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0. INTRODUCTION

One of the more interesting aspects in conformal field theories concerns their formula-
tion on Riemann surfaces. The determination of correlators on surfaces of higher topology
is an important problem of mathematical physics with many implications in string theory.
Indeed it is a well — known result that conformal field theories correspond to vacuum solu-
tions of strings. Another motivation in studying conformal field theory in higher genus is
that correlation functions on the torus (whose relevance in statistical mechanics is obvious)
can be recovered from the higher genus correlators by pinching cycles. However the basic
remark that motivates the study of this subject is that primary fields (the relevant objects
of CFT) have tensorial properties under conformal transfomations. Then it is natural to
formulate CFT on the moduli space of Riemann surfaces since, by definition, they have
analytic transition functions between coordinate patches. Let us recall how it is possible
to get informations by formulating conformal field theory in higher genus. Consider a pri-
mary field correlator G and let us denote with m = (my,...,m3,_3) the moduli parameter.
It turns out that G' can be expressed in terms of analytic and antianalytic building blocks:

G(z,m;z,m) = Z?I(Z,ﬁl)hf"jf‘](z,m),
I.J
where h; ;is an hermitean metric. The requirement for G to be single valued and modular
invariant, imposes restrictions on A 1,7- In particular these requirements give constraints
on the operator content. Similar ideas have been used in classifying the modular invariant
partition functions. Another relation between CFT and Riemann surfaces is due to the
Verlinde’s conjecture stating that modular transformations diagonalizes the fusion rules.

A first systematic approach to the formulation of conformal field theories in higher
genus was given in the fundamental paper by Friedan and Shenker. In this thesis we will
describe some related arguments. In particular we will introduce basis for differentials
on a Riemann surface (X) that allows us to formulate an operator formalism that closely
resembles the euclidean radial quantization approach to CFT formulated on the sphere. In
order to do this we will generalize the basis for differentials introduced by Krichever and

Novikov to holomorphic differentials on Riemann surfaces with more than two - punctures.

4



Obviously this may be relevant for studying the explicit formulation of CFT on the space
of punctured surfaces introduced by Vafa.

Another interesting aspect in the CFT is its relation with integrable systems. In
chapter 4 we will show how it is possible to relate the KdV equation to the Riemann
surfaces in a new way. The idea is based on a covariantization procedure that allows us to
recover the KN algebra starting from the KdV equation. The covariantization procedure
consists in using a vector field e (i.e. a -1 — form) to define the derivative on X. For

example the (non covariant) third — derivative of the KdV field (a 2 — form) becomes
ulll —_— e-—-l (6(6(627.1,)’)’)’ .

This covariantization procedure turns to be related to the equations for the null states in
CFT. |

In the last chapter we will give several examples about the formulation of CFT in
terms of real — weights b — ¢ systems. They play the analog réle of the compactified scalar
field. The difference lies in the particular features of the b — ¢ system. In particular in
formulating CFT in terms of the b — ¢ system it turns out that a “symmetry requirenment”

for the relevant differentials gives in a natural way the Kac’s formula (see eq.(8.106)).




1. GENERALITIES ON 2D CONFORMAL FIELD THEORIES

The aim of this chapter is to provide a short introduction to two - dimensional conformal
field theory emphasizing some facts that will be used in following chapters. The basic
reference is the original paper by Belavin, Polyakov and Zamolodchikov!!!. For an updated
collection of articles on the subject see [2]. An excellent review on the argument is the
recent paper by P. Ginsparg [3]. In [4] may be found applications to statistical mechanical
models. For applications to string theories see for example [5,6,7]. Other good reviews are

listed in [8].

1.1 THE BOOTSTRAP PROGRAM

In statistical physics a given physical system at the second order phase transition point
can be described by a massless euclidean quantum field theory. In this case the theory
is classified by a set of operators {4;(z)} that under scaling transformations z — Az
transform as A;(z) — A72i 4;(Az). The non - neglative parameter A; is the anomalous
scaling dimension of 4;(z). Since in critical phenomena the fields are in general interacting,
A; does not correspond to the canonical dimensions of free fields. The computation of the
spectrum {A;} is of fundamental importance because it determines the critical exponents
of the theory.

In [9] Polyakov formulated the hypothesis that at the critical point the theory should
also be invariant under the local scaling z — A(z)z. This is a conformal symmetry of
critical phenomena. In two - dimensions this local rescaling can be extended to the infinite
dimensional group of analytic transformations.

In the set {A4;} there are some fields with the same transformation properties of
tensors under analytic coordinate variations. These fields, called primary fields, are the
basic objects of the theory. In particular any correlation function can be computed, in
principle, in terms of correlators involving primary fields only.

In formulating the bootstrap program Polyakov proposed to solve the theory using
conformal invariance and operator algebral!®l. Conformal invariance serves to classify the

theory in terms of representations of the conformal group. Assuming the existence of a
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set of operators {4;(0)} containing the identity operator and any derivative of each field
involved, the operator algebra hypothesis consists in the assumption of the validity of the

following expansion

Ai(z)A;(0) ~ Z Ciir(2) A (0). (1.1)

This expansion is understood in a weak sense, i.e. as an exact expansion inside a correlation
function. The requirement of locality imposes on the ¢ - number function Cjjr(z) to
be single - valued. The conformal symmetry fixes the functional dependence of C;jz(z)
while its dependence on anomalous dimensions and numerical factors is determined by an
infinite set of equations coming from the requirement of associativity which is the main
dynamical principle of the operator algebra. This idea was suggested also for conformal
field theories in arbitrary dimensions; however this conformal bootstrap program proves
to be too difficult to be implemented. Nevertheless, owing to its infinite - dimensional

symmetry in 2d - conformal field theories, these equations are more manageable.

1.2 THE CONFORMAL GROUP

Let us begin with the description of the conformal group in an n - dimensional space

with flat metric gop = 8ap. It is defined to be the subgroup of coordinate transformations
éa —4'77&(5), a = 07"'177'”'17 (12)

leaving the metric invariant up to a multiplicative factor

o a’ o b
Gab — “%;“é%g‘gab = P(E)gab . (1'3)

Then the coordinate transformations must satisfy the following equation

2
5a77b + 86770, = :Lgabac'r]c - (14)

In more than two - dimensions the conformal group is finite dimensional and consists of
translations, rotations, dilatations and inversions. In two - dimensions the conditions (1.4)
are the Cauchy - Riemann equations, hence the two - dimensional conformal group G is the

infinite dimensional group of analytic coordinate transformations z — f(z) and z — f(2),
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where z = ¢! +4£2 and z = ¢' — i¢2. The analytic transformations z — f(z) = z — 2"+
and Z — f(Z) = Z— ™" are generated by £, = —z"*18, and £,, = —z"+15, respectively.

Their algebra is

Lm,Ln] = (m —n)Lomin, [Lomy Ln] = (m —n)Lomin, [Lm,Ln]=0. (1.5)
Since [Lm,Ln] = 0 we can regard z and Z as independent coordinates: (z,%) € C2. Then

the conformal group decomposes in the direct product of “chiral” groups

G=ToT. (1.6)

For this reason in the following we shall frequently consider only the z dependent part.
Unlike the n > 3 case where the algebra is globally defined, in two - dimensions we
have to distinguish the local algebra from the global one. The unique global generators
(generating the global conformal group) are {£_1,Lq, L1} U {L_1,Lo,L1}, which are the
generators of sl(2,C). Indeed they are the unique non singular generators on the Riemann
sphere §? = CU{oo}, both in z = 0 and w = 0 (w = —1/z). In other words by Riemann -
Roch theorem dim H°(K ™!, 5?) = 3 where K is the canonical line bundle. The elements
of the global conformal group SL(2,C)/Z; ~ SO(3,1) are the global automorphisms of 52

acting as the group of fractional linear transformations

z—»f(z)zg—:—}g, a,b,c,d e C, ad—bc=1. (1.7)

Notice that Lo+ Lo generates dilatations and (L, —E_o) rotations. As we will show, in
the quantum case the algebra (1.5) has a central extension. This algebra is called Virasoro
algebra and it is generated by the modes L, and L,, of the Laurent expansion of the energy
momentum tensor (see below). Given an eigenstate |¢ > of Ly (Lo) with eigenvalues h € R
(k € R), its anomalous scaling dimension and spin are A = h+h and s = h—h respectively.

The L,.’s with |n| > 2 generate the so - called local conformal group. Since under the

change of variables (1.2) the variation of the action of a physical system is

68 = / d™ET*®(Bamy + B57a) (1.8)
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the invariance of the action under conformal transformations implies that the energy mo-
mentum tensor is traceless

T =0. (1.9)

a

In a two - dimensional conformal field theory the only non - vanishing components of T,

are (in complex notation)
T.. = Too — 111 — 21T, Ts: = Too — Th1 + 2¢Th0 . (1.10)
Due to the equations of motion 7,3 is conserved
g°%8, T = 0, (1.11)

then, since 7%, = 0, we have 0;T,, = 0 and 0,73; = 0. In the following we use the
notation: T'(z) = T,.(2), T(2) = Tzz(2).

1.3 EUCLIDEAN RADIAL QUANTIZATION

As mentioned above, in two - dimensional conformal field theories a fundamental role
is played by the primary fields. They transform as tensors, that is under the conformal
reparametrization z — f(z), Z — f(Z) the primary field ¢;(z,2) with conformal weights

(hj,h;) transforms according to

$i(2,2) — $4(=z,2) = (j—i) v (g) ” $i(£, F). (1.12)

Fields without this transformation property are called secondary fields. Among the sec-
ondary fields there are the quasi - primary fields, that is fields transforming as (1.12) under

SL(2,C). (The group associated to a chiral part of the theory is SL(2,R)). Under the

infinitesimal transformation f(z) = z + ¢(z), f(Z) = z + &%) we have

$i(2,2) — beedj(2,2) = 6(2,2) = $5(2,7) ~ (e(2)8: + hje'(2) + &(2)8: + hj€(2)) b3z, 7).
(1.13)
In order to define correlators we first introduce the operator formalism in the euclidean

variables (7,0) € R related to z and z by the conformal transformation

z=e€", z=-¢", (1.14)




where w = 7410 and @ = 7—i0. It is clear that the massless character of field theories near
the critical point is at the origin of severe infrared singularities in the correlation functions
of the fields (infrared problem). The absence of positivity caused by these singularities
1s the reason for the non standard features of these theories. In particular they appear
naturally states and fields invariant under translations; these “infrared” fields have been
yet introduced long time ago in the literature on conformally invariant models [11,12,13]
but their strict connection with the infrared behaviour of the theory has been explained
only recently [14,15,16]. In the last works it has also been shown the great utility of these
objects when discussing the symmetries of these infrared singular quantum field theories.
We however shall be concerned on other features of the conformal invariant models and
avoid infrared problems by compactifying the space coordinate on a cylinder: 0 < ¢ < 27.

The correlation functions can be expressed in the operator formalism

< @jieetjn >=< 0T {¢51(01,71) 85, (0n, 7a) } 0 >, (1.15)

where T' is the euclidean chronological ordering. The equal time curves on the cylinder
correspond to constant radius circles on S? and the T ordering is replaced by the radial

ordering operator R. Its definition is

RA{4i(2)or(w)} = (12| — [w])$;(2)dx(w) — eb(lw] — |2])pr(w);(2) (1.16)

where € = 1 (—1) for fermionic (bosonic) operators. In this euclidean radial quantization
procedurel!” the generator of dilatations on the sphere is, up to a shift proportional to the
central charge (see below for its definition), the hamiltonian of the system on the cylinder:
H.yi= (Lo + l_lo)cyl = Lo+ Lo — —1—6-2- The asymptotic times 7 — —oco and 7 — oo (where
the in and out vacua [0 > and < 0] live) correspond to the points z = 0 and z = co. Then
the computations can be performed on S? where we can use the power of the complex
analysis calculus.

In order to make more transparent the relation with the operator formalism let us

recall that under a coordinate transformation the variation of an operator ¢; is

5.45(z) = [T §3(z)], To= / dy ey} )T(y), (117)
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where the integral is over a spacelike slice. In a euclidean theory the operator products

are defined only if time ordered. Then on the complex plane we have

Sbnm) =5 | § BT - § @i (@T6) | =

z|> |z [zr]>]2]

1 1
=5 j{ — f dze(2)R{T(2)¢;. ()} = —](G(Z)R {T(2)¢j, (zx)}, (1.18)

2w
z|>lzk]|  |zx|>]2]

where the last contour integral is a closed curve around z; separating it from the origin.
A delicate aspect of radial quantization is how to define the adjoint operation for
euclidean fields corresponding to hermitian fields in Minkowski space. Here we consider
the case of a primary field ¢;; the general case is discussed in ref.[18]. The first remark is
that since ¢ = i7, the complex conjugation is achieved by reversing the cylinder time. On
the complex plane this corresponds to the substitution z — z7!. Next we define the in -

and out - states:

|¢; >= thr_n_m $i(2,7)[0 >, < ¢jl = wh;_i_n_)o < 0l$j(w7w)) (1.19)

1

where w = 27 is a local coordinate in a neighborhood of z = co and

b= (2)7 () s (1.20)

On the other hand
< 45l =l¢; >T= lim <0|¢;(z,2)", (1.21)

so that after the substitution z — z~! and using the transformation property of ¢;(z, z)

we get (up to a phase)

$i(z,2) = 272hi g higy(z 7, 7). (1.22)
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1.4 WARD IDENTITIES

Now we show how the correlation functions with energy momentum tensor insertions
can be expressed in terms of primary field correlation functions. This is a consequence
of the conformal Ward identity. In particular correlation functions involving only the
energy momentum tensor are determined explicitly. This property is due to the fact that
T(z) generates conformal transformations and, owing to the conformal invariance of the
theory, they can be expressed in terms of primary fields. Let us consider the Ward identity
involving a singular T'(z). It is the quantum analogue of the classical equation 8;T(z) = 0.
In order to derive it we perform a conformal transformation in the functional integral and

look at it as a change of variable, then we use: §.5 = [ d?27(2)0;¢(z) and get

0z < T(2)¢j, (21) s (20) >= D < $j,(21)--8es (28)-85, (2n) > (1.23)
k=1

In two - dimensions this equation can be solved explicitly, indeed integrating by part and

exploiting the relation 8; = 2#5(2)(:5 — w), we have

zZ—w

n hjk 1
<T(2)¢j(21)--0j, (20) >= kZ___l ((z L (z -

0., ) < (an)ei(o0) > -
zk)

(1.24)
From this equation we can derive the operator product expansion (OPE) of T(z) with
¢;. Alternatively it follows from comparing (1.18) with the transformation of ¢; given in

(1.13) with &z) = 0. The result is (because of the radial ordering, we assume |w| > |z| in
the OPE)

Tlw)és(z) ~ b i)+ g0+ D  ad(a), (129
n>2
where
Bonti(2) = 5z § ol — )T (2), (1.26)

Observe that En>g¢j(z) = 0, quﬁj(z) = h;¢;(z) and f-lqﬁj(z) = 0,¢;(z). The fields

Enqu = ¢§“n) with n > 1, are called descendants of ¢;. T'(z) is an example of a descendant

field, indeed it is just: 1(72)(z) = (I,1 )(z) = ! ?(dw(z —w) T (w)l = T(z), where 1 is
2
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the identity operator. Besides the descendant fields there are also the descendants of the

descendants:

¢§_n’_m)(z) - fdw(w — z)"”+1T(w)q5§~_m) (w). (1.27)

27
The set of all descendant fields, each one denoted by an arbitrary number of Zn acting on

®;, is called a conformal family

[d’g] = {qu,f_nqu,f_mi,nqu, ...,i_nl...z_nkgﬁj} , k>1. (1.28)

The set of all fields {Ax} in a given two - dimensional conformal field theory decomposes

in a finite or infinite sum of conformal families

{4x} = @;(¢5]. (1.29)

The correlators with descendant field insertions can be obtained from those of the

primary fields. It is easy to show that

< é;, (wl,wl)...qun(wn,wn)¢§f’°w—’“m>(z,z) >=

= A—k1~"A-—km < ¢j1(w1,w1)...¢jn(wn,u7n) > s (130)
where for & > 2
Ay =— Z (R, (1 = k) (wi — 2) ™% + (w; - 2)7F19,.) . (1.31)
=1

The A’s provide a realization of the L’s algebra.
Now we introduce the central charge c. This is twice the coefficient of the (z — w)™*

term (allowed by scale invariance) in the operator product expansion of T'(z) with itself

c/2

Gow)r ' (r-wp

T(2)T(w) ~ T(w) + ;—%-*I—U—BwT(w) . (1.32)

The central charge (or Schwinger term) is a dynamical parameter of the theory. From
2

the OPE it follows that < T'(2)T(w) >= ————EZ—?, then the requirement of positive norm
—w

(z

of the space of the states gives ¢ > 0. It turns out that for ¢ = 0 the Virasoro algebra
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(defined below) has only a unitary representation. This representation is the trivial one
since the highest weight state is just the vacuum while the states L_,|0 > are set to zero
because of zero norm [19].

A characteristic of T'(z) is that it is not a primary field. Indeed from the OPE we can

see that its variation under conformal transformations is
8.T(z) = €(2)0,T(z) + 20,¢(2)T(2) + i%aje(z) : (1.33)
Under the finite transformation (z — f(z)) we have

T(z) = (9P T(#()) + 155(£,2), (1.34)
where S(f,z) is the Schwartzian derivative:

Since S(f,z) vanishes under SL(2,R) transformations, the energy momentum tensor is a

(1.35)

SL(2,R) primary field. Analogous formulae hold for the right - chiral sector.

The central charge corresponds to an anomaly of the theory. Indeed from translation
invariance it follows that all one - point functions (and therefore < T'(z) >) vanish. Never-
theless for transformations not in SL(2,R) the central charge breaks the symmetry under
diffeomorphisms, in particular < T'(z) ># 0. This effect has an interesting interpretation

20]

in terms of the Casimir effect! Consider the conformal map from S? to the cylinder.

From (1.14) and (1.34) it follows that

C c —nw
Tep(w) = *T(z) = 55 = > (L_n - éz‘sn’“) e (1.36)
nel
c
(Lo)cyl = LO - ﬁ . (137)
Computing the partition function
7 = Tre ATotLo)eyt — pe=ALotLlo—13 , (1.38)

it follows that the central charge can be seen as a Casimir effect connected with the finite

geometry of the cylinder (when the radius of the cylinder goes to infinity < T'(2z)cy1 >— 0).
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1.5 VIRASORO ALGEBRA

Now we derive the algebra generated from 7T'(z). First of all observe that identifying
¢(z) with the identity operator in (1.26), the L,.’s coincide with the modes in the expansion

——

of the energy momentum tensor: 7'(z) = Z z 2L, (the choice of the z’s exponent

nei
corresponds to assigning to L, scaling dimension —n). The L,’s are the generators of

conformal transformations acting on the space of correlation functions; indeed multiplying

(1.24) by z™*! and integrating around a contour containing all the points {z;} we have

< Ladjy (21) i (2m) >= be, < $jy(21)nBjn(2m) >, €n(z) = 2777 (1.39)

This formula is equivalent to the commutation relation

Loy 3(3)] = 57 § Q0w IT()65(2) = s+ D 5() + 57 0:95(2). (140)

It is easy to show that the algebra generated by L,’s, called Virasoro algebral®!, is

(Lo Ln] = (m = n)Dpn + —i%(m?’ — m)bmino,  |Lmyc]=0. (1.41)

This algebra is isomorphic to the universal central extension of the complexified algebra
Dif f(S*) of infinitesimal diffeormophisms of the circle. This central extension has been
discovered by Gelfand and Fuks [22]. The direct sum Vir @Vir can be obtained by viewing
Vir as a real Lie algebra and by tensoring it with C (over R). The cocycle that multiplies
the central charge is the only possible (up to trivial cocycles) compatible with the Jacobi
identity. The L,’s algebra is identical to the L,’s algebra with ¢ replaced with &; moreover,
since the operator product expansion of T' with T has no singularity, we have [Ly, L) =0.
Notice that sl(2,C) is a subalgebra of the Virasoro algebra (for a detailed analysis of infinite
dimensional algebras see refs.[23,24]).

To reproduce the SL(2,C) symmetry on the space of the physical states we assume
that there exists an SL(2,C) - invariant vacuum [0 >= |0 >1 ®|0 >r (the left and right

“chiral” vacua are SL(2,R) invariant)

Lo,+1]0 >= Lo 41/0 >=0. (1.42)
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This requirement is equivalent to the condition that T(z)|0 > be regular at z = 0.

As shown above, associated with ¢;(z) there is the in state |¢; > (this is a particular
feature of two - dimensional conformal field theories, see for example ref.[3]). In order to
analyze the modes content of this state we expand the primary field in Laurent - series (as

we will show a primary field of weight (h,0) depends only on the z - variable)
—n—h 1 R —
R I N § A E)

Then the primary state associated to @;is
|5 >= ¢j,—n; 10 > . (1.44)
From eq.(1.26) it follows that
Lolgj >=hjl; >,  Lal¢; >=0, n>0. (1.45)

A distinguished feature of a conformal families is that under conformal transformations
every field in a given family is mapped into an element of the same family. Then it follows
that each [¢;] is a representation of the conformal algebra. In particular eq.(1.45) defines
an infinite dimensional highest - weight representation of Vir called Verma module. The

set of descendant states of level V of lp; > is
(N6 >={LonsLony|d; >}, D ni=N, 0<n <ny.<ny. (1.46)

They have conformal dimension h;j + N. The number of states of level N coincides with
the number of partitions of N into positive integer parts; it is denoted by P(N) and can

be expressed in terms of the generating function
[Ta-gm=> P, PoO)=1. (1.47)
n>1 N2>0

The representation generated by |¢; > is characterized by h; and c. Since the Cartan
subalgebra of Vir contains only Lo and the identity operator, the space of descendant states

is Lo graded, that is they are labelled by the eigenvalues of Lg. Among the representations
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generated from primary fields that which is generated by the identity operator plays a
particular role: its conformal dimension is zero and the associated highest - weight is just

the vacuum |0 >. From eqs.(1.42) and (1.45) it follows that
L.0>=0, =n>0. (1.48)

Notice that the requirement of SL(2,C) invariance of the vacuum sets to zero the zero
norm (see eq.(1.66)) highest - weight state L_1|0 >.

