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INTRODUCTION

Considering the problem

(P) {—Au = f(u) in Q

u=20 on oQ

where Q is a bounded open regular domain of R, several questions
can be posed: the existence of solutions of (P), the problem of
possibly multiple solutions, the regularity of such solutions, the
qualitative properties of the same, ect.

In this thesis we report results obtained in [A-Lu], [Lu-So-S]
(chapter 1), [Lu-So], [C-Lu-So] (chapter 2), [Lu-M] (chapter 3), [Lu]
(chapter 4) which all concern the question of existence and
multiplicity of solutions of (P) under various assumptions of
particular interest on the nonlinearity f (in the result [Lu-So-S] only
the case n=1 is considered); to get these results one has to make use
of several different methods of nonlinear analysis.

More precisely, in the first chapter we are concerned with two
different problems of multiplicity of solutions, both produced by the
interaction of the nonlinearity f with the spectrum of the linear part

~A it s easy in fact to show that if such an interaction does not

exists we have the unicity of the solution; to obtain the first result,
that is relative to a sublinear problem with a suitable growth of the
nonlinearity at zero, we make use of the Morse theory, after having
reduced, via a Liapounov-Schmidt reduction, our problem to a finite
dimensional one.

In the second problem considered in this chapter we treat the case
of an even nonlinearity with superlinear growth, the proof strongly
depends on the fact that this time we are considering an ordinary
differential equation, and it is given by means of a combination of
the shooting method and of a topological method (more exactly of a
suitable version of the Miranda's theorem): in fact we construct, via
the shooting method, functions which have as many positive parts
as we want and that are piecewise solutions of our problem; then,



by a suitable version of the Miranda's theorem, we prove that the
initial value can be arranged in such a way to make us get a
solution in the whole domain.

In the second chapter we consider the problem (P) in a resonance
case, namely when the nonlinearity f grows asymptotically as a
linear function whose coefficient is given by one of the eigenvalues
of the linear part. The problem of existence of solution for any
suitable forcing term and that of multiplicity of solutions are
treated via min-max tecniques, but we shall be concerned with
some cases known in the Ilitterature as periodic and strong
resonance in which the resonance produces a "lack of compactness”
which makes the [P-S] condition not true. This difficulty (that one
has to overcome also in different kind of problems, for instance
when the nonlinearity has a critical growth, or if one works in an
unbounded domain), can not be overcome avoiding the bad critical
level (as it was for instance done in the critical case by [B-N2],
where one can prove that some solutions appear at a level low
enough to make the [P-S] condition hold), because it is possible to
show by the simple analysis of the linear case that all the solutions
can exactly lie at that bad level. Therefore we have to work with
suitable classes of min-max sets introduced by Lazer and Solimini in
[L-S], in such a way that we can construct a Palais-Smale sequence
such that its terms have a bounded component in the kernel of the
linear part and this is enough to say that the sequence has a limit
point that of course is a solution of (P). Then we show how, by using
different classes of min-max sets, also introduced in [L-S] and which
require a more technical definition, one can get a nontrivial solution
result from an estimate of the Morse index.

In the third chapter we consider the problem (P) in the case in
which the nonlinearity f is such that there exist limsup and liminf
of o at plus and minus infinity laying between two consecutive
eigenvalues. We study conditions for which some of them can
exactly be equal to the eigenvalue and we still have existence of
solution for every forcing term. This problem has previously been
studied by de Figueiredo and Gossez by means of topological degree,
on the contrary we treat the problem by variational methods via
the Rabinowitz's saddle point theorem. Utilizing then the same
classes of min-max considered in chapter two we also get a
multiplicity result for the same problem.

Finally we treat a case in which the nonlinearity f is assumed to be
not continuous. In this case the variational methods can not be
straightforwardly used because the functional associated to the
problem does not have a good regularity; the problem has been



treated in [A-B], [A-T] utilizing the Clarke's dual action principle and
existence and multiplicity rtesults have been obteined. We adopt a
different point of view: we imbed this problem in a multivalued
one, defining a suitable multivalued nonlinearity, then we prove,
utilizing as bifurcation parameter the point in which the
discontinuity happen, that a global branch of positive solutions,
bifurcating from the trivial one, exists for the multivalued problem
assocated to (P). The proof follows the lines of the Rabinowitz's
global bifurcation theorem, where one has to utilize the degree for
compact multivalued maps introduced by Cellina and Lasota in
[C-Linstead of the usual Leray-Schauder degree.
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CHAPTER 1.

Multiplicityv  results




In this chapter we will consider problems of the type

(DP) {—Au = f(u) in Q

u =20 on 9Q
where Q is a bounded open regular domain of R™ and we will give
two examples of how the interaction of the derivative of the

nonlinearity f with the spectrum o of the Laplace operator ~A (with

Dirichlet boundary conditions) produce phenomena of multiplicity
of solutions. It is in fact easy to show, by the Banach-Caccioppoli
contraction Theorem that, on the contrary, if f' does not interact

with o(-A) then one has unicity of the solution. Suppose, for
example (indeed weaker conditions are needed), that:

1) fe CI(R),

2) there exist j=0 and a,be R such that [a,b]C]kj,xjH[, (where

?»j,KjHe 6(—A)) such that f'(s)e [a,b] for each se R,

then (DP) admits exactly one solution.

It is hence natural to see if, imposing such an interaction, one gets
multiplicity of solutions. In this field many authors have worked in
the past years (see for instance for sublinear problems [A-M1] and
furthermore [B] and [Be] for exact multiplicity results); in this
chapter we present two examples in this direction.

The first example we treat (see [A-Lu]) is a sublinear problem

f(s
where we suppose that Hlim _(s—ldhl' The multiplicity is produced
Sl—=+4 o

in this case by imposing a suitable slope to the nonlinearity at zero
and the result is obtained utilizing the Morse theory.

The second paragraph is a result ([C-Lu-So]) of arbitrarily many
solutions for an O.D.E. (n=1) with even nonlinearity (i.e. the
nonlinearity cross all the spectrum); the result is obtained
combining the shooting method with a suitable variant of Miranda's
theorem.

Here and in the following we work with the Laplace operator but
obviously most of the results are true for more general uniformely
elliptic operators and if the nonlinearity depend also from the
space's variable xe Q. Moreover we suppose known all the classical
results on elliptic operators and on their eigenvalues (see [Co-H]) we
will need in the following.



§ 1. Nonlinearity with sublinear growth and prescribed
behaviour at zero.

We consider the nonlinear Dirichlet boundary value problem:

(1'”{ —Auzku—g(u) xe Q
u =0 xe 0Q

where A is a real parameter and g:R— R satisfies the following
assumptions:

(D geCl, g(0)=g'(0)=0
(IT) lim &(_i)_: 400,
t— 1o S

Since g(0)=0, then u=0 is a solution of (1.1) for all A and we are
looking for nontrivial (namely u=z0) solutions of (1.1).

Let us denote by Kj, O<hi<h,<A3<..., the eigenvalues of

(1.2){ ~Au=2%u n Q
u=20 on 9Q

. . . . . 2
with corresponding eingenfunctions 5, normalized by fcpj = 1.

Q
Remark explicitly that we do not assume A, is simple.
Our goal will be to prove the following theorem of [A-Lu]

Theorem [I.1. Suppose (I) and (II) hold. Then:

(i) for A>A, (1.1) has at least two nontrivial solutions up, Uy, with
u;>0 and u,<0 in Q;

(i) for A>A,, (1.1) has at least a third nontrivial solution uy, different
from u; and u,.

Remarks 1.3

(a) If A<ky, (1.1) could have only the trivial solution u=0. This
happens, for example, if sg"(s) > O for every s=0 (cf. [Al]);

(b) the existence of a positive and a negative solution, for all A>X4
has been obtained for example in [R2];




(c) if g is odd then a much stronger result is true: for all A>h, (1.1)
has at least k pairs of nontrivial solutions (cf. for example [A1]);

g(s)
S

(d) assuming further that i1s increasing Struwe [Sw] proved (ii);

our result is hence an improvement of the Struwe's one. Moreover,
essentially under the same assumptions, namely if we suppose:

2(s)

(1.4) 9‘;—"< g'(s) for each se R, s#0

the result can be sharpened, by showing that for A;<i<k, (1.1) has

precisely two nontrivial solutions [A-M2];
(e) it is trivial to see that g could depend on x, with obvious
modifications in (I-II).

The proof will be carried out by looking for the solutions of (1.1) as

critical points of a suitable functional f on Hé(Q), which will be

studied by means of the Morse theory. By using the Morse
inequalities the proof of the Struwe's result (assuming (1.4))
reduces just to a few lines: (1.4) implies, by a simple comparison
argument, that u; and u, are nondegenerate local minima of f on

H(l)(Q). To handle the general case, the proof requires a Liapunov-

Schmidt reduction and a slight modification of the classical Morse
inequalities (rather obvionus, in fact), but is quite straight forward
as well.

We state two result of the Morse theory which will use later. For
more details we refer, for example, to [P] or to Section 4 of [S], and
more specifically, for lemma 1.8 to [M-P], Section2.

Let E be a Hilbert space and fe C2(E,R). Let us suppose that { satisfies
the [P-S] condition i.e.

every sequence (uy),€ EN such that
[P-S] (a) If(uy)l<c

(b) Vi(u,)—0 in E

has a converging subsequence.

A critical point u of f, namely an ue E such that V f(u)=0, is
nondegenerate with Morse index q if V 2f(u) is invertible and q is
the dimension of the linear manifold where V 2f(u) is negative-
defined. Let C; be the number of the isolated, local minima of f and,
for g>0 let Cq be the number of nondegenerate critical points of f
with Morse index q. The relationships between the Cq and the rank

5



of the Homology groups of E are given by the Morse inequalities:
suppose fe C2(E,R) is bounded from below on E and satisfies [P-S].
Moreover, suppose f has only isolated local minima and
nondegenerate critical points of finite Morse index. Then

1<C,
[1£C,-
(1.5) 1 SCZ-Cl“"CO

Of course, in (1.5) we have used the fact that rank Hq(E)zl for g=0
and zero otherwise.

Remark 1.6. The fact that it is possible to include in C; the possibly

degenerate, isolated, local minima was first observed in [A2].
Roughly, the justification relises on the following: let uy be a local,

isolated minimum of f; put U:={ ueE : llu-ypll < e, f(u) < f(up)}; to
evaluate the Morse groups Hq(U',U'\{uO}) uy need not be
nondegenerate of finite Morse index (see, for example [M-P],
theorem 1.2), but it sufficies to take € in such a way that U'={uy}. It
follows that the ranks ry of the above Morse groups are simply:
=1, rq=0 for each g>1. See [A2] for some more details.

We remark also that this fact can be used to show the Leray-
Schauder index of such a point is 1 (see [A]).

From the Morse inequalities (1.5) we deduce:

Lemma_1.7. Suppose fe C2(E,R) is bounded from below and satisfies
[P-S]. Assume further that: (i) u=0 is a nondegenerate critical point
of Morse index qy=2; (ii) f has two local minima. Then f has at least

an other critical point.

Proof. Otherwise the local minima are isolated and we could apply
(1.5) with Cy=2 and Cq=O for every q=2, g#qq. Since qy=2, we have in
particular C;=0, in contradiction with the second inequality of
(1.5). =

In some cases it is possible to deal with functionals having
degenerate critical points, by using a perturbation argument due to
Marino and Prodi jointly with the Sard lemma [M-P], [Mo]. The
lemma below is what we need later and is almost the same as [M-P],
lemma 1.2.



Lemma 1.8 Suppose fe C2(E,R) satisfies [P-S], has u=0 as an isolated,
possibly degenerate, critical point and V 2(0) is Fredholm of index 0.

Then there exist £>0 and fe CZ(E,R) such that: f satisfies [P-S],

f(u)zf(u) for llullze, and has a finite number of nondegenerate
critical points in llulle. Moreover:

(1.9) IV2f (u) - f(u)ll <e  for every ueE.

Proof of part (i) of the theorem I.1. We will shortly sketch, for

completeness, the proof of part (i) of the theorem. Let E::H(l)(Q) with

norm lull:= ‘[IV ul?2. Denote by ( -, )and |- | the scalar product (the
Q

norm, respectively) in LZ(Q). Since we have not assumed any
growth condition on g, we first truncate the right-hand side in (1.1).
Let s'< 0 < s* be such that Ast-g(st)<0<As™-g(s"): such s exist by (II).
Let p(s) be C! and such that: p(s)=A(s)-g(s) for s'<s<s*, sp(s)<O for
every se[s7,sT], Ip'(s)lsc for every se R, c=const. By the maximum
principle, every solution u(x) of

(1.10) { —Au:p(u) in Q
u =20 on dQ

satisfies s"<u(x)<s* for every xe Q and hence solves (1.1). Therefore
we will look for the critical points of

S
f(u)z%‘ w2 [Pw),  P(s) :ij(t)dt
Q

on E. It is easy to verify that the boundeness of p implies f is
bounded from below and satisfies [P-S].

To find uy>0 and u,<0 solutions of (1.1) we need an other truncation.

Denote by p* the positive part of p, p:=p-p™ and P+:=f§p+(t)dt. Of

course f+(u)=5 lIuIIZ-JP"‘(u) are bounded from below and satisfy the

[P-S] condition. The minima, say u; and u,, of f* and f- respectively
solve (1.10) with p replaced by p* and p~ respectively. By the
maximum principle u;>0 and u,<0: thus u; and u, are solutions of
(1.10) and hence of (1.1).



Remark 1.11. In other words we have that f(uy)<f(u) for all u>0 in Q,
O<llu-uqll small enough. Remark also that if u; is not an isolated

minimum, we have infinitely many solutions of (1.1), and we have
done. Similar remark holds for u,.

We can deduce the Struwe result from lemma 1.7. In fact define,

gls) .
h(s):{ S if s#0
h(0)=0

and denote by uj(q), for qe L *° (Q), the j-th eigenvalue of

{ ~Au = nqg(u) in Q
u =20 on 0Q

Lemma [.12. Suppose (I-II) and (1.4) hold. Then uy, u, are
nondegenerate critical points of f of Morse index O.

Proof. Since uy solves (1.1) we get

{ “Auy = Ov-h(u))u;  in Q
u =20 on 9Q

This implies uj(@zl for q=A-h(u;), with associate eingenfunction uy.

