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CHAPTER I - INTRODUCTION

An essential aspect of solid state physics concerns the explanation
of the absolute and relative stability of different crystal structures of
a substance and the interpretation of transition between different structures.
The understading of this subject implies a profound insight into the mecha-
nism which governs the interactions between atoms, ions and molecules in

solids.

The transition from rocksalt{as Bl) to cesium chloride structure
(as B2) in alkali»halides has been studied both experimentally and theoreti-
cally by a large number of investigators since the discovery of this transi-
tion by Slater [1]. A summary of the subject was given by Born and Huang
[2]. A more detailed survey is to be found in the review by Tosi [3] , Tosi
and Arai [4 ], and by Tosi and Fumi [ 5] . The theoretical approaches to
treat alkali halide crystals can roughly be divided into two classes: the

a priori quantum mechanical approach and the Born-Mayer approach.

The a priori quantum-mechanical Hartree Fock approach was initiated by
Hylleraas [6 ] and by Landshoff [7 ]. It was firmly formulated later by
Lowdin [8 ] who has shown that a quantum mechanical model which considers
the effects of the overlap betwsen the ground state electronic configura-
tions of the free ions, but neglects the effects of the crystal field,
reproduces reasonably well the lattice energy, the lattice parameter, the
elastic constants and the critical pressure of the Bl to B2 transition
for several alkali halides, and leads to a many body contribution to the
lattice.energy. Lowdins approach is based on a full study of the solution
of the many body Schidinger equation and gives a more correct physical
picture. The major difficulty of this approach is that it involves lengthy
and tedious numerical computations which introduce different degrees of
approximétion at different stages of the calculation. Because of this li-
mitation the calculation of even the static properties of a crystal in

all its entirety has not been done. The more serious limitation however




is the difficulty of extending the method to calculate the lattice dynamics.
More recently the so-called "local density functional scheme" [ 9,10 ] has
become a useful technique for computation of the properties of solids., The
use of the local density functional scheme for the description of many-
electron interactions in solids has led to considerable progress in the
theoretical understanding of the structural properties of solids. This was
aided by the introduction of the first principles pseudopotentials [ 11 ] in
the local density functional scheme. Very accurate results have been ob-
tained for a number of semiconductors{12] and metals [13] . Recently, this
scheme has been extended by Andreoni, Maschke and Schlliter to a study of
pressure induced structural transition in partially ionic semiconductors

[ 14 ], and by Andreoni and Maschke to a study of cohesion in NaCl [15] .
While this appears totbe the most rigorous approach to.the‘problem of
polymorphic transition, its implementation is very costly and the extension
of the method to incorporate dynamical properties is at present prohibi-

tively expensive.

On the other hand a totally empirical approach was introduced by
Born and Mayer [16-18 ] . In the Born model, the lattice energy is expressed
as a sum of central, two body energies, namely the attractive interactions
which are dominated by the so-called Madelung energy and are balanced by
the so-called Born repulsive forces, The Born-like semiempirical theory
models the repulsive energy as a simple functions of the interionic distance
and determines the intervening parameters from experimental data. Many
later extensions were concentrated on the best possible representation of
the interionic potentials in order to reproduce better agreement with ex-
periments on cochesive properties of alkali halides. The potential of Tosi
and Fumi [19-20] represents a culmination of the earlier efforts of many,
including Born, Mayer, Huggins and Pauling., Among the most recent approaches
along this phenomenological line, it is worth while considering the empirical
potential proposed by Narayan and Ramasechan [ 21 ] which deviated somewhat
from the standard Born model in that it includes many body forces. The ap-

plication of the Narayan-Ramasechan potential to the polymorphic transition



in alkali halides is very successful, but no basic justification has so
far beengiven for its validity. A critical review on the more recent phe-
nomenological potentials has been given by Eggenhoffner, Fumi and Murthy
[22, 23 ]. It is a common feature that the Born-type approach requires
some of the parameters to be determined only from the experimental data on
the crystals of interest, thereby ruling out predictions on new systems.
The resulting potential usually only partly reproduces perfect crystal
data and the limitations of this approach when it is applied to the calcu-

lations of the transition pressure have been underlined by Tosi and Fumi

[s].

A middle of the way approach has been taken by Gordon and Kim [24-
25] , who have developed a theory for calculation of interaction forces
between closed shell systems. It enables one to follow the Born-type ap-
proach by using a first principle pair potential instead of the empirically
obtained one, so that no empirical parameter is introduced into the model.
It has been applied to a number of simple ionic crystals, such as alkali
halides [26-27 ] and alkaline earth oxides [28 ] and appeared to be quite
successful. This study was extended by Boyer [29] who included the effects
of harmonic vibration in the calculation of the free energy; this however
did not materially affect the conclusions based on the static calculations,
The GK model has the advantages of giving an inexpensive and widely usable
way of performing parameter free calculations of cryétal binding aﬁd struc-
tural properties. Such a first principle, though simple theory, predicted
cohesive properties of alkali halides whiéh are, in general, less accurate
in comparison with that of semiempirical theories. The predicted structural
stability is in poorer agreement with the experiments [29] . However there
is still room for further improvements [29,30] . We also notice that some

of the assumptions in the GK model are still open to criticism [31-32].

In summary, in spite of the enormous body of literature, the question

of the polymorphic transition in alkali halides still presents many open

questions. In this thesis we shall concentrate mainly'on two different




aspects of the Bl to B2 transition. The first one is a study of the role

of many body forces in the Bl to B2 transitions. As has been often under-
lined in the literature, many body forces, being highly structure sensitive,
are expected to play an important role in the transition. This may, at
first,appears rather surprising since many body forces are rather small.
However, since the energy differences involved are also small,; their

effect is rather significant as we shall demonstrate later. As a theoretical
framework for the calculation of the forces we have chosen the Gordon-Kim
scheme, which is free of parametersand can easily be extended to the calcu-
lation of three body forces [33] . While certainly the GK scheme is open

to criticism, its a priori nature and its simplicity make it a very convenient

scheme for the present calculation,

The other asﬁect of polymorphic transformations in alkali halides
we shall focus onto, is the kinetics of the transition. Experimental and

theoretical progress has been made in this direction only recentily,

Different microscopic mechanisms for the tranformation from the
Bl to B2 structure have been postulated by many authors [ 34-37] . The
most recent experimental progress in the field has been made by Blaschko
et al. [38-41 ] . In their neutron scattering studies of the Bl to B2
transformation in RbI [ 41 ], they investigated the changes in the mosaic
structure (due to the nucleation of the B2 structure included in the Bl
matrix) below and near the actual transition point and obtained some
insight into the mechanisms involved in the transformation. Based on their
experimental investigations {particularly the orientational relation bet-
ween the Bl and B2 phases), a model for initial stages of the Bl to B2
transition in Rbl was put forward [41] . The main idea of the model is
centered around the fact that the Bl structure can transform to the B2
structure by a collective translation of the Bl (100) alternative planes,
This qualitative mechanism describes an inhomogeneous transformation, which
starts in regions of high dislocation densities, Furthermore, it was shown

that a transformation hysteresis depending onthe previous thermal and me-
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chanical treatments of the sample, implies an actual transformation pressure
different from the thermodynamic equilibrium point. However many aspects

of this phenomenon have not yet been theoretically understood.

Recently Parrinello and Rahman [ 42 ] have developed a new molecular
dynamic (MD) method, which allows one %o study the structural change of
a crystal by computer simulation. They applied their new computational
method to the polymorphic transition of KCl using a parametrized form of
the GK potential [43 ]. The calcualtion showed the dynamical history
of the occurrence of the Bl to the B2 transition. The microscopic mechanism
proposed for the Bl to B2 transition is described as a phonon softening
associated with a spontanecus uniaxial deformation of the Bl structure.
When analysed in detail, this mechanism is‘equivalent td the one proposed
by Blaschko et al. However the pressures and temperatures needed to accomplish
the transformation on computer simulation were much larger tﬁan those expe-
rimentally observed and in disagreement with the predictions made by Boyer
[29] on the basis of a harmonic free energy calculation that used the
same GK potential. This leads us to believe that a correct description
of the transitions requires not only an accurate evalaution of the free
energy differnece between the two phases but also a reasonable estimate of
the energy barriers that hinder the transition. The knowledge of the path
followed by the system in going from the Bl to B2 structure allows now the
possibility of evaluating the free energy barrier and the effect on them
of various choices of the potential, of external stress and of the presence
of defects that can help in nucleating the different phases. In this thesis

some of these aspects will be elucidated,

The layout of the thesis is as follows, First, in chapter II we
shall give a brief survey of work on polymorphic transition in alkali
halides. Of course, it is not the purpose of this chapter to give a full
account of the subject. An excellent summary of earlier work has been
given by Tosi [3]. We shall pay more attention on some aspects of recent

advances in this field, especially the first principle calculations., A
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detailed discussion of the GK model will be given. It will be shown that
using the GK model for the description of polymorphic transition in alkali

halides, the pair potential approxiamtion needs to be abandoned.

The problem that we shall tackle in chapter III are then to discuss
the nonadditive three body interactions (TBI) in alkali halides and their
effects on the Bl to B2 transition. The TBI will be calculated for nine
crystals using the GK model [33 ]. It will be shown that TBI plays an
important role in improving the GK model for the description of cohesive

and structural properties in the alkali halides.

In chapter IV we shall discuss the microscopic mechanism of the
polymorphic transition in alkali halides. As alluded to before, the micro-
scopic mechanism of the Bl to B2 transition was described by Parrinello and
Rahman as a phonon softening associated with a spontaneous uniaxial defor-
mation of the crystal. We will achieve the effect of the deformation by
a convenient uniaxial tensile load and discuss its effecés on the crystal
stability. We shall evaluate the energy barrier along the path in which
crystal evolves its configurations to accomplish the transition and investi-
gate the dependence of the height of the energy barrier on the generally
applied stresses. In order to include zero point eneréy in the calculation
of free energies, the special point method of summation over the B.2. will
be used. For the deformed structures of interest here these special points
are not available in the literature and will be explicitely evaluated in

the appendix A [44].

Finally some conclusions and discussions will be given at the end
of this thesis, Our main contribution to the thesis will mostly be inclu-

ded in chapter III and chapter IV.



Chapter II. BRIEF SURVEY OF WORK ON POLYMORPHIC TRANSITIONS

IN ALKALI HALIDES

2.1 Polymorphic Transitions in Alkali Halides

Before looking at the problems of polymorphic transitions in al-
kali halides, it is convenient to give a short description on the crystal

structures of rocksalt (as Bl) and cesium chloride (as B2).

The Bl (or B2) structure is composed of two interpenetrating face-
centered cubic (or simple cubic) Bravais lattices. With reference to the
cube axes the Bl (or B2) structure is composed of two fcc (or sc) lattice,
one for each species of ions, shifted by (%,%,%) relative to one another,
as illustrated in Fig. 2.1. The fundamental translations vectors of the

fce lattice are

o=a{e. 1 1), T=alodl), Egmg('z 2_30} (2.1)

7

and those of the sc lattice are

a=a100), G=a{01,0), Q=alo0.1) (2.2)

The reciprocsl lattice of the fce and sc Bravais lattices are body-centered

a

cubic and simple cubic lattice respectively. With reference to the cube axes,

their fundamental translation vectors are given by

% .jéw,zi" miikslﬁf
aL2 (~11 1) Qi_,g.eai(!,-»},ﬂ’ dsa--‘-é:a(?, p,=1) (2.3)
and by
= =2%(1,0,0), 5.?:—’%(0,?,0), 3;%__:_2_&@{0‘0',) (2.4)

respectively. Fig. 2.2 shows the asociated first Brillouin Zones. We have
indicated on these figures the various symmetry points and symmetry axes.

The notation follows that of Bonckaerdt, Smoluchwski and Wigner [45] .
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Parrinello and Rahman [ 43 ] pointed out that it is important to
understand the following geometrical fact when studying the structure
tranaformations in alkali halides. A body central tetragonal lattice with
edges 1,1,{2 is a fcc lattice and inversely a faced central tetragonal
lattice with edges {2, {Z,1 is a bcc lattice. Moreover, a based central
tetragonal lattice with edges f?, 2,1 is a sc lattice, if the square face
is specified as the base. As shown in Fig. 2.3, the Bl (or B2) structure
can be identified as composed of the two above mentioned body-central te-
tragonal lattice (or based-central tetragonal lattice), one for each species

of ions, shifted by an appropriate vector relative to one another.

There is conclusive evidence that all of the alkali halides crystal-
lize at normal pressures and temperatures in the Bl strﬁcture expect for
cesium chloride, cesium bromide and cesium iodide which exhibit the B2
structure. Since the discovery of the polymorphic transition in the alkali
halides by Slater [1]and the pioneering work of Bridgman [ 46 ] there have
been many high-pressure experiments to study the polymorphic transitions
of the alkali halide crystals. The two principle experimental techniques
which have been used to induce the Bl to the B2 transition are dynamic
shock wave coqpression [471‘ahd diamond-anvil high pressure cell [48]

The transitiogs which have been most extensively studied are the Bllto B2
transitions of KCl, KBr, KI, RbCl, RbBr and RbI in the range

of 4 to 25 Kbar [49 ] - The Bl to’BZ transition in NaCl occurs experimentally
at 300 Kbar [50] . The B2 to Bl transition of CsCl occurs at 457" C and |
atmospheric pressure with a heat of transition of about 1.4 Kca./nole, The
transformations have been found to be first order and reversible {s1] .

The transitions on the other twelve alkali halide crystals have not been

experimentally observed.

A phase transition is marked by the equality of the Gibbs free

energiesiof the two phases

G = G at the transition (2.5)



a.nd

where P, V, WL and Fvi are the pressure, volume, static lattice energy

b
and harmonic vibration energy of a phase respectively. The difference in
lattice energy of the two phases of each salt at the transition is given

by the equation:

AWL = - P-AV -A,Fvib (2.7)

For the pressure transition, the change in vibration free energy 'ﬁFvib is
expected to be negligible, since the transition pressure is almost inde-
pendent of temperature [52 ] . Therefore Awl is very close to the mechanical

work involved in the transition.

Experimentally one usually studies the relative volume changes
—AV/Vol associated with compressions. These are defined as the negative
of the differences between the volume of the more stable phase at a given
pressure and the volume of the Bl phase at zero applied pressure Vol divided
by V 48 | . It is ful to define - AV /V _ b
vV, [48 ] useful to 4 t/ o1 Y

-8V /V_ = (V_ -V v 2.8
N t/ ol ¢ ti t2)/ ol ( )
where Vté is the volume of phass Bi at the transition pressure, and eéyt/vol
is , of toirse, the magnitude of the discontinuity in.AyVVol in the first
order phase diagrams, Table 2.1 gives the observed Bl to B2 transition
pressure Pc, Awl and the relative volume changes at transition for some

alkali halides,

The transition pressures of KCi, KBr, KI, RbCl, RbBr and RbI are
rather low. In addition relative large volume changes are observed for
these salts. The low-transition pressures for the crystals can in part

be understood by the low-lattice-energy differences between the two phases,

- 10 -




In addition, kinetic effects have been observed in these experiments [ 41]
[46] so that there is no exact value of experimental transition pressures
in these crystals. For example, Bassett et al. [48] have observed a Bl to B2
polymorphic transition in KC1 near 21 Kbar, rather than near 19 Kbar as
observed by Bridgman [46] . In contrast to the polymorphic transitions
described above the Bl to B2 phase transformation in NaCl which occurs
experimentally at 300 Kbar is rapid, reversible and exhibits little hyste-
resis effects [48] .

We have given above a short review of the experimental work on
the macroscopic properties of the pélymorphic transition in alkali halides.
The experimental work bn the microscopic mechanism of the polymorphic
transition will be discussed later on. In the next section we will review

the theoretical work of the polymorphic transition in alkali halides.

2.2 A priori quantum mechanical theory

The importance of a priori quantum mechanical theory for the descrip-

tion of cohesive and structural properties in solid is its predictive capa-
bility. There have been two distinct approaches for the study of ionic
crystals, i.e. Hariree-Fock approach and the local density functional
scheme. In this section we only concentrate on discussion of a few models,
such as Ldwdin's Hartree-Fock approach, the Gordon-Kim model and the theory

of Muhlhausen and Gordon.

2.2.1 Lowdin's theory

Lowdin [ 8 Jhas investigated the cohesive property of alkali halide
crystal by a quantum mechanical model which considers the effects of the
overlap between the ground state electronic configurations of the free ions,

but neglects the effects of crystal field,

- 11 -



On this treatment the cohesive energy of a ionic crystal is de-
fined as the difference between its total energy and the energy of its
free constituents
E = E - E 2.9
coh tot free ( )
He uses Hartree-Fock approximation which gives for the total energy in terms
of the density matrix f . The density matrix can be comstructed from a

knowledge of its free constituents. LSwdin starts from the free ion Hartree-

Fock wave function 72;’ from which he wmnstructs a set of Bloch functions

=D -K e =3
iﬂ:{r} =(‘%‘) ;ﬁc(r“&‘t)&:“@x‘é) (2.10)

where V and L are the volume of unit cell and crystal respectively

and %ﬁ&” ; R and E denote translation and basis vector respectively,
1 .

i is the atomic quantum numbers. The Bloch functions corresponding to the

occupied state of the free ions are then used to construét a Slater deter-

minant

Y xa,x.».,---,z,,,)=(~.')-'gai£:{§; (Xj)} (2.11)

where x.j is the combination of a space coordiante ?j and a spin coordiante
Sj' Note that the Bloch functiors defimed in eq. (2,10) are not orthogonal
with respect to the index Z . This has important consequences for the eva-

luation of the density matrix f. Following L8wdin we define the matrix

Ly ("; f‘?) §< E’;] éz:> (2.i2)

The functions

= g - - _a ‘
'fé:.,,(z) = E c: Aﬁeg(f&j z’) é;:_.(ﬁ (2.13)
}T

form the orthonormal set. The density matrix corresponding to the &later

determinant (2.11) is given by

- 12 -




— Kt x
e(za,IaJ =Zx: Z; r‘.g(x,)fn(&)
x* x o .
QZ /2;‘; ég;(4).25;-:,(6)4*'(;:,]';:) (2.14)

Together with eq.(2.10) one obtains
Q’(zﬁ Xx,) == 9Q

- (2.15)

where
AR TR = [dx B (e-Re-T) By (2-R- F) (2.16)

is called the total overlap matrix, whose elements describe the various
overlap integral in the solid. Lowdin assigned the various part of the

electron charge cloud in a solid to its nuclei in such a way that

€ (x,%) *‘:’Z Q}(x,,xz) (2.17)

He then separates out the contribution from the undistorted ionic charge

2
distribution féffg by introducing the formal difference

A8y (5, 2) = Fy£,2) = £, ) (2.18)

The deformation density E@trix44f3 can be written as
all
L g —_ - -3
2 _. ﬁt(‘t’ _‘%mz)ﬁ‘r,(zzu,%gw zw).