From eq.(1.22) it follows that the physical requirement for the energy momentum
operator in Minkowski space to be hermitian is equivalent, in euclidean radial quantization,
to the condition

Ll =L_,. (1.49)

From this it follows that < 0|L, = (L_,|0 >)'. From the above discussion it follows that

the defining equations for the in and out vacua are
Lo>=0, n>-1 <O0L,=0, n<l, (1.50)

L0 >=0, n>-1 <0L,=0, n<1, (1.51)

This implies that Lg, L1+ L_; and 4(L; — L_;) together with Lo, Li+L_;andi(L;—L_,)
generate the (globally well - defined) unitary representation of SL(2,C). The SL(2,C)
invariance of the space of states allows us to fix the coordinate dependence of two - and
three - point functions (the constant appearing in the three - point function is determined

by the underlying physical system). Indeed let U represent a SL(2,C) transformation in

b
the Hilbert space, then under z — w = ozt we have
cz+d
d(2,2) = (cz + d) "M (22 + d) "M §(2, %), (1.52)
(w, @) = Ud(z,2)U". (1.53)

Hence since U|0 >= |0 > and < 0]UT =< 0| we get (in the following the radial ordering is

understood)
< 0[¢j,(21,21).8j, (20, Zn)|0 >=

17



= (H(czi + d) " hik (2z; + J)—zﬁfk> < 0]¢j, (w1, 1) 05, (Wn, T5)[0 > . (1.54)

k=1
From this equation we can find the coordinate dependence of two - and three - point
functions. The normalization constant in the two - point function is arbitrary. Choosing

a normalization for a basis of the primary fields such that

< 0|j, (21, 21) 4, (22, 22)|0 >= (21 — zz)—zh,‘l (21— %2)” 2k, 8. hné,—,,l,;].z , (1.55)

71

it follows that the coefficient Cj,;,;, in the OPE

$5(21,21)82 (22, 22) ~ D Chijoj (21 — 20)ix Thin=hia (5 — g)Pin—Pinhiag, (2, 3),
k
(1.56)
is completely symmetric in its indices. By a suitable limit procedure and using (1.55)

1t is easy to see that Cj,j,;, coincides with the coefficient appearing in the three - point

function (zi;; = z; — 25, zi; = z; — zZ;)

< Ol¢j1(zl ) 21 )¢j2 (z2722)¢j3'(z3723)i0 >=

his=Riz=hjy iy —hiz=hjg hj;—hjs—hjy _hjs—hj; —hj; _Riy —hj,—hjy ki, ~Riz—hj;
= Ciijaia 212 223 %13 212 223 %13 .

(1.57)

Observe that, after identification of z with the complex conjugate of z, the requirement of
singlevaluedness restricts the spin to being integral.

Now we discuss the role of the coefficient Cijk- First of all we rewrite the OPE of ¢;,

with ¢;, by grouping together all secondary fields in their conformal family

85:(2:2)$52(0,0) ~ > CFF . hin—his—hia ghis—his~hia {1l g ) (1.58)

JIJZJk
{11}

where (ﬁ}il_} is the secondary field belonging to the conformal family [¢;, ]:
¢v{“} = L—l1"'E—lni-—h"'f’*lm‘ﬁjk . (1.59)

Performing a conformal transformation on both sides of (1.58), and comparing terms, leads

to the following relations

oLy = cuplB T, (1.60)
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where Cj1, is the operator product coefficient between primary fields. The function ij{l}
(and analogously ij{i}) depends on the central charge and on the weights h;, hj, bt and,
in principle, can be computed by conformal symmetry. The factorized form of the eq.(1.60)
is a consequence of the fact that the representation [¢z] decomposes in the direct product
of the representations of I' and T': [¢r] = Vi ® V.

From the previous discussion it follows that the theory is completely characterized by
¢, the conformal weights of the highest - weight states and by the coefficients C;;r. These
coeflicients can be determined by the set of equations coming from the the requirement of
associativity of the operator algebra. This is the main dynamical principle stated in the
bootstrap program. Now we briefly show how this requirement can be implemented. Let

us consider the primary field four point function:

A(1,2,3,4) =< ¢j1(zl,21)¢j2(22,22)¢j3(23,23)¢j4(24,24) > . (161)

Then by associativity hypothesis it follows that

lim  A(1,2,3,4)=  lim  A(1,2,3,4). (1.62)

2122 32372 Z1—*Z3 ,22~F2Z4

This equation can be rewritten in terms of “conformal blocks”[,

S CirianCraianF L1 (ple) F 22 (plE) = > Cir32aCiriua FEE (g1 — 2) Fri(gh - 7),

’ ’ (1.63)
where z and Z are the anharmonic quotients!]. By SL(2,C) invariance we can choose
21 =% =00,20 =% =1, 23 =2, Z3 = Z, z4 = z4 = 0. The expression for the conformal

blocks is

kldjs(1, 1) Lok Lpy|p >
.7:73'74 z) = :I:h —hj, p{k} Zk < 73 1° N ' 1.64
B = e ST U > (g

These functions are the building blocks of the theory because any correlator can be ex-

pressed in terms of them. For further details see [1].
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1.6 KAac FORMULA

As a consequence of our definition of adjoint and from eq.(1.55) we have that |¢; >
has norm one. Moreover since Ly and L, are hermitian, their eigenvectors corresponding

to different eigenvalues are orthonormal

< $jlér >= 8n;ny - (1.65)

One of the consequences of the definition of adjoint is that all nonvanishing correlators of
¢; must fall as 272k 772k a5 z, Z — co. In order to have a physically suitable theory the
Hilbert space must have positive norm. This requirement imposes some restrictions on the

values of ¢ and on the conformal weights. For example from
< $| L1 L_nlé; >= 2nh; + i52-(n3 —n), (1.66)

it follows, besides the already known condition ¢ > 0 (large n), the constraint h; > 0 (set
n = 1), where the equal holds iff |¢; >= |0 >. Notice that from (1.66) it follows that a
primary field ¢; with 2 = 0 depends only on the z - variable. Indeed from the commutation
relation: [L_;,¢;] = 8:¢; (see eq.(1.40)), and observing that L_14;|0 > has zero norm, it
follows that 9;¢; = 0.

Now we briefly show how it is possible to find constraints for a highest weight repre-

sentation to be unitary. As shown, the states with different dimensions are orthogonal:
<N,¢lea¢j >=0, if N#M, (1'67)

then the unitarity can be examined level by level in Ly. Let My (c,k) be the P(N) x P(N)

matrix of inner products of the kind (1.67) with N = M. Then a necessary condition

for unitary is that detMy(c,h) be non - negative. In [25] Kac found (proven in [26]) the

determinant of Mp(c,k) at each level in an arbitrary Verma module, it reads
detMn(c,h) = an [ (b= hpg(c))" N2, (1.68)

Pg<N
where o is a positive constant independent of ¢ and h. The expression for the weights is
(in the following we denote with $p,q the primary state of weight h, o)

_((m4+1p-—mg)? -1

hpq = = hm—p,m+1—q
P.q 4m(m+1) pym+1—g

(1.69)

20



where the dependence of m from the central charge is

1 1 [35=¢
=2t/ . 1.70
mMETy VT . (1.70)

Observe that in general m € C. From (1.69) it follows that if ¢ > 1 then h,, ¢ RT,

therefore Kac’s determinant has no zeroes. Moreover it turns out that detMp(c,h) is
positive for all values of &, so that positivity of Kac’s determinant imposes no restrictions
in the plane ¢ > 1,h > 0. The requirement of positivity of Kac’s formula imposes no
restriction on ¢ and h. In ref.[27] Friedan, Qiu and Shenker have shown that for ¢ < 1,
detMn(c,h) is non - negative only if m = 3,4,...and 1 <p<m-1,1<g<p. In
ref.[28] it was shown that this condition turns out to be sufficient for the highest weight
representation generated by |¢, , > to be unitary.

The expression of det My (c,h) indicates that at level pq there is a null vector, that is

a descendant state |y > which has zero norm and satisfying the conditions
Lolx >= (h + pg)|x >, L,|lx >=0, n>0, (1.71)

which are characteristic of primary states. A primary field ¢, , generating a null vector is
called degenerate field. Because of the null vector the representation is reducible; however
since any correlation function with a null field vanishes, it can be set to zero. As shown
above, correlation functions with secondary fields can be expressed in terms of primary
field correlation functions. Then setting the null vector to zero allows us to obtain a
differential equation of order pq for correlation functions with the insertion of ¢, ,. Froﬁ

these equations we get the following OPE or fusion rules

p1tg1—1 p2tgz—1

Bora)[bpras] ~ D Yo [Brkl- (1.72)

ki=|p1—gq1|+1 kz=|p2—qz|+1

For theories composed entirely of degenerate representations one can in principle construct
all the correlation functions. Since minimal models have this property their dynamics is
completely determined by conformal symmetry. Nevertheless in the general case these

differential equations are not sufficient to completely determine the correlation functions.
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2. BASIS FOR MEROMORPHIC DIFFERENTIAﬂS

In the study of two - dimensional conformal field theories on higher genus Riemann sur-
faces an important role is played by the bases for meromorphic differentials introduced by
Krichever and Novikov(*) [30]. These can be seen as the generalization to higher genus of
the monomials (or A - differentials) z2™(dz)* on the sphere.

In this chapter we present a detailed analysis of KN differentials and of its general-
ization to real weight differentials. In particular we write these bases in terms of theta
functions and prime form.

In the following chapters we will use them to define a global operator formalism for
conformal field theory on Riemann surfaces that closely resembles the operator formalism
on the sphere [31,32,33].

Here we consider only holomorphic differentials on Riemann surfaces with two punc-

tures; the case with more than two punctures will be discussed in chapter 7.

2.1 REAL WEIGHT DIFFERENTIALS: DEFINITIONS

Real weight differentials in general are well defined only on a covering (in general with
infinite sheets) of a Riemann surface ¥ [32] (for related arguments see [34]). However for
brevity we will refer to them as A - differentials on . Let Py, P € ¥ be two distinguished
points in general position (see below for its precise meaning) that for g = 0 can be identified
with 0,c0. In the following z4 will denote local coordinates vanishing at P+. For A € R
we define a A - differential holomorphic outside Py with the following behaviour in a

neighborhood of these points:
f:gA’l)(zi) _ agA)i(l)zij—s(A)(l + C’)(zi))(dz:t)A _ hg.}"l)(zi)(dzi)A ’ (2.1)

s =3 -Mg—1),
where 7 € Z+ s(A)+ Al —1), I € Z and ag-/\)i(l) are constants. When A = m/n, with m
and n relatively prime numbers, there are only n distinct sectors, i.e. I =1,...,n, (notice

that for irrational A inequivalent sectors are labelled by both negative and positive 1).

(*) Global expansion on a Riemann surface were first discussed in [29].

22



When we go once around P along a trivial homological cycle separating Py and P_,
hgk’l) picks up a phase (observe that a contour oriented positively with respect to the z;

coordinate is oriented negatively with respect to the z_ coordinate):

Al i - Al
h§ ) _, g2mid(IF1 gig)hg ) (2.2)

For instance when A € Z+41/2 the Neveu - Schwarz ([ = 1) and the Ramond (I = 2) sectors
are recovered(31], |

We remark that on the sphere there is the following relation (U UU_ = §%, z4 €
Ug, 24 =22  on U_NTUY)

h(z-) = h(z4)(—2-)"2, on U_NUg, (2.3)

where the tilde emphasizes the different functional dependence. For A\ € Z/2 the phases
in the RHS of eq.(2.2) coincide (this is true for any g). For A € R the difference between
these phases is just equal to the phase coming from the term z22*. An analogue result is
true for any genus, the only delicate aspect concerns the z_ functional dependence of z
(for details see ref.[35]). Notice that fjg’\’l)(z) is a well - defined ) - differential on ¥ only
if I =1 (singlevaluedness of h.(f"l) in Py), and

Q) =—-2s(A)+1=(2x-1)(g - 1), (2.4)

is an integer (singlevaluedness in P_). The same information can be gotten from the
Riemann - Roch theorem. Indeed when A > 1, g > 1, the A - form fJ(-'\’l)(z) is holomorphic
for s(X) < j < —s(A), therefore eq.(2.1) gives all the zero modes of the Cauchy - Riemann
operator 8 coupled to A - differentials and therefore @(A) must be an integer.

Due to the Riemann - Roch theorem eq.(2.1) must be modified in a few specific cases
which are listed and treated in detail later.

For A € % the Riemann - Roch theorem guarantees the existence and uniqueness
of f](-’\’l)(z) up to the multiplicative constants ag-AH(l) (agk)_(l) is completely determined

(2)+

once the a;"""(l) is chosen). For arbitrary A we will show the existence of fJ(.A’Z)(z) by

explicit construction. The uniqueness follows from the fact that given two ) - differentials
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satisfying eq.(2.1), their quotient is a meromorphic function with g poles in general position;
therefore, by the Weierstrass (Noether) gap theorem!®®! this function is a constant.
On X it is possible to introduce the global euclidean time. It is defined to be the

harmonic function(3”]

Q
(@ =Re [ £9(2), (25)
Qo
where f(_li (z) is the third kind differential with simple poles in Py with residues +1,
2
normalized in such a way that the periods along the homology cycles be purely imaginary;

its explicit expression is given below. For a given value of 7 we define the level line

Q
C.={Q¢ ERe/f(_l_g)_(z):'r : (2.6)
Qo

For 7 — 400 the level lines become small circles around P.

The dual f(jl_k’l)(z) of fJ(-’\’l)(z) is defined by means of

el Bl OV ANNOET 4 (27)
C-

The analogue of the value of |z| on S? is given by the function 7(Q) = e™(?). Notice
that r takes the following “critical” values: 7(P;) =0, 7(Qo) = 1, r(P-) = co. By analogy
with the case of euclidean radial quantization discussed in chapter 1, where the equal -
time curves on the cylinder correspond to circles on 52, we can introduce the equal - time

curves on %

N'=(Q@ex

Q
expRe [ 1)) = . (2.8)
2
Qo
r is called the radius of the curve I',. We define the open disc of radius r to be the set
D(r)={Q e Z|r(@) < r}. (2.9)
Associated to two discs of radii 7, and r, there is the open annulus

A(ry,73) = D,,\D,,, re >1r1 >0, (2.10)
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where the bar denotes the closure symbol.

We conclude this section showing how it is possible to define pointwise convergence on
the space of meromorphic A - forms. We denote this space by I'(Z, 0*) Whefe O = O%is the
sheaf of meromorphic functions on ¥ and O* = ((91)@"\. O' is the sheaf of meromorphic
1 - forms. First of all we choose a metric § on X. We take the pull - back of the canonical

flat metric on the Jacobian J(X) via Jacobi map I : Div(Z) — J(X)

g
§=) (@ ®uwk+wr ®Ty) . (2.11)

k=1

Then we define the absolute value of a section h € T'(Z,0*) at z € T to be

Ih()| = (R(2)h(2)3(z) ) . (2.12)

This absolute value defines the notion of pointwise convergence of series of meromorphic

differentials on ¥ and was used in [38] to compute generalized Cauchy kernels.

2.2 REAL WEIGHT DIFFERENTIALS: EXPLICIT COSTRUCTION (GENERAL CASE)

Let us start now with the construction of the A - differential f}A’l)(z) in terms of theta

functions and prime forms. The expression

E(Z,P+)j+s()\)—2/\
E(z,P_)its() ~’

(2.13)

is a (multivalued) X - differential with degree in P, exceeding that of f}k’l)(z) by 2s(A) —
2X = g(1—2X). Since by the Riemann vanishing theorem[*®! the divisor of (P — gP; + A)
is gPy, we put

B(z, Py 02 (5 4 (j = s(A) Py = (j + s(V)P- + (1 — 2))A)
E(z, P_)its(}) 8(z — Py + A)1—22 :

Al
) = (2.14)
where A is the Riemann class. The 6 - function in the denominator insures the correct
singularity in P, while the 6 - function in the numerator guarantees the singlevaluedness
of fJ(A’l)(z). Since the latter has g zeroes, it follows that the degree of f]g)"l)(z) is precisely
2X(g - 1).
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Using the definition of the o - differential (see Appendix A) and inserting the theta
characteristics, eq.(2.14) is generalized to the X - differential with [°] - structure, i.e.

08)(2 + (5 — s(A\) Py — (5 + s(A)P- + (1 — 2)A)o(2)2A 2

(AWDypy
fj (z) = E(z,P+)—j+‘(>‘)E(z,P_)j+3()‘) )

(2.15)

where j € Z + s(A) + A(l — 1), | € Z. For §,¢ = 0 eq.(2.15) differs from eq.(2.14) by the
constant term s(Py, ..., P+) defined in Appendix A. When A = m/n then

n—1

1
66 €0, .. 1, (2.16)

n

so that there are n?9 “[§] - structures”, n for each one of the a; and b; homology cycles.

However, for the time being, we will leave the “[¢] - structures” undetermined. The dual

of fJQ’l)(z) is

N LDz — (5 —s(A) + )Py 4+ (5 + s(A) —1)P_ + (2A —1)A)
E(z,Py)i=s(NH1E(z, P_)=i=s(N+1g(z)22~1 ( ) |
2.17

where N(,1,7) is a suitable normalization constant fixed by the condition (2.7), that, for

f(jl—A,l)(z) =

the sake of brevity, we do not write down explicitly.

Now we are able to give the definition of “general position”. It means that there is a
countable set of points of ¥ which have to be avoided. More precisely P, and P_ must
not coincide with Weierstrass points. Moreover the same condition should be satisfied by
the g zeroes implicitly fixed by (2.1) (and then from the choice of the points Ps.). Indeed
in this particular case by the Riemann vanishing theorem the theta function is identically
zero. It would be interesting to investigate the explicit form of differentials with particular
choices of the points Py.

The multivaluedness of f(jl__ A,l)(z) is given by (2.2) with A replaced by 1 — A, so that
the integrand in eq.(2.7) is a well - defined 1 - differential.

To conclude this section we give the expression of the covariant delta function for ) -
differentials in the sector I

AO(z,w) =" F()F_y y(w), (2.18)

J
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that is, if g(z) is a smooth X - differential with the multivaluedness given in eq.(2.2), we

have

o) = f AD(z, w)g(w). (2.19)

.

2.3 REAL WEIGHT DIFFERENTIALS: EXPLICIT COSTRUCTION (PARTICULAR CASES)

Now we discuss some particular cases in which bases defined above need to be modified.
Due to the Riemann - Roch theorem, eq.(2.1) does not work in the following cases (this
follows also from the application of the Riemann vanishing theorem to the explicit form of

eq.(2.1) given in eq.(2.15))
Vg for |7] < % and A = 0,1;
. 1 1 . .
Vg for |j| = 3 and \ = 3 I =1 with odd spin structure;
. 1
g=1 for lglziandAEZ;

1 1
g:1f0r|j|:§and)\ez+-2-, l=1.

Then we define

49 1FEL .
AP =50 4 0), 5 <i<g-1, (220)
and f(%o)(z) =1. For A =1 we put
454 g 11
FO(oa) = a5 R (L 0, -

+1<5< 3, (2.21)

N[
[NVRRS

and choose f(_lg(z) to be the third kind abelian differential with simple poles at Py with
2

residue £1, normalized in such a way that its periods be purely imaginary, i.e.

Re 7{ ff_lé (z) = Re]gf(_lé(z) =0. (2.22)
a; b;
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For ¢ =1 we define
i) = PP, Aez, (2:23)

9006) = SOHUAPEP, ez, (2:24)

where the spin structure of (f(;)(z))% is chosen to be odd. Finally, for A = 1/2,1 =1 and
2

odd spin structure:

AP (20) = e BE 1) (1 4 O())(d22)1, (225)

1 -
2

~

7)*

1
2

1
£ (z2) = 7T ()1 + O(2))(d2s) (2.26)
The multivaluedness of f(jl__A 1)(z) is given by (2.2) with A replaced by 1 — ), so that
the integrand in eq.(2.7) is a well defined 1 - differential.
The explicit form of the differentials in egs.(2.20 - 2.21) is

Bz+(G— )Py +R—(G+ £+ 1)Py + A

= R DIP A RO GRB R UREA) - 0oy o

T B R EG PR Pyt e(z) 2 S
B(z+(j+2—1)P, —R—(j — £)P_ — A

()= UL E DB REG- PR 8) 0508 ()
E(z,R)E(z,P_) "3 F(z,Py) i~ 3+1g(2)"1 2 2

where the point R € X is arbitrary; its presence in (2.27) reflects the fact that the mero-
morphic function defined in (2.27) is unique up to addition of a constant. In eq.(2.28) the
pole in R is cancelled by the zero of the § - function; indeed, being 8(—z) = 6(z), from the
Riemann vanishing theorem we have for 1 — g/2 < j < ¢/2

oG +35 - DPr = (= )P - 8) =0. (2:29)

Note that this result allows us to identify the differential f(ll)(z) in eq.(2.23) with o(z)2.
2
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For j = —g/2 the 1 - differential is

E(z, P d '
f(_lé (z) = dlnE—%—z—’P—'{_; — 2me Z Im/wj (ImQ)j_klwk(z). (2.30)
Sl Jrk=1 P
Finally the conditions (2.25) and (2.26) give
1 E(z,S
F5°6) = grpora gyl + S — Py - P, (2.31)
1 6[¢)(z — P_

where the § - characteristics are odd. The presence in eq.(2.31) of the arbitrary point
S € ¥ is due to the fact that eq.(2.25) does not fix uniquely f_(_i’l)(z). Note that f(l%’l)(z),
as defined in (2.32), is equal to the expression (2.15) with j :21/2, A=1/2,1 =21. This
means that in the framework of 8 - functions theory the modification (2.26) to eq.(2.1)
is automatically taken into account. Moreover since z = P_ is a zero of 9[f](z — P_),
fg%’l)(z) does not have poles, it is the zero - mode associated to the odd spin structure

2
[¢]. In particular using the definition of the prime form, we have

Wi

£39(2) = h(P_)R(2), (2.33)

[N

so that we can identify fi%’l) (z) with the 1/2 - differential which appears in eq.(2.24).
2
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3. VIRASORO AND HEISENBERG ALGEBRAS IN HIGHER GENUS

3.1 KRICHEVER NOVIKOV ALGEBRA

[30].

In this section we describe the KN algebra This is the higher genus analogue of

the Virasoro algebra. Before discussing it we give some definitions.

An algebra G = ) G; is said to be k - graded if for all G;, G; we have
iI€Z

it+itk
GiG; C Z Gs. (3.1)

s=it+j—k
0 - graded algebras are called Z - graded. An [ - graded module M over a k - graded

algebra has the property
k+1

GiM;= > Myj_,. (3.2)
s=—k—1

Next, in order to find the central extension of the KN algebra, we recall some facts
about the cohomology for a Lie algebra A (see for example [40]). A k - cochain is an
antisymmetric mapc: A — C. A k- coéycle is a k - cochain closed under the coubondary

operation

§e(ar, . artr) = Y (1) e([ai, @3], a1, 000y iy ey ooy ai) = 0, (3.3)
i27
where the symbol ~ denotes omission. Notice that §2 = 0. By means of a central element

t we extend the algebra A to the algebra A defined by the new commutator

[aiy aj]c.e. = [as, a5] + te(as,a5),  [ai,t] =0. (3.4)

Observe that the new commutator [a;, a;]c... is still a 2 - cocycle. In other words, it satisfies
the Jacobi identity. A k - cocycle of the kind éc(ay, ..., ax) is said to be trivial.
Now we introduce the go - graded algebra Vy of meromorphic vector fields e;(z) =

f§_1) (). Their commutator is

go
s 3
[ei,e5] = Z Clieitri-s) 9o = 59, (3.5)

2
s=—go
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where

f P (lesl2), es(2)]- (3.6)

Eq.(3.5) follows from an analysis of the singularities in Py. For s = —go and s = go (g > 1)

we have
) e i
Cg;) :j—l, ——(’L )———(——I‘)—_——‘, (3.7)
%itj+go
where
(-1~ i+go—1 2% 0(P= + (k — s(=1))Py — (k + s(=1))P- +34)
= (=1)""9° " E(P_,P. . (3.8
@ (1) (P Py) 8(Py + (k— s(—1))Py — (k+ s(—1))P- + 34) (3.8)
The KN algebra i/\z is the central extension of Vy with commutator
go
[6,;, ej] = Z ijei—i-j—s + tX(ei’ej)s [eiat] =0, (39)
$=—go
where the cocycle is defined by
x(ei,e5) = 51 f( (ef'ej — €]'ei) — R(eie; — ejes)). (3.10)

The projective connection R assures that the integrand is a well - defined 1 - form. If
R has polar degree mP, + nP_ with m,n < 2, then the cocycle satisfies the “locality”
condition:

x(ei,e;) =0 for |1+ 7] > 3g. (3.11)

It turns out that this cocycle is unique up to trivial cocycles(*®*!. In particular when
g = 0 this algebra reduces to the Virasoro algebra. The Neveu - Schwarz and Ramond

superalgebras in higher genus have been constructed in ref.[42].

