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Chapter 1

Introduction

It is commonly helieved that star formation is a process which occurs naturally in the
overall evolution of initially diffuse, low-density, interstellar clouds. In this view, the
origin of stars has been associated with the collapse of individual protostellar subcon-
densations, which eventually form inside such primeval clouds. This very early phase
of the evolution is poorly supported by observations and, hence, the physical details
of this initial fragmentation stage into protostellar subclouds are rather obscure. The
initial conditions for the protostellar collapse are likely to be determined at the end
of this phase. Furthermore, the lack of consistent observational evidence concerning
the intermediate stages of the protostellar collapse renders the problem of star forma-
tion even more difficult. Notable theoretical efforts have been made in order to fill
the observational gap existing between interstellar clouds and star-like ohjects. Most
of this work has been mainly focussed on the classical problem of angular momentum
redistribution during the collapse, which is crucial for understanding the sequence of
‘"events in the process of star formation.

Realistic calculations of protostellar collapse should involve the solution of the equa-

tions of hydrodynamics in two or three space dimensions for the case of a self-gravitating



fluid, including the effects of gas pressure, rotation, magnetic fields, turbulent viscos-
ity, and molecular viscosity. The solution of these equations must be coupled to a
simultaneous calculation of the equation of state of the gas. Also, a full treatment
of radiation transfer, as well as possibly convective transfer, is necessary in order to
account for the dependence of the collapse itself upon the rate at which compressional
heat is being liberated from the system. The process of formation, growth, and de-
struction of dust grains must also be considered. Dust grains are expected to interact
with the gas molecules providing firstly an efficient cooling mechanism, which operates
through the isothermal phase, and secondly the most important source of opacity to the
infra-red radiation later in the near-isothermal and non-isothermal regimes. The above
considerations give a rough idea of how complex a realistic treatment of protostellar
collapse would be. This high degree of complexity gives rise to a number of inevitable
restrictions which obviously limit the class of problems which can be successfully solved.
Even when the physics is simplified to include only the dominant dynamical effects, the
structure of the resulting equations is still so complicated that they can be only solved
by means of suitable numerical methods. Experience shows that explicit numerical
methods are especially suitable for the inital dynamical collapse stages. However, these
methods are not applied to describe the complete evolution towards a star-like object.
Due to the non-homologous nature of the gravitational collapse, both time and length
scales vary by several orders of magnitude during the evolution of a protostellar cloud.
At the end of the relevant dynamical stages when a considerable density enhancement
has formed in the inner regions of the collapsing system, the main difficulties are in
getting reasonable spatial resolution and accuracy at acceptable computational cost

and in physically and consistently describing the overall flow pattern inside the col-



lapsing cloud. The flow pattern can basically be divided into two parts, a supersonic
region (comprising the infalling outer envelope) and a quasi-hydrostatic part (compris-
ing the pre-stellar nucleus), which are separated by a strong shock region (the accretion
shock). This shock front is then of great importance for determining the structure of
the protostar because the kinetic energy of the infalling matter in the envelope (ahead
of the shock), is transformed in the shock region into outgoing radiation (i.e. giving
rise to luminosity). Furthermore, the shock plays an important role in determining the
structure (entropy distribution) of the outer layers of the pre-stellar core.

In this thesis, we describe the construction of an explicit hydrodynamic numerical
code in order to follow theoretically the early isothermal collapse of spherically sym-
metric (1-dimensional code), axisymmetric (2-dimensional code), and non-axisymmetic
(3-dimensional code) protostellar clouds. The hydrodynamical equations are solved on
a moving spherical grid with only the effects of gravity, rotation and gas pressure being
included and, with the gas being taken as ideal and at constant temperature. The Pois-
son equation for the gravitational potential is solved, on the same computational grid
used for the hydrodynamics, by using a spherical harmonic expansion in order to allow
a separation of variables. This gives rise to a radial linear differential equation which
can be accurately solved by means of a tridiagonal matrix algorithm. The equations
of continuity and momentum transfer are discretized and set in finite-difference form
using an explicit time integration and a constant-volume boundary condition. The
hydrodynamical transport through the grid is performed using the donor cell method.
The use of this method besides guaranteeing the transportive fluid property, ensures the
global conservation of the advected quantities. However, it is formally only first-order

accurate and hence introduces a spurious diffusion of the variables within the grid, i.e.



local conservation is not necessarily ensured. However, local conservation of angular
momentum has been substantially improved by using a partially centred scheme for the
specific angular momentum rather than advecting it by the standard donor cell method.
The codes use a one-step solution procedure with the time increment for advancing the
system being constrained by the Courant-Friedrichs-Lewy condition. Reasonable accu-
racy and good stability and convergence properties are guara:nteed by the resulting set
of finite-difference equations.

The 1-dimensional code was tested against the well-known analytical solutions for
the spherically symmetric collapse of a pressureless sphere. In this case, the numerically
obtained density plateau matched the analytic one quite well. The same test was then
used to determine the best choice of numerical treatment for the further runs. Indirect
comparisons with numerical results obtained by other workers, have shown that the
spherically symmetric code is able to reproduce well, situations which one expects to he
encountered during the isothermal collapse phase. A further test made in order to check
the sensitivity of the scheme to the onset of gravitational instability for uniform density
isothermal rlouds, has demonstrated its ability to reproduce the Jeans’s criterion with
a surprisingly good accuracy.

The 2-dimensional version of the code has been used to observe the response of
the numerical scheme to the process of ring formation. For all of the runs carried
out, the solutions obtained compared well qualitatively with those previously reported
by other investigators. In many cases, ring formation is observed at the end of the
calculations, with the collapse being initially characterized by an overall flattening of
the cloud followed by a bounce of the material in the central zones and subsequent shock

formation. The axisymmetric code is able to locally conserve the angular momentum



and to recognize a spherically symmetric configuration in the absence of rotation.

The 3-dimensional code was only tested superficially due to the strong computa-
tional restrictions. Since all of the calculations were performed on a Gould computer,
comparisons with the runs of other workers on a CDC 7600 machine in single precision
(60 bits) were only possible using the double precision accuracy of the Gould machine
(64 bits). Under these circumstances, a 3-dimensional run required a very large amount
of CPU time even to follow an evolution for only one free-fall time. Thus, a full isother-
mal run could not be completed. However, when the calculation was carried in single
precision accuracy with large initial fractions of the Courant time step, an evolution
was completed after roughly 25 hours of CPU time. Even though fragmentation has
been observed, this run cannot be considered as a production run due to the inaccuracy
implicit in the use of the single precision on the Gould computer. More consistent so-
lutions with the present non-axisymmetric code require a faster computer whose single
precision accuracy is at least comparable with that of a CDC 7600 machine.

The main goal of this investigation was that of developing suitable two- and three-
dimensional computer codes, which would remain open to the possibility of including
additional physics and more powerful methods for consistently tackling the problem
of protostellar collapse and fragmentation into multiple stellar systems. In Chapter 2,
we discuss the relevant physical situations presumably encountered during the early
star formation phase. A discussion is also given of the central problem regarding an-
gular momentum transfer during the protostellar collapse. In Chapter 3, we comment
on the physical assumptions made and present the basic differential equations as well
as the initial and boundary conditions necessary for obtaining numerical solutions of

these equations. The description of the computational grid is given in Chapter 4. The



Poisson solver is together with tests of its accuracy fully described in Chapter 5. Chap-
ter 6 is entirely devoted to the hydrodynamical approximation and the development
of the codes. In Chapter 7, we discuss the results obtained for spherically symmetric
collapse and, in Chapter 8, we describe the phenomenon of ring formation as it has
been observed with the 2-dimensional axisymimnetric code. Finally, Chapter 9 contains
brief comments on further lines of work. Three appendices have also been included.
Appendix A gives details of the Poisson solver implemented for the 2-dimensional cal-
culations. In Appendix B, we illustrate a root-finding algorithin for the zeros of the
Legendre polynomials of odd degree, which are used in determining the structure of
the grid along the #-direction. In Appendix C, we conclude by giving the basic forms
of the finite-difference replacements used in the discretization of the Poisson equation

and the equations of motion.



Chapter 2

The Physical Problem

In the course of the last twenty years considerable theoretical and observational efforts
have been addressed in the spirit of solving the longstanding problem of star formation.
Although these attempts have undoubtedly introduced significant progress in the field,
we may ascertain that we are still far from achieving that aim.

Well-known standard troﬁbles such as, for instance, the circumstantial and scarce
observational evidence on the very early stages of stellar evolution, the rather poorly
understood physical processes behind such stages, and the inevitable mathematical
complexity which arises from handling consistent and complete physics, have converted
the problem in a harder one, and hence any attempt toward a satisfactory solution is
quite difficult and uncertain.

In the next sections, we shall try to wdepict the more relevant physical situations,
which are presumably encountered during the early phases of star formation, and men-
tion some important observational background supporting the scenario and defining
both the initial and final stages of the protostellar collapse period, which is the main

subject of the present investigation.
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2.1 The Early Stellar Evolution Period

It has been long believed and formally accepted that the starting point of star for-
mation is provided by the existence of very diffuse, low-density (~ 10723gem=3),
low-temperature (~ 75K ), large-sized (~ 2 x 10%m) configurations predominantly
composed of neutral hydrogen and dust, which are present in the interstellar medium
[10]. With this basic hypothesis, the overall evolution leading to solar-type stars
(p ~ 1lgem™3) should go throughout a density range involving 23-22 magnitude in-
crease.

On theoretical grounds, the early stellar evolution (or star formation process) may
be subdivided into three main phases [10], namely: (a) the low-density star-formation
phase; (b) the protostellar collapse phase; and (c) the slow-contraction phase, each of
them being characterized by distinct physical events.

The first phase is the most obscure and probahly the least understood. However,
it is believed to start when the very diffuse, neutral hydrogen, interstellar matter is
initially compressed to higher densities by an externally induced pressure. The need
of some pressure-inducing mechanism in order to start the gravitational collapse of
these primeval configurations is theoretically evidenced by their unbound nature. In
the framework of the up-to-date theory of star formation, the existence of very massive
(~ 10* — 10°My), dense (~ 10712 — 10721 gem™3), cool molecular clouds, as confirmed
by radio observations of the molecular spectral lines, may be explained during this early
stage.

It has been hypothesized that by the time the density has increased to roughly
10722gcm ™3, the generated compressional heat has been efficiently radiated away from

the cloud due to its very low opacity, while nearly all of the initial neutral hydro-



gen has been converted into molecular form. The final effect is then a decrease of
the initial mean temperature to about 10K [7,10,61] followed by an increase of the
mean density to the point where self-gravitation takes over. Because of the expected
non-homogeneous structure of these configurations, probably due to internal turbulent
motion and viscosity effects, it is quite possible that they evolve to even higher densities
(~ 107 — 107%%cm=3) in certain portions, favoring in this way a low-density frag-
mentation process leading to protostellar blobs with a wide spectrum of masses [109].
Unfortunately, the way in which such a low-density fragmentation occurs is not clear
due to the lack of available observational evidence of this stage.

Reddish [97] and Ibéfiez [55] suggested that molecular chemistry could certainly
influence the dynamic collapse and subsequent break-up into protostellar fragments
especially if a dominant species is involved, as is the case when atomic hydrogen makes
the transition to predominantly molecular form. On the other hand, the hydrodynamic
effects of turbulence and viscosity remain somewhat controversial and uncertain because
of the difficulty of simulating their physics in detail. The role played by magnetic fields
and rotation will be considered separately in a following section.

The time-scale for molecular cloud formation is estimated to be about 107 years,
afterward the evolution should run through the independent collapse of the protostellar
fragments, with only little influence of the parental massive cloud [61]. In this view,
the low-density star formation phase is crucial for our understanding of the subsequent
evolution, since its outcome provides the initial conditions for protostellar collapse.

So far, the first main hypothesis that has been made is that stars originate from in-
terstellar matter. Observational evidence encouraging this point of view and suggesting

the tendency of stars to appear in clusters or associations, have been circumstantially



reported in the literature.

T-Tauri stars together with Herbig Ae and Be stars constitute good examples of
star-like objects, which are evolving towards the main sequence while surrounded by
their placental dense interstellar cloud complexes [105,106]. Similarly, observations in
the infra-red region of the spectrum [107] have shown Herbig-Haro objects which are
interpreted as reflection nebulae [117], whose illuminating stars are extremely young
objects (with age ~ 10° years) located within dark cloud material.

The O- and B-star associations and the young cluster NGC 2264 are, on the other
hand, examples of newly born stars formed in associations and clusters from the in-
terstellar matter. Miller and Scalo [77] from a survey of open clusters, OB-, T-, and
R-associations, concluded that at least 65% of all stars more massive than ~ 2 — 5 Mg
presently being formed appear in associations, while about 10% of all field stars are
contained in galactic clusters. However, the possibility of encountering completely iso-
lated forming stars out of an individual cloud cannot be excluded, as suggested by the
presence of Wolf-Rayet stars [92]. Aveni and Hunter [2] identified several young isolated
stars whose birthsite cannot be known clusters or associations.

Observations directed to study the overall molecular cloud properties are of primary
importance in connection with the protostellar collapse problem. Such hackground in-
formation is expected to ease the difficult problem of setting adequate initial conditions
for theoretical collapse simulations.

Interstellar clouds have been observed with densities of a few H atoms em™3 up
to densities of ~ 10* — 10° H; molecules cm™ and masses ranging from a few My
to ~ 10°Mg. Equilibrium temperatures in typical interstellar conditions have been

calculated by Spitzer and Tomasko [103], who found that at these densities the gas
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temperature should be 10K-20K, with negligible dependence of the temperature on
the cosmic-ray intensity. Since under these conditions it is expected that molecular
clouds will be cooled to ~ 10K [48,61] due to the dominant cooling processes involving
collisional transfer of energy from gas molecules to dust grains and subsequent infra-red
emission by dust grains, the slightly higher temperatures exhibited by dense molecular
clouds may be attributed to heating from stars forming within them.

Indirect evidence for the existence of large amounts of H; in dust clouds is given by
Heiles [50] from observations in the OH line for a sample of four clouds. Observations
of different systems by other workers have also revealed the same conclusion.

The second main hypothesis made by the theory of star formation consists of assum-
ing some mechanism as being responsible for the formation of the observed molecular
clouds. Four mechanisms have been proposed as the major candidates [10], each of them
being different ways of subjecting a cloud to an external shock pressure. Such mech-
anisms are: (a) cloud-cloud collisions; (b) nearby supernova explosions; (c) expanding
regions of ionized hydrogen (Hys) that form around newly born, hot stars embedded
in dark material; and (d) shock waves coming from the spiral-structure density wave
in the Galaxy. Observational background evidence exists for all of these shock sources.

The clouds NGC 1333 [69] and LkHa 198 [71] may constitute good examples of
cloud-cloud collisions. Both clouds were observed to contain infra-red stars within
a gravitationally bound region at the collision interface probably produced by two
separate clouds. Observations in the CO line suggest a state of non-homologous collapse
(v ~ r=1/2) for the bound region in NGC 1333 and LkHa 198.

The R-association CMa R1 containing two classical Herbig emission stars is observed

to lie at the edge of a large-scale ring interpreted as a supernova remnant and coincident
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with an expanding Hy shell [51], which is in agreement with theoretical expectations of
supernova-explosion events. The close correspondence hetween the age of the Herbig
emission stars (~ 10° and ~ 10° years) and that of the supernova remnant (~ 5 X
10° years) together with the presence of a runaway star "HD 54662” in CMa OBI,
suggests for this case a scenario of supernova-induced compression with subsequent
star formation.

Loren and Wootten [72] give evidence of star formation in the IC' 1848 A bright-
rimmed dust cloud as probably being induced by the expansion of the Hj; region
formed around the OB stars in the central regions of the molecular cloud IC 1848. The
increased external pressure of the expanding Hj; regions is thought to he responsible
for the rapid emerging of a B star detected in IC 1848 A at the perimeter of the Hys
region. Other evidence for star formation initiated by the compression of an external
Hijy region is provided by the molecular cloud BD 4 40°4124 [69].

As postulated by the density wave theory of spiral structure [67], the matter in the
Galaxy can maintain a density wave through gravitational interaction in the presence
of the differential rotation of the various parts of the disk. This density wave provides
a spiral gravitational field which underlies the observable concentration of young stars
and gas. In this way, an observable spiral pattern can be maintained over the whole
galactic disk.

Roberts [99] suggested that some of the large clouds and cloud complexes may be on
the verge of gravitational collapse before reaching the galactic shock due to H;; regions
that form around newly born O and B stars. A sudden compression of these clouds
in the spiral shock could trigger the collapse of some of the largest clouds, which in

turn may induce the subsequent compression and collapse of the individual sub-cloud
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components. Each sub-cloud may then form a star which lies in association with the
stars emerging from all the other sub-clouds inside the large cloud. That this could be
the case is suggested by the fact that the amount of compression necessary for initiating
the collapse of a gas concentration varies as M ~2. Therefore, it is much easier to induce
the collapse of a large cloud rather than a sub-cloud. Furthermore, it has been inferred
that sub-clouds can form stars only if they are contained in large clouds or in large
cloud complexes.

Milman’s [79] observation of the dust globule B361, interpreted as a small cloud with
estimated mass M > 125Mg and core density n > 10*Hyem ™2, may well represent an
example of an isolated sub-cloud which does not seem to have any stars nearby or
embedded in it. The observed widths of the CO lines suggest a radial collapse at
v ~ lkms~! however, they may be also due to turbulent motion inside the cloud.

Ideas about the beginning of the protostellar collapse phase are connected with the
hypothesis that favourable conditions for gravitational collapse to occur are likely to be
achieved at the end of the low-density phase. This hypothesis is expressed quantitatively

in terms of the Jeans criterion [10,11,61]

Egrcw > Z Ei ) (21)

where E,, 4, denotes the gravitational potential energy of the cloud and the sum extends
to all possible sources of energy present in the cloud.
In the idealized case in which only thermal and gravitational energies are important,

equation (2.1) takes the standard form [10]
T\: _,
My = Mumin x <—> P, (2.2)
where the Jeans mass M is defined as the minimum mass required for the gravitational
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collapse of a cloud at (p,T). For a typical diffuse cloud at T = 75K to collapse
and overcome its thermal pressure, its mass must exceed about 10%Mg, thus a solar
mass cloud will only collapse if its density is several orders of magnitude higher than
~ 10H em™® for such clouds. The above suggests that in the presence of an externally
induced pressure capable of enhancing the cloud density over its initial value, the Jeans
mass required for collapse will decrease.

On the other hand, if the density of a large massive molecular cloud increases as
long as its temperature is kept nearly constant, the minimum mass for collapse will
progressively decrease suggesting a continuous disruption of the cloud into smaller and
smaller mass-sized pieces. Such a fragmentation sequence may only stop when the
last formed pieces become optically thick to their own radiation. In this way, their
temperature may well increase up to the point where the critical Jeans mass exceeds
their actual masses. Theoretical predictions give a lower limit of 0.01d, [102] at which
further fragmentation is inhibited. This value agrees with the mass spectrum of the
observed lower main-sequence stars.

Bodenheimer [10] has summarized the main stages encountered during the proto-
stellar collapse phase. Most of the details about this period have hasically come from
spherically symmetric collapse simulations of a 1M spherical protostar [61,85,118].

From densities of about 107'%gem ™3 up to ~ 107 3gem ™3, the collapse proceeds
isothermally with T' ~ 10K, as determined by the point at which the heating and
cooling rates balance [48,61]. However, more recent calculations including radiation
transfer in the Eddington approximation [18] have shown that in the diffusion approx-
imation the temperature in regions of intermediate optical depth are underestimated.

This implies that the temperature is likely to rise at much lower densities and thereby,

14



the initial infall will proceed with the temperature increasing slowly rather than in a
rigorous isothermal manner.

The evolution in the innermost higher density regions takes place faster than in the
outer parts of the cloud, since the free-fall time is proportional to p~1/2. The cloud
then experiences a non-homologous contraction with the density varying as r=2 in the
outer envelope [61].

Gerola and Sofia [44] obtained from a simplified analysis of CO and HCN obser-
vations, a number density distribution for molecular hydrogen n = Ar~2cm~2 with
A = 2 x 104, for the Orion A cloud. Brandshaft et al [20] indicated a dust density

"™ with n ~ 2 around the centre of the same cloud from

distribution proportional to r~
observations of the far infra-red emission.

Evidence for collapsing clouds shows that some clouds with embedded young stars
have CO line widths which vary as v ~ r~1/2, as expected for non-homologous collapse
[70,72]. Moreover, theoretical calculations predict maximum infall velocities of ~ 2 —
3kms™!, which are in good agreement with those observed of ~ 2 — 10kms™! for large-
scale ™aotions in molecular clouds.

When the central density exceeds 107 3gem ™2, about 1% of the total cloud mass in
the innermost portions approaches a non-isothermal regime. As the density increases
in these regions, the free-fall time [t;; = (37/32Gp)'/?] rapidly becomes shorter than
the time needed for the radiation to escape and diffuse outwards from the collapsing
material. The matter then becomes opaque and the trapped compressional heat results
in a setting up of a temperature gradient between the innermost zones and the outer

isothermal regions. The resulting increasing thermal pressure eventually impedes fur-

ther collapse and favours the formation of a small region in hydrostatic equilibrium at
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T ~ 170K and central density p, ~ 2 x 107 % cm =3 An external shock develops and
allows the hydrostatic core to accrete more and more material until 7 ~ 1800K and

3 are reached.

pe ~ 107 Tgem™

At temperatures of 1800K-2000K, the molecular hydrogen in the core begins to
dissociate and a further collapse takes over on a very short time-scale (~ 1 year). By
the time that all of the molecular hydrogen has been dissociated, heating and rapid
pressure increase again result in the formation of a second small core of about 1072 M
in hydrostatic equilibrium at 7 ~ 2 x 10*K and p, ~ 10~ 2gem~2. This core will then
define the nucleus of the equilibrium star, with the subsequent evolution being mainly
dominated by an accretion phase in which the material ahead the newly formed shock
accretes onto the stellar core. A maximum mass for a newly formed core is set by the
action of the radiation, which it produces. in reversing the infall of outer material [62).

The time-scale of the whole protostellar collapse phase is estimated to be about 10°
years [10]. It has been shown that the properties of the resulting stellar nucleus are

generally independent of the initial conditions, being rather weakly dependent on the

total clond mass.
2.2 The Angular Momentum Problem

Considerations of the effects of rotation and magnetic fields are of great importance in
understanding the problem of star formation.

Observational evidence suggests that we may expect interstellar clouds to be rotat-
ing at least with the galactic rate (w ~ 1071%s71) for a cloud at the suns’s distance
from the centre of the Galaxy. Therefore, a perfectly spherical, uniformly rotating, in-

3

terstellar cloud of mass M ~ 10*Mg and uniform density p = 10~2%gcm ™2 would have
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1

a spin angular momentum J of ~ 5 x 1081 gem?s~1, corresponding to a specific angular

024

momentum J/M of roughly 102%cm?s~!. This value appears to be about nine orders

of magnitude higher than the present value inferred for the sun (J/M~ 10%cm?s~1)
and six to seven orders of magnitude higher than those observed for the most rapidly
rotating stars (J/M~ 107cm?s™!) on the upper main sequence [7,13].

However, the assumption that the angular momentum of interstellar clouds, and
hence the angular momentum of the observed stars, originates from the galactic rotation
alone is rather controversial [109]. If this were the case, the stellar rotation axes and
binary axes should exhibit a preferentially perpendicular orientation with respect to
the galactic plane, instead of being randomly oriented as they are actually ohserved
to he. This randomness suggests that the turbulent motions, which take place in the
interstellar medium, could also contribute to the final angular momentum of equilibrium
stars. In this case, a protostellar cloud will have nearly comparable rotational and
translational kinetic energies yielding a J/M for such cloud even higher than that
inferred from pure galactic rotation.

Thic <itnation indicates that rotational effects must become significantly impor-
tant well before reaching stellar conditions, and that angular momentum must be re-
distributed during the collapse in order to explain the several orders of magnitude
difference in J/M between interstellar clouds and main-sequence stars.

The galactic magnetic field, estimated to be of ~ 3uG [21], is expected to thread
the interstellar matter present in the Galaxy. Therefore, interstellar clouds should be
magnetically coupled with the surrounding intercloud medium. Although the eﬁ‘ects
of such a magnetic field upon the collapse of cool interstellar clouds have not yet heen

modeled in detail, observational evidence and theoretical arguments strongly suggest
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that they are likely to play a role during the low-density phase.

Mestel and Spitzer [76] showed that as long as the galactic magnetic field is frozen
into a collapsing cloud, the magnetic pressure sets a lower limit for the mass that can
remain gravitationally bound. If we consider in equation (2.1) only the magnetic term,
we find that a typical interstellar cloud of 10*Mg at n ~ 10Hcm ™2 is able to contract
provided that the magnetic field strength drops helow ~ 1.6uG. A cloud of solar mass
will require a much smaller magnetic field (~ 0.08uG).

Since in a very low-density regime, we expect the collapse to occur rather isotrop-
ically, with the field varying as p?/® and the magnetic flux (BR?) remaining constant,
the critical mass for gravitational instability will be independent of the density, and
the molecular stage will be then reached with conditions which are not favourable for
fragmentation. It is therefore expected that at typical molecular densities, the field
diffuses allowing anisotropic collapse and subsequent fragmentation into protostars.

Observational evidence for initial isotropic contraction is provided by the fact that
the galactic field runs longitudinally along the spiral arms of the Galaxy [41]. This
implie< that the rotational axis of interstellar clouds should be aligned roughly perpen-
dicular to the galactic field lines.

It is known that in the presence of the galactic magnetic field, an interstellar cloud
is forced to contract with an approximately uniform rotation rate rather than with uni-
form angular momentum [41], because the magnetic energy density B?/8r will always
be greater than the turbulent kinetic energy pu?/2. The interior field of the cloud is
expected to distort due to the compression of the cloud relative to the galactic back-
ground. As the cloud attempts to rotate more quickly, the field lines become more

distorted and hydromagnetic waves are generated, which then travel along the twisted
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magnetic field lines transporting angular momentum away from the cloud [45,76,82].
The transfer of angular momentum will be efficient as long as the magnetic field remains
essentially frozen into the cloud.

In dense interstellar clouds, incoming cosmic radiation partially ionizes the hydro-
gen. The compressed magnetic field then excerts a Lorentz force acting on the ions and
electrons immersed in the plasma. As the cloud reaches higher densities, the cosmic-ray
flux is eventually screened via magnetic scattering. At this point, the ionization rate
of hydrogen is drastically reduced, and hence the ion density will decrease. Thereafter,
the magnetic field, which is anchored to the ions, will start decoupling as the remain-
ing ions leave by ambipolar diffusion. As the magnetic field detaches from the cloud,
the magnetic torques necessary in order to brake the cloud hecome less effective, and
angular momentum is no longer transferred to the intercloud medium. Further collapse
should then proceed with local conservation of angular momentum.

In this way, the initial angular momentum of a protostar will be established at
the decoupling epoch, which is the time at which the interstellar cloud is expected
to fraement The time-scale for angular momentum transfer, on the other hand, is
determined by the ambipolar diffusion time tp. So as long as, tp > tsy, the field
remains essentially coupled, and the cloud is able to lose angular momentum. When
tp ~ tfs, decoupling of the magnetic field should occur.

Observations of the Zeeman splitting of OH emission lines in two dust clouds [29]
imply an upper limit of ~ 504G for magnetic field strengths. This result is important
because it suggests that magnetic fields have already separated from interstellar matter
in dust clouds. Theoretically, interstellar material with an initial n ~ 10H c¢m=2 and

B ~ 3uG would have fields of several hundred uG if the field were frozen into the gas
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during the collapse to n ~ 10® — 10*Hycm 3.

Nakano and Tademaru [83] argued that if cosmic rays were absent or strongly
screened at low density, the decoupling of the magnetic field would occur at much
lower densities. This could explain tfxe absence of very high fields in some dense clouds.
Moreover, that magnetic field must diffuse out of the cloud as the collapse proceeds, is
shown observationally by the very weak field strength exhibited by most stars.

The crucial question is at which critical density magnetic braking diffuses out so
that fragmentation can take over in a contracting interstellar cloud. For clouds of
10* Mg rotating at the galactic rate, Nakano and Tademaru [83] suggested a critical
density ng > 2 x 10%cm ™2 for the ambipolar diffusion time to become comparable
with the free-fall time. Mouschovias [82], however, suggested a critical density range of
2.2x10%m™3 > n > 7.5 x 10%cm ™2 at which the magnetic flux must break down if the
observed periods of binary stars are to be accounted for. He argued that decoupling is
likely to occur only in the denser cores of collapsing interstellar clouds, the collapse of
the outlying portions being halted by the tension of the field lines which do not detach
from thace of the galactic background.

Scalo [100], on the other hand, showed that the observed low cloud temperatures
cannot be accounted for, unless the magnetic field varies as n$°® rather than at the
712{3 rate that applies for isotropic collapse. Otherwise, the heating produced by the
friction associated with ambipolar diffusion would yield clouds hotter than those actu-
ally observed. It was suggested that this slightly weaker dependence may he due to a
violation of the frozen-in approximation at ng > 10%cm=3.

Other workers have predicted critical densities lyihg in the range 10°cm ™2 < n <

107cm ™3, It is clear that no strict agreement exists between different theoretical pre-
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dictions. So once more, we must turn to observations of molecular clouds in order to
estimate roughly how much angular momentum has been lost by magnetic braking.
The observed densities of such clouds also give an estimate of the critical densities at
which the effects of the galactic magnetic fleld become less important.

Observations in the CO line of the Orion A molecular cloud [68] indicated an angular
velocity of ~ 2 — 4 x 107571 at a density of ~ 2 x 103Hyem™3. Phillips et al [94]
interpreted the Orion structure as a disk-like model undergoing collapse perpendicular
to the disk plane while rotating about its axis of symmetry. The dust globule B361
has been observed to spin with w ~ 107135~ [79]. Similarly, CO observations of the
Monoceros R2 cloud [70] indicated w ~ 1.4 x 107*s~! and n ~ 10*Hyem ™2, while
Kutner and Tucker [58] inferred w > 7.4 x 1071s™! for the same cloud in the CS
molecule. Other observations reported in the literature have indicated dust clouds
with angular velocities up to 9 x 107*s~1 [7].

Taking 10718571 to 1071451 as typical angular velocities, a solar-mass sized proto-
stellar spherical cloud with n ~ 10*Hycm™2 will have specific angular momenta J /M

rangine from ~ 1.5 x 102em?s7 ! to ~ 1.5 x 10%2cm?

s71. In comparison, a large cloud
with typical interstellar conditions will have J /M~ 1024¢cm?s~!. This result indicates
that during the low-density phase leading to protostellar formation, the specific angular
momentum may well be reduced by 2-3 orders of magnitude.

The 6-7 orders of magnitude difference in J/ M between molecular clouds and solar-
type stars may be further reduced by considering the observed difference in rotational
velocities between pre-main and main sequence stars. Boss [13] inferred a J/M~

10'7cm?s™1 as a plausible value for pre-main sequence stars (of the late type), which
P p

are expected to approach the lower main-sequence as the present sun did. A gap of
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roughly 4-5 orders of magnitude in J/A is then found between observed molecular
clouds (J/M~ 10%2 — 10?1em?s~ 1) and pre-main sequence stars (J/M~ 10'7cm?2s™1).

In order to explain this gap in J/M a second important mechanism has be intro-
duced, which includes conversion of spin angular momentum into orbital motion by
fragmentation of a collapsing cloud. In this picture, when a cloud collapses and even-
tually fragments into two parts, most of the original spin angular momentum of the
cloud will supply the orbital motion of the emerging hinary system, while only a small
fraction will go into spin of the single fragments. Break-up into a binary system, as
well as being a common occurrence in nature, represents the simplest possibility and
the lowest order deviation from axial symmetry [63].

Bodenheimer [7] proposed a hierarchical fragmentation sequence to explain the for-
mation of multiple star systems. He showed that a rotating interstellar cloud can
collapse and form final fragments in the observed stellar range, if transfer of spin angu-
lar momentum into orbital angular momentum is assumed at each fragmentation stage.
However, star formation, in this scenario, is an inefficient process because very high
initial maceas are needed to produce small stellar systems, which only contain from
0.4% to 3% of the total available mass. A further mechanism which may be important
involves the transfer of angular momentum, within the cloud by means of eddies or

spiral density waves [66].
2.3 The Ratio a/m

The ratio a/m between the specific angular momentum a and the total mass m, where

hoth quantities are defined in units of length, is a rotational parameter given by the



relation

a cJ (2.3)
m  GM? "~

J being the total angular momentum of a particular collapsing object of mass A, ¢ the
speed of light and G the gravitational constant.

The ratio a/m provides information about the distribution of the specific angu-
lar momentum with respect to the total mass of the bodies existing in thé Universe.
The physical relevance of this parameter comes from relativistic theoretical predictions
concerning black holes. According to the General Theory of Relativity, a stationary
black hole state is completely characterized by the total mass M, the total angular

momentum J, and the total electric charge @, such that the following condition holds
m?>a+q® (2.4)

where m =GM /c?, a =J/cM, and ¢ = GY/2Q/c?. If we solve eq.(2.4) for a/m, we find

that

2] %

e[ (B &
where {1 — (Z£)%} is a positive number less than unity. Without loss of generality, we
may simplify condition (2.5) by stating that a/m< 1 is a necessary condition for a
black hole to exist. In this picture, the ratio a/m should play a crucial role in deciding
whether or not an evolved object will approach a black hole state.

De Felice and Yu Yungiang [36] estimated the ratio a/m of typical main-sequence
stars to be in the range 6 <a/m< 122. They found that the ratio a/m generally
increases for increasing values of the mass, radius, and equatorial rotational velocity.
Of greater interest were the calculations of the ratio a/m for main-sequence stellar cores.