P TR, j TR )

Afi(z,,zz) :”""Z

(2.19)

where

P = | =4 = S—S% S~ i ees (2.20)
In the frame of first order perturbation theory he only takes first term
in the r.h.s. of eq.(2.20) for P. It is apparent from eg.(2.19) and (2.20)
that the overlap matrix are strongly connected to the charge density distor-

tion induced by the crystalline arrangement of the ions,

- 13 -



Finally the cohesive energy can be expressed in terms of the free
constituents placed together in the solids and deformations Agj; . The

expression is given in the form

Ec.aﬂ. = Em -+ Eexc{ + ES (2.21)

ea ‘ R _ 2 ’ Fﬁ(lll) )
Eezsxat =3 Z Y3z egzﬁj Y8 "[x' (2.22),

2 ’
+ E Z ffg(b’) f{(z,z)dzidxz
3“-} riz

2 ,2) 2,1 (2.22)
Eevt _._._%%:}r fot 2 falzt) o4 2
. 3 ) hz

| ity [ AfalL1)
Es =-¢35f2Mly,

ot ’f afa(11)8 (2, 2)-4 fvg(s,z)ﬁ)%,’z, 0&'2’#:{
T, nTe

"ﬁ. 12
PN -
+% [ AP0,1)8P(2,2)-400,2)8P(2,1 ) Jz,-cz’zz

7.
Fia . (2,22)3

where we denote Fﬁ, (z,,%:) by Pﬂ_(l,Z) etc. and

APU,2) == ZAfi(!,z) (2.23)
7

The first 2 terms give the HF energy of the undistorted ions while E

- s
represents the energy associated with the change in the electronic distri-
bution. The S-energy is of essential importance in the whole theory since

all the repulsive force between the ions arise from the overlapping.

This approach has often been used [53, 54] to obtain the lattice
propertiéé of alkali halide crystals. The results for the lattice constant,
cohesive energy and bulk modules are intolerably good agreement with experi-

ment. Lowdin's approach was also applied to a calculation of transition

- 14 -




pressure for some alkali halides. Some results are listed in table 2.2,
The inclusion of many body interactions in the result is one of the main

features of Lowdin's theory.

To summarise, Lowdin's formalism is of theoretical importance. He
starts from the free ion Hartree-Fock wave functions and considers the many
electron interaction by taking into account their overlapping and nonortho-
gonality. The main mathematical difficulties involved in the orthonormali-
zation procedures and the approximation introduced to overcome these dif-
ficulties have so far limited the practical value of the theory. In view
of the fact that most of the HF wave functions of the free ions for alkali
halides are now available [55] and considering the progress in computa-
tional method, it would be highly desirable if one could make a comprehensive
calculation of the static and dynamic proﬁerties of alkali halides follo-
wing the Lowdin's a priori quantum mehcnaical approach. However the imple~.
mentation of Ldwdin's thecry when the pérfect crystalliné order is lost

appears rather difficult,

»

2.2.2 Models based on local density functional scheme

1. Gordon-Kim (GK) model
Several years agc Gordon and Kim [ 24 ] developed a model forAevaluam
ting the interaction between two closed-shell systems ") based on the local
density functional scheme. The electron density is approximated as the sum
of the densities of individual ions, component densities being taken from

Hartree calculations. If ﬁ; and 51 are component densities, the total

density is

fu(ﬂ,ﬂ) = fa_(ra)-i-fb(r;) (2.24)

(*) hereafter we shall simply write the "closed shell systems" as '"ions".

-15 -



and

e;(f) ==:§:

<

ﬁ,;(?)[ (2.25)

where 1 denotes the atomic quantum numbers, fhf is the Hartree-Fock wave
function of a component. The interaction potential between two ions is

then evaluated as the sum of the Coulomb interaction energy and the rest:

V = V +V (2.26)
c eg

The Coulomb interaction is

vc=é£+fj fo.m)?(rz) 9(776{73.
[f"-m)dr, — [mn) \ (2.27)

where Za and Zb are atomic numbers of ion A and B respectively; R is the -

distance between the nuclei, r,is the distance between two electrons; and
Yie. and Yy are the electron nuclear distances. Making use of the

Hohenberg and Kohn [9 ]theorem they write the remaining part of the.energy

as

Ve.g :jdsr(f’a.b E&{faé)‘“fa E&{ﬁs)"fb Eg,(%)) (2.28)

furthermore the epergy density functional is evaluated in the local density
approximation. This consists in taking for EG the uniform electron gas ex-
pression and evaluating it for the local value of the density. As usual

the uniform electron gas density functional is written in the form [56]

E%(ﬂ ﬁcﬁf%*'Cefg"“ Ecorr(F) (2.29)

where

Cxui(.i?l*)% (2.30),

- 16 -




and
Q —=— %(%)}3 (2.30),

The first and second term in eq. (2.29) are the kinetic and exchange energy

functional and denoted by Ekin and Eex respectively; the third term is

correlation fumctional, which is given by [57]

# : (a,osu.ls)&-'aﬂéff-ezwf)}‘.ﬁ.)}'ﬂaie)‘?f;, rsg07
| E._.1p) =j—405:;—6+a%‘i&&. o, ©@7%) <0 (2.31)
o3 grilvrinty B airitog ys'%‘ Ys 2/0
3 )4

where rS ::(z—ﬁ-?f .

~

The GK model has the advantage of giving an inexpensive way of cal-

culating reliable potentials between two closed-shell species. It‘is superior to
many earlier similar models [58] stemmed from the Thomas-fermi and Thomas-
Fermi-Dirac theories, whose Qalidity was only restricted to the repulsive
region., The GK model has beeq applied to many closed shell systems, such as
rare gas atoms and alkali halidés ions, rather good agreements have been
obtained with experiments [24,25] . Howsver, the GK model is not without its
problems: (1). the reasons for the success of such a simplistic model and
the limitations of its accuracy are not well understood; (2). it does not
give the van der Waals tails of the potential and; (3). the potential well
for most of the rare gas systems tended to be too deep by about 15% - 20%
and much too deep for the helium systems. This is not surprising since the
method is expected to fail when applied to system with a small number of

electrons,

The main two distinct approximations made in the GK model are that

(1). the total density of the system can be written as the superposition of

-17 -



the charge density of the free ions, thus the charge density of the total
system was allowed to change only because of the mutual overlap of the rigid
free ions; (2). the interéction energy can be calculated from the density
functionals in eq.(2.29). This means that the energy of the real system

may be approximated by the simple energy functional of the uniform electron
gas. Improvement to the model can be made by using more exact density func-
tionals and by using a better description of thedensity in the interacting

system.

Some steps along this direction were taken by Waldman, Gordon and

Cohen [ 27,59 ].

Kim and Gordon have revealed systematic errors in each of the energy
terms in the electron gas formulas when applied to single atoms and concluded
that the error in each interaction electron gas energy term is greater than
in the total energy. In order to reduce some of the errors made by the ori-
ginal GK theory, Waldman, Gordon and Cohen [25,59} proposed a modified
electron gas model (MEG) in which GK model is modified by multiplicative
scaling factors to the kinetic, exchange and correlation terms in the energy
functional. The scale factors are determined uniquely by the condition
that the energy functional yield correct results for the corresponding

terms in an atom isoelectronic to the molecular system of interest. Thus

MEG replaces electron gas functional in eq.(2.29) by
HEs % BoCiw
Es  =RMGPP+X W) Cef P+ C(N) Ecorr(F) (2.32)

where R{N), X(N)and C(N) are appropriate constants that depend on the N, the number
of electrons in the molecular system of interest. Note that the kinetic

term gives repulsive and exchange and correlation term gives attractive

force to interaction potential, thus the introduction of the scale factors

gives more repulsion to the interionic forces than that of the original

GK model. This effect increases progressively from ion pairs which involve

more electrons to those that have less electrons. The MEG predicts intermclecular
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forces that are in better agreement with experiment for light rare gas
atoms, such as helium. However, results for the alkali halide molecules
are in considerbly poorer agreement than that based on the original GK

model [27] .

Waldman and Gordon [60 ] have modified the GK model by use of a
Drude model [61] . This modification corrects somewhat for rigid ion
approximation by allowing harmonic distortion to occur. But one of the
ingredients of this model is to determine the effective electron number
from reliable Van der Waals coefficient whose value for alkali halide ion
pairs is not presently available, so that those calcualtion using Drude

model for ion pairs of alkali halides have never been performed.

4

Finally, we mention that some researchers [62] have tried to improve
energy density functional by including gradient corrections. This causes
the electron gas approximation to loose much of its simplicity and leads

only to a marginal improvement.

The GK model and some of its modifications can be used for evalua-
ting the ionic pair potentials that subsequently are used in a Born-Mayer
type of calculation for the properties of alkali halides. Some of these

calculation will be described in the following section.

2. Theory of Muhlhausen and Gordon [mclls3]
Another and more sophisticated approach has recently been developed

by MG, who extended the GK model to include some many body interactions,

MG write the crystal charge density a@s a sum of the electron density

f_:(?) of the free ions

£(7) '—'-“*"Z ch(?‘“éZ“‘?) : (2.33)
7%

with

- 19 -



Prtd= >

L
PP (2.34)
42

whose notations in eq.(2.33) and (2.34) has been explained in section 2.2.1.

Furthermore MG write the binding energy Wb as

W, = (We+ WE,/n (2.35)

where Wc is the electrostatic interaction energy per unit cell, weg is the
electron gas interaction energy per unit cell and n is the number of formula
units in the unit cell. wc can be calculated using Ewzld method (84 ]. We

is written as follows:
Ws;=,{, d7 [E usﬁ'f(xa)f(x)«-z ZE (r.fz—&-zv
) fF(z—& Z')] (2.386)

where MG used MEG model, i.e; the electron energy density functional is given
by eq.(2.32). The subscript v indicates an integration over a single unit
cell of volume V. Thus the MG theory also include nonadditive many body

interactions arising from the simultaneous overlap of the densities of

several free ions.

MG have alsc extended this model to take account for changes of
charge densities when free ion was placed into solid, introducing an addi-

tional empirical stabilizing potential [ 65 ]

vy, rev,
fo) — /r (2.37)
N/r Yy>n

The potential Vg (r) is produced by Watson's sphere of total charge «ﬁ%
and of radius ro. The value of ro is obtained after a selfconsistent
minimization of the expression for the total energy. By this procedure

MG got i?n density (i.e. ss density) which differes from free ion density
mainly in effect of contraction of charge density around the anion. MG

then replaced the free ion density by ss density and used eq.(2.38) and
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(2.35) to calculate the binding energy. The theory has applied to some al-
kali halides and oxide crystals. The predictions of lattice constant and

energies agree with expt to a typical accuracy of 2%. The results for NaF

and LiF are listed in table 2.3.

The nonadditive many body interaction in MG theory produces a small
amount of repulsion thus to increase lattice constant and decrease lattice
energy in better agreement with the experiments. A very recent work of Gygi,
Maschke and Andreoni [32] has pointed out some of the deficiencies of MG
approach which make their conclusions unreliable, Thus it appears that there
are not compelling reasons to prefer the modifications of the G.K. scheme
to its first version. In fact the original GK scheme has the great merit

over its more sophisticated developements of being very simple to use.

Finally we mention that recently the first principle pseudopoten~
tial method has been introduced in the local density functional scheme.
The success of this method in semiconductors are very impressive. We notice
that this method has great methodological importance in the description of
cohesi&e and structural properties of solids. This method has selfconsistent
treatment between electron density of crystal and potential thus gives cor-
rect descritpion of the charge density distribution of the crystal., This
is essential in the use of local density functional method. Alsc this method
can be used to detefmine the phonon frequency with high accuracy [66] .
Even though only some initial steps [15] have recently been taken for the
study of cohesive properties of alkali halides, one can expect that this

method may become more important in this field,

However at present it does not appear to be feasible to derive

effective potentials from this highly sophisticated schemes,
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2.3 The Born-Mayer approach

In the previous section we have discussed the a priori quantum
mechanical approach for the binding and structural properties of alkali
halides. This approach gives more sophisticated description of many elec-
tron interactions in ionic crystals and it is endowed with predictive
capabilities to the theory. However the mathematical complexities involved
have limited its practical use. On the other hand, to-date, the most widely
applied approaches have been of semi-empirical Born-Mayer type, in which
the many body interactions are neglected, the binding in sclids is described
as sums of the effective pair interactions. This can be constructed a priori
as in the GK scheme that we have described above or more empirically the
forces between pairs are writtenin terms of an interaction potential with
variable parameters to be determined by empirical fitting to experimental
data. With a careful selection of a flexible pair potential, the Born- -
Mayer approach can give good agreement with a large variety of experimental
results., Due to the simplified treatment of interionic interactions in so-
1lid and an essentially empirical nature of the theory the range of applica-
bility of Born-Mayer model is severely limited by the experimental data

available,

In the Born-Mayer approach, ionic crystal is regarded as composed
of spherical non overlapping ions bearing net charges of integral amount.
The lattice energy of the crystal is written as a sum of the Madelung energy

plus the short range interaction energy

W (R) = ~ oo + W"‘F(R) (2.38)

where the structure dependent constant an is called the Madelung constant,
It is referred to the characteristic length R (i.e. here we denote R as the
nearest neighbour distance). e{a can be obtained using standard technique
of lattice sums [64 ] for a given structure. The Madelung energy is the do-

minant part which is about 90% of the total lattice energy for alkali halides,




This attractive energy is often supplemented by the total Van der Waals

attractive energy W an which is the sum of two body Van der Waals energy
v

corresponding to dipole-dipole and dipole-quadrupcle interaction energy

between two ions at a distance ri,. it is of the form
Y:; -— b __ ¢ (2.39
. == ‘s .. .
\ﬁ¢L¢n( &)) (:ﬂ? r}i Ciﬁh//;}j )

where the Van der Waals coefficients Cij and di' can be expressed in terms
of polarizabilities and excitation energies. Then the total Van der Waals

energy of the crystal can be expressed as

Wiy = — c/r‘ - D//rg (2.40)

té) / &
C=C,.§" + T(C+++Cm~)5.z) (2.41)

D xd‘rns‘f)-k -é-e(d;.*.,,f d,.‘,)slf" (2.42)

(n) (n)

where the quantities S1 and 82 are structure-depehdent factors, repre-
senting appropriate sums over the Bravais lattice of the structure. Their
value for Bl and B2 structure are given in Table 2.4. The Van der Waals
coefficients are‘hard to determine with accuracy [3,67]. However in calcu-
lation of the lattice energy of the crystals the uncertainties in these
coefficients are fairly unimportant since the Vander Waals contribution to

the lattice energy is only about 1%.

The Born model makes no attempt to evalaute the repulsive energy
from first principles. Instead it assumes a simple functional dependence
of the repulsive energy on the interionic distance and determines the inter-
vening parameters from experimental data. The most common procedure to

determine the repulsive parameters for a cubic crystal involves a use of the
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equation of state and its volume derivative at constant temperature in the

Hildebrand form [68] :

dwe _ T8
dvb"' P+K

(2.43)

dWe -1, TlakK 2K
Vo =K +?{(37~%, * %(—S—F}rl (2.44)

where P is pressure, K and 8 are the isothermal compressibility and the coef-

ficient of volume thermal expansion of the crystal respectively.

The requirements of equilibrium of a crystal has led to the adoption
n
of either the inverse power potentials (A/R ) or exponentive decaying po-
tentials be-‘ P o Fumi and Tosi have found the latter form to be more

satisfactory than the former [20 ].

If one considers explicitly the Born repulsion of the first nearest

neighbours, the repulsive energy can be written [18] in the Born-Mayer form:

an = Mbezp (-R/¢) | (2.45)

If one includes explicitly the Born repulsions of the second neigh-
bours, one has the Huggins-Mayer form of repulsive energy [69]
M"ﬂ? = Méap-» Q%P(—"g’/f)
+ %‘M'{b*m*éam)esz“ag/f} (2.486)
Here the structure dependent ccnstants M, M' and a are given in Table 2.4,
The expression (2.45) contains two parameters, b and f5 , which are de-
termined directly for each crystal from the equation of state and the com—
pressibility. In the alkali halides, the average value of f’ is 0.320 Z,
with a root-mean-square deviation of 7%. On the other hand, the parameter
f en%ering the expression {2.46) is assumed to be independent of the
ionic species in a given crystal. The evaluation of the repulsive energy

of an ionic crystal by means of eq.(2.46) still requires the determination
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of three repulsive parameters namely Mb+_, M'(b++ + b__) and f . Fumi

and Tosi [19,20] have shown that the number of independent parameters

in a family of salts of a given structure can be reduced by imposing the
condition that the model yields the empirical law of approximate additivity
of the interionic distance in a family of crystals. Tosi and Fumi [19,20]
have also shown that the variation of P from crystal to crystal can be
determined from the compressibility. This yields the Fumi-Tosi potentials,
which represent a culmination of earlier efforts of many, inclﬁding Born,

Mayer, Huggins and Pauling.