3.2 A COVARIANTIZATION METHOD

An explicit expression for the projective connection in eq.(3.10) can be obtained by
means of an arbitrary vector field &(z2)!324%. The derivative of a A - differential is covari-

antly well defined only for A = 0, therefore (' = dz0,)
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(3)99%-(((H997. (5.12)

is a well - defined one - form, equal to twice the integrand in eq.(3.10) with

=1 =1\ 2
& % (‘3_) , (3.13)

This method of covariantization plays a central réle in defining the KdV equation on
Riemann surfaces(*2#3l. If, in a neighborhood of a point P, € %, é(z) = z%g(z), with

z(P;) = 0, then the polar behaviour of the projective connection is

2 _ ! ’
@ 2o 91 (3.14)

R~ 222 gz

Due to the poles in P; # Py, the cocycle x(e;, e;) is 7 - dependent; to get a T - independent
cocycle we define the “Baker - Akhiezer vector field”

o(P1)8(Ps — gP_ + A)E(z, P_) 6“2""; . Pf ”"
E(Py, P_)E(z,P1 )57 0(2)0(z — gP- + A) ’

€n(z) = (3.15)

where 7y is the normalized (i.e. f n = 0, © = 1,...,9) differential of second kind with

poles of order k + 1 in P, given in a local coordinate by

ne(z) = k' 8% 8.1n E(z, w)dz|,_p, - (3.16)

In order for €x(z) to be single - valued, the constants cj’s must satisfy the equation

k=1

> s fme =28 - (o= )Py + P, (317
b

where b = (by, ..., by).
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3.3 HEISENBERG ALGEBRA ON ¥

Another interesting generalization to higher genus of an algebra defined on 52 is

[30,41]

the Heisenberg algebra By analogy with the previous case we look at the central

extension of the commutative algebra Hy of meromorphic functions 4; = fJ(O) on X. The

central extension is described in terms of the 2 -cocycle

f Asdd; . (3.18)
27r1,

The centrally extended algebra Hy is generated by 4; and by the central element ¢, together

to the commutation relations
[4:, 4;] = 7i5t, [4:,¢] =0. (3.19)
This cocycle is local with respect to the sum of its indices, i.e.
vi; =0, for |i+7|>g. (3.20)

On S? the centrally extended algebra coincides with the Heisenberg algebra. Indeed,
setting pr = Ay and qp = —Ag, we have

[k, o] = lgk, @] =0, [pr, 1] = kér,it, [k, t] = [gx,t] = 0. (3.21)

Global representations of Heisenberg algebra on Schottky doubles of an open Riemann
surface was given by A. Jaffe, S. Klimek and A. Lesniewski in ref.[44].
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4. KN BASES: SOME APPLICATIONS

In this chapter we will review some research done using the KN bases(30:41,42,45,46] Ty
particular we show that one can explicitly construct in the bosonic string casel*s! a BRST
charge over any Riemann surface and show that it is nilpotent in the critical (D=26)
dimension. Then we show that one can extend the construction of Krichever and Novikov
so as to generalize the Neveu - Schwarz and Ramond algebras to Riemann surfaces of
arbitrary genus, construct a corresponding BRST charge and recover the expected (D=10)
critical dimension in the superstring case. Next we show that the Sugawara construction

can be extended over an arbitrary Riemann surfacel*6l.

4.1 RAMOND - KN AND NEVEU - SCHWARZ - KN SUPERALGEBRAS

Let us consider the KN differential:

. -1, ta—g+-1 —1
Ja(z2) = £ T (22) = aZ25° (A + O(2))(dez )", (4.1)

where @ € Z + % As shown in chapter 2, [ = 1(2) correspond to the Neveu - Schwarz
(Ramond) sector.

Let us come now to the binary operations which will allow us to define a superalgebra.
Let us concentrate on the e;’s and the g.’s. As for the first we take the Lie bracket(30:41]
[es, €], for the latter we have the tensor product of sections and set {90,98} = 9098+ 989c-
Finally we set [ei, ga] = L., ga, where Log = (e(2)87(2) +X7(2)¢(2)) (dz)* in a local patch
where e = e(z)a—i and g = y(z)(dz)*). Forinteger ), L, reduces to the Lie derivative along

the vector field e. Then from an analysis of the singularities in Py we obtain

3
ez)e] Z C;Jeﬂ-J s go = “2"97 (42)
$=—go
ezaga = Z ngz+a -3y (43)
$=—go
g
{gaagﬁ} = Z Bﬂﬁea_l.g_% . (4.4)
pP==g
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The coefficients C%., H?

5 Hig ,Biﬁ can be calculated from the constants appearing in the

expansion of e; and g, near Pi. For example, in the simplest case, we have (see also
eq.(3.7)) C% = j — i, HE =a~-;-—-g+%g , B

Eq.(4.2) defines the (not centrally extended) K N algebra, while eqgs.(4.2 - 4.4) together
define the R - KN superalgebra or the NS - KN superalgebra for «,83,7,... integer or

5 =2.

half integer, respectively. We will denote by Vy the algebra generated by the e;’s through
eq.(4.2), and by Ay the superalgebra generated by the e;’s and the g,’s through eqs.(4.2
- 4.4). The algebra Vy splits according to

Vs =Vie Ve vy, (4.5)

where V% are the subalgebras generated by the e;’s with £¢ > go — 1, and generate
diffeomorphisms. The complement V) generated by the e; with |i| < go — 2 corresponds
to deformations that change the conformal structure, its complex dimension is 3g — 3 and
it is naturally identified with the tangent space to the moduli space. Indeed the e; with
li] < go —2 are vector fields with poles both in P, and P_. The réle of these meromorphic
vector fields in changing the complex structure will be discussed in more details later on.

Similarly the superalgebra Ay splits according to
As = Af @ A @ A5, (4.6)

where A% are the superalgebras generated by e; with +7 > ¢go — 1 and g, with o >
g — % These generate superconformal transformations. The complement A% generated
by e; with [¢| < go — 2 and g, with |a| < g — 1 correspond to deformations that change
the superconformal structure. A% is naturally identified with the tangent space to the
supermoduli space. One can easily see that the complex dimension of A% is 3g —3+2g— 2,

the dimension of the supermoduli space.

4.2 THE CENTRAL EXTENSIONS
In order to define the central extension of the NS - KN and R - KN superalgebras,

35




let us introduce the following cocycle

P(ga> 98) = P f ¢(94,98) , | (4.7)

where ¢ is defined as follows.

Let p and o have weight ——% and be holomorphic on ¥ except possibly for poles

or branch points in Py (with associated branch cut), and let p = p(z4)(dz4)" %, o =
o(24+)(dzy)"%. Then

- R

$(p,0) = p'o'dzy + 5 Podzt, (4.8)

where R is a Schwarzian connection. It is immediate to see that it verifies the following

properties:

(1) ¢(gzxagﬁ) = ¢(gﬁ7ga);

(ii) it is independent of the coordinate system ;

(iii) it satisfies the cocycle condition:

¢(P7 [07f]) — ¢(o, [f,p])+X(f3 {p,0}) =0; (49)
(iv) it is “local”, in the sense that
¢(9ar98) =0 for |a+p8]>2g, (4.10)

as follows from an elementary computation of the zeroes and poles in Px.

So finally we can centrally extend both NS - KN and R - KN superalgebras as
follows (the cocycle x(e;, e;) was defined in chapter 3)

[e“eJ 2 Cz]e‘H‘J s Tix(ei e5), (4.11)
$==—4go
enga = Z Haa91+a -5 (4'12)
8=-—4go
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g
{ger98} = D Blgeasp_z +16(9as98), (4.13)

pP=-g

[ei,t] = [g9a,t] = 0. (4.14)
A few final remarks:

- The cocycles x and ¢ are easily calculated in a few cases. For example, for R = 0,

x(eiesg—i) = %‘2—((2' —90)° — (1 — 90)), (4.15)
¢(gcx,.‘]29—-a) = ”"%(a - 9)2 + % . (4.16)

- It has been shown by Krichever and Novikov[*?! that up to trivial cocycles there is
only one cocycle satisfying the “locality” condition (3.11).
- the above superalgebras reduce to the usual Virasoro, Neveu - Schwarz and Ramond

superalgebras in the genus 0 case.

4.3 A STRING REALIZATION

Now we want to realize the above algebras as intrinsic algebras of (super)string the-
ories, first from a classical and then from a quantum point of view. In the following the
superstring case will be treated explicitly. The purely bosonic case can be easily recovered
by setting to zero the fermionic variables and the corresponding ghosts. The strategy
consists as usual in defining the relevant energy - momentum tensor and supercurrent,
and then analyzing it over the K'N basis of quadratic and 3/2 - differentials, respectively.
The algebra we are looking for will appear as algebra of the corresponding “momenta”
ensuing from the classical Poisson brackets. Finally we will consider the expansion coeffi-
cients as operators acting on suitable Fock spaces. Such realizations gives rise, via normal
ordering, to central extensions. In order to define a nilpotent BRST charge we introduce
suitable ghosts. Their contributions exactly matches the “matter” contribution in the
critical (D=10) dimension.

We start from the energy - momentum tensor that, in local coordinates, is given by

T =TX% 4 T9b
X _ 1 " 1 3
T = —0X*0X, — SOp*d,, T =cdb+20cb - =798 — 5518, (4.17)
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and the supersymmetric current J = JX¥ 4 Joh
JX = 4,0X*, J* =2¢08 +38c8 — b, (4.18)

where X#(Q) and %*(Q) are fields of weight 0 and 1/2 respectively. 5(Q) and ¢(Q) (3(Q)
and v(Q)) are anticommuting (commuting) ghost fields of weight 2 and —1 (3/2 and -1/2)
respectively. T and J have weight 2 and 3/2.

We can use the bases {e;}, {w'}, etc., {ga}, {ha}, etc., introduced above in order to
expand these fields (the coeflicients will be later interpreted as creation and annihilation

operators in suitable Fock spaces)

A=-1i Q) =Y ¢u(@), o= i‘ifc(@”i(@)’ (4.19)
A=2: 6(Q)= Y n0YQ), b= o ]( BQe(@),  (420)
1 o

A=—5i A(Q)=Y10(@), 1= 5 f HQR@),  (421)
A=g PHQ) = zajdzrza(cz), %= 5 74 PH(QhL(Q) (4.22)
A=2i 8(@) =3 pake(Q) j{ 8(Q)9(Q) (4.29)

2 - ’ = 2 ol
A=1: dX*(Q)+PHQ)=+2 Za ), (4.24)
Vaaf = 5 §(aX*(@) + PHQ)AAQ), (4.25)

C,

where P* is the conjugate momentum of X* and C, are the level curves of the univalent

function 7(Q) = Re f wg over I (see chapter 2). These level curves can be interpreted as
Qo

representing closed string configurations on the Riemann surface and 7 as a proper time.

Recall that as 7 tends to +oo, C, tends to a circle around P+. Now we introduce the

Poisson brackets

[(X*(@), P*(Q)] = 2m*" A+ (Q, Q") Q,Q €Cr, (4.26)
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{##(@),%"(Q")} = 2m*6.(Q,Q"), (4.27)
{e(@),5(Q")} =2xD.(Q,Q"), (4.28)
[7(Q)) ﬁ(Q')] = 27rd7‘(Q> Q,) ) (4’29)

The symbols in the r.h.s. play the réle of § - functions over C, for smooth tensors of weight
0,1/2, =1, —1/2, respectively. For example for a generic smooth function F(Q) over C,

we have (see chapter 2)

@)= fa@0@),  e@ec.. (4.30)

C,

As a consequence of eqs.(4.26 - 4.29) we have the following Poisson brackets for the coef-

ficients of the expansions (4.19 - 4.25):

[af, ] = —iyiyn™”, (4.31)

]

{d&,dp} = —in*"8ap, (4.32)
{b:, ¢} = —ie?, (4.33)
[v*,Bs] = —i63, (4.34)

where 7;; is given in eq.(3.18).
Now let us consider L; = Lf{”b + th and Gy = GX¥ 4 G9"* defined by:

T(Q) =Y L:O(Q), J(Q) =) Gak™(Q). (4.35)
So
1 , 1 s
L;.’“/’=~§§zg’°ai-ak+1§da-dﬁﬂﬁ, (4.36)

L?h = Z :V': Csjcjbi-l-j-—s — Z gzo Hza aﬂi—i—a—-s) (4'37)

i s=-go a s=—go
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and

GX¥ =Y dg-o; Dy, (4.38)
B3
G =-2) Z Biyoa—sHiy — Z Z B2 7Pbesp-t (4.39)
i s=-—go B p=-g
where
= o futute, PP = o f(hﬁaha—haahﬂ)ei, (4.40)
C,
1
Tfh"wjg"" (4.41)
Cr

Then the Poisson brackets for L; and G, are:

[Liy L] = —i Z C%Litj—s, (4.42)
$=—4go
o0 .
[Li,Gal = =i Y Hi,Gitas, (4.43)
$=—4go
g .
{GayGpt=—i > B Loip 2. (4.44)
p==g

These are a representation of eqs.(4.2 - 4.4), apart from the opposite sign in the first

equation and the —¢ factor. Of course eq.(4.42) alone defines a representation of the KN
algebra.

4.4 QUANTIZATION

All the classical quantities considered so far are promoted to operators acting in a
Fock space. The Poisson brackets are replaced by quantum commutators according to the
recipe: [, |p.B. = —i[, Jquantum. In order to avoid ambiguities we have to define normal
ordering. As for the a;’s, the normal ordering prescription is any one given in [41]. For
the other relevant operators it is defined by considering as annihilation operators b; for
¢ > 0 and ¢; for ¢ < 0, dy and 74 for @ < 0 and B, for « > 0, and as creation operators

the complementary ones (choosing another discriminating value for the normal ordering
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instead of zero, would amount to modifying the central charges by trivial cocycles). With

this prescription we have calculated the algebra of : L; : and : G, : and we have obtained:

go
[: L;:,: L; :] = Z O;i : L,;.*_j._s D +Xij (4.45)
$=—4go
g0
[ Ga i L] = Z H:, :Gira-s:, (4.46)
s=—4go
g A
{:Ga:,: Gpg:} = Z Blg:Latp—p: +¢ap- (4.47)
p=-g

This again is a replica of eqs.(4.11 - 4.14). Of course the crucial quantities are the central
charges x;; and qgo,,g. In order to give an idea of the problems involved without introducing
too many technicalities, from now on we will limit ourselves to the purely bosonic string

case. The relevant central charge can be written as:
%i; = Dx% + %ij (4.48)

where D is the target space dimension, xf‘j is given in ref.[41] and X;; is eq.(21) of [45].
That this central charge is a cocycle is a rather nontrivial fact. One can easily prove that
it is antisymmetric and satisfies the locality condition (3.11). But the Jacobi identity is
more complicated to deal with. By using an explicit construction of the KN algebra by
means of semi - infinite forms we have been able to prove that both x% and x;; are indeed
cocycles and are proportional to x(e;,e;). Therefore it is enough to calculate them for
a particular value of the indices in order to know the proportionality constant. We have

calculated x;; for 1 + j = 3¢ and found

1

Xijsg—i = 5= 90)° + (= g0)A(A), (4.49)
- 13 . . 1
Xi3g—i = —‘6“(1—90)3 ‘*‘(z “90)(‘6 +9§ ”'90)‘) (4-50)

where A(A) is a number depending on the normal ordering prescription chosen for the o
operators. Eqgs.(4.49 - 4.50) should be compared with eq.(4.15). The trivial parts which

depends on the normal ordering or on the Schwarzian connection, can be taken care of by
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a suitable redefinition of the generators. The non trivial parts allow us to calculate the

proportionality constant. Up to trivial cocycles we have
Xij = (D — 26)x(ei,e;) - (4.51)
Following an analogous procedure, in the superstring case we find

% = (S0~ 19)(eies),  bas = (3D~ 15)p(0a,98). (452)

4.5 THE BRST OPERATOR
It is now easy to define a BRST operator on % corresponding to the NS - KN and
R - KN superalgebras. We define

_ 1

T omi

Q= 5z $TFVQAQ) + FHQNQ) + 3EQ@C@.C@  (459)
C.

~AQ)C(@)(Q)] - 3@, @I

The integrand in eq.(4.53) is a global expression and the commutators are geometrical
commutators (in the sense of eq.(4.2 - 4.4)).

After quantization we have to consider Q =: Q :. We obtain
Q?={Q,Q} = Z Rig:cied i+ Z bap 17 1 . (4.54)
i,J a,B

From eq.(4.52) we have that up to trivial cocycles Qz = 0 for D = 10. The BRST operator
for the purely bosonic case is obtained from eq.(4.53) by setting to zero the fermionic fields

and relevant ghosts. Due to eq.(4.53) nilpotence holds for D = 26.

4.6 THE SUGAWARA CONSTRUCTION

A question which naturally arises is to what extent properties of the Virasoro alge-
bra extend to KN algebras. One important topic concerns the Sugawara construction.

The Virasoro algebra can be realized by constructing the generators as (suitably normal
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ordered) bilinears in the generators of a Kac - Moody algebra. Is it possible to extend
this construction to a KN generalization of a (non Abelian) Kac - Moody algebra? This
question was answered in the affirmative in [46]. Here we give a brief summary. As out-
lined in [30], a generalization of a Kac - Moody algebra for a genus g Riemann surface is
obtained by considering the tensor product of a Lie algebra G and the algebra of mero-
morphic functions over & with respect to multiplication. Let us call 7% a basis of G and

set J§ = A; ® T®. We have immediately the KN - Kac - Moody algebra Kz

{J(iz7 J ] fabca:y J§ + t7ij5ab ’ [J?a t] =0, (455)

where
4.56
al; =5 %A Ajw’ (4.56)

In eq.(4.55) we understand the summation over s which is limited to a finite range (of width
g +1). From now on, for simplicity, two repeated lower and upper indices are understood
to be summed from —co to +oo.

Let us construct the 1 - differential “fields”

JU(Q) = I (Q), Qex, (4.57)

where now J? are to be considered as expansion coefficients satisfying (4.55). Then

[7°(@), 7°(Q")] = F*°A(Q, Q")T°(Q) + tdA(Q, Q). (4.58)
Let us now introduce the Sugawara energy momentum tensor
T(Q) = - —— : (@@, (4.5

and its “momenta”

1

L; = T i 27, Jpdg - 4.60
i $ Q@) = ———1 (4:60)
Here ¢, is the second Casimir of the adjoint representation c,8,, = foc¢fbe?, 2% was

defined above, whereas the normal ordering is defined by
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JeJ® p< N;

. a b . r”q ’

cJ 5 g = . (4.61)
JgJg P2 N,

where N is a fixed integer. Computing [L;, J%] one obtains:

k
e+ k

1 ™
S = o P ‘e;dAr, O = (Z Z)lp T (4.63)

2N p<N
q<N q>N

[Li, T3] = QL J! — ——SLJ1, (4.62)

c,,+k

where

In [46] it was proved that

(Z - Z)w”(Q)wq(Q’)AP(Q’)Aq(Q) =d'AQ',Q). (4.64)

As it turns out this equatlon is mdependent of N. As a consequence of eq.(4.64) ©! =
-8, , and
[Li, Jh] = —S4J} . (4.65)
In the g = 0 case this equation reduces to the well known one
[Liy J¥) = —kJ 2y (4.66)

Using eq.(4.65) it is now not hard to find

1
[Li, L;] =

((lpqsk AR IR +kd_1mgx,,) (4.67)

v

where

Xij = (Z Z)Sfpsfq (4.68)

2N P<N
q<N q2>2 N

But one easily verifies that

BISk — BISk = Oyl

1371+ 7 —s

So eq.(4.67) becomes
k dim G

MCEDR
Finally it was demonstrated in [46] that x;; coincides up to trivial cocycles with x(e;,e;).

[Li, L] = CfiLitjs (4.69)

Eq.(4.69) completes the construction of a representation of a KN algebra over a Riemann

surface of genus g by means of the Sugawara ansatz.
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5. REPRESENTATIONS OF KN AND VIRASORO ALGEBRAS

It is well known that the representations of the Virasoro algebra form a natural clas-
sifying grid for conformal models in genus 0 (the Riemann sphere, the complex plane)!!.
The question is whether they are still a good classifying tool for conformal models in higher
genus Riemann surfaces. The main point advocated in this chapter is that they must be

substituted in this function by the representations of the appropriate KN algebral*"l.

It is clear that the main point in this context is the understanding of the relation
between the Virasoro algebra representations and the KN algebra representations. By
this we mean the following: we can localize a copy of the Virasoro algebra in a small circle
around any point of an arbitrary Riemann surfacel*®#%; this algebra has a definite relation

with the restriction to the circle of the relevant (globally defined) KN algebra; the problem

is then to study the relation between the corresponding representations.

Here we set out to analyze this problem on very-simple examples (anticommuting b - ¢
systems, in which Clifford algebra representations play a central réle). If on one side these
examples show the complexity of the problem, on the other hand they allow us to draw
a few conclusions. First of all, the representations of Vir and KN constructed starting
from the same b - ¢ system are, in general, not equivalent. A KN representation turns
out to decompose, in general, into an infinite sum of Vir representations. Because of this
and other reasons a suitable classifying grid for conformal theories over a higher genus

Riemann surface appears to be provided by the representations of the appropriate KN
algebra.

Conformal field theories in genus 0 are characterized by a high degeneracy as compared
with the situation in higher genus. The above splitting of the K N representations in higher
genus can be understood in this way. At the end of the paper we give another example of

the genus 0 degeneracy.

5.1 SOME NOTATIONS

Let Q9(z1) = f(_zj) where f(_zj) is the quadratic differential defined in eq.(2.1). This
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differential is the dual of the vector field e;:

L feni = 8. (5.1)

2w

Now we write the Lie brackets of the basis elements e; redefining the upper index of the

structure constants:

[e:,e5] = Ciiex, (5.2)

where here and henceforth repeated lower and upper indices are understood to be summed

from —oco to +00. The structure constants

1
Ch= 5 f Q*[es e, (5.3)

vanish for |14+ 37— k| > go. The centrally extended version of this algebra is the KN
algebra described in chapter 3.
Let us now consider the circle S* = {z; : |z4| = 1} (for the sake of simplicity z,

will be denoted z from now on) as well as the basés of vector fields {é,} and quadratic
differentials {Q™}
&, = 2" i
" dz’ (5.4)
Qm — z—m—z(dz)z ,

over S?, which of course extend to an annulus A around S'. Moreover

— ¢ &, 0™ =67, (5.5)

The indices n, m, p, ¢ are understood to be integers (of Vir - type) throughout this chapter.

These vector fields satisfy the commutation relations
[En,ém] = (M —n)éntm - (5.6)
As discussed in chapter 1 the centrally extended version of this algebra is the Virasoro
algebra
[Ensém] = (M —n)énym + cX(Eny€m), [En,c] =0, (5.7)

3

where X(én,ém) = 15(n® — n)8ntm,0 up to trivial cocycles.
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The representations we are interested in are representations of the K N algebra. Before
coming to representations let us study the relation between Vir and K N.

