperature range varying
from 1000 K to ~ 1950 K, that would correspond to an overheated
crystal. The proton has been initially placed in a highly symmetric site
in the low (Td) or in the high electronic density (BC) region. We have
verified that the starting condition is irrelevant if one looks the diffusive
motion on a appropriate time scale. This point will be clarified in the
following. The system has been heated by rescaling the velocities of the
particles and then equilibrated at a chosen temperature T. A detailed
analysis of the diffusive path of the proton has been performed in all of

the simulation runs at the various T.
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In Fig. 3.7 we plot an equilibrium trajectory for H™ at 1200 K. For
clarity the vibrational motion of the Si atoms is not reported, but it must
be stressed that in our simulation H* and Si are dynamically coupled

and the Si vibrations play an essential role in the diffusion process.

Before describing the details of the trajectory we want to elucidate
some general features:

(a) The trajectory shows that the diffusion occurs by jumps between
sites of high symmetry. We can identify two kinds of sites along the
proton trajectory: (i) sites where the proton resides for longer time,
and (ii) sites that are rapidly visited during a jump process.

(b) Both high- and low-density regions are visited by H*, at variance
with what one could expect by looking only at the T=0 energy surface.
(c) The dynamics of the proton is strongly coupled with that of the
silicon atoms.

In Fig. 3.7 two different BC passages are clearly visible involving
the atoms labelled 1,2 and 1,3 respectively. In going from the bond
1-2 to the bond 1-3 the proton visits the low-density region (Hex site).
A large relaxation of the neighbouring Si atoms is associated with ev-
ery interbond passage. The effect of the coupled H and Si dynamics
appears clearly in the inset of fig. 3.7, in which trajectories of few se-
lected Si atoms and the partial trajectbry of the proton, corresponding
to the passage through the bond 1-2, have been projected onto the (110)
plane formed by atoms 1,2 and 3. The relaxation of the atoms 1 and
2 in correspondence with the passage of H through the BC position is
demonstrated by the tails of the Si trajectories in the direction of the
bond. A second tail in the trajectory of the atom 1 is due to the subse-
quent passage of H* through the bond 1-3 (not shown in the picture).
By contrast the trajectory of the third Si atom shown in the inset, is

not affected by a passage of H* through an adjacent bond and simply
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(110)

Figure 3.7:

Trajectory of a diffusing H* at 1200 K during about 1.5 psec. The successive
H™ positions every 6 x 10* psec are shown by the tiny balls. For clarity we
show only a small portion of the total MD cell and draw Si atoms, represented
by the large balls, at their perfect lattice positions. The bonds connecting atom
1 to its four neighbours are explicitly indicated.

The inset shows the (110) plane formed by atoms 1,2 and 3 in the main figure.
Full projected trajectories of the Si atoms belonging to this plane are reported,
while the projected H* trajectory is only displayed during ~ 0.2 psec corre-
sponding to the passage through the BC position.
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reflects the Debye-Waller cloud.

The study of the partial pair correlation function gusi(r), averaged
over different time intervals, i.e. over different segments of the trajec-
tory, allowed us to determine the lattice positions visited by H* in its
diffusive motion. This is illustrated in Fig. 3.8 where we report a seg-
ment of the same trajectory. Again for clarity the thermal motion of
the silicon atoms is omitted and only few silicon atoms are reported.
In the insets we show the gys;i(r) computed in different segments of the
trajectory. The gpusi(r)’s corresponding to the passage of H through
regions close to the various symmetry sites differ from one another both
in their shape and in the coordination shells. For example in the BC
position one has the sequence of coordination shells {2 : 8 : 20}, in the
M site one has {2 : 16}, and for the Hex site obviously the first coordi-
nation shell of 6 is recovered. The shape of the gusi(r) reflects both the
hydrogen motion within a particular site and the silicon motion. The
first peak of the gusi(r) in the insets relative to the BC configuration
occurs at ~ 1.6A, indicating an average relaxation of the nearest two
silicon atoms of about 0.5A (that is approximately the relaxation we
have detected at T=0). From the sequence of the gusi(r)’s shown in
Fig. 2 one can observe that H* is moving from a BC site to another
one, passing through an M site and an Hexagonal (Hex) site. This shows
clearly that the proton follows a path in which it explores alternatively
the HD region (BC, M) and the LD region (Hex). However the proton
resides longer in the twofold-coordinated sites (BC,M) (e.g. the proton
resides near the first BC for about 0.10 psec) than in the Hex site (the
residence time near Hex is about 0.02 psec). This kind of analysis shows
again that the diffusion mechanism is jump-like.

It can be noticed that during the motion of the proton from the BC

site to the M site, the two nearest silicon atoms relax in such a way that
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Figure 3.8:
H* trajectory at 1200 K for about 0.7 psec. The large balls represent the
silicon atoms in the perfect crystalline positions; only few bonds are shown.
The small balls correspond to the hydrogen position reported every 5 At (At ~
1.2x 107! sec). The cross term of the pair correlation function ggs;(r), relative
to the passage of H in the darkened regions indicated by the arrows, and the
average coordination numbers are reported in the insets.
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the average distance from the proton remains approximately constant
(=~ 1.6A). Following the trajectory in fig. 3.7 after the passage through
the BC site between atoms 1-3, the proton moves quite rapidly reaching
a Td site (visible in the center of the cube displayed in the picture).