The general form of Fumi-Tosi potentials can be written as:

§‘i( r) = Z:Zi e%, + b‘i exf ("T/ﬁ?) _C‘;/ré _\‘df}/r‘:;

x .‘,J:::-%uana

(2.47)

Fumi and Tosi take the full ionic value %1 for the charge and use the Mayer

[70] values for the Van der Waals coefficients cij and di" For the short

range repulsive terms they make the following assumptions: (1). for any
crystal f‘!'?'::: f_u-": ﬁ_ ﬁaf, but the value of f varies frorﬁ crystal

to crystal; (2). the constants bi' are written in the form

bg& = @ijbesz(né’fj)//fa] ’ ‘ (2.48)

with b a constant for all crystals and for all interaction types, Ti and

Tj the ionic radii, which depend only on the ions involved and Bij the
Pauling factors which are defined by

p;)f == | +Z;/n,; + gi/ﬂ)

with ni, nj the number of electroms in the outer shell (usuzlly 8, but for

N
S
w
~

+
Li, 2).- Thus for the 17 salts considered the parameters reguired
are 17 values of f ; D values of r+, 4 values of r and 1 value of b. The

parameters are obtained by a least squares fit to the equation of state and
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its volume derivative at constant temperature. The experimental data requi-
red for each salt are the lattice parameter, the thermal expansion coeffi-

cient and the compressibility and its temperature and pressure derivatives.

The prediction of the Bl to B2 transition pressures by traditional
Born model are in quantitatively good agreement with experimentally observed
values, but they are usually too high. This is due to the fact that the tra-
ditional Born model consistently over-estimate the lattice energy in the
Bl structure relative to the B2 structure and systematically somewhat under-
estimated the compressibilities of the Bl structure. Tosi and Fumi [ 5] con-
cluded that the only possible phenomenological approach to the stability of
alkali halides must involve the assumption that the parameters b and .f
of the Born-Mayer potential are structure dependent, i.e. that they have
different values for éhe Bl and B2 structures. With this modification they
showed that consistent agreement can be obtained with the experimental value
for the work involved in the observed pressure transition and thermal tran—
sition. ’

" We shall not examine the limitations involved in fhe above Born-
type potentials individually. We note that a basic assumption involved in
the Born model is that the lattice energy is expressed as a sum of central,
two body energies of point like charges; furthermore, by fitting the re-
pulsive parameters to experimental data, the Born approach depends heavily
on those experimental quantities. They reproduce the perfect-crystal data
only in part. The assumed forms of potential may also be too restrictive
for wide practical uses. It is known that the point-like charge assumption
cannot give a good representation of the optic branches of the phonon disper-
sion curve [ 71]: the splitting between the LO and TO branches will be too
great and the high frequency dielectric constants calculated from this
model differ from the actual values which would be in the range 2-3 for
the most alkali halides. Furthermore the violation of the Cauchy relation
C = C of elastic constants shows that central, two body interactions

12 44
are not exact. To incorporate many body interactions one should resort to
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the first principle calculations.

It has been noticed that in the Born model, the determination of the
Born repulsive parameters through the fitting of the isothermal compressibi-
lity or the static dielectric constant (in both cases together with the equi-
librium interionic distance) leads to rather different values for the re-
pulsive parameters. Although the functional forms of d/r'l or bex?(-r/f )
have been typically chosen for repulsive energy but some arbitrary variants
[ 72] have been explored may be adjusted to give the correct compressibility

and lattice constant at equilibrium.

Various phenomenological potentials have been_prOposed in recent
years by Catlow, Diller and Norgett [73] , by Corish, Pa;ker and Jacobs [74],
by Sangster et al. [75] and by Hardy and Karo [76] . These authors have
tried to combine in various ways the Born model with models of deformable
ions, such as the shell models, in an attempt to reproduce simultaneously -
both the elastic and the dielectric properties of the alkali halide crystals,
Based on their defailed studies, Eggengoffner, Fumi and Murthy [22,23] have
concluded that it is difficult to say whether these new potentials, taken
as a whole, have truly improved our knowledge of the effective short range

pair interaction potentials in the alkali halides,

Recently Narayan and Ramaseshan NR [21] have proposed a new empiri-
cal potential for ionic crystals. NR view an ionic crystal as a ceollection
of compressible ions in polyhadral, space filling cells. Repulsion arises
solely from the increased compression energy at the cell faces. The main
feature is that they use two parameters for each ion which, once obtained
from one set of crystal data, can be used in any other crystal in which it
occurs, This may lead predictive power to the theory to some extent, but it
still needs to be tested. This theory in their newly revised form has
been used to study the Bl to B2 transition in alkali halides, the results
appeared éo be in very good agreement with experiments. But their procedure
seems to be rather ad hoc and no basic justification has so far been given
[ 33] . Furthermore the NR potential cannot be used either in MD simulations

or in Phonon calculations.
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2.4 Polymorphic transition in terms of the GK model

So far, we have described two types of theoretical approaches to
treat the alkali halides: the a priori quantum mechanical approach and the
semiempirical Born-Mayer approach. Both the approaches have been fairly
successful in their predictions of the binding and structural properties
in alkali halides. A middle of the way approach has been taken by Gordon
and Kim, who have developed a theory for the calculation of interaction
forces between closed shell systems, as discussed in section 2.2.2. The
GK treatment is parallel to the Born-Mayer theory in that it writes lattice
energy as a sum of pair interactions and neglects many body interaction
energies. However, since it uses the a priori GK potential instead of the
empirically obtianed one so that no empirical parameters are introduced.
It thus eliminates some difficulties which the empirical Born-Mayer theory
often encounters, and gives.some predictive power to the thecry. The GK
treatment is similar to the Lowdin's theory in that it has the nature of
first principle calculation. However, contrary to Lowdin's theory, it

neglects the lattice induced modification of the electronic charge density.

Gordon and Kim [GK] [25,26] first applied their ion pair potential
to a preliminary study of the cohesive energy of the él and B2 phase and
the transition pressure of some alkali halides, In their treatment they
assumed: (1). Crystals are composed of the free ions; (2). The interactions
of ions are pair-wise additive, many body interactions are neglected; (3).
Neglecting thermal effect, either harmonic vibration energy or zero point
energy; (4). For short range interactions only the first nearest neighbour
interactions are included. Generally good agreement is obtained for the lat-
tice energy of Bl phase and the Bl to B2 transition pressure with available
experimental data. But there are some discrepancies,for example (1). for
most crystals they overestﬁmate lattice energy by about 10% and the equi-
librium iéttice constants are too small; (2). the calculated transition

pressures are rather good, but if one includes second neighbour interaction,




then the predicted value becomes much lower. From table 2.5 one can con-
clude that the contribution of second nearest neighbour interaction to
lattice energy is clearly not negligible. Thus GK result only has qualita-
tive meaning. As we shall show in the following, we alsc found that for
those salts for which the calculations have not been done, namely the iodine
compounds, the transition pressures are negative. this implies that for

a whole class of alkali halides the original GK model predicts the wrong

structure.

Successively, Cohen and Gordon [ CG][27] have tried to improve this
by using a modified electron gas treatment and extending short range inter-
actions up to second and third nearest enighbour for the Bl and B2 structure
respectively. The average magnitude of the deviation between the predicted
and observed lattice constants and lattice energies are about 2%. This
scaled electron gas results give a modest impfovement over GK results for
the transition pressures but still large discrepancies remain. Fdrthermoreh
Boyer [29] has also shown that using scaled GK model one obtaines worsened
results for some other properties. Thus one must look to other approxima-
tions to correct the larger discrepancies between theory and experiments.
Boyer [29] has presented full first principle egquation-of-state calculations
for all alkali halides except for cesium compounds, since the Hartree-Fock
wave function for Cs*has not been computed. His treatment includes thermal
vibrations in the harmonic approximation and the effect of as well as zero
point motion. He uses a parametrized version of the original GK potential
pK(Bﬂ and includes short range force to seccnd nearest neighbours for Bl
structure, to third nearest neighbours for B2 structufe, A number of pro -
perties are treated within this framework: lattice dynamics, elastic beha-
viour, structure determination, thermal expansion, compressibility and the
overall stability of the lattice as a function of temeprature and pressure.
It is shown that including the effect of harmonic vibrations in evaluating
the free energy did not materially affect the conclusions on polymorphic

transitions based on the static calculations. The results of the above
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various treatment for equilibrium lattice constant, lattice energies and
predicted the Bl to B2 transition pressure are listed in table 2.6. to -
gether with the experimental data for comparison. In this Table we alsc

include the results from our calculation [Present] , which follows Boyer's

treatment but omits effects of harmonic vibrations.

An attempt was made by Boyer to ascribe trends in the discrepancies
between theory and experiment to particular approximation of the theory.
From this analysis it appears that the pair-potential approximation (PPA)

is in greatest need of improvement.

The breakdown of PPA can be seen by noting that the magnitude of the
errors are found for those compounds with a big difference between the size
of the consituent ions. This is most evident in the thermal exapansion coef-
ficient ¢f (see Table 2.7), for example, the predicted values of & for
the iodides are in all cases considerably too small with progressively -
worse agreement going from Rb to Li ., The generally poofér agreement
between theory and experiment for the polymorphic critical pressure is
also an indication of a breakdown in the PPA (see table 2.8)., The reason
of these big errors in the PPA can be understood from a simple geomstrical
argument. In the calculation of a pair potential, the’largest contribution
comes from the region where there is greatest overlap of the two charge
densities. However, in a solid substantial portion of the total charge
density in the overlap region of a given ion pair can come from enighbouring
ions as well, This is especially true if one ion is much smzller than the

other.

As mentioned before within the PPA the calculated equilibrium lat-
tice constants are too small and the lattice energies are too great for most
compounds , and if one includes the Van der Waals energy into the lattice
energy thg situation will become even worse. it is thén not surprising
that the calculated transition pressures come out to be too low. To bring
the thecretical results in closer agreement with the experiment, one thus

need a supplement of repulsive force in the B2 structure that should be
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larger than that in the Bl structure. In the next chapter we will show

that this supplement can be achieved by including the nonadditive three

body interactions.
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CHAPTER III - MANY BODY INTERACTIONS AND ITS EFFECTS ON POLYMORPHIC TRANSITIONS

3.1 Introduction

In the previous chapter we have shown that while pair-wise additive
forces have played a very important role in the theory of ionic crystals,
there are indications that many body forces though comparatively small, can-
not be neglected in the study of polymorphic transitions. This conclusion
is, for instance, supported by the phenomenological analysis of Tosi and
Fumi [5]. However, a semi-empirical treatment does not allow one to clearly
separate the small many body terms from the.two body terms, because it involves
the use of experimental data pertinent to the transition the accuracy of
which is often not sufficient. For this purpose one has to resort to quan-—

tum mechanical treatments.

Much work has 5een done to evaluate the non-additive contributions
to many body force [721 for rare gas atoms, At large inter-nuclear separa-
tion, the dominant contribution to the non-additive three\body forces comegé
from triple dipole interaction which has been calculated by Axilord and
Tellor {78] using third order perturbation theory. It is a straightforward
extension of the London-vander Waals R_s dipole-dipole interaction between
two atoms at large distances., If we denote the angleg of the triangle formed
by the triplets (a.b.c) by ?1} Yé and Y}}and the distances between the

atoms by Rab’ Rac and R then the triple-dipole interaction, 4 ES’ for

be’
three identical atoms is

9 Eayot (36570t GsVy+ 1)

AE, = (3.1)
S /6 RYR:pS3
Ric Réa
where ¢{ is the atomic polarizability and Ea and "average excitation
v
energy" per atom ; Eav is usually taken to be the first ionization potential.

However, at smaller inter-nuclear separations, the triple dipole interaction
ceases to be dominant, and its description in the conventional manner becomes
inadequate as a result of the neglected effect of electronic overlap. In
principle, one can use fully quantum mechanical methods to evaluate non-

addivite three body forces. However, the actual calculation becomes very
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complicated with increasing number of electrons, so that only hydrogen

5 or helium atoms have been treated so far by this method [79] and this only
to a limited extent. Present [8Q] has calculated the non-additive three
body forces for Kr3 and He3 using the Thomas-Fermi-Dirac model and obtained
results valid only for very small distances. At these small distances, the
% non-distorsion assumption which he used for the separate atomic densities
is not valid. In addition the region of inter-nuclear distances covered by
his calculations falls outside that of many physically interesting problems.

Review of work on calculations of non-additive three body interaction can be

found in ref. [77) and ref. [81].

The first explicit analysis of many ion interaction in alkali halide
crystal was given by L8wdin [8], who undertook a calculation of the total
cohesive energy for ainumber of alkali halides using first order perturbation
theory. The lattice energy was found to contain a considerable amount of

many-ion exchange contribution, which can be written as -

Ej =~ ez%: f\/,.mi,?(l)df}(l, 1) dx, (3.2)
where

\ﬁ/*lad,g(’) ’-:‘-’Z-é’-’:,:@“ (3.3)

h#g :

is the Madelung potential of the ionic lattice of point charges at point

r.; Zh and nh are atomic number and number of electrons of ion h respectively;

A3f>g in expression (3.2) is defined in eq. (2.18). Thus the many ion inter-

action term is essentially proportional to the Madelung constant and is found

to be dominated by three body interactions. This implies that the structure

sensitivity of the many ion interaction as calculated by L8wdin, is too low,

since the Madelung constants of the Bl and B2 phases differ by only 1%; the

maximum difference in three ion interactions between these two structures is

only of the order of 0.1 kcal/mole; and the magnitude of this three body

interaction decreases rapidly as the cation and the anion approach equal
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size. Later attempts to introduce many-ion interactions in the lattice
energy of alkali halide crystal have been directed towards an interpreta-
tion of L8wdins results on a simpler basis, for example, the so-called

""shell” model developed by Dick and Overhauser [82].

In shell model the ion is modelled by a charged massless shell
through which short range forces act. The shell is coupled through a har-
monic spring to a charged core which has the mass of the ion it belongs to.
In order to reproduce the experimental dispersion curves for the lattice
vibrations as close as possible an extra degree of freedom allowing the
deformation of the shell has been introduced [83]. This takes into account
the polarization effects in ionic crystals. All the models explain the
breakdown of the Cauchy relation and include some of the many body inter-
actions. Few attempts so far have been made to apply these models to the
study of static properties such as cohesive energy, relative stability, phases
transition pressure, etc. [84}. One difficulty common tq all those theoriég
is that the mathematical equations are too complicated and unless drastic
approximations are made, numerical calculations become impossible. In
addition, it is difficult to discern explicitly the many ion contribution
to the crystal energy. Furthermore the use of potentials obtained from
the shell model, in a context different from that of the harmonic approxi-
mation, say in molecular dynamics calculations, though feasible [ 85] it is

very costly.

Jansen and co-workers [ 81, 86 ] treated the three body interaction
by perturbation theory using single effective electron charge distributions
of a Gaussian form for the unperturbed atomic densities, This semi-empirical
method has been used extensively by these authors mainly to explain the rela-
tive stabilities of rare gas and alkali halide crystals., Although they
succeeded in predicting correctly the relative stabilities of the crystal
by using this model, the method has been criticized as having ambiguities
both in its theoretical formulation [ 87 Jand in the actual choice of the

range parameters of the Gaussian electron charges [ 88 ]
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As discussed before, recently Muhlhausen and Gordon [63] nhave
developed a modified electron gas theory of ionic crystal including some
many body effects. The calculations have been done only for some alkali
halide crystals, namely LiF, NaF and alkali chlorides. We also note that
there is no conclusive evidence that the MEG theory is to be preferred over

the original GK model.

As we discussed in the previous chapter, some descrepancies between
predictions of the experiment and the GK model have been ascribed to the
pair potential approximation (PPA). The original GK model can be extended
to the calculation of the non-additive three body interactions (TBI) among
triplets of closed shell systems [33}. The TBI are expected to dominate the
non-additive many body interactions. The calgulation of TBI can be more |
easily and explicitly‘carried out. It is a first principle calculation and
it is done once and for all, and there is no édditional assumption intro-
duced. Thus a study of the effects of TBI on the cohesivg and structural
properties in alkali halides can quantitatively give evidence that the GK
model can be improved along these lines. In section 3.2 of this éhapter we
shall calculate TBI for NaCl, NaBr, Nal, KCl, KBr, KI, RbCl, RbBr and RbI.
The properties of the TBI will be discussed in section 3.3. In section 3.4
we shall apply these results to the study of polymorphic transitions for the
above-mentioned nine crystals. It will be shown that incorporating TBI in
the evaluation of lattice energy will to a great extent correct the system-
atical errors involved in the PPA of the GK model for a family of alkali
halides and give an improvement in the prediction of the structural stabil-
ities. As a primilinary study, we will not consider the change of ion size
and polarization effects. To correct the rigid free ion picture of the GK

model is a subject for further studies,
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3.2 Calculation of non-additive three body interaction for alkali

halide ions

In the calculation of three body forces in alkali halides, we shall
follow the work of Kim [33], who has done a similar calculation for the rare
gases. We take three ions A, B and C, of electron densities f’A' fDB and
f’c respectively. The electron density of the combined ions is assumed to

be equal to the sum of the electron densities of the separate ions:

?As{ﬁ»ﬁ)a’ PalTa)+ Pafré)
foc(T, o) = £a () + P(T2) : (3.4)
fea (T

4

) =Ffc(T)+ Fal(Ta)

-

ﬂsda,fs%) == fA(-f,;)'i"Fg(—?;)'f'Fc(?;) (3.5)

where le, for example, is the electron density of the combined ion pair

AB and that of the total system of three ions A, B and C. Here

P ABC

?Z, ?g and ?E are the distance vectors from the centres of the ions A, B

and C respectively.

The Coulomb interaction for fixed separate charge distributions is
pair-wise additive. Since we assume no re-arrangement of the separate ionic
charge densities when the three ions are brought together, the Coulombic
interaction energy of the three ions is the sum of the three pair-wise
Coulombic interaction energies and there is no Coulombic energy contribution

to the non-additve three body forces. Therefore we need only considsr the

remaining. contributions to the energy in the present work.

