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Introduction

Introduction.

The purpose of this Thesis is to survey the research work I carried out under the
direction of Prof. G. Mancini.

Our main object is the study of a class of problems which are usually described
as "problems at critical growth". Roughly speaking, we are interested in variational
problems of the form '

"find weX which is stationary for E:X — R",
when the functional E is invariant with respect to a non compact group of
transformations of X into itself. In particular, our aim is to study how an obstacle
condition can affect the existence - non existence phenomena which can be related to the

invariance mentioned above.

Let us consider the following model problem: given a bounded domain Q CRN,
N=3, find a map ue H.} (©2) which realizes the best constant S in the Sobolev
imbedding HL(Q)<s L2%(Q), where 2% = 2N/(N-2):

(0.1) S:= Inf leuIZ.
Iul2*=1
Q

It is well known that this minimization problem has no solution (see for example [2]). In
fact the Hg and the L2 norms are invariant with respect to the transformations
N2 '
2 X
Te ru(x) > € u(E—) ,

for any € > 0. This implies that the best Sobolev constant S does not depend on the
domain €. Therefore, it is clear that every solution u to the minimization problem (0.1)
would provide an extremal on every ball B, containing £, i.e. it would be a non trivial

solution (up to a Lagrange multiplier) of the equation

0.2) -Au=lu®2y in B., ueHL®B),

contradicting the Pohozaev' identity (see [2] for details).
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In many recent papers (see for example [2], [1], [5], [4], [6], [14]), it has been
shown that the above non existence result for (0.2) is "highly unstable"”, in the sense that
small perturbations in the equation or in the domain £ may produce an existence result.

In their celebrated paper, Brezis and Nirenberg have considered a "lower order”
perturbation to the equation - Au = | u 122 u . More precisely, they show that the

problem

-Au=|ulz*'2u +Au in Q
(0.3)

ue H(Q , u=0

has a positive solution if Ae€]0,A1[ and N >4, where A; is the first eigenvalue of -A
on Hg (Q). In case N = 3, they prove that there exists a A*e ]0,7\.1[ such that, if
Ae IA*,A1[, then (0.3) has a positive solution. Following this scheme, we have perturbed
the equation (0.2) by introducing a small obstacle W (see the paper [8] which is presented
in the first part of this Thesis). The result is the following: if W is a given smooth
obstacle, such that its maximum on Q is positive, and y <0 on 0%, then the variational
inequaltity
weH(Q) , u2y inQ

(0.4) . |
JVu V(v-u) 2 J‘Iulz Pu(v-u) if veH(Q), v2y
Q Q

has two distinct solutions @ =u > 0, provided y has small H! - norm. We point out
that this result holds true in case N =3 as well as in case N = 4.

More recently, Bahri and Coron [1] (see also [5]) have investigated the role of the
topology of the domain Q in the study of problem (0.2). Actually, in 1975, Kazdan and
Warner [7] have observed that (0.2) has a solution whenever £ in an annulus around the
origin. In fact, in this case we can restrict our attention to radially symmetric functions,
and thus we are allowed to use ODE's methods in order to have an existence result.

We can see that the argument here, as well as the non existence result given by
Pohozaev' identity, depends strongly on the geometry of the domain. In [5], Coron was
able to relate existence - non existence phenomena to the topology of €. He observed,
roughly speaking, that "holes"” in € induce a richer topology on the sublevels of the
energy functional associated to (0.2), and this giveé rise to the existence of non trivial
solutions.

This result, which still contains a technical restriction on £, was generalized in
[1], where Bahri and Coron perform a deep analysis on the relations between the
homology groups of Q and the topology of the energy sublevels for (0.2).
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The paper [9] we present in the first part of this Thesis is somehow related to the
above results. Here we are concerned with variational problems of the form:

ueH(l)(Q) , usy on C

(0.5) .
J.Vu V(v-u) > J.Iulz u(v-w if veH.(Q) , v<yon C.
o o

where C is a closed subset of Q, and y : Q — R is a given smooth, positive
function. Following the methods of [5], we observe that the obstacle condition on C
enriches the topology of the energy sublevels. Thus, we can prove that (0.5) has a
positive solution u which can be found via a "saddle point argument", provided the set
Q\C verifies a geometrical assumption (as in [5]).

This result concludes the first part of this Thesis.

Even if in the papers quoted above our main attention was referred to the limiting
case, our results seem to be new as well in the sub-critical case, when the exponent 2* is
replaced by some pe]2,2*[. From this viewpoint, the results in [8], [9] could be seen as
examples of existence and multiplicity results for nonlinear, anticoercive variational
inequalities. Therefore, we have introduced them by a Section on variational problems on
convex constraints, where we give a variational proof of the W2:P regularity result by
Brezis-Stampacchia [3] for linear variational inequalities involving an obstacle condition
of the form: u > y.

Variational problems at critical growth naturally arise in geometry. In the second
part of this Thesis we will be concerned with two examples of problems for parametric
surfaces in R3, which are subjected to some non-convex constraints. These problems are

invariant with respect to the non compact group of dilations in RZ.

The first problem we will describe (éee [12] in the second part of this Thesis)
concerns surfaces, spanned over obstacles, having prescribed boundary and prescribed
mean curvature. The result achieved in this context, already announced in [11], was
subsequently improved, and we present here in its final form. The variational problem

consists in finding stationary points for the energy functional

E(u) = % f Vul® + % V(u)
D

on the constraint

K = {ue Hl(D,lﬂ3) | u maps dD on I" monotonically, F(x,u) = 0},
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where H is a positive constant which represents the curvature, V is the volume

functional:

V(u)=fD det(u,Vu) for ue HL(D)NL=(D),

D is the unit diskin B2, T isa given Jordan curve in R3 and, finally, F : DXR3 — R
represents the constraint. When F is of the form F=u? - qf(ul,uz) or concave in u,
we prove that, under some additional hypothesis on I" and F, there exists a solution u to
our variational problem. This solution is a local minimum of the energy E on the set K.
On the other hand, if there exists

ue K such that E(u) < E(u),
then we are pushed to find a second solution of mountain-pass type. However, this
problem is still completely open. Some technical difficulties arise from the non-convexity
of the constraint and from its non-parametric nature. In addition to that, both the energy
and the constraint are invariant with respect to dilations, and this produces some lack of
compactness as in the examples in the first part of the Thesis.

The last example regards a problem about minimal surfaces with obstacles; in
particular, we present the paper [10] which proves a conjecture suggested in my Master
Thesis ([11], Chap. I, Sect. 5).

The problem is the following: given an open connected smooth subset Q of R3,
and a Jordan curve I" in R3\Q, find two disk-type minimal surfaces u and T spanned
by I', which "enclose" Q. Here, "minimal surface" means that u and u have to be
stationary points for the area functional on the class X~ of maps which satisfies both the
obstacle condition and the Plateau's boundary condition.

The "small" surface u can be found by minimizing the Dirichlet's integral on the
class X . In 1972, Tomi proved in [15] a regularity result for such a minimizer, which
in particular assures that u is conformal and u has minimal area in the class Xp.In
order to find the second surface @ one has to define in a suitable way a class X? of
admissible maps u such that uand u enclose Q in a weak sense. Thus, the variational
problem becomes:

©6)  find GeX_ fwu = i v 21

D ' D

Problem (0.6) has in general no solution: in the degenerate case, when I' reduces to a
point P, and consequently u = const. = P, then every minimizing sequence converges
weakly (up to a subsequence) to the constant P (see [11]). As in the above examples, this
lack of compactness is due to the invariance of the variational problem with respect to the
non compact group of dilations in RZ. In [10] we give a necessary and sufficient
condition for compactness of all minimizing sequences: namely we have to require
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©.7) I < _[lvmz + 1,
D

where I is the infimum in (0.6), u is the small solution, and the number I is twice
the minimal area of S2 type surfaces enclosing 2. More precisely, I, is the infimum of
the Dirichlet's integral taken over a suitable class X® of homotopically non trivial maps
from SZ into R3\Q:

0.8) I = Inf [|IdUP .
“ vex® 2

This problem was first solved in case Q is the unit ball in B3, when I__= 8. In
Section 2, part 2, we present this (unpublished) result, since the proof looks simpler and
more direct than in the general case.

In [10] we also study the minimization problem (0.8). Because of the invariance
of the energy and the constraint with respect to dilations and translations in B2, there exist
minimizing sequences which converge almost everywhere to a constant map. On the other
hand, taking advantage from this invariance, we can prove that every minimizing
sequence converges to a solution of our minimization problem, up to dilations and
translations in R2.

In a subsequent paper (see [13] in the second part of this Thesis), the case of
unconnected obstacles was considered. In that case, the invariance with respect to
translations in R? plays a fundamental role. If X is the class of maps U: S2 5 R3I\Q
which enclose all the connected components of the obstacle Q, then the infimum

Inf J.IdUIZ
UeX® 32

is achieved provided a "Douglas Criterion" is satisfied: namely, we can prove the
existence of a minimizer when some strict inequalities hold true; the number of these
inequalities depends on the number of connected components of the obstruction €2.