More generally we have detected, as the most likely, a path in which
the proton jumps from a twofold-coordinated site (BC,M) to another
one by using Hex and/or Td as intermediate sites. We will call this
path the twofold-coordinated path indicating with this the fact that the
proton spends most of its time in twofold-coordinated sites.

In other runs or in different segments of the trajectory within the
same run, the proton has been observed to follow a path lying completely
in the LD region. In fig. 3.9 we show a portion of a trajectory at about
1000K which is an example of this path. This path proceeds more often
via jumps from a near antibonding (AB) site (about 1.6A from a silicon
atom) to another one, rotating around a Td site (the dense “tangles” in
the trajectory of the figure, located around different Td sites) and more
seldom via jumps to a different interstitial region (around a different Td
site), using Hex as the crossing site (the segments of the trajectory that
connect different “tangles”). In this picture the jump-like mechanism of
the diffusion process is particularly evident. Some back-jumps are also
visible in this trajectory. We call this the onefold-coordinated path since
the proton spends most of its time in onefold-coordinated sites (AB).

The twofold- and the onefold-coordinated paths can alternate dur-
ing the same simulation run. Indeed we have observed that, on a small
time scale (less than 1 psec), the initial configuration for H* can af-
fect the occurrence of one path rather than the other: In particular,
starting from the LD region (Td site) the onefold path seems more
favourable, whereas starting from the HD region (BC site) the twofold

path occurs more likely. However if we follow the diffusion process for
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Figure 3.9:
Ht trajectory at 11004 for about 1.9psec. The large balls represent the silicon
atoms in the perfect crystalline positions; only few bonds are shown. The
small balls correspond to the hydrogen position reported every 5 At (At =~
1.2 x 107 %8sec). This represents the so called onefold-coordinated path (see
text).
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a sufficiently long time (4 <+ 5 psec), we observe that these two paths
alternate. Therefore we can assert that the initial configuration of the
proton is not essential for the conclusion that we have drawn. We are
not able at this stage to give a precise estimate of the relative occur-
rence frequency of the two paths, although on the base of the statistics
accumulated in about ten MD runs, we can state that the twofold path
is the most likely.

In conclusion, we have observed that the proton follows diffusive
paths that are different from the HD path that is predicted to be the
most favourable on the basis of purely T=0 total energy calculations [82].
This demonstrates that, at least at these high temperatures, dynamical
effects are very important in determining the diffusion mechanism. The
reason of that can be traced to the large mass difference between H
and Si. When the H™ motion is fast, as it is the case at these high
temperatures, the heavy Si ions cannot follow adiabatically the proton.
Thus the lattice may not have the time to undergo the large relaxation
needed for the HD sites to become energetically favourable. When this
happens the proton prefers to move through regions of low energy for the
undistorted lattice. This explains also the observation of the onefold-

coordinated path.

Vibrational density of states

The two paths described above, can be characterized by the relative vi-
brational frequencies associated to the proton. Indeed these two paths
show a significative difference in the velocity-velocity correlation func-
tion Z(t) of the proton. We report in Fig. 3.10 the power spectra of Z(t)
for H* diffusing in the onefold- and in the twofold-coordinated paths, re-
spectively. In the same picture we also show the spectrum computed for

silicon which closely reproduces the measured phonon density of states
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of the pure system [90]: In particular the transverse acoustic (TA) and
transverse optic (TO) bands are well described.

In the spectrum relative to the onefold path there are three clear
peaks: the first two are resonances with the TA and TO modes of the
host lattice, the third one occurs at a frequency close to the bending
mode of a (Si-H) group [91,92]. Similar frequencies, identified also
as bending modes, are observed in a-Si:H [91,92] (w ~ 119 THz =~
630 cm™!). These frequencies could be possibly associated to the mo-
tion of the proton in the AB site.

In the case of the vibrational spectrum obtained in the twofold path,
higher frequency components appear, whereas the resonance with the
TO peak disappears. This is probably related to the fact that the pres-
ence of H* in BC configuration inhibits the TO excitation in the nearest
Si atoms. This fact inhibits the resonance of TO modes in the HT dy-
namics. The highest frequencies (w =~ 1800cm ™) are most likely related
to the stretching mode of HT in the HD region. In ref. [85] a frequency
w ~ 2200cm~! for HT in BC site is extracted from a frozen phonon
calculation. Both thermal effects and the fact that our estimate is ex-
tracted by a situation in which the proton is visiting sites other than
BC (e.g. the M site), can explain this discrepancy.

Since there are these remarkable differences in the vibrational spec-
tra for the two paths, we suggest that scattering experiments could

distinguish between these two situations.