Such calculations provide an estimate of the ratio a/m which a core would have prior to
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undergoing further collapse. Estimates for a rigidly rotating 114 core of a 10M star
yielded a/m-values from 10 to 50. For differentially rotating cores, this range extended
to include values up to ~ 10%2. Furthermore, calculations of the ratio a/m during
post-main-sequence evolution indicated that as the cores contract to higher densities
(p ~ 107 — 108gecm™?), the angular momentum is redistributed so that the ratio a/m
decreases by only a very small factor. However, there is no direct observational evidence
of collapsed ohjects with a/m> 1. This point was also illustrated by de Felice and Yu
Yunqgiang [36], who estimated the ratio a/m of the rotating neutron star associated
with the Crab pulsar. This is observed to rotate with a period P ~ 33 x 10735, which
is much larger than the theoretically predicted period (P = 0.57 x 10~%s) which would
be necessary to yield a ratio a/m slightly larger than one.

It is believed that most of the a/m is diffused out from the neutron star after
its formation, owing to the effects of two different processes which convert rotational
energy into translational energy. Harrison and Tademaru (1975) suggested the first of
these processes which may act during the formation stage of a pulsar. At this stage, a
considerable amount of the kinetic rotational energy of the pulsar goes into translational
energy of the forming neutron star because of an inherent anisotropy in the supernova
explosion, which then leads to the emission of asymmetric electromagnetic radiation.
The second process operates after pulsar formation, and it is of minor importance in
reducing the ratio a/m. In this process, diffusion of angular momentum occurs through
a mechanism involving continued emission of radiation due to the presence of an off-
centered dipolar magnetic field.

Calculations of the ratio a/m for the Crab pulsar [36] confirmed the above consider-

ations. At the beginning of its acceleration process, the pulsar was found to be rotating
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with a period nearly equal to that giving a/m~ 1, while at the end of the acceleration
process, a/m was strongly reduced. Hence, a newly formed neutron star is likely to
have a/m~ 1, in agreement with classical predictions.

Although the mechanisms responsible for the a/m-reduction from expected main-
sequence values (a/m> 1) to observed neutron stars (a/m~ 10~! — 10~%) are nearly
understood, those which act reducing the ratio a/m for collapsing cores ending up
as black holes are rather unknown. Miller and de Felice [78] and de Felice et al [38]
suggested two different mechanisms, in which transfer of angular momentum away from
the core occurs by mass shedding and by gravitational radiation, as good candidates for
the a/m transfer. It was found that mass shedding can be efficient in reducing the ratio
a/m, but only if the initial a/m of the evolved object is < 2.5 can it he reduced to order
unity in a single collapse phase. Furthermore, the gravitational radiation mechanism
is effective in decreasing the ratio a/m to unity, only when the gravitational collapse is
sufficiently slow.

In a more recent paper, de Felice and Yu Yunqiang [39] showed that formation of a
surronndine ring, disk, or any other diffuse configuration is not sufficient to ensure an
appreciable decrease of the ratio a/m to values less than one, unless angular momentum
significantly redistributes from the central core. It was then argued that probably a
simultaneous combination of the above mechanisms can drastically reduce the ratio
a/m of collapsing cores ending in black holes [38,39].

So far, we have briefly discussed the physical relevance of the ratio a/m at very
advanced stages of stellar evolution, and have also indicated why it has to be considered
as an essential parameter in any collapse simulation explaining either neutron star or

black hole formation.
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In what follows, we shall examine the importance of the ratio a/m during the early
phases of the stellar evolution. As far as we know, no work has been done considering
this quantity in the classical scenario of star formation, partly because of the role played
by the parameter J/M, and partly because of its rather obscure meaning. However, we
must emphasize here that the ratio J/M only gives information on the specific angular
momentum and not on its distribution with respect to the mass, which is provided by
the ratio a/m.

In Table 1, we report calculations of the ratio a/m for a sample of 31 observed close
detached binaries [40]. For each of these systems, we know the mass and the size of the
component stars as well as the orbital period of the system. If we then assume that
each system is close enough to be in a complete phase locking state, in which the single
components are in synchronous rotation with their orbital motion, we may compute
the ratio a/m of the individual stars. This situation is likely to occur in close hinaries,
since in most cases the ohserved spin periods are nearly equal to the orbital period of
the system. Furthermore, taking each component as a rigidly rotating spherical body

and definine M = M,y + M, as the total mass of the system, we have

2 cr? M3
(ﬁ) — i M ps (i=1,2), (2.6)
m/; 5(277@)5 M

where the subscript 7 refers to a particular component, 7; denotes its radius in units of
the semi-major axis of the rotating system, and P is the orbital period.

The total a/m of the system is given by
2
a a a
), 5 G,
m/)T im .m/ NI/ orb

1

where y; =M;/M is the ratio between the ith mass component and the total mass of

the binary system, and ()

a
m/orb

is the orbital contribution to ()., which is defined by
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TABLE 1

SYSTEM P(days) MM | MM M, /M (1] fad | fa)

ars " " To'"e 1/9 ‘2/9 l’;)x 'L”—'J’z {a;lorb
V8C5 Aq. 2.4082377 0.199 |0.147 3.74 2.1 1.63 ] 34.19 24.34 429.3
a Aq 1.95026 0.279 |0.201 | 12.20 6.81 5.39 | 42.68 30.67 270.5
vV 539 Ara 3.169129 0.217 |o.154 | 11.32 6.10 5.22 | 32.23 18.83 328.7
WH Aur 2.525019 0.162 | 0.150 .76 1.97 1.79 | 24.78 23.14 441.7
AR Aur 4.134672 0.100 | 0.098 4.93 2.60 2.33| 10.08 10.80 475.3
7Z 800 4.991744 0.125 |0.115 3.41 1.71 1.70 | 19.95 17.08 573.9
SV Cam 0.53306995 0.352 | 0.244 1.69 1.00 0.59 | 83.30 57.94 345.0
AS Cam 3.4309714 0.146 |0.128 5.80 3.30 2.50 | 17.74 18.03 416.3
CW Cep 2.72914 0.234 {0.203 | 22.89| 11.80| 11.08{ 29.48 23.53 248.5
TV Cet 9.1032884 0.0587 | 0.0502| 2.86 1.39 1.27 5.505 4,47 760.2
XY Cet 2.780712 0.172 |0.183 3.38 §.75 1.63 | 30.19 22.37 473.06
RS Cha 1 .66987 0.23 |o0.26 3.68 1.86 1.82 | 45.36 59.93 388.4
MY Cyg 2.002593 0.144 |0.133 3.59 1.81 1.78 | 19.09 16.50 416.1
V453 Cyq 3.8898128 0.294 |0.177 | 25.67 | 14.45| 11.22| 46.18 21.41 265.2
V1143 Cyg 7.640754 0.061 |0.053 2.62 1.33 1.29 5.90 4.59 722.05
8S Ora 3.364012 0.109 {o.106 | 2.74 1.37 1,37 14.35 13.63 541.3
CW Erd 2.7283737 0.182 |0.132 2.80 1.52 1.28 | 34.12 21.47 497.4
1Y Gem 0.81428254 0.170 |o0.149 1.19 0.62 0.57 | 27.57 23.09 444.7
RX Her 1.17785724 0.230 |0.174 5.00 2.70 2,30 | 19015 26.20 355.9
TX Her 2.05981 0.163 |0.148 3.07 1.62 1.35 | 24.86 22.77 4412
HS Hya 1.568024 0.171 |0.154 2.53 1.34 1.29 | 27.24 22.92 425.3
M Lac 1.6046916 0.181 | 0.174 3.36 1.88 1.48 | 25.30 30.16 389.3
UV Leo 0.60008516 0.280 |0.29 1.91 0.99 0.92 | 57.99 69.26 343.2
UX Meu 4.1811 0.092 |0.087 | 2.34 1.17 1.17 | 11.58 10.31 513.4
U Oph 1.677346 0.268 |0.234 9.71 5.11 4.50 | 42.35 36.18 280.8
WZ Ophn 4.183511 0.096 |0.093 5.20 2.80 2.30 3.37 9.85 167.4
V451 Oph 2.1965988 0.0210 | 0.170 2.24 1.13 1.11 | 48.98 32.91 502.2
EE Peg 2.628208 0.173 {0.108 | 3.30 2.01 1.29 | 25.59 15.61 446.3
AG Per 2.0287293 0.220 |o.162 | 8.72 4.56 a.16 | 32.10 19.0 310.2
€0 Tau 3.435137 0.129 | o.122 2.71 1.10 1.31 | 19.56 18.70 546.5
Cv Vel 6.892 0.117 | 0.113 | 12.08 6.10 5,98 | 12.58 12.02 119.2

the relation
1
(CL) (P)5 C.A’.[lﬂ/_[g (‘) 8)
= |- , 2.
M/ orp 2r (GM'Z)%

Results from the applications of equations (2.6) and (2.8) are shown in the last three
columns of Table 1. It is observed that the a/m-values of the individual components
()1 and (), respectively, are all ranged between ~ 5 and ~ 80, in good agreement
with the de Felice and Yu Yungiang [36] estimates for main-sequence stars. The more
massive components (i = 1) have ratios a/m slightly larger than their less massive
companions (i = 2), while most of the total a/m is contained in the form of orbital
motion. In fact, the (% )ors is significantly larger than the (a/m)’s of the single stars by

about 1-2 orders of magnitude. This situation is consistent with the assumption that
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these binaries are produced by a fragmentation sequence, in which most of the specific
angular momentum of the placental configuration goes into orbital angular momentum
of the resulting fragments.

It is observed that single component stars have a/m-values larger than one in the
range found by de Felice and Yu Yungiang [36] for main-sequence stars. Furthermore,
Table 1 indicates that any process of fragmentation in a rotating interstellar cloud must
move most of the original a/m into orbital motion, and lead to final fragments with
a/m of the same order as those observed, since it is likely that any subsequent evolution
towards the main sequence is not in general accompanied by drastic reductions of the
ratio a/m.

The observed values in Table 1, can be compared with those deduced from theoreti-
cal models of star formation. A direct comparison is possible in the case of Bodenheimer
[7]. His successive fragmentation sequence in pairs of spinning blobs with equal masses,
produces final fragments in the normal stellar range. In Table 2, we report calculations
of the ratio a/m of these final fragments, of the resulting binary systems, and finally
O,f the nlacental interstellar cloud, for five different fragmentation sequences. The a/m
entries in the second column have been obtained by setting the spin period of each
fragment equal to the period of the orbital system to which it belongs. Both the spin
and the orbital a/m-values are in good agreement with those in Table 1. This suggests
that a successive transfer of spin into orbital angular momentum, at each fragmentation
stage, proves to be an efficient mechanism for reducing the a/m ratio from ~ 10* — 10°
(interstellar clouds) to ~ 10 — 10? (stellar fragments).

From the above considerations, the ratio a/m could also represent an indicator of

the physical plausibility of any protostellar collapse model, since a decrease of ~ 3



TABLE 2

B B 2]
SEQUENCE l EJ spin last U™ Jorb. last pair| ' " }Ispin initial
fragments cloud
III 59.20 411.2 3.965x10*
IV 56.86 409.6 3.965x10*
v 77.57 538.6 3.965x10"*
VI 16.24 1175.2 3.965x10*
VII 82.08 591.9 1.123x10°

orders of magnitude in a/m is needed to explain star formation.

Calculations of the ratio a/m of fragments ohtained from 3-D simulations by Boss
[15] and Norman and Wilson [87], are shown in Tables 3 and 4, respectively. In these
cases, a direct comparison with Table 1 is not possible, since these simulations refer to
low-density stages of the evolution (isothermal collapse).

As snown in Table 3, an initial cloud may fragment into a binary system, or form a
ring surrounding a centrally condensed blob, or even contract into a single blob. It is
observed that the ratio a/m of the isothermal fragments does not decrease with respect
to the initial a/m (~ 10°) of the cloud. On the contrary, the a/m ratio has increased
over its initial value, in disagreement with the one order of magnitude decrease predicted
by the Bodenheimer [7] sequences during the isothermal fragmentation stage. A similar
situation is found in Table 4, where the large values of a/m for the fragments indicate,
as for the Boss case, that either they will fragment or will necessary face very efficient

dissipative processes which allow reduction of their a/m.
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TABLE 3

My M, !%} spin fragments (a‘! [a]
MODELS — — m = =
. M My Worp W initial
(a/m), (a/m), cloud
Hodel 1 0.15 0.15 2.61x10° 2.61x10° 3.27x10° .45x10°
(Binary system)
Model II . 5 5
(Binary System) 0.07 0.06 1.52x10° 2.20x10 8.84x10 1.45x10
Model 1V . :
(Binary System) 0.16 0.16 2.92x10° 2.92x10° 7.30x10 2.062x10
Model VI \
(wel] defined {M—\! = 0.11 e = 4. 68x10° -- 1.24x10°
single blob) L Mo jblob Lm)spin blob
Model VII i
(Si”’f]e)b“’b and Ir :'—'—} - 0.03 B = 1.76x107 -- 1.35%10°
a ring M ¢ in blob
(G blob spin blo

De Felice [37] examined the behaviour of the ratio a/m during the adiabatic collapse
of 1M protostellar clouds as calculated by Boss [16]. The ratio a/m of the initial cloud
was estimated to be ~ 10%, while the ratio a/m of the resulting fragments decreased
only for the initially more rapidly rotating cloud (3 = 0.3). For initially slow rotators
(B ~ 0.1), the ratio a/m of the final fragments was slightly larger than the initial value.
De Felice [37] argued that some correlation seems to exist between the initial amount of
rotational energy in the collapsing cloud and the degree of reduction of the ratio a/m.

Three-dimensional calculations indicate that J/M is efficiently reduced by con-
version of spin angular momentum into orbital angular momentum, while the same
mechanism is apparently inefficient in reducing the ratio a/m. The important question
will then regard mechanisms which might contribute greatly to reduction of the ratio
a/m, and their effects on the gravitational collapse of interstellar clouds.

A definitive answer to the above question would require the inclusion of complete

physics in the theoretical analysis of star formation. It is likely that the effects of

30



TABLE 4

fa} 1.626x10°
{mjinitial cloud = 0%
fa
32 52 2 -1 18
BLOBS M(x10%2gr) Jspin(xm gem’sec™!) {m} spin blob
1 1.3 0.3 2.12 x10¢
2 1.5 0.7 1.39 x10°
PUN 1 3 1.6 0.2 8.99 x10*
4 1.75 0.7 1.02 x10°
1 2.1 1.3 1.32 x10°
RUN 2 2 2.7 .5 9.25 x10*
1 2.6 1.6 1.06 x10°
RUN 3 2 2.8 1.6 9.17 x10*
1 1.9 1.5 1.86 x10°
RUE 4 5 2.1 0.85 8.66 x10°
3 2.3 2.0 1.7 x10°
1 1.4 0.6 1.37 x10°
RUNS5 2 2.0 1.4 1.57 x10%
3 2.3 1.3 1.10 x10°

viscosity, turbulent motion, and magnetic fields, become of paramount importance in

determining the behaviour of the ratio a/m during the early evolution of stars.
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Chapfer 3

The Mathematical Problem

A two or three dimensional description of the evolution of initially low-density inter-
stellar gas clouds, leading to star formation, would introduce an extremely complicated
mathematical problem, owing to the richness of macroscopic and microscopic physi-
cal events occurring during the evolutionary process [10]. It is well-known that the
mathematics involved is standard but nonlinear, and therefore, analytically difficult.

Experience shows that, even with the use of sophisticated numerical methods, when
more and more physics is added to the problem, the complexity of the resulting equa-
tions increases, imposing a severe hindrance on the calculation of realistic models, even
in the simplest case when the calculation is confined to one-space dimension. Therefore,
we are constrained to model only particular main stages of the whole evolution process,
with the aid of simplifying physical assumptions and mathematical conditions. That
is, the dominant effects are isolated and adequate boundary and syminetry conditions
are imposed.

In the present work, we are concerned with the calculation of theoretical models
of protostellar collapse and fragmentation, in order to address some of the physical

problems discussed in Chapter 2. We shall start by summarizing the relevant physical
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assumptions and then, we shall give the resulting basic equations to be solved, as well
as the initial and boundary conditions which allow for numerical solutions of those

equations.
3.1 Physical Assumptions

The following standard assumptions are made:

(a) An initial protostellar cloud is represented as a gas configuration of predomi-
nantly molecular hydrogen. The gas is assumed to be ideal, with a typical composition
X =0.653,Y = 0.323’, and Z = 0.024, where X is the mass fraction of hydrogen, 1" is
that of helium, and Z is that of all heavier elements.

(b) The collapse is assumed to proceed isothermally over the density range 1071° <
p < 3 x 107"%gem™®, with typical gas temperatures oscillating about 10K [48,61].
Therefore, a pressure-law of the form p x p will be sufficient for our purposes.

(c) The calculations are carried beyond the isothermal regime, into the density
range 3 X 1071% < p < 107 gem ™3, by simply approximating the effects of radiation

transfer with a hypothetical pressure-law of the form

)" (5.1

and prim X prim. Equation (3.1) was suggested by Boss

P = Plim (

lim
where pjim = 3 x 107 3gem ™3
[13] as representing a good approximation for the near-isothermal effects. It is also the
equation governing the adiabatic hehaviour of a gas of purely moiecular hydrogen.

(d) The effects of the galactic magnetic field are neglected, so we are considering

the collapse of clouds denser than n ~ 10*H,cm™3.

Above this critical density, the
magnetic field is substantially decoupled and hence it has little effect on the further

collapse.



(e) The effects of molecular viscosity and turbulence are also neglected. This as-
sumption rests on the fact that molecular viscosity is quite small during the initial
stages of the collapse of interstellar clouds. Even a turbulent viscosity would have lit-
tle effect on these early phases [59]; however, it may become important if substantial

turbulence is present in the later phases of the non-isothermal evolution.

3.2 Basic Equations

The gravitational isothermal collapse of an inviscid, non-heat-conducting, compressible,

rotating gas cloud is completely described by the following equations

dp
hlad . = 2
N +V.-(pv)=0 (3.2)
ov
pE-F(V'V)v: -Vp—-pVe | (3.3)
Vi® = dnGp (3.4)
p=const-p (3.5)

where p = p(x,t) denotes the mass-density, v = v(x,t) the fluid velocity, ® = ®(x, 1)
the gravitational potential, and p = p(x,t) the gas pressure.

Equation (3.2) is the equation of continuity expressing mass conservation and rep-
resents the time rate of change of mass. Equation (3.3) is the Euler equation describing
the motion of the self-gravitating fluid. This equation represents the time rate of
change of momentum. Equation (3.4) is the Poisson equation for the gravitational po-
tential, and equation (3.5) is the equation of state for an ideal gas. Generally, we take
const = RyT' [ or const = (X/2+Y/4+ Z/Apr)kT /m,, where R, is the gas constant,

T the temperature, p the mean molecular weight, k& the Boltzmann constant, m,, the
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mass of the proton, and Ajs an averaged atomic number, obtained from the detailed
cosmic abundances of the heavy elements, which is usually taken equal to 16.78.
Equation (3.5) defines a simple pressure-density relation. It is adequate for calcu-
lations of the isothermal phase of protostellar collapse [61]. However, when the density
exceeds the value 3 x 107 3gem 3, the radiation transfer effects become important, and
the collapse of the densest regions proceeds non-isothermally. At this point the physics
becomes more complicated, and further calculations require the inclusion of an extra
differential equation, for the rate of change of the specific internal energy, coupled with
the radiation transfer equation, the equation of state of the gas and the opacity func-
tion. However, we can account in a first approximation for the non-isothermal effects

by replacing equation (3.5) by an adiabatic pressure-law of the form
p=Kp" | (3.6)

where « is the adiabatic exponent related to the polytropic index n by y = 1+1/n, and
K is a constant determined from the initial conditions [16].

The hydrodynamic equations (3.2) and (3.3) are hyperbolic in form and describe
the time evolution of the primary variables p and v, while the Poisson equation (3.4)
is a typical elliptic partial differential equation. These equations together with the
pressure-law (3.5), or (3.6), form a consistent set of equations sufficient to determine

the problem for given initial and boundary conditions.
3.3 The Concept of Grid Motion

One of the problems usually encountered in numerical calculations of protostellar col-
lapse models, is the lack of appropriate spatial resolution. The difficulty arises when

high density concentrations with scale-lengths smaller than or comparable to the mesh-

35



size develop in the central portions of the collapsing cloud. Once this situation occurs,
the further evolution of these small features cannot be followed with reasonable accu-
racy. An apparently logical way of avoiding this sort of deficiency, is to adopt a grid
with a small spacing everywhere. However, if the calculation is carried out in two- or
three-space dimensions, the storage and computational time required would render the
calculation prohibitive and this imposes a limit on the number of mesh-points to be
used.

Many authors [3,13,89,115] have in part circumvented this general difficulty by
implementing an automatic grid rezoning technique. Here by grid rezoning we mean
a gradual contraction of the grid, in which the spacings are continuously varied from
a coarse mesh structure covering most of the flow field to a fine grid resolving the
inner high density concentrations [90]. In o‘ther words, we define a coordinate system
co-moving with the fluid, on which we shall solve the relevant equations.

The motion of the grid is not handled in a strict Langrangian sense in order to
avoid strong distortions of the mesh, which would lead to additional computational
difficriities Hence, the best way of introducing a moving grid is by assuming the grid
velocity to be nearly equal to the local fluid velocity.

In this way, denoting by v, the grid velocity with respect to a fixed Eulerian observer
and by U = v — v, the relative fluid velocity, the continuity equation (3.2) modified to
include the grid motion effects, becomes [3]

d
V(U = —pV v, (3.7)

where the additional term pV - v, represents the contribution to the net change of
density due to changes in the grid zones. In equation (3.7), we have set v, - Vp = 0.

This means that the grid is not allowed to drag material as it moves. Otherwise,
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convergence to physical solutions cannot be guaranteed. Similar modifications are also
implemented for the Euler equation (3.3).

The divergence of the grid velocity satisfies the identity

Vovy = dit(ln vy (3-8)

where dl7 denotes the element of volume of a particular moving grid zone.

Equation (3.7), expressed in the co-moving frame with the fluid, is physically equiv-
alent to equation (3.2) defined in the inertial frame of an Eulerian observer. Then,
setting v, = 0, we recover equation (3.2). The hydrodynamic equations modified for
grid motion will determine the physical problem, together with eqs.(3.4) and (3.5), once
v, is specified.

In what follows, we give the equations as they are actually used in the 1-, 2-, and 3-
dimensional calculations. The structural form of these equations is obtained by writing

’

them in spherical polar coordinates (7,6, @).

3.4 Spherically Symmetric Flows: The 1-D Problem

The differential equations used have their simplest structural form when each particle of
fluid is constrained to move with only one degree of freedom, i.e. when the material in
the cloud is allowed to contract only in the radial direction. The collapse of such a con-
figuration is commonly referred to as spherically symmetric collapse, since all variables
will only be explicit functions of the radial coordinate and of time (9/96=30/0¢=0). In
this case, the velocity vector of the fluid with respect to the moving coordinate system
is defined by

U=r(v,—vy) =7 (vr - %) ; (3.9)

where v, is the local fluid velocity with respect to the inertial frame of reference.
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Then, the relevant equations will have the form

ap 1 (9 2 . 1 6 2
ot 7y (7PU) = —egy () (3.10)
B(pvr) 14 2 N 10 5 0P dp .
e "”"l) R (" %)% a (3.11)
19 (,0%

The second terms in the left-hand sides of equations (3.10) and (3.11) are referred to

as the advective parts, and represent the net changes of mass and radial momentum,

respectively, due to the mechanical transport of fluid particles from place to place.
3.5 Axisymmetric Flows: The 2-D Problem

In collapsing clouds, to allow for the effects of rotation, an extra dimension has to be
added. In the axisymmetric case we can assume, in principle, that each particle of fluid
in the cloud rotates about the axis of symmetry. Moreover, the motion will be confined
to the (r, §)-plane, and the assumption made that all variables are explicit functions of
time and of the r- and f-coordinates, so that 9/0¢=0. In other words, we study the
influen:: =f rotation on the way the material is being transported in both the r- and
#-directions.

If the grid is allowed to move only radially such that v, = (v, 0), the poloidal fluid

velocity relative to the contracting grid will be

d
v=rlU +0vg=r (U — d—r> + fvg (3.13)
where v, = v,(r,0), v = vg(r,0), and vy = v4(r). If rotation is included in the

calculation each fluid particle will move with a velocity
d
v=r (vr - d—:) + vg + pvy (3.14)
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where vy = vy(r, ).

For axisymmetric rotating flows equation (3.7) takes the form

dp 1.0 ;4 1 0 1 d /.,
T + o (T pU) 30(31110,0119) P, (r vg) , (3.15)

while the motion equation (3.3) splits up into three equations, namely

dpv,) 10 /45 10 10/,
g o) g g i eete) = e () -
0 dp pra . o 3
—p oy —*ar -+ ; (UO -+ qu) R (016)

describing momentum transfer in the r-direction,

9(pve)
dt

19/, ) 1 4a, . 14/,
+ 5, (r ptr(;[/) + . Singgg(sm@pvgvg) = _pveﬁé_r (j’ vg) -

10 1dp E(
r 98 80 vrve

vé cot 0) . (3.17)
describing the momentum transfer in the #-direction, and

Opd) 10y o, 1 8 L9 (2
e (AT) ¢ e = pa L ()

for the .y ccific angular momentum transfer. Equation (3.18) has been written in terms
of the variable A (= rsinfvy) which is the specific angular momentumn of each particle
of fluid. Nevertheless, the ¢-velocity component ve is also regarded as a primary
variable because it enters in the undifferentiated terms of equations (3.16) and (3.17),
respectively.

The Poisson equation (3.4) becomes

19 /[ ,09 L9/ 0% N
;5_8—7'<r E)Jrr sind 00 <sm95§)-—4ﬂ'6p ’ (3.19)

with & = ®(r,0) and p = p(r, ).
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3.6 Non-Axisymmetric Flows: The 3-D Problem

A more realistic description of protostellar collapse may be given by solving equations
(3.2), (3.3), and (3.4) in the full three-dimensional space. In this case, no restrictions
will be imposed on the motion of the fluid and all variables will be explicit functions of
time and of the coordinates r, 8, and ¢.

For aradially contracting grid with velocity vg = (vg,0,0), the fluid velocity relative
to the grid is given by

d
v=r (v, — d—;) + Ovg + vy, (3.20)

where v, = v.(7,0,0), va = vg(r,0,¢), and vy = vg(r,0,), respectively. Then, the
J-dimensional equations describing the non-axisymmetric collapse of initially rotating

configurations are

dp 19, 109, 1 9
- _— 7 ) =
ot + r2 dr (r Pt ) + rsinf 96 (sinbpve) + rsind 0¢ (#vs)
19/,
=g (') (3.21)

the continnity equation; and

8((,;7:,) - %58; (rzper) + rsilné’é% (sinfpv,ve) + r:m‘g% (pvrvg) =
—eag (w) e g S lEeE) e

o g (o) 4 i e+ e =
= rae () <o g 5 (e et

R 3o (P0A0) 4 gy insdu) + s o) =
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a%®  dp
= —pA—— 2 ) —_ — — 2
pA,,.z P (r 1g> p@qb ge (3.24)

the r-, #-, and angular momentwmn transfer equations, respectively.

The Poisson equation hecomes

L9 (Y s ine ) — YT 4G N
rZ Jr (7 3r> BSrTYEL <Sm 39) T T anTe d¢? mGp (3.25)

where ® = ®(r,0,¢) and p = p(r, 0, ¢).

[+
(]

Here after, we shall refer to the second, third, and fourth terms on the left-hand
side of equations (3.21)-(3.24) as the r-, -, and ¢-advective terms, respectively, and to

the first term on the right-hand side as the grid contraction term.
3.7 Initial and Boundary Conditions

To allow for numerical solutions of the foregoing sets of partial differential equations,
it is necessary to specify suitable initial conditions and boundary conditions.

The problem of setting consistent initial conditions, for protostellar collapse calcu-
lations, is physically difficult due to the obscure processes that characterize the earlier
low-density star formation period. However, under our physical assumptions, the most
important hypothesis is to consider the Jeans limit for a spherical cloud as the starting
point of any collapse calculation.

A particular initial model will be defined by the following parameters: the total
cloud mass M, the density distribution p, the velocity field v, and the size of the
configuration Ry, which is calculated as a secondary parameter from the initially known
mass M and density distribution p. If the grid is allowed to move approximately with
the fluid flow, we must also specify the grid velocity v, at t = 0.

For pure isothermal calculations, the set of initial conditions will be completed by

choosing a constant temperature T’ (usually taken to be 10K) and the mean molecular
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weight p of the predominant chemical composition. These two parameters are needed
for defining the initial gas pressure [eq.(3.5)]. For adiabatic calculations, the initial
conditions are completed by specifying the adiabatic exponent v and the initial pressure
p, as required by equation (3.5) in order to determine the value of the constant K .

In practice, for most of our models, we take a perfectly spherical 1 Mg cloud initially
at rest, with uniform density and angular velocity distributions. So, for spherically
symimetric collapse calculations, we set at t = 0

[ pi(r) = po = constant,
Ve (7)) = vy (r) = 0= Ui(r) =0,

M = 1Mg,T = const.,u = const.,  for isothermal collapse,
M = 1Mg,pi(r) = po,y = const., for adiabatic collapse.

For multi-dimensional calculations, the initial state of the collapsing configuration
will be one of pure rotation, i.e. with the only non-zero velocity component being V.

Then at t = 0, we have

pi = po = constant,
v, =g, = vy, = 0= U, =0,
w; = wg = constant,
M = 1Mg,T = const.,u = const., for isothermal collapse,
M =1Mg,p; = po,y = const., for adiabatic collapse,

where all of the initial variables may be functions of either (r,6) (axisymmetric case)
or (r,6,¢) (non-axisymmetric case).

Initially non-uniform density distributions of the form

Pi = pPo (1- n;Zo> withn > 1, (

o
[ 3]
(&)
~—

for centrally condensed configurations, and
pi = po(l+ acosma) with a real and m integer, (3.27)

for ¢-perturbed density distributions, may be also tried for multi-dimensional calcula-

tions.
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The existence of scaling laws for similar flows of the isothermal and adiabatic equa-
tions of motion [7,15] reduces the number of parameters necessary for describing the
initial state of a particular rotating protostar. If we define the absolute value of the

ratio of thermal to gravitational energy

5 Ry RoT
ao = |Er|/|Eg| = ;—ém ) (3.28)
and the ratio of rotational to gravitational energy
a 1 wo RS oo

the initial state of a perfectly spherical, rotating cloud at rest, may then be fully
described by the parameters g and fo, instead of specifying as above p;, wi, Rq, u,
and T'. Results for any configuration with different values of A/, T, and p, can then be
obtained from the isothermal scaling laws. In the adiabatic case, we need an additional
parameter and the initial conditions are then completely specified by setting g, 3o,
and v, instead of giving p;, w;, p;, Ro, and 7. Using the adiabatic scaling laws we may
then again infer results for the collapse of any cloud with different values of M and K .

The hydrodynamical houndary conditions are specified in such a way as to avoid
over-specification of the problem. In our cése, over-specification may occur if each of the
primary variables p, v,, vg, and A (or vy), is independently assigned on the houndaries of
the computational domain, due to the hyperholic character of the relevant differential
equations. Here, a consistent formulation is obtained by determining some of the
boundary variables from the equations themselves. In practice, all boundary densities
are determined from the continuity equation, while only those velocity components,
which are either normal to any of the boundaries or required to simplify the calculations,

will be specified independently.
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For 2- and 3-dimensional calculations, we define four geometrical boundaries: the
critical centre (r = 0), the rotational axis (6 = 0), the equatorial plane (§ = m/2), and
an external spherical surface {r = Ry) (as discussed below). Only the centre and the
rotational axis represent singularities for the hydrodynamic equations. The conditions
on the velocity field for each of these locations are as follows:

(a) At the centre, the flow is constrained by setting

1_77,:1)9:U¢EO fOI‘tZO,

so that there is no mass crossing the centre.

(b) Along the rotational axis we impose the conditions

vg = vy =0 fort > 0,

which is physically consistent with the fact that the mass on the rotational axis can
only flow radially.
(c) Reflection symmetry about the equatorial plane is assumed by constraining the

flow to have

v =0 at 0 = 7 /2 for t > 0.

The use of this symmetry condition means that we only need to calculate part of the
flow. The saving of time produced in this way is particularly important when the
scheme is extended to three-space dimensions.

(d) A constant-volume boundary condition [Ro(t) = const] is applied at the external

spherical surface by assuming that

v, =uvg =0 at r = Ro for t > 0,
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which means that no mass is allowed to flow across the surface of the spherical volume
enclosing the protostellar cloud. This type of boundary condition has been widely
implemented in many collapse calculations [13,61,63,74]. It is physically justified on the
grounds that, only small changes would take place in the flow near to this boundary and
hence, the original equilibrium conditions would be nearly maintained [74]. Therefore,
it is expected that the gas in the neighbourhood of the boundary surface Ry does not
move by a significant amount. The physical assumption, which is made by using such
condition, is that the pressure on the spherical edge varies with time in such a way as
to keep the volume fixed.

The boundary conditions for the solution of the Poisson equation are discussed in

Chapter 5, Section 5.1.
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Chapter 4

The Computational Grid

4.1 Description

In order to obtain numerical solutions of equations (3.2)-(3.5), we must start by dividing
the spherical volume containing the fluid into a discrete number of cells. The set of these
cells defines the computational grid and introduces the concept of control-volume. In
dealing with multi-dimensional calculations, the introduction of control-volumes turns
out to be of great help in finding the correct finite-difference form of the relevant
differential equations.