The total non-Coulombic energy of the three ion system is approxi-

mated by
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Eq asc = [ fusc (T4, 75.7.) Eq( fagc)dT (3.6)

where EG(f ) is the energy density of the electron gas with uniform density

f . It is given by eq. (2.29)-(2.31).

In order to get the non-additive three body interaction we substracted
from eq. (3.6) the sum of three pair interaction and the sum of the non- .
Coulombic energies of the three ions. Therefore the non-additive three body

interaction is

AVase = [ Pane (476,700 Ex (frte) = fi (T, ) Eulfan)
~ fac (?;,E)Ee(fad‘ﬁg (Te, ?;) Ee(fea) (3.7)

+ P4 (TA) Ee (£4) + fa(T8) B o)+ £e(F) Bt dT

For the evaluation of the volume integral in eq. (3.7) we used a

spheroidal coordinate system [89] in which

A=n+Ys)/Res | = (Gi-) Ry O

and 79 is the azimathal angle around axis along RAB' The volume integral

is expressed in terms of three new coordinates as
- 3 re ] OX4
[dY = (RAg/z) [1 da._f:a(,ufo de (A*—u*) (3.9)

Since the electron densities of the alkali and hilegon ions are spherical,

they depend only on the magnitude of the distance rA, rB and rC, and not on

B

4 \Zggg = (R,qs//Z)3 Ludﬂ_!"!dkj;zzd? (A»,"' ;) [&Bi ([4) G, Y;,)‘

the full distance vectors '1"‘2, T and 'f’é Thus,
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*E¢(Pase) = fag (1a.78) Eg(f48) — ﬁsc(’%,fc)'gfr(ﬁd
— Pealre, ) Eg(fes) + £alra) Ee(fs)
+ Pa(18) Fo(fa) + £ (%) Eg(fe) ] (3.10)

A geometry of the system of the three ion A, B and C is given in

Fig. 3.1, where P represents a typical point in the volume over which the

B C
A and {{ from eq. (3.8) and fig. 3.1 [33]. For the ionic electron densi-

integration is carried out; rA, r_and r_are readily expressed in terms of

ties f’A, f% and ‘fc in eq. (3.10), we used the ones éﬁtained from Clementi
analytical Hartree-Fock wave functions [55]. We calculated these densities
at an appropriate set of grid points at the beginning and tabulated them. )
These tabulated densities were then used with a simple exponential interpola-
tion to get the densities at arbitrary points. We have checked this procedure
by evaluating these densities at each point directly from the analytical wave
functions until the relative differences between the two procedures for the
given values of densities were less than 10-6. We found that resulting values
of TBI were the same in the first four figures between two procedures. The

integration in (3.10) was carried out numerically [2Q]. The ?’ integration

was done first by introducing a new coordinate
X=t(s9p dx=-Sapdp (3.11)

and then using the quadrature formula [91]

! Tf(zJ ~, T S 2k~ o
oy (1-1‘)5'23 A’Z T n ; f{@s 2n ”'/) £3.12)

The integrations over A and .{{ were then carried out using Gauss-Laguerre

and Gauss-Legendre numerical quadratures [92] respectively, We found that
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a numerical integration with a grid of 24&):(16(&),(16(?) points leads to

a numerical accuracy of 1%, which we found good enough for our present pur-
poses. In a few cases we have checked the convergences by increasing the
number of points in the grid to 48(,&())(32(&)}(32(?). We found that the first

two figures of the results were not affected by this change.

Following the above procedures the TBI potentials were calculated
for NaCl, NaBr, NaI, KCl, KBr, KI, RbCl, RbBr and RbI crystals. For each
crystal the total TBI potential of the Bl and B2 structure were expressed
as a sum of TBI potentials of the relevant triplets ions in the Bl and B2
structures respectively. We denote an anion by X and a cation by M. Each
configuration of triplet ions A,B and C can be definedlﬁr(CAB;chRCB,J’),
where a triangle formed by the triplet ions is specified by RCA’ RCB and z',
as shown in Fig. 3.1, with a central ion assumed to be placed at point C.
Three characters CAB indicate the type of ions, each character can be either
X or M, to specify which ion is placed at point C, A and B respectively. *
ca’ Rep’ Y) is illustrated in Fig. 3.2.
In table 3.1 and 3.2 the type of energetically more relevant configurations

For example, the configuration (XMM, R

and their number per ion are given for the Bl and B2 structures, with the

value of RCA and RCB in units of the nearest neighbour distance R. For the

sake of convenience we divided all listed configurations into three parts:

1) configurations in which RCA = RCB = 1, denoted as (l.n.n); 2) all the

other isosceles triangles, i.e. in which RCA = RCB # 1, denoted as (IS0);

3) remaining configurations denoted as (REM),

We used n{CAB; RCA’ RCB,!') to dencte the number of configuration

(CAB; R ’ KW per ion that appear in the given crystal structure (Bl

, R
ca CB
or B2), and V3(CAB; RCA’ RCB,)’) to denote the TBI energy contributed by

configuration (CAB; R RCB,X). Note that V3(CAB; Rop Rog? Y) is a

CA’
function of the nearest neighbour distance R only. Using the notation the
total TBI. energy for a given crystal and structure at an assumed nearest

neighbour distance R can be written as

total
Vi (R) =2, V,(cB; Rea,Reg W) R (CAB; Rey.Reg, &) (3.13)
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where VEOtal(R) depends only on R. Here the summation on the r.h.s. of the

eq. (3.13) is over all relevant configurations as listed in table 3.1 and 3.2
for the Bl and B2 structures respectively. The contributions form the other

configurations are negligible.

In order to investigate the effects of TBI on the cohesive properties,

total
we need to know the value of V3o @ (R) at any value of R around an equilibrium
- total
nearest neighbour distance R. We first calculated the value of V3 2 (R) for

several assumed R (with spacing 0.1 a.u.), tabulated the obtained values and
then use this table to calculate VEOtal(R) at any value of R by means of a
simple exponential interpolation. Using the above procedure, we calculated
the total TBI €nergy as a function of the nearest neighbour distance. We

used this in the lattice energy expression and calculated for different

structure and chemical compositions.
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3.3 Properties of TBI

The TBI forces in the GK model arise from the triplet overlap of the
three charge distributions, which is due to the nonlinear form of the electron
gas functionals. Before looking at the numerical results we shall quantita-

tively discuss the contribution of each electron gas functional term to the

TBI. The kinetic term depends on the density whose form is f’$§ with
positive coefficient; notice that [33j
75 5 %
(Ca+fa+ £ )~ (Fat§a)"—(atf)”
(3.14)

'—(fc""ﬁ!)%-f- ﬁq%'f' f’g%*‘ c% £0

where the equality sign holds in the case that any of the f’ is equal to
zero. So we conclude that the kinetic term contributes an attractive energy
to the TBI. With similar arguments one can conclude that the exchange and
correlation terms give repulsive contributions to the TBI energy. One can
easily find that the introduction of scaled factors in the MEG theory [27]

leads to a reduction of repulsive force in the TBI.

First we shall take KCl as an example to see how the value of TBI
depends on the configuration of the triplet of ions and how it varies with
the geometrical parameters RCA’ RCB and a’. We consider the cases of R =

CA
R_ = R. This is shown in Fig. 3.3; Fig. 3.3 (a) shows how VS(MXX; R,R, ¥)

CB
varies with R; Fig. 3.3(b) shows how V3 (XMM; R,R, ¥) varies with R, for the
cases of ¥ = 90°, 70.5° and 109.5°. In all these cases the value of TBI
starts with a negative value at very small R, increases rapidly with R to
reach a cerfain positive value, and remains approximately constant over a

certain range of R. At still larger R, TBI decays exponentially. It is of

interest to point out the following properties of TBI:

1) Around the equilibrium nearest neighbour distance, for example,
at R = 5.7 a.u. for the Bl structure of KCl crystal, the values of TBI are

positive. This implies that each TBI gives an additional repulsion to the
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to the lattice energy. We will see later that this is a common feature for
all crystal of interest. Table 3.3 shows that the exponential-decay behaviour
of TBI with respect to R can be roughly represented by the function Aexp(—@ R).
In table 3.3 the first line gives the caiculation TBI values, the second line
gives the values calculated from an exponential function with A = 800 and

@ = 1.30. This also implies that the TBI is a short range force.

2) The magnitude of the TBI at fixed value of R, near the equili-
brium, decreases considerably with the increase of the triangular opening

angle a’ , as shown in table 2.4 for the distance R = 5.7 a.u.

3) From table 3.4 one can also find that for a fixed geometry, i.e.
the same set of values of R and X’, the magnitude of TBI is strongly dependent
on the type of ions. In general V3(MXX; R, R,)’)J>V3(XMM; R, R, ¥), because
the anion charge distribution is more extended. This conclusion can be gen-
eralized as follows: for a fixed geometry, the configuration having more .
anions has a larger TBI value, i.e. V3(XXX; R, R, Y) >V3'(MXX; R, R§) >
V3(XMM; R, R, ¥) J’VB(MMM; R, R, &). This can be seen in table 3.5 in which
the geometry was fixed at R = 7.071 a.u. and 3’:: 90° for KCl. The above

discussion is valid for the other eight crystals of interest.

The calculated results of total TBI energy, as a function of nearest
neighbour distance, are presented in table 3.6 for nine crystals. In addition
the contributions from different parts of configurations to the total TBI

energy are also given.

From table 3.6.3 for Nal one can see that the contribution of TBI
from the ISO part is much larger than the (l.n.n) contribution. This is due
to the large dissimilarity of anion and cation in Nal crystal. On the other
hand from table 3.6.7 for RbCl, one can see that the contribution from tBe
ISO part is considerably smaller then the (l.n.n) contribution; this can be
ascribed fo the similarity of the anion and cation in the RbCl crystal. 1In
general, for crystals composed of less dissimilar ions, the ISO contribution

is less important.
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3.4 Effects of non-additive three body interaction on polymorphic

transition in alkali halides

The results of the previous sections will now be applied to the
polymorphic transitions in alkali halides for which the TBI has been cal-
culated. The total static lattice energy, including the TBI interaction,
can be written as a function of the first nearest neighbour distance R.

The short range ion pair potential for all M+X-, M+M+, X X ion pairs in
alkali halides MX are fepresented by paramerized original GK potential
recalculated by Boyer [29]. The total TBI as a function of R can be taken
from our numerical results as listed in table 3.6. We write the total static

lattice energy E(R) as

Eg(R) = Whi (R)+ \é“m!(k) (3.15)

for the Bl structure and N

Egz(R’) z“/\/&2(!2/)'1- V_;tam{(ﬁ') | (3.16)

f the B2 structure. re W W
or the structure Here B1 and B2

for the Bl and B2 structures respectively. They can be written as

Whi(R) == =1.7474/R + b V5(R), o -

FEV(WZR )+ TENS (/z/e%_x_ (3.17)

are pair static lattice energies

and
Was(B) = ~4762]/R" + 8 e(R s
+ 3 (2%)M*H* +3 Lé(zﬁ%—gf)x_x_, (3.18)

+ 6V( zﬁ%;m, +6Ys (2ERIF) - -

where the short range pair interaction for the Bl and B2 structurs are summed
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up to second and third nearest neighbour respectively. The Gibbs free

energies of the two phases are
Ga(R) = EBJ(R)""2£3P (3.19)
and

Gz (R) = = [5,,(R’) + 3 E"}D (3.20)

where P is the externally applied pressure. The phase transition is marked

" by eq. (1.5).

The equiliﬁrium lattice constants and lattice energies are determined
by minimizing the lattice energy expression with respect to the nearest neigh-
bour distance. The Bl to B2 transition pressure and relative volume changes
at transitions are calculated from eq. (3.19), (3.20) and (1.5). The results
are listed in table 3.7, 3.8 and 3.9. In these tables we list three sets of
results and the corresponding experimental data. The results denoted by PCl
are based on pair potential approximation, i.e. used eq. (3.17) and (3.18) as
the static lattice energy expression. The results PC3 are obtained by using
eq. (3.15) and (3.16) as static lattice energy expression, i.e. incorporating
the total TBI energy. The results PC2 incorporate the TBI energy only parti-
ally, i.e. it only includes the l.n.n. contribution for the Bl and B2 struc-
tures respectively. Table 3.10 gives the calculated TBI energies at the pre-
dicted equilibrium distance for the Bl and B2 structures and for different

crystals.

1) From the results shown in the tables 3.7-3.8, one can see that
incorporating TBI gives a modest improvement for the equilibrium properties
and a cor?ect prediction of relative stability of the Bl and B2 phase for
all the crystals of present interest. The PCl results show that the GK
model in terms of PPA generally over-estimates the lattice energy of the

Bl phase by about 10% and the predicted equilibrium lattice constant is too
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small. The non-additive three body interaction provides a supplement of
repulsive forces, which leads to an increase of the equilibrium lattice
constant and a decrease off the lattice energy of the Bl structure. This
brings the theoretical values closer to the experimental ones. The errors
in lattice energy has been reduced to less than 4%. This minor error may

be attributed to the GK model itself. In the GK model the correlation energy

contribution does not contain the long range vander Waals dispersion force,

so that dispersion effects have not been accounted for in our calculations,
which also neglected the zero-point energy, as shown by Boyer 29 these

have only minor effects.

In the description of the relative stabilities of the Bl and B2
structures the TBI plays a very important role. As mentioned before, that
based on pair potentiél approximation, the GK model predicts wrong structures
for all iodide compounds and for RbBr. (see table 3.8, PCl result). In

table 3.8 positive value of /A W_ means that the Bl structure is more stagie.

1
Among the calculated nine crystals PCl results gave four negative values of
Va) Wl. The PC3 result gave all positive values of & Wl. It predicts correct
structure for all nine calculated crystals. This is because even though the
value of TBI itself is rather small compared with the lattice energy, it is
structure sensitive and it gives relatively large repulsive force to the B2

structure, thus increases the differences of lattice energy between the two

phases and makes the Bl structure more table.

2) The GK model based on PPA predicts the transition pressures
which are too low for all chemical compounds, as shown in table 3.9, PC1
results., By incorporating TBI the PC3 result corrects this systematic des-
crepancy, increases the predicted transition pressure for all crystals of
interest. The PC3 resu%t brings theoretical value of transition pressure
much closer to experimental ones for Nall, NaBr, Nal, KI and RbI, which are
composed‘bf ions dissimilar in size. For these crystals, including ISO and
REM, contributions to TBI are important. While the PC3 result over-estimates
the relative stability of the Bl structure for KCl, KBr, RbCl and RbBr, hence

leads to a theoretical transition pressure which is too high. For these
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crystals the effects of TBI are dominated by l.n.n. constributions. This can
be seen from a comparison of PC2 and PC3 results that the predicted transition
pressures have less differences in the two cases. For these crystals the
rather small energy difference between the two phases generally leads to un-
certainties in the prediction of theoretical transition pressure. Similar
results can be found from the modified electron gas theory [27], L8wdin's
approach [8 ]and also from Born-Mayer semi-empirical calculations [3]. An
exception is the detailed semi-empirical work of Tosi and Fumi [5], where
high pressure parameters were used and which showed good agreement with the
expeﬁiments. We have also calculated the relative volume changes at the
theoretical transition pressure, as shown in table 3.9. The significant

improvement has also been achieved by incorporating TBI for NaCl, NaBr, NaI,

KI and RbI (see PC3 result).

In this chapter we have shown that the original GK model can be
improved by consideration of non-additive three body interactions, which
give a more complete description of the overlap of charge density distribu-
tions and leads to theoretical results closer to the experiment for the co-
hesive and structural properties in alkali halides. The remaining descre-
pancies between theory and experiment may be attributed to the GK model
itself and our simplified treatment in which the long range vander Waals
energy, zero point energy and the long range three body forces were neglected.
We also did not take account of the‘effect of changes of ionic charge densi-

ties from that of free ions.
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CHAPTER IV - MICROSCOPIC MECHANISM OF THE Bl TO B2 TRANSITION IN ALKALI HALIDES

4.1 Introduction

As discussed in previous chapters, many theoretical attempts have
been made to understand the polymorphic transition in alkali halides. How-
ever these calculations are restricted to establishing which phase has the
lower free energy and hence is themodynamically stable under a given set of
conditions. Thus these calculations cannot tell us the detailed microscopic
mechanism of the Bl to B2 transition. Experimental and theoretical progress

has been made in this direction only recently.

Two models of the transition mechanism were reported. One of them
is Buerger's model [3s]. Buerger conjectured that the change of the Bl to
B2 structure can be achieved by the contraction along the [111] axis of the
Bl structure and by the expansion at right angles with this axis. Buerger's
model implies the orientation relation of Bl [111] // B2 [111] during the
transition, which has not so far been observed by experiéent. The other
mddél'has recently been proposed by Blaschko et al, [41]. This model is
based on their neutron scattering studies of the Bl to B2 transformation in
RbI. They found a strong orientation relation between the two phasss, i.e.
Bl [10Q3 // B2 [OllJ, during the transiton and observed occurence of phonon
frequency anomalies for transverse accoustic phonons mainly for the TA [fOOJ
branch. They described the Bl to B2 transition as a re-arrangement of ions
in (100) planes of Bl structure followed by shifting ions in alternate (100)
planes by a vector of [0,%, %] in the Bl structure. This mechanism is
essentially the same as that earlier proposed by Watanabe et al. [37], for
the thermal transition of CsCl from the B2 to Bl structure. Watanabe des-
cribed the combination of intralayer re-arrangement and interlayer transition

of ions in a continuous way.

Thecretical prediction of the microscopic mechanism of the transition
has not been found until a new MD method is proposed by Parrinello and Rahman
(42]. In the new MD method a Lagrangian formulation is introduced which

allows the shape and size of the MD cell to change according to the dynamical
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equations which follow from this new Lagrangian. It has been proved that
this new MD technique is well suited to the study of structural transforma-
tions in solids under external stress and at finite temperature [93, 94] .