Diffusion coefficient and activation energy

From an analysis of the mean square displacement of H* at long time t,

we can measure th?e diffusion coefficient by using the Einstein relation
t) —r(0))*

i <AE(t) — (0 >

t—oo 6t

for D at three different temperatures (full circles), one of which corre-

=D. In Fig. 3.1 we show the calculated value
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sponds to an overheated crystal (T' ~ 1950). In the same figure are
reported various experimental data that we have previously discussed.
The agreement of the simulation with the experimental data of Van
Wieringen and Warmoltz at high temperature is remarkable, consider-
ing that theory does not take into account presence of defects, possible
molecular formation or other factors that could hinder the diffusion pro-
cess. At T ~ 1200 K we obtain a diffusion coeflicient D of the order of
10~%*cm?/sec, thus confirming the high mobility observed in the experi-
ment of ref. [62].

The average in the square displacement has been obtained by di-
viding the whole trajectory into different segments: For each of them
one new initial configuration 7(0) is considered from which the square
displacement is computed and then the average is taken over all the
segments. The error bar, also shown in the picture, has been estimated
by the variation of the coefficient D calculated in different segments of
the trajectory.

From the slope of a linear fit to the three data points in Fig. 3.1 we
obtain an activation energy Ex = 0.33+0.25 eV. Within this rather large
error bar, this value is in reasonable agreement with 0.48 eV obtained
from the only existing experimental data [62] in the same temperature
range. It has to be noted that, due to the complexity of the H* diffusive
motion illustrated above, it does not seem correct to identify E, with
a single energy barrier. It seems more adequate to consider E; as an

average barrier seen by the diffusing proton along its path.

3.2.4 Discussion and open questions

In conclusion, by using ab-initio MD simulations, we have studied the
diffusion of a proton in ¢-Si at high temperatures.

This work demonstrates that dynamical effects substantially modify
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the picture emerging from T=0 results. In particular we observed that
the proton follows diffusive paths different from that expected from the
study of the energy surface at T=0, and, as a consequence, sees a higher
activation energy. We have detected two different diffusive paths in
which the proton exhibits a very different vibrational density of states.
Therefore we suggest that scattering experiments can help to establish
the nature of the diffusive path.

Our results for the diffusion coefficient agree well with experimentsin
the studied range of temperatures, and confirm the high mobility of the
proton in ¢-Si. We have found that the diffusion coeflicient computed
in the two different paths is the same within the error bar.

As we have mentioned before, possible quantum effects on the ionic
motion (in particular on the light proton) are not considered in this
study. Also for this reason we considered only the high temperature
regime where we suppose these effects to be negligible. However, if we
consider the value of the ratio iw/KpT as an indicator of the impor-
tance of quantum effects on the dynamics, we cannot state that these
are completely absent even for these high T. In fact the highest fre-
quencies computed for the proton are around 0.2 eV, a value that is
comparable with the thermal energy that comes into play. The study
of quantum effects is a difficult one and outside the scope of our the-
sis. Quantum effects on H diffusion in metals have been analyzed both
theoretically [74] and with computer simulation [73]: these studies indi-
cate that in a system like Nb quantum effects are not negligible up to
temperature of &~ 300 A.

A dynamical correlation between successive passages of the proton in
BC sites seems to be present. Indeed we observed that once the proton
visited a BC site, is quite likely that after some time (always of the

same order, i.e. ~ 0.35 psec) it visits another BC along the same chain
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of bond. We are carrying on further investigations on this point for
exploring the possibility of the existence of some memory in the lattice

that assists this event.
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Chapter 4

The structure of
Hydrogenated Amorphous
Silicon

4.1 Introduction

The interest in hydrogenated amorphous silicon (a-Si:H) has grown enor-
mously during the last decade as a consequence of its dopability and
concomitant technological applications [2]. The possibility of efficient
doping in the amorphous phase was demonstrated by W.E. Spear and
P.G. LeComber in 1975 [93,94] and led to the first a-Si p-n junction [95].
This development has removed one of the main limitations of amorphous
semiconductors and o.pened up possibilities for the fabrication of thin-
film electronic devices, including photovoltaic solar cells.

It was soon clear that the presence of H was essential in modifying
the electric properties of the amorphous material: It is generally agreed
that a-Si produced by sputtering or evaporation, without H, contains a
large number of coordination defects as seen in electron spin resonance
(ESR) experiments. Gap states associated with these defects may ex-
plain the insensitivity of a-Si to dopants. When H is added to the

amorphous network the ESR signal is strongly reduced: this is appar-
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ently a consequence of H bonding to these defects, inducing a strong
reduction of the gap states density of the material.

The understanding of the local structure order is, of course, fun-
damental to a full comprehension of the electronic properties of this
material.

In this chapter we present some recent results of a numerical simu-
lation on an a-Si:H sample generated by ab-initio MD: we concentrate
on the short range order and the vibrational properties of this material,

making direct contact with experimental results.

