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1. INTRODUCTION

In this thesis we present an algebraic approach to gauge theories where individual
events of space-time, which are usually idealized as points of a differentiable manifold, play
no role. The framework for our algebraic theory is an extension of (possibly infinite
dimensional) Lie algebras 0 — A — E — B — 0. Any such extension is endowed with the
analogue of a gauge potential (éonnection) and all usual machineries of a gauge theory can
be developed. Although we don't use any manifold structure at all, by realizing a sequence in
terms of vector fields associated with suitable fibre bundles, we can recover a usual gauge
configuration. Our approach seems to extract the essential algebraic axpects of gauge
theories. This allows for generalizations since the sequences are not necessarily associated
with any fibre bundle. A first, straightforward generalization is obtained by simply starting
with an extension of Lie superalgebras (or Z,-graded Lie algebras) and by replacing all
quantities with graded analogues. The result is an algebraic graded gauge theory.

As a preliminar step, in sections 2.1. we shall associate an 'exterior calculus' with any
Lie algebra E , namely we shall introduce objects like an exterior derivative, a Lie derivative
and so on. The algebra E will be a Lie algebra over a field of numbers R and a left module
over a commutative R-algebra ¥ with unit (this means that E has coefficients in F).In
addition, E will acton F as an algebra of derivations. Following Nelson [Ne], such a Lie
algebra E will be called a Lie module over ¥ . The algebraic setting we shall get is quite
general. If ¥ is the algebra C™°(M) of smooth functions on a smooth manifold M and E
is the module R(M) of vector fields on M , then one gets an algebraic description of
differential geometry and recovers the usual calculus on M . However, the setting goes
beyond this case and includes situations where there is no corresponding manifold M . For
instance, if E is a finite dimensional Lie algebra we get the cohomology of E with
coefficients in the representation space F . Also, if E is the infinite dimensional Lie algebra
R(M) of vector fields on a manifold M and F is the field of real numbers, on which E
acts trivially, we get the Gel'fanf-Fuks cohomology of R(M) .

The possibility of algebrizing standard differential geometry stems from the observation
that it is possible to algebrize the notion of space by replacing the description of a C°°
differentiable manifold M in terms of charts and points; with the algebra ¥ = C°(M) of
real valued C* functions on M [DeR]. The main point in reconstructing M from C™(M)
is the fact that the evaluation map ev : M — Hom(C= (M), R), ev(p)(f) = f(p) , is bijective,
so that one has the identification Hom(C*(M), R) =M (see for instance [KM]). However,
although one knows that the differentiable structure of M is uniquely determined by giving
the algebra C*°(M) [Hel], the problem of a complete algebrization of the theory of




differendable.manifolds, and in particular the problem of reconstructing the differentiable
structure starting from abstract properties of C™(M) is, to our knowledge, still unsolved.
The best one can do is to reconstruct M as a topological space. starting from the collection
M of all maximal ideals of C>°(M) endowed with the topology of Stone-Jacobson-Zariski
[GJ],[TeS1] (the resulting topological space is known as the maximal spectrum of C*°(M) ).
Indeed, it is possible to show that all maximal ideals of the algebra C™°(M) are of the form
Mp ={fe CM):f(p)=0} [TeSl], [Yo]. Therefore, the map T:M — M, p = Mp R
is surjective. It is also injective because smooth functions, being in particular continuous,
separate points, namely p #q implies M, # M, . A basis for the closed sets in M s
provided by the family of sets M) ={IleM:fel} with f any element in C*°(M) .
We see that the ideal Mp belongs to M(f) if and only if f(p) =0 . Consider also the family
of subsets of M of the form M(f)={pe M : f(p) =0} with { any elementin C*(M).
The subsets M(f) are closed (one easily shows that their complements are open) and form a
basis for the closed sets in M . The map T carries the family of M(f)'s to the family of
M(f)'s and is therefore a homeomorphism.

As regards the relation between Hom(C>°(M), R) and M, one has that for each point
p, the quotient C*°(M) / Mp is isomorphic with the field of real numbers R . The natural
homomorphism from C*M) to C=(M) / Mp defines a unique homomorphism from
C”M) to B namely an element of Hom(C**(M), R) . Viceversa, any element of
Hom(C*°(M), R) can be got from a maximal ideal Mp in the way described above.

Given the space Hom(C™(M), RR), a tangent vector at the 'point' o € Hom(C*™(M),R)
is a derivation of C™(M) relative to o, namely a linear map B, from C=(M) to R such
that B, (fg) = By(Nag) + af)B,(g) forany f, gin C*™(M). A vector fieldon M can be
given as a derivation of C*°(M) relative to the identity, namely as a linear map X from
C®M) to C(M) such that X(fg) = X(f) g + £ X(g) forany f, gin C*(M) . The
collection DerC*°(M) of all derivations of C*°(M) is a Lie algebra over R with Lie
brackets defined by [ X, Y] = X oY — Y oX.Itis well known that the Lie algebra
DerC®™(M) is isomorphic with the Lie algebra of all vector fields on M (see for instance
[AMRY]). The Lie algebra DerC™(M) is also a left module over C*°(M). All tensor calculus
on M as well as the de Rham theory for M [TeS2] can then be reconstructed from the
module DerC*=(M) together with the dual module. Finally, we mention that the group
DiffM of diffeomorphisms of M is isomorphic with the group AutC®(M) of
automorphisms of C*°(M) (when M is paracompact) {AMR] . Here AutC* (M) is the
collection of all invertible linear mappings ¢ from C™(M) to itself such that ¢(fg) =
o(H)o(g) forany f,gin C=M); AutC>(M) is a group under composition.

It is worth mentioning that given the algebra C*°(M) it is possible to construct the
algebras of bundles associated with M . Indeed, if A is the algebra of dual or Study




¥

numbers, namely the algebra over R generated by two elements 1 and € with e2=0,
then one has that Hom(C*(M), A)=TM ; also Hom(C*M), 4 ® A4 )=TTM [KM],
[Ok]. Moreover, if n is the dimension of M and A = R[Ty, .., TV (T, ..., Tn)k+1 ,
namely the algebra of polynomials over R in n variables and truncated at the order k + 1,
then the open of Hom(C*™(M), A) of maximal rank is the space of k-frames over M [Ok].

In a true non commutative generalization (see later for a Z 5-graded commutative
extension) one could start with a non commutative algebra ¥ with unit [Co]. Although there
is no reconstruction theorem in this case (to this respect see [KW1), one could think of the set
of all maximal ideal of F or of the space Hom(F , R) as a 'moncommutative space'
(nbncommutative spaces would be objects of the category dual to the category of non
commutative algebras). Another difference which is at the origin of possible different
generalizations of the exterior calculus, is the fact that the Lie algebra DerF of all derivations
of ¥ is notan F-module in the noncommutative case (see for instance [Du]). For many
related ideas see [Mal]. _

A 'geometry without points' had already been proposed by von Neumann to deal with
Quantum Mechanics [vNe]. Recently there has been an attempt to use a 'non commutative
geometry' in connection with string theories [Wi]. Moreover, objects like Hopf algebras or
quantum groups [Dr] and pseudogroups [Wor], which are based on a non commutative
geometry seem to play a preminent role in the study of quantum integrable systems

Given a Lie module E over ¥, we can introduce the notion of metric. By this we
mean an isomorphism from E into the ¥-dual module E* of E . Given a metric, it is
possible to associate with it a connection (Levi-Civita connection) and construct in a purely
algebraic manner the (analogue of the) usual Riemannian calculus. This is done in section
2.2.. Similar ideas have led Geroch [Ge] to introduce the notion of Einstein algebras which
he uses for an algebraic deséription of General Relativity. In section 2.3. the existence of a
metric is used to introduce a codifferential. It is interesting to notice that for this one does not
need an orientation nor a volume form but only a metric and the associated Levi-Civita
connection.

In section 2.5. the algebraic calculus developed in previous sections is generalized to
situations where the Lie algebra E is an extension of Lie algebras. The reason for
considering such algebras is that, as will be clear later, they allow to develop an algebraic
description of gauge theories. A very simple example to illustrate this fact is the following.
Let us consider the following exact sequence of vector spaces

05 Rk 5 Rk 5 R4 5 0. 1)




We use coordinates {z%,a=1,.,k}, {73 yHou=1,..,4%and {x*,nu=1,.,4 }on
RE, Rk*4 and R4 respectively. Next, let us take the thres infinite dimensional Lie
algebras of first order differential operators (vector fields) given by : =Y = { h(y,z) 0 /922 },
KT = { f(y) 0 /oy" +k?%(y,2)0/0z2 } and R™(R*)={ gh(x) 3 /9x* } (here and after we
sum over repeated indeces). We have then an extension of infinite dimensional Lie algebras

0 - R 5 X' 55 RRBRHY> 0. 2)

The Lie algebras in the sequence are left modules over the algebra of functions on R4 .
On the sequence (2) we define a map p wich is linear over functions on R4 in the
following way

p: R(RYH - K" |
PO /3xM) =: 3 /ayH — Au(x)ab 229/32°, p=1,.,4. 3)
One finds that
p([3 /3x*, 3 /ax* 1) - [ p@ /oxH) , p(@ /axM)] =
={0oyA, -0, A, + [A,,A,1},° 220/020 . @

We see from (3) and (4) that p can be interpreted as a gauge potential, while its deviation
from being a Lie algebra homomorphism is the field strength. Ifin (1) we take k=1 and in
(3) we take p(d /oxH) =9 /oy — Au(x)a [0zP ,p=1,..., 4, then we get an abelian theory,
namely, the commutator at the right hand side of (4) vanishes.

Given a fibre bundle m:P — M (without any additional structure) we can naturally
associate with it an exact sequence of infinite dimensional Lie algebras of vector fields like
(2). To this aim let us consider the algebra of functions F (P) and the subalgebra 7" F(M).
By identifying vector fields with derivations on these algebras we can introduce few infinite
dimensional Lie algebras. Firstly, we have the subalgebra X™P) of derivations of F(P)
which are also derivations for n ¥(M), i.e. which take 7*F(M) into itself; XRT(P) is
nothing but the algebra of projectable vector fields on P. Secondly, the subalgebra of R™(P)
of derivations which are zero when applied to 1" F(M); this is the invariant subalgebra in
X™(P), call it RY(P), made of vertical vector fields on P. The quotient algebra R™(P)/XV(P)
is the algebra X(M) of vcctof fieldson M (when M is paracompact) and we get an exact
sequence of Lie algebras 0 — RY(P) —» R™(P)— X(M) — 0 associated with the fibre
bundle 7 : P — M. This sequence is similar to what Nelson calls a Lie bundle [Ne] and




Atiyah-Bott éssociate with a principal bundle in their treatment of Yang-Mills fields [AB].
One can also construct the sequence starting from XV(P) and F/i4) and defining R™(P) as
the normalizer of XY(P) in the algebra XR(P) . It is worth mentoning that there exist
sequences of Lie algebras of vector fields which are not associated with any fibre bundle. In
section 2.4. we shall give an example of such a situation.

In section 2.5. the basic object is a sequence of Lie algebras 0 5 A—>E —>B — 0
abstractly given, i.e. not necessarily associated with a fibre bundle. The extension will be a
Lie bundle over the couple (F, R) where ¥ is a commutative R-algebra with unit. This
means that A ,E and B are Lie algebras over R and left module over F and acton F as

Lie algebras of derivations. On such an extension we introduce the analogue of a connection
and define all ingredients which constitute the kinematic of a gauge theory like curvature,
covariant differential and codifferential and so on. In section 2.6. we construct a Chern-Weil
homomorphism and Chern-Simons secondary characteristic classes for any extension of Lie
algebras endowed with a connection.

The algebraic framework developed in section 2.5. is used in chapter 4. to develop the
dynamical part of our algebraic theory. In particular, in section 4.1., given a metric on the
module B, we introduce field equations and obtain them from a lagrangian. The main point
here is that everything is algebraic and there is no reference to any manifold structure at all.
In addition, in sections 4.3., 4.4. and 4.5. we introduce gauge transformations, conserved
quantities and BRST transformations. In section 4.2. we give few examples by constructing
sequences of Lie algebras which provide algebraic analogues of known solutions like
monopoles and instantons. Our sequences extract the basic algebraic properties of these
solutions. By realizing them in terms of vector fields associated with suitable fibre bundles
we get back the usual solutions of gauge theory.

It is also possible to include Geroch's notion of Einstein algebra in our setting and
construct what may be called an algebraic Kaluza-Klein theory. In particular in section 4.7.
we shall introduce an extension of Lie algebras which, by adding the structure of Einstein
- algebra, gives an algebraic description of the Kaluza-Klein monopole [So], [GP].

A Z,-graded commutative generalization is given in chapter 3. In section 3.1.-3.3.
we shall generalize the results of sections 2.1.— 2.3. by starting with a Lie superalgebra (or
Z,-graded Lie algebra) E over a Z5-graded commutative algebra of 'constants' R . The
Lie superalgebra E will be a left graded module over a Zy-graded commutative R-algebra
¥ with unit and will acton F as a Lie superalgebra of graded derivations. The result is a
‘graded exterior calculus'. As for the possibility of recovering, in specific cases, all
information and notably the cohomology theory for a supermanifold, the situation is now




more compliéate. If ¥ is the graded algebra of 'supersmooth' functions on a graded
manifold [BeLe], [Kon] or a De Witt supermanifold [DeW] M , and E is the Lie
superalgebra of all derivations of ¥, one recovers all possible information about M . On the
other hand, this is not the case if M is a more general supermanifold admitting nontrivial
topology in the odd directions [Rog], [Rot]. Indeed, if this is the case, the structure sheaf of
M has a nontrivial Cech cohomology in degree higher than zero [BB]. As a consequence,
and in contrast to what happens for ordinary manifolds or for graded manifolds [HM] and De
Witt supermanifolds [Br], the structure sheaf of M cannot be recovered from the graded
algebra of global sections, the latter being the algebra of supersmooth functions on M .
However, so far, the only supermanifolds which seem to be relevant in physics are the ones
with trivial topology in the odd directions. Finally, we mention that in the case of a graded
manifold it is possible to recover, as for an ordinary manifold, the topological structure of the
underlying space in terms of the maximal spectrum of the graded algebra of supersmooth
functions on M [HM].

The kinematic for a graded algebraic gauge theory is developed in section 3.5. where
the framework is an extension of Lie superalgebras endowed with a connection. The
dymamics for the theory is sketched in section 4.8. where as examples we construct the
sequences for a graded electromagnetism and a graded abelian monopole. In order to realize
the latter in terms of a principal superbundle, we also construct a Grassmann extension of the
Hopf fibration of the Dirac monopole. The base space of the superfibration is a (2, 2)
dimensional (two even dimensions and two odd ones) sphere in a Grassmann algebra, while
the structure group is the Grassmann version of U(1). The canonical connection on the
resulting bundle turns out to be a Grassmann extension of the Dirac monopole.

Finally, in chapter 5. we give the ingredients for an algebraic description of Lagrangian
dynamical systems. If we are on a tangent bundle, then our formalism gives the usual
intrinsic (i.e. coordinate free) formulation of dynamical systems. In section 5.2. we exhibit a
theorem which gives sufficient conditions in order that a manifold carries a tangent bundle
structure. We hope to use this algebraic setting to construct graded generalizations of

Lagrangian dynamics.




2. ALGEBRAIC DIFFERENTIAL CALCULUS

In this chapter we shall introduce the basic tools which will be used for an algebraic
description of gauge theories. Following [Kos2], [Ne] we will first construct an exterior
calculus for any Lie algebra acting as an algebra of derivations on a commutative algebra with
unit. As we shall see the resulting framework is very general and includes, as particular
cases, the exterior calculus over a manifold as well as the cohomology theory of finite and
infinite dimensional Lie algebras. By introducing a metric we shall develop the (algebraic
counterpart of the) usual Riemannian calculus. Similar ideas have been used by Geroch [Ge]
for an algebraic description of General Relativity. The presence of a metric allow also to
introduce a codifferential. All operations will be specialized (and generalized) by taking the
Lie algebra to be an extension of Lie algebras. This will allow to introduce all machineries,
like connection and curvature, for an algebraic description of gauge theories. In particular the
generalization of the codifferential will be used in section 4.1. to introduce field equations. It
would be interesting to introduce different kind of structures on the Lie algebra and analyse
the corresponding outcomes. However we shall not do it in order not to go astray from the
main path of the thesis. In section 2.6. we shall construct a set of characteristic classes and a
Chern-Weil homomorphism for an extension of Lie algebras endowed with a connection.

2.1. EXTERIOR CALCULUS

In this section the starting object is a commutative ring ¥ with unit 1 which contains a
field R of characteristic zero (isomorphic to the field of real, complex, p-adic,... numbers);
then ¥ can be made a commutative R-algebra. A derivation of ¥ is any R-linear map
X : F — F with the property that X(fg) = X()g + fX(g) , forany f, g e F . From
X(1) = X(1) + X(1) one has that X(1) =0 ; by R-linearity, X(a)=0 forany ae R .
The collection DerF  of all derivations of ¥ is a Lie algebra over R : the Lie bracket
LY =[X, Y] of any two derivations X and Y is defined by LxY =:XoY-YoX,andis
easily seen to be a derivation. Furthermore, Der¥ is a left module over ¥ by the obvious
definition (gX)f =: g(Xf) and with property Lx(EY)=fLyxY + (Xf)Y, forany X,Y in
DerF, f in F. :

Let E be any Lie algebra over R which is also a left F-module. E will be called a Lie
F-module if there is a representation of E into DerF, X — X - . In this manner F
becomes a left E module. Obviously Der¥ itself is a Lie module in a natural way.




Given a.ny F-module E, the dual module E* is the collection of all F-linear mappings
9:E—F, X - @X) . At this point one defines ‘rensors of any rank (m,n). In
particular, a tensor m times contravariant and n times covariant s any F-multilinear map
u: E¥< xE*xEx-xE — F (m E* factors and n E factors). The collection of all
rank (m,n) tensors is naturally a vector space over R and a left F-module. One can also
defines the tensor product u ® v of any two tensors u and v in an obvious way. We shall
consider only situations in which the algebra ¥ and the Lie algebra E are such that E is
totally reflexive namely the dual of E* is isomorphic with E and tensors can be identified

with tensor products [Ne].

Let us denote by AP(E, F) the collection of all skew-symmetric covariant tensors of
rank p.Elementsin AP(E, F) will be also called p-forms or p-F-cochains . In particular
- AYE,F)=E*, AVE,F)=F .If E isa Lie module, one defines on the direct sum
A*EF) = @ AP(E, ¥) an exterior derivative d, by

d: APE,F) —» AMI(ETF) ,
@O)(X 15Xy ) =1 T (CDHM X 0(X ey X ) +

1<J (-1)i+ o([X;, X1 Xy ,j",...,XP+1) , VX eE; (1)
here a hat * means omission. Since the action of E is a representation it follows, by
standard methods, that d is a coboundary operator, namely d2 = 0. An element ¢ in
APE, F) will be called a cocycle if dp=0,a coboundary if ¢ =dy for some Yy in
AP(E, F) . The coboundaries clearly form a subspace of the cocycles. It is then possible to
introduce the cohomology of the Lie algebra E with coefficients in the representation space
F . The p-th cohomology grbup is defined by

HP(E,ZF)=(kerd:AP(E,T)—aAP+I(E,T)j/(imd:AP‘I(E,ZF’)—>AP(E,F)). 2)

We see that HOE, F) = ker d: A%E, F) — ALE, F) , namely, HOE, F) is the subset of F
made of elements which are invariant under the action of E .

The next ingredient we introduce is an exterior product
A APE,F)xAYE,F) - APHE,F) ,

oN W(Xpu,Xp+q) =: l/plq!2; X(G)(P(XG(1)7~'7XG(I))) W(Xg(p+1),--,Xo-(p+q)), VX,eE.(3)




This product makes A*(E,F) acommutative graded 2lgebra over R . The derivative d is
of degree one with respect to it, namely, d(@ Ay) =de A + (1520 ¢ A dy . It follows
thatif ¢ and y are two cocycles, then @ Ay is a cocycle as well: furthermore, if either ¢
or ¥ is a coboundary, then @ Ay is a coboundary. Therefore, the product (3) defines a
product from HP(E,F) xHYE,F) to HP*(E,F) and the direct sum H*E, F) = GBPHP(E, i)
is made into a ring (in fact an R-algebra) called the cohomology ring of the Lie algebra E
with coefficients in F. |

We continue by introducing two more derivations of the algebra A*(E, F) . The first
one is the Lie derivative L(,) and is of degree zero; it is defined as

L(). E X AP(E9T) - AP(E3B 3
Cx @)X Xp) = Xe0(X . Xp) = Ti@([X, X]X ponh X)),V X, Xje E,  (4)

and one has that L, (¢ Ay) = LoeAy+oA L) ¥ . The second derivation is the inner
product i,(,) , and is of degree minus one; it is given by

i’(). E x AP(E,}?) - AP‘I(E’T’) H
(@ Koo Xpp) =1 9K X e X ) VX, XeE; (5)

in addition, i(,f=0 Vfe F.One has that i,(@ Ay)=i,0 Ay + (1% Ai .