Problems (0.6), (0.8) can be interpretated from the point of view of Differential
Geometry: the first result we have stated before is in fact a multiplicity result for the
Dirichlet's problem for harmonic maps from the disk into the manifold R3\ Q. Similarly,
a solution to problem (0.8) is a homotopically non trivial harmonic map from the unit

two-sphere into R3\ Q.
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At present, our research is dedicated to some extensions and generalizations of

the results in [10]. Looking, for example, at the problem for closed surfaces, one can first

think to replace B3\ Q with a three dimensional Riemannian manifold with boundary.
By replacing R3 by RN |, N >4, then it would be of interest to study the problem of
existence of a non constant unstable harmonic map from 2 into RN\ Q, where Qisan

open set in RN,

Finally, we could consider the case when Q is a "thin" obstacle in IH3, namely

Q is a lower dimensional subset of R3, and look for minimal surfaces "enclosing" Q.
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Abstract. We present here some existence, multiplicity and regularity results for a class of elliptic variational
inequalities on convex sets.

In an Introduction, we describe the variational approach to problems of the form

ue K closed convex subset of H;(Q)
) _[Vu Vv-u) = jg(u) (v-u) VveK.
Q Q
Incase K= {ue Hl(Q) , u>vy } we give a completely variational proof of the well known w2p regularity
result by Brezis - Stampacchia [4].
Part 1 will be concluded with two papers by G. Mancini and the Author of this Thesis. In those
papers two examples of nonlinear, anticoervive variational inequalities of the form (1) are considered. A special

attention is payed to the case in which the nonlinearity g has the limit Sobolev growth.
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Introduction.

A Variational Approach and a Regularity Result.

In this Section, we describe a variational approach to problems of the form:
ue K

(1-1) jVuV(v—u) > Jg(u) (v-u) Vvek.
Q Q

where K 1is a not empty, closed, convex subset of the Sobolev space Hg (QQ), Q isa bounded,
smooth regionin RN, and g:R — R is a given smooth map.

For sake of simplicity, we suppose that g is a continuous map satisfying the growth
condition '
(1.2) lgw)l < alulS+b for some s < (N+2) / (N-2),
and for some constants a, b. For a more general treatment we refer to [3] and [11].

Let G: R — R be aprimitive of g; by virtue of (1.2), the functional

F(u) := % flvuxz - jG(u)
Q Q

is of class C! on H},(Q), and, by using our convexity assumption on K, (1.1) can be

rewritten as:
ue K }
{(VF(u),v-u)ZO vV vek,
or |
(1.3) liminf — 2 TW 5
Xilé lv-u IIH})(Q)

We take (1.3) as a definition of stationary point for F on K: notice that (1.3) is equivalent to
the usual definition of stationary point if K = Hg (), and that (1.3) makes sense also for less
regular functionals. Actually, this is exactly the definition of stationary point given by Brezis
[3], and used for example in [11] in a more general context.
In the "coercive case", one can try to solve (1.1) by studying the minimization problem
Min F(u).
» uekK

Let us take as model problem for the coercive case the following

10
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ue K

(1’1)C. JVU V(V-u)+aojl ulp_zu(v-ll) > Jf(v_u) vV veK,
Q Q Q

where a, =0 is areal number, 2 <p <2N/(N-2) and fe L4(Q), g = 2N/(N+2). In this case
the related energy functional:

Fu) = = f|vu|2 L& jlutp ] _[fu
2 p
Q Q Q

is bounded from below, coercive and strictly convex. Thus, F is weakly lower
semicontinuous on Hl (), and since K is convex, the direct method of the Calculus of
Variations guaranteesthe existence of a unique solution u to Problem (1.1)-;u is
characterized by:

F = MIi(n F.

In the "anti-coercive case", as for example in
e K

I-Dye. J.Vu Viv-u) 2 Jlu P2y (v-u) Vvek,
Q Q

the functional F is unbounded from below and from above. Nevertheless, there could exist
solutions to (1.1)y o, depending on the geometry of the convex set K. Let us consider for
example the following three cases:

Case1: K= Hl (Q). In this case, Problem (1.1)y - is equivalent to:
~Au=lulP?y |, ue H&(Q).
When p <2N/(N-2), problem (1.1)y  has infinitely many solutions. In general, in the

limiting case p = 2N/(N-2), no solutions exist for Problem (1.1); ~ besides u = 0. This
is the case if € is a starshaped domain (see for example [4]).

Case2: K ={ueHL(Q), u2vy}, where ye HL(Q). This problem was studied in [8],
[9], where we prove that if p < 2N/(N-2), and y is positive somewhere in 2 and
"suitable small", then there exist at least two distinct solutions T = u >0.

Case3: K= {ueHel(Q)' , u20inQ, u<wy on C},where CCCQ, and yv:Q — R
is a given smooth, positive function. Using the results by Szulkin [11], it is not difficult to

11
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prove that if p <2N/(N-2) then Problem (1.1)y  has a non trivial solution. In case p =
2N/(N-2), and C satisfies a suitable geometrical assumption, then (1.1)y~ hasa
positive solution ([10]).

In the following, we will present the existence results for Cases 2,3 mentioned above
(I%1, [10]). Most attention is payed here to the limit case p = 2N/(N-2): when p < 2N/(N-2),
the compactness of the Sobolev imbedding Hg < LP guaranteessome compactness properties
of the energy functional F which allows us to apply the existence theorems in [11], while in
the limit case those compactness properties fail at some energy levels.

Before ending this Introduction, we wish to present a regularity result for (1.1) in case
K={ueHL(Q), uzy ae.inQ}

where ye Hl(Q), V9 < 0. The Theorem we are going to state was proved by Brezis -
Stampacchia [5] via a penalization method (see also [7], [6] - Chap. IV, [2] - 7.4.2). We
follow here a completely variational approach to the problem of regularity, that is, we only use
the fact that a solution u to (1.1) is the unique minimum point on K of the functional

() := -;-J'Nvlz i fg(y.)v .

The proof is based on the following elementary Lemma:

Lemma 1.1: Let p<2N/(N-2) andlet ue Hg(Q). If there exists a constant L s.t.

1 2 1 2 1
1.4 — - =V - \vd
(1.4) 3 J‘qul ZJI vi© < Llu,vlp VEHO(Q)
Q Q

then ue W24(Q), where q=p/(p-1) is'the conjugate Sobolev exponent, and

I-Aulq <L.

Proof. Testing (1.4) with v =u - tw, where we H}(Q.), t >0, we get

2
—%J.[VW|2 +tJ.VuVW SLthIp )
Q Q

Dividing this inequality by t and letting t go to zero, we can easily obtain that the linear
functional Tv:= JVu Vv isbounded on H,:,l(Q) equipped with the LP norm:

12
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Vu Vw
ITI = Sup L_ <L .

WeH.(Q) lwl,
w0

Thus T extends continuously on LP(Q), i.e.

3! aeldQ) st T(v)=fow VveHY(Q) and |« = ITh<L.

In particular, u is a weak solution of
{ -Au=¢  in Q
ue I—I,,1 Q)

and hence Lemma 1.1 follows from the elliptic regularity theory. B

Now, let ue H} () be a solution to Problem (1.1). If g verifies (1.2), by Sobolev

imbedding theorem we get

goue Lq(Q) , where q=-&—§-1\l2 > -I:?:N—Z— .

Thus, we can limit ourself to the study of the following linear variational inequality:

find ueK={veH(Q) | v2y ac.onQ}
(1.1),
) J.Vy_V(v—y_) > J.g(wg) vV vekK,

where geL9(Q). Problem (1.1); has a unique solution u which minimizes

E(w = 12 | Vui2 +J:gu on K.

Theorem 1.2: Suppose Ye W24(Q), geLUQ) for some q=2N/(N+2). Then
2,4 - -
ue W44(QQ) and - Au lq S - Ay lq +1g lq .

Proof. It is enough to prove that (1.4) holds for u, with L < |-Ay Iq +1lg lq. Let us define

the projection on the closed, convex set K:

| Pw := Max {w,y} P: H}(Q) - K.

13
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Using standard results in Sobolev Spaces (see for example [6], Chap.1, Appendix A), we have
that PweK V we Hg (Q), and

{V\y, ae.on {w<vy}
V(Pw) =

Vw ae.on {w>wy].

In addition, we easily get

jlg-PwIp = J‘(g—\y)p + J.I_q—wlp < Jl_u_—wlp;
{w<y} {w>vy} Q

(1.5)

JIW—PwIp = J(\[f-w)p < jlg_-wlp.
(w<y) Q

Since u minimizes F on K, for every we H%(Q) we find

1 1 1
-Z—J’IV_QIZ ; -z-ﬁvwnz - FQ) - FPw) - fg W-PwW) + = [J-IV(PW)IZ -J.!lez]

<lgl

q lu-Pwly + %[-J1V(W-Pw)|2 . ZJVPW V(w-Pw) |

<lgly lu-Pwl, - jva(w-Pw) < (Iglq+ I—Awlq)ly_-wlp

by (1.5) and Holder inequality. Thus

1 2 1 J‘ 2
up

L:= S
lu-wl
P

i
Wwe HO(Q)

SIqu+I-A\qu

and the Theorem is proved. |

14
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A free boundary problem involving limiting Sobolev exponents

A FREE BOUNDARY PROBLEM
INVOLVING LIMITING SOBOLEV EXPONENTS

, In this paper we present existence and nonexistence results for the
variational inequality:

0=u2y*, [VuV(v-u)z [ouZ(v-u) VveHl(Q), vy ae.inQ

where Q is a smooth bounded domain in RN, ye HQ’S(Q), s>N, y<0 on 0Q,
and 2*=2N/(N-2). In particular, we show there are no solutions if vy is too

large, while there are distinct solutions 0 < u < T if yis positive somewhere
and sufficiently small.