4.2 Short-range order

The short-range order (SRO) can be defined as the local structural ar-
rangement around a given atom. In particular, for the case of covalently
bonded amorphous solids, the SRO about an atom of type ¢ can be char-
acterized by the coordination number N; of atoms of each type j, in a
shell of atoms at a distance R;; from the origin atom, and by the angle
8;ix subtended by the first neighbours 57 and k at atom 1. Within this
definition, the distances governed by SRO are quite small, typically of
the order 2 + 3A.

Because of the finite size of the MD box used in the simulation, the
longest correlation length that one can treat with is equal to half of
the linear size of the box. With the box used in our simulation, the
maximum range of correlation is &~ 5.4A. This is sufficient for a study
of the SRO of this system; instead, an analysis of the medium- and long-
range structural order is out of the present computer performances.

Before to present the results of the simulation we briefly describe

some of the experimental investigations on the a-Si:H structure.
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4.2.1 Experimental probes for SRO

The most commonly used technique to probe the structure of amorphous
solids uses diffraction of X-rays, neutrons or occasionally electrons. A
review of the results of investigations which have been carried out to
determine the structure of a-Si:H, has been recently presented by El-
liott [96].

Since a-Si:H is a binary system, three partial pair correlation func-
tions (Si-Si, H-Si, H-H) are needed to describe the short-range structure.
Furthermore, the experimental investigation of a-Si:H is complicated by
the fact that the material is not expected to be homogeneous, because
of the presence of gross structural defects such as voids, internal cracks,
etc.

A diffraction experiment gives the so-called structure factor S(Q) as
a function of the scattering vector (). The structure factor S(Q), which
is a function in reciprocal space, is related to pair distribution functions
in real space by means of a Fourier transform. It should be noticed
- that the transformation of experimental data to real-space distribution
function would require the knowledge of S(Q) for all values of Q. In
practice, data can only be measured up to a maximum cut-off value
of scattering vector Qmaz. The result of performing a straight Fourier
transformation of such data is to cause a loss of resolution as well as to
introduce spurious oscillations at small distances.

In order to obtain the partial pair functions, it is necessary to perform
as many scattering experiments as there are distinct partial functions by
varying the relative values of the scattering factors in some way: In the
case of neutron scattering experiments, isotopic substitution is the ideal
method. This method consists in substituting one isotope of a given el-
ement by another of the same element. In such a way the chemistry and

the structure are preserved in this process, but the neutron scattering
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length can vary dramatically. In this respect, hydrogen is particularly
suitable, because of the very marked difference in scattering length for
the two isotopes, H and D. Isotopic substitution neutron scattering ex-
periments have been performed on sputtered a-Si:(H,D) [97,98,99], the
results of which will be discussed together with the results of our simu-
lation.

In X-ray and electron diffraction, the total scattering intensities are
determined only by Si-Si pair correlations because H is essentially invis-
ible; therefore the comparison with neutron scattering experiments can
be made only for the Si-Si partial correlation function. X-ray diffraction
data for sputtered a-Si:H have been presented in ref. [100].

Extended X-ray absorption fine structure (EXAFS) provides another
direct structural probe, complementary to the diffraction technique,
which also can yield partial pair distribution information. A number
of EXAFS experiments have been carried out for both pure and hydro-
genated amorphous silicon [101,102].

Another technique which can be used to determine the H-related
configurations present in the sample, is the infrared spectroscopy. Lu-
covsky and Pollard in ref. [2] have reviewed the applications of this
technique for structural study of a-Si:H. The reason why the infrared
spectroscopy is useful for the study of a-Si:H is related to the very dif-
ferent ranges of frequencies corresponding to modes involving silicon
atoms (0 < w < 550 cm™?!) and H in a-Si:H (600 < w < 2100 cm™1).
The H-related frequencies occur at a considerably higher regime due to
the light mass of H. Therefore H-related modes can be identified unam-
biguously from infrared absorption spectra. Infrared spectra for samples
of a-Si:H was obtained by Lucovsky et al. [91]. From a comparison of
infrared mode frequenciés found in various types of Si-H groups, it has

been possible to assign peak positions in the infrared spectrum to each
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of the possible structural groupings [2], namely monohydride (Si-H),
dihydride (Si-H;) or even “polysilane” groupings (Si-Hj)a.

Inelastic neutron scattering experiments have been also performed
for the study of the vibrational density of states (VDOS) on pure a-
Si [103,104] and a-Si:H [103]. It should be noted that inelastic neutron
scattering experiments on a-Si:H yield essentially only the partial VDOS
for H-related vibrations, because hydrogen has a very large and primar-
ily incoherent neutron scattering cross-section. Therefore the Si-related
VDOS can only be obtained from samples of pure a-5i.

Finally a particularly fruitful source of information is given by nu-

clear magnetic resonance (NMR) of hydrogen in a-Si:H samples [105].

4.3 Computer generation of an a-Si:H sam-
ple

We considered a SC supercell containing 64 silicon atoms initially ar-
ranged in the perfect crystalline positions, and 8 neutral hydrogen (H°)
atoms located in different interstitial (T'd) sites of the lattice. This cor-
responds to about 11% at. H concentration (real material that exhibits
useful electronic properties contains hydrogen in the ~ 2 + 16 atomic
percent range). The volume of the box is fixed at the experimental value
of ¢-Si.

