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Chapter 1 o Preliminaries -
1.1 Introduction and overview

We consider in this thesis Cauchy problems for differential inclusions:
(CP) x'e F(t,x) ae. on [0, T], x(0)=¢g,

where F: [0,T] xR™ — R" is a multifunction with closed values. By multifunction we mean
to say that F is a correspondence associating to each (t, x) in [0,T] x R" a nonempty subset
F(t, x) of R" We define the solution set S(E) of (CP) to be the set of all absolutely
continuous functions x: [0, T] — R" verifying x(0) =& and having the time derivative x'(t)
in the closed set F(t, x(t)) of allowed velocities for almost every t in the interval [0, T]. We
always suppose F(t, x) to depend on t in a measurable way, and to have a dependence on x
either Isc (lower semicontinuous) or continuous or Lipschitz. In general we do not assume the
values F(t, x) to be convex. Convexity is assumed only in sections 2.1 and 3.1, and there this
assumption is stressed by dealing with the closed convex hull co F(t, x). In some cases the
values F(t, x) are compact, possibly integrably bounded; while in other cases they may be
unbounded.

The Cauchy problem (CP) is usually studied using one of the following methods:

(a) continuous selections in R™

(b) "polygonal" approximate solutions;
(c) successive projections;

(d) continuous selections in Ll;

(e) Baire category;

(f) directionally continuous selections in R™.




Here we do not deal with methods (b), (¢) or (f). Asto (b), see Filippov [28, 29],
Kaczinsky-Olech [37], Olech [45], Lojasiewicz jr [40], Lojasiewicz jr [41], Himmelberg—Van
Vleck [35]. For method (e) see Cellina, [14], DeBlasi-Pianigiani [23, 24, 25], Bressan-
Colombo [10]. Method (f) can be seen in Bressan [6, 7], Bressan-Cortesi [11].

Consider now method (a). If F is measurable in (t, x) and Isc in x then we may apply
Michael's theorém to obtain a selection f(t, x) from co F(t, x) which is measurable in t and
continuous in x. Another possibility is to have F uniformly continuous relative to x and to
construct a selection f(t, x) which is as uniformly continuous relative to x as F. For example,
f(t, -) Lipschitzin case F(t, ) is Lipschitz. In section 2.1 we do more than this: we show that
co F(t, x) can be represented as f(t, x, U), where f is uniformly continuous in (x, u), with a
modulus of continuity equal to that of F(t, -) multiplied by a constant, and U is a convex
closed set in R", which is compact provided the values F(t, x) are compact. Clearly this solves

“in particular the above selection problem, since each u €U gives automatically one such
selection.

In section 3.1 this representation of co F(t, x) is applied to reduce the relaxed Cauchy
problem in R"

(CPR) x'e coF(t,x) ae. on [0, T], x(0)=§&,
to a control differential equation in R"
(CDE) x=f(t,x,u) ae. on [0,T], x(©0)=& u()eUcR"

Such reductions were known, but the regularity conditions on f(t, -) and U were not
satisfactory. Namely, either f (t, -) was non-Lipschitz for Lipschitz F(t, ), or U was infinite
dimensional. What we prove here is a new result: a representation with f(t, -) Lipschitz
whenever F(t,-) is Lipschitz and U c R" In particular it shows that differential inclusions
with convex valued multifunctions co F(t, x) in R" do not generalize differential equations
with controlin R" (in case F(t, ) is at least continuous).

We use method (d) in section 2.2, where we consider Isc multifunctions G defined on a
compact metric space, with values which are closed bounded decomposable subsets of LY. we
construct "guided" continuous selections g from the multifunction G, using Liapunov's theorem
on the range of vector measures. |

In section 3.2 these continuous selections g are seen as Nemitskii operators, the
multifunction G being there the Nemitskii multivalued operator induced in L by the




" multifunction F(t, x). In fact, the Nemitskii multivalued operator G turns out to be Isc provided
the multifunction F is Isc relative to x. It follows that any solution of the operator equation
x'= g(x) is also a solution of the differential inclusion x'(De F(t, x(t)); and this is used to
prove the following approximation result. Let f(t, x) be any selection from the convexified
multifunction co F(t, x) which is measurable in t and continuous in x. Then at least one
solution of the differential equation x'= f(t, x), x(0) = £ can be approximated by solutions of
(CP).

Section 3.3 deals with multifunctions F(t, x) which are continuous in x and integrably
bounded. In the first part we suppose that F has a modulus of continuity relative to x of
Kamke type, namely implying uniqueness; and show that the solution set S(§) of (CP) is
dense in the solution set of the relaxed problem (CPR). This is not a new result but appears here
under a new light: it is a straigthforward consequence of the results of sections 2.1 and 3.2,
i.e. of methods (a) and (d).

In the second part of section 3.3 we consider multifunctions F(t, x) which are continuous
relative to x, and prove a closure property: namely that the solution sets S(§) of (CP) are
closed if and only if the values F(t, x) are convex. The "if" part is well-known; what we
prove here is that if some values F(t, x) are nonconvex then some solution sets S(€) are
nonclosed. The proof uses methods (a) and (d), through the results of sections 2.1 and 3.2.
Notice that the closure property obtained here is the analogue for differential inclusions of a
well known result in the calculus of variations, namely that integral functionals are weakly
sequentially Isc if and only if integrands are convex. Notice also that this is a sharp result, in
the sense that continuous means usc (upper semicontinuous) and 1sc, while the above closure
property turns up to be false if F(t, -) fails to be either usc or lsc.

Method (c) is used in section 2.3, dealing with multifunctions F which are Lipschitz in
x with unbounded values. The first result is the construction of continuous selections s(§)
from the solution sets S(§) . By "cutting”" the solution sets at the end time t=T one then
obtains continuous selections a() from the attainable sets A(E). Two things are specially
interesting here: first, these continuous selections are obtained despite the fact that the solution
sets and the attainable sets are nonclosed nonconvex in general; and second, the proof does not
use neither Liapunov's theorem on the range of a vector measure nor any previous existence
result. These selection results are used to parametrize the solution sets S(§) and the attainable
sets A(E) . Namely we show that S(§) can be represented as g(&, U), and A(E) can be
represented as h(§, U), where U is a closed subset of a separable Banach space X and
gExX— CO, h: ExX— R" are continuous maps. In particular each attainable set A(§) is
an analytic subset of R". Another useful consequence of these continuous selections is the
existence, under appropriate conditions, of periodic solutions.




In the second part of section 2.3 we construct a sharper selection result by using
Liapunov's theorem, as follows. Fix some y(§), depending continuously on & in AC, an
approximate solution of (CP). We construct a true solution x(§) of (CP), depending
continuously on & in AC, at a distance from y(§) which is almost minimal. The minimal
distance, given by the Filippov-Gronwall inequality, is incompatible with continuous
dependence, as simple examples show. .

Finally in section 3.4 we consider again multifunctions F(t, x) which are Lipschitz in x
with unbounded values, and use method (c) to show that if some values F(t, x) are nonconvex
then some solutions of the relaxed problem (CPR) do not solve (CP).

The above description gives an overview of the original part of this thesis, chapters 2
and 3. All the results concerning continuous selections from multifunctions are grouped
together in chapter 2 (even in case the multifunctions involved are solution sets), while chapter
3 contains results related to differential inclusions. An introduction is given at the begining of
each section, comparing the results of this thesis with known results and giving the appropriate
references.

Chapter 1 is completed below with a list of basic concepts, to fix notation and
assumptions common to the whole thesis, together with some basic well-known results for
easier reference.




1.2 - General assumptions and basic results

Analysis

L! denotes, as usual, the Banach space of (equivalence classes of) functions

u:[0, T] - R" which are Lebesgue integrable on the interval [0, T]. The norm in L!is
T

laly = J lu (t)ldt, where |.1 denotes the euclidian norm of the m-dimensional euclidian

space R™. The specific dimension m we have in mind in each case will be clear from the
context. By integrating functions in L' one obtains the Banach space AC of absolutely
continuous functions x: [0, T] = R™ with norm |x lac =1x (@)1 +1x"]l; . These AC
functions are often considered with the uniform topology of the Banach space c® of
continuous functions x: [0, T] — B™ with norm Ix|_:= sup { Ix(®)l: te [0, T] ) . Usually
E isacompact setin R", where initial data & for the Cauchy problem (CP) is supposed to
lie. The characteristic function Y, of a set A is, as usual, ¥, (x) =1 for xe A, =0 for xgA.
The set-theoretical difference A\B is {ae A : ag B}. A Gj subset of a metric space is
a countable intersection of open subsets, in particular it can be any open or closed subset. If the
metric space is complete separable then any Gg subset is metrizable complete (Cohn [18,
8.1.4]). Given two metric spaces X, Y with distances d, D then their cartesian product is a
metric space with distance d + D.

Multifunctions
Fix x € R™ and consider a closed nonempty set A c R™; the distance from x to A is
d(x, A) :=1inf { Ix—al:aeA }. Consider another closed nonempty set B in R™; the
separation of A from B is d1+(A, B) = sup { d(a,B): ae A }.If dl+(A, B), dl+(B, A)
are finite then the Hausdorff distance between A and B is:
+ +
dl (A, B) := max {dl"(A,B), d"(B,A) }.

The following properties are easily proved and widely used:

di(A,B) =0 iff A=B, dl(A,C) < dl(A,B) + di(B,0),




VaeR™ 3beB: la-bl=d(@@B), d@A) =0 iff aeA,
VaeA dbeB: la-bl £ dl(A,B),

d(y,B) € Iy — x| + d(x,A) + dl(A,B).

Let A, B be any sets. We say that F: A — B is-a multifunction if F is a correspondence

associating to each point a in A anonempty subset F(a) of B. The graph of F is the set
{ (a,b) e AxB:be F(a) }. Given a set C < B, we may consider two types of inverse

imagesof C by F:
F(Q:={acA: F@NC=0 )}, F'O:={acA: F@ccC }.