Since uy>0 in Q then p,(q)=1. By (1.4), G>k-g'(uy). The comparison
property of the eigenvalues yelds w;(A-g'(uy))>1. Hence uy is
nondegenerate of Morse index 0. The argument for u, is the same.H

The following is quite direct:

Lemma [.13. If A>A, A#A then u=0 is nondegenerate of Morse index

As this point, a straight application of lemma 1.7, shows the
existence of a third nontrivial solution for A>A,, A#i,. To eliminate
the restriction A#Ai,, the use of lemma 1.8 is needed. We will see
this in more detail later.

Proof of part (ii) of the theorem 1.1. The proof will be carried out in
several steps.




Step 1. Liapunov-Schmidt reduction

Since p'(s) is bounded, it is possible to take a positive integer N such
that

(1.14) p'(s)<Aiy for every se R.

Set V:=span{¢y,..., ¢y} and W its L2-orthogonal complement and
denote by Q and I-Q the projections onto W and V respectively.
Every ue E can be put in the form u=v+w, ve V, we W; we will use
N
the notation v=ad, a=(ay, . . ., an)e RY, to indicate Zoci([)i.
1
Problem (1.1) is equivalent to:

(1.15)' Aw=Qp(v+w)
(1.15)" Av=(1-Q)p(v+w).

From (1.14) it follows that for every v=a¢, (1.15) has a unique
solution w=w(a), which is C! with respect to o. Moreover, taking into
account that pe C! and bounded and L has smooth coefficients, usual
bootstrap arguments imply w(o) is continuous with respect to the C!
topology, too.

Substituting w=w(a) into (1.15)" we obtain the following system
in V

(1.16)  noy= [plao+w(o)o;  G=1,. .., N).
Q
Let w:V—R be defined as:

1 1N 2
wie= 5 Iw(e)l>+ 5 Y ke~ [Pag+w(a)).
1o

A direct calculation, taking into account that w(a) solves (1.15)" for
v=a¢, yelds:

oo

3
(1.17) == =hop [plodrw(e))o,
i o

Hence y'(a)=0 if and only if (1.16) are satisfied.

9



Remark that ye C2 and

(1.18)  w(o)=f(co+w(a)).

Among other things, w satisfies [P-S] and is bounded from below on
V.

Step 2. Study of v
Let Ge RN be such that (I-Q)u;=a and &e RN such that (I-Q)uzz&.

Lemma 1.19. & and & are local minima for y on V.

Proof. As we have seen in step 1, llw(a)-w(a)ll-1—0 provided

N
lo-a 2= o:-%:)2—=0. Recall that u;>0 in Q; then, when lu-al<e, e
- :

small enough, a¢+w(a)>0 in Q as well. Using remark 1.11 we get
flup)<t(ap+w(a)) for every O<lo-ol<e.
By (1.18), we have y(a)=f(uy) and f(ao+w(w)) and the lemma is

proved for &. Same argument for &. &
Step 3. Proof of the theorem completed for /’L;t/lj

Let A>X, and k¢lj. With a view to applying lemma 1.7 we shall show
=0 is a nondegenerate critical point of ¥ on V of Morse index qp=2.
In fact, differentiating in (1.17) and setting «=0 we have

d2y(0) , dw(0)
Sogm; M0 Jr <W<°”¢J(¢i+ S0 )

1

-

where Sijzl if i=j and O otherwise.
Since w(0)=0 and p'(0)=A, we deduce:

2y (0)

2
(1~O) aalaOCJ

= (7\3“7\')5”' j=1,2, ..., N.

Since A>A,, Ki?»j the claim follows.

Now, using lemma 1.19 and applying lemma 1.7 to y the result
follows.

10



Step 4. The case /1=/1j

We complete the proof by considering the case ?»:KJ- for some j>2.

Suppose again that y has only &, & and 0 as critical points. Remark
y'(0) is trivially Fredholm of index 0. Applying lemma 1.8 to v, we

find e C2 and e>0 such that W has in lol2e the critical points & and &
only. In lol<e\f has only a finite number of nondegenerate critical
points, say B4, ..., By. By (1.9) and (1.20) it follows that, if & is small
enough, then for the Morse index q; of Bj one has: qj>2 Gg=1, ..., k.

Applying lemma 1.7 to \§ we get again a contradiction, because
C,=0.
1

Remark [.271. Applying lemma 1.8 to f (remark that V £(0) is of the

type identity-compact), the same arguments permit us to complete
the proof of Struwe's result as well.

Remark 1.22. In a later paper (see [Hol]) Hofer has shown, using a
sharp Mountain-Pass argument in the positive and negative cone
combined with a degree argument in [A], that in fact if M<A<Ai,q, 122,
then problem (1.1) has at least four nontrivial solutions. For this
reason one could think that for A>X%, (1.1) admits 2k nontrivial
solutions. This has been shown by Dancer [D2] to be false in general,
i.e. there exist examples of nonlinearities for which A>A, and with

the prescribed behaviour at infinity, such that one has exactly four
nontrivial solutions.

11



§ 2. The case of even nonlinearity.

As second case consider the problem

3 { -Au = g(u)+h xe Q
u =20 xe 0Q

where as before QC RN is a bounded open set with smooth boundary
0Q. Here h is a given function and ge C(R,R) is such that

o = 11 (S)
g.= lim =—
= §—xco §

exist and are finite. In such a case, see [So3], many existence and
multiplicity results have been obtained for (2.1), depending on the
number of eigenvalues present in the interval (g_, g.).

In particular if h=-te;, where t is a positive parameter and e; is the

positive eigenfunction corresponding to the first eigenvalue then in
[L-M1] it was conjectured by Lazer and McKenna that if

g_<7\,1<>\.2£7\,3 <... S?Lk<g+

then (2.1) admits at least 2k solutions for large wvalues of the
parameter t. This conjecture has been shown to be true in the case
when N=1, i.e. for the O.D.E. in [L-M2].

Keeping in mind the above stated facts it seems natural to
conjecture that if the nonlinearity g is such that g_=—-c and g =+

o ?

then the problem (2.1) with h=-te; admits arbitrarly many solutions

depending on the largeness of t. Problems of this type where first
considered by Kazdan and Warner [K-W] and by Dancer in [DI1].
Solimini in [So4] showed the existence of at least two solutions for
large values of the parameter t.

The results of the kind we are expecting were obtained for the O.D.E.
in [C-S], [Sc], [Ru-So], but in all these cases the problem considered is
of the type

(2.2) { u"=u2-t  in(0,n)

u(0)=u(n)=0

that is in the autonomous case. Moreover, the proofs depend very
strongly on the fact that the equation under consideration is

12



autonomous. Hence, it seems to be interesting to study the
nonautonomous case. Actually more general nonlinearities than u?2
are considered in [C-S], [Ru-So]. We consider the problem

~u"=u?-t'sin x in (0,%)

(2:3) { u(0)=u(n)=0

and prove the following theorem

Theorem 2.1. Given any Npye N there there exists tNO>O such that for
all tthO, (2.3) has at least Ny solutions.

The method we employ are a combination of shooting and
topological arguments. We prove that we can obtain solutions with
as many positive parts as we want depending on the largeness of t.

First of all we prove various estimates we will require in the
following for both negative and positive solutions of the equation

-u"=u2—t¢ in (a,b)
(2.4) { u(a)=u(b)=0

where [a,b]S[0,+<) and from now on we assume that ¢:[0,+c ]=R is
a nonzero positive decresing Lipschitz function.

Lemma 2.5. Let [a,b]S[0,+< ). Suppose u satisfies (2.4). Then u=0
(u<0) implies lu'(b)Izlu'(a)l (lu'(b)I<lu'(a)l) respectively.

Proof. Suppose u=0. Multiply (2.4) by u' and integrate, we have
: b
(2.6) 5 (®2u'()D)=-t [ou"
a

Hence, a simple integration by parts on the right-hand side of (2.6)
shows that u'(b)22u'(a)?. A similar computation in the case u<Q
shows u'(b)?<u'(a)?. Hence the lemma. |

Now we digress to discuss qualitatively the solutions of the Cauchy
problem:

-u":uz-tq)
(2.7) u(ag)=0
u'(ap)=0  where ape [0,+00).

13



Near agy it is clear that u is convex and that u starts increasing
(except in the case when ¢(ag)=0 and u'(ap)=0, in which case
however u=0). As u increases, since ¢ is decreasing, u" decreases and
must become zero in a finite time, since as far as it is bigger or
equal to zero, u increases with a derivate bounded from below by a
positive number, so u?>max ¢ in a finite time. At this time u has
positive derivative so u still increases for a while and u" becomes
strictly negative. As far as u increases u" becomes more and more
negative so u' becomes zero in a finite time. So there exists x; such
that u'(xp)=0 and since u"(xy)<0 we see that x; is a local maximum.
Moreover, we claim that u will meet again the (0,+e ) axis at some
point b.

Proof of the claim. Let y; and y, be two points to the left and the
right of the point x; such that u(y;)=u(y,), and that u'<0 in [Xg,¥2l.
Then we prove lu'(y,)Izlu'(yq)l. To this end consider the equation u
satisfies on [yq,y,] i.e.

u"=u2-t¢ in (y1,y2)
(2.8) {u(yl):u(yz).

Multiply (2.8) by u' and integrate to obtain

: 2 . 2 Y2
2.9 (;])) | (22)) = -t Jou.
Y1
Now consider
X0 Xo
Jouzo(xg) Ju'= o(xo)(ulxg)-uly)
Y1 Y1

Y2
= 0(x)(u(xg)-u(y2)) = 6(xq) J(-u")

%0
Y2
> - f(b(s)u'(s)ds.
X0

Hence

14



*0 Y2 Y2
(2.10)  Jou' + [ou'20 ie. [ou' 0.
Y1 *0 Y1

Combining (2.9) and (2.10) we have that
(2.11)  h'(yplzhu'(y )l

From the above estimate it is clear that the fall on the right of x is

faster then the rate of the increase on the left. Hence it is obvious
that u hits the 0-axis again at some point b. B

Let a, Xy and b be the points as in the above discussion. Then it is
clear that the solution of the Cauchy problem (2.7) satisfies

~u"=u2-to

(2.12) { u(a)=u(b)=0.

Lemma 2.13. The solution u obtained for (2.12) with the previous
arguments, satisfies

b X0
_fudx <2 ju.
a a

Proof. This is clear from the estimate (2.11). |

We now proceed to prove some estimates on maximum of positive
solutions which we have been discussing above. Also from now on
whenever we refer to a positive solution it is to be assumed that it
is obtained by considering a Cauchy problems like (2.7). Also in
most cases we assume that all the numerical constants we get are
absorbed in the constants like ¢y, c, which we have used.

Lemma 2.14. Suppose OSu'(a)Scl-t3/4 in (2.7) then

(2.15)  max u(x) <c V't

xe[a,b]

3
where c,:=max (»\ /3C%, \/ 6q>(a)).

Proof. Since u satisfies (2.12), multiplying by u' and integrating
from a to xp, Xy being the point where the maximum is achieved, we

have
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. 2 3(x X0
(u (za)) _u ;Xo) ¢ Jwo
a

1.e.
X0

: 2 3 P23
u'(a) 23 u’(xg) - 2t9(a) ju 2T u’(xg) - 2té(a)u(xp)
a
1.e.
W(xg) €3 w(@)? + 3to(a)u(xg).
Then either

u3(x0) < 3u'(a)?
or
u3(xo) < 6to(a)u(xg).

In the former case it follows from our hypothesis that

(2.16)  u(xy) < 318331312,

In the latter case it follows that

(2.17)  u(xg) < 6t0(a).
Now the lemma follows from (2.16) and (2.17).

Lemma 2.18. Under the same hypotheses as in lemma 2.13, we have

(2.19)  (xp-a) < ko[« / (¢(C>?o>> + (mﬂ -1/4

where kj is some fixed positive constant and ¢, is given by lemma
2.14.

Proof. We estimate separately in [a,xy] the length s; of the interval
in which u2<(1/2)to, the length s, of the interval in which
u?/toe (1/2,2) and finally that of the interval in which uZ>2t¢, length
denoted by sj.
Estimate for s;: that is the case in which uzs(l/Z)tq). Since u satisfies
(2.12), we have

(2.19)  u'z310.

16



By the Taylor formula we have that if x is a point where u2/to=1/2,
then

u'(€) 2

(2.20)  u(x)=u(a+sy)=u(a)+u'(a)s;+ 581

where £e(a,a+sy). Combining (2.15), (2.19) and (2.20) we have

1 2 -
5 sy Scz\/ t

2C9
A ’ —iie = 1[4

Estimate for s,: that is in the case u?/toe (1/2,2). From

or

u'()? u'(v)? uiy) -
R -taqu

-

where y is such that

u( ) 1

we have

w(a)2-u'(y)? < - T Ho(y)u(y)
hence

w(y)2 2 E 0(y)uly)

t 7
z%mwifgi

since u2(y)=(to(y))/2. Therefore, we have,

P

/4
o(y) 4314,

u'(y) = 3

By the mean value theorem we have
u(a+sy+sy)-u(atsy)=u'(y)s,  where ye (a+sq,a+s;+s,).

Hence, using (2.14) and (2.15) we have:

17



i.e.

Estimate for s;: in this case u?>2t¢. We have from (2.12) that -u">t¢.
A simple application of Taylor with x; as base point gives

10(xg)s5
u(xp)-u(xg-s3) < —s

Using (2.15) in the above leads to

0(xg) 2
7 53

-

sgé\/ % -1/,
b(xp)

Hence (xp-a)=s;+sy+s3 < c3t'1/4, where

c '—k|: (02 + 2 :]
30 d(xg) 0(x)3/4 ]

Here ko is some fixed number. [ |

Cz\/w{ >

or

Lemma 2.21. Under the same hypotheses of lemma 2.14 one has

llull 1 < 2¢qc4tl/4,
Proof. This is a direct consequence of lemmas 2.13-2.18. &

We now proceed to estimate the difference in the slopes at a and b.
Here we make distinction between the case when ¢ remains
bounded away from zero in [a,b] and the case when ¢ becomes zero
somewhere in this interval.