0. Introduction

Much attention has been payed in recent years to problems of the

form

-Au = uf +f(x,u)  in QcmN
(0.1)

ueHI(Q) , u>0

where Q is a smooth bounded domain and f is a lower order perturbation
(see [5], [6] and references there in). First, because (0.1) is a nice model for
problems arising in geometry ([2], [3], [4], [7], [8], [9], [15], [21], [22]) and in
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theoretical physics ([10], [24]). Secondly, because (0.1) exibits interesting
existence - non existence phenomena, related to some lack of compactness

of the corrisponding energy functional

E(U)=%fIVul2 - -;-:juz* + J.F(x,u) , ueH;(Q), Flef .
Q Q Q :

Such lack of compactness explains why (0.1) does not have, in

general, any solution (e.qg. if f=0 and Q is starshaped, see [12]).

In their pioneering work Brezis and Nirenberg showed that the lower

order term f (e.g. f(u)=Au for some A>0) allowes to regain compactness for
some (P.S.) sequences and consequentely makes (0.1) solvable. Many

different problems remain open in this context (see [12] and [5], [6]).

In this paper we "perturb" the equation -Au = u2*‘1, ue H}(Q), with
an "obstacle" ye H2:S(Q), s>N, y<0 on 0Q, i.e. we look for u which solves the

equation just above .
As a standard device, we replace this free boundary problem with

the variational inequality

{ ueH!, u>y*

0.2 R
o9 jQ Vu V(v-u) 2 Ig u vy v vy

Such a problem does not fit into the classical theory of variational
inequalities for monotone operators, and not much is known, at our
knowledge, for (C.2) even in the case when 2* is replaced by some

p€12,2*[. Thus we will consider here inequality (0.2) for the broader class of

nonlinearities uP-1, pE ]'2,2*], even if our main concern is the limiting case
p=2%

Solutions to (0.2) turn out to be the stationary points of an energy
functional f of the form C'+ convex proper lower semicontinuous. For
such a class of functionals a critical point theory has been recentely
developed by Szulkin ([23]).
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In the case Q is starshaped, p = 2*, y <0 in Q, we have f = E and no

solutions exist for (0.2) besides u = 0. As soon as y becomes positive
somewhere, but not too large, f "gaines" a critical point of saddle type:
again, as in Brezis-Nirenberg [12] (or, maybe more appropiately, as in
Struwe [21]), the perturbation produced by the obstacle has the effect of
"lowering the Mountain Pass level" below a "magic" level.

In a forthcoming paper ([20]), following ideas from [13] and [2], [3],

we will prove existence of solutions of (0.2) satisfying u < ¢ on some Ac Q.
The paper is organized as follows.
In Section 1, besides presenting a regularity result for solutions of

(0.2), we show that (0.2) is not solvable.if y is too large.

In Section 2 we prove the existence of a "stable" solution y, in case

y is suitably small. Later, we show that "moving the obstacle" up to u might

yield solutions to (0.2) which are greater than yu.
Finally, in Section 3 we prove the existence of a second solution

u= y.
The results in this paper were announced in [19].

Notations. In the following, (.,.)and | . || will denote respectively the

scalar product and the norm in H}(Q), — the weak convergence in HI(Q)

and | . |, will denote the L - norm.

Let QcRN, N>3 ba a bounded domain, with smooth boundary, and
ye H25(Q), s>N, a given "obstacle" in Q, satisfying y<0 on Q2 and positive

somewhere. Set Ky:= {ue HJ(Q) | u>y ae. in Q} and let pe]2,2*],

18



A free boundary problem involving limiting Sobolev exponents

2*=2N/(N-2). We are interested in the following

Problem: Given Q, v and p as above, find ue K“,, u=0 satisfying

1.1 x
4D JQVU V(v-u) 2 JQUZ ‘1(v-u) A VEKW.

The main purpose in this section is to show that (1.1) has in general

no solution, unless vy is assumed to be suitably small.
We first recall some well known facts on linear variational

inequalities and present a regularity result for solutions of (1.1).

PROPOSITION 1.1 . (see [17], Th 8.8) Let ye H25(Q), & > 2N/(N+2) with

y<0 on 0Q. Then forevery felO there is a unique he K\If satisfying

(1.2) IQVhV(v-h) > Jgf(v-h) v veK,,

Furthermore, he H2.C .

In the sequel we will denote by k the solution of (1.2) corresponding
to f = 0. Thus ke H2:S. Furthermore it is well known that k >0 in Q and
satisfies -Ak >0in Q, Ak =0 outside the "coincidence set" C = {k=y}. In

view of our assumptions we have

(1.3) o:=Infk=Infy >0.
C C

For convenience, we also recall the following

PROPOSITION 1.2 (see [16], Th. 6.4, Chap. II): Let ue K, satisfy -Au 2 0

inH'. Thenu>k ae.inQ.

In the following remark we summarize a few properties of solutions of (1.1).

BREMARK 1.3 . Let u be a solution of Problem (1.1). Then
(i) ueH2P ;
19
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(i) uzk ae.inQ;
(i) -Au=uP! ae. inQ\{u=y};

(iiii) u(x) = me) K= oa>0 foralmostevery xe{u=y} . E

PROPOSITION 1.4 .Let u be a solution of Problem (1.1). Then ue H2.5(Q).

Proof. In case p < 2%, the result follows directly by Proposition 1.1. In case

p=2%, we write -Au = a(x) u a.e., where

{UZ*'-? in Q\{u=y}
2k = - Auyy in {u=y}

Since Au=Ay a.e. on {u=y} (see [16], Lemma A4) one can easly see,

using Remark (1.3), (iii), that aeLN2, Hence uel! Vv t=21 by a Lemma of

Brezis and Kato ([12]), and the result follows again from Proposition 1.1. B

In order to state our non existence result, it is convenient to
introduce a family of problems:

Given Q, y, p as above and A > 0, find

(1.1 0 < ueKyy= {ve HL(Q) | v2Ayae. inQ} st
JQ VuV(v-u) = JQ uP-1 (v-u) vV ve KK‘U

PROPOSITION 1.5. Assume in addition AyeL*™ and suppose either

p<2* or p=2* and Q starshaped. Then, there exist X\V such that if k>kw

(1.1),. hasno solution.

Proof. The Proposition is a consequence of the following facts:

(i) if ko, is the solution of ueKy, Jo VuV(v-u) 2 0 V veKy,,
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then k) =2k andhence Inf ky=AiInf k >0 (see (1.3)) ;
{ka=hy} {k=y}

(ii) if uy, solves (1.1)y , then (see Remark 1.3, (iii)),
- Aly) = - Auy, 2 (uy)P1 = (uy)P1 a.e. on{uy =y} .
Now, since uy = Ak > Ay, by (i) and Proposition 1.2, we see that for almost
every xe{uy = Ay} we have wy(x) = k(x) and hence wy(x)=a >0 for almost
every xe{uy = Ay}, in view of (1.3). Using (ii) we get
- Ay 2 P2 P ae. on {uy=y} .
This implies {u) = Ay} has zero measure if A is large enough, i.e. -Au,= uf'1

a.e. in Q, by Remark 1.3, (iii). In case p=2" and Q starshaped, this
contradicts a well known non existence result related to the Pohozaev
Identity (see [12]). In case p<2*, it has been proved in [14] that there exist a

L*°- a priori bound Mp for positive solutions ue HI(Q) of the equation -Au =

uP-1. Hence, from Mp > Juyl. =2 W), we get the desired bound on A. B

2. Existence of a‘stable solution

and a reformulation of Problem (1.1)

We begin this Section proving the existence of a "stable" solution of

(1.1), assuming v is suitably small. To be more precise, set

J1vui2
" ueHli@  {JuP)P
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PROPOSITION 2.1 . Assume J]Vqﬁlz < -EE%- §p- Then (1.1) has a solution

which js alocal minimumfor E on K\lf'

Proof. It is enough to prove that there exists ue K\V with f [\7_L;]2 < §p such

that

E=m:=Inf {Eu) | [[Vu? <§, , ueKy} .

Let E(u) =m . Since, by the definition of "s'p , we have

(2.1) E(u) = (9'2)/2p [ [vul2 it [ [vu? <8,

we obtain  (P-2)/5, [|Vu? < E(u) < E(y*) < (P-2)/55 Sy, by
assumption. It remains to prove the infimum is achieved. This is trivial if

p<2*. Hence, let p=2*. Let uy —u be a minimizing sequence, and set
Vph=Up- U. Using a Lemma by Brezis and Lieb [11] we get

IimE(vp)=m-E(u) < 0.
Now, since lim J]an|2 < lim JIVunlz, plugging v, into (2.1) we get

(172 -1/2*) Iim J|an12 < lim E(vy) and hence up — u strongly. |

REMARK 2.2 . Inequalities above yield

E(u) 2 (P-2>/2p Spz Ew it lul® =5, . i

In Section 3 such an inequality will be used to apply a generalized
mountain pass Lemma to a functional related to E and y. Actually this will

lead to a solution of the following variational inequality:

{GEHL(Q) , G2y ae.
(2.2)

[oViv(v-T) > [TP 1 (v-T) VveH!(Q),v2u

Clearly enough, if U solves Problem (1.1) and furthermore G >y a.e., then U
22 |
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solves (2.5). Conversely

LEMMA 2.3 . Assume U satisfies (2.5). Then U s also a solution of
Problem (1.1).

