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CHAPTER I:

MATHEMATICAL BACKGROUND



. 1,2,3
PART A: Some topics on Riemann surfaces[ !

1.General information

Let = be a two dimensional topological space. A holomorphic
atlas on £ is an open covering {Ua}, UUa=E, with associated charts
or patch coordinates (homeomorphisms)

¢a: ZDUa ——— Vacc

in such a way that for any overlap UaﬂU #¢, the transition

B
functions
o™ ¢ao¢;: Vg8, (U N0 —— 4 (U MUY,
zﬁ —_— Zazfaﬂ(zﬂ)

are holomorphic functions. Two atlas are said to be equivalent if
the charts of one of them are holomorphic in the sense explained
with respect to the charts of the other and wviceversa. An
equivalence class of atlas defines a complex structure on 2.

A 1-dimensional complex manifold, called algebraic curve or
Riemann surface (RS), 1is a two dimensional connected manifold
which admits a complex structure.

Let us consider a RS 3. Locally, a line bundle on Z is given
by the cartesian product UaxC. The local cartesian products are
put together by giving a transition function gaﬁ on each non-empty
overlap UanUﬂ' The transition function 1is a complex valued
non-vanishing function on the overlap. The object that one
constructs by putting together this collection of cartesian
products is called a complex line bundle. If the transition
functions are analytic, it 1is said to be a holomorphic line
bundle. The set of holomorphic line bundles over ¥ is a group
under the tensor product ® known as the Picard group Pic(Z).

A section of a line bundle ¢ is given by a collection {ma} of
locally defined complex valued functions such that on the overlaps
they are related by the appropiate transition function

?a = gaﬂmﬂ

On a non-empty triple overlap UanU nU7 the transition functions

B

must satisfy the consistency "cocycle" condition =1
y ¥y ¥y gaﬁgﬂygya
In all this work we will restrict ourselves to compact



oriented RS without boundary. Any such a surface X is completely
characterized topologically after we give 1its Euler number
k(g)=2(l-g), where g is the number of handles or "holes" known as
the genus of Z.

Let us introduce on ¥ a basis for the first homology group
HI(E,Z)=Zzg, showed in Fig.I.l. This basis has the property that

the intersection pairing of cycles (closed curves) satisfies

(a,,a ) = (b ,b)=0
i 3 i J

(ai,bj) = -(bi,aj) = 6ij , 1,j=1,...,g v (I.1)

Fig.I.1l: A canonical homology basis for a genus g Riemann surface.

Any basis satisfying (I.1) is called "canonical". In terms of it
any cycle can be written as 1=nta+mtb with (n,m)ezzg, and

therefore

oty = am [ o) (] (1.2)

ml
This quadratic form counts the number of intersections (including
orientation) between vy and «v'.
Now, by the Hodge-De Rham theorem one can also find a set of

harmonic 1l-forms a , 8, i=l,...g, dual to the homology basis
1 1

a = B, = 6. ) § B =§ a =0 (I.3)
éa. L §b i 13 a i b i
J J J J

But, by making use of the complex structure on Z,” we can combine
the closed forms {ai,ﬁi} into g holomorphic and antiholomorphic
differentials (nl,ﬁl}; like {ai,ﬂi) they are determined once a
canonical basis or "marking" has been chosen. The standard way of

.- i . .
normalizing the ™ 's is to require

é nt =6 (I.4a)



Then the periods over the b-cycles are completely determined
§ nt = (1.4Db)
b

T=Tl+ifz is called the "period matrix" of Z. It is possible to
prove that is symmetric with ¢2=Imr>0, i.e., 7 € H®, the (left)
Siegel half-plane. It can also be shown that no two inequivalent
RS have the same 7 (Torelli’s theorem), so we can use H® to
parametrize surfaces. However this 1is a highly redundant
description, since the same surface with two different markings
will in general have two different matrices 7. Suppose the two

canonical bases are related by

&) - (35) 3 @9

where A,B,C and D € z%8*%, To preserve the convention (I.1l) the
matrix in (I.5) must leave the symplectiec form (I.2) invariant,
i.e., it must be a symplectic matrix with integer coefficients, an
element of Sp(2g,Z). This is called the Siegel modular group.

It is easy to compute the new ni’s (normalized according
to (I.4)) in the new basis (I1.5) '

1.t

n' = [(Cr+D) "]°n (I.6a)

The corresponding period matrix will be

7' = (Ar+B)(Cr+D) * (1.6b)

One can verify by using the defining properties of a symplectic
matrix that 7' is again an element of H®. Since period matrices
related by (I.6b) refer to the same RS, we can define
A5=Hg/Sp(2g,Z), with every point on A® representing an orbit of
Sp(2g,2) in H®. To summarize, using the map (I.4b) and the
equivalence (I.6b) we see that every RS is represented by a point
in Ag; thus Mg, the moduli space of genus g RS, sits inside A%, on
the other hand, no every matrix in H® corresponds in general to
some surface 3. Indeed the moduli space M® is in general much
smaller than A®. For g=0,1,2,3 however it is true; the (complex)
dimension of A® is g(g+l)/2, equal to 0,1,3,6 in these cases, and
coincides with the dimension of the moduli space. For g>2,

dimM®=3g-3 and then dimM®<dimA® for g>3. The problem of finding



the subset T® ¢ H® called Teichmiller space (M®=T®/Sp(2g,2))
corresponding to period matrices of RS 1is known as the Schottky
problem, and was recently solved in Ref.[4].

We can now describe the group of disconnected diffeomorphisms
of Z. Let Diff(¥) be the full group of orientation preserving
diffeomorphisms on X, and DiffO(E) the mnormal subgroup of
diffeomorphisms connected to the identity. The quotient group
Q(E)=Diff(2)/Diffo(Z) is known as the mapping class group (MCG).
Any non trivial element in Q(3) is called a modular transformation
and all are generated by the "Dehn twists". A Dehn twist around a
non contractible loop v&€X 1is constructed as follows: given v,
choose a neighborhood of v that is topologically equivalent to a
cylinder. We can now cut % along v, and keeping one of the edges
of the cut fixed, we can twist the other by 2r and glue them
together again. By this construction we can associate to every
point of the original torus a new point, in a way which is smooth
and yet clearly not continuously related to the identity map.
There is a deep theorem that states that for any class in Q(Z)
(modular transformation) we can always choose a representative
given by a Dehn twist.

We can represent the Dehn twists in terms of matrices,
writing their action on the homology basis. Let D'y be the
diffeomorphism defined by twisting around +. The intersection
matrix (I.1,2) is manifestly invariant under diffeomorphisms, so
the matrix M(D’Y) ‘representing D7 must be an element of Sp(2g,Z).
In fact the set of matrices M(Dy) generate all of Sp(2g,2).
However, a Dehn twist along a homologically trivial cycle, while
non trivial, does not affect the homology class of any curve and
so maps to the unit matrix. Such twists generate a subgroup T(Z)
of (Z), the "Torelli group". The quotient group Q(2)/T(Z) is
precisely Sp(2g,2).



2.Differential geometry on Riemann surfaces

The local differential geometry on % is quite simple. It is a
well-known fact that we can choose on any £ isothermal coordinates

where a given metric h has the form

h = p(x)(dx'®@dx’ + dx’®dx®) = h -(z,2)(dze@dz + dz@dz)
VA

z = x + ix’ ., p(x) = 2 h -(2,2) (1.7)

Metrics related by multiplication of a scalar function define a
conformal structure on X. It 1is easy to prove that complex
structures and conformal structures on ¥ are in 1-1 correspondence.

A metric h defines an integrable two-form H on X, locally

given by
H = idzAdz h_-(z,2) = dx*Adx?® p(x) (1.8)

From (I.7) it follows that we can always decompose an
arbitrary tensor into its irreducible components with respect to
0(2), the frame group of the surface. These can all be written

in terms of tensors of the form

t = t(z,z) dz¥ , p=0,%1,+2,... (1.9)

t(z,z) transforms across the coordinate patches in such a way that

_ - p
: ﬂf (aza/azﬂ) .
More generally, an object of the form t=t(z,z)dz"dz? € A (=)

(p.q)
is said to be a tensor of rank (p,q), d=p+q and s=p-q being its

t is invariant, that is, with transition functions g

"scaling dimension" and "spin" respectively.
In 1isothermal coordinates there are two non-vanishing
components of the Christoffel symbols, the "hermitian connection"

of h

]

w
2z

r’ =38 logh - (1.10)
and its "complex conjugate" w;=a;loghz; (we will consistently omit
"antiholomorphic" parts in what follows not to be reiterative).
The tensors (I.9) are sections of the line bundle A(p'o)(E)=KP,
where K is the holomorphic cotangent bundle KEA(l,O)(Z)’ the set
of 1-forms with no z indices. K is called the "canonical bundle"
of Z. The covariant derivative acting on p-differentials 1is then

the operator (hzz=(hz;)—1)

10



vP: kP — '

t — VPt = Vit(z,i) dzP"t = (hz;)paz((hzz)pt(z,i))dz

(I.11a)

pt+l

and its adjoint (the "Cauchy-Riemann" operator 4 acting on

p-differentials) with respect to the usual scalar product

- - - - %
<E|t'> = f idzadz (h )" Y t(z,z) t'(z,z) (I.11b)
5

is V?¥ —.v | with
P

vV : R — P!
P

t —— th = V:t(z,i) dzP™! = n*® c’3;t(z,:::)dzp*l
(I.11¢)
Using (I.11) we «can construct two laplacians acting on
p-differentials

=)

AT g 9P , AT =Py (1.12a)
P p+l =z el z P
satisfying
(+) (=) z h
AP - Ap = [V ,Vz] p-difr.” s/2 R (I.12b)

where Rh is the scalar curvature of (I.7)

R" = -2 h*®3 3-logh - (1.13)
- z z 22z

3.Divisors, line bundles and the Riemann-Roch theorem

A divisor D on Z is a set of points PiEZ with associated
multiplicities nieZ. It is wusually denoted as a formal .sum
D=ZniPi. A divisor is said to be positive if ni>0 Vi. The degree
of D is by definition the number degD=Zni.

Given a section s of a holomorphic line bundle ¢, we can
agssociate to it a divisor given by the set of zeros {Pi} and poles
{Qi} with multiplicities positive and negative respectively

D(s) = ZniPi - ZmiQi , ni,mieN
Let us pick up a canonical homology basis (I.1) on X with the

associated period matrix r. The Jacobian torus is defined by

J(=) = ¢¥ /() = ( [2] / [z]=(zeC® / z=z+v, vel(T)) )

11



where the period lattice T(Z) is
T(Z) = (v e ¢ v=n+rm, (n,m) € Z°5)
The Jacobi map I:5=+J(2) is defined by

o P e 2, (I.14)

P
I(P)=J n P
: P
0
where P0 is an arbitrary reference point on 3. It is extended to

arbitrary divisors by linearity. An important property of the
Jacobi map is given by the Abel’s theorem; it states thét D is the
divisor of a meromorphic function (section of KO, the trivial
tensor bundle) if and only if I(D)=0 and degD=0. Therefore (I.14)
maps divisor equivalence classes [D] to J(Z), where two divisors
D1’ D2 are equivalent if (Dl-Dz) is the divisor of a meromorphic
function. Often we will denote for compactness I(D) or [D] by D
itself.

Thus, since two different sections s,y S, € { can be obtained
by multiplication by a meromorphic function (sl/szeKo), we can
associate a holomorphic line bundle with an equivalence class of
divisors. Conversely, given a divisor D we can construct a line

bundle as follows: if we restrict D to U we can find a

3

meromorphic function fa on Ua whose divisor coicides with the

restriction Da. For two overlapping patches Ua, Uﬂ’ we have
functions £ , £,. In the overlap U nU,, £ and f, have the same
o’ TP a B Ta B

divisors. Thus we can define the transition function for a line
bundle to be fa/fﬂ' It is trivial to check that the cocycle
conditions are satisfied. Hence we can think of holomorphic line
bundles on % either in terms of transition functions, or in terms
of divisors.

Another very useful result is the Jacobi inversion theorem:
let =8 represent the set of positive divisors of degree g; then
outside of a set of complex codimension 1 in J(3), there is a
one-to-one correspondence between positive divisors of degree g
and points of the jacobian, that is

I(D) = i I(Pi) =z € J(Z)

i=1
is invertible for almost all z.

Now, let us call HO(E,g) the kernel of § acting on the space

of sections of {; its dimension will therefore give the number of

12



independent holomorphic sections of ¢{, called wusually "zero

modes". The Riemann-Roch theorem can be formulated as follows

dimi’ (2,¢) - dimH’(S,Ket ') = degt - g + 1 (I.15)

Let us consider same simple applications of (I.15). By taking ¢=K,
being K@K_l the trivial bundle and therefore dimHo(E,K®Kﬂ)=l (the
constant) and dimHo(E,K)=g (the g abelian differentials introduced
in (I.4)), we learn: degK=2g-2 and then deng=2p(g-l) (the degree
is additive with respect to the tensor product). Now let us take
§EKP with p>1, and g>2. In this case dimHo(Z,Kl_p)=O because
degKlﬁp=-(p-l)(2g-2)<O and therefore K* P can not have holomorphic
sections, so (I.15) gives dimHo(E,Kp)=(2p-l)(g—l) as the number of
holomorphic p-differentials. We will return to (I.15) later, when

we will discuss the Krichever-Novikov bases.

4.Spin bundles and spin structures

Geometrically, a spin bundle S is defined as a square root of

the canonical bundle SzKllz, i.e. as a bundle such that S®&5=K. In

terms of transition functions, it corresponds to take the square
‘s . 1/2

roots of the transition functions of X haﬁ=(aza/3zﬁ) /

consistently with the cocyle condition ha =1. The question

h, h
B By v
is whether such square roots exist and if they do one would like

to know how many there are. We will show that there exist exactly

ﬂ’

228 possibilities of choosing the signs for ha corresponding to
228 spin structures.

Let us consider the group of flat holomorphic line bundles
(those with constant transition functions) Pico(E)CPic(Z), and
construct the "cut" surface ¥ as follows: choose a point A on I,
and draw curves starting at A and homotopic to the canonical
homology basis of Fig.I.1 (Fig.I.2a); then cut the surface along
these curves and wunfold it, obtaining a 4g-sided polygon
(Fig.I.2b). If we assign transition functions across the cuts,
then every flat bundle on T is equivalent to one whose transition

functions are all constant phases, one for each homology

generator. For the choosen basis, if s is a section of a general

13



flat line bundle L, we identify the section s along a, with
exp(-iZﬂ'qSi) times s along agl, and s along bi with exp(i2n§ )
1

times s along ,le. Since Os¢i,01<l, flat holomorphic line bundles

1

are parametrized by a torus called the "Picard torus" of the
surface PicD(Z)=R28/Zzg. Now let us consider IL=S ®Sﬂ—1cPico(2)
¢ A 2

8 =K, L~ is
trivial (2I(D(L))=0), and therefore the difference between two

where Sa and Sﬁ are two spin bundles. Because Sa2=S
spin structures 1is parametrized by a point of order two in

PicO(Z). Since Rzg/Zzg has 228 points of order two, we conclude

that this is also the number of spin structures.

FD) -

Fig.I.2a: Cutting a Riemann surface Fig.I.2b:

along a homology basis The "cut"” surface for g=2

14



. . 5,6,7
PART B: Theta functions on Riemann surfaces[ !

5.Theta functions: definition and properties

Let us consider a gxg complex matrix reH®. Any point in eeC®
can be written uniquely as e=(ﬂ,a){ i ] where 1 stands for the

identity gxg matrix; (ﬂ,a)eRzg are the characteristics of e.

The first order §@-function with characteristics [Z] is
defined by its Fourier series of the form
81%1(z|r) = ¥  exp(in(N+a)"r(Nta) + i2n(N+a)®(z+8))
A vez® i .
= exp(ira ra + i27a (z+8)) 9(z+elf) R
6(zlr) = 00 1(z|r) , z €cC®, a,peR®, ren® (1.16)

We will use the notation G(ZIT)EH(Z) for compactness.

It follows from the definition (I.16) the transformation law

0[;](z+n+7m) = exp(—iﬂmtrm - i2m®z + iZﬂ(atn - ﬁtm)) 9[;](2)
(1.17)

Indeed we can define the §#-function as the (unique up to
multiplicative constant) section of a holomorphic line bundle (4
line bundle) over J(3) with transition functions given by (I.17).
Z::](z)=exp(12watM)€[Z](z), (¥, M)ez?8, so

it suffices to consider the characteristics (a,8) such that

It also follows that 4]

OSai,ﬂi<l, i=1,...g.

The characteristics (e,B) such that ai,ﬁi are 0 or 1/2 are
called half-periods; the corresponding 2?8 g-functions are even or
odd depending on the parity of Aatﬁ as it can be easily checked
from (I.16). They are closely related to the spin structures of X

(see Section 7).