Lemma 2.22. Suppose [a,b] is such that ¢ remains bounded away

from zero, then under the same hypotheses as in lemma 2.14, it
holds:

18



(2.23) (!u'(b)!z-lu'(a)lz)SZ({Su%)]Q)’)cz%tSM.
a,

Proof. This is a direct consequence of earlier proved lemmas. [

Lemma 2.24. Let u=0 satisfy (2.12). In addition suppose u'(a)=0.
Then we have the following estimate for u'(b):

(2.25) I (b) <V 2 61/4(o(a))3/4e3/4,
Proof. We known from the above argument that:
b b

lu'(b)I12 = -2t jqfu < 2t maxu j—(})’ < 2¢(a)t max u.
a [a,b] 4 [a,b]

This estimate and lemma 2.14 immediately give the proof of the
statment.

We now turn to some estimates of the negative solution of

-u"=u?-t¢ 1in (c,d)
(2.26) {u(c):u(d):O.

where (c,d)S R *uU {0}. We will not prove the existence and
uniqueness for the negative solution of (2.26) under the given
hypotheses on ¢, since it is easy prove this via a sub-supersolution
argument (see [K-W]).

Lemma 2.27. Suppose u is the negative solution of (2.26) then

u'(c)l+u'(d)l<c, t(d-c)

where ¢4 1is a numerical constant, which depends only on the
maximum of ¢.

Proof. This is trivial and we omit the details. B

Before we prove further estimates for negative solutions we
consider the following autonomous O.D.E.

-u"=u2-toe  in (c,d)
(2.28) { u(c)=u(d)=0.

with o>0 and we will prove some estimates for its negative
solutions.
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Lemma 2.29. Suppose u<O satisfies (2.28), then

tor(d- 2 2o,
u'(d) = min (a(4 ©) , ( \3/ ) oc3/4t3/4)

Proof. We distinguish two cases, namely

d
(i) Ju2 < L od-e)
and

d t
(i) fu2 > Ta(d-c).

Supposing we are in the case (i), then we have

d
2u'(d)=u'(d)-u'(e)= Ju? 2 5 a(d-c)

and we are done.
d

t
In the case (ii), since fu2>5a(d-c), there exists
C
5 tor
(2.30)  xge(c,d) such that u=(xp)> 5

Multiply (2.28) by u' and integrate between x; and d to obtain

2
231 @ 2 Fueg) 2anteg) 2 2u0x) o - ta

2
27Iu(x0)l-[toc N (;0)].

By the maximum principle, u2(x0)£toa, hence we have from (2.30)
2N2
3

and (2.31) that u2(d) = o 3/2¢3/2,

Now let u<0 be the solution [c,d] of (2.4) and ¢ satisfy the same
hypothesis as before.

Lemma 2.32. The following estimates hold

i v \1/2
(2.33)  u'(d) = min (5‘3—(51%;(9—9—, (9-33/—%-> ¢(d)3/4t3/4)

Moreover, if n is such that O<n<d-c

20



- v \1/2
(2.34)  -u'(c) = min (w(my(d ©) , (2\3/2 ) ¢(C+n)3/4t3/4>

Proof. We will first prove (2.34). Let 1 be given, since ¢ is decreasing
¢(c+mn) is the minimum of ¢ on [c,c+n]. Let now v be the function
defined by the negative solution of (2.28), when a=¢(c+n), in [c,c+n]
extended by zero in [c+m,d]. In this way v is a supersolution for our
problem and so by the arguments of [K-W] since u is the only
negative solution of our problem, then: u<v. Since v(c)=u(c)=0, we
will get la'(c)I>Iv'(c)l. For the restriction of v to [c, c+m] the estimates
of lemma 2.29 will hold. This proves (2.34); (2.33) is analogously
proved by sostituting ¢ by the constant function ¢(d) in all [c,d] and
by estimating the supersolution obtained by solving that
autonomous equation. @

Corollary 2.35. Under the hypotheses of lemma 2.32, u'(d)#0 as long
as 0= 0.

Proof. Suppose ¢(d)#0, then the corollary follows from lemma 2.32.
Suppose ¢(d)=0, then since ¢$=0, we can choose cye (c,d) such that
$=20(c()=0>0 on [c, cy]. Define

o on [c,¢ql
¥.=
0 on (cy,d]

and consider the problem

v'=v2t¥  in (c,d)
(2.36) {v(c):v(d):O.

It is clear from a sub-supersolution argument that problem (2.36)
admits a negative solution. Also it is easy to see that such a solution
is unique. Let v be such a solution. It is clear that vOeCl([c,d]) and
that vy is C? except at ¢p. We claim vy(d)=0. If vy(d)=0, then we are
lead to a contradiction to the fact that vy is a solution of (2.36) by
considering the initial value problem

{—v"zvz—t‘{’ in (c,d)
v(d)=v'(d)=0

and following the flow backwards. Hence v(d)20. clearly a solution
of (2.36) is a supersolution for
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{ -u"=u?-to
u(c)=u(d)=0.

It then follows from [K-W] that the unique negative solution of (2.4)
is smoller than v,. Hence the result. B

We prove now our main theorem for the problem

{ ~u'"=u?-to
(2.37) 1(0)=u(1)=0.

where ¢ is as before.

Theorem 2.2. Given any Npe N there there exists tNO>O such that for
all tthD, (2.37) has at least Nj; solutions.

Before to go to the proof of theorem 2.2 we explain how we plan to
procede and we introduce a number of functions which we shall
imploy in the course of the proof.

We denote by (xi)iil a partition of (0O,m). Let (ai)il_i_l denote k

numbers which we use to shoot, i.e. at each X; we consider the
Cauchy problem,

-u" = u-to
(2.38); u(x;) =0
u'(Xi)—_- a.i

with t>0 fixed, i=1, ..., k.
From the previous discussion, the solution u; of (2.38); meets the

. . k .
axis (xj,+eo) at some point v;. We call our slope (a;);_; good if for

each of the i one has that the points v;e (x;,x;,7) (i=l,....,k-1) and
Vi€ (X,m), i.e. we are in a situation like fig.1.
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From the previonus section we also know that given any interval
(c,d)&(0,m) we can find an unique negative solution of:

{ - ”=u2—t¢
u(c)=u(d)=0.

Use (0,xy), (v{,x;47) and (vi,mn) for (c,d) and join the respective
intervals by the unique negative solution, to obtain a configuration
as in fig. 2

We now define functions (Si)iil in the good cases as follows:

05;.1:= a;— ISlope of negative solution terminating at x;l for i=1,....k;
85; := ISlope of positive solution terminating at v;l —
— ISlope of negative solution originating at vl for i=1,....k.

In the above definitions and in what follows the symbol |-| indicates
that the slopes are taken in their absolute values.

k . c
Suppose the slopes (a;);—; are not good in the sense of the definition

before, that is, for some i, v; falls after X;,1 or m, then we define for
these indices 1

6;:= | Slope of the positive solution terminating at v; |
and
62i+1 =a if i<k.
. . 2k . .
Notice that the functions (3;);=; are continuous with regard to the

variables x; and a;. This is because when v;—x,, ¢, the corrisponding
negative solution gets flat (lemma 2.27).
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. . . , 2k
Note that if we can find x;'s and a;'s such that (§;);_; are all zero the

this combination of positive and negative solutions give a solution of
problem (2.37). Moreover, this solution will have k positive parts
for large values of the parameter t.

Lemma 2.39. A solution u obtained by the above discussed
arguments has k parts of positivity.

Proof. Let us distinguish two cases.

If x;>0, since ¢(0)=0 the left derivate in Xy 1s nonzero (lemma 2.32
and corollary 2.35). Therefore, as one easily verifies by using
lemma 2.5, all the derivatives in all points x;'s and v;'s are not zero.
By our definition of the §;'s in the bad cases this shows that none of
the possible collapsing between v; and x;,; if i<k or between Vi and
mcan occur. Assume now x;=0. If a;>0 proceed like in the previous
case, if a;=0 then the derivative of u in the X;'s 1s zero as far as ¢ is
constant. In this case v;=x;,; but one still counts a positive part for
any 1. As soon as ¢ decreses from ¢(0) the left and the right
derivatives of u becomes nonzero in the next v; point. Then one
repeats the arguments in the previous case.

Remark 2.40. In all what follows we work to prove theorem 2.2.
However, note than an easy modification of the ideas involved lead
to the proof of theorem 2.1 (in fact for any positive symmetric
function decreasing in (n/2,x)). In fact the modification to be carried
out is the following: work only in the interval (n/2,n) and use
symmetry to complete the argument in the sense that if x;'s are a
partition of (n/2,m), then consider in (0,t/2) the partition given by
the points (m-x;). Join m-x; and x; by the negative solution. The only
modification in the §,'s occurs when i=1. In this case we take it as
the slope by which we shoot from x; minus the absolute value of

the slope at x; of the negative solution in (m-x1,x;).

We now state and prove an abstract theorem which we shall
employ to prove the existence of a common zero for the §'s. This

theorem, which is a variant of the theorem due to Miranda [Mi], is
taken from [So3].
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Theorem 2.3. Let £:[0,1]1"-=R i=1, . . ., n be continuous functions
satisfying the following

(1) on the face z;=0, fj(z)zO, for every j<i = f(2)<0
(2) on the face z=1, fj(z):O, for every j<i = f;(z)=0
then there exists z [0,1]" such that f:(z)=0 for all i=1, . .., n.

Proof. Let Z; be {ze [0,1]" | for every j<i: fj(z)zO}. By Tietze's theorem
one can extend the restriction of f; to Z;n {z;=0} on {z;=0} taking
values in (-eo ,0]. Then one extends the restriction of f; to Z,n{z;=1}
on {z=1} taking values in [0,+e=). In this way one gets a continuous
function on {z;=0}UZ;U{z;=1} and extends it to a continuous function
g; defined on [0,1]%, by using again Tietze's theorem. It is immediate
to recognize that gy, ..., g, verify the assumption of Miranda's
theorem [Mi] and, therefore, there exists ze [0,1]% such that: for
every i=1, . . ., n: g(z)=0. It is also immediate to recognize by
induction on i that: fi(z)=0. ]

We now introduce new variables and functions from the already
introduced x;'s, a;'s and 8;'s. Notice we have in fact 2k variables in
k k . . .
(X{)i=1 and (a;);j—;. Though we have used §, with a slightly confusing
index, our arguments so far clearly point to the case that the index i

for §; varies from 1 to 2k.

We introduce a variable a using the already defined a;'s.
We define

K
a=
i=1

with this definition of a, given a we can think of the variables (2=

k
as defining a (k-1)-simplex given by > a=a.
i=1
Also x;'s i=1, . . ., k being a partition of an interval can be thought of

as defining a k-simplex.
Since the theorem 2.3 which we have stated and proved requires
that in order to apply it one needs to work on cubes and since we
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have observed that the x;'s and 2 -klaizfl define simplexes, we
1=

make the following observation.
Let [0,1]" be the n-cube with its coordinates system being the usual
space coordinates. Let X, denote an n-simplex and use barycentric

coordinates to represent points in X_. Then there exists a continuous
map p,:[0,1]"=X  such that it is onto and satisfies

(=0} B(y=0} i=l1,...,n
and
1
{z=1} — {Zyjzl
j=1
where any ze [0,1]% is written z=(zy, ..., zy) and ye X is written
y=(y1, IR yn+1)-

Keeping in mind the above discussion we now introduce a change of
variables to have our §;'s defined on the 2k-dimensional cube
[0,11%K,

Let z=(zy, 29, . . ., 2, . . ., 23;)€ [0,1]% and set a=M.z; where Mj is
large enough. We shall specify the exact M we require later on.

We set

i
Xi:ﬂ: Zy_} izl, e ey k.
=1
with y=pi(z,, ..., 71 1)-
Finally we define a;=ayy and
a=ay,.; fori=2, ...,k
where

y'z(y'l, Ce e, ylé)=pk_1(zk+2, C e e, ZZk)'

Through these changes of variables we understand that §;'s are
defined on the cube [0,1]%K with z being the variable. We construct

from 6,'s new functions (fi)izzkl which play the role of the functions of

theorem 2.3.

We define
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-

2k

fj=2.8;+c.8;, ¢>0 is a suitable constant
i=2 '

(2.41) 4 =0

f1:‘62(1_2>‘621_3 1—_-3, e e, k+1

and finally

kf:SZ(i—k)—l i=k+2, ..., 2k,

It is clear that finding a common zero of these f;'s is equivalent to
finding a common zero for §;'s.

We now proceed to prove some more lemmas which we shall need
later. We use all the earlier introduced notation and also lemmas
proved in the last section. We use these now with (x;,v;) standing
for (a,b) of the preecending estimates and (0,x;), (VisXj41) OF (V,m)
for (c,d) of the same previous results. We shall use these without
standing this explicitly in what follows.

Lemma 2.42. Let ke N be given and c1>0. There exist constants ty>0,

k k . .
n>0 such that for any (x;);=1, (a;);=; with aiSc1t3/4 =1, ..., k, for t>t,

one of the negative intervals intersected with the support of ¢ has
length bigger than 2n.

("Negative interval" in the lemma means an interval like (0,x1),
(Vi Xj41) or (vi,m) in which we consider the negative solution).

Proof. Let [0,E] be the support of ¢ intersected with [0, n]. Divide the
interval [0,£] into two equal parts, than in the half of the second
part truncate ¢ by v,

. 3.
in [0, 7€)

(2.43) =
03 in [3E,e)

and substitute for a moment ¢ with v in our problem. Observe that
inf y>0. Assume there exist some x;'s of our partition in (0,£/2), with
slopes aiSclt3/4 (where ¢ is as in lemma 2.14). Then we know from
lemma 2.18 and lemma 2.21 that the distances Ix{-v;l»0 uniformly
with respect to x; as t— e . For t large enough we will have all the
v;'s falling before i—cf‘, and, therefore, Ix;-v;l=0 uniformly for x;<&/2

also with the original ¢. At this point we do not need any more the
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truncation on ¢. Take t large enough such that if / of the k X;'s are in
(0, £/2) then

, ; :
(2.44) .lexi-vik 1
1=

g
Take O<n< 8(k+1) - Hence the lemma. |

Lemma 2.45. Assume k fixed. There exist constants tp and c¢ such

o k. . .
that for any partition (x;);= if the a;'s are zero, then if t>t,

2%k
cd;+ > 5,<0.
i=2

Proof. We distinguish two cases.