The plane waves expansion of the wavefunctions has been truncated
at a Gmee corresponding to 12 Ry; for the expansion of the potentials we
used a value of V2G max (we have verified that the change in the total
energy is negligible if we instead consider the appropriate value 2G maz)-
The I' point has been used for the BZ sampling. We adopted the same
pseudopotential as described in the previous chapter for the study of
H in c-Si. We set, again as in the previous study, the fictitious mass

p = 200a.u. and the time step At = 1.21 x 107 "%sec.
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We heated the system up to a temperature of about 2200K for which
it has reached the liquid phase. We let the liquid evolve for more than
1psec: the Si-Si pair correlation function gs;—si(r) calculated in this time
interval, exhibits a coordination number N =~ 6, which agrees with the
experimental value for liquid Silicon. Starting from this equilibrated
liquid structure, we quenched the system to 300K. The cooling rate
was in average around 5. X 10'*K/sec: however we lowered this rate
by a factor of two when the system was approaching the non-diffusive
regime (a2 1000K). This thermal treatment has been performed by the
use of constant temperature-constant volume MD, as described in sec-
tion 1.3.2, and periodically quenching the electronic coordinates: this
was necessary because, expecially for the highest temperatures, the elec-
trons acquire rapidly classical kinetic energy from the ions. Instead,
when the amorphous phase is reached, this is no more the case, and we
adopted the usual equations of motion appropriate for microcanonical
MD simulations and no further minimization was necessary: The trans-
fer of energy from the ionic to the electronic degrees of freedom was
negligible during the whole run at T' = 300K.

The structure generated in this way has been equilibrated for about
1.5 psec and statistical averages have been taken over this time interval.

After this an additional annealing cycle was performed in which the
temperature of the sample was first raised up to ~ 1100K. At this
temperature the system underwent strong relaxations. Afterwards we
quenched again the system to 300K with the same cooling rate as before.
The entire annealing cycle took about 3 psec. The new amorphous
structure obtained in this way has been finally equilibrated for &~ 2 psec.

We will discuss in the next section the structure of the a-Si:H thus
generated and will describe the differences between the sample before

and after annealing. A direct comparison with experiment will be also
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shown.

4.4 SRO of simulated sample

The first evident effect of the annealing cycle is that the internal en-
ergy of the amorphous structure after annealing is about 34 meV/atom
lower than before annealing, showing that relevan}; relaxations occurred
during the process. An analysis of the partial pair correlation functions
(PPCF) will elucidate what kind of structural modification occurred in
the sample. In fig. 4.1 we show the three PPCF’s before and after an-
nealing at a temperature of about 300K . The average is taken over all
the configurations during the MD run, i.e. during about 1.5 psec. No

smoothing procedure has been performed on the simulation data.

4.4.1 The Si-Si distribution function

The Si-Si PPCF in fig. 4.1 reflects the local tetrahedral order charac-
teristic of the material. It exhibits a very well defined first peak at a
distance r; ~ 2.35 A, with a coordination number N; ~ 3.9, that is
slightly smaller than the value 4 expected for a perfect tetrahedral net-
work, as also found in experiment [97]. A second much broader peak
occurs at ry >~ 3.80 A. ‘

The agreement with the experimental gs;—s;(r) obtained by Menelle
[99] is excellent as can be seen in fig.4.2 where we reported the gsi_si(r)
after annealing. The experimental values are those before filtration:
the spurious oscillations at small distances are an effect of the Fourier
transformation as discussed in paragraph 4.2.1.

The effect of the annealing cycle is small but appreciable. Both the
first and the second peak become higher and a small displacement of 7,

is observed. This results in an overall better agreement with experiment.
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4.4.2 The Si-H distribution function

Two well defined correlations are present in the Si-H PPCF in fig. 4.1:
the sharp first peak occurs at 7, ~ 1.59 A and the second at 7, ~ 3.12 A.
The first peak is related to Si-H groups with a well defined bond length:
in almost all the cases the silicon atom in these monohydrides is bonded
to other 3 silicon atoms, confirming that H saturates dangling bonds.
The effect of the annealing cycle is quite evident in this correlation func-
tion: some small structures, between the first and the second peak, are
present before annealing, but disappear in the annealed sample. In par-
ticular, the shoulder after the first peak is related to configurations in
which H (2 cases out of 8) is located in “quasi-interstitial” sites between
two silicon atoms: the weak bond lengths in these Si-H-Si configura-
tions are around 1.8 A and H is not necessarily located symmetrically
by respect to the two Si atoms. In both cases that are present in our
sample before annealing, the two nearest Si atoms are, by respect to the
surrounding silicon ions, one threefold-coordinated (73), and the other
fourfold-coordinated (7%). (A similar configuration has been studied in
the theoretical work of ref. [106]). The existence of these Si-H-Si three-
center bonds has been first proposed by Fish and Licciardello [107]. In
ref. [108] an H-interstitial mechanism is postulated to explain the mea-
sured stress. The relaxation of these weakly bonded hydrogen (WBH)
configurations in more stable tightly bonded (TBH) monohydrides with
the annealing, is consistent with the picture of an exodiffusion study in
ref. [109]. At present, the dynamics of these relaxations in connection
with the diffusion of H in a-Si:H is object of further investigations.
After annealing all the H atoms are bonded to a single Si atoms: this
situation is clearly evidenced by the coordination number N; which is
exactly 1. In 7 cases out of 8 the Si atom near H is bonded to 3 other