It should be remarked here that the traditional MD technique for solids has
been confined to perfect and prefixed crystalline arrangement of the constitu-
ents. This has severely restricted the applicability of the method to problems
involving crystal structure transformations. In order to overcome this diffi-
culty Anderson [95] has presented a method allowing for changes in the volume
of the MD cell but not the shape. Thus crystal structure transformations are

still inhibited in Anderson's method.

Parrinellp and Rahman have applied their new MD method to the study of
the Bl to B2 transition in KC1 [43]; they showed that this transition is a
first order and reversible, occuring at pressure of 44 Kbar and temperature of
925°K with a rapid density change from 2.,6g.cm.3 to 2.85g.cm~3. The calcula—
tion was described in detail to show the dynamical history of the occurrence
of a Bl to B2 transition. Fig. 4.1 shows the Bl to B2 transition is accom-

plished by the following two operations:

Operation #4f1: Uniform dilatation of amount ,12 in the direction of
% as indicated by the thick arrow in Fig. 4.1.A. The result is shown in

Fig. 4.1.B, 7, P, T become 3', B, T.

Operation #2: A move of ions in alternative planes in the € direction
as indicated by the fine arrows in Fig. 4.1.B; the result is shown in Fig.
4.1.C; the centre of the square face formed by'?, € is now occupied by @ .

An atom of the same type occupies the opposite square face, it is the shadowed
circle in Fig. 4.1.C which shows a simple cubic lattice of like ions, the

like and unlike ions together forming a B2 structure.

The work of Parrinello and Rahman describes the path in the configura-
tion spaie that the system follows in goiﬁg from one phase to the other. The
mechanism of the Bl to B2 transition can be described as an uniaxial [011]
deformation of the Bl structure plus a softening of a transverse accoustic

[100] phonon mode. However the pressure and temperature needed to accomplish
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the transformation on the computer simulation were much larger than those
experimentally observed one and in disagreement with the predictions made by
Boyer [29] on the basis of a harmonic free energy calculation that used the
same Gordon-Kim potential. This leads us to believe that a complete descrip-
tion of the transitions re&uires not only an accurate evaluation of the free
energy difference between two phases but also a reasonable estimate of the

energy barriers that hinder the transition.

This is the first theoretical prediction for the microscopic mechan-
ism of the Bl to B2 transition in alkali halides. We noticed that for KC1
experimental evidence is not available. It is also of interest to note that
the microscopic mechanism proposed by Parrinello and Rahman coincides with
that proposed by Blasqhko et al. [41] for RbI transforming from.the Bl to B2
structure. In their experimental studies, Blaschko et al. have also found
the transition starts in regions of high dislocation densities and depends on
the previous thermal and mechanical treatments of the sample. This implie;

an actual transition pressure different from the thermodynamic equilibrium

point,

The work of Parrinello and Rahman stimulated our present study. 1In
this chapter we shall try to achieve the uniaxial deformation by a convenient
uniaxial tensile load and investigate the effect of the load on the crystal
stability. We shall also estimate the lattice energy barriers between the Bl
and B2 phases. The result shows that the energy barriers depend on the value
of hydrostatic pressure, which somewhat explains that a higher pressure is
needed in the computer simulation to make the transition possible on the very

-12
short time scale (10 =~ sec.) of their computer experiments.
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4.2 Potassium chloride crystal under uniaxial tensile loading

As discussed in section 4.1, a microscopic mechanism of KCl1 trans-
forming from the Bl to B2 structure has recently been presénted by Parrinello
and Rahman [43]. The process of the transformation consists of two steps.
During the first step the B1(f c c¢) lattice is subject to twc types of shear
deformation® : a) A 044 type shear deformation in the (100) plane described

by an increasing of cos§ from zero; and b) A C type shear deformation

1172
in (010) and (001) planes described by A, < 1 and ﬂ271 from A, = R, = 1,
as shown in Fig. 4.2. Modifying its configuration continuously, the distorted
system finally reaches a deformed face central tetragonal (f.c.t) lattice (see
Appendix A) characterized by parameters 12 = 1,2247 ?ll, cos® = 0.3333, i.e.
f = 70.53°. The sec;nd step was completed by collective ion jumps, i.e.
ions of alternate planes in the ;lOO} direction collectively jump along the
[O,—l, l] direction. Note that the discontinuous way of ion movements may’
mean that at the end of the first stepthe systenm reaches'an unstable point.
As pointed out by Parrinello and Rahman, this instability would be character-

ized by the softening of a transverse accoustic, [1.0.0] , zone boundary phonon

with polarization vector in the [0, -1, 1] direction.

In this section we shall try to achieve the deformation by a conven-
ient uniaxial load. We start from the Bl equilibrium configuration and apply
an uniaxial tensile load along [O, 1, 1] direction to the KC1 crystal to see
how the system modifies its configuration to reach an unstable point. In
addition we apply an isotroplc pressure to investigate the effects of the
prespgurs on the height of the energy barrier and on the stability of the
crystal. First, we shall neglect the zero point motion and the harmonic vibra-
tions. In the next section this study will then be extended to include the

zero point motions.
(A) Formulation

Our study is based on the Gibbs free energy calculation for KC1l crystal

under a generally applied stress, i.e. a combination of hydrostatic pressure

* A detailed description of distorted fcc lattice is given in Appendix A.
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and uniaxial tensile load. In writing static lattice energy the short
range ionic interactions are represented by parametrized GK potentials [29],
and the three body interactions are neglected. The Gibbs free energy per

unit cell can be written as

G =W+ Ve (4.1)

where wl and Ve are the lattice energy and the elastic energy per unit cell

1
respectively.

When a general external stress is applied, the lattice energy, elastic
energy and hence the Gibbs free energy will be functions of the configura-
fional parameters {11,12 and cosf} ; the latter two terms are also func-
tions of the externalgstress. Let us apply an uniaxial stress S along the
[o, 1, 1] direction in addition to a hydrostatic pressure P. We assume that
a perfect Bl structure with lattice constant a = 5.99% and configurational ~

parameter 21 =N_ =1, cos? = 0 is distorted to a deformed tetragonal lat-

2
tice of configurational parameters {ﬁl, 72_2, cosf} . Thus the lattice

energy per unit cell can be written as follows

oA A, s, CP )
o

(4.2)

W(ALAGP; 2 ) =V(Mrbspia) -

where Vs is the short range part of the lattice energy and is given by

Ve(Ars Cof ) =2 (M0 /2), +414(n0/5 ), T i (aassE),,,

tVeAasaF) + 4V (LA TAE @)
tVs(aes?), + V(2,050 2)

£ 24

+ 4V (E AT AT a), | (2.9
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The second term on the r.h.s. of eq. (4.2) is the Madlung energy per unit
cell; the af( ]tl, 12, costf) is Madlung constant for the lattice of con-
figuration {11, nz, cosf} with respect to a. We use the Ewald method [64]

to express ¢f as follows

Kunep) =2(L)

240+ 4 -
) - R0 0 B (R4, 2)
12083

(4.4)
- ZG'(mmm)ex(" q{»zf ) o
i, 3 -§ EY) 7
-’\afSM? el 7

where
Gr, 7, m "('&t * i (M) (a0
»y, P, ) u;"f)(m'.fmz*mj)-}@xf S 4

L
RO £, £3) =L (BN AL (4440 244, Cosp ) (4.4),
and
2 = '

Fx) “"{;:t'fz exp (-5*)ds (4.4),

is the complementary error function. Here Gz is a dimensionaless paramster,
whose value can be chosen so as to ensure rapid coavergence of both real and

reciprocal space sums. The prime in the sum of ml, m2 and m3 indicates that
m

the sum runs over those integers where ml + m_ + = odd integers, as appro-

2 3
priate to our structure which is derived from an fcc lattice. The sum over

1 1, 13 run over all integers with the exception that 11, 12, 13 simultane~

R
ously take zero values,

When a general stress is applied, the elastic energy V 1 in eq. (4.1)
e
can be written in the following form, which is given by Parrinellc and Rahman

[93]
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Vi =P(r-1,)+0,Tr(S-P)E (4.5)

where S is the external stress and P the hydrostatic pressure; & is the
strain tensor with respect to a reference configuration. _Q‘ and _ﬂ. are the
volume of unit cell of reference and distorted configuration respectively.
It is convenient to take the equilibrium configuration under the hydrostatic
pressure as a feference state, which is an fcc lattice with a shorter lattice

constant a. Note that Eq. (4.5) reduces to

Ver = P(n-n,) | (4.6)

-
-

when Sij = +P Ji_j is a pure hydrostatic pressure. Egq. (4.6) differs only by
an immaterial constant with the usual P term appropriate to the hydrostatic
case, When an wuniaxial load is applied, crystal is forced to be a deformed

fct lattice, with configuration parameters {711, 712 ,cosf} . The elastic

energy per unit cell Vel is thus given by

\/21 :—;Qa(ﬁ(&s?;;\,:—a.5’)~f~2(aiafsea?—q}) (4.7)

3
a .

where _(20 =

noticing that the strain tensor is written in terms of the deformations

bl

The above equation can be obtained from eq. (4.5) by

{721, 712, -cos f} considered here:
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While an external stress of intensity S in the [ 011] direction leads to a

stress tensor of the form

0 0 o
— g -
_§: = o 35 -21-5 ‘ (4.9)
I
0 5 IS

- For a fixed external stress, we minimize the G in eg. (4.1) with res-

pect to the configuration parameters {ﬂl, 712, cos?} , we find the local

minimum of G and the corresponding relative stable configuration {ﬁl’ 7_32

cosf} under the given stress. Substituting the configuration parameter
{ﬁl’ feicds?} into the lattice energy expression (4.2) we got the correspond-
ing lattice energy. Changing the external stress step by step and repeating

the above procedures we can follow the evolution of the system.

In order to monitor the stability of each configuration generated, we
set up a d:ynamical matrix which depends on the configuration parameter
B e 1 '3 4 3
{ 721, )l2, cos?} . The general expression for the dynamical matrix of an

ionic crystal with pairwise short range forces is given by Maradudin et al.




[og! . Diagonalizing the dynamical matrix for a wave vector q, we got the
phonon frequency for that 'c’f We use the rigid ion model [71] so that no
empirical parameters are introduced. The main effect of non rigid-ion type
behaviour on the lattice dynamics of alkali halides is known from other model

calculations [97] to be mostly of quantitative relevance.

For the microscopic stability of the system the phonon frequencies

wq must be real:

Wy >0 (=12 - 6N) (4.10)

In fact an imaginary frequency of vibrations implies the normal mode of
vibrations which grow exponentially with time, thus leading to the disruption

of the system.
(B) Numerical method and results

Obviously the minimization of eq. (4.1) relative to the parameters
{Zl’ 7[2, cosf} cannot be done analytically. Thus for a fixed value of S
we calculated G on a suitable grid of points and looked for those parameters
{11, 722, cosf} that minimize G. In order to minimize computer time we
centre this grid of parameters around an estimated equilibrium configuration.
This estimated {7[1, 12, cosf} is obtained by linear elasticity theory at
low values of S and by appropriate extrapolations at larger stresses. The
grid of values over which G is calculated is such that different values of
2, M, and cosf  differ by 2x10°4, 4x10™% and ax107> respectively. The
stress is increased by steps of S = 2.94Kbar until an instability point at

#

- 55 -



which some a}z becomes negative is found. The maximum value of S for
q
which the system is found to be stable is called Smax' This kind of calcu~-

lation has been performed for P = 0, 12 and 44 Kbar.

The results are summarized in the following tables and figures.
Table 4. (1), (2) and (3) give the configurations created by the .uniaxial
tensile loads for cases of hydrostatic pressure P = 0, 12 and 44 Kbar respect-
ively. 7—11, i 2 and 5357 in these tables are configurational parameters
which are measured relative to the equilibrium lattice constant at the rele-
vant hydrostatic pressure. The equilibrium lattice parameters are found to
be a = 5.99, 5.910, and 5.742 & at the pressures of P = 0, 12 and 44 Kbar
respectively. We also give the calculated corresponding lattice energy W_,

1

which is the sum of the Madlung energy E and the short range part energy

Mad
VS as defined in eq. (4.2).

Fig. 4.3 (A), (B) and (C) give the phonon dispersion curves along the
[lOO],[Oll] and [111] directions for P = 0, 12 and 44 Kbg; respectively. The
sclid lines are for the case of S = 0. Note that in the cass of P = 0, i.e.
in Fig. 4.3 (A), the solid lines give the phonon dispersion curves for KCl in
the equilibrium Bl structure. The dashed lines in these Figs. give the phononv
dispersion curves for the crystal under umiaxial tensile load, whose value is
equal to Smax’ and a hydrostatic pressure P, as 1indicated in each Figure. We
add subscripts 1 and 2 to Ta and To to indicate the directions of the polariza-
tion vectors, subscript 1 denotes IO, -1, 1] direction and 2 [O, 1, 1] direction.
Fig. 4.4 gives the variation of the frequency of Tal mode of[ﬂKﬁzone boundary

phonon with uniaxial tensile load S for the cases of P = 0, 12 and 44 Kbar,
From the above numerical results we observe that:

1) The numerical results agree well with linear elastic theory at

small stresses. This we have proved as follows.

We first calculated the elastic constants by the formulas (291
2
— e I 4 ¥ & l ) ’
CN """{27353’“‘“",;4. + ',';"(Vm"'%ﬁ* ";z"';:(l’:m*\/n)) (4.11),
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= A ARy "
Co =aos6C o + (B Ve £ (K * 1))

Kyt ’
= (Vo + Vel ) (4.11),

_ et | 7 Lry”
C“—-aé;ia ra + *#(?Vur”"f(‘/uw* x:)
+55 (Vi + Vi) (4110

These equations can be obtained by comparing the long wave length 1imif of
the dynahical matrix with correspbnding results from the elastic theory [2].
In these expressions, the derivatives of the VMX potsntial are evaluated at
r. = %a (a is the lattice constant of Bl structure) =:d the derivative of

1

VMM and VXX at r,= 5 a. Note that eq. (4.11) expresses the elastic con-

stants as functions of the equilibrium lattice constant, which depends on
the pressure. The results for the elastic constants are given in table 4.2

for the cases of P = 0, 12 and 44 Kbar.

Inserting then the values of Cij thus obtained, we can make use of

the lienar elasticity relation between the stress and strain

-]
E=C S (4.12)
P o )

Mo

where g is the elastic constant matrix. In the present case of cubic symmetry
and with our applied external stress of the type described in eqg. (4.9), we

find the following relations
és ==ul~ ( 2 (4.13))
=2 Y+ G2-263/c,,) 13,

En=—2C1¢,,/¢C, (4.13 ),

and

Cs @ = -Z'LS/QA (4.13)

To linear order the relation between our parameters and the usual definition

of the strain becomes:
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— 1 (4.14),

™

y-—-—

and

emomes

Cx =27, — 1 (4.12),
where values of )Tl, AZ and cos ? can be found in table 4.1. Table 4.3
gives a comparison of the results calculated from eq. (4.13) with that from
eq. (4.14). As can be seen that the agreement is rather good for S = 2.94

Kbar, but already at S = 5.88 Kbar nonlinearities become significant.

2) Comparing values of S in the last rows of tables 4.1{1) and 4.1(3),
one can find that the higher hydrostatic pressure the less Smax system is
needed to reach an unstable point. Fig., 4.5 shows the variation of lattice
energy with the uniaxial tensile load. One éan see that the hydrostatic
pressure decreases the lattice energy barrier, which may be defined as the
differerices betwsen the lattice energies in cases of § = 0 and S = Smax’ i.e.
the difference of lattice energy between the values given by the first and
last rows in tables 4.1(1)-(3). We denote the energy barier by ‘a,wl, as
shown in table 4.4. We note that Parrinello and Rahman have observed the
transition at pressure of 44 Kbar and temperature of 925°K. This temperature
corresponds to an energy 1.88 Kcal/mole. If we take this as a very rough
measure of the energy barrier we find that the energy scale of the barrier
is reasonably well described by the theory developed here. The lowering of

the energy barrier as a function of the pressure explain also why they had to

go to 44 Kbar before observing the transition.

It is of interest to observe the phonon dispersion curves presented
in Fig. 4.3{(A)-{(C). From the study of the effect of the uniaxial stress on
the phonon dispersion curves we see that at P = 0 all the phonon frequencies
are chanééd by the application of the stress. In particular, the [100] Ta
branch is split by the reduction of the symmetry induced by the external stress

into a Tal mode polarized in the [O, -1, 1] direction and a Ta2 mode polar-

ized in the [0, 1, 1] direction. This Tal mode is lower in energy and is the
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mode that eventually does go soft. However at P = 44 Kbar the phonon
frequencies are only marginally changed by external stress with the exception
of the [1 0 0] Ta mode, which is split and softened in its Tal component.

This peculiar behaviour strengthens the conclusion of Parrinello and Rahman
that in their MD experiment the Bl to B2 transition can be described as a
combination of [0 1 1] uniaxial deformation of the Bl structure and a soften-
ing of [100] transverse accoustic phonon mode with polarization vector in

[0, -1, 1] direction.
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4.3 Including zero point motion

In this section we shall extend the results of the previous section
to include the effects of zero point motion. The determination of the zero
point energy of the crystal requires integration of periodic functions over
the Brillouin Zone. The calculations are ususally very complicated and time
consuming. To speed up calculations the recently developed Baldereschi point
[98, 99] and many specail point scheme [100, 101] will be used. This reduces
the integration over the B.Z. to a sum over a few points with an enormous gain
in computational efficiency. However for the deformed fct lattice, special

points are not available and will be calculated in the Appendix A.

(a) Effect of harmonic vibrations on the equilibrium lattice

constants

In the case that the harmonic vibrations at finite temperature are

included the Gibbs free energy expression in eq. (4.1) should be replaced by

G = F + Vo (4.15)

where F is the Halmholz free energy and can be written in harmonic approxi-

mation:

P T, + T afimenpthafin] o0

where N is the number of the unit cell and the i summation runs over all
phonon modes; the second and third terms on the r.h.s of eq. (4.16) are the

zero point energy wzero and the thermal vibration energy WT respectively.