Suppose now that F is single-valued, i.e. there exists a function f: A — B such that for each
ae A, F(a) istheset {f(a)}; thenclearly F (C) = FHC) = £1(0).

Measurability concepts

Consider a Lebesgue measurable set Ion [0, T], and let £ be the c-algebra of Lebesgue
measurable subsets of I. More generally, we may suppose that I is a separable metrizable
space together with a G-algebra A4 which is the completion of the Borel c-algebra of I
relative to a ©- finite positive measure p. Consider a metric space X, and let ‘B be the c-algebra
of Borel subsets of X. Consider the product c-algebra A ®3B on the cartesian product IxX,
generated by all sets of the form A xB with Ae A4, BeB.If CeA4®B and X is complete
separable then the projection of C on I belongs to 4 (Cohn [18, 8.5.4 ]).

A multifunction F: I — X is said measurable provided F (C) € 4 for each set C
closedin X.If F is measurable with closed values then graph F e 4 ® B and the distance
t — d(x, F(t)) is measurable V x e X (Himmelberg [33,Theorem 3.5]). Suppose now that X
is complete metric separable; then F is measurable iff there exists a countable family F of
measurable selections f(t) from F(t) such that the closure of { f(t): fe F} is F@) Vt iff
graph F € A®B iff the distance t — d(x, F(t)) is measurable (Himmelberg [33, Theorem 3.5,
Theorem 5.6]).

Consider now a multifunction F: I — R", measurable with closed values. Associate to
F the multifunction coF, each value co F(t) being the closed convex hull of F(t); then co F
is measurable (Himmelberg [33, Theorem 9.1]). Let u: I — R" be a measurable function; then,

by an easy consequence of the Kuratowski-Ryll Nardzewski theorem [38], there exists a



‘measurable selection f from F at ininimal distance, i.e. f: 1 — H%n measurable such that f(t) ‘
eF(t) and lu(t) - f(t)l =d (u(t, F(t)) Vt (Himmelberg-Van Vleck [34, Proposition 1]).

Continuity concepts

Let X,Y be metric spaces and F: X — Y a multifunction. To define some continuity
concepts we consider sets O open in Y, points x, in X and sequences (Xi) converging in

X to xg. Then:

(@ F Isc (lowersemicontinuous) at x, means:
FxpnOo#@8 = F(xi)mo;&@ for large i;

(b) F h-lsc ( Hausdorfflsc) at x, means:

di+ (F(xo),F(xi))——>0 as i — oo
() F usc (uppersemicontinuous) at x, means:

F(xp < O = F(Xi) c O for large i

(d F h-usc (Hausdorffusc) at xy means:

d1+(F(xi),F(x0)) - 0 as i — oo
) F (h)lsc means F (h-)Isc at each Xp€ X;

() F (h-)usc means F (h-)usc at each Xp€ X;

(&) F (h-)continuous means F (h-)Isc and (h-)usc.

Itis easy to see that "F h-Isc at xy" implies "F Isc at x,"; and the two concepts are
equivalent provided F(xq) is compact. Similarly "F usc at x," implies "F h-usc at Xp'"s
and the two concepts are equivalent provided F(x,) is compact. The following equivalences

are also easy to prove:

F Isc < F(0) is open in X provided O is open in Y




o FYC) is closed in X provided C is closed in Y;

Fusc < F (C) is closed in X provided C is closed in Y

= F+(O) is open in X provided O is open in Y.

Moreover, "F usc with closed values" implies "graph F closed in X xY"; and "Y
compact" with "graph F closed" imply "F usc" (Aubin-Cellina [2, Corollary 1.1.1]).

Let now Y be a Banach space. Consider the multifunction co F: X — Y, each value
co F(x) being the closed convex hull of F(x). One easily proves that "F lsc" implies
"co F 1sc"; and that d1+(co F(x), co Fx)) < dl+(F(x), F(x)). In particular co F is h-usc
or h-lsc provided F is, and
dl (co F(x), co F(x)) < dl (F(x), F(x)).

Therefore if F is Isc then by Michael's selection theorem (Michael [44]) there exists a

continuous selection f from co F, i.e. a continuous function f: X — Y such that f(x)e co F(x)
Vv x.

Scorza-Dragoni property

Let I be as above (in "Measurability concepts™) and let X be a separable space metrizable
complete. Consider a multifunction F:IxX — R" with closed values. Then:

(1) "F (-, x) is measurable Vxe X and F(t,-) islsc withclosed graph for ae.te I"
if and only if

(i) "ve>0 3 closedset I,cI with p(INL) < & such that Fy, x is Isc with closed

graph" . (Lojasiewicz jr [41, Corollary 4 + Remark 19 + Remark 12]).

If moreover F(t, -) is continuous and each value F(t, x) is compact then Fyy . x is continuous

(Himmelberg-Van Vleck [34, Theorem 1]), provided Iis compact and [ is a Radon measure.




It is easy to see that condition (i) implies the following :

(i) 3 IpcI suchthat INIp isanullsetand Fp.x is A4 ® B- measurable.

In fact,let O be any open set in R" and let (I,) be a sequence of disjoint closed sets such

that I1=ANUTJ,, Ip=U L, A isanullset and F,:=F LxX is Isc.Then F, (O) is
the intersection of an open set with the closed set Ikx X, hence is a Borel set. Therefore each

Fy, hence F, IxX - is A® B- measurable (Himmelberg [33, Theorem 3.5]).

Finally we show that condition (iii) implies :

(iv) V x:1—=X measurable, the multifunction @:1— X, ®(t) = F(t, x(t))

is measurable.

In fact, for each closed set C in R" wecanwrite: @ (CO)={te I: Ft,x() N C= @ } =

={tel: F(t,§)NC=#@ forsome § with (t,&)e graph (x) } =
= projectionof F (C) N graph(x) on L

But, appart from a null set, this is the projection of an 4 ® B- measurable set, by (iii), hence is

measurable.
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Chapter 2 Selection theorems

2.1 Uniformly continuous selections in R"
Introduction

Let F:X — R™ bea multifunction which is Lipschitz with constant 2 and has values
F (x) bounded by m. We show that co F(x) can be represented as f(x, U), with U the unit
closed ball in B™ and f Lipschitz with constant 6n (22 + m) . Existing representations were:
either with U the unit closed ball in R™ but f just continuous in (x, u) (Ekeland-Valadier [27])
. or with f Lipschitz in (x,u) but U in some infinite dimensional space (LeDonne-Marchi
[39D).

More generally, let F: IxX — R" be a multifunction with F(-, x) measurable and F(, -)
uniformly continuous. We show that co F(t, x) can be represented as f(t, x, U), where U is
either the unit closed ball in R™ (in case the values F(t, x) are compact) or U= R" (in case the
values F(t, x) are unbounded). As to f, we obtain f (-, X, u) measurable and f (t, -, -)
uniformly continuous (with modulus of continuity equal to that of F (t, -) multiplied by a
constant).

Assumptions and main results

Let I beaLebesgue measurable setin R" (or, more generally, a separable metrizable
space together with a c-algebra A which is the completion of the Borel c-algebra of I
relative to a o-finite positive measure p ). Let X be an open or closed set in R™ ( or, more
generally, a separable space metrizable complete, with a distance d and Borel c-algebra
B ). We consider multifunctions F with values F(t, x) either bounded by a linear growth
condition -- hypothesis (FLB) -- or unbounded -- hypothesis (FU).
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Hypothesis (FLB) .
F:IxX — R" is a multifunction with:
“(a) values F(t,x) compact;
(b) F (-, x) measurable;
(¢) 3 o,m:I —» R" measurable such that
yeF(t,x) = lyl <a()x + m() forae. t;

(d) X iscompact, I is c-compact, F(t,-) is continuous for a.e. t.

Hypothesis (FU)
F:IxX — R" isamultifunction with:

(a") values F(t,x) closed;
(b") F (., x) measurable;
(d) 3 w:IxR*—> R* suchthat: dl(F(, x), F(tx) £ w(t dx X),

with w(,r) measurable, w(t, ) continuous concave, w(t,0) = 0 for ae.t.

Proposition 1

Let F verify hypothesis (FLB)
Then F verifies hypothesis (FU) also, namely it verifies (d) with

w1 €2 o) T+2m().
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Theorem 1

Let F verify hypothesis (FU). Suppose moreover that each value F(t, x) is compact,
andset M, x) :=max{ lyl:yeFtx) }.

Then there exists a function f:IxXxU — R", with U the unit closed ball in R,
such that:

@ coF(,x) =f(tx,U) Vx for ae. t;
@) f(-, x,u) ismeasurable;

Gi) If@x,u—-fx,u)l <12n wEtdk,x)) +6n M(x) lu—ul for ae. t.

If moreover F, w are jointly continuous then f is continuous.

Corollary 1

Let F wverify hypothesis (FU).
Let U beaconvexclosedsetin R" andlet h:IxXxU — R" verify:

(@) coF(,x)ch(t,x,U) Vx for ae. t;
(B) u = h(t,x,u) hasinverse h-1(t,x,9) : h(t,x,u) — u Vx,u for ae. t;
() h(,x,u) and hl(,x,u) aremeasurable;

(8 h(t,-,-) and h-l(t,-,-) are jointly continuous for a.e. t.
Then there exists a function f:IxXxU — R" such that (i), (ii) of Th. 1 hold and:

iy If@ xu) — ftx, 0l <6n w(tdxx))+6n lh(t,x,u) — h(t,x,wl ae..
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Corollary 2

Let F verify hypothesis (FU) .
Then, setting h (t, x, u) =u in Corollary 1, the conclusions of Theorem 1 hold with
U=R" and M (t,x) = 1. ( The final part provided F is jointly h - continuous. )

Theorem 2

Let F verify hypothesis (FU) andlet I be o-compact.
Then there exists a © - compactset E in a Banach space, afunction ¢:XxE— R"
and a multifunction U:I—E suchthat:

i coF(t,x) = ¢ xU(t)) Vx for ae. t;
() U() is measurable with convex closed values;
(i) o(x,:) is linear nonexpansive;

iv) lox,u) —@x,u)l £ 6n w(dxx) Yue U for ae. t.