From definitions one can prove the Cartan identity L(,) =do i,(,) + t(,) od, so that L(,) and
d commute. Moreover, all usual algebraic relations among the quantities defined in (1), (3),
(4) and (5) hold true.

If F is the ring of smooth functions on a manifold M, and E is the Lie module of all
derivations of ¥, namely the module of smooth vector fields on M , then AP(E, F) is
nothing but the space QP(M) of smooth differential p-forms on M and the definitions (1),
(3)-(5) give the usual exterior calculus on M . In addition, H*(E, ¥) is the de Rham
cohomology ring of M . In this case AP(E,F) and HP(E, F) are both zero if p>dimM .

Let us consider the particular case in which ¥ =R (on which E acts trivially). In this
case, in the definition (1) of the coboundary operator and in the definition (4) of the Lie
derivative, the first term of the right-hand side vanishes. Also HYE, R) = R . Moreover,
there are no nontrivial 1-coboundary; a 1-cochain which is closed (namely, a cocycle)
cannot be exact (namely, a coboundary), and the space HNE, R) is the space of all




l1-cocycles. If ¢ € ALE, R), then (do)(Xy, Xp) == 0([Xy, X,], and ¢ is a cocycles if
and only if ¢ vanishes on the subalgebra [E,E ] of E spanned by commutators of any
two elements of E . As a consequence, H!(E, R) = Hom(E / [E, E] , R) (see for instance
[HeRu]) and HI(E, R)=0 if E=[E,E] (for instance, this is the case if E is
semisimple [CE]).

If E is a finite dimensionai Lie algebra, then the groups HP(E, R) are nothing but the
usual cohomology spaces of the Lie algebra E [Ce], [Kos1]. In this case AP(E, R) and
HP(E, R) are both zero if p > dimE since A*(E, R) is the Grassmann algebra over E
and AP(E, R) is the space of elements of order p in A*(E, R). Among other things one
knows [CE] that if E is the (real) algebra of a compact connected Lie group G (E can be
identified with the algebra of left invariant vector fields on G ) then the algebraic
cohomology of E as defined before is isomorphic with the cohomology of the left invariant
forms on G wich in turn coincides with the de Rham cohomology of G, namely, the
cohomology groups HP(E, R) are isomorphic with the real cohomology groups HRP(G) .
For many results on the cohomology of Lie algebras see [CE], [Kos].

The Gel'fand-Fuks cohomology of the Lie algebra X(M) of smooth vector fields on a
smooth manifold M provides examples of cohomologies of infinite dimensional Lie
algebras [GF1], [Gel]. The cohomology groups HP(X(M), R) are finite dimensional,
although very complicate to compute in general. For instance, if M is the unit sphere S,
the cohomology ring HP(X(S1), B) is generated by a generator of degree two and a
generator of degree three which have a very simple expression [Gel].

We say that the cochain @ € AP(E, R) is invariant if for any X € E it happens that
L@ =0 ; from (3) this is equivalent to Z,0(0X, Xi],Xl,...,i,...,Xp) =0,VX,XeE.
By explicit calculations one can show that any invariant cochain is a cocycle, namely de = 0.
In [CE] it has been proved thatif E isa semisimple (finite dimensional) Lie algebra, then
every cohomology class of HP(E, R) contains exactly one invariant cocycle. The invariant
cocycles form a ring which is isomorphic with the cohomology ring H*(E, R) . Notice that
it make sense to consider an invariant cohomology because the Lie derivative commutes with
the exterior differential. If E is the algebra of a compact connected Lie group G, then
invariant cochains on E correspond to left and right invariant forms on G . In this case it is
known [CE] that every cohomology class of differential ferms on G contains precisely one
invariant form and that invariant forms span a ring which is isomorphic with the de Rham
cohomology ring of the manifold G .

As for the more general case in which F does not coincide with R , examples of
cohomology of infinite dimensional Lie algebras are given by the Gel'fand-Fuks

- 13 -




cohomology of the algebra X(M) of smooth vector fields on 2 manifold M , with
coefficients in the smooth differential forms Q*(M); R(M) zcting on them with the Lie
derivative [Lo], [GF2], [FL], [DL].

Very interesting examples for physics are provided by the cohomology of the infinite
dimensional Lie algebra and group of gauge transformations and diffeomorphisms; such
cohomology has been intensively used in the problem of anomalies in quantum field theories
[Zu], [Sto], [BC], [FS]. Other eXamples are the semi-infinite cohomology of Kac-Moody
and Virasoro algebras recently introduced by Feigin [Fe]. They have been used in the BRST
cohomological approach to string theories [FGZ], [KoSt]. This algebraic cohomology has an
equivalent geometric counterpart in the DiffSl-invariant cohomology of semi-infinite
- differential forms on DiffS!/S!, the latter being the space of complex structures used by
Bowick and Rajeev in their geometric quantization approach to string theories [BR].

We continue with the general framework by defining the Lie derivative of any tensor.
This is done simply by requiring Leibnitz rule. If u is any (m, n) tensor, namely any
F-multilinear map u : E*x xE*x Ex-xE — F (m E* factorsand n E factors),
then, forany X € E, the Lie derivative Lyu is the tensor of the same type given by

Cxu)(ol.., o™X, X)) =t X-(u (@, 0™ X,..,X,))
- Zu(ol,..., Lyol...0™ X,,...X,)

- Zplh.., o™X, [X, X]..X), VX, XeE, ole E*X . (6)

An algebraic approach to the classical operators of differential geometry based on a
couple (F, E), (¥ acommutative algebra with unit and E a Lie module over ¥ ) has been
presented also in [KaSt1] where the couple (F, E) is called a Lie-Cartan Pair.

2.2. RIEMANNIAN CALCULUS AND EINSTEIN ALGEBRAS

In [Ge] Geroch has showed how one can algebraize Einstein theory of General
Relativity. To this aim we now introduce additional structures to the framework developed in
the previous section. Following [Kos2], we first introduce the notion of affine connection on
a Lie module. Then, by giving a metric on the module, we shall construct in a canonical way
the Levi-Civita connection associated with it.




The frarﬁework is a Lie module E over the algebra ¥ . An affine connection on E is
amap V: E-—Homp(E,E), X — Vg with properties

Vi Y)=fVxY + (XY , V X,Y,Ze E, feF . @)
The element of E givenby Vy Y is called the covariant derivative of Y in the direction
of X . As for elements in E* , their covariant derivative is defined by requiring Leibnitz
rule. If X e E and ¢ € E*, the covariant derivative Vy@ is the elementin E* given by

(Vxo)(Y) = X:(e(Y) -¢(VxY), V YeE. ®)

In general, if u is a tensor of type (m, n), the covariant derivative Vxau is the tensor of the
same type defined by

(Vxu)(ol,.., 0™X;,... X)) =: X-(u (@,..., @™ X,.... X))
- Zu(ol,. Vol 0™, X,..,X,)
- Sl 0™X,,..., VxX;... X)), VX, X;e E, ole E*. ©)
From this definition it follows that Vy (u®v)=(Vxu)®v + u® Vxv.

Given an affine connection V on the Lie module E, the torsion of V isthe map T
from E xE into E defined by

TXY)=VgY-V(X-[X,Y] , VX, YeE. (10)

It is easy to verify that T is ¥-bilinear. Therefore it determines a skew-symmetric rorsion
tensor of type (1,2) by therule T(®,X,Y) =: o(TX,Y) .

The curvature of the affine connection V on the Lie module E is the map R from
E xE into Homg (E, E) defined by
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The curvature tensor R of the affine connection V is the tensor of type (1,3) given by
R(®, Z, X, Y) = oRX, Y)(Z))

One verifies by explicit computaﬁon that R is a tensor, namely that it is F-linear. Moreover,
all usual (anti)symmetry properties of R as well as the usual algebraic identities (Bianchi
identities) relating R and T are true [Ne].

On a finite dimensional Lie algebra E over the field R, there are interesting examples
of affine connections [Hel]. In this cases an affine connection is the same as an R-linear
map B from E xE into E . Affine connections such that B(X, Y) = — B(Y, X) give
B(X, X) =0. If E is the real Lie algebra of a Lie group G, such connections imply that
any left invariant vector field on G is autoparallel and the geodesics starting from the
identity of G are just the 1-parameter subgroups (one can prove that any bilinear map from
ExE into E determines a left invariant affine connection on the manifold of G and
viceversa [Hel]). Well known examples of this situation are: B(X, Y) = 0 (the
(=)-connection), B(X, Y) = 1/2[X, Y] (the (0)-connection and B(X, Y) = [X, Y] (the
(+)-connection). As for the torsion and the curvature of these connections, they are given by
TX,Y)=-[X,Y], R=0 for (=), TX,Y)=0, RX,Y)Z=-1/4[[X, Y], Z] for (0),
TX,Y)==-[X,Y], R=0 for (+).

The previous affine connections can be defined for any Lie algebra E over F.

We now introduce the notion of a (Riemannian) metric on a Lie module E and
specialize accordingly the notion of affine connection. A Riemannian metric on the Lie
module E is an isomorphism g from the module E to the module E* which is
symmetric, namely which satisfies g(X, Y) = g(Y, X), forany X, Y € E, where g(X,Y)
=: [g(X)](Y) .With any metric there is naturally associated a covariant tensor of rank 2.

Given a metric we may define its Levi-Civita connection. If X € E and ¢ € E*, the
covariant derivative Vy¢ associated with the metric g is defined by
Vo (Y) = 122 { X-0(Y) - Y-0(X) - ¢([X, Y])
+ g7 @1EX, V) - 8lg1pX. V) —8(X, Lg-1()Y) }

= 12{ @)X Y) + Lyl XV} , V YEE. (13)

- 16 -



From last equality it follows that Vy¢(Y) is F-linear in both { and Y . Moreover, one
easily checks that all other defining properties (7) are satisfiec. The connection (13) is the
Levi-Civita connection of the metric g in the sense that one has : 1) Vxg=0; ii) the
torsion vanishes. One can prove that, given a Riemannian metric on a module E thereis a

unique Levi-Civita connection associated with it [Ne].

If R is the curvature as deﬁned in (10), then the Riemann tensor of the Levi-Civita
connection V is the covariant rank four tensor Riem defined by

Riem(Xy, X,, X3, Xy) = g( X, RX3, X)X,), V X, €E . (14)
From (14) one gets the usual properties :
i) Riem(X, Y, Z, W) = - Riem(Y, X, Z, W) = - Riem(X, Y, W, Z) = Riem(Z, W, X, Y) ;

ii) Riem( X, Y,Z, W)+ Riem(Y,Z, X, W) +Riem(Z, X, Y,W)=0 . (15)

In order to define the Ricci tensor we need to introduce a contraction operation C on
tensors. By the assumption of total reflexivity it suffices to define C on rank two tensors. If
‘o is a rank two tensor then C(a) € ¥, and C is linear and satisfies C(¢ ® ) = (p(g‘lw),
V ¢,y e E*. We assume the ring ¥ , the module E, and the metric g to be such that
there exists a unique operation C ‘which fulfils previous properties (contraction properties).

With Y, W fixed, S(X, Z) =: Riem(X, Y, Z, W) is bilinear in X, Z. Then C(S) is
bilinear in W, Y and defines the covariant rank two Ricci tensor Ric(W, Y). Ric can be
defined equivalently as

Ric(Y, W) = trace of the map V — R(V, Y)W of the Lie module E,
where the trace is with respect to the contraction operator [KN1]. In the particular case in
which the Lie module E is of finite type as an F-module, namely it is generated by a finite

number of elements {e;, i = 1,...,n}, we can write =

Ric(Y, W) = Z; Riem(e;, W, ¢;, Y) .

If E is a semisimple Lie algebra (over the real), so admitting a non degenerate




(Killing~Cartém) metric, then one can show that its (0)-connections. which is torsionless, it
is also metric and is therefore the Levi-Civita connection. Moregver, the Ricci tensor turns
out to be proportional (the proportional constant being positive) to the metric itself.
Therefore, if E is the Lie algebra of a compact semisimple Lie group G, the latter is an
Einstein space.

With all previous ingredierits we can slightly modify Geroch's definition of FEinstein
algebra [Gel. An Einstein algebra consists of : i) a commutative ring ¥ with unity which
contains a subring R isomorphic to the real numbers, ii) a Lie F-module E with a metric
g which is such that the contraction properties are satisfied and the Ricci tensor vanishes (in
the original definition the module E was just the module DerF of all derivations of ¥ ). An
Einstein algebra is then a generalized theory of vacuum Einstein's equations. The main
advantage is that there is no reference to a manifold structure, though any space-time which
is a solution of Einstein's equations does define an Einstein algebra. In section 4.7. we shall
give an example of Einstein algebra.

2.3. THE CODIFFERENTIAL

Given a riemannian metric on a Lie module, one can introduce the codifferential. As we
shall see, to this aim one does not need an orientation nor a volume form but only a metric
and the associated Levi-Civita connection. The general construction is a little bit involved
although it can be carried over by using, for instance, an abstract index notation [Ne]. For
the sake of simplicity we shall assume that the Lie module E is of finite type as an
F-module, namely that it is generated by a finite number of elements {ep i=1,..n} (by
the way, by Whitney embedding theorem this is always the case for the algebra of vector
fields on paracompact manifolds). The dual basis will be indicated with {ei, i=1,.,n},
ei(ej) = Sij . Then the codifferential is defined in the following way

81 AP(E,T’) s AP—I(E,F)>

GP) (XX po1) =t = Z; (Ve 0)(&THED, Xppos Xy ), VX € E . (16)

In particular, if ¢ € E*,its divergence is the element of F given by

divg = 8¢ = - Z; (V. 0)(g ' ("), )




By explicit calculation one can prove that 3% =0.

Given a metric on the Lie module E , there is also an induced metric on the vector
spaces AP(E, F). Indeed one can define

gt APE,F)xAPETF) - F,
£7(0, W) =1 1p! T Qe s € ) W(g €M), gTIED)) - (18)
Here the summation is over repeated indeces. Again, by using the abstract index notation the
previous definition can be extended to modules which are not of finite type.
Proposition 2.1. The codifferential & is the adjoint operator of d in the sense that, for any
@ e API(E,F) and any ye APE, F) one has
g (do , v) - g7 1(¢, 8 ) = div(something) . (19)
A preliminar result that we need for the proof is the following proposition which can be
proved by explicit calculations (see also [Kos2])
Proposition 2.2. The connection V being torsionless it follows that for any ¢oe APE,F)
(dP) (XX, p) = Zi(—1)i+1(in(p)(X1,...,i,..., X1 - (20)
We can now prove proposition 2.1. For the sake of simplicity we give the proof with the
assumption that E is of finite type. From definition (18) and (20) one has
g7 ldo, ) = 1/p! = (dP)(e; o ;) yog1 (elh,..., elp)
= Up! T Ty (CD* UV 0) (i €)) Wog™! (€M, €)
. i g s :
=1p!Z 3, (Veikcp) (Ci‘,...,lk,..., &, YyegT (e, e, Ty, EP)

= Up=D!'Z 35 (Vo 0) (€8, ) Wog ™ (&l )
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= 1/(p-1)!3 Ej { --(p(e:ii,...,eip_1 ) (VejW° g 1)( e, elr,... elpm1) +

+ [Vej (CICN yog~l (-, lr,... el )] (&) }

==g7'(0,8y) + div {1/(p-1)! T 9le; gy, ) Wog ! (-, it g 1
This ends the proof of (19).

Having the codifferential (together with the exterior differential), one could also
introduce the Laplace operator on the algebra A*(E, F) and construct an algebraic theory of
harmonic forms [Ne]. However we shall not need such machineries in the following.

In section 2.5. the codifferential will be generalized to a covariant codifferential. The
latter will be used in section 4.1. to introduce field equations for our algebraic theory.

2.4. EXTENSIONS OF LIE ALGEBRAS AND FIBRED STRUCTURES

In the next section we shall show how to generalize the algebraic calculus developed in
sections 2.1.-2.2. to cases in which the Lie algebra E is an extension of Lie algebras.
These will turn out to be the appropriate framework for gauge theories. In this section we
recall the essential facts of the theory of extensions of Lie algebras. There are many
mathematical papers on the subject [CE], [Cal], [Jaco], [MacL].

The Lie algebra E is called an extension of the Lie algebra B by the Lie algebra A if
there exists a short exact sequence of Lie algebras

i T :
0 A—-E—->B-=0 21D

Maps i and m are respectively the injection of A in E and the projection of E onto B
with im i = ker & . For the time being we take the Lie algebras A, E and B to be Lie
algebras over a field of numbers R (to be definite one coald think of R. as the field of real
numbers). The extension (21) will be denoted with E(B, A).

Given any extension E(B, A) there is canonically associated an exact sequence of
algebras of derivations as in the following diagrams



(o)
>
v
=
4
o
o

o B l Y l : (22)

0 — InD(A) —3 D(A) — Out D(A) —> 0

Here C(A) is the centre of A . Moreover, D(A) is the Lie algebra of all derivations of A .
As a vector space, D(A) is the collection of all maps ¢ from A into itself such that
O([XY]) = [0X), Y]+ [ X, o(Y)], for any X, Y € A ; the Lie bracket of any two
derivations ¢ and W is defined as usual by [@, Y] =@ oy —y o @. InD(A) is the Lie
algebra of inner derivations of A , i.e. the adjoint action of A on itself Dy(a') =:[a, a7 for
some a € A ; this also defines the homomorphism o . Finally, OutD(A) is the Lie algebra
of outer derivations of A, that is of equivalence classes of derivations defined modulo inner
ones. If we consider the cohomology of A with coefficient into itself and with respect to the
adjoint action, we see from their definitions that D(A) , InD(A) and OutD(A) are the space
of 1-cocycles, the space of 1-coboundaries and the first cohomology group respectively .
Identifying A with its imagein E, B is defined as

B: E - D), e»D,, De(@)=[e,a] € A. (23)

Finally, 7y is defined to make the last diagramih (22) commute. The map v is called the
i T i 4
character of the extension. Two extensions A —- E - B and A — E' — B with

the same character are said to be equivalent if there exists an isomorphism f: E — E' such
that i'=foi and w=fom'.

The extension E (B, A) is called : inessential ,if E is a semidirect sum of A with a
supplementary Lie algebra L of A in E (L is then isomorphic with B ); rivial , if it is
inessential and L is anideal,i.e. E isadirectsum E=L ® A ; cenrral, if the character
Y= 0 or equivalently if the image of B isin InD(A). For A abelian, A is in the centre of
E if and only if the extension is central. For A not abelian, if A is in the center of E then
E (B, A) is central but the converse is not true any longer.
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Central extensions of Lie algebras (and Lie groups) are familiar in physics since
Bargmann's proof that a central extension of the Galilei group is 2 symmetry group of the
non relativistic Schroedinger equation while the Galilei group itself is not [Ba]. Similar
situations are also present in anomalous quantum systems where it may happen that only an
extension of a classical algebra of symmetry acts as a symmetry at quantum level. An
example is the Faddeev's formulation of anomalous theories where the commutator of Gauss
law constraints exhibits a central term (Schwinger term) [Fa]. Central extensions are also
used in the geometric quantization program [Si], [Wood] and are present in the problem of
quasi-invariance of lagrangian dynamical systems [MMSS]. For relations between central
extensions of the Lie algebra of a Lie group and central extensions of this Lie group, together
with many examples of their use in physics see [TW]. Virasoro algebra, which is a central
extension of the Lie algebra of vector fields on the unit sphere S!, Kac-Moody algebras,
which are central extensions of loop algebras, and central extension of current algebras
(where the central term is known as Schwinger term) have been recently studied expecially in
connection with string theory and two-dimensional conformal quantum theories; for a rewiev
see [GO]; for many mathematical results see [Se]. The theory of (not necessarily central)
extensions of Lie algebras ang groups has also been used in connection with the problem of
mixing internal and space time symmetry, mainly by studying extensions of the Poincaré
group and of its algebra [Mi], [Ga], [Cat].

Before we proceed with our scheme, we give few elements of the theory of
classification of Lie algebra extensions. What follows is based mainly on [Cal]. Let then
E(B, A) be an extension like (21). A section 6 of E(B, A) is any R-linear map

6:B—E, suchthat mop =idg . 24)

Given any section ¢, we have a decomposition of vector space E = A ® 6(B), namely any
element e € E can be uniquely written as € =i(a)+0(b) with ae A and b € B. In general
o(B) is not a subalgebra of E . The factor set f, of ¢ measures how far ¢ is from be a
Lie algebra homomorphism. f, is the A-valued R-linear skew map on BxB defined by

f5(b, b") = o([b,b]) — [o(b), ()], V b,be B. (25)

&

Next one defines a prerepresentation of B into D(A) lifted over y and associated with f,,
namely the mapping '

¢=B—>D(A), ¢ =:foc, ¢(b)a=:[o(b),a] , V beB,acA, (26)




which has the‘ property that

G OMb)-0 )0 (d)=0([b,b])+ad,p py - V b,beB. @7)

If g, isany A-valued R-linear skew mapping on BxB (not necessarily associated with a
section like in (25)) and ¢ =B — D (A) any prerepresentation of B into D(A), lifted over
Y: B — OutD(A), and associated with g, like in (27), the couple (¢, g,) is called a
2-pseudocochain of (B, A,y ) . Given the couple (¢, g,). one defines a 3-pseudocochain by

8422(by. by, by) =t d(by)gy(by, by) = gy([by, byl bg) + . p. , ¥ by, by bye B. (28)

A couple (¢, g5) such that 8¢g2 =0 is called a 2-pseudocycle of (B, A, v) . As for the
pseudocochain (¢, f) constructed in (25) and (26) one can show that Jacoby identity
implies 5¢f2 = 0 . In addition, if ¢' is another section for the extension E(B, A), then
c'-6 =f, isan R-linear map from B to A ; the corresponding pseudococycles (¢, )
and (¢',1,") are related by

f5'(b, b") = f(b, b) + (B4f1)(b, b) + [f1(b), f; (BI] ,

¢'(b) = 6(b) + ad, ) - 29)

Any two pseudococycles (not necessarily associated with a section) which are related as in
(29) are said to be equivalent (one can easily show that (29) determines an equivalence
relation). The vector space of equivalence classes of 2-pseudococycles is denoted by
sz(B, A) and is called the Calabi pseudocohomology space of order 2, of the Lie algebra
B with values in A, and associated with the character 7y . This pseudocohomology can be
defined only at order 2 and is deeply related with extensions of Lie algebras.