Using Baldereschi mean value point for fcc lattice eq. (4.18) can be

approximately written as follows:

b
F=w,+ 4 hk) +kTZA{/-ex,a{-w(@ o)} @7
re -
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where ?. is Baldereschi point [ 99], r sum ranges over the six branches of

phonon mode of ?. .

If we know a set of many special points { i;f a{; sy i=1, 2 ... . é}

the eq. (4.16) becomes
b n

F=w +£3 Yo y(k)
é

r= ¢=l

-

+ X7 Z"(il“{"“df("{‘;frzf)} (4.18)

r=1/ ¢=

The Halmholz free energy F in eq. (4.17) and (4.18) is a function of
the lattice constant a, configuration parameter{)\,l,;\,z and cos 7} and
temperature T as well. For a perfect fcc lattice it is a function of a and
T only. Minimizing eq. (4.17) or (4.18) with respect to the lattice con-
stant a, we got the equilibrium lattice constant at temperature T. The
results are summarized in table 4.5 at T = 0,300°, 500° and 800° K. For com-
parison the last row of the table gives the results of Boyer [29], who used
a brute force method for the numerical integration over the B.Z. with a mesh

of ~~-1000 points.

It is of interest to note that at T = 0 the net effect of zero point
motion is to increase the equilibrium lattice constant value from 5.990 to
6.017 X. Table 4.6 also gives detailed comparison between various schemes
for the different energy terms entering in the eq. (4.17) and (4.18). It is
shown that if we are interested only in the properties of perfect crystal con-
figuration, it is often sufficient to use a single Baldereschi point. The
accuracy in the prediction of the lattice constant is of 0.02%. We have also
calculated the effect of the harmonic vibration on the transition pressure at
T =0 and T = 300°K, The transition pressure is found to depend only slightly
on T and is 11.8 at T = 0 and 12.2 Kbar at T = 300°K, in good agreement with
Boyer's calculation. Note alsc that at T = O the static calculation of section
3.4 gives Pc = 11.5 Kbar, only slight different from the value Pc = 11.8 Kbar
obtained with the inclusion of quantum effects due to the zero point motion

vibration.
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(B) Effects of zero point motion

In order to include the effect of zero point motion and thermal
vibration on the energy barrier calculation presented in section 4,2, it is
useful to extend the special point scheme to the case of a deformed fct
jattice. This we have done for the first time here and the results are pre-
sented in Appendix A. At T = O there are no thermal vibrations and the only
modification to the scheme described above in section 4.2 is the addition to

the calculation of the energy of zero point motion

\/\/;@m -..:.-ELZ{)(E (4.19)
8.2

where the integration over the B.Z. is approximated by a sum over the 8 special
points described in the eq. (A.25) of Appendix A. The convergency of the
scheme has been checked in a few cases comparing the results obtéined with 8
special points with those obtained with 32 and 128 points (which are given in
eqs. (A.26) and (A.27) of Appendix A respectively). It is shown that the use
of 8 special points is sufficient for the present purpose. Note that the ‘
symmetry lowering induced by the external stress increases the number of spec-—

ial points needed to achieve a satisfactory degree of accuracy.

The results are summarized in table 4.7. The results show that as was
to be expected that the effect of zero point motion is rather small. It only
slightly reduces the energy barrier from 5.5 to 4.5 Kcal/mole in the case of

P = 0, from 0.68 to 0.64 Kcal/mole in case of P = 44 Kbar respectively.

We have tried to extend our study to include the effects of the thermal
vibrations at finite temperatures. The convergency of using special points in
evaluation of thermal vibration energy was checked by using 2, 8, 32 and 128
special points (see egs.(A.24)-{A.27) of Appendix A) for some configurations,
as shown in Table 4.8 for T = 300° and T = 925°K. From these tables one can
see that using 8 or 32 special points can only ensure the accuracy in thermal
vibration energy which is of order of 10_4 a.u. (while the accuracy in zero

-6
point energy is of the order of 10- a,u.) Thus the accuracy in Gibbs free
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energy is also of the order of 10_4a.u. The reduced accuracy in calculation
of thermal vibration energy by the special point scheme can be ascribed to

the exponential dependence of functions on phonon frequencies in B.Z. sum.
This makes results more sensitive to the choice of the special points and
requires the use of more special points. On the other hand we found that if
thermal vibrations were included, the dependence of Gibbs free energy on con-
figurational parameters is very flat near the equilibrium configuration. Thus,
in order to ensure the accuracy in configurational parameter of equilibrium,
say 0.0004 for 711 and 7L2, 0.004 for cos'f , the accuracy in Gibbs free
energy is required to be of 10'-.10'65.u,'7 This can be seen from table 4.9.
For this reason, the extension of our study to include thermal vibrations at
finite temperature has not been completed. To do this would require a greater

computational effort.
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4.4 Effect of different choices of potential on energy barrier

For comparison we have also used the Tosi Fumi potential [ 19] to
estimate the lattice energy barrier. Following the procedures described in
section 4.2, we obtained the lattice energy barrier for P = O and P = 44 Kbar,
which are 4.28 Kcal/mole and 1.59 Kcal/mole respectively. It is of interest
to note that 1) the obtained values of lattice energy barriers are of the same
order for two potentials; 2) the higher applied hydrostatic pressure decreases
the height of the barriers; 3) for the case of P = 44 Kbar, the barrier evalu-
ated from the Tosi Fumi potential, which is 1.59 Kcal/mole, is larger than that
from GK potential, which is 0.684 Kcal/mole. This may be attributed to the
fact that the predicted transition pressure by the Tosi Fumi potential is 64

Kbar, which is larger than 44 Kbar, as predicted by Gk potential.
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Conclusions and discussions

In this thesis we have discussed the development of the theory of
polymorphic transition in alkali halides, mainly concerning two aspects:
prediction of the transition and microscopic mechanism of the transition.

In particular, we have calculated the nonadditive three body interaction for
some alkali halides and displayed its effects on the Bl to B2 transition. We
have also studied the microscopic mechanism of the Bl to B2 transition pro-
posed by Parrinello and Rahman [43] and the effects of uniaxial tensile load
on the configurational deformation and of the microscopic instabilities of
the crystal. In some of the calculations sums over the Brillouin Zone were
needed. These were perfdrmed by means of an appropriate generalization of
the Baldereschi point technique [99]. To our knowledge it is the first time
that these special points have been evaluated and used for the deformed crys-

tal structure of interest in the present context.

In our study of the polymorphic transition in alkali halides we have
examined the GK potentials. We have shown that the pair potential approxi-
mation needed to be improved. We have tried to achieve this improvement by
incorporating the nonadditive three body interaction (TBI). This gives a more
complete description of the overlap of ionic charge densities and supplies
more repulsive forces to the ionic interactions. The most significant effect
of TBI is its structural sensitivity, which is expected to play an important
role in problems of relative stability of crystal structure. We have noticed
that the effects of TBI depend.on the dissimilarity of the ions ;omposing the
crystal. No attempt has been made to improve the GK scheme, so our three
body forces show all the defects of the original GK model. For instance, we
have not allowed the charge densities to deform nor have we properly accounted

for the vander Waals forces. These are of course a subject for further studies.

Recent progress in the study of the kinetics of the transition from
the Bl to B2 structure have stimulated our interest in this direction. In
fact in the study of kinetics of the transition there are still many open

questions, such as the nature of the nucleation process, the role of the
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defects on the transition and the temperature dependence of the hysteresis
phenomenon etc. In their MD studies Parrinello and Rahman have described the
Bl to B2 transition of KCl as an uniform uniaxial deformation of the Bl phase
along the [011] direction plus a softening of the transverse [100], zone boun-
dary phonon with polarization vector along [o, -1, 1] direction (Tal mode).

In this thesis we have achieved this deformation by a convenient [011] uniaxial
tensile load, and have shown that its main effect is the softening of the Tal
mode as expected from the Parrinello and Rahman studies. By calculating the
lattice energies of deformed crystal along the path in which crystal modifieé
its configurations, we calculated the energy barriers which hinder the transi-
tion. It is shown that appropriately applied hydrostatic pressure reduces the
barrier. Our result has also agreed with that predicted by Parrinello and
Rahman. Our study has quantitatively indicated that uniaxial stress, either
externally applied or ldcally induced may create favourable deformation and

thus trigger the transition.

In view of the above discussions we suggest some topics for further

studies:

1) More refined theories for the calculation of many body forces that
go beyond the simple GK scheme are needed. In particular the assumption of a
rigid free-ion like charge density has to be abandoned as suggested by

Andreoni et al. [32].

2) As to the kinetic of the transition it would be of interest to
see the role played by the defects in nucleating the transition. Also the

many body forces in the nucleation of the transition is a subject of interest.
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APPENDICES

Appendix A. Distorted FCC lattice under uniaxial

tensile load and its special points
I. Introduction

When a f.c.c. lattice is subjected by a uniaxial loading along
(1,0,0) direction, it would become a face central tetragonal lattice (f.c.t.
lattice). While if a uniaxial loading along (0,1,1) direction is applied,
f.c.t. lattice would be further deformed so that two axes of the crystallgra-
phic unit cell will not cross at right angle. We call this lattice as deformed
face centered tetragonal lattice (d.f.c.t. lattice). The determiantion of the
total energy of the distorted and undistorted crystals requires integrations
of periodic functions over the Brillouin zone. Such calculations are often
complicated and time consuming. The recently developed techniques known
as the "special point method" [ 99, 100 ] enables us to reduce the B.Z. sums
to sums oniy over a few points'and it is accurate enough to calculate the

small energy difference between distorted and undistorted crystals.

In the special point method once a set of special points ﬁi each with
a weighting factor ¢, , i =1,2,... n, is found, the integration of a periodic

funcitons f(g) over the B.Z.

I:B%S B2 f(R) dK (A.1)

can be approximately written as

n
I:'; "‘{i ffK&) (A.2)

- A=
provided ki satisfy
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2:1; "(zAm(ﬁ')—": 0 for m=1.2,.... (A.3)

where

Ak =2 eXPliRR) | i g
g [R.(Z!zdn P‘ )' Mm=],2, (A.8)

dm is the mth nearest neighbour distance. Eq.{A.2) becomes an excellent ap-
proximation if Eq.(A.3) is satisfied for m covering a large number of neigh-

bours.

The procedures of finding a set of special points can be found in Ref.
(100). The many special points for some cubic and non cubic lattice have been
presented [99,100,102] . We present here for the first time several sets of

special points for the f.c.t. and d.f.t.c. lattices.

II. 'Special Points for f.t.c. Lattice

The crystallographic unit cell of f.c.t. lattice is & simple tetra- /
gonal (s.t.) spanned by three mutually perpendicular vectors b '32,'33 with

l .L'S and lb,; 24, “53 fb_;!- 7,4, 7!7% s - In rectangular co- !
ordlnate the basic vector for the direct and reciprocal lattice of s.c. lat- '

tice are given by

Y
b=a(%,00) ,B,-‘-"vﬁlﬂ,ﬂg,o), E;:é{a)aaﬁxj (A.5)

Te, 271 2%, 1 T2 {
=27 0.9), b=%lox.0, 5=50,0L) we
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SR

In the rectangular coordinate systems the basis vectors for the direct

and reciprocal f.c.t. lattices are as follows:

’B‘,=%(0, Na> Ny ) ) Ef—%(”n‘"”x ), Bf’%”lpnyo} (4.7)

B= 2)!( ' ;1‘_ n‘) E;— (n,f"_’ 1) B; Zln‘ N 7{‘) (A.8)

with B =Z]ZJ' . However it is convenient to express the direct and
reciprocal lattice vector of f.c.t. in terms of the basis vectors in s.t.
md -3
This gives &:H,K 4-@3‘4-”'3’,:;:,24::,'5,4@2{4,@':;} with m ., m,, m,, any integers
simultaneously or one is an integer and the other two are odd integers divided
s . . -K‘ B 1184 T4, T4

by two. A general point in the B.Z. is K=UB+V&+WE =ub+vh+wlk =Ty, v, v ],
T{‘ becomes a reciprocal lattice vector when u,v,w are simultaneously even inte-

gers or simultaneously odd integers.

Notice that when f.c.c. lattice is deformes to a f.c.t. lattice, the
lattice point group is reduced from Oh to D4h' which transforms a pcint [x,y,z)
in both direct and reciprocal space to [1X,%¥, 421, [il,-}'l,i?},f!f;;Z;Z]l[ii,ﬂ,¥7g)

_[;,r,zy:?z])[;x,;y,_tz],[;x,;:z,:y],g;x,;z,;;y], We have the following expressions:

-

Rm.‘-_-:lﬁz,,ﬂ,;mgj-: a{mn ,mn,, M2 ) (A.9)

a 7'»1 n;,_ﬁ-—: (A.10)
R K. =2(mu+mys wyr ) (A.11)

. ;
For K =[u,¥,%] , the Eq. Am(fi} = 0 corresponding to mth shell characterized

-
by lattice vector Rm = {ml, m2 , mBI would take the following form:
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Cos amyuT ( Cos20, VR » COS2MgW I +

(A.12)
COSAMUWTR . OS2 VE ) = O

Following the procedure of finding special points [ 100 ] » Wwe present
the following sets of points:
3 > d
Set I: Starting from points kl =[Z,Z,ZJ and k2 =[%—, 31—’ —1—} we

generate the following three points

K=1¥-% %1, o= %
E"‘ [%' 7}':”4!»"1 ’ 0(,‘—’—}; (A.13)
% - [%,i- %] » o=k

These three points satisfy Eq. (A.3) for 'I?m up to [2,0,0}, -ﬁm will include

neighbours up to the 6th n.n.s. for the case 14—%“ < fz
i

Set II: Adding a point T?s = [% » -5’;,-1-] to Set I, we generate the

following twenty points:
K=13-+%1, R=[+5F], E-14.4.1],
K=l 7 '11 ) K=13%-31, Ke=l5 %]

(a.14)
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1

with the weighting factors . T —— fori=1,2,...,8 and = ...._L_,
ighting %= 33 125000, o= 5
for i = 9,10,...,20, These twenty points satisfy Eq.(A.3) for'ﬁ; up to ﬁ;:
-
= [4,0,01 . Rm will include neighbours up to 37th n.n.s. for the case 10;:{55
®
-
Returning to the cubic coordinate system the K =[K1, K2,K3] should be

MK K K
understood as A,(?E’;"'n’;"ﬁ‘; .

Notice that if M=/l , f.c.t. lattice becomesf.c.c. lattice. The
above two sets of special points in Eq.(A.13) and (A.14) will be reduced to
be two special points and ten special points for f.c.c. lattice respectively.
This can be seen by noticing that some of the points in Set I (or Set II)
can be transformed into each other by adding a reciprocal lattice vector
and applying a symmetry operation of group Oh. We regroup these points to-
gether and sum up their weighting factors to give a single special point of

f.c.c. lattice with a correct weighting factor as presented in ref.(100).

For an even higher degree of accuracy, one can progressively include

more points ﬂs%{{t z.?z'nj ,n = 1,2,3,... to generate more new sets of

points.

I1I. Special points for d.f.c.t. lattice

The crystallographic unit cell of a d.f.c.t. lattice is spanned by
- s -t D - ey - U S -b -> -
th ith 2 . = . .
res vectors T, 0 Ty s wit cl_L T, 1,,L e, and T, Ty |c2| !c3l
. - o
Cosf # 0; and with lt’llaa,ﬁ , Ic2| = |03| =, 8, A #A, - Wecall a

lattice having 'c"l

lattice {(d.s.c. lattice). In rectangulas coordiante the basis vector for

’ '6’2, fa as the basis vectors as a deformed simple cubic

direct and reciprocal lattice of d.s.c, lattice are given by
s
G=(1,4, 0, 0 )
vE . .
G=(0s mag(mtesind)s nasiof-sing))

(A.15)
G=1(0 23 (sl-smE) s magcosf 4 5inf))
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Zf;==‘£! (j& » O > o )

G= zzzﬁsmf (05 % ttsfesmf), L L(sing-cosy))

2% {4.16)
CJN a zs ny (09 m“'?’z"‘”z) % + (aasi + i:ﬂf))
with Z“‘,az;:‘z .z}lﬁdg']- - In rectangular coordinate systems the basis vector

for the direct and reciprocal lattice of d.c.t. lattive are given by
<l
A,=!2£‘nza Cas-g (0s1,1)
Aoz 2 (7> 22fiast sin2)s 2ofoos? o sind
222 (s Z{est-s5inf)s Be(cosf +5ing))

(A.17)
_ & 7 .
A;“‘ = (7 (st +sink), T cosg ~5inf))

and

\

22 20/ L & __ 1 e 1
A;"’”‘E’( F % cosE ’ A GosE )

E 3

z 2
> 4 £ 1 I 1
h=%(%s-2 5 )
&
2

Mmani ? T Rang

2

2l &1 -
A;" a(n;’ Z M sink ?

(A.18)

z:ﬁ::%_ )

Y — C; i
with Ai . A;j =27 ,;]f . It is convenient to express the direct and reci-

procal lattice vectors of the d.f.c.t. in terms od the basis vector of d.s.c.

This gives R;=ME+M,E+%I smb tmb+mG = fmsm s myf

with ml, m2, m3 are simultaneously integers divided by two. A general point

e -3 . b
. . [ ] 'y & = =g
in the B.Z. is } = A +yﬁ3+};f44§g wuEis v+ w‘é’ 2fu,v, »}
If u,v,w are simultaneously even or simultaneously odd integers then -l: is

a reciprocal vector.

