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Introduction

Impulsive control systems. In the classical theory of ordinary differential equations,
solutions are sought within some family of absolutely continuous maps. In particular, if a
control differential equation of the form

(E) x(t) = f(t, x(), u(t))

is considered; with f sufficiently regular, then the control maps u(-) have to be at least
measurable.

On the other hand, control problems deriving from applied sciences might be modelled bya
more complex dynamics than (E). In particular, one could encounter control differential equations
whose right-hand sides contain the first derivative of the control .Then, more regularity must be
required to the control mappings in order to remain within the classical theory of O.D.E.

Alternatively, one can supply some new concept of solution . For example, if
discontinuous controls are to be used, one is forced to drop the assumption of continuity for the
solutions, since one expects that a first kind discontinuity of the control generates a first kind
discontinuity of the solution. That is the reason why we call impulsive the control systems
containing the first derivative of the control on their right-hand sides. And it is just this kind of
control systems we are going to treat in this thesis.

More precisely, we shall further require that the dependence on the derivative of the control
is affine, i.e., to say, we shall deal with systems of the form

(LE.) k= x@u) + Y g4(t, x(¥), u() ) .

a=1

Applications. Before describing the topics of analytical character contained in this
thesis, we wish to discuss some motivations for studying such a control system. Actually, these
can be found in the Appendix, which is devoted to expose some contributions given by the
author (see [31], [33]) to a mechanical theory recently introduced by Aldo Bressan (see [10-13]).
Within this theory, a Lagrangian system X is considered, and an additional moving holonomic
constraint on X is thought as a control.

If (g; Y &j ::ﬁ denotes a set of Lagrangian coordinates for ¥, this additional constraint has

a kinematic representation of the form y* = ?O‘(t).



This implies that the dynamical equations for the system 24 obtained from ¥ by adding the
constraint y* = ?'“(t) » contain the derivative of the control u%(:) = ?‘*(-) on their right-hand
sides. Moreover, under suitable assumptions on the coordinates (g, v these derivatives appear
linearly. Hence, a control system of form (LE.) governs the evolution of Z/; . In particular, the
control u%(-) = ?0‘(-) may be used in order to minimize some cost function, e.g. the kinetic
energy of X4 ata certain instant T.

These mechanical applications are our primary motivation for investigating control
problems governed by a dynamics of form (LE.). Also, some results (see [9]) obtained by the
author in collaboration with Alberto Bressan on the robustness of solutions to (I.E.) has been
very recently applied by G.Ferreyra (see [18]) in order to prove an approximation rule for the
optimal solution of a minimizing problem in advertising.

Generalized solutions corresponding to scalar controls. After some geometrical
preliminaries, in the first chapter of the thesis we present a number of results which mainly
concern the continuous dependence of the (generalized) solutions to (LE.) with respect to the
controls u(-) .

Actually, unless u(-) is differentiable (or, at least, absolutely continuous), it is not clear
what one should intend by solution of (LE.). A first satisfactory answer to this question was
given by Sussmann [36] (see Chapter 1) in the case of scalar continuous inputs. Indeed he
considered the input-output functional @ which maps a smooth contro] u(-) into the
corresponding trajectory x(u,-) of (1.4) on the time interval [0,T] . By using a method of
successive approximations he showed that & admits a unique continuous (w.r. to the CO norms)
extension @ defined for controls u which are merely continuous, possibly with unbounded
variation. Finally he defined the solution relative to a continuous contro] u to be the image ﬁ)(u)
of u under the map .

In [7] Alberto Bressan pushed Sussmann's approach further, in order to include
discontinuous (scalar) inputs as well(see Chapter 1). In fact , he proved that the input-output map
® is Lipschitz continuous with respect to L! norms on the spaces of controls and trajectories,
hence it admits a unique extension to a functional ® that maps Ll-equivalence classes of controls
into L-equivalence classes of trajectories. Moreover this correspondence was further refined by
constructing a version of @ which is Lipschitz continuous with respect to the norm of uniform
convergence in [0,T]. Thanks to these results, a definition of (generalized) solution to (LE.)
corresponding to a scalar summable control was presented in [7] .



Generalized solutions corresponding to vector-valued controls. Sussmann's
and Bressan's results cannot be extended to the case of vector valued controls, unless all Lie
brackets [g;j, gjl, 1j = 1,...,m , vanish identically. Indeed, in the general case the input-output
map @ is not continuous with respect to the C? norms on the spaces of trajectories and controls.
This is due to the interactions which occur among the components of the inputs, as consequence
of the non commutativity of the Lie-brackets [g;, g;1. Examples of this discontinuous behaviour
of © are provided e.g. by Sussmann [36] and Fliess [20] .

Yet, Bressan-Rampazzo [9] proved that the input-output map remains (Lipschitz)
continuous (w.r. to C%norms) in the multidimensional case whenever one restricts the class of
controls to a set of maps having equibounded Lipschitz constants. In other words, if a bound is
imposed to the velocities of the input, then the above mentioned interactions cannot occur. This
fact allowed to treat also the case of (possibly discontinuous) vector-valued controls with
bounded total variations. For this prupose, in [9], a free-parameter distance & between two
paths and a concept of Lipschitzean graph completion ¢ for the graph of a control u are
preliminarily introduced. Then, one shows that the (suitably defined) trajectory x(Q,- )
corresponding to ¢ can be approximated by the solutions x(u,,-) corresponding to smooth
controls u, , provided the graphs of the u, tend (in the metric 8) to @, when n — +oo . These
result are reported in Chapter 2.

In [16], Dal Maso-Rampazzo study the vector-valued case from a measure theoretical
point of view (see Chapter 3). For this purpose, suitable extensions of (LE.) are proposed in the
case of a control u with bounded total variation. For each of these extensions a result of
continuous dependence of the (generalized) solutions with respect to the control is proved,
provided certain hypotheses on the variation of the approximating (regular) controls are assumed.
Furthermore, only conditions on the original controls u(-) are considered, without mentioning

their graph completions.

Minimization problems for impulsive control systems. In the second part of this
thesis (Chapters 4 and 5), an optimal control problem for systems of the form (L.E.) is treated.
Precisely, one seeks the minimum value of

{Yx@D), ve u},

where 7 is a continuous function of the state, U is a family of admissible controls taking values
in a compact subset UCR™, and x(u,T) denotes the final value of the solution x(u,-) of (IE.)
corresponding to the control u € .



We have already mentioned a possible application of this problem to mechanics.
Furthermore, two concrete examples, concerning the ski and the swing, can be found in [ 12].
Yet, those examples are treatable by means of the ordinary theory of optimal control, for, thanks
to a certain choice of the coordinates, the derivatives of the control do not appear in the
differential constraint. Of course, this is not the general case, since , as long as the control is
vector valued, such coordinates exist only under special conditions on the Riemannian structure
of the constraint manifols. Hence mechanics demand an extension of the ordinary theory of
optimal control to problems having an equation of the form (I.E.) as differential constraint.

In Chapter 4 the optimization problem with an a priori bound on the total variation of the
controls is investigated. In view of the results contained in the previous chapters, one expects that
the optimal controls contain instantaneous arcs. Actually, a result on the existence of such an
optimal control is proved. Also, it is shown that the minimun value of the cost function may be
approximated by means of Lipschitz continuous controls. These results have been obtained by
the author of this thesis and have been recently proposed for publication.

Chapter 5 is formed by the first part of a joint work of the author and Alberto Bressan (see

[8]).In this work, which is now in an advanced state of preparation, the authors tackle the
optimization problem without any constraint on the total variations of the controls.
In the part presented in this thesis, we investigate the case in which all the Lie brackets [g,, gsl
vanish identically. By means of a suitable diffeomorphism of the space of the couples state-
control, we are able to refer the existence problem to the non-impulsive case. Also, a necessary
condition for optimality is proved in the form of a maximum principle.

The investigation of the general case, in which the brackets [8q-8p] are not all equal to Z€ro,
is now going to be completed and will appear in [8].



Chapter 0

Some differential geometric preliminaries

In this Chapter, which is principally based on [3] and [23], some basic facts on vector
fields, flows and Lie differentiations are rapidly recalled. These notions are important in order to
understand why certain results which hold for scalar inputs (Chapter 1) are no longer valid in the
case of multidimensional controls (Chapter 2).

For the sake of completeness, definitions and theorems are given for a differentiable
manifold, althought in the next chapters the state variable merely belongs to an open subset of
Rn.

1 Flows and Lie derivatives

Throughout this chapter the qualification smooth always means "having a suitable degree of
differentiability so that all the required differentiations can be actually performed”.

Let M be an n-dimensional smooth manifold, and let f be a smooth vector field on M.
With f we associate two objects:

1)The one parameter group * of diffeomorhisms or flow CD; :M—M, where Vx%M,
(I);(XO) is the value at time t of the solution to the Cauchy Problem

dx

& - f(x)
L1 &

x(0) = x0

2) The first order differential operator L, called the Lie derivative in the direction of f:
for any differentiable function @ : M— R, Ly is a new function from M into R,
whose value at a point xeM is

*@; is really a group if and only if f is complete ,i.e. if it is defined for all te R . In general (DE is defined only
for sufficiently small t.



(12) Lo =1 9@}

It is trivial to verify that L; is a linear operator from CP functions (p > 1) into Cp-1
functions, which satisfies Liebniz formula

(1.3) L1 02) = @1 Ly + ¢oLs0,

In terms of local coordinates (x1,...,x7) the differential system (1.1); is represented by

(1.4 dx1/dt = f1(x),..., dxv/dt = f(x) ,

where f1(x),...,f(x) are the components of f(x) in the coordinate system (x1,...,x1) .

Therefore
o 90
1.5 Lap=fl——+  +fn—
(15 P ox! oxn

We could say that in the coordinates (x1,...,x") the operator L has the fohn

(1.6) L=l S amO,
Jx1 oxn

this is the general form of a first-order linear differential operator on coordinate space.
incidentally let us notice that the right-hand side of (1.6) may be interpreted as the expression of
the vector field f in terms of the coordinate base (3/9x!,...,0/0x") of the tangent bundle
TU , where UCM is the domain of the coordinates ( x1,...,x0) .

One can easily prove that the correspondences between vector fields f, flows (D; and
differentiations L; are one to one.



2 Lie brackets

Suppose that two smooth vector fields f and g are given on a manifold M . The
corresponding flows do not, in general, commute:

Opo 05 # g © O
0F° 03(%) 05 © ¢ (%)

$5x)

O (%)

fig. 1

Example 2.1. Take the fields f=0/0x!, g = x19/0x2 on the (x!, x?) plane:
oo OpEL T =@ + X2+ X1 5)

¢;o¢;(il,i2)=&l+t,i2+ils+ts)

To measure the degree of non-commutativity of the two flows 4); and ¢§ , let us fix x and
consider the points ¢; © 0i(x) and ¢po ¢;(x) . In order to estimate the difference between these
points, let us compare the value at them of some smooth function ¢ from M into R . The
difference

A(t,5,%) = (9 © 9 (1)) = @( 9 ° 9;(x))

is clearly a differentiable function which is zero for s =0 and for t=0 . Therefore, the first term
different from O in the Taylor expansionin s and t of A at (0,0) contains st, and the other
terms of second order vanish. The coefficient of st is given by the value of 02A/dsdt at (0,0) .




Lemma 2.1. The mixed partial derivative d2A/dsot at (0,0) is equal to the
commutator of differentiation in the directions f and g:

2

d s s
@.1) = smie0 (900 91X — 9001 = 300} = ALy @~ Ly L))

Proof. By the definition of L,,

0s

o O3 ° 6x) = Ly ) (0(x)) -

Setting W =L,¢ , by the definition of L; one has

ot

o V(OX) = L ) .

Thus,

55|50 PO ° 0100 = Ly D)X ,

which proves (2.1) .
At first glance L¢L, - L,L¢ looks like a second-order differential operator. On the contrary:
Lemma 2.2. The operator L{L, - L Lyis a first-order linear differential operator.

Proof. Let (fl,...,f) and (gl,...,g") be the components of f and g in a local coordinate
system (x1,...,x") . Then



n n n

LI . dgi Y
L=, f‘-Q—Z g‘-a—(g-= Zfl-—gi %, Zflgl——-——(P

i=1 aXi j=1 oxJ i,j=1 ox! oxi i,j=1 OxigxJ
If one subtracts L L , the terms with the second derivatives of ¢ vanish. Hence

N
2.2 Li ~L.L = fi =—_ J ) |
@2 (el Leho? i,jz=1( oxi s oxi oxi

QED

Since every first-order linear differential operator is given by a vector field, the operator
L., -L,L¢ also corresponds to some vector field :

Definition 2.1 The Lie brackets or commutator of two vector fields f and g are the vector
field [f, g] for which '

(2.3) L[f' gl = Lng - LgLf .

Setting @(x) = x’(x) (r=1,...,n) in Lemma 2.2, one proves that the r-th component of
[f, g] in a coordinate system (x1,...,x%) is given by

& .o0er . off
2.4) [f, glr= 2, (fi 22— gi),
=1 xi oxli

3. The Lie Algebra of C* vector fields

Definition 3.1 A Lie Algebra is a vector space L , together with a bilinear skewsymmetric
operation [-,-] : LXL — L which satisfy the Jacoby identity :

(3.1) [[A.B],C] + [[B,C],A] + [[C,A],B] =0
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for all triples A,B,C of elements of L . The operation [-,-] is usually called the commutator.
Proposition 3.1. The Lie brackets make the vector space of C vector fields on a manifold
M into a Lie algebra.

Proof. Bilinearity and skew-simmetry of the Lie brackets are clear. Let us prove the Jacobi
identity. By definition of Lie brackets one has, for all triples f,g,r, of smooth vector fields

Litt.glr) = Liggrle — Lilg gy = Lelogle — Lglly — LL AL+ LL,L¢.

There will be 12 terms in all the sum Littg1a * Liten.g + Lifg.,n - Each term appears
twice, with opposite sign. By the linearity of Lwith respect to f, this proves the theorem.

4. A condition for the commutativity of flows

By Lemma 2.1. vanishing of [f,g] is necessary in order that the flows ¢; and c{)fg
commute. The following theorem proves that it is also sufficient.

Theorem 4.1. Let f and g be smooth vector fields on a manifold M , and assume [f, gl=
0. Then

4.1) OF° G500 = 9 © ¢ (%),

forall xeM and forall t and s for which the expressions on both sides are meaningful.

Proof. Let xe M . For fixed value of t, the two curves in s given by the right- and left-hand
side of (4.1.) have the same initial value, namely c{); (x) . The curve on the right

s @5 © 9(%)
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is by definition the integral curve of g. The curve on the left

s ¢ 93 (%)

is the image under ¢; of the integral curve of g having initial condition x .
What we must show is that these two curves satisfy the same differential equation. Let us
compute the tangent vectors to the curve on the left:

(4.2) d%—(cb; ° §;(0) = DYgP;(x)) - -§;¢;(x) = DOgo;(x)) - g(05(x)) .

where D ¢§(-) is used to denote the tangent map to x—s q)f('x) .
Now let us fix s and let us denote by F(t) the last expression in (4.2). One must show
that if

G(t) = 8@ G5,
then

F(t) = G(1).

One has trivially F(0) = G(0), since D(bl?(y) =y VyeM. On the other hand

7

SO = DI o 650) o (6 (%))

and
$GO =Dg(o} 8,000) © £(9¢ © 4500)) = D@ o §;(x))  g(df ° 5x)) ,

where Df [Dg] denotes the tangent map to the map x+— f(x) [g(x)] and the last equality is a
consequence of the hypothesis 0 =[f, g] = Dg-f - Df-g.

Hence the two curves F and G satisfy the same differential equation and start from the
same point, whence they are equal. This proves the theorem.
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PART I

Impulsive control systems

In this part we present a number of results which mainly concern the continuous
dependence on controls of some kinds of generalized solutions to

(LE.) x = (t, x(1), u()) + Z g4(t, x(©), u(®)) ux) .

a=1

We refer to the Introduction for a brief description of the contents of this part and for some
mentions to the applications in classical mechanics. As for the latter,one can also refer to the
Appendix of the present thesis.
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Chapter 1

Impulsive systems with scalar controls

In this chapter one deals with an impulsive system with scalar control, i.e., to say, one
consider a Cauchy problem of the form

x=f(x) + gx) u

0.1)
x(0) =x .

For this kind of problem one obtains much stronger results than in the case of
multidimensional controls, principally due to the absence of those phenomena of interaction
between the components of the input which occur when m > 1.

As long as u is continuosly differentiable, the classical theory of ordinary differential
equations applies to (0.1), provided f and g have a sufficient degree of regularity. However, if u
is not so regular, its derivative has only a distributional meaning and the classical (Caratheodory)
definition of solution cannot be used.

In [36] Sussrhann tackled the problem for (scalar) continuous inputs. First, he proved the
continuity of the input-output map with respect to the CO norms; then he defined the solution
x(u,-) corresponding to a continuous u as the uniform limit of the solutions x(uy,) corresponding
to a sequence of smooth controls u, which converge uniformely to u when n tends to infinity. He
also extented to this kind of solutions some classical theorems of uniqueness, existence and
continuous dependence on the control and the initial data .

Bressan[7] pushed Sussmann's approach further, in order to include (summable)
discontinuous controls as well. Unlike Sussmann, which had adopted a method of successive
approximations, Bressan made use of a fixed point argument,.

It is important to point out that all the results of this Chapter can be extended to the case
where f and g depend on t and u as well, simply by adding the new variables xntl =g,
x0+2 = y.

An alternative way to face the problem was followed by Pandit-Deo [29], that defined
solutions in the distributional sense. Yet, this work will be not reported within the present paper
because of some contradictory results containedin it [see Hajek [21] ].
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The main tools of Sussmann's paper [36] together with some sketches of the proofs form
the first Section of this chapter. The subsequent Section provides a detailed exposition of the
work by Bressan [7].

1 A survey of Sussmann's results on continuous scalar inputs

BASIC DEFINITIONS

If x=(x1,...,x")e R™ and M is a square matrix, then Ix| and IMI denote the Euclidean norm
of x and the matrix norm of M, respectively, i.e.,

n
xl = (3k2)12,  IMI=sup{IMxl : xe R, Ixl=1}.
k=1

If ¢ is a scalar-, or vector-, or matrix-valued function defined on an open subset €2 of Rn,
one says that ¢ is Lipschitz continuous on a set SCKQ if there is a constant C such that [0(x) -
() < Clx -yl for all x, y in S. One calls ¢ locally Lipschitz continuous if ¢ is Lipschitz
continuous on every compact subset of €. One says that ¢ satisfies a linear growth condition if
there is a constant C such that Io(x)| < C(1+Ixl) for all xe Q.

If fis a vector field in Q which is of class Cl, then Df denotes the matrix

Df = (afl/ax-))l,J

of the partial derivatives of the components of f. It is clear that, if Df is uniformely bounded, then
f satisfies a linear growth condition, but the converse is not true.

Let a<b and let C*([a, b]) [Cr([a, b], Rn)] denote the space of real-valued [Rn~valued]
T times continuously differentiable functions on ]a, b[ which can be extended to continuous
funtions on [a, b]. Let us consider vector fields f and g on a open subset £ of Rn and let
to€ [a, b], xpe Q be given. Denote by @ the input-output functional which maps a control
ue Cl([a, b)) into the corresponding solution (in the ordinary sense,if it exists) x(u -) on [a, b]
of the Cauchy Problem
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wn {x = £(x) + g(x) U

X(tO) =X9 -

Definition 1.1. Let ue C%Ja, b]). A curve Y: t+— x(t), a<t<b, x(H)e Q,is said to be a
solution of the initial value problem (1.1) if there exist a neighborhood N of u in C9%([a, b]) and
a continuous map $ :N — CO(a, b], Rn) such that:

(i) for each ve N N Cl([a, b]), $(v) = d() [z x(v,)] and
(i) $(u) =
The concept of solution for arbitrary intervals I of the real line is given in an obvious way:

Definition 1.2. A curve y: I — Q is said to be a solution of the initial value problem (1.1)
if, for every closed bounded interval I'cl such that e T', the restriction of y to I' is a solution of
(1.1).

THE MAIN THEOREMS

Theorem 1.1. Assume that
(i) Qs an open subset of R®,
(ii) f,g are vector fields on L,
(iii) f is locally Lipschitz continuous,
(iv) g is of class C! and its partial derivatives are locally Lipschitz continuous.

Let 1 be an interval of the real line, and let tybelong to the interior of I, xoe Q. Let u be a
real-valued continuous function on 1. Then

(1) There is an interval I', conteining ty in its interior, and a curve t - x(1), teI'cl,
which is a solution of (1.1).

(2) If1'is any such interval, then the solution of (1.1) which is defined on I'Cl is unique.
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Theorem 1.2. With the same hypotheses as in Theorem 1.1 assume, in addition, that Q = R0,
that f satisfies a linear growth condition, and that Dg is uniformely bounded.

Then, for every choice of 1, ty Xq, u, there is a solution of (1.1) defined on the whole
interval 1.

Moreover, the solution depends continuosly on tg, Xy and u.

Remark. The assumption that Dg is uniformely bounded implies, in particular, that g satisfies a
linear growth condition. Sussmann shows (with an example) that Theorem 2 is not true if the
requirement that Dg be bounded is eliminated, even if g is required to grow linearly.

SKETCH OF THE PROOFS.

Here we want to quote only the main ideas of the proofs, refering to the original paper
[36] for all calculations and estimates.

First, it is clear that both the existence and uniqueness results follow for arbitrary I if they
are true for all compact I. Moreover, it clearly suffices to assume that ty=0.

The uniqueness is trivial. Indeed, if y;: t ~—x(t) and ¥,: t —>x,(t) are solutions of
(1.1) on I=[a, b], for a continuous u:[a, b] >R, then there are neighborhoods Nj, N, of u in
CO%(I, R), and continuous maps 331, 332 from Ny, N, into C%(I, R") such that, for i=1,2,
"i\ﬁi(u)=yi and that, whenever ve N; is of class Cl, then Efii(v)=®(v) [=x(v,)]. Since the C!
functions are dense in N; NN, it follows that E‘f’l(u)=c’f3'2(u), ie. yl=y2.

Concerning existence, first the result of Theorem 1.1 is proved and then it is used to
deduce the result of Theorem 1.2. An important role is played in the proof by a certain change of
ccordinates, which reduces the initial value problem (1.1) to the special case in which

g =¢; = (1,0,0,...,0).

Then one shows that proving the existence result for this special case is equivalent to prove
it in general. Since this same transormation of coordinates is performed by Bressan in [7] , one
can find it in the next Section of this chapter, where [7] is entirely reported and commented on.

Sussmann uses a method of successive approximations in order to prove existence of
solutions in the special case
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x = f(x) + e, u
(1.2) -

x(tg) = Xgq .

More precisely, he lets, for te [a, b],

(1.3) Xo(t) = xq

t
Xe1 (D) = Xg + Ojf(xk(s)) ds + [u(t) - u(0)] e,

-

and shows that:
(T) the convergence of (xy(-))c is uniform in t, Xg» U, as long as x, remains within a
compact subset of R™ and u belongs to a bounded subset of CYa, b].

Then, for each k, one lets Li:Rnx CO[a, b] — COa, b] to be the functional which, to
every xp€ R and every ue CO[a, b, assigns the curve t - x(t). The L, are continuous and,
by (T), have a limit L as k—+oo, this convergence being uniform on the bounded subsets of
Rmx COa, b]. Therefore L is continuous.

Now let ue Ca, b] and xye R, One proves that L(xg, u) is a solution to (1.1) in the
sense of Definition 1.1. Indeed, if v is a C! function on [a, b], then

t

(1.4) v(t) -v(0) = |v(t) dt

Therefore the successive approximations t —s Ly (xg,v)(t) satisfy

t

(1.5) Lina(r0,¥) =0 + [[£05(1)) + V(1) ¢, da]
0

So the Ly(xo,v) are the ordinary successive approximations that are used to construct the
solutions of

x=f(x)+e, v
(1.6) -

X(to) =Xg .
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It follows that, for every x, and every v of class C! the function L(xg,v) is the solution of
(1 6), i.e. L(xp,v) = @ (xq,v) [= x(v,")]. Since u +- L(xg,u) is continuous, by setting
-:p(u) :L(xq,u), it follows that, for each xye R", ue C9[a, b], the curve t - L(xg,u)(t) is a
solution of (1.2), according with definition (1.1). Since L also depends continuously on xg, it is
clear that the last assertion of Theorem 2 follows. This concludes the proof of Theorem 2 in the
special case (1.2). The proof of the general case follows thanks to the above mentioned
transformation of coordinates.

Lastly, Theorem 1 is easily deduced by Theorem 2 by considering new vector fields f and
g defined by

f(x) =f(x)
for xeQ , { for x¢ Q

{f (x) = r(x) f(x)
g (x) = g(x)

g (x) =r(x) g(x)

where 1 Q — R is a C? function which vanishes on the complement of a compact subset of Q
and is equal to one in a neighborhood of x.

2. Summable inputs

In this Section Bressan' s paper is reported and commented on. For the sake of readability,
the transformation of coordinates which is used in the proof of the main theorem is made here
more explicit than in the original paper. As it has been mentioned in the previous Section, this
same transformation is used by Sussmann in [36].

BASIC ESTIMATES

Let €2 be an open set in R™ and let f, g be C! and C2 vector fields on W. Given a scalar
control u(e) belonging to the space L1[0, T] of summable real maps on [0, T], let us denote (as
in Section 1) by x(u,*) the solution (if it exists) of the Cauchy Problem

{k = f(x) + g(x) u
@.1)

x(0) = xpe Q
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on the time interval [0, T]. Using the coordinates x = (x1,...,x®), (2.1) becomes
(1 = 1 1 ; 1 1
xt=fl(x) + gl(x) u  x1(0) = x

(2.2) S

oooooo

xn=fi(x) = gn(x) u  x7(0) = xj
"

In order to extend the input-output map @ : u(-) ~— x(u,) from C![0, T] to a broader

class of controls , it is necessary to investigate the continuity of @ with respect to weaker norms
on the spaces of controls and trajectories.

Theorem 2.1. Let UcCY[0, T] and let KcQ, K'cR be compact sets such that
1) all controls take values inside K',

ii) for every ueU, the solution x(u,*) of (2.1) exists on [0, T] and takes values
inside K.

Then there exists a constant M such that

, T
(2.3) Ix(u, T) - x(v, DI + Jlx(u,t) —x(v,p)ldt <

T
<M la(0) — v(O)l + lu(t) — v(T)l + Jlu(t) —v(plde ]

for all v, ve U, t€]0, T].
Proof. The Theorem will be proven first for control systems of the form

x=f(x)+eu
(2.4) B

x(0) = xpe R,

where f is a C1 vector field with compact support in R? and ¢ is a unit vector, then in the general
case. For any ue C}[0, T], (2.4) is equivalent to the integral equation
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t
(2.5) x(t) =xqp + gf(x(s)) ds + e [u(t) —u(0)],

which can be written in the more compact form

(2.6) x(u) = y(u,x(1))
with
' t
2.7 y(u, x)(t) = xqo + d[f(x(s)) ds + e [u(® -u(0)].

In order to show that the functional @ : u +- x(u,*), implicitly defined by (2.6), is
Lipschitz continuous (with respect to suitable norms) one relies upon the following corollary of
the Contraction Mapping Theorem[17].