6 .Multivalued functions on Riemann surfaces

A fundamental theorem in #-function theory is the Riemann

vanishing theorem. It states that the function

15



g
F(P) = §(I(P) - iEll(Pi) + A) ' (I1.18)

either vanishes identically or it has exactly g simple zeros in

P=Pi, i=1,...,g8. A=(Ak) in (I.18) is the Riemann constant vector
defined by . » :
Ak = (l+rkk)/2 + 1§1 § nl(P) J n, (I.19a)
a P
15k i 0
and depends on P0 and the marking. It will be shown in the next
section that there is a particular spin bundle S(é o) such that
its divisor class D(o 0y called the Riemann class, satisfies
I(D(O,O)) = A+ (g-l)I(PO) (I1.19Db)

and is independent of Po' The Riemann class, as the divisor class

of any spin bundle, is related to the canonical line bundle by

K=2D(o oy As a useful corollary of this theorem, we have
g-1 -1
6(- B I(B)+4A) =0 ,V (p)€s=’ (1.20)

When one studies complex function theory on the sphere, the
basic building blocks are monomials of the form (z—zi). The
analogous object for an arbitrary RS is the "prime form" E(P,Q).
It is a multivalued -1/2-differential without poles in both
variables P and Q with a unique simple zero for Q=P. Let us sketch

its construction. Consider the function

01501 (1(P-Q)) (1.21a)
with [;Z] a non-singular (aziﬁ[Z:](O)#O for some 1) odd

characteristic. Keeping Q fixred it will vanish as-a function of P
in (g-1) points Pi, i=l,...,g-1, according to (I.18) and Jacobi
inversion theorem. Similarly, as a function of Q, keeping P fixed,
it will also wvanish at the same points. But being the
characteristic odd, it also vanishes for P=Q. If we now take P and
Q very close to each other and to one of the Pi’s, then (I.21a)
behaves like

(P-Q)(P-P )(Q-P) (1.21b)
Thus, if we differentiate (I.21la) with respect to P and then set
Q=P, we obtain a holomorphic l-form

Qo

0 i
fo 1(0) n (P)

h (B = a g(3°1(IE-Q)| = 3, 8z 00y

Q=P i=1 i /30
(1.22)

16



But from (I.21b) we know thét hO(P)2 has double zeros at the Pi’s
and does not vanish or blows up anywhere else. Consequently we can
take its square root ho(P) without any fear of introducing cuts on
2. Then ho(P> will be a holomorphic section of a spin bundle, and
the prime form is given by

(¢

E(P,Q) = 0[5°](I(P-0))/(h (DB (Q)) = -EQ,P)
E<P:Q) = P'Q: as Q = P’ (1-23)

It can be shown that E(P,Q) is independent of the particular

choice of [Zo]. For cycles winding around P, it transforms as (see
[s]

(I.17)

F+na+mb

E(P,Q)_——_““*EXP(-iﬂmtT m - i2x mtI(P-Q)) E(P,Q)
(1.24)

Finally, we introduce the o-differential

g
o(P) = exp( - ) § n,(Q) 1nE(Q,P) ) (I.25a)
j=1 “"a

It is a (multivalued) g/2-differential without zeroes and poles,
a section of a trivial line bundle. Its transformation property is

P+na+mb

o(P)— exp(in(g-L)m"r m - 127 m"(A-(g-1)I(P))) o(P)
(I.25b)

7.Theta divisor and spin structures

The set © ={z:0(z2)=0} is a variety of complex codimension one
in J(Z) called ©-divisor.

Let ¢ be a degree (g-1) 1line bundle with a holomorphic
section; then in %F? corresponding divisor class [{] there is a
positive divisor ¥ P . By eq.(I.15) dimH°(z,g)=d§@§°(z,K®g"1) and

i=
ther?fore K®§;1 has a divisor of the form '21Q1’ verifying
g- &= i=

I(i§1P1)+I(i§1Qi)=I(K). Let D(aﬂ) be a spin bundle, 2D(aﬁ)=K; then
the set
g-1
S(aﬂ) = {I(iglPi-D(aﬂ)) / Pl,..., Pg~1 € X} Cc J(=) (1.26)
is a symmetric subset with respect to the origin of J(Z) because
g~1 g-1
(2P, - D(aﬂ)> = 1(,2.Q - D(aﬂ)) < S(aﬂ)

17



From the corollary (I1.20) as the points Pi sweep X we recover ©

g=-1
A-UT(EP)/P,..., B _ €Z)-8
Therefore
S(aﬂ) = Yy © ’ Tapy ~ A - I(D(aﬂ)) (.27

Since © and S( are both symmetric subsets with respect to the

af)

origin of J(X), we have

© + 27 g = © (1.28)

This means that 6(z+2y Y/0(z) is a constant on the compact

(af)
space J(Z), and then (I.17) implies that 27(aﬂ) e I'(Z), that is,

each v is one of the 2°% points of order two. Being 228 also

(aB)

the number of spin structures, it follows from Abel’'s theorem that

for each half-point of J(X) there is a different D(aﬂ) and
viceversa. Since we can write 7(aﬁ)=ﬁ+ra, then
o . o4 i o

@(aﬁ) = {z.ﬁ[ﬁ](z) o) e + T(aﬂ) N ﬂi e {0,1/2)

I(D(aﬂ)) =A -8 - T . (1.29)
Noting that .

8-
e, - 8_1 ==
0.0y = { I(igl}?i D(DO)) / (Pi) € 3 H e (1.30)

and that 4 is Po-independent we see that D(OD) depends only on the
homology basis chosen. This particular spin structure is precisely
the Riemann class introduced in (I1.19b). From (I.27) it follows
that there is a one-to-one correspondence between degree (g-1)
line 'bundleg_?or which 8. has a zero mode (that is, the line
bundles {I(iglPi)/ (Pi) € 25_1}) and points in ©. Moreover, it
turns out that dimHo(E,g) equals the multiplicity of the =zero of
8(z) at z=I(A)-I(¢).

For odd characteristics [;], 0 e e(aﬂ) so that there is at
least a set of points Pl,..., P such that
g-1
I(iglP1 D(aﬂ)) =0 (I.3D)
that is, D(aﬂ) has at least a holomorphic section with zeroces at
z=Pi, i=1,...,g-1, the hO(P) constructed in Section 6 and given

explicitely by (I.22). In the case of even theta functions there
are certain values of r for which 0 € G(aﬁ)’ for example for g=2

this happens when the period matrix is diagonal.
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PART C: The Krichever-Novikov bases

8.Definition and explicit construction

In Ref.[8] Krichever and Novikov (KN) introduced bases for
meromorphic A-differentials on genus g Riemann surfaces which are
holomorphic outside two distinguished points P+ and P . These
bases are uniquely determined up to numerical constants as a
consecuence of the Riemann-Roch theorem. They are the
generalization of the bases {zn_AdzA) over the sphere, the points
P+(P_) playing the role of z=0 (=x). Thus the KN bases provide a
mean to globally Laurent-like expand any tensor field of the type
described before on genus g RS. This fact will lend itself to
operatorially formulate conformal field theories on RS, as we will

see in the next chapter.

Case of integer )

For integer A>1 and g>1, the Riemann-Roch theorem guarantees
the existence and uniqueness (up to a multiplicative constant) of
tensors of rank (A,0) which in a neighborhood of P+ and P_ have

the following behaviour
(A ME Ei-scA A
£7(z,) = o, 2, "5 (Lto(z)) (dzp)

s(A) =g/2 - X (g-1) <0 ' (I1.32)

where zi(Pi)=0, z being local coordinates in P,. The

+

multiplicative constant may be fixed by requiring for example
(Ay+_
J

half-integer values depending on whether g is even or odd,

1. The index j in eq.(I.32) takes either integer or

respectively. When j=s(A),...,-s()) we have a basis for zero modes
of the d-operator acting on A-differentials. These are in number
-2s(A)+1=(2x-1)(g-1), reproducing the result of Section 3.

The existence and uniqueness of the sections (I.32) can be

proved as follows: let us rewrite (I.15) as
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A A

@ (-D)) = dimH’(Z,K' "®@0(D)) - degDd - 2s()) + 1
(1.33)

where for our purposes O(D) is the line bundle corresponding to

dimt’ (3,K

the divisor D. An useful tool is given by the following lemma (see
Ref.[9] for an easy proof): given two divisors Y and X,

if OsdegX<dimi’(Z,K @0(-Y))
aimi® (2, K'e0(-Y-X)) = dimH’(Z,K'@0(-Y)) - degX (1.34)

being zero if dengdimHo(Z,KAO(-Y)). Let us take deg¥=-2s()\)-g+l;
then degKl_A®O(Y)=—l<O and from (1.33) we learn
dimHo(Z,KA®O(-Y))=g. By taking now degX=g-1l we obtain from (I.34)
dimi’ (2,K €0(-D)) = 1 (1.35)
for any divisor D such that degD=deg¥+degX=-2s(\). If
D=(-j+s(A)E +(j+s(A))P_, then dimi’(Z,K'60(-D)) counts precisely
the number of sections of the type (I.32). Analogous steps

considering (1-A)<0 in (I.33) prove the existence and uniqueness
(1-X)
5 .
Note also that once one proves the existence of (I.32) by

of the sections f

constructing it (as we will do later) then uniqueness follows from

the Noether "gap" theorem. In fact, let us assume there are two

()

sections f(%) and £'°°° of KA satisfying (I.32) and we define a
3 3

function h as the quotient of them. Since f(%) and f'(%)
i

3
zeroes outside P, , it follows that h is a meromorphic function

have g

with a number of—éoles between zero and g. But the Noether "gap"
theorem states that there exist mno meromorphic functions with a
number of poles in general position between 1 and gl. This implies
that h is necessarily holomorphic and therefore a constant.

For A=0 the behaviour is modified with respect to eq.(I1.32)

due to the Weirstrass gap theorem2. Let Aj, |j|zg/2+1, be the

lThe restricted version: "there is for general Pe¥ no meromorphic
function with a pole of order n<g in P" is known as Welerstrass
gap theorem; the particular points where it does are called
Weierstrass points.

2The proof of the assertions about existence and uniqueness of the
sections introduced in the remainder of this section will not be

presented here (see [9]).
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unique function which in a mneighborhood of P, has the Laurent

expansion

A (z,) = a? zij‘g’z<1+o<zi)) (1.36)

(As before, j is integer or half-integer depending on the parity
of g). For j=-g/2,...,g8/2-1 we take the functions with the
following behaviour
+0
+  +y- -
A (zy) = 2 8P (Lvo(z,) (1.37)

These conditions define A uniquely up to addition of a constant,
because (I1.37) fixes pole; in both P+ and P . For j=g/2 we choose
Ag/2 to be the holomorphic section (the constant); this completes
the basis of meromorphic functions.

For A=1, we take the basis of one-forms as follows: in the

range |j|2g/2+1, wjzf(%), with f(%) given by (I.32); for
-3 -3

j=-8/2,...,8/2-1, those specified by the local series
y
-1
: + e
o' (z,) = B, z13+5’2*° (1+o(z,))dz, (1.38)

8/2 as the Abelian differential of the third

Finally, we take w
kind with simple poles in P, and residues *1, in such way that its
periods over all cycles be ;urely imaginary.

. In the g=1 case, degKA=O and therefore the number of zeros is
equal to the number of poles for any section of KA for any X; the
existence of a holomorphic (and therefore without zeroes and
poles) one-form 5 enables us to write the KN bases as follows

(A) A

£ = constant A 7 ' (I.39)
J 3

where the A ’'s are defined as before.
3

Let us now move to the explicit construction of these

[10]

bases Looking at (I.32), we observe that this behaviour is

correctely reproduced by using prime forms as follows .

0 -8\ J+sS ()
= E(R,2)) / E(P,P)

J

£

The correct weight in the P-variable is obtained by mean of the
o-differential

ffA) ~
Jd

i-s(\) j+s ()
(E(2,P) / E(R,P) N

)

Finally, we require fSA to be single-valued. To this purpose we
3

introduce a §-function
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3-S(A)

M@y - Ve, p ) BRI ()P g(prer,i))
E(P,P)"
(1.40)
where
e(x,J) = (j-S(A))P+'— (G+s(A))P_ + (1-20)4
and
J+sS () 1-2X 2(3-S(A)+N)
()\)(P P ) - E(P+,P-) o(P+) ho (P+)
6(P,+e(X,3))
Note that the §#-function gives the g zeroes of f outside P ;

the constant N(A)

(P P ) is choosen in order to satlsfy a duallty
condition to be defined below in (I. 46)

For g=1 or X=0,1, eq.(I.40) does not work in the interval
-g/2<j=<g/2. In fact, in these cases the §-function has zeroes in
P+ and P_ which cancel the poles of the prime forms, as it is easy
to verify by using the Riemann vanishing theorem.

For A=0 the expressions for any g are defined by
131>g/2:

Aj(P) = as (I.40) with A=0,
-g/2<j=<g/2-1.:
@ =Ky, ) BT P ey
- aj<Pi’Pg+1) ] (1.41)
where

e(j) = (J-g/2)P,- (j+g/2+1)P_+ P +4

e T g/2
%P Fn) " T éc (A () +a (B, P )) e ,
and
N @,p ) = E(P+,P-)3 B2 5(Py) ho(pr)2ITE/
J ' g+

0(P, + e(i)) E(P,,P )

g+l

Here P 1 is an arbitrary point different from P, (as we have
g +

3One can check that this choice of the coefficient NfA) makes f;A)
J

single-valued and with the right weight in both P+ and P_

variables.
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already said, the A 's defined by (I.41) are fixed up to addition
of a constant; thi; arbitrariness is reflected in (I.41) through
the point Pg+1’ that can be fixed by requiring ad(Pi,Pg+1)=O),
w®'? is defined below in eq.(I1.43), and C is any countour which
separates P+ and P . Finally we take Ag/z=l'

For A=1 the elements of the basis of 1-forms take the

following form

1il>g/2
wj(P) = ff;) , according to (I1.40)
. 4 '
~g/2<j=g/2-1
jtg/2
W) = NP p,p HEEED  o(F) 0 (P+e(3))
~3 x g+l j~g/2+1
E(P,P,) E(R,P ,.)
& (1.42)
where
e(3) = (+8/2)P_ - (J-g/2+D)P, - B . - A,
and
-i-gl/2 -2(j-8/2)
Nf;)(P ’Pg+1) _ E(P+,P-) E(P+,Pg+1) h(P+)
= §(P_ + e(3)) o(B))
j=g/2
*'* () = d[In(E(R,P,)/E(R,P_))] -
g Pe s -1 j
- 271 ) ImJP n (r, )ij n° (P) (1.43)

i,4=1 -
In the genus one case, considering eq.(I.39) we can define

the following expressions:
for |j|>1/2

j-1/2
() 1

M@y =N e, py EEED
’ ’ © E(P,P)

£ o (P)2N"

e 6 (P+e(j,2))

(I.44)
where

e(3,2) = (3-1/2)2, - (J+1/2)P_ + (1-204

4Note that in eq.(I.42) we have mno pole in Pg+1 because the
f-function has a zero there which cancels the zero of E(P,Pg+1)
for any j=-g/2,...,g/2-1; in rigor from the Weierstrass gap

theorem it follows that (I.42) does not depend on Pg+1.
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and
j+1/2 23
NSA)(P+,P‘) _ E(P+,P-) o (P+) ;
; 6(2, +e(J))

for |jl=1/2 (the zero mode)

fi?;(P) = w—l/z(P)A according to (I.42),
and
2A-1
fi;z(P) - Nf?;z(P+’Pz) E(P,P2) o(P) §(P-e) -
B E(P,P,) E(P,P)
(A)
- o(By.R,) £10)(P) (1.45)
where
e=P++P_ _PZ - A,
.-1 .
E(P+,P-) o(P 1 E(P,P2) 6(P-
C<Pi’Pz) = = ) o(E+) )2 i § ( ( 2) 6(P-e) )2
9(P+-8) E(P+,Pz> c E(P,P+) E(P,P_)
and
A E(P+,P-)
N-1/2(P+’P-) B

0(P+-e) E(P+,Pz)

Duality relation

(A

The dual section of £ 77, le N is defined by the following
3 -
duality relation
1 (XY 3 _ 3
2ni § L Taon T8 ’ (1.46)
where € 1is a contour separating P+ and P (due to the

holomorphicity outside P, of the £ 's, the contour integration
+ J

does not depend on the particular C choosen). The bases defined
before satisfy this relation with fil—A)=f£;—A)

case: A=0, for g=2 this relation is also verified by the Aj’s and

(in the particular

W given in (I.41-43)). The constants were choosed in order for

(1.46) to hold.
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Case of half-integer X

Let us mnow consider sections of KA with a given spin
structure [«,B]. We are interested in two kind of bases:

i) Basis for the space of tensors of weight X with the spin
structure [«,B] which are holomorphic outside P+ and P and a slit
from P+ to P ("Ramond (R) -type" bases);

ii) Basis for the space of tensors of weight A with the spin
structure [«,8] which are holomorphic outside P+ and P_
("Neveu-Schwarz (NS) -type" bases).

By Riemann-Roch theorem , there exists a unique (up to a
normalization constant) section fiA) which in neighborhoods of P,
have the form (when the spin structure is odd, the followin;
expression 1is slightly modified in the NS sector in the cases

A=1/2 with |n|=1/2 or g=1, see below)

(A)( y = * dn-sch)
n Zy) T A 2y

(1+o(z,)) (dz ) .‘ (I.47)

£

where n takes integer values in the R case i), and half-integer
values in the NS case ii).

Even though (I.47) looks like (I.32), there is however a
difference due to the fact that the indices j or n, run in general
over distinct values.

Let us now consider the NS sector with odd spin structure,
and A=1/2. If n<t1/2, then eq.(I1.47) still holds. For n =t1/2 we

take the sections as follows

(1/2) % -1 1/2

12 (Zi) =a’,, % (1+o(zi))(dzi)

(1/2) - 1/2

12 (Zi) =a’, (1+°(Zi))(dzi) (I.48)

Considering as before the NS sector, odd spin structure, but g=1,
we can define for any half integer A

f(A) = constant A nA , (1.49)
- n

n

/2

1/2
where we take the spin structure of nl to be odd (g ! aho).

The explicit construction of theses bases is made in the same
way as for integer X, but now we have to take into account the

spin structure. This is accomplished by introducing 4-functions
(o4

B

with characteristics [_]. Then, we write
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n-8S(A)
E(P,P+) 2A-1

[#4
ag(P)
E(P,P_)“+S<A)

B

(A

£ (P) = N# (P

A

o 1(Pre(A,m))

P

(I.50)
where

e(A,n) = (n-s(A))P+ - (nts(A))P_ + (1-20)A

n+s{) 2n
N:A)(P+,P_) _ E(P+,z-) g (P+)
ﬂ[ﬂ](P+ + e(A,n))

For the particular case of [Z] corresponding to an odd spin

structure, NS sector and A=1/2 we have for |n|=1/2

(rrz) (P-P_)/E(P,P ) (I.51)

(172 _ a
£, (B =N T(P,P) H[ﬂ]
where
N;ng) (P+,P_) _ E(§+,P—) o(P+) ’
0151(R,-P )
and
£1)5) B =N P 2y ) R (9] (Pre)
- E(P,P+) E(P,P )
(1.52)
where e =R - P+ - P , and
(1/2) ___E(P+,P-) ot
N-1/2 (PisR) - 0[ ](P++e)

E(P,,R) o(B,) A

Here R is a generic fixed point. The dual bases are defined as in
the )\ integer case. This completes the explicit construction of
the KN bases.