The bases {e;} and {27} restricted to S are densel*°! in the linear span of {€,} and
{y™} respectively. So we can express the restrictions of the former (which will be denoted

with the same symbols as the unrestricted quantities) in terms of the latter, and viceversa:
e; =Are,, Ep = (A"1 )iei, (5.8)
Q' = B:O", Q" = (B~Hrat, (5.9)

As a consequence of the duality relations (5.1) and (5.5), we have
ArBI =687, BiAT = 6™, (5.10)

The matrix elements A? and BT can be easily calculated:

1 . 1 .
i:g”‘jg | m:§_7§emm. (5.11)
S S
One sees that

{0 forn<i—go; i {0 form >j—go;
A =

1 form=1t—go,

(5.12)
1 forn=1—gg,

while they are in general nonvanishing in the complementary ranges. The matrix elements
A7 and BT* are the coefficients appearing in the Laurent expansion near P, of e; and 07,

respectively. Actually, instead of eq.(2.1) we can write near Py (z4 = 2):

_ ZAH-TL Jo 1,+n go+1_ Y 9
n>0 az’
| (5.13)
=Y Bl . 7t (dz)?
n>0

By comparing now (5.2) and (5.6) and using egs.(5.8 - 5.9) we obtain the important relation

BI'BTCEAY =C2,,

(5.14)
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with égm = (m —n)éf ., between the KN and Vir structure constants, together with

the inverse one. Similarly we can write x(e;,e;) by means of eqs.(5.8 - 5.9). We find that
x(eirej) = AT AT ¢nm, li + 7] < 39, (5.15)

and vanishes otherwise. The cocycle ¢n,, has the general structure
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$rm = X(Ens&m) + D PN(M = 1)6N im0, (5.16)
N=0

and py are numbers characterizing the Schwarzian connection R.

Summarizing, by restricting to the circle S, we obtain two maps

¢: KN — Vir, ¥: Vir — KN, (5.17)

defined by
¢(e:) = ATEn, %(n) = Bjei, (5.18)
$(t) =c, P(c) =t, | (5.19)

which are linear and preserve the Lie brackets through the identity (5.14) and (5.15),
provided that we replace ¥(€n,ém) in €q.(5.7) by ¢nm. The bar in eq.(5.17) denote formal
completion, that is the linear span of the basis elements in which infinite combinations
are allowed. This is in order to take into account that the combinations appearing in
eqs.(5.17) or (5.8 - 5.9) are (in general(*)) infinite. For this reason we cannot speak about

isomorphism concerning the maps ¢ and 1.

5.2 REPRESENTATIONS

Now we come to the representations of Vir and KN. We will discuss in detail a

simple example based on a b - ¢ system characterized by two anticommuting fields b and

(*) See the comment after eq.(5.55)
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c of weight 2 and -1 respectively (the ghost system of the bosonic string), with energy

momentum tensor

T(Q) = b(@)5c(Q) + 2(9¢(Q))5(@) » (5.20)

where Q € 2. We expand b, c and T in the appropriate bases on X

Q) =c'ei(Q), Q) =b:0Q), T(Q)=L:i0(Q). (5.21)

If we restrict these fields to S? we can expand them on the bases {é,} and {Q"}

c=é",, b=0b,0", T=L0". (5.22)
The canonical commutation relations are
fbici} =8, (5.23)

{bp,é™} =67, (5.24)

respectively. We represent the two vacua on which these operators act by means of two

semiinfinite forms[30:31:41;

0)g = Q2 AQPOTIAQPEA L, (5.25)

00 =Q2AQ3AQ*A.... (5.26)

In general we will call Fy and Fj the linear space of semiinfinite forms of type (5.25) and
(5.26) respectively. The action of the operators b;, ¢/ and b,, €™ is specified by the rules

¢t = QA, b; =i, , (5.27)
and
i Qn/\ ) gn =1z, , (528)
where
k= gk, . .29
=5 % QF = §; etc (5.29)



In this way we obtain a representation of the Clifford algebras (5.23) and (5.24). Moreover

we have

¢l0)g =0 i<go—1, bil0)s =0 i>go—1,

and

¢™0)o n< -1, BnIO)o =0 n>-1.

Consequently we define the normal ordering for monomials of b;, ¢’ and b,, ™ by

b o {bicj J<ge—1;
L 0;C I=

—"cjbi jZQO_la

and ;
bpc™ m< —1;

— c"by m > —1.

The generators of KN and Vir extracted from egs.(5.21) and (5.22) are

Liszj:bkcj':,

Ly

i
@}

P LI zm,
Pm i bpc™

Their commutation relations are

[Li,Lj] = =CE Lk + x5

and
I~k
w=( ¥ - ¥ Jehok
k<gp-—-1 k>go—-1
1>g0-1 1<gg—1
Similarly

[_En, Lm} = (TL - m)f/n.;-m + )zn'm )
where, as is well known,

13

)an : —_6_(”’3 - n)6n+m,0 = ”262(éna ém) .

Using eqs.(5.8 - 5.9) and (5.14) it is not difficult to prove that

Xij = A?A;n(f;nm = ~2ﬁx(ei,ej) )
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(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)



where ¢ is of the type (5.16) with a suitable choice of the Schwarzian connection R, as
can be inferred from the fact that x;; is coordinate independent. So egs.(5.36) and (5.38)
are realizations (up to a minus sign) of commutation relations of the KN and Virasoro

algebras respectively. Moreover we have
Li|0)2 =0 1> go, LQOIO)E =0, (5.4].)

and

La0)0=0 n>0, Lo|0)o = 0. (5.42)

The Verma modules Vy constructed over |0)g and Vo constructed over |0)g are therefore

a representation space for a representation A of KN and p of Vir, respectively:

A: KN — End Vyg;
(5.43)
p: Vir — End V.

Both are lowest weight representations characterized by the same eigenvalues (13/6,0) of
(t,Lg,) and (¢, Ly).

Now an important remark, which will be essential below. It is well known that the
eigenvalue of Ly can be changed by an arbitrary amount Go at the price of modifying the

cocycle Xnm by a trivial part. This can be accomplished by the redefinition

Lo — Ly = Lg + agc. (5.44)

In order to fix such a choice (which we call normalization), an independent input is needed.
An analogous problem exists for the KN algebra representations. In this case we can
change not only the eigenvalue of L,,, but modify any L; for —gy < 7 < g without

changing the relevant representation. This can be done by redefining
L; — LIZ = L; + a;t, (545)

provided we modify the cocycle x;; which defines the central extension by a term ~ C'ikjak.

We will see below an example of how the normalization can be fixed in a specific problem.
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5.3 FROM VIRASORO To KN REPRESENTATIONS

Since the two representations Vy and Vy stem from the same b - ¢ system, it is natural
to ask whether they are equivalent. In such a case there must exist an invertible linear

map K : Vy — Vx such that for any X € Vir we have(®
K - p(X) = M$(X)) - K- (5.46)

Looking at the semiinfinite forms (5.25) and (5.26) and at the relations (5.8), (5.9)
one realizes that |0)y lies in the space of infinite linear combinations of semiinfinite forms
belonging to Fy. Therefore one may hope to find an explicit expression of it in terms of

the operators b, and ™. This is what happens. It is not hard to prove that

K = lezp <Z F,fé"%) o (5.47)

n<p

where F? = B2t for n < p and = 0 otherwise, satisfies
|0)z = K|0)o - (5.48)

In eq.5.47 the J - 3 ordering is defined by carrying in any monomial all the b; operators to
the right (with the appropriate sign). The operator K is invertible and

K™'= %exp (Z F};Bpan> 2, (5.49)

p>n

(*) This definition of equivalence between two representations is more general than the
usual one for representations of isomorphic algebras. However one could envisage an even

more general equivalence problem by considering a map
$(én) = T2 Bye;,

where I' is an invertible matrix. One can easily verify that I' must preserve the Virasoro

structure constants.

We do not pursue further this subject here. In this context see also the considerations

developed in ref.[50].
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where now the ¢* operators have to be carried to the right in all monomials. K and K !

can also be written as

K= Zezp (Z E,%;Epa"> 2, (5.50)

p>n
and
K™'= °exp (Z E:;é"z')p> 2, (5.51)
p>n
where Ef = AP g0 for p > n and = 0 otherwise. All these equations can be proved after

a lengthy but straightforward algebra. One can now prove that

Ke"K™' =™t yp,
. (5.52)
Kb, K™ =bnyg,, Vn.

That is, K preserves the Clifford algebra anticommutation relations (see eqs.(5.23 - 5.24)).
The map K is analogous, but not exactly equal, to the Bogoliubov transformations which
one meets in the literaturel51].

Now let us return to the equivalence problem,'f;hat is to eq.(5.46). Choosing X = é&,,
so that p(&n) = —Ln, A (¥(E,)) = —B: L;, and using eq.(5.52) together with (5.14) (notice
that K preserves the ordering in (5.34) and (5.35)), one finds that the following equations

must be satisfied for any j,k and n

(G—g0—n)sk,, = Z(m —n)AT'BL, ., (5.53)
and
&y = Bja; = B®ay, = ag, . (5.54)

Notice that the summation over m in eq.(5.53) is in fact limited to the range j — gy < m <
k —go —n due to eqs.(5.8 - 5.9)). It is easy to see that eqs.(5.53 - 5.54) are satisfied for

J 2 k—n. For j <k —n this is not guaranteed. For example for j =k —n — 1

0= (k—2n—gy—1)Bf_, s +(k—2n—go)Af "% Vn,k, (5.55)

k—n-1 »

and so on. The matrix elements A?, B depend, through the period matrix which charac-

terizes the basis {e;} and {Q7}*1), on the relevant point of the moduli space corresponding
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to the given Riemann surface X. In general eq.(5.55) is not satisfied for a generic point of
the moduli space (for the case of the torus see [30,52]). We cannot exclude that eq.(5.55)
be satisfied in particular points of the moduli space (see the remark after eq.(5.66) for an
example of a sort of vanishing which could be related to this problem). But, at least in
general, we can conclude that the two representations of KN and Vir are not equivalent.

This result is not surprising. Looking at the defining eq.(5.25) and at eqs.(5.8 - 5.9)
we see that |0)g corresponds to an infinite linear combination of semiinfinite forms (€ Fp)

of the type

These are “vacua” on which new representations Vém) of Virl?4 can be constructed, char-
acterized by the same value of ¢ but with weight %m(m + 3) units less than the weight of
Vo. Thus it is clear that the KN representation based on |0)s contains an infinite super-
position of Vir representations, unless a miraculous cancellation occurs. The appearance
of these new vacua can be interpreted as an interaction of the b - ¢ system. The latter
looks like a free theory as long as we consider expansions in the K N bases. However let us
consider as basic modes the “in” and “out” modes, that is the modes with respect to bases
on a small circle around Py and P_. Then the interaction of the systém with the geometry
manifest itself, for instance, through the presence the above higher weight representations.

We want now to see the same problem on another example. To this end we introduce

the spaces F3, of dual semiinfinite forms and, in particular, the dual vacuum
IPVAN €go—4 A €903 A €go—2 = )3(0| , (556)

on which the creation and annihilation operators act by right action (the one defined by

eqs.(5.27) and (5.28) is the left action)
igi =¢, Ae; =b;. (5.57)

The interior product acts first on the rightmost element and then from right to left with

the usual rule: igje; = 5%. Therefore we find

20l =0 j>go—1, 5(0b;=0 j<go—1. (5.58)
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L; are defined as in eq.(5.34), but on dual semiinfinite forms the leftmost elements act

first. We find
=(0|L; =0 1< —go, 2(0|L—g, = 0. (5.59)
We will call the representation constructed over x(0| with the right action the dual repre-
sentation.
Of course we can do the same for the corresponding Vir representation, starting from
the dual space of semiinfinite forms F; and the dual vacuum ¢(0|, defined in the obvious

way. Then one can verify that

o(0|K ™" = 5(0], (5.60)

with the definition (5.49) or (5.51) and in the sense of the right action.
We have an obvious pairing(*?) between the space of semiinfinite forms and the space

of the dual ones, which gives in particular
=(0[0)s =1, 0(0]0) = 1. (5.61)

One can verify that
2(0|L;|0)s =0 Vi

. . (5.62)
0(0]L,]0)o =0 Vn.
Now let us consider the correlation functions!31!
s(0|R(B(Q1)...5(Qn)c(Pr)...c(Pr))|0)s, (5.63)

where R represent the equivalent of the radial ordering in X (see below). Let us suppose
that all the points Q1,...,Qn, P1,..., P, are contained in an annulus 4 around S!. We
may wonder whether calculating the correlation functions on X and then restricting to the
annulus A we obtain the same result as calculating the correlation functions directly on
the annulus (which is equivalent to computing them on the complex plane). Since only the
Clifford algebra of the creation and annihilation operators is involved in this calculation
(see [31]) and this is preserved by the transformation induced by K, it is easy to see that
the answer is yes.

The next question concerns the calculus of correlation functions involving condensates

of the fundamental fields, such as the energy momentum tensor T It is evident that the
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above question reformulated for this kind of correlation functions is no, in general. Let us

see a simple example. The vacuum expectation value of T as calculated by Eguchi and

Ooguril*®] by means of the relevant Ward identities, is
go—2 ) 3
<T>= i=§+zﬂ —5—3—!—1.1712, (5.64)

where Z is the partition function of the relevant system, y* are the modular parameters.
We recall that QF for —gg + 2 < 7 < go — 2 are holomorphic quadratic differentials. It
has been remarked that the RHS of eq.(5.64) cannot be set to zero but at the price of
violating Ward identities!®¥]. The KN realization of the b - ¢ system provides a natural
interpretation of eq.(5.64). It is enough to set

E(OlL:lo)E = 07 Izl Z go — 1 3

5.65
2(0[L;|0)z = 53—1.1112, li| < go—2. (5.65)

This provides a normalization for L}. If we restrict the RHS of eq.(54) to S* and try to

interpret it as the VEV of the same T restricted to S, we find that a condition must be

satisfied. As a consequence of eqs.(5.44) and 5.62 we have

0(0|L,|0) = 0 = B:’La%lnz, n#0,
. } ;0
o(OILBIO)o = a9 = BO-(’;,‘;!TIDZ = 0,

(5.66)

which, of course, cannot be satisfied in general. In ref.[53] it was shown that, in genus
1, the VEV of T for the free bosonic field vanishes at the orbifold points of the moduli
space. Whenever this occurs, the preceding discussion is pointless: the two procedures give
the same result. So one is led to speculate that, corresponding to the orbifold points of
the moduli space, the relation between Vir and KN representations becomes particularly
simple.

As a result of the preceding examples, it is clear that the representations of the
Virasoro algebra are not the best tool in order to classify conformal field theories over
Riemann surfaces, while the representations of the KN algebra seem to lend themselves

for such a purpose.
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The relation illustrated above between KN and Vir representations are but an exam-
ple of the degeneracy which characterizes a conformal field theory in genus zero and disap-
pears in higher genus Riemann surfaces. Another example is the following. In genus zero
Lg defines the Cartan subalgebra of Vir, and, on the other hand, the real and imaginary
part of &y generate the radial motions and the rotations in the complex plane, respectively.
From this we can easily identify the Hamiltonian of the system.

On higher genus Riemann surfaces L, identifies the Cartan subalgebra of KV, but e,
generates radial motions and rotations only in a neighbourhood of Py. To better explain
the point note that the time 7(Q) (see chapter 2), turns out to be a Morse function. Its
critical points are the points where the level curves C split and rejoin. The generators of
the motion along 7 and along C, are constructed as follows. Consider the vector field ez
such that ez ® w = 1, in the sense of the product of sections of the relevant line bundles.
The vector field ex has 2g simple poles which correspond to the critical points of 7(Q).
The generator of the motion along 7 is ey + €y (the bar meaning complex conjugate),
while ey — €y “rotates” C,. The vector field ey Behaves like ey, only near Py. More
details will be given in a forthcoming paper where we intend to study the consequences of
this fact in conformal field theory.

| To conclude this chapter let us mention that what we have done above can be repeated
for any b - ¢ system with arbitrary A\. Of course we find different A and B matrices, different

constants in L;, etc.. But the method is the same and we find analogs, in particular, of

eqs.(5.53).
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6. KdV EQUATION IN HIGHER GENTUS

Not many equations have proved as successful as the KdV equation. Invented almost
a century ago [54] to explain the behaviour of waves in shallow water, it turned out to
have the right amount of nonlinearity as to allow for soliton solutions. More recently [55]
an infinite set of conserved charges were discovered, together with an infinite hierarchy of
equations, built starting from the KdV equation. Another reason of interest stems from the
connection [56] between this equation and the Virasoro algebra with a non trivial central
extension. The above explains sufficiently the interest stirred lately by the KdV equation.
We can add to this that a modified version of the KdV equation is connected with the
Sine - Gordon equation and that generalizations of the modified KdV equation lead to the
Toda field theory [54,57]. Moreover higher order generalizations of the KdV hamiltonian
system have been identified recently [58] with classical analogs of the W - algebras [59]
There is enough here to wonder whether this prototype of integrable systems, formulated
up to now only on the cylinder, can be generalized to less trivial topologies, in particular
to Riemann surfaces.

There are probably several ways of relating the KdV equation to Riemann surfaces
(see, for example, ref.[54,60]). In this chapter we want to generalize it in such a way that
it represent a dynamics on a given Riemann surface ¥ [43,32]. To this end we covariantize
the original KdV equation so that the new one, hereafter referred to as RKdV equation,
is globally defined on ¥. Once this is done, we find a generalized infinite set of conserved
charges and the corresponding equations of motion. Moreover we find that the hamiltonian
system connected with the RKdV equation is related to a realization of the Krichever and

Novikov algebra [30,41].

6.1 KdV EQUATION ON THE CYLINDER

Let us first recall a few basic properties of the classical KdV equation on the cylinder:

-—1c—2ur =u" + 3uu', (6.1)
. e , _ Ou Ou
where —0co < 7 < +00 and 0 < ¢ < 27, and v is periodic in o, u' = 3a U = 7 The
o
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factor ——132— in the LHS is introduced for later purposes. Eq.(6.1) is a bi - hamiltonian

system: it can be regarded as the result of two distinct dynamics

6H,—
Ur = {uaﬂn—k+1}(k) = D(k)——g,;;kji7 n=3, k=12, (6.2)
where
1 2w 1 2w 9
u
- S — 3
Hz o dO‘Hg o /da ) 3 (6 )
0 0
1 2 2w 1
- = _ 1 2083 (2
H; = py doHs = cy /dcr2(u (u")), (6.4)
0 0
and
12
pW = 5 p® o g ioug, u, (6.5)
c c
T SF .80
— — pR) T = . 6.6
{F, G} /da R P0g k=12 (6.6)

0

The other equations of the KdV hierarchy are written down in terms of eq.(6.2) with

generic n. The hamiltonians H,, are easily constructed recursively from the formula

pwHn oy 8Hn

6.7
du bu (6.7)
implied by eq.(6.2). For example
27 2w 5 5
1
H, = /d‘T’M, Hy = §/d0' (Z?ﬁ + 5742’“" +(U")2) . (6.8)
0 0
All these hamiltonians are in involution
{Hn,Hn}y =0, Yrn,m>1,k=1,2. (6.9)

6.2 KdV EQUATION ON THE COMPLEX PLANE: COVARIANTIZATION

Let us now transfer eq.(6.1) from the cylinder to the complex plane C. To do this we

interpret u as a 2 - form and consider the conformal map defined by z = "%, For the
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sake of simplicity we assume u to be a (meromorphic) quadratic differential in C. Precisely

we write
U = u(o,7)(do)? + v(o,7)dodr + w(o, ) (dr)? = a(z) (d2)* = U, (6.10)
so that locally:

u= ——;-v = —w = —21, (6.11)

and assume that u satisfy eq.(6.1). We write the LHS of eq.(6.1) multiplied by (clv*)2 +
2idrdo — (do)? as
Lo, U= Leyt+s,U , (6.12)

where £ denotes the Lie derivative and ey = 29, with reference to the Witt basis e, =

z™*19, and its conjugate. The RHS of eq.(6.1) can be written as
i (2710, (28, (20, (@2?))) + 328, (@2?)) (d2)* =

— i (c70 (c0d (c0d (Ue2))) + 3Uead (1)) (6.13)

where 0 = dz0, and, in general, for two tensors ¢ and w of weight A and p we write
Low = —AdpOw + pOdw . (6.14)

Now putting together egs.(6.12) and (6.13) it is easy to see that

ilo,U ={U,Hn i1}y, forn=3,k=1,2, (6.15)

where
H, = -é-l?; Hy = %ﬁ- f %eguz, (6.16)
H; = %; Hs = % f{% (egm — e (0 (egu))z) : - (8.17)

where the integration contour encircles the origin once and

D) = —}Eeo—lae;l , (6.18)
c

D) = - (eg ' Deqegdey ' +2UegOey ™ +e5* (8 (e5))) (6.19)
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where 8 acts on anything is on the right, and ’ng) are to be applied to vector fields (the

label ¢ stands for covariant). In particular we have
{U(2),U(w)} () = D (2)6(z,w). (6.20)

If we analyze now the U on the Witt basis

Lp=—— ,fuen, (6.21)

we find a realization of the Virasoro algebra

cn
{Ln;Lm}=(n—m)Lntm + *1%(”3 = )8ntmo + 5 8ntmeo (6.22)

up to a redefinition of L.
This is enough to suggest the generalization to the higher genus Riemann surfaces.
The field e was inserted not for academic reasons: for example e2l{ is a meromorphic

function, 8 (e3l) is a 1 - differential, etc.

6.3 KdV EQUATION ON RIEMANN SURFACES

Let ¥ be any genus g compact Riemann surface. As shown in chapter 5, the vector

fields
X+ =eg*eém, (6.23)

generate on ¥ the 7 - flow and the flow tangent to C; respectively. It is now easy to gen-
eralize the KdV equation to higher genus Riemann surfaces. The LHS, following eq.(6.1),
writes LxU = LU, U being a meromorphic 2 - differential. The RHS will be modelled
over eq.(6.13), with ey replaced by the meromorphic vector field ey simply denoted e. So
finally the KdV equation takes the form

iLU =e 10 (ed (ed (2U))) + 3Ued (2U) . (6.24)

This equation is globally defined on &. We will refer to it as the RKdV equation. We
remark that the RKdV equation depends on the field e since the RHS and LHS of the
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equation do not have the same degree of homogeneity in e. We remark also that we could

have used any other meromorphic vector field in order to covariantize the KdV equation.

However if we use a field different from eg we loose the nice geometrical picture connected

with the coordinatization described above.

The hamiltonian character of eq.(6.24) is evident

LU ={U, H'n.—-k-!-l}(k) )

D

where we have

H, =

1 1

1 9Hn
< Su

forn =3,4,... and k =1,2,

5Hn—1

= D2
D U’

1 [1, .,
o P2
C-

Hy = — ¢ = <65U3 —e (5’ (ézl{))z) , etc..

T 2w [ 2
Cr

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

When we choose, for example, e to be a suitable “Baker - Akhiezer” vector field, H,, do

not depend on 7 (see below).