If moreover F is integrably bounded then the values U(t) are compact for a.e. t.
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Intermediate results and proofs

Proof of Proposition 1

Apply the Scorza-Dragoni property in 1.2 (ii) to obtain a sequence (I) of compact
disjoint sets such that I = IoU A, AC isanullset, Iy = UL, and Fy:= coFpxx,

O My are continuous. Set O := max oy, My = Max my and :

vi{r) =sup { Al (F(t,x),F(tx) : te,Ix-xI <1 }.

It is clear that v (-) is nondecreasing and v (r) £ 20, r + 2my . Since I, X are
compact and F is jointly h - continuous, we must have v, (r) -0 as r— 0, otherwise

a contradiction would follow. By a lemma of McShane [42], there exists a continuous
concave function wy : R* — R" such that w (0) = 0, wi (D 2 vi(r), hence

d(F (tx),F ) < w(lx-x1) Viel.

Set w(t,r) :=min {w(r),2a®r + 2m() } for te I,
win:=2m(() + 2a@) r for te AL ¢

Lemma 1

Let % be any family of nonempty closed convex sets in R™ such that dl (K, K) <o
V K,K in X.Let B (y, K) be the closed ball around y with radius r (y, K) :=J3 d(y, K).
Thenthemap P:R"xX— X, P(y,K) := KNnB(y,K)
is well defined, verifies P(y,K) ={y} whenever ye K, and:

Remark
This lemma refines and simplifies the construction of LeDonne-Marchi. We have

changed the expansion constant from 2 to 43 in the definition of the radius r because we
believe this value to be the best possible. More precisely, we believe that the Lipschitz constant
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- 3 for the above intersection cannot be improved, and that it is not obtainable unless one uses
the expansion constant V3 .

Moreover, in the definition of the radius r we do not use the Hausdorff distance between
two sets, as LeDonne-Marchi, but rather the distance from a point to a set. This is not only
conceptually simpler butalso seems better fitted for applications (as in Theorem 1).

Proof
(@)  First we fix y« in R" and prove that

Choose any K,K in X andany ye P (y+ K).Set €«=d (ys, K),e:=dl (K,K).We
may suppose that &«,& > 0, otherwise just take y :=y«, y respectively. To prove the above
inequality we need only find a point y in P (ys K) suchthat ly —yl <3 g.

To find y, choose points y;,y, in K suchthat ly«—y;l £ &, ly,—yl <g.If
| y« —y,12 V3 &« thentake y =y, Otherwise y,& P (yx, K); but in the segment ]y, y, [
certainly there exists some point y such that ly«—yl =+3 &« hence ye P (ys, K).
If ly—yl <3 g then (a) is proved. Otherwise by the claim below we have
| y«—yl=lys—zl+lz— yl >3 (e« + £). But thisis absurd because y € P (y+, K ) hence

ly«—y ! €43 d(y«K) < V3 (&« + g). Therefore (a) is proved.
Trigonometrical claim: If |y —yl >3g then 3 ze]ys y [ suchthat:
lye—zl > V3 & and lz—yl > V3 g.

In fact, as we prove below, in the triangle vy, y, y= the angle 6+ m/2 at y verifies
sen ® > 1/+/3, inparticular © > 0. Therefore in the segment ]ys, y [ certainly there exists
apoint z such thatin the triangle yx, y, z the angle at y is 7 /2. This implies that ly+—z|>
>ly«—y!l =3 &, andsince 1/vV3 < sen® < lz- yl/ly-yl<lz-yl /(3 &), we
havelz—yl>\]§ €.

To prove sen6 > L set 0 <P :=arcsen 1 < L < oy :=arcsen L <
P V3 o AN NI
and notice that we only need to show that 6 > oy Since & — B¢ = 0o+ ®/ 2, it is enough

to prove that 6 + /2 > 7 — oy~ PBy. To prove this notice that in the triangle y«, y,y; the
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“angle o at y verifies sen v <e«/(V3&)= 1/v3, hence a<ap.In fact we must have
0<a<o; and not m — 0o <0 < T because the later is incompatible with the fact that the
angle o has an adjacent side which is larger that the opposite side. Similarly, in the triangle vy,
Y. y2 the angle B at y verifies sen B < £/3€& =1/3,hence B<Py. Infact we must

have 0<f <f, inside the claim and not ®—By < B < = because the later would imply
B =2m/2 hence ly — yl < ly — y,l < & . Finally, toshowthat 8 +7T/2 > T — 0 Bg ,we

distinguish the following possibilities :

() let y beinthe y«,y;, yo- plane, in the same side of the y, yo- line as y« ; then the
inequality 8+7n/2 = n—a—-fB > w—-ay—By is obvious;

(i) let y beinthe y«,y;, yo- plane, in the side of the y;, y,- line opposite to y= , and let
O<P<osthen®+m2=n-a+B>n-0-B>n -0y - By;

(i) asin (i) butwith o < B < Bysthen 6+ w2 = t~B+a > n—0y—Pg;

@(v) let y be outside the ys, y;, yo- plane and let the projection y' of y into that plane fall
in the side of the y;, y,- line opposite to y« and let the angle f', projection of the angle
P on that plane, verify 0 < B' < o;then 6 + T2 > T — 0y > 7 — oy — Bo;
(v) asin (iv) but o < B' < By;then 0+ /2 2 Tt—P' -~ a0 > T —0dg—PBo;

(vi) asin (iv) but y' in the same side as y« ; then it is clear that the situation is similar to that
in (i), the difference being that 6 +7/2 > m—a—p.

This proves the claim.

(b) Now consider points y,y in R" andsets K,K in . Setting £:=+3 d (y, K),
g:= 3 d (v, K), and using (a) one obtains:

d (P, K),PK) <d(P(yK),P(y,K) + d®(y K),P(y,K)) <
< dl(B(y,8), B(y,g)) + 3 dlK,K) <
Sly-yl+le-gl+3 dAE®K < ly-yl+ V3 Iy -yl +

+ 3 dI(K,K). ¢
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To prove Theorem 1 we need the following result :

Proposition 2 (Bressan [3])

Denote by X" the family of nonempty compact convex sets in R™. Then there exists a
map o: X" — R" thatselectsapoint ¢ (K)e K foreach K and verifies:

loX) —ocX)!l £ 2n d (K, K).

Proof of Theorem 1

Fix any point xpe X andset: My(t):=sup {lyl : ye F(t,x9) } ,
M@ x):= My@®) + w(,dX, xqg)). Clearly

ye F(t,x) = lyl <M(x),
and using the subadditivity of w one obtains:
lM(t,X)—M(t,_)_(_)‘SIW(t,d(X,XO))—-W(t,d(&,xo)lSW(t,d(X,XO)).

Consider the function h:IxXxU—=R", h(t,x,u):= Mt x)u.
Clearly h(t,x,) is an homeomorphism between the ball U and the ball of radius M (t, x);
let hl(t,x,y):= M(t,x)l y be the inverse homeomorphism.

Project now ht, x, u) into co F(t, x), i.e.set f(t, x,u) :=0c.P [h (t, x, u), co F(t, x)]
, where © is the selection in Proposition 2 and P is the multivalued projection in Lemma 2.

Claim : f(-,x,u) is measurable.

To prove this, notice first that M (-) is measurable by Himmelberg [32, Theorem 5.8].
Then M (-,x) and h(, x,u) are measurable. Consider the closed ball B(:, x, u) of radius
r(,%xu := V3 d(h(,x,u),coF(,x)) around h (-, x, u) . Then r (-, X, u) is
measurable by Himmelberg [32, Theorem 3.5, Theorem 6.5], and since
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d(y, Bux,u)) = (ly —hr(-,x,u)l -1(, %W )""

by Himmelberg [32, Theorem 3.5, Theorem 4.1], B(:, x, u) and its intersection with
co F(-, x) are measurable. Therefore this intersection is a measurable map : I — K" ; and
since ¢: K" — R" iscontinuous, f (-, x,u) ismeasurable.

It is easy to prove (iii) using the Lipschitz properties of ¢ and P:

f,xu —fitx,u)l £ 6n IM{Etx)u-M(@tx)u l +
+6nw(tdxx)< 6n M@, x) lu—-ul +6n IM({t,x)-MExI +

‘+6nw(tdxx) £ 12n w(t,dEx,x) + 6n M(,x) lu-ul.

It is clear that if F is jointly h—continuous then Mjg(+) is continuous; and if also w is
jointly continuous then M is jointly continuous hence h is jointly continuous. Then the ball
B is continuous and its intersection with co F is continuous, by the h—continuity of co F.
This means that the intersection is a continuous map : IxX x U — X", and since ¢: X" — R"
is continuous, f is jointly continuous.

To prove (i) fix some te I,xe X; thenforany y € co F(t, x), set u:=h1(t, x,y),
obtaining ueU, h(t, x,u)=y, hence f(t,x,u) =c°P(y,coF(t,x)) =y because y
€ co F (1, x) already . This means that co F(t, x) < f (t, X, U) , and since the opposite

inclusion is obvious, (i) is proved. ¢
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. Proof of Theorem _2

Since I is G —compact, we can use the Scorza-Dragoni property in (1.2) (ii) to write
I=AUIy, A  anull set and Iy =U I, where (Iy) is a sequence of compact disjoint sets
such that  F :=coFp.x 1s Isc with closed graph, wy =W xx is continuous. If
moreover there exists m: I — R* such that ye F(t,x) = lyl < m(),and m is
measurable then we may also suppose that m is continuous. Let C%(X, R™) be the
Banach space of continuous bounded maps u: X — R™ with the usual sup norm. Set, for
te Iy,

E@:={ueCXRY : lu® -u®! € 6n w(tdxx),

and, in case F is integrably bounded, lu x)!| < m (t) } .