9.The Krichever-Novikov algebra

Among the KN bases introduced in the precedent section the
basis of vector fields. (A=-1) is a particular one. It can be used
to define via Lie brackets a generalization at arbitrary genus of
the algebra of complex-valued vector fields on the circle. The
central extension of this algebra is the so-called KN algebra[al.
Let us consider a meromorphic wvector field on X u=u(z)6z

eK—l. The Lie derivative of a tensor of rank (p,q) t=t(z,§)dzpdéq
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with respect to u is then defined by
Lt = (u(z)8 t(z,z) + p 8 u(z) t(z,z))dzFdz* (1.53)
Z 2z

If we take veK_l, then the Lie derivative defines an

antisymmetric bilinear form on K_l, the Lie bracket

[u,v] = LV u = (V(z)azu(z) - u(z)azv(z))az = -Luv (1.54)

-1)

Now, if we denote by elsff the basis of meromorphic vector
3o

fields given by (I.40) (g>l, for g=1 there are slight
modifications in the following expressions)

i-g_+1
Ej(P) _ N;- E(P,P+)

E(P,P ) "%

(. ,P) o() "% 6(P+e(-1,3))

+ -1
(I.55)
where g0=3g/2, then the Lie bracket (I.54) define the algebra

5
[ei,ej] = ) Cij © vine (1.56)
s=-go
The Cij are the structure constants of the algebra. By using the

basis of 2-differentials dual to (I.55) Q3=f'%’

they can be

written as
c:j = 1/(2xi) é e, e,] gitivs (1.57)
C

The locality condition in (I.56) then follows from an
straightforward counting of zeroes and poles. We can obtain from

(1.57) the Cé_’s in terms of #-functions and their derivatives.

ij
For example (wf 1>+=l)
1

(-1)- (-1)-
g -5 s i
CBo = (i-3 G _oris
15~ (-3, 0 = (4-3) -
i+j+g

21 §(P- + e(-1,1)) (U(P+)
€(P+_+ e(-1,1)) U(Pi)

(-1)-
i

3

= (-5 B ,P) )

(1.58)
For s=-g +1,..., g -1, the structure constants will depend on the
o [s]

succesive coefficients of the expansion of e, around P or P_
(cf.(I1.32)), which can also be written in terms of #-functions and
their derivatives using the formulas given above.
At g=0, en(z)=zn+1 and (I.56) takes the form
[en’em]=(n~m)en+m
coinciding with the algebra of the generators of diffeomorphisms
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of the circle.

If we add to the generators of the algebra (I.56) (considered
now as an abstract mathematical object) another one t commuting
with all the ei's, then the central extended version of (I1.56)
looks like

S
[e,se,1 = L C e .  +c/l2ts,

[e ,t] =0 (I.59a)

where ¢ is the so-called central charge of the algebra and £y is

a cocycle. However the condition for (I.59a) to be an algebra (and

then it satisfies the Jacobi identity) imposes strong restrictions

on £, .. Indeed KN showed that if we require the locality condition
k. =0 if [i+j]>3g

ij

then the cocycle must be of the form
k = 1/(2ri) § dz ( 1/2 (3% (2) e (z) - (i=j) ) -
iJ c z i 3

- R(z) (azei(z) ej(z) - (i+§)) ) (1.59b)

where R(z) is a schwartzian connection transforming under
z —~ w=w(z) as

R’ (w)dw® = R(z)dz® + {w,z)dz” (1.60a)
(w,z) = a:w(z)/azw(z) - 3/2 (ajw(z)/azw(z))z (1.60b)

in order to make the integrand of (I.59b) a well-defined 1-form;
{w,z} is called the schwartzian derivative.

Egs.(I1.59) define the KN algebra. We note that two KN
algebras with the same central charge and differents schwarztian
connections R(z) and R'(z) are isomorphic. It is easy to verify
that the corresponding generators e and e! are related by

1
e'=e +5 , where
i1 4

Si = ¢/ (24wi) § dz ei(z) (R’ (z) - R(z)) (I.61)
C

is a well-defined c-number because the difference of two

11 1t is said in

schwarztian connections is a 2-differential
this case that the two algebras differ by "trivial cocycles".
We finally recall that at g=0 eq.(I.5%a) reduces to the

famous Virasoro algebra (R(z)=0)

[LZ,L:] - (n-m) LZ+m +c/12 8 (n°-n) (1.62)

+m, 0
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CHAPTER II:

OPERATOR FORMULATION OF

CONFORMAL FIELD THEORIES ON

RIEMANN SURFACES
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PART A: Hamiltonian formalism for generic CFT on RS''Z!

1.The Krichever-Novikov parametrization

Let us recall some elementary facts of genus zero. When a
"string" propagates in space-time it sweeps out a world-sheet
which is topologically a cylinder. (Fig.IIl.la). This is
conventionally parametrized by an angular coordinate o and a time
evolution parameter t. By going to euclidean time 7 (=it), this
cylinder can be mapped to the complex plane without the points z=0
and z== by simply defining z=exp(r+ic) as the coordinate of the
complex plane (Fig.IIL.lb). This is conformal to a sphere without

two points (Fig.Il.lc). The inverse map can be defined by

Z
r(z,2) Rej dz/z (II1.1la)

1

Z
o(z,z) = ImJ dz/z , 0 ~o + 2m, neN (II.1b)
. :

f T=co . ST
T = Constant v
e ; .
TS ot
- ’ \ -~
Fig.II.la: Fig.II.1b: Fig.II.lc:
Cylinder Complex plane Sphere without
without 2z=0,c two points

We gee that the level curves of equal r (which represent the
string) are concentric circles around z=0 (Fig.II.1lb).

At higher genus we have something similar: the string
propagates but this time it splits and then joins giving rise to
"holes" which topologically characterize the two dimensional
surface (Fig.II.2a). Again, by going to euclidean time, this can
be conformally mapped to a Riemann surface X without two points P+

and P (Fig.II.2b). By noting that the integrand in egs.(II.l) is
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no other thing that the 1l-form with simple poles in z=0,~ and

residues +1 and -1 respectively, we are led to define5

P
T(P) = Rej dk ; P, P eX (1I1.2a)
P o
o]
where dk is a differential of the third kind with simple poles at
P+ and P with residues +1 and -1 respectively. This defines
dk up to addition of holomorphic differentials. If we require 7 to

be unambiguously defined (as in (II.la)), that is

Re § ak -0 (11.3)
v,
L
with v  any homology cycle, then dk is fixed unambiguously being
1

&/2

precisely the w introduced in the Section 8 of the precedent

chapter. From its explicit expression in (I.43) we obtain

E(P,.P+)E(Po,P-)

T(F) = Re( log(y 5 VE(p ,p )
3 - o’ +

)

8 LI -1 P
- i2n ) ImJ n (1,7, [ n’ ) (11.4)
i,j=1 P i B
= o

By analogy with the g=0 case one could define

P
o(P) = ImJ dk (IT1.2b)

P
o

but now we have to specify the path, otherwise ¢ 1s not well

defined. It follows that do=Im(dk) is a well defined l-form.

/ g
Fig.II.2a: o T e ‘ Fig.II.2b: Riemann surface
Cylinder with holes with two punctures.

I . . . . :
This parametrization was first considered time ago by Mandelstam
in formulating the ‘"interacting string picture" to define

- . . 13
multiloop scattering amplltudes[ I
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The string propagating along £ will be represented by a one
parameter family of contours Cr defined as follows
CT = { Pe X : 7(P)=r )}
For 7-%= the CT are small circles around Pi . As 7 grows up, the
string evolves with splitting and joinings until it reaches the

point P (Fig.II.3).

Figure II;S: ”SMt"':cing propwégat.ing and interacting

In Ref.[8] KN showed that the basis {fSA)} is a complete set
on CT in the sense that any tensor F(A)(P) (P € CT) of weight X
which is smooth (or piecewise smooth) over Cr can be expanded in

the basis {fik)}

F(A) (A

® -Ya £
k

Therefore, if we have a tensor over I which is smooth except
possibly in P,, this expansion will hold for any CT, ~o<r<o, with
coefficients generally depending on 7. But if we consider a

meromorphic F(A)

which is holomorphic outside P,, the coefficients
a will be r-independent. -

From this completeness property and the duality relation
(I.46) it follows that the delta-function on CT takes the general
form

(A)(P) fi

A (B,Q) = 1/(2mi) ) £, 1o, (@ (I1.5)

2.Hamiltonian, momentum and KN operators

Let us consider a field theory on a Riemann surface % defined

by some action S=S[®;h] where & stands for the generic fields and
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h=h b(x)dxa®dxb is a metric. The energy-momentum tensor (EMT) is
a

by definition (|h|=deth o)
a

e = 2f SBIEL teay” (11.6)
|ty sh

The theory is classically Weyl invariant if S is invariant under
Weyl rescalings of h, 1.e., S5[®;ph]=S[®;h] for any function p.
After "gauge fixing" to isothermal coordinates (I.7), all the
dependence in h is missing and we remain with a gauge fixed theory
which 1locally presents invariance under holomorphic change of
coordinates z — w=w(z) that preserve the conformal form of the
metric (I.7). This kind of theories are called "Conformal Field
Theories" (CFT)[14'15'16].

Operator formulations of CFT over a generic RS, as opposed to
the path integral forﬁulation, have been object of intensive

17
[ ]. The common feature of these

research in the last years
approaches is that they privilege the local description of CFT
over a disk cut out from the RS. The globalization is essentially
obtained via Bogoliubov transformations relating states over the
disk to states over the RS without disk. It is the aim of this
chapter to show that is possible to operatorially formulate CFT on
RS in a manifestly global way by using the machinery developed in
the precedent sections.

Now let us take for any chart on = x'=r and o =0 according to
the KN parametrization eqs.(II.2). We define the Hamiltonian in
the standard way as the integral of t, at fixed time

S H(r) = 1/2x § do t (I1.7a)

11
C
T

The momentum is similarly defined as

P(r) = 1/2#1 % do t12 (I1.7b)
C
r
H and P will become the generators of’  translation in 7 and o
respectively.
Now from (II.6) it follows that t is symmetric and traceless,
a well-known fact in CFT; then eqs.(II1.7) can also be written as

follows
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H{(7) -1/2n § (t|ea) (11.8a)
C

T

P(r) = 1/2xi % (t]eT) (I1.8b)

C
T

where e, e_are the following vector fields6

e =e + e-
X

;= e ; e, = i(e - &) (I1.9)

with e v e the meromorphic vector fields dual to dk and dk

respectively in the sense

1

!
fi
I

dk (e ) (e, |dk) (e£|dﬁ>

(I1.10)

I
()
f

d&(ek) (ek|dR> (e;[dk)

Whenever dk has a zero (pole), e must have a pole (zero) in order
for (II.10) to hold. Since by Riemann-Roch theorem dk has 2g
zeroes outside Pi we conclude that e has simple zeroces at Pi and
2g poles outside them. Of course, the same occurs for its complex
conjugate er. At these 2g points one has dr=0=do. These points
correspond to the critical points where the CT's split or join.
Now, from the tracelessness and symmetry of t it also follows
that t=T+T where TEA(Z,O) and_TEA(o,z) (the Tz;=T;z component is
zero). This fact allows us to express H(r) and P{(r) in the

following way

Il

H(r) = 1/(2x1i) § (Tle,) - (1/2xi) § (Tle;) (I1.11)
C C
, .

T

P(7)

il

1/(2ni) é (Tle, ) + 1/(2ri) % (E[ei) (I1.12)
C C
T T

It is another well-known fact in CFT that on-shell T and T

are holomorphic and antiholomorphic respectively; then the

following expansions will hold

T(Q)

I
I

3
ZLJ.Q(Q) ;L

J

1(2x1i) § e T (II.13a)
c J
,

1]

T(Q)

ILE@ T

-1(2xi) § e T (I1.13b)
J
3 <,

6The vector fields e s e introduced in eqs.(I11.9,10) should not

be confused with anyone belonging to the KN basis {e }.
j
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The coefficients of these exﬁansions are the KN operators. It will
be showed in the next chapter that they provide a realization of
the KN algebra (I.59).

Let us stres that H(r) and P(r) in (I1.11,12) depend on time.
This is due to the 2g poles of the wvector fields e, er. The
variation with time is however very simple. It is like a step
function in the sense that it remains constant until it reaches a
splitting or joining of the CT (because the integrand picks a pole
from ek), where it changes value by a discrete quantity.

Finally let us note that at g=0 H and P reduce to the known

expressions

H=1 + L , P=1 -1L
0 0 0 0
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PART B: b-c systems[lol

3.Equations of motion and mode expansions

In this part we start developing systematically the operator
formalism over a generic X by means of the KN bases, by
considering the simplest cases of conformal field theories: the
b-c chiral systems, also called "ghost" systems.

Let b, ¢ be a conjugate palr of fields belonging to A

(X,0)
and A(l-A o) respectively, and b, ¢ their "antiholomorphic
counterparts" with action7

S[b,c] = -1/2x J (bAdc - BAagde) (I1.14)
=
The components of the EMT are given by
T(Q) = X 8¢c(Q) b(Q) - (1-X) c(Q) db(Q) (II.15a)
T(Q) = X 3e(Q) B(Q) - (1-3) ¢(Q) 3b(Q) (II.15b)

So, the ghost Hamiltonian (II.8a) is

HE% (r) = -1/2n § (e |A8cb - (1-A)cdb + A3ch - (1-1)cab)
r
(I1.16)
It gives by definition the time evolution of the fields of the
theofy via commutation. From now on, we restrict ourselves to the
study of the "chiral" part b,c. By imposing the canonical

anticommutation relation between b and ¢
{(b(P),c(Q)) = iQﬂAT(P,Q) ) P,Q € CT (1I1.17)

we obtain the equations of motion

L, c(Q) = [H,e(Q)] = -iL_ ¢(Q) (I1.18a)

T o

L, P(Q) = [H,b(Q)]} = -iL_ b(Q) (II.18b)

T [2)

7 . . s .

This action can be derived from gauge-fixing a manifestly
reparametrization invariant one; the energy-momentum tensor
components (II.15) are obtained from it wvia (II1.6), see ref.[18]

for details.
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These equations imply
8c(Q) = 0 = db(Q) , Q= P, P : (I1.19)

whose most general solution is

I

Tt M) (I1.20a)

1

c(Q)

i

Lb, £, (@ (I1.20Db)

1

b(Q)

The Hamiltonian operator written in terms of the coefficients

¢ , b" takes the form
1

B¥(r) = 3 s 7(n) o b, (I1.21a)

1,4

3 . (1-2) -3 (1-X) -5
.8 (1) = 1/(2xni) §C (e, |rae, £, - (-1, 9f7, )
;

i

f

(II.21b)
The anticommutation relation (II.17) implies that the
coefficients bk's and c"'s satisfy the standard anticommutation
rules
i

(b e’y =6 ° , (ct,edy =0 = (b ,b.) (11.22)

i

4 . The Fock space

In this section we will consider the general case A>1, g>1.'
Upon quantization, b(Q) and c(Q) become operators acting on a
Hilbert space, so it does the coefficients of the expansions
(1I1.20). They are operators acting on a type-Fock space with

vacuum state |O)E satisfying the conditions

O =0, k < s(1-X) (I1.23a)
b |0)Z =0 , k= s(l-)) (11.23b)
We can represent the vacuum as the semi-infinite form

_eS(1- S(1-A)+1
|O)2 = f(A) A f(A) Aol (TI1.24)

(from now on we drop the 1label (A) when it is mnot strictly
necessary). Then the action of ¢® and b on the vacuum admits the

. . - . - 81
explicit representation (right actlon)[
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k
[=¢]
K10y, =1 [0 = T -1 1 (edy 5NN A¥AL L.
b} £ z £
k i=8S(1-X) k
(1II.25)
where if denotes the usual antiderivation defined by
k
oedy 1 I o
L, B == % £, B =8,
k o

r
\ . - .
and = denotes omission. Analogously we can define the dual vacuum

2(O| by means of
Z(01ck =0 , k= s(l-)) (II.26a)
5Ob =0 , k< s(l-)) (I1.26b)

. . 8
It can be usefully given the representatlon[ :

E(OI - fs<1—A>A fs<1—A)+1 Aeoeen ’ (IT.27)
" and bk act on this semi-infinite form (left action) as
¢ = £ A , b =1« (I1.28)
k k £

Moreover there exists a pairing such that

2(O[O)2 =1 (I1.29)

It is now time to comment on the meaning of this wvacuum and
of the excitations which are created out of it or destroyed by the
operators ¢ and bk. First of all, we have to enphasize that both
these operators and the vacuum state are globally defined over I,
due to the fact that the KN bases are globally defined. In this

17
(171 where

sense our approach is different from the previous ones
two vacua are generally used, one related to a disk singled out of
the surface and the other related to the rest of .

It is evident that the c¢° and bk modes are related in a
complicated (g-dependent) way to the usual g=0 modes, which are
the string modes with associated particle interpretation. Let us

find the relation between the genus g modes and the genus zero

modes. We pick a coordinate z near P+, z(P+)=O, and the circle

C={|z|=1). A basis for tensors of weight )\ over this circle is
given by
B () L g g mA (I1.30a)
n
L@ -2 e (II.30Db)
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N e s 1-A
where n is integer. The restrictions {f( )

bases (f(l A)} and (f(i)} on C are dense in the space of the
[81]

correspondlng tensors on C

=
} and {f(A)) of the

. Therefore, we can expand

UM Ly oA P(1oay BN (11.31a)
J J n
FOUA oy g d1aay EOYM (IT.31b)
n . n J
J J =n
- 11.31
f(A) E Cn <A) f(A) ( C>
=T n =3
_ I1.31d
f(A) § Dj ) f(A) ( )
where
n 1 2(1-X) zn
A, (-2 = =73 § fj oo
J _ 1 7d =(1-2)
B O(1-2) = 5= § B, , etc. (II.31le)
It is easy to see that A(l-A)=B(1-}) ', G(\)=D(A) ° and

C(A)=B(1l-X). The entries of the A(l-)) matrix wvanish for
n<j+s(X)-X, and are given by the coefficients of the Laurent tail
in eq.(I.32) otherwise. Similarly B j(l—}\) vanish if n>j+s(A)-A,
n
and 1s otherwise given by the coefficients of the Laurent
J
(1-2)
matrices A(1l-X)) and B(l-X) have an infinite number of

expansion of f near P+. We remark that in general the
non-vanishing entries and stress that they can be explicitly
calculated.