The integration contour is a simple curve separating P, and P_ and

12

'Dgl) =—""e"10e,

Dgz) = -% (6“1666666_1 + 2Uede™t + 7208 (eZU)) ,

Cc

with the same meaning as in eqs.(6.18 - 6.19). In particular

{U(@),u(@)} o) = PP(QAQ,Q),

where

1
— ¢ A@
o 7{ (
C,

and

AP(Q,Q") =

Q,Q"(Q") =(Q),

6v(Q)
§v(Q")’
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(6.31)
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(6.33)
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for any vector field v(Q). Eq.(6.32) can be rewritten in terms of components in any local

coordinate patch as
{(=), i(= )}y = 1; (~2i(2)8, — @(2) — 83 +2R(2)0: + R'(2)) Alz,2'),  (6.35)

where A(z,2') is the component form of A(Q,Q'), and

e 1/’
R= ~ =3 (—6—) , e =¢€(2)0,. (6.36)

It is easy to prove that R is a projective connection. The fact that the charges (6.27 -

6.29) commute can be proved [32] along the same lines as in ref.[55]. Another procedure

is the one used for example in ref.[56] (see also [54,55,61])(%).

6.4 KdV EQUATION AND KN ALGEBRA

We want now to exhibit the relation between the Poisson brackets (6.35) and the
Krichever - Novikov algebra discussed in chapter 3. First of all we expand U with respect

to the quadratic differentials QF = f(_zk) ( f(_2,3 was defined in (2.1)):
U= L;0*, (6.37)
k

where

C
- _ 6.38
i =—g ]{ue’“ (6.38)

Cr

() One can consider a sort of “square root” of the hamiltonian structure (6.32) by in-
troducing a “Miura” transformation. Consider a one form w which is related to by the
Riccati - type equation

a) i=w’+e 10 (ew) . (a)

Suppose w satisfies the Poisson bracket
b))  {w(Q),w(@)} =0AM(Q,Q"). (®)

For AD(Q,Q"), see the definition (2.18). One can prove that if (a) and (b) are assumed
then eq.(6.32) follows. Inserting (a) in (6.24) we obtain the so - called modified KdV

equation.
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Then eq.(4.53) implies (notice that A(z)(Q, R)Y=> ek(Q)Qk(Q'))

k
i+j+g0 c
{Li,Li}y= Y, ijL,ch-l-é-x(ei,ej), (6.39)
k=i+j—go

where x(e;, e;) is given by (e; = €;(2)0;):

Xewes) = 5oz dz ((e(2)es(2) — & (es(2)) = R(=) (d(2)es(2) = €5 (2)es(2) -
c,

(6.40)
Let us concentrate now on this bilinear object. If it
1) is antisymmetric
2) satisfies the cocycle identity
x([ei, ej], ex) + cyclic permutations = 0, (6.41)
3) is coordinate independent
4) satisfies the “locality condition”
x(es,e;) =0, for |i+4 7] > 3g, (6.42)

then (6.39) is a centrally extended version of the KN algebra with the central charge
c. The first three properties can be easily verified. The fourth is the critical one: its
validity depends on the explicit form of R, i.e., by eq.(6.36), on the field e we have used
to covariantize the KdV equation.

If, following the analogy with the g = 0 case, we use the field ey defined by (see
chapter 5)

er @us, (6.43)

where wg = f(%l) (f(%l) is defined in eq.(2.30)), R will have quadratic poles at the critical
points of the “global time” 7(Q) and, in particular, eq.(6.42) is not satisfied. However, we
can proceed as follows. A projective connection is defined ﬁp to meromorphic quadratic
differential Qz which has exactly the poles of R at the critical points. Then the projective
connection (Ny = Qg(z)(dz)?)

R =R - Qu(z), (6.44)
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is everywhere holomorphic except at P, and P_. Now, suppose we replace R with R in

eq.(6.40). This correspond to the redefinition

L;— L;=L; - S;, (6.45)
where
C
i = Qrre; . 6.46
5= i %C HE (6.46)

This of course corresponds to the substitution
U—U=U- . (6.47)

So if U is a solution of the RKdV equation, or anyhow a quadratic differential satisfying
(6.32), then ¥/ generates an analog of the KN algebra (i.e. with “local” central charge).

It is perhaps instructive to examine other vector fields than ez to covariantize the
KdV equation. Another possible choice for a meromorphic vector field in the place of e in
€q.(6.24) is the field ey, of the KN basis (introduced in chapters 2 and 3), since, like e,
it behaves as z4 8., near P, (but they behave differently in P_). Unfortunately it has g
zeroes outside P so that R has correspondingly quadratic poles here. We must therefore
proceed to a redefinition as above.

A more appealing possibility is the following one. We can construct a field which
behaves like ez and ey, near Py and is holomorphic outside P_, so that the corresponding

cocycle, eq.(6.40) does not depend on 7. We call it “Baker - Akhiezer” vector field

Q
BE(Q, Py )E(Q,P-)0(P — gP_ + A ~zwi,§)6kpj; " (6.48)
0(Q — gP_ + A E(Py,P_) : :

ep(Q) =

In this formula 74 are normalized second kind differentials with poles of order k+ 1 in P_,
i.e.

1
me(z) = E—!aff,@zlnE(z, w)dz|,_, , (6.49)

normalized in such a way that

j(nk—_—o, i=1,..9. (6.50)



The constant ci are normalized in such a way as to render eg(Q) single - valued, i.e. they

must satisfy

> ek j{"k =2A; + I;(Py) — (29 — DL(P-), i=1,..,9. (6.51)
k20 5
In these equations A is the vector of Riemann constants and I(P) is the jacobi map. It
is now clear that the corresponding R will have a quadratic pole in Py and a pole in P_
of order N double to the order to the pole of the highest i, appearing in the exponent
of eq.(6.48). So the corresponding cocycle x(e;, ;) satisfies the “locality” condition in the
form

x(ei,e;) =0, fori+j7>2g0, t+7<—-2g0—N+2. (6.52)
If we want to recover eq.(6.42) we have to subtract a suitable quadratic differential with
a pole of order N in P_. Another interesting possibility is the “Baker - Akhiezer” vector
field introduced in chapter 3 .

A(PIP, —gP + NE@P)  TUE]T
E(Py, P-)E(Q, P+)710(Q)0(Q — gP-A) .

The discussion is parallel to the previous one and will not be repeated. We only note

ép(Q) = (6.53)

that on the torus ep(Q) is a costant and that the RHS of eq.(6.51) is now equal to
2A — (g = 1)(P- + P-).

6.5 GENERALIZATIONS

Let us now consider some generalizations of the KN algebra (6.39) or, which is equiv-
alent, (6.35). The way we arrived at eq.(6.35) has been described above, but there is also
another procedure: covariantize 8® by means of the vector field e, and obtain e~ dedede™?,

i.e. in local coordinates

% +2R8, + R, (6.54)
where R is given by (6.36); finally simply replace R by R+ where U = @(z)(dz)? (since @
is a quadratic differential this does not change the covariance properties of the operator).

The generalization is as follows. Define

DY = 172 gede...0e > | (6.55)

[
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This maps tensors of weight 1 — X into tensors of weight A\. We require it to be homogeneus
of degree 0 in e (we want the possible dependence on e to appear only trough th R, and
its derivatives). Then if n is the number of 8’s in (6.55) the following condition must be

satisfied
n=2\-1. (6.56)

This equation can be satisfied only for A integer or half - integer. Let us consider first the
integral case. In particular for A =1, 5‘(:1) = 0; for A = 2, we reobtain - up to a constant

factor - the third order covariant differential operator discussed above. Let us discuss the

case A = 3, in local coordinates

D.)(R) = (85 — 10R8} — 15R'9? — 9R"0. + 16R?0, + L6RR' — 2R™) (d=)°, (6.57)

c

where R is again given by eq.(6.36), etc. Notice that

X (FI0,£070) = o f B, (6.58)

2m
C»

has the property 1) and 3) above. If the R appearing in TD_EA) is suitably chosen it can also
satisfy the locality condition in the form

X <fi(1~/\)af](‘l_)\)> —0, forli+7]>@2A—1)g=ng. (6.59)

Therefore they can give rise to central extensions of suitable algebras. The case A = 2 has
already been described. Let us consider A = 3, in this case —7—9{,:3)(7?,) maps quadratic vector
fields into weight 3 tensors; it is therefore appropriate for the Poisson brackets of a tensor
V of weight 3. However if we want a non trivial algebra we have to replace R by R — 4,

where U = 4(dz)? is a quadratic differential

{V(@),v(@")} s = DV (@)AP(Q,Q"), (6.60)

where

DEQ) =D (R — 4). (6.61)
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Now a closed algebra will be defined by eqs.(6.35,6.60), and

@@ @) = (V@9 +500)) 89, Q). - (562)

It can be proved that

- U@V} = @U@ = (V@3 +300)) AP(@.Q).  (663)

Eq.(6.62) expresses the fact that V has weight 3. Using egs.(6.35), (6.60) and (6.62) we
can define a generalization of Zamolodchikov’s spin 3 algebra [59] to higher genus, in the
same way as the KN algebra represents a generalization of the Virasoro algebra.

Let us see next the half integer case. It is convenient in this case to introduce a -—%

weight tensor p = p(z)(dz)™ 2. In terms of p(z), R takes a very simple form:

R = 2p"(2)p(z) . (6.64)
Now
59) = p? 722 9p?9p%...0p7 %, (6.65)
Some examples:
D (af — 222-) (dz)?, (6.66)
! 2 "
R
D = (a‘* 10-7238';’ - 10%62 +9 (%) - 3—> (dz)* (6.67)
5 (a6 axRar o0 R R\ 52 _aa R
D, —-<BZ 3528z 7023z+259 £ 6 632+
RR! R'” R 3 R! RR! RN
—— - —_— = d .
+223 —0, 225(2> —i—130(2>—§—15522 5 )(z) (6.68)
In the appropriate KN basis we have the cocycle
A
So(¢(1 A) ,¢,(1 A) %¢(1 A)“( )¢(1 A) (669)

is symmetric in « < # and is coordinate independent. Moreover by suitably choosing R,

we find that they vanish for |a+8| > ng. As a consequence they provide cocycles for central
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extensions of spin one - half algebras. Indeed, proceeding as above we find that from (6.66)
we obtain the V.S or R extension of the Virasoro algebra and from (6.67) the generalization
of Zamolodchikov’s spin - 5/2 algebra. Given the above hamiltonian structures, we can
define generalizations of the KdV equation and corresponding hierarchies (see, for example,
[62]). As one can see from eq.(6.68), in DL/ there appear cubic terms in % after the shift
R — R — 4. Terms of order higher than quadratic appear in any DEA) with A > 7/2. So
these operators are not relevant to W - algebras, which close over quadratic terms [59].
A more refined construction is necessary in order to recover higher order W - algebras.
Nevertheless the operators ’DEA) are of interest in connection with another problem: on
the cylinder these operators intervene in the equations that determine the null vectors of
the Virasoro algebra in the limit of ¢ tending to infinity. One is therefore motivated to
conjecture that the covariant operators we have introduced here are connected with the

null vectors of the KN algebra in the same limit.
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7. CONFORMAL TECHNIQUES IN HIGHER GENUS

Many informations on conformal field theories come from their formulation on Rie-
mann surfaces(®:63:64:85] This feature is based on the observation(®! that primary fields
have tensor properties under conformal transformations and then it is natural to formulate
CFT on the moduli space of Riemann surfaces that, by definition, have analytic transition
functions between coordinate patches.

Another peculiarity of CFT is that factorization property of primary field correlators
holds in any genus. In particular a correlator can be written in terms of analytic and

antianalytic building blocks!®l:

G(z,m;z,m) = ?f(f,ﬁz)hf’J.FJ(z, m), (7.1)
I,J

where z = (21, ..., z,,) are the primary field coordinates, m = (mq, ..., m3y_3) are the moduli
of ¥ and hj ; is an hermitean metric. The functions Fi(z,m) and Fs(z,m) are multi-
valued and not modular invariant. Then the requirement for G to be both singlevalued
and modular invariant gives constraints on hy ;. In genus one this requirement implies
restrictions on the operator content(®3! of the conformal theory. Similar arguments play a
fundamental réle in classifying the modular invariant partition functions(®®!. Another rele-

vant result coming from the analysis of CFT on Riemann surfaces is due to the Verlinde’s

64] (67,68,69]

conjecturel®* proved in , stating that the modular transformation S : 7 — —1/7
diagonalizes the fusion rules (7 is the torus period matrix).

In this chapter, after reviewing basic facts on the Riemannn surfaces theory, we discuss
some properties of CFT in higher genus. In particular we show how the KN algebra acts
on the moduli space and analyze its relation with the standard formulation of the operator
formalism. In section 5 we introduce a basis for holomorphic differentials on punctured
Riemann surfaces. Finally and in section 6 we review the light - cone formulation of the

bosonic string.
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7.1 GENERALITIES ON RIEMANN SURFACES

In this section we will recall some results from Riemann surfaces theory. A standard
reference on this subject is the book by H. M. Farkas and I. Kra [36]. Other books on this
argument are listed in  [70 - 74]. For applications to string theories see for example [75
- 83].

Given a Riemann surface ¥ it is always possible to introduce in any patch isother-
mal coordinates (nl,n2) so that the metric is euclidean (up to a conformal rescaling
p(112,12))

Jo = gar(m)dnadng,  gan(n) = p(n6:7M2)bas - (7.2)

Replacing the real coordinates with the complex ones
Za = Mo F U5 Za = Ta — i, (7.3)
the metric takes the form
Ja = pdzedZy; (7.4)

and the only nonvanishing components of the metric and its inverse are

1 gt =2yt (7.5)

Since isothermal coordinates on two intersecting patches are related by conformal trans-
formation it is obvious that the transition functions must be analytic (antianalytic) with

respect to zq, (Z4):
Zg = fﬁa(za), Zg = fﬁa(za) . (76)
This means that the complex coordinates are well - defined on any patch, so Riemann

surfaces are complex manifolds. Associated to § there is a two - form on X
V= %\/gdz Adz, (7.7)

where g = det g, = ¢,;. If the Riemann surface was equipped with a non - conformally flat

metric, gqap(£)dE2deEL, the choice (7.4) could be recovered locally by a reparametrization

(*) The correct expression for the metric would be the symmetrized product but for

conciseness we omit it.
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§ — n(€) and a Weyl rescaling g.5(¢) — ¢(£)gas(¢) (these transformations form the “gauge”
group: Conf(Z) ® Diff(Z)). In general, global obstructions do not allow for such a
solution in every patch. This aspect is connected with the moduli probiem that we discuss
below. To introduce complex coordinates starting from (in general) non - isothermal

coordinates we introduce the complex structure

It = \/gfachby (7.8)

where €,5 is the completely antisymmetric tensor with €;, = 1, whose existence follows
from the fact that a Riemann surface is oriented. Notice that J,® is Weyl invariant and

reparametrization covariant, moreover
c b b c __
J,°J." = —6,, VJ, =0, (7.9)

where V, is the covariant derivative. Associated with J,® there are the complex coordi-

nates z, z: .
0
Jababza =10,2q, Jababfa = —10, Zq, O, = B¢z . (7.10)
In these harmonic coordinates the metric takes the conformal form
Jo = 9apd€2d€d = pdzodzy . (7.11)

A metric is useful for contracting z and Z indices in pairs, so that a (p + ¢,p) - tensor

t=1(22)(d2)?,  #(z,2) = (§°%)Pts.s.... (7.12)

These g - differentials are sections of the line bundle K?, where K is the holomorphic cotan-
gent bundle (or canonical line bundle), i.e. K = T*(X). T*(Z) is the holomorphic part
of the complexified version of the cotangent space Tj5(Z) to T with local basis (del,de?).
Recall that the complexified version of the tangent Tr(X) and of the its dual T%(Z) are
defined by permitting the coefficients of the frames (0/9¢L,8/9¢2) and (d€L,d€2) to be

complex

g 0

Te(S) = Tr(T) ® C = (—é;:, 52-_-;) =T(2) e T(), (7.13)
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TE(D) = Ta(D) ® C = (dza,dza) = T*(X) 0 T ().

Let us now introduce the covariant derivative and its adjoint:
. +1
Vi:K?— K1

Vit(z,2)dz?"! = (922)% 05 ((ng)—q i(z, 2)) dz9tt .

(7.14)

(7.15)

The two - form V allows us to define the adjoint of V4. Indeed using the scalar product

i p- _ -
< tlltz >= / —2—dz AdzZ (gzg)l qtl(z,z)tz(z,z), t1,12 € Kq,
%
we have V4T = Vg41, where

Vi:K?— K1,
z = -1 __ zZZ =\ 7,91
Vot(z,2)dz?7" = —g**051(2,2)dz77" .

By means of the scalar product it is possible to define two - different laplacians

AP =vz, Vi, AP =vilyE

&

It is easy to show that

— R
Ag-i-) "‘Ag ) = —45

where R is the scalar curvature:

R = —2gz’§628;,10ggz2 .

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

The curvature can be written in terms of the Christoffel symbol (called also hermitean

connection):

I‘;z = (gzz)_lazgzi .

7.2 MODULI DEFORMATIONS

(7.21)

To discuss the moduli problem we start with the analysis of the variation of the

metric under conformal and conformal transformations. In particular under the joint action

73



of infinitesimal conformal transformations 6p = pd¢ (p = e?) and reparametrizations

z — w = z + v* we have
692z = péd + 0:(pv*) + 0z (p7%), 692z = pO:v®, 89z = pO:T”. (7.22)

Next we introduce the inner product in the space of the all metrics on genus g Riemann

surfaces

(8§,83) = / d?¢./g (cg®(£)g*H(€) + g*°(£)g°()) 69ac(£)8gsc(€) - (7.23)

In the following we use this equation setting the arbitrary constant ¢ equal to zero without
affecting any physical result. This inner product determines the volume elements on the
space of the metrics in the same way that the finite dimensional volume d2§\/§ is deter-
mined by the inner product g,;(¢)8626¢° on variations of ¢. Let us introduce the metric

deformations

6§' = 6¢'pdzdz + Qdzdz + Qdzdz . (7.24)

The variations that cannot be described by reparametrizations and/or Weyl transforma-

tions are given by the orthogonality condition

(8g,685") = ?2- /dz Adz (69.:6¢'p + 0:v°Q + 8,5°Q) =0, (7.25)

where

6§ = 6q,:dzdZ + 6gz:dzdz + 6g,,dzdz (7.26)

The solution of eq.(7.25) is §¢' = 9;Q = 8,0 = 0. This means that the dimension of the
space of holomorphic quadratic differentials ) is the same as the dimension of the moduli

space of genus g Riemann surfaces

_ space of all metrics
My = Conf(Z)® Diff(%) (7.27)

Let us now introduce the Beltrami differentials. Suppose that we integrated eq.(7.10).
This means that a set of coordinate patches {U,} is given on ¥ such that the conformal

structure is everywhere o = po(2a,Za)|dzal|® (the positivity of the metric requires that
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po(2a) be real and positive). Any other metric can be parametrized by means of Beltrami

differentials p = p *dz(dz)™!:
3a() = P20 2l + pdZal?. (7.28)
Globally it is possible to put the new metric in the form (in any patch)
da(pt) = p(2a, 26) |0y, we| 72 |dwe|? = (2ay Za ) |0z, wa| 2|0z, wadze + 05, wodZa|?, (7.29)
only if the Beltrami equation (in the following we suppress the subscript o)
O:w = p; 0w, (7.30)

admits a global solution. In this case, since everywhere o (1) = p(2a; Za )]0z, wo| 72 |dw)?
we are changing the conformal (=complex) structure J,® only by a diffeomorphism. A

local solution can be found looking at the eq.(7.30) with

w(z,Z) = z 4+ v*, (7.31)
then
8zvz
e 7.32
IJ'Z 1 + azvz ( )

For infinitesimal y the Beltrami equation is: p,* = 8;v? that as a consequence of Poincaré’s
lemma always admits a local solution. So locally the conformal structures are “gauge”
equivalent. However the local solutions on any patch on ¥ may not match. To parametrize
different metrics we consider solutions of eq.(7.32) with discontinuities along a closed curve.
Consider % with the puncture P, and a local coordinate z such that z(Py) = 0. Let us
denote with % the disc defined by z < 1 (we suppose that P_ ¢ %) and with A an
annulus whose center is P;. Let ¥~ be defined by the conditions: ¥t UX~ = ¥ and

T+t NE~ = A. To obtain a new Riemann surface we deform the annulus:
z—w =z + ee;(z), ecC, z€eA4, (7.33)

where e; = e;(2)(dz)™! is a KN vector field (recall that it is holomorphic everywhere except
possibly for poles in P, and/or P_). The data {Z, Py, z} define a punctured Riemann
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surface with a choice of a local coordinate. The new surface X' is obtained by identifying

the new annulus with the previous collar on . The new metric is

§(p) = p(2)|dz + epsdz|* (7.34)
where the Beltrami differential is

De; if Pe X,

wi(P) = {0 if P e n-\A. (7.35)

Notice that §gzz = 27z:9.> and (since §g%% = — (g77)® 8g3z) §97% = —29°% ;7.
The KN holomorphic differentials Q* form a dual basis with respect to u;, integrating
by part we have
= pid =87, (7.36)

2m1
p>)

If e;(2) is vanishing at P, then we are changing only the coordinate z, while eg,—1(z) (g0 =
£ g) further moves the puncture Py. For i < —gg + 1, e; is holomorphic on T\{P,}, so
Y’ is identical to ¥ because the variation induced in the annulus can be reabsorbed in
a holomorphic coordinate transformation on L\Zt. For |i| < go — 2 the vector field é;
has poles both in P, and P_. This change in % corresponds to an infinitesimal moduli
deformation. Notice that the dimension of the space of these vector fields is just 3g — 3.
To summarize we can write Vyx, the space of KN vector fields, as a direct sum of three

subspaces

- Vr=VieVvieVvy, (7.37)

where VE = {e;| F1 > go — 1} is the space of vector fields extending holomorphically on
E\{P+} and V3 = {e;] — go +2 <1 < go — 2} is the space of vector fields generating the
infinitesimal moduli deformations (for further details see , refs.[49,30,85,86,84,86]).

We consider now the variation of the period matrix under a metric deformation.
First we look at the variation of the holomorphic differentials w; = w;(z)dz. In any local
patch arbitrary metric deformations are equivalent to an infinitesimal reparametrization
combined with Weyl rescaling. Then we can express the local variation of the (Weyl
invariant) holomorphic differentials by means of the following OPE
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buwww;(z) ~ ((z _lw)2 +— w3z> wj(z),  buww

z —

_ 4r S
=

(7.38)

This equation gives only the local behaviour. The requirement of right normalization

for the new holomorphic differentials w! ~ w; + §w; gives the global constraint:

f A6 ww;(2) = 0. (7.39)

as

The joint action of eqs.(7.38 - 7.39) gives
bwwwi(z) = wi(w)8y 0.logE(z,w), (7.40)

where E(z,w) is the prime form. The variation of the period matrix is

bwwlij = %dz&uwwj(z) = 2miw;(w)w;(w), (7.41)
b;
then (d*z = idz A dz)
1 2 zz
5kﬂij = -é——— d z\/§6zzﬂij6g = — WiWwjifp = — Wiwjek , (7.42)
T
b )

where the integration contour separates Py from P_ and can be identified with C,. The last
equality follows from the fact that pp vanishes outside the disc and w;(z)w;(2)0zex(z) =
0z (wi(2)w;(2)ex(z)). Notice that (as expected)

610 =0, forlk| > go — 1. (7.43)

Observe that the expression of §;x(2;; is explicit, indeed it the vector field in the LHS
is given in chapter 2 in terms of theta functions and prime forms. This may be useful in
studying the Schottky problem which is one of the difficulties in the Polyakov approach

to string theory. This problem consists in identifying the period matrices in the Siegel
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upper - half plane. This space is the 1/2g(g+ 1) dimensional space of the symmetric gzg -
matrices with positive imaginary part and it is equal to the dimension of the Moduli space
only for ¢ < 3. The answer to this problem has been recently given by Shiota and Mulase
[8788]. On the other hand this solution is given in a very implicit way and we need further
insights to investigate the moduli dependence of the theta functions appearing in the string
path integral. Indeed it turns out that a matrix in the Siegel upper - half plane is a period
matrix if and only if the corresponding 7 - function satisfies the Hirota’s bilinear relation
that does not look manageable for our purpose. For details on the grassmannian approach
to string theory see for example refs.[93 - 91]. Standard references for the mathematical

aspects of 7 - function and infinite dimensional grassmannians theory are [97 - 100].