Lemma 2.1. Let E, F be Banach spaces, y : EXF — F be a map such that V u,veE,
V x,ye F one has

Iy(u,x) - yu,y g <121l x -y lig
(2.8)

Ty(ux) - yv,x)llesLilu-vlig

for some constant L. Then for each ue E there exists a unique x = x(u)e F such that
x(u) = y(u,x(u)). Moreover

(2.9) Tx() - x(V) I <2L Tu - v llg.

Proof of the lemma. For each ue E, x(u) exists and is unique, being the fixed point of the
strict contraction X — W(u,x) in F. Moreover

Fx(u) - x(v) g £ Ty(u,x)) - y(u,x) g+ Tyx®)) - yv,x()Ilg <
<1/2 N x(u) - x(v) g+ Lilu-vlilg
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from which (2.9) follows.

To prove (2.3) for the special system (2.4), choose a constant N>1 such that the operator
norm of the derivative Df = (aﬁ/axj)id of f satisfies

(2.10) IIDf(x) I <N VxeRn,

Lemma (2.1) will be applied to the functional y defined by (2.7) on the spaces
E = { u ue L1[0, T] } with norm

- T
llallg = a(O)! + lu(T)l + [lu(t)! dt
0
and F = { u; ue L1[0, T] } with norm

—~ 4NT T
Ikl = (T +<r[ e~ 4Nt [x ()] dt .

The assumption (2.8) are both satisfied. Indeed, if ue E, x,y€F, recalling (2.10) one has

~4NT © T t
Ihy(u,x) = Yol = g | JIECe()) ~ £y ()ldd + Gfe- N JHG(s)) ~ f(y(s)1dsl <

T

e—4NT 7 t
< JN Ix(t) — y(O)l dt + Oje—4Nt JN Ix(s) —y(s)l ds dt <

- 4N

T T

T
< %Jc— ANt x(t) — y()l dt + J Ix(s) — y(s)| |Ne-4Ntdids <

T
1 1 1
< gllx—yllg + Jlx(s) —y(s)l o 7le 4Ns _ e-4NT] 45 < 5 llx ~ yllg
hence (2.8), holds. As to (2.8), one has, for u,veE, xe F:

T
Iys(a, x) —y(v, p < lut) - vl + Je— ANtlu(t) — u(0)) — (v(t) = v(O)! dt < Iy — vilg .
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This yields (8.2), with L = 1.
By Lemma 2.1, the map u ~- x(u,-), implicitly defined by (2.6), (2.7), is Lipschitz
continuous with constant 2. This means that, for all u,ve C1[0, T],

X(u,7) = X(v,©) [
- u,4N;1131(TV’ + Ofe"‘N‘ Ix(u,t) — x(v,))l dt <

T
2 [a(0) — v(O)! + lu(t) — v(D)l + Jlu(t) -v(pldt] ,

and yields (2.3) with M = §Ne4NT,
To achieve the proof in the general case, notice first that if f.g in (2.1) are replaced by
vector fields £*, g* with compact support such that

) =1fx), g*x)=gx) VxeK,

then the input-output map @ : u — x(u,.) does not change on U. One can thus assume that f
and g have already compact support.

Consider the system on R™! obtained by adjoing to (2.2) the trivial equation
x0 = u, x0(0) =0, which yields x%(t) = u(t) — u(0) . This can ce written in the form

- .
o {x (x) + g(x) @

x(0) = (0,x9)

with x = (x0,...,x7) = (x0,x)e R**1, f(x) = f(x0,x) = (0,f1(x),.. H(x)), g(x) = g(x%x) =
(L,g1(x),....g%(x)).

Construct on R"*! a new set of coordinates y = (¥9,...,y" as follows. Given the n+l1-tuple
(¥0,...,ym, let s — (x0(5),...,x7(s)) be the solution of the Cauchy problem

rkO(s) =1 x9(0) =0

xl(s) = gl(x(s))  x1(0) = y!

A

(2.12)

............

X1 = gn(x(s)) xn(0) = yn
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Define y = (y%,y) = (¥9,...,y") = T(x0,...,x") as the new coordinates of the point
P = (x%...,x") in R®*! reached by the solution of (2.12) at time s = y0. Using the notations
introduced in Chapter 2, this transformation is given by

: 0
(2.13) (y9,...,y") = T(xY,....x") = (xo,(i);x (x1,...,xm).

By the properties of continuous differentiability of the solutions of O.D.E. with respect to
initial data, it is easy to verify that the coordinate transformation T is a C> homeomorphism of
Rn+! into itself, and that in the new coordinates the vector field g has the constant expression

g(Y) = gl = (1507“"0),
while the components of f are still C! functions with compact support:

f(y) = f(y0y) = IT/3xef) = (0, D) « (O, £ ()

Hence, for each smooth u, the initial value problem (2.11) is equivalent to

y=1f(y) +eju
(2.14)

y(0) = T(0,x%) ,

in the sense that if x(u,-), y(u,-) are the solutions of (2.11), (2.14), respectively, then they are
related by

y(u,t) = T(x(u,1), A Y te [0, TI.

By the first part of the proof, Theorem (2.1) holds for the Cauchy problem (2.14), whence
it holds for (2.11). Therefore it holds for (2.1) as well. QED

Remark. As in the case where the controls are vector-valued (see § 4.4), one can easily prove a
result, similar to the above theorem, in which no a-priori boundness assumptions on controls and
trajectories are required.
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A CLASS OF GENERALIZED SOLUTIONS

In analogy with [36] (see Section 1), a notion of generalized solution for (2.1) can now be
introduced.

Definition 2.1. Given an equivalence class of bounded controls ue L![0, T] and an initial
value u(0), a trajectory t — x(u,t) is a generalized solution of (2.1) if there exists a sequence of
uniformely bounded controls vie C1[0, T] such that v, (0)=u(0), vy — uin L1[0, T], and the
corresponding trajectories x(vy,-) have uniformely bounded values and tend to x(u,-) in the L1
norm.

Thanks to the estimate (2.3), any uniform a-priori bound on x(vy,t), te [0, T], for some
sequence vy — u will provide the existence of a generalized solution to (2.1). Such solution is
unique up to L1-equivalence and depends continuously on the control. In the case where u is
defined pointwise on [0, T], the trajectory x(u,:) can also be pointwise determined. Indeed, for
any fixed t€ [0, T] one can construct a sequence of C! controls w; such that w;(0)=u(0),
wi('c)=u(’c) and w; — uin L1[0, T]. The estimate (2.3) then implies that, as k — -, x( w;,-)
tends to x(u,-) in L1[0, T] and x(w;,'c) has a limit, say x (t). Repeating this construction for all
T, one obtains a function t — x (t) defined pointwise on [0, T]. Notice that from any sequence
vy converging to u in £1[0, T] one can extract a subsequence v', which converges pointwise to
u on the complement [0, TN\N of a set N of measure zero. The estimate (2.3) implies that
x(v'x,T) converges to x (1) for all T¢ N, hence x () is a generalized solution of (2.1). More
generally, if the control u is pointwise determined at t = 0 and on some subset I8 < [0 T], the
same is true for the corresponding trajectory.

The Lipschitz continuity of the trajectory with respect to changes in the initial condition x0
can also be proven.

JUMPS

It is interesting to study the behavior of the trajectory at points t where the control has a
jump.
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Proposition 2.1. Assume that there exists the limits

lim u(t)=u-, hn‘i u(t) = ut.

=1 t—T

Then the limits
lim x(u,t) =x~, lLm x(ut)=x*
-1 t—tt
exists and
(2.15) Xt = ¢<g“+‘“")(x'),

where, as in Chapter 2, the right-hand side of (2.15) denotes the value at time t = ut-u- of the
solution to the Cauchy Problem dz/dt = g(z), z(0)=x‘.b

Proof. By the same change of variable used in the proof of Theorem 2.1, it suffices to prove the
result for the system (2.4), in which case (2.15) becomes simply

xt =x"+ (ut - u)e,

and the Proposition follows from (2.5).
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Chapter 2

Impulsive systems with vector-valued controls

1. Introduction.

The results of the previous chapter do not hold when in the system

X(1) = £(x(1) + 2, gi(x(1) B
(1.1) i=1

x(0) =xe Q ,

the control is vector-valued, i.e., to say, m>1, unless all Lie brackets [gi,gj] vanish identically.
Indeed, let us consider the following counterexample, due to Sussmann ([36]).

Example 1.1. Let A,B, be two n x n matrices such that [B,A]=AB-BA=C= 0. For
xe R, put g;(x) = Ax, g,(x) = Bx.

Let the interval [0, T] be partitioned into n equal n intervals Ij‘ = [(G-1)/n, j/m], j=1,...,n.
Partition each IJ" into four equal intervals IJnl , i=1,2,3,4. Define w}l1 (t) to be equal to 4nl/2 for
te IJ" | » to -4nl72 for te fjf3, and to zero for all other t. Similarly, let wﬁ (t) be equal to 4nl/2
forte I, to-4nl72 for te !Jn 4 and to zero for all other t. Let urll , uﬁ be the indefinite integrals of
w}l » W chosen so that WIII(O) = wi (0) =0). It is easy to see that url1 and uﬁ converge to
zero uniformely, as n — o2 On the other hand, the solutions x(u,,-) of

-

1
X0 = 2 i(x(0) i

i=1,

(1.1) 3

x(0) =X

.

have the limit
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X(D) = Qfgy g (F) = AP te [0, T] ,

as n —» oo,

The previous example shows that, if x(u,") denotes the Caratheodory solution of the
Cauchy Problem (1.1), the input-output map @ : u(:) -—~ x(u,) defined on the space of
Lipschitz continuous controls is not continuous with respect to C0 norms.

In the following Section we report the text of Bressan-Rampazzo's paper [8], in which one
proves that @ is continuous with respect to the C0 topologies when restricted to a subset of
controls having a uniform Lipschitz constant. When the control u is discontinuous but has
bounded variation, one can parametrize the (completion of the) graph of u ina Lipschitz
continuous way, and apply the previous result to a suitable augmented system, with (m+1)-
dimensional controls. This permits to give a notion of generalized solution for controls with
bounded total variation. Of course, it is important to understand the relations between generalized
and classical solutions of (1.1). This is the object of some Theorems on continuous dependence
and approximations given in Sections 4-5.

Moreover, like in the case of scalar inputs all the results of this Chapter can be extended to

“the case where f and g depend on t and u as well, simply by adding the new variables x9 = t,

X0 = o a=1,...,m.

2. Graph-completions.

Let u: [0,T] — Rm be continuously differentiable and let  @(s) = (Qg,---,Pp)(8) = (t(s),u(t(s))).
se[0,S], be a Lipschitz continuous parametrization of the graph of u . Together with (1.1)
consider the (n+1)-dimensional Cauchy problem

P

y(s)=T(y(s)) @o + Z Ei(y(s) 9i(s)
(21) < i=1

y(0) = (0, X)
§
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with  f(x¢,x) = (1,f(x)) , g;(xg.,x) = (0,g;(x)) . If y(s) = (yg,¥1,----¥Yn)(8) solves (2.1) , then
yo(s)=t(s), moreover x(t) = (yq,-...,y)(s(t)) yields the solution of (1.1) . In the case where u is
not absolutely continuous, one may still be able to construct a Lipschitz parametrization j of the
graph of u, solve the corresponding Cauchy problem (2.1) and use this solution y(-) to recover a
generalized solution of (1.1) . To implement this program, we introduce the following definition.

Definition 2.1. Let u :[0.T] — Rm have finite total variation . A graph-completion of u isa
Lipschitz continuous map @:[0,S]—[0,TIxRm , ¢(s) = (t(s) , v(s)) such that

D 90)=(0,u@) , o) = (T, u(T))
i) 0 <r<s<T =2t() £t(s)

i) WVte[0, T] , Is€[0, S] such that @(s) = (t, u(t)) .

Notice that by iii) the range of j is a compact connected set containing the graph of u. Among all
possible graph-completions of a control u , a natural one is obtained by "bridging" the
discontinuities of u, on the graph, by straight segments as shown in the following

Example 2.1. Let u be right-continuous with bounded variation. For te[0,T ], let V(t) be the
total variation of u on [0,t] . Since the function t — t+V(t) is right-continuous and strictly
increasing, for every se[0,T+V(T)] there exists a unique time t=t(s) such that

(2.2) s<t+ V() ,t + V() <s V' <t.

For t€[0,T ], define

(2.3) u(t) = lim u(t) , V-(t)= im V() ,
t'—t~ tt™

2.4) W) =t+ V() , W(t)=t+ V() .
If u hasajump at t, we thus have

(2.5) () —a- O =V - V- () = W) -W- (1)
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A map @, : [0,W(T)] — [0,TIXRm can now be defined by setting @,(s) = (t(s) , v(s)) , with t(s)
defined by (2.2) and v(s) = u(t(s)) if u is continuous at t(s) , while

_ s=W-(t) W(t) —s
20 O=wo-w-0"'"* Wo-wo

if u has a jump attime t=1t(s) .

Using (2.5) one checks that @, is continuous with Lipschitz constant 1. Moreover, conditions
i)+iii) in Definition 2.1 hold. In particular, if te[0,T], (t,u(t)) = @,(s) for s=t+V(t). The function
@, , uniquely determined by the above construction, will be called the canonical graph-completion
of u.

Definition 2.2. Let u:0,T] - R™ be a control with bounded variation, let
0=(Qg,--.,Pm):[0,S]>[0,TIXR™ be a graph-completion of u, and let y = (yp,...,y,) be the
corresponding solution of (2.1). The (possibly multivalued) map x(¢,") defined by

2.7 (@, 1) = {(¥15 - Y0 5 t=30(9)}
is called the generalized solution of (1.1) relativeto @ .

Remark 2.1. By choosing s*(t) = max {s; t = yo(s)} and setting x¥(@,t) = (y1,...,.y)(sT(1)
one obtains a right-continuous selection of the multivalued function x(¢,-) defined at (2.7).

Since the graph of x(@,-) by definition coincides with the image y([0,S]) , which is compact, it
follows that the map t—x(@,-) is Hausdorff upper semicontinuous [1,p.41] . In general it is clear
that these generalized solutions are not unique, since they depend on the choice of a particular graph-
completion ¢ of u. Yet, one can obtain uniqueness by prescribing a canonical way to construct the
map ¢, as in Example 2.1 . In physical applications, it can also happen that the graph-completion
is naturally suggested by the problem .
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3. Equivalent paths.

Our goal is to investigate the dependence of the generalized solution x(¢,:) on the particular graph-
completion ¢ , and the relation between classical and generalized solutions of (1.1) . As a
preliminary, observe that every Lipschitz continuous map ¢:[0,S]—=R" can be reparametrized by
means of its total variation. More precisely, for se[0,S], let V(s) be the total variation of ¢ on
[0,S] . V is thus a non-decreasing, Lipschitz continuous map from [0,S] onto [0,V(S)] . For
1€ [0,V(S)] , set @®(T) = @(s) if T = V(s). It is readily checked that @© is a well defined map
with Lipschitz constant 1.

Definition 3.1. The map ¢©:[0,V(S)]—R" constructed above is the canonical parametrization
of ¢ . We say that two continuous maps ¢;:[0,S;]>R® (i=1,2) are equivalent, and write @;~0, ,
if their canonical parametrizations coincide.

Proposition 3.1 . If ¢ is a graph completion of a control u , such is also its canonical
parametrization ©© . Moreover, the generalized solutions x(¢,") and x(¢®,") of (1.1) coincide.

Proof. For the map @@, conditions i) and ii) in Def. 1 are obvious. Moreover, iii) holds because
graph(u) C range (@) = range (¢®) . This yields the first assertion. If y , y© are the solutions of
(2.1) corresponding to @, @© respectively, then y(s) = yO(V(s)) for all se[0,S], hence

%0 0) = { V1, oo YO 5 t=y0(8) } =

= { % .. YOV 5 t=yO(Vs) } =x(9°,1).

In view of the above result, equivalent graph-completions of u yield the same generalized solutior
of (1.1). In the study of the dependence of x(¢,") on @, it is therefore natural to look for estimates
which do not depend on the particular parametrization of ¢ . This is achieved by using a metric
which is parameter-free.

Definition 3.2 . Given two continuous paths ¢; :[0,S;]>R", i=1,2, their distance &(@;,Q,) it
defined as
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3.1 3(¢y, @) = inf max o1 (Y1(8)) — @2(ya(s)II
Y1-Yp s€[0,1]

the inf being taken over all couples of continuous, non-decreasing, surjective maps
’Yi:[osl]_)[oysi] .

It is interesting to observe that the inf in (3.1) is actually a minimum. To prove this, we need

Lemma 5.1. Given two maps 7v;:[0,11-[0,S;] ,i = 1,2, as in Definition 3.2, there exist
nondecreasing surjective maps Y;:[0,11-[0,S;] , continuous with Lipschitz constant L=1+5;+S,,
such that

(3.2) If(l)w;] llo1(Y1()) — @Yo (sHIl = %a’i} llo1(Y'1(8)) — @o (Yo (sHI

Proof. For te[0,1], set B(t) = [t+y;())+y,(1)] / [1+S;+S,]. B is then a strictly increasing,
continuous surjective map from [0,1] onto [0,1]. Since dB(t)/dt = [1+5;+S,]-1 a.e., the inverse
map B-1 is also increasing with Lipschitz constant L = 1 +51+S; . Define vy;, i=12, by
setting ¥; (s) = ¥;,(B-1(s)) . It is now clear that (3.2) holds. Concerning the Lipschitz condition, if
< s we have

5@ = Vil = %B1S) - %B0) < [B-1s) + 1B + 1(B-1(s))] -
~[B10) + v, (B1@) + RB1)] = [1+5, + 5,1+ [BB-1(5) - BB-1(n)] =

[1+8,+S,] [s-1]. (i=1,2)

Proposition 3.2 . Given two continuous paths 0;:[0,S;]- R | i =1,2, there exist two
continuous nondecreasing surjective maps Y:[0,11-[0,S;] such thar

(3.3) 8(¢1, ¢2) = ITES?L g1 (1 (8)) — @alya(sPII -
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Proof. Forevery n21,choose ¥;,Y, such that
1
(3.4) max. lp1 (F(5) — Q206NN < 8(y, 9) + = .
s€ (U,

By Lemma 3.1, it is not restrictive to assume that A Y, are both Lipschitz continuous with
constant 1+S,+S, . Ascoli's Theorem now implies the existence of two maps 7Y, Yo such that
9;(vi(-)) (i=1,2) satisfies the conditions in Definition 2.1 and

) Y(s) = lim ¥(s)

n'—oo
for some subsequence n'—es , uniformly on [0,1] . The continuity of ¢; , @, together with (3.4
now imply (3.3). QED

We conclude this Section by showing that the distance § is in fact a pseudometric.

Proposition 3.3. The distance & satisfies the following:
D 31, 92) =8(9y, 9 20,
ii)  8(@;, ¢p) =0 if and only if 01~ 0y,
i) 8(Q1, @) + 8(@y, @3) 2 8(9;, P3) .

The proofs of i) and ii) are straightforward. To prove iii) , let ¢;:[0,S;]-Rn (i=1,2,3) be
continuous, and use Proposition 3.2 to construct functions 0,0, By, B3 such that

8(91, ¢p) = ﬂzgf] llpy (01 (5)) — Pa(op(s))ll ,

3((y, 3) = H;(E)Ui] oo (Bo(s)) — @3 (Bs(s)Il
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For every € >0, the map a,.:[0, 1]—->[0 S, tge(s) = (1~£)0c2(s) + €8S, is strictly increasing,
hence it has a continuous inverse cxZ . Define o =0 © oc2 o B,:[0,11 — [0,S1] . Then, for
every >0,

8(@1,({)2) < max ”(Pl o aIE(S) — (P3 ° B3(S)” <
se[0,1]

-1 -1
< m[ax] lipy o 0y o 0, © Bals) =P Gy 0 Oy © Bo()Il +
se[0,1

+ max “(P2 °© 0y ° 0(2 Bz(S) Py ° Bz(S)” + max ”(P2 ° Bz(S) —Q3° B3(S)” =
se[0,1] se[0,1]

= 8(Qy, Q) +0(€) + (P2, P3) »

with o(e) = max o cip o 05, o Ba(s) = @2 ° Ba(®lI -
sSEe |V,

Since o(e)—0 as € —0 because of Lemma 3.2 below, this yields iii) .

Lemma 3.2. Let o : [a,b]—[0,S] be continuous, surjective and non-decreasing. For 0<e<l1 the
map g defined by

(3.5) o (r) =[1 - €] a(r) +eS[r — a] / [b-a]

is strictly increasing, and its inverse oé ! : [0,S1—[a,b] satisfies

(3.6) (o] @)~ 1l < €S Vie [0, ST .
Indeed

low o (x:(t) —ti=loe OL (t) O © OL (t)l leat o OL (t) ES[OL (t) a]/[b-a]l<eS.
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4. Continuous dependence.

Consider again a control system of the form

r

y()= Zg«y(t)) u; (1)
(4.1) 3 = te [0, T]

k}'(0) = (0, y)eRn

where the vector fields g; are defined and continuously differentiable in some open set
Q < R . We denote by y(u,-) the solution of (4.1), if it exists, corresponding to the control
u . The next results extablish the continuity of the input-output map, when restricted to suitable
sets of controls.

Theorem 4.1 . Fix L >0, let U CO[0,TI;R™) be the set of all controls with Lipschitz
constant L, and call U* the ser of all controls ue U for which the corresponding solution
y(u,) of (4.1)) exists in Q.
Then
1) U isarelatively open subset of U.
i)  The restriction to U* of the map @ : u(*)—y(u,*) is locally Lipschitz continuous
with respect to the CO norms on the spaces of controls and trajectories.

The proof will rely on the following corollary of the Contraction Mapping Theorem [17] . A
quite similar result appears in [2a] .
Lemma 4.1. Let A, B be closed subsets of the Banach spaces EJF respectively. Let

Y:AxB—B be a map such that Yu,ve A , Vx,ye B one has

(4.2) I (u, X) — F(u, )l < %—Hx —yllg

(4.3) ¥ (u, x) = P (v, )l < C llu —vlig
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for some constant C .Then for each ue A there exists a unique x =x(u)e B such that
x(u) =¥(u,x(u)) . Moreover

(4.4) lIx(u) —x(WIlg <2Cllu—vllg .

Proof of Theorem 4.1. Let u*e U* and let y* = y(u*,?) be the corresponding solution of
(4.1) . Since the image y*([0,T]) is a compact subset of €, there exists 6 >0 so small that

4.5) Q= u By@w,,d)c.
te [0,T]

Here and in the sequel B(y,8) denotes the open ball centered at y with radius & . For
i=1,...,m, construct a (! vector field h; with compact supportin R®, which coincides with
g;on Q'. Let N be an upper bound for both h; and the operator norms of the Jacobian
matrices of by, i.e. ’

(4.6) GO <N, Il—g&(x)ll <N VxeRm,i=1,...,m.
X

Consider the spaces E = C 9([0,T];R") with the usual norm and F=C 0([0,T];R") with the
- equivalent norm

4.7) . lIxllg = sup{e™ lix(t))ll te [0, T]} , A = 2N mL .

The new Cauchy problem

-

2(t)= Zhimm uy(t)
(4.8) < = te [0, T]

\Z(O) =0,y

now has a unique solution z(u,:) for every ue U.
Observe that z(u,-) is the solution of the implicit equation

4.9) z=Y¥ (u,z)
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with

t

(4.10) ¥, 2)(1) =y +J 2 hiz(s)) u(s)) ds .
i=1

We now apply Lemma 4.1, taking A = U and letting BCF be the set of all trajectories with
Lipschitz constant mNL . This choice guarantees that ¥ in (4.10) maps AxB into B . To
check (4.2), let llx—yllp =m. Since IIx(t) —y(t)ll<me*M we have

eM I (u, x)(t) — P(u, Y)OIl <

t

< e—ktJ z lig;(x(s)) — gi(y(sHIl o luy(s)ll ds)
i=1
(4.11)

t t
< e*“oj mN [Ix(s) — y(s)Il-LL ds < e“oj mNpers L ds
< pmNLA1=1/21Ix -y lig

To obtain (4.3), an integration by parts yields

t

I (u, x)(t) — (v, x)(DOI < OJ' 2 l Igg gi(x(sHIl-lhu;(s) — v;(s)llds)

i=1
(4.12) + i g (x(ONN-1ly;(0) — v;(O)II + i Hg;xENN-1u;(t) — v;()ll
i=1 i=1

STm2 NoL llu—vllg + 2m N llu - vllg,
because

ucf—s g(xHI < 1Igy), (x()IHIx(s)I < NomNL .
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This yields (4.3) with C = Tm2N2L + 2mN . By Lemma 4.1, the input-output map u—z(u,')
is thus Lipschitz continuous on ¥ . Statements i) and ii) are now clear, because whenever the
trajectory z(u,") of (4.8) is entirely contained inside W', it coincides with the solution y(u,-)
of (4.1). QED

The next result is an analog of Theorem 4.1 for the pseudometric & defined at (3.1).

Theorem 4.2. Fix K> 0, let Vbe the set of all Lipschitz continuous maps v:[0,5,]>Rm
with total variation <K , and call V* the set of maps ve ¥V for which the corresponding
solution y(v,) of (4.1) exists. Then

i) V™ isrelatively openin V,

il)  the restriction of the input-output map v(-)—y(v,") to V* is continuous, provided

that the pseudometric defined at (3.1) is used on the spaces of controls and trajectories.

The Theorem will be proved by showing that, given any sequence (v,);>o of elements of vV
such that vge V* and

(4.13) im 8(v,, vg) =0 ,

n—>

there exists a subsequence v, such that vye V* forall n' suitably large and

(4.14) im 8(y(vy, ), y(vo, N =0 .

n'—yeo

By the results in Section 3, it is not restrictive to assume that each map v, coincides with its
canonical parametrization. In particular, we can assume that every v, has Lipschitz constant 1
and is defined on some interval [0,S,] < [0,K] . If (4.13) holds, by Definition 4 there exist
maps B,,7Y, (n=1) such that

(4.15) lim max Ivy(B()) — vo(Ya(Il =0 .

n—eo te[0,1]

By Lemma 3.1 we can also assume that B, and 7, are all Lipschitz continuous with constant
2K + 1 . Hence, for a suitable subsequence n'—eo , there exists a map 7y such that ¥,(t)—>Y(t)
uniformly on [0,1] . Moreover, (4.15) implies that the sequence of controls u, = \ALIS
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converges to ug= vy o Y uniformly on [0,1]. Since the solution of (4.1) corresponding to ug
exists by assumption, Theorem 4.1 implies that the trajectories y(u,,-) also exist for all n'
suitably large, and tend to y(ug,-) uniformly on [0,1]. This proves (4.14) because

im 8(y(va ), y(vg, ) € im  max lly(viy, Bpf(8)) — y(vg, YO)I

n— n— te[0,1]

= lim max lly(v, o By, ) —y(vg oy, DIl =0 .

n'—ee te[0,1]

We now specialize the above result in the case where the v, represent the graph-completions of
a sequence of controls u .