From (29) we see that two pseudococycles (¢, f;) and (¢', f,") associated with two
sections of the extension (21) belong to the same equivalence class in HZ,Y(B, A) . More
generally, one can show that pseudococycles associated with equivalent extensions determine
the same equivalence class in H2.(B, A) . Conversely, given a pseudococycle (9, f,), it is
possible to construct an extension E(B, A) of B by A with character y. As a vector space
E=B XA and wn and ¢ are defined by n(b,a)=>b and o(b) = (b, 0). The Lie bracket in
E is defined by

[ (bls al)a (b2: 32) ] = ( [bls b2] > [aI: 32] + ¢(bl)a2 - ¢(b2)31 + f2(b1> b2) ) s

A7/ bl’ b2€ B, al, aze A . (30)




The Jacoby identity follows from the cocycle condition Sq)fz =0 . Moreover one finds that
o(b)-a =[ o(b), a ]. It turns out that cohomologous pseudocycles give equivalent extensions.
As a consequence the set of equivalence classes of extensions of B by A with character y
is in a bijective correspondence with }[Z,Y(B, A).

If A is abelian, one has few simplifications. Firstly InD(A) =0 makes D(A) = OutD(A)
so that ¥ defines an action of B on A (in fact a representation). In addition, HZY(B A) is
a true cohomology space and is nothing but the second cohomology group HZ(B, A, 2))
associated with the representation 7y . In this case any extension is completely characterized
by its factor set as defined in (25) [CE] . If A is not abelian, for some Yy the space
R?Y(B,A) can also be empty. In general, there is an obstruction to the possibility of
constructing extensions. Using the theory of Lie algebra kernels [Mo], [Ho], one can show
that the obstruction to constructing an extension of the Lie algebra B by the Lie algebra A,
once given the character y:B — OutDA , is an element in H3(B, C(A), ) the third group
of the cohomology of B with values in the centre of A . Moreover, if Hz.Y(B, A) is not
empty, the set of equivalence classes of extensions of B by A is isomorphic with the space
H3(B, C(A), v) (not in a canonical way, namely one has to fix an extension). If A is
abelian the obstruction vanishes automatically.

Cocycles of groups and algebras are also familiar to physicists nowadays; for a rewiew
see [Jack2]. Of course 2-cocycles are responsible for central extensions and give rise to
projective or ray representations. More recently, in [Car] it has been shown that a non trivial
3-cocycles of the algebra of infinitesimal gauge transformations is an obstruction to the
existence of an extension of this algebra acting as a symmetry algebra at quantum level.
Finally, in [LP] for any manifold M , it has been constructed an extension of the Lie algebra
of vector field X(M) by the abelian Lie algebra of 2-forms Q2(M) . This is possible because
there is a privileged element in HZ(R(M), QZ(M), L), the second group of the cohomology
of the Lie algebra X(M) with values in the abelian algebra Q2(M).

We hope to use the theory of classification of Lie algebra extensions in the study of the
classification of the gauge fields which will be introduced in the next section.

As we want to recover results on fibre bundles when our algebras are identified with
algebras of vector fields, we endow the extension E{B, A) in (21) with additional
structures. We take E(B, A) to be a Lie bundle over the couple (F,R) where F is a
commutative R-algebra with unit. This means that A ,E and B are Lie algebras over R
and left Lie modules over ¥ . Therefore there is a representation of A, E and B into the
Lie algebra DerF of all derivations of F . Since A is anideal in E it is forced to act
trivially on ¥ and A is a Lie algebra also over F .
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Given ariy fibre bundle ®:P — M we can naturally associate with it a sequence of
infinite dimensional Lie algebras. Indeed, let us consider the algebra F(P) of smooth real
valued functions on P and the subalgebra 1:*'F(M) . Let R™(P) be the subalgebra of
derivations of F(P) which are also derivations for ©"F(M) , i.e. which take T*FM) into
itself. The subalgebra of X™(P) of derivations which are zero when applied to T F M) is
an invariant subalgebra in E , which we call RY(P). The algebra X™(P) is nothing but the
algebra of projectable vector fields on P whereas RY(P) is the algebra of vertical vector -
fields on P . Then the quotient algebra XR™(P) / X™(P) = X(M) is the algebra of smooth
vector fields on M (when M is paracompact) and we get an extension of algebras 0 —
XY(P) — R™(P) - M) — 0 which is a Lie bundle over the algebra of functions F(M) .

It is worth mentioning that there are extensions of Lie algebras of vector fields which
are not associated with any fibre bundle. We give now a simple example of such a situation.
Let us consider the two dimentional torus T2 parametrized by two angles 6; and 6,. A
sequence like (21) is constructed as follows. With a and b real numbers, E is generated
by the vector fields X;=a0d/d8, +b9/06, and X,=a0d/98; -b0d /06, and A is
generated by X; alone. As a consequence B is generated by X, .If a/b is an irrational
number the only functions which are left invariant by A are the constant ones so that the
resulting sequence is a Lie bundle only over R . Moreover, there is no manifold which X5
is tangent to, so that the sequence is not associated with any fibre bundle.

If m:P — M is a vector bundle, one can construct another natural sequence associated
with it which is a subsequence of the one considered above, in a sense which will be clear in
few lines [Lecl]. Let Hom(P, P) be the bundle of endomorphisms of P ; it is a bundle over
M . The space gl(P) of smooth sections of Hom(P,P) is made a Lie algebra by a pointwise
bracketing. The vertical lift XV of any X e gl(P) is the vector field on P whose flow is
(t, u) € R X P — (exptX)(u) € P. The space gl(P)V of all vertical lifts is clearly a Lie
subalgebra of the algebra of vertical fields XV(P) . The vertical lift associated with the
identity I e gl(P) is denoted by A and is called the Liouville's field of P; A is the -
generator of dilatations along the fibres. One can show that any vertical vector field on P is
a vertical lift iff it commutes with A . The Lie algebra of infinitesimal automorphisms Up
of P is the commutant of A in X(P) thatis Up =: { X &€ XR(P) suchthat [A,X]=01}.
One can show that Up is a subalgebra of X™(P), that gl{P)" is an ideal in Up and that
Up/gl(P)¥ = R(M) . As a consequence we get an extension of infinite dimensional Lie
algebras 0 — gl(P) — Up — X(M) — 0 which is again a Lie bundle over the functions
F(M) . In [Lec1] it has been shown that if the first Cech cohomology space HlM, Z,) of
M vanishes, then two vector bundles P and P' over M are isomorphic if and only if the
Lie algebras Up and Up are isomorphic.




2.5. EXTERIOR CALCULUS OVER LIE ALGEBRA EXTENSIONS

As we have pointed out in the introduction, given an extension of Lie algebras of vector
fields, one can introduce on it the analogue of a gauge potential. The latter is just a way to lift
vector fields from a Lie algebra to another in the sequence. In general this lifting does not
preserves the Lie algebra structure. The deviation from a Lie algebra homomorphism is to be
interpreted as a field strength? In this section we shall generalize this fact to any extension of
Lie algebras, not nécessarily associated with a fibre bundle. The outcome will be the
'kinematic' for an algebraic gauge theory. In chapter 4. we shall give the 'dynamics' for such
a theory, together with few examples.

The basic object in this section i‘s an extension of Lie algebras 0 5 A —-E—-B =0
like (21) which is a Lie bundle over the commutative R.-algebra with unity ¥ . We remind
that this means that A, B and E are Lie algebras over R ; in addition they are left Lie

module over ¥ and there is a representation of A,E and B into the Lie algebra DerF of
derivations of F .

We call connection on the Lie bundle 0 - A - E - B — 0, any F-module
homomorphism or, equivalently, any splitting of E as an F-module

p: B - E such that Top=idg . €39
Notice that in contrast to what happens for a section like (24), here we are requiring
F-linearity and not merely R-linearity. If p and p' are any two connections, their
difference p—p' is an F-linear map from B to A . The set of all connections is then an
affine space modelled on Ling(B, A).

Equivalently we could give an A-valued F-linear connection 1 -form @ on E
®w: E—> A suchthat wei=idy, , (32)

the relation between the two being

®=idg —pem . (33)

Any connection allows to write E as the module direct sum E = A@®HorE, with the




horizontal F-module in E defined as HorE =: ker o = p(B). In general HorE is not a
subalgebra of E or equivalently p is not a Lie algebra homomorphism. The curvature F
measures the extent to which p fails to be a Lie algebra homomorphism

FX1. X)) = p([(Xy, Xo D) = [pXp,pXl , V X, X, €B . (34)
Since w is a homomorphismand Tep=1g,then noF=0 and F eAZ(B, A), ie F is
an A-valued F-linear skewwmap from BxB to A . The horizontal module HorE is a
subalgebra of E if and only if the connection is flat, i.e. if and only if F=0; then E is the
semidirect sum of A and B once the latter is identified with its image in E through p .

In the introduction we have given a simple example of an extension of Lie algebras of
vector fields endowed with a connection. Other, physically relevant examples will be given

in section 4.2..

Given a connection, the curvature 2-form Q. is the A-valued F-linear skew map
on EXE defined by

QX4 Yy = F(nYy,nY,y) , V Y,Y, €E, (35)
. and in terms of ®
Q (Y1, Yp) =[Y, 0(Y] = [Yy, (Y )] - 0([Y1,Y,]) = [o(Y ), (Yl . (36)
By its definition Q is horizontal, i.e. Q(Y,Y,) =0 whenever one of the Y;'s isin A.
We continue by introducing the covariant dz'ﬁ‘erential Dp .Let AP(B, A) be the vector
space of F-linear, p-linear skew maps from Bx---xB (p times) to A . The covariant
differential is defined by '
D,: AP(B, A) = AP*I(B, A),
Dp®) Xy Xpyp) = Z; D p(Xy), LT0. SRR S SO I

+ Zigi CDMOUX, X 1K oK), VX €B L (37)

In particular it is easy to prove Bianchi identity



D.F=0. (38)

In order to introduce a covariant codifferential we need a metric on B, namely a
symmetric non degenerate map g : BxB — ¥ . We shall indicate with V the corresponding
Levi-Civita connection as constructed in section 2.2. We first define a generalization of the
covariant derivative (13). Given any X e B, we define an operator

VPy : AP(B, A) — AX(B, A),

(VPx P)(Xy,,Xp) =t [PX), 0K, XP] = 20Xy, VX X)), VXeB.  (39)

5

Then, by direct calculations one can prove an analogue of proposition 2.2.
Proposition 2.3. The connection % being torsionless it follows that

D) (XX 1) = 25 (—1)i+1(Vpxi O)Xpsesl X 1), V0 & AP(B, A). (40)
- We are now ready to define the covariant codifferential D o As it happens for the
codifferential, the general construction is involved although it may be managed, again by
means of abstract index notations [Ne], [Pe], [AHM]. For the sake of simplicity we take B
to be a module of finite type with basis {b;, i = 1,..,n} and dual basis {Bi, i=1,.n},
Bi(bj) = Sij . Then we define the codifferential to be

D, : AP(B, A) — AF(B, A),

(D p®) (K pyernr X ) = = Z; (VPp @)@ BY, Xy, X)) 5 V X;€B . (41)

Let us now assume there is a metric also on the Lie algebra A, h: AXA —»F which
is symmetric non degenerate. For later convenience we take it to be adjoint invariant, namely

WIZ,Z],Z,) + WZ,[Z,Z,]) =0, V Z,Z,Z,eA . (42)

In addition h is 'invariant' under the action of B ; by this we mean that
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X-h(Zy,Zy) - h([p(X), Z1), Zy) = h(Z, [p(X), Z,)) . 7 X €B.Z, Z,eA. (43)

Given the metrics g and h, we shall indicate with (hg”l) the natural metric induced on
AP(B, A) . If B is a module of finite type, (hg™!) is given by

(hg=l): AP(B, A) x AP(B,A) —» F ,

(hg™) (@, 9) = 1p! = b (@(by s by ), g B, g7 I(BY)) ) (44)

This definition can be extended to arbitrary module B by using the abstract index notatioh.
By using (40) one can prove that the covariant codifferential ‘Dp is the dual of Dp with
respect to the metric (hg™!). One has indeed the following proposition.

Proposition 2.4. The covariant codifferential Dp is the dual of Dp with respect to the
metric (hg~!) in the sense that for any @ € AP(B, A) and any\y e AP*!(B, A) one has

(hg_l)(Dp(P, W) - (hg™) (o, ‘Dp(p) = div(something) . (45)

. The proof of proposition 2.4. is similar to the proof of proposition 2.1. and we shall omit it.
In the simpler case in which B is of finite type (45) reduces to

(hg™ "Dy, W)~ (g™ (¢, Dy0) =
= div {11! Zh (@b by ), wog ! (-, Bir.Bh) } . @6)
In chapter 4. we shall use the operations defined in this section to develop a full gauge

theory. In particular the codifferential ’Dp will be used to introduce field equations, while
relation (45) will allow us to derive them from a lagrangian.




2.6. CHARACTERISTIC CLASSES AND
CHERN-WEIL HOMOMORPHISM

In this section we shall construct a Chern-Weil homomorphism and Chern-Simons
secondary characteristic classes for an extension of Lie algebras endowed with a connection.
As an example we shall recover the usual construction for a principal fibre bundle. This will
also allow to construct characteristic classes for the Gel'fand-Fuks cohomology of the Lie
algebra of vector fields over the base manifold. Similar constructions have been also
presented in [TeN], [Lch]. In section 4.6 we shall apply the techniques developed in this
section to the problem of anomalies in Yang-Mills gauge theories. For the use of
Chern-Simons forms in physics, notably in quantum field theory see [Jack1].

The basic object is an extensio{l of Lie algebras 0 - A - E — B — 0 like (21),
which is a Lie bundle over an R-algebra with unit F . Moreover there is a connection p as
defined in (31) with connection form ® and curvature form  given respectively by (32)
and (35). '

Let us start by taking the tensor algebra over A

A¥= @ A®K | A®K - A@-®A (ktimes), AD=F . 47)
Since A isanidealin E itis possible to give a representation r of E in the Lie algebra of
derivations of A®X  Take

r: ExA®k_ A%k

1(Y)(Z;0+0Z )=X,Z,08-0[Y,Z]108-0Z, (48)
~ and extend r as a derivation to all of A* . One can prove that r is a representation, i.e.,

([X,Y])=r(X)er(Y)-r(Y)or(X) , V X,Y € E . (49)
Furthermore, since A acts trivially on ¥, r is F-linear.

Next we take APK=: AP(E, A®K) the space of F-linear, p-linear skew maps from

Ex---xE (p times) to A%k (for short A®K_valued p-forms on E ). By using
representation (48) we define the operator



dy: APK — APFLE
dr @Y 1oy Yo 1) = Ty (C1) (Y )@Y s Y ) +
+ i DM QY VLY b Yp ) ¥ Y€ EL o (50)

Since r is a representation it follows by standard techniques that d. is a coboundary
operator, that is (dr)2 =0. =

We can define an exterior product by
A : APK x AQhH | - Ap+q,kfh
Qo Ny (Yl,...,Yp+q) = 1/plq! Z5x(0) (p(YG(l),...,Yc(p)) ® W(Yc(p+1),...,YG(p+q)) ,
V Y;e E; (51)
here X(o) is the sign of the permutation & . It is also possible to define a bracket operation
[, 1: APl x AGL 5 APHQL
[0 WI(Y 1 Y, q) = 1/plQ! 25 X(0) [P g1y Yop)) » V(¥ gp w1y Yoprq)] s
V Y;e E. (52
Using definition (50), (51) and (52) one can prdve the following
Proposition 2.5. If ¢ € APX and ye AQR Fhen
d(oAy)= A Ay +(-1)PoAdy (53a)

moreover, if ¢ e AP'!, ye APl and A e A" then

d(lo,v)=[do,y]+ -DP[o,d vy], (53b)
(o, v]=-[v,0] , (53c)
EDPP e, (W, AT +EDP Ly, [A, 0]l +EDE[A,[o,y]]1=0. (53d)
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By using (50) and (52) the curvature Q in (35) may be written in the form
Q=do-12[{n,n], (54)
and by using (53b-d), the Bianchi identity (38) is equivalent to

dQ -[w,Q]=0. (35)

Definition. A p-form ¢ € AP(E, F) is projectable onto a p-form @ € AP(B, F) if

O(Y s ¥p) = @ X Xp) &‘v’ Y;e E, X;e B suchthat X;=7Y;. (56)
The following lemma is immediate
Lemma 2.1. A p-form ¢ on E is projectable onto a unique p-form © on B if ¢ is
horizontal, that is if (p(Yl,...,Yp) =0 whenever one of the Y;'s belongto A.

Let now I(A®K F) be the space of symmetric F-multilinear maps W : A®K — F
- which are such that

i(YYW=0, VYeE. (57
Here r(Y)W is defined by

(W (Z, 88 Z,) = YW(Z,8®Z) — W(Y)(Z, &®Zy),
VZeA. (58)

Condition (57), together with the trivial action of A on F implies 'adjoint invariance'
2W(Z,0®[Z,Z;]®®Z,)=0, V Z Ze A. (59)

We take I(A, F) =: O I(A®KF) and make it into an algebra by defining, for W e I(A®KF)
and Ve I(A®D, F) the product WV e I(A®K+D) F) as follows

VZeA. (60




If g APK and W e I(A®K, F) then W(@)=: Wop e AP(E. ). Property (57) implies
d, W(o) =W (d;9), (61)
while condition (59) gives

Zp (FDPHEARIW Oy A ANy, 1A Ay ) =0, Ve AP e AL, (62)

We are now ready to decribe the Chern-Weyl homomorphism. We shall closely parallel the
steps used in the standard situation [CS], [KN2]. We have the following

Proposition 2.6.  Given an extension of Lie algebras (21) with a connection, let Q be the
corresponding curvature form and let W e I(A®k, F) . Then

I. the 2k-form W(QK) e AZK(E, CF') projects onto a closed 2k-form W(Q¥) e AZK(B, F);
IL. if w (W) is the element of the cohomology group HZX(B, F) defined by W(QK), then

w (W) does not depend on the connection and w : I(A, F) — H*(B, F) is an algebra
homomorphism (Weil homomorphism).

Proof of part I. Since Q is horizontal so it is W(QX) . Lemma 2.1. assures the existence
of a form W(Q¥) e AZ(B,F) to which W(QK) projects. To prove that d W(QK) = 0 it
suffices to show that dTW(Qk) =0. By using (61), (53a) and (55) respectively we have
dWEQY = W(d0H=kW(dQAQKLy =k W([w, Q]AQK!) and this gives
d,W(Q¥) =0 by condition (62).

In order to prove part II. we first state the folldwing lemma, whose proof is very simple.

Lemma 2.2. Let w, and ®; be two connection forms on the sequence (2.13) and define
W=0+t, A=) -, te [0,1] ; then

a) oe AYB;A) and o is horizontal ,
b) w, is a l-parameter family of connection forms,

¢) (dyQ, =do-[o,a] .




We shall als'o need another result.

Proposition 2.7.
1 :

W(Qk) - W(Qgk) = deIGW( aAQKT)dt . (63)
Proof: (d/dyW(QK) = kW(@d/dt Q) A QX 1) = kW(d, aA QF 1) kW (o, o ]AQKT)
by c) of lemma 2.2..

On the other hand,
kdW(o AQK 1) =k W(d(a AQK1))
=k W(da AQK 1) —k(k-1) W(a AdQAQK2)
“kW(d o AQET) —k(e=1) W( L A [0, d.QJAQE2) by (55)
=k W(do AQKTD) -k W([w, A QKT) by (62)
and by integrating with respect to the parameter t one gets (63).

Now, the (2k=1) form ® =k EW( a A th‘l ) dt , being horizontal, projects onto a form
® e A?1(B, F) and equation (63) in turn projects to

W@ - woh=do . (64)

This completes the proof of part II. of proposition 2.6.