Case 1: suppose that the negative interval given by lemma 2.42, is
not the first interval. In this case we consider the slope of the
negative solution starting at v and terminating at Xit1 (r if j=k), Ivj~
xj+1l>2n. We know from lemma 2.32, (2.34) that the slope with
which the negative solution starts from v., which we write u;(vj), 1S

such that
(2.46)  lug(vy)lcqtd/4

where ¢ is independent of the partition as also t for t>t; of lemma
2.42.

In the case in which inf ¢ = 0, it is clear we can take poe [0,x]
xe (0,m)

such that

<0
(2.47)  3Y%(po)s5
where c¢( is the same as in (2.46).
Distinguish positive parts with x;'s2pg. Then by (2.25), we have the

slopes of the positive part terminating at v;, which we shall denote
uj (v;), are such that

. €0 3
(2.48) I (vpls5 1374,
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For the other x;'s we use a truncation argument as before to obtain
using (2.23)

(2.49)  luj (vy)l<cytd/8,

From (2.46), (2.47), (2.48) and (2.49) the conclusion follows
whatever is ¢=0.

Case 2: if the interval given as in lemma 2.42, happens to be the
first one, that is the one starting from O and terminating at X1, then,
from lemma 2.32 the negative solution terminating at x; as slope

202 W2
luj (x> ( 3 ) 0(xq)3/43/4,
However, the positive solutions terminating at v; are such that their
slopes are as below, (by lemma 2.24),

luy (vl € 23743174 (x,))3/4t3/4,

hence, since ¢(x;)<¢(x7) by putting a large constant ¢ in front of 81
we have the required result. Hence the lemma. i

Lemma 2.50. Assume a;=0 and &;=0. Suppose all the even 3;'s are
positive and that all the odd &;'s are negative. Then t is bounded
from above. (i.e. this can't happen if t is large enough).

Proof. Since a;=0 and §,=0, it is clear that the positive solution is
originating from zero at the first instance, namely x;=0. Using the
hypothesis of the lemma and also lemma 2.5, all the slopes we get
for x;'s and v;'s are bounded by a constant times t3/4. Now using
lemma 2.42, we have an interval [vj,xj”] in which the slope of the

negative solution originating at v and terminating at Xig1 has

(2.51)  lup(vylzcqt®/

indipendent of t and the partition. However, we will show that
under the hypothesis of our lemma there exists a constant cp such

that
(2.52)  lul(vylscytd/?

for all i such that i<j which contradicts (2.51) unless t is bouded.
Notice that by lemma 2.18 and lemma 2.22, we can choose t large
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enough such that the positive solution terminating at vy has its
slope bounded as given below.

ly (vy)l<cytd/s.

Now by using the hypothesis of the lemma, lemma 2.5 and lemma
2.22, it is trivial to verifies that (2.52) holds for all i<j, by repeating
j times the same kind of argument. |

Now we proceede to prove the main theorem. In the following we
shall assume that the f's are defined as in (2.41) with the constant ¢

appearing in the definition of f; has been now fixed with its value

given by lemma 2.45. We also assume that we let a vary from
0,M], where M, is large such that whatever the a.'s such that
0 0 =] 1

k

283 = M,
=1

then f;>0. Note that such a choice of M, (once we have fixed up all
the previously mentioned constants) is possible because of lemma
2.27. Note that during the course of the proof one always works
with a fixed t but we shall ask that this t is large enough, the
largeness being determined by the lemmas.

Proof of theorem 2.2.

We verify the hypotheses of theorem 2.3, with n=2k and f,'s being
given by (2.41). First we start with the case z;=0, i.e. all the a;'s are
zero. In this case, by lemma 2.45 we have f;<0. Also by our choice of
My, if z;=1, then f;>0. Hence we have verified the hypothesis of
theorem 2.3 for f;. Let us now consider ie {2, ..., k+1}. Suppose z;=0
then by definition we have y; ;=0 where y=p(z,, ..., zi..1). By the
way we have defined our change of variables, this means x1=0 if i=2
Or X;.1=X;.p if i>2. For i=2 this means f,=-6,<0. If i>2, then by our
definition of &;'s it is clear that 85;.o and 85;.3 are positive and hence
f;<0. Let us now consider z;=1, ie {2,...,k+1}. This time we use the
hypothesis of theorem 2.3 i.e. we verify what happens to f.(z) with
z;=1,1ie{2,..., k+1} when fj(z)zo for j<i.

We know that if z;=1, then p(z,, ...,z )=y satisfies

i-1
Zyle.
=1
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So we have y,=0 for u=i, . . ., k+1l. By the previous analysis this
implies that qu(Z)SO (L=i, . . ., k). Moreover p=k+1 gives 8520. This
follows directly from the definition of the §;'s. In fact Yk+1=0 by the
change of variables introduced earlier, implies that

k k+1
X =T ) Y= DV
=17 =

Hence it follows from

1 k+1
f1(z) = ¢8,(2) - me(z) - me(z) + 85, (z) = 0
m=3 m=i+1
that
i-1 k+1
(2.53)  fi(z) = cdy(2) - Df,(2) - > E0(@) + 8y (2).
m=3 m=i+1

However, under our hypothesis, the first two terms in the right side
of (2.53) are zero. On the other hand we have shown f,(z),

i+1<m<k+1 and -8, (z) are negative. Hence £:(z)20. Thus, we have

verified the hypothesis of the theorem for £, i=1, . .., k+1.
We now procede to verify the hypothesis for ie {k+2, . .., 2k}. Let
z;=0, which means y; =0 where y'=p; (i, ..., zp).

This means a; =0 by definition. Hence it follows directly from our
definiton that 82(1-k)-1:f1£0
We now consider the case z;=1, ie {k+2, . . ., 2k}. This means

i-k-1

Zyé = 1.
s=1

This implies y =0 for s>i-k-1. By the previous analysis this implies
fu.<_0 for u>i, which means that Bz(u_k)_lﬁo, u>i. Suppose now fj(z)::O
for each j<i. In particular f,(z)=08,(2)=0. Also SZ(J-_k)_l(z):fj(z):O for
every j such that k+2<j<i. Suppose by contraddiction that
fi:62(i-k)—1(z><0- Then all the odd 8;'s are negative in z. From fj(z)zo
for j=3, . . ., k+1, we have that all the even §,'s are positive for i<2k.
Moreover, 0, +c8y=0 by the assumption f1(z)=0 and fj(z)zO for
je{2,..., k+1}. But 6;=0 also implies §,;=0.

Thus, we are in the situation of lemma 2.50, for since V=0, a;=0.
Thus we never meet this situation when t is large enough. Hence we
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have verified all the requirements of theorem 2.3, from which
theorem 2.2 follows. [ |

Remark 2.61. Using the remark 2.40 and discussions as above it is
clear that theorem 2.1 follows.
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CHAPTER 2.

Resonance problems
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In this chapter we are concerned with problems "at resonance" i.e.
problems of the type

2.1) { ~Au = Agu + g(u) + h(x) in Q
- u =0 on 0Q

where Q is an open, bounded, regular domain in R g is a
continuous sublinear function and Ay is, as usual, an eigenvalue of

-A in H ().

It is well-known (Fredholm alternative) that for g=0 problem (2.1)
has solution if and only if h is orthogonal to the eigenspace Vi
corresponding to Aj.

The nonlinear case has been studied by several authors, first of all

by Landesmann and Lazer in [L-L]. They assumed that:

. : g(t)
there exists lim ‘?'g—'zg(i"oo)

(2.2) and

for each te R it holds: g(-e )<g(t)<g(+o0)

Under these conditions they proved that (2.1) has a solution if and
only if the condition:

(LL)  Jlg(-o2)0+-g(+e)ol < [ho< [[g(+eo)ot g(-o0)o7]
Q Q Q

is satisfied for each ¢ belonging to V. Actually, only the case Ak
simple was treated in [L-L] (for the proof see also [H1]), while the
general situation has been treated, between others, in [A-L-P], [B-
N1] and [R3].

It 1s clear that if the above defined limits do not exists, for instance
if the nonlinearity g is a periodic function with mean value zero (the
fact that g has mean value zero is not a restriction since one can add
a constant to h) or if they are equal, e.g. when g(+e )=g(-<0)=0, the
(LL) condition has no meaning.

These cases have been studied by several authors (see for instance
[M-W], [W], [C] for the first one and [B-B-F], [A-M], [W], [H2] for the

-0

other one, that is also known as "strong resonance" if jg(t)dt:O).
+ co
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In the following we report an existence theorem (see [So2] for the
case A simple and [Lu-So] for the general case) and a multiplicity
result (see [C-Lu-So]) for a class of problems which include the
previous two ones as particular cases.

All our results are obtained by means of variational methods, taking
into account the fact that the resonance produce a "lack of
compactness”, therefore the usual min-max tecniques are not
sufficient to give the existence of solutions. The multiplicicy results
(Theorems 2.2, 2.3) are obteined combining the informations on
Morse-index and on the min-max characterization of the critical
level given by the approach developped in [L-S]. The result of
theorem 2.2 is of Amann-Zehnder type (see [A-Z]) the extra
difficulty of the lack of compactness, while the result in Theorem
2.3 is produced by resonance like in [A-M1] and [H2], in which the
multiplicity comes out by the choice of suitable forcing terms (while
we don't need it), and in [B-B-F], whose theorem 2.2 can be seen as
a particular case of theorem 2.3 below. The fact that [A-Z] should be
extended to the resonance case when the (LL) conditions holds is
remarked in [A-Z]; the extension to the strong resonance case
require a method which can work without a good compactness
assumption.

From now on let g be a continuous real function and let G denote a

primitive of it. Then it is well-known that g defines a Nemitskji

operator g  from the set of real measurable functions on Q (with the
x

metric of the convergence in measure) which we denote by M (Q),

into L= (Q). Moreover g is uniformely continuous for every LP
*x

topology,p<+ee, in the target space L*(Q). We denote by G the

continuous functional on M(Q) which sends u into J.G(u).
Q
We say that g satisfies the condition (gy) if and only if:

If v, y, e CI(Q), y= lim Yy, in CHQ) and Vy=0 almost
n—+co
everywhere, if U is a precompact subset of Hé(Q), then:

(gg) a) lim g#(u+nwn) =0 weakly in H"1(Q)

n—+ oo

b) lim G(u+ny,) =0,

n—+ co

both a) and b) holding uniformely for ue U.
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Remark 2.3. The hypothesis (gg) is a quite indirect condition on g.
Consider then, the following explicit assumptions :

(g1) g is a continuous periodic real function with mean value zero
(i.e. G is periodic too).

(g,) g is a bounded continuous real function such that:

lim g(s)= lim G(s)=0.

[sl—=+ o0 Isl—>+ oo
It is possible to show that if g satisfies (g;) for i=1 or 2, then g
satisfies (gg). For the proof see [So2] or [Lu-So]. Assumptions (g1)-
(g,) are two explicit examples of the hypothesis under which we are
working, however these do not cover all the cases in which (gq)
holds; for instance (g;) could be weakened asking simply that G is

sublinear and has a sublinear primitive. It is not our interest to
characterize completely the explicit form of (gp). The fact that the

periodicity assumption on g leads to an abstract condition of the
type of (gp) was previously observed by Ward [W] who first used it
in order to apply the Rabinowitz saddle point theorem.

Suppose, by simplicity of notation, that the sequence of eigenvalues
of —=A is numbered in such a way that O<ig<Ai<..<i,<... . Moreover

suppose that in (2.1) A, is an eigenvalue of multiplicity n-k and that
Me1< A

Our results are

Theorem 2.1. Let k be given and let he H"1(Q) be orthogonal, in the

. 1 . .
duality between Hy(Q) and H1(Q), to the eigenspace corresponding

to A. Let g satisfies (gg). Then problem (2.1) has at least one (weak)
solution.

Theorem 2.2. Let h=0 and suppose that g satisfies (gp), g(0)=0 and
g (0)>A -y
(g3) ‘ or

g’(0)<7\,k_1"7\.k if k>0

Then (2.1) has a nontrivial solution.
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Theorem 2.3. Iet h=0 and suppose that g satisfies (g0), g(0)=0 and
(g4) g(0)G(0) 20, g'(0)£0.
Then (2.1) has a nontrivial solution.

Remark 2.4, Theorems 2.2 and 2.3 are natural results under
hypothesis (g,), while they are not what can be reasonably expected

under the hypothesis (g;); in fact in this case one can conjecture
stronger multiplicity results without any extra assumptions of the
type (g3)-(g4)-

Remark 2.5. Conditions (g3) are in some sense natural conditions for

the existence of nontrivial solutions of (2.1). In fact easy estimates
show that if h=0, g(0)=0 and:

0< g_(SS_)S A,-A  for any se R\{0},

where the strict inequality holds near zero, then (2.1) has only the
trivial solution u=0. One also easily recognize that a weak violation

of the previous condition is not sufficient to produce the existence
of a nontrivial solution.

Let us give some notation and abstract results that will be useful in
the following. Let E be a Hilbert space with scalar product (-,*) and

norm Il [l . Let Bl be the ball centred at zero with fixed radius r (or
any isomorphic set) of an i-dimensional subspace E, of E. We denote

by P; the orthogonal projection on E; and by Xi-! the relative
boundary of Blin E.. Let Ulbe a given set containing Zi"!, we define
for every ACE

Si(A):= {oce C(A,E;) | 6=P; on ANU!}

and
I'f:= {ACE | A is compact and for every ce Si(A): Oec(A) }

We shall say that ACE satisfies condition (v;) if and only if

there exists ¢>0 and (cy)pe NN such that lim
n—-+ co

(yp) for infinitely many he N, A can be covered by the union of Cp

hiEI = 0 and,

) c
sets, of diameter less than h
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We define fi = {Aer’;‘ I'A satisfies (y;) }.

Proposition 2.6. The following result holds:

a) Bl satisfies (y))

b) If A satisfies (y;) and n:A—E is a Lipscitz map then n(A)
satisfies (y;)

) Tf ACRJ, j>i and A satisfies (y;) then A = &

Proof. a) and b) easily follow by the definition of (vp). ¢) follows from
the fact that one can get, as an upper bound for the Lebesgue
Ch

exterior measure of A, a constant times ISR for infinitely many h. H

Remark 2.7. The classes I‘”{ and l:i have essentially been introduced

in [L-S] to the aim of giving a min-max characterization of critical
levels with critical points of prescribed Morse index.