In ~=- =recific case, the Poisson équation and the Eulerian equations of hydrody-
namics are discretized on a spherical coordinate grid [See Figures 4.1(a) and 4.1(b)].
Figure 4.1(a) is an (r,8)-slice perpendicular to the equatorial plane (8 = w/2), and
Figure 4.1(b) is a representation of an (7, ¢)-plane perpendicular to the rotational axis
(6 = 0). The 3-dimensional grid is composed of a single spherical cell centered at the
origin (r = 0) of the coordinate system, a cone of N, cells along the rotational axis, and
(N, x Ng x Ny) cells filling the rest of the top hemisphere of the spherical configuration.
Here N,, Ng, and N, denote the maximum number of cells in the r, §, and ¢ directions,

respectively.
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The points in Figure 4.1 represent the geometrical centres of the 3-dimensional
cells, where all of the physical variables which characterize the fluid, are defined. The
centre-point of a typical main grid-cell is labeled by the integer indices (i, j, k) denoting
a particular value of the coordinates (7,6, ¢). The 7 index increases with increasing r,
the j index with increasing #, and the k index with increasing ¢. A general variable
X = X(r,0,0) evaluated at the cell centre ijk is denoted by Xjj. such that X;;
represents a mean value for cell (4, j, k).

The zones along j = Ng + 1, in Figure 4.1(a), are used to apply the reflection
syminetry condition about the equatorial plane at j = Ng, while the true boundary
of the problem is defined by zones with ¢ = N, for any j and k. The axial cells are
only labeled by the index ¢ and the central cell by the subscript ¢. As shown in Figure
4.1(b) a periodic boundary condition for the ¢-coordinate is enforced by carrying two
extra angular zones, labeled & = Ny 4+ 1 and & = N, + 2, which coincide with zones
k=1 and k = 2, respectively.

In order to get appropriate spatial resolution with a dicrete number of cells and,
hence =rrentable accuracy in the central regions of the cloud, the grid is allowed to
contract radially during the calculations [See Section 4.3]. This is done by means of an
automatic rezoning which is activated during the main infall stages of the evolution.
The motion of the grid is handled so that the centre (at » = 0) and the boundary
(at 7 = Rg) are held fixed in space and time. The interior points are able to follow,
roughly, the motion of the fluid. After a time ¢t >> 0, the radial grid-structure becomes
strongly non-uniform, with the r-spacings being successively smaller towards the centre
of the collapsing cloud. On the other hand, the §- and ¢-grid positions are not allowed

to move, with the ¢-grid spacing being exactly uniform. The 6-grid is fairly uniform
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6 =172

Figure 4.1: (a). (r,#)-meridional plane, and (b) (r, ¢)-equatorial plane
of the 3-dimensional grid. 43



Figure 4.2: Three-dimensional picture of a typical computational cell

except for the axial cells, which have §-spacings smaller than those of the corresponding
main grid-cells. This is due to the fact that the §-grid positions are determined by the
roots of the Legendre polynomials P; [See Chapter 5, Section 5.2]. Thus, for any value
of 7, the angular distance between the axis and the nearest point ilk is smaller than
the theta inter-point distances of the main grid.

Generally, in most calculations we adopt V. = 20, Ny = 11, and N4 = 16. However,
for specific tests, these numbers may be varied. Because of the assumption of reflection
symmetry about the equatorial plane, the calculations are carried out for only the
top half of the spherical volume (0 < § < x/2), but they include the full 27 radians
in the azimuthal direction. In the more restricted axisymmetric case (Ng = 1), the
calculations are carried out for only one-quarter of a meridional plane (7, §), [See Figure

4.1(a)].
4.2 Geometrical Grid Properties

Consider an element of volume in spherical coordinates [as shown in Figure 4.2]. A

typical main grid-cell will exhibit exactly the same geometrical form.
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In Figure 4.2, S7, §% and S are the surface areas of the cell-volume open to the

flow in the r-, -, and ¢-directions, respectively. They are defined by
5T = 7isinfAGAS,
5% = rsinfArAg, (4.1)
5% = rArAé,
while the volume occupied by the cell is given by
AV = r2sinArAIA . (4.2)

Using these well-known relations, we can define the geometrical properties of a typical
cell (7, J, k). Since its geometrical centre is located at the i)oint ijk, we shall denote by
SZTﬂ/z’jk the areas of contact surfaces between the cell (z, 7, k) and the cells (i &1, j, k),
open to the r-direction flow; by ngil/&k those hetween the cell (¢, j, k) and the cells
(7,7 +1, k), open to the -direction flow; and finally by S?_;‘,kil/z the areas of the contact
surfaces between the cell (7,7, k) and the cells (7,7,k+ 1), open to the ¢-direction flow.

According to relations (4.1}, we set

Sirztl/z,jk = 7'1'2351/2 sin0;A0; 128k 1/2,
SPisrjan = TisinOiyaAr 1Ay, (4.3)
Stasrys = TibTis120601 ),

and from (4.2), the volume of the cell, denoted by Vjji, will be
Vijk = Tiz Sin@;Ar;11/2080;11/28011/2- (4.4)

In the above relations, rj11/, and 0,1/, define interface positions, which are calculated

as simple averages

to)—

rix1/2 = 5 (ri +Tixr),
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Ojx1/2 = %(Qj +0;51), (4.5)
while the r-, #-, and ¢-spacings are given by

Aripis =5 (Ari 4+ Arigy),
A9j+1/2 = %(Aaj + A1), (4.6)

Ay = 3 (D¢ + Adrgr),

where

Ar; =7;— Pi_q and Ariyy = Tigy — 74y
AG; =0 — 0, and Abj g =04 — 6;, (4.7)
Adr = ¢p — 1 and Adpy1 = Pky1 — P

Since the ¢-grid is always perfectly uniform, we have that A¢p.; = Ady for any k and
hence, in expressions (4.3) and (4.4), we may set Adp .y, = Ag.

It is important to remark that all of the above relations define the properties of
the grid used in the non-axisymmetric calculations. In particular, in the spherically
symmetric problem the role of a “cell” is played by concentric spherical shells, while in
the axisymmetric case a computational cell is represented by a toroidal annulus around
the symmetry axis. For these restricted symmetries the grid structure is a simplification
of that used for the general non-axisymmetric calculations. Hence, the corresponding
geometrical properties are directly recovered from relations (4.3) and (4.4).

In Tables 5 and 6, we sumimarize the relevant properties of the computational grid to

be used in the 1- and 2-dimensional calculations, respectively. All quantities appearing

in the relations are defined as in (4.5), (4.6), and (4.7).
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TABLE 5

Geometrical Properties of Mesh Shells for the

Spherically Symmetric Case

Property
Volume Vi 47"7'{2A7'i+1/2
Inter faces ::[:1/2 4777'22i1/2

TABLE 6

Geometrical Properties of Mesh Cells for the

Azisymmetric Case

Property

Volume Vij

7 — Inter faces &1/2 i
8 — Inter faces Siajil/z

27(‘7‘1:2 sin ejATi+1/2A9j+1/2
27”'?5:1/2 sin 61 A8j+1/2

27"7'1' Sin 9ji1/2A7'{+1/2
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4.3 Grid Motion Routine

The grid is initially allowed to follow the radial motion of the fluid by automatically
rezoning all mesh-points at each computational cycle. The grid reioning has been
made dependent on the development of the internal hydrodynamic solution. Since the
continuous increase of density in the central portions is the most significant feature
of the gravitational collapse of protostellar clouds, the evolution of the central density
may be taken as a suitable criterion for grid rezoning.

In Appendix C, Section C.1, we have derived finite-difference replacements, for a
radially non-uniform grid, which approximate the radial portions of the Laplacian in

equation (3.4) to second order accuracy if the following condition holds [90]
Ariy1 = EAT; (1=1,2,..,N,), (4.8)

where the stretch parameter & must always be of order unity for smooth variations of
the radial spacings. The use of eq.(4.8) will give the desired new radial positions when
the stretch parameter is specified.

In order to get an inward grid motion, £ must be slightly greater than unity. Fur-
thermore, the progressive contraction of the radial grid requires a gradual increase of
. In other words, if at some particular step n, (™) decreases with respect to its earlier
value £("~1) at step n—1, then the grid will expand back and the accuracy of the entire
hydrodynamical approximation will deteriorate. This effect may be observed from the
leading truncation errors in sequences (6.32) and (6.33). If the grid velocity changes
sign and inverts its direction with respect to the local fluid velocity, we obtain that
|Uiskl > |vr;;,l, so that the magnitudes of those truncation errors which are propor-

tional to Uj;r, will inevitably increase. This technical difficulty, however, may easily

53



be avoided by delaying the motion of the grid by one step (£(") = £"=1)) whenever
£ < gln=1).

For 1-dimensional calculations, a feasible way of computing the stretch parameter
is to follow the increase of the central density p, at each cycle. This is done by defining
at a particular step n

€0 = pr/pr 7t (4.9)
This relation ensures a progressive increase of ¢ during the main infall phases of collapse.
Since the variation per step of the central cell density is usually small for small At, ¢
will be always of order of unity. However, experience with 2-dimensional calculations
indicates that the use of prescription (4.9), is not sufficient to guarantee a satisfactory
contraction of the grid. For this reason, we have adopted a version of the method
originally implemented by Larson [61] and Black and Bodenheimer [3], and used by
Boss [13].

For convenience in solving the Poisson equation [see Chapter 5, Section 5.3], the
radial grid is chosen such that Ar; is always equal to Ar,. Consequently, equation

(4.8) inusi ve re-defined as

Ars = Arq,

Ariy = £Ar (i=2,3,...,N,_1). (4.10)
Straightforward algebra then yields

re = 27‘1,

r3 = (24 &)ry,

I

T4

(24 €4 &5,
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N, = 246+ +8+ 4Ny, (4.11)

where all radial grid positions are defined in terms of the distance r; between the centre
(r = 0) and the first radial mesh-point. The use of the constant-volume boundary
condition imposes 7y, = Ry, in the last relation of (4.11). Furthermore, if we define

71 = 71/ Ro, this relation can be manipulated to give
[1+{1+£+£2+§3+54+---~+gN"‘2H =1, (4.12)

which is equivalent to

L-¢

Since £ > 1, we may write £ = 1 + 7, where 7 is generallyv a small number in the range

1 ¢Ny—1
1+ (l—é—” =1 (4.13)

0 <n < 1. So equation (4.13) becomes
A+ )Vt (1= 7)) = = 0. (4.14)

This non-unear equation, for known values of N, and 7y, is efficiently solved for n by
means of a rapidly convergent, fifth-order Newton iteration scheme [30,43]. The use of
such a high order scheme is necessary because of the rather poor convergence exhibited
by the non-linear equatibn (4.14). The value of 7, for the solution of this equation, is
easily determined at each time step by constraining the innermost grid-points to follow
the fluid motion as closely as possible. In spherically symmetric flows, this may be
done by requiring that the mesh-point r; should move in a strictly Lagrangian sense.

Thus, at step n 4 1, we have
r’f“ =ri+ At (4.15)
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where v is the local fluid velocity at r = r; and step n.

For 2- and 3-dimensional calculations, eq.(4.15) is no longer valid. In these cases,
the collapse of the inner regions will not necessarily proceed in a spherically symmetric
manner. In order to avoid a progressive distortion of the grid, equation (4.15) for

non-axisymmetric flows is modified as
T'H-H — plt + Af( ) >u (4 16)
1jk = Tijk A\ Ury ) .

where (v, )" is an arithmetic average of the local fluid velocities vy, ., in the innermost

cells, i.e.

N, N,
m o Ng . n
(“n + Xkt X ”w)

<’U1‘1>v: 1+NON¢ Y

(4.17)

v being the axial fluid velocity at » = r;. For axisymmetric flows, the counterpart
of equation (4.16) is obtained by removing the index k£ and by averaging only in the
f-direction.

In this manner, the motion of the grid is fully determined from ¢ and #7'*! by using

the relations (4.11) for the new positions r*.

4.4 Grid Velocity

The grid velocity v, = (vg,0,0) is computed from the old and new positions. It is in-
terpreted as the time rate of change of the radial grid-points. A suitable approximation
for the grid velocity v, is obtained by expanding r; at the new time level (n 4 1) in a

Taylor series about its corresponding value at the old time level (n), that is

ar\" 1 (o*r\"
nt+l _ . n e - I 2.,
" _TZ+<at>iAt+2<at2).At - ’
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Then, defining vy, = (Jr/0t); and neglecting all terms of order higher than one, we

obhtain
ptl _an
v X T+O{At} (z=1,2,..,N.—-1). (4.18)

From equation (4.18) it follows that v, = 0 for 7 = 0 (centre) and for i = N,

(external boundary). The grid interface velocities Vgis126 = Ugisy,, aT€ calculated as
simple averages, i.e.
1
Vgitije = 9 (Vg +vg) (4.19)

so that, the velocity of the innermost interfaces (1 — 1/2, jk) is given by Vgy 1y = %vgl,

and similarly, that of the outermost interfaces (N, — 1/2,jk) is given by Vg 1/ =

Lo

UQN,. —1"
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Chapter 5

Poisson Solver

This chapter is devoted to describing the numerical algorithm used for solving the
Poisson equation (3.4). Since the procedure used to solve this equation in 1- or 2-space
dimensions, is a particular case of the full 3-dimensional treatment, we shall refer here
only to the latter. However, due to its usefulness in many interesting situations, we

give details of the 2-dimensional Poisson solver in Appendix A.
5.1 Solution Method

The Poisson equation (3.25) in 3-space dimensions is solved by separation of variables.
This is done by expanding the gravitational potential ® and the density p in terms of

the spherical harmonics ¥;,,(9, ¢)

(7’ g ¢) Z Z @1771 }lm g ¢)

=0 m=~I

(r.0,¢)= Z Z Pim(T)Y1m (0, ). (5.1)

=0 m=-I[

Substitution of the spherical harmonic expansions (5.1) into eq.(3.25) leads to the form

1 a(rzaqnm(r))Jr 1

‘E[m( )(97‘ ar lm(g Qb)
1 4 i d 1 92 7' le( )
* {sin@@ (5111055) + sinzea—qﬁ} Yim(0,0) = sz( ) (5:2)
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which holds for any permitted values of the pair (/,m). The angular operator acting on
Yin (6, @), on the left-hand side of equation (5.2), is the well-known Legendre operator

L2, which satisfies the eigenvalue equation
L*Yim (0, ¢) = (1 + 1)Yim(6, 8), (5.3)

for integer values of [. Hence, using equation (5.3) in eq.(5.2), we finally obtain the

simplified form

d?®y,, 2dPp (7 {l+1
{ (T') Lz { ( ) A )(I’Im(r) — 47"G/0(m.(7')- (5.4)
dr? r dr r?

Equation (5.4) is a linear, second-order, ordinary differential equation defining the
potential coefficients needed in the spherical harmonic expansion for ®(r, 6, ¢). Hence,
the 3-dimensional Poisson problem reduces to solving, for any permitted combination
of the integers [ and m, a set of equations similar to the one-dimensional equation (5.4).

The density coefficients p;(r) are calculated by using the orthogonality condition

for the spherical harmonics, and can be expressed in the form

2 big
p,m(r):/O dqs/O p(r.0, )Y} (68, &) sin 648, (5.5)

where, according to the conventional definition of the spherical harmonics

204+ 1 (1 - m)!
dr (I + m)!

(0, 0) = P™(cos f)e”im®, (5.6)

P"(cos #) being the associated Legendre functions. Defining the constants

om (204 1T —m)! _
¢ = 47 (I +m)V’ (5.7)

equation (5.5) may be re-written in the more explicit form

2

Pim(r) = CF" /

™45 [ p(r,0,8) P (cos 0) sin 0d, (58)
0 40
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for any integers [ > 0 and —{ < m < +[.

To solve equation (5.4) one needs to specify boundary conditions for the gravita-
tional potential. Since we are mainly interested in the collapse of completely isolated
protostellar clouds so that there is no hydrodynamical transport of mass across the
external boundary surface, the obvious assumption to make is that there are no masses
outside the fixed volume enclosing the collapsing system which contribute to the grav-
itational potential. Therefore, for any r» > Ry, we set p(r,0,¢) = 0, or equivalently,
from equation (5.5), pim(r) = 0. This constraint together with the requirement that
the gravitational potential ®(r, 8, ¢), as well as its first derivatives, remains finite as
r — oo, constitute outer boundary conditions on ®;,,(7). If we then put pim(r) = 0
in equation (5.4) and solve for ®;,,(r), we obtain only one solution for all coefficients,

with [ # 0 and m # 0, which remains finite as r — co:
@lm.(r) X r—(‘1+1), (59)

for any r > Ry. Differentiating (5.9) once, we may write at the external surface r = R,

] o[22
r=Ry r

g @l,n(r)] = 0. (5.10)

r=Ry
Equation (5.10) defines a mixed boundary condition on ®,,(r) at the surface of the
spherical cloud. However, the level of ® is arbitrary in the sense that equation (5.10)
holds for any exterior point and hence, it could be expressed at any radius completely
outside the physical cloud configuration.

At the centre of the collapsing protostar, the gravitational potential and its first
derivatives must be continuous functions. This is the only requirement that ié necessary
in order to specify the inner boundary condition. On the other hand, the addition

of a boundary condition expressing reflection symmetry about the equatorial plane
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simplifies the calculations, since only the {+m even terms will be needed in the spherical
harmonic expansions (5.1). This fact implies that the number of differential equations,
of the form of eq.(5.4) for the ®;,,(7), is consequently reduced.

In the 3-dimensional problem, it is also necessary to enforce a periodic boundary
condition for the ¢ variable. Its specification is superfluous, since it is implicit in the
expansions (5.1) for ®(r, 8, ¢) and p(r, 6, @).

The foregoing standard analytical procedure has reduced the problem of solving the
comphcated partial differential equation (3.25) to a classical ordinary-value problem
involving a derivative boundary condition.

The first step in our numerical approach to equation (5.4}, is to approximate the

double integral in equation (5.8) with the help of appropriate mechanical quadratures.
5.2 Determination of the Density Coeflicients

Equation (5.8) can be written as

2 L +1
pm(r) = C7* [ e m0dg [ pra, )P (), (5.11)
J0 -1

where the limits of integration (0,27) have been normalized to (—1,+41) by effecting

the change of variable # = cosd. The integral

+1
[ otz 00 (w)de (5.12)
J-1

may be regarded as the inner product of two functions over the interval [—1, 4+ 1] with
respect to a weight function w(z) = 1. If we then take this product as a single function,
the integral (5.12) can be conveniently evaluated with a Gauss integration rule [57],

which consists of replacing (5.12) with a weighted sum of discrete values of the product
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p(r,a;, @) P™(a;), namely

+1 N
/ p(r,z, )P (z)de = Zij(r,aj,(b)le(aj), (5.13)

~1 =1

where the abscissae a; must be suitably distributed between the limits of integration.
The full determination of the N-point Gauss quadrature (5.13) will consist of finding
the set of discrete abscissae a; and their corresponding weight coefficients H;, which
make eq.(5.13) exact provided that the degree of the polynomial approximating the
function F(z) = p(r,z,d)P"(x), does not exceed 2N — 1.

In our case, the abscissae a; are chosen as the roots of the Legendre polynomial
Py (z). This is justified because the Legendre polynomials form a family of orthogonal
functions with respect to the weight w(z) = 1 within the interval [~ 1, +1], and satisfy

the orthogonality condition

+1 2
P(z)Pr(z)de = ——&y, 5.14
IR 1(z) Py(x)de T (5.14)
where §;p = 1 if [ # I' and 0 otherwise. In this way, the abscissae a; will be distinct,

real, and located in the interior of the interval [—1,+1], as required for a Gaussian
quadratiuze. Also, these properties will guarantee the positivity of the weight coefficients
H;, which is crucial in keeping down round-off errors.

When the product F(z) = p(r,z,¢)P/™(z) is not a polynomial of degree less than

2N, the use of approximation (5.13) introduces an error. Following Kopal [57], this

error is given by

22N+1(N!)4
2N + 1)[(2N)]]

N = SFEN)(g) ~l<é<l (5.15)

The magnitude of e becomes smaller, the smaller the value of F(2V)(¢) and the larger
the value of N. However, a precise estimate of ey is made difficult by the usual

uncertainty in evaluating F(2%)(¢).
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Denoting the zeros of the Legendre polynomial of degree N, Py(2), by ay,as,...,an,
the N weight coefficients H; may he expressed as explicit functions of the roots by the

relation [30]
()

“

B = A= amg(a)r

where Py (a;) denotes the first derivative of Py(a;). Inserting (5.16) into eq.(5.13), we

for j=1,2,...,N, (5.16)

get

r,a;, @) " (a)
- o) [Py (a;))"

which defines an N-point Gauss-Legendre quadrature formula for the definite integral

+1 N
/ o(r, 2, 6) P (2)dz ~ 23 ("1( , (5.17)
J=1

J-1

{5.12).

It can be seen, from equation (5.11), that the approximation (5.17) implies that
the density of the axial cells will not influence the coefficients py,,(7) and hence the
gravitational potential of the main grid-cells. This is due to the fact that the Gauss-
Legendre quadrature (5.17) is of the open type, i.e. its marginal abscissae a; and ay do
not coincide with the limits of integration. Therefore, the axial points § = 0 (z = +1)
and § = 7 (¢ = —1) are excluded from the summation. The polar location of the main
grid-points [See Figure 4.1(a)] will be determined by the relation a; = cos 6;.

Owing to the symmetry of the Legendre polynomials about 8 = 7/2 (z = 0),
their non-zero roots will occur in pairs +a;, and their weight coefficients will obey the
symmetry relation H; = Hy_jy1. In this way, the zero abscissa denoting the equator
will have j = (N +1)/2, for a particular odd value of N. The number (N +1)/2 gives
exactly the number of cells Ng (along the #-direction) filling the top hemisphere of the
spherical volume. From the above considerations and from the condition of reflection

symmetry about the equatorial plane (which implies that p(r, a;, #) = p(r, —aj, ¢) for
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any j) the calculation of the summation in eq.(5.17) is simplified by setting

+1 (N+1)/2
[ elra B @de = Y Hyplr, a5, 0) B (o), (5.18)
]

for a; > 0 since P"(a;) = P™(—a;) when [ + m is even. The new weights H} are

related to the old ones (defined in (5.16)) by

H;:ZHJ for]:1,2,,(N~1)/2-
so that
N (N+1)/2
j=1 J=1

Here we are interested in solving equation (5.18) for Ng = (N +1)/2 = 11. We have
adopted the method given by Davis and Rabinowitz [30] (based on a Newton-Raphson
iteration scheme) for computing the roots of the Legendre polynomial Py(z), due to
the almost complete lack of tabulated values for this case. In Appendix B, we give the
root-finding algorithm implemented, as well as the results for the non-negative abscissae
and tic coiresponding weights of the 21-point Gauss-Legendre quadrature formula.

Substitution of eq.(5.18) into eq.(5.11) leads to the semi-analytical expression

Ny 2 .
pin(r) = O S HR (a5) [ e ™ p(r,ay,6)d, (5.21)
Jj=1 ’

which may be separated into its real and imaginary parts

Ny

27
Rloim(r)] = C7* S HIP™(a5) /0 p(r,a;, &) cos(me)de, (5.22)
i=1 :
Ny 2m
Sloun(r)] = =" S HJP (a) [ plr.a;,0) sin(ma)dg. (5.23)
J=1 ’
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The integrals in equations (5.22) and (5.23) are of the form of the finite integrals
involved in the calculation of Fourier cosine and sine transforms. They can be approxi-
mated using Filon’s method for finite Fourier integrals [30,57], provided that the values
of the integer m are small. Otherwise, the rapid oscillations of the periodic functions
cos(m¢) and sin(m@) will affect the accuracy of the approximation, unless the interval
of integration is subdivided into very small steps which, however, would render the
calculation prohibitive.

Following Davis and Rabinowitz [30] and Kopal [57], if we divide the ¢-grid into an

even number (say, 2n) of discrete, equally spaced intervals Aq@, we have that

2 -
/D p(rya;, 8) cos(mé)dd =~ A {A(N)Can + 7(N)Canr} . (5.24)

and
2m .
/O p(r,aj, 6) sin(me)de ~ A {B(N)San + 7(\)San_1}, (5.25)

respectively, where Ny = 2n, Ad = 27 /N4, and A = mAd. The functions 3 and «y are

the Filon coefficients given by

BA) = 2{\1 +cos®\) — 2sin A cos A}/A?,

Y(A) = 4{sin\ — Acos A}/\% (5.26)

The quantities ('3, and C',,—; are sums formed from p(7, aj, @) cos(me) and defined as

1 n - :
Cop = —§[p(r, a;,0) + p(r,a;,27)] + > p(r,aj, 2A¢k) cos(2mApk),
k=0
Canor = Y p(r,a;,20¢k — Ad) cos(2mAdk — mAS), (5.27)
k=1

while Sy, and S3,_; are sums formed from the terms p(r, aj, ¢) sin(m¢) and given by

S = p(r,a;,2A6k)sin(2mAdk),
k=0
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San1 = p(ra;, 200k — Ad) sin(2mASk — mAS). (5.28)

k=1

It can be seen that for m = 0, the Filon coefficients (5.26) become indeterminate. In
this case, the problem of evaluating these coefficients at the singularity A = 0 is solved
by expanding (5.26) in a Taylor series [57]. The following expansions are obtained

2 4 2
3(A) = 4 =N N\t
AlA) 3 + 15 105 + 67
[ IR EVERE
3 15 210 11340

A
A6 (5.29)

so that 3(0) = 2/3 and y(0) = 4/3. The forms (5.29) are also suitable for small values
of (< 1/6 ~ 0.1666...) [30].

In contrast to the Gauss-Legendre quadratures, Filon’s formulae are of the closed
type, that is, the limits of integration are included in the evaluation of the integrands.
The abscissae, on the other hand, are all pre-assigned with the requirement that they
must be uniformly distributed along the integration range. Following Kopal [57], the
error introduced by using the approximations (5.24) and (5.25) is shown to be of the

order

27r <3 1 /\>1 . (/\) IV
spwﬁAqﬁ {1—1—6$ec(; Jsm 3 p o (r,a;€), (5.30)

for 0 < £ < 2m. It is generally recommended that one should keep the parameter \
smaller than unity. Then, taking Ny = 16 for the full 27 radians, we have a uniform
angular spacing of A¢ = 7/8 rad. This resolution leads to A\ < 1 when m < 2
However, in order to accurately evaluate the gravitational potential, it is necessary
to include terms in the spherical harmonic expansions at least with [ < 6, so that
-6 < m < 6. Hence, values of m > 2 (leading to A > 1) will occur in the Filon
quadrature formulae (5.24) and (5.25). The use of eq.(5.30) with Ny = 16 gives errors

of ~ 1072pTV(r, a;, &) for values of the integer m as high as m = 6. A crude estimate
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of pIV(r, a;j,§) can be made by taking for each radius r, an average of p(r,aj, ¢r) over
¢ and ¢. By considering such estimates, we have satisfied ourselves that pV(r a;,€)
will always be small enough to keep reasonable accuracy, even when high values of m
are included.

Inserting the approximations (5.24) and (5.25) into equations (5.22) and (5.23),
respectively, the density coefficients are finally determined by

Ny
pim(r) % €7 3 HIP™ () { A [B(A)Con +7(A)Cans]} -

j=1

Ny
—iC" S HPM(a;) {A¢> [B(\)San + «,(/\).92,1_1}} . (5.31)

=1

By virtue of equation (5.31), the gravitational potential coefficients will also be

complex functions of the form
(I’lm(T) = 8’1\{@1,,1(7')] + i(\\f{q’]m(l’)]. (5.32)

Consequently, equation (5.4) splits into two linear second-order differential equations

for the real and imaginary parts of the potential coefficients.
5.3 Calculation of the Potential Coeflicients

The potential coefficients ®;,,(r) are numerically computed by replacing the exact dif-
ferential equation (5.4) by a set of approximate finite-difference equations. In order to
do so we first consider, for particular values of # and ¢, a radial distribution of cells as
shown in Figure 3.1.

The radial grid-points are labeled i = 1,2,..., N,_, N., and the value of r at the
ith point is denoted by r;. The intervals between the radial points, denoted by Ar; and

Aripq, as well as the grid spacings Ar;yq/s, are defined in Chapter 4, Section 4.2. The
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Figure 5.1: Radial distribution of main grid-cells for discretization of the
simplified Poisson equation.

first step in our discretization procedure consists of evaluating equation (5.4) at each

point r; in the computational domain r; < r < ry, = Ro. We write, in index notation,

dZQR’II 2 [ dpRI (l+1) _grr . RI 3
(S} e 2 {88 Mehamosar

L

for (i = 1,2,...,N,). The superscripts R and I will be used to denote the real and
imaginary parts of the potential and density coefficients. Furthermore, in equation

(5.33), we have adopted the following definitions

Bn(r:) = &5, pim(ri) = pi,

for the functions evaluated at a particular point r;. The subscripts [ and m have been
omitted for simplicity, although it is implicit that the density and potential coefficients

are always characterized by the triplet ([, m,1).
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Secondly, we evaluate the first and second derivatives in equation (5.33) by using
appropriate finite-differences. As we have commented in Chapter 4, the radial grid
structure varies with time, becoming more and more stretched as the calculation pro-
ceeds. This means that after an evolutionary time #, the radial points are no longer
centred as they were at the beginning of the calculation, when the grid was perfectly
uniform. This apparent disadvantage is greatly compensated by the fact that a progres-
sive reduction of the grid size (in the inner regions), decreases the amount of computer
memory and time required to obtain improved solutions (over the same regions), as
compared with the case of using a small mesh size everywhere.

In Appendix C, Section C.1, we have deduced three-point finite-difference formulae,
which are particularly suitable for problems dealing with a variable grid structure.
Such formulae are usually referred to as partially centered replacements. They may he

written as

fdey 1 [Am Borr — By 2 DTt s g } A2 2,
Ldr J; ~ 2A7544/9 A7’i+1( T Zal r; (Bi = Ria)| + O{(Ar), (5:34)
[dZ(I) 1 (Pip1 — @) (B; — &;_4) , E 2
l dr? }7: h Aritisa { Ariyr Ar; ] T otan)}, (5.35)

according to our notation. If the radial grid varies smoothly, it is always possible
to match the truncation error of the replacement (5.34), for the first derivative, with
that of (5.35), for the second derivative, in order to approximate the left-hand side of
eq.(5.35) to second-order accuracy [See Appendix C, Section C.1]. Consequently, the
discretization of equation (5.33) based upon approximations (5.34) and (5.35), is nearly
second-order accurate.

Inserting the replacements (5.34) and (5.35) into equation (5.33) and grouping sim-

ilar terms, we obtain the finite-difference form (at a particular point r;) of the exact
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differential equation (5.4)

1 Ar;
(1 B r.+1> @i{—

Ariy1Ar; T;
L Arigy 1 Ari\ (141
- <1_ r+1>+ <1+_7’_)+ (4; )1(1)11_1,1+
ATity/2AT; 7 AriyyArig 7 ri_J
]. . A"'Y R,I RI .
o\ ! & —4rG 5
* Arip1/2Arigy ( * 7 ) if1 = 4rGp (5.36)

Equation (5.36) can be written in the more convenient form

Ca@] + Cod™ 4 Cpalt = ¢ (5.37)
where
Ar;
C’il = (1 g‘) /AT’I+1/2AT1,
rl
Ar;
Ciz = <1 - )/Arz+l/2Arr+17
1 1 1 ' l+ ]‘
Ciz = —Ci —Ci3 - d 5 ),
T
it = anGpl (5.38)

The coefficients (', Cjz, and (3 are known constants for any interior point of the
compuzti-nal domain, while C'I-Iz'l is determined by the local values of the density
coefficients. Equation (5.37), for 7 = 1,2,..., N, — 1, defines two sets of N, — 1 linear
algebraic equations, which have to be solved simultaneously for the 2N, — 2 unknowns
®F and ®!. Special care must be taken when extreme values of the index i are assigned

in equation (5.37). For i = 1, we have
C 1@ I+ CvlzéﬁRI + va}@ﬂ[ — C'14 ,

where &g = ®f! + i®] denotes the value of the potential coeficient at the centre of the
cloud [See Figure 3.1]. An explicit boundary condition for the centre is completely un-

necessary and the effort of evaluating i’? o may easily be avoided. Without introducing
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any approximation, if we choose the non-uniform radial grid such that Ar; is always
equal to Ary, then the coefficient ('1; vanishes and the above sets of linear equations

hecome independent of the central potential. Hence, for i = 1, we may write
C’lg@?’l + 6'13(I‘ZR’I = C’ﬁ'I, (539)

where the relation between @?'l and @f’f serves as an inner houndary condition [104].
On the other hand, when : = N, — 1, we get

¢ R,I ‘ R,I RI RI
(’NT—I,IQN,_Q + CNT“LZ(}]\ry‘ﬁl -+ C'N.r.‘l,gtl)lvr = C'NT__IA,

where we need to specify the boundary potential coeflicients in order to close the system.
This is done by using the external boundary equation (5.10), which may be set in the

finite-difference form

1 Ary,
2ArN, 4172 LATN, 1

AN, 41
ATN,‘

[+1
+ (L+ )(pf/f =0, (5.40)
TN, !

R,I R,I R,I R,1I
(PN41 — BN )+ (Py — 2N 4|+

by again using the replacement (5.34). Due to the three-point approximation nature
of the partially centered formulae, the evaluation of the first derivative at the cloud
boundary introduces information ahout the fictitious point ry.. 1, which is outside
the computational domain. However, we can elin.)inate <I’]}3,f+l by simply combining
equation (5.40) with equation (5.36) evaluated at the boundary (r = rp, ). After some

rather cumbersome algebra, we finally obtain the relation

RI ‘A2 RI
RI _ (I)N,r—l - QWGAT})V.,-/)N,. -
(I)NT B I (I+1)A [ Lit2)a ) (541)
.ll + ¢ TN, 7'N7é+2( rNT]l
TN,

which is, however, free of any dependence on the fictitious coordinate ry, 1. The use

of this relation in equation (5.37), for ¢ = N, — 1, leads to the following equation

R.I 3 RI ~R,I .
ONe-11®N _y + CONn12®y = Oy (5.42)
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where

~1

. (I+1)Ary, [rNT—i—%(l—}—‘Z)ArNT]

Cny—i2 = COnc1p+ (14 3 CN, 13,
TN,

~R,I R, I

¢ =14 = ¢ 14T

(1+1)Ary, [rx, + 3 +2)Ary,]

2
r N,

+2rGArk pR! {1 + } CNo_1s. (5.43)

The set of equations (5.39),(5.42), and (5.37) for the remaining N, — 3 points, are
2N, — 2 simultaneous linear equations for the 2N, — 2 unknowns ®£ and ®/. This set
of equations can be consistently solved by applying the tridiagonal matrix algorithm
method [See, for example, C. Chuen-Yen [25]].