The Chern-Simons (secondary characteristic) classes are provided by the following

Proposition 2.8. The 2k-form W( QK) is exact on E and one has

1
W(Qk)=k dLW( o APEL G, (65)
where
¥, = tdo-12¢[w, 0] . (66)



The proof is similar to the one of proposition 2.7. and we shall omit it.

Proposition 2.8. will be used in section 2.8. in relation with gauge anomalies.

As an example we shall apply the previous analysis to the extension of infinite
dimensional Lie algebras canohically associated with a principal fibre bundle and we shall
describe how to recover the uSual Chern-Weil construction [CS], [KN]. Letthen t: P - M
be a principal fibre bundle with structure group G ; g will denote the Lie algebra of G.
Let AutP be the group of automorphisms of P (diffeomorphisms of P which commute
with the action of G )and G = AutyP its normal subgroup of automorphisms which map
any fibre into itself. One has a short exact sequence of groups [Tr2]

I -G — AutP —» DiffM — T . (67)

The group G is the group of gauge transformations of a pure gauge theory. The Lie algebra
of AutP can be identified with the algebra X of G-invariant vector fields on P while the
Lie algebra of G is the algebra L of G-invariant vertical vector fieldson P.If R(M) is
the algebra of vector fields on M we have an extension of Lie algebras [AB]

O—>L-—->NG—->N(M)—->VO. (68)

The extension (68) is a Lie bundle over the algebra C*°(M) of smooth function on M.

It is well known that a connection on P can be given by means of a (C*°(M)-module)
splitting of the sequence (68) p : X(M) — R or equivalently by means of a connection

l-form we 'AI(NG , L), oY) =Y - p(n«(Y)) [AB]. Proposition 2.6. applied to

sequence (68) is the statement that given any W e I(L®k, C=°(M)), the 2k-form W(QK)

on P projects onto a closed 2k-form W(QK) on M and the element of the De Rham

cohomology group H2k(R(M), C=(M)) defined by W(QK) does not depend on the

connection. All this sounds very much like the usual Chern-Weil construction for a principal
bundle. The possibility of recovering the usual Chern-Weil construction by means of our
methods follows from the following

Proposition 2.9. The space Igg@‘, R) of symmetric, adjoint invariant mappings from g®k
to R is isomorphic with the space of local mappings Iloc([,®k, C*°(M)) C (L%, C(MD)).
Here an element W e I(L®K, C°(M)) is local if the support of W(V; ®-® V) is
contained in the intersection of the supports of the Vj's forany Vy, ..., Ve L .



Remark. A relation like SuppW(V;®-@ V) C ﬂj V. makes sense because any
invariant and vertical vector field on P can be identified with a2 section of the bundle over M
associated with P by means of the adjoint action of the group < on its Lie algebra g (see

later).

In order to prove proposition 2.9. we need some additional machineries. First of all , it is
easy to show that the adjoint action of AutP on L is given by

L2

Ad(PVch*V‘eL , Voe AutP, Ve L .' (69)
while the adjoint action of X5 on L is given by
[Y,V]grsadYV=—LYV:eL , VYe X5, Vel . (70)
Let us consider the space of equivariant mappings
C(P,G):{T:P—)G:’C(pg):Adg_IOT(p)}, (71)
which is a group under pointwise multiplication (T-1') (p) =: T (p) T'(p) ; and the space

CR,g={H:P>g:Hpg)=Ady_;°H{) }, (72)

which is a Lie algebra under pointwise bracketing [ H, H' ] =: [ H(p), H'(p) ] . It is
possible to construct an exponential map which obeys the usual properties [Bl]

expc: C(P,g) = C(P,G) , H—> expc (H) (p) =: exp H(p) , (73)

where the last exp is in the group G . One can prove that G and C(P, M) are canonically
isomorphic via the following mapping [B1]

t: G - CP,G, ¢ — T such that @(p) =p't(p(p) ; (74)
and that L and C(P,g) are isomorphic (antiisomorphic with the bracket [ Y, V ]gr ) via
H: L - CP,g), H— Hy suchthat TexpV = €XPc Hy, (75)

(here expV indicates the flow of the vector field V ). By using isomophism (75) and the
well known identification of equivariant mappings with section of associated bundles (see for
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instance [Tr5]) one has also the identification of the Lie algebra L with the space of sections
of the bundle associated with P by means of the adjoin action og G on g ; this space of
sections is made a Lie algebra by pointwise bracketing.

The isomorphism (75) is also used to prove the

Lemma 2.3.
HAd(P(V)=qJ*HEH°(p“1 , Voe AutP, Ve L ; (76)

We can now prove proposition 2.9. We first show that I(g®k, R)C IIOC(L®k, C*M)) .
For any element W in I(g®k, R ) we define an element W in IIOC(L@‘, C™(M)) by

W(Vp cery Vk)(p) = w ( HV (p): ooy HV (P)) s (78)
1 k

where, for any Vje L, HVj € C(P, g) as given by (75) . That W(Vy,..,, V) isin
C=MM) follows from the defining property of the HVJ. 's and by Ad-invariance of W .
- Moreover, by using lemma 3.2. one can prove that W in (78) obeys (57), that is, for any
Y e Xg onehas Ly W(Vy,., V)= ZjW(Vl,...,[Y, Vils..., V). This shows the
inclusion I(g®k, R) C I, .(L®X, C*(MD)) . To prove the converse let ‘W be an element of
IIOC(L@’k, C™(M)) . By Peetre's theorem [CDS], [Lec2], ‘W is a multidifferential operator.
It can be proved that W is of zero order and locally with constant cofficients. By using
identification (75), property (59) amounts to the invariance of W under the adjoint action of
g on C(P, g) . Then, it turns out that ‘W determines an element in I(g®k, R) [Lec2].

By applying proposition 2.6. to sequence (68) one can also construct characteristic
classes for the Gel'fand-Fuks cohomology of the Lie algebra X(M) of vector fields on M
[TeN]. Indeed, the sequence (68) being a Lie bundle over C*°(M) it will also be a Lie
bundle over R . Moreover, any splitting of (68) as a Lie C*°(M)-bundle will also provide a
splitting of (68) as an R bundle. Then, given any W e I(L®X, R ), from proposition 2.6. it
follows that the 2k-form W(QK) e AZK(NG, R) projects onto a closed 2k-form wQky
e AZK(R(M), B) and the element of the Gel'fand-Fuks [GF] cohomology group
HZk(NG,FR) defined by W(QK) does not depend on the connection.




3. GRADED DIFFERENTIAL CALCULUS

In this chapter we shall give a Z,-graded generalization of the algebraic calculus
developed in chapter 2.. Firstly, we will construct an exterior calculus for any Lie
superalgebra or Z,-graded Lie algebra (for Lie superalgebras see [CNS], [Ka]) which acts
as a superalgebra of derivations on a Z,-graded commutative algebra with unit. By giving a
metric we shall develop a graded Riemannian calculus and introduce the notion of graded
Einstein algebra. All operatiéns will be generalized by. taking the Lie superalgebra to be an
extension of Lie superalgebras. In analogy with the non graded situation we shall use
extensions of Lie superalgebras as the framework for algebraic graded gauge theories.
Finally, in section 3.6. we shall construct a graded Chern-Weil homomorphism for an
extension of Lie superalgebras endowed with a connection and shall give a sistematic
algebraic derivation of graded Chern-Simons terms.

Throughout all the chapter by graded we shall mean Z,-graded. In addition, p(-) will
denote the Z,-parity of any graded object, while V¢ will be the set of all homogeneous
elements of any Z,-graded vector space V = V(Q@ V(1) | Ag a rule, all operations
concerning V will be givenon V® and then extended to V by linearity.

"~ 3.1. GRADED EXTERIOR CALCULUS

The starting object is a Z,-graded commutative algebra F = FO e F1) | over a
Z,-graded commutative algebra of ‘constants'’ R which is assumed to contain a field
isomorphic with the field of real or complex numbers (more precisely F is a graded
R-module). F will be assumed to containe a unit. A graded derivation of ¥ of parity
p(X) is any R-linearmap X: F— F suchthat X(fg) = X()g + (-1)POPX)f X(g), for
any f,ge F®. The parity of X is defined by p(X) =: p(X(f)) — p(f) mod Z,, forany f
in F°. Since X(1)=X(1)+ X(1) one has that X(1) =0 ; by R-linearity it follows that
X(a) =0 forany a in R . The collection GDerF of all derivations of F is a Lie
superalgebra over R . The graded Lie bracket LY =[X, Y] of any two homogeneous
derivations X and Y is defined by LyY =X oY - (-1)PEPY)Y o X; LY isa graded
derivation of parity p(LxY) = p(X) + p(Y) . The algebra GDer¥F is made a graded left
module over ¥ by defining (gX)f =: g(Xf) . Furthermore, one has the property L (fY) =
1POPX £ L Y + (X Y, forany X, Ye GDerF®, fe F°.

Let E be any Lie superalgebra over R which is also a graded left module over F . E
will be called a Lie supermodule if there is an even representation of E into the Lie
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superalgebra GDerF, X — X - . By this, ¥ will also be 2 lft E-module. Obviously,
GDerF itself is a Lie supermodule.

Given any ¥F-module E the dual module E* is the collection of all graded F-linear
mappings ¢ :E—=F, X - ¢X), ¢(fX) = (-1)POP@(X) , with the parity p(p) defined
by the usual rule p(¢) = p(¢(X)) - p(X) , forany X e E® . In general, an (m, n) graded
tensor is any graded F-multilinear map o :E*x-xE*x Ex-xE—F (m E* factors
and n E factors). The collection of all rank (m, n) tensors is a graded left F-module. One
also defines the graded tensor product o®pB of any two tensors o and [. As in the
nongraded situation, we shall be interested only in cases in which the algebra F and the
module E are such that E is totally reflexive namely, the dual of E* is isomorphic with E
and tensors can be identified with tensor products.

We denote by AP(E, F) the collection of all skew-symmetric covariant graded tensors
of rank p.If ¢ e APE, F), then ¢(..,Y; 1,Y; ...) = (=1)1+PYi )p(Yi+1)(p(...,Yi,Yi+1,...),
forany Y; e E®.In particular ANE,F)=E*, A%E,F)=F . Elements in AP(E,F) will
be also called graded p-forms or graded p-F-cochains .

If E is a Lie supermodule, on the direct sum A*(E,F) = @p AP(E, F) we define an

exterior derivative d, by

d: APE,F) - AME,F)
AQ(X ppers Xpy 1) = Ty (DI IHAOD XX 8,0 X ) +

+ Zi 51 MREDQXy, Xilg, Xppohnd®nXpyp) - ¥ X E*, (D)

where

a(@,i) = pX) [ p(@) + Z i PEP 1,

bGi.) = [ PCX) + PX)) 12 (Y} + P(Y)) Zigeg PCY) - @
From definition one has that p(d) = 0. Since the action of E is a representation, one can
prove that d is a coboundary operatqr, namely d?=0. An element ¢ in AP(E,F) will be
called a graded cocycle if d¢ =0, a graded coboundary if ¢ = dy for some Y in

AP(E,F) . Then one introduces the graded cohomology of the Lie superalgebra E with
coefficients in the representation space F . The p-th graded cohomology group is defined by
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HGP(E, F) = (kerd: AP(E, F) = AP*I(E, F)) / (imd : APHE. F) = APE, F)) . (3)
As for the cohomology at order zero, one has HOE, F) = ker d: AYE, F) = ALE, F),
namely, HYE, F) is made of elements of ¥ which are invariant under the action of E .
The cohomology of Lie superalgebras was introduced in [Lei]. It has been applied mainly to
study deformations of Lie algebras [Lec3] and superalgebras [Bi].

Next, we define an exterior product

A APE,F)xAYE,F) — APH(E,F) ,
¢ A W(X133Xp+q) = l/p'q! zo‘ X(g)(_l)C(W,C,p)-i-d(G) (P(XG(I)""’XO'(D)) X

XYKgpe1y-Xopsq) » v Yi€ E®; @&

here, c(y,0,p) and d(c) are given by

C(W,O',P) = P(W)Zlgp p(Xg(l)) ’

d(c) = numbers of minus signs that occur by going from the ordered sequence

Xis ,Xp +q to the ordered sequence Xc(l)’ ...,XG(p Q) - %)

The derivative d is of degree one with respect to the exterior product, namely, one has
di@ Ay)=de Ay +(-1)%EP @ Ady.
We introduce two more operators on A*(E, F) . Firstly, the Lie derivative L(,) given by
L() : E X AP(E, j:.) - AP(E7 j:) ’
(LX(p)(Xl,...,Xp) = X 0(Xyp,.. . Xp) +

— Z; (~1)P@PEPEDZ k<t PO o([X, Xi], X ooy Xp) s VX, X;€ ESL (6)

We have also the inner product i,(_) , defined by



iy: E x APE,F) - APIE,F),
XX X)) = CDPOPR (X X, X ), VX, X;e E; (7)

and i,f=0 Vfe F . From they definitions one has that p(Ly) = p(X), p(iy) = p(X) .
Moreover, Ly (¢ Ay) =Ly ¢ Ay + (=1)POPX) ¢ A Ly and ix(@ Ay)=ixp Ay +
(~1)48®+ P@PX) @ A iy . One has also the identity Ly =d o iy +igyed.

&

Finally, we define the Lie derivative of 'any tensor. If u is any (m, n) tensor of
definite parity p(u), then, given any X € E®, the Lie derivative Lu is the tensor of the

same type and of parity p(u) + p(X) , given by
L)@y O™ X e X) =t Xo( (@1 0™, X, X))
-3, (-1 PO+ i P«D“) w(l,..., Ly@l,...,0™m X;,...,.X,)
— 3, (—1)POOREI TN Tt DK (ol,..., WX [K, KoK
VX, X,e E°, ole E**. (3)
A 'fermionic' differential calculus based on a couple (F, E), (F a graded commutative

algebra with unit and E a Lie supermodule over F ) has been presented also in [JK] where
the couple (F,E) is calleda graded Lie-Cartan Pair.



3.2. GRADED RIEMANNIAN CALCULUS AND GRADED EINSTEIN
ALGEBRAS

In analogy with section 2.1., we introduce the notion of affine connection on a Lie
supermodule. Then by giving a metric on the module, we shall construct the Levi-Civita

connection associated with it.

The framework is a Lie supermodule E over the superalgebra F with unit. A graded
affine connection on E is a degree zeromap V : E — Homp (E,E), X — Vy such that

V(Y +Z)=VyY +VZ ,

Vi Y)= (XDY + (-1PXPOFVY |V X, Y,ZeE®, feF°® . 9)
We call Vy Y the covariant derivative of Y in the direction of X . The covariant
derivative of elements in E* is defined by requiring Leibnitz rule. If X € E and ¢ € E*,
the covariant derivative Vy@ is the elementin E* given by

(Vxo)(Y) = X((Y)) = (-1)PEP@p(V4Y), V YeE. (10)

In general, if u is a tensor of type (m, n), the covariant derivative Vyu is the tensor of the
same type and parity the sum p(u) + p(X), defined by

(Vywy(ol.., 0™X,...X,) =t X-(u (@L,..., @™,X,,....X,))
— 3, (~1)PCORW+Zksi @) y (@, Vyed,..., 0™, X .., X,)
k .
— 3, (-1)PEP@+Zp@D+ < PRK) y(wl,..., @™ X ..., VXX
vV X, X;e E°, ole E*® . (11)
Given an affine connection V on the Lie supermodule E, the torsion of V isthe
grade zeromap T from E xE into E defined by

T(X,Y) = VxY = (-1)PEPOV X - [X, Y] , V X, YeE°. (12)
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One verifies that T is F-bilinear. Therefore, it determines a graded skew-symmetric forsion
tensor of type (1,2) by therule T(w, X, Y) =: (T, Y)) .

The curvature of the affine connection V on the Lie supermodule E is the map R
from E xE into Homgy (E, E) given by

R(X,Y)=: Vx Vy = (-1PXPNVy Vo —Vy v, ¥V X, YeE®, (13)

The graded curvature tensor R of the affine connection V is the tensor of type (1, 3)
given by

R(®, Z, X, Y) =: (-1)PAIKHPD o RX, Y)(Z) , V X,Y,Ze E®, we E*. (14)

One verifies by explicit computation that R is a tensor, namely that it is F-linear. Moreover,
graded versions of all usual properties of the Riemann and torsion tensor are true, provided
one pays attention to the 'minus signs'.

A metric on the Lie supermodule E is an isomorphism g from the module E to the
module E*, which is graded symmetric, namely g(X,Y) = (-1)PXP(Y)g(Y,X) | for any
X,Y € E®, where g(X,Y) =: [g(X)](Y) (gis even in Z4-grading). To any metric there is
associated a covariant tensor of rank 2.

Given a metric we may construct its Levi-Civita connection. If X € E® and ¢ € E*®,
the covariant derivative V¢ associated with the metric g is defined by

V@ (Y) =: 172 {X-o(Y) - (—=1)P@PEX)+pMN)P(@+PO] ¥.¢(X) — (-1)PPOPXp([X,Y] o)
+ (PP ()] -(6(X,Y)) = (~DPFP@ g(Lo-1\X, Y) - g(X, Lg-1()Y ) }
= 112 (-1)P@PPX) { (do)(X, Y) + '(Lg-l(q,) X, )} , VYeE. (15
From last equality it follows that Vy¢(Y) is graded F-linear in both X and Y . Moreover,
all other defining properties (9) are satisfied. The connection (15) is the Levi-Civita

connection of the metric g in the sense that one has : i) V4 g=0; ii) the torsion vanishes.

If R is the curvature as defined in (13), then the graded Riemann tensor of the
Levi-Civita connection V is the even covariant rank four tensor Riem defined by

Riem(X, Y,Z, W) = g(X,RZW)Y), V X,Y,Z We E® ; (16)
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The graded Riemann tensor obeys properties analogous to that of the Riemann tensor (2.16)
provided one pays attention to the proper 'minus signs'.

The last ingredient we need to define the graded Ricci tensor is a contraction operation C.
By the assumption of total reflexivity it suffices to define C on rank two tensor. If o isa
rank two tensor then C(a) € ¥, and C is linear and satisfies C(¢ ® y) = (p(g“lw), Vo,

y e E* . We assume the algebra F , the supermodule E and the metric g to be such that
there exists a unique operation C which fulfils the previous contraction properties.

With Y, W fixed, S(X, Z) =: Riem(X, Y, Z, W) is bilinear in X, Z. Then C(S)V is
bilinear in W, Y and defines the covariant rank two Ricci tensor Ric(W, Y). Ric can be

defined equivalently as

Ric(Y, W) = trace of the map V — R(V, Y)W of the Lie supermodule E .

We have all ingedients to generalize the notion of Einstein algebra introduced in section
2.2. We define a Graded Einstein algebra to consistof : i) a Z,-graded commutative
algebra F overa Z,-graded commutative algebra of 'constants' R, the latter containing a
~ field isomorphic to the real numbers, ii) a graded Lie ¥-module E with a metric g which
is such that the contraction properties are satisfied and the graded Ricci tensor vanishes .

3.3. THE GRADED CODIFFERENTIAL

Given a metric on a Lie supermodule E, we can introduce a graded codifferential. For
this we only need a metric and the associated Levi-Civita connection as constructed in (15).
For the sake of simplicity we take the Lie supermodule E to be of finite type as an
F-module with basis given by {e;, 1= 1,..,n} and dual basis {Gi, i=1,.,n}, ei(ej) = Sij
(we take corresponding elements in the two basis to have the same parity). The codifferential

is defined as
§: APE,F) - AFIEF),

BPYX o Xp 1) =1 = Z; (Ve @)@ ED, Xy X)), VX€E . 17



In particulaf if ¢ € E*,its divergence is the elementof F given by

dive =: 8¢ = = Z; (V,0)(g ' (€")). | (18)

As in the non graded case one shows that 82 = 0 . Moreover, one has an analogue of
proposition 2.1., namely, the codiferential & is the adjoint operator of the exterior derivative
d in the sense that, given an§ @ € AP"}(E, F) and any y € AP(E, F) one has

g7 lde, w) - g1, 8 y) = div(something) . (19)

Here g‘1 is the natural extension of \the metric to the space of graded forms, and is defined
in a way similar to (2.18). The proof of (19) is analogous to that of proposition 2.1..

3.4. EXTENSIONS OF LIE SUPERALGEBRAS

Extensions of Lie superalgebras will be used in the next section in order to generalize
the results of section 2.5. and construct a framework for a graded gauge theory. Here we
- give few basic notions. Lie superalgebra extensions have been considered in [Ti] too.

An extension of the Lie superalgebra B by the Lie superalgebra A is a Lie
superalgebra E togetherr with a short exact sequence of Lie superalgebras

T

i .
0—- A—-E—->B->0 " 20)

For the time being, A, B and E are Lie superalgebras over a Z,-graded commutative
algebra of 'constants’ R . The maps i and 7 are respectively an even injective and an
even surjective Lie superalgebras homomorphisms with the condition that imi=ker .