Set E:= U E(t) , andlet E be the closed convex hull of U Ey . Clearly each bounded
el KelN

subset of E (t) is totally bounded, in particular E (t) is compact provided F is integrably
bounded; in general E (t) is o-compact. Since I is compact and wy is jointly continuous,
each bounded subset of E, is totally bounded; in particular E; is o-compact, hence E is
C-compact.

Define the function ¢ to be the evaluation map ¢ (x, u) :=u (x) ; then clearly (iii) holds.
Define the multifunction U by :

U@W:={ueE®W: :uxecoFtLx) VxeX }.

Since U (t) cE (1), (iv) holds. Since co F(t, x) and E (t) are conevx closed, U (t) is
convex closed. In particular U (t) is compact in case F is integrably bounded. Set now
U= U, . Since Fy,wy, my have closed graph, one easily shows that U, has closed

graph. In particular 7y := U1, has measurable graph. By Himmelberg [32, Theorem 3.5],
Uy is measurable hence U is measurable.

Finally, to prove (i), fixany te Iy,xe X;then,forany y e coF (t, %), set
u(x):= 6oP(y,coF(t,x)).Clearly ue E(t),and ue U ; moreover
®(xuwW =u=y, sothat coF (t,x) ¢ (x, U (V) . Since the opposite inclusion is
obvious, (i) is proved. ¢
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2.2 Continuous selections in L!
Introduction

Let K be a compact metric space. We construct a "guided” continuous selection for
multifunctions G : K— L! which are 1sc with closed bounded decomposable values. A set D
cL! issaid decomposable provided the following property holds:

" whenever u,v arein D and % is the characteristic function of a measurable set

S c I thenthe function W:=yu+(l-%) v isalsoin D"

For the history of decomposable sets see Hiai-Umegaki [32], Olech [46] and Colombo [19].

Fryszkowski [30] proved that the multifunction G, as above, has a continuous selection,
thus showing that in some sense decomposability can substitute convexity. However this
selection theorem resulted from abstracting a construction first developped by Antosiewicz-
Cellina [1] and later applied by Pianigiani [51] and by Bressan [4]. Recently Bressan-
Colombo [9] devised a method to avoid compactness assumptions on K. The result we
describe here is a refinement of the construction of Fryszkowski. It is an abstract result that
was developped to fit the needs in applications (asin sections 3.2 and 3.3).
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Assumptions and main result

Let I be the interval [0, T], set L1+:= {de Ll(I, R): ()= Oa.e. } andlet K be

a compact metric space.

Hypothesis (H)

G: K—L' isamultifunction and g, K— L! is a function, verifying :

(a) eachvalue G (u) isclosed decomposable ;
) IM:I - R" integrable suchthat : ve G@) = Iv)l <M() ae.;
() g, (1) isin the closed convex hullof G (u) () VYue K, for ae. t;
(d G is Isc and g, iscontinuous.
Theorem 1
Let G, g, verify hypothesis (H).
Then there exists a sequence ( g ) of continuous selections from the multifunction G
such that

t
IOI [0 -g@1dsl € 1/i  VieN Vel Vuek.
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Intermediate results and proofs

Proposition 1

Let A be anonempty bounded decomposable subset of L! 4
Then there exists a uniquely determined element 50 in L! + Such that:

i de A = 8036 a.e.

@) if 516 L1+ verifiess "6 e A = 51 <8 ae"
then 81 < 50 a.e. .

Then we define Inf A as the unique element 50 in L 4 asabove.

Proof Is obvious from Proposition 1 of Bressan-Colombo [9]. ¢

Proposition 2

Fix some element v and some closed bounded decomposable set V in L!. Define the

map
D:leLl—éL1+, Dv)®:i=lu@®-v@©l ae,

and set
D@ V)=Inf{D@,v): veV},

dl( u,v) :=[D (u,v) (©) dt, dl( 0, V):=/D @ V) ®dt.

Then there exists a measurable multifunction I': I — R™ with closed values such that
I'(t)={v(t): veV }. Moreover there exists a measurable selection y from I' such that

du®, T® =lu®-yol, D@ V)=D@wy and d @ V)=d .

Proof
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The existence of T" is obvious from Hiai-Umegaki [31] . For the existence of y, see
section 1.2. Finally, it is clear thatif veV then v(t) € I'(t) a.e. hence l u(®) - vl =
d @, Tw) =lu®-v©!, ie. D@ V) = D (u, Y) a. e.. Since the opposite inequality is
obvious, the equality holds. ¢

Proposition 3

Let G verify hypothesis (H) and fix some (uo, vO) e graph G.

Then there exists a continuous map Puyv,: K—L! +  such that

Puovo(uo) =0, D( v, G@) ) < puovo(u) Yue K.

Proof See Fryszkowski [29, Propositon 2.2, Lemma 3.1] or Bressan-Colombo
[9, Proposition 4, Proposition 5] . ¢

To simplify the statement of the next proposition,we define a set A™ Ll(I, R™

which represents a partition of I into m disjoint measurable subsets. Namely, we set

A™ = {Le LI@R™) : L0 e{0,1} and Y A =1 ae. }.

=1
Proposition 4
Let p:K— [0,1]™ be acontinuous partition of unity, let ¢ :K — LT, R™ bea

continuous map, and fix &€ > 0.
Then there exists a continuous map A: K— A" verifying :

@ [A@dt=p@).T ;
(if) [ fAm@o@@dt - p@| o @dt | < e/m ;

(i) ppw=1 = LW=1; pw=0 = XA =0, ae. YueK Vi.
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Proof = See Fryszkowski [29,' Proposition 1.2] .- ' '

Lemma 1

Let G verify hypothesis (H).
Then for each € >0 there exists a continuous map g such that d 1(g(u), G(u)) < &,

t
Iof EW@ - @) dtl € € Viel Vuek.

Proof

Using the integrable boundedness of G we can find a partition of I into subintervals
Li=[t.,),j=1,.,m; such that

VueK VveGu), |[vds|<en j=1,.,m,.
I
J

Since g, is continuous on K, we can find €' such that, denoting by d the distance in K,
u, e K, dlug, up) < € = dif gu(uy), g.(u)l < /4.

Set €:='4 min { ¢, €'}, and:

Vj(u) :={v|Ij: v e G(), J (g,@-v)ds=0 b, oi=1..,mg

L
i

V@) = { ve Gu): v le € Vj(u), Vi=1, , my }.
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By Liépunov theorem on the range of vector measures (see[30]), Vj (u) is nonempty V j, and
since G(u) is decomposable, we have V(u) # @ V ue K. If we fix some u,e Kand some

Vo€ V(u,), by Proposition 3, there exists a continuous map Pu,v, such that Puovo(uo) =0
and D (v, GW)) < py v, () V ueK; therefore the set

Ui, vo) = {ue Kr d(w,u,) < &y, Ipuy,@li< g}

is an open nbd of u,. By compactness of K, the open cover { U (u,,v,): u,e K, Vo€ V(u,) }
has a finite subcover { Uy, ..., U, }, where U;=U(uy, v;), and:

ne Ui= du,u) <g, difg,W), g, @l< €/4

vie€ G(u;), D[v;; Gu) ] < p;(u) := Puyv; (@, | o) | < €

ml my

Jle@-vlds! < dil g, g1 + Y, | Leaw)-viasi< e
J. .

|
=1 =1 ]

L

fori=1,..,m.Let p: K — [0, 1]™ be a subordinated continuous partition of unity, and
apply Proposition4 to ¢ = (¢ > ®m+mm,.n) defined by:

Qi=pj-= pl]iVi ’ Om+k (U) (t) =X I] (t) . [ g*(u) (t) -v; (t) ]r E
for i=1,.,mj=1,.,mj,r=1,.,n k=1, .., m.mj.n, where [-]; denotes the rth
component of the vector [.], with e1/m; in place of &, obtaining a continuous map

AMK—- AT verifying : J?u(u) dt=p).T ;

f?\.i(u) Dlv; G ] (@) dt £ p;(u) |p;(u)ll + g /mm; £ (p;(u)+1/m) €/4;

o my
Oj?»i(u) [g*(u) —v;]lds | < 2 (p;(w) | f[g*(u) -vildsl+¢g/mm; <
j=1 I

< (ppW+1lm) e/4;

pW=1 = L@=1; pwW=0 = A@ =0,
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ae. VueK for i=1,..,m.

m
Define now g K—-Ll, g):= 2 A; (u) v;. To see that g is continuous, it is enough
i=1

to see that

le-g@l, <> [ Inv@-y@l Ivil ds<Y [Ir @ -2 @ M) ds,
i=1 i=1

and each term in this sum is the integral of M over a set of measure J | A () - A (@ l ds,

. . 1. .
which clearly tends to 0 as u— g, since A K— L" is continuous, Vj. Moreover:

t

t t
|I[g*(u)—g(u)]ds|sl Jg*(u)dsl + | jg(u)ds|+
‘ Yty Yy

m £(t)

Ly, Iof M) [gew)-vilds| <% e+Yie+% e 3 (p; (@ +l/m) =¢.
i=1 i=1

To see that g is an e-approximate selection from G, recall that by Proposition 2,

VueK 3Ivj) e G): D(vj, vi(u) ) =D (vj, G(u)), i=1,..,m,so that, setting
m

v (u) := Z Ai(u) vi(u) e G(u) V ueK, we have:

i=1
D[ g(w), G(w)] < D[ gw), v(w) 1= Zl Ai(w) D (vi, vi(w) = Z Ai(w) D (v;, G(w)) .
i= i=1
Therefore

di[g),Gu)] £ % ¢ [pj(w) +1/m] <& V uek. ¢

m
i=1
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Lemma 2

Let G verify hypothesis (H).