Corollary 4.1. For every n20, let u:[0,T]-R™ be a control with bounded variation, let
¢, be a graph-completion of u,, and let x(¢,,") be the corresponding generalized solution of
(L.1). If 8(¢p, ©9)—0 as n—oo and if the total variation of the maps ¢, are uniformly
bounded, then the graphs of x(@,,) tend to the graph of x(Qg,-) in the Hausdorff metric
[1.p.65] .

Corollary 4.2 . Ler 9y:[0,S]->R™+ be a graph-completion of a control u:[0,T]-R™ | and
let (uy)n>1 be a sequence of Lipschitz continuous controls with uniformly bounded variation
which approximate @ in the sense that, setting ¢, = (tu,(t)) , one has

im 8(¢g, ¢,) =0 .

n'—jeo
Then the generalized solution x(gg,") of (1.1) relative to @, satisfies

X(@g, ) = Lim x(up, t)

n—oo
atevery t€[0,T] where x(Qg.t) is single-valued, hence almost everywhere.
Proof.. Set xy=x(9,) , X, =x(u,,") for n21.Fix €>0 and te[0,T] such that x(@,t)

is single-valued. Since x is upper semicontinuous at t , there exists de (0,e/2) such that
Xo(s) € B(xo(t) , €/2) whenever Is—tl <8 . Choose N so large that the Hausdorff distance
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between the graphs of x, and x; is smaller than &, for all n > N . This implies the existence
of s e[t , t+3] such that

% (D€ B(xg(s,)s 8) I B(xo(®), €) Vn=N.

Since € was arbitrary , Corollary 4.2 is proved.

Corollary 4.3 . In addition to the assumption of Corollary 4.2, suppose that v, converges to
u uniformly on some interval [t,t+6] . Then

lim x(ug, ©) = x7(Qg, T)

n—yoo

where xt(Qg, t) was defined in the Remark 2.1 .

Proof. Assume that there exists a subsequence u, and a point x* such that

lm x(u,, T) =x* # x7(Q, T) .

n'—oo

Then on the interval [1,5+0] the sequence of solutions x(u,,") converges uniformly to the
solution x(t) of the Cauchy Problem

m
X0 = 2800 (0
i=1
x(T) = x* .
Since xH(@q,*) is a right continuous function of t and x(v) is continuous on [t,T+0] , the

distance Ix+(g,t)—x(t)l remains strictly positive on some interval of the form [t,T+¢€] . This is
impossible because Corollary 4.2 implies x¥(@g,t) = x(t) almost everywhere.
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5. Mollifications.

Given a (possibly discontinuous) control u:[0,T]->R™, approximate solutions of (1.1) can be
constructed by means of a mollification. More precisely, let  be a (! function with compact
support for which

ERY Jwde=1, w@©=0 VieR.

For >0, set Yy(t) =n~ty(n1t), and define the convolution up = uxyy, :
(5.2) un ()= Ju(s) yn(t-s)ds

with the convention that in (5.2) the function u has been extended outside [0,T] by setting
u(t) =u(0) if t<0,u(t) =u(T) if t>T. The mollified control u, is then (1, and one can
now look for a classical solution of (1.1) corresponding to uy . Itis interesting to determine the

limit of this solution as N—0.

Theorem 5.1. Assume that u:[0,T]—=Rm is right continuous with bounded variation, and that
lim u(t) = u(T) . Fix a C' map W with compact support, satisfying (5.1) and define
E:T; ury, as in (5.2). Then, as M = 0, the graph of the corresponding solution x(un,) of
(1.1) tends to the graph of x(Qy,) in the Hausdorff metric, ¢,being the canonical graph-

completion of u . In particular,

lim  x(ug,t) = X(Pyst)
n—0

at every time t where u is COntinuous .
Proof. Define (pn:[O,T]—->Rm+1 by setting @y (t) = (t,up(t)) and let 9,:[0,T+V(T)]— R™+1 be

the canonical graph-completion of u . All notations introduced in Example 2.1, Section 2 will be
again used here. Since ¢, and ¢y (n>0) have uniformly bounded variation, by Corollaries 1
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and 2 it suffices to prove that 8(¢,,9,)—0 as n—0 . For simplicity, we assume that the
support of  is contained inside [-1,1], which is not restrictive. Fix €>0 . Since u has
bounded variation, there exist at most finitely many times t; , 0<t;...<t<T where the jump
lla(t)—u—(tIl is larger than €/4 . Choose €'e (0,6/4) such that

i)  theintervals (t—2€', t;+2€") are all disjoint and contained inside [0,T] .
i) Vo(y+2e) - V() <e/4, V() - V(;2e) <eg/4  foralli=1,...k.
Now choose oe(0,") such that, for every t in the compact set J = [0,T] \ LgB(ti,e') ,
i
(5.3) V t+o)-V(t-0) £ €.
The Theorem will be proved by showing that

(5.4) 3 (Qpon)<E vne O, o).

Indeed, for any me (0,s) , we will construct a non-decreasing, continuous, surjective map
B: [0,W(T)] — [0,T] such that

(5.5) Il y(s) - onBGN I < & Vse [0, W(TD)]

Let the canonical graph-completion @,(s)=(t(s),v(s)) be defined as in Example 2.1. In the
construction of B(s) we consider three cases.

D If t(s)eJ=[0,TI\ gB(ti,a'), set B(s)=1t(s)

M If se (W(t;-€), W(ty), setb(s)=t;-¢,
If se (W(t;), W(t;+¢€)), set Bs)=t;+¢".

) Ift(s)=t;, i.e. se[W(t;), W(t;)], define first the map o: [-¢, '1-[0,1],

(5.6) @@ = et (=) e [yg(©ds
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o . . L -1, .
For every pe(0,1], 0y 1s strictly increasing, continuous and surjective. Call o, its inverse.
Define

(57) B(s) =t + ot (Ms))
with
s = WH(t) . &2
(5.8) M) = iy g+ M= i { oW ! } .

Relying on the fact that supp (yy) < [-nn], with N <o <¢g', we will prove that, in all three
cases, (5.5) holds.

I) If t(s)eJ, then Il(pu(s)—(pn(ﬁ(s))ll = Ilu(t(s))—un(t(s))ll < €/2 because both u(i(s)) and
un(t(s)) lie in the convex closure of the values of u on (t(s)-o , t(s)+0) and, by (5.3),
the oscillation of u on this interval is bounded by €/2.

Iy If se(W(t—€"), W—(t)), then Ikpu(s)—(pn(ﬁ(s))ll < ()€l llu(i(s)—u (el < €'+
eld <e/2.
Indeed, t(s)e (t—<€', t;) , both u(t(s)) and up(t;—€") lie in the convex closure of the values
of u on (t;-2¢', ;) , and the oscillation of u on such interval is bounded by €/4 . The
case se(W(t), W—(t;+€") is entirely similar .

On) If t(s) =t;, then
llp(s) — (BN < M1ty — B(SHI + liv(s) — un (BsHIN

By construction, lIt—B(s))ll < &'<e/4 . To estimate the second term, we use Lemma 3.2 in
Section 3 and obtain

e
HEW) - W)

lorg(ery (M) M < VAe[0,1] .

Moreover, (5.6) and (5.7) imply
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= HOR
(5.10) [# B -8)dE = [ E)dE = g (B(s) — 1) = crgloc; MS)) -
Y —oo

Recalling that the oscillation of u on (t-2¢', ;) and on (t;, t;+2€') is bounded by €/4 and
using (5.9), (5.10) with A = A(s) we now obtain

Iv(S) — ug (BN < I A u(t) + (1~ (1] — [0t ° 0 (A) u(e) + (1 =g o 05 ) wiw] I+
t t;+2¢’ t+2¢’

A1 Juuy B(s) —B)E + [ty B() —E)E - [u@nwq(B(s) - BAEN <

ti—'z E. t l ti_z Ev

< Ihu(y) — u(ll L+ /4 < 3¢/

This completes the proof of (5.5), which in turn yields (5.4). QED




Chapter 3

Impulsive control systems
Jrom the measure-theoretical point of view

In this Chapter we report the results of a paper (see [16]) written by the author of this
thesis in collaboration with Gianni Dal Maso. In this work suitable extensions of

m

X(1) = £(x() + Y gi(x@)ui(t)
E) =
x(0) =x ,

are proposed in the case of a control u with bounded total variation. For each of these
extensions a result of continuous dependence of the (generalized) solutions with respect to the
control is proved, provided certain hypothesis on the variation of the approximating (regular)
controls are assumed. Furthermore, only conditions on the original controls u(-) are
considered, without mentioning their graph completions.

1. Introduction

The function u with bounded variation on [0,T] will be assumed to be left continuous
at each point of ]0, T] and right continuous at 0 . We shall denote by BV ([0, T], Rm)
the space of all these functions. We have chosen this space in order to simplify the exposition.
However it will be clear from the statements of the theorems that that the results presented in
this chapter can be extended to the class of all functions with bounded total variation, up to
obvious changes.

If ueBV ([0, T], Rm), by u we denote the distributional derivative of u, which is an
Rm™_valued Radon measure on ]0, T[ . We expect that the solution x of (E) is a function of
bounded variation too, so that its distributional derivative x is an R"-valued Radon measure.

At a discontinuity instant t of u the evolution process x is subject to the joint effects of
the jumps of f(x(-)), gi(x(*)) , and the concentrated measure generated by the differentiation of
u at t. The problem is tipically nonlinear, since a product between the measure ui and the
function gi(x(-)) has to be defined. As Hajyek pointed out in [21], the interpretation of the
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products g;(x(-)) ul which is directly supplied by measure theory is not satisfactory for
treating the evolution problem at issue. For example, the continuous dependence of solutions on
controls gets lost, also in very elementary cases (see [21]).

In order to extend (E) to the case ue BV ([0, T], Rm) preserving all nice properties of
well posed problems, we introduce the functions G;:R™xR™ - R",i=1,2,...,m,
defined by

1
Gi(z.p) = Jgi(exp(c > pigpz)do

=1
o J

m
where the symbol exp(GZpJ'gj)z denotes the value at the time s =G of the solution of the

j=1
Cauchy problem

%—\:= > pig;(w(s))
=1

w(0) = z.

Then, in the case ue BV ([0, T], R™), we consider the problem

k= £ + 3 Gyx(OA(())E
i=1
®);5
x(0") =x ,

where the first line is interpreted as an equality between measures (the function f(x) is
identified, as usual, with the measure f(x(t)) dt ), and

x(t£) = lim x(s) .

s—tt

Since Gj(z, 0) = g(z) for every ze R" and u({t}) = utt) —u(t) for every te]0, T[,
problem (E) ¢ reduces to (E) when u is continuous. This shows that (E) ¢ can be considered as
an extension of the classical problem (E).
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We shall prove that, for every ue BV ([0, T], R™) , the extended Cauchy problem (E) ¢
has one and only one solution xe BV ([0, T], R®) . As for the continuous dependence of the
solutions x on the controls u, we prove the following result(Theorem 4.3): if (up) isa
sequence in BV ([0, T], RM) which converges pointwise a.e. in [0, T] to a function ue BV
([0, T], Rm) , and the total variations of the uy, in [0, T] converge to the total variation of u
in [0, T], then the solutions x; of (E)s corresponding to the controls u, converge pointwise
a.e.in [0, T] to the solution x of (E)s correspondingto u.

In particular, if the uy, are differentiable, then the xy, are nothing but the corresponding classical
solutions of (E). Hence, (E)  can be viewed as a limit problem of a sequence of classical
problems.

Following an idea developed in [9], all results concerning the solutions of (E)s are
obtained by considering the n + 1-dimensional Cauchy problem

(dy? _ do©
ds - ds

do® & dgi
R O Y g
(E)n+1 i=1

where the solution §¥ = (y%,y) is a function from [0,1] into [0,T]xR™ , and the control
¢ = (99 ..., o™) maps [0,1] into [0,T]xRm .

If u is absolutely continuous and ¢ = (@9, ..., ™) is any absolutely continuous
reparametrization of the graph of u, it is straightforward to check that x is the solution of (E)
if and only if

(1.1) x(t) = y((¢9)7}(®) Vte[0, T],

where ¥ = (y0, y) is the solution of (E),,; -

If u is just a function with bounded variation and @ is the canonical graph completion of
u (see Definition 2.4) introduced in [9], then x is a solution of (E)s if and only if (1.1) holds
for the solution ¥ = (y9, y) of (E),,; . The proof of this fact is based on a general chain rule
for distributional derivatives of functions with bounded variation, recently proved in [9] and

[2].
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In the proof of the continuous dependence for (E), the convergence of the total variation
of the controls u;, is crucial. In the last section we drop this hypothesis and study the limits x
of sequences of solutions (x;,) of (E) corresponding to regular controls uy , with uniformly
bounded total variation , which converge pointwise a.e. in [0, T] to a function
ue BV ([0, T], Rm).

We prove that these limit functions x can be characterized as the solutions of a family of
differential equations in the sense of measures, which generalize (E)s and depend not only on
the limit control u, but also on an arbitrary (countable) family 7 of time instants, which
includes all discontinuity points of u . The jump of x at each point t of 7T is determined by
solving an auxiliary Cauchy problem, with initial value x(t —) , which takes into account the
behaviour of the sequence (u,) in an arbitrarily small neighborhood of t.

2. A generalization of problem (E)

By x =(x1, x2, ..., x") we denote a vector of the Euclidean space R". Given a control
u=(ul, ..., um from the time interval [0, T] into RM, let us consider the Cauchy problem

x(1) = f(x(0) + Y gx@)ui(t)
i=1

E) te [0,17,
x(0) =Xx

where the vector fields f, gq, ..., g, from R? into R? are assumed to be continuously
differentiable and globally bounded, and dots denote differentiation with respect to time.
One can naturally associate with (E) the n + 1-dimensional Cauchy problem

(dyd(s) _ deO(s)

ds ~— ds
| Y6 _ gy (s 28D 2 A
(Bt 9 se [0,1],
y0(0) =

J'(O) =X
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where: § = (y9, y): [0,1]—=[0,T]xRn, ¢%is a non decreasing map from [0,1] onto [0,T], and
¢ =(9% ..., o™ is an m + 1-dimensional control from [0,1] into [0,T]xR™.

In fact, if ue C1([0,T], Rm) ,i.e. u is continuously differentiable, then (E) has a
solution x , uniquely defined on [0,T] . Let ¢ : [0,1] —» [0,TIxR™m™ be any Cl

dp?
reparametrization of the graph of u, i.e. % C1([0,1]), 9°(0)=0, ¢%(1)=T, (PdS(S) >

0, and

ui(g0(s)) = ¢i(s) for every se[0,1]. Then it is trivial to check that the solution ¥ = (y%y) of
(E)p4 corresponding to ¢ satisfies x(¢9(s)) = y(s) for every se[0,1]. Hence

x® =y((e)'®) Vie[o, T],

provided @O is strictly increasing.

If u is not so regular one cannot apply the above argument. In particular (E) has not a
classical meaning. Still, by using the concept of graph completion, which has been introduced
in [9], we are setting down a relationship between the solutions of an extension (in the sense
of measures) of Cauchy problem (E) and the (classical) solutions of (E),, .

We begin by fixing some notation and recalling some definitions concerning functions
with bounded total variations.

Definition 2.1. A function f:[0,T] — R4 is said to have bounded variation on the
subinterval [a, b]c[0,T] if there exists a constant C20 such that, for each finite set of points
{to,...,tp} satisfying

a=t<t<..<t,=b,

the inequality

ilf(tk) —f(t,_)I < C
k=1

holds, where |- | denotes the Euclidean norm. The least C which satisfies the above condition
is called the variation of £ on [a,b] , and it is denoted by V°(f) . The number V y(f) will be
called the total variation of f .
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The symbol BV([0,T], R9) will denote the class of functions from [0,T] into RY with
bounded total variation, whereas BV ([0,T], R9) will indicate the set of left continuous
functions of BV([0,T], R49) which are right continuous at 0.

For every ueBV([0, T], R™) the distributional derivative u is an Rm-valued Radon
measure on ]0, T[ . If ue BV ([0, T], R™), then u is characterized by the equality

u([t;, oD = uty) —ulty)
for every subinterval [t;, t,[<]O0, T[ .In particular, for every te 10, T[ ,
u({t)) = Au(®) : = u(t") —u(),

where u(t*) , u(t-) are the right and the left limits of u at t, respectively. The integral of a
function f:[0, T] — R with respect to the measure u on a Borel subset A of 10, T[ will be

denoted by
Jf{l .

If ue BV ([0, T], Rm), then, for every subinterval [t;,t,[c]0,T[, we have
. ty
ity 5D = V(W)

where hul is the total variation of the measure u. Moreover
110, TD) = V(w),

for every ue BV ([0, T], Rm).

Remark 2.1. With each ue BV([0, T], Rm) one can associate the left continuous map
u—e BV ([0, T], Rm) defined by

u=(t) :=u(t) = limu(s), t€]0,T],

s>t

u=(0) := u(0) = lim u(s).

s—0t
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It is well known that u~ coincides with u almost everywhere, which implies U =u as
measures on ]0, T[ .

We shall give our definitions and state our results for the class BV ([0,T],R™). It will be
clear that analogous results hold true for the functions belonging to BV([0, T], Rm) , up to
obvious changes.

When ue BV ([0, T], R™), problem (E) has not a classical meaning. In principle, one
could interpret (E) as an equality between measures. Yet, in our opinion, this choice has to be
refused since, on one hand, one cannot guarantee the existence of a solution. On the other hand,
such a solution would not be robust, i.e. it would not depend continuously on controls, as it
follows from the results in Section 4 (see also [21]).

In order to overcome the above objections, we propose to extend (E) to a new Cauchy
Problem (E) in the sense of meausres, which reduces to (E) when u is regular. In this section
and in the following one, existence and uniqueness of the solution of the extended Cauchy
Problem (E) s will be proved. It will be seen (Theorem 2.2) that this solution coincides with the
solution corresponding to the canonical graph completion of the control u, which has been
introduced in [9]. Moreover, the introduction of (E) s will be motivated by a robustness
argument , which will be treated Section 4.

Let (z, p)e R°xR™ . For every i =1, ..., m, let the function G; : RixRm — Rn be
defined by

1
Gi(z,p) = jgi(exmc > pigyz)do ,
=1

¢ J

m
where the symbol exp(c ijgj)z denotes the value at the time s = ¢ of the solution of the
Cauchy Problem =1

S pigw(s)
=1

w(0) =z.

Remark 2.2, Itis trivial to check that, for every (z,p)e RaxRm | the identity
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m . m )
2 P! Gi(z,p) = €Xp (z p'g)z —z
i i=1

i=1

holds true.

Let us consider the Cauchy Problem

f= £ + 2 Gi(x(o), w({e))) i on 10,TI
®)s =

x(0*) =X .

Definition 2.2. Let ue BV ([0, T], Rm) . A solution of (E)sis a map Xxe€ BV([0,T],R®)
which satisfies (E) in the sense of measures on 10,T[ . In other words, x satisfies

jih !f(x(t)) at + 2, !Gi(xﬁ‘) ()
i=1

for every Borel subset B of ]0,T[ .

We are now in a position to state the following theorem.
Theorem 2.1. For each ue BV ([0,T], Rm) there exists a unique solution of (E); .
Remark 2.3. Since the measures involved in the Definition 2.2 do not change if we modify
x on a set of Lebesque measure zero, by uniqueness we mean uniqueness up to sets of

Lebesgue measure zero .

Remark 2.4. A solution x of (E); is determined up to a set of Lebesgue measure zero.
However, at each te]O,T[ , the left limit x(t") and the right limit x(t*) are uniquely
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determined. Hence, it is meaningful to speak of the jump Ax(t) = x(t") —x(t") of x at t. This
is given by the formula

(2.1) Ax(t) = exp () Aui(Dg)x(t) — x(t) .
i=]1

Indeed, Ax(t) = x({t}) , Aui(t) = Gi({t}) , and (2.1) follows directly from (E); and Remark
2.2. Note that equality (2.1) generalizes the formula (3.1) in [7], which gives the jumps in the
case of scalar controls.

Theorem 2.1 is a straightforward consequence of Theorem 2.2 below and of the
uniqueness of the solution of the Cauchy Problem (E)_,; . To state Theorem 2.2 we need the
definition of canonical graph completion (see [9]).

Definition 2.3. (Graph completion) Let u belong to BV ([0,T], R™). A graph
completion of u is a Lipschitz continuous map ¢ = (g9 ..., ¢o™): [0,1] = [0, TIXR™ such that

i) 0<r<s<T = %)< Gs);

ii) Vte [0,T] , Jse[0,1] such that @(s) = (t, u(t)) .

Note that this definition is slightly more general than the one in [9], because we do not
require that ¢(0) = (0, u(0)) and @(1) = (T, u(T)). Anyway, condition ii) implies that there

exist sy and s; such that @(sp) = (0, u(0)) and 9(s1) = (T, u(T)), so that the restriction of ¢
to [sg,s;] is a graph completion of u in the sense of [9].

Definition 2.4. (Canonical graph completion) Let u belong to BV ([0,T], R™) and set

t + Vyu)

W) = , te[0,T].

T + V o(u)

The canonical graph completion ¢ of u is defined by

®(s) := (¢, u(t)) if s=W(t),
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o(s) := (t, u(t) +-§Z—-{-Vl?:%§—t)—z&u(t)) if se W) , WL

Remark 2.5. If ¢ is the canonical graph completion of u, it is straightforward to verify that

i) AW(t) = __@Eg.l_;
T + V(w
. do Au(t)
ii s)={0 , Vse ]W(t) , WitH[;
) =8 ( Aw(t)] WG, W(
1if) ¢ is Lipschitz continuous with constant T + Vg(u) .

Theorem 2.2. Ler u belong to BV ([0,T], Rm).Then a map xe€ BV([0,T], R®) is a
solution of (E); if and only if there exists a solution § = (y%,y) of (E)y4 corresponding to
the canonical graph completion @ such that

(2.2) x(t) =y(W(D)

for almost every t€]0,T[ .

Theorem 2.2 will be proved in the next section.

Remark 2.6. If xe BV ([0,T], Rn), then (2.2) holds for every te [0,T]. In fact, x(-) and
y(W(-)) are functions of BV~ ([0,T], Rn) which coincide almost everywhere on ]0,T[, thus
they are equal everywhere on [0,T].

3. Proof of Theorem 2.2.

In the proof of Theorem 2.2 we shall use Volpert's averaged superposition (see[37]) and
arelated theorem recently proved in [9] and, by a different approach, in [2].
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Definition 3.1. (Volpert's averaged superposition). Letr A : RP — R4 be a bounded Borel
function, and let v belong to BV([0,T], RP) . The function IQ(V) : [0,T] — R4 defined by

1
Aw)@® : = OIA (v(t) + o(v(t) - v(t)))do

is called the averaged superposition of A and v .
Remark 3.1. A(v)(t) = A(v(t)) at each pointt where v is continuous.

Theorem 3.1. ([9] and [2]). Ler y :[0,1] > R be a Lipschitz continuous function and let
ze BV([0,T1, [0,1]) . If the map « is defined by

o) : =y(z(1) Vie[0,T],
then:
i) aeBV([0,T], R");
ii) the identity of measures
& = (2)z

. d
holds, where i« denotes any Borel function coinciding with the derivative -d% almost

everywhere with respect to the Lebesgue measure.

The following proposition, proved in [9], Proposition 5.3, is an easy consequence of the
chain rule given by Theorem 3.1.

Proposition 3.1. Ler v be a strictly increasing map from [0,T] into [0,1] and let
k:[0,1] - R be a bounded Borel map. Then,
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v(t™)
[ty = [x(s)ds

10,¢[ v(0*)
for every t€]0,T].
We shall make use of the following change of variable formula .

Proposition 3.2. Let v and k be as in Proposition 3.1. Then, for any Borel subset B of
10,T[ formed by continuity points of v , the identity

(3.1) [k = [xes) ds
B v(B)

holds true.

Proof. Denoting by Y, the characteristic function of a set A and by kg the map k-Xv®) »
we have

(3.2) ks (v)(® = k) a®
for every te]0,T[ . In fact, if v is continuous at t, then by definition we have
Re()(®) = kp(v(®) = k(V(ONy@) (VD) = kOB -
If v is discontinuous at t, then ¥g(t) =0 and
vB)NIV(E), V([ =D,

hence xv(B)(v(t-) +o(v(th) — v(t—))) =0 forevery oe]0,1[ . This implies that

1

B = JkB(v(t-)+(5(v(t+)—v(t')))d0 = 0 = k(vO)p®

and concludes the proof of (3.2).
By Proposition 3.1 and by (3.2) we have
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v(T")
k(s)ds = [kg(s)ds = kv = Jkvixgy = Jkvyv,
v<£) v<0J+)B S ]o,J;[ o ]OL[ . J

which proves (3.1).
QED

Proof of Theorem 2.2. Let § = (y?, y) be a solution of (E),,; corresponding to the
canonical graph completion ¢ of the control u . Let us consider the map x defined by

(3.3) x() 1 =y(W()) ,

and let us show that it is a solution of (E) ¢ . To this aim, we shall apply Theorem 3.1. By
definition, y is a solution of the integral equation

S
y(s) = G[ (f(y(&»cpi’(&) + Zg&y(&))cpi(&))dé ,
i=1

i .- doeo dot
where (pg and @, are Borel functions coinciding with the derivatives —(% and E(g_ almost

everywhere with respect to the Lebesgue measure. Since f and the g; are bounded, and the
canonical graph completion ¢ is Lipschitz continuous, y turns out to be Lipschitz continuous.
Furthermore, W belongs to BV ([0,T], [0,1]) . Then, Theorem 3.1 yields

(3.4) k=J. (W)W,
where

ya(8) = (y(s)) @a(s) + S gi(y(s)) @ (s) .
i=1

Let E_ denote the set of points at which u (hence W) is continuous, and let A be a
subset of E_ . One has

X(A) =Af§*<W) W,
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and, by the continuity of W atevery te A,

FoW)(D) = yo(W(D)) = £y (W (D) G(W (D) + Zgi(Y(W (©)) GLW (D) -

i=1

Then,

X(A) = J f(y(W)><P9(W)W + Zl gi(y(W)) cpi(W)W.

Since (p(tW(t)) =t forevery te A , by Theorem 3.1 (pg(W) W coincides‘ with the Lebesgue
measure dt on A . Analogously, since @'(W(t)) = ui(t) , we have 0,(W) W =1l as measures
on A, foreach i=1,...,m. Hence, :

[ %= [ fxpa +§ml i g.(X)ii .

A A

Since for every teE., and forevery i=1, .., m it is  gy(x() = Gy(x(t7), 0) =
G;(x(1),u({t})) , the above equality can be written in the form

(3.5) [ %= | txoyar + }_:1 A[Gi(x(t—),ﬁ({t}))ﬁi

A A
Now, let t€]0,T[\E, . Then (3.4) implies:

(3.6) x({t}) = J(W)(0) W({1)) .

By ii) in Remark 2.5 and by the equation (E),;, for every o€ 10, W({t})[, itis

m

YW +0)=exp @ 3, S oW .
=1 w({t))

Hence
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1 WEHW(()
3w = [Fwrow(n) do=—— [ Ghoas-
0

.