With any extension like (20) there is associated an exact sequence of Lie superalgebras
of derivations by means of the following diagram

114
0—> A 13 B —5 B —>0

] T

0 —> InG(A) —> GD(A) —> OwGD(A) ——> O



Here GD(A) is the Lie superalgebra of all derivations of A . As a vector space, D(A) is
the collection of all graded maps ¢ from A into itself such thar o([X,Y]) = [¢(X), Y] +
(~1)P@PX)[ X o(Y)], for any X, Y € A . The Lie bracket of any two homogeneous
derivations ¢ and \ is defined as usual by [, y] =@ oy — (=1)P@PWhy o ¢ .

InGD(A) is the Lie superalgebra of inner derivations of A, which also gives the adjoint
action of A onitself D,y(a')=[a,a']g forsome ae A . This gives the homomorphism o
as a — o(a) =: D, . Finally, OutGD(A) is the Lie superalgebra of equivalence classes of
derivations of A modulo inrfer ones. If we consider the cohomology of A with coefficient
into itself and with respect to the adjoint action, we see from their definitions that GD(A),
InG(A) and OutGD(A) are the space of graded 1-cocycles, the space of graded
1-coboundaries and the first cohomology group respectively .

The map B is defined as e — B(e), B(e)a =[e, a]; whichis an element of A because
the latter is an invariant subalgebra . Finally, the map 7 , called the character of the
extension (20), is deﬁnec'l to make the last diagram in (21) commute.

'

1 T 1 T
Twoextensions A — E — B and A — E' — B with the same character are said

to be equivalent if there is an isomorphism f:E — E' suchthat i'=fci and t=fox'.

'

If the superalgebra A is abelian, then y defines a representation of B in A . In analogy

with what happens for extensions of ordinary Lie algebras, one can prove that the set of

equivalence classes of extensions of B by A is in a bijective correspondence with the space
HZ(B, A, y) of the cohomology of B with coefficients in A .

3.5. CALCULUS OVER LIE SUPERALGEBRA EXTENSIONS

In this section we shall introduce the basic ingredients we need for the graded gauge
theory which will be developed in chaptev 4.. The framework is an extension of Lie
superalgebras 0 - A — E — B — 0 like (20). In addition, we take the extension to be a
Lie superbundle over the couple (F ,R);here F is a graded commutative algebra with
unit, over a graded commutative algebra of 'constants' R . By this we means that A, B
and E are Lie algebras over R and left Lie supermodules over F . Therefore there is a
representation of A, E and B into the Lie superalgebra GDer¥F of all graded derivations
of ¥ . Since A isanideal in E it is forced to act trivially on F and A is a Lie
superalgebra also over F .

We call connection on the sequence (20) any even F-module homomorphism

p: B = E such that Teop=idg . (22)
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The map p is required to be F-linear. If p and p' are any two connections, their
difference p —p' is an F-linear map from B to A . The set of all connections is then an
affine space modelled on Lin}-(B, A). _
Equivalently, we could give a connection by means of an even A-valued F-linear
connection I-form ® on E

w: E— A such that wei=id, . (23)
The relation between @ and p is

W=idg —porm . (24)
In general p is not a homomorphism of Lie superalgebas. The extent to which p fails to

be so is measured by the curvarure F . The latter is the A-valued F-linear skew map of
zero parity on BxB defined by

F(Xy.Xp) = p(IX; . X51g) - [P, pK)lg » V X;,X,€B. (25)
- In section 4.8. we shall give few examples of extensions of Lie superalgebras with
connection.

The curvature 2-form € of the connection is the A-valued skew map on EXxE
defined by

Q(Y,,Yy) = F(nYy, Y, , V Yy, Yz €eE , (26)
and in terms of ®
Q(Y1,Yy) = [Yy, o(Yplg — CHPUPYD Y, a(Yylg +
= o([Yy, Yolg) — [0(Yy), a(Y)lg - 27)
The form Q is horizontal, i.e. Q(Y,, Y,) =0 whenever one of the Y;'s belongsto A .

Let AP(B, A) be the graded vector space of graded F-linear, p-linear skew maps from
Bx---xB (ptimes)to A . We define the graded covariant differential Dp by the rule
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D, : AP(B, A) = APHL(B, A),
D@ (X e Xpyp) =1 Zj (GO [0(X), 0K gy X 1 Ig +
+ T CDHPEDQIKG, Xlg, Xy Xpp) 5V X(€B®, (28)

where a(,i) and b(i,j) are given in (2).

o

If F is the curvature as defined in (25), one can prove the Bianchi identity

D, F=0. \ (29)

In order to introduce a graded covariant codiﬁerentidl we need a metric on B,
namely a graded symmetric non degenerate map g:BxB — F . We shall indicate with V
the corresponding Levi-Civita connection as constructed in (15). Given any X € B, we first
define an operator

VPy : AP(B, A) = AP(B, A) ,
(Vpx (‘P)(Xls'sxp) = [p(X)’ (P(Xla",xp)] +
= (1POPRO T 1Pk PXD (X, VyeX,o X ), ¥ Xj€B®. (30)

To define the covariant codifferential Dp , for the sake of simplicity, we take B to be of
finite type with basis {b;, i= 1,.,n} and dual basis {Bl,i=1,..,n}, Bi(bj) = sij . Then
the covariant codifferential is given by

D,: AP(B, A) = API(B, A),

(D @)X e X 1) =t = Z; (VP 0)(g™1(BY, X oo X,p) 5 VX B . (31)

Finally, we assume there is a metric also on the Lie superalgebra A, h: AXA - F

which is graded symmetric and non degenerate, and of degree zero. In addition, we take it to
be adjoint invariant, namely



WY, Z1,2Z) + (LPYPEORZ,, [Y,Z,]) = 0, ¥ YeE®, Z,,Z,eA®, (32)
and invariant under the action of B,
X-h( Zy, Zy) = h((p(X), Zy], Zp) = (~DPEPED h(Z,, [p(X), Z,)) = 0,

VXeB®, Z,,Z,eA®. (33)

Let us indicate with (hg"‘l) the natural metric induced on AP(B, A) by g and h, and
constructed as in (2.44).- One can prove as for the nongraded case that ’Dp is the dual of Dp
with respect to the metric (hg‘l) , namely, relations analogous to (2.45) and (2.46) are true.

3.6. GRADED CHARACTERISTIC CLASSES AND GRADED
CHERN-WEIL HOMOMORRRPHISM

In this section we shall generalize the construction of section 2.6. by constructing a

Chern-Weil homomorphism for extensions of Lie superalgebras. We shall also give a
. sistematic algebraic derivation of graded Chern-Simons secondary characteristic classes.
A construction similar to the one presented here has been used in [BBL1] to construct a Weil
homomorphism for a principal superbundle which, in turn, has been used to construct in
terms of curvature forms some invariants associated to the superbundle and, in particular, to
define Chern-Simons forms. Graded Chern-Simons terms are presented in several
supergravity models (see for instance [vNe]) . Moreover they are used in the analysis of
anomalies in supersymmetric theories [BPT], [BBL2], [BrLa].

The basic object is an extension of Lie superalgebras 0—->A—->E—>B—0 whichisa
Lie superbundle over a graded commutative algebra F with unit. Moreover, on the
extension there is a connection p as defined in (22) with connection form ® and curvature
form € given respectively by (23) and (27).

Let us consider the tensor algebra over A-

A* = @ A% | A®K —A@-®A (ktimes), AO=F . (34)

We make A* a Z,-graded algebra with the tensor product ® as multiplication and grading
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defined by | p(Z, ®-®Zy) = Zp(Z;), mod Z, , whenever the Z; e A®.

We can define a representation of E in the graded Lie algebra of derivations of A®X . Take
r: ExA%k A8k,
f(V)(Z) 002 ) = 2 (1PN P20 Z, @0 [ Y, Z1g 88 Z , (35)

&

and extend r as a graded derivation to the whole of A*. One can show that r is a

representation, namely
r([X, Ylg) =1(X) o 1(Y) = ()PP r(Y) o r(X) , V X, Y € E® . (36)
Since A acts trivially on ¥, r is F-linear.

Let APK=: AP(E, A®K) be the space of F-linear, p-linear graded skew maps from
Ex--xE (p times) to A®X (A®K_valued graded p-forms on E ). If ¢ € APK then

s Yisp, Y w) = (DY) o( LY, Y, ), ¥ Yie E° . (37)
By using representation (35) we define an operator
d.: APK — AP+LE
d. (p(Yl,...,j{p+1) = 3, (-1) i+1+a(od) H(Y) @Y sl Ypup) +
+ Zig (1) i+, Yig Yll,...,i,...,j’\,...,Yp\L1), VY Y,e E°. (38

with a(e,i) and b(i,j) as in (2). As it happens for the operator in (1) one can show that d,
is a coboundary operator, namely (dT)2 =0.

Next, we define an exterior product by
A i APK x AGR 5 AP+QK+h
@AY (Y1, Yp,q) = 1p1g! Z g x(0)(-1)WOPIHO) oY 1y, Y ) ©

@ Y(¥ g1y Yopeq)» ¥V Yi€ E°;  (39)
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here c(y,0,p) and d(c) are given by (5).
One also defines a bracket operation

[, 1g: AP x A%l - AP+l

[(P > W](Y13-~~3Yp+q) = lfp!q! zo’ X(G)(_I)C(W,O',p)+d(0') [(p(Yc(l)r"yYG(p)) H
N g1y Yopeglo > V Yie E°. (40)

with c(y,0,p) and d(c) again as in (5).

From definitions (38), (39) and (40) we have a proposition analogous to proposition 2.5.
Proposition 3.1. If ¢ € APX and y e A®P then

d(eAY)= (P AY +-1PoAd Yy , (41a)
" moreover, if @ AP, ywe ATl and L e APL, then

d([¢,ylg)=[de,¥ig+ CDP[o,dV]s , (41b)

[0,y =DIFPHPORW [y, 0] | (41c)

EDPRLe, [ Mg lo+ EDFLWL [N, 016 jG FEDRAN [0, ¥1glg=0;  (41d)

here P, R, Q are the total degrees, namely P. =1 +p(9), Q=q+py), R=r+p(A).
By using (38) and (40) the curvature €2 defined in (2.7) may be equivalently written as

Q = do-12[0,0lg, (42)
and, by (41b-d), the Bianchi identity (29) may be written as

dQ -[0,Q];=0. (43)



Let now I5(A®K, F) be the space of symmetric F-multilinear maps W : A®K 5 F |
graded symmetric

(P( ves ® Zl+1 ® Zl ® ...) — (_l)p(a )p(Z] +1) (P( s ® Z1 ® ZH.I @ ) , Zl e A. , (44)
and such that
(Y)W =0, V YeE® . A (45)

Here r(Y)W is define.d by
r(Y)W(Z,®®2Zy) =1 YW(Z{®-®Z) - W(r(Y)(Z;®®Z)),
VZeA. (46)
Condition (45), together with the trivial action of A on ¥ implies 'adjoint invariance'
S(-1P@DE<ipE) W(Z,©® [Z, Zi]lg ®®Z) =0, V Z, Ze A®. (47)
" The gpace IG(A®K F) = @, I5(A®K, F) is made into a graded algebra by defining, for
W e Ig(A®K, F) and Ve I5(A®M, F) the product WV e I5(A®&+), ) as follows
WV(Z; ©®Zy ) = Uk!h! Z(~1)fW.0P+dOW(Z 1) 00 Z ) X
X V(Zger1) @ ® Zgeiny » ¥V Zje A%, (48)
with c¢(W,o,p) and d(c) given as in (5).

If ¢ isany elementin APX and W any element in I (A®KF) we may define a form
in AGP(E; F) by W(9)=: Weo . Property (45) implies

d, W(p) =W (4,9, (49)
while condition (47) gives

T, (—1)pr-+Pi +R@OZ < PUDW (g, A=Ay, @l A Aw) =0
V y e APl e AL (50)




We are ready to construct the graded Chern-Weil homomorphism.

Proposition 3.2. Given an extension of Lie superalgebras 0 — A - E —-B —0,witha
connection, let € be the corresponding curvature form and let W e IG(A®k, F) . Then

I the 2k—form W(QK) e AZX(E, F) projects onto a closed 2k—form W(QK) e AZK(B, F);
IL. if w(W) is the element of the graded cohomology group HZK(B,F) defined by W( Qky

then w(W) does not depend on the connection and w» : I5(A, F) — H*(B, F) is a graded
algebra homomorphism (graded Weil homomorphism).

The proof goes on as the one of proposition 2.6. and we shall omit it; it can be found in
[LaMa3]. The graded Chern-Simons forms are provided by the following
Proposition 3.3. The 2k—form W( Qk) isexacton E and one has
. ‘
W( QH:deW(m ApETyd (51)
with
¥, = tdo-12¢[0,0l; . (52)

1
The graded Chern-Simons forms L W( o A¥El) are used in the study of
anomalies of supersymmetric gauge theories [BPT].



4. ALGEBRAIC GAUGE THEORY

In section 2.4. we have shown how an extension of Lie algebras can be endowed with
concepts which constitute the kinematic of a gauge theory like connection, curvature,
covariant derivative and codifferential and so on. What we would like to do in this chapter is
to introduce the dynamical counterparts. Our framework will be an extension of Lie algebras
0— A —E — B —0 asin%2.21) which in addition is a Lie bundle over a commutative
algebra ¥ with unit (for details see section 2.5.) and carrying a connection p as defined in
(2.31). Firstly, by using the covariant codifferential defined in (2.41), we shall introduce
fields equations. These equations will be derived from a lagrangian by means of a suitable
variational principle. Then, we shall give few examples. We shall construct sequences of Lie
algebras which provide algebraic abstract analogues of electromagnetism, monopoles and
instantons. The reason for the names is that by realizing the sequences in terms of vector
fields associated with proper fibre bundles, we get back the usual solutions. However, our
sequences go beyond these realizations and could be applied to situations where the Lie
algebras are not Lie algebras of vector fields. We stress that in our construction we don't
need any manifold stucture. In our formalism there is also room for gauge transformations
and symmetries and conserved quantities; they are described in sections 4.3. and 4.4.
respectively. In section 4.5. we shall describe BRST transformations for our sequences.
" Finally, in section 4.7. we shall construct a sequence which, when endowed with the
structure of Einstein algebra, gives an algebraic Kaluza-Klein monopole; this will also
provide an example of Einstein algebra.

In section 4.8. we shall sketch the algebraic graded gauge theory. This will be a
straightforwad generalization of the nongraded theory. As examples we shall construct a
graded algebraic electromagnetism and a graded algebraic abelian monopole.

4.1. FIELD EQUATIONS AND LAGRANGIAN

In section 2.4. a connection, if it exists, is completely arbitrary. We shall now restrict it
by requiring that a set of algebraic equations be satisfied. Suppose we are given a connection
p with curvature Fp as in (2.34), on the sequence 0 > A—->E —>B — 0.

The Yang-Mills equations’ for p are the following algebraic equations

Dpr=O, (1)



where Dp is the covariant codifferential associated with p and defined in (2.41).
We call Yang-Mills lagrangian’ for the connection p the elementof F defined by
= (hel :
L, = (hg™})(F,,F,) . @)

Here the metric (hg‘l) is the metric induced on the space AP(B, A) of A-valued forms on
B by ametric g on B and ametric h on A as shown in section 2.4.

We can define a variational problem so that equations (1) are an extremum of the
légrangian (2). Since the space of all connections is an affine space modelled on the vector
space Al(B,A), it suffices to vary the connection p along lines of connections py=p+1m,
ne AB,A),te R. As a preliminar result we have

Proposition 4.1. Given the line of connections p,=p +tp, M € Al(B, A), the
corresponding curvature is FPt = Fp - tDpn - 12t [M,n].
By using this proposition one has the expansion
- ~1 — - -1 2

Then we require that at an extremum

(hg~")(Dyn, Fy) =0, 3)
which in turn, by using proposition 2.4., gives

(hg~Hm, DF,) + div(something) = 0, Vne Al(B; A). 4)
If we identify elements of ¥ which differ by a divergence we see that up to divergences,
equation (4) says that the quantity (hg~1)(n, DPFP) can be put equal to zero for any 1 in
Al(B, A). Since the metric (hg“l) is nondegenerate we may infer that Dpr =0.
If the algebra B is of finite type we can write explicitly the divergence in (4). Indeed, with

{bji=1,..,n} a basisof B and {Bi, i=1,..., n} the dual basis, from (2.46) we get

(hg™)(Dyn, Fy) = (hg™H(M, DF,) =div (Zh(me g '(B*) , F(by,-))) . (5)



The previous relation will be used in section 4.4. to construct the conserved currents

associated with symmetries of the lagrangian (2).

4.2. EXAMPLES

In this section we shall construct the sequences of Lie algebras for the algebraic
electromagnetism, monopoles, instantonic solutions, and so forth. For any example we shall
show how to recover the usual solutions by properly realizing the sequences in terms of
vector fields.

The basic ingredient is an extension 0 - A — E — B — 0 with the structure of Lie
bundle over a commutative algebra ¥ . Furthermore, we shall assume that B generates over
F the all of the module DerF (B and DerF are the same as F-modules). In any example
we specialize in a suitable manner the sequence and give a particular connection on it.

4.2.1. Algebraic electromagnetism [LaMal]

Let us take an extension of Lie algebras 0 - A — E — B — 0 with the structure of
Lie bundle over a commutative algebra ¥ . We make the following assumptions on it:

1. ¥ is taken to be 'generated' by four elements f;, f5, f3,h; generated here really
means that the F-module (DerF)* is freely generated as an F-module by the elements dfy,

df,, dfy, dh.The operator d is the algebraic operator defined by (2.1) ;

2. B is an abelian algebra generated as an F-module by four elements Xise--» X4 whose
actionon F is given by X, f,= Suv s Lv=1,..4.

3. E is an abelian algebra generated by five elements Yq5..., Y4, Z such that (Y = X,
n(Z)= 0. Then the ideal A is generated by Z.
We take a connection p so that the corresponding connection form @ gives

oZ) =7Z, o(Y)=0. 6)



For a given choice of Z, any A-valued form ¢ can be considered as an F-valued form @
via 0=Z® Q.Inparticular w=Z® © with 0(Z) = 1.

As for the curvature F defined by (2.34), it may be writtén equivalently as

FX, X) = o[ pX), P(X')]) , VX,X" €B, )
which in turn gives a

EX,X) = ol P(X),}P(X') 1) = —dop®), pX)), ®)
since p(X)-@(p(X") =IP(X')-@.(PO§)) = 0.From (8) we have

do = -n*FE , )

and in turn the homogeneous Maxwell equations follow

dE = 0. (10)
If we define EHV =! E(Xu’ X)), then previous equations read
Xy Ey + XpEpn + XVEy, =0, AR, v o= 1,4 (11)

In order to obtain the 'inhomogeneous equations', we assume there is a metric 11 on B,
such that n(Xu, X)) = Myy = diag(+1, =1, =1, =1 ). Then the codifferential of E as
defined in (2.16) (in this example the covariant codifferential of F can be identified with the
codifferential of E) is given by

OF (X) = —Zn”"Xu-E(Xv,X) e F, VXeB. (12)
with NHVY the inverse matrix of My - The inhomogeneous vacuum Maxwell equations are

OF = 0 (13)

and in components

ENWV X Ep =0, A= 1,4, | (14)




We can obtain a realization of the previous construction in terms of vector fields associated
with a principal fibration. Let us consider the trivial fibre bundiz (1) — M4 x U(l) —» M4
where M? is the Minkowski space. Then we take for ¥ the algebra of smooth R-valued
functions on M# with (fy, £y, f3, h) the coordinates ( xH) = (k1 xz, x3, t) . We take for

B the Lie algebra of smooth vector fields on M* with X, =0 /oxH . Finally, E is the Lie
algebra of smooth vector fields on M* x U(1) with Y;l =0 /0x* and Z the generator of the
right action of U(1l) on itself. Equations (9) through (14) are nothing but the usual
electromagnetism. 4

4.2.2. Algebraic abelian monopole [LaMaZ]

Let us take an extension of Lie algebras 0 - A — E — B — 0 with the structure of
Lie bundle over a commutative algebra F . We make the following assumptions on it:

1. F is taken to be generated by three elements f;, f,, f3.

2. The Lie algebra E is a free F-module of rank three generated, as an F-module , by three
elements Y, , Y,, Y3 which close the Lie algebra of the rotation group

[YI’Y_)] =2£ijkYk’ i,j=1,2,3. (15)
and action on ¥ given by
Yj-fk—}_“,ejkhfh=0 , Lk = 1,2,3.‘ (16)

This action leaves invariant the quantity f2 = (f1)2 + (f2)2 + (f3)2 . In the sequel we shall
assume that 2 is a non vanishing 'constant’, that is a non vanishing element of R..

3. The Lie algebra A is generated over F by the element
The particular action (16) implies that Z commute with the Yj 's

[Yj,Z]=0. (18)



As a consequence of assumptions 2. and 3. we have that

4. the Lie algebra B is an F-module generated by three elements Xj = TC(Yj), j=1,2,3,
with the constraint 2 f;X; =0 (so B is not free).

Letnow E* be the F-dual module of E.E* is automatically a free module of rank three.
We take its basis to consist of elements 61 , 1=1,2,3, such that ol (Yj) = 8ij .