Since we are concerned with protostellar configurations with radii of the order of
107 — 10'8cm, for a discrete number of radial points, we are compelled to work with
relatively large Ar. From the definitions (5.38), the coefficients Cjy, (s, and Cj3
(being proportional to Ar~2) will generally be very small for large values of Ar. Such
small values will introduce underflow computing problems in the tridiagonal operating
routine. This is because the tridiagonal elimination scheme involves an increasing
number of products of these small coefficients, which then yield prohibitively small
numbers as the calculation proceeds. In order to circumvent this difficulty, we normalize
all of the coefficients, in each equation, by dividing through by the first one appearing
in the equation. In this way the set of linear equations (5.39), (5.42), and (5.37) may

bhe written in the more convenient form

(I’?'I + 513(1)123.1 = Sﬁ’f (1= 1),
e 58 Saeltt = g0 (i=2,3....,N. - 2), (5.44)
SN, + Sy ® = S, (i= N, - 1),
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where S13 = ('13/C19, 55}’1 = C'ﬁ’I/C'lz. The other normalized coefficients are all of
the form S;, = Ci/Ci1.

Expressed in matrix notation, equations (5.44) become

; (I’R'I SR,I
1 543 0 0 0 0 0 0 }%I : %4[
1 Sy Ss3 0 0 0 0 0 ‘I’% ’I 5%4’[
0 1 532 533 0 0 0 0 P, S%{I
0 0 1 Sy S4s 0 0 0 i sR
0 0 0 0 0 I Sn,—22 Sn,-23 <I’]}3,'.I_2 . 11\3',[[—2 4
g , , RI
0 0 0 0 0 1 ON,—1,2 (I’N,.q SN —14
(5.45)

The coefficient matrix on the left-hand side of equation (5.45) is a tridiagonal matrix,
whose non-vanishing elements form a band three elements wide along the diagonal.
It is well-known that this set of equations can he solved very efficiently by using the
Gaussian elimination method [25]. Our case is a particular one, since the appearance
of unitary coefficients in the lower diagonal band simplifies the elimination scheme.
This elimination process is accompanied hy a successive re-naming of the coefficients

accordi~~ +~ the rule

Siz = (Si2Si—i2— Sic13),
Siz = (Siadic1,2), (5.46)
St = (ST Simre = P,

for i = 2,3,..., N, — 2. At the end of the elimination scheme, all of the algebraic

equations in (5.44) are in the simple form of having only two terms on the left-hand

side. From the last two of the resulting equations (for i = N, — 2 and i = N, — 1,



respectively), we then obtain that

R,I R,I
RI SNT*Z,ZSNT—1,4 - SN,,—zA .
’ SN,-2,29N, 1,2 — SN, 23

The remaining unknowns are then computed using a backward substitution scheme.
In this way, the potential coefficients are first calculated for the outermost grid-points
according to the recurrence formula

Sl Spdft
Rl = —-‘*___?gl (i=N,-2,N,-3,..21). (5.48)
1992

Finally, the boundary potential coefficients are calculated using equation (5.41) once
the @f,‘f_l have been determined via equation (5.47).

In practice, if we consider terms up to and including [ = 6 such that only those with
[+ m even are effectively included in the summation (5.1) for ®(r, 8, ), we shall have
28 equations for the R[®;,,(r)]’s and 28 more for the §[®;,,(r)]’s of the form of equation
(5.4). Hencé, the potential coefficients needed to evaluate ®(r;, 6, ¢) are obtained after

applying the tridiagonal solution method 56 times.

5.4 Gravitational Potential for the Main Grid-Cells

For a particular grid-point (7,8, ¢), with r # 0 and 6 # 0, the gravitational potential is
then computed using the expansion (5.1). From the definition of the spherical harmon-
ics (5.6) and relation (5.32), the gravitational potential may be expressed in complex

notation as

®(r,0,¢) = R[&(r,0, 3)] + iS[2(r. 0, 8)], (5.49)
where
o l
R[B(r,0,0)] = > C"P"(cos 0) {R[Bn(r)] cos(md) — S[Bpn(r)] sin(ma)},
=0 m=-—I
(5.50)



and

=) {
S[B(r,0,0)] =D D O P (cos 8) {R[Bin(r)] sin(me) + S[®pn(r)] cos(ma)} .
=0 m=-1

(5.51)
In order to get acceptable physical solutions, the imaginary part (5.51) must be

identically zero. That is, for any ! and m, the following relation must hold

8[(}::‘[,." ( T‘)]

tan(mg) = R By ()]

(5.52)

The accuracy of the numerically obtained potential is disccussed in Section 5.7 for a

few test cases.
5.5 Gravitational Potential for the Axial Cells

For the axial cells, the gravitational potential is easily determined by setting § = 0 in
the expansion (5.1). Then, from the definition of the spherical harmonics (5.6), we may

write explicitly

(18

B(r,0,0) = N O P (1) B (r)el ™, (5.53)

m=-—1

ir
)

where P/"(1) = 1 only when m = 0, and is identically zero otherwise. Hence, the only
2]

non-vanishing terms in the summation (5.53) are those having m = 0. Setting m = 0,

equation (5.53) reduces to

8

B(r,0) =Y CP®yp(r), (5.54)

(=0

where the expansion includes only terms with [ even, due to the reflection symmetry
about the equatorial plane. Finally, evaluating C'? from relation (5.7) and denoting the

axial potential by ®'(7), we have




The potential coefficients $;9(r) are real functions. This may verified directly from
equation (5.8) by setting m = 0. The factor e"™? disappears from the integrand, and

the imaginary part of the density coeflicients p;o(r) vanishes.
5.6 Gravitational Potential at the Centre

The gravitational potential at the cloud centre (r = 0), denoted by ®., is obtained
by following a procedure similar to that used by Stoeckly [104] for the same problem
but in 2-space dimensions. Let us consider the 3-dimensional Poisson equation (3.25),
evaluate it at » = 0 and integrate each term over # and ¢. The limiting form is found

to bhe

2 +1 2 (
/ d¢/ [ M(ﬁ)] dm:il’;—Go dqsf (0,2, 6)da (5.56)
r=0 '

where for convenience we have performed the change of variable cos§ — z. Before

evaluating the integrals, equation (5.56) must be put in finite-difference form. This is

done by expanding the function ®(ry,z, ¢) in a Taylor series about r = 0

F(r. z
®(r1,z,0) = ®(0,2,¢) + [w} =0 it

1 82@(7",33,(;5) 2 1 83(1)(7‘,273,¢)
"2 [_6_“ s T

] PP (5.57)
r=0

where ry is the radius of the first shell of cells surrounding the the central spherical cell
[See Figure 4.1(a)]. By applying the condition [0®(r,6, $)/8r]._, = 0 and neglecting

derivatives higher than the second in equation (5.57), we get

5.3 +0{(Ar)}, (5.58)

7'1

{aww,w,w] L 2A%(re, ¢)—(1>(o,w,¢n



which defines a forward finite-difference approximation for the second derivative at

r = 0. Inserting (5.58) into equation (5.56), we finally obtain

2m +1 2w +1 2 2T +1
/ d¢ $(0,z,¢)de ~ / do ®(ry,z, ¢)de — ;WG'P:{‘/ dq5/ p(0, 2, d)dz.
Jo J-1 0 -1 3 0 J-1

(5.59)
The integrals in equation (5.59) are calculated by means of a Gauss-Legendre quadra-
ture for the z integration and with a Filon quadrature for the ¢ integration. Following

the considerations of Section 5.2, equation (5.59) may be then written in the semi-

numerical form

Ny 2

27 No 27 9
S [ 0,0, 8)d0x Y A {/ B(r1,05,8)d6 — s7Gr? [ p(O,aj,tb)d(b}.
ot 0 ot Jo 3 0
(5.60)
The ¢ integrals are of the form of eq.(5.24) with m = 0. Then, taking the Filon
coefficients 3(A) = 2/3 and y(\) = 4/3, as appropriate for A = 0, and using the

summations (5.27), we obtain that
2w 2 _n ~ - .
/ ®(0,a;,¢)do = -§A¢ Z[@(O, aj, 2A80k) 4 2%(0, a;, 2A0k — Ag)] =
0
= QnAq.ﬁ@i(O,aj),

2w o - - -
/0 B(ry, a;, p)dp ~ §A¢Z[@(r1,aj,2A¢k) +23(ry, a;,2Ak — Ad)),  (5.61)

k=1
2m 2 .2 - -
/; p(ovajv ¢)d¢) ~ §A¢ Z[P(Oa ajv“'A(Pk) + QP(O»aja QAd)k - A¢)] =
k=1

In the above approximations, we have used the fact that X(r,0,0) = X(r,0,27) at the

periodic boundary. Furthermore, from the property (5.20), we have that

Ny
S HI®Y(0,q5) = 28, (5.62)

i=1

~1
-



and
N(J ,
> Hip'(0,a5) = 20, (5.63)
=1 :

where ®. and p. denote, respectively, the potential and density at the centre. By

virtue of the approximations (5.61) and the relations (5.62) and (5.63), equation (5.60)

hecomes
ACR [ QA . : : 2
(Pc = I’Z* Z H.; {g g[‘I’(T’l,GJ,QAGﬂC) -+ 2(1‘(7"1, G,J,QA(ZS]C — AQ&)]} — g'ﬂ'GT’fPC,
j=1 k=1

(5.64)
which defines the central potential in terms of the potential of the neighbouring main
grid-cells. Equation (5.64) is only an approximate formula for ¢.. However, it has been
found to give accurate results. The limit of the summation for the index & is related
to the number of cells in the ¢-direction by Ny = 2n.

Note that the neighbouring axial cell does not contribute to the determination of

b,.
5.7 Accuracy and Tests

The accuracy of the Poisson solver has been checked by comparing the numerically
obtained potential and its radial gradient with a few available analytical solutions.
The tests were mainly aimed at checking the tridiagonal matrix algorithm and finding
the effects of the limited number of terms allowed in the spherical harmonic (5.1) and
Legendre polynomial (A.1) [See Appendix A] expansions. All calculations were carried
out on a Gould computer in double precision (always keeping 14 significant figures).
This is slightly better than working in single precision on a CDC 7600 machine.

The first analytical solutions which we used for the gravitational potential were for



the case of a spherically symmetric configuration with a uniform-density distribution

2
®(r) = '?:N'Gp() (7’2 — SRg) . (5.65)

Although this test will only estimate the accuracy of the potential coefficients ®;,,(r),
for [ = 0 and m = 0, it is suitable for establishing the accuracy of the initial potential
gradients for clouds collapsing from uniform-density conditions, as is the case for most of
the multi-dimensional calculations. When the 2-dimensional Poisson solver is run (with
the radial grid being uniform), the numerically obtained potential matched the analytic
profile (5.65) with a relative error of ~ 1071%% towards the centre and of ~ 107!%%
towards the outermost zones, while the radial gradients were accurate to ~ 10712%
throughout the computational grid. Furthermore, the #-gradients were exactly zero,
except for a few external zones near to the rotational axis (with j = 1 and j = 2)
where 99 /036 ~ 1072°. For the same test, the 3-dimensional Poisson solver produced
values of ® accurate to ~ 10713*% in the central zones and to ~ 107*2% towards the
spherical boundary, and radial gradients accurate to ~ 1071% throughout the grid.
This high accuracy shows that the tridiagonal matrix algorithm is extremely eflicient
in calculating the gravitational potential for uniform-density spheres, and that even
with a coarse mesh (241 cells for the 2-D run and 3541 cells for the 3-D run) the multi-
dimensional Poisson solvers are able to recognize a spherically symmetric configuration.

It was noticed that with a first version of the 3-D Poisson solver, the analytical
profile (5.65) was reproduced exactly until the twelfth digit out of the fourteen car-
ried, with substantial variations in the 13th and 14th digits for different values of ¢
and ¢. A similar situation was also reported by Boss [13]. Such variations introduce
initial gravitational instabilities for the non-axisymmetric collapse models, even when

the simulations are constrained to start from uniform-density conditions. This effect
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will have implications on the global conservation of angular momentum [See equation
(3.24)], and will certainly prejudice results from the 3-dimensional code because any
unexpected grow of this artificial perturbation could eventually induce a purely numer-
ical fragmentation of the collapsing cloud. Four main sources of error in the calculation’
of ®(r, 0, ¢), are likely to be responsible for this instability. The first error is introduced
by evaluating the oscillatory factors ¢~"™% in the Filon integration for the density co-
efficients. Similarly, a second error may come from evaluating the factors ¢'™? in the
spherical harmonic expansions (5.1). A third error is implicit in the way the density
is being weighted by the Filon quadratures (5.24) and (5.25). The Filon integration
method hasically uses a parabolic interpolation of the non-oscillatory part of the inte-
grand over each double interval [See summations (5.27) and (5.28)], in order to allow
for an explicit integration by parts of the Fourier transforms. In this way, the density
at odd values of the index %k is weighted at twice the weight of the even numbered
¢-points and hence, a tendency towards gravitational instability could arise hbetween
particular ¢-points. The fourth error is certainly coming from the finite number of
terms retained in the spherical harmonic expansions (I < 6 and —6 < m < 6). These
numerical difficulties have here been circumvented in a way different from that used
by Boss [13]. In our case, the 3-D Poisson solver was equipped with a special sub-
routine, which acts on the computer’s internal representation of the nunbers (values
of the ®;;x) by zeroing the last two bits without modifying the corresponding decimal
representation. In other words, any numerical fluctuation introduced in the decimal
conversion of the gravitational potential is artificially smoothed. In this way, ®(r, 0, ¢)
is made ignorant of any preferred directions and the bhackground gravitational insta-

bility is essentially removed. In order to check this subroutine, we have computed the
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¢-gradients by carrying 15 significant figures, and found that 9®/9¢ was exactly zero,
except for a very small number of grid-points where 9% /9¢ ~ 10~'8. When the same
calculation was repeated with the grid refined (¢ = 1.5), the ¢-gradients were exactly
zero everywhere. These results then leave us confident that any artificial perturbation
in the initial conditions is automatically damped. Furthermore, the imaginary part of
the gravitational potential [See equation (5.51)] was numerically found to he ~ 10720
for all grid-points, which corresponded to ~ 103! — 1072® times the real part. These
numbers, on the other hand, give an estimate of the rounding error introduced by the
machine in evaluating the oscillatory terms cos(m¢) and sin(m¢) in the summation
(5.51) since the imaginary parts of the coefficients pgo(r) and ®gp(r) were numerically
zero. By way of comparison, for the uniform-density test Boss [13] obtained an accu-
racy of 10712% in ® and 1079% in 6% /07 in single precision on a CDC 7600 machine,
while Black and Bodenheimer [3] with a finer 2-D grid (of 4040 cylindrical coordinate
points) obtained ® accurate to 5 x 107*% and the gradients to 0.01% on the same
machine. Our better accuracy, with respect to the Boss [13] case, may be attributed to
a slight advantage implicit in the double precision accuracy of the Gould machine (64
bits) with respect to the single precision of a CDC 7600 computer (60 bits).

The multi-dimensional Poisson solvers were also tested for a spherically symmetric,

centrally condensed density distribution of the form

sy =p(1--2) (5.66)

which admits the analytical potential

2 r 5 r r r 5 3 r 1
o= 2w 1 5 (- )]} o
(7) BT por{ nRy {‘2 nRy ‘d nRg nRo \T 28nR, J+ 0

(5.67)
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with &9 = ®(r = 0) being

@0:——%#@00}23[3—}'[10"'{(15‘-{(12—2(5_"&))”1‘
3 l n n n n {n J

The non-linear profile (5.66) comes closer to mimicing the radial density gradients en-
countered during the early protostellar collapse, and hence should give a better estimate
of the Poisson solver. To reproduce the analytical profile (5.66) more accurately, we
took a stretched N, = 20 radial grid, with the innermost spacing Ar; being a fraction
f ~ 0.1 of the uniform Ar. Then, setting n = 1.010101.., we defined a centrally con-
densed configuration with the central density p. ~ 10!° times the boundary density.
For this model, the 3-D Poisson solver reproduced the potential accurate to ~ 0.2% in
the central regions and ~ 1% towards the external boundary, the gradients being sub-
stantially more accurafe than the ¢ representation, with relative errors of ~ 2 x 107%%
in the inner portions and of ~ 0.8% in the outermost zones. When the resolution was
increased in the centre (Ary ~ 0.01A7yniform), the potential was accurate to ~ 0.1%
and the gradient to ~ 3 x 107°%. It was noticed that the accuracy of the potential was
not strongly sensitive to a particular choice of the computational grid. When the same
test was run with a uniform radial grid, the potential was accurate to ~ 0.4 — 0.3%
throughout the grid, while the accuracy of the gradient deteriorated to ~ 0.3% in the
centre. For similar tests, Black and Bodenheimer [3] calculated ® accurate to 1072%
and the gradients accurate to 1073% throughout most of the grid, for a sphefe with
mean density p = (1/61)po, while Boss [13], using p = (1/56)po, calculated the potential
accurate to 5 x 107°% in the inner regions and 1% near the boundary and the gradient
accurate to 2 x 1073% in the centre and 1% towards the boundary. The important
conclusion from this test is that for typical stretch parameters encountered at the end

of the calculations (£ ~ 1.2 —1.5), the Poisson solver is seen to be sensitive with respect
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to the large radial gradients expected to occur in the inner regions of collapsing clouds.

A further analytical test was considered in order to estimate the accuracy of the
potential coefficients ®;,,(r) with [ # 0 and m # 0. For this case, we took a uniform-
density oblate spheroid, symmetric with respect to the z-axis and embedded in the
spherical grid volume. In spherical coordinates, the surface of this oblate spheroid
obeys the equation

11 s . (1 1
ﬁ:}z—ngcos ¢ sin 0(32__13_(2)

) for b < Ry,
where we have chosen the semi-major axes of the spheroid to coincide with the radius of

the spherical grid. The components of the gravitational attraction at any point inside

the spheroid are given by [109]

7 i i
M = 27Gpor {’7 + (B — v)sin” # cos® d)l ,
ar |
@%’F}@) = ”GPOT‘E(,H — v)sin26 cos® @, (5.68)
?_(I.,(_(;’z?iﬂ = *TFGporg(ﬁ _ ‘)‘)Sin?@sin? 97

where v and /3 are expressed in terms of the eccentricity e = (1 — 2/ R2)Y/2 by means
v P 3 0 y

of the following relations

vy o= —-Tsin_ e — 5
€ i
2 21— )12
Z L1
= 5 - 5 Sin €.
go=

In order to make direct comparison with the results obtained by Boss [13], we have
taken the density of the homogeneous spheroid to be ten times that of the background
spherical medium, and the axis ratio b/ Ry to be 1/5. The 3-D Poisson solver gave
radial gradients accurate to ~ 3% and ¢- and #-gradients accurate to ~ 6 and ~ 5%,

respectively. For the same orientation of the spheroid, Boss [13] obtained all gradients
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accurate to 4% inside the spheroid. This test shows the difficulty which the present
Poisson solver has in recognizing a discontinuous density distribution. However, its
interest may be regarded as purely academic since we do not expect to find this type
of distribution during the early stages of protostellar collapse. Also, the presence of a
discontinuous jump between two adjacent grid-points penalizes the present method. As
argued by Boss [13], the difficulty results from the inability of the quadrature formulae
(used to solve the ¢-integrals in the expression for the density coefficients) to detect
exactly where the jump in density has occurred.

In summary, from the high accuracy of the spherically symmetric tests, we may
assert in a first approximation that the tridiagonal solution method is not providing
the main source of error in the calculating the gravitational potential, even when strong
radial variations of the density are involved. On the contrary, the accuracy of the Pois-
son solver drops when discontinuities in § and ¢ are present in the computational grid.
This means that the major sources of error are implicit in the quadrature formulae
used to determine the coefficients p;n(7), and in the finite spherical harmonic expan-
sion. A< rreviously noted, situations in which sudden discontinuities occur between
adjacent mesh-points, are not suitable for testing the accuracy of the solver for early
protostellar collapse simulations. A better estimate should be obtained by considering
density distributions that vary rather continuously in 6 and ¢. Although, in these cases
analytical solutions for the potential cannot be obtained (at least not consistently with
our boundary conditions), we may try to test the effects of the errors for more realistic
density distributions by simply reassembling the original density p from the numerically
obtained coeflicients, via equation (5.1). This possibility was suggested by Boss [13] on

the grounds that errors in the reassembled density are likely to provide an upper limit
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to the errors of the potential gradients, at least in those zones of the grid where the
density is smallest.

For the spherically symmetric tests, the reassembled density g was calculated with
a relative error of ~ 10712% throughout the grid. In the case of the oblate spheroid, §
was accurate to ~ 5 x 1072 — 3 x 107*% inside the spheroid and to 80 — 112% outside.
For the same test, Boss [13] obtained j accurate to ~ 2 x 107°% inside and 100%
outside, with the representation of the gradients being more accurate (to 10%) for
exterior points. Although, we have not estimated the accuracy of the gradients outside
the spheroid, from the good agreement with the estimates made by Boss [13], we may
expect the exterior gradients to he accurate at least to ~ 10%. |

We have also tested the accuracy of the reassembled density for a distribution of

the form

r

nky

5 .
p(r,0) = po (1 - > e with a = 1—1%00— and n = 1.0101..., (5.69)

which defines a centrally condensed configuration falling off in #, with the central density
being ~ 101° times the boundary density (for any #) and with the equatorial density
being 10 times the density at the pole (for any 7). Such a density distribution should
give a better idea of the accuracy of the quadrature formulae and of the finite spherical
harmonic expansion, in protostellar collapse calculations. For this case, § was accurate
to ~ 6% (relative error) near the axis and ~ 2% towards the equatorial plane. The
6% relative error in the zones of lower density corresponds to an absolute error of
~ 0.8% (compared with the maximum density in the innermost equatorial cell). When
terms up to and including [ = 16 were retained in the spherical harmonic expansions,
the accuracy did not improve appreciably. Since, the Poisson solver tends to be more

accurate for the higher density regions, the absolute error of the reassembled density
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should provide the best estimate of the error to be expected for the potential gradients.
We may then conclude that the present Poisson solver is able to calculate potential
gradients accurate to at least 1%, for the density gradients expected during the collapse

of protostellar configurations.
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Chapter 6

Hydrodynamics

In this chapter we shall introduce and describe the basic algorithm which has been
implemented for the solution of the set of hydrodynamic equations. Roughly speaking,
the numerical solution method is hased on a finite-difference technique, which consists
of discretizing the continuity and the momentum transfer equations on the same com-
putational grid as used for the solution of the Poisson equation. The discretization
is carried out by simply replacing the partial derivative terms of the exact differential
equations by appropriate difference formulae. The basic form of these replacements

and also the associated truncation errors, are described in Appendix C.
6.1 General Method

Each of our fundamental equations [See Chapter 3] is composed of three main parts,
namely: (a) a time derivative part, (b) a transport part, and (c) a source or acceleration
part. Thus, for a generalized density X, where X may be p, pv,, pvg, or pA, we can
symbollically split the time derivative of each equation into the sum of two independent

terms

ox <(94Y> 4 <(94Y) (( 1)
Pt . 0.
ot Ot ) TRANSPORT ot ) sovrcE
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Setting (0X/0t)source = 0, we recover the correct symbolic representation of the
continuity equation. It can also be seen that the form of the angular momentum
transfer equation (3.18), used for the axisymmetric calculations, is similar to that of
the continuity equation.

The source part of eq.(6.1) is represented by the acceleration gradients plus some
additional undifferentiated terms (appearing in the r- and #-momentum equations),
which contain combinations of the fluid velocity components. Once the gravitational
potential ® and the gas pressure p have been determined at each point of the computa-
tional domain, the contribution of the acceleration gradients is numerically evaluated
by using the finite-difference replacements (C.14), (C.16), and (C.17) [See Appendix
C, Section C.2], for the r-, #-, and ¢-gradients, respectively. The advantage of using
three-point differences, such as (C.14) and (C.16), is that they formally approximate
the 7- and #-gradients to second-order accuracy even for a variable non-uniform grid.
Moreover, they automatically reduce to central differences of the form of (C.17) for a
uniform grid spacing. This could be the situation encountered for the #-grid, which
starts with » non-uniform structure in the regions near to the rotational axis and then,
progressively, becomes fairly uniform towards the equatorial plane. The contribution of
the undifferentiated terms will be free of disc:retization errors, and they are computed
simply by evaluating their exact expressions at each grid-point.

The numerical treatment of the transport part needs some more comments. In the
general 3-dimensional case, the transport part will be composed of three terms dealing
with advection in the r-, §-, and ¢- directions, plus a fourth term accounting for the

compressional effects of the radially moving grid. In terms of the generalized density
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X, for any of the 3-dimensional equations, we shall have

X 18, 5. 1 a . 1 9,
= = —(r’XU) - —(sinfXvg) — —(Xvg)—
( at >TRANSPORT r? (97‘(7' ¢ ) 7sinf 89(Sm 19) rsin 6 (9([5( Udb)
10
X5 o(r'ug), (6.2)

where the first three terms on the right-hand side are set in difference form by means of
the replacements (C.20), (C.21), and (C.22), respectively. As discussed in Appendix C,
the basic form (C.20) becomes only a first-order accurate replacement for the first term
on the right-hand side of equation (6.2), if the radial grid becomes strongly non-uniform,
while (C.21) approximates the #-advective term nearly to second-order accuracy due
to the fairly uniform structure of the #-grid. Only (C.22) will be exactly accurate to
second-order since only the ¢-grid is exactly uniform. However, the direct application
of the approximations (C.20), (C.21), and (C.22) involves a proper centering of the
fluxes at the cell interfaces. In other words, to correctly simulate the transport of the
fluid through the computational mesh, it is necessary to make an adequate evaluation
of the terms (rz,‘(lf)iﬂ/mk, (sinfXvg); jr1/2.k, and (Xvg)isnt1/2 at the numerically
discomuinuvus advecting fluid interfaces. In the calculations, these terms are written in

the more convenient form

(rPXU)ig1/250 = o2 ( X )i 2, ik Uiz /2,00
(sin@Xvg); jr1/ae = sinbiuy/o(X ) jx1/2.86, 4, /0, (6.3)
(Xvg)ijhzre = (X)ijrt1/2%0 00120

where the interface positions r;41/5 and ;1 ,, are defined by relations (4.5). The veloc-

ity components U;1q/3 jk, Vo and vy, are the so-called advective velocities.

IRESVLRE Jokt1/2

Physically, they represent the velocities at which the quantity X per unit volume, is
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being fluxed across the cell interfaces with respect to the moving grid, in the r-, 4-, and
¢-directions, respectively. These velocities are computed as the boundary cell averages

of the relative fluid velocity components

1
Uitjzge = 5 (Uiznje + Uiji)
1 >
V0 it1720 = 5(1’05.111.1.: + U’?ijr.;)» (6.4)
1
Veiinti/2 5(1’@‘7‘./&1 + U¢’ijk)’

with Uijx = v, — vg, denoting the radial fluid velocity relative to the grid-mesh.

However, we must be careful in calculating the quantities (X). In principle, it
would be desirable to centre the (X') at the cell boundaries, as we have done for the
advective velocities in (6.4). However, experience indicates that the use of the interface
cell averages of X in the replacements (C.20), (C.21), and (C.22) could lead to a set of
finite-difference equations exhibiting very poor stability properties. Furthermore, with
such a straightforward scheme, it is quite possible to generate unphysical results in the
course of the calculation such as, for example, negative cell mass-densities.

In order to avoid numerical trouble and hence, obtain reasonable physical solutions,
it is mandatory to choose an advection method lea@ding to a stable set of finite-difference
equations. Following this ideal, we have adopted a variant of the Fluid-in-Cell technique
originally proposed by Gentry, Martin, and Daly [42]. Their method basically works
by using a two-step solution procedure to solve equation (6.1). The first step consists

of solving finite-difference approximations to the “source part equations”

oX <6X>
ot 0t ) sovrce

In this way, the acceleration effects are evaluated separately and intermediate fluid

velocities are obtained extrapolating forward in time by means of an explicit integration
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scheme such as the one given by the replacement (C.24) [See Appendix C, Section C.4].
Setting X = pv, and defining the time increment by At = ¢"*! — " the v component
of the intermediate fluid velocity @ at the new time level (n + 1) is then computed in

terms of quantities at the old time level (n) according to the finite-difference equation

{’(n—i-l) —

Vijk Vijhk

(n) At {Acceleration Undifferentiated}(")' (6.5)
ijk

pf;l) gradients terms

In writing equation (6.5), we have taken X("+1) = p(m)gl" 1),

In the second step, the hydrodynamical advection is performed by solving finite-

difference approximations to the "transport part equations”

X (3}{
ot

W>TRANSPORT '

Then, setting X = p, the transport of mass is calculated by assuming that the mass
flow crossing the cell interfaces carries advective velocities corresponding to the up-
dated intermediate values as determined from equation (6.5). Similarly, the flow of the
momentum components is computed by assuming that the mass flowing across the cell
boundaries carries momentum corresponding to the updated intermediate velocities,
that is, instead of using (X) = (pv,) in the relations (6.3), we set (X) = (p1,). The
advective intermediate velocities are, in both cases, obtained using average relations
similar to (6.4). To calculate the (X') at the cell borders, a flow differencing technique,
commonly known as the donor cell method, is applied. With this method, the cell
boundary densities (p) are determined by assuming that the mass which flows from
cell to cell is directly proportional to the density p of the cell from which the fluid is
coming. The transport of the momentum components is computed by assuming that
the mass which crosses the cell borders carries the velocity of the adjoining donor cells.

This method has been extensively applied by many authors [3,13,562,111] to a wide
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number of physical situations involving the solution of the Euler equations of hydro-
dynamics for inviscid compressible flows. It has been found to be computationally
stable and easy to implement. In complicated problems where, in practice, there are no
available analytical solutions, a stable finite-difference scheme is of primary importance
because only such schemes could guarantee that the numerically obtained solutions
converge to the true ones, as the time and space intervals are reduced. On the other
hand, the possibility that a cell could develop a negative density (which may occur as
a result of improper centering of the (XX') at the cell borders) is effectively minimized
with the donor cell method in zones of severe mass depletion, and even eliminated by
choosing a small enough A¢. A further important advantage of the donor-cell advection
is that it is conservative and, hence, is especially convenient in cases where the exact
differential equations are discretized in conservation form. That is, when the numerical
integration is extended over the whole computational grid, the donor cell treatment
of the advecting fluid interfaces will ensure strict global conservation of the advected
quantities. In this way, the globally conserved mass and momentum components will
be free of diccretization errors. This feature is always desirable because it enhances the
accuracy of the obtained solutions. However, the donor cell method is only accurate to
first-order and introduces a large numerical diffusion of the hydrodynamical variables

within the grid.
6.2 One-Step Solution Procedure

By a variant of the original Fluid-in-Cell method, we mean that the hydrodynamics
is solved by implementing a single step procedure rather than the two-step solution

method described above.
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Although, as argued by Norman and Winkler [89], a multi-step solution procedure
generally turns out to be more accurate than a straightforward one-step solution, this
will certainly depend on the formal accuracy of the advection method. We have made
several tests with the 1-dimensional code version in order to clarify this point. We
concluded that if the donor cell differencing technique is implemented, only negligible
additional accuracy could be gained by using two-step hydrodynamics. This is probably
due to the formal first-order accuracy of the donor cell method [See Section 6.6]. In view
of this it will be sufficient, for our immediate purposes, to calculate the hydrodynamics
with a simple one-step solution procedure.

Taking our model equation (6.1) and approximating the time-derivative, on its
left-hand side, with the forward time differencing (C.24), we enforce an explicit time
integration for the equations of hydrodynamics, which is only first-order accurate. In
this manner, for a typical maingrid-cell, the generalized variable X;;; is advanced to
the new time (¢ + At) by using only information at the old time ¢, which enters as input

data in the difference equation

Transport  source 1”

part part Jij,c '

Xit= X - At{ (6.6)

where the superscripts are again used to denote the time level. From the truncation
error carried by the time finite-difference (C.24), the time extrapolation implied by
equation (6.6) will contribute to the total discretization error of Xi"jzl, with an error
of the order of O {(At)?} at each time step.

The basic approximation made by using equation (6.6), is that hoth the transport
and the source parts are evaluated simultaneously, without the extra calculation of

intermediate fluid velocities.
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6.3 Compact Radial Quotients

Improvements to enhance the accuracy of the numerical solutions have been introduced
by writing the differential equations in compact form. Following Tscharnuter and
Winkler [115], the radial part of the divergences [V - (XU)|, and [V - v,], may be

written using the differential quotients

;15(—;?7—' <7'2XU) _ 38(7‘3) (erU) , (6.7)
5} 0 2
;155; (rzvg> . 35(7757 (r~vg) : (6.8)

which should lead to more accurate difference representations for the r-advective and
grid compression terms [See Appendix C, Section C.3]. This can easily be observed hy
comparing the truncation errors carried by the form (C.19) with those of its counterpart

(C.20). The difference between these two formulae lies in the denominator

352 (r2X U) 2
(r? ijk riAr;
Vat }J’” - HE . (6.9)

{,}—2387 (7'2XU)}ijk 3 ("?H/z - 7'?—1/2)

The radial factor of the volume of a particular cell, is exactly computed by using the

replacement (C.20), while it is underestimated if we use the difference approximation
(C.19). Furthermore, the difference approximation (C.19) deteriorates in the limit
r — 0, due to the presence of the factor r? in the denominator.