Proof : As in Proposition 1.4, one can easly see that e H2S(Q). Thus (see
Remark 1.3, (iii) ) -AU = aP-1 on {U>u}. This, jointly with -AU = -Au = uP-1
a.e. on {u=U}N{u>y}, implies

(23) [-aTo =] WPTo+ | wlo =]Plo v ¢G>y
Q {u>u} {u=U}N{u>y} Q

Now, given vy a.e.in Q, we can write

(2.4) [VOVW-T) = [-AT(v-0) + |-AT(v-0)
Q

fv2ii) {v<ti}
Since - AT=TP1 ae. in {y<v<T0} by (2.3), while - ATG=TP-1 ae. (see

Remark 1.3, (iii) ) implies - AT (v-T) = GP~1 (v-0) a.e. on {v > 0}, we see

from (2.4) that U solves (1.1). |

3. Existence of a second solution

In this Section we will prove the existence of a solution U of (1.1)
satisfying the stronger inequality U > u, where u is the "small" solution

given by Proposition 2.1. In view of Lemma 2.3 it amounts to solve an

obstacle problem where the "old" obstacle v is replaced by u. This new
obstacle problem will be solved using a critical point theory recently
developed by Szulkin for functionals of the form ¢l + convex proper lower
semicontinuous. Actually, the functional we are interested in, namely
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(3.1) f(u) = E(u) + I(u) ueH(Q)
where
{o if ueKy ={veH\(Q)|v>uae.}
I(u) = =
+ 00 otherwise

has the special form: ¢! + indicatrix function of a closed, convex set and is

continuous in its effective domain Ku- We will recall the definitions and the

result given in [23] in this framework.

Definition 3.1. Let f be as above. Then u is stationary for f iff

(VE(), p-u)=0 vV oeKy .
Definition 3.2. A sequence u,e Ky is a(P.S.) sequence for f iff
Su‘p E(u,) < +o and
3z, HJ, , Zn =0 st (VE(Uy), ¢-up ) 2(z,, 0-u) Voe Ky -

Definition 3.3. Let c*eR. We will say that f satisfies (P.S.),« if any (P.S.)

sequence satisfying Sup E(u,) <c* has a convergent subsequence.

The following Lemma is an extension in the above framework of the

classical Mountain Pass Lemma (see [1]).

LEMMA 3.4. Let f as above and u be given. Assume

(i) 3 Usu open st fluy=flu) V ueU and Inf f(u) > f(u)
oJ
(i) 3 eeU st f(e) <f(u)

(i) 3 ¢*>c:=InfSup f sit. f satisfies (P.S.)qx .
r vy

Here T'={yeC°([0,11H]!) | ¥(0)=u and f(y(1)) <f(w)}.

Then ¢ is a critical level for f.

As a direct application of Lemma 3.4 we will get:
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THEOREM 3.5. Let Q, v, p be given as in Prop. 1.1. If in addition [|Vy2

e S S N, — e ——————

Proof. By Proposition 2.1 we already know that (1.1) has a solution u > 0

in Q. By Lemma 2.3 we know we may look for U as a stationary point of f as
given in (3.1). Clearly (see also Remark 2.2) f satisfies assumptions (i), (ii)
in Lemma 3.4. Hence, to get a critical point of f via Lemma 3.4, we just

need to prove a suitable (P.S.).+ condition holds true for f. In case p < 2%, it
is easy to see, using compactness of Sobolev imbeddings, that f satisfies

(P.S.)ox foreveryc™.
On the other hand, if p = 2%, we can exibit a (P.S.) séquence (Updps
with f(up) — E(u) + /5y SN2, which has no convergent subsequence, i.e.

(P.S.) fails at level E(u) + 1/ SN2,

Nevertheless, we may apply Lemma 3.4, in view of the following

Lemmata:

LEMMA 3.6. f satisfies (P.S.)ox for ¢* < 1/ SN2 + E(u).

LEMMA 3.7. InfSup <1/ SN2 +E) .
r vy ’

Proof of Lemma 3.6. Let u,eK such that

(3.2) E(uy=c*+0o(1)=0(1) , c </ySN2 +E() ;

(8.3) I z,—=0 :(z, v-uy) < (VE(u,), v-u,) VVGKy_.

We first prove that || u, || is bounded. From (3.2) we get
[ w2 =25 11y 12 + 01y,

while setting v = 2u, in (3.3) we obtain || u, |2 >0(1) || u, || + f (U2
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From these two inequalities we get (2*/2 - 1) || u, ||2 <o(1) [Juy Il +0O(1)
and hence Sup|lu,|| < +oo.Thus we can assume

‘un-—lu weakly in HJ, and a.e. for some ueKy ;

u,—u weakly in L2*
Also, setting v, :=u, - u, by a Lemma in [11] we know that (eventually

passing to a subsequence)

(3.4) lim E(u,) = E(u) + lim E(v,) .

Furthermore, the Concentration-Compactness Lemma of P.L. Lions [18]

insures the existence of numbers g >0, points Xj& Q and positive Radon

measures v, i with

= : 2/2% §
V= ,Z g ij ‘JZ (a) XJ
such that
(3.5) | v, [2*-—>v Vv, |2--sp, weakly in the sense of measures.

The proof will be now concluded in two steps:

Step1: limE(u,) > E)+ /g v@);

Step2: v(Q) = SN2 provided aj# 0 for somej.

In fact, (3.2) and Step 1 imply v(Q) < SN2 and hence aj=0 in view of

Step 2, i.e. v, —0 in L2" . Thus, since plugging v=u in (3.3) we get

j Vv 2+ J VU Vv, +(zp, U-U, ) < f(un)?"1 vy

we conclude that lim J [an|2 < 0, and hence Lemma 3.6 follows. E

Proof of Step 1. From (3.4), (3.5) we derive
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(3.6) limE(un) =E(u) + /o @) - o v(@Q) =

= EW) + Vg { @) + [IVu2 - [V} -1pe (v@) + [ 02"~ ] 127,
Setting v=2u,-u in(3.3), u=u and v=u in (1.1), adding and passing
to the limit we get

(3.7) n@) + [Ivu2 - [jvu2 = v@) + [ @2 1e w2 1) )

Inserting (3.7) in (3.6) we obtain

lim Eup) 2 E@W) + 1y v(@) + Ty f L2 -u2) -1/ f w2 - Ty-u2" -1
and Step 1 follows from the elementary inequality
b>a20 = /(b2 -a2") = 15 (b2 1a-a2"1p). I
Proof of Step 2. Taking v =u in (3.3) and passing to the limit we get
(3.8) mQ) < v(@Q)
Since v(Q) =X g and u@)2S 3 (8)2/2" we obtain from (3.8)

ZajZSN/Z,unless aj=0 v |. |
J

Proof of Lemma 3.6. A crucial role in estimating the min-max level is

played by the "non contact set" of the small solution u. In fact we have

(3.9)  E(w)=EW) +EM - 2-1)2"2) [qwv? [q t(ou +ts)23) o
vV veCo({usy}) , v20 .

Here Q = [0,1]3. Note that 2*- 3> -1. To get (3.9) we recall that

J vuve = [ w2 e v ecCoiuw
and hence for every ve CZ({u>y}) it results
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E(usv) = EW) + E() - Vpe [ @) - 12" -v2" - 20421y
Thus (3.9) follows from the elementary identity: if a>0 and h =0, then
(a+h)2"- a2 2* a2 1h = h2"4 2% (2%-1)(2*-2) h2a JQt (ca+tsh)2 ~3dtdsdo.
From (3.9) it immediately follows:
(3.10) E(u+v) <E(u) + E(v) - J_u_ ve-1 v e Ce({u>y}) , v=20if N<6.

Incase 2" <3 (i.e. N>6) wecanprovethat dcy>0 sit.

E(u+tv) < E(u) + E(tv) - ¢ 21 v |23 JQ uvé
(3.11 |
Vt2T1, and V veCP(u>y}) , v20, |v|.22/ul. if N>6.

This can be seen as follows: for T > 1/2 and |v|,22|ul., we have
T |V]w> V5 (Julw+t|V].) andhence
(27| V])2 "3 < [oux) + tstv(x)]2™3 VxeQ, o,t, se[0,1].

From (3.9) we thus obtain (3.11) with ¢y = (2*-1)(2*-2)/242" < 1 .
To conclude the proof of the Lemma, remark that ast — + oo,
flu+tv) <E(U) + E(tv) = = if veCF({u>y}),v=0

and thus it is enough to prove

(3.12) 3 v°20 : Max E(u+tv®) < E(u) + 1/ SN2 |, vee C({usyl) .
t>0

To check (3.12) we follow closely [12].
Let Ue H1(IRN) be the positive radially ‘symmetric solution of
-AU = U2 -1

Let By(x°)CC {u>y}, 0eC(By(x%) st o=1 in Byp(x?), 0<o<1. Set
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Ve(X) = g(N-2)/2 o(x) U((x-x°)/g) = g (N-2)/2 zg(x), £>0.