&

Consider the combination

6= Uf 6, f=0, (19)
then 6(Z) =1, and the A -valued I:fonn on E

w=2Z®0 | (20)

is a connection form for the sequence we are considering. The corresponding connection is

given by

p: B> E, pX)=Y-(UN{Z, j=1,23. 1)

Remark : For a given choice of Z, any A-valued form { can be considered as an F
valuedform Q via p=Z® Q.

As A is an abelian ideal in E , the curvature Q of the connection (20) becomes
QX,Y)={X6(Y) - YOX) - 6(IX,YD}Z

={ddX,Y)}Z, V X,YeE. (22)

non trivial cohomology class, i.e. it is closed but not exact. For, suppose E =do for some
a e AL(B,F), then its pullback m*o is a horizontal form on E such that d(8 — m*cr) = 0.
Since (6 —n*a)(Z) = 1, the 1-form 6 —m*a would give a connection whose curvature
vanishes, i.e. we could find a rotationally invariant 2 + 1 dimensional splitting of the three
dimensional vector space generated by Y';, Y'5, Y'5 . These vector fields close on the
rotation Lie algebra, are annihilated by 6 — n* and have the form Y';=Y; - (f;—g;) Z

Now £ =d6, being horizontal, projects onto a 2-form Fe A%B, F) which defines a
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where the 'gi's are the coefficients of m*at =2 g; 61 (we have taken f2 = 1 which is
possible because we assume that 2 is a non vanishing number).

By explicit calculations one can show that the connection (21) solves the Yang-Mills
equations (1) when the metric g on B is just taken to be the 'natural’ metric

g=Z(dfj®dfj) , restricted by Efjfj=1and ijdfj=0 . (23)

We shall give ﬁow a realization of our Lie algebra extension and show that all previous
defining assumptions are met; in doing this we also recover the usual abelian monopole
[LaMal]. Let us consider the U(1) Hopf fibration over the two dimensional unit sphere s?

Sl 583 582 . | 24)

Then we take:

1. ¥ to be the algebra of smooth R-valued functions on S2? with f;, f; and f5 the
cartesian coordinate in R3 and with the condition ij fi=1.

2. E the Lie algebra of right invariant vector fields on SU(2) = $3 with basis vectors Y;
just the three canonical right invariant vector fields .

3. Z the left invariant vector fields on SU(2) which generate the right action of U(1) on
- §3. Then B is the Lie algebra of smooth vector fields on S2, with a basis given by the
three generators of the action of SU(2) on S2,i.e. Xj =2 Eikh feo/ofy, j=1,2,3.

One checks that all conditions from (15) through (18) are satisfied. Then, the connection ®
given in (20) describes the Dirac monopole of lower strength [Di].

4.2.3. Algebraic Instantonic Solutions [LaMa6]

Let us start by considering a commutative R-algebra with unit G 'generated’ by five
elements fy,..., f5. Let us also take a Lie algebra L generated over G by five elements
X{»-» X5, and assume there is a representation of L in the Lie algebra Der G . The action
of the Xj's on the fi's is taken to be

X_]fk = 8_]1( - t:, fk 3 j, k = 1,..., 5 . (25)

If we consider the ten elements in L given by




Xig = [X;, X1, jk=1..,5, 26)

from (25) if follows that

so that the Xjk's provide a representation of the Lie algebra of SO(5) in Der .
From (26) and (25) one has afso

Xty = fjskn - fi 8jn = {fiXy - i X3, (28)
so that we may take

Xik = §Xe - X5, . Jk=1.,5, 29

Let us now take fZ = Zj fj’fJ . From (25) it follows that f2 is constant under the action
of the Xj's, namely, Xj- f2-0.We assume that 2% 0. We now construct an extension
of Lie algebras 0 - A — E — B — 0 with the structure of Lie bundle over a commutative
algebra F in the following manner. We take the algebra F to be the subalgebra of G

- generated by the elements fj =f;/ f2, j=1,.., 5 ; notice that F contains also the unit
element since Z;ff;=1.The X;'s and the X 's willacton ¥ but now the
corresponding representation on ¥ (thought of as the restriction of the representation of L
on G ) is no more a free one since, from Z §;f; = 1, one has

EfiXp)fe=fpl-Zffp=0 . (30)
which, in turn, gives the condition

o> j'j Xj)-fk =0, k=1,.,5. : 3D
We take the Lie algebra B to be the subalgebra of L which provides the restricted
representation in DerF . Condition (31) then amounts to say that B is not free as an
F-module. Equations (27) and (29) are true even when restricted to F . By using the

condition X §;f;=1 we have in addition that

{Z f,] X_]k}fn = Xk.f_] Iy j, k = 1,..., 5 . (32)
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Finally, we give conditions on the algebra E . The latter is taken to be a ten dimensional free
F-module generated, as an F-module, by ten elements ij = - Yi\,i , ], k=1,..., 5, which
close the Lie algebra of Sp(2) = Spin(5)

Y5> Yaml = 8 Yim = 80 Yim = Sem¥jn + SmYin - (33)
and project onto the elements Xjk , namely

n(Yp) =X » hk=1.,5. ' .

The action of the Yj,'s onthe f;'s is just taken to be

YieSa = 1Y) S = ;8 - J8n » Jk,n=1.,5 (35)

That much for the assumptions on the sequence. As a consequence the Lie algebra A is six
dimensional as an F-module. A possible redundant basis is given by the ten elements

. with the four conditions
Z f_] Z.lk = 0 5 k = 1,..., 5 > (37)

Notice that (37) gives only four independent conditions due to condition X f jf j=1.From
(35) it follows that ij- fn =0 so that n(ij) =0 as it should be. Moreover, from (33)

Yic> Zoml = 80 Zim = S Ziem ~ SemZin + SjmZin (38)

which explicitly shows that A is anideal in E.

We are now ready to give a connection which will be the algebraic counterpart of the
instanton cum antiinstanton configuration in usual Yang-Mills theories. We take

p: B - E, p(Xj) =2 kakj s j’-—-“ 1,..., 5, (39)

where the ij's are just the basis element of E . One can show that m o p(Xj) = Xj . From
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definition (39), and by using (33) and (35) it easily follows that

[PXD, pX) 1= Yy » jk =1..,5. , (40)

As for the curvature of p defined in (2.34), by using (40) and (29) and (32) one finds that

FXj, Xp) = Y- §; 0K + §i X)) = Y- f B fpYi) + fic C FnYn) = Zyg - (A1)

By explicit calculations one can check that the connection (39) solves the Yang-Mills
equations (1) when the metric g on B is just taken to be the 'natural' metric

g-Z@f;edf), rstctedby Zff;=1and If; df;=0 . “2)

We shall give now a realization of our Lie algebra extension and show that all previous
defining assumptions are met. This will also account for the name of the connection (39).

Consider a Spin(4)-principal bundle over the four dimensional sphere S*
Spin(4) — Spin(5) — S* . (43)

Notice that Spin(5) = Sp(2) and Spin(4) = Sp(1) x Sp(1) = SU(2) x SU(2) . Then we take:
1. F to be the algebra of smooth R-valued functions on S# with f,..., f5 the cartesian
coordinate in M 5 and with the condition % fifi=1.

2. B the Lie algebra of smooth vector fields on R which are tangent to the unit sphere S%;
a basis for them is given by the vector fields X; =3 /3f; — f; Xy f, 9/0fy ,j=1,.., 5

3. E the Lie algebra of Spin(4)-invariant vector fields on Spin(5) with the basis vectors
YJk just the ten generators of the left action of Spm(S) onto itself.

The Lie algebra A is the algebra of vertical and Spin(4)-invariant vector fields on Sp1n(5)
One easily verifies that all assumptions from (25) through (38) are satisfied. The resulting
extension of Lie algebras coincides with the extension considered in [AB] for a general gauge
theory. As for the connection defined in (39) one can verify that it gives the instanton along

with the antiinstanton solution of Yang-Mills equations on s4 [JR], [AHS].

Next thing we would like to consider is the split of the connection (39) into 'self-dual’
and 'antiself-dual' part. To this aim we need few more machineries. From the assumption
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that B* is generated as an F-module by the elements df,,.... dfs (remember we have the

conditions X f. f.=1and X §.df. = 0), it follows that the F-module A%B, F) is
171 177
generated by the elements dfjA dfy , j<k =1,..,5. We define an operator
*: A%B,F) - AYB,F),
(dfh A df!z) =172 81111 812)2 Ei..ds fls de3 A dfh ) (44)

From now on repeated indeces are meant to be summed over. One can show that

*o*=id. : (45)

If we write the curvature in (41) as

F=1/2 ij dfjA df , (46)
it turns out that ij = ij. Moreover, condition (45) allows to write F as

F=Ft+F , *F%)=z:Ff . (47)
Condition *F=F turns out to be equivalent to the following conditions
One can check that they constitute only three independent conditions.

Let us now take a Lie bundle 0 - A — E —B — 0 over the algebra F , with the same
properties as before from (25) through (38) plus additional conditions (48). Now the algebra
E is seven dimensional as an F-module and is generated in a redundant manner by the ten
vector fields ij while the algebra A is three dimensional as an F-module. The connection
defined in (39) will be 'self-dual' on this sequence, i.e. its curvature will satisfy the
condition *F =F . We shall call it the algebraic instantonic connection .

As for an explicit realization in terms of vector fields, consider an SU(2)-principal bundle

over S4

SU@R) — S7=Spin(5)/Sp(1) — 4. (49)
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Now the Lie algebra E is the Lie algebra of SU(2)-invariant vector fields on S . A basis
for them consists of the ten generators ij of the left action of Spin(5) on S’ . One
verifies that these vector fields ij satisfy condition (48). Then, the connection (39) is
nothing but the instanton connection on S%.

Finally we give a straightforward generalization of the previous construction (in the
following n > 1). We specialize an ¥ Lie bundle 0 — A — E =B — 0 as follows:

&

a. take F to be generated by n+1 elements f,..., f,.; with the condition ij fj =1;

b. take B to be generated as an F-module by n+1 elements X X whose action

n+l >
on the f;'s is given by

Xjfk = 8_]1( - f.] fk » j, k= 1,...,n+1 . ' (50)
The condition X f jfj=1 gives X §iX;=0 sothat B is only n-dimensional as
F-module. From (50) the 1/2 (n+1)n commutators Xjk = [Xj, Xl i, k=1,.,n+l1, give a
representation of the Lie algebra of SO(n+1) in DerF .

c. take E a 1/2 (n+1)n dimensional free F-module generated by elements ij = - ij ,
", k=1,..,n+1, which close the Lie algebra of Spin(n+1) and are such that n(ij) = Xjk .

As a consequence of assumptions a. b. c. the Lie algebra A is 1/2 (n—1)n dimensional as
F-module. A possible redundant basis is given by the 1/2 (n+1)n elements

Zie = Yy — j'j > thhk) + 2 thhj') , Jhk=1,.n+l, (51)
with the n conditions X fj ij = 0, k=1,..,n+1. We take the following connection

p: B> E, pX) =:Zj'kij ,  j=1,..n+1, (52)
whose corresponding curvature turns out to be

F(Xj, Xi) = Y - fj E fp Y+ f & f Yp) | Jk =10+l (53)

A realization of the previous construction in terms of vector fields is given by means of
the Spin(n)-principal bundle over the n-dimensional sphere S®, Spin(n) — Spin(n+1) — S™.
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The algebra F is the algebra of smooth R-valued functions on S® with fy,..., f..; as
cartesian coordinates in R™*! and condition X f iJj=1. B is the Lie algebra of smooth
vector fields on R™! which are tangent to S™ and with basis given by the vector fields
X;j=0/0f;~f;Z f 0/9f , j = L., n+l . E is the Lie algebra of Spin(n)-invariant
vector fields on Spin(n+1) with the basis vectors ij the 1/2 (n+1)n generators of the left
action of Spin(n+1) onto itself. Then the connection in (52) is just the natural spinor
connection on S™ [Tr4], [TD] . This connection is a solution of Yang-Mills equation on S™
for any n>1 [LaZ2]. For the lower values of n it gives well known solutions [Tr4], [TD] :
forn = 2 is the Diraé monopole [Di] ; for n = 3 the meron [DFF] ; for n = 4 the instanton
cum antiinstanton [JR], [AHS] ; forn = 8 [LA1] the GKS solution [GKS].

Another possible realization is by means of the principal bundle SO(n) — SO(n+1) — sn
In this case the connection (52) is a multiple of the Levi-Civita connection with the latter

thought of as an SO(n) gauge connection.

4.3. GAUGE TRANSFORMATIONS

In this section we will show how to introduce 'gauge transformations' in our algebraic
setting. In particular it will turn out that the Lie algebra A in the extension (2.21) plays the
. role of the Lie algebra of infinitesimal gauge transformations. The basic object is an
extension of Lie algebras 0 - A — E — B — 0 which is a Lie bundle over the R-algebra
F with unit. Moreover there is a connection p as defined in (2.31) with connection form ®
and curvature form Q given by (2.32) and (2.35) respectively .

Let AP(E; A) be the space of A-valued p-formson E, AYE, A)= A . We recall that
in section 2.6. (where the space AP(E, A) has been denoted by AP:l) we have introduced
an operator d: AP(E, A) = AP*1(E, A) (here and after we shall drop the suffix r from d,)
given by (2.50) and an operation [ , ] : AP(E, AYx A (E, A) = APTA(E, A) in (2.52).
We now define a 'Lie derivative' by

Ly : ExALE, A) - APE, A),

Ly @Y 1Y) = [Y, 0¥ 1,y Yy D] = Z0(Y 1l Y, Yy Yp, ), V Y, Yi€E 5 (54)

and an 'inner product' by



iy : EXALE,A) - APLE, A),
(ifY(P)(Yl,..,Yp_l) = (P( Y, Yl""’ Yp+1) N \7’ Y, Yi = E . (55)

The next object we introduce is a covariant derivative D on AP(E, A) which is just the
analogue on AP(E, A) of the operator Dp defined in (2.37) :

D, : AP, A)—)AP”:(E, A),

D,¢ = (d)°H, (56)
where H is the horizontal projector rfeﬁned by

H:E—>HorpE, H=idg -w0=peom. (57)
In particular, one can prove that the curvature form Q in (2.35) can be written as

Q=D,0, (58)

[V

. while the Bianchi identity (2.38) is

D, =20. (59)

()

By explicit calculation one shows that the 'infinitesimal action' of the Lie algebra E
on the connection form ® is given by

Ly = iyQ +Diyw) , V YEE. . (60)

If V=Ye A,then iy,Q=0 because Q is horizontal and we have the 'infinitesimal

gauge transformation'
Lyw =Di,m) =DV ,V VeA. (61)
The infinitesimal gauge transformation of the curvature € turns out to be

LyQ =[i,0,Q]=[V,Q] , VVeA. (62)
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From (61) and (62) we see that the Lie algebra A can be interpreted as the Lie algebra of
infinitesimal gauge transformations . As for the connection © :zad its curvature F, their
changes under an infinitesimal gauge transformation paramerrized by V € A turn out to be

Gyp)X)=[V,pX)], VXeB, (63)

GyFHXY)=[V,FX,Y)], VX,YeB. (64)

&

Proposition 4.2. The lagrangian Lp = (hg"l)(Fp , Fp) is invariant under infinitesimal gauge
transformations.

Proof. 8y L, = (hg™H)(By Fy, Fp') + (hg™H(F, , By F,) = (hg~H v, Fy1,Fp) +
(hg’l)(Fp ,[V,F,1)=0 by adjoint invariance (2.42) of the metric h .

4.5. SYMMETRIES AND CONSERVED CURRENTS

In this section we briefly describe the role of simmetries in our algebraic formalism.
Let us assume that on the Lie bundle 0 - A — E — B — 0 over F, there is a
connection p . Then, let us take the one parameter family of connections

pp=p+tn, MmelLinB,A) ,teR . (65)

We say that the family of transformations (65) is a symmetry transformation for the

lagrangian Lp = (hg‘l)(Fp , F) if thereexista 1-form ¢ € B* such that

o)

(d/dt)Ly |o=dive . (66)

Pt |t=

Here the divergence of ¢ is defined as in (2.17).

We can construct a Noether-like theorem , namely to any symmetry of the lagrangian
Lp we can associate a conserved current . The construction is very explicit if the Lie algebra
B in the sequence 0 - A — E — B — 0 is of finite type. Let us then assume that this is
the case and let {b;,i=1,...,n } be a basis for B with dual basis { Bi ,i=1,..n}
We have the following



Proposition 4.3. Let the transformation (65) be of symmetry for the lagrangian Lp as in
(66) and assume the connection p solves the Yang Mills equations ( 1). Then the 1-form

C)=Zh(negl@®)F,5,-)) -9 (67)
is a conserved current in the sense that

divCn)=0 . s (68)
Proof. From relation (2.46), if quations (1) are satisfied, one has that ¢ = (d/dt )LPt |t=0
= 2(hg O, , Fp) = 2(hg ™M, DFp) + 2div{ Zh(nog ' ®),F(b;,-)) } =
2div { Zh(n e g li(P), Fy (b)) } and (68) follows. ‘
Since the codifferential 8 has vanishing square (see section 2.3), any current which is the
codifferential of a 2-form will be automatically conserved. Such currents are not interesting
in physics and are called trivial currents. Two conserved currents are equivalent if their
difference is a trivial current and one is really interested in equivalence classes of conserved
currents modulo trivial ones.

Proposition 4.4. The currents associated to infinitesimal gauge transformations are trivial.

Proof. Since the lagrangian Lp is invariant, the @ in (66) is zero in this case. If Ve A
parametrize the gauge transformation and X € B, from (63) we have

C(V)X) = Zh([V, peg l(B)],F(b;, X))
S-S (PN, F(b; , X))) + Zh(V, [ p° g‘l@ ), Fbo;,X)1) by (2.43)
==Z (g7'P))-(h (V,F®;, X)) +Zh(V, F(Vg1(giy bj, X)) +
+Zh(V, F(bj , Vg_l(Bj) X)) by (1)
= (3h(V,F( ) X)
and this ends the proof.

A very general algebraic approach to symmetries and conservation laws, based on the theory
of C-spectral sequences has been developed in [Vi].
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4.5. BRST TRANSFORMATIONS
In this section we shall show how to construct a BRST-like operator and BRST
transformations for the F Lie bundle 0 - A — E — B — 0 endowed with a connection.

As an example we shall study the anomaly problem in Yang-Mills gauge theories.

Let A%A,F), A%A,F)=7F, be the space of a-linear, F-linear skew maps from A
to F . Let us also consider the space of a-linear, F-linear skew maps from A to AP(E, F)

VP =t A%AAPE, F)) = APE, F) @ A%A,F),
Us uooe, Ue VP, pe APE,F),pe A%A,F) iff
UZ,,....2,) = 9(Zy,.. Z U, YV Z;e A . (69)
We call p the order of form and o the ghost number. We give VP the structure of a
bicomplex by introducing two cohomology operators. The first one is defined by means of

the operator d given by (2.1) and increases by one the order of form

d: VP - v+l | dU(Z,,...Z2) = d[UZ,,....2)], V Ze A. (70)

The second is a Chevalley cohomology operator which increases by one the ghost number
s: VP = VP,
SUNZperZyyy) = (1P (= 1)L Lgy U ZypeeZgu) +
+ 2 COMUA Z, Z), Zpeo s Zgy )} ¥ Zie AL (T1)

i<j

Here L is defined as in (2.4). We call s the BRST operator.
One verifies that

d?=s2=sd+ds=0. , (72)

By using again the identification in (69) it is possible to extend the bracket (2.52) to an
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operation
[, ]1:V/EX VBq - Va+BP+‘1 ,
[U,V ](Zl,...,Za+B) = (=1)%1/a!B! Z 5 x(0)[ UZs(1y- Loy » V(c(oc+1)’"’zc(a+ﬁ))]

VZeA. (73)

Then, by using definitions (70), (71) and (73) and Proposition 2.5. one proves
Proposition4.5. If Ue V P and Ve VBq , then

[V,U] =(p+enfary, vy,

d(V,UD =[dV,U]+()*P[V,dU],

s(UV,UD =[sV,U]+()*P[V,sU] . (74)

Any connection 1-form as defined in (2.32).can be thought of as an element w e VO1 .
On the other hand, the Maurer-Cartan form 1# is the identity mapon A, v(Z)=2Z for
any Ze A . This implies that ¥ € Vl0 = A® A%, F). Given such maps, one has the
following BRST relations

s = dv —-[o,v] =DyY , (75a)

s = -12[v,v] . (75b)

Here the covariant derivative of any elements U in V P is defined by using identification
€9 : b,U Z,,...Z2,) =D, [UZ,,..Z)], ¥V Z;e A.

Proof of (75a) : from (71) and (70) and (73), with Z in A and Y in E, it follows that
(s@)(Y) = LzoXY) = [Z,0(V)] - o(Z,Y]) = [Z,0(M)] - [Z,Y] =

- [ o, Z](Y) + (dZ)(Y), from which one has s®(Z) = dZ — [ @, Z ] . On the other hand, (70)

and (73) give (dV)(Z)=d(V(Z))=dZ; [0, v ]@)=[ o, v@)] =[w,Z].

By comparison, (75a) follows.