7.3 THE STANDARD OPERATOR FORMALISM

In this section we describe (with some modifications) the operator formalism developed
by Vafa [101] (see also ref.[84]) who has given an interpretation of the Ishibashi, Matsuo
and Ooguri grassmannian approach!®® in terms of “infinite conserved charges”.

Let &y = Z\XT, associated with it there is a vector |§%y > corresponding to the
state coming from the path integral evaluated on Z,. Then the operators’ action on the
Hilbert space “attached” to the boundary 0%, can be obtained from the action of these
operators on the boundary value of the field which is fixed in the path integral. Owing to
the peculiarity of 2d conformal field theory, the ket state |0%¢ > is fixed (up to a moduli

dependent constant) by the infinitely many conditions
Q:|0%0 >=0, (7.44)

where the Q; charges correspond to the infinite symmetries of the action under a shift of
the field by a holomorphic section on Xj.

To be specific we consider the anticommuting b — ¢ system defined by the first - order

action

S = /béc + ¢8b + c.c., (7.45)

where the fields b and ¢ are A - and (1 — ) - differentials respectively. Here we consider
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the case A € Z/2. The anticommutation relations are

{¥',¢c;} =6, {6°,57} = {ei,¢;3 = 0. (7.46)

On 2\Xg the action S is invariant both under the shift

b—b+efY, 525N, (7.47)

and

c—c+ ef(jl_k), 7<s(A) -1, (7.48)

where f]{)‘) and f(jl__ A) are KN - differentials. The corresponding charges are

1
Qi =5 jf efV, (7.49)
8%,
and
. 1 .
Q= o ]§ bfti - (7.50)
8%

Next we develop the operator formalism on the semi - infinite cylinder (with P ) at
infinity resulting from a conformal transformation of the disc ©t. To the point P, we
associate the standard vacuum < 0] and the state |9Zy > with the boundary 8%(*). The
state [0 > is the Bogoliubov transformation of |0 > (for the definition of Bogoliubov
transformations and several applications see the excellent book by F. Strocchi [102]).

Let us start with the expansion of the b and ¢ fields on the disc

b(z) = Y b2Fd2), (7.51)

keZ+1

c(z) = Z ckz“k-l"")‘(dz)l")‘. (7.52)
keZ+1 '

() According with notations of [31], in the chapter devoted to the global operator formal-

ism we will associate to the points Py and P_ the “global” in and out vacua respectively.
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Let us now write the KN - differentials considering only their expansion with respect
to the point z = z; (here we consider for A € Z 4+ 1/2 only the N.S - sector and use the

notation f](~'\) = fjg’\’l))

f](-A)(z) — (z.‘i'“s('\) + Z Bjkzj‘“s(/\)‘*‘k) (dz)A = hg-k)(dz)’\, (7.53)
k=1
f(jl-/\) — (Z“‘.H-s()\)—l + Zéjkz—.ﬂ-s(/\)-*-k) (dz)l—/\ _ h‘(il_A)(dz)l—)‘ , (7.54)
k=1

where j € Z+ s()\). The coeflicients Bjj and Bjk can be written in the following form

1 .
Bjr = e f thgA)(Z)Z_]+3(A)_k—1 , (7.55)
C:
? 1 j i=s(3)—k
Bj, = o dzh(l__k)(z)z . (7.56)
C-

In these integrals the contour C; is equivalent to 0%y. A straightforward computation
gives

Qj = ca + Bjicati, (7.57)

Q’ = b, + Bjiba—, (7.58)

where a = j+g(A—1/2). The next step consists in finding the expression of the Bogoliubov
state |0Xg > in terms of the b;’s and ci’s modes acting on the vacuum |0 >. In order to

find the explicit expression a fundamental relation is

> BiBj jqf dzz IR = (7.59)
k=1 8%

which is just the duality condition for the KN - differentials. We omit the details and give

the formal expression for correlators involving an arbitrary number of b’s and ¢’s fields
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< OIRLX(L, e N) T (o)) 10T >

(7.60)

L
< X(1,..,N) H (b(z5)e(w;)) >= <0[X(1,..,N)d%, > ’

where X(1,...,N) denotes the zero - mode insertions and R is the radial ordering.

7.4 CFT AND MODULI DEFORMATIONS

In ref.[84] was shown that the ket state |0Z) > corresponding to the new Riemann
surface &' (related to ¥ by the transformations (7.33 - 7.35) is

|0Z) >= T'(e;)|0Z0 > +|0%¢ >, (7.61)
where
1
T(es) = 5= ¢ T(2)ei(z) = > anLn, (7.62)
8¢ ) i
and

T(z) = Y  Lnz""*(dz)?.

To demonstrate eq.(7.61) first of all note that since

(Qj +6Q;)10%f >= (@7 +6Q%)|6zT) >=0, (7.63)
eq.(7.61) is equivalent to

5Q; = €[T(e:), @3],  6Q7 = €[T(es), Q7). (7.64)

On the other hand it is a standard result that

[Lnb(2)] = = (277710, + A(1 = n)z7™) b(2), (7.65)
[Ln,e(2)] = = (27710, + (1 = A)(1 —n)z™™) e(2), (7.66)

so that
[T(e:),b(2)] = Le;b(2), (7.67)
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[T(e:), e(2)] = Leje(2), (7.68)

Therefore we have

[T(e:), Q;] = — f I L), (7.69)
83g

T @] = = § FoosyLebl). (7.70)
8%p

where L is the Lie derivative. Let us conclude this section by summaraizing the action

of the Virasoro generators on the state |0¥¢ >. From the previous discussion and from
eq.(7.37) it follows that
L,|0% >, (7.71)

changes the coordinates for n < 0, moves the puncture for n = 1 while changes the moduli
forn=2,...,3g — 3.

REMARK. It is obvious that these variations can be expressed in terms of KN -
generators, in particular the relation between the Virasoro and KN algebras was given
in ref.[31]. These relations involve sum with infinite terms. Nevertheless it is possible to
introduce “global” and “symmetric” in and out vacua (denoted in ref.[31] by |0)s, =(0]),
whit respect to which the action of the KN generators play the role analog of the Virasoro

generators acting on the state |0%y >.

7.5 HOLOMORPHIC DIFFERENTIALS ON PUNCTURED RIEMANN SURFACES

Now, generalizing the KN - differentials, we introduce a basis for A - differentials
holomorphic on the N punctured Riemann surface X\ {P;,..., Pxv}. By Riemann - Roch

theorem

R’ (K’\,E) — A’ (Kl_A,E) =(2A-1)(g - 1), (7.72)

it follows that in order to obtain existence and uniqueness (up to a multiplicative constant)
their divisor (restricted to F;) Zi\;l n; P; must have degree EzNzl n; = —2s(A). It is easy
to see that this basis can be written in terms of KN basis. First of all any holomorphic
(everywhere on X)) differential can be written in terms of KN holomorphic differentials.

Moreover any differential with poles only in {Pi, ..., PN} can be written as a (finite) linear
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combination of KN differentials after appropriate identifications of P, , P_ with pairs in the
set {Py,..., Px}. So we introduce, following ref.[103], (see also ref.[104])(*), the differentials

) = fNG,0,..,0,—25(\) —§),  jeZ, (7.73)

where f(51, ..., 5n), With j1, ..., in—1 € Z, jNn = —25(X)— Zév:l Jk is the unique (up to a
multiplicative constant) holomorphic A - differential on \{P, ..., Py} with the following

expansion around each puncture Py, k =1,...,N:
FR1s e dn) = arzd® (14 0(z1))(dzk)*,  zi(Pe) = 0. (7.74)

Unicity up to a multiplicative constant means that the only degree of freedom is the value
to assign to one of the ap’s constants. After this choice all ai’s are fixed. We fix the
normalization by setting ay = 1. Notice that for 0 < j < —2s(}), fﬁ)(z) is a zero modes
basis. Moreover any differential f(M)(0,...,7,...,0,—2s()\) — 5), 7 > 0, is a (finite) linear
combination of fjgﬁ)(z)), J = 0. It is obvious that a set of linearly independent differentials

for the vector space

N .
FOPrys P) = {F Pty )1, orr N1 € L, v = —25() — > gk, (7.75)
k=1
. ) .
is given by f;7'(2), j € Z and
@) = fD0,05,0,0,-25(0) = 5), <0, n=2.,N—-1,  (1.76)

where the index j is in the n — th slot. Any basis element is a KN differential:

@) =D (e PoPy),  k=1,.,N -1, (7.77)

where fj(:\_)s ( A)(z[Pk, P) corresponds to the KN differential fj(i)s ( /\)(z) with the substitutions
P_ — P, and P, — P.

(*) An example of holomorphic differentials on punctured Riemann surface was given
in ref.[105] where the term depending from the punctures (# Pi) was considered as a

normalization constant.
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In order to define the generalized C'7(-N) contours we introduce the third kind differential

(we set agr = 0)
wM(2) =Y aufy (z|P, ). (7.78)
k£l
It has N poles and 2g+ N —2 zeroes. On X we define the euclidean time to be the harmonic

function

Q
7M(Q) = Re f w™(z),  W™(Qo)=0. (7.79)
Qo

We require that the residue in Py, k = 1,..., N, be non - vanishing

N
Resp, (w(N)) = Z(a“ —ai) #0, E=1,..,N. (7.80)
=1

Notice that the residue sum is identically zero. For @ — P, the euclidean time has the
following limit

li ™) —00, 7.81
QE}%ST (Q) = —o0 ( )

where s is the sign of Resp, (w(N )) . It is a well - known result that a third kind differential

wpg with polar divisor (—P — @) normalized in such a way that

Re?{pr = Re}{pr =0, (7.82)

a; b;
(we fix the multiplicative constant by setting Resp (wpg) = —Resqg (wpg) = 1) satisfies

the relation

R P
Re/pr = Re/sz. (7.83)
s Q
Then the euclidean time can be written in the equivalent form
Py
Q) = ke Y [ 1210, Q). (7.84)
kLD,
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The level line

Q
O™ = {Q € T|Re / w)(z) =+, (7.85)
Qo
is a union of disjoint real closed curves. The zeroes {Q1,..., Q2g+N—2} of w(N)(z) corre-

spond to string interaction points where some curves split or join. In the limit +(V Q) —
+00 (—00) the level line C™ is a collection of p (N —p) curves diffeomorphic to S where
p (I — p) is the number of poles with negative (positive) residue. (N Q) is a height
Morse function. Its critical values are C; = +(&V )(Qi). A possible choice for the residues

cx = Resp, (w(N)) is[103];

1 1
= — vl oo e RS E— k = 1, ...,N . 7-86
Ck QP’ k 1,..,p, Ck Z(N———p)’ D+ ( )
Let us now introduce the third kind differential
1 N-—1
P=—"%_71 Z ©p; Py - (7.87)
i=1
The associated euclidean time o
F V) = Re/p(z), (7.88)
Qo
defines the level line o
C{™M ={Q € T|Re / p(z) = 7}, (7.89)
Qo

For #(M) — _ oo (+00), CgN) is a (collection of) circle C% (circles C*) with center
Py (Pr, k =1,..,N —1). Let us now consider a (1 — A) - differential ~ holomorphic on
E\{P,..., Pn}. We can expand h in a finite linear combination of fJ(-,lk_A) (recall that j € Z

fork=1andj<0fork=2,..,N—-1)
N-1
] -A ] —-A
h= "3 RV 4 3 A Y, (7.90)
7<0 k=1 i>0
Before computing ¢’ notice that for a one form ¢ belonging to F((Py, ..., Py) we have
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1 1 1
— = — = — . 7.91
omi J 97 2mi f 2mi fg (7.91)
The coefficients are
a_ L ey 1 ey : 7.92
= PR =5 X, 120, (7.92)
cN CﬁN)
1 .
il _ -é:r-{fhf_(_?_l,l, j <0, (7.93)
) 7.94
= 74 hiY, (7.94)
j’{ RFY) — e ar,_1(N), (7.95)
1 r—1
¢k = o _?{ RE L - > P, k(R) (7.96)
G 1=1
With respect to the N = 2 case there is the new term
ar,l,k(A) f f(A)f(l /\) r>0, 1<0, k=2,..,N-1, (797)
ck

a straightforward computation gives a; —j_1,k(A) =1 and a;1x(A) =0for I < —j — 1.

7.6 HOLOMORPHIC DIFFERENTIALS ON PUNCTURED RIEMANN SURFACES AND LIGHT -

CONE DIAGRAMS

The differentials with more than two - punctures play a fundamental réle in formu-
lating both string (see for example [75,106,107,108]) and conformal field theories[!?9~115]
in higher genus.
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In this section we discuss a physical application for these differentials. In particular
we show how the global time (™) can be used in formulating the light - cone diagram for
the closed bosonic string in D - dimension.

Let us introduce the light - cone coordinates

X*=(X"+xP7) /v2, (7.98)

The light - cone gauge corresponds to the choice
X*(o,7) = PYr + constant. (7.99)

In the Mandelstam formulation of the interacting string picture one retain only the trans-
verse, physical, positive norm excitations of the string. Because one can write a self -
adjoint hamiltonian, the corresponding quantized theory turns out to be unitary. More-
over in the critical dimension it is also Poincaré covariant. In [116] D’Hoker and Giddings
have shown the unitarity of the scattering amplitudes of the Polyakov closed bosonic string
(integrated over a single copy of moduli space) demonstrating the equivalence with the light
- cone interacting string. Now we show how the third kind differentials play first fiddle in
the light - cone formulation. A light - cone diagram consists of flat tubes (each one repre-
senting the bosonic propagator) except for curvature singularities at the string interaction
points {Q1, ..., Q2g+n—2}. In the light - cone gauge the external (internal) string circum-
ference 2mia; (27if3;) is proportional to the Py (Q]) component of the string momentum.

The moduli characterizing a given diagram are

a; =Pt = —1—- fuJ(N), i=1,...,N, (7.100)
2
i
+_ 1 (V) :
,81: = Qi = ‘2—71_—2' w 5 1= 1,...,9, (7101)
vi € [0,2m) i=1,..,3¢g+ N -3, internal string twist angles, (7.102)
Ti(N) = T(N)(Qi) 1=1,..,2g+ N -2, interaction times. (7.103)
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Notice that the condition of vanishing of the residue summation for one differentials cor-
responds to the conservation of the total external momentum. Really the number of
interactions is equal to the number of zeroes of ‘Ti(N) i.e. 2g+ N —2; on the other hand the

. . . N
interaction times T'( )

.~/ are defined up to a overall shift that can be used to set Tl(N) = 0. By
a conformal transformation, the tubes corresponding to the external states are identified
with the punctures Pi,..., Py. Fixing the external momenta Pi+ corresponds to fix the
w™) residues. In this case the number of parameters is just 6g + 2N — 6 which is the
real dimension of the moduli space of N punctured Riemann surfaces. In [117] Giddings
and Wolpert showed that the light - cone diagram provides a single copy of moduli space.
Moreover any fixed light - cone diagram always defines an abelian differential and vicev-
ersa. In order to illustrate how it is possible to define a flat structure starting from w(™),

let us introduce the coordinate z defined outside the divisor of w(®);

Q

z= /w(N)._ (7.104)

Qo
This coordinate can be used to define on T\{Pi,..., PN, @1, ..., Q29+ N-2} the flat metric

ot = dzdz = [ 0|2, (7.105)

At the zeroes Q; we have dz ~ (Q — Q;)dQ that is (z — 29) ~ (Q — Q:)?. At the poles
z ~ In(Q — Q) so the mapping (7.104) corresponds to take a small disc whose center is
P; to a tube propagating off to infinity in the z coordinate. The choice of all imaginary
periods for w(™) is crucial for invariance under the mapping class group. Unlike the
abelian differentials with a real part contribution of their periods, differentials with purely
imaginary periods depend only on the conformal structure (see [36]). In the case in which
a differential with purely imaginary periods has no poles we find that the corresponding

Riemann surface is degenerate i.e.
det(ImQ;;) =0. (7.106)

This case corresponds to a Riemann surface with one handle pinched off to form two

punctures.
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8. b - cSYSTEM APPROACH TO MINIMAL MODELS

Here we discuss a new method based on the use of b - ¢ systems for the study of minimal

models[118'1°5]

. The reason the method works lies in the fact that the bosonized version
of suitable anticommuting b - ¢ systems coincides with the (chiral) bosonized versions
of the minimal models (Coulomb-gas[*!l). Duality between bosons and fermions in two
dimensions is a well established property. Free fermion theories can be bosonized on
any Riemann surfacel!29-123], The natural generalization of this is to express free chiral
anticommuting b - ¢ systems and commuting 8 —~ systems in terms of bosonic ones. While
this bosonization has been carried out for b - ¢ systems (or B - v systems) with integral or
half integral weight, little is known so far for systems of generic weight. The problem is not
merely academic. Take for example, the rational conformal field theories corresponding to
the series of minimal models. It is well - known from the work of Feigin - Fuks124! and
in a more explicit way from Dotsenko - Fateev’sl!?%l that such models can be formulated
as bosonic field theories with a (in general irrational) charge at infinity. This fact brought
about an important improvement in the study of minimal models as it allowed to calculate
correlation functions through an integral procedure instead of as solutions of complicated

differential equations.

It is evident from the work of Feigin and Fuks that there is another formulation beside
the bosonic one. In ref.[124] it appears in terms of semiinfinite forms constructed starting
from bases of real (or complex) weight tensors. Now these bases can be envisaged as
bases of b - ¢ systems. Therefore one expects that thei‘e exists also a second field theory
formulation (beside the Coulomb gas one). This was indeed proved, for the genus zero case,
in ref.[118], where we introduced a b - ¢ system of suitable (in general irrational) weight, to
describe any given minimal model, and we eventually arrived at the same results as with

the Coulomb gas method.

We notice that, in the light of recent works on Wess - Zumino - Novikov - Witten(125!
and coset models in which the latter are formulated in terms of suitable bosonic fields, the

latter models too can probably be formulated in terms of suitable b - ¢ and [ - 7 systems.
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The aim of the present chapter is to review the formalism of refs.[118,105] We deal
first of all the genus zero case. In particular, inspired by the calculations of the spin field
correlation functions, we apply these results to calculate correlation functions of field in-
sertions whose interpretation depends on the particular b - ¢ system we are considering. To
this end we will introduce suitable b - ¢ systems, essentially characterized by the bases over
which we expand them. The bases contain the information concerning the field insertions

we want to describe.

Then we generalize this approach to higher genus using the real - weight differentials
defined in chapter 2. We will test our formalism by rederiving known results of spin field
correlation functions and generalize them, by calculating correlation functions of spin fields
for rational A. In this case field insertions represent exactly spin fields. Finally we will
apply our method to bases of b - ¢ systems (“fat” bases) such that the corresponding field

insertions represent chiral vertex operators in minimal models.

A few distinctive features of our approach deserve to be pointed out. Our bases allow
us to define bra and ket vacua both depending on the Riemann surface. This is why we can
generalize to higher genus the approach on the sphere discussed in section 1. Furthermore
we obtain the conservation of the total charge in the correlation functions as a consequence
of geometrical consistency on the basis (the total charge corresponds to the higher genus
“charge at infinity” of the Coulomb gas approach). This is an example of the connection

between conformal field theory and geometry exposed by the b - ¢ system approach.

8.1 THE GENUS ZERO CASE

In this section we treat the genus 0 case. The higher genus case will be discussed later
on. In fact one of the virtues of our approach is that it appears as the natural framework
for the generalization to higher genus Riemann surfaces, as it automatically takes into

account the geometrical factors such as curvature and holonomy.

Let us introduce first a real weight chiral b - ¢ system and the corresponding bases.
This system is described in terms of two anti - commuting fields b and ¢ of weight A

and (1 — A) respectively. Unless otherwise specified it will be understood that A is a real
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number. Here we consider the anticommuting case. The action is
S = / bde, (8.1)
z

In the operator formalism these fields are expanded in a basis of ) - differentials in
such a way that the equations of motion 85 = 0 and J¢ = 0 are satisfied everywhere except
possibly at Pg.

The energy momentum tensor of the system is
T =(1— X)Bbc — A\bdc. ‘ (8.2)
Different bases for the b fields on the sphere are given by:
F0(2) = (Pr = Py (s = Py (z = PO M@ RO ()(d2), (83)

where j € Z + Al and I € Z is a sector index. When going once along a closed curve C

around Py (separating P, from P_) we have
KA (2) — 2mAFDEOD (5 | (8.4)

When A is rational, i.e. A =m/n with m,n relatively prime integers, then there are only
n distinct sectors [ = 1,2,...,n. When ) is half - integer we have the Neveu - Schwarz

(I = 1) and the Ramond (I = 2) sectors. For the c fields we have similarly the bases
Fiap(z) = (Pr = Py (z = py=itAi(p _ p jitA-i(g)1d | (8.5)
with the same conventions as above, so that the following duality relation holds:

1 i ) i
e ffu—,\,z)(z)fjQ l)(z) = 5j ) (8.6)
c

where 1,5 € Z 4 Al. Notice that for integer A eq.(8.5) gives the 2\ — 1 zero - modes of the
c fields.

We expand now, in each sector [, the fields b and ¢ :
; X1 ]
(z) =Y W), =Y £ ap(2), (8.7)
J J
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and assume the following anticommutation relations

ey =6, {8} ={e e} =0. (88)

) w3 d T

For each sector the vacuum is defined as follows [32l:

B0 > =< 0lcf =0,  forj <A+ A(I-1)-1; .
o >i=< 0fpt =0,  forj= A+ A(I-1). (&9
The bar denotes the non - integer part of A({ — 1) . When A is integer or half - integer the
bra vacuum takes into account the zero - modes insertions [*!l, moreover ; < 0|0 >;= 1.
This choice of the vacuum comes from the requirement that 5(z)|0 >; be non singular in
z = Py ; on the other hand the first value of j corresponding to non - negative frequency
in the expansion of b(z) is just

F=A+A(1-1). (8.10)
The propagator is defined as follows:
SO (z,w) =1 < O|R (b'(2)c!(w)) 10 >1=
{ 1 < 0[b!(2)c! (w)]0 >, if |¢(2)] > [¢(w)l;

—1 < 0]cl(w)b!(2)|0 >4, if |¢(w)] > [¢(2)]-

(8.11)

—P.
where R denotes the radial ordered product and {(z) = z +
w —

(8.7) in eq.(8.11) we get
SO (2, w) = 2531 f.gA’l)(Z)f.gl-—A,l)(w)? if |{(2)] > [¢(w)]; 5.12)
~Yisnamn B @), @) > )

. Inserting the expansion

Then the expression for the propagator S(’\'l)(z,w) is:

1 _p A(l-1) s — P —2A+1-A(1-1) ~
SOD(z,w) = ) (; - Pi ) (w — P_) (d2)* (dw)' ™ . (8.13)

It is easy to see that there is a direct connection of S(*D(z,w) with the covariant delta
function for A differentials in the sector !