The lattice point group of d.f.c.t. is D2h which transforms z point

{x,y,z} in both direct and reciprocal space to fil,.f}i’, '_P,Z} ,{j:_x, ;y' ;Z})
{3x,%2,2y}, {7%,35,%)} , Notice that

Fz i)
= Cz('ﬂﬂ%72; 5 “’723(3%“5%,)£b§d£ 4-a~?23 vk%)ﬁ}ﬂdg,9 (A 19)

1{ Q(ﬁ@z*'&)t@5454'ég’iifﬁ%’,mﬁjsggqg 4)
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2{“; v V}

= 21 L Ll S A LA v
"'d,( Tim-’- c.s.f-"',,, )

&~

(A.20)
and -ﬁm"i‘i takes the following simple form:
- = :
Ru'He =27 ( myu + myv 4 myw ) (A.21)
The Eq. Am('lzi) = 0 can be expressed as follows
Cos2xmyu- ( cosam(my + wz9r) + o
A.22
cosan{ MW + iy ’.’/‘)) =0
In the case of v = w Eq.(A.22) becomes
Cos An my U - (g 2T (77 4+ 5 )1 = O (8.23)

Now we present two sets of special points for d.f.c.t. lattice as

follows:

li

Set I: Starting from two points K {/2,/2,/2} and '1'{32 f{-):“-,é—}

we generate the follqwing two points
L=i5:%4} » «
Bz ko4 7 o

. -
The two points satisfy Eq.{(A.3) for Rm up to R = {O,’/z ;—:‘} , R will
m m

include neighbours up 5th n.n.s. for the case 1<% <fi and o<u5f<‘-§' .

1)

e
2

(A.24)
%

-Set II: Adding a new point ?3 = {% » ‘;" 2 % } , Wwe generate the

following eight points:
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=i 4041, Rethodo 41
.}.(.. 2,1, %f s K={t %, %} (A.25)
Kit4 4]+ R=firdo 435

K=tf:%5:41 5 K=fir4- 4}

with equal weighting factor d‘ =-£" i=1,2,...,8. These eight points

P 4
3
satisfy Eq.(A.3) for 'ﬁ‘m up to Rm:.'{D,%;%} ’ Rm will include neighbours up
to 17th n.n.s. for the case [(% < JZ and p< “,579<-—L .

Returning to the cubic coordinate system the ? {K » K 3} in Eq (A.24)

2L =1
and Eq. (A.25) should be understood as (-"" )_%‘- ,.&-—-) with j= ik

This can be done by substituting Kl, K2, K3 into Eq. (A.20) and noticing

that in our cases K2 = KS' Notice that special points in Eg.(A.24) and

Eq.(A.25) satisfy Eq. (A.3) for less neighbours because d.f.c.t. lattice

has lower symmetry.

For an even higher degree of accuracy, one can progressively include
more points f:{-{z‘”’z"’i‘} g n=1,2,3,.... to generate more new sets of
points. In the cases of n=1 and n=2 we generated the following twc new
sets of special points.

Set III: 32 special ‘points with equal weighting factor &« = f“"g‘ 5
i=1,2,...32. For the representaiion of those special points , a special

point f—;‘% :1%97%-} will be abbreviated to{x,y,z} . These 32 points are:

{7, 7,7}, f5. 5, 5% ,f7, 5, 5} . {5, 7, 7}
{3, 3,3}, f1,1, 13 , {3, 1,1} , {1, 3, k¥
§7, 3, 3}, §5, 1, 1} , {7, 1, 1} , §5, 3, 3}
{3, 7, 73 . 81, 5, 5} , €3, 5,5} 41,7, 7}
{15, 7, 7}, §13,5, 5}, {15,5, 5} , §13,7, 7} (A.26)
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f11,3, 3}, {9, 1, t} , {11, 1,1} , {9, 3, 3}
f15,3, 3} , {13,1, 1} , {15, 1. 1} , {13,3, 3}
{11,7, 73 , {9, 5, s} {11, 5, 5} {9, 7. 7} (a.2e)

Set IV: 128 special points with equal weighting factor .Q-;;—‘)jﬂ,;’.a,nK

. . X 1 . i
Here a special point {?-i I .ﬁ ? ﬁ} will be abbreviated to {x,y,z}

These 128 points are:

{15,15,15} , §13,13,13} , §15,13,13% , §13,15,15}
{111,110}, § 9, 9, 9F 5 {11, 9, 9k, f 911,11}
fis,11,11} , f13, 9, 9} , {15, 9, 9} , {13,11,11}
{11,15,15} , § 9,13,13} , f11,13,13} , § 9,15,15}
{7,7, 7V , §{ 5,5 5}, §5, 7,7}, ¢§7, 5, 5%
{3, 3, 3,81, 1,1}, {3 1,1}, {1, 3, 3}
£7,3, 3,45, 1,1, {7, 1,1}, {5, 3, 3}
{3, 7,7V, { 1.5 5}.,f{3 5,5b.]1,7,7}
{15, 7, 7%, {13, 5, s}, {13, 7, 7}, {15, s, sr(A -
f11, 3, 3} , {9, 1, 1}, f11, 1, 1}, § 9, 3. 3}
{15, 3, 33 , §13, 1, 1}, f15, 1, 1}, {13, 3, 3}
f11, 7, 7% , {9, 5, 5}, {11, 5,5}, §9,7, 7}
{ 7,15,15} , {5,13,13} , { 7,13,13}, § 5,15,15}
{3,11,11} , §1, 9, 9}, § 1,11,11} , £3, 9, 9}
§7,11,11} , §£5,9, 9}, 4§ 5,11,11} , §£7, 9, 9%
§ 3,15,15} , § 1,13,13} , § 3,13,13}, § 1,15,15}
§31,15,15¢ , {29,13,13} , {31,13,13} , {29,15,15}
§27,11,11} , {25, 9, 9} , {27, 9, 9} , {25.11,11}
{31,11,11} , §29, 9, 9F, {31, 9, 9}, {29,11,11}
§27,15,15% , f25,13,13} , {27,13,13} , {25,15,15}
{23, 7, 7% , {21, 5, 5}, {23, 5, s}, {21, 7. 7}
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f19, 3, 3¢
§23, 3, 3}
fi9, 7, 7}
{3t, 7, 7}
{27, 3, 3}
{31, 3, 3}
f27, 7, 7}
{27, 5, s}
f19,11,11}
{23,11,11}
f19,15,15}

2

3

2

{17, 1, 1}
{21, 1, 1}
{17, 5, 5}
{29, 5, 5}
{25, 1, 1}
{29, 1, 1}
f25, 5, 5}
f21,13,13}
f17, 9, 9}
{21, 9, 9}
f17,13,13}

» {19, 1, 1}
, {23, 1, 1}
» f19, 5, 5}
» {31, 5, 5}
, {27, 1, 1}
» {31, 1, 1}
, {25, 7, 7}
, §23,13,13}
> {19, 9, 9}
> §23, 9, 9}
, {17,15,15}
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5

Y

b

3

3

5

)

b

f17, 3, 3}
fz1, 3, 3}
{17, 7, 7%
{29, 7, 7}
{25, 3, 3}
{29, 3, 3}
§23,15,15}
f21,15,15}
f17,11,11}
§21,11,11}
{19,13,13}F (a.27)




TABLE CAPTIONS AND TABLES

Table Captions:

Table 2.1 Observed Bl to B2 transition pressures (in Kbar), lattice
energy differences (in Kcal/mole) between Bl and B2 phases and relative volume

changes at transition pressure of some alkali halides.

Table 2.2 Equilibrium properties of some alkali halidecrystals in Bl
phase and the Bl to B2 transition pressure in Lowdin's theory. Large errors of
theoretical values for Li compounds may be due to inaccurate HF wave function
used for Li' ion (Ref.(26)).

Table 2.3 Equilibrium nearest neighbour distance R and lattice energy

D of LiF and NaF in the Bl phase, predicted by MEG theories (ref.(63)).

Table 2.4 Structure dependent constants entering the lattice energy;
M and M' are number of the first and second neighbour respectively; a is the

ration of the second neighbour and the first neighbour distances.

Table 2.5 The contribution of the second nearest neighbour interaction
to lattice energy in terms of the original GK model in Bl phase for some alkali

halides (energy in units of Kcal/mole).

Table 2.6 Equilibrium lattice constants, lattice energies of some
alkali halides in the Bl phase and the Bl to B2 transition pressure for some
alkali halides, calculated from various GK models, Experimental data are taken
from Ref, (29); values in bracket are measured at temperature of 298°K, at 0°K

otherwise.-

Table 2.7 Comparison of the calculated and measured thermal-expansion
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-6 -1
coefficients for zero pressure and room temperature(in units of 10 K ).
The calculation has been performed in Ref.(29) by using a parametrized version

of the original GK model.

Table 2.8 Comparison of calculated and measured transition pressure
{in units of Kbar) The calculation has been performed in Ref.(29) by using a para-

metrized version of the original GK model.

Table 3.1 Relevant configurations of triplet ions and their number

per ion in the Bl structure.

Table 3.2 Relevant configurations of triplet ions and their number

per ion in the B2 structure.

Table 3.3 Comparison of V3(MXX; R,R,90°) and an exponential fit to

- -3
its dependence on R. The units of energy are 10 =~ a.u.

Table 3.4  The magnitude of TBI (in a.u.) at different triangular

opening angles,

Table 3.5 Dependence of values of TBI on the type of ions for the
:t =R __=R=7.071 a.u. = °,
geometry RCA CB 7 a.u. and X’ 90
Table 3.6 Calculated nonadditive three body interactions per ion pair
-2
(in units of 10  a.u.) varying with nearest neighbour distance R (in a.u.)
Table 3.6(1) NaCl.
Table 3.6(2) NaBr.
Table 3.6(3) NaI.
Table 3.6{4) KC1,
Table 3.6{5) KBr.

Table 3.6(6) KI.
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Table 3.6(7) RbCl,
Table 3.6(8) RbBr.

Table 3.6(9) RblI.

Table 3.7 The equilibrium lattice constant of Bl structure for some

]
alkali halides (in units of A).

Table 3.8 The equilibrium lattice energy Wl of Bl structure and lattice
energy differences ‘awl between the Bl and B2 structure at zero temperature (in

units of Kcal/mole).

Table 3.9 Critical pressure for the Bl to B2 structure transition (in
units of Kbar) and relative volume changes at transition pressure in some alkali
halides. Experimental data are taken from Ref.(29). The missing enties mean either

that the wrong structure is predicted or that no experimental data exist.

Table 3.10 The calcualted total TBI energies and contributions from
various parts to the total TBI at equilibrium predicted by PC3 for Bl and B2
structures of some alkali halides. (The column indicated by " % " gives the
percentage of total TBI energy to the lattice energy of the corresponding struc-

ture).

Table 4.1 Configuration parameters and values of corresponding Madlung

energy E , short range interaction energy VS and the lattice energy Wl (in unitse

Mad
of Kcal/mole) for KC1 under uniaxial tensile loads S(in units of Kbar) and hydro-

static pressure P = 0,12 and 44 Kbar.

Table 4.1{(1) P = O,
Table 4.1(2) P = 12 Kbar,
Table 4.1(3) P = 44 Kbar,
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Table 4.2 The elastic constants Cl C__ and 044 (in units of Kbar)

1’ 12
for KCL in the Bl structure at pressure P = 0,12 and 44 Kbar. The experimental

values are given in brackets (from Ref.(29)).

Table 4.3 Comparison of present results with linear elastic theory.
A indicates the present results, values are obtained from eq.(4.14), where 15,14
and cosf’ are taken from tables 4.1(1)-(3); B gives the values obtained from

eq.(4.13), where elastic cosntants are taken from table 4.2,

Table 4.4 The maximum allowed uniaxial stress Smax and lattice energy

barrier wa for varying hydrostatic pressure.

o
Table 4.5 The equilibrium lattice constant (in units of A) of KCl
crystal in Bl phase at finite temperature, is calculated by using differnet -
special point schemes and compared with results obtain@ib}a standard numerical

integration over the B.Z.

Table 4.6 Calculated values of zero point energy wzero’ thermal vi-
bration energy WT and Helmholtz free energy F (in a.u.,) of KC1 crystal in Bl

structure at equilibrium in different approximations to the B.Z. sum.

Table 4.7 Configuration parameters and values of corresponding zero
point energy wzero' thermal vibration energy WT and Helmhotz free energy F (units
of Kcal/mole) for KCl under uniaxial tensile load S (in units of Kbar) and hydro-
static pressure P = 0 and 44 Kbar.

Table 4.7(1) P = O,

Table 4.7(2) P = 44 Kbar

Table 4.8 Test of convergency of use of special points for the evalua-

tion of zero point energy wz and the thermal vibration energy WT (in a.u.)

o
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at temperature T = 300° K and T = 925° K. The corresponding Helmhotz free

energy F and Gibbs free energy G are also given.

]

o

5

[«

3
|

Table 4.8(1) P = 300°K.

Table 4.8(2) P

1]
(@]
5
[=3
=]
"

925°K.

Table 4.9 Dependence of Gibbs free energy G (in a.u.) on configuration

parameters A, , A, and cosf at finite temperature:
Table 4.9(1) P = 0., S = 8.82 Kbar and T = 300°K.
Table 4.9(2) P = 0., S = 2.92 Kbar and T = 925°K.

TABLES:
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Tabla 2,1

() (v) (a) (a) (s)

Pe AW Y81/ o1 V52 Vo1 AN
XC1 20 262 0.085 0.197 0112
KBr 19 2.0 0.088 0.193 0.105
KI 17.8 2.0 0,105 0.190 0,085
RbpC1 5¢5 0.9 0.030 0,170 0.140
R?Br 5.0 0.8 0.033 0,166 0,133
BRI | 4.0 0.9 0.030 0.158 0.128
¥ac1 | 300 7.2 (8} 4,357 0.394 0.037
(8) Ref 27, (b) Ref 4.

(¢) Calculated from experimental transition pressure, Avt/VOl and

equilibrium lattice parameter for FaCl,
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Table 2.2

lattice constant | cohesive energy |Bulk modulus | Blto B2 transitionm
r(1) (a) W (Kcal/mole) | B(10"dynefa’)| Pressure B, (Kbver)
Theor, Expt'™ Theor. Expt |Theor. Expt | Theor., Expt
LiF | 4.4 = 4.028 199.5 246.8| 2.5 7.2
LiCl 5.38 5.140 187.7 198,9| 2.38 5.17
NaF | 4.58 4,634 205.1 217.9| 2.70 2.74
NaCl 5.50 5.640 183,2 185.3| 2.17 1,97 103 300
KC1 | 6.18 6.596 166.9 169.5| 1.67 1.79 31.4 20

(2) Expt. data compiled by Kim and Gordon, Ref,(26).
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Table 2.3

LiF

FaF

w5a(®) a1 (P) yass(e) expt |MEG MOl

MGss

expt

R(a,u) | 4.03  4.071 3.854  3.806 |4.61 4.638 4.490 4.378
D(a.u)| .3833 3774 .3979  .3933] .3377 .33153

(8) Using MEG potentials in pair potential approximations,

(v) Using eq.(2-35) and (2-36) in caloulation of binding energy.

(c) 48 b , but using ss density,

Tsble 2 c4

¢
K ¥t a a(R

5,(8) 5,6 @ @

Bl 6 12 2 1.74756 6.5952 1.8067 6.1457 0,8001

B2 | 8 6 2/3 1.76267 8.7088 3.5446 8.1575 2.1977

Table 2.5

Hall H=2Br Fal KC1 KBy KI

BpCl

EbBr EbI

vtot

Vs

V(lon.m) [24.8 24.3 26.8 17.5 18.6 20.0 16.1

15.8 16,7

V,(2.n.m) |-7.21 -6.34 -13.5 =5.45 -7.01 -10.5 -4.61 -5.75 -8.52

s 17.61 15,67 13.26 12.03 11.57 9.44 11.46 10,03 8,22

E (2°§9§)$
- tQ ‘49!9 4995 —101 ”4503 ‘50.6 -8909“4032 °5703 ‘103
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Table, 2.6

lattice constant (A) lattice energy (Kcal/mole) Bl to B2 transirion pressure(Kbar)
&  CG Present (K(B) Expt. K CG Present Hept.. @ (& Present GK(B) Expt.
LiF | 3.86 4.26 4.011 4,036 4,008 | 260,2 240.5 258,11 246.8 550 2900  >200 >200  >100
LiCl| 4.94 5.20 4.900 4.938 5,106 206,1 202.0 215,71 201,.8 160 980 162 >200 >100
LiBr| 5.32 5.46 5.223 54266 5,460 192.3 194.9 224,61 189.8 110 924 94 96 >100
LiI 5.80 5,535 5.545 5.946 186.4 195.16 177.7 184 -22 =27 >100
NaP | 4.62 4,88 4.657 ~.4.680 .4.609 222,3 211.9 220,84 217.9 142 326 238 > 200 >200
NaCl| 5.72 5.86 5.604 5,628 5,597 182.7 179.9 189.49 185.3 49 107 46 46 300
NaBr| 6,08 6,10 5,958 5.985 5,939 172.6 173.8 179.11 174.3 35 19 29.5 30 >100
Nal 6.50 6,329 6.338 6.411 164,9 170.12 162.3 23 -12 ~7 >100
KF 5.20 5.42 5.175 5.197 5.322 204.1 194.4 206.16 194.5 51 85 7.4 7.5 >100
KC1l | 6,10 6.28 5.990 6.020 6.247 175.3 170.1 180,12 169.5 21 34 11.5 12 20
KBr | 6.40 6.50 6,281 6.297 6,541 167.2 165.4 173,20 159.3 ‘17 23 5.6 7 19
KI 6.88 6,670 6.670 7,003 158.0 164.49 151.1. 3.6 =97 w10 19
RbF | 5.54 5.66 5.488 5,500 194.0 188.1 196.10 (181.4) 30 65 61 61 >100
RbC1l| 6.38 6,52 6.287 6,303 6.531 | 169.4 165.0 173.15 (159.3) 14 17.1 4 4 5
RbBr| 6.64 6.78 6.567 6.576 6.831 161.9 159.8 166,70 (152.6) 12.4 9.7 -1.2 0 5
RbI 7.16 6.954  6.954 7T.231 152.7 158.56 (144.9) -9 -9 4
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Table 2.7