Let gk'1 : K—L' bea continuous map verifying  d, ( gk‘l(u), G) <¢g

for some ek_l > 0.

Then forany 0 < € < &, there exists a continuous map gk :K > L! such that

d (£@.Gw) < g, d (g, g,) < g +g .

Proof
Since gk-1 is continuous on K, we can find €' such that
wue K, d(u,u)< € = d;[ gclu), gkl(w) 1< g /2.
Set €="2 min { g, €' } and V (u) :={ ve G): &[ gklu), v]=d[ g&l(u), Gu)]}:

then, by Proposition 2, V(u) # @, VueK. Asin Lemma 1, for each upe K and each
Vo€ V (up), the set

U(ug, vo)={ue K: d(u,uy) < €, lpuovo(u)|1< e}

is an open nbd of u, and the rest of the proof follows the steps of the proof of Lemma 1. ¢
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Proof of Theorem 1

Choose a positive decreasing sequence ( g ) such that Z ex=1/(21), and apply

Lemma 1l with €, inplaceof g, obtaining a continuous map:
t
g: K - L' suchthat d,[ g°(u), G(u) ] < &, IU[ [ g, - gou) 1ds| <e,

,VteI Vue K.For k=1,2,.., apply Lemma 2, obtaining a continuous gk: K — L!
such that

d (gku), Gu)) < g , dp (&), gFl(w) < g+ &g
In particular the sequence ( gk(u)) is Cauchy, uniformly in u e K, hence the sequence (gk)

is a Cauchy sequence of continuous maps, and (gk) — g; uniformly, gj: K— L1 is

continuous, and:
di g:(), G) ] < d)[ gy(w), gh(w) 1 +d;[ gk(w), Gw) ] <

< di[ gy, gk(u) ] + g —» 0 as k — o, hence g1(u) € G(u) V uek.

This means that gi is a continuous selection from G, and:

t t
l Of [+ -grlds | < | OJ [ g« - g 1ds | +di[ go@), glw) 1+ +
+dil gt (u), ghw)] + d1[ gh(u), g1() 1< € + (Eg+ &) + -+~ +

+ (& + &) +dl gk), g1)] = 2 > g =1/i,Viel YueK. ¢
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2.3 Continuous selections from solution sets

Introduction

Consider a multifunction F (t,x) Lipschitz in x with unbounded values. Let S (€),
A (§) be the solution set and the attainable set at ime t=T for the associated Cauchy problem
(CP). If we let initial data x(0) = & vary over a compactset Z in R" then we can associate
to F two new multifunctions S:Z —C° and A:E — R", with values S (&), A(E) which
are in general nonconvex nonclosed (Hermes-LaSalle [31]). However these multifunctions
have continuous selections through each point of the graph, as we show in the first part of this
section. Notice that we do not use neither Liapunov's theorem on the range of vector measures
nor any previous existence result.

In the second part we consider approximate solutions of (CP), i.e. functions y in AC
such that the distance p (t) := d (y'(t), F(t, y(t)) is integrable. Filippov [28] showed that
(CP) has solutions iff it has approximate solutions. He obtained also an estimate for the

distance between a given approximate solution y and a true solution x, as follows :
t

t
Ix(®)-y@®! <L :=Gf exp ([2) p@ dz, IxX®-y®O! < 2® LO+p@) ae.,
T

where 2 (t) is the Lipschitz constant of F (t, -). This is somehow a multivalued version of the
well known Gronwall inequality. What we prove here is a "continuous" version of this
estimate. Namely, we let y and y' vary continuously with & and show that there exists a
true solution x of (CP), also depending continuously on &, at a distance from y which
equals the Filippov estimate plus a small error 3 . This error is unavoidable because Filippov's
estimate is incompatible with continuous dependence, as simple examples show.

The first continuous selection from solution sets was obtained by Cellina [15], supposing
F to have values contained in a bounded set, and using Liapunov's theorem. Previously,
approximate selections had been obtained also by Cellina [13], for usc multifunctions with
convex values (also in Aubin-Cellina [2, Corollary 2.2.2]). Notice that by using these
continuous selections (or approximate continuous selections), one can deduce the existence,
under appropriate conditions, of periodic solutions (see [13] or Aubin-Cellina [2, Corollary
2.2.3], and [15]). As to the Filippov estimate, it was originally proved for F jointly continuous ’
and subsequently extended by Himmelberg-Van Vleck [34] to allow measurability in t.
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Assumptions and results

Let I be the interval [0, T] and let = be a compact set in R", with diameter D .
Consider the following :

Hypothesis (H)

F:IxR"— R" isa multifunction with:

(a) wvalues F(t,x) closed;
(b) F(,x) measurable;
© 3I2:1I -5 R integrable such that  dl (F(t, x), F(t,x)) < 2 (t) Ix-x | for ae. t;

(d 3 y in AC such that t—d (y'(t), F (t, y(1))) is integrable .

We associate to F the multifunctions

$:2 5, 5s®:={xC%x0)=¢ xeFtx ae ],

n

—»R ., A®:={neR": n=x(T) forsome xe SE) }.

>
[1]

S (&) is the solution set, and A (§) 1is the attainable set, for (CP).
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Theorem 1

Let F satisfy hypothesis (H).
Then for each solution xy of x'e F(t, x) a.e. there exists a continuous selection s from
the solution multifunction S verifying s (x(0)) = xg.

Corollary 1
Let F satisfy hypothesis (H).
Then there exists a closed set U in a separable Banach space X, and continuous functions

g ExU—C% h:ExU—R" such that :

S®=g¢ U, A®=hE U)

forany & in ZE.

Theorem 2

Let F satisfy hypothesis (H).
Then for each 8 >0 and each continuous map y:Z — AC, there exists
acontinuousmap x: E— AC suchthat x (&)'(t)e F(t,x(€)(t)) ae.on I and

t

t
t
Jlx(&)‘(r)—y(&)'(z)ld«: <5 +6[ exp( [2) p® @ dr,

where  p (§)() == d (y (§)®), F(t, y ©)®))) .
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Proof of Theorem 1

We construct a continuous y: = — AC such that y (§)'(t) € F(t, y(€)(t)) a.e.on I
and y (§p) = xg, where E3=x¢(0), andset s: E— CO, s@EU)=y &) V& Vt.To

construct the map y we use the following
Proposition 1

Let vg, ..., vy bein L! , let (Ij(?';) ) be a partition of I into a finite number of
subintervals with endpoints depending continuously on & . Consider the map

t

(P:§_>E;+ JE ij({;) () VJ-(‘C) dt .

=0
0

Then there exists o in L1(I) such that: for every €>0 there exists & >0 such that

€&l < & implies 1QEY®)-0@'@®! < ot) Xxg®

for some set E with measure(E) < €.

The construction of y is based on Filippov's successive approximations. As a function
of the initial data, each approximation would not be continuous. We modify it in order to obtain
continuity, by interpolating through continuous partitions of the interval I, as in Antosiewicz-
Cellina [1].

t

(2) Set y:Z—AC tobe yE®:=&+ [ xo'(v) dt ,
0

and notice that y is continuous and verifies:

dly®)'® , Fey@m)] = dlxg'® , Fty(©)(m)] <
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< dl [FhyE®) , FLy©m)] < 80 Eo—&l .
Chivose vOE)(®) to be a measurable selection from Flty(€)(®)] such that
YE'® —VIEO! = dIyE'® , Fey@m] < 80 E-El .
Hence vO(E) belongs to L! . Fix some 1M >0 and define
8(E) : = min (2371, E—&l/2 ) forE=Eg, 8(g) 1 =23n .
Cover E with balls B(,3(8)) , and let (B(; 8(5)))j=0, ... m~ be a finite subcovering; in

particular &, belongs only to B(&g, 8(§g)) . Let (p)j=0, .., m » be a continuous partition of
unity subordinate to this covering, and define Io(€) : = [0,T pp(§)] and, for j>0,

L(E) : = [TPo(®) + . + Pj1(8)) > T(o(E) + . + PIEN] -

Set

t

VIO® =8+ JE X1 () vO(g;)(T)ydt .
=0

0

From Proposition 1 it follows that y! is continuous from ZE to AC . Moreover,
y1(&g) = s , since I(€) = [0,T] . We have:

M Jiyi @ —y@d £ [3W0E) - y@yidr <
0 J

t
j
0

t
where m(t) : = jQ(t) dt .
0

Fix t andlet j be such that t €;(§) . Then:
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@) ’ dl yH®'® ,F(t,)’(i)(d)] = d[ V&) , Fy@m 1 <
N < dI[F(LyEp®) , FLy®m) 1 < @) I§;-El <
<2312 .
This estimate is independent of j , hence it holds on I. By the same reasoning,
3) dl yH©)'® , FLy' @) 1 = dl y'&)'® , Fey© ) 1 +
+ dI[FLy®®), Fey'®®) 1 < 2®[23n +Dm®) ] .