Easy computations shows (see [12]):

8= |[Vvel2 = SN2 4+ O(EN?), by = [ ()2 = SN2 4 Oe)

(3.13)
Ce = f U@t =0E" , de= J U(ze)2=0EY) if N=5.

Here O(e9) means | O(e9)/ €% | bounded and bounded away from zero. In
order to handle (3.10), (3.11) altogether, we observe that

3e°>0:  Max [Max E(u+tve)] < E(u) + 1/ SN2,
O<e<e® 1<

This allowes to replace (3.12) with

(3.14) 3e>0: Max E(u+tvy) <E(u) + 1/ SN2,
t>1

This in turn can be rewritten, using (3.10) or (3.11)

(3.15)  3e>0: Max Eftvg)- cy t2 1eN+22h, < 1/ N2
>

where h denotes either ¢, or d.. Here and in the sequel we denote by
¢y Vvarious positive constants only dependent on N.

Now, it is easy to see that if i, realizes the maximum in (3.15), it has
to satisfy

(3.16) te=1-cyhe €22 1 OEN?) .

Finally, using (3.13) and (3.16), we obtain
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Eftgve) - oy t2 1eN+22ph -
=15 (1% ag - /5" (t)2 by —cy 1271 e N+D2y —
= (Vg ag- 15" be) (1+0(EN?) —cpy eMN+2V2 b+ O(eMN-212) -
=1/ SN2 4 O(eN2) - g hy e N#2I2 o 1/ N2

if € is small, because

he 8-(N+2)/2 - O(S(N"?)/z) ’
and hg >0.

This completes the proof of Lemma 2.5. _ |

REMARK 3.8.. Construction above shows as well that (P.S.) does not hold
atlevel E(u) + 1/ySN2. |
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Holes and Obstacles

HOLES AND OBSTACLES

0. Introduction.

In a remarkable series of papers J.M. Coron and A. Bahri have been giving a
complete explanation of a phenomenon previously observed by Kazdan and
Warner [9], i.e. the role of the geometry of the domain with respect to existence -
non existence for non linear elliptic boundary value problems of the form

-Au = u2*-1 in Qc RN , open and bounded
(0.1)
ueHl(@ , u=0

It is well known that (0.1) has only the trivial solution if Q is starshaped.
Conversely, A. Bahri and J.M. Coron showed, roughly speaking, that "holes" in Q
induce richer topology on the energy sublevels for (0.1). This, in turn, is
responsable of the existence of non trivial critical points for the energy associated
to (0.1).
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In this paper we prove that a similar effect results by imposing a
bilateral condition to (0.1).More precisely, we are interested to the following free
boundary problem:

Given wyeH 2(9) NCO(Q), v =0 and a smooth closed subset C c Q, find
ueH 1(Q)NCO(Q) and aclosed set Ec C such that

-Au = |u [21 in Q\E
(0.2) u=y inE
usvy inC

In case y =0, a solution to (0.2) solves (0.1) in @\ C, and hence (0.2)
includes the study of (0.1) for domains with "holes".

The paper is organized as follows.
In Section 1 we discuss the behaviour of P.S. sequences for the following
variational inequality:

find ueK such that
Problem 1:

JQ Vu V(v-u) = JQ u2=(v-u) V vek

where K is the closed convex set of functions ue HJ (Q) suchthatu>0 a.e. in
Q and u <yon Cinthe sense of H (see [10], Definition 5.1 pg. 35).

In Section 2 we give a variational principle for Problem 1 and prove, under
additional hypothesis on C, the existence of non trivial critical points for the
energy functional associated to Problem 1.

In the last section, we will prove a regularity result for Problem 1 which
insures that every solution of Problem 1 solves the free boundary problem (0.2).

Notations. We denote by || . || the norm in the Sobolev space Hl (©), and for
p21, |.|p willdenote the usual normin LP = LP(Q). If u,weLP, we write u\Vw =
Max{u,w}, uAw = Min{u,w}.

All the inequalities between H' functions on the closed set C have to be
regarded in the H1 sense.
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1. The behaviour of P.S. sequences.

DEFINITION 1.1:

Upe Hg(Q) is called a P.S. sequence for Problem 1 if
(i) upeK

} 1 | 1 .

(i) Sup { g J [Vup|? - E*J unl? } <+ oo
n Q Q

(i) 3 zpeH(Q),z, -0 in H}(Q) st

JQ Vup V(v-up) - JQ lupl?=(v-up) 2 JQ Vz, V(v-u,) ¥V vek.

PROPOSITION 1.2. Every P.S. sequence is bounded in H1(Q).

Proof. Choosing v, = 2up, - min {up , ¥} = u, + (up - ¥)* in (i), we get

IVun-w* R + Yy Viug-w* 2 flupl? - [ - g - i, - v
for n large and hence, by Hoélder inequality,

*

2*-1
Hu 17+ ellu Il 2 Ju b - Golu o -c,
Since by (ii) we have
2* o* 2
lunl = 5 llupll” + O(1)

we readily get the boundeness of || up, ||.

REMARK 1.3 : In view of Proposition 1.2, we will always assume in the sequel,

thatif u, isa P.S. sequence then up—u weakly in HJ,(Q) for some ueK, and
lim [[Vugl2 , lim [Juy|?" exist. Moreover, we can suppose that [Vup|?, Jupl®

converge weakly in the sense of measures. E
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- PROPOSITION 1.4 : Let u,—u be a P.S. sequence. Then u is a solution of

Problem 1.

Proof. Choosing in (i) vy =up+ (uy-u-y)* we get, denoting U =Up - w
JVup Vs, - vt 2 Jlupl? 1 (@, - v o+ o), e

(1.1) [Vua Vo, - [Vu VoA w) 2 Jlupl 1 (0, -0, A ) +o(1).
We claim that

(1.2) JVup Vs, Ay) = 0;

(1.3) Jlupl® 1 (8, Ay) = 0.

From the claim it follows, using (1.1):

(1.4) lim [[Vua2 - [Ivu2 = dim flug@ - [ u?

Since (iii) yields in the limit
fvuwy - Ju2 -ty = iim (Jivug? - Jlugl?)
we see from (1.4) that u solves Problem 1.

It remains to prove (1.2) and (1.3). Since 9, A v — 0 a.e., (1.3) follows from

Lebesgue's dominated convergence Theorgm. Finally, setting v=u+ (9, v )+
in (iii), we get

(1.5) limsup JVup V(8, A y) < lim flup2 1 (9, Ay) =0.

On the other hand, since &, Ay =0 in Hl, we have

(1.6) liminf [Vu, V(9, A y) = liminf [V3, V(5 A ).

But, denoted by y,, the characteristic function of {0, 2y}, it results
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. . 1/2

iim | [(Vo, Vw)x, | < cost. lim ( [Ivyf2y, )" =0
since ., — 0 almost for every x for which y(x) > 0. Thus (1.6) gives
(1.7) liminf [Vu, Vo, A y) = 0.

Hence, (1.7), (1.5) yield (1.2). |

In view of the above Lemma, we will be concerned in the following with P.S.

sequences which weakly converge to zero.
REMARK 1.5 : Let u,—0 be aP.S. sequence. Since (iii) implies, taking v = 0,

lim [[Vugnl2 < lim [juy/2 , from (1.4) we get

lim [[Vun(2 = lim flug? 0

Let us now introduce the energy functional:

2
2 2* 1
E(u)=—;—j[Vu] = u and S=lnf{-”-5|2—'|ueHo(Q),u¢o},
Q

2*
Q | u |2*

The main result in this section is the following

THEOREM 1.6 . Let u,— 0 be a P.S. sequence with E(up) — ¢ = 0. Then

lim E(u) = (kIN) SN2 for some ke N.

One of the basic ingredients in the proof of Theorem 1.6 is a Lemma,
essentially contained in P.L.Lions [12], concerning the local behaviour of weakly

convergent sequences satisfying some kind of "reverse" inequalities.
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LEMMA 1.7 : Let u,el2 (RN), Vu,—0 weaklyin L2(RNRN). Let Uc RN

be a given open set, and assume
(1.8) lim [|Vup2 0® < lim [lu, |2 ¢? ¥ e CZ(U).