Now we are able to calculate the relation between creation
and annihilation operators on the sphere and on genus g Riemann
surfaces. Let b and ¢ be the restrictions of b and ¢ to the circle

C, then we can consider both expansions

b =Yb " .3
(P) § 5 (A) Z bn oy (B (I1.32a)
- 3 (1 A ~n =(1l-A)
c(P) =) ¢ (B) =) ¢ E (P) (I1.32b)
. J
J n
It is easy to find the relation between the b 's, b 's, &*rs and
. i i
ct's
-V AT , B =Y B -2 b, (I1.33)
.4 n . n J
J
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These are infinite combinations, however one can realize that when
applied to [0)E only a finite combination survives due to (I1.23)
and the properties of the A and B matrices listed after
eq.(II.31). As a consequence this is true for any state
constructed from |O)E by applying a finite number of En and ¢"

operators. In particular we have
B 10). =0 for n+tx-120
¢ ]0)q =0 for n+tx-1<0

Of course, we could have started from the g=0 vacuum |O)0 defined
by eq.(II.24) where g=0, and tried to find the action of bk and c*
over it. We would have found eq.(II.23) with ]O)O instead of IO)E'
The relation between |O)0 and IO)Z for a genus g=0 Z can be
reconstructed by means of the semi-infinite form representation of
|O)2 and the transformation of the basis elements. For example,
for A=-1

o' =@+ Y B a°

n<j-g i
o

It is now worth spending a few words about the connection

between the vacuum defined here and a vacuum frequently used in

[15,17]

the literature . A definition of the vacuum [O>E implicit in

the path integral approach (see Section 7) is specified by means
of (I1.23) and

I

2<0|ck 0 , k> -s(l-}) (II.34a)

l

E<O]bk 0 , k=< -s(1-X) (1I1.34b)

instead of (II.26). [O>2 and E<O| can be represented by two

semi-infinite forms, given respectively by eq.(II.24) and by

<0 |

5 (I1.35)

= fsaona® Fsiaye?

¢ and bk act as in eqgs.(I11.25,28). It is evident that
rE<O|O>z =0

and that Z<O{ and Z(O[ differ exactly by the dual bases elements

of the b zero modes for 2>1 and for g=2.

For g=0, X=2, let us define

o> =G A8 AL. (I1.36a)

I
o1
>
!
>

<0] (IT.36b)
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and assume

+ k. + -k +
|O>0 = 0<O] , (¢7) ==¢ , (bk) = b_k
(11.37)
These definitions exactly realize the prescription
(c"110>0)+ = <Ofe" ¢’
introduced in vref.[15] (remember that w.r.t. this reference

ck++c_k). It 1is therefore possible to interpret the pairing

defined by the brackets < | >

5 as a scalar product.

=

5.Correlation functions

Propagators for integer A

Let us first consider the g>1, M>1 case. The propagator
S(P,Q) is defined as

5(2,Q) = (0[T(b(P) e(Q)}]0)y

(0]b(P) c(Q)]0) , T > 71
{ > > P Q (11.38)

5 (0le@ b® [0y, T >

P
where TP(TQ) means the wvalue of 7 at the point P(Q). By inserting

(I1.20) into (II1.38), and using (I1.22,23,26) we easily obtain

[=o]

k (1-X)
k=s§1—A)f(A)(P) fk @ TP g TQ
S(P,Q) =19 510y (I1.39)
k (1-X)
_kzgw f<A)(P> fk (Q) TQ > T,

Now we would like to give a more compact expression for this Szegd
kernel. Eventually we will find that S(P,Q) reduces to the known
result (see [19,20])

(2A-1)(g-1) (2A-1)
s(p,Q) = —t— (-E(B:Po)y AN
E(P,Q) E(Q,P ) o(Q)
2 QPru()) (11.40)
g(u(A))

where
u(d) = (2A-l)(g-l)P_ + (2X-1)A

A check that eq.(I1.40) and (II.39) coincide is the following.

Consider the propagator to be a tensor F(l_k)(Q) of weight 1-X
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depending on Q, at fixed P. Then it can be expanded in terms of

the basis {fil_k)}
riNy =3 a f;l_A)(Q) » (11.41)
k

Multiplying by ftA) and integrating over Cr we obtain

P § pll-A) gx (II.42)
k . ()
27l CT
Now we can use equation (II.40) and the explicit expressions for
fTA) in order to arrive at eq.(II.39). In fact, solving the
integral (II1.42) we obtain
£ 8 , k= s(1-))
)
a = , T < T s
8 0 k < s(1-)) ?
! - (IT.43)
0 , k= s(1-X)
ak = k 3 TP< TQ 3
_f(A) , k< s(l-))

in agreement with eq.(II.39).

It is instructive to see how one can use a heuristic argument
to pass from (II.39) to the compact form (II.40). This consists in
looking at the behaviour of the sums (II.39), and then identifying
the =zeroes and poles bf S(P,Q). After that, one wuses the
Riemann-Roch theorem to prove the existence and uniqueness of
sections with such behaviours, and the explicit expression (II.40)
easily follows.

Let us first consider the point P fixed. From (II.39) we get

(1-2)
Z ak fk (Q) , TP > TQ
(1-)) K=s(mA)
F Q)= S(1-2)-1 (I1.44)
(1-X)
_kzm L h @ T ey

(1-X)

In order to see the behaviour of F (Q) on the Riemann surface,

we use eq.(I.32). It follows that

Q -~ P+ = F(lnk)(Q) is holomorphic non-zero;
Q-+P = F(l-A)(Q) has a pole of order (2A-1)(g-1);
Q-+ P = F(l'A)(Q) has a simple pole.
(I1.45)
Proceeding likewise, but at fixed Q, the propagator can be
considered as a tensor of weigth A which we denote by F(I)
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0
k

. k=s§1_A)bk f(A)(P> R TR
F(A)<P)= S(1-M)-1 ) (I1.46)
_k=gw by Ty (B *Tq 7 T
Similarly, from eq.(II.41l) we extract the behaviour of F(;)(P)
P->P = F(:)(P) is holomorphic non-zero; A
P-P = F(A)(P) is holomorphic with a zero of order
(22-1)(g-1);
P - Q = F(i)(P) has a simple pole.
(I1.47)
_ Riemann-Roch theorem tells us that F(1~A)(Q) and'F(:)(P) are
uniquely determined up to a constant Cl(P’Pi) and CZ(Q’Pi)

respectively. So, there remains an Iindetermination by a constant
C(P,). The propagator S(P,Q) is now easily found from (II1.45) and
(IIT47), and from the requirement of correct dimensionality and
single-valuedness ’

C(P¥) : E(P,P-)>(2Afl)(g-l)( U(P))(ZA-l)

E(P,Q EWQP) - 0@

S(p,Q) =

6 (Q-P+u()))
g (u(X))

(II.48)
?'where
u(d) = (2X-L)(g-1)P- + (2x-1)A. ,

. The constant G(P,) can be determined by making P-P_  and Q+P+,

where the propagator has a zero of order (2X-1)(g-1)

=]

s(p,Q) = 3 £ .(® £V W

k=S(1-2) € k
PR S(1-X) (1-X)
f(A) (P fs<1-A)(Q) (11.49)
Q-P

+

Inserting the explicit expressions for ft and f(l-A)

we obtain
A)

PP E(P’P~)(2A—1)(g—1) [U(P_)J(ZA-l)

S(P,Q) =
=3 E(P+,P_)(2A 1)(g-1)+1 a(P+)

g(P- - P+ + u)
g (u)
Now, comparing (II.50) with (I1.48) we conclude that C(P+)=l.

(I1.50)

Finally a remark. Had we chosen the vacuum state to be the
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state which is annihilated by the negative frequency modes of ¢(P)
and b(P) with P near to P , then we would have found a similar
result for S(P,Q) with P+ instead of P . A wuseful relation to

prove this statement is

()

, 0
£°7(P;P,,P) = ¢ £

k
where ¢ is a constant independent of P.

(B;P_,P)

Let us come now to the A=l case. We have already seen that
the bases {A_},[wi} are slightly modified with respect to the
1
generic f;A), eq.(I.40). The vacuum state in this case is defined
by the conditions
“loog -0, k=g (11.51a)

D=0 , k>g/2 (I1.51b)

b 105

o

=]

So, the propagator is

IS ® A @ L,
k=g/2+1
S(P,Q) = .2 (I1.52)
—k=§m wk(P) Ak(Q) , TQ > T,

The summations in (II.52) can be performed by the two methods
explained before. We will not repeat the computation, since it
follows the same lines as above. We just quote here the result
which agrees with the well-known Szegd kernel for A=112°:281
E(Q,P+) 6(Q - P - u) (P - P+ - u)
E(P,Q) E(P,P,) #(u) 6(Q - P+ - u)

S(P,Q) = (11.53)

where u =g P - P+ - A

Finally, let us consider the genus one case. The vacuum state
is defined by the conditions
‘]

c |, =0 , k< 1/2 (II.54a)

=

bk[O) =0 , k>1/2 (I1.54b)

The propagator can be computed in much the same way as for the
previous ‘cases, and we obtain

1 E(P,P-) E(Q,P+) {U(P)](ZA—I)H(Q - P +u)
E(?,Q) E(P,P) E(Q,2) ¥ o (w)

S(P,Q)=

(I1.55)

where u="P - P - A .
- +
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Propagators for half-integer X

These kind of propagators are of interest in the study of CFT
on RS, and in particular, in superstring theory, where we have
matter with A=1/2 and reparametrization ghosts with =2 as
anticommuting system, as well as superconformal ghost (8,y) as
commuting system with A=3/2 (see next chapter)

All of the results we have presented are easily extended to

the commuting case and it is immediate to show that the propagator
S5, (BsQ) = S(O[T(B(R) v(1]|0)g = S(O|B(®)V(Q[0)g, 6(r -7 ) +

+ 5O @BE®Y[0)g 8(r -7 ) (11.56)

gives the same S(P,Q) as in the fermion case.

For half-integer X the only subtleties which arise in the
computation of S(P,Q) come from the presence of branch points in
the R sector, though these branch points are absent in integrals
of the type (II.42) (this is due to the fact that in the NS sector
both F(l_k) and f(i) in eq.(II.42) have branch points in P ). So,

we limit ourselves to give the results:

g = 2, NS sector, X = 1/2

- 1 E(P P-) (2A-1)(g-1) o (P) (2A-1)
S.Q = T [E(Q,P_)] {U(Q)] -
ﬁ[gl(Q-P+u(A))
x = (I1.57)
9051 (w(2)) ‘

where

u(d) = -(2x-L)(g-L)P_ + (2x-1)A

g = 2 , Ramond sector

~ 1 E(P,P-) (2A-1)(g—1)+1/2[a(P)](zA—l)
S(BQ = 53 [E(Q,P-)] ) x
E(p, b)) /2 151 (QBHu(A))
x {E(Q,P )] = (I1.58)
+ ARICIEN)
where

u(r) = 1/2(P+-P_) - (2x-1)(g-D)P_ + (2Xx-1)A

In the A=1/2 case, formulas (II1.57,58) still hold, except
when the spin structure is odd and the sector is NS, for which we

have
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E(P,P-) E(Q,P+) 6[B](Q - P + P+ - P-)

E(P,Q) E(P,P) E(Q,P)) 6[Z]<P+-P_>

If g=1, and the spin structure is odd, the propagator in the

S(P,Q) = (I1.59)

NS sector for any half-integer XA is given by

(2X-1)
S(P.Q) = 1 E(P,P-) _E(Q,P+)  o(®)
E(P,Q) E(P,B,) E(Q,P)  o(Q
8[8]1(Q-P+u(n) (11.60)
a[Z}(u(A))
where

u(d) = P+ - P+ (2x-D)a .
For any other case with g=1, the propagator 1is given by
eq.(ITI.57,58).

We finally make some remarks concerning to the N-points
correlation functions. They can be calculated by using Wick's
theorem. The only non-vanishing correlation functions are of the

form Z(OIT{izrl(b(Pi)c(Qi)))[O)Z. The rule to calculate them is
5(OITCR (B(P)e(Q))}[0)g =

g N
§ (-)" | m S(O|T(b(P )e(Q,))0)y

= - (IT.61)
Lm0 SOIT(R )e(Q )10y

o

1

corresponding to an anticommuting (up) or commuting (down) b-c

system; o runs over all permutations.

6.Zero modes and Teichmiller deformations

It is interesting to note that the KN bases have among their
elements the zero modes for A-differentials.

For example, we observe that from the explicit expressions
given in Chapter I, Section 8, the basis of meromorphic vector
fields has three zero modes for i=%1,0 when g=0, one zero mode
when g=1 (corresponding to i=1/2), and no zero mode if g=2.

It is a well-known result that the number of zero modes of
two-differentials sometimes called quadratic differentials

coincides with the dimension of the moduli space. In fact, for X=2
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eq.(I.32) becomes

N -} + . ’
07 (z) = 07 2778 (Lto(z))) (4z)” (I1.62)

This is a zero mode provided that ]j|5g0-2; therefore there are
3g-3 quadratic differentials for g=2 and no zero modes for g=0. If
g=1 we saw that there is only one holomorphic section of KA for
any A € Z, that labeled by i=1/2 in eq.(I.45).

On the other hand, we know that the number of zero modes of
the 3/2-differentials plus the - number of the quadratic
differentials gives the dimension of the supermoduli space. In
fact, for A=3/2 we obtain (cf. eq.(I.47))

(3/2) o (3/2)F Fn+g-3/2
fn (Zi) = a_ Zy

(1+o(z,)) (dz,)*'? (II.63)

from where we observe the existence of 2g-2 zero modes.
The explicit global expressions of the zero modes can be
obtained from the formulas of Chapter I. As an example, let us

write the basis of quadratic differentials (A=2)

jtg -2
(o]
(2)

ad(p) = N (e a()® 8(P+e(2,3))

E(P,P+)
P —
[o]

N E(P,P )°

where

e(2,3) = (G+g -2)P_ - (j-g,*2)P_+ 324

and
j-g +2 -3 3g
o
NEZ)(P+,P_) _ E(P+,P-) o(P+) h(P+)
0((5+g,-1)P, - (J-g +2)P_ - 3x4)
for j = -g0+2,...,g0—2.

The dual to the Qj’s form a basis for the Beltrami

‘differentials ui. They obey the duality relation

1 i e
ol Jz By 0 = 6i (I1.64)

In order to discuss the deformations of the complex structure
of ¥ we will closely follow reference [3]. The vector fields e,
with ]i|5go-2 can be used to generate Teichmiiller deformations of
the Riemann surface in the following way. Divide the Riemann
surface in two parts " and = containing P+ and P respectively
such that %' be a small disk whose center is P+and Z+DZ_=A, where
A 1s an annulus. Take a local coordinate z on the disk. We can use

the vector field e to obtain a new Riemann surface as follows. We
1
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deform A~A' by

Z =+ Z + €e.
1

where e =e (z)d . Now % 1is glued to the disk =" by identifying
1 1 z

, zEA, € € C (I1.65)

the new annulus with the previous collar on 5". This new Riemann
surface is not analytically equivalent to the old one when e, has
poles both in P+ and P which corresponds to IiISgD—Z.

Under the infinitesimal deformation (II1.65) the metric

transforms to

y(p) « |dz + ¢ p dz)? (I1.66)
1
where
- . +
p(p) -4 68 (HEPEI (11.67)
* 0 ifPes -A

Integrating by parts we observe that the Beltrami differentials
defined by (II1.67) satisfy (II.64).
Now we are able to give the explicit expression for the
variation of the period matrix T under Teichmiller
. {20]
deformations .

given by (I11.66,67) we have

Under the deformation of the complex structure

_ i D S S
§.7.. = J Nt B § nont e (I1.68)
2 c

where the integration countour C separates P, and P . Then it is

i3
suppose v is a linear combination of meromorphic vector fields e

easy to see that the wvariation Skr vanishes 1if |k|zg -1. Now
o]

of the KN basis. Then the most general infinitesimal variation of

the period matrix is given by eq.(I1.68) with e replaced by (for

g>1)
g -2
v= ") Y, ©

k=-g +2
o

k

where the ek’s are given in (I.55). The yk’s are the moduli of
the surface, or better, form a local coordinate system in M®
around the particular surface with period matrix r deformed

according to (II1.68).
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7.Conmnection with the path integral approach

Zero modes enter in an essential way also in a definition of
the wvacuum state which is mutuated from the path integral
approach. It would be natural to ask that b(P)|0>_, c(P)|O>2 be

<0|b(P), <O|c(P) be finite in P_. This leads

finite in P , and
+ 2

for X>1 and g>1 to

c |O>2 =0 , k< s(1l-)) (I1.69a)

bklo>Z =0 , k= s(l-1) (I1.69b)
and

Z<0|ck =0 , k> -s(l-}) (II.70a)

s<O[b, =0 , k= -s(1-3) (I1.70b)

as in Section 4, eqs.(II1.23,34). If we define the propagator by
<b(P)c(Q)>=Z<O|T{b(P)c(Q)}|O> , then we would obtain a wvanishing
result. This is because the vacuum defined above gives Z<OIO>2=O’
as it can be seen by using the algebra. For example, for even g
and anticommuting ¢ and b we have

0= Z<O|boc010>Z = E<O|O>2 - E<O|c0b0|Q>Z = 2<O|O>2 .
This fact is similar to what takes place in the path integral
approach

Z = J [db dec] exp(-S[b,c]) =0
because of the presence of the zero modes.

In order to obtain meaningful results the partition function
Z 1s redefined by inserting as many b and ¢ fields as the number N

and M of the corresponding zero modes, that is (for any ) and g)

= J [db dc] b(zl)..b(zN) c(wl)..c(wM) exp(-S{b,c]) (IT1.71)

A correlation function is then defined with respect to this

measure

<b(P1)"'b(Pr> c(Ql)...c(Qs)> = Z(zl,...,zN;wl,...,w ) Tx

x J [db de] b(21>"'c(wm)"'b<P1)'"C(Qs) exp(-S[b,c])
: (11.72)
In our operator formalism we proceed likewise and define a

correlation function in the following way
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<b(P1)"'b<Pr) c(Ql)...c(Qs)> =

<O|T(b(z )...c(w )...b(P )...c(Q)}|0O>
_ =z 1 M 1 S by (11.73)
2<o|T{b(zl)...c(wM))|o>Z

We will show that (II.72,73) lead to the same results and also are
in agreement with those of Section 5, provided we identify at the
end of the computations the points z, with P and W, with P+.