W({th) wh
(3.7)

=L [exp(3 wic(tg)ywe) —yowan] .
W({t}) =1 -

Since y(W(t)) =x(t) , by (3.6) and (3.7) one obtains

{J}x = exp (; T({tHg)x®) — x() .

m
By Remark 2.2, the right-hand side coincides with ‘the vector ZGi(x(t),ﬁ({t}))ﬁi({ t}) .
i=1

Moreover, If(x(t))dt = (. Hence,
{t}

(3.8) x= | f(x()dt + G;(x(0),a({t}))ui .

{t} {1} !

m
=1 {1}

Since identities (3.5) and (3.8) hold for every ACE, and forevery te]0,T[\E_, respectively,
the map x defined in (3.3) is a solution of (E) s » according to Definition 2.2 .

Conversely, let us show that, if x is any solution of (E), then there exists a solution
¥=(y%y) of (E),,, corresponding to the canonical graph completion ¢ of u, such that (3.1)
holds almost everywhere in [0,T] . Without loss of generality we can assume that x is left
continuous on ]0,T] and right continuous at t = O . Let us consider the map § =
(¥% y) : [0,1] = [0,TIXR™ defined by

) = 0% ) = (1, x®), if s=W(), teE,,

FG6) = (v, y)(s) = (¢, exp[ (s - W(1) gl -‘-‘ﬂ‘-l-)_ glx®), if se[W(r), W(tH] , te[0,1NE,.
= W({th
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We shall prove that § is a Lipschitz continuous map which solves (E)n4 with @ equal to the
canonical graph completion of u. ;
Let us start by proving that § is Lipschitz continuous on W([0,T]) . First of all, we note
that §(W(t)) = (t, x(t)) for every te[0,T].If s; = W(ty) ,s,=W(ty),and t; <ty then
I§5(s1) = F(s)I LIty —tol + Ix(ty) — x(R)I <

(3.9) < (1 + ) Ity — tol + gy, - gl vff(u) <

< C(Wi(ty) - W(t) = Cls, —51)

where IIfll denotes the sup norm of f, ll(gy, ..., gmll = max({ligill:i=1,...,m},and C isa
suitable positive constant. This proves that § is Lipschitz continuous on W([0,T]): in
particular,
(3.10) lim  §(s) = lim §(W(1)) = (t, x(t*))

s—>W(h* Tttt

se W([0,T])

for every te[0,T]\E, . Let us prove that
(3.11) FW(eH) = (t, x(t9))

for every te [0, TI\E, . Since W(t")—W(t) = W({t}) , by the definition of § we obtain

sowan =t explwien Y, S g1xw) =
=1ow({t)

=(t, exp[; ai((e]) gl x@® ) -

By Remark 2.2 we have

sowey = (& x + 36, (x0 , a((e)) ((1))).
i=1
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Therefore, since the map x solves (E) 5, We obtain

FOW(ED) = (&, x(@®) +x((t})) = (&, x(t9) ,

which concludes the proof of (3.11).
Furthermore, if t€[0,TI\E, and seW(t), W(t")[ we have

TZel=1Ze=1 HDaqw)] < @+ Vi) ey . gl
i T B W

hence

(3.12) 1§(s1) = (s < (T + Vg (w) ll(gy, ..., gl Is; — s,

for every s, s,e [W(t), W(t*)] . The Lipschitz continuity of y follows on (3.9), (3.10),
(3.11), and (3.12).

To conclude the proof of Theorem 2.2, let us show that ¥ solves (E),.; , when
@ coincides with the canonical graph completion of u .
It is sufficient to check that

0 m dot
(3.13) f %%(s) ds = f [f(y(S))‘-ia(-Z—(sHEgi(y(S)) ;g-(s)]ds,
A i=1

A

for each Borel subset A of [0,1]. Let us consider the partition of A formed by the subsets

A =AnW(E), Ay=AN([0,11\W(E))).
Then A, is a Borel set, and A, =W(B), where B is a Borel subset of E..

Applying Proposition 3.2 and Theorem 3.1, and using the fact that G;(x(1), u({t})) =
g;(x(t)) forevery te B and for every i=1,..., m, we obtain the following chain of identities
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Ay B

(3.14)

d d : : e
fag(s) ds = l§fag(\vv)w = Jx = E[f(x(t))dt + L;gi(x)u =

0 0 m dol
JTrs S Zow) +2 By W) S W) W = [ Leysns 0+ 2 gi(y(s) ge(s)]ds.
B 1=

A

In particular, the second identity in (3.14) follows on the definition of y on E..

On the other hand, for every se A, , there exists a te ]J0,T[ such that se TW (), W(H)[ .

Hence, by the definition of y,

y= SAD gy .
=l W(t})

"i%
w

Since for every se[W(t), W(t")] we have —(s) = (0, ac{t}) —=—2 , one obtains

W({t})
0 m doi )
(3.15) g%(s) = £(y(s)) d—d‘ﬂs-(s) + ; (YN ae.in Ay,

which, together with (3.14), yields (3.13).

QED

4. Continuos dependence on the controls for solutions of the

Cauchy problem (E),

In Section 2 we have introduced the Cauchy problem (E); , which is meaningful
whenever u merely belongs to BV([0,T], R™) . On the other hand, (E); can be considered as
a generalization of the Cauchy problem (E) , since G;(x(t), u({t})) = g;x(®) ,i=1, ..., m,
for each t where the control u is continuous. Now, we shall show (see Theorem 4.2) that this

generalization agrees with a robustness argument.

First of all, we state Theorem 4.1, which concerns the continuous dependence of the

Caraﬂléodory solutions of (E) on controls, when the latter are uniformly Lipschitz continuous,
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and the spaces of controls u and solutions x are endowed with the CO norms. This result is a
straightforward consequence of Theorem 1, Section 4, in [9], where the Lipschitz continuity of
the input-output map @ : u — x has been proved. Theorem 4.1 follows also from the results
on continuous dependence on a parameter in [30] and [5]. Still, we provide a direct proof, since
this turns out to be very elementary.

Theorem 4.1. Ler L be a positive constant and let UcCO([0,T], R™) be the subset of
Lipschitz continuous controls with Lipschitz constant L .Let ® be the input-output map
which, with any control u, associates the corresponding solution x of (E) .

Then the restriction of @ to U is continuous with respect to the CO-norms on the space
of controls and solutions.

Proof. Let (uy)pcn be a sequence of controls in U. and let (x)cn be the corresponding
(Carathéodory) solutions of (E). Let the controls u;, converge uniformly to a control ue U.
Let us show that the functions x;, converge uniformly to the solution x corresponding to u .
By hypothesis, for every h eN, it is

(4.1) )l < L,

for each t where Uy (t) is defined, i.e. almost everywhere in [0,T]. Since u, converges to u
uniformly, one obtains

(4.2) lim @ =@ in Le-w*,
h—e

i.e., in the space of bounded functions endowed with the weak®*- topology. By (4.1) it follows,
for each h eN and for almost every te[0,T],

(O S I E N +1iCgy, ..., gl - L,

where Il - Il denotes the sup norm. Hence, the maps (xp);cN are equi-Lipschitzian .
Then, by Ascoli-Arzela theorem, there exists a subsequence (x;) of (x,) which
converges uniformly to a (Lipschitz continuous) map z. In particular, this yields

lim xp, =2z, in Le-w*.
h'—e
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Moreover,

lim If(xp()) = fz(NI =0,

h'—ee
and, foreach i=1,...,m,
4.3) lim gz () - gizOM =0
h'—yee
From (4.2) and (4.3) we get
lim g(xp)iy =g u, in L=-w".
h'—ce

Therefore

2= 1(2) + 3 g0
i=1

2(0) = X

ie., z is a solution of (E) corresponding to u . By the uniqueness of solution of (E) , we
obtain z = x . Hence every converging subsequence (xy) of (x) convergesto X, which

implies that (x;) converges to X. QED

The following theorem concerns the robustness of the solution of the Cauchy problem
(E); , which has been mentioned at the beginning of this section. Although the thesis is the
same as in Corollary 2 in [9], the hypothesis differs in that it concerns only the controls uy,
without any reference to their (canonical) graph completions.

Theorem 4.2. Let (u) be a sequence in BV ([0, T], Rm) and let ue BV ([0,T], Rm).
Assume that

1) lim uy(t) = u(t) for a.e. te[0,T], and

h—ee



i) lim Vg (up) = Va(u) .
h—ce

Let x,€ BV ([0, T], R") and xe BV ([0,T], R") be the solutions of (E) s corresponding to
the controls vy, and u , respectively. Then

hm xp,(t) = x(t)
h—ee

for each t€[0,T] where u is continuous, i.e. almost everywhere in [0,T] .

Remark 4.2. By Theorem 4.1, hypothesis ii) is not necessary, since it is trivial to find an
equi-Lipschitzian sequence of controls (up),cn Which converges uniformly to a function u,
whereas the total variations Vg(uh) do not converge to Vg(u) . On the other hand, if we drop
hypothesis ii) we cannot guarantee the convergence of (xp) to x, as it will be clear in the next
section.

Remark 4.3. By Remark 2.1, in order to reformulate Theorem 4.2 for controls uy
belonging merely to BV([0,T], R™), one has to replace condition ii) with

lim Vo(up) = V(u)
h—ee
or, equivalently,

lim la,/(J0,T[) = 1al(JO,TD).

h—eo
To prove Theorem 4.2 we need the following lemma.

Lemma 4.1. Let uand up, he N, be maps belonging to BV ([0,T], R™) and satisfying
hypotheses 1) and ii) in Theorem 4.2. Then
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lim Vi(up) = Vg(u) , VieE,,
h—0

where E_ denotes the set of continuity points of u.

Proof. Forevery «, Be[0,T], a <P ,itis

(4.4) lim inf V*, () 2 VP, ) ,

h—ee
where, for any ue BV ([0,T], R™), we set

VP =1lim VP().

s+

Indeed, let € >0 and let Ac[0,T] be a subset of measure zero such that u(t) — u(t) for
every te [0,T]\ AL. Then, there exists a natural number N >0 and N instants ty, ..., ty,
with te[0,TINA and a<t; ... <ty <P, such that

N
VP ) < ) - u(t )l =
i=1

=z

= im S luy(ty) — uy(t;_p)! < liminf VP (up) ,
h-—ee i h—yeo o

It
—_

which yileds (4.4), by the arbitrariness of €. To prove the Lemma, assume, by contradiction,
that there is a te E; such that the sequence (V{)(uh)) does not converge to Vg(u) . Then, by
(4.4),

lim sup V(t)(uh) > V(t)(u)

h—oe

(recall that V(t)+(u) = V(t)(u), because u is right continuous at 0). Furthermore, by (4.4) and by
the continuity of u at t, we have

lim inf V}y(uy) 2 Vi (0) = V() .
h—e
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Hence, there exists 6 >0 and a subsequence (uy) of (up) such that, for every h'e N,

Voluy) > VoW +28,  Vilup) 2 Vi(w) 5.

Then, for every h' we have

V() = Vi(up) + Vi) > Vo) + 8,

which contradicts the hypothesis.
QED

Proof of Theorem 4.2. Let us denote by ¢ and ¢, the canonical graph completions of u
and uy, respectively. Furthermore, let W and Wy, be the functions introduced in Definition 2.4
corresponding to u and uy, , respectively. Hypothesis ii) implies that the ¢, are equi-Lipschitzean
with a constant converging to T + Vg(u) (see Remark 2.4).

We claim that

(4.5) lim llg, —@ll =0,

h—ee

where [l denotes the C® norm.

In fact, by Ascoli-Arzela theorem, there exists a subsequence (@y;) of (py) which
converges uniformly to a Lipschitz continuous function W having a constant less or equal to
T + V(u) . Let us show that y = .

Let E; and A have the same meaning as in the previous Lemma. By assumption

(4.6) lim uy(t) =u(t) Vte[0,T]\ N

h—e
Let us prove that

(4.7) im g (W(0) = (W), VIcE AL

Indeed,
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lpp (W(D) — 9(W(D)I <
< (WD) — @ (Wi + lpp(W(1) — (W (D)! .
The second term on the right-hand side converges to zero, since (4.6) can be written

m @ (Wy(D) = o(W(D)) , Vte [0, TIN AL,
h—eo

Furthermore, for a suitable L >0 and for every h', we have
IQn (W (1)) — Oy (W ()] < L IW(E) — Wy (D)l .
' By Lemma 4.1, IW(t) — Wy(t)l converges to zero as h' tends to infinity, for every te E .
Hence (4.7) is proved. g ;
Actually, (4.7) holds true for every teE. . Indeed, for every t, 1€ [0,T] we have
Py (W (D) — (WD)l <
< oW () = (WD)l + I (W(T)) — p(W(D)! + lp(W(T) — (W (D)I <
< (W (D) — (W)l + 2 LW () = W()! .
The limit (4.7) implies that, if 1€ E,\ Al and te E, then the last expression is smaller than any

prescribed € >0 assoonas T is sufficiently close to t and h' is sufficiently large. Therefore
we can conlude that

lim Qp(W(D) = e(W() VieE,,

h'—ee

that is, to say,

(4.8) v =)  VseW(E,).

Furthermore, it is
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(4.9) V() =0(s), if se [W() ,W(tH)], for some te[0,T].
Indeed, if s=W(t),

y(s) =§1irn V(&) = lim y(W(1)) =
—s T-—>t"
teE,

= lim <P(W(r))=§lim 9 = 9(s) .
T-->t" s~
'teEc

Similarly, (4.9) can be proved for s = W(t*) . It remains to check that, for every te[0,T]\ E.,
(4.10) Y(s) = o(s) , if se]W(t), W(tH[ .

Atsuch s, ¢ is affine and

l%%’-l =T+ V) .

Then (4.10) is a straightforward consequence of the fact that y is Lipschitz continuous with a
constant less or equal to T + Vg(u) and that W(s) = ¢(s) at the endpoints s = W(t-) and
s = W(t*) . From (4.8) and (4.10) we obtain Y = ¢ . Since this holds true for every
converging subsequence @ of @y, (4.5) is proved.

To conclude the proof, let us denote by = (yo, y) and §, = (yg, ¥n), he N, the
solutions of (E),,; corresponding to the paths @ and @y, respectively . If we apply Theorem
4.1 to the Cauchy problem (E)q41 » then by (4.5) we obtain

(4.11) lim 1§, - §ll=0.
h—w

Since, by Theorem 2.2 and Remark 2.6,
IXp(8) = x(O1 = lyy(Wp(D) — y(W ()] <

S YR(Wh(0) — YWD + ly(Wy() - y(W(©)! <
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< Iy (Wi(D) = y(Wr(O)! + L TWy (1) - W (D)l
for a suitable constant L, (4.11) and Lemma 4.1 imply that

lim x(t) = x(t), VieE, .

heseo

QED

5. A limiting family of measure differential equations.

In the previous sections the emphasis has been put on the canonical graph completion of a
control ue BV ([0,T], Rm) . In particular, in Section 4 it has been shown that this is the
appropriate graph completion whenever u is thought as the limiting element of a sequence of
regular maps (u;) which converge to u in the sense that

lim u,=u a.e. and lim Vg(uh) = Vg(u) .
h—3ee h—ee

The latter is the condition which forces the graphs of the uy, to approximate (uniformly) the
canonical graph completion of u.

If the hypothesis 11_1)11‘m Vl(;(uh) = V};(u) is dropped, one can no longer expect that the
rectilinear bridging whigh is used in the construction of the canonical graph completion still
plays a privileged role. Then, the problem arises of looking for the a.e. limits of solutions xy
corresponding to regular controls u, which satisfy the weaker condition:

lim u, =u a.e. and lim sup Vg(uh) <+oo,
h—eo h—oeo
It will be proved that there exists a family of measure differential equations, each of which
has a unique solution coinciding with one of the a.e. limits of the sequence (x4) considered
above.
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We shall need the following auxiliary Cauchy problem, which governs the instantaneous
evolution of the state at the jump points of the control:

EZ_ 5, ey

do'— élgl(z(o-)) d(j ’ C e [031] ’
)

z(0) =z

where = (yl, ..., y™) is a Lipschitz continuous map from [0,1] into R™ . If z denotes
the solution of (J), let us set

2(z,y):=z(1)-Z.

Remark 5.1. The choice of [0,1] as interval of paramctrization is not restrictive, since (J)
has a geometrical character, i.e. the trajectory described by a solution of (J) is independent of
the parametrization of the path .

Remark 5.2. On the basis of the previous remark, one can easily check that, for each Z and
each v, there exists amap % from [0,1] into R™ with Lipschitz constant Vé(\y) , and such

that z(z, y) = z(z, ) .

Now we can construct the family of measure differential equations whose solutions
correspond to a.e. limits of solutions of (E).

Let ue BV ([0,T], Rm), and let ‘T be a countable subset of [0,T[ which contains 0 and

all discontinuity points of u . Furthermore, let (y,),c ¢ be a family of Lipschitz continuous
maps from [0,1] into R™ such that

(H) D Voy) <+ oo, and w0 = u(t) , W) = u(t?) for every te 7.
te T

In the case t =0, the condition on yy(0) is meaningless, and we require only Yy(1) = u(0+).



-71 -

Let us consider the following generalization in the sense of measures of the Cauchy
problem (E):

k=f(x) + ¥ giig, + 2z(x),y)3, on ]0,T[
i=1 te T

E)ac
x(0%) = z(x,¥y) ,

where 8, denotes the Dirac measure concentrated in t, E; is the set of all continuity points of
u,and ujg, isdefined by ug (B) = u(BNE,), for each Borel subset B of ]JO,T[ .

The definition of solution of (E),, is completly analogous to the definition of solution of

B

Definition 5.1. A solution of (E) 4 is @ map xe BV([0,T], R®) which satisfies (E)4¢ in the
sense of measures on 10,T[ . In other words

Ji = Jf(x(t))dt +_Z jgi(x)ﬁi + D Z(x()W)

i=1 BNE, te InB

for every Borel subset B of ]0,T[ .

Remark 5.3. The condition ZV(I)(%) <40 in (H) implies that ¥ lz(x(C)Wl < + oo,
te T teT
which guarantees that the right-hand side of (E),, is a measure.

Remark 5.4. If ueBV ([0,T], R™) and (y). ¢ is defined for every te T by
\Vt(s) = U(t) + 8 (u(t+)—u(t)) , SE [Oal] 9

then problem (E),, coincides with (E); (see Remark 2.2).
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Theorem 5.1. For each ue BV ([0,T], R™) and each family (W) satisfying (H), the
Cauchy problem (E)q has a unique solution (up to a set of Lebesgue measure zero).

Theorem 5.1 is a straightforward consequence of Theorem 5.2 below and the uniqueness
of the solutions of the Cauchy problem (E),.;. To state the latter, we need a canonical way to
construct a graph completion of u corresponding to the family (Y . On the basis of
Remark 5.2, we can assume that

for every te T, the Lipschitz constant of \y, equals Vé vy .
Since T is a countable set, we can write 7= {t; | ie N} . For every ie N, let us set
1 =
a:=Vo(y) , a:="2;.
i=1
Let us define the map #/: [0,T] — [0,1] by

(5.1) WY = 7= [WO+ Ta; ],

<t

where W is the map used in the definition of canonical graph completion of u (Definition 2.4).
Then % is an increasing, left continuous map, and the only discontinuity points of W are
contained in 7. Ateach te ‘T, the jump of W is given by

AW(ti) + 4

AMY) = 1 +a

Let us define the graph completion ¢ of u corresponding to the family (Y ¢ by

o(s) = (t, u(®) if s=w1),te[0,TI\T,
(5.2)

o) = (1, v, E—2'2y) if se[wy), W], te T
t ame)
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It is easy to check that ¢ is Lipschitz continuous with constant L = (1 + a)[T + Vg(u)] .

Theorem 5.2.Let u and the family (W) be as in Theorem 5.1.Then a map
xe BV([0,T], R®) is a solution of (E)4, if and only if there exists a solution § = (y%,y) of
(E)ps1 » corresponding to the graph completion ¢ defined by (5.2), such that

x(t) = y(MD)

for almost every te[0,T].

Remark 5.5.If xe BV—([0,T], Rm) , then the equality x(t) = y(W/(t)) holds for every
te 10,T] as in the case of Theorem 2.2, but now

x(0) = x(0%) = y(m(0+)) ,

where MO01) = Vé(\yo)/(l + a). Therefore, in general, we do not have x(0) = y(1{0)) = y(0).

Proof of Theorem 5.2. The proof is very similar to the proof of Theorem 2.2. Hence, we
shall limit ourselves to indicate the points where they are different.

Let¥ = (y% y) be the solution of (E),,; corresponding to the graph completion ¢
defined by (5.2). Let us show that the map x defined by

x() : =y(MY) , 1€[0,1],

is a solution of (E),,. In this part of the proof we do not use the fact that Wis given by (5.1).
It is enough to assume that MA0) = 0 and that W is increasing, left continuous on ]0,T], and
continuous on ]0,T[ \ 7. Moreover, we assume that the function ¢ defined by (5.2) is Lipschitz
continuous.

By definition, y is a solution of the integral equation
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S
y(s) = Uf(f(y(&))@i’(&) + ngy(&))(pi@)d& :
i=1

. . d 0 doi
where q)g and (pi are Borel functions coinciding with the derivatives % and _a(_Pé_ almost

everywhere with respect to the Lebesgue measure. Since f and the g; are bounded, and @ is
Lipschitz continuous, y turns out to be Lipschitz continuous. Furthermore, % belongs to
BV([0,T], [0,1]) . Then, Theorem 3.1 yields

(5.3) %= 5u(W) W,
where

yu(s) = f(y(9)) 02() + ¥ gi(¥(S)) oa(s) -

i=1

By an argument similar to the one used in the proof of Theorem 2.2, one can show that
(5.3) implies

Jgi(x)ﬁi + Z z(x(t),yy)

m
=1 AnE_ te TNA

(5.4) Jx = Jf(x(t))dt +

for every Borel subset A of J0,T[\ 7. Note that the last term on the right-hand side of (5.4) is
zero, since INA = @ . We have written it just to render (5.4) formally similar to the integral
representation of a solution of (E),, given in Definition 5.1.

By (5.3), for every te TN]0,T[ , one has

(5.5) X((5)) = (W)t - W(1;}) -

By the definition of Volpert's averaged superposition (see Definition 3.1), and by the equality
Mt*) — W) = W{t})), one has

1
YWY = f%}(rwaj) + oMW((t;)))do =
0
(5.6)
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=)~y

.

W({t DY MWt}

where z(c) = y(Mt) + O"i/t{{ t;})) . By the definition (5.2) of ¢ on[Mt), ‘M/(t;)] and by the
equation (E),,; satisfied by ¥, the function z satisfies the auxiliary Cauchy problem (J) with
V=Y, and Z =y(W)) . Therefore (5.5) and (5.6) imply, for every t;e T,

x(5) = 2y(me) . wy) = 2. vy

Hence, we can write, for each te TN]0,TI,

(5.7) [ ff(x(t»dt 5y J g(u + 2(x() v

(5 {5} =1 {f{)InE;
Note that only the last term on the right-hand side is non-vanishing. As in (5.4), the remaining
terms have been written to obtain the form of the integral relation in Definition 5.1.

By (5.4) and (5.7) we can conclude that the map x(-) =y(W-)) satisfies the equation in
the definition of (E),,. To prove that the Cauchy condition x(0+) = z(X,y,) is fulfilled, it is
enough to observe that x(0T) = y(#{0™)) and that , by (5.2), the equation satisfied by y on
[0,7007)] yields y(M(0T)) = z(X,yo).

To conclude the proof, we have to show that if x is a solution on (E),,, then it coincides
with y(7) almost everywhere, where § = (y0,y) is a solution of (E),,; corresponding to the
graph completion ¢ defined by (5.1) and (5.2).

For this purpose; given any solution x of (E)g4, let

§(s) = (¥9, y)(s) = (¢, x(t)) if s=mt),teT

- Wt .
¥(s) = 7% y)(s) = (;, 7 5——-——-—(—5—)— ) if se[Mt), ML), e T,
m{y))

where Wis defined by (5.1), and z; denotes the solution of the auxiliary Cauchy problem (J)
when y = \y[j and z =x(t7) .
One can check that
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i)  § is Lipschitz continuous;
i) ¥ isthe solution of (E),,; corresponding to the graph completion ¢ defined in 5.1.

The proof of i) and ii) are quite similar to the corresponding proofs in Theorem 2.2 and
therefore are omitted. QED

The following theorem characterizes the solutions of Cauchy problems (E),, as the
almost everywhere limits of solutions x;, of (E) corresponding to sequences of regular controls
up, with equi-bounded variations which converge to u almost everywhere on [0,T].

Theorem 5.3. Let (uy)nen be a sequence of Lipschitz continuous controls with equi-
bounded total variations converging a.e. to a function ue BV ([0,T],R™). Then there exists a
subsequence (uy) of (up) such that the corresponding solutions xy of the original Cauchy
problem (E) converge almost everywhere to the solution x of the Cauchy problem (E),,
corresponding to u and to a suitable family () ¢ satisfying (H) .

Conversely, let u be a map belonging to BV ([0,T], R™), let (W) be a family of
Lipschitz continuous functions satisfying (H), and let x be the corresponding solution of
(BE)ac- Then, there exists a sequence (uppen of Lipschitz continuous controls converging a.e.
to u with equi-bounded total variations, such that the corresponding solutions x; of the
original Cauchy problem (E) converge to x almost everywhere.

Theorem 5.3 will be proved in the next section.

6. Proof of Theorem 5.3.

The proof of Theorem 5.3 is based on Theorem 4.1 and on the following lemma.

Lemma 6.1. Let ue BV ([0, T], R™), and let (u)yn be a sequence of continuous maps
Jrom [0,T] into R™ with equi-bounded total variations such that (u;) convergesto u a.e.in
[0,T] . Then the graphs of the functions w, can be reparametrized by means of maps
¢y, : [0,1] = [0, TIXR™ such that:
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i) thefamily (OpneN is equi-Lipschitzian;

i) there exists a subsequence of (Pp)nen Which converges to a graph completion of u.

Proof. Let @, be the canonical graph completion of uy, introduced in Definition 2.4. By (i)
of Remark 2.4 the Lipschitz constants of the functions ¢ are bounded uniformly with respect
to h.

By applying Ascoli-Arzela theorem to the family of maps @y, : [0,1] — [0, T]xR™ , we
obtain the existence of a subsequence (@y) of (@) which converges uniformly on [0,1] toa
Lipschitz continuous map ¢ . We shall show that ¢ is a graph completion of u.

By contradiction, let us suppose that ¢ is not a graph completion of u. Since @0 isnon
decreasing, this means that there exists te[0,T] such that

(6.1) (t, u(t)) # ¢(s) ‘Vse[0,1] .

Since K : = @([0,1]) is a compact set, (6.1) implies that there is a 8> 0 such that

(6.2) dX, (t, u(®))) > 9,

where d denotes the usual distance between a point and a subset of Rm+1, Since ((ph’)

converges to ¢ uniformly, setting Ky = ¢([0,1]) , by (6.2) there exists a natural number N
such that

(6.3) d(Ky, (¢, u(®)) >% Vh'>N.

Since u is left continuous on ]0,T],if t>0 there exists a left neighborhood U, of t such
that

(6.4) (T, u(t)) — (¢, u()l < g , Ve U,.

Since u is right continuous at 0, if t=0 there exists a right neighborhood U of t such that
(6.4) holds.