Then there is a (possibily empty) finite set of points Xq, ..., Xy €U such that

2
(1.9) limint [|Vu |~ = 0 V compact KCU\{x,, ..., x_} :
] n 1 m
o* N/2
(1.10) liminf jun > S Vj=1,..,m and r>0 small
Bf(xj)

Proof : We have to prove:

2*
3x°cU : liminf [ [Vupl® >0 Vr = liminf | u, 2 sV2 vrso
Br(x") B(x°)

Let 9e C3(Br(x®)) , @ =1 in By (x°). We have:
, 2 2 2 2%-2 2
0 < lim J[V(un(p)[ = |zmj1Vun| ©° < nmjun (u @) <

*)2/2* o+ \2/N 5

* 2/N -
< liminf( J'u'rz1 ) (-ﬂun (P|2 < liminf ( _[ Un ) S 1 J'Iv(uncp)l
B(x°) B,(x°)

by (1.8), Hélder and Sobolev inequalities. Thus (1.10) readily follows. |

REMARK 1.8 :Let u,— 0 be a P.S. sequence. After extending up, to be equal

to zero outside Q, an application of Lemma 1.7, with U = RN, gives

there is a finite set of points, X4, ..., Xy € Q\C , such that:

; 1 N
uy—=0 in Hloc(m \{X{, s Xm D) »

8j = im [ |u, 2 2 SN2 vjand r>0 small enough
Br(Xj) :
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(for some subsequence). In fact (1.8) is easily checked, taking v = (1 - ¢) up,

peC(RN), 0 < <1, in (ii). |

REMARK 1.9 : Let u;— 0 be a P.S. sequence. If up 74 0 in H;(Q),

necessarily
(1.11) lim E(u,) = (1/N) SN2,

In fact, by the previous Remark, lim [ju,/2” = SN/2 | On the other hand, by

Remark 1.5, we have lim E(up) = (1/N) lim Jjun2" , and (1.11) follows. |

Proof of Theorem 1.6 : By Remark 1.5, it amounts to prove

(1.12) lim [Jun 2" = kSN2 for some ke

In view of Remark 1.8, we can assume there is a finite set of "concentration

points" X4, ..., Xm in Q\C, such that

J [Vup|> =0 if KSQO\{xq,.., Xy} Kcompact,
K

lim [ Ju, 2 > SN2 Vij=1,..,m and r>0.

B,(x°) :

In order to prove (1.12) we will use an iteration procedure, which, at each step,
reduces the energy by exactly SN2 This will be done "blowing" each singularity

Xj. In what follows, we will use quite the same arguments as in Brezis [3] (see also
[4], [13)).
To perform the "blowing up" technique, let 8]0, SN[ be given and let &,>0

be such that
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N/2

(1.13) & < Sup jgunﬁ'ss 5.

x'eBp(x°) B, (x)
n

Here x° denotes any of the "concentration points" X , and p is chosen in order

B2p(x°) contains only x° as a concentration point.

Now, let xpe Bp(x°) be such that

(1.14) [ lupi® = Sup J Tug
B, (x) XeBp()  Be (X)

n

Notice that €, — 0. In fact, if (for a subsequence) €q2 €° >0, by (1.13) we get

sN2.§5 > [ |u 22 [ [uy? while lim] |uy® = SN2 by assumption.

B, n(x°) Beo(x°) Beo(x°)
Also, xp, = X°. Infact, x, =y imples &< [ |u 2 <] |u, ¥ for any
Be (xp) Bi(y)
&
given r> 0, provided n is sufficiently large. But, if ris small, lim [ |u, [ =0
B, )
if y=x° again by assumption.
Now, define
~ N/2*
Up(X) =¢€, Up(Xp +€4X).
Remark that U, =0 outside |
Q- Xn
Q=
n e
Since J VO, 2 = J [Vup|?  and J 0,12 = J lunl?”  we can assume
BN Q RN Q
there is @, with JN]VwIZ < +o0o, suchthat
R
Vi, = Vo weakly in L2(®N- RN), and
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up, — weakly in L2 (RN).
Finally, letus set U :={zeRN | x,+€nze Q\C Vnlarge} . Notice that

U=RN it (1/gg) dist (x, (RQ\C)C) = +oo,

while U=g iff Xne Q and (1/gp) dist (X, 0Q2) — + 00 or

Xxne C and (1/&p) dist (X, dC) — + 0.

In case x°e9Q and (1/€gp) dist (x4,0Q) - £ < =, or x°e 0C and

(1/e) dist (x,0C) = & <o clearly Uis an half-space.

Let us remark that @=0 a.e. in UC. Infact,if ze U, Br(z)hU = ¢ then, either

Brséxn +€nz) € QC or By (Xp +€n2) © &. In both cases:
im [ |T,12° = lm [ 1up® =0
N B@ n Bz—;]r(xn +Ep2)

Using Lemma 1.7 we can exclude the case w=0in RN. In fact, since, as one
can easily check in this case, ?J'n satisfies (1.8) while (1.10) cannot be satisfied, in
view of (1.13), at any point, an application of Lemma 1.7 yields ﬁ'n — 0 in
H%C(EHN), contraddicting the inequality on the left in (1.13).

The first consequence is that U # &; thus, either U = RN or U is an half
space. Later we will rule out the second alternative.

We are now in position to prove (1 .12).tll will require a few steps:

Step 1. uUp—o in Hloc(U)’

Step 2. -Aw=02"1 in U, ecHl(U), ®>0 andhence U=RN;

Step 3. Im | ug-0n2 =Im [ (up-0n)H%

. N2E XXy Y L
where n(x)= €, o ( enn );
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Step 4. uqp(X) = (up - &))" isa P.S. sequence ;

Step 5. Proof of (1.12) concluded.

Proof of Step 1. In order to apply Lemma 1.7 to ﬁn = Up - ©, let us fix
oe C5°(U), 0 <o < 1. Notice that

X-X -N/2* X=X
Vn = Un+(p(-—8ﬁ-n—) (erf]\I/Z (D(—'é'ﬁﬂ) - Un)

is admissible for (iii) in Definition 1.1, and (vp)p is uniformly bounded in H;(Q);
hence

im | V3,V ofig) < im] [P fine
R R

Using a Lemma by Brezis and Lieb [5], one can verify that

lim vaﬁnv o7lp) = limJNIVﬁnl?@
R R
and
lim leﬁ'n 2160 = lim JNlﬁnlz'cp :
R R

Thus Lemma 1.7 applies to get iy = 0 in HEOC(U), since the inequality

Br(x)

cannot be satisfied for any xeU, in view of (1 .13) and the obvious inequality:

im ]9 2 im [ - o
By(x) B, (x)

Proof of Step 2. Standard arguments in variational inequalities insure it is

enough to prove

(1.15) [Vove -w 2 [o® TE-w VieHl(Br(z))+ml E20
By(2) By(2) Bl
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forevery r>0, zeU for which B,/(z) € U.Thus, given &, we extend it outside

B((z), setting & = . Now, given ¥e CS"(H%N), 0<9<1, 9=10n Byz), =0

outside B, (z), we see that
X=X -N/2* X=X
Vy =Up +’3(Tnﬂ) (err‘\uz i("’g‘ﬁg) - Un)

is admissible for (iii) in Definition 1.1, and we obtain

s ~ ~2*"1 P
jNvUn VE-T )0 = off) + j’un €-T)o
R IRN

By H?OC(U) convergence we can pass to the limit, getting

[VovE-wo = jm?‘ TEe-oo
RN pN
i.e. (1.15), because & - w =0 outside By(z) and ¢ =1 on B(z).
Furthermore, since o = 0 outside U, clearly we Hd (U). Since w = 0, as we
have noticed before, by Pohozaev identity this implies U cannot be an half space,

and hence U= RN,

Finally, let us recall that o is uniquely determined (up to translations and

changes of scale) and satisfies
J'lelZ - J'm2 - gh2

Proof of Step 3. It is enough to observe that

P
Jlun -84

[ -0 = [ 10h-o"? + [ [o-t)77
Q mN N

R RN

Since O0<(w-Up)*<w and o-0,— 0 ae. inRN, the claim follows by

Lebesgue Theorem.
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Proof of Step 4. First of all, remark that uy heK. Let n, =up - &, so that

uq n=1p,V0. We will prove later that:

(1.16) lim [Vn_V(g-n) 2 lim [In 20 (o-n)
Q Q

uniformly for ¢ on bounded subsets of K. Choosing ¢ =n,V0 in (1.16) and
setting ¥, =Up, - @ we get

. e 252
hmennV(nn/\O) < nmj|nn| . @ A0) =0
Q }RN

by Lebesgue Theorem, since - < ’ﬁn/\o < 0. Thus we can replace Mp by VO =

uq n in (1.16) and this completes the proof of Step 4.
Inequality (1.16) follows by Step 2, since

g{Vnn V(o -nn) = £Vun V(g - un) + LVun Vo - LV(D V(’(En - nn) >

R R
2*-1 2 2*1 o~ o
> [ul e-u) + [IVel - [ T @ 1) + o) =
Q AN RN

where the o(1) are uniform on ¢ and, as usual,

~ N/2*
¢.(x)=¢,

o, q)(enx+x)

n

Since ¢ - M, is uniformly bounded in L2*(Q) for ¢ on bounded subsets of Hg (Q), it

is enough to prove:
2N

N+2, N

2@, -0) -0 in L"RY).