Al (z,w) =Y Sy p®@), | (8.14)

J
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i.e.

o) = 7( Al(zw)g(w), (8.15)
C

where g(z) is any smooth A - differential with the multivaluedness given in (8.4).

Our aim now is to generalize the bases (8.7) in such a way as to record in the bases
themselves the insertions of suitable fields which will be assimilated to the vertex operators
of the bosonized formulation. To this end we notice that the propagator S*)(z,w) can
be seen as the propagator in the sector / = 1 with the insertion of a “) - spin fields” at

the points Py :

1 < O|R (S™HP-)b (2)ct (w)STH(Py)) |0 >,

SOD (5 ) = 8.16
(zr%) L < O[R (S—1(P_)S+I(P})) [0 >, (816)
_ p \ND) _ p_\—AD)
where 5% are the identity operators. The factors z + and [ = )
w— Py w— P_

in eq.(8.13) are the effects of the A-spin field insertions ST}(P;) and §~(P_). The weights
of the A - spin fields can be calculated and are equal to

i%/\(l 1) [:i:A(l “1) 422 - 1} : (8.17)

L P\ 172A
w— P_
(8.16) with the insertion of the A-spin fields and of the charge in arbitrary points on the

The factor

is due to the vacuum charge (see below). In order to reproduce

sphere we have to modify the bases in the following multiplicative way:

);§A,l)(z> _ (P+ _ P_)j—A+1——A(l—1)(z _ p+)j—,\—A(l—1)(z _ P_)—j+x—1+,\(z—1)_
— - (8.18)
. (z _ Pl)A(l—l)(z _ Pz)-A(l—l)(z _ Pg)l—z’\(dz)A ’

f(jbx,z)(z) = (P — P) /A (; — p )yt p)imAmA L), (8.19)
(z — Pl)_)‘_(tl_)(z — P2 (5 — P )1 (dz) i

The exponents of (z — P4 ) in eqs.(8.18 - 8.19) is integer and [ - independent. In particular

(z _ P+)j—A—A(Z—1)(z _ P_)—j-l—}\—l-i-)\(l—-l) =(z _ P_{_)k(z _ P._)_k_l ,

k=G -A-Xi—-1)eZ.

(8.20)

93



In this formalism we have only the vacuum |0 >,

Using these modified bases we obtain the propagator

i o ANMFD . p NN s p 172X
S(}x,l)(z,w) — 1 z Pl z PZ z P3 (dZ)A (dw)l—-A
(z—w) \w— P, w— P w— Ps

(8.21)

Notice that with the use of the bases in eqs.(8.18 - 8.19) the propagator is independent of
the points Py where the bra and ket vacua are defined. The sum (1 —2X) of the exponents
in eq.(8.21) plays the role of the total charge. When A is an integer there are not A-spin
z — P3
w — P3

number 1 — 2) being the Riemann - Roch index on the sphere. The ¢ zero - modes can be

—22+1
fields and the factor ( ) is just the effect of the zero - mode insertions, the
inserted at arbitrary points on the sphere. In our formalism this is achieved by a further

modification of the bases:

23—1
]EJ()\»I)(Z) = (Py — P..)j_}"*'l(z _ P+)j">‘(z _ p__)—j+>~—1 H (z — Pi)—l(dz))‘, (8.22)

and
. ) ) ) 22—-1
Fan(®) = (P — P )Mz — Py It - Py H (z — P)(dz)*">. (8.23)

The propagator becomes

08 = 25 1T (357 @™ -

(8.24)

The RHS refers to the standard formalism. From eq.(8.21), for A € R, the charge 1 — 2
can be seen as a sort of generalized Riemann-Roch index. As we will show later this is
true in any genus. This result plays an essential role in our approach; in particular the

background charge for the bosonized version of the minimal models in higher genus is just

(*) With this basis the first non-negative frequency in Py in the expansion of b(z)|0 > is
just (z — P4)® = 1. This reflects the fact that we have inserted the A - spin fields away

from the points Py where the bra and ket vacua are defined.
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equal to the generalized Riemann - Roch index (2X — 1)(g — 1) , A € RP®? As a natural
extension of the above procedure we introduce a “fat” b - ¢ system (we denote it as B
- C system). To do this we reshuffle the location of the X - spin fields and of the zero
modes and represent them as insertions of V - fields at points P;. As we will show these
fields V¥(P;) are to be assimilated to (the chiral part of) insertions of vertex operators
: ¢! ®(B) o namely

< TT. V*(Pr)b(2)e(w) > .

S(z,w) =1 <O0|R(B(2)C(w)) |0 >1= <M. V*(Pr) >

(8.25)

These insertions are obtained by a further modification of the b - ¢ system bases.

For the B field we have the expansion:

B(z) = BigM(z), (8.26)

J

z— -2 o 5
O e [le-rf@r. @

The corresponding expansion for the dual C fields is

C(Z) = Z Ojggl_.x)(z) ’ (828)
. z — j+A—-1 T
9(31-,\)(2’) (Py — P_)=7+A ( T ~P+_ Y H P) "% (dz)'~ - (8.29)

where j € Z + A. As we have seen the total charge conservation gives the constraint
D di=1-2). (8.30)

The propagator S(z,w) is given by:

S(z,w) = (w P’>&i (dz)*(dw)* . (8.31)

(z—w)

We now compute, with a procedure similar to the one introduced by Dixon et al. in [126]
the correlation functions < [I; V¥(P;) >. The stress-energy tensor satisfies the following
OPE with any weight h primary field V(P):
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RV(P) | 1

T(2)V(P) = (z—=P)*? (z—P)

opV(P). (8.32)
Therefore

G ~hiP,~)2 + (ZB_P"Pi)] <VYP)..V™P,) > . (8.33)

<T(2)VHP)..VY(Pa) >= D |

7
(8.33) gives us a set of first order differential equations which can be solved to obtain the

correlator < V1(P;)..V™(P,) > . In our case we have

<T()V(FPR)..VY(P,) > ) 1
= —A)0z — ADw yw) — ——]. 8.34
< VI(P)..V*(P,) > jlﬂ, (1 =)o 8u][S(z,w) 2 —w] ( )
By solving the equations we get
< HVi(Pi) > const H(Zp,. — zp; Y& (8.35)
i i<j

The conformal weight of the vertex operator in P; is given by(*):

ha, = %&i(&i +2A—1). (8.36)

The same conformal weight is obtained both from &; and from 2&g — &; ( here 2&, = 1-2AX).

The central charge of the fermionic system is:
e(A)=—-122% 4120 -2 =1-12&} . (8.37)

At this point it is evident that we have made contact with the Coulomb gas formalism.

We recall a few basic facts about it. The stress energy tensor is
1 . 2
T,, = —Zazqﬁaﬂﬁ + 100”0, (8.38)
where —2aq is the charge placed at co. The central charge is
c=1-24a%. (8.39)
The primary fields are represented by vertex operators V,, =: ¢!*? : of conformal weight

ha. == aiz —_ 2&,‘&0 = h2ag-a,~ . (8.40)

1

(*) For A € £ a similar formula can be found in ref.[127].
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Therefore the relation between the two formalisms is established by setting:
a; = V2, &y = V2aq . (8.41)
In particular for the chiral part we have:
<[IVi@) >=<]]Vail(P) > . (8.42)
We notice however that the condition |

D e = 2aq, (8.43)

for the non - vanishing of the correlator in the Coulomb gas case, is obtained in the b -
¢ formalism as a topological prescription (generalized Riemann - Roch index). From now
on the two formalisms proceed in a parallel way. In order to fulfill the condition (8.30)
we have in general to introduce screening charges in the correlators. A screening charge is

determined by the condition hg =1, i.e.

& =du =ayE /62 +2. (8.44)

As a consequence the allowed charges & are quantized:

1 1
&,—-,3 - 5(1 — 7’)&+ + 5(1 — 3)&_ . (84:5)

In particular for the unitary series we have

1
e=1-—0 a1 (8.46)

plp+1) v2p(p+1)

Therefore the relevant b - ¢ system will have

1 1
A= —o (8.47)

27 V2p(p+ 1)

So, in general A will be irrational, apart from special values (p = 8,49, 288, ...).
In conclusion we have reproduced the results of the Coulomb gas approach by means

of anticommuting b - ¢ systems. We remark that our approach is strictly related to the
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Feigin - Fuchs analysis(!24. The bases (2.2) are of the type considered by Feigin and Fuchs
to construct modules of the Virasoro algebra. The condition (8.45), as is well - known,
denotes the existence of singular vectors. The similarity of the field theory language and

the formalism of semi - infinite forms deserves further investigations.

8.2.1 THE HIGHER GENUS CASE

As in the genus zero case we start with the chiral anticommuting b - ¢ system. The

anticommutation relations are similar to eq.(8.8)

{bi'lv c_lj = 5;’ {bi,l, bj’l} =0= {thc_lj}a (848)
the unique difference is that now: j € Z+ s(A) + A({ — 1), 1 € Z, X € R. In the operator
formalism these fields are expanded in a basis of A - differentials in such a way that the
equations of motion 8b = 0 and ¢ = 0 are satisfied everywhere except possibly at P+. We
use the differentials defined in chapter 2 as bases to expand the b and c fields

80(2) = 3 b M (2), D(z) ="\ p(2) (8.49)

J J

For any A € R we define the vacuum |0 >; associated to X, following ref.[32] (for A = 0,1

or g = 1 there are some modifications that for brevity we do not consider)

bj’li[))Z: l<0[c§-=0, fOT' ]SS(A)_‘_#(Z)_l;

) (8.50)
o> = <0t =0, for j>s(A)+ul),
1 <00 >=1,
u() =20 -1),

where the bar denotes the non integral part of A(l — 1). Notice that the requirement
1 < 0|0 >;=1is consistent with the algebra (8.48).

Since they are going to play a very important role in the following, let us digress a bit
on the properties of the vacua we have just defined. They are different from the vacua one

usually meets in the literature. First of all both |0 >; and ; < 0] depend on the moduli
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of 3. The second remark is that the vacuum ; < 0] accounts for the insertion of the
total charge Q(A), which is entirely concentrated in P_. The subscript ! means a further
insertion of “\-spin fields” S™!(P-) and SHT!(P;) in ; < 0] and |0 >;, respectively. In

particular as we will show below we have

1 < 0]§—HPo)
1 < 0|S—HP_)SHHPL)0 >’

0 >=STHP)0>, 1<0= (8.51)

where S71(P_) and §T}(P;) are the identity operators. We recall that for Q(A\) € Z the
higher genus generalization of the standard (i.e. without zero mode insertion) vacuum are
defined by the requirement that 5(1(2)|0 >z, ¢(¥)(2)|0 >5 and 5 < 06 (2), 5 < 0[cP)(2)
be holomorphic in Py and P_ respectively. This condition gives |0 >5= |0 >; and

s 0 =0,  for §<—s(\);
(8.52)
s < 0"t =0, for 72>1—3s(A).

If Q(A) € Z, it is not possible to define a bra vacuum such that the exponents of z_ in the
expansion of 5 < 0[6(1)(z), 5 < 0|c()(z) be integral. The solution of this problem is to use
a modified basis, where an “amount Q(}) of singulaiity” in P_ of the differential f;’\’l)(zi)
(f(jl_k,l)(zi)) is shifted to other points. As we will show, this corresponds to a shift in the
location of the charge Q()A). Moreover, using this modified basis in the expansion of the
fields 5(D(z) and ¢(D(w), the vacuum ; < 0] is defined by the holomorphicity condition
on 1 < 0[6()(z), 1 < 0/c)(z) in P_. An analogous argument holds for the vacua in an
arbitrary sector . The bases representing A-spin field insertions at arbitrary points will be
discussed later.

After this digression concerning the vacua (8.50), let us compute the following prop-

agator
1 < 0] (2)cD(w)]0 >, if > 71w
SO(z,w) = | < O|R(BD(2)cP(w))|0 >; =
—1 < 0]c®D(w)p®(2)]0 >, ifry >75 .
(8.53)
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Inserting the expansions (8.49) into eq.(8.53) we obtain

y) J 1 .
Z'<3A+ l—1f§/\l(z)f1_,\z(w)’ if 1, > 71w

SO(z,w) = { ISa0FuD (’A \ a=rh , (8.54)
- Ej?_s(A)-{»p.(l) fj ’ (z)f(Jl-A,l)(w) 3 if 7, > Tz .

To evaluate S((z,w) one looks at the behaviour of the right hand side of eq.(8.54) in a
neighborhood of Py and in the limit z — w. A careful analysis similar to the one carried
out in [31] shows that

SO (z,w) = E(zl,w) (5((::?__)))@0)—#0) (%%%)u(l)-

' (ﬂ_;,_)_)”"l 6le)(z —w + (QN) — p(D))P- + p()Py — (22 —1)A) (8.55)

a(w) 02J(QMA) — ()P~ + (D) Py — (2A = 1)A)

That equations (8.54) and (8.55) coincide, can be seen also in another way: one considers

the propagator S()(z,w) in (8.55) as X - differential in z and expands it in the basis fJ(-)‘)(z)

§O(z,0) = >~ o () £V (2), (8.56)
i
where
: 1 . |
vw) =5 7£ S(l)(z’w)f(Jl—,\)(Z), (8.57)
C'r
It is easy to verify that
@) = { fan (), 7= o)+ ull), e > Tw; (8.58)
0 i 2 s(0) + () + 1,
‘ 0 if 5 < (V) + u(l),
Flap) — : ] | |
@)= { _f(Jl—A)(w)? if 72> s(A)+p()+1, Tw > Tz (8.59)

Notice also that S()(z,w) can be seen as the generalization of the Szegd kernel to A - and
(1 — X) - differentials in the w and z variables respectively.
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‘Let us come now to the main point of this section (and a crucial point of our con-
struction), i.e. generalizing the bases (2.15 - 2.17) in such a way as to record in the bases
themselves the insertion of suitable fields (V - fields) which, as in the genus zero case,
will be eventually assimilated to vertex operators of the bosonized formulation. In the
following we would like to motivate the introduction of these bases by discussing several
intermediate steps that lead to these equations, bearing in mind that the basic idea is
simply to shift (inside the bases) the singularities corresponding to the charge @()\) and
the spin - fields, from P, and P_ to generic points on X. The first step in this direction
consists, following the procedure for the genus zero case, in locating the zero modes (whose
total number is Q())) outside the point P_ (zero modes exist only when Q()\) € Z7 in
the sector I = 1; however their presence is reflected in any sector [). This corresponds to

expanding the b field in terms off®?]

FAD () = 2D B(z, PNz + ) 5.0
7 E(z, P_)i=s(V+1E(z, Py )~ its Mg (z)1-27 ’ .

w=(j—s(A\)Ps — (5 — s(\) + NP~ + TZY P + (1 - 204,

where j € Z + s(A) + A1l —1), I € Z® and Q()\) € Zt. The dual basis (up to a

normalization) is

[Z8(z = (7 — s(A) + )Py + (5 — s(A)P= — TEV P, 4 (20 — 1)A)

— 7]
flioan(z) = . (8.61)
(-2(?) E(z, Py )i=s N+ E(z, P_)=i+sNg(2)22-1 [[°D E(z, P,) (
The propagator with the insertion of zero-modes at the points P, ..., Pyny s

O ) = — L (Bl PG, POV (T B, P

' E(z,w) \ E(w, Py)E(z,P-) Pl E(w, P;)
, (a(z) ) 62)(z —w — p(DP- + )Py + ZZP P — (22— 1)A) (8.62)

o (w) 0N (—p()P- + w(1)Ps + 32D P — (22 - 1)A)

When X € R is generic we cannot do the same as above, i.e. insert vertex fields with

charge £1. However we can, for example, insert a vertex field at the point P € ¥ that

(*) The range of distinct values of [ is determined by the value of A (see comments after

eq.(2.1)).
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absorbs the entire charge Q(\). This can be done substituting in eqs.(8.60 - 8.61) the terms
H?_—_(;‘) E(z,P;) and Z?__gi\)Pi with E(z, P)?™) and Q(M\)P, respectively. The propagator

becomes

! _ 1 E(z,Py)E(w, P_)\*V [ E(z,P)\ %W
§0(z,w) = E(z,w) (E(w,};:)E(z,P_)> (E(w,p)> '

_ ( o(z) )2*‘1 98)(z —w — p()P- + p()P1 + Q(N)P — (2A —1)A) (8.63)

o(w) OEN (1) P + u(l)Ps + QNP — (2A — 1)A)

Notice that S(l)(z,'w) can be seen as the propagator in the sector [ = 1 with the insertion

of A-spin fields at the points Py :

1 < O|R (S™H(P_)bY (2)e} (w)SHH(Py)) [0 >

0 _
) L <OR(S ISP 0>

(8.64)

E(z,Py) )M‘) g ( E(z,P_) >—-#(l) .

where S*! are identity operators. The factors ( E(w, Ps) E(w, P—? in

eqs.(8.62 - 8.63) are the effects of the ) - spin field insertions S*!(P;) and S™'(P-).
The remarks just made, concerning eq.(8.64), suggests that also the spin-fields can be

moved away from P, and P_. Let us consider a simple example. We want to find the

analog of eqs.(8.60 - 8.61) with the insertion of the A - spin fields at arbitrary points @
and Q. The bases fit for that are for Q(A) € Z* (for A € R the modification is analogous)

00y = (E@ QN _ I Bz, P)o(2) 0[] (= + ) (8.65)
’ E(z,Q2) E(z, Py )i+ s0F e E(z, P_)i—s(V+1=u(D) ’ :

where u = (j—s(A)~p(1))(Py —P-)=P_+p(1)(Q:1—Q2)+(1-2X0)A, j € Z+s(A)+A(I-1).
For the sake of conciseness we do not write down explicitly the dual basis. We remark
that the numbers j — s(A) — p(l) are l-independent and integral. So the conditions (8.50)
define a unique (! - independent) vacuum.

Using such modified bases we find a propagator S(*9, which is equal to (8.62) with
P, (P-) replaced by Q1(Q2:). As a consequence this propagator is independent of the

points Py where the vacua are defined.
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As a final natural extension of the procedure outlined above, we introduce now “fat”
b - c systems, referred to as b - ¢ systems. The idea is to reshuffle the location of the A -
spin fields and of the total charge, and to represent them as insertions of V-fields at the
points P;. As we have shown in the g = 0 case the fields V*(P;) can be regarded as the
fermionized counterparts of (chiral) insertions of vertex operators : e**#(F:) ; (for suitable

a;). In other words

[T VE(Pe)b(2)e(w) >

<
S = B 0> = 8.66
(z0) = <OR(BEO(w)I0 > = LA (5.66)
The last expression refers to the standard formalism.
In order to implement the idea just outlined, we have to use modified bases
" E(z,P; &ig[é
ggA)(z) . Hr—‘:l (Z, ) [e](z + ?.l,) (867)

 E(z,P.)i=s(NH1E(z, Py )~itsNg(z)1 22

where u = (7 — s(A\))Py — (7 —s(A) + )P + >0, & Pi+ (1 —2M)A, jEZ+s(A). We

expand :
B(z) = Y BgM(z). (8.68)
The dual bases are
828z + (=§ + s(A) = 1)Py — (=5 + s(A\)P- = S0 &P+ (22 — 1)A)

J —
g(l—A)(z) = E(Z,P+)j—s(>\)+1E(z,p_)—j+s(A) H:?:l E(z, P;)% J(z)zx_l ’
(8.69)

and

C(2) = D Cigh_x(2)- (8.70)

The vacuum |0 > in eq.(8.66) is defined by the analog of eq.(8.50) and since in eqs.(8.67 -
8.69) j € Z + s(A) it corresponds to |0 >;. The requirement that g§->‘) be of weight A in z

gives the constraint
n

Y ai=(2x-1)(g-1). (8.71)

=1
From this equation we can see the topological origin of the constraint over the total charge

of the V - fields.
The propagator of the b - ¢ system is
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S(z,w) =< B()C(w) >=

1 n E(z, P;) &; o(z) 23—1 [](z—w+21_1aP~(2z\—1) )
E(Z,W)E(E(w,Pi)) (a(w)) B, &P — (2 —1)8) (8.72)

8.2.2 SPIN - FIELD CORRELATION FUNCTIONS

As an introduction to the calculation of V - field correlation functions in the next sec-
tion, here we show how one can compute correlation functions of spin fields in a straight-
forward way. In particular we test the formalism introduced in the previous section by
recovering the 2 - point spin - field insertions in the A = 1/2 and in the commuting A = 3/2
cases128]. We then generalize these calculations to rational A\. We recall that ) - spin fields
are a particular case of V - fields. We start with the A = 1/2 case. Let S(P1) be the
spin-field connecting the Neveu-Schwarz with the Ramond vacuum(®:

57(P_)b(z)e(w) ST (Py) >
< S=(P-)S*(Py) >

S®(z,w) =3< 0|R(b(2)c(w))[0 >,= (8.73)
Once the propagator S(2)(z,w) is known, the correlation function < S=(P_)S*T(Py) >
can be computed with a procedure similar to the one introduced by Dixon et al. in [126].

By means of the operator product expansion

(z fipi)z (z(—a—P}?)> <VHP)..VM(Pa) >, (8.74)

T(2)V(P1)..VY(P,) >= Z (

we obtain a set of first order differential equations which can be solved to get the correlator
<VY(P)..V™(P,) >.
For A = 1/2 we have the following correlation function for the stress - energy tensor

in presence of spin - field insertions:

<ST(P)T(=)ST(Py) > _ . 1
S_(P_)S+(P+)+> = lim Lo, - )<5< )(z,w) — (z_w)) : (8.75)

with

(

*) For brevity here we do not consider odd spin structures.
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) _ 1 (EB(x%P)E(w,P)\* 8]z —w+ 3Py - P))
) = 5o (Frammgr) - a0y (8:76)
We obtain
§7(P-)S*(Py) >= KaB(P-, Py) 30[](5 (P — P.)), (8.77)

where Ks . is an integration constant which carries a dependence on the spin structure.
The conformal weight of the spin-fields S¥(P.) is 1/8 as can be seen in two independent
ways: either by looking at the residue in the leading singularity in (8.75) or directly from
the geometrical weight in eq.(8.77).

Before addressing the commuting A = 3/2 case, we consider the anticommuting A =
3/2 system. In order for the propagator to be non vanishing we must put 2¢g — 2 insertions

of b zero - modes at the points P;. Therefore the propagator for the A = 3/2 case is

< S(P)b(2)e(w) 1277 b(2:)SH(Py) >
< 5-(P) 2 b=)SH(Ps) >

§3(z,w) =5< 0|R(5(2)e(w))|0 >»= , (8.78)

where

=(2 _ 1 | E(z,P{)E(w,P_) 72972 E(z,P;) [ o(2) 2 08)(z — w +u)
50 = gy (B rsers) 1l %) (55) “om

(8.79)
with w = (P — P_) + 772 P, — 2A.