Let Al be a subset of measure zero of [0,T], such that
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lim uy(T) = u(t) V1e[0,T]\ AL
h—
If te U, \ A/, then there exists h' > N such that

(6.5) I(T, up(T) = (T, w(l < g .

Since for every h' there exists an sy€[0,1] such that
(Ph‘(sh') = (T'.- Uh'(T)) 5

from (6.4) and (6.5) we obtain that

A (&, u0) <3,

which contradicts (6.3). This concludes the proof of the lemma.
QED

Proof of Theorem 5.3. Let ¢, be the canonical graph completion of u; introduced in
Definition 2.4. By Lemma 6.1 there exists a subsequence (@) of (@) which converges
uniformly on [0,1] to a graph completion ¢ of u.Let R:[0,T] — [0,1] be defined by

R(t) = inf { se[0,1]: @O(s) =1t }.
Then R is increasing, left continuous, and
(6.6) Pls)=t & R <s<RH,
where we set R(TT)=1.
Using the fact that @ is a graph completion of u and that u is left continuous on ]0,T], it is

easy to see that

(6.7) (t, u() = ¢(R()) Vte]0,T] .
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Let Wy, be the functions introduced in Definition 2.4 corresponding to uy, . Let us prove
that

(6.8) R(t) < liminf Wi(t) < limsup Wy(t) < Rt
h'—e h'—eo

for every te [0,T[ . By the definition of ¢ we have (pﬁ(W n(0) =t. Since (¢y) converges to

¢ uniformly on [0,1], we obtain

@O(liminf Wiy(D)) = ¢(limsup Wp(1)) = t,
h'—ee h'—eo
which gives immediately (6.8).

Let §=(y%y) and ¥, = (yﬁ, yy) be the solutions of (E)q4q corresponding to ¢ and
¢y, , Tespectively. Since the Lipschitz constants of the functions ¢, are uniformly bounded
(Remark 2.4) and (@) converges to ¢ uniformly on [0,1], if we apply Theorem 4.1 to the
Cauchy problem (E),,; we obtain that (§,) convergesto ¥ uniformly on [0,1] . Since (6.8)
gives

R() = lim Wy

at every continuity point t of ® on [0,T[, from the uniform convergence of (yp) to y we
get

(6.9) y(R(®) = hl-i_IfL Y (Wh(t)

for almost every te[0,T].
Let T be the union of {0} and of the set of all discontinuity points of X.. For every
te T we define y, by

Y i(s) = Qi(R(t) + s AR(D) , s[0,1] , i=1,..,m.

Using (6.6) and (6.7) we obtain that ¢ satisfies (5.2) with W= R. Therefore the first part of
the proof of Theorem 5.2 shows that x(-) : = y(R(-)) is the solution of (E)as corresponding to
the control u and the family (V) 7. On the other hand, by Theorem 2.2 we have
() = yp(Wy(-)) a.e. on [0,T]. Therefore (6.9) yields
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x(t) = lm xp(t) for a.e. te[0,T],

h'—>eo

which concludes the proof of the first part of Theorem 5.3 .

Let us prove the second part. Let u and the family (Y, be as in the hypothesis and
let x be the corresponding solution of (E), . Let @ = (@9, ¢!, ..., ™) be the graph
completion of u defined by (5.1) and (5.2), and let ((pﬁ)heN be the sequence of maps from
[0,1] into [O,T] defined by

Since ¢ is Lipschitz continuous with constant L = (1 + a)[T + Vg(u)] (see Section 5), the
derivatives of the functions (pﬁ satisfy, for almost every se[0,1], the inequalities

d wﬁ(s)

L+1
P+ S d

(6.10) |

IA

For every heN, let us define the map ¢, : [0,1] — [0,T]XR™ by

Pu(s) : = (@, 01, ..., e™)(s) , se[0,1] .

By (6.10), the function <p}? is invertible and, for every he N , its inverse s, is Lipschitz
continuous with constant h + 1. Then the controls uy, : [0,T] — R™ defined by

uh(t) = ((PI, ey (mesh(t))

are Lipschitz continuous and their total variations are uniformly bounded by L . Furthermore,
for every he N, ¢y, is a reparametrization of the graph of uj . Then, denoting by x; the
solution of (E) corresponding to the control u; , and ¥ = (yg,yh) the solution of (E),,;
corresponding to @y, , it is

(6.11) xp(0) = yp(sp(®)  Vte[0,T] .

Note that (¢;) converges to ¢ uniformly on [0,1] and, by (6.10), the Lipschitz
constants of the functions ¢, are uniformly bounded. Then, applying Theorem 4.1 to the
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Cauchy problem (E),,; we obtain that (§;) converges uniformly on [0,1] to the solution
¥ =%y of (B),,; correspondingto ¢ .

Let W be the function defined in (5.1). Since MAt) = inf { se[0,1]: ¢O(s) =t } and
(p}?(sh(t)) =t forevery te[0,T], arguing as in the first part of the proof we obtain that

M) = I}nn sp(t)

at every continuity point t of %/ on [0,T[ . Therefore the uniform convergence of (yp) to y
gives

y(M1) = hm yp(sp(t) forae. te[0,T] .
h—oo
By (6.11) and Theorem 5.2 we conclude that
lim xp(t) = x(t)
h—eo 3

for almost every te [0,T]. QED
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PART II

Minimization problems
for impulsive control systems

In the next two chapters , optimal control problems for systems of the form

(LE.) x =£(t, x(), u(®) + 2, go(t, x(®), u®)) )

o=1
are treated. Precisely, one seeks the minimum value of

{y&x@Dn)ueul

where v is a continuous function of the state, U is a family of admissible controls taking values
on a compact subset UCR™, and x(u,T) denotes the final value of the solution x(u,-) of (I.E.)
corresponding to the controlu e U.

We refer to the Introduction for the mechanical applications which demand the study of
such non standard optimal control problems.

In Chapter 4 an optimization problem with an a priori bound on the total variation of the
controls is investigated. In view of the results contained in the previous chapters, one expects
that the optimal controls contain instantaneous arcs. Actually, a result on the existence of such
an optimal control is proved. Also, it is shown that the minimun value of the cost function may
be approximated by means of Lipschitz continuous controls. These results have been obtained
by the author of this thesis and have been recently proposed for publication.

Chapter 5 is formed by the the first part of a paper which is going to be written by the

author of this thesis and Alberto Bressan (see [8]). In this work, which is now in an advanced
state of preparation, we tackle the optimization problem without any constraint on the total
variations of the controls.
In the part presented in this thesis, we investigate the case in which all the Lie brackets [£0,-8p]
vanish identically. By means of a suitable diffeomorphism of the space of the couples state-
control, we are able to refer the existence problem to the non impulsive case. Also, a necessary
condition for optimality is proved in the form of a maximum principle.
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The investigation of the general case, in which the brackets [g4,gp] are not all equal to zero,

is now going to be completed and will appear in [8].
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Chapter 4

An optimization problem with a constraint
on the total variations of the controls

1. Introduction.

Let U be a compact, connected subset of R™, and for K>0 and Ue U, let Uk the
family of Lipschitz continuous maps u : [0, T] = U, u(0) = u , with total variation Vg(u) less
or equal than K.

Let QcR" be an open subset and let x denote an element of Q. Given the vector fields T and
§a , a=1,...,m, we consider the Cauchy problem

r

x = T(t, x, u(®) + D, gt x, u®)u®
y » o=1

(1.1)

x(0)=x ,

.

the dot denoting differentiation with respect to time, together with the minimization problem

(P) min{yx(, T)) u()e Uk},

where 7y is a continuous real function of the state, and x(u, -) denotes the solution (if it exists)
of (2.1) corresponding to the control ue Uy .

It can be easily seen that an optimal control ue U g for Pdoes not exist in general, as it is
shown by the following example.

Example. Consider the Cauchy problem in [0, T]
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(%1 = (tg x2+tg x3)-(%—— t)

1

1+tg"x2
(C.P.) 3
¥=—l—u
1+tg“x3

(x1,x2,x3)(0) = (0, 0, 0) ,

where (x!, x2, x3)e Rx |- -21§- , g—[ X ]—-27E , 72—5{, and u(-) is allowed to be a Lipschitz continuous

map from [0, T] into the compact set U defined as '
U={@,u)l@,)eR?,0<ui<l,i=12,u2-@)*<0}.

Moreover we assume that u(0) = (0, 0) and that the variation of u(-) is less or equal than -3— .

Let us denote by Uy the family of such maps and let us consider the optimization problem
2

P min{x1(u, T), ue ‘Zl:,_} ,
2

where x1(u, -) denotes the first component of the solution of (C.P.) corresponding to the

control ue Uj3 .

2
By means of the diffeomorphism ¢ : R X ]—-;-C- , g—-{ X ]—-g— , g{ — R® defined by

d(x1, x2, x3) = (x1, arctg x3, arctg x2) ,
(C.P.) is transformed into the new Cauchy Problem
r. 1
1= 2+y)(3-1)

(C.P.) qy2 = ul
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and the optimization problem (P) is replaced by

Py min{yl(u, T), ue ‘(13_} .
2

Clearly the infimum value of y'(u, T) is achieved if and only if
(Wl + O = (2 +y)O = 0 Vie[0,5(,
and

(W +)O =2 +y)0 = 2 Viel7,01,

and this minimum is equal to 23T .
Obviously such a map u(-) cannot be extended to a Lipschitz continuous functions on [0, T] .
On the other hand, the maps u; defined, for every ke N, by

w®=0,0 Vie[0,+-2%]
1 -k
t—=+ 2 t-% + 2
2 —k 1 X
u(t) = ( Kk , ( K ) ) Vie +271]

u® = (1,1) Vie [%+ 2% 1

belong to U; and
z

lim y (uk, T) ~-mf{y (u, T) , ue ‘U3) =%~.
k—o0 2

Notice that the graphs (t, ui(t)) converge (in a sense to be precised in Section 2) to a space-
time control containing an instantaneous arc at t=0.
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On the basis of the results in [9] (see Chapter 2) it seems natural to embed the optimization
problem (P) into a new problem (P') in which Uy is identified with the set CDE of the
reparametrizations of the graphs of ue Uy . The problem (?°) is obtained from (P) by
adding one dimension both to the controls and the states. As a family of admissible controls for
the extended problem (") we shall consider the set @ formed by all the continuous paths
©°,3)=(0%,....0™ : [0, 1] = [0,TIxU such that ¢°: [0, 1] — [0, T] is non decreasing
and surjective, and @ has total variation Vé( ®) less or equal than K. Notice that a path
pe Dk

0
may contain istantaneous arcs, i.e., to say, —a(g— may be zero on some subinterval of [0, 1].
Actually , if @ and @ denote the quotients obtained by reparametrization from @y and P ,
respectively, we shall show that the closure @-{( of @J;( with respect to the parameter-free
metric & introduced in [9] coincides with ©.
Moreover, by the compactness of the latter one obtains the existence of an optimal control
e @y for the extended problem. Then, the identity @—DI’; =@y and the results of continuous
dependence of solutions on controls proved in [9] imply that the minimum of the extended
problem coincides with the infimum of the original problem. Moreover,we construct explicitly
(Theorem 4.2) a sequence of controls u,e U such that the corresponding values of the cost

funtion tend to the minimum.
2. Space-time controls.

Let Uk be the family of controls introduced in Section 1. Let us assume that the fields f, Ea,
o =1, ..., m, are continuously differentiable in all arguments and that the solution of (1.1)
exists for every ue Uy .

By adding the state variables x0=t,x%=u%,a =1, ..., m, and the equations =1,
x* =u%, we can assume that (1.1) has the form

y=fy) + 2, ga(y)uc
2.1)

where v = (x°, ..., x™™), and the fields f, g, ,® =1, ..., m, are defined as
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~

2.2) f=(1,1,0,...,00%, g,=(0,g 0,1, 0)".

In (2.2) the symbol ¢ means transposition, and the last m components of g, are all zero but

the (n+1+a)-th, whichis 1.

Let ue Ug andlet ¢ = ((po, ®) : [0, 1] = [0, TIXU be any Lipschitzean reparametrization of
dq)0

the graph (t, u(t)), i.e. (po is Lipschitzean, q)O(O) =0 (po(l) =T ,-a-é—z 0 a.e.in [0, 1],

and

w(0’(s)) = ¢(s) = (@, ..., e™)(s),

for every se[0, 1] . Then, if \}’I(-) denotes the solution of (2.1), if is trivial to check that the
solution y(s) of the Cauchy problem

-

ded < do®

L=t + 2 )
(2.3) 3 o=l

y(0) =¥y

.
satisfies

y(s) = ¥(¢°s)) , Vselo, 1].
Hence

7O =y(@)7®) = (& yXO@Y Ozt nem > VEO, T,
provided (p0 is strictly increasing.
Remark 2.1. As in [9], we notice that (2.3) has a free-parameter character (see also [9]).

Indeed let ¢; be a Lipschitz continuous map from [0, 1] into RxR™ and k: [0, 1] — [0, 1]
is a non decreasing Lipschitzean map such that k(0) = 0 , k(1) = 1 . Consider the
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reparametrization @, of ¢; defined by @,(-) := ¢;(k(-)).If y; and y, denote the solutions
of (2.3) corresponding to @, and @, , respectively, then it is straightforward to verify that

ya(s) = yi(k(s)) -

We now introduce the set (I); formed by Lipschitzean reparametrizations of graphs of maps
belonging to Uy .

Throughout this chapter we shall denote by WX, Y) the family of Lipschitz continuous
maps from a metric space X into a metric space Y . Moreover, if f: [a, b] — RY isa
functions with bounded variation, the symbol Vi(ﬂ will stand for the variation of f in the
interval [o, Blc[a, b] (see Chapter 3).

Definition 2.1. We set

Dy = { @1¢= (¢, ) = (g0, ..., ome W([0,1], [0,TIXU) ,

de®
0)=0 ¢(1)=T 5~ > 0 forae. s€[0,1] ,

Vi@ < K, and (@1, ..., o™ o (¢ ()e uK} :

@y will be said the set of graph-reparametrizations of Uy .

Motivated by Remark 2.1, now we recall the notion of equivalence of Lipschitz continuous
maps introduced Definition 3.1 of [9].

As a preliminary, observe that every Lipschitz continuous map f: [0, 1] — R? can be
reparametrized by means of its total variation. More precisely, let us define the map £© by

Vo
T
0

£9( ) =f(s) Vse[0,1] .

By the elementary properties of the map s V(s)(f) , it is readily checked that £ is a well
defined map with Lipschitz constant Vg(f) .
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Definition 2.2. The map £© . [0, 1] - RY constructed above is the canonical
parametrization of f . We say that two continuous maps f;: [0, 1] » R%,i=1,2,are
equivalent , and write f; ~f, , if their canonical parametrizations coincide.

Definition 2.3. The quotient

will be called the set of graphs of Uk .

In analogy with [9] we are going to embed the set (I)E into a larger family of paths @k

0
which are allowed to be instantaneous, i.e. to say _d_([;_ = (0, on some subinterval of their

domain.

Definition 2.4. Let us set

Oy = { o1o=(90% @) =(9°, ..., ome W([0,1], [0,T]xU) ,

0
oY) =0 %) =T, Sl-(%s(l—) > 0 forae. se[0, 1] ,

Vo@ < K, (99 = (0, ﬁ)} :
The quotient

.o g
g =

will be called the set of space-time controls with spatial variation less or equal than XK .
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The set @ is a metric space as long as it is endowed with the following distance & , which
has been introduced in [B.R.] .

Definition 2.5. Given two continuous paths ¢; : [0, 1] — RY,1i=1, 2, their distance
O(@;, ¢p) defined as

80 ¢ = inf max 1gy(ky(s)) — ealka(s)!
ki.ky s€[0,1]

the inf being taken over all couplets of continuous, non-decreasing, surjective maps
k:[0,1]1 = [0, 1],i=12..

In [9] it has been proved that the inf in the definition of § is actually a minimum. Moreover 6
is in fact a pseudometric on @y , and 8(@;, @) =0 if and only if @1 ~ ¢, . Then & induces a
metric on the quotient space @y , which will be denoted by & . Hereafter we shall think Py
as a metric space endowed with the metric &.

3. An extended minimization problem which admits existence of
optimal controls.

We now extend the optimal control problem () to a new problem (') having @y as
space of controls.
As a preliminary, we notice that, on the basis of Remark 2.1, we can look at the Cauchy
problem (2.3) as an input-output operator which maps an equivalence class e @ into the
equivalence class J(®) defined as

y(@®) = {y lyeCO0, 11, R™™™) , y ~ y(9°, )} ,
where y((p©,-) denotes the solution of (2.4) corresponding to the canonical representative (p©

of ®.
Since y(1) = y((p©, 1) for every yey(®) itis also meaningful to speak of the final value

¥(@) = y(0°, 1)
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of the equivalence class y(®) .

We are now in position of introducing the extended optimal control problem (') defined as
¢ min{v(y(®, 1)) Py} ,

where v(-) is the (continuous) function defined on RxQxR™ as

(3.1) vy, Ly =y L YY)

Theorem 3.1. There exists an optimal control @e @y for the extended problem (‘P"), that
is, to say,
(3.2) V@, 1) < vE®, 1)

for every @e @y .

This theorem is a corollary of Lemma 3.1 and 3.2 below.

Lemma 3.1. The imap c: @®g — R defined as
(3.3) c(®) =v(y(®, 1)
is continuous.
Proof. Let
1:9— y(®)
be the input-output map which, to a space-time control § associates the corresponding solution
¥(®) of 2.4. By Theorem 2 in [9] (see Theorem 4.2 in Chapter 2) the map 1 is continuous with

respect to the topologies induced by the metric & both on the space of controls @ and the
space of trajectories ¥ .
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Moreover, the function m : ¥ — §(1) which maps an equivalence class of rectifiable paths into
its final value is trivially continuous. Hence, the functional c=v on i iscontinuous. QED

Lemma 3.2. For each K >0, the metric space @k is compact.

Proof. Let (®,),cn be a sequence of space-time controls @, @ . Consider the sequence
((pf)neN of the corresponding canonical representative. For each n o N, (pf has Lipschitz
constant less or equal than K + T . Then, by Ascoli-Arzela theorem, there exists a subsequence
Y, = (\TI?l , ) which converges uniformly to a Lipschitz continuous function y = a°, ).
Moreover, ye @ , since one can trivially verify that \;/0 is a non decreasing surjective map
from [0, 1] into [0, T], and

Vo) < Lm Vo, < K.
n—+oo

Since the uniform convergence implies the convergence in the metric & , the subsequence
(Wnen formed by the equivalence classes of the Yy, converges to the equivalence class
We @y of the function v . QED

4. Approximation of the minimum by means of Lipschitz
controls.

Theorem 3.1 states the existence of an optimal control Q’]\D for the extended problem (P").
Obviously this does not guarantee the existence of an optimal control for the original problem
(P).

Yet the minimum value v(y(@, 1)) turns out to be equal to the infimum of the values of the
cost functional in problem (P). Precisely, we have

Theorem 4.1. Let dﬁ be an optimal (space-time) control for problem (‘P"). Then there exists
a sequence of controls u.e U such that

(4.1) im y(x(u, ) =v(y@, D).

n—»
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Since we have

{viv@, 1) . e®}} = {vxu, T),ve ug},

Theorem 4.1 is a corollary of the following density result, whose proof supplies also an explicit
construction of the approximating sequence (u,).

CO([O,I],R1+m)

~

endowed

Theorem 4.2. Let @)E denote the closure of @; in the space

with the metric & . Then

(4.2) ¢ = @k

Proof. Since the set @k is closed and @); c @ , the inclusion

(4.3) D} < @y

1s trivial.
Let us prove the inclusion

(4.4) @y c V.

Let @e®y and let (p© = ((pO, @) be the canonical representative of @ . For every ne N
and every se[0, 1], we set

T

1
— (<P°(S) +=5)
T+;11- n

Wg(s) =
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and

Vo) == (W2, D)) -

For every ne N, the map u,: [0, T] —» U defined by

()= W)

is Lipschitz continuous. Indeed, for every s;, s,€[0, 1], 51 <s, , one has

T
Wg(sz) - \UO(Sl) 2 =57 (82— 81) -

Since @ is Lipschitz continuous with constant K + 1, setting t; = (\ug)'l(sl) and ty =
W7 (s,) , we obtain :

hua) — el € (K + D(H (59— i sp) s EEDUTD oy,

Hence, each space-time control , belongs to the metric space @ .

For each neN, let W e @)E denote the equivalence class of V. Since the sequence (W )neN
converges to q)© uniformly, we conclude that the sequence (W,),en converges to @ in the
metric & . QED
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Chapter 5

An optimal control problem for impulsive systems
with commutative vector fields

1. Introduction.

In the present chapter we present the results contained in the first part of a paper which is
going to be written by the author of this thesis and Alberto Bressan (see [8]). Since the second
part of this paper, which concerns the non-commutative case, has not yet been put into a
definitive version, herewe prefer to omit it and refer to the original paper.

Let us consider again the control system

(

x = T(x,u(®) + ZQa( x, u(t)) u®
o=1

(1.1) 3

x(0) =X
\.

where xeR® and the dots denote differentiation with respect to time.

We have seen that the case m> 1 differs from the case m =1 in that:

i)  only controls with bounded variation are allowed in order to avoid evolutions in the
directions of the Lie brackets generated by the g, ;

i)  at the discontinuity points of u(-) the trajectory of the jump of u must be specified in
order to achieve a robust definition of solution for (1.1).

In this chapter we shall see that if the fields g, commute on R™m | that is to say,

[8a> gpl =0, for each a,B =1, ..., M, then we can disregard the restrictions specified in i)

and ii), and we can treat the vector-valued case in full analogy with the scalar case (see Chapter

3). In particular, thanks to a change of coordinates which transforms (1.1) into a non-impulsive

control system, we will be able to deal with merely integrable controls and to speak simply of

jumps, without mentioning the instantaneous trajectories. Furthermore, we shall see that it is

possible to extend the results concerning (1.1) to the corresponding (Variational and) adjoint
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variational systems. In particular, the latter will turn out to be well defined also in the case of
integrable controls. This is useful to deal with optimization problems having (1.1) as differential
constraint.

An optimization problem is introduced in section 3, where the question of the existence of an
optimal control is treated, too. In section 4, a necessary condition for optimal controls is proved
in the form of a maximum principle.

2. Commutative systems.

Let xeR™ and let u(-) be a control function from [0, T] into a compact, path-
connected subset U of R™ . Let us consider the differential system

-

% = T(x u) + Dy Fol x u(D) W
(2.1) ﬁ o=l

x(0)=x ,

\.

where the fields ¥ and g4, =1, ..., m, belong to CI(R™xR™, R™) . The case in which f
and g®* depend explicitly on time may be recovered by adding a variable x0 =1t and the
differential equation x0=1. Moreover, by adding the variables x™® and the differential
equations XN+ = {10‘ ,a=1,..,m we can assume (2.1) has the form

r

y = f(y) + Z g,(y) u®
(2.2) N

k}’(O) =Yy = (x(0), u(0)) ,

where the symbol y denotes an element of R®xRm . The vector fields f and g, are defined
as

T, 10,0 0 By s B Oy o 1y s O,
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respectively, where, for each a =1, ..., m, in the expression of Ea the last m entries are all
zero but the a-th, which is 1, and ¢ denotes transposition. Throughout this chapter we shall
always assume that the vector fields g;, ..., g, commute, i.e.,

(2.3) [8ar g5] = 0,

forevery o,f=1,...,M, where the [-,-] denotes Lie bracketing (see Chapter 0).
In this case the system (2.2) will be said to be commutative . We recall that, under assumption
(2.3), one has

2.4) exp(a g) ° exp(b gg) y = exp(b gp) © exp(a g,) y =exp(a gy +b gg) y

for every «o,P =1, ..., m, and every (a, b)e R2 and ye Rn*m for which the above
expressions can be defined. This symbol exp has the same meaning as in Chapter 2 .

Let us suppose that there exists an element ue U and an open ball BcR™ centered in u and
containing U such that the expression ‘

(2.5) ‘ CXP(Z(U“—ﬁ“)ga)Y =

a=1

[exp(um—im)g, ) o exp((um-1-Tm-Tyg, 1) ... » (exp((ul-ahgyy]

may be defined for each ueB and every ye R™™  Up to a translation in R™ we can assume
that u = (0, ..., 0)e Rm, so that (2.5) becomes

(2.6) exp( D, u® gq)y -

a=1

For each ueB and for each xeRn let us set

2.7) k(x,u) : = p; © exp(= Y, u® go)(x, u) ,

oa=1

where p; stands for the projection of R®xR™ onto Rn».
The function k satisfies the group action properties



-99 -

k(k(x, up), uy) = k(k(x, uy), uy) =k(x, u; +uy)

(2.8)
k(x,0)=x

for every xeR" and every u;, uye B such that u; + uye B . Moreover, for each ueB,
k(-, u) is a diffeomorphism of R®, and, by (2.8),

(2'9) k—l('i u) = k(" 'U) .
Let us consider the diffeomorphism ¢ of R»xB defined by

.10 o(x, u) = (k(x, u), u) .

Let ¢«g, denote the push-forward of the vector field g , thatis to say, the vector field which
associates the tangent vector ¢«(x, u) gy (x, u)e T(e,u)(R™B) to the point (&, u) = 0(x, u),
where ¢+(x, u) denotes the differential of ¢ at (x,u).

0 .
Lemma 2.1. For each a =1, ..., M, the vector field 0.g, coincides with -é—-&-, that is, to

u
say,

(2.11) 0+go &, W =(0, ..., 1, ..., 0)%, v (§, weR™B,
where, on the right-hand side, all the entries but the (n+o)-th are zero.

Proof. (2.1) is satisfied if and only if exp(td+g, )&, W) = &, T+ (0, ..., t, ..., 0)) , with t at
the o-th position . Since gy (x, u) = (g;, cees gz, 0,...0,1, ..., 0)¢,and ¢"*%(x, u) =u®,it
is sufficient to show that

0= gf (k(exp t gox, w)) = Pr, © Ox 2o (exP(t Peg)(O(x, ) V(x, u)e RnxB .

Actually, one has

%(k(exp t £o(X, 0))) =§-t- [p1 o exp (X (uB + 8B 1) gg) © exp (t go)(x, W]
B=1

= % [pl ° cxp(—-g:l ubgp)(x, w] =0
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where the symbol %P equals zero if o # B, otherwise it equals one.
QED

More generally, one has

Lemma 2.2. If (v{, vp)e T,RAx T B then

dx(x, u)(vy, V) = (Vl(l)—zga@(x,u))v“ ,vo(1))e TR X B ,

oa=1

m
where, by setting (x(s), u(s)) = exp(-s 2, u®g,)(x, u) , we have written (v{(1),v,(1)) for
the value at time 1 of the solution to the Satiational equation

;’ = Yud Vg (x(s), u(s) v
(2.12) o=1

v(0) = (vy, vg) .

Q—ICL

In particular, vy(1) = v4 . In (2.12) the symbol Vg, denotes the Jacobian matrix of g.

Corollary 2.1. Let u: [0, T] — U be a Lipschitz continuous map, and let us suppose that
the corresponding solution x(-) of (2.1) exists. Then, the map &(t) : = py o O(x(1), u(t)) =
k(x(:), u(-)) solves the Cauchy problem

& = F(E, u(t)
(2.13)

£(0) = k(x, u(0)) ,

where (F(E, u), 0) is the solution at time 1 of (2.12), with (vy, vo) = (f(¢-1(&, u)))
(T (o1&, ), 0) ..