The use of the compact radial quotients will introduce slight modifications to the
geometrical grid properties, defined in Chapter 4, Section 4.2. That is, the areas of the
contact surfaces (4.3) between a particular cell (ijk) and the adjoining cells in the r-,

#-, and ¢-directions, become
Siril/z = 7'?:&1/2 sin0;A0;1/9APr 412,
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6 2 . n

Siittfak = 5 ('ri2+1/2 - 7‘1'—1/2) Sinb;r1/20¢k11)2, (6.10)
g _ Ly 2

Skt = 5 (’"i+1/z - V’i_l/z) Abjia2,

and the volume (4.4) of a cell is now given by

Vije =

Co| =t

(Py1/0 = 7a)0) SIN 0005415 A gy ). (6.11)

Similar modifications are also made in Tables 5 and 6, for the 1- and 2-dimensional

meshes.
6.4 Donor Cell Assignments

The finite-difference replacements used in the calculations to approximate the right-

hand side of equation (6.2), are

{ ar2xXU) s i ialienyo e = riy o () imay2 ianllicyz,] (6.12)
3 ~ 1 3 ' T
a(r?) Jijlc 3 (r?ﬂ/z - ’f—1/2>
{ 1 O(sin 9}(1’9)1
rsin @ a6 Jijk -
it 04172 (X )i j1/2090; 541 ja0 = SI0050072(X )0 5172000, 2] :
2 : , (6.13)
(i) sin0; 060,11/,
{ 1 (’9(}(1/,;5)} - [('X>ij,k+1/217é1lrll<+1/2 - <‘X—>ij,k—1/2v@;,\l;-‘l/z] (6.14)
rsinf  J¢ ik - (r) sintjAdr 1/, ’ ‘
where
2 2
2 (7 + Tiv1/2Tio1/2 T T
(ri) = §( =2 i 1/2> ; (6.15)

(7'{+1/2 + ""i-l/z)
consistently with definitions (6.10) and (6.11).

The finite-difference replacements (6.12)-(6.14) follow from (C.20), (C.21), and
(C.22) by substituting the relations (6.3). All quantities are evaluated at the time

level (n), according to equation (6.6). The superscript is omitted here for simplicity.
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In the donor cell scheme, the replacement for the (X) is chosen by taking into
account the sign of the fluid velocity at the cell interfaces. This means that the flow
entering a cell is proportional to the density of the donor cell and therefore, the pos-
sibility of getting negative cell densities drops when At — 0. Moreover, this method
guarantees the fluid transportive property, since any disturbances in the flow are only
advected in the direction of the fluid velocity [42].

As commented in Section 6.1, strict global conservation of the advected quantities
is also ensured by the donor cell transport. If we multiply for each cell the advective
terms (6.12), (6.13), and (6.14) by the volume of the cell (6.11), and then sum over
the whole grid, the fluxes at the cell interfaces will cancel out in pairs, so that only
the contributions across the exterior houndaries will remain. In this way, the time rate
of change of the numerically conserved quantities (mass and angular momentum) will
only depend on the flux at these boundaries.

In Figures 6.1, 6.2, and 6.3, we show control volumes for the donor cell transport
of the hydrodynamical variables in the r-, -, and ¢-directions respectively.

(a) Radial Advection.

Xijk i Uit1/a,50 20

<‘Y)i+1/2,jk - {

Kivrje Uiy 6 <0
(6.16)

Xicrjk H Uiy 2>0

(X)ic1y2,0 = | Kok i Uigjoze <0

where the radial relative velocity U is taken to be positive towards the cloud boundary

and negative towards the centre.
(b) 8-Advection.

Xijk if U0, iv1/2.0 >0

<0

X)), = - )
< >1,J+1/2.k Xiie1n 1f“0,:.,‘+1/z.:.<
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Xijk
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Xi-1,jk

U T p+)

Figure 6.1: Control volume for radial advection.

V8, j41/2.k

Figure 6.2: Control volume for §-advection.
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Figure 6.3: Control volume for ¢-advection.

(6.17)

JYi,j-l,k it Vg, 2 0

1.3—1/2.k
Xijk if V8, i 12k <0

(X)ijmr/2p = {
where the §-velocity is taken positive in the direction towards the equatorial plane and

negative towards the pole.

(¢c) ¢-Advection.

ijk+1/2 >0

‘Yij,lﬂ-l if Uoijntrn < 0

A’Yijk lf Vg

<X>ij,k+1/z = {

(6.18)

*Xij.k—l ifv¢ij,k-1/z 20

<X>ij,k—1/2 = {

X{jk if ‘U¢ij.k_1/2 <0
The ¢-velocity component is taken positive in the counterclockwise direction and neg-

ative otherwise.

6.5 Grid Contraction Effects

The contribution to the net change of the generalized density X due to changes in the

cell volumes, is given by the last term on the right-hand side of equation (6.2). So, if
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we neglect the transport effects, in the complete absence of source forces, we may write

OXN L O(r?yy)
(Fr) =355 04

where we have used the compact form (6.8)

As previously noted in Chapter 3, Section 3.3, this term has been added in the
equations of motion in such a way as to leave unaltered the hydrodynamical solutions
expected in the inertial frame of the Eulerian observer. The same purpose can he
achieved numerically if the grid motion does not affect the global conservation of the
advected quantities or enhance the local spurious diffusion of the donor cell scheme.
A suitable finite-difference form of equation (6.19) is then obtained by demanding
conservation of mass and momentum within the mesh (locally). Defining X as the
density X multiplied by the volume of the cell, where X may be M, Mv,, Muvg, or
M A, using the volume (6.11), and imposing that X}}jl = };‘;}k for a typical cell, we

find that

7
3 .3
n (”f+1/2 71‘4/2)

ijk 3 3 N 17
T — 7
i+1/2 1—1/2

~n+l v
XiH =X

(6.20)

where the superscripts refer to the time level. Furthermore, if we write equation (6.19)
in the explicitly time integrated form of equation (6.6), and then combine with equation

(6.20) to eliminate XZ.ZI, we obtain

n 3 .3 (71+1)_ 3 3 (n)
Sy --{< Ll <> ) } oo

. 3 3

ik (”i+1/z T2
The finite-difference replacement (6.21) is consistent with the identity (3.8). In other
words, if we calculate the time derivative of the volume (6.11), we find that the size of

a typical zone will change at the rate

de ik n R o n .
(_dtL> =sin0;80;11/28¢k11/2 [T'F+1/2vgi+1/e - T?—l/zl’g;_l/z} : (6.22)

- 99



If we integrate the above equation (by using the forward time differencing (C.24)), we
then recover the identity (3.8) in difference form

[Ti2+1/2v9i+1/2 - riz_l/zvgl._l/zr _ {(ris-}—l/z - 7'1'3~1/2)(n+1) - (7}‘3+1/2 - "?—1/z>(n)}

)(71+1)

1 3 n-+1 '
3 ("i+1/2 - '"i—l/Z) At (”?ﬂ/z - ”?4/2
(6.23)

The finite-difference replacement (6.21) will ensure the global conservation of the
advected quantities at the new time level (n + 1), provided that the radial factors in

the replacements (6.12)-(6.14) are evaluated at the new level (n + 1).
6.6 Numerical Stability and Accuracy

A finite-difference scheme is considered to be particularly convenient or not depending
on its stability properties. Whenever a finite-difference set of equations gives rise to
rapidly growing and oscillating solutions, which in no way resemble those expected from
the exact differential equations, we say that the numerical scheme is computationally
unstable. This deficiency is generally detected when a “saw-tooth” behaviour occurs
in the distribution of the physical variables [60,80,90]. A similar effect is also observed
when stroﬁé shock fronts are generated within the field of solution. These structures will
appear as strong discontinuities in the hydrodynamical approximation. Due to the large
gradients associated with them, accurate numerical solutions will generally be extremely
difficult to obtain. However, in this situation the computational instability which arises
may be minimized or even eliminated by introducing an artificial diffusion. In practice,
this is done with an artificial viscosity technique, which consists in broadening the
forming shock structure over a few grid-cells by adding a viscous pressure force in the
equations of motion before differencing [See Section 6.10]. The Fluid-in-Cell method

[42], originally included an artificial viscosity term to improve the stability of the donor-
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cell advection in regions of the mesh where the fluid velocity is much smaller than the
local sound speed.

When we deal with linear difference equations with constant coefficients, it is pos-
sible to make a full stability analysis and hence any computational difficulty can be
avoided, if we use the Fourier stability method introduced by von Neuman [52,60,80,98].
However, for non-linear coupled systems of partial differential equations with non-
constant coefficients, such as those which we are trying to solve here, a global linearized
Fourier analysis is not sufficient to predict the required stability conditions. Hirt [52]
proposed a heuristic-empirical technique based on study of the truncation errors, for
detecting the origin of non-linear instabilities. He treated the Euler equations of mo-
tion for inviscid fluids with a number of advection methods, all of which appeared to
be stable according to a linearized Fourier analysis, but all of them turned out to be
actually unstable because of non-linear effects, with the single exception of the donor
cell method. In spite of the non-linear nature of our relevant differential equations, we
may expect to predict in a first approximation, with a local linearized Fourier analysis,
the necece~rv conditions for the stability of the resulting difference equations. By a
local Fourier analysis, we mean that the linearization is to he applied for an individual
computational cell, where we can neglect the non-linearity of the relevant equations.
As a model equation, we take the equation of continuity (3.20). Then, for a typical
main grid-cell, this equation may be written in finite-difference form by using the re-
placements (6.12)-(6.14) in equation (6.6) with X;;x = p;jz. For reasons of simplicity,
we shall consider the grid fixed and the radial term (6.12) in its less compact form

(C.19). The Fourier method will then consist in assuming for pj%, an exponentially
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growing solution of the form

p:;k — Eneikleri+1/2 eik21A0j+l/2 ezk3kA¢k+1/2, (624)

where E is the amplification factor of the propagating wave and l:11, 1:72, and 1213 are
the spatial frequencies or wave numbers associated with the r-, #-, and #-spacings,
respectively. In expression (6.24), we have used 7 to differentiate the imaginary number
from the radial index 7.

If we define the Courant numnbers in spherical coordinates as

r - Atv,‘m‘.
A7‘i+1/z'

A = Al (6.25)
SLESVER

T — Atvtbijk

r; sin QjA¢k+1/2 ’

the equation of continuity (3.20) in difference form will read

Pl r?
+1 i+1/2 1~1/2 ,
e (“—*_rg (P)ay2, 0 — 7 <p>?—1/2,jk) -
1 1

sinf;i1/2 sinf;_1/5
—A (Tilfé;.—</’>i,j+1/z,k T eng; (P)ij—1yam | —
-7 <<p>Zj,k+1/2 - <p>?j,k—1/2) . (6.26)

In writing equation (6.26), we have approximated the cell-interface velocities as being
constant and equal to.the velocities at the cell centre. Now using the donor cell as-
signments (6.16)-(6.18) for the mass-density p and substituting the Fourier component
(6.24) into equation (6.26), we solve for the amplification factor. If £ has a magnitude
greater than unity for any value of ky, ko, and ks, the finite-difference equation (6.26)

will be unstable because the Fourier component (6.24) will grow exponentially with
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time through the term é™. Therefore, for stability we must always have [5] < 1. After

some tedious algebra, we found that this condition is satisfied only if

Ar;
T < ¢, or At < ,«'ri—zﬂ—/—z,
7 1 'vrijl.‘.!
7‘,1A(9,'
Al < Ch, or Atg, ., SC'a—J—H/?— (6.27)
7 17k 7 11’9,‘]' . |
r;sind; A
T < 1 or Aty < ! ¢k+1/27
e ‘vff’ijh l

where (*,; and C'y; are numbers of the order of unity and are defined as combinations
of the interface and cell centre coordinates. From an inspection of equation (6.26), we
may note that conditions (6.27) are actually conditions for non-negative cell-densities.
In order that our donor cell scheme will be able to propagate a disturbance moving
as fast as the sound speed relative to the fluid, conditions (6.27) need to be slightly
modified. That is, we must define new Courant numbers in terms of the local sound

1
speed C'y, .,

T = Atc,f'sijk
L\T‘i+1/2 ,
IX/ _ At("ss,’jk (6 ‘)8)
riliii -
TI AtCSSiJL:

risin€; Adpy1ys
Then, setting I' = T'+ T, A = A+ A’, and T — T 4 Y’ in equation (6.26), with T, A,

and T as defined by (6.25), we obtain the following stability conditions

AT'Z'
At,, < __i’_l/vz_7
]‘UT‘,'J';‘.| + Ces,'j,_.
T‘Z'AQ-
At it1/2 (6.29)

ik S ' ’
. Ivgz]kl + (‘ssijl;,
ri sin 9jA¢k+1/2

Aty
d’uk !Uéijkl + Cv-?si]l-‘

)
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associated with the r-, #-, and ¢-flows, respectively. Since the geometrical factors
C';; and Cy; are generally greater than unity, they can be removed from the stabil-
ity conditions for the r- and 6-flows. Inequalities (6.29) are usually referred to as
the Courant-Friedrichs-Lewy (CFL) conditions for explicit hydrodynamics. They are
used in the calculations to determine the optimum stable At required to advance the
hydrodynamical system from a particular old time level (n) to a new level (n + 1).

The time steps At,, Atg, and Aty are calculated independently for each computa-
tional cell, so that the CFL-time is defined by the minimum time step over the whole
grid

Aterr = min{ Aty , Aty Aty | (6.30)

ik
The CFL-time is then established by those zones with very small spacings and large
fluid velocities. Special restrictions may come from the inner shells where the cell
volumes are the smallest [See Figure 4.1(a)]. Formally, for dynamic flows the accuracy
of the numerical solutions should incr‘ease when smaller and smaller At’s are chosen.
For this reason, the effective time step At is defined as an arbitrary fraction (f < 9) of
the optunwn Atorpr.

As we have commented earlier, the donor cell transport leads only to a first-order
accurate numerical scheme. In fact, it introduces first-order truncation errors, which
contribute to an artificial diffusion of mass and momentum within the computational
grid. This implies that mass and momentum cannot be conserved locally with the
donor cell method. On the other hand, these diffusion errors can become dominant in
regions where there are large gradients, as would be the case for a shock.

The exact form of the truncation errors is easily obtained by expanding each term

of our finite-difference equations in Taylor series. For reasons of simplicity, we shall
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suppose that the radial grid is uniform and fixed, and that the r-advective term is
written in its less compact form as in (C.19). Then using the donor cell replacements
(6.16)-(6.18) and neglecting the acceleration gradients, the generalized finite-difference

equation (6.6) will introduce the following dominant truncation errors

(92X

— At — . . ..
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1| 1 0%40X , 1] 1 9%y )
3 {rsin@ 9¢? %} ¢k~ﬂ{xxrsin9 a3 | .. AdyE
ijk ik
TO{(Adr)Y — . (6.31)

where we have retained effective diffusion coefficients through terms of order At, Ar?,
A@?, and A@?. The first error term in (6.31) is not a dominant one because the relative
change per step of the cell densities is generally small. On the other hand, the truncation
errors related to the finite spatial width of the cells, such as the leading terms in the
second, fifth, and ninth rows of (6.31), are more likely to be dominant since limitations
of machine storage and running time constrain us to work with a rather coarse mesh
for two- and three-dimensions.

According to Hirt [52], those truncation errors involving a second space derivative
of the density X in (6.31) would contribute more to the local diffusion of mass and
momentum. However, in regions where strong shocks develop, the spurious diffusion
of the hydrodynamical variables could be very well governed by those terms containing
first space derivatives of the velocity and density.

For a radially moving, non-uniform grid, the form of the leading diffusion errors in
the second row of (6.31) is slightly modified and extra terms appear. From the donor

cell prescriptions (6.16), if U;11/3 jx > 0 and Ui_1/2.& = 0, we have

ik

dr 1 'I"Vi—l—lf
. [Uazx' Ar; 18X a(r2U) Ar;
L arz_ijk(l+ui+1) rZ2 9r  Or o (L vig1)
1. 18%20
+Z JX;Z*—%-—)] Arz(l—uiﬂ)— ............ y (6 32)
L isk
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where v;41 = Ar;11/Ar;. On the other hand, if Uip1/2,50 < 0 and Uil < 0, we

then obtain

0X1 [ —1)
= U —_— —
{ 37‘ijll/zf+1+lj

_[U(??X' viaAri [1 axa(rm)] vi o Ar;
ijk (

3r2_ijk (1 + vigr1) r2 dr  or 14 vigq)
11 8%(r20)
— :i X r—Z-‘é?’z_ i AT‘,’(V{.{.] - ].) o (633)

In (6.32) and (6.33), we have neglected all terms beyond those of first order.

The errors in the first and third rows, have been introduced by the non-uniform
nature of the grid. That is, if at some step, we freeze out the computational grid
by setting vy, = 0, these terms will survive and only the errors carried by the grid-
contraction difference will disappear. From a direct comparison of (6.32) and (6.33)
with the leading radial terms in (6.31), we may note that a non-uniform grid provides
a lower accuracy due to the presence of a zero-order truncation error, which does not
arise when differencing on a uniform grid. However, the influence of this error can
be circumvented if the computational grid moves approximately with the radial flow.
Then, for Uri ~ Vg and vy = O{1}, the effective contribution of this error is largely
compensated by the fact that the magnitudes of the leading truncation errors, in the
second and third rows of (6.32) and (6.33), will be always much smaller than those of
(6.31) for a fixed uniform grid, since generally U] < [vr; 0 |-

On the other hand, at some advanced time in the collapse, we will be interested
in having much greater spatial resolution in the inner regions that in the outermost
regions. At that time, if the grid has hecome stretched enough, we may freeze it out

and carry on the calculation with the grid fixed. In this case, since vy, will increase
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towards the external boundary, the accuracy is formally poor in the outer regions where
the Ar; are larger. However, in the innermost regions where the radial zones will be
even smaller than the 6 and ¢ spacings, the v;,; are nearly unity. Hence, the zero-
order term in (6.32) and (6.33) will usually be small. In any case, the leading diffusion
errors in the second row become much smaller than they would be for a uniform coarse
grid, since typically the stretched Ar; correspond to very small fractions of the initially

uniform Ar;.
6.7 Finite-Difference Hydrodynamic Equations

In the previous sections, we have presented the basic numerical method and have in-
troduced the various technical tools necessary for the construction of the 1-, 2-, and 3-
dimensional versions of the code. Here, we shall display the equations in finite-difference
form as they are actuallj used in the calculations. Since the 1- and 2-dimensional ver-
sions of the code are restricted cases of the full 3-dimensional code, in this section we
shall only write the finite-difference equations for 3-space dimensions.

We first consider the continuity equation and then the r- and #-components of the
momentum transfer equation, for of all those computational cells which do not coincide
with any of the boundaries of the system. The formal treatment of the hydrodynamical
houndaries is developed in Section 6.9

(A) CONTINUITY EQUATION.

The exact differential equation (3.21) is written in difference form by using equation
(6.6) with the replacements (6.12)-(6.14), for the advective terms, and (6.21), for the
grid contraction term. Then, setting X = p, we obtain

[rr12(P)ivnyznlivryzgn = 2y jolP)icry2 e liz1ya,e)

P?ﬁ;l = pise — At 1.3 3
(M — 7“i—1/2)
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{Sin9j+1/2<,0>i‘j+1/2,kl’9,jj+1/2,k — sin 0j—1/2<p>7’,j—1/2,“"91’,]‘%1/2.1:]
<7‘i> Sin HJA0J+1/2

+

[<p>ij,k+l/2v<ﬁi,’.l.-.+1/2 - <p>ij.k—1/2v¢ij.k-1/z] " _
{ri) sinf;Adyi1/s

n+1 _ (T?+1/2 _ r?—l/z)n]

n+1

[(7'?+1/2 - 7'?—1/2)

- P (rii1y2 — r1/2)
where the cell interface densities (p) are given by the donor-cell prescriptions (6.16)-
(6.18). Equation (6.34) as it stands, is then used to compute the mass-density at the
new step n+1, for all main grid-cells with indices ¢ = 1,2, ..., N, —=1;j = 1,2,..., Ng— 1;
and k= 1,2,..., Ny — 1.

(B) RADIAL MOMENTUM TRANSFER EQUATION.

In a similar manner, equation (3.22) is expressed in difference form by again using
the same replacements as above, for the transport part in equation (6.6), and the three-

point approximation (C.14), for the acceleration gradients. Then, setting X = pv,, we

have for a typical cell

(pv )ikt = (pve )i~

1¢.3

At [T,2+1/2<Pvr>z‘+1/z,jk(7i+1/2,jk - 7’?_1/2<Pvr>z‘—1/2,iji—1/z,jk] N
§(r:’+1/2 - r?—1/2)

[sin 9j+1/2<pv7'>i,j+1/2,kvei.j+1/2.k — sin 91—1/2<Pl’r>iyi—1/2vkv"-’f.j—1/z.r-'}
<T’{> Sin 9jA0j+1/2

[(pvr>ij,k+1/27"¢ij,k+1/z - <pvr)ij,k—l/zvtﬁ,'j.h—l/z] " _
(r;) sin 9jA¢k+1/2

3 3 n 3 :
(oo, )" [(rayp = i)™ = (2 =707
- r '.k 7 -
ij (T?—{-I/Z — r?~1/2) +1
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1 Ar; Ariiq
—~ At i i e — B — (P — B,
{P gk 2A7‘,-+1/2 {AT‘{H( +1,jk Jk) + Ar; ( Jk l.ﬂf)J +
1 AT‘{ ATi+1
+2AT‘1‘+1/2 [Arﬂ»l (p1v+1,‘]k - pZJk) + T(pzﬂc - pz—«l,ﬂc)} -
1 B n
_ pijk;(vgﬁk + 1’357,jk)}» ) (6.35)

where the cell-boundary quantities (pv,) are treated in the same manner as the mass-
density by using prescriptions (6.16)-(6.18). Equation (6.35) then gives the r-momentum
density at the new time level n+ 1, for all of the main grid-cells with : = 1,2, .., N, — 1;
J=12,.,Ng—1;and k = 1,2,.., Ny — 1. The new radial velocities are computed,

using the updated densities, from

Pk 1
n+1 _ TR Tk _ LL.an D)
UT‘v‘jl.- - 7'1‘41:1 At n+1 { }ijk' ((3~06)
ijk itk

(C) &-MOMENTUM TRANSFER EQUATION.
Following exactly the same procedure as before but now using the replacement

(C.16) for the acceleration gradients, equation (3.23) becomes

(pve)i" = (pue )i —

1.3 3
3Py — r12)

A { (rii1y20pv8)iviyz ik Uieiyzgn = T7y 19 (pv8)io1/2, 1 Ui 1/2,5%)
+[sin 0j+1/2<[)l’g>i,j+1/2,kv9i.]»+l/2.,\, — sin 9j_1/z(Pve>i,j—1/2,k1'6,»_]-~1/z.k]

: +
(ri) sin ;205145

[(pv@>ij,k+1/21'¢fj.k+1/z - <pl’9>ij,k—1/21’<f>;‘7‘.r.~,_1/z} )
(r;)sin 9A¢k+1/2

3 3 n+1 3 n
—(pve)? (e = i)™ = (ri41/2 — r?—l/z) )
Pe )k (r3 — 3yl -
i+1/2 i-1/2
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1
__At ik — i’l .-—(I)i" (}}i'f—(:{)i 1k
{P Jk e 2A9j+1/2 [A9j+1( JtLlk Jk) + AQJ' ( gk =1,k )} +

1 1 Ab; Al
+7°i 2A9j+1/2 [A0j+1 (pz,_H—l,k lek) + Ae] (Pz-}k Pz.,]—1,k) +
1 2 0 . 171 637
+ Pijk;;('l’r,;,-kve,ﬂ — Vg, COS ;/ sin Gj)J» , (6.37)

where the #-momentum is again advected by using the donor-cell prescriptions (6.16)-
(6.18)
In analogy with equation (6.36), the #-velocity is then computed as a primary

variahle from equation (6.37) by setting

PTiR R 1
n41 _ TR Ui L.an o
voijk = —————n+1 - t-——~n+1 { }ijk N (608)
ijk Pijk

for all cells with¢=1,2,...,.N, - 1;7=1,2,....Ng—l;and k =1, 2, wy Ny — 1.
6.8 The Angular Momentum Transport

The ¢-component of the momentum transfer equation [See eqs.(3.18) and (3.24)], has
been expressed in terms of the specific angular momentum A = rsin 0¢v¢, which is
physically a more relevant quantity than the simple ¢-velocity for rotating protostar
collapse calculations.

The physical importance of this variable lies in the fact that for axisymmetric flows,
it is exactly conserved along a fluid streamline if the dissipative effects caused by viscos-
ity or magnetic fields are neglected [115]. This means that under such ideal conditions

' the specific angular momentum A is locally conserved in the axially symmetric col-
lapse of protostellar configurations. However, as discussed in Section 6.6, strict local
conservation of the angular momentum, or of any other hydrodynamical variable, can-

not be achieved numerically with the donor cell scheme. If we set X = pA, we note
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from (6.31) that the donor-cell advection introduces first-order errors, whose effect is
to strongly diffuse angular momentum hetween advected fluid elements (cells) which
should theoretically locally conserve specific angular momentum.

Numerical efforts addressed to minimizing the effects of diffusion errors on the lo-
cal conservation of angular momentum in protostellar collapse calculations, have led
to the concept of consistent advection. This notion was first introduced by Norman,
Wilson, and Barton [88], and successively applied with good results by Boss [13] and by
Norman and Wilson [87] in their calculations. Basically, by a consistent advection of
the angular momentuin, we mean that instead of fluxing the quantity (pA4) as a single
variable, we flux the product (p)(A) in such a way as to transport the angular momen-
tum consistently with the mass through the computational grid. In this manner, the
numerical diffusion of angular momentum within the grid can be effectively minimized
by advecting (A) with a more accurate method.

We shall implement here a technique intensively tested by Boss [13], which consists
of calculating the cell boundary values of the specific angular momentum A as the
square oot of the product between the specific angular momenta of the gaining and
losing cells, while (p) is determined by the density of the adjoining cell from which the
fluid is coming (donor cell). By applying this method, we partially centre A at the
cell interfaces and hence, improve the local conservation of angular momentum without
compromising the stability of the donor cell scheme.

With the above considerations in mind, we then write equation (3.24) in finite-
difference form by again using equation (6.6) (with X = pA) together with the replace-

ments (6.12)-(6.14) and (6.21), for the transport part, and (C.17) for the acceleration
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gradients. So, defining for a typical main grid-cell
Aijr = risin (]jvqﬁ,'jk , (6.39)
we have that

(pA)Z-'k_l = (pA)ZJk

J [7’112+1/2(<P><A>)i+1/2,ijz'+1/2,jk - riz-l/z(<p><A>)i—1/2,iji-1/2,jk] N

— At
i .
1 §(r?+1/2 - 7’1‘3-1/2)

(sin 1 /2({P){A))i j+1/2,k0, 410, — SID 9j~1/2(<p><A>)i»jwl/z-kv"f.j—l/z.k]+
<7'l> SIHGJA6J+1/2

[(<p><A>)z‘j,k+1/zv¢ij.k+1/z - ((p><A>)ij,k—l/zv"”i.i-’hl/Z’] 1"’ _
{r;)sin QjAékH/z J

+

3 3 41 3 3
AN K’"iﬂ/z - 7’1’—1/2)” - (T'i+1/2 = i)"Y
——(P )ijk (7,3 —p3 ")n—%l _
i+1/2 ~ Tic1ye

[Pije+1 = Pije-1] | [Pkt — P "
[ ' ikl = Pis , 6.40
{”J" 284y ’ 200i ) (6:40)

where for the radial advection, we define

+y/AijeAdixr e i A >0

Wisaso =1 i
(Abiza/a.jn 1_\/Aijk;£iil,jk it A <0

(6.41)

for A;;u A1 j& > 0, while the (p) are given hy the donor-cell prescriptions (6.16). If
A Aixr e < 0, we set (p)ir1/2 jk(A)iz1/2.6 = (PA)ix1/2jx in equation (6.40) and
perform the advection according to the usual donor-cell replacements.

Similarly, for the f-advection, we have

<A> = +\/——1_]—1\_A—7ﬁ:1_k 1fA1]L,>O
l,]:l:l/z,k‘. m lf A‘[Jk - O
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(6.42)

for AijeA; j+10 > 0. The transport of mass along the #-direction is performed according
to the replacements (6.17). If A;jid;jx1 < 0, we set as before (p); ;1172 1(A)i 2172
= (pA); j+1/2,x and use the donor cell advection.

Finally, for the ¢-advection, we define

, _ ) VA A e i A >0
(A)ijrtr/2 = _—=

—Aijrdijeer i Air <0
(6.43)
for A;;p Aijk+1 > 0, while the (p) are as defined by (6.18). If A;jr4;j 41 < 0, we again
make recourse to the donor cell transport.
Equation (6.40) is then used in the calculations to compute the specific angular

momentum at the new time level n 4+ 1 by setting

pT‘-.kA’?'.k 1

gn+1l _ ] Y

AIJI‘« - > n+;.J - At nel U000 }:Ijk b (644)
ik ijk

for all computational cells with indices : = 1,2,...,N, —1; j =1,2,...,N¢g— 1: and k =
1, 2; ...; Ng—1. It is interesting to note that although the specific angular momentum is
regarded as a primary variable, the ¢-velocity component would be equally important
from a computational point of view, since it is always needed in equations (6.34),
(6.35), (6.37), and (6.40), to perform mass and momentum transport along the ¢-
direction. The ¢-velocities are easily computed from the updated angular momentum
distribution by using relation (6.39). Similarly, the updated angular velocities w;jp
are obtained as functions of the ¢-velocities and positions in the grid by means of the
relation w = vy /rsin .

That the partially centred scheme above is effectively superior to the pure donor

cell differencing, can be observed by comparing resulting truncation errors associated

114



with the advective part of equation (6.40), for the two methods. Retaining only first-

order terms, we find from (6.31) that the donor cell formalism introduces the following

dominant errors

1
2

102%(pA) 1 1 OJ(sinfuvg) d(pA)
[IUG‘; 062 i Ad; £ 2 [r sin 6 06 a6 Lﬂc Ad; -

1 1 9% pAd) 1 1 Jug d(pA)
ot = e ——| A¢r £ = —— , Agp — ..., 6.45
i 2 {ivdrsin@ d¢? ik P 2 L‘sin@ do  do Lﬂ\, ok ( )
where for simplicity it has been assumed that v,, = 0 and that the grid is uniform.

Expanding equation (6.40) in a Taylor series, with the same simplifying considera-
tions used for deducing the donor cell errors (6.31), we find for the partially centered

prescriptions (6.41)-(6.43), the following dominant truncation errors

! {32(’”4)} At — .
ijk

21 ot

“

1 BpdA 9% 1|, 109p3d(r?v,)
+§ l:[v,.l (5;5‘7:“}*:-15;5 o AT‘,i; A;‘?E ar ijkAT‘l—'..

1 1 [0pdA %p 1 1 Op d(sinfug)
..+§{]1)e|;(5“05—a—9+f1w ijkAeji;[Arsin(?a—H 59 ijAeJ*‘“

4

rsin @ 5&6(%’» W 2| rsinf d¢ J¢

1 A dp 1 1 )
...+;[|v¢| L (ap8——+A p” Aqﬁki—{A ?ﬁ%] Agp — ...,
2 ijk ik

(6.46)
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where again only first-order terms have been retained. Developing the spatial deriva-
tives involved in the diffusion terms (6.45) and then comparing with (6.51), we find

that the dominant donor-cell errors

1 %A
3 [lvr|/?w] Arg
ijk

fu—y

p 0?4 1 p 0%A '
[[W'r aez}i.k Al 5 [l%lrsiné’ 087 | Adw

J

ro |

[N

(o040 11 I 04 0p
r 00 98] 772 |rsind ¢ ¢

] Ady; (6.47)
ijk

H-
b | =

[ﬁ@_A@(rzv,.)] il [ p  O0AOJ(sinfug)
17k

. = I 0
r2 9r or ._" 2 irsinf 06 a6 :!,‘jkA 7

il[ p_OAduvs
2 lrsinf 0¢ O¢

} Agy,

ijk

effectively disappear if angular momentum is advected with the partially centered
scheme. Highly diffusive terms containing second space derivatives of the mass-density
survive in (6.46) hecause the mass is still being fluxed according to the donor cell
method, while similar terms containing the specific angular momentum (the first row
in (6.47)) are not present‘due to the partial centring at cell borders. Therefore, the spu-

rious diffusion of the specific angular momentum is minimized and its local conservation

is improved to nearly second-order accuracy.
6.9 Hydrodynamical Boundary Conditions

The finite-difference equations (6.34), (6.35), (6.37), and (6.40) can be used for any
interior cell which is not adjacent to or coinciding with any of the boundaries of the
computational grid. For 2- or 3-dimensional calculations, our numerical domain consists
of three main critical regions where the flow is constrained, i.e. the centre (r = 0),

the rotational axis (# = 0), and the bounding spherical surface (r = Rp). Also, a
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reflective boundary condition for the #-directed flow, is applied about the equatorial
plane (¢ = 7/2) to reduce the computational cost and run time. Furthermore, in
3-space dimensions, the differencing along the azimuthal direction is carried out by
enforcing a periodic boundary condition, which is applied for those zones which are
adjacent to the cells centered at the coinciding points ¢ = 0 and ¢ = 27.

Each of these critical boundaries is handled in such a way as to numerically ensure
the global conservation of the advected quantities. In the following, we shall describe
and implement the modifications to our set of finite-difference equations.

(A) THE ROTATIONAL AXIS.

The rotational axis is numerically represented hy a conical family of cells whose geo-
metrical centres coincide with the rotation axis [See Figure 4.1(a)]. The axial boundary
conditions are then specified at each step hy setting vg = v, = 0 at the cell centres
“i0k”, so that the axial cells will always represent a dump for both the theta momentum
and the angular momentum. Hereafter, the axial variables will be denoted by X! (ie.
X will be the replacement for X;o;).