(b) In general we claim that for n =1, 2, ..., we can define a continuous map y*: E —
AC verifying y™&g) =%, and:

@ J lyn(g)' — yn-1(E)1dt < D = “)

+ n2—n—1[2—2 + Z (._2_@1_('2)_)1.] ;
i=1 °

(i) dly»(©)'® , FLy™1€)®) ] < m 222 0(1) ;

(i) dLy"E)'® , Fey"®®)] < D o B 4

(iv) there exists o in L1 such that : for every € >0 there exists & >0 such that
€'~ &l <3 implies lyn(€)'(t) —y"(E)'®! < ant) xg® ,

for some E <1 with measure(E) < € .
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From the definition of y! and the Proposition, this claim holds for. n = 1. Assume that it

holds for n—1.
Choose v*-1(&) (e F[t,y1(€)(t)] such that

ly"=1(E)'® —vr1E)®I = d[ y-1(E)'(®) , FLy™L(E)®) ] <

n-1 n-1 ;
<D Q(t)(%':—%)-!- + M 200(1) % (2mi(!t)) .

By (iv) of the recursive hypothesis, there exists 8§, >0 such that: IE' — &| < 0, implies
ly™1EY'® -y 1@'®! < om-I(t) dt < om-lyg()

for some E such that Jan“l(t) dt £ n 203 |

Define
6,(8) :=min { §,,203n,E-&)/2} for ExE,,
8,(Gp) : =min { 5,231} .

Cover E with balls B(E, 8,(§)) and let

B(g;laan(&;l)yj=0y--~3mn9§3=§0 ’

be a finite subcover; in particular €y belongs only to B(€,6,4(&p)) . Let (p}l) i=0 be a

3 aeny mn ?

continuous partition of unity subordinate to this covering, and define L&) : = [0,Tpy(E)] and,

for j>0,

FE®:=[T@EE +..+ p©), TEyE) + ... +pEN].

Set
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tmn

POO:=g+ [ 3 2 " @ VD (i

From the Proposition it follows that y» is continuous from = into AC. Moreover, yn(§;) =
sg since Ij(&g) = [0,T] . We have:

y ¢
len(i)'—yn~1(§)'ldr SJ 2 X1 @ ViiED - y-1(€) ' dt <
j
< Xt hiE) -y i@y +
]
+ J Z XI?(é) |Y“‘1(§jn)'—yn°1(§)" dt <
j

n-1 .
0,[ (Z XIJ(é))[Dk(t)( (lt)), + M2 - 2 (zmi(!t)) 1d

i=0
+ [ )o@ pmer <D BO 4 noma 2 QmOF ) 4 o,
J

Hence point (i) of the recursive hypothesis holds. Fix t and let j be such that te I;I(E,.) . Then
dly"®'® , Fey™' &) 1 = dl v1EN® , Fry1®)®) ] <

< d[Fty-1(E)®) , FLy-1E)®) ] <
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IA

ROUE -8+ (@) - ymI@)lde <
. 0

IN

) [M2703 + 23] = 202 p(p) .

This estimate is independent of j, so it holds on I. Thus (1) is proved.
By the same reasoning,

dly™&)'(® , Fey" @) 1 < dl y»(©)'(t) , Flty™=1(E)®) ] +

+ dl [ Fity™1(€)®) , F(Ly"E)(®) ] <

S RM[N212 + D) I?;)(’t) + mn 21 z (2_mi£19)_i] +n203] <
: i=1 ¢

<Dy T 4+ nowig ZO Cmy

Applying the Proposition to y" the recurrence is completed.

© From (i) we have that

Iy () - y-1©llxc < DB 4 n 21 e2m0),

so that the sequence of continuous functions y* : I = AC converges uniformly to a continuous
function y such that y (o) =xq.By (iii), y (€) belongs to S(§). ¢
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Proof of Corollary 1

Set X to be the separable Banach space of continuous maps ¢ from the compact Z into
the separable Banach space C®, with the usual sup norm, and let U < X be the set of
continuous selections from the map & — S (€). Define g to be the evaluation map g(§, u) =
u(€). Then the continuity of g is obvious, and the above theorem gives g(&, U) = S(&) .
Similarly for h. ¢

Proof of Theorem 2

The proof is essentially Filippov's construction of successive approximations. However,
unlike in Theorem 1, we need Fryszkowski's [29] version of the Liapunov theorem on the
range of a vector measure because y(§)'(t) now depends on & and we aim at a sharper result.

t
(a) Set €:=8e2m0 /6, where m(t) := | #(t) dt. Consider the map p:E — L(T),
0

with p(E)(t) as in the statement; using (d) of hypothesis (H) one easily sees that p is well-

defined. Moreover p is continuous because
[Ip® -p@Eldr < [ly@E) —y®1dt + [R(@) Iy -y@®ldt <

< Iy(€) —y©lac [1+m(D].

For each §;e & , the maps B;,o;:E — LI(D), Bi&)® : = lyEp'®w - y& '@l ,
o)) : = IpEN®) - p(E)(®)!, are continuous and verify Bj(i:‘,j) = Gj(&.j) =0 ; hence the set

gy ={ EeE :ly(€) —yEl, . < % , Jo&)dr < %—}

is an open nbd of ij . Therefore there exists an open cover Zj,.., &2, of £ and a
subordinate continuous partition of unity 7 , ..., Ty : & — [0,1] . Choose A >0 such that



-139-

measure(E) S A = Ef prdT <5,

where p;eL1(I) is such that p(éj)(t) <pi) ae.on I for j=1,..,m.Foreach e =

find a map vO(§)eL1(D) such that vO(&)(e Ft,y(E)D)], WOEND) — y(E)'®)I = p(E)() a.e. on

I, using the measurable selection theorem of Kuratowski-Ryll Nardzewski [36]. Apply the

technique of [1] or [29] or section 2.2 to find sets E{(§), ..., E,(§) such that:
rneasure[Ej(ﬁ)] =T. RJ-(&)

PA A

dJ-XEj(é) pEpdt < my(&) fp(&j)dr + 7-85
0

fxgj@ Bi®)dt < m(&) f Bj(E)dT + »—< [,,;j(g) . }rﬁ] 3

Define
t m
OO =yOO + | D xe e VEdc
j=1
obtaining a continuous map x!:Z = AC such that

t t m
Jei@ —y@rar= [ 3 e e voE) - y@ar <
i=1

LA
< J 2 ume e + [ 1ee B +
! j

t o 2A
+ ] puoar < 3 @ [ pEydr + 5 +
2A , =1 0
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+i1 w6y + &5+ 5< Ofp(&)dt .

]

t
+ Z 7;(8) _[ o;€)dt + 4¢/2 < o". pE)dt + 5¢/2 .
J

If we fix tel andlet j be such that te E;(&) then
dx}©)'(® , Ft,y®m)] = dIvOE)®) , FtyE)Xe)] <
< dL[FyEpm) , Fy@m)] < 20 lyE® —yE)o! <
< 20 lyE) -y®), . < 00 &2,

hence:

dx1(E)'(® , Ftx!(®)(®)] < d[x1(§)'(t) , FtyE)(®)] +

t
+ dLFGyE)®) , FexIEm)] < 20 [OJ pE)dt + 6¢/2] |
(b) Claim. For n=1, 2, ...,itis possible to define a continuous map xn: Z — AC
verifying x™(€)(0) = y(€)(0) and:

)

t t
) Of () — xn1(E)IdT < J (o GO PE®@dr +

n-1 .
+5.27Mg + 6.20g Y [2mi(‘t)]1 :
i=1 :

— m(f)]n—-l

t
(i) A0, @O < o0 [ ELZBON eymar +
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v n-1 .
+6-2meg ¥, ZROR
i=0 :

To prove this claim notice first that for n =1 it has been proved above. Supposing that it holds

true for n— 1, we prove it now for n.
Consider the map pn: Z — LI(I),

PHEXND : = d[x™1(E)'() , F(t.x™1(E)(D)] ;

since x7-1: E — AC is continuous by hypothesis, reasoning as for p at the beginning of the
proof one easily sees that p? is well-defined and continuous.
Moreover the estimate (ii) of the claim for n—1 gives

t t

J pr(§)dt < GI

-2 men)i
+ 6-2—n+186[9(1:)2 S <
i=0 -

: - n-2
2 RO @yt +

t _ -1 n-1 i
< [ [m® (n_nllg)] pE(DdT + 6.2—ne§ 2mOF

0

n 11 —
v Epof 2 and a

As for the case n =1 above, it is possible to find an open cover E

=]

is an

[x]

-

subordinate continuous partition of unity n?, e Tt?nn : Z — [0,1] such that each set

open nbd of &' given by:

Po=(EeE k1) —x @), L < 2e, [ oT@de < 2me)

J

[1]

where

S E® : = 1prEN® - pAEO)
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Set

BiE® : = x-1EN'® - x1(E) M),

and choose A" >0 such that: measure(E) < An :,»J pPa(T)dt < 27 ¢, where p, is some
map in LI(I) such that pn(ﬁj?’)(t) < py®) ae.on I,Vj=1,..,m,.

Find a map v*1(§) in L! such that

VL) (e FlLx»1E)®] , Wr-1(E)(1) — xn-LE)®)I = pr(E)(D)

a.e.on I, and apply the technique of [1] or [29] or section 2.2 to find sets E'(©), ..., Egln(ﬁ)

such that
measure[Ejn €)1 = T‘E;l(&) )
A" AR |
[ xete pEhan < @ [ on@har + 2 =
i@ P15 j j my 7
n n n n €
[ xe5 B < @ [ pl@a + om = <
< [n;‘(g) + -n,ll—n] g
Define

t m,
RO =y®O + | 2 18} v
J:
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obtaining a continuous map x": Z — AC such that, reasoning as for the case n=1 above,

t

t
Oj Ixn(€) — xn-1(&)'ldt < J pr(E)dt + 5-2-ng ,

t
d[xn(E)(® , FexE))] < kOl Gf pr(E)dt + 6-21¢€],

t

and, using the estimate obtained above for J. pn(E)dt , obtain the estimates (i) and (ii), thus
0

completing the proof of the claim.
©) From the claim it is clear that

t t
J xn(E) — xn-L(E)ldT < g[ — @ﬂfnn‘l pE)(T)dT + 6-2nemD g,

so that the sequence of continuous maps x": E — AC converges uniformly to a continuous
map x: & — AC verifying, by (i), x(&)'(t)e F[t,x(E)(t)] a.e. on I.Moreover we have:

t

L t
J @ —y@nars [expl] s p@@ac + 5
T




Chapter 3 Differential inclusions
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- 3.1 The convex continuous case.