Fixed ke N, ne N, k<n and ae R, a>0; let W be a (n-k)-dimensional
subspace of E, which we shall assume to be orthogonal to E.. We

denote by P the ortogonal projector on W and by B the unit ball in
W centred at zero. Let C := Bk + ocﬁ; for any o C, is isomorphic to B™
so we can use it in the definition of the classes F;f and fn which in
this case will be denoted by Fn”"a and I—“n’oc respectively, where the

set U™ is chosen as ngz the boundary of C, in E, +W. Let UK be a

neighborhood of xk-1. This means that a real positive number ¢
exists such that

(2.8) for any X eeB, for any o>0 Uzﬂ(i +WhcUk,

In (2.8) and in the sequel, we assume that B is the unit ball in E,
then in this situation, with the notation fixed above and with &>0
fixed as in (2.8), e<1, the following result holds:

*
n,o”’

Proposition 2.9. For any AeT for any xeeB one has:

(2.10)  AN(x+Whert

Moreover for any Ae fn,a a dense subset DCW exists such that for
any xeeBND one has
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(2.11)  ANn(x+Whel,.
Proof. See Appendix 1. | |

We recall the result of [L-S], about the existence of critical points
with a prescribed Morse-index, which will be used to prove
Theorems 2.2 and 2.3; first of all we recall that a functional Ie C1(E)
is said to satisfy the [P-S], condition at the level ce (—oo ,+ ) if and
only if:

every sequence (un)neEfN such that
[P-S], (&) I(uy)—c

(b) VI(u,)—0 in E'

has a converging subsequence.

Moreover let Ie C2(E) and x be a critical point of I. Suppose that the
Hessian matrix V 2I(x) has only a finite number of negative
eigenvalues, then let denote by m_(x) the number of strictly

negative eigenvalues of V 2I(x) and by my(x) the dimension of the
kernel of V2I(x). Define

(2.12) c;k:: inf sup I

r¥ A
and
(2.13)  cy=inf sup I,
T. A

1
then the following result essentially comes from [L-S]:

Proposition 2.14.

A. Assume
(2.15) c;k>sup I
Ul

then for every sequence (A.).e " such that lim sup I= ci, there
UG j= oo A !
i

exists a sequence (x;);EMN such that
(2.16)  I(xj)—c;
VI(XJ-)—>O
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Moreover if [P-S] (with CZC?) and (2.15) hold and if V 2I(x) is a
Fredholm operator for every xe Kci" , then a critical point )ZEKC;R exists
such that

(2.17)  m_(x) + my(x)> 1.

B. Assume:

(2.18)  ¢>sup I
Ul

—N ] —
then for every sequence (Aj)jeI‘i such that lim sxp I= ¢, there
J7 e Ay

exists a sequence (xj)jeE[N such that

d(xj,Aj)eO
(2.19) I(xj)ec_fi
VI(xj)—aO

Moreover if [P-S]; (with c¢=c;) and (2.18) hold and if V 2I(x) is a

Fredholm operator for every xe KE" then a critical point ieKE_ exists
1 1

such that

(2.20) m_(X) <i<m_(X) + my(X).

C. The condition (2.15) and (2.18) are satisfied provided

(2.21)  infI>sup L
E. Ut

Proof. |
C. (2.21) implies (2.15) and (2.18). In fact for any Ae F";, Aefi:

L
P.e S;(A) therefore Oc P;(A). This means that AﬂEi;tQ that implies

inlf I sup I and therefore
E. A

1
cf?.infb sup I and ¢z infI>sup L
ik \ L :
E. U E; U

1

The first part of A. and B. follows by a standard deformation
argument (see for instance [So2]). The second part of A. is contained
in [L-S], Theorem 2.5 . The proof of the second part of B. is
contained in [L-S], Theorem 2.6, with the differences we are going to

point out. First of all in [L-S] is essentially asked (2.21), however
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that is used only in order to prove (2.18) that we assume from the
beginning. Moreover the condition (v;) is assumed in [L-S] in a

slightly simpler version (there denoted by (c)). However all what
was used of condition (c) was the fact that (¢) satisfies properties of

proposition 2.6 (with of course (y;) replaced by (c)). Since
Proposition 2.6 establish the same properties for (y;) the proof of
Theorem 2.6 of the [L-S] directly applies in our case. |

Remark 2.22. We have modified condition (c) in the (y;) to the aim
of having a more flexibile version in order to prove (2.11).

Remark 2.23. If one consider Ca defined as above and the

corresponding classes Fi*;x and I'; , one can define

o
* -
(2.24)  ci(o)= 1T1*f stI
1,0
(2.25)  cj(o):=inf sup I,
Fi,OL A
and the analogous results of Proposition 2.14 still hold.
Let us apply these abstract results to the resonance problem. Let

E:Hé(Q). It is well-known that solutions of (2.1) are critical points of

the functional I(u) defined as:
(2.26)  I(u):=J(u) + G(u)
where

1 7»1(
(2.27) =7 [iVu?-=F Jluiz = Jhu .
Q Q Q

Let us consider E, to be the subspace spanned by the eigenvectors
associated to the eigenvalues Ao» A1y oy A1, W the eigenspace
associated to A, E;=E, +W and by P the orthogonal projection on W.
In the following we will denote by u* a solution in E of

~Au - Aru = h(x)
which exists because he W-; moreover we can assume u*e W+,
Proposition 2.28. Let g satisfy (gg). Then the functional 1 satisfies

the [P-S]. for every ce (—oo ,+ oo \[J(u*)}. Moreover it verifies the
condition [P-S]":
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every sequence (u,),€EN such that
[P-ST (a) P(u,)is bounded
(b) VI(u,)—0 in E

has a converging subsequence.

Proof. We sketch the main steps. Suppose (u,),€e EN be such that
VI(u,)—=0, write u,=v, +w, with v,=(I-P)(uy)e W, w,=P(u,)e W. By
standard arguments one gets v —v in E (see [So2] for further
details), therefore if w, are bounded we have finished, and this
proves in particular [P-S]'. We can hence suppose llw ll—+ e and we
want to show that then I(u,)—J(u*). For infinitely many ne N there

1
exists k, such that Iim — Hwknll =1, for these n we define the
n— -+ oo

. 1 . .
functions Vn'= Wi, s obviously, passing to a subsequence, wy,—Vy by

compacteness and, since Yy is a normalized eigenfunction, V y=0
almost everywhere. This implies, by (gp-a), that g (vp+ny)—0
weakly (this is immediately seen taking w =y for those n for which
V, has not yet been defined). Projecting by I-P and passing to the
weak limit one gets —Av~KkV=h(x) re. v=u*. If we pass to the limit
in (2.26) we get by (gg-b)

I(uy)= J(v)+G((uy)—=T(v)=I(u*). |

Remark 2.29. The functional I does not satisfy [P-S] at c=J(u*). In
fact, let we W\{O} and consider the sequence u,= u*+nw. It is clear
that, by condition (gg), u, is such that I(u,)— J(u*) and VI(u,)—0,
but, obviously, u, does not contain a converging subsequence.

It is easily seen that the following estimate on J holds:

(2.30)  J(u*) = max J
u*+E,

and that we can fix >0 such that

(2.31) sup I< inflI
OBy (u*,r) ut+E,

In fact (2.30) follows as J is concave in u*+E, and V J(u*)=0, while

we can fix >0 such that (2.31) holds because I is bounded from
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1 .
below on u*+E, and goes quadratically to —oo on E,. Indeed we can

strengthen (2.31) as

(2.32) sup I< inf 1
IBy(u*,)+W  u*+E,

because the component belonging to W gives only a bounded
contribution in order to determine the value of the functional I. We

can also choose a neighbourhood Uk of xk-1.= 9By (u*,r) such that, by
continuity, the following estimates still holds:

(2.33) supl< infL I
Uk urHE,

We consider C, as defined before and recalling that Ug denotes the

relative boundary of C, in E, we define

(2.34)  b(a) = sup I

U
o

It is possible to show that

(2.35) lim  b(a) < J(u*).
0>+ oo

In fact by (2.32) b(a)= sup I, hence to prove (2.35) it is
By +d(aB)N'W
enough to show that for every ve By ,we d(aB)N'W I(v+w) converges

uniformely to J(v) and then by (2.30), (2.35) will follow. To get the
uniform convergence it is sufficient to argue by contradiction and

use (gp).

Proof of Theorem 2.1.

By 2.33 we can utilize Proposition 2.14 A. From that result and
Proposition 2.28 it is clear that if ci;ﬁ](u*) then ci is a critical level;
therefore from now on suppose cz=J(u*).

Consider then C defined as before and the corresponding c;f(oc);

consider now a—+c. Two cases can occur:

1) lim sup c (@) > J(u®),
O+ oo

2) lim sup c;(oc) < J(u*).
o—+co
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If 1) holds then take a sequence a;—=+c and choose i such that
clf(oci)>J(u*) and c:(oci)>b(oc) (this is clearly possible because

lim  b(a)=J(u*)).
O+ co

Hence we are in a position to apply proposition 2.14 (more precisely
the variation suggested by remark 2.23) and find a critical point.
If 2) holds take a sequence o;—+eco. Then for each j there exists

A.eT_* such that:
] n,OCJ

* 1
sup I < cn(ocj) + =,
A ]

therefore, for each j, for each xe eB

3 1
sup ISclf(ocj) + T,
AN (x+W) ]
J

hence one has

1 1
sup ISCIT(O(,J-) + T <b(a) +T— J(u*)= ci,
AN (xewWh) ] J
J

therefore the sequence Ajﬂ (x+W-<) is such that one can apply

Proposition 2.14 A to find the sequence (xj)jeE[N who satisfies [P-S],
thus we get the critical point. &

Before proving our multiplicity results let us note that if h=0 then
one can take u*=0 and J(0)=0.

Proof of Theorem 2.2.

Fix a neighbourhood UX of £¥-! in such a way that (2.33) holds.

Define fk and cy as before. If ¢, #0 by proposition 2.28 the [P-S]C_k
holds, hence we can apply proposition 2.14 to find a critical point

erK.C.k such. that (2.20) holds. By (g3) one can easily show that

xo# 0. In fact if g'(0)>A -Ay then m_(0)>n>k or if g'(0) < 1-Ay,
m_(0)+my(0) <k and therefore zero can not be the critical point
found with Proposition 2.14.
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If ¢x=0 consider ¢, (a) defined as in Remark 2.23. As in Theorem
2.1 distinguish two different cases:

1 lim sup c_. (o) >0,
) im sup (o)

or

2 li c (o) <0,
) im sup cp(a)

If 1) holds one can choose an a such that ¢ (a)>0 and ¢, (o) >b(a),
by 2.35. In this case we are again in a position to apply Proposition

2.14 in order to find a critical point Xp€ K{;‘ (@) with Morse-index
ntao

such that (2.20) holds. Again such a critical point cannot be zero
because if g'(0)>A -A, then m_(0)>n, while if g (0)<Ap_1-Ayg,
m_(0)+m(0)< k<n.

Suppose now that 2) holds. Fix a sequence (oj); such that o= +oo,

then for every i there exists Ael o. such that
T

_ 1
(2.36) Sup [< Gylo) +7.

By Proposition 2.9 for every i one can find a dense subset D,cW
such that for any xeeB N D; one has AN (x+W)e l:k. Let XeeB be
arbitrarily choosen. One can find a sequence (xy); such that x;e eBND;

and x;— x. Then for such a sequence one has, in view of 2):

_ 1 _
2.37 su I<sup IS c (o) +——= < 0=¢,..
(2.37) Aim(xﬁwi) Aip n(®) * 3 K

We are now in a position to apply again Proposition 2.14 B in order
to find a sequence (yi)ieE[N such thatd(yi,Aiﬂ(xﬁWi)) —0 (hence
P(y)—x ) and V1(y;) =0. Therefore by Proposition 2.28 (y;); has a
converging subsequence which will converge to a critical point of I
Such a critical point will have a component in W equal to X which

has been arbitrarily choosen in SE, therefore one has, in this case,
infinitely many solution of (2.1). |

In the previous proof the characterization of the Morse index was
enough in order to conclude, while in the following proof it will be
combined with estimates on the level.
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Proof of Theorem 2.3.

Fix a neighbourhood UX of k-1 in such a way that (2.33) holds.
Define fk and ¢ as before. If ¢, #0 then by Proposition 2.28 the
[P-S] holds at level c,, therefore recalling (2.33) and applying
Proposition 2.14 B one sees that ch#-—ﬁ. We can now disinguish the

two cases which produces (g4) namely
(2.38) g'(0)>0 and G(0) =0,
(2.39) g'(0)<0 and G(0)<0.

If (2.38) holds then the fact that the critical point X obtained by
applying Proposition 2.14 B cannot be zero follows by a Morse-

index argument since m_(0)>k while m_(X )<k.

If (2.39) holds the Morse-index argument cannot directly apply,
therefore let us suppose that zero is the only critical point of I. By
(2.39) and by the definition of I one has

(2.40) I(0)=-1QI-G(0) =0,
(2.41) ¢ >0 (since ¢ #0).
where in (2.40) I'l denotes the Lebesgue measure of Q.

By Proposition 2.9 and by (2.41) for every o one has ¢, (o) 2 ¢ >0,
therefore by (2.35) it is possible to choose o in such a way that we

also have ¢ (o) >b(a). Since [P-S]. holds at level ¢ (0)>0 we can

apply Proposition 2.14 in order to find a critical point X(€ Kc_n(a)SUCh

that m_(xg)+mg(xg)2n and this implies that x2 O because one has
that m_(0)+m(0) <n.

Suppose now ¢ =0. As in the proof of the previous Theorem one has

to consider two different cases. If 2) holds, then exactly as in the
former proof we can find infinitely many solutions of (2.1), (each

one with a fixed component xeeBNW).