Let us first consider the case A>1 for g=z2. The propagator is

then defined according to (II.73)

<0|T{b(z )...b(z.) b(B) c(Q)}]0>
<b(P)e(Q)> = = 1 N 2 (1T.74)

2<O|T{b(zl)...b(zN)}lO>2

where N=-2s()A)+1.

Let us choose Z sy Zo such that rl>...>rN ; then we have

2<o|T(b<z1)...b(zN)}[o>Z = E<o|b(z1)...b(zN)}o>Z =

il

det]fi(zj)l 5<0[b 0> s, es()
(I1.75)

Let us take now z, mnear P and comsider first TP>TQ so that
i -

+S(A)"'b—s(A

Z<O]T{b(zl)...b(P)c(Q)}|O>Z = E<o|b(z1)...b(P)c(Q){o>E =

. i i
_ k 1 N J
= 3 E<o]bi ...b, boc lo>Z £ 7(z)...f (z) £7(B) £ (Q
{i },3.% 1 N
k [ee]
P v ~
=2 (-) §<0[b(z)...B(z)...b(z) B(RY[0>, }  £(z) £ (Q
i N Z i J
perm. j=s(1-\)
(11.76)
where z  takes the wvalues Zoaeeey 2o, P. In a similar way one
i

calculates the contribution for TP<TQ. The final result is given

by

S(P,Q) S(z_,Q) ....S(z.,Q)
<b(P)e(Q)> = det|g (z )| = det|®:1(F) B lEeee B, 2y
gN(P) gN(zl) ...... gN(zN)
) (1I1.77)
where Bovvos By stands for f+S(A),..., £ S(A).

By taking the limit z =P , for which S(z ,Q)=0 we get
1 - 1

lim <b(P) c(Q)> = S(P,Q) (I1.78)

z P
i -

as it was asserted.
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Let us consider as another example the case A=1. We obtain

<b(P) c(Q)> = det]wi(zj)|_lx

S(P,Q)-S(P,w) S(z_,Q)-8(z_,w)....S(z ,Q)-S(z ,w)
1 1 g 3
(7 S O w
« det wl(P) 1(21) 1(zg)
w (P) Wz )i iiiv . w (z )
g g g 8
(I1.79)
where the w ’'s, i=l,...,g stands for the w’ s, jeI. In the limit
1

z =P W+P+, we recover the expected result
P

1im  <b(P) c(Q)> = S(P,Q) (II.80)

z P, woP
i - +
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PART C: The scalar field[lz]

8 .Hamiltonian and equation of motion

Let us consider a free scalar field X(Q) on a Riemann surface

% with the action

2 12 (x) 8 X(x) 8 X(x)

S[X,h] = - ——l—J a®x|hexy
b4m s
(1I1.81)
The phase space for this theory will be the space of functions

X(Q) and differentials P(Q), with the Poisson bracket

{(P(Q),X(Q")}) = - AT(Q,Q') ;o QR ec (IT1.82a)
where AT(Q,Q’) is the delta-function (cf. eq.(II1.5))
5,(Q,Q") = 1/(2ri) T o’ (Q) A, (Q") (11.82b)
3
The components of the EMT are defined by
T(Q) = -1/4 (4X(Q) + 27rP(Q))2 (1IT.83a)
T(Q) = -1/4 (dX(Q) - 27P(Q))” (11.83b)

T and T are holomorphic and antiholomorphic respectively outside
P, provided X and P obey their equations of motion (see below).
Inserting (II1.83) into (I1.8a) we obtain the Hamiltonian,

which takes the form

H(r) = 1/8x § (eal(dX+2wP)z + (dX-27P)%) =
CT

1/4m § (e lax® + 4n”P%) (11.84)
C

T

Now we Iimpose the equations of motion which follow from this

Hamiltonian. These are easily obtained by using (II1.82)

L X(Q)
.

L, P(Q
.

The first one tells wus that P(Q)=l/(2ﬂ)(3-5)X(Q), s0
eqs.(I1.83) become

i{H,X(Q)) -27i (Ple ) (Q) (1I.85a)

1{H,P(Q))

1/(2x1) d(dX(Q)iea) (II.85b)

T(Q) = -3%X(Q) 3%(Q) ,  T(Q) = -3%(Q) 4X(Q) (11.86)
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By contracting with e, eq.(II.85b) becomes
LZ X(Q) = -L? x(Q) (I1.87)
T ®s
which 1is the analogue to the g=0 equation of motion X+X=0.

Equation (II.87) can also be written as

39X(Q)=0 (11.88)
It must hold everywhere except the points P+ and P because they
correspond to times -« and +« respectively. This already happens
at genus zero where the points z=0 and z=« are excluded. This
implies that 4dX(Q) (EX(Q)) is holomorphic (antiholomorphic)

everywhere except P, . Therefore they can be expanded as follows8

9X(Q) = i//2 J a 0" (Q) (I1.89a)

8%(Q) (II.89b)

I
RN ]

Now the requirement of single-valuedness for X implies the

following relations (d=845)

§ o

=10 (I1.90a)
r
% d¥X = 0 = é dxX (I1.90b)
a.
N
where (a.,bi), i=1,...,g, is a canonical basis of homology. By
1

inserting the expansions (I1I1.89), one finds that eq.(11.90a)

implies

-—a = - 2 .91
@ L, =%, p /J/2 (11.91)

just as in the genus zero case, whereas egs.(II.90b) imply

L(a, al+a 3 )=0 (11.92a)
DECHR S & b)) =0 (11.92b)
J
where
al = é S % o ' (I1.92¢)
1 a‘ i b
1 1

8These expansions were first written down in Ref.[21]; however the

nature of the o ’'s, a 's was not clarified there.
n n .
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Eqs.(I1.92a,b) can be written as

V(e al+a al)=a
3 i

jEI 3 i i
2 (e bl +a B ) =3,
1 3 i | i i
N
where
A = - Z (a a? + a? )
1 n 1 n 1
[n|>g/2
B =- Y (a b +a b))
1 n 1 n 1
|n|>er2

Eqs.(II.93) can be seen as a system of 2g equations

(II.93a)

(I1.93b)

(I1.93c)

(IT1.93d)

with 2g

unknowns. Recall that for n € I, the w’’'s in eq.(I.42) form a

basis of holomorphic differentials related with the standard (I1.4)

by

e + e = A
1 1 1
8 -
. Jodi j oai i
j=1
where
- J . PR - zd
ei—Zaj ai ’ ei—Zaj ai
JEI JEI
In matrix notation
1 E ) _ A
T T € B
It follows
T_lT «r_l
€ . 2 2 A
(e)-ee (2 L) (5]
-T T T
2 2

X(Q) is obtained by integration

Q
X(Q) =| dX = x - ip 7(Q) + i//2 }
Qo i g/ 2
where
. Q i Q 2
BI(Q) = J W’ . Q) = Ref W/
Q Q

o]

By using egs.(II1.98) and (II.93c,d) the €.

expressed in terms of o , a with ]j|>g/2. One obtains
3 3

(I1.94)

(1I1.95a)

(I1.95b)

(II.96)

(I1.97)

(11.98)

(a, B (Q) + &, B (Q)

(I1.99)

i=l,...,g, are
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= 7 Fa +6a) (I1.100a)
1

RPIISYY ’ ’
e, =- 1 (@G o, + F @) (11.100b)
lil>g/2
with
g
j . -1- k -1 k
F, = 1/2 0 (G0 &) - (%) (b)) (II.100c)
k=1
J & -1~ -k -1 -k
6] =i/23 ((r)') & - (r)h) BD (11.100d)
i=1

Inserting this into eq.(II.99), it follows

X(Q =x - ip 7(Q +1//2] (a ¢ (Q +a_ ¢ (Q)

In|>g7/2
(1I1.101)
where ¢n(Q) are harmonic (single-valued) functions given by
Q
g . - .
$ (Q = J (" -7 (F 0’ +6 7)) (I1.102)
n J J
Q j=1

Q

with QOEP_ (P+) for n>g/2 (<-g/2) (this particular choice is
dictated from the genus zero case, and will become very useful).
As iIn the tree level case, p represents the center of mass
momentum, i.e., p = é P

The next step is the quantization of the theory: the
coefficients of these expansions become second quantized operators
acting on a Fock space, whose commutation rules are to be derived

from the canonical commutation relation

[P(Q),X(@Q")] = -1 4,.(QQ ;5 QQ ec (I1.103)
This leads to the following commutation rules for « ,; P X[Zl]:
n n
[o_,a ] =y , le_,el=1y
n m im n m nm
[ ,a ] =0 . [x,p] = 1 (I1.104a)
n m
where -
v = 1/(2x1) § dA A (II1.104b)
nm C'I‘ n m
In terms of « , o the Hamiltonian and momentum operators
n n
take the following form
H(r) = 1/2 3 (1""(r) ta a : + 1"°™(r) :a & :) (I1.105a)
n.m Tl m n m
P(r) =i/2 )Y (1"™(r) @ a: - 1°"(r) :&n &m:) (II.105b)
n m
n,m
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where

1" (r) = 1/(2ni) § (e lo") " = 17"(r) (II.105¢)
c
,

" 9.Fock space and computation of propagators

The Fock space is defined as usual to be the space generated

by the @ , a , with the vacuum state defined by
n n

a |0>

n

@ |0> =10 , nxg/2 (11.106a)
n

<0|a
n

I

<0fa =0 ) n<-g/2 or n=g/2 (11.106b)
n

The normal ordered product introduced in egs.(II.105a,b) 1is that
induced by eqs.(II.106)

a if n<-g/2 or m>g/2
" (11.107)

a o if n>g/2 or m<-g/2
n

Consider first the correlation function <8X(Q)5X(Q’)>.. By

definition it is given by

<0|T{8X(Q)8X(Q'))|0> = £(Q,Q")6(r -7 ) + 8(Q,Q)0(r -7 )

Q’ Q
(1I1.108a)
where
£(Q,Q') = <0|8%(Q)3%x(Q")|0> (I1.108Db)
g(Q,Q") = <0|8%(Q")ax(Q) 0> (I1.108c)
By inserting the expansions (II1.89) and using eqs.(I1.106) one
obtains
& s .
£(Q,Q") = L C 7m(Q n7(@Q) = 8(QQ") (1I.109)
i,ji=1
where )
C = -1/2 <0]e, e  |O>
i3 1 J
n ~m - —m n
=-1/2 ) Y (v_ F, Gj + 7anj G,) (11.110)

m<-g/2 n>g/2

In order to calculate Ci_ we use the relations
3

m -m
Y. vy _F, = ). v, G, = 0 (II.111)
m m
where one has
F' = a’ , G =0 nel (I1.112)
1 1 1
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Therefore C.  can be rewritten as
i3

cC = - "D I1.113
13 nélai nJ ( )
with
D =172 Y 4 G" (II.114)
nJj nm J
m>g/2

By using eq.(II1.100d) it follows

3 .
D =i/ Y (Y k! (II.115)
nj i=1 2 ji n
where
. g
1 m m
Kn = z T (bi - Z T 3 ) (I1.116)
m>g/2 j=1

Now we use the following identity (see appendix at the end of this

section, eq.(II1.135))

g
bY - ) 7, a = § I W, mg/2 (I11.117)
=1 1J 1 i

where C+ is a small contour around P+. It follows

Kk: = § I Y v o= § I dA = -27i (a5} (I1.118)
n 1 nm 1 m n
Cc m>g/2 C+

where we have used the fact that w', n<g/2 are holomorphic in P+.
Now from (II.115) we have

1 -1,1

g
D= w2 X (), (&) (11.119)
1=1 :
Inserting this result into (II.113) we get
C = -n/2 (r V) (11.120)
iJ 2 ij
Thus we finally obtain
_ g _ , _.
<O T(BX(QIFX(QADII0> = -m/2 L (r ") n (@) n°(Q")
i,5=1
(I1.121)
which «coinecides with the well-known result quoted in the

; 20,221
literature, computed by other methods [ .

Let us now consider the correlation function <3dX(P)asX(Q)>.
This is

<0|T(8X(P)3X(Q))|0> = AR, QO(r -7 ) + A(Q,P)O(r -7 )

A(P,Q) = <0|8X(P)ax(Q)|0> (11.122)

From eq.(I1.8%9a) we have
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A(P,Q) = -1/2 ) <ofanam]o> W (P) w"(Q) (I1.123)

n,m
By using the vacuum definition and the commutation rules for the

a 's one finds
n

A(R,Q) = -1/2C A (2,Q) +A (P,Q) +4A_ (P,Q)) (I1.124a)
where

A(RQ = T v o (P) & (Q (II.124b)
n>§/2

A,(P,Q) = J v ' (P) o"(Q) (I1.124c)
mggé/z

3 : .

A (P,Q) = 1} <O|ei€j]O> 7 () n°(Q) (I1.1244)

i,j=1

Since JA (Q)=Z vy wm(Q), Al(P,Q) can be written as
n nm
m

A (P,Q) L A (Q) w'(P)

n>g/2

where S(P,Q) is given by eq.(II.53).

aqs(P,Q) (I1.125)

In order to compute <e ¢ > we use eqs.(I1.100). These leads to
i3

<e e > =} LG F? F? + %nm c" G?) (I1.126)
’ m<-g/2 n>g/2 J

The second sum on the r.h.s. is easily shown to vanish because of

eqs.(IT1.111,112). Into the first term we replace

F'=-G" +a" (I1.127)
3

Then we use the result found above (eq.(II.119)). We obtain

<e e>=-m (r ) - Y a" ¥ 4 &%) (I1.128)
i g 2 igd i nm 1
n&l m<-g/2

Now eq.(II.124a) can be written as

8 ;
ACR,Q) = -1/2 (Lo (®) ¥ v o ("(@- ) al 77 (Q) -

n&l m<-g/2 j=1

1]

-m L () 0t ® Y@ + 8 S(Q) (11.129)

By inserting this expression into (II.122) one arrives to the
conclusion that the correlation function (II.122) has only a
(double) pole at P=Q coming from BQS(P,Q). By Riemann-Roch
theorem, wup to the addition of holomorphic terms and a

multiplicative constant, there exists only one 1-form which has a
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double pole and which is holomorphic everywhere else. Therefore
(I1.122) can be written in the following form

8 . )
<0|T{3X(P)8X(Q))|0> = -1/2 8,8, 108E(P,Q) + L A n* (P)n” (Q)
1,5=1
(I1.130)
where A is a gxg matrix which can be determined by integrating
i3

(I1.129) along the a -cycles in both wvariables Q and P. After
1

integration in the wvariable Q, the term aqs(P,Q) disappears, and

so does the first term on the r.h.s of (II.130). One finally

obtains

A = 7/2 (T;l).. (II.131)

i3 1J

22,23
Thus we get[ :

<0|T(8X(P)8X(Q)}|0> = -1/2 (9,9 10gE(P,Q) -

g _ i X
- DD o0t nt@)  (11.132)

i,i=1

Appendix

Let us consider a Riemann surface X of genus g with a given
marking (ai,bi), i=l,...,g, As we saw Iin Chapter I, Section 4,
this basis has the property that under cutting along these cycles,
% becomes a 4g-gon %. Each cycle goes to a pair of sides (ai,agl),
(bi,bll) of ¥, which are identified on I (see Fig.I1I1.4 for g=2).
Let {n ) be the standard basis of holomorphic differentials, and
P EE. Then the Jacobi map (I.14)

P
I(p) = J n

P
0

defines functions which are single-valued on the cut surface 3. It

i1s straightforward to verify that the following relations hold!’’

12
I(P) - I (p) = —I Tpo= - % n =-r  ;Pea, Plea
i J i J i i 13 J J J J
P b, .
3 3
(I1.133a)
Pl
I (p) -I.(Pt>=-JJ 0 = 3§ w =5 i Peb  prebt
i3 i i i ij i i 3
P a.
J ood

(II.133b)
where P and P’ are identified on Z (see Fig.II.4).
J 3
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Now let us take a meromorphic one-form w, holomorphic outside
PO. Let D be a domain containing P0 whose boundary is a contour
Co' Since w is closed (dw=0) on (Z-D), a simple application of the
Cauchy’s theorem yields

0= I~ niAw = J~ A(I w) = -% I w+
2-D 2-D * c

4]
g
+ ) ((§ +<f )L w + (ff) +§ T w ) (II.134)
-1 i -1 i
=1 % % b, b, .

Then, by using the relations (II.133) we finally get

8
§ w - z T . § w = § I w (I1.135)
b =1 7 '

. a c
i 3 1]

Fig.IIl.4: The "cut" Riemann surface for g=2
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CHAPTER III:

APPLICATION TO STRING THEORIES
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PART A: The role of the KN algebra in crr!?*!

1.The expectation value of the energy-momentum tensor

In ref.[21] KN introduced the energy-momentum tensor
presented in Chapter II, Section 2, within the framework of ‘an
operator formalism for string theory, and showed that its
components should realize the algebra (I.59). However the nature
of the KN EMT and in particular its relation with the standard EMT
defined in the path integral approach (PIA) to CFT has not been
clarified there. In this section we will do it.

As we saw in Chapter II, the KN EMT can be decomposed as

t=T+T
where T ZT) is (on-shell) holomorphic (antiholomorphic) outside
Pi’ obeying the expansions (II.13). In what follows we will put
special attention in the T-component of the EMT. The results
concerning the antiholomorphic part will become obvious.
T may be consider as the generator of infinitesimal conformal
transformations

zZ =+ z + €(z) , € = e€(z)d = Z et e |, et ec
2z 1
i

on the punctured surface; in particular the operator Li is the
generator of z - z + ei(z). Thus the KN operators become a
generalization of the Virasoro operators on the sphere.

Coming back to the standard EMT considered in the path
integral formalism, this is an object 7' which presents the

. . 15
following operator product expan51ons[ :

TPL)T  (w) = ¢/2 (z-w) " 4 2 TEN(w) (z-w) %+

+ BWTPI(W) (z—w)—1 + reg.terms
T2 = § (z=w) TP L $(w) (III.1)

where ¢ i1s an arbitrary field. These statements are equivalent to
saying that the L:-operators in (III.1) satisfy the Virasoro
algebra (I.62).

The KN EMT presents however two obvious differences with

respect to (III.1):
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i) It 1is a well-defined meromorphic two  differential, at

. PI : . .
difference of T that transforms with a schwartzian

[14,157

H

derivative
ii) Due to the definition via normal ordering of the Li operators
the wvacuum expectation value (VEV) of T (and T) should be zero.