Si atoms; in the remaining case the Si atom is fourfold-coordinated. No
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dihydride grouping is present in the sample, confirming the conclusion
of experimental results [99] for which the occurrence of (Si-H;) configu-
rations, with this concentration of H atoms, is quite rare.

In fig.4.2 we show the computed gs;_g(r) after annealing, together
with the experimental neutron scattering data [99]. Again spurious os-
cillations for small values of r are present in the experimental data. The
agreement is very good also for this PPCF. The position of the first
peak is slightly larger than the experimental one: in fact this is about

the same error we have in the computation of the bond length in the

SiH molecule (see Tab. 3.1).

4.4.3 The H-H distribution function

The information obtainable by experimental H-H partial distribution
function is less reliable in view of the large uncertainties in the extrac-
tion of the H-H structure factor. However there is an indication of a
broad peak in the H-H PPCF lying in the range 2.2 % 2.6 A. This peak
was interpreted as an indication of the presence of dihydride units [97].
However in the recent neutron scattering study of ref. [99], on a sample
with 12% concentration of H atoms, it has been shown that the pres-
ence of this broad peak can be also explained without resort to dihydride
units. -

In fig. 4.1 we show the computed H-H PPCF before and after the
annealing treatment: this function gives a clear evidence for H cluster-
ing, strongly enhanced in the annealed sample. A broad peak centered
at &~ 2.4 A is recovered in good agreement with the experimental one.
Because of the absence of dihydride units in our sample, we support the
suggestion that this peak can be explained with the presencé of only
Si-H groups.

We analyzed in detail the cluster configurations evidenced in the
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pair distribution function: Two small clusters containing 4 H atoms
each are present. In one of these, the 4 H atoms occupy the edges of
a distorted square in a quasi-planar configuration; in the other cluster,
3 H atoms form a triangle with similar side lengths and the fourth lies
on the extension of one side of the triangle. Recent multiple-quantum
NMR studies [110] have suggested the existence of clustering effects,
with a predominant bonding environment of 4 to 7 atoms. Our results,
although limited by finite size effects, strongly support the validity of
this picture.

At present, we have not characterized precisely what kind of interac-
tions are present between H atoms. However we noted that some of the
features of H clustering are very similar to those characterizing defect
clustering in pure a-Si [111]. Therefore we suggest that the clustering
effect in the H-H PPCF is not due to direct H-H interaction, but is

rather an effect mediated by the underlying disordered network.

4.5 Coordination defects and bond angle
distribution

An interesting analysis of the local order in the silicon network is gained
looking at the first coordination number N; of the individual atoms and
its time evolution during the run.

It was generally believed that the dominant paramagnetic center (D-
center) in a-Si is the dangling bond (threefold-coordinated Si atoms) and
that the density of these centers is reduced by H through the formation
of Si-H bonds. Recently Pantelides [112,113] proposed that overcoordi-
nation occurs in a-Si and that threefold- (T3) and fivefold-coordinated Si
atoms (Ts: floating bonds) are the primitive intrinsic defects. This sug-
gestion has been confirmed by both conventional MD [114] and ab-initio

MD simulations on a-Si [26,115,111] in which both T3 and Ts defects are
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found with comparable formation energies: these two defects may be
converted into one another via network distortion. Therefore both of
these defects present in the amorphous structure are better character-
ized as weak bonds. However it is not clear if some of these defects
can be related to the D-centers seen in real a-Si. Very recently [116]
the hyperfine splittings of these defects was calculated and compared to
experiments.

In the a-Si:H sample we find again both T3 and T defects with a
predominance of 73. The number of these defects is not significantly
changed after the annealing. We find that the threefold-coordinated sil-
icon atoms that do not change the coordination during the whole run,
are all bonded with an H atom. The remaining defects are predom-
inantly 75 but fluctuate during the simulation. For the T; atoms we
observe that usually two or three bond lengths are longer compared
with r; in the gs;_si(7).