Conversely, if &(-) is the solution of (2.13),t hen x(-):=p; o 0-1(E(1), u(t)
k(&(t), —u(t)) solves (2.1).

Proof of Lemma 2.2. By
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(x, ) = (p; © exp(— P uogH(x,u) , u) ,

a=1

if p, stands for the projection of R®xB onto B, we have

2 B(P1 $) g=_zga(x, u)vg ,
=1 du® a=1
0 v SEE: 3 i
Z (pl q)) vy = 2 _.'(Pl ° CXP("‘Z u(}tga)(x’ u)))vl 3
0 oxi =1 ox! a=1
a(pZ 0- ¢) =0 , and
ox!

a=1 du® a=1 Ou*

a(p '\P2 ° @) 9) v < 0 o
5 Wevy= 2, ={py e expl= Y% g)(x, 1) .
= o=1
Since the function of s defined by

2 expi- 3 su% gk, WV, 2 ""‘(P2°CXP(" Y su% g% w)ve)

i=1 ox! o=1 o=1

coincides with the function v(s) solving (2.12), by the above identities and by

n

0 (K1) (V1 ¥g)= (2 d(p1°¢) i Z a_(gﬁ__(b)_va 3 an’+z d(pyod) )

2
=1 axl Ju¢ 2 i3 oxi o1 ou® 2

we get the thesis. QED

Proof of Corollary 2.1. By Lemmas 2.1 and 2.2 the vector fields ¢«g, and ¢«f coincide
with — and (F, 0) , respectively. Hence (x(-), u(-)) is the solution of (2.2) corresponding
to the control u(-) if and only if (§(-), u(-)) = ¢(x(-), u(-)) is the solution of
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(&= F(E, n(v)

n = ut)
(2.14) <
E(0) = p; ° O(X, u(0)) = k(X, u(0))
n(0) = u(0) .
.

Since (§(-), u(-)) [resp. (x(-), u(-))] is the solution of (2.14), [resp. (2.2)] if and only if &(-)
[resp. x(-)] is the solution of (2.13) [resp. (2.1)], the corollary is proved. QED

The following theorem will allow us to give a robust definition of solution to (2.1)
corresponding to an integrable control u(-), as well as in the case m=1 (see Chapter 3) .
Actually, the following theorem holds.

Theorem 2.1. Letr BCR™ pe the ball used in (2.7), aﬁd let C1([0, T1, B) be the set of maps
ue CI([0, T1, R™) which take values in B. Moreover, let KcR™ be a compact set such that a
compact set such that, for every ue CY([0, T], B) , the corresponding solution x(u,-) of (2.1)
exists and takes values inside K .

Then, there exists a constant M such that

T
I, T) — x(v, T)l + d[ bx(u, ) x(v, Dldt <

(2.15)

T
< M[1u(0) = v(O)! + Iu(t) - v(D)! + Oj lu(t) — v()ldt]

for all u, ve C1([0, T], B), te [0, T] .

Thanks to the diffeomorphism ¢ , the proof of this theorem can be obtained from the
proof of Theorem 1 in [7], by substituting the functional y(y, u) involved in that work with
the functional
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t

- )
x(E M), W)® =J (FE(S)M() , 0) ds + 2, [u(®) — ux(0)] —
o=1

where —a-; denotes the n+a-th element of the canonical basis of Rn*™ . Then, the theorem
can be pr%ved for the control system (2.14), and hence for the system (2.2). This implies that it
holds true for the control system (2.1) as well.

We are now in position to give a notion of generalized solution of (2.1) analogous to the
one given in [7] for the scalar case.

Definition 2.1 [Generalized solution to 2.1] Let u be a measurable control such that u(t)e U,
for every te [0, T, and let u(0)e U be an initial value.

A trajectory t — x(u,t) is a generalized solution of (2.1) if there exists a sequence of controls
vie CI([0, T], Rn), vi(De U V te [0, T], such that v (0)=u(0) , vy — u in the L! norm, and
the corresponding trajectories X(vy,") have uniformly bounded values and tend to x(u,) in
the L! norm.

Thanks to the estimate (2.15), any uniform a-priori bound on x(vy,t) , te [0, T] , for
some sequence Vi converging to u in L1, will provide the existence of a generalized solution to
(2.1). Such solution is unique up to L!-equivalence and depends continuously on the control.
In the case where u is defined pointwise on [0, T, the trajectory x(u,") can also be pointwise
determined. Indeed, for any fixed te [0, T] one can construct a sequence of C! controls w;
such that w;(O) =u(0), w;(m') =u(t) and w; — u in L]0, T] . The estimate (2.15) then
implies that, as k — e, x(w;, ) tends to x(u, -) in L0, T] and x(w;,'c) has a limit, say
x (t) . Repeating this construction for all T, one obtains a function t+— x (t) defined
pointwise on [0, T] .

Notice that , for any t€[0, T] one can extract a subsequence (w;.) from (w;) which converges
pointwise to u on the complement [0, TJ\N of a set N of measure zero. Moreover, for any
1€ [0, T], by the estimate (2.15) one obtains

(1) -x (w;.,r)l <lx(®)-x (w;,,'c)l +1x (w;,,t) -X (w;(.,’c)l
T
<1x (1) - x WO+ M [ WE(0) - w0l + 6[ lw(0) - Wy(0)ldo ]

Now, (w;, - wl‘() converges to zero in the L! norm, and, for each t¢ N, x (w;,,t) and WL.(t)
converge to x () and u(t), respectively. Furthermore, w;('t) = u(t), for every k'..
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Hence the sequence x (wlt(., ) converges to x (-) almost everywhere in [0,T], which implies that
x (+) is a generalized solution of (2.1). More generally, if the control u is pointwise determined
at t=0 and on some subset Ic[0 T], the same is true for the corresponding trajectory.

Definition 2.2, Let u be a measurable control as in Definition 2.1, pointwise determined on
a subset Ic[0, T]. A generalized solution to (2.1) determined on I as described above will be
called a (generalized) solution to (2.1) defined on 1.

In the following Proposition we prove that a result analogous to Corollary 2.1 holds for
measurable controls.

Proposition 2.1. Ler ue L1([0, T], RM) be a control with values in U such that the
solution & to (2.13) exists on [0, T] . Then the map

(2.16) x(9) : = k), u(®)

is the generalized solution of (2.1) corresponding to u . Conversely, if the generalized solution
X of (2.1) corresponding to the control u exists on [0, T], then the equality

2.17) &(t) = k(x(1), u(v)
holds almost everywhere.

Proof. By definition (&, u) is a generalized solution to (2.14). Let w.e CI([0, T], R®) be a
sequence of controls with values in U and such that the corresponding solutions (&, uy)
converge to (§, u) in L1. Since ¢-1 is Lipschitz continuous on compact sets, we have

lim ¢-1(&, u) =¢-1(& u) in LL

n—>+eo

Since by Corollary 2.1 (xy, uy) : = ¢~1(§;, u,) is the solution to (2.2) corresponding to uy, it
follows that

x, ) : =671, u)

is a generalized solution of (2.1).
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Conversely, if X is a generalized solution of (2.1) corresponding to u , then X coincides
almost everywhere with the map x(-) defined in (2.16) .
Since by (2.16) and (2.9) we have

&(t) = k(x(1), u(®)
the equality (2.17) holds almost everywhere in [0, T]. QED

As for generalized solutions defined on some subset Ic[0, T], it turns out that the
equality (2.17) holds for every te L. Precisely we have:

Proposition 2.2. Let ue L1([0, T], R™) be a control pointwise determined on a subset
Ic[0, T], with values in U, and suppose that there exists the corresponding solution X of
(2.1) determined on 1.

Then, if & is the Carathéodory solution of (2.13) corresponding to u , the equality

(2.18) x(t) = k(§(), —u(t)
holds for each tel.

Proof. Let teI. By the definition of generalized solution determined on I we have

x(t) = im % () ,

n—seo

where the x, are the solutions of (2.1) corresponding to a sequence (u) of continuously
differentiable controls such that u,(0) =u(0) , u(t) =u(t) and y —u in L.
By Corollary 2.1, it is

X (8) = k(Ei(D), —u () = k(€ (D), —u(®)

where &, denotes the solution of (2.13) corresponding to uy . Since &(t) tends to &(t) and
the map k(:, —u(t)) is continuous, we obtain '

x(1) = lim % () = im  k(G(t), —u(®) = kEG(®), —u(®)) .

n—yeo n—oee

QED
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3. An optimal control problem of Mayer type. Statement and
existence results.

Let us consider again the control system

(

x = T(x, u(t)) + ZEa( X, u(t)) u®
2.1) > o=l

x(0) =x ,

.

We have seen in the previous section that a solution corresponding to a measurable control u
can be pointwise determined on a given subset Ic[0, T] (see Definition 2.2), provided the
control u isdefined on I.In particular let I be equal to the singleton {T} . Therefore we can
speak of the terminal point xp(T, u) of the solution xt(-,u) corresponding to a control u
which is pointwise determined in T . Let UCR™ be a compact set, as in the previous section,
and let 0e U . We shall consider the class U of controls defined by

U={u:[0,T] > U, u measurable, u(0) =0} .

Given a continuously differentiable cost function y: R® — R, we are going to consider the
optimization problem

(?T) min{Y(xT(u3 T)) ,» UE ‘Zl}a

i.e.we wish to minimize the value of 7y at the terminal point xr(u, T) of the solution xt(u, -)
determined in T of (2.1) corresponding to the control ue U.

Actually this is equivalent to consider the problem of minimizing 7y at the terminal point
x(u, T) of the pointwise determined solution x(u,-) of 2.1 corresponding to the control u.
Here and hereafter, by pointwise determined solution we mean the generalized solution
determined on the whole [0, T], according to Definition 2.2.

Indeed, by Proposition 2.2, we obtain the following corollary.

Corollary 3.1. Let us denote by Rp(T) the reachable set at time T corresponding to the
solutions of (2.1) determinedin T, i.e.,
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Rr(T) = {xyp(u, T), ue U} .

Moreover, let R(T) be the reachable set at time T corresponding to the poimtwise determined
solutions of (2.1), i.e.,

R(T) = {x(u, T) , uve U} .

Lastly, let us denote by R'(T) the reachable set at time T of the control system

E = F(E, u(t))
(2.13)

£(0) = k(X, u(0)),
i.e., to say, let us set

R(T) = {&(u, T), ue U} ,

where &(u, -) denotes the solution of (2.13) corresponding to the control u.
Then '

Re(D) = RT) = {x: x=k(,~v), & veR(MMxU}.

On the basis of the above corollary, rather then studying problem (®r), we shall consider the
optimization problem

(D min{y(x(u, T)) , ue U}

Definition 3.1. We shall say that a control Ge U is optimal for (‘P) if the corresponding
pointwise determined solution x(G, ) of (2.1) satisfies

(3.1) Yx(0, T)) £ V(%) Vxe R(T) .

We shall put problem () in relation with the following auxiliary optimization problem (P"):
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(P min{y(€, T)) , ue U}
with  defined by

(3.2) \lf(i)=rni3 YkEG-v) -

Definition 3.2. A control Ge U 1is said to be optimal for (P ") if the corresponding
A
Carathéodory solution &(u, -) of (2.13) satisfies

(3.3) WED T) < w(E) VEe R(T) .

Theorem 3.1. A control Il\lé U is optimal for (‘P) if and only if it is optimal for (P') and
satisfies

Ay A ’ A
(3.4) Wy, T) = (k& T), w(D) .
Proof. Let ue U be optimal for (P) and let x(u ) be the corresponding pomtw1se

determined solution of (2.1). If ﬁ,(u -) 1is the solution of (2.13) corresponding to u then
Proposition 2.2 yields

A A A
x(u, T) = k(§(u, T), —u(T)) .
Hence, by Corollary 3.1 it follows that
A A A A
10:(u, T) = Y(k(E(w, T), -u(1)) <Yk, T), -v) VveU,

which, by the definition of y, implies (3.4).
Corollary 3.1 implies also that

1@, 1) <y(k(E, —v)) Y (&, v)e R(T)XU .
In particular, for every &€ R'(T) we obtain

WEQ T)) = y(x(u, T) < min k(6 ) = ¥(©)
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and hence G is optimal for problem (P ").

A
Conversely, let ue U be optimal for (') and such that the value u(T) satisfies (3.4).
Then

(3.5) WkEQ@, ), -am) = w(EQ D) SyE) VEe R(T) .
Since for each ve U and each &€ R (T) we have
V() < Y(k(E, —V),
by (3.5) and Corollary 3.1 we obtain
Y(k(E(w, T, —u(T))) < ¥(x) Vxe R(T) .

Since Proposition 2.2 implies that x(u, T) = k(&(u, T)), —u(T)) , the lemma is proved.
QED

Thanks to Theorem 3.1 the existence problem for (‘P) is reduced to the existence problem for
(P"), to which the classical results on the existence of an optimal control can be applied.
For instance, by Filippov theorem, the convexity of the values of the multifunctions

(3.4) F&=U FEu

ueU

and some suitable compactness and growth-conditions guarantee the existence of an optimal
control for (P") (see e.g.[19],pag. 63), and hence for (). Notice that the expression of F(E)
is provided by Corollary 2.1.

If the sets F(E) are not convex, then only the existence of optimal chattering controls can be
proved (see e.g [24], pag. 266) under the same compactness and growth-conditions of Filippov
theorem. We recall that a chattering control is a map which assigns to each t not merely a point
u(t)e U but rather a probability measure v(t) on U . It turns out, since
UcRm, that it suffices to consider atomic probability measures v(t) concentrated on no more
than m + 1 points of U.
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Remark 3.1. If the g, do not depend on x, i.e.,if gy =gy(), Va =1, ..., M, then the
expression of ‘H&) is quite simple. Indeed, if this is the case, one has

1

E=k(x,u)=x— Jiga((l-t)u)dt )
o=1
0

Hence the Jacobian matrix (akl(x,u)

; ) coincides with the unit matrix (6;) . It follows that
X

1

F(&, u) = {(¢71(§, w) = (€ + Jzuaga((l—t)u)dt ),
o=1
0

and hence

1

F7&=U fE+ JZu“ga((l—t)u)dt ) .
ueU a=1
0
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4. A maximum principle for optimal controls of commutative
impulsive systems.

We seek necessary conditions in the form of a maximum principle for a control which is
optimal for (P).
We begin by showing that many properties of the system (2.2) are extendible to the
corresponding variational and adjoint systems. By variational system associated to a differential
equation z= f(t, z) , ze R9, we mean the differential system on the tangent bundle T R4
defined by '

z = £(t, z)
(4.1

{'=Vf(t,z)-v

where Vf denotes the Jacobian matrix of f with respect to z, and (z, v)e T R4. By adjoint
system associated to z = f(t, z) we mean the differential system of the cotangent bundle T*Rd
defined by

z = f(t, z)
(4.2)

A=—A - VI, z),

where (z, A\)e T*R4a.
Let u:[0, T] = R™ be a continuously differentiable map.
Then

( m
y = f(y) + 2, go(y)u

a=1

(4.3) <

k{, = (VEi(y) + D, Vgo(y)u) - v
o=1

and
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4 m .
y = £(y) + Y go(y)u®
o=1

(4.4) 3
A=A (VEG) + D Veg(y)u®)

. a=1

are the variational system and adjoint system associated to (2.2), respectively.
Note that they are of the same form of (2.2), i.e. their right-hand sides are affine in u .
Moreover, the following proposition states that they inherit the commutativity property from the
system (2.2).
Proposition 4.1. Let us assume the fields gy are of class C2, and let the control system
(2.2) be commutative. Then the variational system (4.3) and the adjoint system (4.4) associated
to (2.2) are commutative too.
Proof. Let h and k be C?vector fields on R4 such that

[h, k] =0.
Then, the vector fields h , k on the tangent bundle T R4

hx, v) = (), VEy) -v),  K(y, v) = (ky), VKG) - v)
and the vector fields h , k on the cotan gent bundle T*R4
h(y, &) = (h(y) , -A » Vh(y)) . k(y, &) = (k(y) , -A * VK())
commute as well, that is, to say,
h,k1=0, [%,¥=0.
Indeed, denoting the 1-th component of [ﬁ , Q] by [ﬁ , ﬁ]‘, it is straightforward to check that

A A
[h, kJ*(x, v) = [h, kJ'(x) =0,
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and
A A 1 5
[h, klatr(x, v) = 3, ——[h, k]"(x) v¥ =0 |
=1 OX*

forevery (x,v)eTRY andevery r=1, ..., q.
Similarly, one has

[h, KIr(x, A) = [h, Kl*x) = 0,

and
2R, d P
[h, KJo¥(x, ) ==, ~—[h, k] A, =0,
¢=1 OX*

for every (x, A)e T¥R4 and every r=1,...,q. By setting h = gy and k= gg,a,pB=
A A

1,...,m, we obtain the thesis, since g1 5. &y »and El s eees ng are just the vector fields

which are multiplied by the u® on the right-hand sides of (4.3) and (4.4), respectively.

QED

Since the adjoint system (4.4) is commutative we can apply the results of the previous sections.
Note that the control system

f m
X = fix,u) + Zga(x,u){la
4.5) 3 o

r= -7 (V,Fxw) + SV E e |

\ a=1

where (x, m)e T*R,, and the symbol V, denotes differentiation with respect to the variable
X , is the adjoint system associated to (2.1). Given a differentiable contro] u, it is
straightforward to check that (x, m)(-) is a solution to (4.5) if and only if for every feRm
(v, V() = (x, u, 7, 2)(-) is a solution of (4.4).
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In particular, as long as an initial value has been given, it is meaningful to speak of the
pointwise determined solution (x, 7) to (4.5) .

Before stating a necessary condition for an optimal control for () we need the following
definition.

Definition 4.1. For every ve U, let k,(-, v) denote the differential of the application
k(-, v) . Let (X, ))eR"xU and ueU. The tangent vector

ky(k(x, U-), u-0) - T(k(x, T-u), u)e TRn

will be said the u-transported of T ar (X, ) , and it will be denoted by TIx, ).

Theorem 4.1. (maximum principle for commutative impulsive systems). Let Ge U be an
optimal control for the problem

(P min{y(x(u, T), ue U},

where x(u, -) denotes the pointwise determined solution of

(. m .
x = f(x, u) + z g o(%, u) u®

2.1) X o=t

x(0)=x .
\

Let us consider the solution (Q, ?r) : [0, T] = T*R" 10 the adjoint Cauchy Problem



- 115 -

x =T D)+ Y Fy0x ) te

o=1

. = —7 - Vx ?(X,G) + 2 ng(xwa){;a)
(A) AT ( o=1

A
x(T) = x(u,T)

(D = Vy(x(u, T)) ,

A A A
where the symbol VY denotes the gradient of Y. Then, the triple (u, X, 7) satisfies the
inequality

™) <), TEGO, u) - T, uw)> < 0
for almost every t€ [0, T] and for each ueU , where, for each xeR®, <., -> denotes the
duality between T:fRn and T,Rn.
Moreover, the inequality
A A A

) ¥(T)) < (k(X(T), 1(T) ~ )
holds, for every ueU .

In order to prove Theorem 4.1, let us introduce a class {Pg, ue U} of auxiliary

optimization problems, to which the classical Pontryagin's maximum principle is applicable.
For each ue U, we consider the function yg; from R® into R defined by

(4.8) vi®) = (k& D) .

The map g is of class C! since it is the superposition of two C! functions. Moreover,

y(&) = r_nag V(8

holds for every &eRn .
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For every Ge U, the optimization problem (Py) is defined by
(Pp) min{y5(§(u, T)) ue U},

where &(u, T) denotes the solution to the Cauchy Problem

E = F(E, u(t)
(2.13)
£(0) = k(X, u(0)) .

A
Lemma 4.1. Ifa control Ge U is optimal for the problem (‘P"), then u is optimal also for
the problem (Py)) .

Proof. By the definition of Wt and by the equality (3.4) we have

v (8@, D) = w(E@, 1) .

Since for each £ R '(T) one has

v(EQ, D) < y(©
by
y(E) = mi{} Y&, ) < wem(®
we obtain the thesis. QED

By means of of Lemma 4.1 we obtain the following result which is a corollary of thq
ordinary Pontryagin's maximum principle

Lemma 4.2. Ler 1 be an optimal control for problem () andlet £ be defined by £(t) : =
A A
E(u,t).Let ®:[0, T] — R be the solution of the adjoint Cauchy problem
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0= -0 - VeFE®, u)
(4.9)
o(T) = VyamE(T))

Then the triple (G, 8, c/:\)) satisfies the inequality
A A
(4.10) <a(®), FE(, v) - FE®, u0)> < 0
Jor almost every 1[0, T] and for every ueU .
Indeed, by Lemma 4.1, G is an optimal control for the problem (Pgt)) , and Lemma 4.2 is

nothing but the Pontryagin's principle applied to the problem (Pgry) -

The inequality (M) in Theorem 4.1 will be obtained from (4.10), by means of a suitable C!
automorphism of T*(R"xB), where B is the ball containing U, introduced in Section 2.
Actually, let \q/) denote the cotangent map of ¢, i.e. the inverse of the pullback ¢*. It is easily
seen that 6 transforms the adjoint system (4.4) into

r.
£ =F(E&,n)
.
(4.11) 9 .
= - - VeF(EM) —v e V,F(E, M)
v=0 |,
.

which is the adjoint system associated to the equation in (2.14). In (4.6) the symbol
((€,m), (w, v)) denotes an element of the cotangent bundle T*(R™xB).

It is straightforward to check that a/) isa C! automorphism of T*(R™xB) as soon as the fields
€1, ..., En are of class C2 . It is also easy to verify that, for each
((x, w), (7, M)e T*(R"™xB) ,

\'4

4.12) ox, u, 7, n) = kx, v), u, k*&, -w)r,n)
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holds, where, for every ve B and xe R, the symbol k*(x, v) indicates the ransposed map
of the differential k,(x,v) of k(-,v) at x.
In full analogy with Proposition 2.2, one can prove the following result.

Proposition 4.1. Let (X, & )e T*R® and let ue U be a control such that both the pointwise
determined solution (x, ) to

-

7.( = f(x,u) + Zga(x, u)1.1°‘

o=1

7.1.' = -7 (Vx?(xa u) + Z nga(x’ u){la)

(4.13) <
o=1
x(T) =Xx
(T =nx
4
and the Carathéodory solution (€, ) to
.
€ = F(x, u)
D= -0 - V., F(x,u)
(4.14) <

&(T) = k(x, w(T))

k(D(T) =k*X, u(M) 7

exist.
Then, the equality

(4.15) &), o) = (kx®), u®) , kK x(), —u®) 7 (1)

holds, for every te[0, T] .
Moreover, if te[0, T] and ve Tg(an , then
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(4.16) <a(t), v=> = <7 (1), ke (x(1), —u(t)) v>.

Indeed, as soon as the system (4.4), with ®(0) = (7, 0) , plays the role of the system (2.2) in
Proposition 2.2, by 4.12 the latter yields the equality (4.15). And (4.13) is a straightforward
consequence of 4.16. 4

Proof of Theorem.l. First, let us observe that, by the uniqueness of the pointwise
determined solution to Cauchy problem (2.1), one has

A A
x(t) = x(u, t)
for every te[0, T].
A
Since u is optimal for (P), by Theorem 3.1 it is also optimal for (?'). Then Lemma 4.2
A
applies to u, and by Proposition 4.1 we obtain

(4.17) <A, ke(x@), )FEE®D, w — FEW, nw)><0

for almost every te [0, T] , and for every ue U , where, by Proposition 2.2,
A} A
£ = k&, ).
In order to show that the inequality (4.17) coincides with the inequality (M) , we first observe
that the equality
k(k(x, uy), uy) = k(x, uy +uy)
implies

(4.18) k (k(x, uy), up) © ky(x, ug) =k (x, u; +uy),

for every xe R" and every uy, uye B such that u; + u,eB .
Moreover, Corollary 2.1 implies that for every (€, v)e R°xB it is

FE, v) =k (k(E, -v), v) fE, —v), V) .

. . A A A
In particular, since &(t) = k(x(t), u(t)), we have
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FE®), u) =k (k(x®, 9 — w), u) £{k&(®, 0(t) - v), u) ,
4.19)
A A FaY A A
FE®), 1) =k (x@, 2w) £(x@, 1) ,

for every te[0, T].
Then, accordingly to Definition 4.1,by (4.18)-(4.19) we obtain

k (x(0, “a)EE®, w - FE®, nw)) = T, £, (D) - fx(), 1) .

Hence, by (4.17), the inequality (M) holds for almost every te [0, T] and for every ueU.
Finally, the inequality (J) in Theorem 4.1 follows from Proposition (2.2) and Theorem 3.1.
Indeed, for every ue U, one has

(D) = k&), -a(T)) = yEM) <v(kET), —0)) = Y(k&(T), 2(T) - v)) .
QED
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Appendix

Moving holonomic constraints as controls
in classical mechanics

1.Introduction

Recently, Aldo Bressan has developed a theory concerning the control of Lagrangian
systems by means of additional moving constraints.

A very simple example is supplied by a pendulum with variable length v (see [12]). In this
case, the constraint y = y(-) is thought as a control u(-), which may be implemented in order to
minimize a given cost functional, e.g. the kinetic energy of the pendulum at a certain instant.

In its general setting, the mechanical model considered by Bfessan consists of a
Lagrangian system X subjected to holonomic, bilateral, time-independent, ideal constraints,
and locally described by Lagrangian coordinates (gi,y*),i=1,...,N,a=1,..., M.

If p; denotes the momentum conjugate to gi,i=1, ..., N, the subsystem 24 obtained from
Z by implementing the additional, time-dependent, ideal constraints Y = Qa(t) is governed by
equations of the form

gt = Fi(q,p.70,7(0)
(1.1) i=1,..., N,

p; = Gi(a,p.Y (.1 (®)

where the dot indicates differentiation with respect to time.

If the trajectories ¥%(-) of the last M coordinates y* are fixed a priori, a scalar control
u(t) for (1.1) may be considered by setting ’?“(t) = ¥%(u(t)). More generally, on the basis of
the results in [9] and[16], one can drop the assumption of fixed trajectories for the coordinates
v*and consider a vector-valued control (ul,..., uM)(-), to be identified directly with
A1, M) (see [311-[33)).
In both cases the right-hand side of (1.1) contains the control u(-) and its derivative u(-).
Typically, the latter appears quadraticly, provided the forces depend linearly on the velocities of
2. This is a strict consequence of the fact that some terms of the right-hand side of the system
(1.1) are obtained by derivation w.r.to the state of the kinetic energy of X.

On the other hand, (Fi,G;) is linear in '? if and only if (F,G;) is linear as a function of u.
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In this Appendix, we begin by briefly recalling some tools of the theory proposed by
Aldo Bressan, with an approach slightly different from the original one. Secondly, some results
obtained by the author of this thesis are reported by the two articles [33] and [31].

These results concern the study of the so-called M-fit coordinate systems (qi,y*), which
are defined as those coordinate systems in which the vector field (FL,G;) becomes linear in the

A . . .
argument Y . Moreover, they concerns also the strongly M-fit coordinate systems, in which

(FLG;) is independent of the argument ¥.