Introduction

We show that differential inclusions in R™ with convex valued multifunctions, continuous
in x, do not generalize differential equations with control in R™. In fact, consider the relaxed
problem (CPR) with F(t,x) measurablein t and continuous in x. The results of section 2.1
show how to construct a function f(t, x, u) and a convex closed set U in R™ such that
co F(t, x) =f (t,x, U) . Moreover U is compact provided the values F(t, x) are compact, and
f(t, -, u) is Lipschitz provided F(t,-) is Lipschitz. We show here that any solution of
x'e co F(t, x) also solves x'=f(t, x,u) , u(t) e U.

Equivalence between differential inclusions with convex valued continuous multifunctions
in R" and control differential equations was known; but the regularity conditions were not
satisfactory. Namely, either f was non-Lipschitz for Lipschitz F (Ekeland-Valadier [27]) or
U was infinite dimensional (LeDonne-Marchi [39] or Lojasiewicz-Plis-Suarez [42] added to
Toffe [36]).

Assumptions and results

Let I be an interval, bounded or unbounded, and let Q be an open or closed set in
“R™ Let F:IxQ-R" bea multifunction with values either bounded by a linear growth
condition -- hypothesis (FLB) in section 2.1 -- or unbounded -- hypothesis (FU). Notice that
hypothesis (FLB) (d) now simply asks the boundedness of I and the continuity of F (t, ‘) ;
in fact I is already ©- compact, and for X we can take an adequate compact subset of Q,
using an exponential a priori estimate for solutions of (CP) based on Gronwall's inequality-
(and supposing Q large enough or I small enough).
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Theorem 1.

Let F verify hypothesis (FU) of section 2.1.

Then the relaxed Cauchy problem (CPR) has the same absolutely continuous solutions
as the control differential equation
(CDE) x'=f(t,x,u) ae.on I, x(@=&,u®elU,
where f, UA are as in Theorem 2.1.1 or Corollary 2.1.1.

If moreover F, w are jointly h-continuous then for each continuous differentiable
solution x of (CPR) there exists a continuous control u : I — U suchthat

x'(1) =f (¢ x(1), u®) Vvt

Proof For each solution x of (CPR) set y (t) :=x'(t) and apply Proposition 1. ¢

A special case which appears more commonly in applications is covered by the simpler :

Corollary 1
Let F:RxB™— R" be a multifunction with F (-, x) measurable, F (t, -) Lipschitz
with constant 2(t) integrable,and ye F(,x) = lyl <2 m(t), m (-) integrable.
Then the Cauchy problem
x'e co F(t, x) ae.on I, x(0=¢ ,
has the same absolutely continuous solutions as the control differential equation

X=ftxu aeon I x©O=¢&, luwl=<1,

where f:R xR"xB — R" is measurable in t and Lipschitz in (x, u) with constant
61 [20(t) + m()], and B is the unit closed ball in R" .
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V Proposition 1

Let F verify hypothesis (FU) of section 2.1.

Let f, U be asin Theorem 2.1.1 or Corollary 2.1.2.

Then foreach x: 12X, y:I1— R™ measurable verifying y () € co F(t, x(1)) ae.
there exists u : I — U measurable such that y (t) = £ (t, x (1), u (1)) a.e..

If moreover F, w are jointly h-continuous and x,y are continuous then u is continuous.

Proof Consider the homeomorphism h asin Corollary 2.1.1 or Theorem 2.1.1, and
set u (D) =h"(t, x(1), y(©)) - 6
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3.2 The Isc case

Introduction

Consider a multifunction F with integrably bounded values F(t, x), and let S (§) be
the solution set for the corresponding Cauchy problem (CP). If F(t, x) were Lipschitz in x
then the solution set S (§) would be dense in the solution set of the relaxed problem (CPR),
relative to the uniform topology (see section 3.3). However Plis [52] constructed a counter
example showing that this density does not hold if we just assume continuity of F(t, -).

In this section we prove an approximation result for multifunctions F(t, x) 1sc in x, which
is weaker than the above density result and contains it as a special case (see section 3.3). This
approximation result was originally obtained by Pianigiani [51] under stronger hypothesis,
namely supposing F jointly continuous with values contained in a ball of R". His proof is
based on the method of Antosiewicz-Cellina, as explained in section 2.2. Other treatments of
differential inclusions by this method are: Bressan [4], for multifunctions F(t, x) jointly Isc;
Colombo-Fonda-Ornelas [21] and Tolstonogov-Finogenko [53] for measurable multifunctions
F(t,x) Isc in x.
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Assumptions and result

Let I be the interval [0, T], let = be a compact convex setin R" and Q an open or
closed set in R™.

Hypothesis (H'")
F:IxQ — R" isamultifunction with:

(a") wvalues F(t,x) compact ;

(b 3 IOCI such that I\I0 is a null set and FIIOXQ is L®B - measurable ;
(¢) IM:I-» R" integrable such that ye F(t,x) = Iyl £ M() ae.

and d(y, ) < |Ml1 = ye Q;

(dy) F(,-) is Isc.

Theorem 1

Let F verify hypothesis (H').
Let (&) be asequence converging to some &, in Z.Let f(t, x) be a selection from

co F(t, x), measurable in t and continuous in x.
Then there exists a solution x, of x'=f(t, x), x(0) = €, and a sequence (x;) of

solutions of (CP) with xj (0) =§;, such that (x;) converges uniformly to x, .
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Consider the compact convex subset of C® defined by' :

K_:={xC’: xe AC, x(0)e Z, Ix@®| < M@ ae. }

o0

Lemma 1

Let F verify hypothesis (H').
Let f(t, x) be a selection from co F(t, x), measurable in t and continuous in x .
Then the function g,: K_— L' and the multifunction G: K_— L' defined by

g2.(x) (1) = f(t, x(1), Gw:={v eLl: v(t) € F(t, x(t)) a.e. }

verify hypothesis (H) of section 2.2.

Proof

Clearly we need only prove that G is 1sc. Notice first that for ue K oo the map

t — F(t, u(t)) is measurable (see 1.2 (iii), (iv)). Let C be a closed set in L1, and consider a
sequence (uy) — ug such that G(u)C C V ke N. Fix any vo€G(u,); since G(uy) is closed
decomposable, by Proposition 2.2.2 there exists vie G(uy) such that D(v,, vi) =D(v,, G(uy)),

- hence for a.e. t we have:
lvo® - vi®! = D (Vo, Vi) () = D (v, G(uy) (1) = d (v, (1), F (t, u(t)) )

;but F(t, -) islsc, (a(t)) — uy(t), and vo(t) € F(t, uy(t)) , hence |vo(t) - vk(t)l —0 as
k — co. This means that d;(v,, vi.) — 0, and since (v) C C, we have v,e C. ¢
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Proof of the theorem

Define g, and G asin Lemma 1. Then by Theorem 2.2.1 there exists a sequence (gi)

of continuous selections from the multivalued Nemitskii operator G associated to F such that,
setting '
t ot
B> i Koo Koo, by (M =&+ [ (0@ dT,  he()® =&t [ gul)(m) dr,
o} o
then (h;) = h, uniformly.

It is clear that hi K,) € K_,, and that hi is continuous. By Schauder theorem, for
each ie IN there exists a fixpoint Xi = hj (xj), i.e. xi'=gj x) € G (x}), xi (0) = &;. This
means that xi‘(t) € F(t, x(t)) a.e.. Since (Xi) is a sequence in the compact K oo & Subsequence,
which we denote again by (xi), converges to some X,. It is clear that x,= h,(x,), so that

X4 '(0) = 1(t, x, (1)) a.e.. ¢
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3.3 The continuous case -

Introduction

Let F (t, x) be a multifunction continuous in x and integrably bounded. Consider the
solution set S(§) for the associated Cauchy problem (CP). In the first part of this section we
suppose that F(t, -) has a modulus of continuity of the Kamke type, namely implying
uniqueness; and prove that the solution set S(€) is dense in the relaxed solution set associated
to the convexifed problem (CPR). This is not a new result: for F (t, x) Lipschitz in x it was
found partially by Wazewski [54] and then completed by Filippov [28]; and for Kamke type
conditions it is due to Pianigiani [51], in case F(t, x) is jointly continuous, and to Tolstonogov-
Finogenko [53], under measurability conditions (see also Bressan [5], for the locally Lipschitz
case). However in those papers the relationship between density and uniqueness is somewhat
hidden, while here it appears very clearly. In fact the density result follows directly from the
results in sections 2.1 and 3.2 .

We now describe the contents of the second part of this section. Supposing that F is
continuous in X, we prove that the solution sets S(E) are closed if and only if the values F(t, x)
are convex. The "if" part is well known (see Aubin-Cellina [2, Th. 2.2.1] and also [170.
What we prove here is that some solution sets S(€) are nonclosed provided some values F(t, x)
are nonconvex. Also this proof is based on the results of sections 2.1 and 3.2. Notice that the
result cannot be improved, in the sense that if F(t, -) fails to be continuous then the equivalence
between convexity and closure does not hold anymore. More precisely, when F(t, x) is not usc
then some solution sets S(&) may be nonclosed even if all values F(t, X) are convex, as simple
examples show; and when F(t, -) is not Isc then some solution sets S() may be closed even

if some values F(t, x) are nonconvex (see [17]).
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~Assumptions and results

Let I be theinterval [0, T].