Althonch the theta and angular momenta are not axially advected, some simple
modifications are however required in equations (6.37) and (6.40) at the interfaces
between the axial (§ = 0) and the main grid-cells (j = 1). Since each j = 1 cell can

lose -momentum into the axial cells at the rate

sin 91~1/z<P1’9>i,1~1/2,kve,~.1_1/2_,,
(i) sin @1 A6y 4y /0

the donor-cell fluxing across the interfaces (¢,1 — 1/2, k) is modified by setting

0 if U0, 1 1720 >0

pitkve,, if V01 yjan < 0

<P1’0>i,1—1/2,k = {
(6.48)
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where vg, | _, ., = —;—v.gm,. Furthermore, the ¢-gradients in equation (6.37) for the j = 1
cells are evaluated using the axial values of the pressure and gravitational potential, p!
and @/, respectively.

On the other hand, the angular momentum is not fluxed into the axial cells, as
is the f-momentum, because A;or — A! = 0 along the axis and hence, from (6.42) it
follows that (A);1_1/2% = 0 at any step. Thus, the modification for the §-advective
terms in equation (6.40), when j = 1, is automatic. On the other hand, if the angular
momentum is advected with the donor cell scheme, the loss into the axial cells should
be computed as in (6.48).

Only mass and radial momentum may he interchanged between the axial and main

7
ke 7

grid-cells at j = 1, (pl, v,., and U} will now be the replacements for “p;o", “v,
and “Ujor"). This fact can also be analytically observed from the limiting forms of
equations (3.21) and (3.22) at the singularity § = 0. Integrating these equations over

¢ and taking the limit when 6§ — 0, we obtain the axial equations

dp' a(r2p'll") 1/2’T d(sin fpug) _ ,0(r?vy) ,
ot ary)y o 9(cos ) 620dq5_~3p a(r3) (6.49)
Btt) (AP L7 o)y 00
g T v o(cosd) oy 46 = =3r v 5ra)
08 op
TP T o (6.50)

where the primed variables are functions only of r and time. The structure of these
equations reveals that any axial cell can experience 7- and §-advection but never ¢-
advection. Their finite-difference form is similar to that exhibited by equations (6.34)
and (6.35) for the main grid-cells, except for the §-advective terms. The correct differ-
ences for such terms can easily be obtained by keeping track of how much mass, or r-

momentuin, enters or leaves the axial cells, i.e. by just enforcing mass and r-momentum
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Figure 6.4: Portion of an (r,#)-slice representing control volumes for
axial advection

conservation across the interfaces (7,1 —1/2. k) [See Figure 6.4]. A particular cell (i1k)

losing mass at the rate

A-A{[ilk Sin 91_1/2<p>i’1_l/z;kvei.l_l/z.k . 1 L, ; |
At ( (r;) [§ (ri+1/2 - "i—1/2) /—\C.Dk+1/2} ,

will contribute to the density of the ith axial cell by

Ap; 1AMy, .
v v v (6.51)
where V/, calculated as
2T /4 RERVER 2
V;' = 5 (ri+1/z - 7'1‘3—1/2) /(; sin 0df = 5 (T?+1/2 - 7'?-1/2) (1 - cos 91_1/2),
(6.52)

corresponds to the volume of the ith axial cell occupied by the mass which is coming
from the main grid. The net change in the axial density p! (due to advection in ) is,

therefore, computed by summing the N contributions (6.51) of the surrounding (i1k)
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cells. The finite-difference approximation to the integral term in equation (6.49) may

then be written as
1/2" d(sinfpvg)
rJo J(cos )

An identical form (with (p) — (pv,)) holds for the f-advective term in equation (6.50)

Ny

dé Z S11191 1/2 >11 1/2,kY6; 1/2L]A¢k+1/2
=0 ilk k=1 97T< >(1—C0591 1/2)

(6.53)

for the r-momentum transport.

The axial variables are radially advected by using the replacements (6.16) but now
with the indices j and k removed. The same is done to represent the radial gradients.

The modifications fo the donor-cell replacements (6.17) for advection of mass and
r-momentum across the (4,1 — 1/2, k) interfaces, are obtained by replacing “p;or” and
“piokvr,,, " by pi and piv] , respectively. Similar modifications are also needed in equa-
tions (6.34) and (6.35) when j = 1.

(B) THE EQUATORIAL PLANE.

At the equator ( = 7 /2), the flow is constrained to have vg = 0 so that there is no
mass going from the top to the bottom hemisphere. This boundary condition is then
numerically specified by setting U6y, = 0, at any step. In this way, the equatorial cells
(iNgk) will never be the source of #-momentum.

In equation (6.37), a trivial modification is needed for the donor-cell transport of
f-momentum when j = Ng — 1. Since each of the adjoining (i, Ny — 1, k) cells can lose
f-momentum into the equatorial cells at the rate

sin QNH_.1/2<PU0>1‘,NL,—1/'2,1¢l’ai.N,,,_l/z.l.»

(ri) sinfn, 1 A0y, _1/2

b

the donor-cell fluxing across the (i, Ng — 1/2. k) interfaces is modified by defining

(pug); ) PN k8, g Hvg L, 20
PU8)iNe-1/2k = § ¢ if vg, <0

Ny—1/2.k
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Figure 6.5: Portion of an (r,¢)-slice showing control volumes for equa-
torial advection

where U8 ny ek = %vgi‘Nﬁ—l‘k'

On the other hand, due to the assumption of reflection symmetry about the equator,
the form of the §-advective terms in equations (6.34), (6.35), and (6.40) must be modi-
fied for the equatorial cells. To numerically apply the condition of reflection symmetry,
we define (N, x Ny) fictitious cells (i, Ng + 1, k) (beneath the equatorial cells) whose
state at any step is completely defined by the state of the computational (7, Ng — 1, k)
cells at the corresponding time [See Figure 6.5] Then, the prescription for the cells
(i, Ng + 1, k) is that the density, the r-velocity, and the ¢-velocity must at all times he

the same as in cells (i, Ng — 1, k), and that the normal velocity vy must be the mirror

image of that in cells (i, Ng — 1, k):

n n n
v S = v
FiNg—1k UBiN, 41k ®iN, -1k

7 — n . n
PiN,+1,k = PiNy—1k; vr.‘.Nﬁ+1.k -
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vy = —vy (6.55)

i N+ 1.0 0Ny —1.0”
The use of prescriptions (6.55) will ensure that the flow across the (i, Ng — 1/2,k) in-
terfaces is exactly the same as that across the (i, Ny + 1/2, k) interfaces in the bottom
hemisphere. However, it is important to remark that even if they permit a compact
solution of the difference equations (in the sense that the §-momentum is effectively
canceled out for any equatorial cell by the opposite contribution coming from the ficti-
tious cells and, hence, is globally conserved), they cannot be used to replace the actual
boundary condition vs = 0.
Since sinfy, ;1/2 = sinfy,_1/,, it follows from (6.55) that

[ 1 3(sin9ng)1 N [SinHNH-1/2<X>i,NH—1/2,:«1’0{.%_1/2‘,,} (6.56)
Irsiné’ a6 JiN,.;lc - (ri)%AONH ' '

where X may be p, pv,, or pA.

The use of the form (6.56) in the difference equations (6.34), (6.35), and (6.40), when
J = Ng, and the modifications implemented for the #-advection in the axial difference
equations, ensure rigorous global conservation of the §-advected mass, r-momentum,
and angular momentum.

(C) THE CENTRE.

The centre of the protostellar cloud is numerically represented by a single spherical
cell [See Figure 4.1], which is centred at the origin (r = 0) of the coordinate system.
Since, the specification of the inner boundary condition requires that v, = vg = vp =0
at » = 0, only mass may be freely interchanged between the central and the main
grid-cells (17k).

From the limiting form of the continuity equation (3.21) when r — 0

dpc 2T J(r2pl)
a1 +3/0 /0 a0

(r?vy)
(r3) '

r=0

sin dfde = —3p,

=0
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it follows that the central cell will only experience radial advection. The effect upon the
central density p. is calculated by enforcing mass conservation across the (1 — 1/2, jk)
interfaces. Note that the f-integration in equation (6.57) includes also the contribution
of the innermost neighbouring axial cell (z = 1).

Using the volumes (6.11) and (6.52), we have that each main grid-cell (1jk) loses

mass to the central cell at the rate

AMy; .
A—;Jk (T%—I/Z<p>1—1/2,ijl—1/2,jk> (SlnejA9j+1/2A¢k+1/z> , (6.58)

while the corresponding expression for the innermost axial cell is

AM! , .
Atl =27 (T?_1/2<p >1_1/2[]{__1/2) (1 — COS 01_1/2) . (()59)

The contributions to the central density are then

L\pc 1 Aﬂfljk
_ , 6.
At V. At (6.60)
and
Ap. 1AM o
At V. AL (6.61)

43—"7'11/2) corresponds to the total volume of the central cell.

respectively, where V, (:
The net change in the central density, is obtained by swmming the axial contribution

(6.61) and the (Ng x Ny) main grid-cell contributions (6.60), so that

J

27 pw 2,507 ,0 (7/_
3/ / Ml sin 0d0de ~ [ Ty 1/2\ g >; 1/2% 1/2] (1 _ cos 01_1/2) 1
o Jo O(r?) r=0 3T1-1/2

Ny 2
sin9;Af; +1/2A@L+1/° [ 1-—1/')<p>1-1/2,ij1—1/2,jk]
3yt : -
i=1lk=1 %7’:13—1/2

(6.62)

This form ensures rigorous global conservation of the radially advected mass.
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The modification of the grid contraction term (6.21) is implemented as

ot () () ™)
o) |, At (1) B

T1-1/2

- 3pc

Substitution of the replacements (6.62) and (6.63) into the exact equation (6.57) pro-
vides the counterpart of equation (6.34) for the spherical central cell. The mass is
radially advected across the innermost interfaces (1 — 1/2, jk) according to the donor
cell prescriptions (6.16), with p. being now the replacement for “pgji” (advection from
main grid-cells) and “py” (advection from the axial cell). Since, r- and §-momentum
may be radially transferred into the central cell, where they are dumped, modifications
are also needed in the radial transport terms of equations (6.35) and (6.37) when 7 = 1.

These modifications are then implemented by defining

(pv > o 0 if Ul—l/z,jk >0
r)1-1/2,jk PLikVry if U1—1/2,jk <0
(6.64)
and
0 lf U1—1/2 jk > 0
Vg)q_ = . R
(Pve)i—1/2,5k | prskvey, i Uy ijo g < 0
(6.65)

By removing the indices j and k, a similar form to (6.64) is obtained for the radial flow
along the rotational axis.

Finally, the global conservation of the r-advected angular momentum is automat-
ically ensured by the partially centred scheme (6.41). The central cell never removes
angular momentum from the main grid-cells because since Agjr — A. = 0 at the centre,
it follows from (6.41) that (A);_1/5 jx = 0, at any step.

(D) THE EXTERNAL BOUNDARY SURFACE.
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Grid Boundary

Outermost Inter faces

Figure 6.6: Portion of an (7, #)-slice representing control volumes for the
treatment of the external boundary condition

The outer boundary (r = Rg) is made to coincide with the outermost grid points
“N,7k" and hence, only a half of the external houndary cells will initially contain mass.
A constant-volune condition is then numerically specified by setting v, = vg = 0 for the
outermost computational points. Hence, the adjoining cells (N, — 1, jk) can only lose
r- and f-momentum into the boundary cells (NV.jk) across the (V. —1/2, jk) interfaces

[See Figure 6.6]. The modifications for the radial transport when ¢ = N, — 1 are

(Pvr) N, 172,56 = { SN'"LJ"“”*Nr—l.jk ﬁ g:ifijﬁ i 8
(6.66)
and
e E v
| (6.67)
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where Uy, _1/2,j6 = %UN,,_ij. A form similar to (6.66), with the indices j and &
removed, holds for the transport of radial momentum along the axis at the pole of the
spherical volume.

Only mass and angular momentum may be freely interchanged between the bound-
ary and the interior (N, — 1, jk) cells. The external boundary condition for the #-flow
is applied trivially since vgy .,,,, = 0. This means that the boundary cells will not
experience f-advection and, hence, the problem reduces to consistently treating the ra-
dial flow across the (N, —1/2, jk) interfaces in such a way as to preserve rigorous global
conservation of the advected mass and angular momentum. The modification for the
r-advective terms (when ¢ = N, ) is obtained by expanding the flux (TZ‘X'U)NT_l/z,J-k in

a Taylor series about the boundary points N,.jk, so that

o xU) 1l weaaUn 1

ATy ~ , (6.68)
17 o) JN,.jk. 3, = N o1y2)
where 7y, = Rpo.
The modification for the grid contraction term (6.21) is
(n+1) (n)
A(riv (r?\’r - riﬂﬂ/z) - <r13VT - 7'f)’\/’.,.ul/z)
-d(r 19) -
3X (9(7'3) J ~ “:\NTjk ) . (nt1) (6.69)
Nvik (T'N1- - TN,.~1/2)

The replacements‘ (6.68) and (6.69) have been carried out in order to account for the
smaller initial dimensions of the partial cells representing the real boundary of the
system.

(E) THE PERIODIC BOUNDARY CONDITION.

In order to evaluate the ¢-advective terms and the ¢-gradients when & = 1 and
k = N,, we must carry two extra angular zones in the ¢-direction. As shown in Figure

6.7, a zone labelled “ij0” (coinciding with “ijNy") is carried in the backward direction,
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Figure 6.7: Portion of an (r, ¢)-slice illustrating the periodic boundary
condition

and the extra zone “ij, Ny+1" (coinciding with “ij17”)is carried in the forward direction
such that at any step
“Xi,_le = }(ijN,,, ' for k = 1, (670)
and
“Xf;-,N,ﬁH = Xin for k = Ny, (6.71)

where X may be p, pv,, pvg, pA, &, or p. The use of the assignments (6.70) and
(6.71) in the donor-cell prescriptions (6.18) will ensure global conservation for all of the

advected hydrodynamical variables.
6.10 Artificial Viscosity

In forming shock regions where very large gradients start to develop, the accuracy of the

numerically obtained solutions progressively deteriorates. This sort of difficulty arises
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because of the technical inability of finite-differences to treat those zones of the mesh,
where the required assumptions of continuity and differentiability of the flow are no
longer valid. Furthermore, shocks are fundamentally inconsistent with the assumption
of a perfect fluid. Dissipation is required in order to produce entropy and, failing this,
instability will result. This instability is generally detected in the solution field by a
well marked saw-tooth behaviour in the distribution of the hydrodynamical variables.

To circumvent this trouble, the general rule is that of enhancing the stability of the
difference scheme by numerically mediating the discontinuities in the flow. One efficient
way of smoothing out such discontinuities is by adding dissipative-like forces into the
equations of motion. These extra terms will enter in the equations as the divergence of
a tensor quantity Q, commonly called artificial viscous stress. It is important to notice
that such terms are always added to the "source part” of the momentum transfer
equations before writing them in finite-difference form.

A fully correct and suitable definition of artificial viscosity would, in principle, re-
quire a tensor formulation. A good example is given by Tscharnuter and Winkler [115],
who imnraved the original von Neumann and Richtmyer (1950) viscosity in connection
with simulating accretion flows and explosion processes. In the extreme situations,
which they were treating, the presence of strong shock-fronts and simultaneous dif-
ferent flow regimes demand the contruction of highly stable schemes equipped with a
sophisticated artificial viscosity.

In our caée, strong shocks may eventually develop at the end of any calculation, with
the intermediate stages of the shock formation being predominantly characterized by a
progressive compression of the collapsing material giving rise to a well pronounced den-

sity enhancement. At this stage, our calculations are generally stopped either because
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large masses are contained in a few hydrodynamical cells (giving loss of resolution in
the zones of maximum interest), or because the maximum densities achieved are higher
than those for which the near-isothermal approximation is valid, or even hecause the
configuration approaches an apparent equilibrium state, which cannot he followed due
to the very small At allowed. A simple modified version of von Newmann and Richt-
myer (1950) viscosity is, therefore, sufficient for our purposes. Furthermore, the strong
diffusion-like nature of the donor-cell differencing generally permits handling of inter-
mediate strength shocks without the need for an additional artificial viscosity. Although
the artificial viscosity terms are added into the exact equations, their effect on the dif-
ference equations is to enhance the spurious diffusion of the donor-cell advection. Some
1-dimensional collapse tests [See Chapter 7, Section 7.1] made to investigate this point,
have confirmed the conclusions arrived at by Boss [13]: when artificial viscosity is in-
troduced from the beginning of the calculations, the hvdrodynamical approximation is
appreciably affected by the contribution of the artificial viscosity to the local diffusion
of the transported variables.

Simee v are mainly interested in choosing the artificial viscosity to be sensitive
to shocks arising by compression, only the diagonal elements of the tensor artificial
viscosity will be retained. The effects of shearing motion (represented by the off-
diagonal components) may then he neglected, if the dominant cause of shock formation
is the geometrical compression of the inward-directed flow, as is likely to be the case
early in the protostellar collapse.

In spherical coordinates, the diagonal components of Q are denoted by QT, QS» and

Qi, so that the acceleration term V - Q will enter into the right-hand sides of equations
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(3.22), (3.23), and (3.24) as

o(r*Qy) 1 dsin0Qg) . 99%

3 d(r3) ’ rsind a9 8

(6.72)

respectively. Note that the radial term has been written in compact form. In the
axisymmetric problem (9/8¢ = 0) shock fronts cannot be generated in the ¢-direction
and hence, the last differential term in (6.72) is not needed in the angular momentum
equation (3.18).

Following Black and Bodenheimer [3], Boss [13], and Norman and Winkler [89], a
form similar to that developed by von Neumann and Richtmyer for problems in slab

symmetry, is used here to define the effective diagonal components:

29 |0v, | v, :p Bu.
o | +ER(BE] B i <o
" 0 otherwise
72110 1 dv :p Ov
Qf = [ +L35|255 15 if 55 <0
l 0 otherwise
(6.73)
79 1 Ovy 1 Ovy . vy
@ — +Ld3p rsinf Od | rsinf 0¢ if Er3 <0
Q7 .
0 otherwise

where L,, Lg, and fL¢, are spatial quantities related to the spacing of the mesh by the

following relations
L.= C_fl/zAr; Lo = C'I/ZT‘AH; i¢ =% sin A ¢, (6.74)

with (' usually being a constant of order unity.
The definitions (6.73) define a quadratic artificial viscosity, which is slightly different
from the form implemented by Gentry, Martin, and Daly [42] for enhancing the stability

properties of the original Fluid-in-Cell method.
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Finite-difference approximations to the partial derivative terms in (6.72), are con-
structed by centring the artificial viscosity components at the cell houndaries in such

a way. as to preserve the global conservation of the advected momentum. So, for ceil

interfaces open to the radial flow, we set in index notation Q:i],k = Qi Similarly,
0 8 6 e : )
Qa,ﬂ. QG;J“!/M, and QQS;]-L. . Q‘bij.k—l/2’ at the cell interfaces open to the - and

¢-flows, respectively. Using the relations (6.74) in the definitions (6.73), we have at the

interfaces of a typical main grid-cell

. . 1. ;
Qr,-_l/zdk = —min {0; ;C (pijr + pi-1,jk) Al’r,;,'z.- A"fm.} )

Qg = —min fO' £C—'( ik + P ) |Av Av, ] (6.75)
Oigtj2 g Pk T PL Lk Big | = Vi | S
o : 1~ 1

Qd’ij.k—l/'l = —min 0; 56 (Pijk + pij'k“l) AU"’SI'J'I« AW’”""J '

where the p are centred at the cell boundaries by taking the average of density between

adjacent grid-points, and

Av"ijk = Urip — U

Tio1.k0

Avg, = Vo, — Vo, ;s (6.76)

Avff’ijl.: = Ve 7 Yijpoyn

so that the greater the difference in velocity between two adjacent computational cells,
the greater is the magnitude of the viscous pressure. Straightforward modifications
are needed in equations (6.75) for those cells having zero velocities. Furthermore, the

modification for Q7 at the axial cell interfaces (¢ — 1/2), is taken as

ot

C (o} + pioy) | A,

-]
-1
~——

Ti—1/2

er = —111in{0; Av;;} , (6.

2

!

with Av; = v/ — v, according to (6.76).
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The finite-difference replacements for the divergences (6.72) are obtained in a similar
manner as was done for the advective terms. Expanding (r2Q7);1, /2,jk in Taylor series
about the common point “ijk” at the time step n (the superscript for which is omitted),

we obtain that

(@]
-1
co
~—

2 r 2 r
{3(9(7’2@:)1 - [ri+1/2Q7‘;+1/2‘J‘k - ri—l/ZQT'i—x/z.jk}

a(TB) Jijk - %(T?+1/2 o r?—l/Z)

; (6.
with a discretization error

' 82(r2Q7)
3 a3 3 r
(Ti+1/2 - ri‘1/2> [ o) |

™
Il
o o

which is always better than first-order for a non-uniform grid.

Repeating the same procedure but now for (sin ng)i,j:{:l/z,kv we get

. ing. g — sin@.: 6
{ 1 6(81110@3)1 - [Sln01+1/2Q9i.J‘+1/2.k sin Hj—l/ZQai.j—l/Z.k] (6.79)

rsing 00 ji_jk“ {ri)sin;A0;, 1/ ,

with a truncation error

3

4 (r;)sind;

0 1 (mj41 — 1)AG; | 82(sin0QF) 2\
’ a0 ijk"O{(Mf) .

which is nearly second-order (741 = Afj41/A0; ~ 1) for the fairly uniform 6-grid.

Finally, the last term in (6.72) is approximated by using

® @
an -~ [Q¢ij.k+1/2 ~ Q¢ff~’~'“1/2]
S y Adrii1)2 ’
i

(6.80)

which is exactly second-order accurate for the uniform ¢-grid with

awﬁ}
ijk

043

A difference form analogous to (6.78) is used for the axial r-momentum equation, with

r

Tit1/2 being the replacement for Q]

it1/2.5k"
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Rigorous global conservation of the advected angular momentum is trivially ensured
by the form (6.80). When the contributions are summed over the whole ¢-grid, the
terms in the numerator will cancel out in pairs provided that, for k = 1 and k = Ny,

we sef

inj.w,,,Jrl/: = Qifj.l_x/z’

in accordance with the considerations of Section 6.9.
The use of an artificial viscosity imposes a further constraint on the time step
condition. Since the effect of the artificial viscosity is to give rise to a diffusion of

momentum, for explicit schemes stability requires that [3,89]

(Az)®

At <
4y

(6.81)

where Az denotes the mesh size in a particular direction, and v represents the kine-
matic viscosity. If we now consider the Navier-Stokes equation written in spherical
coordinates, the following true viscosity counterparts of the artificial viscosity terms

(6.72) are found

(9 rr 2817r . 1 8 60 . avg .
36(7»3) (PV r ar ) S Y (pu 51n06_9> :
1 9 (?Ud,
w5 (95 ) (6.82)

Then, equating each of these terms with the corresponding ones in (6.72), we obtain
the following relations between the artificial and kinematic viscosities:

rr BUT [ 80 1 (91?9 ¢ PP 1 a'vqﬁ
—_ = —pv"——; = —pv —
Qs A Qs oY ing J0¢

QL= —pv (6.83)

or’
These relations may he expressed at the borders of a typical main grid-cell by using

the artificial viscosity definitions (6.75), so that

T — 1
Vioij2.5k = ¢

Ar;

A Urjin
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ZARVITE (A’lm’e,«jk ri&d;, (6.84)
v?? = C lAv r;sinf;A¢
ijk=1/2 ’ bijn| Tt J k+1/2>

where the r-, #-, and ¢-spacings are defined as in (4.7). If we now apply the inequality
(6.81) for a typical 3-dimensional cell by using the relations (6.84), the following three

additional time step constraints are obtained for each zone,

Ar;

At < e

itk — 46"|Avr,jjkl
AG

Ateiik < “.r—z'J‘—“’

: 4C|Avgijk‘

i sin 6; A ¢y,

'?51,7)\: — 4C'|AU¢,1

(6.85)

jk[
for non-vanishing values of the . The optimum "viscous” time is then computed by

taking the minimum step over the entire computational grid
Atyrscors = min {Atrijk s At&‘jm At¢ijk} R (6.86)

while the time step needed to advance the hydrodynamical system, is re-defined as a

fracti~= ~f +he minimum of the CFL-time and the “viscous” time
At = f(<0.9) x min{Atcrr, Atyrscouvsy, (6.87)

with Atcpr being calculated using equation (6.30).
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Chapter 7

Spherically Symmetric Collapse

Owing to the exploratory nature of the present multi-dimensional numerical code, the
construction of an independent 1-dimensional version was mandatory for testing.the
explicit hydrodynamic approximation method.

Solutions for spherically symmetric collapse were first obtained analytically [54,93]
for the ideal case in which a protostellar cloud contracts in free-fall cqnditions under
the action of only its self-gravitation, and then numerically, including the effects of gas
pressure in both the isothermal and adiabatic regimes [5,13,61,74], and also the effects
of radiation transfer (non-isothermal regime) in the diffusion and Eddington approxi-
mations [61,18]. Furthermore, the simplification of considering spherical symmetry has
allowed for the inclusion of additional physics [7] and hence, for the extension of the
simulations to pre-main sequence stellar densities [48,61]. Such work has been facili-
tated by the relatively small demands of computational time and memory in comparison
with the 2- and 3-dimensional cases, even when the calculations are carried out with a
large number of grid points. For any numerical scheme dealing with multi-dimensional
calculations of the gravitational collapse of protostellar clouds, the restricted assump-

tion of spherical symmetry provides a good way of testing the sensitivity and accuracy
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of the solution method, as well its response to any physical situation.

In following sections, we shall describe the results of the 1-dimensional code for a
pressureless collapse test and for a number of isothermal collapse models, in order to
allow for comparisons with results previously obtained by other workers for identical

models.

7.1 Pressureless Collapse

Hunter [54] demonstrated analytically that a uniform-density, unperturbed, spherically
symmetric gas cloud, initially at rest, can condense to higher densities in such a way
that the density remains uniform in space at any instant. That is, in this ideal case,
the density will be an explicit function only of time. Fixing the origin of time as the

instant at which the collapse started (¢ = 0), Hunter's solution reads as follows

Uy

—2r— tan 3,
dt p

p = posec® s, (7.1)

1 1
ﬂ+-2~sin2[3 = t\/g(STrG’po),

where pg refers to the initial density.

The solutions (7.1) for the radial velocity and density will be compared here with
the numerical solutions of the 1-dimensional code for zero pressure. Furthermore, to
allow for comparisons with results form Boss’s code [13], we choose a 10Mg cloud
initially at rest, with a uniform density p = 107'%gem~2. As in the Boss case, for this
run the constant-volume boundary condition is replaced by one which mimics the infall
of mass exterior to the computational grid. This modification is necessary in order to
numerically reproduce the analytical solutions (7.1). Otherwise, owing to the Eulerian

character of the hydrodynamical approximation, the presence of a mass discontinuity
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at the external boundary of the cloud, will set an initial density gradient, which will
then propagate inward destroying the expected density plateau. The infalling mass
boundary condition, is constructed consistently with the analytical solutions (7.1) by

setting

PN, = PN,-1,

Urn, Urne—1 g
—t = (7.2)
TN, TNy -1

at any time, and by allowing the outermost grid-point 7, to move with the flow, instead
of being held fixed as required by the usual constant-volume boundary condition. This
is easily done by modifying prescription (4.11) to include a fictitious point rp, 4, which
must be exterior to the computational domain and initially at an arbitrary distance
from ry,.

In Figures 7.1(a) and 7.1(h), we show plots for the density and radial velocity
profiles at 0.5t¢, as produced by the 1-dimensional pressureless code, while in Figures
7.2(a) and 7.2(h) the corresponding profiles are shown at 0.895¢¢;. The calculations
were carried out with 20 moving radial grid points and using a small fraction of the
CFL-time step (At = 0.1Atcrr).

At 0.5t4y in the collapse, the density has not increased much over its initial value,
so that the numerical and analytical profiles compare quite well, with relative errors of
only 1072% in the inner parts and 107! — 1072% in the outer regions. At 0.895t;, the
density has increased to about 20 times its initial value. The flatness of the numerical
plateau is still in good agreement with that of the uniform density analytical solution.
However, the relative errors for the density have increased to 0.1 — 0.2% in the central
portions, and those of the radial velocity to 0.3 — 0.4% throughout the grid.

Similar plateaus were obtained by Boss [13] at 0.894¢;¢. He argued that after this
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Figure 7.1: (a) Density and (b) velocity profiles as produced by the
1-D code (dots) compared with the analytical solution (solid lines) after
0.5t4¢ in the collapse from p = 1075gcm™3 with zero pressure.
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Figure 7.2: (a) Density and (b) velocity profiles for the same model as
in Figure 7.1 at 0.895%¢;.
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time, the accuracy of the numerical plateau deteriorates due to a systematic error in
the donor-cell advection in the inner portions of the cloud. This feature is also ohserved
in Figure 7.2(a), where the computed density is slightly too high in the intermediate
regions. We may then expect that the errors will progressively grow due to the shorter
free-fall time of the higher density regions. However, in our case significant deterioration
occurs after 0.925t;¢. In other words, the present 1-dimensional code is apparently able
to maintain a fairly accurate inner plateau (with relative errors of ~ 0.2 — 0.3%) for a
longer time than Boss code. This improvement is probably due to the superior finite-
difference replacement (6.12) used to represent the radial advective terms in equations
(3.10) and (3.11).

The pressureless collapse test has been found to be a good detector of any diffusion
errors implicit in the hydrodynamic approximation. Therefore, we may use this test
case to infer how the donor-cell transport of mass is affected by different choices of
numerical treatment. In order to do so, we shall consider the same initial model as
before but now with a larger fraction of the CFL-time (f = 0.4). The reason for using
this valne is that the same fraction was used for most of the 2-dimensional runs.

In Figure 7.3, we then display four different density profiles. Curves (a) and (b)
were both obtained with twenty fixed grid-points, but for (a), the artificial viscosity was
activated from the beginning whereas no artificial viscosity was used for‘ (b). Curves
(¢) and (d), on the other hand, were computed with twenty and forty moving grid
points, respectively, without including artificial viscosity. All runs were stopped at
approximately the same time (after 0.894¢;¢). Comparisons between these curves will
be discussed in terms of the flatness A = |10g pmax — 108 pmin| of the density profile,

so that the greater the accuracy, the smaller A should be. From curves (b) and (c),
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Figure 7.3: Density profiles after ~ 0.894¢ for the pressureless collapse
from p = 107 '5gem ™3, for different choices of the numerical treatment:
(a) with 20 fixed grid-points and artificial viscosity coefficient € = 2, (b)
as in (a) but with C = 0, (c) with 20 moving points and € = 0, (d) with
40 moving points and € = 0.



we note that the accuracy is improved when the grid is allowed to move with the
fluid. [See Chapter 6, Section 6.6]. In fact, the truncation error produced by the fixed
grid has given rise to a stronger deviation from the expected uniform plateau (in the
inner regions) than for the moving grid case. The relative errors for curve (b) are of
nearly 1%, i.e. two times greater than those obtained for curve (c). Furthermore, by
comparing curves (a) and (b) for the same fixed grid, we note that the use of artificial
viscosity exacerbates the spurious diffusion of mass in the inner portions of the cloud,
with the relative errors for (a) being roughly twice those obtained for (b). Therefore,
artificial viscosity must be avoided during the initial dynamical stage of collapse. Clurve
(c) may be also compared with the density profile in Figure 7.2(a). It is evident that
more accuracy is achieved when the time step is set to a smaller fraction the Atcpyr.
This is consistent with the fact that numerical solutions should converge to the true
ones as At — 0). Finally, comparisons between curves (c) and (d) show that the flow
is more accurately calculated when a larger number of grid-points is included. The
forty-point run has a flatness A ~ 0.15 and relative errors in the zones of maximum
deviation of roughly 0.4%, while the twenty-point run has A ~ 0.17 and corresponding
relative errors of about 0.6% in the central regions.

In figure 7.4, we show the final density profile at 1.006t;, for the pressureless
collapse of an isolated 1M cloud initially at rest with a uniform density p = 1.4 x
107'%gem ™2, This model is computed to observe the effects of the constant-volume
boundary condition on a free-fall collapse. In contrast with the pressureless test for
Hunter’s analytical solution, here we shall consider the pressureless collapse of the
whole configuration. This calculation was carried out with forty moving grid-points

and was completed after 239 cycles, with At = 0.4Atcpr. The profile is qualitatively



-13.0 ® T T T 1
@
@
[ ]
@
- . -~
L]
L ]
L ]
@
[ ]
®
N @
(o) -15.0 [~ " —
] &
@
E ®
3 @
®
=) i ® _
9
Q &
80 ®
O @
[ | n ®
-17.0 ® N
L ]
@
@
L ® _
@
[ ]
-19.0 ] | ] | ! ®
14.0 15.0 16.0 17.0

logr (cm)

Figure 7.4: Density profile obtained after 1.006t¢¢ for the pressureless
collapse from 1.4 x 107 '%gem =2 at rest, with a constant-volume bound-
ary condition. The solid line shows the slope of the Penston analytical

solution p o« 7712/7,
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similar to that obtained by Boss [13] at 1.01tss for the same initial model (the only
difference being that his run was performed with At = 0.5Atcrr). As in the Boss case,
we observe again that the central regions match very well the analytical law p o »~12/7
derived by Penston [93] (in an asymptotic similarity solution for pressureless collapse).
Furthermore, it is noted that the numerical density profile diverges from the Penston
solution as we go towards the external boundary of the collapsing cloud. This situation
inevitably occurs due to the effects of the constant-volume boundary condition used
for this run and to the inapplicability of the Penston solution to the outer regions of

the cloud. As previously noted, the pressureless collapse is influenced, especially near

the boundary, by the initially sharp density gradient at the edge of the configuration.