If 1) holds then «>0 exists such that ¢ (o)>0 and ¢, (@) >b(a). We
have already shown that this produces a nontrivial solution if

(2.39). If (2.38) holds we get a nontrivial solution because cy (>0
while 1(0) <0. |
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Remark 2.42. The problem of the research of T-periodic solutions of
the equation

(2.43)  x"-Mx = VV(x,t)

where V(x,t) is T-periodic in t and satisfies the following
assumptions

V(ix,t)=»0
(2.44) uniformely with respect to t as Ix|— + o
VV(x,t)—-0

can be handled using the same arguments emploied in the proves
of the previous theorems. We obtain the following result:

Theorem 2.4. Suppose that V satisfies the following assumptions

(Vo) Ve C2(R"<R,R)

(V) Vix(0,0)2 (A -2 )I for any te R, with the strict inequality
for some t.

(V) V(0,6)=0 for any te R and (2.44) holds

where A, is the first eigenvalue strictly greater than Ao
then (2.43) has at least a nontrivial solution. ]
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APPENDIX 1.

In this appendix we are concerned with the proof of Proposition 2.9
of chapter 2. We therefore will adopt the same notations and
definitions in there.

We begin with a remark which makes the definition of the class r*
more flexible.

Lemma A1, If U=zl AeT* , e S;(A) then BiCo(A).

Proof. Let Xe Blbe given and fix e>0. We consider the function
hE:HQ+—>[O,1]:
if 0<t<e

he(t):= if e<t<le

— M e O

if et

and we set

(A2)  og(x):=0(x) - he(d(x,Z" )X

where d(x,Zi"1) denotes the distance of x from xi-1,

Obviously og=id on 2i-1 Then e S;(A) and therefore a Xe€ A exists

such that o¢(xg)=0,which implies o(x¢)=hg(d(x,Zi"1))X.
By the definition of hg one has

(A.3) llo(x)lI<lixl<l  for any >0

If d(xg,Zi‘l)—eO as e—0 then a suitable sequence (’3j)j and xpe AN yi-1
exist such that

(A.4) Xgi~Xo as joteo .

By (A.4) we get ”G(XSJ.)H—>HG(XO)HZHXOHZ‘—I which contradicts (A.3).
Thus we deduce that e exists such that ZSSd(Xe,Ei'l) which implies

that hg(d(x¢,Z1"1))=1 and finnally o(xz)=X. &
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Lemma A.1 allows us to prove the first part of Proposition 2.9. We
have

Lemma A.5.1f AeT* , e<1 is such that (R.8) of Chapter 2 holds and

n,a’

if XxeeB then one has

(A.6)  AN(x+WheTt
Proof. Let e S1. (AN (x+W+1)), we have that Os (AN (Xx+WL). By
definition 6:AN (X+WL)—E, and we extend ¢ from AN (X+W<1) on

ANG+WHUANU,) to be equal to P, on (AN UMNA N (X+WL)). This

extention is continuous since AN Ugand AN (x+W2) are closed.
Moreover by (R.8) of Chapter 2:

(ANTU)N (AN F+WL)=(AN Z+WL) N (UL N (ZHWD)CA N (KeWh N UK

and on Uk c=P, by definition. By Dugundji theorem we can consider
an extension oy of 6, 67:A—E,. Let us define

c"A—E, by ¢":=c; + P
It is easy to verify that c'e S (A). In fact ¢'=P, +P=P_ on AN Ug. Since

Ael“n’,"a from Lemma A.1 we get (for our choice of Uz) that:

there exists xpe A such that X=0'(x).

This implies that
(A.7) 01(x0)=0 and P(xp)=x.

The second equality of (A.7) implies that xpe AN (X+W<) and
therefore o(x)=01(x()=0. |

Lemma A.8. If A satisfies (v,) and k<n is fixed, then a dense subset
DCW exists such that

(A.9) for any xe D : AN (x+W+) satisfes (y,).
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Proof. Let H={he NIA is contained in the union of ¢y sets of diameter

less or equal to ﬁ'}. Let QyCW be a cube with side as small as we

c .
want that we can assume to be equal to o We can choose hje H in
0

such a way that the following inequalities hold:
h h
EnlEm
2hyd™ 3hy

(where [°] denotes the integer part of a real number);

Ch1
(3110)n’k h,n+1 <lL.
1
. . ,.h.dz[hl]if_
Qg contains a cube Qg with side 2hol by <ho.
. . Co hy . c
Divide now each side of Qg in 2 The parts with length o
0 1
h1 n-k
Therefore  Qp will be divided in 2n-k[§—h——] small cubes. We
0
hl n-k
choose [;r:[ of them, which have distance greater or equal than
<20

BC— from each other. By hypothesis AN (Qy+W)CA is covered by Chy
1

. C
sets of diameter less than H— , then no one of them can touch more
1
than one of the small cubes which we have choosen. For this reason
at least one small cube can be covered by at most

Chq ) C
ch‘l:z F‘]ﬁ; sets of diameter less than E;
2hg

By repeating the same argument we can assume that we have fixed

C
a cube Q, with side o and choose h),, ;e H in such a way that

uw
h +1 hu+1

(A.10) [“ ]z
2h, | =3h,
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Chity 1
hy "1 “pel

(A.11)  (3h)™*

p+1
k h!g+1 n-k C
We can now divide Q  in 2™ small cubes with side
L 2h, By
byt

n-k
Among them we can fix[ :’ with reciprocal distance greater

2h,,

c
or equal than n

. By the hypothesis AN (Qu-i-W) is covered by
u+1

c sets of diameter less than < . Therefore at least one of these
h”+1 hu+1
. Chu1
small cubes is covered at most by Chup= T T o of such sets.
[hu+1]n~k
2hu
One has by (A.10) and (A.11)
Chutq ~ Cht1 Chut1 .
k+1 — . = i .
i By o l‘hk+1 Busy o khk+1 ol
2hu H+1 3h, H41

Therefore we define

L

Chp if there exists u such that h:hu

Cﬁ =
0 otherwise

For every h of the kind hu for some p (Qu+Wi)ﬂ A is covered by cp

. c . .
sets of diameter less than e Since the Qus are a sequence of closed

bounded sets decreasing by inclusion a ZEL]..LJ QHCW will exists,

clearly AN (X+W4) satisfies (Vi) Therefore if we call D the set of the

points of W which satisfy (A.9) the above argument shows that
DNQy= & and therefore, for the arbitrarity of Qg, D is dense in W. H

The proof of proposition 2.9 follows from lemmas A.5 and A.8 . H
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CHAPTER 3.

Nonresonance conditions
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In this chapter we are concerned with the problem of finding non-
resonance conditions on the nonlinearity f in order to have solutions
for problem of the type

3.1) { Au + f(x,u) =h in Q
u =20 on JQ

for any h. In a classical result Hammerstein [H] proved that if f
satisfies a linear growth and if

2F(x t)

(3.2) lim sup

<Ay uniformely in x

t—+oco

(where F denotes a primitive of f ) then (3.1) admits a solution.
Susequently Mawhin-Ward-Willem in [M-W-W] proved that one
still get an existence result if one weakens (3.2) in the following
way:

there exists ae L °° (Q) such that

2F(x,t
(3.3) lim sup (X )

< a(x) <A uniformely in x and a(x)<Xi; on a
t—+ oo

set of positive measure.

In [D-G2] this condition has been furthermore weakened: in fact De
Figueiredo and Gossez allow:

t
lim sup —5—~ (X 2F(x.t) =X
t—+co

provided that the nonhnearlty f does not touch A;t "too much" (for a
precise sense see later).

The same kind of problem (let say in a rough way how f'(t) can
“touch” the eigenvalues) has been also studied for problems of the
type "jumping nonlinearity” i.e. problems in which the nonlinearity

f(x,t)

admits different limits at plus and minus infinity (or hm sup

-0

is different from lim inf
t—+ 00

have been studied by several authors, see for instance [Ful],
[So6],[A-P],(see [So5] and [Fu2] for more references), moreover the
same kind of nonlinearity has been also considered for the
telegraph equation (see [F-M] and a sligth improvement in [D-Lul).

t
>). Problems with jumping nonlinearity

The nonresonance problem in the jumping contest has been
considered in [M-W] (also for the Neumann problem). Later,
analogously to the previous situation, De Figueiredo and Gossez in
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[D-G1] gave a weaker condition of nonresonance. In this chapter we
will see a different approach (see [Lu-M]) to the problem of
nonresonance for jumping nonlinearities which leads to a distinct
condition to that of [D-G1] or [D-G2I; this approach obviously, works
also in the previous situation as it will subsequently be remarked.

Let us therefore consider the problem

(3.4) {Au + g(u) =h in Q
u =20 on 0Q

where Q is an open, bounded, regular domain in R™ and h belongs
to LP(Q). From now on we suppose that g satisfies:

PP {{ . ) g(t)
(g) If o':= liminf (© , o":= lim sup 0]
t—+ oo t e ¢
L. g(1) ) a(t)
B':= lim inf (& , B":= lim sup (0]
t—-co t t— -0
and ki, 7‘1+1’ iz]1 are two consecutive distinct eigenvalues of A

(with zero boundary conditions) then:
MSB B <AL.

De Figueiredo and Gossez (see [D-G1]) proved that (1) has at least
one solution for each he LP(Q) provided thatthere exists an n>0 such
that

n(F
(Hl) lim inf "~ >0 where Fnzz {te ]-n,n[ | t20, &>k.+n}
N—+ oo t 1
and
n(G,) t
(H,) lim inf 2~ >0 where G_:= {te ]-n,n[ | t=0, gﬁdx- -n}
2 N+ co n n t i+1

(u denotes the Lebesgue measure).

They get the result by a degree argument and (Hy)-(H,) are

employed in proving an a priori bound for solutions of a suitable
problem, in order to have the homotopy invariance of the
topological degree.

In this chapter we study the existence of at least one solution for
the problem (1) by means of variational methods, more exactly we

look for critical points of the functional f, - Hé(Q) — R defined by
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fh(u):=%' jIV w2 - J(G(u) - hu)
S Q

u
where G(u):= Jg(t)dt, and we apply the Rabinowitz saddle-point
0

theorem [R4]. In order to prove the Palais-Smale condition (see
chapter 1) and to study the behaviour of the functional on the
subspaces of the saddle point theorem we replace conditions (Hy)-

(H,) by the following hypothesis:
(g,) g is a Lipschitzian function with Lipschitz constant M,
(g3)  when i=1: if a'=A; then A <a"; if B'= A, then Ay<B".
when i>1 @ if a'=p'=}, then or A,<a” or A<B” .
if a"=p"=}, ; then or a'<h, , or B'< Mg

From (g;)-(g,) and (g3) in the case i>1, a'=f'=A;, A;<a” it is clear that
for each n>0 sufficiently small there exist two sequences (aj(n))j,
(bj(n))j in R such that

a). a; —+ oo, bj —+co
b). 0< a;(m) < b(m) < az(n) <...< an(n) <b,(M)<...
o(t
c). %S?\,i-i-ﬂ if and only if t belongs to U [aj(n) ,bj(n)]
J

Remark 3.5. Obviously in the other cases considered in (g5) one has

analogous sequences. For instance in the case i>1, a":B"=Ki+l, B'< ki+1

for each n>0 sufficiently small there exist two sequences (ocj(n))j,
(Bj(n))j such that

a). (XJ —')-OO,BJ. —> - o
b). 0>pMm)>am)>..> o, 1M)>pB () >...
t
c'). g{—)z Ai,1-m if and only if t belongs to L{ [ocj(n) ,Bj(n)]

In the case i>1, a'=B’=Xi, ki<oc" we ask the further condition :
a;(n)

o There exists an n>0 such that

—c#0 when j— +c |
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For the other sequences constructed by the other cases considered
in (g3) we have to ask the correspondig conditions (84)-

Remark 3.6. We explicetely remark that condition (g4) is weaker
than conditions (Hy)-(H,) of De Figueiredo-Gossez. In fact it is
possible to exhibit a function which satisfies (g4) and does not
satisfies, for example, (Hl)' Define for instance :

-1 if te I;(k)
BO: =\ sinlog(t+eq e (k2+1)) if te (k)

where I, (k):=[k? (k*+1)-e;(e*™-1)], Iy(k):=[(k+1)2-e,(e®™1),(k+1)?)],
ke N, el:=e3"/2 and consider g(t):= A;th(t). It is easy to show that g(t)
satisfies (g,) but not (H;). On the other hand it is possible to prove
that conditions (g;)-(g,) imply that the sets F and G_ have positive
density at infinity (i.e. they satisfy (Hl)"(Hz))’ therefore our result

provides a different proof of [D-G1] and [D-G2]) for nonlinearities g
which have a more regular behaviour.

We obtain the following result

Theorem 3.1. Let us assume (g1)~(g2)-(g3) and (g,). Then for each

he LP(Q) problem (1) admits at least one solution.

Remark 3.7. We explicitly note that all our considerations in the
following are independent on the particular choice of h, and
therefore from the existence of critical points of f,, for a given h, we

get the existence of solutions of (1) for any h.

We denote by H:-:H(l)(Q) and by Il - Il its norm. Let H™ be the subspace
of H spanned by all the eigenvectors corresponding to the
eigenvalues 7‘1’""7‘i and let H* be the one associated to the
eigenvalues greater or equal to A, ;. It is obvious that H=H'®@H™* and

that dim(H") < +e, while dim(H") = +e . All what we have to prove,
in order to apply Rabinowitz theorem, is that
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a. inf f (u) = - forueH"

lull= 4 oo

b. inf f (u) > -
ueHT h

C. f11 satisfies [P-S],

and this will be done by successive steps.

Step I: proof of a.
Let (u. ), be a sequence in H™ such that lly Il = + oo, write Ty =l ll

u,
and Vi = 'T—}*‘ .Then there exists an ue H™ such that, for a subsequence,
k

vi— u strongly in H, strongly in LZ(Q) and a.e. in Q, but dim(H") <
+eo implies v, — T in CXQ), U= 0 and Il =1.

Let Q:={ xe Q 1T (x)<0}, Q%= { xe Q |7 (x)=0}, Q" :={ xe Q | F(x)>0}.