-1 2% ~ 2-
Zn=Up -0 ) - |Uy-o
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times, if kSN2 <lim [|uy|2” < (k+1) SN2, obtaining, for the kM iterate uy p,, the

equality

(1.17)  lim [ jug o2 = tim [ Ju, 2 - kSN2,

This implies lim | Jug n2" < SN2, Thus uy , is a P.S. sequence satisfying
lim E(ug n) = (1/N) lim [ Juy ol2" < (1/N) SN2,

An application of Remark 1.9 yields uy  — 0'in Hl(Q) and (1.12) follows from

(1.17). |

REMARK 1.11: From the results in this Section it follows that if un——lu isaP.S.

sequence (u non necessarily zero) and E(up,) — ¢, then
(1.18)  E(up) =E(u) + (WN) SN2 1 0(1)  for some ke NU{0} .
Also, k=0 if and only if uy — u strongly. In order to prove (1.18) consider the

sequence Uy = Up - U and use Proposition 1.1 to verify

*

(1.19)  lim jwn Vip-9) 2 nmj|ﬁn| 8 (- )

uniformly with respect to ¢ on bounded subsets of K. From (1.19) follows,

choosing v =9,V0 as test function,
. 2 . 2"
(1.20) lim [[V(d_AO)" < nmjhsnAoL =0

by Lebesgue theorem, since -u <9,A0<0. Thus, we can replace ¥, by 9,V0
in (1.19), and this proves that (9,V0), is a P.S. sequence for Problem 1. Thus
Theorem 1.6 implies that E (¢,V0) = (k/N) sN2° tor some ke Nu{0}, with k=0 iff
9, V0 = 0 i.e., by (1.20), 9, = 0. Now, from (1.20) and Taylor's expansion
formula we easily get (1.18).

In particular, this result implies that the energy functional
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E(u) it uek
flu) =

1
+ o0 otherwise in Hy (Q)

verifies P.S. condition (in the sense of Szulkin [14]) at every energy level except
for those of the form E(u) + (k/N) gN/2 where uis a solution to Problem 1 and

k=1 an integer. |

2. The existence Theorem.

In this Section we will use a Min-Max principle in order to get the existence of
a non trivial solution to Problem 1. More precisely, we prove that if u = 0 is the
only solution 10 Problem 1 with energy less than (1/N) gN/2 and the set a\C
verifies a geometrical assumption (as in Coron [8]), then there exists a critical
point of "saddle type" for the functional f with energy in ](1/N)SN/2, (2/N)SN/2[.
Notice that by Remark 1.11, under this hypothesis f verifies P.S. condition in this
interval .

In order to prove our existence theorem, we will construct, following Coron [8],

a continuous map g° defined on an N+1 - dimensional cylinder Z with values in

K, such that

1 _N/2
c° = Su °y > — S
azp @) 2 [

Then, we define

Y ={ge CO(Zle) ‘ g‘az = go‘az } J

c:= vlgf Suzp f(g)
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and prove that
c® < ¢ < (2/N) sN/2,

Since f verifies P.S. condition in a neighbourhood of ¢, an application of the
deformation Lemma by Szulkin [14] for functionals of the form cl + convex-
proper - lower semicontinuous gives the existence of a critical point at the level c,
and this will complete the proof of the following

THEOREM 2.1: If Q, C verify: there exist x°e RN and Ro >Rq > 0 such that
xeRN | Ry <|x-x°|<Rs} C Q\C

{xeRN | |x-x°|<Ry} ¢ Q\C

and Ro/R4q is large enough, then Problem 1 has a non trivial solution.

Proof. First of all we remark as in [8] that we can suppose
=0 , Ry=a! , Ro=a
for some o > 1, so that the hypothesis " Ro/R¢ large enough” in Theorem 2.1
means " a large enough”.
For the construction of the map g° we will use the functions

F:HZ(Q)-—HH , T(u)= leuIz - J|Ul2*

i 2
FiHo@ - RN, Fuy= SN2 [xvul® dx

As an immediate consequence of the Concentration-Compactness Lemma by

P.L. Lions [12], we get the following

LEMMA 2.2: For every neighbourhood V of Q\C there exist some ¢>0 s.L

uz0, T(U)=0, fluy<(N)sN2i12e = FuyeV.

48



Holes and Obstacles

Now, fix apoint a°¢Q\C,|a°|< o land a compact neighbourhood V of O\C

such that a° e V, and correspondingly fix € > 0 as in Lemma 2.2, in such a way

that
c+&=xa’if |o|=1, |E|<e.

Let w be the unique positive and radially symmetric (around the origin)

solution of
2.1) do=c1 on BN | Vel < 4o
mN
and let
WO = (1_,[)-N/2* a)( X-tcs)

t 1-1

for te[0,1], oeoBN, where BN={§e RN | 1&]<1 }. Then, cof solves (2.1) and

for every o, tit results

AN RN

If o is large, we can find, as in [8], a cut-off function ¢e CZ*(Q) with support in

Q\C,suchthat 0<¢<1, ¢=1 on a neighbourhood of aBN, and such that the

functions:

lpoZ 11 .

Vt :=—_—l\]7§— ((pmtc) ; V_t e K

| 900 |,
verify:
(2.2) Fv8) < (2N) SN2 - & voedBN | vie[o,1],
(2.3) Fvg) < (IN)sN2 4 & voeaBN |
(2.4) |F(9)-o] <€ .

for t° large enough. Remark that since F(vtc’) =0 Vo, Vi, from(2.2), (2.3)

it follows
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N/2 _ o, _ 1,.0,2 __2_ N/2
ﬁ S < mag f(uv ) = f(vt) =N Hv,[ I <N S e Vo Vi and
N/2 c 1 N2
— S < Max f(uv;,) = f(v — .
N e flavs) = flve) < 7 S Vo

Moreover, if A > 1 is big enough then ‘
fwd) < 0 VoedBN , Vie[0,1],

Now we can define our "boundary data" ¢°:Z = [O,1]><BN — K by setting:

o . -G
g°(s,to) =L s Vtt°

for se[0,1],te[0,1], ce aBN . Remark that g° is well-defined and continuous on Z

since for t =0 vZ does not depend on . By observations above, we have

1 _N/2 2 N/2
= Su °y £ — S +& and Su Y <« — S
WP f97) < up 69 5 N

Thus, to conclude the proof of the Theorem is enough to verify:

T aN/2 or7 1y o
S%p flg) = N—S +2¢  forevery geC°(ZH,), d157= 95z

Suppose by contradiction that there exists a ge C°(Z,K) such that g =g° ondZ,

(2.5) flg(s,8) < (IMysN2 Lo v(sEeZz

and consider the map
{G z RV

G(s,) = (s, F(g(s.£))
We claim that
deg (G, Z, W 1,a%)) =1
since the map
{ H:[0,1] x Z — RNV
H(t;s &) =tG(s,§) +(1-1)(s,) = (s, tF(g(s.) +(1-1)¢&)

is an admissible homotopy between G and Idz. Infactif H(t;s, &) =( AT ,a°)
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then necessarily s = 21 and Ee oBN since ¥ GeaBN
iRt o)+ (1-t)o =t (FWO)-o)+o #a°  because of (2.4)-

Let us define the sets:

7+~ ((s,8)eZ | Tg(s. &) >0 Y (0,8 | &eBY)

7 ={(s,0)<Z | Tlg(s: 8) <0}

7o={(s,8)eZ | TGS £)=0,8>0}

closed in Z since T(u) > 0if uz0 andjjullis

Notice that ZT is open inZand Z°is

small. Moreover

(sk) e zt for (s£)edZ , 0ss< A
(2.6) owlgeze for &e asN
(58 eZ for (8.8)€dZ vl<s<i

ycov and in particular

) we have that F(g(Z°)
V(s 8)eZ°.

By Lemma 2.2 and (2.5
(2.7) F(g (s, &) =@

Hence, by excision property we have

{ = deg (G, Z, (¥1,a%)) =deg (&
on the other hand wé shall prove t

7+ (A 1a0) +deg (G 2 (x12%)

hat

while
(2.8) deg (G, Z*, (x1,2))=0;
(2.9) deg (G, Z, (@) =0
m2.1.

getting in this way a contradiction which proves Theore

N+l |y| 2R = ye G(Z) , and

Proof of (2.8) : FiX R> 21 such that ye R

consider the path

p:[o,11—->mN+1 , p(t):(m+(1-t)x‘,a°).

ose this is not the case; then there

We claim that p(t)e G(oz*) for every t. Supp

ozZ*+ such that

exist te[0,1] and (sE)e
a)nt e = (s Flglel))-

(tR+
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We first deduce that s > 7(1; on the other hand, from F(g(s,E)) = a° and (2.7) it
follows that (s,¢)e Z°. Since az+ ¢ dZ U Z° we conclude that the only possibility
is: £edZ and (s, §eZ* which implies, together with (2.6), s < 7&'1, in contrast

with s > 7T,
Since p(-) is admissible, we have that deg( G, Z*, p(t) ) does not depend

ont, and hence

deg( G, Z*, (?C1,a°) ) =deg( G, Z*, (R,a°) )=0 since (R, a%e¢ G(2).

Formula (2.9) can be proved in the same way, observing that the path

q:[0,1] — RN+1 q(t)=(-tR+(1-t)a1 a9

is admissible for the degree, and thus

deg(G, Z, (A1) ) = deg( G, 7", (- R,a°)) =0 E

3. A regularity remark.

Before stating our regularity result, we point out some properties of solutions

to Problem 1.

PROPOSITION 3.1. If u solves Problem; 1, then
(3.1) [vuvin = [ vu) vve HJ(Q), v<y onG.

Proof. Letusset f:=y2-1c2N/(N+2) (€),and let w be the unique solution of:

weH)(Q) , wsy onC
(3.2)

waV(v-w) > ff(v-w) VVGH:, v<y onC.