Another information about SRO comes from the bond angle distri-
bution (BAD'), where the angle 8;;, has been defined above. In fig. 4.3 we
report the BAD of the sample before and after annealing averaged over
the entire run. In the different insets we show the total BAD and that
calculated separately for the three-, four-, and five-coordinated atoms.
The recovering of the tetrahedral network is demonstrated by the very
sharp peak around an angle slightly less than tetrahedral (6 ~ 109°).
The annealing makes the BAD more peaked and the position of the
peak becomes nearer to the tetrahedral angle, demonstrating that the
annealed structure is more ordered. The average value is § ~ 107.5° and
the standard angular deviation ¢ ~ 16.5°. This value should be com-
pared with the experimental estimate in the range 7 + 10° [117]. Our
overestimate is possibly due to the high concentration of coordination

defects present in the simulated sample by respect to the real one, as
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well as to finite size effects. Furthermore, the experimental value of o is
extracted in a very indirect way. In an ab-initio MD study for a-Si [111],
a better agreement was found, calculating o via an analysis similar to

that performed in experimental works.

4.6 Vibrational properties

The computation of the velocity-velocity correlation function Z(t) in
MD simulations allows for an analysis of the vibrational properties of
the system. Indeed the Fourier spectrum of the Z(t) gives the VDOS.
In numerical simulation it is clearly possible to compute separately the
contributions at the VDOS relative to different components in the sys-
tem. We discuss first the Si-related vibrational properties and then

those related to H.

4.6.1 Si-related VDOS

As we discussed in section 4.2.1, inelastic neutron scattering experiments
can detect the Si-related vibrational states only on pure a-Si. The Z(w)
for a-Si displays four features that correspond to the four major peaks
in the phonon density of state for c-Si at 20,40,50 and 60meV that are
conventionally referred to as TA, LA, LO, and TO peaks [103,104]. Ab-
initio MD simulations on pure a-Si [26,115,111] reproduce with accuracy
the experimental VDOS, as shown in fig 4.4.

The calculated Si-related VDOS for the a-Si:H sample after anneal-
ing at T ~ 300 K is given in fig. 4.5. We note that the all four features
present in the experimental VDOS for pure a-Si are also visible in this
picture. The main difference is that the intensity of the TO peak is
much lower in the hydrogenated sample than in pure a-Si. This can be
an effect induced by the presence of H that substantially modifies the

force constants in the Silicon atoms involved in the monohydride groups.

83



7Z(w) (arb. units)

80

Figure 4.4:
Vibrational Density of States in a-Si. Full line: Ab-initio Molecular Dynamics
simulation [111]. Dashed line: Experimental data from ref [104]. Dash-dotted
line: Experimental data from ref [103].
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Figure 4.5:

Calculated Silicon-related Vibrational Density of States in a-Si:H.
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Indeed we have verified that if we calculate the VDOS by selecting the
silicon atoms that are not involved directly in the Si-H bonds, the result-
ing TO peak is more enhanced. Unfortunately, as mentioned before, the
Zsi_si(w) in a-Si:H cannot be measured directly with neutron scatter-
ing. However, far-infrared absorption spectra of pure and hydrogenated
a-Si with different H concentrations [118] show a reduction of the inten-
sity in the TO peak with increasing H percentage, consistent with our

findings.

4.6.2 H-related VDOS

H-related frequencies in a-Si:H have been extensively studied by infrared
spectroscopy [119]. The results of ref. [91] are reported in fig. 4.6. The
infrared bands around 630 ¢m~! and 2000 cm~! have been unambigu-
ously identified as the bond-bending mode and the stretching mode of
monohydride groupings, respectively. The band around 900 cm™! has
been assigned to the scissor bending mode of (Si-Hz) units. we give
the H-related VDOS calculated before and after annealing of the a-Si:H
sample. Both the bending and the stretching modes of the Si-H units
present in the generated structures, are well defined. We underestimate
the frequency of the stretching band of about 10% (this is the same
error we have in the calculation of the frequency for the Si-H molecule:
see Tab. 3.1). The bending mode frequency is about 5% lower than the
experimental value.

The effect of the relaxation of the WBH configurations in TBH with
the annealing is visible in the H-related VDOS: A small peak around
1100 e ! related to vibrational modes of these WBH units, disappears
in the annealed sample. Furthermore the intensity of the stretching
band is strongly enhanced after annealing. The absence of (Si-Hz) units

in our sample has as counterpart in the VDOS, the absence of the band
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around 900 ¢cm™!. We noticed that the spread in the stretching band
is related with the spread in the bond length of the Si-H units. In
particular we found that there is a linear relaf;ion between the bond
lengths and the value of the stretching frequenby. It is plausible that
if performing a further annealing procedure thé tails of the stretching
band further reduce.

In fig. 4.7 As far as the frequency range 0 < w < 550 cm™! is
concerned, inelastic neutron scattering experiments [103] showed that
the H-related VDOS exhibits, besides resonant modes with the Si-related
frequencies, a small peak at 27 meV = 215 cm™! that is not present in
the Si-related VDOS. Because of the small number of H atoms in our
sample the signal of the calculated H-related VDOS in this range of
frequency has a strong noise making difficult a precise assignment of the

different structures. However the peak at 27 meV seems to be present

in our data and is the object of further investigations.

4.7 Conclusions and discussion

In conclusion we have studied the short range order of an hydrogenated
amorphous silicon structure generated by a computer simulation in which
the only input experimental parameters are the ionic masses. The den-
sity of the simulated sample has been fixed to the value of the ¢-Si
according to recent experimental results [99] and the concentration of H
atoms is about 11%.