In the present operator formalism, we guess that the
analoguous object 7% should be one that, in neighborhoods of P+
where the following expansion holds (z+(P+)=O)

3 2 s -n-2 2
T°(z,)dz, =} Lz, dz., (III.2)
n

be so that the Ls-operators verify (I.62). It is not difficult to
n
show by wusing the expansions of the KN bases near P+ as in

egs.(II1.30,31) that the desired object is given by
s 2 2 2
T (z) dz” = T(z) dz" - ¢/12 R(z) dz (II1.3)
From the remarks exposed above it follows
<T*(z)> = <0|T°(z)|0> = - ¢/12 R(z) (III.4)

This equation tells us that the VEV of the standard EMT of an
arbitrary QCFT should be essentially given by the schwartzian
connection of the KN algebra associated with the theory. In the
following sections we shall verify eq.(III.4) in the simple cases

of the free field theories studied in the precedent chapter.

2.Computation of the KN albebra for the ghost system

Let us consider an anticommuting chiral b-c system of weights
A and (l-X) respectively. For simplicity we will consider the
general case g>1, integer A>1 or half integer Ax1/2 in the
Neveau-Schwarz sector with some defined spin structure (a,8),
avoiding the special <case X=1/2, odd spin structure. The
corresponding results for the other cases are straightforwardly
obtained by following the same steps presented here and taking
into account the results of Section II, Part B.

We will denote in this chapter by I(q)=q(g-1)=-2s(A)+1 the
number of independent zero modes in KA, q=2\-1.

With respect to the vacuum definition (I1.23,26) the normal

ordering is

63



" (III1.5)
-c"b if m>-s(X)
n

b e if n<-s()\)
b e =

‘The EMT is given by eq.(II.15a). By using the expansions (II.20)
and eq.(II.13a) we get the KN operators

L = ) 8" :c b": (I11.6)
1 im n
n,m
n . (1-2) .m (1-2) ,-m
Sim = 1/(2ni) %C e, @) afn f(A) (1-X) fn 8f(A))
T
From eqgs.(I1.22) and (II1I1.5,6) we learn its commutator9
o
[L,L]= Y% ¢ L +R_ (111.7)
1 i ij itji-~s ij
s=-g
0
where
R..= 2 Yy o st sT - (ie]) (III.8)
1d im jn

n<-s{A) m>-s(A)
where the antisymmetry of R has been used.
i3
Now let us consider the propagators of these systems given by

the kernels (II.40)

K\ (P,Q) = <O[T(b(P)c(Q)}]0> =

= E(P,Q) ' (E(2,P )/EQ,P )Y (a(B) /0@ =
[#3 (04
x 0151(Q-P+v()) /0 [5] (v(2))
v(g) = qA - I(q)P_ (II1.9)

Taking into account the definition of S?m eq.(ITII.6) we can

rewrite Rij as follows
2

R, = - §C §C e, (B) e (@ = [ A" 8,k (Q,P) 4K (2,Q) +

T T <T

P Q P

2

+ (107 9K, (2,Q) 8K, (Q,B) - A(1-3) (3,3 K, (P,Q) K(Q,P) +
+ 8,0 K (Q,B) K, (B,Q)) ] - (1)) =

2
RS %C e, (@ [ A" 8K (Q.P) 3K (P,Q) +
T P - P
+(1-0)% 8K, (B,Q) 8 K, (Q,B) - A(1-}) (3,8 K (P,Q) K (Q,B) +

+ aPaqu(Q,P) KA(P,Q)) ] ‘ (I11.10)

9The computation of the first term in the RHS of (IIIL.7) was

carried out in Refs.[25,26].
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where CP is a contour enclosing P. Now let wus consider the

expansion of the kernels (I1I1.9) KA(P,Q)=KA(z,w)dzAdw(1—A) for w
near z
K, (z,w) - (z-w) *(1 + c (2)(z-w) + (az(z)+cz(z))(z-w)2 + ..0)
(III1.11)
where az(z) is the schwartzian connection defined by the expansion
of the prime form E(P,Q)=E(z,w)dz—llzdwgll2 for w near z'°’
E(z,w) ~ = (z-w) % (1 + a_(z) (z-w)? + ...) (III.12a)
explicitely given by
a_(z) = -1/8 (8 log(h (z)*))% + 1/12 h (2) 2 8°n (z)2-
2 - , OB (2 0 z 0
g . .
- 1/6h ()" T 9,88 003100 n'(2) 1’ (2) n*(2)
) ik B
i,3,k=1 0
(III.12b)
and
c (z) = 8 log(E(z,P )" Po(z)® H[Z](w-z+v(q)))]w _ (III.13a)
. - -
c (z) = 1/2 (c (2)* + 8%Logd[¥] (w-z+v(q)) -
2 1 z w & ﬂ ! w=z

- 8210g(E(z,P )" Po(z) ™)) (III.13b)

By wusing (III.1l) is straightforward to compute (III.10), the

final result being

R =c. /12 &  , c,. =-2 (602 - 61 + 1) (III.14)
ij A ij A ‘

where k_ _ 1s an expression of the form (I.59b) with the
ij
schwartzian connection given by

R (2) = -12/c, ( a (z) + 1/2 cl(z)z - /2 8 ¢ (2) +

(03

B

Now from the wvacuum definition (II.23,26) and (111.6) it

g s .
+1/2 ) 8.9 Toghl,](v(9)) n (z) ni(z) ) (III.15)

i,§=1

follows that <T(Q)>=0, so (III.4) applies giving the result
<Ts(z)> = az(z) + 1/2 cl(z)2 - q/2 Bzcl(z) +

[0

5 V(@) n*(z) n(z) (111.16)

g
+1/2 ) 8.8 logdl

i,5=1 = °
which coincides with that obtained by path integral methods (see
[19,20,27]) by defining the composite operator TF ! by substracting
the leading singularity (this is the reason because it transform

. . [11]
as a schwartzian connection )
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TP (z) = 1im ( (A 8_c(z)b(w) - (1-1) ¢(2)8 b(M) + (z-w) %)

wtz
An important remark is in order. As we saw in Chapter II,
Section 7, in path integral formulation of b-c systems the
presence of zero modes constrains us to insert I(g) b-fields to

make sense of correlation functions (cf. (II1.72))

) 0 /J[dde] b(Q,)...b(Q )
a) 1

<0> = J[dbdc] b(Q ). ..b(Q I(q)

I(
for any operator O. We emphasized there that the propagators
obtained in this approach coincide with those given in (III.9)
provided that we take Qi=P_, i=1,...,I(q). It is also in this
sense that the afirmation made below eq.(III.16) must be

understoodlo.

3.Computation of the KN algebra for the scalar field

For computations in free scalar field theory 1is wuseful to

introduce the coefficients 7 and s as follows
nm nm

aa = aa : + 7 : (III.17a)

aa =:aa ! + 8 (III.18a)

They can be read directly from eqs.(IT1.100,104,107)

N 0 if n<-g/2 or m>g/2
o= (IIT.17b)
ne v if >g/2 or m<-g/2
and if (n,m) € IxI (s =0 otherwise)
nm
= d -l0i -1.3d 1 _k
Yow= 2 (@) (D ) v FF (I1I.17¢)
i,i=1 1>g/2
k<-g/2
— g _1 : __1 .. _1
s =m } (@)@ ., (II1.18b)
nm n m 2 ij

OIn particular the coefficient cl(z) in eqs.(III.11,13a) is
precisely minus the VEV in the sense explained of the ghost
current j(z) defined by[ZD]

j(z) = lim (c(z)b(w) - (z-w) )

w-tz
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The v 's satisfy the relation

nm

Y -7 =~ (I1I.174)

nm mn nm

The components of the KN-EMT are given by (II.86)
T(Q) = -:8X(Q)3xX(Q): (IIT.19)

By using eqs.(II1.13,89) we get the KN operators in the form

L, =12 } 1" a a (II1.202)
1 n m
n,m

where

1

1" = 1/(2xi) § (e | = 177 (ITI.20Db)
i 1

C

;

Now from the commutation rules (II1.104) and the definition

(ITI.17a) it follows that they satisfy the KN algebra (I.59) with
c=1 and the cocycle given by

koo=6 % oy y 1 1*°

i 3

ij mk 'ns
n,m,k,s

- (1+]) (IIT.21)

By using the relation (III.17d) and the antisymmetry of « we can
ij
write (III.21) as

-~ ~ mn
& = 6 L

ij Z 7mk 7ns i
n,m,k,s

s

1§ - (ie§) (I11.22)

In order to get an explicit expression for k  we consider the
i

followinglaurent—likeseriesll
g

G(P,Q) = 2,8 10gB(2,Q) -« J #'(®) (r)), 7'(Q -
i,j=1
DR R CORN N
- ¢ 7 (I11.23)
LoV, @ (@ WN(®) T >

By using this expansion and the definition of the coefficients 1?m
1

eq.(III.20b), we can express (III.22) as follows

lThis expansion is no other thing that the corresponding one to
the JX-propagator <O|T{4X(P)8X(Q)}|0>=-1/2G(P,Q), computed in
Chapter II, Section 9.
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K, =6 § gﬁ?>§ e (Q 6(,Q° - (i=])
€ €r s1
P Q P
-6 § e, (P) § e (Q G(P,Q)> (I11.24)
C C
T F

By inserting (III.23) into (III.24) we arrive at an expression of

the form (I.59b), with the schwartzian connection given by

3 R
R(z) = -12 (a,(2) - n/2 L n'(2) (r,)), n'(2)) (II1.25)

i,5=1
As in the ghost case we get <0|T(Q)|0>=0, so (III.4) reads

g ) - .
<T?(z)> = a (z) - /2 Y ni(z) (rzl>‘. n’(z) (I11.26)
i,§=1 B
which coincides with the well-known result coming in PIA from the

definition (see [27] for example)

Ti(z) = - 1im ¢ 8 X(2)8 X(w) + (z-w) %)

. PI
of the composite operator T ~(z).
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PART B: Physical states and unitarity

4.The Feynmann-Polyakov quantization

Let us consider the path integral formulation of the free

scalar quantum field theory defined by the action (II.81)[28]. The
partition function at genus g is defined by
Zg = f [dh][dX] exp(-S[X;h]) (II1.27)
by

g

where [dh] stands for the measure in the space of metrics on 3.
Because of the local invariance of (II.81) wunder arbitrary
reparametrizations, we must fix a "gauge” to compute (III.27). A
covariant choice is the so-called “"conformal gauge"

h=p ﬁ(y) (II1.28)
where ﬁ is a reference metric depending on the the moduli {yi) of
the surface and p an arbitrary function. As usual, the gauge
fixing involves the introduction of a Fadeev-Popov determinant,
while the path integral on X just gives the determinant of the
scalar Laplacian, so (III.27) takes the form12 (we omit infinite

factors coming from the volumes of gauge groups)

Zg = [ . [dy] J tdp1 det(FP)(pﬁ) det(A)(pﬂ) (IIT.29)
M

where the FP determinant can be expressed as a path integral

over an anticommuting ghost system of weight A\=2

det(FP) = J[dbdcdf)d&] exp(-S[b,c]) (III.30)

Since the actions (II.14,81) are invariant under Weyl rescalings,
we could wait for a decoupling of the conformal factor p in
(ITI.27). However, due to intrinsic p-dependent definitions of the
measures and problems with the regularization of the determinants

81]

this is not the case in general. Polyakov[2 showed that all the

dependence in p is encoded in the Liouville action, i.e.

The discussion presented here intends to be a "schematic" one,

for rigorous derivations see [29-31].
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det (...){(ph) = det (...)(h) exp(-c SL_ [p;h])

irouv.

Liouv[p;h]) &« I dleh(x)|1/2 (1/2 hab(X)aalogp(x)ablogp(x) +

+ R” logp(x) + p p(x)) (II1.31)
where the factor c is equal to 1 and -26 for the scalar field and
A=2 ghost system respectively. Then, if we take D=26 scalar fields
the decoupling of p indeed occurs and (III.29) reads

Z, = J . [dy] det(FP)(h(y)) det(r)(h(y)) = f . dp(y)
M M

(I1IT1.32)

reducing to an integration in the moduli space. We quote for

completeness the measure on M dp(y) (see [20] and references

therein)

du(y) = W(AU(F) (detr )™

W(y) = dy'A...Ady 8 "°

2,(B,...B ) 270 / det’(R)

(III.33)
where the yi’s are analytic coordinates on M® corresponding to the
variation (I1I.66) of the metric ﬁ(y), Z2 is the partition function
of a b-c system of weight 2 with Pi arbitrary points (cf. (II.71))
and Z1 is the corresponding to A=1 with the zero modes projected
out.

If we consider now an arbitrary multilocal operator O

(functional in general of X and h) then from (III.27,32) we have

<O>g = J dp(y) <0> (I1I1.34a)
g
M

<0> = J [dX] exP(-S[X;ﬁ]) 0 /J [dX] exp(-S[X;ﬁ]) (I1I.34Db)

However it is not said that the decoupling of p occurs for any O.
The operators for which it does are said to be Weyl invariant or
conformal operators, and are the only ones which make sense in the
theory. The operator formalism developed in the precedent chapter
allows us to compute <...>; the total correlation function will be

given by (III.34a).
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5.Equivalence with the operator formalism

Let us consider the bosonic closed string theory defined by a
set of D scalar fields {Xﬂ, pu=0,...,D-1} with action (II.S81)
(&'=l) and Minkowski metric (nﬂy)=diag(-l,1,...,l), that represent
the space-time coordinates of the string. From (III.29-31) we saw
that the decoupling of the conformal factor p comes from the
cancellation of the "anomalies" (III.31) between a set of 26
scalar fields and a A=2 ghost system. This may be visualized from
another point of view. As we said in Chapter II, Section 2, after
gauge fixing the scalar theory to the conformal gauge we remain
with a theory invariant under local holomorphic change of
coordinates, the generators being the KN operators. But a quantum
level its algebra does not close, giving rise to the central
extension (I.59) with central charge c=D. So we may hope that the
addition of the A=2 ghost system makes the work of closing the
algebra, leaving a theory fully conformal invariant. Indeed it is

the case. The total KN EMT will be
Q) = F Lol L® = ¥ 4 12t (111.35)
1 1 1
i
From (III1.7,14,25) we have (c2=—26)

g

0
t ot s .t
[Li’Lj] - 2 cij Li+j—

S=-g

J

T (13/6) 1/(2ni) % Q [ei,e,]
c
r

2(Q) = (R_(2) - R*(2))dz> (II1.36)

2(Q), being the difference between two schwartzian connections, is
a well defined tensor of weight (2,0)[111, and from (III.15,25) is
holomorphic outside P_ where has a pole of second order. By

redefining LF as follows
1

LT - LY 4 (13/6) 1/(2r1) 35 e 0 (1I1.37)
1 1 X
c
.
we get
gD
SRS I D) c, L. (II1.38)

5= -
g0

giving a KN algebra without anomaly. In Ref.[25] a related result
was predicted by considering the nilpotency in D=26 of the BRST
charge associated.

Finally let us note that the EMT corresponding to (III.37)
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T°H@ = T L 0@ - TNQ + TPT(Q) + 13/6 a(Q  (II1.39)
has a VEV given by

<5 (Q)> = 13/6 Q(Q) (I11.40)

The existence of this anomaly-free KN EMT on ¥ with a well defined
VEV could give a hint for defining the measure on the moduli space
in this operator framework, pursuing lines of reasoning in
somewhat similar to those of ref.[17].

Also the concept of a Weyl invariant operator has its
counterpart in our framework. Being the KN operators the
generators of conformal transformations in the gauge fixed theory,
a conformal operator of weights (p,q) W(Q) should satisfy the

covariance conditions

(L, W(Q] =L, w(Q) (III.41a)

n

Lé W(Q) (II1.41b)

Examples are 8X(Q) (EX(Q)) with weight (1,0) ((0,1)), b ((A,0)), ¢
((1-X,0)), B ((0,))) and c ((0,1-1)), as can be easily checked.

Other kind of conformal operators, the vertex operators, will be

[T, WQ]

defined and extensively studied in the next sections.

6.Vertex operators and scattering amplitudes

Qualitatively a vertex operator (VO) is a local operator W(Q)
which creates from the wvacuum the excitations or "particles" of
the string. When a string is propagating, the insertion of a VO is
interpreted as the scattering of an off-shell particle (the
string) and an on-shell particle (that represented by the VO). The
origin of this interpretation is greatly explained in Ref.[18].

A scattering amplitude A" of M external particles 1is

understood as the VEV of a string of VO (Vv , i=1,...M) that

1
. M ; .
represent the particles. Let A the genus g contribution (g
8

loop-order in the perturbative expansion). Then, according to the

(28]

Polyakov recipe , we have

A= § RPETHTZLY (I111.42)
g
g=0
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. . . M
where k is a coupling constant. In order to obtain A, we have
&
first to calculate AM[Z 1, i.e., the amplitude of a process
g
performed on an equivalence class of Riemann surfaces [Z ]. So,
g

according with (III.34)

A" = J du(y) A"[zs ] (III.43)
g MS &

Then the definition of AM[Z ] in our context will be
g
AM[Eg] = <0| T(v ...v )|0> (I11.44)

Now we would like to find the right definition of the vertex
operators within the present formalism. Let us start remembering

that at genus zero a VO is an object of the form

vV = [ ) i(dz/z)A(dz/z) w(z,z) (II1.45)
S

where z=exp(r+ic), 7 being the euclidean time parameter and o the

angular coordinate of the string. It is required to have conformal

dimensions (1,1) in the sense[lel
[L:,w(z,é)] = (zn+16 + n zn) w(z,z) (1I1I.46a)
z
L) w(z,2)] = (z""8 + 1 z2") w(z,z) (III.46b)
z

where LZ, iZ are the Virasoro operators. This 1is exactly
equivalent to impose that the two-form
W(z,z) = i(dz/z)A(dz/z) w(z,z)

transforms according (III.41), which are equivalent to impose that
V be conformal invariant. It must represent an on-shell string
state of momentum pp with the correct Lorentz numbers of the
represented particle. Moreover, it must change the momentum of any
state by p“, so it must carry a factor exp(ip.X(Q)). Then a VO at

arbitrary genus will be of the form

V = J W(Q:p) (III.47)
)

with W(Q;p) a (1,1) conformal operator valued 2-form.

The requirements (III.41) can be understood from another
point of view. At g=0 the Fock space of the string theory presents
negative mnorm states due to the time-like oscillators a:, &2.