In order to prove that w = U, we observe first of all that w> 0 in O (i.e. weK); in
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fact, choosing v = w\V0 as test function in (3.2) we get
[IvwA0)2 = [vwVWwA0) < [f(wAO)

and hence wAO =0, since f >0 a.e. in Q.
Thus Proposition 3.1 follows from uniqueness for the linear variational
inequality:

ueK , [VuV(v-u) 2 [f(vu) VveK .

E
From Proposition 3.1 it follows immediately that u is a weak solution of the
equation
(3.3) -Au=u?1  in Q\C.

We are now in position to state and prove our regularity result:

THEOREM 3.2: If yeCO%(Q)n H1(Q) and u solves Problem 1, then u is

continuous in .

Proof. We first prove that ueL*(Q). Let u be the unique solution of:
-Au=0 inQ\C, u=u on J(Q\C).
From (3.3) it follows that the function z :=u - u solves

-Az=a(x)z+g in Q\C
(3.4) 1
ueH (Q\C)

where a :=u?2eLN2 g:=u2"2 3 eLN?2 ‘since ue L™ by the maximum principle.
The boundness of u is a consequence of the following Lemma, which is

essentially contained in [6] (see also [7], Lemma 1.5):

LEMMA 3.3 : Suppose ae LN/2, gel9 with q=N/2 and z solves (3.4).

Then zel® V1<eo.

53



Holes and Obstacles

Applying Lemma 3.3 we easily get ueL*(Q\ C) and finally, since 0 <u <wy inC,

we can conclude that ue L=(Q).

We now set f:=u2"1eL>(Q), w := h - u, where h solves

-Ah=f inQ, h=0 on 2Q.

Using Proposition 3.1 it is easy to verify that w is the unique solution of the linear

variational inequality:

weH(Q) , w>h-y on C

[vwvw) 20  VveH!(@) , vzh-y on C.

Since h - y is continuous on Q , an application of a Theorem by Lewy-

Stampacchia ([11], Part 1l) gives the continuity of w, and the theorem is proved.
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Abstract. 1In the second part of this Thesis we present two examples of Variational Problems with non

convex constraints. The first example concerns the problem of the existence of a surface with prescribed

boundary and prescribed mean curvature, which is spanned over an obstacle in R3.

Secondly, we illustrate an example of an obstacle problem for harmonic maps in FR3, which will introduce

the papers "Surfaces of Minimal Area Enclosing a Given Body in 15‘3 i "§2 . T ype Minimal Surfaces Enclosing

Many Obstacles in R
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H - SUPERFICI CON OSTACOLO

0. Introduzione.

Il problema dell'esistenza di superfici a curvatura media costante H > 0 aventi
per contorno una preassegnata curva di Jordan I" ha destato l'interesse di diversi
Autori (vedi ad esempio [5], [6], [14], [9], [10], [15], [3]). Tuttavia solo agli inizi degli
anni '80 Brezis e Coron in [2] e Struwe in [11] giungono a dimostrare l'esistenza
di due soluzioni distinte per ogni costante H sufficientemente piccola, risolvendo
cosi un problema proposto da Rellich e rimasto aperto per lungo tempo.

La formulazione parametrica di questo problema porta allo studio del
seguente sistema di equazioni differenziali:

Trovare ue C2(U,R3)NC°(U,R3) tale che

Au=2HuX/\uy in U
(0.1) ux-uy=0 , |uX|=luy| inU
u@U) =T

dove U={(xy)e R | x?+y2<1} indicail disco unitario.
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Per il corrispondente problema con ostacolo si conosce solamente un
risultato di esistenza di Tomi ([12]), del 1971. Dal punto di vista geometrico si

tratta di risolvere il seguente problema: trovare una superficie C1, avente per
contorno una data curva di Jordan I', che stia sopra un ostacolo rigido e tale che
la parte di superficie che non tocca I'ostacolo abbia curvatura media H. Dovremo
dunque risolvere:

Trovare ueC1 fB(U,H%3)ﬂC°(U,H%3) e C chiusoin U tali che
(

Au=2Hux/\uy inU\C
3 w=yuud) inC , ud=2yu'u?) inU
Problema 1
ux-uy=0 , lle=!Uy| inU
Lu(@U) =T

La mappa v : R - R rappresenta l'ostacolo, e la curva di Jordan I" é data in

modo che

(0.2) z3 > y(z1,22) V z = (21,22, z3)eT.

Nella Sezione 2 presenteremo un nuovo risultato di esistenza che
generalizza quello ottenuto da Wente [14] per il problema senza ostacolo

(Teorema 2.4).

Definita in modo opportuno la classe A(I',v) delle funzioni ammissibili per il
Problema 1 (vedi Sezione 1), dimostreremo l'esistenza di una soluzione qualora

siano verificate le seguenti ipotesi:

(0.3) yeCS(RZR) , |Vylel™ (RZR);
2 2 2n

0.4 Inf Vu < ==

04 ue A(r'v) {l | 3 H

Nel caso in cui valgano le (0.3), il problema di minimo in (0.4) ha una soluzione

hr,we cl.B ([12], Theorem 2) che rappresenta la superficie di area minima di
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bordo I" contenuta nel sopragrafico di v, e che dunque risolve il Problema 1 nel
caso H = 0. Inoltre, quando y & convessa, una applicazione del principio di

massimo ([7]) mostra che hr,w = hpr & la superficie minima di bordo T.

Tomi in [12] dimostra l'esistenza di una soluzione del Problema 1 sotto
I'ipotesi
(0.5) Hlhpl, <1

qualora valgano le (0.3) e y soddisfi un'ulteriore condizione di tipo geometrico.

Le ipotesi (0.4), (0.5) non sono confrontabili. Tuttavia, nel caso in cui T
rappresenti un circolo, un risultato di non esistenza di Heinz [5] mostra che la
(0.5) & ottimale, mentre questo stesso esempio lascia supporre che la costante

2/3 nella (0.4) sia migliorabile.

In [13], Tomi propone una prima generalizzazione del Problema 1, provando

alcuni risultati di regolarita cl per problemi della forma:

Trovare ue H1(U,H%3)ﬂC°(U,H%3) e C chiusoin U taliche

-
Au=2Hux/\uy | inU\C
{ FEUE) =0 per EeC , FEUE)20 in U
Problema 1' ,
Uy ~Uy =0, Juy|=]uy| inU
L u(U) =T

dove F:UxR3— R & una funzione assegnata.

Nell'ultima parte dell'articolo mostreremo come il metodo variazionale scelto
per la dimostrazione dell'esistenza di una soluzione del Problema 1 si puo
estendere allo studio del Problema 1'. In questo modo, giungeremo a stabilire un
risultato di esistenza per 1' nel caso in cui la funzione F sia concava nella

seconda variabile.
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1. Notazioni e preliminari.

Indichiamo con H1(U) 0 semplicemente con H1 rusuale spazio di Sobolev

H1(U,EH3). Nel seguito, || - || denotera la norma in Hl e | - |p la norma in LP =
LP(U) per pe[1,o<]. Sia Q € U un aperto; definiamo i funzionali

Dg (u) = [, IVu[]? per ueH(Q),

Qq (u) = JQu “Uy A u, per ueH? NL*=(Q) .
Per Q = U scriveremo semplicemente D, Q al posto di D\, , Q. Per ge H1,

indichiamo con g + Hl (Q) lo spazio delle ue H1 (Q) taliche u-ge Hl(Q). Per

un noto risultato di Wente [14], Q, si estende con continuita ed in un unico

modo su g + Hl(Q), per ogni fissato dato al bordo g.

Indichiamo infine con L (-, ) l'estensione ad H1 (U) X H1(U) del funzionale

Lvh)=]yv-hgAh, per veHTNL= | heHT.

y

Ricordiamo brevemente alcune proprieta dei funzionaliL , Q :

PROPOSIZIONE 1.1 (disuguaglianze: isoperimetriche) :
(i) 4\21 | Qg (V)| <|Dg (v) [32 v veHl(Q) ;

(i) Se wu, heH1(U) hanno traccia continua su 0Q, e u(dQ) = h(0Q), allora
4\21 | Qg (u) - Qg (h)] <|Dg (u) + Dg (h) 32 ;

(i) Se QcU,e ukeH(U), u-keHl(Q), allora
421 | Qg (u) - Qq (K)| <|Dg (u) + Dg (k) [¥2

(iv) 42 [L(uyv) | < D)2 D(v)
22r | L(v,u)| < D)2 D(u) v ueH?, veH]
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Dimostrazione. Per la (i) rimandiamo a [1] (vedi anche [2], Lemma A.8).

(if): La proposizione & dimostrata per u, he H1(Q)0C°(§) (vedi [14], Theorem
2.5). Se u,h non sono continue, fissiamo up, hpe H1(Q)ﬂC°(§) taliche uy-u—0
in HI(©Q), hy-h— 0 in H1(Q). Poichg il funzionale Q, & continuo su u + H1(Q),

h + HI(Q), avremo:
Qq (Un) =Qq (U) +0(1) , Qg (hy) =Qq (h) +o0(1).
Possiamo pertanto passare al limite nella: |
421 