Lemma 3.8. It is possible to define a function m such that:
g(uy)
Tu NI

— mua weakly in L2(Q), moreover if g 1is a Lipschitzian

g(uy)
function then Tl £

TR mu strongly in L?(Q) and a.e. in Q.
k
Furthermore the function m can be chosen in such a way that:

o' <m(x) <o, for all xe Q™
(3.9) B < m(x) <B", for all xe Q-
m(x)=0, for all xe Q0
B

To prove a. it is sufficent to show that f is bounded on bounded sets
and that

(3.10) _H_Hé_ —-co when ue H™ and llull = +oo
u

'y (u)[u]
It will be therefore enough to prove that lim sup ———=— <0 for

Tt SUTRNTY)

ue H™ . Let (u,), be a sequence such that llu ll - +o, by lemma 3.7
k’k q k
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ENCIIL
‘h—"l'\——zL -1 - J‘mﬁzwhenk—>+oo;
a1l O

by the Poincaré inequality one has: 1 - fmﬁz Sf(?&i-m)ﬁzso;
Q Q

hence the only thing to be proved is that the strict inequality holds
i.e. m(x)= A;. Let us assume by contradiction that m(x)= A, then it

follows that u belongs to the eigenspace spanned by the

eigenvectors associated to A;: hence if i>1, U changes sign, then by
(3.9) we have a'=p'=A., thus by (g3) or a">L. or B">Ak;; on the other

hand if i=1 by (3.9) if u>0, o'=A, thus by (g5) o">Xk, while u<0 implies
P'=A, thus by (g;) B">A;. We consider, for the sake of semplicity, only
the case i>1, oc':B'zki and a">ki and we will utilize the sequences
(aj(n))j, (bj(n))j already defined.

+ _
Let e>0 be fixed; define Q 8:={ xe Q lax)>e .

Lemma 3.11.1f (g3) holds and m(x)= A, then:

gt u(x))

+
(3.12) — — - ae, xeQ
T u
) g(uk) +
Proof. Since m(x)=}%,, by lemma 3.9 " = A ae. xeQ e hence:
k
gl vy)  glhevy) v g(uy) v +
ik S :K':E—L-—k'-ekia.e.xefze; on the other hand,
T U Wk W Yk w
+ g(Tkﬁ(X)) g(Tka)
on Qg, — __ behaves as —— —— when k—+< because, by (g,):
T, U T U
g(tiu) - gt vy)
e oM 1T -y |
Tk
and when k =+, [u-v |- 0in cOQ). B
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Remark 3.13. The lemma holds if | U - Vi | = 0in CO(Q) and this is
immediate if one works in a finite dimensional space.

gt u(x))
Remark 314, Let A*:=( xe Q| =%—— 4 &, } then u(A)=0.

*cku

g(t.p)
T, D

Define IT := { pe [e,M] | -+ 7‘1 }, where M:= mggtx u.

Lemma3.15. 1= & .
Proof. Claim 1. The interior of IT is empty. Infact take any open

+ —
interval ICII, let pe I. Then for each xe Q c such that u(x)=p one has

g(tk u)

that + A, ; therefore ﬁ'l(I)C A. By remark 3.14 this implies

T u
n(a-1(0))=0, but u (D) is an open set, therefore u (1)=& , that is
=2,
Claim 2. IT is an open set. Infact by (g,) there exist constants a>0 and
b>0 such that Ig(t)l<a+bltl for all te R, therefore for any sequence
g(t.p)

Tkp

T, ,—+e and for any pe R, is a bounded set. Hence for any

element peIl, there will exists a _?»;tki such that, for a subsequence,

g(1.p) . . .
converges to A. Let 8=IX -A;I. As before there exists a kp such

Tkp

g(tp) .

—>7»p if p is in a suitable neighboroud

that, for a subsequence
of p.Following the ideas of lemma 3.11 it is easy to show —7»p¢ A

therefore peIl, and this proves claim 2. From claim 1 and claim 2
the lemma follows. B

g(t,.p)

-

Corollary 3.16. For any pe [e,M]

i 0

By means of corollary 3.15 we see that for each pe [e,M] there exists
gt p) . )
< ?Li+n ie. 1, pe U [aj,bj], in

TP
k J
particular we have that there exists ()i such that 1, Me [ajk’bik] for

k>k(M).

a k(p) such that for each k>k(p):
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Lemma 3.17. Kkq(e):= sup k(p)<+eo.
[e,M]

Proof. Suppose by contradiction that for each N>0 there exists a
pne [e;M] such that k(py)>N, therefore TNPNE P\Lj) [aj,bj]. On the other
hand, for a subsequence, PN —DPge [e,M]. Following the ideas of
lemma 3.12 it is easy to show that

g(tPy)

>L.+n for each Ne R suitable great
™WPo !

this implies pyeIl but this is impossible by lemma 3.15. B
By corollary 3.16 and lemma 3.17 for each k>k, ty.-[e,M] must be

contained in the interval [a.k,bjk], in fact one has T e, M]C U [aj,bj],
j

T, Me [ajk,bjk] and the intervals [aj,bj] are disjoint. This means that

a. ,

J J . .. . .. .
T—k£8<MS—T—k which is impossible by (g4): a contradiction. By its
k k

definition f; is bounded on bounded sets. The other cases in (g3) are

treated in the same way. B

Step 2: proof of b.

e Fp(wlu]
As before it is sufficient to prove that lim inf —5— >0 for uve H*.
llull=>+eo  llull

Let (u ), be a sequence in H' such that lu Il >+ . By lemma 3.8

fru)fu ]
"'}l—ls"z—l'(— - 1- fmﬁz when k = +co;
hay I o

Let us show that 1 - f m T 2>0. This is obvious if T= 0. Suppose uz0.
Q

Since ue H* we have:

(3.18) & fﬁzsnﬁng.

i+1

If one of the inequalities in (3.17) is strict, we have done. Therefore
it remains to consider the case in which

__2 —
(3.19) xiﬂfu =Il=1,
Q
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that is when Tu=v+z where v corresponds to the eigenspace
corresponding to M., and z belongs the one corresponding to

eigenvalues greater of A,q- From their definitions v and z are

. . 1 ..
orthogonal in LZ(Q) and in HO(Q) therefore from (3.19) it is
immediate that z=0. In such a way we reduce to the finite

dimensional space corresponding to A;,1 and, as in step 1, we can
get a contradiction if m(x)= A1 ||

Remark 3.20. The same ideas of the proof of step b provide a
different proof of [D-G2]

Step 3: proof of [P-S].

Let (u ), be a Palais-Smale sequence (i.e. such that Ifh(un)lSc and

th(un)—->0). By classical results it is sufficient to show that (u,), is

bounded in H. Let us suppose by contradiction that llu l—+oo, let
u

Vn:=”un”. Therefore there exists a ve H such that, for a
n

subsequence, v —v weakly in H, strongly in LZ(Q) and a. e. in Q. By
lemma 3.8 and by standard arguments on elliptic equations from
the fact that th(un) — 0, we get that v,—V strongly in H and that

v satisfies
(3.21) Av + m(x)v=0.

Since v2 0 by a result equivalent to the unique continuation
property we have that m(x)=s A, or m(x)= A,,1- From now on, denote
by E the space spanned by eigenvectors corresponding to Aysehg
and by F the one corresponding to A;. Let P,Q and P™ be the

orthogonal projections onto E, F and HT respectively. Let us suppose
m(x)=A;; this implies that v belongs to the space F. Since v,— veF
we have that :

(3.22)  Pv — 0 and P+Vn - 0
therefore, obviously:

1Q(u )I?
HP(un)HzHIQ(un)l|2+HP+(un)ll2

(3.23) -1
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Q(u,) Qu,)

By (3.22) one has TR and this implies W=
n

—v where
n

o g(t,w,)
= 11Q(u)ll; since g is Lipschitz and by (3.23) one has “"-T'——-»Xiv
n
weakly in H, strongly in LZ(Q) and a.e. in Q. We are now in a finite
dimensional space, therefore like in step 1 we get the contradiction.

The case m(x)= Ki+1 can be treated as in step 2. |

Remark 3.24. Conditions a. and b. are in fact sufficient to show that
it is possible to substitute to the usual min-max class of Rabinowitz,
in the saddle point theorem, the class F: of min-max sets defined by
Lazer-Solimini in [L-S], for the definitions and the abstract results
on ' see chapter 2. Utilizing their characterization of Morse index
of critical point obteined with I'[it is possible to get a multiplicity
result for our problem when h=0.

Therefore we get the following multiplicity result:

Theorem 3.2. Let h=0, ge C1(Q), g(0)=0. Suppose that g satisfies

o

(gl),(gz),(g3),(g4) and g'(O)<7Li, g'(0)e 0(—A). Then there exists a
nontrivial solution of (3.4).

Proof. It follows immediately by Proposition 2.14 A of chapter 2,
taking into account the fact that the augmented Morse index of zero

is strictly less of n by the hypotheses g'(0)<A; and g'(0)e a(-A). [ |

Remark 3.25. The previous result is of the Amann-Zehnder type [A-
Z] with the difference that we are not asking that there exist e>0 and
p>0 such that

e _
Ate < <A, ¢ for each [El>p

g

Remark 3.26. It is clear that (—A) can be substituted in problem

(3.4) by any uniformely elliptic, simmetric operator

L= Z(-1)BDB(aaB(x)D°‘u) whose coefficent are in CI**1Bl(Q). No
lal,IBI€m

hypothesis are done on the sign of the eigenfunctions associated to
A, A
1’

i+1.
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CHAPTER 4.

A _bifurcation result for a problem with
a_discontinuous nonlinearity
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Problems with discontinuous nonlinearities have been studied by
several authors both in a general setting (e.g. [A-B], [A-T], [Ce], [Ch],
[Ku], [St]) and related to applications (e.g. [A-T], [Ci], [F-B]). In
particular  in this chapter (see [Lu]) we focus on the following
problem, discussed in [A-T] and motivated by a problem arising in
plasma physics (cfr. §4 [A-T], [Ci]) :

(1) { —Auzh(u—a)-p(u) in Q
u =0 on oQ

where Q is an open bounded regular domain in R ™; h is the

Heaviside's function (i.e. h(s-a)=0 if s<a, h(s-a)=1 if s>a ), ac R and
p(s) satisfies:

(pg) pe CO(R), pis a nondecreasing positive function,
(p1) p(s) <as +c with o <A;and ¢ given constants,

where 4, =2;(Q) is the lowest cigenvalue of -A in H Q) \HX(Q),

Let us denote, by simplicity, f,(s):=h(s-a)p(s). In [A-T] it has been
shown, beside other results, that there exists an a* such that
problem (1) admits at least two nontrivial solutions for any O<a<a*.
The proof was carried out by means of variational methods, utilizing
an idea due to [A-B] for which the problems tied to the
discontinuity of the function f, (i.e. the nonregularity of the

functional associated to problem (1)) can be overcome by using the
Clarke's dual action principle [Cl].

In this chapter we study problem (1) from a different point of view,
considering it as a bifurcation problem for "multivalued mappings".
More precisely we introduce the multivalued function F (s):R — 2R

defined as
0 if s<a
F,(s) = T, if s=a

p(s) if s>a
where T, denotes the closed interval [0,b(a)], with b(a):=p(a)
denoting the "jump" of the function f, at the point s=a.
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Denote by ¥, the Nemitskji operator associated to F,, ie.
FuL2(Q)—2L@) s defined as follows:

for each ue L2(Q) F, (u):= { ve L2(Q) | v(x)e F,(u(x)) a. e. xe Q };
furthermore denote by K:=(-A)1, K:LA(Q)—H (@) HX(Q) and recall

that K is compact from L2(Q) into L2(Q).

We consider the problem

(2) 0 e u- KF,(u).

We say that ue H(l)(.Q) is a solution of (2) if and only if there exists a

ve L2(Q) such that —Au=v in Q and for a.e. xe O one has
v(x)e F,(u(x)). In this sense we say that a solution of (2) is a solution

of the problem

3) { —Auf F,(u) in Q

u =20 on oQ

In the following we consider (2) as a bifurcation problem with
bifucation parameter a.

Remark 1.I. Note that if u>0 and a<0 then F,():={p(u(x))}, therefore
in this case if u is a solution of (2) with a<0, one has that u satisfies,

actually, -Auzp(u), i.e. it is a solution of (1).

It is obvious that for any a20, u=0 is a solution of our problem. We
show that from (0,0)e RxL2(Q) a global branch of nontrivial
solutions of (2) bifurcates. To this aim we apply a modification of
the Rabinowitz's global bifurcation theorem [R], that has already
been used in [A-H]. We recall that in [R], [A-H] the principal tool in
the proof of the global bifurcation theorem is the Leray-Schauder
topological degree; in this case it will be substituted by the
multivalued degree defined in [C-L].

Let 8 :={(a,u)e RxLZ(Q) | a=0, u is a solution of (2)}. Our main result is:
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Theorem A. Let oo < A{(Q). 8 contains at least a connected component
C such that:

1. (0,0)e C
2. There exist two constants B>0 and R>0 such thatC<c[0,B] x B
where Bp := { ueL%(Q) | llul< R}

R 9

3. There exists a<P such that, for each O<a<a, C, ={ueL2(Q)l(a,u)eC)
contains at least two points.

~

[lull
R
R\*N
\\ 7
0 3 p a
Fig. 1

§ 1. Notation and basic definitions on multivalued maps.
Suppose that X is a Banach space, let Il - Il denotes its norm, 2X the

class of all the subsets of X: a multivalued function T from X into X
can be thought as a map T: X — 2X | Define the graph of T as:
grT: = {(x,y) I xe X, ye T(x) }

We have the following:
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Definition [.1. Let grT,, grT, be the graphs of two multivalued
functions Ty, T,. We call separation between T;, T, the number:
d*(T, T,) = su d(z,ngz)

zegrl,
where d is the metric defined as d((x,y),(u,v)):=max(llx-ull,lly-vll).

Moreover we recall:

Definition 1.2. T : X—=2X is upper semi continuous (u.s.c.) at xe X if
T(x)2 & and if, given &>0, there exists a >0 such that
T(B(x,8))SN.(T(x)), where B(x,8) is the open ball about x of radius &
and N, is an e-neighbourhood of T(x). T is u.s.c. in X if it is w.s.c. at
each point xe X .

It is clear from the definition that F, :R — 2R is us.c. . For known
results (see [A-C]), for any ue LZ(Q) there exists a measurable
selection &:x—F, (u(x)). Furthermore by the definition of F,(s) and
because p(Q)<+eo, it is easy to show that £ L2(Q). Therefore
F,(u)= & for any ue L2(Q) .