7.2 Isothermal and Adiabatic Collapse

In this section, we shall describe the response of the 1-dimensional code to the physical
situations encountered during the isothermal stage. A calculation with an adiabatic
pressure-law is also described.

We start our discussion of the isothermal collapse by referring to Figures 7.5(a)
and 7.5(b), which illustrate the density and radial velocity profiles after 0.994t;;, for
the gravitational collapse of a 10Mg cloud composed of atomic hydrogen (p = 1) and
inifially at rest with a temperature 7 = 100K and a uniform density p = 107 ®gem =3,
The same model has previously been calculated at comparable central densities by
Bodenheimer and Sweigart [5] after 0.99¢7¢ and by Boss [13] after 1.00t¢;. In order
to allow for direct comparisons with the Boss profiles, we have again used 20 moving

radial grid points. The agreement is qualitatively good, and the persistence of a clear

inner density plateau (interpreted as a relic of the uniform density initial conditions)
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and At = 0.5Atcrr.
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is well confirmed by the calculation. As demonstrated by Bodenheimer and Sweigart
[5], the persistence of such a plateau represents a physical situation encountered in
the isothermal collapse of clouds for which the “sound-speed time” (t,, ~ Ro/C',) is
greater than the free-fall time t;;. The collapse of the interior regions will proceed at
uniform density until the rarefaction wave from the boundary (which carries information
regarding the surface pressure at the sound speed rate) has reached the centre. Once
this occurs, the central plateau will then disappear and further collapse will proceed
with a well-marked central density gradient. In our case, t,, ~ 2.8ty; and hence,
by 0.994t;; the rarefaction wave has not had time to reach the innermost portions
of the collapsing cloud, and so there is not yet any coupling between the centre and
the external surface. As argued by Boss [13], the Lagrangian scheme implemented
by Bodenheimer and Sweigart [5] can resolve better the location of the inner plateau
than the Eulerian schemes: However, in our case, the 1-dimensional Eulerian code
has produced a central plateau which is slightly more pronounced than that previously
obtained by Boss [13], even with the mass being transported according to the donor
cell methnd Furthermore, from Figure 7.5(b), we observe that the flow is supersonic
in most parts of the collapsing cloud, except for a few zones near to the centre and
inside the external boundary. This is in perfect agreement with the results obtained by
Bodenheimer and Sweigart [5] who also detected a subsonic flow just inside the cloud
surface. The position and value of the maximum infall velocity are, on the other hand,
in good agreement with the Boss results.

The density profile for a full isothermal collapse run through six orders of magnitude
increase in the central density, is plotted in Figure 7.6. The initial model was taken

to be a 1M protostellar cloud of predominantly molecular hydrogen, with X = 0.635,
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Y = 0.323 and Z = 0.224, initially at rest with a constant temperature T = 10K and a
uniform density p = 1.4 x 107%gem 2. The calculation was made with forty moving
grid-points, and the density profile shown was obtained at 1.27f;; when the central
density has increased to roughly 0.92 x 107'3gem™3. At this time in the collapse, the
intermediate regions of the cloud as well as those zones near to theAcentre, are collapsing
supersonically with maximum infall velocities of ~ 1.6(',,. The density distribution of
the envelope varies as p & r~21%. This law roughly matches the form p & 7=2 predicted
by Bodenheimer and Sweigart [5] and by Larson [61]. In comparison, Boss [13] for a
similar initial model obtained for the envelope p x 7722, On the other hand, the
density profile shows a tendency to flatten in the very innermost regions of the cloud,
as predicted by Shu [101].

In Figure 7.7, we show the evolution of the central density. Note that by 1t
the central density has increased by only two orders of magnitude, with the collapse
having proceeded rather slowly due to the resistance of the pressure forces. By about
1.1t4¢, the density of the innermost regions has increased enough to allow the collapse
of these recions to proceed on a relatively short time-scale. At this point, the self-
gravitation of the central nucleus has become much stronger than the gas pressure, and
the central density grows rapidly by 3 orders of magnitude in ~ 0.17t;. The density
of the outer regions is nearly constant. This behaviour confirins the non-homologous
character of the collapse [61]. The mass of the outer zones does not change by an
appreciable amount during the evolution, so that only a small fraction of the total
mass is effectively contained within the central high density portions.

In order to test the ability of the present numerical code in maintaing an equilib-

rium configuration over long time-scales, we have calculated the spherically symmetric
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Figure 7.6: Density profile after 1.27t;; for the isothermal collapse of
a molecular cloud initially at rest with p = 1.4 x 107%gcm~3. The
calculations were carried out with 40 moving points and At = 0.4Atcrr.

The solid line corresponds to the profile p o r72.
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collapse of a 1M cloud with an adiabatic pressure-law p x p”/%, which is appropri-
ate for molecular hydrogen. The calculation started from initial static and uniform
density (p = 1.38 x 107'*gem ™) conditions, with forty moving grid points and with
At = 0.4Atcpr. Boss [13] claimed that the collapse of such a cloud is halted at around
Ltgs, with the further evolution being characterized by rapid oscillations of the central
density about a value roughly twice that of the initial configuration. This general situ-
ation is confirmed by the present code, as shown in Figure 7.8. In our case, at ~ Lty
when the collapse is halted, the central density has increased by roughly two orders of
magnitude and it then oscillates about a smaller equilibrium configuration. In Figure
7.8 we have plotted the central density as a function of time only until 4ts¢. The further
evolution will be similar with the central density oscillating more slowly. At 4t;; the
infall velocities in most parts of the cloud range from ~ 0.3C,,, to ~ 0.8C',,, with the
flow being supersonic (~ 2C',,) only for a few zones near to the external boundary sur-
face. The physical significance of the present test is in demonstrating how the collapse
would be affected by using a pressure-law which is clearly not suitable for describing
the protostellar evolution at low densities (~ 1078 — 107%gem=3). We may then
compare the results of Figure 7.8 with those of Figure 7.7 obtained with an isothermal
pressure-law.

Finally, we test the sensitivity of the numerical code to the gravitational instability
of isothermal spheres.

The Jeans criterion for the instability of an isothermal spherical mass of gas was
first derived by Bonnor [11]. Tt states that an extended gas cloud with density p and

constant temperature 7', will be gravitationally unstable only if its external radius R,
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exceeds the critical value r. given by

T 1/2 ‘
re = Cy (m) with 'y = 0.89. (7.3)
Otherwise, the gas sphere will not completely collapse. For numerically testing this
criterion, we assume an initial model identical to that chosen by Larson [61] and Boss
[13], i.e. a 1My cloud of molecular hydrogen, initially at rest with a uniform density of
1.1 x 107'%gem™3. We may then construct a sequence of initial models by varying the
value of the temperature. In other words, we are defining a number of initial protostars
with differing thermal energies (by changing T') and the same gravitational energy (by
always assuming the same initial p). From equation (7.3), it is therefore expected
that by progressively decreasing the temperature, r. will eventually become less than
Ro, and the cloud will then collapse unimpeded without experiencing any bounces.
The response of the 1-dimensional code for this test is illustrated in Figure 7.9. The
dots indicate the value of the central density at the first bounce for different initial
temperatures. The bounce is registered at the instant when the flow in the innermost
shell reverses.

As seen in the Boss [13] results, as the temperature is decreased towards the critical
value of 7.3 K [predicted by eq.(7.3)], the cloud experiences a central bounce at progres-
sively higher central densities. For a temperature of 7.549K, we found that the cloud
bounced at a very high central density (p. ~ 1.2 x 10713gem=2). Only for temperatures
less than this value, did we obtain an indefinitely continued collapse. Boss, however,
found a numerical critical temperature of 7.7K after a sequence of bounces occurring
at much lower central densities. Our critical temperature T' = 7.548 K is surprisingly

good, especially if one bears in mind that the calculations were carried out with only

twenty radial grid points and At = 0.4Atcpr.
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If we set r. = Rg and T = 7.548K in equation (7.3), we then obtain ('; = 0.875,
which is slightly better than C'; = 0.87 obtained by Boss [13]. By comparison, Larson

[61] reported C'y = 0.72.
7.3 Conclusions

The pressureless collapse tests have tested the accuracy of the present numerical scheme.
In agreement with Boss [13], we found that the use of a coarse mesh can lead to
reasonably accurate results if: (a) the number of grid points is made as large as possible,
{1) the artificial viscosity terms are neglected, (c) the grid is initially allowed to contract
with the fluid, (d) a small enough fraction of the CFL-time step is used, and (e)
the radial advection terms are written in compact form. Thus, for multi-dimensional
calculations, in order to get improved accuracy particular attention should be paid
to points (b), (c), and (e), since point (d) is already implicit due to the constraints
imposed by the 2- and 3-dimensional meshes. Even for a large fraction (f = 0.9) of the
CFL-time, the initial optimum At will correspond to nearly 1/8 (2-dimensional case)
and to ~ 1/20 (3-dimensional case) of the initial At allowed by the radial flow in the
1-dimensional case.

The improvements obtained in some of the spherically symmetric runs, with respect
to the results of other donor-cell codes, are apparently due to the superior approxima-
tion given by the compact representation of the radial advection terms. As previously
noted by Durisen et al [33], if the gravitational potential is being sufficiently accurately
computed, any improvement further enhancing the accuracy of the Poisson solver, will
have negligible effects on the accuracy of the hydrodynamical approximation.

The good response of the 1-dimensional code to the physical situations typically
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encountered during the isothermal collapse of protostellar clouds, as well as its high
sensitivity with respect to the Jean's criterion, make us guardedly optimistic about the

2- and 3-dimensional schemes.
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Chapter 8

Axisymmetric Collapse

More realistic numerical simulations of early protostellar collapse must include at least
the effects of magnetic fields and rotation, as is clear from observations of dense inter-
stellar clouds. Such effects are expected to influence gravitational collapse by forcing the
cloud to flatten and hence, to substantially deviate from spherical symmetry. These de-
viations will eventually amplify giving rise to either axisvinmetric or non-axisyminetric
instabilities. The study of how these perturbations grow during anisotropic protostellar
collapse, is of great interest in connection with the theory of star formation. Therefore,
a multi-dimensional treatment of the collapse is mandatory if important additional
physics is to be gradually incorporated. The extension of the present 1-dimensional
version of the code to 2-space dimensions, besides representing the first step in relaxing
the idealized assumption of spherical symmetry, allows for dealing with the dynamical
growth of axisymmetric perturbations, which may well occur in realistic protostellar
evolution.

Most of the implemented 2-dimensional codes have been mainly concerned with
studying the effects of rotation only during the isothermal phase of protostellar collapse.

The neglect of magnetic fields is physically justified if the calculations are started at
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the end of the molecular cloud formation stage (n > 107%*¢cm™3). At this epoch of the
evolution, we may expect the magnetic field in the cloud to he essentially detached from
the exterior background medium, so that magnetic torques are no longer able to act
so as to transfer angular momentum outwards from the collapsing cloud. Furthermore,
the molecular and turbulent viscosities are negligible for the initial collapse phase of
interstellar clouds and, hence, we cannot expect appreciable transfer of angular mo-
mentum by shear stresses during the isothermal stage. The initial protostellar collapse
should therefore proceed dynamically with each element of fluid moving inwards with
conserved angular momentum.

That rotation is however a crucial effect was demonstrated by the numerical calcu-
lations of Larson [63], who found that initially non-rotating, axisymmetric, isothermal
clouds collapse in a similar way to spherically syminetric clouds, even when the initial
configurations are assumed to be deformed. This means that in the complete absence
of rotation, any tendency of initial deformations to amplify during the gravitational
collapse, may very well be impeded by the action of the pressure forces. Only when
such clonds were allowed to uniformly , did axisymmetric perturbations grow giving
rise to ring-like density enhancement in the inner regions.

Ring formation as first observed by Larson [63], has been’successively reported hy
other workers [4,8,14,17,84,111,115]. This agreement confirmed that the occurrence of
ring formation may constitute a natural event in the collapse of axisymmetric isothermal
clouds. However, the physical plausibility of this outcome was questioned by the results
of a few investigators [31,56,75,85,113], who did not observe ring formation but rather
disk formation at the end of their isothermal collapse calculations. This apparent

disageement was attributed in part to deficiencies in numerical techniques, as in the
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case of Kamiya [56] (whose Lagrangian code introduced strong distortions of the mesh
in the innermost regions of the computational grid), and in part to the inability of
some of the schemes to conserve angular momentum locally and globally (as it was
the case of Deissler [31] and Tsharnuter [113] codes). Furthemore, semi-analytical
[111] and analytical [14] calculations have also shown that the numerically predicted
rings may constitute a real phenomenon. Although these calculations were made in the
pressureless limit with each particle in the cloud being subjected to a static hackground
potential field, they have provided good physical insight into how rings may develop, in
more eleborate numerical simulations. If angular momentum is conserved, the action of
the gravitational and centrifugal forces could be sufficient to excite a ring-like density
wave. The innermost particles, having collapsed more rapidly than the outermost ones,
reach their minimum radii first and start moving outwards away from the rotational
axis, while the outer particles, which have not yet reached their minimum radii, are
still infalling. In this manner, the outwardly and inwardly directed particles meet each
other forming a well pronouﬁced ring-like density enhancement, which then propagates
outwards,

The existence of ring solutions is of further importance due to their intrinsic unstable
nature with respect to fragmentation when treated in 3-space dimensions [87].

In the following sections, we shall illustrate and discuss a few important tests carried
with the 2-dimensional axisymmetric version of the present numerical code. The first
crucial test deals with the question of local conservation of angular momentum. The
local conservation of the donor-cell advected angular momentum is expected to he
improved by the partially centred scheme introduced in Chapter 6. Section 6.8. The

2-dimensional code has also been tested to check the ability of the hydrodynamical
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approximation to maintain a spherically symmetric collapse in the absence of rotation.
Finally, the sensitivity of the scheme to ring formation is established for three isothermal
collapse runs. The initial conditions for such models were chosen to allow for direct
comparisons with the results obtained by Black and Bodenheimer [4] and Boss [12,14].
Furthermore, the structure of the numerically obtained rings is compared with the

equilibrium structure of the rings predicted analytically by Ostriker [91].
8.1 Consistent Advection of Angular Momentum

As previously noted in Chapter 6, Section 6.8, the first-order accuracy of the donor
cell transport introduces a spurious diffusion of angular momentum within the mesh.
This anomalous behaviour is corrected here by partially centring the specific angular
momentum. In this manner, we improve the local conservation of angular momen-
tum, even though the entire hydrodynamical approximation is still formally first-order
accurate due to the donor cell advection of the remaining variables.

To correctly test the sensivity of the 2-dimensional code with respect to local conser-
vation of angular momentum, we consider the collapse of a uniform-density, uniformly
rotating, isothermal cloud, with a small ratio 3 of rotational to gravitational energy.
The collapse of this configuration should initially proceed isotropically, with the density
of the inner regions increasing while remaining uniform due to the absence of a central
pressure gradient. In these conditions, the fluid in the inner spherical shells, which
is still rotating at a uniform rate, will collapse with constant total mass and angular
momentum. We may then establish a relation between the density p and the angular

velocity w of the the central plateau. That is, since M x pr® and J x Mwr? are
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constants for some particular shell of radius 7, we have that

2/3 _
Wolateau X Pplatequ: (8.1)

if the angular momentum J is locally conserved.

The analytical law (8.1) has been tested numnerically for the isothermal collapse of
a 1Mg molecular cloud (p = 2) with a temperature of 10K which is initally stationary
with pp = 1.38 X 1078gem ™2 and wp = 1.52 x 1073571, This model corresponds to a
protostar with inital ratios of thermal and rotational energy to the gravitational energy
of @ = 0.549 and J = 0.02, respectively. The calculation was carried out with a radially
moving grid (N, X Ng = 241 cells) and At = 0.4Atss. In figure 8.1, we illustrate the
equatorial density and angular velocity profiles at 0.487¢;; in the collapse. The central
plateau is well confirmed by the calculation, with the densitv and the angular velocity
being uniform for the innermost 11 radial cells. At this time the collapse is roughly
sperically symimetric and proceeds rather slowly with maximum infall radial velocities
slightly larger (~ 0.17kms™!) along the rotational axis than in the equatorial plane
(~ 0.16kms™1).

To find out how well the numerical equatorial profiles (in Figure 8.1) match the

analytical law (8.1), we write

num
plateau

logw = MNogppiiies, + log K, (8.2)

plateau

where the constant K may readily be obtained from the initial uniform density and

angular velocity distributions. Solving for A in equation (8.2), we obtain that wyjgtequ x

2.0022/3

lateau for the numerical plateau. This result is surprisingly good and indicates that

there is only a very slight amount of remaining inward transfer of angular momentun.

When the same run is carried out by advecting the angular momentum with the usual
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Figure 8.1: Profiles of the equatorial density (blank squares) and angular
velocity (dots) at 0.487ts¢ in the collapse. The existence of an extended

central plateau is confirmed by the calculation.
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donor cell method, the angular velocity of the central plateau veries as w x p2:99/3. It
is clear that the amount of inward transfer of angular momentwum in the inner regions
increases due to the rather strong spurious diffusion of the donor-cell advection. This
situation confirms the conclusions which were reached in Chapter 6, Section 6.8, hy
comparing the leading truncation errors for both methods.

1.97/3

For the same initial model Boss [14] obtained the numerical law w x p when

advecting the angular momentum with the partially centred scheme and w x p211/3
with the standard donor cell method. In his case, the angular momentum is being
slightly transferred outwards rather than inwards. He argued that erring on this side
of the analytical law (8.1), ring formation would be inhibited and hence, if rings are
numerically detected, they are not being produced by the inward transfer of angular
momentum. However, independently of the side on which the numerical exponent is
deviating from its analytical value, we may conclude that the present numerical scheme
is apparently doing a better job than the Boss code in locally conserving the angular

momentum. In our case, the numerical law w o p2-0022/2

matches the analytical profile
(8.1) with a relative error of 0.001% against the 0.015% relative error obtained by Boss
(14]. This improvement may be attributed to the superior difference approximation
ohtained by the use of the radial compact quotients.

The 2-dimensional code was further tested for an initially non-rotating sphere. ’I;he
initial conditions were chosen as a 1A{; atomic hydrogen cloud at 7' = 100K with

a uniform density of 1071°gem =3,

This model is the same one used for testing the
1-dimensional isothermal code [See Figures 7.4(a) and (b) of Chapter 7]. At 0.971¢s,

when the central density reached the value of ~ 2.2 x 1073gcm ™3, the density of the

first shell of cells was spherically syminetric up to the ninth significant figure towards the
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synunetry axis (# = 0), and up to the twelfth significant figure towards the equatorial
plane (8 = 7/2), out of fourteen digits carried‘ The radial velocity, on the other hand,
remained spherically symmetric up to the tenth significant figure in the innermost two
shells, while for the outer shells both the density and radial velocity were isotropic up
to the twelfth digit and, in places, up to the thirteenth digit. This result demonstrates
that the 2-dimensional code is able to recognise a spherically symmetric configuration

(with good accuracy), confirming the situation found by Larson [63].
8.2 Ring Formation

In this section, we discuss the phenomenon of ring formation in the isothermal col-
lapse of axisymmetric rotating clouds, as it is actually observed with the present 2-
dimensional code. We consider three different collapse models initially at rest with
uniform density and angular velocity distributions. The first model 2D1 is a 1M
molecular cloud (g = 2) at 10K with pop = 1.38x1078gem ™2 and wp = 1.52x 10713571,
corresponding to initial ratios of thermal and rotational energy to gravitational energy
of @ = 0.549 and 3 = 0.02, respectively. This model is the same used in Section 8.1 for
testing the local conservation of angular momentum and has been chosen to allow com-
parisons with results obtained by Black and Bodenheimer [4] (case 1A) and Boss [14]
(case I). The second model 2D2 was a 115 molecular cloud (¢ = 2.45) at 7.5K with
po = 4.75x107¥%gem ™3 wo = 3x 10713571, and initial ratios & = 0.479 and 3 = 0.226.
These initial conditions are nearly the same as those used by Larson [63], with the only
difference being that his initial cloud was slightly hotter (7' = 10K ). Model 2D2 has
been used to test the consistency of ring formation with the present numerical code.

Finally, the third model 2D3 corresponds to a 1M molecular hydrogen cloud (p = 2)
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at 10K and initially with po = 1.44 x 107 gem ™3, wy = 1.56 x 10712571 « = 0.251,
and 3 = 0.202. The sets of initial conditions for models 2D2 and 2D3 are the same as
those of the Boss [12] cases 2D-II and 2D-IV, respectively.

All runs were performed on a radially moving grid, with either 20 or 30 radial grid
points, using a constant-volume boundary condition and usually with At = 0.4AtcFr.
In none of the above cases was additional artificial viscosity needed to mediate the
shocks which arose, as the numerical diffusion implicit in the donor-cell advection of
the hydrodynamical variables was sufficient to ensure stability. All of the initial models

satisfied the instability criterion for gravitational collapse
<1 -—1.433, (8.3)

first derived by Larson [63] and then reviewed and expressed in terms of the parameters
a and 3 by Black and Bodenheimer [4]. By neglecting the effects of rotation (3 =
0), inequality (8.3) reduces to the classical Jean’s criterion for spherically symmetric
collapse.

Model 2D1 is a very slow rotator compared with the other two models. This cloud
starts collapsing rather slowly, with the collapse being nearly spherically symmetric
until about 0.5¢¢;. At this time, the collapse begins to deviate from the initial spherical
symmetry, with the material falling down the rotational axis experiencing a slightly
more rapid inflow than that near to the equatorial plane. This situation arises because
the axially directed flow is not being retarded by the centrifugal forces, which become
stronger and stronger towards the equator. There is then a continuous flattening of
the cloud in the inner regions due to the non-homologous nature of the collapse. At
the end of the flattening phase (by ~ 1tff), the outermost zones are still collapsing

approximately in spherical symmetry with infall radial velocities (~ 0.2kms™!) lower
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than those experienced by the innerinost and intermediate regions. At 1.070¢¢y, a well-
marked disk-like density distribution forms in the central portions of the cloud, as seen
in Figure 8.2.

Figure 8.2 is a meridional contour density plot for the inner nine shells. Due to
the assumptions of azimuthal symmetry (9/9¢ = 0) and reflection symmetry about
the equator, the calculations are here represented in one-quarter of a full cross-section
through the centre of the computational volume [See Figure 4.1(a)]. All contour density
plots have been performed with the aid of the CONRAS routine, a “super” version
of the CONRAN contour-plotting package. The contour lines are obhtained by first
triangulating the input data (the logarithms of the cellwise densities) and then by
interpolating the triangulated data with a smooth C1 surface interpolation algorithm.
The numbers appearing on the contour lines correspond to the logarithm of the density
and represent changes by the interval factors given in the captions.

At 1.070ts¢, the material in the inner regions of the cloud is collapsing considerably
more quickly along the axis (v, ~ 0.8kms~!) than along the equatorial plane (v, ~
0.3km="1) with the infall radial velocities in the fourth and fifth inner axial and main
grid cells being ~ 4 times the isothermal sound speed (C'y, ~ 0.2kms™!). The radial
velocities in the innermost three axial and main grid cells (j < 3) have reversed, so that
the material in these regions is now experiencing a bounce. This outwardly directed
flow then indicates that a shock front has formed just ahove the central disk. The shock
is strong near the axis and extends up to 6 ~ 50° (j = 6), where it diffuses out. The
shock has been produced because of the rapid infall of matter in the region of the axis.
The effect of this situation is then a continuous piling up of material in the centre, with

a consequent abrupt increase of the density to the point where the pressure gradients
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were first enough to hinder the flow and then to reverse it. The matter in the innermost
equatorial zones is still collapsing at a rather slow rate (v, ~ 0.1 — 0.2kms~!) because
part of the gravitational force there is supplying the centripetal acceleration of the
rotational motion. Note that the maximum central densities of the disk-like core are
roughly 4.3 x 107*3gem ™2, so that by this time a few central zones have exceeded the
isothermal limit (p ~ 3x 107" gem™2). The situation is qualitatively in good agreement
with the results obtained by Boss [14] although in his case, the disk formed slightly
later (at ~ 1.079t;¢) with maximum densities of the order of 1.5 x 107 *2gem =2, i.e.
about three times higher than those reported here. This difference may be explained in
terms of the short time-scale governing the events in the central regions of the cloud so
that a small shift in time could lead to an appreciable difference in the final maximum
densities.

Slightly after 1.070¢¢¢, the central density begins to progressively decrease and a
new region of maximum density starts forming off-axis in the equatorial plane. This
situation arises because the combined effects of the thermal pressure and centrifugal
forces are <nfficient to produce a slight outflow of mass in the innermost equatorial
zones. The maximum off-axis density increases while moving slightly away from the
axis on a time-scale of only 0.024t;¢. The evolution of the central and maximum
equatorial densities is shown in Figure 8.3. We note that by 1.09t;;, the density at
the centre is roughly 2 orders of magnitude smaller than that at the equatorial density
peak. In Figure 8.4, we show a contour density plot (including the six inner shells)
showing the inner structure of the cloud at 1.094¢;. A ring is clearly observed in the
equatorial plane. At this time, the shock front has moved down the rotational ax’is,

and is located at r = 1.98 x 10'cm, as indicated by the heaping of density contour
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lines near to the axis. The material which is infalling ahead of the shock is eventually
diverted away from the cloud centre and is constrained by the shock itself to flow
towards the gravitational potential minimum (at the centre of the ring). Meanwhile,
the radial velocity field in the innermost equatorial zones is such that the mass from
the centre and from the outer regions of the cloud is accreting onto the growing ring.
The accretion is observed to be slightly stronger just above the equatorial plane. The
maximum radial infall velocities (~ 1.36 — 1.37kms™!) occur in the region of the axis
in the range ~ 3.3 x 10'em < r < 5.0 x 10'¢m (third and fourth axial cells). This
is in agreement with the location of the density minimum region in Figure 8.4. The
maximum outward r-velocity (~ 8.Tkms™1) is observed to occur in the innermost j = 8
cell (6 ~ 65°). This high velocity flow is the responsible for the S-shaped density contour
line in Figure 8.4. A similar feature was also observed by Boss [14], who argued that
this is only a transient feature caused by the rather chaotic nature of the flow pattern
in this region of the cloud.

In Figures 8.5, and 8.6, we now show the equatorial density, radial velocity, angular
velocitv. and specific angular momentum profiles at 1.094t;;. These profiles can be
compared with those previously obtained by Black and Bodenheimer [4] (case 1A) and
Boss [14] (case I). Qualitatively, the profiles agree quite well although there are some
quantitative differences. The ring produced by the present 2-dimensional code is centred
at r = 1.97 x 10%em compared with 3.4 x 10Mem for Black and Bodenheimer and
2.7 x 10'*cm for Boss. Also, the maximum density in the ring is 2.73 x 107 12gem =3, in
our case, with a central density of 3.54 x 1074gcm 2. Black and Bodenheimer obtained
a maximum ring density of 1.5 x 107*2gcm =2 and a central density of 6 x 10~ *gem =3

at 0.9tsf, while Boss reported a maximum ring density of 2.5 x 107*2gem™2 and a
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central density of 3.4 x 107 *gem =2 at 1.01t¢¢. In all three cases, the numerical rings
are consistently formed in the near-isothermal density range. Our results are closer to
those given by Boss [14]. In the present case, the ring is slightly more dense than the
Boss ring and considerably more dense than Black and Bodenheimer’s ring. Boss [14]
argued that this difference could be due to the fact that in the Black and Bodenheimer’s
case the ring is not well in equilibrium. The radial velocity distribution obtained here
agrees with that obtained by Boss, with the position of the zero between the outwardly
and inwardly directed flows nearly coinciding for the two cases. The value of the
maximum infall velocity is also in good agreement. The angular velocity plot confirms
that the point of maximum rotation lies at the centre of the growing ring, while the
material on either side rotates at a progressively reduced rate as we go further from
the region of maximum density. The specific angular momentum profile is in good
agreement with the corresponding one obtained by Black and Bodenheimer at 0.9t .
The specific angular momentum decreases monotonically inwards from the outermost
portions of the cloud. At r ~ 1.05 X 10'®cm (the zone of most rapid equatorial infall),
the sperifi~ angular momentum shows a weak tendency to increase in the region of
minimum mass [See Figure 8.6(b)] and then decreases drastically in the presence of
the ring and towards the innermost zone. This behaviour is characteristic in situations
where an accreting ring is developing. The mass involved in the inner regions is only a
small fraction (~ 0.03) of the total cloud mass.

We now compare the structure of the numerically calculated ring with the equilib-
rium structure analytically predicted by Ostriker [91], for isothermal, uniformly rotat-
ing, self-gravitating rings whose thickness a/, is small compared with the distance R,

of the ring from the rotational axis. As pointed out by Black and Bodenheimer [4], in
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the numerical case the ring is not isolated as in the analytical description, but rather it
is embedded in a roughly disk-like mass configuration, which gravitationally influences
the ring itself. Also, the numerical rings are not necessarily thin (a,/; < R,) or in
uniform rotation. It is observed from Figure 8.4, that the numerically obtained ring is
highly flattened with an equatorial diameter significantly larger than the diameter per-
pendicular to the rotational axis. In the following, we shall consider three parameters:
(a) the characteristic minor radius of the ring a5, within which one-half of the ring
mass is contained; (b) the mass per unit length of the ring M, /L, = M, /(27 R,), where
R, is the distance of p,4, from the rotation axis; and (c) the specific angular momen-

tum of the ring J,./M,. Following Ostriker [91], if the ring is in static equilibrium, we

have
M,  2kT (8.4
L. um,G’ 84)
SN V172
g, M. 3R,
= R.|G 1 -2 , R
= n (e (5 2] 55
M, 1 \!?

A further uncertainty in the comparison of the integral properties, is introduced hy the
fact that‘the numerical ring is resolved in only a few grid cells and we are compelled
to assign the numerical minor radius a;/, abs an average of the values in the directions
perpendicular and parallel to the axis [See Boss [12]], with the value of a;,, in each
direction being computed as the distance from the point of maximum density to the
point where the density has decreased hy roughly a factor of 3. The specific angular
momentum follows directly from the calculation and is determined by the value at the

cell containing the maximum density (of the ring), while the mass per unit length may
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be readily obtained from the analytical relation (8.6) by setting

M, :
< LT' >num - T‘-pmama%/z‘ (8' {)

The estimated value of a;/, for the present ring is 4.063 x 103cm compared with
Ostriker’s equilibrium value of ay/, = 3.8 x 10'3¢m. For the mass per unit length
and specific angular momentum, we obtain M, /L, = 1.42 x 10'gem~! and J, /M, =
11.32 x 10*8cm?s™!, respectively, as compared with the Ostriker’s values of M, /L, =
1.24 x 10*%gem™! and J,/M, = 7.45 x 10*8¢m?s~!. The angular momentum of the
ring is within ~ 34% of the analytical value, while the mass per unit length and the
minor radius are only slightly larger than the analytical equilibrium values. We may
conclude that the integral properties and structure of the numerically obtained ring
roughly agree with those expected for an equilibrium ring as predicted by Ostriker [91].
The discrepancies appear to indicate that the numerical ring is leaving the ‘equilibrium
state and entering a phase of self collapse (Phase IV of Black and Bodenheimer [4]).
Unfortunately, at this time the calculation is stopped because the ring mass has concen-
trated into three equatorial cells in radius. This evident lack of resolution would then
introduce strong inaccuracies destroying confidence in the physical reality of events in
any further evolution. The calculation was completed at 1.094¢;; after 993 computa-
tional cycles, with the total cloud mass being conserved exactly and the total angular
momentum being conserved to ~ 3 x 1074%. With the choice of At = 0.4Atcrr, about
one hour of Gould computer time was necessary to carry out the run in double precision
accuracy.

The 2-dimensional code was tested further to check the consistency of ring formation
with the present scheme. Convergence of the hydrodynamical approximation was tested

by varying the number of radial grid-points. For this test, we chose model 2D2, which is
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clearly a very fast rotator (3 = 0.226) and hence, we expect ring formation to occur at
lower densities than for model 2D1. A first run was carried out with N, = 20 points and
a second with N, = 30 points, with At = 0.3Atcpy in each case. In Figures 8.7 and 8.8,
we show the resulting equatorial density profiles. The location of the maximum ring
density coincides quite well for the two runs, with the 20 point calculation producing
a ring of maximum density pmae = 7.6 X 107 gem ™2 and radius r = 2.27 x 10%em
at 2.034t¢¢, and the 30 point run giving a ring with pe. = 9.46 x 107 gem =2 and
r = 2.35 x 10%%cm at 1.925¢t;;.  The 20 point profile has a slightly smaller radius
71 than the more accurate 30 point case, with the densities there being comparable
for the two plots. A similar situation was also found by Boss [12] for similar runs
with 20 and 40 radial mesh-points. By way of comparison, the 20 point calculation
of Boss [12] produced a ring of radius » = 2.7 x 10'°¢m with a maximum density of
7.7 x 107"°gem™* at 1.968ty, while his 40 point run formed a ring at 1.871t;; with
a maximum density quite comparable to that shown in Figure 8.9 for the present 30
point profile. However, in the Boss case, the rings occurred at the third radial grid
point rather than at the second, with the inner points r; being at considerable smaller
densities. Since the central densities in the present calculations are nearly comparable
with those obtained by Boss, this technical discrepancy is not worrying because it is
essentially due to the fact that the Boss grid was able to contract slightly more than
ours.

The calculations for the plots in Figures 8.7 and 8.8 were stopped at slightly different
times corresponding to when a rather strong shock forms on the rotational axis near to
the centre of the cloud, which then reduced the time step to a point at which calculation

of further evolution would have been prohibitive. Ring formation for this model was
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observed to occur in a similar manner as described above for model 2D1. For hoth
runs the global mass was again exactly conserved, while the total angular momentum
was globally conserved to 6 x 107%% for the 20 point case and to 3.3 x 107°% for the
30 point run. The density profiles in Figures 8.8 and 8.9 were obtained after 1760 and
1801 steps, respectively, corresponding to nearly 2 hours of computational time on the
Gould machine.