As it has been shown in the first part of the present thesis, such linear dependence is
essential in order to characterize the continuity of the input-output map ¢ : u(-) = (q,p)(*)
associated with a Cauchy problem for (1.1).

For example (see [9],[10],[36]), this linearity is equivalent to the continuity of ¢ with
respect to the CO-norms, which means that (sufficiently) small changes in the values of u(:)
have the effect of producing (arbitrarily preassigned) small changes in the values of the

corresponding (q,p)(-). Such a behaviour could be unexpected, since the presence of Q(-) —and
hence of u— on the right-hand side of (1.1) makes it impossible to apply the classical results on
the continuous dependence of solutions on controls, unless e.g. the Cl-norm is used on the
space of controls.

The above linearity of (Fi,G;) in? is also essential in the characterization of the
continuity of ¢ with respect to topologies which are weaker than the CO topology. (see
[71,[91,[13]) This allows e.g. the study of the effects produced on the evolution of 24? by a

first kind discontinuity of u(-) (i.e., an hyperimpulse —see [10],[11]-) .

This Appendix contains six sections. In Section 2 some basic tools from [11] are briefly
presented, by an approach similar to the one used in [33].

In Section 3 we recall some results on M-fit coordinates from [33], and prove a
characterization of strongly M-fit coordinates for the case of positional forces.

In Section 4 we report a characterization for 1-fit ccordinate systems from [33].

Afterwards, we observe that the notion of an M-fit coordinate system does not have a
geometrical meaning. On the other hand, it is trivial to check that M-fitness is conserved by
changes of coordinates of the form

q=q@y Y=Y

An equivalence class of coordinate systems that are related by such transformations is
generally thought as a foliation formed by the submanifolds of the form y=ceRM |
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Then, the concept of an U-M-fit foliation for a coordinate neighborhood U of the
constraint manifold M is introduced in Section 5 . In particular, an M-fit foliation, i.e., a
foliation of M whichis U-M-fit for each coordinate neighborhood I, may be considered as
the natural, global extension of the idea of an M-fit coordinate system.

In Theorem 5.2 a foliation ¥ is shown to be U-M-fit if and only if the (restriction to U
of the) kinetic metric is bundle-like with respect to F (see Definition 5.3). Here, we use a basic
result on these metrics —which were introduced by Reinhart in 1959 (see [34])— to characterize
a U-M-fit foliation in terms of the spontaneous motions of Z (i.e., the geodesics of M).

As for strong fitness, we know from [33] that each equivalence class of 1-fit coordinate
systems, i.e., each 1-fit foliation, contains a strongly 1-fit element (qiy),i=1, ..., N. The
analogue for a M-fit foliation , with M > 1, is false, unless the orthogonal bundle is
integrable (see Theorem 5.3).

In Section 6, Theorems 5.2 and 5.3 are proved.

The seventh section is mainly concerned with some examples of M-fit foliations . In
particular, the configuration space of a rigid body is seen to be partitioned by foliations of this
kind. ’
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2. Additional moving constraints as controls

Let X be a mechanical system subjected to holonomic, bilateral, time-independent, ideal
constraints. These define a differentiable ) manifold M, called configuration manifold or
constraint manifold , which we assume to be D-dimensional, D <o . Let T, M [resp. TM]
be the tangent space of M at m [resp. the tangent bundle of M |. A motion m of T isa
curve m:[— M, where I is aninterval of R .If m() is differentiable at t, and m,_(t)

denotes its differential, the velocity m(t) at the time t is defined by m(t) =

m*(t)gt-(t)e Tm(t)ﬁM, and the kineric energy ‘T=‘I(m(t), m(t)) of m(-) is given by

@.1) T(m(o), i) : =5 A@m() G, i) .

where A is a (suitable) metric tensor field on M, and, Vme M, A(m)( -,-) denotes the scalar
product on T,,‘M induced by A .

Let us consider local coordinates (x®), ®=1, ..., D, and, given a natural number N <D,
letusset gi:=%i,i=1,.,N,and y*:=y¢N+* o =1,...,M:=D—N **). Then the

tensor field A has the following (local) expression
N

N M
22)  Am@Y) = X Ay@ndgi®dg + 2, Y, A;nea(a1)dg ® dy
, .

ij= i=1 g=1

M
+ Z AN+a,N+B(qs'Y)dYa ®dyP ,
o,p=1

where: i) q and y mean (ql, ..., q¥) and (Y%, ..., YM), respectively; ii) m(qg,y) denotes the
element of M having (q,y) as coordinates; iii) for each (q,y) , the kinetic matrix

(AM)K s1...p(@Y) is positive definite.

Hence, if (q,y)(-) [resp. (q,¥)(-)] locally represents the motion m(-) [resp. the velocity m(-)],
(2.1) can be written in the form

(*) Throughout this chapter we tacitly assume that the constraints and the functions under consideration have a
sufficient degree of smoothness, so that the required differentiations can be actually performed.
(**) Throughout this chapterlower case Latin indexes run from 1 to N, lower case Greek indexes run from 1 to M, upper

case Latin indexes run from 1 to D, and N+M=D.
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N
@3 T, p0) =7 % Aa010) §0 40 +
i,j=

N M M .
£ 2 Anea@®IO)ED FO + 5 2 Anranep@D10) 10O O -

i=l  g=1 a,pB=1

At each point me M, the metric A establishes an isomorphism 1, between the tangent space
TpM and the cotangent space T;M , by means of the implicit relation

(2'4) (W’ 1’m(v))m = A(m)(V,W),

where v, we T M, and (-, ), denotes the duality between T, M and T;M .

(V) is called the conjugate momentum of v .

If 1,,(v)g [resp. v&], R =1, ..., D, denotes the R-th components of 1(v) [resp. v] with

0
respect to the standard basis (dy!, ..., dxP) [resp. (58_1_’ v 5-5—)] of T;M [resp. T, M],
X pé

the isomorphism 1, is explicitly given by

D oT
(2.5) (Vg = LAz v5 (s S j . R=1,..,D.
=1 ovk

Besides A , let us consider the metric A-! which acts on the fibers of T*M and, for each
me M, induces an inner product A-1(m)( -,-) on T;M defined by

(2.6) A-Y(m) Em) 1= Adm) (), 1LIm) ,

where &,1 are arbitrary elements of T;M .
For each me M and each &e T;SM ,the Hamiltonian # associated with the Lagrangian

function 7 is given by
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(2.7) Hm,E) : = A-l (m)(E8) .

In coordinates (XX = (qi,y*) , A-1(m) has a local representation of the form

N
P)
A-l(m(q,y) = 2, Aii(g, )——@—-—+
ij=1 dq!  dq’

(2.8)

0 ) 0
+22 2 A‘“*“(qv)—®——+ 2 AN+voNHB(g ) —o —
=l =1 og'  oY*  gp-1 o o

where (ARJ(q,'y)) is the inverse of the matrix (Agw(q,y)) . Hence, if

E(PiPo) = z p;dql + Z PodY%, (2.7) may be locally expressed by

a=1

H(m(q, ), E(PiPw) = 22 Al(q,y) p,pﬁz Z ALN+a(q,y) ppy +

’.]"‘ i=1 o=1
(2.9)

1
-2— AN+a,N+B(q,FY) papB s
1

?Mz

From the definition of A-1, it follows that, for each me M, 1, is an isometry between T, M
and T;M when these are endowed with the scalar products A(m)( -, ) and A-I(m)( -, ),

respectively. Then,

(2.10) T(m,v) = H(m,1,(v)) Vve TyM .

In order to write the dynamical equations for £ one needs the concept of applied force. For
this purpose, one uses the notion of vertical section of a fiber bundle (see [1]).
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Definition 2.1. Let n:F — X be a fiber bundle and let T (F,TF) denote the set of
sections of the tangent bundle TF . An element ve ' (F,TF) is said to be vertical if
T (Ov(E) =0, VieF, where nt (f) denotes the differential (at f) of the projection map = .

The physical notion of "forces applied to £ " is represented by a vertical section Q, of the
tangent bundle TT*M, and the equations of motion of X form the differential system

(2.11) 7=Xuz)+ Q,

where z denotes a point of T*M, and X is the Hamiltonian vector field associated with the
energy function H.
Locally, the verticality of the section Q, is expressed by the fact that its first D(=N+M)

. . (0 d 9 d 0 0 0 0
components —with respect to the basis |—...,—=—....—— ...,/ — ..., -
oql  ogNoyl  oMidp;  dpnop;  OPm

vanish identically.
Hence, in the coordinates (qi,y*,p;,pg), (2.11) is expressed by

(. oK

a= 5
) oH
Y = o
(2.12) X Po
A
P o
oOH

kJi%n = — %ﬁr QN+a

where (0, ...,0, Q, - Qp Quats Qi) are the components of Q with respect to the

basis (—9— 99 90 99 9 J.Sometimes the Qg are called the

9q”aqN o Pl apy” ap apr O
Lagrangian components of the active sollecitation..

In [11], Bressan considers the problem of adding some time-dependent constraints,
kinematically expressed by y*= ?“(t) :=J%(u(t)), where the () are fixed trajectories, and
u(t) is a scalar function to be assumed as control. More generally, in [33] a vector-valued
control u(-) = (ul,..., uM)(-) is considered by identifying (¥1, ..., fM)(-) directly with
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(ul,...,uM)(:). The addition of such new constraints reduces £ to a subsystem 29 , whose

configuration manifold is locally parametrized by the qi . Moreover, these constraints are
assumed to be ideal with respect to EQ’ which means that their Lagrangian components

Qs Qs Q15+ - Gy satisfy
(2.13) Q=0 h=1,.,N.

Of course, the Qy,, must be consistent with the the prescribed evolutions ?1(0, . .,?M(t) of the
coordinates ¥1,...,YM. This is easily achieved by the following procedure.

First of all, by partially inverting (2.5), express the p, as functions of q,Y,p, and ¥, where p
stands for (py, ..., py)- One obtains

M M N
(2.13) Pa =Pa(@¥P ) = 2, CopiP =2, 2, Cqp ANPs
p=1 p-‘-’l s=1

where (Cop)g,p=1,...,M 1S the inverse of the matrix (ANveN+p), o, o (see [33]).

Secondly, consider the solutions /q\(~), ﬁ(-) of the differential system

(2.14) apah h=1,..,N,
= — — ,
Pn g

where ¥ = .al(t,q,p) and bﬁ bh(t,q,p) are defined by
HMrap) = Ha.h0.0.p(a.F0.p50))
Qutap = Q6.0 FO.051)) .

Finally, denoting the function pg(q(-),¥(-),p(-),¥(-)) by Pa(*) , one finds that the Q.o (-) are
implicitly defined by

Pal®) = %95 @OIO.50.P0) + QraaLADAODDOPD) + Grag® o =1, .., M.
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By hypothesis (2.13) on the additional constraints, the motion of Z?\ will be governed by the

differential system (2.14). Both in the scalar case —i.e., J1,....¥M)()=(F1()),....yMu(-)))-
and in the vector-valued case —i.e., (?R...,?M)(') = (ul,...,uM)(-) -, the right-hand side of
this system contains (throught %\/ ) the derivative 1 of the control.

In the next section we will continue the investigation, begun in [33], on the existence problem

of coordinate systems (qi,y*) in which ":\/- and hence u — appears at the most linearly on the
right-hand side of (2.14).

The physical and mathematical motivations which lead to the study of these coordinates have
been touched on in the introduction, where the differential system (1.1) has to be identified with
(2.14). For a more detailed discussion about these motivations we refer directly to the original
papers (see [7], [9],[10],[11],[13],[33],56]) .
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3. M-fit and strongly M-fit coordinate systems

Definition 3.1.[11] A coordinate system (qi,y*), will be called M-fit [ resp.
strongly Mfit ] if, for every differentiable map ¥(-) = }1,..., YM)(-), the right-hand side of

(2.14) is affine in '/} [resp. is independent of ? 1.

Let us observe that the right-hand sides of the former N equations in (2.14) are already affine

in ? . This is due to the fact that (2.14) is formed by some equations belonging to (2.12),

which is a first order reduction of a second order differential system.

oH
As for the right-hand sides of the latter N equations in (2.14), the terms a—h represent the
q

. . . A
constraint-reactions and, in general, are quadratic in Y. On the contrary, the Q are

independent of [resp. affine in] 4 whenever the forces applied to 3, are independent of [resp.
affine in] the velocity m(t). 2
Then, it seems quite natural to assume one of the following hypotheses.

H.1. The forces applied to T are affine functions in the velocity m(t)
H.2 The forces applied to T depend only on time and the configuration of L.

Theorem 3.1.Let us assume hypothesis H.I on the applied forces. Then a system of
coordinates (qi,y*),i=1,..,N,a=1,..,M,is M-fit if and only if the NM(M + 1)/2
identities (in q and Y )

JAN+LN+B 0 a,fp=1,..,M

(3.1)
dqh h=1,...,N

hold on the range of (qi,y*), where (ARS), R, S=1,..,N+M, is the inverse of the
kinetic matrix (Ag) .

Proof. By equality (2.13"), the term

(3.2) 1

]

M
EAN+a,n+B Pa Pp
o,B=1
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depends linearly and quadraticly on the ¥, whereas the remaining part of 4,

-5 EAIIP1PI+Z ZA1N+aP Po »
11 1 a=1

is affine in the .

By substituting the p's in (3.2) with their expression (2.13"), one trivially checks that the

quadratic dependence of _'a'%?’_ on the velocities y*is given by the term

1 4o
> Z (a AN+a, N+BJ Cy CB 5 rYp Yﬁ
o,B,p,8 q

where (Cq g, p-1,...,m denotes the inverse of the matrix (AN*&N+B) o,

Since, by
M B
s AN-+0,N+B Ca =" (3)
o=1 P P
one has
M ra 9Cqp
(3.3) > (___ AN+a,N+BJ _ 2 AN+aN+p 2S00
a=1 aqh o=1 aqh
the expression in (3.3) coincides with
M
1 dCa,p - -
(3.4) 5 3P e

o,p=1 aqh
: cop . —OH . .
By (3.4), the coefficient of y*-yB in "afsz_ls given by

3C
(3.5) %—a—j‘ﬁ—“- .

Then, for every h=1,...,N, the term is linear in the Y if and only if the identities

—-0H
dqn
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(3.6) 9Cap _,
oqh

hold, o,,p = 1,...,M.

By the equality
" )
3 AN+p.N+a cu5=ag p,B=1,..,M,
o=1

the identities (3.6) are equivalent to the identities (3.1). QED

Theorem 3.2. Let us assume hypothesis H.2 on the forces. Then a coordinate system
(@y,i=1,.,N,a=1,..,M, is strongly M-fit if and only if the identities

0A «,p=1..M
3.7) —oah 2= 0, Anpn =0
h=1,.,N

hold on the range of (qi,y%) .

This Theorem can be proved by imposing that the coefficients of the 4% and 4BYS in (2.14)

vanish identically, for all a, B, 8 =1, ..., M. By a different approach, it has been proved in
[11] (Theorem 4.1)

Thanks to Theorem 3.1, we can introduce an equivalence relation on the set of M-fit coordinate
systems. Indeed, let us define an equivalence relation E on the family of coordinate systems for

M.

Definition 3.2. We say that the coordinate systems (q.Y) , (q,¥) are E-equivalent, and
we write (¢,)E(Q.Y), if

) (@Y, @,Y) have the same domain, and
a«“Y‘a

i) —=0,Vi=1,..,N,Va=1,...,M.
agt

Then, one has the following proposition.
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Proposition 3.1. E induces an equivalence relation on the set of M-fit coordinate
systems.

Proof. The inverse (ARS) of the kinetic matrix in the coordinates (§,¥) is obtained

from the corresponding matrix (A%S) in the coordinates (g,Y) by the following transformation
D nmp Ax

QTR 3%

Loat=1 0L ayxM

M-fit whenever (q,¥)E(q,Y) and (q,y) is M-fit. This yields the thesis, since E is an

rule: ARS = ALY | R 6=1,....D(=N+M). Hence, by theorem 3.1, (§.,§) is

equivalence relation on the family of coordinate systems for M.
Q.E.D.

Putting off to Section 5 the investigation on the existence problem of M-fit coordinate systems
for M 2 1, in the following section we are examining the case M = 1.




-134 -

4. Scalar controls

Let us investigate the case M=1, i.e., to say, let us assume that the variable yis scalar.
One can consider locally geodesic coordinates (qiy) ,i= 1, ..., N, which are characterized by
the fact that the local expression (Ago of the metric tensor satisfies the conditions

AN+1,9((qi"Y) = 8N+1,g{(*) ’ R=1,...,.N+1,
identically on the range of (gi,y) . Then, theorems 3.1-3.2 imply that,

under the assumption H.1 [resp. H.2] on the forces, each system of locally geodesic
coordinates is 1-fit [resp. strongly 1-fit] .

From the above remark one obtains that there exist infinitely many 1-fit systems of coordinates.

Indeed, at every point me M and for every vector ve T, M, one can find a neighborhood U
. 0

of m and a system of locally geodesic coordinates (q.y) on U such that a—(m) =v. These

coordinate systems do not fill the family of 1-fit coordinate systems; still, any element of this

family may be characterized as the image of a (suitable) system of locally geodesic coordinates
(q\y) , under a diffeomorphism which sends hypersurfaces yY=keR into hypersurfaces of the

same kind. More precisely the following result holds.

Theorem 4.1 Let us assume hypothesis H.1 on the forces, and let (Q,Y) be a I-fit
system of coordinates with range UxI , UcRN , IcR .
Then, for each ce T , there exist an open subset E)cc;ﬁxf , intersecting the hypersurface

H.={ (@0l qeﬁ} , and a diffeomorphism
f=(fl,....AN): Q. — Q, (= f(Q))

@— @y (=£G.mN)
such that

(*) Here and henceforth 8, — 81 _1 if a=b, and 8, , = 8*P= 0 if a b,
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1) f induces the identity on H,,
i)  the equalities

1
o

4.1) -?—3— = -
oqgt  aqt

hold identically on Q,,Vi=1, ..., N, and

i)  (q)y) is asystem of locally geodesic coordinates .

Conversely, if (q,Y) is a system of locally geodesic coordinates with range QCRNxR
and

g=(gl, .., g, &) : Q — Q [=g(Q)]

@y — @I=ga]
is a diffeomorphism such that

~ N+1
(4.2) N viol .. N(=D-1),
oqi oqi

identically on Q, then (Q,¥) is a system of 1-fit coordinates.

Proof. The second part of the thesis is trivial. Indeed, let g:Q — Q' be a diffeomorphism
satisfying (4.2), and let A-1=[A%5(q!,¥)]gs-1,.. p be the inverse of the matrix
A=[Agdq' ] gs1,... - TEPresenting the metric tensor in the coordinates (qi,Y)[=(%®)]. Then,g
transforms A-! into the matrix (A')-1, of components

(4.3) AT @y = D D ZE ArQ(gi(gt YY) .
pQ=1 oxf ox”

Since the chart (W,(qL,y)) is locally geodesic, one has APQ= §PQ identically on Q, for
Q=1,...,D. Hence,by (4.2) and (4.3) one obtains
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APP(y) = (2P 240
) 9q"

Then Corollary 3.1 allows to conclude that (W,(q',Y)) is 1-fit.

Now, let us prove the first part of the thesis. If h: Q. '— €. is any diffeomorphism,
[ (@)= 1R :=h(x'D), then the matrix (A")!=[A'R(q",Y)]gs1, . p is transformed by
h into the matrix (A)! = [Am(qi,y)]&%l p» Whose elements are given by

.....

D R JyS .
(4.4) ARy = Y 2 O A2y

PO%1 ax..’P ax.Q
By using (4.4), one can rapidly check that
A) ifthere exists a D-ple of maps (f1,...,tNfD) such that:

a) f1,...,fN, and D are defined on an open subset W', w hich intersects the hypersurface
H,

b) for each i=1,...,N(=D-1) fi solves the Dirichlet problem

N .
0 ; 0

Z %A'Dj(q'h, ,.Yl) + __q_):AuDD(,Yv) = O

=1 0q oy

4.5);

0@™, v)=q" on H,;
c) fD solves the Cauchy problem

1
—dc. = IAPP (I 2
(4.6) dy

Cc)=c.

d) the Jacobian matrix o(f1,...,fN,fP)/d(q'LY) has full rank on ', ; then, setting -
f=:(f1,.. N D):Q'—— Q. (= f(Q'L)), the diffeomorphism f sarisfies i) to iii).
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Indeed,if (x®)=(ql,y)=:(fl,...,fN,fD)(q",y) satisfy a), b), c), d) one has, for i=1,...,N,

N i i
4.7) _a_y_i.__o’_alz A.Nja_ci__,,ANNa_q_ =0,§1 ANN= 1,
aq’ aY' {j=1 aY' aY' oy

and f(q'1,...,qN,c) = (q',,...,q'N,c), V(q'l,....qN,c)e Q.

Since (4.7)1,(4.4) imply that, Vie {1,...,N}, the right-hand side of (4.7),, [(4.7)3] coincide
with AP [ADPD] the (qi,y) turn out to be locally geodesic.

Let us observe that the possibility of restricting the choice of the transformations to those
satisfying (4.7), is equivalent to the condition APP = APD(y"), i.e., to the 1-fitness of the
coordinates (q'l,y) (see Theorem 3.1).

Then it remains to verify that a D-ple as in A) actually exists.

Since (A')! is positive definite, the condition APP=0 is satisfied at any point of Q',. This
transversal to H,. Therefore (see e.g. [4]), for each i=1,...,N, the problem (4.5); has a local
solution fi. Moreover the (assumed) uniqueness for the solution of the differential system for
the characteristic lines

R
(4.8) %SL = APXy6) ®=1,....,D

implies that the fi's are independent, i.e. the rank of the NxD Jacobian matrix 9(fi)/o(x ' %)

equals N at each point in which, Vi=1...N, fiis defined.

Since APD is (supposed) continuous, by APDx0 it follows that (4.6) has a local solution 2

and the functions f1,...,fN.fD satisfy the required rank condition d).This concludes the proof.
QED

When the strong fitness of (Q, ¥) is assumed, a sharper result can be obtained. In fact, in
the following theorem we are proving that (§, ¥) may be characterized as the image of a system
of locally geodesic coordinates (q,Y) , under a diffeomorphism of the form q =q(q), ¥ =Y(¥).

Theorem 4.2. Let us assume hypothesis H2 on the forces acting on X, and let (q, )
be a system of strongly 1-fit coordinates . Let the (q, ¥) take values in UxI , where UcRN,

and TICR is an interval o R.
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Then, for each ce 1 , there exists a diffeomorphism
N+ T — 1 (= ()

¥r—v )

such that
) MNH()=c,and
i) () :=(q,Y()) is asystem of locally geodesic coordinates.

Conversely, if (ql,y) is a system of locally geodesic coordinates taking values in
UxICRNxR , and gN+! is a diffeomorphism from 1 onto 1 (cB) , then, for every
diffeomorphism (gl, ..., gN) of U onto itself, the system (Q,Y) of coordinates defined by
@.7) = (g4(@),--.gN(@.gN+ (V) is strongly 1-fit.

Proof. The second part of the thesis is trivial. Indeed, let gN+! and (gl, ..., gN) be as
in the hypothesis and let (AR5(q,Y))g o1 . N+1 be the local representation of the tensor field

A-1 (see sect. 2) in the coordinates (qi,Y);_;, - Then, in the coordinates (XX)g_;,  ni1 =
(qia’y)i=1,,,,,N ‘= g(q’Y) (E(g17 ey gN+l) (qs’Y))’ A—l iS locally CXPICSSCd by

- 2 %R S L
AB@Y) = 3 Fo o AMEI@T) , RS=1.N+1.
Lit=1 9L 9y

Because of the hypotheses on the coordinates (q,y) and the diffeomorphism g, it follows that

- & 97 g
AN+ = S LLED AN Vi =1,.,N,and
=1 0ydq]

KN+1,N+1 —_ (.a_Y-JZ .
oY

Then,

N+1,N+1
aAa ( )2)-0 Vi=1,.,N,
ql
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so that

Hence, by theorem 3.2, the system of coordinates (q%,¥);-; .y is 1-fit.

Now, let us prove the first part of the thesis.

If £:@t .., N, P— @', ..., Y :=(@l, .. &, 7) (=1, ..., xN*1)) is any
diffeomorphism, in the coordinates (q,y) the components of the tensor field A-! are given by
the entries of the matrix

oxX o
N = (2= A% ox” ALM(f‘l(q,Y)))x,5~1 ,N+1.

RS
(4°9) (A (qu))H{, S=1 aZL a~M

.....

Let fN+1: ¥ +— fN+1(¥) be a diffeomorphism defined on I, and let us specify f by setting
£(q.%) : = (@.B*1()) . Then (3.6) yields

AN+1,N+1(»Y) - (_afi:_l_ 2. ;A:N+1,N+1
et

(4.10)
AN+Li =

Since the matrix (A; )1, N[ resp. (Ag )z so1.. Nc1] is positive definite , its

~ —~ o~ a .
determinant g [resp. 4] is positive. It follows that the function AN+LN+(§¥) = El is
(differentiable and) nowhere vanishing, so that the map (AN+LN+1)-122 ig regular. Hence, the

y
primitive ™) = ¢ + _[ ( AN*LN+1)-1/2d5 can be defined on I , and, by (4.10), one
C

obtains

(4.11) AN+LR(qy) = SN+LR | VR=1,.,N+1.
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Since (4.11) implies Apn,; g =0n+1,2.-Y R =1, ..., N + 1, the coordinates
(qlyeeg™Ny)i= (qL,..., @, N*1(¥)) turn out to be geodesic.
QED.
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5. u-M-fit foliations

Let X be a mechanical system as in Section 2, and let us assume the hypothesis H.1 on
the forces applied to X . Aim of this section is to provide a geometrical and kinematical
interpretation to condition (3.1), which characterizes an M-fit coordinate system. The results
concerning the case M = 1 have been presented in the previous section. In particular, we have
seen that there exist infinitely many 1-fit coordinate systems for X and, by theorem 4.1, each
of them is suitably related to a system of locally geodesic coordinates. On the contrary, when
M > 1, M-fit coordinate systems for £ could fail to exist, since, in principle, (3.1) might be
false, for each choice of the local parametrization (q,y).

As a first step to attack this existence problem, we shall replace the notion of an M-fit coordinate
system with the notion of an U-M-fit foliation, which, in particular, has a chart-independent
character. Afterwards, we shall show (see theorem 5.2) that condition (3.1) on the coordinates
(q,Y) means that the kinetic metric A is bundle-like (see definition 5.4) with respect to the
foliation formed by the submanifolds y=ce RM.

As a consequence, the existence of U-M-fit foliations — and hence of M-fit coordinate
systems— will be related to the behavior of the geodesics of M (see corollary 5.1). Since these
geodesics coincide with the so called spontaneous motions of X, the above relationship can be
read from a kinematical point of view. Lastly, theorem 5.3 shows that further integrability
hypotheses are needed in order to guarantee the existence of strongly M-fit coordinate systems.

To begin with, let us briefly recall some elementary facts from differential geometry of
foliations (see e.g. [22],[35]).