Definition 1.3. T: X—2%X s said to be compact if it maps bounded
sets into relative compact sets.

Let CK(X) be the set of all closed convex subsets of X: let A be a
subset of X and denote by co(A) its convex hull. Given a sequence of
multivalued (singlevalued) maps T, , we say that T, converges to T,

T, —»— T, if d*(T,,T)—0. It is known ([C1], [L] §7 theorem 3.3) that

given any multivalued function T: X— CK(X) there exists a sequence
of continuous singlevalued functions T, (which can be also taken to

be compact if T is compact) such that T, —— T, i. e. T, approximate
T; moreover the range of T, R(T,), is such that R(T,)Cco(R(T)).
Using this approximation result, in [C-L] a topological degree for a
multivalued function of the type T := id-G, with G compact, has been
defined. More precisely let D be an open bounded subset of X, and

T: D CK(X) be a multivalued function such that T = 1d-G, G compact;

let G, be a sequence of compact singlevalued functions defined in D,
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whose range is contained in co(G(D)), such that Gy—— G. Let T, =
id - G

Definition I.4. Let pe D such that pe T(9D). Then define the degree:

d(T,)D,p):= lim deg(T,,D,p)
n—>+ oo
where deg(T,,D,p) denotes the Leray-Schauder degree.

Remark [1.5. This definition is meaningful because: i) for n large
pe T(ID); ii) the definition is independent on the particular choice of
the approximating functions G,; iii) for n large deg(T,,D,p) is
constant.

It is possible to show that all the usual properties of a degree hold,
i.e. invariance by homotopy, additivity, excision and the solution

property.

2. Preliminary results and proof of main theorem.

It will be convenient to introduce some notation; from now on let
X:=L2(Q) and for any ae R, for any ue X define the sets:

Q(u):={xe Qlu(x)<a}, Q,(u):={xe Ql u(x)=a} and Q}(u):={xeQl u(x)>a}.
From the definitions it is clear that for any ae R for any ue X, for any
veF,(u) v=0 on Q7 (u), v(x)e T, for xe Q,(u) and v(x)=p(u(x)) for any
xe QF (u).

Lemma 2.1. For any aec R, F, and K¥ ,are wu.s.c. multivalued

functions.
Proof. The us.c. of ¥, follows from the upper semicontinuity result

([C2]) for the Nemitskji operator associated to any u.s.c. F:Rm—2R™
such that there exist a>0, b>0 such that IF(x)I<a+blx| . For the reader
convenience we give the proof in appendix 2. The second part of the
assertion follows from the continuity of K: X— X. |

Lemma 2.2. For any ae R, KF, is compact.
Proof. F, sends bounded sets of X into bounded sets: in fact let B a
bounded set of X and let M;>0 be a constant such that for each ue B
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llall<M ;. Consider B := uUBFa(u) and let ve B . Then, clearly, there
€

exists an ueB such that ve F, (u). It is immediate to estimate that
lvil< M,, where M, is a constant depending only on My, 1Ql, T,, ¢ and

o. Finally K is a compact operator from X into X, therefore it sends
bounded sets into precompact sets. H

Lemma 2.3. For any ae R, for each ue X, KF,(u) is closed and
convex.

Proof. First of all for each ue X F, (u) is closed and convex. In fact
let vpe ¥,(u) such that v y—v* in X, therefore, for a subsequence,
v,— v¥ a.e. xe Q. By definition F, has closed values, hence
v¥(x)eF, (u(x)) for a.e. xe Q, i.e. v¥e F,(w). Let v{,voe F (u) and
consider tvy+(1-t)v,; for a.e. xeQ tv(X)+(1-t)v,y(x) € F,(u(x)) since
for any xeQ F,(u(x)) is convex; this implies that F,(u) is convex.
The convexity of K¥,(u) is immediate. Let now consider vhe KF, (u)
such that v,—v* in X. There exists wne F, (u) such that v,=Kw_ for
any n, moreover by lemma 2.2 F,(u) is a bounded set, therefore
wy—w* weakly in X . On the other hand, by the first part of this
proof, ¥ ,(u) is weakly closed, hence w¥*e Fa(u). Finally Kw,—Kw*

strongly in X because K is compact, hence, by the uniqueness of the
limit, v*=Kw#*, ]

Consider the multivalued function map @®:R xX — 2X defined by
®(a,u) := u-KF,(u). By the previous results we can define for any
open set DCX the degree of @ with respect to any point pe (9D).

Before proving our result we need some preliminary remarks and
lemmas.

Remark 2.4. By definition F,(s)=0 for each se R therefore the

maximum principle implies that any solution of (2) (or (3)) is such
that u=0 in Q (see [G-T)).

Remark 2.5 If a<0, then for each u>0, ue X, KF,(u) is a singlevalued

operator (i.e. solutions of (2) are indeed solutions of (1)); moreover
if a<0 u=0 is not a solution of problem (1) because £,(0)>0.
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Lemma 2.6. For each 0<A<B there exists >0 such that for each
ae[-B,-A] one gets: d(®(a,’),B;0) = 0.
Proof. It sufficies to prove that Og ®(a,u) for each llull<§ . By

contradiction let us suppose that there exist O<A<B such that for
each ne N there exist an ape[-B,-A] and an upe X, uy20 such that

lluy lI<1/n and un-KFan(un):O (recalling remarks 1, 2.4 and 2.5).

Hence u,—0 weakly in X, but K is a compact operator, hence u— 0
strongly in X, moreover ap—b, be[-B,-A] therefore one has 0=
K¥y(0) which is impossible by remark 2.5. B

Remark 2.7. As in [A-T] it is possible to show that there exists a
>0 such that for any a>p problem (2) has no solution. In fact for

a<Aq take P = It is clear that for a>B f,(s)<A;s, therefore

7\.1‘ 04
taking the inner product of each side of (3) with the eigenfunction
associated to A; one gets a contradiction.

Lemma 2.8.. Let oc<7»1. Then there exists an R>0 such that for each
ae [0,B] , for each solution u of (3) one has llull < R.

Proof. First of all, remark that for each ac R, for each ue X, for each
ve F,(u) one has v(x) < au(x)+c for a.e. xe Q, from (3) one has

Au < au(x) + c. Therefore taking the inner product with u one gets

leulZS fuz +c _"u
Q Q Q

and from the Poincare' inequality one has (Aq- o) Juz <c Ju and
Q Q
this gives the thesis. B

Lemma 2.9. Let A:=[a,B] with a1>0. Then there exists & > 0 such that
for each ue X O<llull<d and for each acA :0 ¢ u - KF, (u).

Proof. Let us suppose by contradiction that there exist u,e X and
ape A such that O<lluyli<1/n and 0 € u, - KFan (u,), i.e.

)  -Au,e F, (uy).
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It is clear that for n— + o, u,—0 in X and a,— a . Let us consider
any w, e F,(u,). We now show that:

(6) w,—0 in X.

- +
In fact for a.e. xe Q', (where Q'::Qa (un)UQa (uy) by (pp)
n n

0w, (x)Sau,(x)+c, and from this it is easy to show that lenl2~90;
Ql

on the other hand for a.e. xe Q\Q' wy(x)<b(a,)< +eo, hence JIWHIZ <
Q\Q'

b(an)leanl. Since an——>5 b(a,) is bounded uniformely with respect

to n and moreover IQanl—eO (otherwise it is immediate to get a

contradiction with u,—0 in X). By (5) and (6) one has -Aun—>0 in X
hence u,—0 in H2(Q); by the Sobolev's immersion theorem we

know that HNP(Q) is embedded in L9(Q) with g < f‘l%‘ furthermore

by the same ideas of lemma 2.2 one proves that F, sends bounded

sets of L9(Q) into bounded sets of L4(Q) and, as before, one can
improve the convergence of u,; by this kind of bootstrap argument

one sees that u,—O0 uniformely in Q . As a consequence, for n large

un(x)<5 a.e. xe Q and hence Fan(un(x))E 0. Let wus consider

u
Vo, :=m, for n large the preceding remark implies
1
-Avne T Fan(un)=0
which is impossible because v I = 1. &

Corollary 2.10. There exists 8> 0 such that for each acA -

d(®(a,-), Bg, 0) =1.
Proof. It suffices to show that there exists a 8 > O such that the
homotopy H(t,u):= u-tKF,(u) is admissible then, by the homotopy
invariance of the multivalued degree, the result follows. The

admissibility of H can be proved following exactly the ideas of
lemma 2.9. ]
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Proof of theorem A.

Taking into account that the multivalued degree satisfies the
homotopy and the excision properties as the Leray-Schauder
degree, part one of the proof follows, as in [A-H], by a simple
modification of the Rabinowtz's global bifurcation theorem. In fact it
is possible to apply the Rabinowitz's argument since by the lemma

2.6 it is possible to choose a & such that for each a<0 d(®(a,-),Bg,0) =0
while corollary 2.10 implies that d(®(a,-),Bs,0) =1 for each a>0.

Since o< A1(Q) by remark 2.7 and lemma 2.8 it is clear that part 2
follows.

The last assertion follows  because the continuoum €, by the
properties of the continuoum of the Rabinowiz's theorem and by
part 2 of this theorem, must touch again the (0,u)-axis. |

We explicetly remark that we are not able to prove that the
solutions on C satisfy (1) a.e. . In fact we do not know whether
1Q,(w)I=0 for any solution of (2) as it was shown, on the contrary, for
the solutions of minimum in [A-B] and [A-TJ.
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APPENDIX 2

Let us denote by B the ball in R™ centered at zero with radius one,
by B, the unitary ball in L2 and by dl the Hausdorff distance.

Lemma . Let @ in R", u(Q)<+oo; let F from R™ into the non-empty

closed subsets of R™ be upper semicontinuous and such that, for
some a,b=>0:

[F(x)l <a+blxl.

Then the map F from LZ(Q) into the non-empty closed subsets of
LQ(Q) such that for each ue LQ(Q)

F(u):= { ve L%(Q) | v(x)e F(u(x)) a. e. xeQ }
1S upper semicontinuous.

Proof: .
a) Letu and v be in Lz(Q) and let & be in F (u), { in ¥ (v). Then:
IE(x)-C(x)l < 2a + b(lux)l + Iv(x)l) £ 2a + b(jv(x)-u(x)| + 2|u(x)|)=
=2a + 2blu(x)| + b|v(x)-u(x)]
and

(1) 1&-L 12 < 4a% + 4b%ui? + Sablul + b2lv-ul2 * 4ablv-ul + 4b2lul-ly-ul

b) Fix uand e>0. Let A be such that ECQ, u(E)< 3 A implies
2

[{4a2 + 4b2lu(x)2 + 8ablu(x)l}dx < =
B

Since F is u.s.c., for every x in Q there exists 1(x)>0: lv-u(x)I< n(x)

€
implies: F(v) < F(u(x)) + —=—=— B (where B denotes here the
unitary ball). Let AC Q ,u(Q/A)<be such that the restriction to A of
the maps x—u(x) and x—F(u(x)) is continuous. Denote by C[x,8] a
cube centered in x with sides of length §. Then for every x in A
there exists 6>0: x" in A() C[x,8(x)] implies

d(F( ' — ' n(x)
u(x),F(u(x"))< —— and |u(x")-u(x)l< .
4 u(@) 2
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The family (C[x,8])xe A,5<5(x) is a Vitali covering of A. Let Co=Clx,,8,]
be a countable family of disjoint sets such that AcC N° LnJ (Cp,), where

N° is a null set, and such that the series Z uw(C,) is convergent. Let v
n

be such that

PIN(AES)

n=v+1
and set n>0 to be n:= min{n(x,): n<v }.

c) Let 6>0 be such that o< ﬂg— and

2
o) €
(2) 4b%62 + 8abou(Q) + 4blllullo< T

We wish to show that llv-ull < ¢ implies
F(v) € F(ux)) +eB,y, ( here B, denotes the ball in LZ(Q))
Fix any v in u + oB, and let { be a measurable selection from the

map x— F(v(x)). Choose a measurable selection from the map
x—F(u(x)) such that [&(x)-L(x)I = d(§(x), F(u(x)) a.e. in Q. We have to

estimate  [I£(x)-{(x)12dx .
O

Set E= E(u,v):= {xe QI Iv(x)-u(x)| zg— | . Since

3) (ZYPWE) < fiv-uldx < o2 < Mg-)z ,
- Q

we have that p(E) < A.

d)Set:

e=EVi@EMIU (@8Nl LLjU@BNaiNU( U B))=

=EUE,UE,UE,,
and

Jle-Lxo2dx = Jle-teo2dx + Jie(x)-¢x)2dx
Q EUE, UE, £
From (1),
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(4) Jle-gi2dx < [48244b%1u(x)2+8ablu(x)ldx  +
EUE,UE, EUE, UE,

+ Jb2v()-u(x)1Z8alv (x)-u(x)l+4b () v (x)-ux))dx .
Q

We have: W(E)<A; since E; C Q\A, also w(E{)<S); from our choice of v,

w(E3)<A. From the choice of in b), the first integral at the right hand
2
€

side of (4) is bounded by 3 Moreover, since

Juvi < (fluviz)™ (ueen™ < o-uen ',
Q Q

the second integral to the right of (4) is bounded by:
b262+8a0((Q)) “+4b2ull (w(©) Zo

2

€
and by the choice of o in (c) this therm is bounded by 3 - Hence the
82
integral to the left of (4 )is not larger than 2 3
e) We are left with the estimate on E. Whenever xe AN C,, nv,
1
then lu(x)-u(xn)lsin(xn) and
€

(5)  d(F(u(x)),F(u(xy))) £ ——.

T e
Whenever xe Q\E, lv(x)-u(x)lsl hence when x 1is in

2
(QE)N(ANCY),

v (x)-u(x)l< T—‘(z—x)-% <n(x,)

and by the definition m of in b),
€
F(v(x)) € F(u(x,)) + ——B
4\ (@)
From (5) then,

F(v(x)) € Flu(x)) + ———B8
2 (@)
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The above estimate is independent of m, n<v , hence it holds on E,.
2

€
We have then [Ig-(dx =  [d({(x),F(u(x)))2dx < mQ)=T

E, E,

4u(Q)

f) By adding the estimates in d)and e),

2
Jle)-cxRdx < 52—+ %—< e2.
O
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