Hypothesis (H)
F:IxR" — R" isa multifunction with:

values F (t,x) compact ;
F (-, x) measurable ;

3 m:1 - R’ integrablesuchthat ye F(,x) = Iyl <m() for ae. t:

3 w:IxR" > R" suchthat  dI(F(t,x),Ftx) < wt, lx—x) ,

with w (-, r) measurable, w(t, ©) continuous concave, w(t, 0) = 0 and w(t, 1) <2 m(t),
for ae. teI.

Condition (C)

fi :IxR" — R" isa function with:

f, (-, x) measurable;

Jd m asin (c) such that e (t,x) | £ m(t) for ae. t;

3 w asin (d) suchthat |If,(t,x) - +GLX!1 £12n w(, Ix-xI) for ae. t;

the differential equation rt)=12n w1, r0)=0

has a unique AC solutionon [0,t], foreach t in [0, T].
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"~ Theorem 1

Let F verify hypothesis (H) and suppose that w verifies (e) of condition (C).
Then for each solution x, of the relaxed Cauchy problem (CPR) there exists a selection

f, from co F(t, x) verifying condition (C) such that x,, is the unique solution of the differential

equation
x'=f, (t,x), x(0)=E.

In particular the solution set S(&) of (CP) is dense in the solution set of the relaxed
Cauchy problem (CPR).

Theorem 2

Let F verify hypothesis (H) .
Then the solution sets S(§) of (CP) are closed VEe R™ if and only if the values F(t, x)
are convex V xeR" for ae. te 1.

Corollary 1

Let F verify hypothesis (H) and suppose that F(-, x) is continuous V xe R™.
Then the solution set S (&0) of (CP) is closed if and only if F(t,x) is convex

\“7'(t, X) € graph [t~ S (&O)(t)] for ae.tel.

Proof of Theorem 1

Asin Theorem 3.1.1, find f such that f (t, X, B) = co F(t, x), B the unit ball in R";
and u, : I — B such that f(t, x +(0,u (D) =x'(t) ae., insuch a way that the function f «

defined by f,_(t, x) := f(t, x, u, (1)) verifies condition (C). Now apply Theorem 3.2.1 .
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Proof 6f Theorem 2

The proof goes as follows. Supposing F (-, xg) nonconvex on a set of positive measufe,
we construct an integrable selection v(t) € co F(t, xg) such that d (v(t), F(t, X)) 21Mp>0 on

a set of positive measure. This v gives an approximate relaxed solution and near it there exists

a true relaxed solution x verifying x'¢ F (t, x) on a set of positive measure. On the other
hand the results of sections 2.1 and 3.2 yield a sequence (xi) of solutions of (CP) converging

uniformly to x.

() Let S; be a subset of I with positive measure and x, a pointin R" such that
F (t, Xg) isnonconvex VteS;. By the Scorza-Dragoni property in 1.2, there exists a compact
set S © S; with positive measure such that F SxRM is Isc with closed graph. By Lusin's
theorem we may suppose that w) SxR* is continuous.

Fix any tye S and choose a point v4e co F(ty, xo) such that vy e F(ty, xg). Then
No = é—d [vo, F (tg, Xg)] is positive. By Michael's theorem [44] there exists a continuous
selection v(-) from co F(:, xp)l s such that v(tp) = vy . By the theorem of Kuratowski-Ryll
Nardzewski [38] we can extend v as a measurable map to the whole interval I so as to verify
v(t) € F(t,x9) Vte I\NS. Set n(t) :=-16- d [v(®), F (t, xg)] . Since v| is continuous and
F(, o) 1is Isc with closed graph, the map Mig is continuous. Set I (ty) :=1 N (tg— y, ty+ &)
» S (tg) :=S NI (ty), where 8g=8(ty) >0 is chosen to be so small that

¢y n@® 2 ‘21""'10 Ve ,
) w(t,M) <1y /(12n) ,where M= J)m(z) de, V t € S(ty).
(tg

We can repeat this procedure for each € S , obtaining an open cover { S (tp): tyeS }
of S.If S(ty) ,..., S(ty) is a finite subcover then at least one of the sets, let it be S(t;) , has
positive measure. Let S, be the closure of S(ty) and I = [t t+ A] be the closure of
I(tp) . It is clear from the construction that Sy I, has positive measure and

3) v e coF(txg) , VD! S m@® Viel,

4 d (v(1), F(t, xg)) 2 3 My Vte S, .
Consider the Cauchy problem
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(CPy) x'e F(,x) ae.on Iy, x(t) = xq ,

and its relaxed version
(CPRy) x'e coF(t,x) ae.on Iy, x() = xq .

We construct a solution x of (CPRg) such that d (x'(t), F(t, x(1))) = Mo forae.te S,

showing that x does not solve (CPg). Clearly x can be extended to the whole interval I so
as to be a solution of the relaxed problem (CPR), but it is certainly not a solution of (CP).

(i1) Using Theorem 2.1.1, find f(t, x, u) with modulus of continuity 12 n w(t, -)
relative to x such that f(t, x, B) =coF(t, x), with B the unit closed ball of R™ By (3)

and Proposition 3.1.1 there exists u : I — B measurable such that, setting £ (t, x):= f(t, X, u(t)),
we have f(t, xO) =v(t) Vte IO, and, by (2),

G Mftx)-v@E)! £ 12n w(t, Ix—xgl) £ Mg provided teS; Ix—-x) <M.

Then, by Theorem 3.2.1 there exists a sequence (x;) of solutions of (CPg) which converges

uniformly to a solution x of x'=f(t, x), x(t) = xg. Clearly x solves (CPRg); however since

|x () —xo! < tfm Mdt < M
we have dFGLx)FGLx®) S wEM <1y YteS, by @),
and K®O-v@O < Mg for ae teS, by (5).
Therefore (4) yields
(6) 3Mp £ d(v(®, F(tx0) < Iv(®)-x'®) + d &'®), F (¢, x(1))) +
+ dl(F x®), Ft, %)) < mp + d&'®, Fx®) + Mg,

hence d®®, FOLx®) = 3n5-mp—-ny = Np for ae. te . ¢
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3.4 The Lipschritz case
Introduction

Consider a multifunction F (t,x) Lipschitz in x with unbounded values, and let
S (€) be the solution set of the associated Cauchy problem (CP). In section 2.3 we presented
already some results for the multifunction S: = — C°. Here we prove that there exists a solution
of the relaxed Cauchy problem (CPR) which does not solve (CP). A more precise result can

be obtained in case the multifunction F(t, x) is integrably bounded, as was explained in
section 3.3.

Assumptions and result
Let I be theinterval [0, T].

Hypothesis (H)
F:IxR" - R" isémultifunction with:
(a) values F(t,x) closcd;
(b) F(,x) measurable;
© I m in LY and X,y in R™ such that
d (yl,F (t, xl)) <m(t) for ae. tel;
(d 32 in Ll(I) such that dlF ¢ x),F(x) <00t Ix-x!| for a.e.A tel.

Notice that this hypothesis is equivalent to hypothesis (H) in section 2.3.



-58-

Theorem 1

Let F satisfy hypothesis (H) and exclude the trivial case in which all values F(t, x) are
convex V xeR" for ae.te I.
Then for some &eR" there exists a solution of the relaxed problem (CPR) which does

not solve (CP).
Proof

(i) Let S; be a subset of I with positive measure and x; a pointin R" such that
- F(t, xg) isnonconvex V teS;.Let ScS; be acompact set with positive measure such that
F stmn is Isc with closed graph , and let £, be a constant such that 2(t) < 2, V t €S. Possibly

changing m we may suppose, using (c) and (d), that d (0, F(t, X)) S m(t) for ae. tel.
Fix any tyeS, choose a vector voe co F(ty, xg) such that vge F(ty, X), and set

No = -é—d(vo, F(ty, X0)). As in the proof of Theorem 3.3.2 find a measurable selection v(-)

from co F(:, xp), an interval Iy containing ty and a set Sy < I, with positive measure such that

(1) d (v(t), F(t,x9)) = 3mp Vtie S, ,
@) 99ebM < Mg, where M:= | mymdr, L:= | ¢ (7)dr.
I(tg) I(tp)
(i1) Setting

t
x(®) 1= %o + [v(n)de,
t

we have

d (x'(t), co F(t, x(1))) < dl (co F(t, xg), co F(t, x(t))) <

t
2@ Ixg—x()! £ 2 (t)jmo(T) dt<2@® M Vtiel.
t

Consider the Cauchy problem (CPy) as in the proof of Theorem 3.3.2, and let (CPRy) be its
relaxed version. The above inequality shows that x is an approximate solution of (CPRy),
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hence by the Filippov-Gronwall inequality (as in section 2.3) there exists a solution x of
(CPRy) such that:

Ix® %! S 1x®-x®1 + 1x0)-x| <
t t S t

<Jexp (J0) 0 [m@mdr ds + [m(m)dr =
t S L L

t

t

= [exp (fQ) m(s)ds < e M Vtely, sothat
t s

dl (F (1, x®), Ftxp) <2 () 1x®-% < 2 (©® & M ;

t
t
and IX'() — v | < 2 (1) [exp (JQ) mEdt <2 el M, Viel.
t s

For teSy wehave 2 (t)-eL M < 25el M < mg , by (2), hence (1) yields

3) 310 S d (v(D), F(t,xg)) < Iv(®)—=x'®) | + d x'(t), F(t, x(1))) +
+dl (F(t, x(1), F(t, x9)) < Mo + d x'(t), F(t, x(t))) + Mo , hence
d '), Ft x(1)) 2 3Me-MNg—Tp=mNp for ae. teS,.

This shows that x does not solve (CPy). However x can be extended so as to be a

solution of (CPR) for some adequate & = x(0), while it certainly does not solve (CP) with that

same E. ¢
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