However there are spurious degrees of freedom coming from the
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gauge fixing. Classically there are constraint equations which
follows from the equation of motion SS[X;h]/Ehab=O that looks
like 'T(Q)=§(Q)=O. At quantum level the quantizatiqn goes a la
Gupta-Bleuler, imposing constraints that select a physical

subspace of the whole Hilbert space. They are given by the

Virasoro conditions[lsl, whose generalization at arbitrary genus
igt?t!
L |¢>=0 ;i L |¢>=0 n>g (III.48a)
n n
L |¢>=1]¢> ;L [¢>= |¢> (I11.48b)
80 50 .
and
<¢| L =0 i <¢| L =0 n<-g_ (III.48c)
n n
<L =€ <p| 3 <p| L =€ <¢| (III.48d)
e } e }
o] 0

for any physical state ¢, where € is the coefficient of the
leading term in the expansion of the vector field s, around P .
A consequence of the commutation relations (III.41) is that
vertex operators can be used to map physical states to physical
states. In fact, let us see what happens at g=0. If ]¢> is a
physical state, (L:—Sn 0)|¢>=O, n=0, then [¢'>=V]|¢> is also a
physical state, as it éan be seen from the fact that W commutes
with Ln up to a time derivative, which creates a spurious state.

Indeed, although the commutator [LV,V]= J [LV,W} is not zero, it
n n

decouples from any amplitude. This Zis seen by writing
z8/3z=3/3r+18/dc (z=eT+ia). The 1integral of the part with a
derivative in ¢ is zero because the integrand is single-valued.
What remains is something which is a derivative in r. Even though
this 1is not zero, it does mnot yield any contribution to . an
amplitude. This is wusually showed by the "canceled propagator

18
argument"[ ]:

the time derivative dA/dr can be written as
dA/dr=[LZ+iZ,A]. Inserting this into the amplitude, the L§+£Z
factors next to A either cancel against an adjacent propagator or
else annihilate against the states at the ends of the expression.
Now a term with a canceled propagator is a holomorphic function of
the Mandelstam variable s of the corresponding channel. Then it
follows that there are regions of the invariant enefgy variables
in which the term in question is analytic and vanishes as |s|+ « .

Thus by a standard theorem of complex analysis, the amplitude must

be identically zero in the region described, and zero everywhere
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else as well by analyticity. Essentially, what happens is that
whenever one has a time derivative this leads, after integration
in the corresponding time variable, to correlation functions with
two vertex operators valued at the same time. This is either
singular or =zero depending on the region of s that one is
considering, so again it follows that there are regions of the
invariant energy variables in which the correlation function in
question 1is wvanishing, and by analyticity it must be =zero
everywhere else.

Now let us go to the interesting case of g>l. A physical
state 1s a state which obeys the Virasoro-like conditions
(III.48). Unitarity requires that only physical states (which are
positive norm states in the g=0 language) contribute as poles in
the amplitude. This is equivalent to the requirement that VO map
physical states to physical states. This implies that SVE[Ln,V],
SVE[LR,V], if not zero, must create a spurious or "ghost" state
which decouples from the amplitudes (III1.44) at least for [n[Zgo
(cf. (II1.48)). More precisely, the state

J Wi(Qi)...WM(QM)[O>

T >...>T
when itlis onbghell, should be annihilated by the Ln's for n>go.
This is indeed the case provided that eqs.(III.41) holds. In fact,
by acting with Ln on this state and commuting it with the vertex
operators on the left one arrives to the following state

J W (Q)...LW(Q)|0> (I1T1.49)
i i n M M
T >...>T
i M
plus states containing a commutator between two vertex operators,
say, at times 7 Ny and L The integral corresponding to this
3 3
commutator involves the region between Cr and Cr_+1. From

j-1 3
(IIT.41) it follows

[d(eIW.>=jﬂ<eIW.> + 3§<e1w‘>
n 3 n 3 n 3

and this gives no contribution because of the "canceled propagator
argument” explained above. Now consider the state (III1.49). When
one commutes Ln with VM obtains a commutator whose integral
involves the region between -« and Ty For QM=P+, [Ln,wM(QM)] is

not given just by (III.41), but there is a further contribution of
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the form
(e_|dK)(z,) SZ(ZM) , z,(B) =0

which after integration gives zero 1if n>go and 1 if n=g . An

analogous reasoning can be done for a state of the form

J <OIW, (@)W (@),
T1>. . .>Tj

this time giving zero for n<-g0 and ¢ for n=-g. (cf. (III1.48c,d)).
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Part C: Scattering amplitudes in String Theory

7.The tachyon vertex operator

Vertex operators have been extensively studied in the

. 15,32-35
llterature[ !

within the Feynmann-Polyakov formulation of
string theory. Also an operator study at g=0 in the case of the
open string theory can be found in ref.[36]. In this part we will
performe a systematic construction of VO for the bosonic closed
string theory at arbitrary genus in our operator context.

Let us start rewriting the expansions of the scalar fields

(@) = M) + @ (I1I.50a)

)y = - ip* 1@ (T1I.50b)

X =142 % e @+ g @) (III.50c)
In|>g/2

The tachyon VO is clefined‘byl3
W Q) = 2(Q) exp(ip.X(Q)): , p =4 (I1I.51a)
1exp(ip.X(Q)): = exp(ip.x(r)) :exp(ip.Xosc(Q)): (II1.51b)

where Q(Q)=idzAd£Qz; is some integrable 2-form on T. We would like
that (III1.41) to hold for :WT:; this requirement will fix (up to a
multiplicative constant, of course) Q(Q). So, let us compute the
commutators in (III.41). From the formulas given in Chapter II and
Part A of this chapter we get
(L, :exp(ip.X(Q)):] = -1/(2/2) J 171 (4 (@) p.o_texp(ip.X(Q)):
k, 1

+ rexp(ip.X(Q)): p.a Ak(Q)) (I11.52)

In the following calculations the formulas

14The value p2=4 is 1indeed neccesary for :WT: to be a (1,1)

conformal operator (see (III.61)); we may however think (III.51)

in general as an object of conformal weights (p2/4, p2/4).
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o, Y ) N - TN . TN -
o f(le,a): ral fla,a): + z (7ks.6f(a,a). + sks.af(a,az.)
5 aat da
s S
(I11.53a)
. e BB “N . -, SN = . NN
f(a,a): al ol fla,a): + X (7sk.8f(a,a). + sks.a€(a,a).)
s aa” da
5 s
(III1.53b)

valid for any smooth function f of the oscillators a ,a will be
n n

extremely useful. By using them we obtain

[L_,:exp(ip.X(Q)):]

(L, + p"/4 k_(Q)):exp(ip.X(Q)):

r

(II1.54)

[L_,:exp(ip.X(Q)):] = (L + p /4 &_(Q)):exp(ip.X(Q):

x

where the "anomalous" functions x (Q) are given by
r

s (@ = T T G, A@+T A@) 4@ (IT1.55)

n,m Ikl>g/2 km k

Let wus compute these functions. From egs.(II1.100c,d) and
(I11.102,104b) follows the relation
A (Q) = 2 Y. ¢ (Q) + 6 (III.56)
n nm m . n,g/2
|m]>g/2
and then we can write (II1.55) as

k(Q = Y1" % o 7, - Y 7, ) 6 (4 Q)

lkl,lll>5/2 nk ml kn

+YAER Y G+ T ) 4 Q) (I11I.57)
n r lk]>g/2 nk kn k
where we have used (III.17d). Now, let us introduce the following

Laurent-like expansions obtained by using the methods of Chapters

IandII15
0@, Q) = ¥ ¥ 7, (R Q@ 7> (III.58a)
n |k|>g/2 n
©(P, ;) =} ¥ 7, w" (P) $,(Q T, (III.58b)
n Ikl>g/2 n
where

151hey essentially are those corresponding to the propagator <X3X>
of a scalar field X.
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Q
@(2,Q;B,) = 8,log(E(R,Q)/E(R,2)) - 7 [ (-)® 7}t n(®)
P
° (III.59a)
is a meromorphic 1-form in P. It satisfies the relation (see
(I.43))

©(R,Q;P ) = o(P,Q;P,) + o*'%(P) (11T.59b)

With the thelp of (I11.58,59) and the definition of the
coefficients 177, eq.(IIT.20b), we can rewrite (III.57) as
. ‘

® (Q = 1/(2ri) § e (P) w(P,Q;P,) w(P,Q;P ) (II1.60)
. -
CQ
The computation of the RHS by using (III.5%a) is straightforward

and we obtain

k (z,2) =38 e (z) +w (z,2) e (z) (III.61la)
r 2 r Z r
k (z,z) = 8- (z) + w-(z,z) e (z) (ITII.61b)
I Z zZ r
where
- z z -t -1
wz(z,Z) = -azlog(E(z,P+)E(z,P_)) -7 (J + J )(n-1) T, n(z)
LS
(III.62a)
- - - z z -t -1 - -
w(z,z) = -3-log(E(z,P )E(z,P_)) + (J + I Yn-m) " 1 " n(z)
P, TR
(I1II.62b)
Now we impose the «conditions (III.41) on :WT(Q):; from
eqs. (III1.51,54) these are equivalent to
k (z,z) =V e (z) , &k (z,z) = V-e (z) (II1.63)
r 2 r r Z2 r

where V , V- are the covariant derivatives with respect to the
4 2
connections
w (z,z) = 8 logQ -(z,z) , w-(z,2) = 8-logQ -(z,z)
2z 4 ZZ z z 22z

(II1.64)

From (III.62,64) we read Q(Q)l®7 8]

1 v( QA (Q
Q Q
E(P,,P_)/(E(Q,P )E(Q,P)) exp(-vr/zf (n-ﬁ)tr;lj (n-m))
P P
- +

02(Q)

It

v(Q)

, (I11.65)
We remark Q(Q) is a well-defined (single-valued) form, though this

is not the case for v(Q).
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8.An Arakelov-type metric

We can give a particular interpretation of the form 2(Q). As
it is well known the propagator for the scalar fields <X(P)X(Q)>
is not uniquely defined due to the zero mode. In the operator
formalism this fact is manifested in the indetermination of the
scalar products <0|x x|0> and <0|x|0>, the first one giving rise
to an indetermined constant and the second one to an
indetermination in a function of P plus a function of Q. It is

straightforward to verify
<O|T((X(P)-x) (X(Q)-x)}[0> = -1/2 g’ (P,Q)
g'(P,Q) = G(TP-TQ) g(P, QP ) + 0<TQ-TP) g(Q,P;P,) (I1I.66a)

71

where ﬁ(TP-rq) stands for the step function and'?® (TP>TQ)

g(P,Q;By) = ] Tey $,(B) $,(Q) + hoe. =
[<[ . [2]>sr2
2 ¥ -t -1fY -
~ log|E(P,Q)E(P,,P_)/(E(P,P )EQ,P )| - wf (n-m)"r. J (n-7)
P P,

(III.66Db)
Because of the ambiguity mentioned above, we can define in our
context a propagétor AQ(P,Q) for the scalar field by adding to

(III.66a) a suitable sum of functions of P and Q in such a way

that

A¥(P,Q) = 172 (g(P,QiB,) + (@—B) ) =

- 10g(|E(P,Q)E(P+,P_>|2/I(E(P,P+)E(P,P_)E(Q,P+)E(Q,P_)l) -
F -t -1 -
- /2 <f (n=n)"7, J (n-1) + (Q—P)) (111.67)
P P
- +

More .generically, given a metric h on X we can introduce an
39]

associated propagator by[
A"(P,Q) = Log(|ER, Q) |*h(®) " *n(@ ™ *) +
¥ -t -1 (T -
+ /2 J (n-n)" 1, J (n-n) (II1.68)
Q Q

It is easy to prove that, if h=h -(dz®dz+dz®dz) in some isothermal
zz

coordinates, then the following identity holds
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h -(z,2z) = exp( lim (A"(z,z;w,w) - log|z-w|? ) (I11.69)

wetz

Now, the two-form (III.65) Q =idzadzQ - with Q - real given by
¥4 zz

z

9 -(z,z) = |E(2_,P)/(E(z,P )E(z,P_))]|" «
@ -t -1 -
x eXp(—wJ (n-n) "1, f (n-n)) (I11.70)
P P
- +

defines the singular metric hQ=Qz;(dz®di+dé®dz) whose connections
are given by (III1.62). With a little bit of algebra is showed that
this metric corresponds to eq.(III.69) with the propagator given
by (II1.67). The definition (III1.69) is reminiscent to that of the
Arakelov metric (for exactness, the Arakelov metric is a
non-singular metric defined with respect to the propagétor

determined by the Bergmann metric

- g i - -4 -
v,z =1/ I 0@ wh@)

see for example refs.[27,39]). Let us note also that the curvature
of hY
Q 22 - -
R (z,z) = -2 Q"7 (z,z) 8 3-logQ -(z,z) =
zZ z zz

= 4n (-0°° n(z)tf;lﬁ(é) + 1(z,B ) + i(z,P_)> (II1.71)

where bl(z,w)=l/(2w)ﬂzz(z,£)6 3—1og|z-w]2 is the covariant
z 2

§-function, verifies
l/(hw)f Q RQ = k(g) = 2(1l-g) (111.72)
=

as it should. In terms of RQ, the propagator (III.67) obeys the
equation (OV=-20%%3 4-)
z z

-1/¢m) Sz, 20,5 = 1(z,w) - 1/2 (1(z,,) + 1(z,P ) =

- 1(z,w) - 1/(8x) R%(z,2) - g 0°% 4 - (1T1.73)

2z

91
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This equation indeed defines a class of propagators[ associated

with a metric Q, whose general solution is given by (III.68).

81



9.The M-tachyon multiloop amplitude[37]

Insertion of M VO (ITII.51) into A"[S ] leads us to the
g

calculation of correlation functions of the form
<0[:e P17 et P % 10> (III.74)
Writing :eiP'X(Q):=eide7)Wo(Q)ﬁo(Q) , with

W (Q) =exp(-1/2 J  p.a_ ¢ () exp(-1/2 ) p.a ¢ (V)

n<-g/2 n>g/2
(III.75)
one obtains
<O{eip1'X(T1)...eiPM'X(TM)[O> =
M 2
= em?® 2 F ) TP T S Hs (I11.76)
i * i=1 i<j
<O|W _(Q,)...W (Q,)[0> =.ﬂ.exp P, P, G(Qi,Qj) (I11.77)
i< )
where G(P,Q) + h.c = g(P,Q;P,) (see (III.66b)). Defining
R(P ,P )= T(P_)+g(P_,P.;P+), the amplitude becomes
i ki 1 i 3 -
M M 27 /2 R(Q ,Q))
AL =1 = J (1 a@,) e T ePi Py 1775 %
ach. g i
2 i=1 i¥j
x (2m*° §°°(T p)) (I11.78)

2 . ' .. .
(We have used p =4). Now we insert the explicit expressions for
kS

Q(Q), 7(Q), and R(P,Q) and arrive to the following result

M - 26 .26 PP,
Apaen [B] = (@m0 6 Q@ ey Jz inIE(Pi’Pj)l *
Pj P
- - J -
cem(n/ip, v, |G @D, [ @t
P, P
(I11.79)

. . 40
in agreement with well-known results'*°).

We would like to remark the following fact. Let us consider
the following expression

N
M exp(l/2p,.p 87(Q,,Q))  (I11.80)

i<i=1

N
A, (p)) = H~<J H(Q,))
i=1 7%

where Ah is given by (III1.68) and H(Q)=1idzAdzh -. It is easy to
zz
show (taking into account momentum conservation) that AN does not

depend on h -. It indeed gives (III.79); the expression considered
z2
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in refs.[40,35] corresponds to the metric [hO(Q)zlzwhile that

appears in ref.[37] corresponds to the metric (III.70).

10.Higher massive levels vertex operators

Having a "natural” metric on £ in our operator context, we
define covariant derivatives acting on tensors of rank (n,m) by

(cf. eqgs.(I1.11))

‘") 8 - noew , v s e - m - (II1.81)

2 4 2 z 2z ¥4

\

with the connections given by (III1.62).
A vertex operator that represents a particle belonging to the
n®" level will be in general a linear combination of terms of the

(e, 1) . . .
£ - W : th th 1 t t -
orm e(p#)(p) (Q): wi e polarization tensors e(#”)(p)

obeying suitable conditions in order for (III.41) to hold. The

KB

operators W ) are local monomial expressions constructed

from the covariant derivatives of the fields X" and the
exponential momentum factor. So it will contain terms like anu,
2
V—XM, but also V}VHV-X“, VlVEVmX#, etc. However by wusing
zZ 2 2z Z Z 2 2

repetitively the relation (I.12b)

[V-,7,] €@ = s/2 a - Q) t(Q)
it is easy to see that terms like VEV:VSX”, ViVEV:X”, etc,
generate all the couplings of VZX#VEXV to the covariant
derivatives of the curvature. So we are lead to consider the

following most general expression

W Q) = 0@ @) £(Q) exp(i/2p.x(r)) x

x :wif;ﬁ’<Q): exp(i/2p.x(r)) (1I1.82a)
where
N n I—‘} 1; P P ;
£(Q = ] vleQ(Q) M V;lRQ(Q) i Vle;lRQ(Q) (III.82b)
1=1 1=1 1=1
( _) o "1 y ;l N
v @ = T v @ T v Q) exp(ip X ()
1=1 1=1
(III.82¢)
16

We find convenient to treat the zero mode part in this symmetric

way.
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r(n)

I
[ et -4
=]
+
Nz
o]
+
]
e
1
[ e Bcl
=3
+
[T o -
[=R]
+
[ a]

n- N+N+P)=0 (I1I.824)

It

Here (ml, ml) € N and (nl, n, P, pl) e Nu{0}.