Proof of (75b) : from (71), with Z;,Z, in A,onehas (sV)(Z;,Z,)) =-[Z,V(Z,)] +
[Z,,v(ZN+v(Z,Z,]) = -[Z,,Z,] . On the other hand, from (73), one has that
[V, V](Z,Z)=2[V(Z),V(Z,)]=2[Z,Z,], and (75b) follows.

As an example we shall apply the previous machineries to the problem of anomalies of
Yang-Mills gauge theories[LaMa]. For similar constructions see [KaSt2]. Let t: P — M be
a principal fibre bundle withstucture group G . We know from section 2.6. that there is a
canonical sequence associated with the bundle, namely O =L = X5 —>RM) -0, where
L is the Lie algebra of G-invariant vertical vector fields on P (L can be identified with the
Lie algebra of infinitesimal gauge transformations) and X the Lie algebra of G-invariant
vector fields on P. The sequence is a Lie bundle over the functions C*°(M). It is well known
[AB] that a principal connection can bla given as a linear map p : X(M) = X .

In order to get the homotopy formula for the anomalies we need a further generalization of
the technique previously developed in this section. Let us take the set of AP(Xg, L2K)-
valued o-linear, C*°(M)-linear skew maps on L

V2K = AL ; APK(Rg, L)) = AP(Rg , L%9) © AXL C™(M)) | (76)

.where the last identification is made as in (69). It is straightforword to generalize the
coboundary operators (70) and (71) to the complex of Vap'k . Notice that VP in (69) is
just VPl Itis also possible to extend the exterior product (2.51) to a product

A - Vap,k % VBq'h N va+ﬂp+q,k+h

UAV (Zl,...,Za+B) = I/OC!B! ZO’ X(G)U(ZG(I)""’ZO'(G)) AV(G((X+1)""’ZO'(CX+B)) 5

vVzZeL, 7
and the operators s and d are graded derivations for this product.

Let us now take the total complex (*V,A) where *V =@ "V, oV = ®pr0=n VP,
A=d +s, with connection form A = w-V e ly , A: Xg®L — L . Its curvature
form F=A(@-v)-12[w-v , o—v ] reduces, as a conseguence of relations (75), to
Q=do- 12 [w, ®w]. If Wis a symmetric C*(M)-multilinear map from L%k to CM)
obeying property (2.57), (mutatis rmitandis) we may apply proposition 2.8. and get



1
W(Qk)zkALW(A/\Ftk"l)dt = AQ¥! | F =tDA-122[AA]. (78)

By writing Q%! as a sum of homogeneous elements in ghost number and degree of form
Q¥l = Q%! + Q%24+ +Q, Y, equation (78) gives a chain of equations

dQy *! = W(Q¥) ,

&

$Qop1 P+ dQZk——pp—l =0, p=1,.,2%k-1,
sQu2=0, (80)

and Q,%"2 provides a solution of the Wess-Zumino consistency condition in 2k — 2
dimensions [Zu], [Sto], [DTV].

4.6. REDUCTION OF SEQUENCES. THE HOLONOMY SEQUENCE

In the framework of fibre bundle description of gauge fields, the reduction of the
_ structure group of a principal fibre bundle is a very useful concept [KIN2]. The reduction is
used, for instance, to provide a geometrical description of gauge fields [GM], [Tr1,3].

In this section we shall define the notion of reduction of an extension of Lie algebras.
Then, given a connection for the extension, we define the holonomy algebra and the
holonomy sequence of the connection and prove that it is always possible to reduce the
sequence we start with to the holonomy sequencé of the connection. As an example we shall
describe a reduction of a 't Hooft-Polyakov monopole-like sequence to the monopole
sequence constructed in 4.2.2. [LaMa4].

a1 !

i T
Definition: A reduction of the extension A — E — B isanextension A' - E' —» B

together with an injective Lie algebra homomorphism I:E'— E so that the following
diagram commutes

A\ '4
o

W
o




Suppose we are given the extension A — E — B with a connection p . Let L be the

smallest Lie subalgebra of E which contains all elements of the form p(X), X € B and all

possible commutators [ p(X;), p(Xy) 1, Xy, Xy e B . We detine the holonomy module

Hol(p) of the connection p to be the intersection of L with A (see also [Ne])

Hol(p)= LN A . (81)

(]

One has then, the fo]lowing

Proposition 4.6. Let p be a connection fot the extension A — E — B with holonomy
module Hol(p). Then,

1. Hol(p) is a Lie algebra generated by all possible elements of the form
F(X{, X,), X;, X,€ B,

2. the following is a reduction

00— A >E > B 0
E
0 —> Holp) > L > B > 0

3. p isaconnectionon Hol(p) =L — B with holonomy algebra just Hol(p) .

We call the sequence Hol(p) - L — B the holonomy sequence of the connection p . If
L is a proper subalgebra of E we say that the connection p reduces the extension we start
with to its holonomy sequence. The connection p is called irreducible if Hol(p) = A .
From 1. it also follows the p is flatif and only if Hol(p) =0.

The next object we would like to describe is the 't Hooft-Polyakov sequence .
We start with an extension A — E — B with a Lie bundle structure over a commutative
algebra F with unit. In addition, B is assumed to coincide with the Lie algebra DerF of all
derivations of F .

We take F to be generated by three elements f;, f,, f5. The Lie algebra A is taken
to be a free F-module of finite type generated, by three elements V,, V,, V5, whose
commutation relations are those of the algebra of the rotation group [V;, Vj 1=2 eijka.
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The Lie algebra E is taken to be generated over ¥ by six elements Vi, V,, Vi, Y,
Y,, Y3, such that also the Yj's close the algebra of the rotation group [ Y;, Yj 1=2 EijkYk
and in addition [Y;, Vj ] = 0. Furthermore, we assume the combination Z = 2 f; Y;,tobe
such that Z commutes with all Y,'s

[Yj,Z] =0, j=123. (32)

Previous conditions are equivalent to requiring that the f}'s transform, under the action of
the Y;'s, in the following manner

ijk —Zejk_h fh ==O 9 j, k = 1, 2,3. (83)

From (83) it follows that the Y,'s and the V's are not independent (i.e. E is not free as an
F-module). Indeed , from (83) one has that Z-f =0, k=1, 2, 3, and this means that Z €

span(Vy, V,, V3) = A (remember that ¥ is generated by f;, f,, f3). Asa consequence

of previous assumptions, the algebra B = E/A is generated by three elements X = n(Y;),
i=1,2,3, with the condition X f;X;=0 (B is not free as well).

Remark. If 2= (f))% + (f,)* + (f3 )%, from (83) it follows that Y;f2 =0 so that f2 isa
- 'constant’ which we assume to be non vanishing. In the sequel we shall rescale the fi's so
as to have 2 =1.

Remark. The name 't Hooft-Polyakov for this sequence come from the fact that the sequence
of Lie algebras associated to the SU(2)-principal bundle over S2 used for the 't Hooft-
Polyakov monopole ['tHo], [Po] is algebraically similar to the one under discussion and
stems from the fact that S2 is an orbit of SU(Z) over R3, so that the total space of the
SU(2) bundle is given by (SU(2)xSU(2)) / U(1) which in turn is diffeomorphic with the
cartesian product $2x SU(2). So much to justify the name given to the sequence. Later on
we shall give an explicit realization of the SU(2) fibration in terms of the momentum map
associated with the action of SU(2) on T*SU(2) and we will show that the associated
sequence of Lie algebras fulfils all assumptions we have made.

We continue by giving a connection whose holonomy sequence is the monopole sequence
which we have used in section 4.2.2. to describe the Dirac monopole. Take

p:BoE , pX)=Y;-fZ , j=1,2,3. (84)
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It is easy to see that
[ p(Xy, p(Xj) =X &ijk {pXp-fZ1}, » (85)

As a consequence, in the holonomy sequence

&

0 — Hol(p) 5L —>B —0 ' (87)

the Lie algebra L is generated by the three elements Y; together with Z and in fact, since
Z=2 f;Y; , only by the Y;'s which of course close the algebra of SU(2); moreover the
algebra of holonomy Hol(p) is geﬂerated by the element Z which from (82) commutes
with the all of Y,'s. We see that the holonomy sequence (87) is just the monopole sequence
constructed in section 4.2.2.. As for the connection p defined in (84), which according to
proposition 4.6. is a connection on the sequence (87), it is easy to see that it coincides with

the Dirac monopole connection given in section 4.2.2..

The mechanism we have described so far could be called algebraic reduction from the
't Hooft-Polyakov monopole to the Dirac Monopole. In the usual approach to the problem
. [GM], [Tr1,3] the reduction of the structure group is accomplished by a Higgs field. The
role of Higgs fields in our formalism deserves further investigations.

As we mentioned before we now give an explicit realization of all previous
assumptions. Consider the cotangent bundle T*SU(2) of the group SU(2). On T*SU(2)
there is a left and a right symplectic action of SU(2) (these are nothing but the lifts to
T*SU(2) of the left and right action of SU(2) on itself). Then we have an action of
SUR)L® SU@)R on T*SU(2). Since the actions are lifts, equivariant momentum maps J&
and JR can be constructed [AM], [MSSV]. To be definite let us consider the momentum
map J& associated with the left action and which is therefore invariant under the right action.
We recall that

& T*SUR) — su@)* = su@)=R3, T=ZJ o, (88)
where G, 05, 03 are the Pauli matrices which generate the Lie algebra su(2) and su(2)*
is the dual. The inverse image through J& of the sphere §%2={ (M2 = const } is five

dimensional since in T*SU(2) both SU@)L and SU@)R preserve the square of the
angular momentum (JL)2 =( 1)2 + (12)2 + (13)2. A basis of vector fields tangent to
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(JL)"I(SZ) are the generators of SU(Z)R,say Vi, V,, V5, and of SU(Z)L, say Yy, Yo,

Y. The group SU)R defines a true action and its generatcr: project through the tangent

map (Jacobian) of J& onto the zero vector field. The group SU{2)E projects onto the

sphere S2 . In the kernel of T(JL) there is also the vector ficld Z =J;Y; +J,Y, + J3Y5.
Summing up, (JL)‘I(SZ) provides the total space of an SU(2) principal bundle over s2,

SUQR) —» by4(s?) —»s2 .
The extension of Lie algebra associated with this fibration as in section 422, or 42.3. is
an example of what we have called t'Hooft-Polyakov extension once we take for ¥ the
algebra generated by the momentum map and in particular we identify the fj's with the J.'s.

Remark. Since all SU(2) principal fibrations over S2 are trivial (they are classified by the
first homotopy group of SU(2) [Ste] which is trivial in this case), the total space (JL)y~1(S?)
is diffeomorphic to S2xSU(2) which is just the total space of the t'Hooft-Polyakov
monopole.

4.7. ALGEBRAIC KALUZA-KLEIN MONOPOLE [LaMa5]

From examples of previous sections it should be clear that Lie algebra extensions can be
used to construct an algebraic scheme for gauge theories. On the other hand the Einstein
algebras of Geroch [Ge] can be used for an algebraic formulation of General Relativity in
which space-time events play no role. It seems natural to investigate possible relations
between our scheme and Einstein algebras. It turns out that it is possible to include the notion
of Einstein algebra in our setting and that it is possible to construct what we may call
algebraic Kaluza-Klein theory. In particular in this section we shall construct an extension of
Lie algebras which, by adding the structure of Einstein algebra, provides an algebraic
description of the Kaluza-Klein monopole found by Sorkin [So] and Gross and Perry [GP] .

As in all the examples discussed above, our framework is an extension of Lie algebras
A — E — B which is also a Lie bundle over a commutative algebra with unit ¥ . The
algebra B is assumed to coincide with the Lie algebra DerF of all derivations of F . As
usual we specialize the sequence in a proper manner and give a particular connection on it.
The latter will be the algebraic counterpart of the Kaluza-Klein monopole [So], [GP].

We make the following requirements :



1. ¥ is taken to be generated by four elements f;, f,, f3, h (remember that by this we
mean that the dual module DerF* is a free F-module generated by the elements df; , df, ,
dfy, dh).

2. The Lie algebra E is afree F -module of rank five. We take its basis to consist of five
elements Yy, Y,, Y3, I', A with Lie brackets

[Y;, Y] = Z‘ejkth: , | (89)
[Y;,A]=1[Y,T]=[T,A]=0, (90)
and action on F given by

%

Yj-fk =2 Eikh fy,, this implies that =3 fj fJ is 'invariant', Yj- 2=0, on

Y;h=0, ' (92)
Afy=f;, this implies that A-r*=2r* and A(fi/r)=0, r=0, (93)
Ah=0, (94)
Tf;=0, this implies that T-r?=0, (95)
'h=1 . (96)

3. The Lie algebra A is generated over F by the element
Z=E(fj/r)Y- , ' 97)
then (89-93) imply that Z commutes with everything else

[Z,Y;]=[Z2,T]=[Z, A]=0. (98)

As a consequence of 2. and 3. we have that

4. the Lie algebra B is an F-module generated over F by five elements T =n(I),
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A =T(A), ‘Xj = Tt(Yj), j=1,2,3, with the relation X fJ Xj =0 (namely B is not free).

Let E* bethe F-dual of E.Then E* is automatically a free F-module of rank five .
We take its basis to consist of five elements 6 ,j=1,2,3, 61,62 such that

ol (Y) = aij , OF@) =1, 8%4) = 1,  any other pairing =0 . (99)

By using again 2. and 3. one shows that the action’ of Y = (Y, Yy, Y3, I, A) on
@, j=1,2,3, 61, 84, isgivenby

LYjek-:Zejkheh, L 08 =Lp6k=0, Ly88=C,00=0. (100)

As a preliminary step to define a connection on the sequence A — E — B let us
consider for a while the 'subsequence' over F '

0 —>A—>E -8B -0, (101)

in which F ' is generated by f;, f,, f3, with the constraint X fifj ='const', and E'
. is generated by Yy, Y5, Y3. We know from section 4.2.2. that

w=72Z®0, 9=Z(fj/r)6i , =0, (102)

is a connection for the extension (101) and describes the algebraic abelian monopole. The ®
in (102) can be extended to a connection on the sequence A — E — B by simply defining
o(A) = o(I") = 0. We will show that this extended connection is the algebraic counterpart of
the Kaluza-Klein monopole [So], [GP] . To this aim we will make the couple (E,F) an
Einstein algebra by giving a metric on E for which the contraction properties are satisfied
and the Ricci tensor vanishes (see section 2.2).

Let us restrict again for a while to the sector Yj ,j =1, 2, 3. The most general
symmetric tensor of rank two made out of the & 's and with coefficients in F, is of the
form

g'=2gjk6i®9k , 8k=84<F (103)

and is automatically invariant under the action of Z, L, g' = 0. Invariance under the action
of the Yj's requires



Yh' g_]k -I-Zghmj Smk +2 ehmk g_]m=0 , h,j,k: 1.2.3, (104)
whose general solution is

gji = B(®) 8y +¥() (6 /r)(f /1) . (105)

Here B(r) means that df(r) = o(r)dr forsome o(r)e F and the same for (r).
Finally we require a Kaluza-Klein splitting' namely we require that g' is the sum of a term
of the form 0 ® 8 (remember that 6 is the connection), and a term which is horizontal.
One shows that any g' as in (105) is horizontal if B(r) = — ¥(r) . Therefore, the most
general form of a 'Kaluza-Klein splitted’ g' which is also invariant under the action of Y,
Y,, Y5 is V

g'= Bo) (5 - (fj/f ) /r) 18 @85 + Ty (f /e )(f /1) O @ BF

= B(r) Zd(fj/r)®d(fj/r)+ vr) 606 . (106)

As for ametric g on E we take it to be invariant under the action of Yy, Y, Y3, T, and
fix g(T, ) to be a negative real number (remember that the algebra F is assumed to
contain the ring of real numbers). A metric fulfilling all these requirements is the following

g=—0T008Tl +am?602002 +Z{Br)? (8 — (& /n)(Ei /)] +
+ V) (f (E /DI @ 6K, (107)

with o(r) , B(r) and y(r) elementsin F .
In order to have an Einstein algebra we must impose the 'field equations’

Ricci(g) =0 (108)
and this gives the following equations for o(r), B(r) and Y(r)

B2 1% |
) 777

] BLB1
[ 1=« l3+l37) 0,
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(v -2yy-o0, (109)

where o' = A-a, o'= A-(A-0) and the same for B and v .

Finally, we give an example which verifies all assumptions we have made. Let us
consider the U(1)-fibration RxRx S3 — RxRxS2  with radius(S3) = radius(S?) =r .
We realize the isomorphism SU(2) =83 in terms of 2 x 2 complex matrices and use the
Pauli matrices Gy, G5, O3 as a basis for the Lie algebra. The projection SU(2) — S2 is

s = s03s I =t Z(x /D) Oy, (X))%+ (x)2 + (x5)% =T, (110)
We take the generators (fy,f,f3,h) of F tobejust (xy,x5,x%3,t) with the X; 's as
defined in (110) and t a time coordinate. As for the generators (Y, Y, Y5, A, T') of
the Lie algebra E we take (Y, Y,, Y5) to be the three canonical right invariant vector
fields on SU(2), A =r (d/0r) the generator of dilatations and I" the generator of time
translations. With this assumption one finds that Z =X (% Ir )Y; is nothing but the left
invariant vector field on SU(2) corresponding to the infinitesimal generator o5 (and
generating the right action of U(1) on SU(2) ). The previous hypothesis are enough to

completely determine the extension we have constructed and indeed one easily verifies that all
the conditions (89-97) are satisfied. As for equation (109), an explicit solution is given by

o) =r (1+m/p), B@=r, W) =2mr/(p+m)
v;/ith p?=r?+m?, m=const . (111)
The corresponding metric can be written as
g=—dt®dt + (l+m/py*dredr+ 2 Zd(x;/r) @ d(x /r)+ [ 2mr/ (p+m)]* 6 ©6
== (d)? + (1+ m/p)? (dr)? + 22 Tr [d(s 05 s1)]? =4[ 2mr / (p + m)]? (Tr o5 571ds)?

and is the five dimensional metric which gives the Kaluza-Klein monopole [So],[GP].



4.8. A GRADED GAUGE THEORY

It is straightforward to construct a graded generalization of the gauge theory constructed
in section 4.1. All machineries of the calculus over an extension of Lie superalgebras
endowed with a connection p which has been developed in section 3.5., will constitute the
kinematic of the graded gauge theory. The graded Yang-Mills equations will have the form
(1) provided one takes now for the graded curvature Fp and the graded covariant
codifferential Dp the ones defined by equations (3.25) and (3.31) respectively. It is also
possible to define a lagrangian like in (2) and derive field equations from it exactly like in the
non graded situation. One could also easily give a graded generalization of all topics
introduced in sections 4.3.—4.6.

What we will rather do in this section is to give few examples of the graded gauge
theory. The framework will be an exiension of Lie superalgebras 0 > A - E -5 B—0 as
in (3.20) which is a Lie superbundle over a Z,-graded algebra with unit ¥ (see section 3.5)
and carrying a connection p as defined in (3.22). Furthermore we shall assume that B
generates over F the all of the graded module GDerF (B and GDerF are the same as
graded F-modules). In all examples we shall specialize the extension in a proper manner.

. 4.8.1. Graded Algebraic Electromagnetism [LaMa2]

For the sake of simplicity we shall construct directly an extension of Lie superalgebras
0— A — E — B— 0 of vector fields. More precisely we shall construct the extension of
Lie superalgebras which is associated to a GU(1)-bundle (GU(1) is a graded version of
U(1)) over 'superspace’ M44 [SS]. ,
The graded algebra ¥ on which the extension is a Lie superbundle, is taken to be the
algebra of 'supersmooth' functions on M%* with coordinates given by four bosonic
variables xM, =1 ,..,4, and four fermionic ones 6% o =1, ..., 4 (the 8%s are the
components of an anticommuting Majorana spinor) .
The Lie algebra B is the Lie superalgebra generated by the infinitesimal generators of
motion on M%4[SS]

Xu=8/ax’*l , KH=1.,4,
X, =0/08% + 20 /0x* (#0), , a=1,..,4, (112)

with ™ , 1L =1, ..., 4, Dirac matrices, 8 =0TC , and C the charge conjugation matrix.
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The vector fields (112) obey the following (anti)cormnutatioh relations

[Xusxv]—. = [Xu5xa]_ =0 ’

[Xq X1, = 210 /0xH (FO)yp - (113)
Finally we take A to be genérated by an even element 9 /0z and an odd one 0 /on which
(anti)commute among themselves and with everything else (one may think of 0 /0z and of
0 /on as the infinitesimal generators of translations along the fibres).