The agreement of the calculated partial pair correlation functions
with those obtained experimentally by neutron scattering experiments
is overall very good. The tetrahedral order of the amorphous silicon
network is preserved by the introduction of hydrogen.

H is preferentially bonded to a single Si atom which is characterized

as a T3 defect. Our results indicate that (Si-H;) units, with the present
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H concentration, are not likely.

The H-H partial correlation function exhibits an interesting cluster-
ing effect that is tentatively related to a tendency of the coordination
defects in the silicon network to cluster. A more detailed analysis of this
point is in process.

An annealing treatment of our sample has shown the presence of
weak bonded hydrogen units that relax in more stable monohydrides
groups. This observation constitutes a good starting point for a study
of the diffusion process of H within the a-Si network that is currently

under way.
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Figure 4.6:
Infrared Trasmission Spectra for glow-discharge in a-5i:H, deposited on Anode
(A), deposited on Cathod (C) [91]
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Figure 4.T:
Calculated Hydrogen-related Vibrational Density of States in a-Si:H. Full lines:
Before the annealing. Dash-dotted lines: after the annealing.
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Chapter 5

Conclusions

In this work we have analyzed the microscopic behaviour of Hydrogen
both in crystalline and amorphous Silicon.

For this purpose we have used the ab-initio Molecular Dynamics
method. This approach allows to perform computer simulations of semi-
conducting and metallic systems at finite temperature. We have stressed
that in ab-initio Molecular Dynamics, the interatomic potential is ob-
tained with the same accuracy of “standard” Local Density Functional
calculations.

For the first time dynamical effects have been included explicitly in
the simulation of a diffusive proton in the c-Si lattice. Due to dynamical
effects the behaviour of the proton is substantially different from that
inferred from static total energy calculations. The diffusion coefficient
calculated from the simulation and its temperature dependence is in very
good agreement with the available experimental data. This confirms the
high mobility of H in ¢-Si. An analysis of the Hydrogen-related vibra-
tional properties suggested that scattering experiments may distinguish
between different diffusion mechanisms.

Finally we presented some recent results on a computer generated
hydrogenated amorphous sample. In particular we have described in

detail the short range order and the vibrational properties exhibited by
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the simulated a-Si:H sample. The agreement with available experimental
results is very good both for structural and dynamical quantities. In our
sample Hydrogen is bonded to Siions only in a monohydride form. This
confirms the tendency of H to saturate the dangling bonds present in

amorphous Silicon samples.
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Appendix A

Cut-off parameters

The sum over G in the expansion of the wavefunction (eq. (1.12)) is
usually truncated to include only M plane waves up to a cutoff Gae
corresponding to an energy cut-off £ cut.AAs a consequence of eq. (1.1),
the electronic density is then expanded in many more plane waves,
namely all that corresponding to vectors G’ that are difference vectors
of wavevectors (k + G) in expansion (1.12). Therefore, the electronic
density, and the potentials, should be expanded up to 2G4, (i.e. up to
a cutoff 4 x Ecut). Often the use of this high cutoff for the potential is
unnecessary [120,121]: it is possible introduce a smaller cut-off for the
potential without considerably reduce the accuracy of the final results.
The most drastic choice is to assume the same cutoff for wavefunctions
and potentials (Gmaz‘b = Gmamv) The saving in computer time and stor-
age space can be very relevant expecially for large systems. However
some care must be taken when using this approximation: it is clear that
when increasing G .. the results will converge at the same value; but
if the number of plane waves is far from the convergence, the results
can be not only quantitatively different but also qualitatively wrong.
This depends strongly on the system and therefore tests are necessary

to assess the goodness of this approximation.
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Appendix B

The Verlet algorithm

The problem is to convert the differential equations of motion into a set
of difference equations which enables us to go from time ¢ to ¢t + At with
a suitable chosen At¢. The simplest algorithm that we can use is the
Verlet algorithm [28]. Let us consider the generic dynamical degree of
freedom of the system ¢(t); we have:

alt+ A1) = o(t) + Atg(t) + S(A(D) + ... (B.1)

g(t — At) = g(t) — Atg(t) + %(At)zij(t) - (B.2)

therefore we obtain
q(t + At) = 2¢(2) — g(t — At) + (At)%G(¢) + O(At*) (B.3)

If m is the mass and V the interatomic potential, the acceleration of the

coordinate ¢(t) is given by

g(t) = - <~%l;-> (B.4)

m

Therefore the only information that needs to be carried in memory
is ¢(t — At) and ¢(t). Using all the ¢(t) we first calculate the forces and
then all the ¢(¢ + At) from eq. (B.3).
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It will be noticed that the new coordinates ¢(t + At) have been
obtained without reference to the velocities at time ¢. These can be
obtained by taking the difference between eq. (B.1) and eq. (B.2):

q(t + At) — q(t — At) L0

q(t) = 240t

(A%) (B.5)

and then we can calculate the kinetic energy at that time.
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