Computation of a commutator

In order to impose the conditions (III.41l) we must compute
the commutators of :W(#'M)(Q): with the KN generators. The
calculations are <very tedious but straightforward, the full
ingredients needed being contained in the previous sections. We

quote here the final result

SR R CO RN RS S A CORRES JE {CO RN A (ORVEICY

r r

s

M - m m
£ 3w @ (v L, 1@
s=1

r

+ (%4 + T - 1) & (@ WHF@:

M - m

- 12 ) P Al @ WP Qv R -
s=1
M

(m ,m ) - m m
VNS TR (YRR RSN VI S (OIS SICIPE
s,t=1
s#t

T - "o-
V2 I A CY R R CIVA T GHCIREE
s=1

voon - . - " n -
1/2 % % atHeelme ™ @ P @/ v txFs @Rt
s=1 t=1

(I1I1.83a)
where the commutator between Lie and covariant derivative is

m m -k+1

ks) Vt_lnr<Q> vzs

m
s

v *L, 1¥%s@ = T (
k=2

I

Ms(Q)  (I11.83b)

if m>1, being =zero otherwise, and the tensors A(p), P
5 r

(p,
C p,q)
I

3
xr

are given by

AP (Q) = 1/(2r1) § e (B) w(P,Q) (V)%u(P,Q) (I1I.84a)
C
Q
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B.79(Q) = 1/(2ni) § e (2) (V)Pw(P,Q) (V,)%(P,Q)
c
Q
(I1I.84b)
©(P,Q) = 1/2 (2(P,Q;P,) + &(P,Q;P )

1

¢P @ = w (V) @n@) 7, (T @ (II1.84c)

The first few terms useful in what follows are24

(1) (1,1)

A,7@ =12V 6 @, AP(@ =1/2 V% (@ - 3@
6@ = 1/2 Y V=x_(Q)
c.P@=-ve V@ ¢ P@-ve P
¢ @ -v et - 172 kM@ ¢ @

(II1.85)

Similar formulas to (ITII.83-85) are obtained for the commutator

with L .

r

Construction of vertex operators for physical states

We will consider the lowest massive levels; the extension to

higher levels is made following the same lines described here.

1) Massless level: n=1, p2=0.

The most general operator is given by

Q) = e 2 (p) W Q)+ B WI(Q): (I11.86a)
where _ ; )

W@ = a@ 0** v x¥(Q) vx*(Q) exp(ip.X(@) (1II.86b)

W(Q) - 2(Q) RHQ) exp(ip.X(Q)) (III.86c)

24 .
It can be see that the only "independent" anomalous tensors are
K and B(l'l); all the others can be expressed as linear
r I

combinations of the covariant derivatives of these two ones and

Q
the curvature R .
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From (III1.83) we get25
[L_,:W(Q):] - L, :W(Q):

r

) gl oy

r_(Q) Aﬂﬁ(p> W (Q):
(III.87a)

with )
(D) = - P - nPe -
A#p(p) 1/4 (pp p epp(p) + P, P e#p<p)) +

P - 11.87b
+ 1/4 (ep 88(p)) PP, (III.87b)

if Gpﬁ<p) is traceless, the cancellation of the RHS 1in

(I11.87a) implies PB(p)=0 and the transversality conditions

ple (@) = pe S(p) = 0 (I11.88)
The symmetric and antisymmetric parts of E”L(p) represent the
graviton and the antisymmetric particles respectively. If instead
we consider the trace part epﬁ(p)=n#ﬁ then (III.87b) gives
B(p)=(D-2)/8, leading to the the dilaton vertex operator
W@ = @)+ (0-2)/8 Q) RNQ) exp(ip.X(Q):
(I11.89)
The coupling of the dilaton wave function :exp(ip.X(Q)): to the
curvature in (II11.89) was originally proposed by Fradkin and
Tseytlin on dimensional grounds, in the context of defining an

11

. . - 4
effective action for the modes of the strlng[ , and used by

Callan et al. to formulate the conformal invariance o-model

. 42
approach to the wvacuum string problem[ !

It was however in
ref.[34] that its origin was discovered in searching for a Weyl
invariant vertex operator for the dilaton in the path integral
approach to string perturbation theory. Here we recover it from

the conformal invariance requirement in the gauge fixed theory.

25Total derivative terms will be neglected in what follows due to

the "cancelled propagator" argument explained in Section 6, as it

is naturally done in the path integral formulation.
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2) First massive level n=2, p2=—4
The most general object to be considered is given by (we omit

the Q(Q)exp (ip.X(Q)) factors)

pvpy Y , e
W(Q) = #Vﬁ;(P) W Q) + Epﬁ(P) Wl (Q) + Gﬂﬁ(P) W, Q) +

@) W@+ e () W@+ e(p) W Q)

“uvi
(III.90a)
where
W@ v vt @vie@ v @-rYQ)?
CA IR G S GO R E SO SN T
QRN Qv vt W @=vx" (v Q) vxY ()
(III.90b)

The general formula (III.83a) gives the following result for the

commutator

[L,:W(Q):] - L :W(Q): =

r

Q@ Ca sV @ + B e + B - (@)W,A(Q) +

+ G (YW HQy + oz <p>w“ Q) + DI (Q) + B LW Q) +

+ E?<p>wg<Q> + D (PW(Q) ) + B (Q Hﬁ<p>v22x“<q> +

(1 1)

-+

(Q 65 (p)V X“(Q)v %" (Q) (IT1.91)

where the tensors A uﬁﬂ(p) etc. are, as in (III.87b), linear
combinations of the polarization tensors. The cancellation of
these tensors (not all of them independent) gives a set of
conditions to be imposed on the physical polarization tensors.
They can be recast in the following form (we omit the "conjugate"

ones)

6 . .

There exist another three possible terms of the form
e W= VRVE | - W o - vRNEE L o un = o vV R
M 1 y3 z g2 Kz z
that under integration on % are absorbed in eéﬁwgp via the gauge

transformation

#LCP) - eéﬁ(p) - eﬂ(p) P, eﬁ(p) P, - €' (p) P, P
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0= -(») - ipe (p) - -, @ - ip’e - (p) (I11.92a)
0 = e"(p) - 1/32 (26;p(p) + epp(p)) (II1.92b)

0= pp(26;ﬁ(p) - €, (e) (1T1.92¢)

0= clo(p) - l/26ppﬁp(P) +i/4 (e, P(p)p + &-- <p>p ) +

Bp
. P - I11.92d
+ 1/8 <, (p)pﬂpu ( )
_ P . i p )
0 =c (P - 1/2p7¢ ~o(@) + /4 prle 2 (» +1ip° €y (P)
(III.92e)
_ ia P . P . P
0 e”M(p) i/2p ep#“(p) + 1/8 pp(e pp(p> + ip ep#(p)>
(I1I.92f)
= ip? po p_o -
0 = “U;<p> - (n" + PP )epupa<p) (I11.92g)
_ P ., poO N
0 = 1ip e#p(p) (" + p’p )epgﬂ(p> (III1.92h)

In ref.[35] vertex operators were read from the residues of
the poles for the intermediate states in the multitachyon
amplitude (II1I.79), a method dictated by unitarity arguments (the
need of doing it so was first remarked in ref.[15]). The vertices
obtained here are in perfect agreement with them, a fact
consistent with the statement that eqs.(III.41) are required by
unitarity of scattering amplitudes (the equivalence of vertices
for n=0,1 is obvious, to see the equivalence for n=2, we must
identify our polarization tensors in (III.90a) with those of the

"factorized" form of the vertex in ref.[35]
e, <mvﬂ@WX<®+e<mv#@nx

x<eﬁ;<p)v X”(Q)V X (Q) + e- (p)V XP(Q>) exp(ip.X(Q))

in the way: € --=e e--, € -=e e-, €-- =e--e , -=e e-).
poi i S Cw S ST o uth
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11.Some comments about Superstring Theories

The Virasoro algebra (1.62) has N=1  supersymmetric
generalizations known as Ramond and Neveau-Schwarz algebra527. They
display together with the T component of the EMT an anticommuting

current of conformal weight 3/2

PR P (I11.93)

r

G(z) az’’? - Y G
r

where the index r runs over the integers (half-integers) in the R

(NS} case. The components G obey the commutation (anti)
18] *
relations'
[L,G]=(m/2 -1r) G (I111.9%%a)
m r m+r
2
{Gr, GS} = 2 Lr+s + ¢/3 (x7-1/4) 6r+s'0 (II1.94b)

It is natural to guess that, as the KN algebra is the higher
genus generalization of the Virasoro algebra, there should be also
a generalization of the superconformal algebra (I1.62), (III.94).
Its construction was worked out in Ref.[26]. Let us denote

_e(=172) -1/2
by g =f

structure and R or NS boundary conditions are understood). Then

the KN basis corresponding to K (a spin

the binary operations

[ei’ gr] = Le.gr - Z Hir gi+r-s (III.95a)
i s=-g
0
J P
(g.. 8 ) =858 +ee = L B e . (III.95b)

define un extension of eq.(I1.56). The structure constants are
obtained as usual by means of the dual bases and the corresponding

duality relations (cf. Chapter I, Part C). The central extension

is made by introducing the following cocycle[zsl

o= 1/(2xi) dz (6Zgr(z) Bzgs(z) + 1/2 R(z) gr(z) gS(Z))

C
r

(ITI.96)

27The N=2 superconformal algebras have became very popular in the

last time due to its close relation with the wvacuum of the

superstring, see [43,44] and references therein.\
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Then

[L, G ] = H® (II1.97a)
i r ir i+r-s
S=-8
0
g P

{Gr, GS) = ) Bir rts-p2 +c¢/3 t ©_. (I11.97b)
P=-8

[G, t] =0 (III.97¢)

together with (I.59) defines the N=1 KN superconformal algebra.
Now the action of the superstring in the
Neveau-Schwarz-Ramond (NSR) formulation is the sum of D copies of

(I1.81) plus
s_[¥,9] = 1/(2«)»J idzAdz npy(¢“§¢”+ Ha9”) (III.98)

where (wp,ﬂﬂ) are the components of a Majorana spinor. The free
field theory (III.98) can be worked out as we made in Chapter II
with the scalar and ghost fields, starting from the components of

the EMT (for a detailed discussion see Ref.[45])

T (Q)
T,(Q

i/2 $(Q).3%(Q) (II1.99a)

fi

1/2 $(Q).3%(Q) (IIT.99b)

The equations of motion for ¢“ and %p tell wus that they are
holomorphic and antiholomorphic respectively outside P+ and P_
(and a possible cut if we are considering the R sector), and thus

the following expansions hold

) =T £ (1IT.100a)
P =1 £ (III.100b)

where r runs as in (III.93). The operators d“, a* satisfy the
pay xr

canonical anticommutation relations

i v, uv THoV. _ pY
{dr’ ds) n 6r+s,0 ! (dr’ ds) n 6r+s,0

(II1.101)

The Virasoro components of (III.99) satisfy a KN algebra with

c=1/2D and the schwartzian connection depending on the propagator
(that is, on the kind of spinor we are considering) of the ¥'s.

The action (III.98) is a gauge-fixed version of a complicated

reparametrization invariant one, which presents also a local
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supersymmetric invariance together with a superWeyl

. . (181
invariance .

After superconformal gauge-fixing we remain with
(I11.98) (plus the scalars). The superconformal transformations

are generated by the components of the supercurrent

I
I

G(Q)

$(Q).0X(Q) = L C_ f:S/Z)(Q) (II1.102a)

T

Z a f(S/ZS
r

G(Q) = P(Q).dX(Q) Q) (I11.102b)

I

r r

and correspond to the transformations which leave the superWeyl
gauge unmodified. The super FP determinant arising from the super
gauge-fixing may be writen in this case as a path integral over a
pair of commuting (bosonic) ghosts (B,v) of weights 3/2 and -1/2
respectively, together with its complex conjugate (B,v), the
so-called superghost system. The central charge of the KN algebra
for this kind of systems of weight A is given by minus that in
(ITI.14) (the change of sign is due to the change in the normal
ordering definition for a commuting system). In our case A=3/2, so
c=11. The whole system of matter plus ghost realize the
superconformal algebra (I1.57,I11.99) ( Ggh=—c6ﬂ+l/27b-3/28cﬁ) with

total central charge
c, = 1D+ 1/2D+ (-26) + 11 = 3/2 (D-10) (II1.103)

displaying the well-known critical dimension D=10 of the
superstring. In Ref.[46] Polyakov showed that it is neccesary for
the decoupling of the Weyl and superWeyl factors from the path
integral (cT multiplies in this case the superLiouville action,
cf. (II1.31)). The construction of an anomaly-free super-KN
algebra for the superstring in the critical dimension is made by
following similar steps to those in Section 5.

The superconformal invariance conditions for a superconformal

field of weight (p,q) are given by (III.41) and'*?!

[Gr, W(Q)] = Lg u(Q) (III.104a)

r

for some operator U(Q) € Kpﬂl/z®iq, and similarly for Er. The "Lie
derivative" with respect to the -1/2-differential g, acting on

p-differentials is given by

L o"(Q =g (Q) 80°(Q) + 2 p 3g_(Q) ©°(Q) (ITI.104b)

poy

At this point, in what respects to the definition of
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superscattering amplitudes, we should search for vertex operators
V(Q) of conformal weight (1,1) satisfying (II1I.41,104). By
carefully repeating the arguments given in Section 6 one concludes
that V(Q) maps physical states to physical states up to spurious
states, which are shown to decouple from the amplitudes provided
that eqs.(III.41,104) hold'*’!.

The construction of VO for the superstring goes in a very

[15]

elegant way in the superspace language This amounts to look

for (1/2,1/2) local operators W(Q,6,8) so that

i

v J a%s w(Q,6,8) (III1.105)
ES

be superconformal invariant. Here @, §# are the holomorphic
Grassman coordinates of the super RS %°. For this end we introduce

the matter superfields
v¥(Q,0,8) = x* @) + 1§ v*(Q + i %@ ¢ (III.106)

and the super Cauchy operators

D=6V + 3; , D=8V + 3, (II1.107)

where V is the covariant derivative (III.81).
The monomials to consider now consist of supercovariant

derivatives of the superfields v (see [33] for details). As

examples, let us write down the tachyon and graviton vertices!*?!
_ 2 1/2 ip.¥Y _ 1/2 = ip.X
‘c.ach—_JsdlgQ JQ pz/)pz,b
z =
(I1I1.108a)
. 2 P VY ip. Y _
Vgrav = S#V(p) J . d"§ DY"ADY e
z
. Py .5 -, ip.X
- ¢,,® J (ox"-19'p 9)n (3%7-18"p.D)e’T
=
(II1.108b)

They obey the commutation relations (III1.41,104) with p2=4 and
p2=0, §“V(p)pu=0 respectively. By following the same lines as for
the tachyon amplitude in the bosonic string computed in Section 9,
we find that the M tachyon-scattering amplitude in the RNS

. . 471
superstring is
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M Mo __ 8[B)(Pi-Py) PP,
A [2] =J Ta“e  T[ IE(P ,P )-20 6 | x
* e L R 2 0 R (D
P. P.
3 3
k -1 -1 k-1
x exp(np_.p /4 J (n-n)(r_ ) J (n -n7) )
i 3 2 k1
P. P.
1 1
(II1.109)
Since the integrand contains an even number of Hi , the amplitude

vanishes wunless M 1is even, consistent with the notion of a
multiplicative conserved "G-parity" quantum number.
Similarly one can compute the M-graviton scattering

amplitude. We final*’?

M
M 1 M 2
Agr£§] - 5#V§P1)---E#V§PM)J igld 01
" 5
P P
4 Ik -1 -1 ok -1 P12
x eXP(ﬂ"Pi-Pj/ i (n"-n") (r,7) | . (=] |F, 17 =
__ 0[B1(Pi-Ps) b b
x [] |ECP ,P )-26 6 | - (II1I1.110)
i<y B3 4 1B1(0)
where

F, = ([l exp( 8 & .p <dX X >+§ & .p <X 8X >-0 p .& <p p >-
M i<j iTi 3 i 3 JT 3 i i 3 it i 3 i 3

- ijj.§i<¢i¢j>+9i0j§i.§j<8Xi8Xj>+£i.Ej<¢i¢j> )) lineas
in 57

and "<...>" denotes the propagators (a sum over spin structures
and an integration over the supermoduli space is left over in
(II11.109,110)). |

However this can not be the whole story. The Hilbert space of
the superstring is a tensor product of left and right spaces. Due
to the existence of two sectors R and NS for the spinor fields, we
have four sectors in the Hilbert space, denoted commonly by R-R,

NS-NS, R-NS, NS-R. The first two ones give rise to space-time

bosons, while the last two to fermions

28This is due to the fact that in the R case the wvacuum (and in

general any state) must furnish a representation of the ™"zero
mode" algebras (dﬁ, di}=npu,'2dﬁ:—dZ)=n“V (cf. (III.100), which

are spinors under SO(1l,D-1) (or spin(l,D—l))[lsl.
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The wvertex construction sketched before corresponds to
emission or absorption of bosons. A qualitative way of seeing this
is to recall that both the elementary fields x*  and wu are
space-time Lorentz vectors, while a fermion vertex should be a
Lorentz spinor. Clearly this kind of VO can not be simply
exp(ip.X) times a polynomial in the elementary fields. A related
way to express this difficulty is to note that emission of a
fermion from the string must turn a fermionic (bosonic) state into
a bosonic (fermionic) one. But in order to pass from the R-R or
NS-NS sectors to R-NS or NS-R the fermionic vertex must change the
boundary conditions of the ¢“ (or @”), that is, it must create a
"ecut" in the ¢“ field. Equivalently, there should exist an
operator which relates the NS and R wvacua. Such operators are

[15,48]

called "spin fields" They are the fundamental key to

construct fermionic wvertices (and also to write the fermionic
151
).

We will not go into the construction of fermionic VO, but

charges of the space-time superPoincare algebra[

only remark some problems found in its definition and use within

49 . .
our operator context'**!, First of all, the g=0 construction of

Refs.[15,48] is based in a "holo + antiholo" decomposition of the
bosonic fields X“, thing that globally does not happen at higher
genus (cf. eq.(II.101)). Also our master metric (III.70) has not a
holomorphic square root. Secondly, fermionic VO include the spin
fields of the pB-vy system of weigth 3/2. Correlation functions of
spin fields for fermionic and anticommuting ghost systems are
easily computed by means of the bosonization prescriptionlso‘ZOJ,
and this framework can be straightforwardly adapted to our context

[511

in these cases But unfortunately the bosonization of

commuting ghost systems seems not to be possible on arbitrary

49 . . .
Rs' ], and we need a field representation to compute correlation

functions. Within the PIA there are however several approaches to
1521 [53]
).

do it (CFT techniques , fermionization
We finally remark that the no existence of a "chiral" vertex
seems to be also a hard obstacle to carry out the Frenkel-Kac

[54]

construction and to fix a light cone gauge in string theories

. 55
at arbitrary genus[ !
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