The same procedure outlined above allows us to compute the correlation function with

zero-modes and spin-field insertions:

< ST(P_)b(Pr).b(Pyg—s)S*(Py) >= K. (i‘_*)ﬂ o(P)2E(P-,P,)"t.

(8.80)
J1E(P-, P) 2 E(Pi, Py)? [] E(P1, P ( 5 (P — P- +ZP —24A).

I<m

In P_, P, the conformal weight is respectively —3/8 and 5/8. The 2g — 2 points P;
represent the zero-mode insertions, as can be seen by noting that the conformal weight at

P; is precisely 3/2.
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Let us now discuss the commuting case. The quantization of a generic commuting 3
- 7v system of weight A and 1 — )\ respectively is achieved by imposing the commutation

relations
B =8, 1B =0 =Dl (8:81)

The bra and ket vacua of the bosonic system are assumed to satisfy the relation (8.50) as

for the anticommuting case.

Once a specific choice of the zero-mode insertioné is made, the bosonic propagator
§O(z,w) =< 0|R(BY ()7 (w))[0 >1,
coincides with the fermionic one
5O (z,w) =< 0|R(BPD(2)cV (w))|0 >, .

The regularized bosonic stress energy tensor is

T(:) = - lim (1= 2)0: = 30,) (B(a)(w) ). (3.52)

Cz—w
For A = % a possible expression for the bosonic propagator is the one given in eq.(8.79).
The points P; represent the insertion of vertex operators V;(P;) which carry a charge 1. k
These vertex operators can no longer (as in the fermionic case) be considered as zero-mode
insertions because their conformal weight, as shown below, is —3/2 (*). Starting from the

correlator of the stress-energy tensor with vertex operators Vi and spin-field insertions

< 57(P-) (127 Va(P)) T(2)S*(Py) >
< §7(P-) (T2 Va(Py)) S*(Py) >

we get the correlation function:

(*) In the path integral approach these vertex operators are represented by a delta function

8(8)-
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< ST(P)VA(PL). Vi(Pay—s)ST(Py) >= Kg,ezgj [To(P)E(P-, Py

(8.83)

1
HE(P_, 2E(Pk,P+ IQE(PI, [ﬁ](%(P+ —P_)+ 3, P —2A)°

In P_, P, the conformal weight is respectively 3/8 and —5/8. In order to compare our
result with Atick-Sen’sl!2®] we notice that they absorbed the extra charge by inserting,
instead of 2g — 2 vertex operators with charge 1, g — 1 vertex operators V5 with charge
2 (which turn out to have conformal weight —4)*). In our formalism their result can be

recovered starting from the propagator

5Dz = L (E(z,P+)E<w,P_>)%ﬁ(E(z,m)z((z)) OlE)(z —w +u)

E(z,w) \ E(w, P)E(z, P-) E(w, P;) (w) 012)(u)
(8.84)
with w = (P4 — P_) + 239"} P, — 2A. With this choice the correlator is
< ST(P_YVa(Py).Va(Pyo1)S*(Py) >= Kse"gj"i TRy BP-, P
(8.85)

1
O(3(Py — P_) +235, Py = 24)

-1 E(P-, P)E(P, P~ T] E(P, Pm)
ik I<m
This result completely agrees with Atick and Sen’s. From the discussion carried out in
section 8.2.1, it is clear that our approach allows us to compute the correlation function
for an arbitrary number of spin - field insertions and, moreover, that the vertex operators,
which must be inserted in order to fulfill the condition (8.71) on the total charge, can be

placed in general position and assumed to have the most general charge. The corresponding

(*) The relation between the conformal weight and the charge in the case of a fermionic
b - ¢ system of weight A is shown in the next section. We remark here that since the stress
- energy tensor for the bosonic system differs by a minus sign from the fermionic one, in
the bosonic case the relation between conformal weight and charge is just the opposite:
ha, = — %—a +3 2(1—-2)\)&;. An immediate consequence of this fact is that only in a certain

k3

range of values for X is it possible to introduce real charge operators which reproduce the

(A, 1 =X) B —~ system.
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formulas can be obtained by specializing the expressions given in the next section for real

A.

In this section however we limit ourselves to give some more examples with rational A.

The general expression for the spin - field correlation functions in the case of anticommuting

b - c systems of half - integer weight N/2, N odd, is:
< ST(P)..ST(P)B(Q1)---b(Qr)e(R1).ec(R)S ™ (T1)...8 ™ (T2) >=
= K5, [ o(P)3 N [T o(@) 7 [T o(Re)' = LT 207
i j k !

TLE®:, P [T E@% Q) [T B(Rms Ba) [] E(T5, To)*-

<] k<l m<n p<g (886)
- I EP:,Q;)7 B(P;, Re “iE(P,T) Y E(Q;, Re) T E(Q;, 1) B(Re, T0) 7
ikl

G P - YT+ @5 — 3 Re— (N = 1)A).

The charge conservation condition requires the constraint

Sg—t)+r—s=(N=1)(g—1), (887)

to be satisfied, otherwise the correlation function vanishes. The spin-fields § * have charge
+1/2 and their conformal weight is (2N —1)/8 for S* and (3 — 2N)/8 for §~.
Likewise the general spin-field correlation function for a commuting 5 — -y system with

A=N/2is:

< ST(P)..ST(PHV(Q)S™(T1)...S~ (Ty) >=
= K“H" P~ (N—I)O,(Q)'Y(l—N)H (T;)¥N-D,

J1E@ P~ T] E( Tk,Tz)"HE(Pm,Q)‘f”HE(T Q)f’HE(Pt,T)*- (8.88)
i<j k<l

BIG P~ YT +9@ — (V- 1)8)

The spin - fields S* have charge +1/2 and conformal weight (1 —2N)/8 for St and
(2N —3)/8 for §~. The extra charge has been absorbed by inserting at the point Q a
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single operator V, whose charge ~ is given by

=2(N~1)(g—1)+s;q
5 .

(8.89)

Finally we consider the case of a fermionic b - ¢ system of rational weight A =
N/M, with N,M relatively prime integers. The \ - spin fields with charge +k,k =
1/M,...,(M — 1)/M are denoted by Sff. These fields, of course, live on a suitable covering

of the Riemann surface £. The correlation function with the insertion of N1 A-spin fields

S',:Ch at the points Piy;, where (+k;1) = (+k1;1,..., N11), is given by:

< ST (PLa)--ST (P ) S (Paa)e-Sg 1 (Pare1, a1 )B(Q1)--6(Q0)-
'C(Rl) C(R) M— 1(.pM 11) S (P_]_N )>=

=Ksol[] I o(Peen* =205 ] 0(Q0) ™5 [] o(R)) * %™

E 1=1,..,Nix B ;

(I TT BPeris Prir 5)"557) ] B(Piris @)% [] E(Pakin, Ry) 3

ki k5 kyl,m kg
kk!
H E(Pikvi7pik',j)m H E(Ql) Qm) H E(Rn) Rp)‘
(kD)7 (K,5) I<m n<p

o] :EZMPMA—ZQJ ZR’ 2N M)

The correlator is non - vanishing only if the constraint

M-1
2N — M k k
o le-l)=r-s+ kEI:(*—Nk—MN_k),

1s satisfied. The conformal weight of S,:f is given by

E F (M — 2N)k
212 ‘

(8.90)

(8.91)

(8.92)

The correlation functions calculated so far are in general non - single - valued as the

points, where the insertions occur, are shifted by a homology cycle. So the above formulas

are to be considered as starting points where singlevaluedness and modular invariance are

still to be implemented.
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8.2.3 VERTEX INSERTION CORRELATION FUNCTIONS FOR MINIMAL MODELS

In this section we return to the general case. We consider the “fat” b — ¢ systems
defined in eqs.(8.66 - 8.72) and apply to them the method applied in the last section to a

few simple cases. We will use

STEVR). VP> 1
<ViP)...V*(P,) > }1_1}}” ((1 =X)8; — A0w) (S(z,w) - w) . (8.93)

where S(z,w) is given by eq.(8.72).

Analyzing the residues of the leading and subleading singularities at P;, and comparing
them with the OPE of T(2)V*(P;) we are able to identify the weights h; of the fields V* and
to extract differential equations which allow us to determine the form of < [, V¥(P:) >.

Specifically we obtain the relation which determines the conformal weight in terms of the

charge &;:
hi = ha, = —a% - S(1—2N& (8.94)
i = g; 5% 5\ I
and
L 0B L o OLel() - E'(Pi, Py)
Op,1 VEP) > = gt ; ’ 8.95
in < JIVHRY > = @ D&+ s + D s g gy (699
where
= > &P —(2A-1A. (8.96)
Integrating (8.95) we obtain
<[[vE) >= K“Ha P ) @ADTT E(P;, P;) %% 6% (v), (8.97)
k i<j

where K5 is an integration constant.
As for eq.(8.94) we remark that the weight of V* can be obtained directly from

€q.(8.97) by calculating the conformal weight of the RHS at the points P; and applying
the constraint (8.71).
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In general the correlation functions given by €q.(8.97) are not single-valued on X.
They have cuts with endpoints P; as expected. But they, in general, pick up a phase and
the theta characteristics are shifted when P; winds around a homeology cycle. Precisely,

when P; — P; + na + mb, eq.(8.97) goes over to

Ké,e H U(Pk)&k(z)‘—l) H E(Pi, Pj)&,—&j e—zwi&fmn—2wia;mee[gig::](v) . (898)
k 1<J

The phase and the shifts can be rational or irrational depending on the values taken by
@, € and §. In order to carry on the discussion of this very important point we need to be
more specific, so let us refer as in the genus zero case to the minimal models.

Let us add the information that B - C' systems represent minimal models. This is was
shown in the genus 0 case where “fat” b - ¢ systems constitute a dual (fermionized) version
of the Coulomb gas approach, so that by the use of b - ¢ systems we can represent primary
fields and reconstruct their correlation functions. The correspondence between the b - ¢
system formalism and Dotsenko - Fateev’s Coulomb gas approach is established by means

of the identifications

1
a; = \/_2_03', Qg = 5‘(1 - 2>\) = \/iaO) : (899)
and the value of A suitable for a given minimal model is obtained by equating the central
charges
6(p — 2
c(A)=-122 +120 —2=1—-2402=1— Sle—a)f (8.100)
Pq

Here oy and «; are the same symbols appearing in [119]. So for the minimal model

identified by the integers p and ¢ we have

A= (8.101)

B | ot

+ 2121
V2pq
Therefore in general A is irrational. Incidentally we remark that exchanging p and ¢ turns
Ainto 1 — A, This is the way the electromagnetic duality of the bosonic formulation is
recovered in our formalism. We remember that the constraint (8.71) on the bases implies
that the V-fields correlation functions are non - vanishing only if the total charge > . &;

satisfies the relation:

> a=—2a(g—1). (8.102)
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We can now introduce screening charges, i.e. weight one V - fields that by eq.(8.94) have

Gy = £4/62 +2. (8.103)

Eqs.(8.102) and (8.103) imply charge quantization, the same as in the case g = 0:

charge

_ 1 1 - q
py = —(1 — 5 (1 — = — = _ — 8.104

where1 < r < p—1,1 < s < ¢—1. We remark that in higher genus, w.r.t. the genus 0 case,
an extra charge 2d@og must be reabsorbed (we can think of 2&¢(g — 1) as a “bra vacuum
charge”). In general this can easily be done by inserting in the correlation function an

appropriate number of screening charges and relative contour integrations; this is possible

thanks to the fact that for the &.s given by egs.(8.99 - 8.102) the following relation holds

(p—1)as+ +(g—1)a- = —2a = ﬁ%‘}f ; (8.105)

with the parametrization of &; and A given by eqs.(.8.98 - 8.101).

For the sake of simplicity, from now on, we will be dealing only with unitary minimal
models. The relevant formulas are obtained from the previous ones by the substitutions
g—pand p— p+1.

Let us now return to eq.(8.97) with the parametrization of &; and X given in egs.(8.104)
and (8.101), respectively, and the above substitutions. Looking at eq.(8.98) we see that
the shifts of the theta - characteristics are in general irrational. This fact is not surprising
since it is inherited from the bases (8.67) we started from: they are well-behaved as far
as the z-dependence is concerned, but not with respect to the P;’s (well-behaved meaning
that the relevant shifts along homology cycles involve rational phases and shifts). Now, if
phases and shifts in (8.98) were rational (as they are in some particular cases), we could
take the attitude of the previous section and consider eq.(8.97) as our basic result, from
which single-valued quantities can be calculated by taking linear combinations of the RHS
of (8.97) with suitable coefficients K. Since this is not the case, we take another attitude
(see however the remark at the end of this section): we change the bases (8.67). In order

to construct the new bases we argue as follows.
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When a P;, i.e. a point where a vertex is inserted, winds around a homology cycle, in
general the theta - characteristics change and a phase appears. The phase and the theta -
characteristic shifts must correspond to the behaviour of the vertex insertions at the points
P;. We describe the latter in the following way: we say that there exists a finite covering
L' of the Riemann surface %, such that on X' the correlation functions < [T, V*(Pe) >
are single-valued (up to a possible phase depending only on the 6 - characteristics). We
will see that this simple statement will allow us not only to characterize the covering, but
also to determine the § - characteristics § and e.

To see this let us modify the bases (8.67) as follows

(A8 _ B(z, Py I/ B(P, Py) ) L
g,‘l [e](Z,Ph..-,Pn) - E(Z,P_)J’-—s(k)-l-l H E(P,,P F—s(A\)+1 HE(Z P

JIE®;, Py)3:%i o(z)22 [T o(P)%C* D0 (cz + cvld),  ¢,d€R,  (8.106)
1<J t=1

where u = (j — s(A))Py — (j —s(A) + D)P- + S0, &P + (1 - 20)4), j € Z+s()),
and ¢, d are numerical constants to be determined. We recover the bases (8.67) by setting
c¢=d =1, up to a normalization. This normalization is actually very important (33 since
it allows us to put the conformal weights hs, = 1a2 (1 — 2X)&; at the points P;. We
point out that this normalization is not ad hoc: it is possible only if condition (8.71) is
satisfled, being thus another indication of the geometrical consistency of our method.

Our aim now is to determine ¢ and d in such a way that the bases be single-valued (up
to theta-characteristic dependent phases) when one of the P; winds around a homology
cycle of the covering T'. This will allow us to determine also § and e. The detailed
derivation is given in the following section. Here we write down the result.

Using the freedom in the choice of theta - function basis, pointed out in the next

section, we can write the new bases (8.106) in the form:

A E(z,PL)=s() I/ E(P;, Py)i—s) \* 2 5
gLz, P,y Py) = (= Pr) H (Pi, Py ) 1 E(z, )%
i=1 )

(z P )_7 s(A)+1 E(Pi,P_)J—-s(A)+1

LB P50 [T o Ry 0F5 )2l T (= +0)l2p(0 + 1)
= . (8.107)
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where u = 0,1,...,2p(p + 1) — 1. These bases are characterized by the fact that when any
P; winds 2p(p+ 1) times around any homology cycle of %, they remain unchanged. This is
not true for the z - dependence: the effect of a z - shift along the homology cycles implies
an irrational shift both for the § and e characteristics. Evidently the z-dependence can
be understood only in terms of an infinite covering of ¥. The propagator of the new b - ¢

system is given by

st = s 1 (B2 8) (33)

_ 67 I(v2p(p + 1)(z —w + i, &Py — (22 —1)A)12p(p + 1))
057" 1(v/2p(p + 1)1y &P — (22 = 1))A)12p(p + 1)Q)

(8.108)

Redoing now the calculations from (8.93) to (8.97) with these new bases we find

< [IV4) >= K J[o(B ) TLE(P P 8GJ0l2p(p + D)), (3:109)
i<j

where v is given by:
= /2p(p +1)(Z;&; F; + (1 - 22)A),

and the characteristic § is of the form u/2p(p + 1) where u = 0,...,2p(p +1) — 1.

A few comments are in order. The result (8.109) is now single-valued when any P;
winds n = 2p(p 4 1) times around any homology cycle. We have already noticed that this
in general cannot be true for any integer n for the formula (8.97). However it is likely
that one can recover eq.(8.109) starting from the formula (8.97), by means of an averaging
procedure over the theta characteristics similar to the one outlined in ref.[129].

Eq.(8.109) is our final result in this section. A similar result was obtained via the
bosonic approach in ref.[130,131] (see also [132]). It can be taken a;s a starting point for

computing conformal blocks of minimal models in a generic Riemann surface.

8.2.4 COMPACTIFICATION RADIUS

Our aim in this section is to determine the values of ¢, d, § and € in eq.(8.106). This

is equivalent to determine the compactification radius of the corresponding scalar field in
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the bosonized version of the real - weight b - ¢ system. To this end we will use the formula

g[?](cz +cn + chIdQ) — e-—-(1/d)(wichcm+27ricm(cz+e+cn))0[5+cm/d](Cz[dﬁ), (8.110)

e+cn

which holds for any b,¢,6 and e. As a consequence of this the change of the basis under a

shift along the homology cycles is

Iz, Py, ., Pi + na+mb, ., P,) = e~ 27im(&intare/c) gVt& e (2, Py, .y Pry .y Pr),

(8.111)

where we have put d = ¢? in order to eliminate the dependence on z, Py, P_, P;, 2 and

A. We notice that, had we started from an even more general expression of the bases, in

which z, Py, P_, P;,Q and A all had a different coefficient in front of them in the argument

of the § function, the requirement of the phase being independent on z, P, P_, P;,Q and

Ain eq.(8.106), would have implied the equality of the coefficients in front of z, Py, P_, P;
and A, and therefore would have entailed the same conclusion.

Now we impose the new bases (8.106) to live on the covering ¥', as far as the points

P; are concerned (while we ignore the z - dependence). In other words we assume that

there exists an integer N such that when any P; winds N times around an a or b cycle,

the bases return to the initial form (up to a phase). From eq.(8.111) we have
9Lz, Pry oy Put Na, o, Po) = ¢, o v1(2) Py Py oy Pa) (8.112)
and
95 L)z, Pr, ., P+ Nb, ., P,) = e 2miN (/) ([e+auN/ey, b p Py (8.113)

Therefore, first of all, ca;N and &, N/c must be integers. Now due to eq.(5.11) with ¢ — p

and p — p + 1, we can write
g

V2p(p +1)°

& =
where ny is an integer. Then we have

eNny Nny

—— = M}, EZ, —““""—‘—“:lk
v2p(p+1) cy/2p(p+1)

cZ. (8.114)



It follows that
my = ang, Iy = bng, (8.115)

and since in any given minimal unitary model n), always takes on the value 1, a and b must

be integers. Therefore we can rewrite eq.(8.114) as follows

cN =a+/2p(p+1), —]g— =by/2p(p+1), (8.116)

from which we have
. @

N? =ab 2p(p+1), ¢ =5 (8.117)

Now we choose N = 2p(p + 1) (we will discuss later all the other possible choices). Then

ab = 2p(p + 1), c= —-———————'2p(£+1) . (8.118)

The theta - characteristics § and € can be deduced from the same formulas (8.112 -
8.113). Under the shift P, — Pj + a the characteristic ¢ becomes € + cdg. So € must
be an integer times céj = ny/b. Similarly, as a consequence of a shift of a b - cycle, we
deduce that § must be an integer times &i/c = dng/2p(p + 1). Finally we arrive at the
bases (8.106) where the theta function is

(8.119)

g/ 2p(r+ D)) ( v 2p(11: +1) (2 + )] 2p(p +1) Q)

t/b b2 |2

where ¢,u € Z. Recalling now that b is an integer we remark that an equivalent basis of b -
th order theta - functions!3®133] is given by eq.(8.119) with b = 1. We will use this freedom
in the choice of a theta-function basis to write our new bases (8.106) in the form (8.107).

Let us recall now the choice we did after eq.(8.117) for N. We could have chosen also
N = 2p(p+1)s where s is an integer. In this case ab = 2p(p+1)s and c = V2p(p +1)s/b;
but this would have entailed a simple redefinition of the basis of theta functions of the type
considered above. Similarly we could have chosen N = p(p + 1), so that ab = p(p +1)/2
etc.. But again this corresponds to a redefinition of the basis of the theta functions, as
above. Other choices for N are possible for some particular values of p, but these cases too

can be treated in the same way. So, in conclusion, there is no loss of generality in choosing

the bases (8.107).
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APPENDIX: THETA FUNCTIONS

In this appendix we recall some facts about theta functions theory[#®133], The ¢ -

function with characteristic [§] is defined by

e[g](z) - Z ewi(n+a)ﬂ(n+a)+27ri(n+a)(z+ﬁ) —
nezs

- ewiaﬂa+21ria(z+,l3)9(z+ﬂ+ﬂa), (A.].)
o) = 00)(z), sECI, wBehr,

where ), ; = §b~ wi, Qi;=Qj;, Im(Q) > 0. The holomorphic differentials w;, 1 = 1, ..., g
are normalized in such a way that 33;‘ w; = j-, a;,b; being the homology cycles basis.
When a3, 8; € {0, %}, the 4 - function is even or odd depending on the parity of 4apf.

The 8 - function is multivalued under a lattice shift in the z - variable:
g[g](z 4 Qm) — e-1rimﬂm—27rim:z+21ri(an—/3m)g[g](z) . (A2)

Riemann vanishing theorem.

The function
f(2) =0(1(2) - 2, I(P) + I(4)), zPex, (4.3)

either vanishes identically or it has g simple zeroes in z = Py, ..., P,

A is the Riemann divisor class defined by

1-Q
n(a)= T ek Zj{ wi(2)Tu(2), (A.4)
7k’
where
Iu(z) = / wp, P zEX, (4.5)
Py

is the Jacobi map (P is an arbitrary reference point) and

I(D = E?:lmipi) = 2?=1miI(Pi), m; €R.
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Another useful theorem, due to Riemann, states that
2A = [K], (A.6)

where K is the canonical line bundle and [K|] denotes the associated divisor class. We
recall that two divisors Dy, D, belong to the same divisor class [D] if D; — D is equal to

the divisor of a meromorphic function.

Abel theorem.
Let D be a divisor on . Then

I(D) = I([D]) mod.T={veCv=n+Qm, n,me 29} . (A7)
The prime form is defined by

051(I(z) — I(w
E(z,w) = [ﬁ](h((z))h(w)( ) = —FE(w,z), z,w € 4, (A.8)

it is a holomorphic (multivalued) (—-;—, ——%) - differeﬁtial with a simple zero in z = w:
E(zyw)~z—w, as z > w. ' (4.9)

h(z) is the square root of LY w;(2)0u,;0[5](v)|u;=0, it is the holomorphic 1 - differential
with non singular (i.e. 0u,6[3(u)

u;=0 # 0) odd spin structure [5]. Notice that E(z,w)
does not depend on the particular choice of [3]. The prime form has the following multi-

valuedness around the b’s homology cycles:
E(z + na + mb,w) = ¢~ ™mim=2rim(I()=IW) g (5 ). (A.10)
The o - differential is defined by

g
- Z f w;j(w)ln E(w,z)
o(z)=e 71 . (A.11)

It is a (multivalued) £ - differential without zeroes and poles defined on a covering of X.

It has the following multivaluedness
U'(Z +na+ mb) — evri(g——l)mﬂm—zwim(I(A)—(g—l)I(z))o_(z) .
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A useful relation involving o(z) is
0(z —I(Py + ...+ Py) + A) = (P, s Pg)o(2)E(z, Py)...E(z, Py), (A.12)

where s(P1, ..., P;) is a holomorphic section of a line bundle of degree g —1 in each variable.
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