We take the following connection p: B = E,

p (X“’) = Xu - Au(x,e)a/az , M = 1, cees 4 s

I

p(Xy) = Xy — Ay(x,0)3/M , a=1,.,4, (114)

where Au(x,e) and A,(x,0) are functions (the components of the connection). As for the
curvature F defined in (3.25) one has

Fuv=F X, X)) = (XA, - X,A,) d/oz

Fio=1F X, Xy = (X Ay) d/on - (Xa-Au)a loz

Fop='F Xy, Xp) = -2i A, ('y\uC)aB 2/0z — ( XoAg + Xg-Ag) dlon . (115)
It is easy to verify that, since A is abelian and acts trivially on F , the Bianchi identity
(3.29) can be written as

(-)PXePXb) {[ X, , F(Xp, X)) 1g — F([Xy, Xplg,Xc)} + gep. =0,  (116)
with X, = (Xu » Xo) - Equations (116) have a homogeneous Maxwell like form

dF =0 (117)

where d is the coboundary operator of the cohomology of the superalgebra B with
coefficientin A.



choice for gis the Nath-Arnowitt metric [NA]
g=(dxH — i2 By4de ) + dB do . (118)

This metric is flat in the bosonic sector but is not in the fermionic one and it gives rise to non

vanishing Christoffel simbols [NA].
The covariant codifferential defined in (3.31) is now

(DpF)(X)=-—Zgab (VP Xy, X) € A, V XeB. (119)

Here g2 are the components of g~!, and VP, given in general by (3.30), reduces (again
because A is abelian and acts trivially on F ) to

(VPXHF )(Xb’ Xc) = [ Xa 9 F (Xba Xc)]G - F(VXaXb L] Xc) +
— (-1)PXe)P(Xp) F(Xy VXaX o - (120)

V is the Levi-Civita connection for the metric g . This connection has been explicitly
- constructed in [Woo] for the metric (118).

Then, the inohomogeneous equations for the curvature F are just the graded version of (1),

namely the algebraic equations

D,F,=0. | (121)

One could easily givé an abstract version of the whole construction of this section.



4.8.2. A Graded Algebraic Monopole [LaMa2]

In this section, we construct a monopole-like sequence of superalgebras similar to the
one constructed in section 4.2.2. for ordinary algebras. As an example, the sequence is
realized by means of vector fields on a principal superbundle which is a Grassmann
extension of the Hopf fibration of the Dirac monopole.

We start with an extension of Lie superalgebras 0 — A — E — B— 0 which is a Lie
superbundle over a graded algebra with unit ¥ . We make the following assumptions :

1. The algebra F is taken to be generated by three even elements fy, £, f3, p(fj) =0,
and by two odd ones g, g5, p(g,) = 1.

2. Wetake E to be a free F-module of finite type generated as an F-module by three even
elements Y, Y,, Y5, and by two odd ones V,, V,, whose graded commmutation
relations are those of the graded extension uosp(1,2) of the rotation algebra [PR], [BT]

[YJ,Yk]__ = Zejkam 3

I

[Yj, Vel = 22 (63 Vp

i

[Voc’VBL i/ZZ(CGj)aBYj ,  km=1,2,3, af=1,2. (122)
Here &y, 0,, 03 are Pauli matrices and C is the charge conjugation matrix C = —i0,.
3. Wetake A to be an even algebra generated over F by an element Z of the form

Moreover, we force Z to (anti)commute with all elements Yy, ..., Vy . One finds that
conditions [Z, Yj] =[Z,V,]1=0 areequivalent to the following action of E on F

Yoy = Tty = 0, (124a)
Yigg + 12Z(0pep8p =0 (124b)
Zotm — 2Z(Cop)epgp =0 (124c)
Zygs — V2Z(Oppgfn =0 km=1,23, 0B =12 . (i24d)
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We assume that the action of E on ¥ is such that a non trivial selution to the previous
equations does exist. Equations (124) also imply that Z ..is -rivially on the all of F.
Moreover, it is easy to check that the action (124) leaves invarian: the quantity

2 = ZSjkfjfk +ZgaCaBgB = EfjfJ + 2818 . (125)

In the following we shall assume that r2 is a non vanishing real number (remember from
assumptions of section 3.1. that F contains a copy of the real numbers) and rescale the

elements fj, ..., g, S0 as to have r2=1.
As a consequence of assumptions 1. 2. and 3. the Lie superalgebra B is not free as an
F-module being generated by five elements Xj = n(Yj), i=1,2,3, Ty=n(Vy), a=1,2,
with the constraint X fJ Xj + 2 84T =0 (coming from the fact that n(Z) = 0) .
Let E be the F-dualof E. E* is automatically a free F-module of rank (3, 2). We take its
basis to consist of three even 1-forms Bi, j=1,2,3, such that GJ(Yk) = Sjl and Gj(Va) =0
and two more odd 1-forms 8% o = 1,2, such that §°‘(VB) = SaB and §G(Yj) =0.
If we take the combination

0= £,60+ £,62 + £30% + g, B! — g, 82, (126)
then it follows that 6(Z) =1 and the A-valued 1-formon E

w=72®0 (127)

is a connection form for the sequence we are considering. The corresponding connection is

given by
p:B— E,

Since A acts trivially on ¥ and is generated by an element which commutes with all
elements in E, any A-valued form @ can be identified with an F-valued form @ via the

equality P=Z®Q.

For the curvature 2-form Q defined in (3.26) we have



QX Y) = {X6(Y) - (~1)PFPM Y.6(X) — 6 X, Y] } Z.
={d0(X,Y)}Z , VX,YeE. (129)
and the Bianchi identity (2.29) has now the form

dQ =0. (130)

On the algebra B there is a natural metric given by
g=2 8y dfi® df +2 Cpadg, ® dgg
=df\@df; + df®df, + dfy®@dfy - dg;®dg, + dg,®dg,; , (131)
with relations
Zffi+2g18 =1, ijdfj+2dg1g2+2gldg2=0. (132)

By explicit calculation one can show that connection (128) solves the (graded version of)
- fields equation (1) with the metric (131-2).

We shall now give a specific realization of the previous sequence of superalgebras in
terms of vector fields associated with a principal superbundle which is a graded version of
the Hopf fibration of the two dimensional sphere. All previous defining assumptions are met
in this example [LaMa2].

The total space of the fibration is the Lie supergroup UOSP(1,2) [BT] which can be
realized as follows. Let osp(1,2) be the real Lié superalgebra of dimension (3, 2) with even

generators Aj , J =123, and odd generators Ry, @ = 1,2, given in the matrix

representation by
(000 [000] 000
A=1i/21001 |, Ay=i/2 100 i| , Ay=i/2 | 010
L0 10 L0 -i 0 00-1
(0 0 1] [0 -10]
Riy=12|-100/, R,=1/2{000
L0 00 | -10 04 (133)




Moreover, with L an even integer, let Cp be the exterior algebra over CL (T is the field
of complex numbers). The algebra Cp, has naturally a Z,-graduation Cp = (Cp), @ (Cp); .
Consider an even graded involution *: C; — C; , verifying

xy)® = x®y*,  xX)* = (-1)POx* (ax)* = x>, (134)

with x and y homogeneous elements in C;, and o a complex number. The existence of
such a map is assured by the fact that L is even [RS].
The Lie superalgebra uosp(1,2) is the subalgebra of C; ®gzosp(1,2) made of elements

of the form
X = Z_] aJAJ + ﬂRI + T]XRZ s aj € (CL)O’ a]":a] , NE (CL)I . (135)

Notice that elements in uosp(1,2) are even and such that X * = - X . The Lie supergroup
UOSP(1,2) is the exponential map of uosp(l,2) . An element s € UOSP(1,2) can be
parametrized as follows

[ (1+ 14 n"n) ~1/2>* 121 T
s = | =120z n+zn*)  z*(1-180*1) z(1-187n%*n) |, (136)
L 12(z*n-2zgm*) -z *(1-1/81%n) z,(1-1/81n*7n) ]

where zj, z; arein (Cp)y with z5z;*+ z;2/™ = 1,and 1 isin (Cp), .

The structure supergroup of the fibrationis U(1), realized as
U()={we (C), suchthat ww*=1}. (137)

The supergroup T(1) can be embedded into UOSP(1,2) by

1 00
w — Ow O s
0 0 wx

so that we may think of A5 as the generator of U(1)1i.e.

U) = {exp(AA3), Ae (Cp)y s.t. A*=-A} . (138)




By taking thé right action of U(1) on UOSP(1,2) one gets a orincipal super bundle
U(1) - UOSP(1,2) — S%., (139)
where S2. = UOSP(1,2) / U(1) . The projection m: UOSP(1,2) — SZ. can be given as
n(s) = s(2iA)sT = Tx (2iA)+ZEL(2R,), (140)

L

with sT the adjoint of s (the transpose conjugated, with the conjugation given by the map
* [BT] ). One finds explicitly

xl = _(1"' 1/4 an)(2021X+ leox),

Xg = —i(1= V4 00 )(zg2* - 2, 25°),

x3 = = (1= 14 170 )(21 2%~ 29 7%),
£ = 12(z;M% - z5%M),
&, = 12 (291 + 2,%7). < (141)

One sees from (141) that the x;'s are real (x, = %) even elements in C; while the
Ey's are odd ones with &, =— (&) . Furthermore one finds the relation

xpP? + (x)? + (x)? + 28E, = 1, (142)
so that S2, may be thought of as a (2, 2)-dimensional 'sphere’ in C..

As for the realization of the sequence of Lie superalgras 0 - A —-E —- B— 0 as
specified by 1. 2. and 3. above, we take F to be the graded algebra of supersmooth
functions on S2« with the f,'s and the g,'s in condition 1. just the (pullbacks of the)
coordinate functions on S%. as given by (141). E is the Lie superalgebra of right invariant
vector fields on UOSP(1,2) with basis elements Y;'s and V's the three canonical right
invariant vector fields on UOSP(1,2) corresponding to the basis (133) for its Lie
superalgebra. Finally we take for Z the generator of the right action of U(l) on
UOSP(1,2) . One checks that all assumptions from (122) through (124) are satisfied. In
particular the functions defined in (141) give a solution of (124). The connection given in
(126) is a connection on the bundle (139). It has been studied in more details in [BBL1].
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We close this section with few more remarks on the principal superbundle (139). In
[BBL1] it has been shown that the base space S2. is a De'V': surermanifold [DeW] with
body the ordinary two dimensional sphere S2 . This means tha:
with fibre the space of nilpotent elements (NL)3’2 in (RL}3'3 =" e (NL)3’2 and Ry the
exterior algebra on RL . Furthermore it has been shown that the bundle (139) is nontrivial

5. isitself a fibre bundle

by explicitly checking that its first Chern class does not vanish.

We would like to mention that it is possibile to construt a graded version of the
reduction mechanism described in section 4.6.. As usual, one only needs to replace ordinary
algebras with Lie superalgebras. In particular, one can construct a graded 't Hooft-Polyakov
sequence and reduce it to the sequence of the graded monopole of section 4.8.2. An explicit
realization of this reduction can be given again in terms of a momentum map as for the
nongraded case. One takes the cotangent bundle T*UOSP(1,2) of the supergroup
UOSP(1,2) and the left and right action of UOSP(1,2) on T*UOSP(1,2) . Then, one
constructs the associated momentum maps and repeats all steps done in section 4.6. for
T*SU(2) .




5. AN ALGEBRAIC LAGRANGIAN SETTING

In this chapter we shall sketch the basic ingredients for an algebraic description of
Lagrangian dynamical systems. Our formalism does not need a manifold structure.
However, a possible realization is in terms of proper tensor fields (see later) on a tangent
bundle. In this case we get an intrinsic formulation of Lagrangian systems. We shall also
present a theorem which gives sufficient conditions in order that a manifold admits a tangent
bundle structure. This could be useful in situations where one would like to know if a given
dynamical system is a Lagrangian one. Of course, if this is the case, the carrier space must be
a tangent space. We also hope to use our algebraic formalism to construct graded

generalizations of Lagrangian dynamics.

5.1. AN ALGEBRAIC FORMALISM FOR DYNAMICAL SYSTEMS
The basic tool we need in this section, is the algebraic calculus developed in section 2.1.
where the initial datum was a Lie module E over a commutative R-algebra with unit ¥ .

We remind that this means that there is a representation of E in the Lie algebra DerF of all

derivations of F .

In general, given any (1,1) tensor T as defined there, T:E xE* — F , we can define
two endomorphisms, that we shall denote with the same letter,

T:E—E, T:E*¥*—-E*,

T(X, @)= o(T(X)) = T@(X), VXeE, oe E*. 1)

The Nijenhuis tensor of T is the (1, 2) tensor defined by
N(X,Y)=[TX,TY] + THX, Y] -T[TX,Y] - T[X,TY]

={Lx(M-TLy(M}¥Y), VX, YeE. (2

Furthermore, we can associate associate with T an operator




dT : AP(E, F) - AP+1(E7 j:’) s

@) (X5 Xpp1) =0 Z (-Di+1 LT(Xi) (o( Xl,...,i,...,XP+1))+

+25 G EDMR(TX, X1 + Xy TX] = TIX XLX peobenj X, ), V Xj€ B (3)

For instance, if fe F and ore E * and d is the exterior derivative defined in section 2.1.,

we have
drf=df-T, : 4)
droe (X, Y) = (L o0 )(Y) - (Iffy o )X) + o(T[X, Y]) . )

One can prove that dt is a coboundary operator, namely (dT)2 =0, iff Ny =0 [MFLMR].
In order to define a lagrangian carrier space we need additional structures. To start, we

assume the Lie module E to be such that there exists a (1, 1) tensor S with the properties:
kerS=ImS , (6a)
Ng=0. (6b)

Condition (6a) implies the vanishing of the square of the endomorphism S :E — E . This
fact and (6b) imply that ImS and then KerS are closed under Lie brackets.

Now we have ¥, E, S. We can select a natural subalgebra Fg of ¥ and construct
a natural extension of Lie algebras of derivations which is a Lie bundle over Fg. We define

Fg=:{feF suchthat dgf=0}. , (7)
Letnow E™ C E be the subalgebra of E which take Fg into itself and EV the ideal of E™
consisting of vector acting trivially on ¥g . Then we have the Lie bundle over Fg

0 >E'—-SE'—-E*/E"—> 0. (8)



The algebra E™/EV is clearly a subalgebra of the algebra DerFg, while KerS is a
subalgebra of EV.
Another natural subalgebra of E we shall deal with is the zizebra ES of vectors which
preserve S, i.e. ES = { X € E such that Ly (S)=0 } . The algebra ES is also a
subalgebra of E™.

The last assumption we makesis the existence of an element A € E with properties
Ae kerS , (9a)
L,S=-S . ‘ (%9b)
Remark. Given a vector A which fulfils (9), it is easy to see that forany V e ES N KerS,
the element of E given by A+ V will also fulfil them. Moreover, if A; and A, are as in
(9), their difference A; — A, will belong to ES N KerS . We conclude that if in E there is
at least an element A obeying (9), then the set of all such elements is an affine space

modelled on the vector space ES N KerS.

For a given choice of S and A, we call second order vector any element I'e E
- which is such that

ST) = A. (10)

Consider now an element L € F ; the element 8y € E* defined by
6, = dgL | (11)

is the Carran 1-form of the Lagrangian L .The Lagrangian 2-form of L is the element
Q; € A*(D, F) defined by

Q = —de; . | (12)

L will be called a regular Lagrangian if € is nondegenerate, namely if iy Q; =0 implies
X =0.If Q isnondegenerate it gives rise to an isomorphism from E to E*.




The energy’ E; of L is defined as

EL = LAL—L . (13)

We can now introduce field equations . Given a lagrangian L , the Euler-Lagrange

equations for L are the following algebraic equations

Ll

L-6, -dL=0, ' (14)

where the unknown quantity is the second order vector I'". By using (10) and the identity
L(,) =do i,(,) + i,(,) o d, one writes equations (14) in an equivalent hamiltonian form

In our formalism there is also room for a Noether-like theorem . A Noether symmetry
for the couple (L,I") which solves Euler-Lagrange equations (14), is a vector XN such that

XNe ES,
[XN’A]' = Oa
LyNL = L-f, forsome fe Fy. (16)

Proposition 1. If the vector XN is a Noether syrhmet:ry for the couple (L, I"), then

and the quantity iy 6; —f is a conserved quantity for I", namely it is constant along the
actionof I".

Proof. By using the first two of (16) and definition (10) one finds that 0 = LN (S)T) =
[XN, S(D)] - SAXN, T]) = [ XN, A] - S(IXN, ITT) = = S(XN, I']) from which it follows
that S([XN,T]) = 0. By using this, the identity Lrix=ixLlr+ i’[r, X1 > and field
equations (14) onehas LpiyNO = ixNLpO +ijp xNydLe S = ixNLp6; = ixNdL
= LyNL = L f, and (17) follows.



Remark. It may appear that the f as in (16) is defined up to quantities that vanish under the
action of I, namely up to conserved quantities. One may however show that there are no
such objects in ¥ . For this point see the discussion in [MSSV].

5.2. ATHEOREM DEFINING A TANGENT BUNDLE STRUCTURE

If the algebra F we start with in section 5.1., is the algebra of smooth functions on a
manifold M and E is just the module DerF of derivations of ¥, then in [DLMV] it has
been shown that conditions (6) and (9) essentially imply that M has a tangent bundle
structure. If M is a tangent bundle§, then the algebra Fg defined in (7) is the algebra of
smooth functions on the base space of the bundle and the sequence (8) is the sequence
associated with the bundle as in section 2.4.; in particular, the algebra E™/EY in (8) is the Lie
algebra of smooth vector fields defined over the base space. What has been proved is the
following proposition.

Proposition 2. Let M be a smooth manifold (in fact it is enough to take M to be C2), S
and A respectively a (1,1) tensor field and a complete vector field on M fulfilling the

hypotheses
1. kerS=ImS ,
2. Ng=0,
3. AekerS ,
4. L,S=-S,

5. lim, _, __ exp(tA)(p) exists for any point p in M ,

where exp(-A) denotes the flow of A . Then M has a unique tangent bundle structure
whose dilatation operatoris A and whose vertical endomorphism is S [YI] [MSSV]. Notice
that condition 1. implies that M is even dimensional. If { qi , ul , i=1,.,n} isan
adapted coordinate system for M, then the local expressions for S and A are

S=Xdgi®@amul , A=Zuldnoul . (18)




In [DLMV], proposition 2. is proved in two steps. Firstly, hvpotheses 1. through 4. are
used to show that the manifold has locally a tangent bundle so:c~:r2: then one extends charts

in the neighbourhood of singular points of A (the set of wiich forms the base manifold of

the tangent bundle) all along integral curves of A itself 30 as to generate the whole
corresponding fibres. One can give counterexamples if any one of hypotheses, and in
particular hypothesis 5. is released. However, the proposition does not allow to exclude that
a manifold carries a tangent bundle structure: it may indeed happen that one has just missed

the two correct tensors. e

On a tangent bundle manifold all constructions from (10) through (17) are the natural
structures associated with a usual Lagrangian dynamics. In particular, Euler-Lagrange
equations (14) are, in coordinates, the usual equations

(d/dt) (@L/Qul)—(@L/Aq) = 0 , (@d/dt)qgi=ul, i=1,.,n. (18)
A possible physical application of proposition 2. could be in the context of constrained

dynamical systems. Indeed, if one insists that the reduced dynamics be a Lagrangian one,
one should first be sure that the reduced space carries a tangent bundle structure.




CONCLUSIONS

We have presented an algebraic framework for gauge th=ories which avoids the use of

manifolds. The scheme is very general and allows to extract the basic algebraic structures
beneath a gauge configuration. In our approach a gauge configuration is a short exact
sequence 0 - A —E — B — 0 of Lie algebras endowed with a connection (a way to lift
vectors in B to vectors in E ). The Lie algebras are left modules over a commutative algebra
with unit ¥ and act on F s algebras of derivations. Any such an extension could be
realized in many different ways. By realizing it in terms of vector fields on a principal fibre
bundle (in this case ¥ is an algebra of functions) one recovers an usual gauge configuration.
As examples we have constructed the sequences for abelian and nonabelian monopoles and
instantonic solutions. ‘

The algebraic setting allows to introduce (algebraic) field equations and derive them
from a Lagrangian by means of a proper variational problem. We have also introduced gauge
transformations as well as symmetries and conserved quantities.

An immediate consequence of our approach is a Z,-graded generalization of gauge
theories. One simply takes sequences of Lie superalgebras and substitutes all objects with
graded ones. A graded gauge configuration can also be realized in terms of vector fields
- associated with a principal superbundle. In particular we have constructed a monopole-like
sequence of Lie superalgebras. In order to realize such a sequence in terms of vector fields,
we have constructed a Grassmann extension of the monopole fibration of the two
dimensional unit sphere.

We have also presented an algebraic setting for lagrangian dynamical systems which we
hope to use to construct graded generalization of lagrangian systems.

From the 'computational' point of view, it seems that our scheme is manageable only
for Lie algebras which are finitely generated (freely or not) as F-module. We have been able
to carry over computations only for those Lie algebra sequences that in terms of fibre bundles
would correspond to gauge theories over homogeneous spaces.

Another open problem is that of boundary conditions for gauge fields. It is not clear
how (if possible) to implement them in our scheme. In all examples we have given this
problem was absent because the boundary conditions were, in a sense, hidden in the
sequences. This fact is more explicit in the realization in terms of fibre bundles since all our
examples correspond to gauge configurations for which the relevant physical content is on
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spaces which are compact without boundary.

Finally, we mention the possibility of using the theory of Lie algebra extensions to get a
classification of gauge field. However, the theory of classification of Lie algebras which we
have sketched in section 2.4. is too coarse for this. Indeed, it appears that inequivalent gauge
configurations may correspond to the same equivalence class of extensions of Lie algebras. It
may be interesting to use ideas from physics to get a finer classification of extensions.
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