We now consider the axisymmetric collapse for model 2D3. This model represents a
rapidly rotating protostellar cloud of low thermal energy (o = 0.251) compared with the
other two models. The collapse of such configurations is physically interesting because
clouds with relatively low thermal energy have low thermal pressure and hence, the
evolution should be rich in dynamical behaviour. The initial conditions for this model
were chosen to allow comparisons with the Boss [12] case 2D-IV.

At the beginning, the collapse is dominated by a flattening phase similar to that
experienced by models 2D1 and 2D2. After approximately 1.1¢4f, the central regions
bounce and an off-axis density maximum appears, as shown in Figure 8.9. The radial
infall velocities in the inner regions near to the equator are so small (~ 0.03kms™1), that
they can be easily reversed and a slight outflow is set up in the innermost equatorial
cells. Meanwhile, the flow down the rotational axis is proceeding without experiencing
any bounce and velocities in this direction are significantly higher than those for the
equatorial flow. In contrast with the situation encountered for model 2D1, here the
increasing centrifugal forces are sufficient to reverse the direction of the flow in the
region of the equatorial plane before the formation of any clear shock perpendicular
to the rotational axis. However, this is a merely transient feature. The immediately

subsequent evolution is characterized by an oscillation of the central density about a
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preferred value of ~ 1.6 X 107**gern =2, with the maximum density of the weak ring
remaining nearly constant until about 1.35¢¢¢. In the meantime, by ~ 1.25t, the rapid
infall down the rotational axis has formed a shock front, which extends up to 6 ~ 56°.
The shock gives rise to an outwardly directed flow in the innermost five axial and
main grid (7 < 7) cells. At this time the maximum infall velocities (~ 1.04kms~!) are
along the axis, while the equatorial matter is moving inwards with a maximum velocity

of only 0.3kms!.

The flow in the innermost equatorial zone is no longer outwards
although it is still proceeding at a reduced rate. At ~ 1.35ts;, the flow pattern is
such that the material in the innermost axial and main grid (j < 8) cells behind the
shock reverses direction and starts collapsing towards the centre, while the that ahead
the shock is being deflected towards the gravitational potential minimum (at the ring).
Meanwhile, the flow in the innermost four equatorial cells has again reversed. This
rather complicated flow pattern explains the increase of hoth the central density and
the maximum ring density after ~ 1.3t;; as observed in Figure 8.9. At this time, the
maximum ring density is located at the fifth inner radial grid point. The evolution will
essenfiallv nroceed in this manner until ~ 1.51t¢¢. After this time, the continued infall
of material towards the centre (behind the first shock) gives rise to a steep pressure
gradient which then reverses the flow. A second shock forms and the material bounces
in almost all of the innermost cells. By ~ 1.55t¢, the first shock front has essentially
disappeared and a well defined flow pattern is established, with the matter in the
innermost two shells flowing outwards roughly isotropically. This leads to a drastic
reduction of the central density and the formation of a dominating ring structure.

In Figures 8.10, 8.11, and 8.12, we show equatorial density profiles at slightly dif-

ferent times illustrating the development of the ring. Finally, in Figure 8.13, we show
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a contour density plot (including the inner 7 shells) detailing the inner structure of
the collapsing cloud at 1.55t¢;. The final configuration is strongly flattened and the
marked bunching of contour lines near the axis at » ~ 5.4 x 10*cm indicates the pres-
ence of the shock front. At this time, also the outermost regions (near the houndary
of the cloud) have also experienced a slight flattening. The calculation took 874 cycles
to reach 1.55t¢¢ following which further evolution was inhibited because the ring mass
hecame concentrated in only a few cells and the time step became extremely small.
However, for this model we left the code running for about one day (7435 cycles) in
order to observe the evolution of the maximum ring density. It was found that ring
continued to evolve with the maximum density oscillating about a nearly constant value

at constant radius. This is in agreement with the results obtained by Boss [12].

8.3 Conclusions

In this chapter, we have studied the response of the 2-dimensional version of the code
to the question of ring formation. The sets of initial conditions were chosen to allow
comparison with the results previously obtained by Black and Bodenheimer [4] and
Boss [12,14]. We have observed the formation of ring structures similar to the ones
that reported by these authors. In the numerical picture, ring formation occurs as a
natural consequence of the interplay between the gravitational forces and the combined
effects of pressure and centrifugal forces. The collapse is observed to be characterized
by an overall flattening of the cloud during the first free-fall time, followed by a central
bounce of the collapsing material and subsequent shock formation. An off-axis density
maximum then appears as a consequence of the flow reversal in the innermost regions

around the equatorial plane. The ring forms and develops by accreting mass from
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the surrounding regions on a very short time-scale (~ 0.01 — 0.02¢74). At the end of
each continued calculation, the outermost regions of the cloud were still infalling with
roughly spherical symmetry but at a reduced rate. Only for initially rapidly rotating
clouds with low thermal energy, was a substantial amount of flattening observed in the
outermost layers.

The sensitivity of the numerical scheme to local conservation of angular momentum
is improved when the specific angular momentum is properly centred at the computa-
tional cell borders. For initially slow rotators, the analytical law w x p?/3 is reproduced
numerically with an error of 0.001% showing that only a very small amount of inward
transfer of angular momentum remains. Thus, the code is seen to have quite good local
conservation of angular momentum. Global conservation of all advected quantities is
ensured by the donor cell method. Furthermore, the axisymimetric code is also able to
recognize (with a high accuracy) a spherically symmetric collapse when the rotational
effects are removed.

Finally, when the number of grid points is varied only small differences are ohserved
between the numerically calculated rings. Hence, the hydrodynamical approximation
seems to converge satisfactorily to a unique solution. These results are important
because they indicate that acceptable accuracy is maintained even with a relatively

small number of mesh-points.
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Chapter 9

Further Research

The Gould computer has been quite suitable for development work in 1- and 2-space
dimensions, even though it has been necessary to carry out the runs with double pre-
cision accuracy in order to get results of comparable accuracy to those obtained hy
other workers on a CDC 7600 machine in single precision. However, under these cir-
cumstances runs of the 3-dimensional code become extremely expensive. A typical
3-dimensional test run needed about 12 hours of CPU time on the Gould machine to
complete ~ 1t¢¢ in double precision. After this time, the stretched computational grid
required such small time steps that following the solution further became impossible.
In practice, the smallest time step will generally occur in the innermost portions of the

grid where

ArAGA P
Atcpr = Aty = m
Thé product AGA¢ is 1/20 or smaller so that the Courant time for explicit 3-dimensional
calculations is about 1/20 of that allowed for the spherically symmetric case. In view
of this, the 3-dimensional code was initially run with a large fraction (f = 0.9) of the

Atcrr, and when a negative density occurred due to this rather large fraction, the

calculation was stopped and then re-started with progressively smaller fractions of the
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Atcpr. This strategy, however, has not significantly eased the computational time de-
mand. For this reason, the 3-dimensional scheme has been only tested superficially. A
run was carried out for an initial 1.} g molecular cloud (¢ = 2) at T = 10K with uniform
density po = 1.44 x 1071"gem =2 and uniform angular velocity wy = 1.56 x 10~125~1,
This set of initial conditions is the same as that of the Boss [15] case 3D-II. The cal-
culation was carried out in single precision in order to reduce the computational time
required to observe fragmentation into a binary system (as expected after ~ 1.4¢;;).
Qualitatively, the results obtained were found to compare well with those of Boss [15]
for the same test. However, this run cannot be considered as a definitive production
run and, hence, it has not been described in the present thesis. With the single pre-
cision of the Gould machine, the Poisson solver is capable of recognizing a spherically
symmetric distribution only up to the fifth significant figure instead of the fourteenth
as previously. This obviously introduces errors in calculating the potential, of a level
at which the hydrodynamical calculation could be prejudiced.

In the near future the 3-dimensional code will be tested on a faster machine having
single precicion accuracy at least comparable with the double precision accuracy of the
Gould computer.

A further planned development is the inclusion of radiation transfer in each of the
versions of the present code. This will then allow the calculations to follow the non-
isothermal evolution of protostellar clouds. In this case, the calculations become more
complicated because we must include radiative transfer in the energy equation and solve
a coupled radiative equation. Furthermore, we need relations for the gas pressure,
internal energy, and opacity as functions of the density, temperature, and chemical

composition. The solution of the energy equation needs to be obtained implicitly in
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contrast to what is done for the continuity and momentum equations, which are solved
explicitly. The reason for this is that otherwise we shall run into a severe time-step
restriction due to the presence of the radiative transfer term in the energy equation. The
transport of internal energy through the computational grid will again be performed
using the donor cell method.

Finally, the profiles shown in Chapters 7 and 8 could be substantially improved by
calculating the hydrodynamics with a more sophisticated method. One way to do this
is by correcting the donor-cell flow accros the cell borders [Boris and Book (1980)] by a
technique generally referred to as the Flux Corrected Donor Cell Method. This could

be tried first in 1- and 2-space dimensions with relatively small computational cost.
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Appendix A

Solution of the Poisson Equation
in Two Space Dimensions

In this appendix, we give details of the Poisson solver implemented in the 2-dimensional
collapse calculations. The general solution method is seen as a restricted case of that
described in Chapter 5 for the 3-dimensional problem.

For axisymmetric flows, the gravitational potential at each point of the spherical
cloud is determined by equation (3.19). This equation can be solved by separation of
variables, if we define the gravitational potential and the density as Legendre polyno-
mial ¢xprazions of the form

Z@l )Pi(cos 8),
!

=0
=Y pi(r)Pi(cosb), (A1)

1=0
where ®;(r) and p;(r) are the Legendre coefficients of ®(r,8) and p(r, ), respectively.
If we substitute the expansions (A.1) into equation (3.19), perform the change of

variable © = cos #, and then use the identity
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we obtain the following simplified differential equation for the potential coefficients

d?®(r) . gd@l(r) B I(1+1)
dr? rdr 72

T)(r) = dxGpy(r), (A.3)

which exhibits exactly the same mathematical form of equation (5.4).
The density coefficients p;(r) needed for the solution of equation (A.3) are deter-
mined by using the orthogonality condition for the Legendre polynomials. After a

straightforward operation, we find that

2041 g+t
plr) = = /1 p(r,z)Py()da. (A.4)

The external boundary condition on the gravitational potential is then specified in
terms of its Legendre coefficients ®;(r) by assuming that there are no masses outside
the computational grid which alter the gravitational field inside the collapsing cloud.
Then, setting p;(7) = 0 in equation (A.3) and solving for ®;(r), we obtain only one

solution which remains finite as r — co. This solution is
&y(r) x D), (A.5)

and it applies for any r > Ro. Differentiating expression (A.5) once, we get, at the

spherical boundary

. =], = (A.6)

This boundary condition is basically the same as that used to solve equation (5.4) in the
3-dimensional case, and it is mathematically sufficient for a consistent solution of equa-
tion (A.3). The inner boundary condition is specified by demanding that ®(r, ) and
its first derivatives be continuous functions at the cloud centre (7 = 0). Furthermore,

the assumption of reflection symmetry about the equatorial plane (6 = 7/2) simplifies
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the calculations because only the {-even terms are actually needed in the expansions
(A.1). Therefore, the number of differential equations (A.3) that must be solved to

determine the potential coefficients is reduced by half.

A.1 Determination of the Density and Potential Coeffi-
cients

In order to solve the differential equation (A.3), we must evaluate the integral in equa-
tion (A.4) for the density coefficients. This integral is similar to that given in (5.12)
and hence, it may be conveniently evaluated by means of a Gauss-Legendre quadrature

formula [42]. In analogy with equation (5.16), we may then write

241 [+ 20+1 &
plr) = 5= [ p(ra)P@)de x == 3 Hiplrap)Blay). (A

2

4

j=1

where the discrete abscissae a; are chosen as the roots of the Legendre polynomial
Py (z), and their corresponding weights H; as explicit functions of the roots [See equa-
tion (5.16)]. A more detailed discussion of this type of quadrature is given in Chapter 5,
Section 5.2, for the case in which the integrand is formed by the product p(r, z, ¢) P (),
with P/™(7) being the associated Legendre functions. Exactly the same basic consider-
ations and definitions also apply to the determination of the quadrature (A.7).

The non-zero roots of the Legendre polynomial Py(z) (which are symmetric with
respect to the origin @ = 0) determine the location of the §-points on the top and
bottom hemispheres of the spherical grid. Therefore, if reflection symmetry ahout the
equatorial plane is applied so that, for any integer j, we have p(r,a;) = p(r, —a;) and
P(a;) = P(—a;) (for | even), it follows from the symmetry relation for the weights,

H; = Hy_jn [42], that

o1 1 V2
pi(r) = — > Hip(r,a;)Pi(a;) 1=0,2,4,.., (A.8)
j=1
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for a; > 0. The new weights H! are related to the the old weights H; via equations
(5.19). The upper limit in the summation (A.8) gives the number of #-cells filling the
top hemisphere of the computational volume. In Appendix B, we give the computed ab-
scissae and corresponding weights determining the quadrature (A.8), when a resolution
of Ng = 11 is chosen to represent the calculations.

The next step in our numerical approach consists in replacing the exact differen-
tial equation (A.3) by a set of linear algebraic finite-difference equations, which are
simultaneously solved by applying the tridiagonal matrix algorithm. The discretiza-
tion technique and the solution method are fully described in Chapter 5, Section 5.3.
In practice, we retain in the summations (A.1) terms up to and including { = 6. This
limited number of terms provides sufficient accuracy in evaluating the gravitational
potential.

The gravitational potential for the axial cells is readily obtained by setting = 0

in the Legendre sumimation (A.1).
A.2 Gravitational Potential at the Cloud Centre

In the 3-dimensional case, the gravitational potential at the centre (r = 0) has been
approximately computed from the ® of the neighbouring main grid-cells by using a
limiting form of equation (3.25) at » = 0. The same procedure is also adopted for the
axisymunetric case.

If we evaluate equation (3.19) at r = 0, and then integrate each term over 6, we

obtain the limiting form

SRS
da — 47 G
3 J-a

/“ ?®(r, )

= p(0,z)de, (A.9)

where for convenience we have made the change of variable z = cosf. The second
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spatial derivative of the potential in the integrand is evaluated by expanding in a Taylor
series the potential of the first shell of cells about the centre [See Chapter 5, Section 5.6].
Neglecting derivatives higher than the second and using the condition (9% /0r),— = 0,
we obtain a first-order accurate, forward finite-difference approximation for the second

derivative at » = 0
2®(r,z)

_2[®(ry,z) — B(0, 2)]
or? ~

2 )
51

(A.10)

r=0

where 7; denotes the radius of the first shell of main grid-points. Inserting the difference
replacement (A.10) into equation (A.9) and re-arranging terms, we get the approximate

equation

+1 +1 2 +1
®(0,z)de ~ ®(ry,z)de — gﬂ'GT%/ p(0,z)dz. (A.11)
J1 -1 -1

From the same considerations made in Chapter 5, Section 5.6, the integrals in equation

(A.11) are evaluated by means of a Gauss-Legendre quadrature formula:

+1 Ny
3(0, ) > HI®(0,a5) = 28,,

J=1

2

J-1

+1 Ny

®(ry,z) = Y Hi®(ry,q), (A.12)
J=1
Ny

+1
[ o) = 3 Hp(0,a5) = 20,

J-1

-1

&

i=1

where ®. and p. denote the gravitational potential and the density, respectively, at the
central cell (r = 0).

Substitution of the quadratures (A.12) into equation (A.11) yields

Ny
1 2
e 5D Hi®(ry,a5) = SnGripe, (A.13)

Sl

which is only an approximate relation for the central potential. Note that relation
(A.13) follows from its 3-dimensional counterpart (5.64) if we take the potentials Pk

in the first shell of cells to be uniform in @.
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Appendix B

Abscissae and Weight
Coefficients of the 21-Point
Gauss-Legendre Quadrature
Formula

As previously noted in Chapter 5, Section 5.2, due to the almost complete lack of
available information about the zeros of the Legendre polynomial Py;(z), a root-finding
routine - originally implemented by Davis and Rabinowitz [30] - has been slightly
modified and then incorporated into the 2- and 3-dimensional versions of the code
in order to determine the Gauss-Legendre quadratures (5.18) and (A.8), for a f-grid
resolution of Ny = 11. The routine can be also used for any other value of Ny =
(N +1)/2, with N odd.

The algorithm computes the zeros of Py(z) by means of a Newton-Raphson itera-

tion scheme. Following Davis and Rabinowitz [30], we calculate starting values for the

{

ZEros :rj?\) by using the formula

1 \ 4j -1
SN:‘V“ (1————N‘2+§N"3) cos[ J 77} +O{(N)“4}», (B.1)

4N + 2

where the integer j takes values in the range (1,2, ...,(N +1)/2). If we set N = 21, the
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error in this approximation is ~ 5 x 107¢, which provides a good initial accuracy for
our purposes.
A sequence of two approximations to each zero Ty]z, (with 7 = 1,2) is defined by

first using a rapidly convergent, fifth-order Newton iteration scheme

W @ PulEi) 1 Py(=\) [ P N
TN e L 2y | Pyl

(B.2)

The terms PN(:I:S%), on the right-hand side of equation (B.2), are evaluated by using

the well-known recurrence formula for the Legendre polynomials

Po(fl}) = 1,
Pl(g:) = T,
P.(z) = %{(272 —1DazP,_1(z)— (n — 1)Py_a(z)] forn>2, (B.3)

while the first derivatives P]'V("cg(])\}) can be obtained from the relation

(1 — 2% P! (z) = n[Pa_1(z) — zP,(z)], (B.4)

in terms of the PN(a:S?\;). Finally, to evaluate the higher-order derivatives, we use the
second-order differential equation for the Legendre polynomials, which gives them as
linear combinations of lower-order derivatives.

Owing to the high accuracy of the starting values 1%), and to the very fast conver-
gence of the iteration scheme (B.2), it is sufficient to use only a first-order iteration

scheme

(B.5)



to compute the zeros with double precision accuracy, in the next approximation. Defin-
: 7. (1) {(0) : ‘ (1) 1 (1) :
ing Hj = 2y —z;y [from equation (B.2)], Py(z;y) and Py(z;y) may be conveniently

approximated by the Taylor series

. 1.
PN(wﬁv’) ~ Pu(aiy) + H;Py(2i) + S H] Pi(=iy)) +

+_ H3 III( )) 24H4P (l’ ))+O{(HJ)5},

Pho(ali) = Ph(a)) + BBy () + 2 HIP(20) +
+éﬁfpﬁ(;u§?v’.)+o{(ﬁj)4}, (B.6)
respectively. The use of these expansions in the iteration scheme (B.5) is then sufficient
to give exactly TS?\} = a;, when fourteen digits are carried.
The weight coefficients H; are then computed from an alternative relation to (5.16).

That is. if the a; are roots of Py(z) = 0, from equation (B.4) we have that

NPx_1(a;)

(a, -
P! S} — B.
lay) = “7 (B.7)
Substitution of relation (B.7) into equation (5.26) yields
2(1 — a?
H; = ( J) (B.8)

[N Py_1(a;)]*
To evaluate the terms N Py_q(a;), we use relation (B.4) and expand each term inde-

endently in a Taylor series about w('l), consistently with scheme (B.5). After some
p y iN

cumbersome algebra, we obtain

NPy _1(a;) = NPy 1(2iy) - Vel Ex(2l) = NV + 1) { B Px(: m)+
1~ (1) T / 1)
4 S H Py(ey) + ngP;V(mgN) + ﬂH Pttty + Bﬁg PRy +
+0{(f"fj)‘*}, (B.9)

oo (1)
where H; = a; — TN
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TABLE B1

Abscissae and Weight Coef ficients of the 21 — Point

Gauss — Legendre Quadrature Formula

.

0. DGOQOO0QOCOCTHIL+ 0D

L PRETSRLTCSTIIRO H D
L RETARE8EBG6EAZ1T D
. P200FFRZ41ICHGD+00
. B33C4&33&4 58332000
L 7EBITHTEBAT 26BLH00
L &ATI388CA1FTAIL+C0
. 3316138357 EZD+ 00
. 424342120207 34000

”.”BBO”IBXéPOEJHE*WO

L 1AE561853416050D+00

[os s

]

i OV LG

'\I'J"D’

Ne R NS

T A

N

S L ::1 7—,»1(‘13: T"‘ 7411_0.1
’?“Z 378977LREED-01
234354246857D- 08

.75100313&’83790-01
F34453423456034D-01

OR7272%%147 1 5D+00

-

. 1718311160837 3D+00

1372:893863324D+00
13TRE87IF47F107D+00

. 1815284035397 D+00

134051 1 3384555D+00

0. 32034456515349D0-01
G, 7ARO7B7IS4LT705D-01
0.711426388508537 1D+00
0..1522002272546746D+00
0.-18488B8846F1207D-+C0
0, 217594598334300+00
. 2A3662832107360+00
0.#645378"7 16667000
L 27RT747895821 5D+00
0. 2BY04880777954D+00
0. 136081 13384%967D+00

TABLE B2

Latitudes and § — Grid Spacings Used in the
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In Table B1, we list the positive abscissae and corresponding weights of the 21-
point Gauss-Legendre quadrature formula, as calculated from (B.5) and (B.8). The
accuracy of the root-finding routine has been tested against the tabulated data given
by Kopal [57], for odd values of N. Identical results were obtained, even carrying
fifteen decimal places. In Table B2, we give the polar location of the grid-points and
the #-spacings used in the difference representations, when Ng = 11 cells are included

along the f-direction.
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Appendix C

Finite-Difference
A pproximations

In this appendix, we deal with the basic finite-difference formulae used in the discretiza-
tion of the relevant differential equations.

In Section C.1, we deduce appropriate replacements for the first and second radial
derivatives involved in the simplified Poisson equations (5.4) and (A.3). The difference
approximations for the acceleration gradients in the momentum transfer equations are
given in Section C.2. In Section C.3, we derive the basic differences for the fluid

advectis¢ terms, and finally in Section C.4, we treat the explicit time integration.
C.1 A Three-Point Finite-Difference Scheme

Even for a variable radial grid, we can construct a second-order accurate finite-difference
scheme for the numerical solution of equations (5.4) and (A.3) by deriving suitable
approximations for the exact derivatives d®®/dr? and d®/dr. In order to do so, let us
consider Figure C.1 and denote the potential coefficients in equations (5.4) and (A.3),
in the domain r1 < r; < ry,, by ®;n(r;) = ®; and $(r;) = &;.

The grid-spacings Ar;, Ar;y1, and Ar;/y are as defined in Chapter 4, Section 4.2,
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Figure C.1: Possible radial grid configuration at step n.

that is

Ari = -7,

Ari+1 = Tiy1 — T, (Crl)

Il

1
S(Ari+ Ariyy).

&

Ari+1/2

Expanding ®; in Taylor series forward and backward from the ith radial point at

the time step n (the superscript for which is omitted for simplicity), we have that

d® 1 d*®

i1 =@ + e iAri+1 + o1 drt 'AT'?_l_l +
1 d&°® , 1 d*® ‘
+§—’—d7§' T?+1+E'd—T'TAT?+1+, (C2)
z 1
d® 1 d2e|
. — P - - P @ __
Bir =i - im‘ "2l dr?), i
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1 d*®
3 dr3

o 1 d*®
VTR AT

I3

Arf— ... (C.3)

13

Multiplying the expansion (C.2) by Ar? and (C.3) by ArZ ;, and then substracting
the second from the first, we eliminate those terms containing second space deriva-

tives. Grouping similar terms and solving for the first derivative, we finally obtain the

approximation

P (I’i A2 -1 (I’i — /\~2 ‘I),'_
{E‘L} o Divr (A — 1) 2 It R 52 (C.4)
dr J; Aripi(Aipr +1)

where the parameter \;1; = Ar;1/Ar; is always of order unity for smooth variations
of the radial spacings. The error implied by the replacement (C.4) is

>
dr3 |

1

1
B = =2 hia(Ar)? —0{(ary}. (C.5)

Similarly, multiplying expansion (C.2) by Ar; and (C.3) by Ar;;; and adding the
resulting expansions, we now eliminate the terms containing first spatial derivatives.

Grouping terms as before and solving for the second derivative, we get

d*® D, — (N D@, + AP,
_.,5_ ~ +1 T ( +1 + ) + +1 1 + E;, (CZG)
dr i _Q'Ari—{-lAri(/\i—f—l + ].)
with an error of the form
1 : d*® 2 ' -
Bl = —3(Ar1 — 1A, Egi—o{(mi) } (C.7)

The first terms on the right-hand side of (C.4) and (C.6) approximate the first and
second derivatives on the left-hand sides to second and first order accuracy, respectively.
They are generally referred to as partially centred difference replacements. If we set
Ai+1 = 1, as it should be for a uniformly spaced grid, the approximations (C.4) and

(C.6) automatically reduce to second-order accurate centred differences of the form

{d(b} K TINEE TR , 33 (c.8)

dr . 2A7; ~—6(Ari) drd |’
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(A?”,’)z ——

dr? - Ar? 12 (C.9)

1

{m} B 2B 4 B, 1

i
It is interesting to note that the replacement (C.6) can be made nearly second-order

accurate by matching the dominant truncation errors (C.5) and (C.7) by setting [90]

1 d*® 1 o &3P '
g(/\i_{_l - 1)A7’,’ E;g— i = éAi—}-l(Ari) 37'_3 i . (ClO)
This relation then leads to the following prescription
Aripy = Ari[1 4+ kAr;]  with &k = constant,
or more explicitly
Aripq = EAT;, (C.11)

where ¢ is the so-called stretch parameter which is constant in space but is allowed to
vary in time. For smooth grid variations, it is of order unity and positive if the non-
uniform grid starts with small spacings in the central regions and gradually changes to
larger and larger spacings towards the external boundary.

In the calculations, we use the finite-difference approximations (C.4) and (C.6)

written in the alternative forms

{%{%}1 ~ 2Ar1+1/2 {AATZI(@H - ¢+ AT;tl (B; — @;,1)} , (C.12)
and
a2® 1 (Biyy — ®;) (B — B;_1)
{W}l ~ Ariii/e { Arivi Ar ] : (C.13)
respectively.

C.2 Acceleration Gradients

In this section, we show the finite-difference formulae used to approximate the r-, 4-,

and ¢-gradients in the momentum transfer equations (3.11), (3.16)-(3.17), and (3.22)-
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(3.24).

For a variable non-uniform radial grid, the r-gradients are evaluated by using a
second-order accurate replacement identical to that shown in expression (C.12). Then,
defining for a typical main grid-cell Y (r;, 0, ¢%) = Yijk, where Y may be the pressure

p or the gravitational potential ®, we may write

8}"- 1 A’I‘i _ AT'.L‘+1
~ Yisr e = ¥ k= Yieog)| . (Cl14
{ 97 }ijk 207112 Ar,:+1( +1,7k ik) + Ars (Yijn 1,5k) ( )

For evaluating the §-gradients some comments are necessary. We may note from
Table B2 in Appendix B, that the #-grid is fairly uniform except for cells with j = 1
(near the rotational axis), where a sudden change in the grid spacing is evident. In this
situation, a logical way of computing the #-gradients could be to use a second-order
central formula for points with j > 3 and a partially centred formula for points with j =
1,2. However, a few simple tests made to investigate this, revealed that a little accuracy
could be gained by applying a partially centred approximation everywhere. This is
due to the fact that, even if the #-spacings appear to be nearly uniform towards the
equatorial plane, the #-points are not exactly centred and a pure central approximation
does not account for these small variations in the mesh size.

A partially centred finite-difference for the #-gradients can be obtained by follow-
ing the sameé procedure made to derive the radial three-point approximation (C.12).

Defining

AHJ = 03 - 0]‘__1,
Abjyy = Bi4q —6;, (C.15)

1
Abjrryz = S(Abja + AF)),
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we may write for a typical main grid-cell

jlay} B 1 Al v Al - '
17’ 0 . ~ 27'1'A3j+1/2 A8J+1( 1,7+1,k ka)+ L\G ( ijk — z,]~1,k) 3 (ClG)

which then introduces the dominant error

11 / , 0%
E;= —g;iVJ'H(A@j) 505 ijk,

with Vit1 = A0J+1/A0]
Since the ¢-grid is exactly uniform, the ¢-gradients are very conveniently evalu-
ated by a second-order accurate central formula. Thus, in analogy with the radial

replacement (C.8), we write

[81’} Vigers = Yighoy L0 85V .
’\4 - — ).l
&) 28 0n ( ¢’ 9% | (G.17)

The finite-difference formulae (C.14), (C.16), and (C.17) have been written in the
form used for the 3-dimensional calculations. Similar forms hold for the r- and 6-

gradients in the 2-dimensional case and for the r-gradients in the 1-dimensional calcu-

lations.

C.3 Finite-Difference Representations for the Advective
Terms

In any of the structural hydrodynamic equations, the fluid advection is represented by

the following terms

jga(rzxm _ [ 1 O(sinfXvg)Y
1 a(r?) ' \rsing o0 S’

[ 1 9(Xwy) 1
\rsind d8é J°

(C.18)

for the r-, -, and ¢-directions, respectively.
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Following Tscharnuter and Winkler [115], the radial term has heen written in com-
pact form because when expressed in finite-differences, it provides a hetter approxima-

tion than the equivalent form

1 a(r2XU) | ;
{ﬁ“ar—j’ (C.19)

Suitable finite-difference replacements for the quotients above are readily obtained
with the help of control volumes, here defined by the intersection of the two mutually
perpendicular planes (7,6) and (r, ¢) [See Figure 4.1].

Let us denote the generalized function X (7,6, ) at a particular grid point (ijk) by
Xijk, and consider the quantities (r?X [7), (sin#X vg), and (X vy) which are the fluxes
accros the cell interfaces (i & 1/2,jk), (¢,7 £ 1/2,k), and (ij, k £ 1/2), respectively.
Expanding (r?X U)ig1/2,51 and (r?2X U)i—1/2,;x in Taylor series about the common point
(ijk) at the time step n, the superscript for which is again omitted for simplicity, and
substracting the second expansion from the first to eliminate (r2X U)ijk, we obtain the

finite-difference approximation for the radial advective term
{ (9(1'2XU)1 N (r*XT)it1/0 0 — (r*XU)i1/2,]
9(r?) J,;J-k %(7'?+1/2 - r?—l/Z) ’

which introduces the dominant truncation error

(C.20)

3 O*(r2XU)
E, = —§(T?+1/2 =2+ i) {W .
ijk

The radial stretching of the computational grid destroys the second-order accuracy of
the approximation. This fact is better observed from the truncation errors which arise
in approximating the counterpart term (C.19). When this term is differenced on a

non-uniform radial grid, the following dominant errors are introduced

1 1 [8%(r2XU)
E,. = -:1‘()\i+1 — UATI? {———a—rz——— ” -
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1 _ o 1 [O3(r2XU))
“ﬁ(/\iﬂ = Aip1 + 1)(Ar) = {'—WLM ,

where A\;iy; = Ar;p9/Ar;. The first term on the right-hand side is non-zero when
Aix1 # 1, as occurs for a non-uniform grid, and vanishes making the approximation
second-order accurate when the grid is exactly uniform (A;1; = 1).

The finite-difference replacement for the #-advective term is obtained in a similar
way by expanding the fluxes (sin#Xvg); j41/,x about the grid-point (ijk). Then, sub-
stracting the resulting expansions to eliminate the quantity (sindXwvg);j., we finally

ohtain

[ 1 9(sinf6Xvp)| [(sin6Xvg); j11/0k — (5in0Xvg); j_1/24]
lrsin@ 08 Jijk Ty Sin’@jAgj—H/z ’

(C.21)

with the dominant errors

Eg = 1 (4 - 1)AG; Ja2(si‘nHOXl,9)I B
4  r;sind; l 902 J -
_l(’?f+1"7j+1+1)(A9‘)2 Ml
24 r;sin 6 J EYE Jijk,

wherc 5, . = Af;11/A0;. Although, the finite-difference (C.21) is formally first-order

accurate, it becomes nearly second-order accurate for those main grid-cells with j > 2
[See Table B2]. The factor (n;41 — 1) (in the first error term) ranges from ~ 6 x 103
to ~ 1.2 x 107% for j > 2 and worsens (to ~ 0.3) for the first f-cell j = 1.

Finally, expanding the ¢-fluxes (X vg);; r11/2 in Taylor series about the point (ijk)

and combining the resulting expansions, we find

[ 1 0(Xu)) (X vg)ijpr1/2 = (X08)ijk—1/2)
J

l r Sin0 (9(25 ik ~ . 7 sin 91A¢Iv (Cl22)

which approximates the partial derivative term on the left-hand side to second-order
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accuracy due to the ¢-grid being exactly uniform

1 1 2 J63(Xv¢,)1
_ﬁrisinej(Ad)k)\[ 0¢3 J

Ey =
ik

The finite-difference approximations (C.20), (C.21), and (C.22) have been derived
for the general 3-dimensional case. For axisymmetric and spherically symmetric calcu-

lations, forms similar to (C.20) and (C.21) hold for the r- and §-advective terms,
C.4 Time Differencing

The time derivative terms 0.X/0t are evaluated by using a forward difference approx-
imation. The use of this standard formula leads to a straightforward explicit time
integration for the equations of motion.

If (n + 1) is the new time level to which all of the hydrodynamical variables are
advanced and we denote by X;}Zl, the value of X for a typical main grid-cell at this
time level, and by Xl the value of X at the old time level, the new variables can be

expressed in terms of the old ones by a Taylor expansion of the form

axX " 1[o2x )"
bl oy — 2 ;
X =X+ { Fr }ijk At + 5 { 52 }ijk At? + .., (C.23)

where At = #"*1 — " is the time step used for advancing the system. Solving for the

first derivative, we then obtain

oX\" X -Xn 1 [o2x)"
SR LAV G )
{ ot }ijk At 521 B " (C.24)

which approximates the time derivative to first-order accuracy.
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