Here, by a distribution on a (D-dimensional) manifold M, we mean amap A:m+— A
which associates a subspace A< Tp,M to each point me M . We shall consider only
nonsingular distributions, i.e., distributions A such that A, has constant dimension N <D,
when m varies on M . Moreover, we shall tacitly assume that A is differentiable, which
means that every point me M has a neighborhood ¥ and N differentiable vector fields on ¥,
which form a basis of A at every ne V. The number N [resp. M =D — N], is called the
dimension [resp. codimension ] of the distribution A . A nonsingular distribution A of
dimension N is said to be integrable if, for each me M, one can find a neighborhood U of
m with coordinates functions (gl, ..., gN, ¥L,..., YM) such that

d 0
A, = span{ a—ql-(n), oo Saﬁ(n)},
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for every ne U Such systems of coordinates are called A-adapted or adapted to A; the subsets
Se = (ne Mly(n)=c},cey(U), are the slices of A, and the family {SC}cey(u) is said to
be the foliation of U defined by the distribution A .

A global version of this concept is given by means of the notion of an integral manifold. A
connected submanifold A of M is an integral manifold of A if fx(T,A\)) =4, for all
ne A/, where f is the imbedding of A in M, and f« is its differential. If there is no other
integral manifold P which contains A, A is called a maximal integral manifold of A . A
distribution A on M is said to have the maximal integral manifolds property if through every
point me M passes a (unique) maximal integral manifold.

The partition of M formed by the maximal integral manifolds of A is called the foliation of
M defined by A. Given any me M , the (unique) maximal integral manifold containing m
will be called the leaf through m .

A necessary condition for the integrability of a distribution is involutivity: a distribution A is
involutive if, whenever two vector fileds X ,Y belong to A (i.e., X(m),Y(m)eA
Vme M), then [X,Y]eA , where [X,Y] denotes the Lie bracket of X and Y .
Involutivity is easily seen to be also sufficient for the integrability of a distribution, as it is stated
by the classical theorem of Frobenius.

Frobenius theorem. Let A be an involutive nonsingular distribution on M . Then
A isintegrable. Furthermore, it has the maximal integral manifolds property.

Remark. If a system of coordinates (q,y) is A-adapted , and the functions q = q(q,y),
¥ =¥(q,y) satisfy

vivi
*) N 0 =1 ..M, i=1 ..N,

then the system (q,Y) is easily seen to be A-adapted. Provided that the domains of the (q,Y)
and (q,y) coincide, the identities (*) imply that (q,y), (Q,¥) are E-equivalent.(see definition
3.2). In other words, given an M-fit system of coordinates (q,y) on an open subset U of
M , the E-equivalence class {(ﬁ,? ) | (9,Y) E(q,y)} coincides with the family of
coordinate systems which are defined on U and are adapted to the distribution

A :m — span { %{m), ...,;%(m)} .
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Definition 5.1. Ler M be a D-dimensional Riemannian manifold and let U be an
open subset of M. A foliation of U defined by a (involutive) distribution A of codimension
M is said to be U - M -fit if there exists a system of coordinates on U which is A-adapted
and M-fit.

The previous remark implies immediately the following proposition.

Proposition 5.1. Let M, U, and A be as in Definition 5.1. The foliation defined by
Ais U-M-fit if and only if every A-adapted system of coordinates on U is M-fit.

Definition 5.2. Letr M and A be as in Definition 5.1. We say that the foliation of M
defined by A is M-fit if it is U-M-fit for every UcM on which a system of A-adapted
coordinates may be defined.

In order to study the geometry of {I-M-fit foliations, we shall use the notion of a bundle-like
metric (see [34]). For this purpose, one needs to define the concept of an orthogonal vector and
an orthogonal distribution.

Definition 5.3. Let A be an involutive (nonsingular) distribution of codimension
M=D-N, M2 1, defined on a D-dimensional manifold M, and let A be a metric on M.
If me M, avector XeT,, M will be called orthogonal to A if it is orthogonal to every vector
of Ap,ie, Am) X,Y)=0,VYeA,.

The distribution which, at every me ‘M , associates the subspace Ai of vectors orthogonal to

A will be called orthogonal to A. This distributionwill be denoted by A-L.

Definition 5.4 (Reinhart, see [34]). Let M, A, and A be as in definition 5.3. The
metric A is said to be bundle-like with respect to the foliation defined by A if, for every
system of A-adapted coordinates (q.Y) , it has a local representation of the form

N

M
(5.1) Ay ol e o + 2 Ag() dyr e dy

i,j= a,B=1

where, w1, ..., N are (independent) covector fields such that, for each me M :
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i) (ol(m), ..., ®N(m), dyl(m)..., dyM(m)) is a basis for the cotangent space T;M;
i) (0i(m), X),, =0, for every Xe A;, and for every i=1,..,N.

Henceforth a curve on ‘M will be called orthogonal to a foliation ¥ if all its tangent vectors are
orthogonal to the distribution defining .

An intuitive characterization of bundle-like metrics is supplied by the following theorem, which
is due to Reinhart (see e.g.[35] pp. 155-156).

Theorem 5.1. Let F be afoliation on M . The following conditions are equivalent
1) A is bundle-like with respect to a foliation F;

il)  If one of the tangent vectors of a geodesic ¢ is orthogonal (to the
distribution defining F ), then c is orthogonal to F.

Sometimes ii) is shortly referred to by saying that the orthogonal bundle is totally geodesic.

The following result connects the notion of a bundle-like metric with the notion of an U-M-fit

foliation.

Theorem 5.2. Let M be the D-dimensional configuration manifold of a mechanical
system L. subjected to holonomic, bilateral, time-independent , ideal constraints, and let A be
the metric on M which defines the kinetic energy of X.Moreover, let the forces applied )
satisfy hypothesis H.1 (see sect. 3). Let A be an M-codimensional (M 2 1), integrable
distribution on M which defines a foliation F.

If U is an open subset of M on which a A-adapted system of coordinates can be defined,

then the following are equivalent:
) Fis U-MAfie:

i)  The restriction of the metric A to the subset U is bundle-like with respect to .

The proof of this theorem will be given in the next section. Theorems 5.1-5.2 yield:
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Corollary 5.1. Let F and A be as in theorem 5.2. Then F is U -M-fit if and only
if each geodesic having one tangent vector orthogonal to A is orthogonal to F .

This result has a direct physical interpretation, since geodesics relative to the kinetic metric A
coincide with the so called spontaneous motions of X, i.e., those motions which occur when

2 is acted on only by the constraints.

Let us conclude this section by considering the problem of the existence of strongly M-fit
coordinate systems. :

If one adds H.2 to the assumptions in theorem 4.1, then one obtains that, within each E-
equivalence class of 1-fit coordinate systems defined on an open subset UCHM , there exists a
strongly 1-fit element, e.g. a locally geodesic system of coordinates. In other words every U-
1-fit foliation is strongly U-1-fit. This is no longer true if one replaces 1 with M > 1.

More precisely, the theorem below provides a necessary and sufficient condition for the
existence of strongly M-fit coordinate systems.

Before stating this result, let us recall that a submanifold § of a Riemannian manifold & _is
said to be rotally geodesic if, for every se S and every ve TS, the geodesic passing through
s and having v as tangent vector at s lies in S definitively. Moreover, let us give the following

definitions.

Definition 5.5. Let M be a D-dimensional Riemannian manifold and let U be an
open subset of M. A foliation of U defined by a (involutive) distribution A of codimension
M , is said to be strongly U-M-fit if there exists a system of coordinates on Uwhichis A-
adapted and strongly M-fit.

 Definition 5.6. Ler M and A be as in Definition 5.5. We say that the foliation of M
defined by A is strongly M-fit if it is strongly U-M-fit for every UCM on which a system of
A-adapted coordinates can be defined.

Theorem 5.3. Let £,M, A,A, and F be as in theorem 5.2, and let us assume
hypothesis H.2 (see sect. 3) on the forces applied to .

Then, for each me M, the following conditions are equivalent:

1) there exists a neighbourhood U of m such that Fis strongly U-M-fit;
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there exists a neighbourhood ‘W of m , such that the restriction of the metric A
to W is bundle-like with respect to F, and the orthogonal distribution AL is
integrable on ‘W,

there exists a neighbourhood Z of m , suchthat Al isintegrable on Z and each
integral manifold of Al is totally geodesic.
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6. Proofs of Theorems 5.2 and 5.3

In this section, theorems 5.2 and 5.3 will be proved. Two different proofs of Theorem
5.2 will be given.The first one has an algebraic character, whereas the second one is based on
the dynamical characterization of bundle-like metrics provided by theorem 5.1.

First proof of Theorem 5.2. Let (gi,y*) be a A-adapted system of coordinates on
U . As in [34], let us choose N convector fields ®!,...,oN, and M vector fields vy, ..., Vi
such that, Vme U :
i) the w!(m),..., ®N(m) are zero on the orthogonal space Ai‘l;

i1) (oal(m), wery ®N(m), dyl(m), ..., dyM(m)) is a basis for the cotangent space T;M;

1ii) ( 5—1-(m), cees ;;N(m), vi(m), ..., vM(m)) is the dual basis for the tangent space
q q

Ty M.

m

It follows that

wi=dq + bLydy, vy=—+ D), a5, —,
B=1 B * a'yﬂ. j=1 cLaq}

VYi=1,..,N,and Va=1,.., M.
Moreover, the metrics A and A-! turn out to have the following local expressions:

N M
Am@y) = 3, Ay oee + ¥ Aygwp@ndeed?

l,j=1 a’B=1
6.1)
Nooa o 9 9 .
Alm(qy) = 2, Ali(qy) —e—— + 2, ANwaN+B(gyv,evy
i,jzl aql an a’le

.....

.....

Referred to the basis (—a— 9 9 —é—j , A-1 has an expression of the form
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N 3 2 N oM 3 9
62)  Al(mgy)= D, Al(q)) —8— + 2., ¥, ALN(Qy) —@—— +
‘ ij=1 dql dgi i=1 oo oqi oy

S 99
+D, ANNB(g) e .

o,p=1 a‘Ya a'Yﬁ

Replacing vl ., vM in (6.1)2 with their expressions in terms of the basis

(a 3 9 )

3 veey ™= —= ..., — |, and comparing the resulting expression with (6.2), one
3l 3" oyl 3 YM) panng g exp (

trivially obtains
ANwNe(qy) = ANvaNB(qy),  aB=1,.. M.

This implies that the matrix (AN+°‘~N+B)a p=1,..m s the inverse of the matrix

(AN +oN +B)a Bl M ° Hence, the elements of the former are independent of the gi,
i=1,...,N, if and only if the same holds for the elements of the latter. This proves the theorem,

N+o,N+B A
since the conditions 8_1_‘\____ =0, ——Niﬁ-lité =0,aB =1,.,M,i=1,., N,
oqi oqi
characterize M-fit coordinates and bundle-like metrics, respectively.
Q.E.D.

Second proof of Theorem 5.2. Let (ql,...,gN,yL,...,yM) be a A-adapted system
of coordinates on U . For each me U, let us consider the isometry 1,, of T, onto T:nfM,

defined in Section 2. Given a vector Xe T, M, let 1,(X)g denote the R-component of the
1-form 1,,(X) with repect to the basis (dql(m), ..., dgN(m), dy!(m), ..., dyM(m)) . Let us

note that the identities
0 0
LX), = (—fm), 1m<X))m - Am) (—.{mx X]
aqt oq

imply that
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(S) X isorthogonal to A, = span {ég—l(m) gq-ﬁ(m)} if and only if 1;(X); =0,
q q

for i=1, .., N.
As it is well-known, a geodesic of the Riemannian manifold (U, A) is a solution of the

Hamiltonian system obtained from (2.12) by setting Qg=0 VR=1, .., D . By (2.9), this

Hamiltonian system has the following explicit form:

LY . M -
ql = 2 AII' Pl’ + 2 AI,N’*“} pB

=1 B=1
N
v = AN+orp 4 2 AN+a, N+BpB
r=1 B=1
(6.3) u
N N N
1 OATS JATN+B 1 JAN+B.N+
=-7 Z PrPs Z Z ——PPp—7 2 T PpPs
1,5=1 =1 B=1 aql B,5=1 d
N N M X M
1 0ATS JATN+B 1 o AN+B.N+3
=-3 PPg—75 Z PpPs >
o) z= ——PPs — ; t}z;:l 870‘ B T2 Bt &y“ B

where i=1,...,N and a=1,.., M. v
The theorem will be proved by using theorem 5.1, where bundle-like metrics are characterized
in terms of geodesics. Let us observe that, by (S), condition ii) in theorem 5.1 reads:

a) for each initial condition

(6.4) @.v.p.p) (0) = (q,¥,0.p)

in the range of the coordinates of T*U , the solution (q,y,p,p) (*) of the
Cauchy Problem (6.3)-(6.4) satisfies p(t) =0, for each t belonging to its
interval of definition.

On the other hand, by theorem 3.1, M-fitness is characterized by

) AN+0.,N+B

b) ——=0, fori=1,..,N,and o,=1,...,M.
oqi
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Then, one has to prove that condition a) is equivalent to condition b).
Let us assume a). In particular, by imposing p(t) =0 in (6.3), one obtains

1 JAN+aN+

0=5——mm—m .
3 g Pa Pp

which implies b), since (q,Y) is arbitrary in the range of the (q,y) ,and P = @y, -, Py) 1S
arbitrary in RM ,

Conversely, let us assume b), and let (y*(-),p*(-)) be the solution of the Cauchy problem

IV

M
?a = Z AN+a,N+B(q{) P
B=1

M

1 AN+BN+8()

\ Fa = -5 2 = 2 Wpips @ =1,..., M
B.5=1 .

(Y(O),P(O)) (¥ p)ev(U HxRM

Furthermore, let g*(-) be the solution of the Cauchy problem

r

M
Gi(t) = D, ALN+(qy*(1))po * (1) i=1,..,N
B=1

\ q(0) = qeq(U) .

Then (q*(-),y*(-),0,p*(-)) is trivially a solution of (6.3) with initial condition
(g*,v*,p*,p*)(0) = (Q,¥,0,p) . By the (assumed) uniqueness of the solution of a Cauchy

problem for (6.3), and by the arbitrariness of (q,Y,p) , this yields a).
Q.E.D.

Proof of Theorem 5.3. Let me M , and let (q,y) be a A-adapted, strongly M-fit
system of coordinates defined on a neighbourhood U of m. Theorem 3.2 implies that A
may be locally expressed by
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N M
(6.5) AM(@Y) = 2, Ay@y) dgiedgl + X Ayianp() dyedy
i’j:]' a,B:l

where n(q,y) denotes the point of U having (q,y) as coordinates.

It follows that Afl‘ = span {-ag-l-(n), cees a—%{-—(n)} , for every ne U, i.e. AL is integrable on
v

U . Hence i) implies ii), with W= U , because, by theorem 5.2, A is bundle-like with
respect to F.

Conversely, let us assume ii). Since A and Al are integrable and complementary, there exist
local coordinates (q,y) on a neighbourhood % of m, V< W , such that

A, = span {5%1-(11), ey %{n)} , Ai‘ = span {5-3—1-@), ey TG’?M_(H)} for each ne ¥ (see

e.g. [22] p. 182). Since, Vne ¥, the 1-forms dql(n), ..., dgN(n) are zero on Ai‘ , the

bundle-like metric A may be locally expressed as in (6.5). Hence, by theorem 3.2, one
concludes that ii) implies i), with U= V. ’ -
Let us show that ii) is equivalent to iii), with U= Z. Actually, if ii) holds, a straightforward
application of theorem 5.1 implies that the leaves of Al are totally geodesic. Conversely, if iii)
holds, condition ii) in theorem 5.1 is trivially satisfied. Hence, A is bundle-like.

Q.E.D.
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7. Some examples

This section is mainly devoted to provide examples of M-fit coordinate systems and M-fit
foliations.The cases of spherical-polar coordinates and cylindrical coordinates for a material
point, which have been already treated in [11], are here tackled from the point of view of
foliations. Afterwards, longitude-latitude coordinates (for a material point constrained to move
on a sphere) and the corresponding foliations are considered. Lastly, some facts concerning the
constraint manifold of a rigid body are illustrated.

Before introducing these examples, let us make some simple remarks about the order and the
subsets of an M-fit system of coordinates. It is trivial to observe that a system of coordinates
(qlye.eo@N, ¥L,...,YM) is M-fit [resp. strongly M-fit] if and only if (q°L,...,a°Ny'L,...,¥'M)
is M-fit [resp. strongly M-fit], where (o4, ..., Oy) and (Vy,..., Vi) are arbitrary permutations
of (1,..,N) and (1, .., M), respectively. Hence, given a set S = {x1, ..., xP} of
coordinates and a subset 4= {vl, ..., YM}<S, it does not generate any confusion to speak of
the fitness [resp. strong fitness] of 4 to mean the fitness [resp. strong fitness] of
(@l ,qN, L. ¥M) | where {ql, ..., N} = $\4 . In particular, in [11] the following
problem is investigated: given two subsets 4 and B of S= {y!, ..., xP}, is there any
correspondence between the separate fitnesses of 4 and B and the fitness of AUB? In [11] it
is proved that, in the case of positional forces, the separate strong fitnesses of 4 and B imply
the strong fitness of AUB. Moreover, by means of an example, it is shown that the converse
is false. More generally, on the bases of theorems 3.1, 3.2 one can state that

the separate fitnesses of Aand B do not imply the fitness of AUB. Conversely, from
the fitness of AUB , it does not follow either the fitness of A or the fitness of B.
As in the previous sections, henceforth one of the following hypotheses on the forces will be
considered:

H.1. The forces applied to X are affine functions in the velocities.

H.2 The forces applied to X are positional, i.e. they depend only on time and the
configuration of X .
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In [11], the cases of cylindrical and polar-spherical coordinates for a material point are studied.
Here, thanks to the results obtained in Section 5, those examples will be re-examined from a
global point of view.

EXAMPLE 1.

Let X be merely formed by a material point P of unit mass, and refer it to Cartesian
coordinates (x,y,z). In this case M =MR3 and A is the Euclidean metric, i.e.

A(x,y,z) = dx®dx + dy®dy + dz®dz .

In order to avoid degeneracy of the foliations which are being considered, we shall reduce M
eitherto M =R3\{(0,0,0)} orto M" =MR3\{(0,0, z), zeR} . Then the following holds:

Proposition 7.1. The (1-dimensional) distribution

A: (x,y,2) = span {-y -a%+ X 5}7}

defines a foliation F of M" which is formed by the leaves L.y = {(x,y,2)e M",z=c, x* +
y2=k}, c,ke R,k >0.If HI is assumed, then F is 2-fit (see def. 5.2) . Moreover, under
hypothesis H.2 on the applied forces, the foliation F is strongly 2-fit (see def. 5.6).

Indeed, since A is (the restriction to M" of) the Euclidean metric, geodesics (i.e. spontaneous
motions) are nothing but straight lines. Then it is trivial to check that Corollary 5.1 applies to
the foliation ¥ . Moreover, the orthogonal distribution A1 has the maximal integrable
manifolds property, and its leaves are the intersections of M" with the planes ax +by =0.
Hence, Theorem 5.3 yields the existence of strongly M-fit coordinates. More precisely, each
. 0 d 9d| .
coordinate system (q,Y!,¥?) suchthat A= span{g—-} and Al =span {—-1-, -—-2-} is strongly 2-
q Nl §
fit.
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Proposition 7.2. Let T be the distribution defined at each point (x,y,2)e M' by
I'(x,y,z) = span {x 58— +y a—a- +z 82-} - The 2-dimensional, orthogonal distribution A : = T'L
X y z
has the maximal integral manifolds property. A defines a stongly 1-fit foliation Sformed by the
Spheres with center in the origin (0,0,0) .

Also in this case it is straightforward to verify that ¥ satisfies the assumption in Corollary 5.1.
Furthermore there is no problem with the existence of strongly 1-fit coordinates, since it is
guaranteed by Theorem 4.1.

Analogously, one can show that

Proposition 7.3. The (nonsingular) distribution

0 d 0
A: (x,y,z) — span {-y &-+ Xa—;, 5;}

on M" has the maximal integral manifolds property. A defines a strongly 1-fit foliation
formed by the cylinders having equations x2 + y2=c,c>0.

Remark : The above examples have global characters. On the other hand, they lead to
some local consequences which have been directly proved in [11]. In particular, if (r,9,6)
denotes a system of polar-spherical coordinates, proposition 7.2 implies that the subset (1,6}
is strongly 2-fit, and proposition 7.3 implies that {r} is strongly 1-fit. Moreover, if (p,¢,z)
denote a system of cylindrical coordinates, proposition 7.2 implies that the subset {p,z} is
strongly 2-fit, and proposition 7.4 implies that {p} is strongly 1-fit. Similarly, by using
corollary 5.1 and theorem 5.3, one can replace the following proposition (which is in [11]) with
statements concerning foliations of M’ and M"

Proposition 7.5(see [11]). Both {p,9)} and (z} are strongly fit in (p,0,z),
whereas {9} and {¢,z} are not fit in (P9,2). Furthermore ,(}, {6}, {r,p}, and [¢,8}are
not fitin (1,9,0).

For instance, the global situation implying the lack of fitness of {0} is illustrated by fig.1: itis
evident that the pictured foliation (of M") does not satisfy the hypothesis in Corollary 5.1.



fig.1

EXAMPLE 2,

Let X consist of a material point P of mass m, which is constrained without friction to

keep a fixed distance ] from the origin of a Cartesian system of coordinates (x,y,z) for R3.
In this case the constraint manifold M is merely the sphere 5;2 with center in 0, and radius r.

Apair (9,6),0<@<2r,0<0<1 » of spherical coordinates can be defined on U= M\
where C is a closed arc of minimal lenght -i.e. an arc of meridian- joining (0, 0, 1) with
(0,0,-1) . Without loss of generality, one can suppose that m and r coincide with the unit of
mass and the unit of lenght, respectively. Then, in the coordinates (¢,0), the kinetic energy T
of X is expressed by

T= %((’p2 sin 6 + 92),




- 156 -

so that the kinetic matrix and its inverse are expressed by

sind 0 s 3155- 0
(Axs(®8))g 15 =[ 0 1 ) (2500512 = 0 ’

respectively.
By theorem 3.1 it follows that,

under hypothesis H.l, the latitude {0} is 1-fit ; furthermore, if hypothesis H.2 is assumed,
{0} is strongly 1-fit.

On the contrary, theorem 3.1 yields the lack of fitness of the longitude {¢} .
Moreover, theorems 3.1-3.2 imply that,

under hypothesis H.1, each coordinate system of the form (q,y) = (q(9,0), ¥(8)) is I-fir.
Moreover, if hypothesis H.2 is assumed, each coordinate system of the form (q,y) =

(9(9,), ¥(8)) is strongly 1 fit.

In order to avoid degeneracy of the foliation we are going to consider, let us reduce M to the
submanifold M = M\ {(0,0,1), (0, 0,~1)}. Let F be the 1-dimensional foliation of A’
formed by the intersections of ' with the planes z =c, Icl < 1. Since a geodesic of M’ is
nothing but the intersection of M' with a plane passing through the origin , the foliation ¥
trivially satisfies the hypotheses in Corollary 5.1. This implies that

Proposition 7.5. Fis a (strongly) 1-fit foliation of M.

It is easy to verify that this proposition is the geometrical counterpart of the above statements on
the coordinate systems of M.

EXAMPLE 3.A.

Let us consider a rigid body X .Let I= (0, (i,j,k)) be an inertial frame and let
R = (P, (¢1,¢5,¢3)) be a frame in which I is at rest. Let us assume that i) P is fixed in I,
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and ii) the axes of R are aligned with the principal axes of £ at P.Let A, B, C be the
principal moments of inertia at P .

The three-dimensional constraint manifold of X is SO(3), which, as it is known (see e.g.[1]),
may be naturally identified with the product $?2xS!, §',ieN, being the i-dimensional sphere.
Eulerian angles (8,¢,y),0<0<n,0<0¢<2rn,0<y <2n, are often used as parameters:
the nutation -angle © is the angle between k and ¢3 , the precession -angle ¢ is the angle
between the i-axis and the node-line n , and the rotation-angle  is the angle between n and
the ¢y-axis. Nevertheless (9,p,y) are not global coordinates , since they degenerate at 6 =0
and 6 =& . In fact, the manifold M = $2xS! cannot be parameuized with only one chart.
Still, Eulerian angles are (local) coordinates as soon as one restricts their domain to a suitable
open subset U of M . For instance, one can consider the subset U = (SAO)x(SN\(k})
where (Cis a closed semimeridian as in Example 2, and k is an arbitrary point of S'. Then the
Eulerian angles 0,¢,y take values in ]0,x[, ]0,2xn[ , ]0,2x[, respectively. Moreover, the

kinetic matrix has the following expression:

(Asinzw + Bcoszw " (B-A)sinycosysind 0 \

Asinzecoszw +
(AM)R,.S:l 53 = | (B-A)sinycosysind Bsinzesinz\y + Ccos9
Ccos? 6

\ 0 Ccos® C )

Since the matrix (Ag ) is independent of @ , the same holds for its inverse (Ag )1 =
(ARS) . Hence, Theorem 3.1 yields the following

Proposition 7.6. Under hypothesis H; on the forces, the coordinates (q,Y!,¥?) =
(9,9,y) are 2-fit.

This result has a geometrical counterpart. Indeed proposition 7.7 is still true if in place of U
one considers an open subset U' = (SAC)x(SN\{k}) where (' is a closed semimeridian
different from C but having the same end points, and k'e S™\{k} . The union of U and U
is the manifold M = (S2\[N,S})xS! where N and S are the end points of both C and C.
Furthermore, M' can naturally be identified with JxPx®, where 7 is an open interval of R
whose elements represent the nutation-angles of T, while P and & are copies of St whose
elements represent the precession- and rotation-angles, respectively. Then, proposition 7.7
implies
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Proposition 7.7. The foliation of M formed by the leaves IX{p}xR, pe P, is 2-fit.
EXAMPLE 3.B.

Let X be as in the previous example, and consider the mechanical system X' obtained
from X by constraining the axis ¢3 to rotate on a palne 7 fixed in the frame I and passing
through k.

It is easy to treat this problem directly from a global point of view. The constraint manifold is
the two-torus M' = AR, where AL and R are copies of S! whose elements represent the
nutation-angles —i.e. the angles formed by ¢5 and a straight line fixed in 7 and passing through
P- and the rotation-angles of £ about cs , respectively. Moreover, the nutation and rotation
movements are mutually orthogonal, i.e., for each m = (n,r)e A’xR_ and for each couple
(v,w)e (T AX{0})X({0}XT,R)T,, M'xT, M , the vector v turns out to be orthogonal to
w . Indeed, this follows from the fact that when Z' does not rotate about ¢4 the points of X'
move on planes which are parallel to m. Hence such planes are orthogonal (in the Euclidean
frame ') to the planes on which the points of £' move when X' merely rotates about c; .
Then a curve on M' is orthogonal to the foliation F = {Ax{r},re R} iff it represents a
purely rotational motion of X about the axis c3 . Since uniform rotations about ¢z are
spontaneous motions of X', by Corollary 5.1 one may conclude that

Proposition 7.8. F is a (strongly ) 1-fit foliation of M.

In particular, if q and y are coordinates on A and R respectively, then by Theorem 5.3, the
system of coordinates (q,y) is strongly 1-fit, since {n}x®R_is totally geodesic for each ne N/.
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