LiF LiCl1 LiBr LiI HaP ¥aCl HaBr Eal
Cals. | 40,5 31.1 31.2 26.8 31.4 34.5 34,7 31.7
Expte | 33,2 43.2 49.8 59.4 31.7 39.7 42.3 45,5
ddev | 22 -26 -37 =55 -1 -13 -18 =30
EF KC1 KBr K1 BbF  BBHCl  RbBr  BbI
Cale, | 30.1 32.2 33,1 31,3 30.9 32.8 34.0 32.5
Expt, | 31.7 3.1 38.7 40,8 34.0 36,1 37.8  38.0
%dev| -5 -13 -14 -23 -9 -9 10  -15
Table 2.8
FaCl  KC1 KBe  KI BbC1 BbBr EbI
Cale, 46 12 1 -=10 4 0 -9
Bxpt, 300 20 19 19 5 5 4
% dev. -85 ~40 -63 =100 =20 =100 -100
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Table 3.6 (1) NaCl

PHASE Jm 4.7 4.8 4.9 5.0 5.0 5.2 53 5.4 5.5 5.6 5.7 58
Tonm | 964 B34 .T74 690 612 .540 .476 .416 .364 318 .280 .24
180| 1.456 1.260 1.086 .934 .802 .686 .586 .500 .428 .366 .314 .270

- REM .268 ,216 176 142 112,092 074 060 ,048 038 030 .024
TOTAL | 2.68 2.34 2.04 1.766 1.526 1,318 1.136 .976 .840 .732 .624 .538
l.nen | 2.06 1.876 1.692 1.518 1,360 1.214 1.080 .958 .848 .664 .662 .586
IS0| 1.988 1.654 1.460 1.342 1.156 1.024 .896 782 682 516 .516 .448

Pl R Ew| 1.064 .89 744 .620 514 422 346 1290 242 166 166 .134
TOTAL | 5.12 4.42 3.90 3.48 3.04 2.66 2.32 2.04 1.774 1.544 1.346 1.168

-97-



Table 3.6 (2)  NaBr

PHASE <w 50 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1
leonen <948 .850 .758 674 .598 .528 464 .406 354 ,308 ,270 ,.235
1650 1,580 1.364 1.178 1.016 .874 .T46 .640 .548 .468 .402 ,346 .293
- REM .230 ,.184 .150 .122 ,100 ,082 .066 .054 .044 .036 .028 .023
TOTAL | 2,76 2.40 2.08 1.812 1,572 1.356 1.170 1,008 ,866 .746 .642 .555
lonen | 1,872 1,706 1.548 1,400 1,264 1.138 1,022 ,916 .822 ,732 .650 .514
150 | 2,40 2,10 1.760 1.620 1.424 1.248 1,092 .358 .838 .730 .636 .571
5 REM | 1,122 ,946 .796 .668 .558 .458 .384 .322 .,272 .228 ,190 .160
TOTAL | 5.40 4.76 4.10 3,70 3.24 2.84 2.50 2,20 1.932 1.690 1.476 1.292

- 98 -



Table 3.6 (3) Nal

PRASE | > Bl 5.4 5.5 5.6 5.0 5.8 5.9 6.0 61 62 6.3 64 65
Tonon | L9486 848 752 674 .598 .530 .466 410 .358 314 .216 244
180 | 2.04 1.782 1.558 1.364 1.190 1.036 .896 .782 .680 .592 .514 .448

Pl Rew | 12 254 .210 .72 .140 114 .094 .76 .062 .050 .042 .036
TOTAL 3,30 2.88 2,52 2.,22 1,928 1.680 1.458 1.268 1,100 .956 832 728
l.n.n 2,00 1.840 1.684 1.560 1,396 1.266 1.148 1.038 .936 .844 .758 .682
IS0 | 3.08 2.74 2.44 2.16 1.914 1.696 1.508 1.334 1.182 1,046 922 .812

2ol mEw | 1.436 1.234 1.056 .906 174 .652 .55 .4T4 .408 .348 .298 .254
TOTAL 6.52 5.82 5.18 4.62 4,08 3,62 3.20 2.84 2.92 2.24 1.978 1,748
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Table 3.6 (4) KC1

PHASE v, R| 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6,2
lenon| lenen | 1,284 1,150 1,026 .912 .810 .722 .644 .572 .506 .448 .396 .357
180 -804 .686 .588 .502 .428 .368 ,320 .272 ,234 .198 L170 .145
- REMN «440 .356 .290 236 .192 ,156 .124 ,102 .082 ,066 .060 .048
TOTAL | 2,52 2,20 1.904 1.650 1.430 1.246 1.108 .946 .822 .T12 .626 .553
lonen | 2,42 2,52 2.26 2,02 1,798 1.594 1.416 1.244 1.096 .960 .840 .734
ISO0| 1,178 1,030 .900 .786 .686 .596 .516 .448 ,388 ,336 ,292 .252
. REWM 694 564 460 .398 o314 .258 214 176 144 118 ,096 079
TOTAL | 4.70 4.12 3.62 3,18 2.80 2.44 2.14 1.868 1.628 1.414 1.228 1.109
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Table 3.6 (5) KBr

PRASE | > Rl 53 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6. 6.2 6.3 6.4

Tonon | 1.432 1,292 1.166 1.048 936 .838 .750 .670 .598 .532 .474 420
IS0 | 1.016 .874 .748 .642 .558 .468 .402 .344 .296 .250 .214 .184

S P, 444 362 L300 .244 196 162 .132 .114 088 072 .060 .048
TOTAL | 2.90 2.52 2.22 1.934 1.680 1.468 1.284 1.128 .982 .854 .748 .652
l.nen | 3,02 2.72 2.46 2.20 1.972 1.760 1.562 1.386 1.226 1.086 .956 .841
IS0/| 1.618 1.342 1,180 1,036 .912 .802 700 .610 .526 .458 .400 ,360

B2 'pEwM 838 .696 .570 .4T4 .362 .330 .274 .228 .190 .156 .130 .108
TOTAL | 5.48 4.76 4.22 3.72 3.24 2.90 2.54 2.22 1.942 1.70 '1.486 1.309

i e e e
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Table 3.6 (6) K1

PHASE fw 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9
lenen| 1,398 1.368 1,148 1.034 .930 .836 .754 .678 .610 .544 .488 .446
I 80| 1.192 1,036 .85 .782 .680 .592 .514 .448 .390 .336 .294 .256
- REM| .342 .288 ,240 .200 ,168 .140 .116 .096 .080 .066 .056 .046
TOTAL | 2,94 2.60 2.24 2,02 1.778 1.568 1.384 1,222 1.080 .946 .B36 .748
lanen| 2,78 2.52 2,28 2,06 1.852 1,626 1.488 1.330 1.188 1,062 .946 .840
ISO0|1.788 1,592 1,422 1.258 1,118 .994 876 .T76 .686 .606 .536 .472
5 REM| .85 .712 .604 .516 .442 .378 .324 .374 .236 .198 170  .146
TOTAL | 5.42 4.82 4.30 3.834 3.42 3,00 2.68 2,38 2,12 1.866 1,652 1,522

- 102 -



Table 3.6 (7) RbCl

PHASE <uw 5.3 5.4 5.5 5.6 5.7 5.8 5.9 60 6.1 6.2 6.3 6.4
T 1382 1.226 1.086 .964 B854 .156 .666 .568 .522 .462 .408 .360
IS0 594 .506 432 370 .318 .272 .230 .198 .178 .140 .120 .106
Sl P 518 .420 .376 .278 .228 .186 .152 .122 ,100 .082 .066 .054
TOTAL |2.50 2.16 1.874 1.612 1,400 1,214 1.048 ,910 .800 .684 .594 520
l.n.n |3.20 2.88 2.58 2.32 2,06 1.828 1.622 1.434 1.264 1.114 .978 .854
I SO |..926 .798 .698 .604 .524 .458 .392 ,340 .294 .254 .216 .184
B2 |p pu| .566 .486 .400 .330 .268 .220 .188 148 .124 .100 .082 .066
TOTAL |4.70 4.16 3.68 3.26 2.86 2.50 2,20 1,922 1.682 1.468 1.276 1.104
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Table 3.6 (8) RbBr

PHASE v, 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9
Iomen | 1,070 968 .B66 .774 .6868 .614 .546 .4B6 .432 .364 .342 .298
ISO0 470 404 .346 296 .252 .216 .184 158 .136 .116 .098 082
B REM 284 .236 .194 ,158 ,130 .106 .088 072 058 .048 .040 ,032
TOTAL | 1,824 1,608 1,406 1,228 1,070 ,936 .818 .T16 .626 .548 .480 .412
l.n.n 2.48 2.24 1.990 1,772 1.574 1,394 1.232 1,086 .954 .836 .732 .626
ISo0 806 .T04 .612 .534 .468 .406 .354 .308 .266 .228 .196 .162
B2 'psu 2396 .308 .272 .226 .186 .156 .132 ,106 .088 .070 .066 .050
TOTAL | 3.86 3.26 2.88 2.54 2.22 1,956 1.718 1.500 1.308 1.134 .988 .838
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Table 3.6 (9) Rbl

PHASE v, Rl 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 T.0 Tal
l.n.n 1.460 1,318 1,188 1,074 .970 .876 .788 .706 .636 .572 .514 .462
ISO .900 ,784 .680 ,628 .516 .448 374 .324 284 .248 .216 186

2 REM 0396 332 .278 228 .192 .162 .136 .114 .094 .078 .066 .054
TOTAL 2.76 2.44 2.14 1.930 1.678 1.786 1.298 1.144 1.014 .898 .796 .546
l.n.n 3.10 2.82 2.54 2.30 2.06 1.842 1.644 1.468 1,308 1.164 1.036 .928
ISO 1.416 1.252 1.114 .994 .878 .776 .68B6 .606 .536 .474 414 .366

B2 lREmM 102,612 .520 .442 376 318 .272 .228 .194 164 .140 .120
TOTAL 5.22 4.68 4.18 3.74 3.32 2.94 2.60 2.30 2.04 1.802 1.590 1.414
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Table 3.7
PC1 PC2 PC3 BExpt @& -

HaCl 5.604 5673 5.784 5¢597

HaBr 5.958 6.038 6.154 5.939

Hal 60329 60424 6.609 6-411

EC1 5,990 6,091 6,181 6,247

KBr 6.281 6.392 6.493 6.541

KI 6.670 6.805 7.080 7,003

BuCl 6.287 6,387 6,482 6.531

EbBr 6.567 6,678 6,758 6,811

BbI 6.954 7,102 7.213 7.231

(2) Experimental data are taken from Ref,{29)

Table 3.8
W, . W
PC1 PC2 ' PC3 Exptf¥ pC1 PC2 - PC3

¥all 185.5 18€.2 187.2 185.3 3.31 4.93 5044
Falr 1791 176.4 173.0 174.3 2,60 4,41 5.91
Fal 17001 16?93 16253 162.3 "035 1985 4356
EC1 180.1 176.4 174.0 169.5 1.16  3.70  3.90
KEr 173.2 168.,9 166,4 159.3 .71 3,00 3,68
KI 164.5 159,6 156.4 156.1 -1.87 0,91 2.33
B0l | 173.2 165.4 '167.6 (159.3) 038 3.43 3,33
BbI 158.6 153.8 151.3 (144.9) -2,18 82 1,80

(2) data taken from Ref,(29), values in brackeis are mezsured

at 298° K, otherwise at 0° K,
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Table 3.9

transition pressurs Pc

PC1 PC2 PC3  Brpt,(®

relative volume changs ai Pc
PC1 P02 P63  Expt,(®)

Kall
HaBr

HalX

kKC1

KI

RuCl
BbBr

BvI

46 80.6 104.7 300
29.5 58.8 91,1 >100
=12 16,2 46,2 100

11.5 45.8 47.0 20
5  31.2 36,5 19
-9.7 5.9 15.9 19

4 34,7 32.9 5
-1.2 22.3 241 5

’9 4-‘07 16,0 4

0100 ,079 ,068 ,037
106 ,083 ,064

.110 ,083

.108 ,088 ,083 .113
141 ,092 ,087 .105
° 125 ‘ ° 098 ® 085

132,091 ,096 .140
2100 .095 .133

126,112 L1256
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Table 3,10

struocture Bl P2

. nearest nearest
neighbour Inn IS0 REM TOTAL % neighbour 1nn IS0 REM TOTAL %

distance digtance

(h) (Kcal/mole) (1Y (Kcal/mole)

NaCl 2.892 2.40 2.84 0,33 55T 3.0 3.048 3.87 2,98 0.93 7.78 4.4
NaBr 3.077 2,18 2.87 0,27 5632 3.1 3.202 - Je65  3.79  1.76 9.20 5.5
NaI 36305 2,12 4,02 0,31 645 4.0 3.413 4,52 S5.44 1.64 11.60 T.4
KC1 3.094 342 1.61 0,52 5.55 3.2 3.228 527 1.83 0,61 7,71 4.5
KBr 3.247 3.61 1,76 0,51 5.88 3.5 3,360 564 2,38 0,75 8,77 5.4
KI 3.540 346 2,14 0,34 5.94 3,8 3.625 5.60 3.58 0,78 9.96 6.5
RbC1l 3.241 3,18 1,06 0,60 4.84 2,9 J.321 6.35 led2 0,54 8,31 5,0
RbBr 3.389 342 1,15 0,56 5.13 3.2 3.540 5633 145 0445 T.23 4.6
RbI 3,607 3.93 1.75 0.55 6.23 4.1 3.704 6.50 2,60 0.8 9,88 6,7
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Table 4,1(1)

s s 7 cos%  Maa Ve 2
0.000 1.,0000 1,0000 0,000 -193.,550 13,169 =180.381
2.94 .9992 1,0025 016 =193.271 12,301 -180,370
5.88 .9983 1,0051 .033  -192,968 12,636 -=180,332
8,82 ,997C0  1,0085 053  =192,561 12.308 -180,253

11.76 9956 11,0115 070 =192,206 12,049 =180,157
14,70 .9940  1,0155 .088 -191.721 11.703 -180,018
17.64 29920 11,0200  ,110 =191.,161 11,350 =179.811
20,58 9898 11,0250  ,130 =190.557 10,988  =179.569
23.52 9876 11,0305 2148  <189.907 10,612 <179.295
26,46 .9846 1.0370 .170 -189.147 10,224 =178.910
29.40 .9812  1.0455 .194 =188,202 9,788 -178.414
32,34 9768 1.0565 .224 -186,993  9.313 =177.680
35,28 9713 1.0716 254 =185,521  8.815 =176.706
38.22 .9624  1,0988 ,298  =183,177 8.298 =174.879
38.51 .9608 11,1050 .306 =182,482 8,413  -174,069
Teble 4.,1(2)

re 7 iy cosy  Pyad Vs 1
0,000  1.8000 1.,6060 0,000 -196,266 16.174 -180,192
2.94 ©.9994 1.6018  ,016 -196.161 15.953 =~180,208
5.88 .9986 11,0044 036 =195.851 15.650 =180,200
8.82 «9976 1.0066 056 =195.552 15.396 =180.156

11.76 9964 1,0096 076 =195.152 15.070 =180,082
14.70 .9950 1,0126 096 =194.743 14,770  =179.973
17,64 <9935 1,0160 112 =194,296 14,436 =179,860
20.58 .9916 1.,0200  ,136 =193,73@ 14,085 <=179.645
23,52 <9896 11,0244  ,156 <193,134 13.714 =179,420
26.45 «9874 1,0294 o176 =192.471 13,321 =179.150
29.40 .9846 1,0356 .200 =191,650 12,884 -178,766
32,34 .9820 11,0420 .220 =190.846 12.463 ~178.383
35.28 .9786 140500  ,244 =189,.870 12,021 ~177.849
36.46 9744 11,0604  ,272 -188.653 11,536 =177.117
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Table 4,1(3)

S 7, Fe cos§ EMa.d Vs . Wl
0,000 1.0000 11,0000 0,000 =202,112 23,573 =178.539
2.94 9994 1.0016 024 =201.915 23,321 =178.594
5.88 .9988  1.0032 046 =201.680 23,071 =178.609
8.82 .9980  1,0048 070 =201.412 22,843 =178,569

11.76 9972 1.0070 094 =201,022 22,507 =178.515
14.70 «9960  1.0096 116 =200.585 22,149 =178.436
17 .64 9946 1.,0122 .140  =200,106 21.821 -178.285
20.58 9932 1.0154 162 =199,538 21.404 =178.134
23.52 .9916 1.0186 o182 =198.,983 21,128 <=177.855
Table 4.2

P ., ¢ 044

0 571.4 (408) 89.14 (69) 89.14 (63)

12 700.2 107.2 . 83,38

44 924.,2 154.0 65.41
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Table 4.3
S éEYY EEXX Cos?
(Kbar) A B A B A B
2.94 0.0025 0,0024 | -0,0008 -0,0008 |0,016 0,016
P=0 5.88 0.0051 0.0048 | -0.0017 -0.,00016|/0,033 0,032
2.94 0,0018 0,0019 | -0,0006 -0,0006 {0,016 0,017
P=1Kbar| 5 gg 0.0044 0.0038 | -0.0014 -0.00012/0.036 0.034
2.94 0,0016 0,0014 | -0,0006 =0.0005 [0,024 0,023
P=ffXbar| ¢ gg 0.0032 0.0028 | -0.0012 =0.0010 |0.048 0,045
Table 4.4
P(Kvar)’ S oy (KDET) AHL(KCal/mole)
0 ~ 38,51 5.512
12 ~ 36,46 3.075
44 ~ 23.52 0,684
Table 4.5
lattice constant at T
gchene
T=0 %K T=300°K T=500% T=800%
Baldereschi point - 6.017 6.054 6.090 6.174
two special points 6.017 6.054 6.103 6.150
ten special points 6.017 6.054 6,096 6.182
Standard”ﬁaﬁéficél
methoda» 60Q2 6906 6910 6918

(a) Ref.(29).
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Table 4.6

Baldereshi point

two special points’

ten sgpecial points

¥ goro 0.00185254 0.00184802 0.00184951

7=0% L 0 ) o
F —<28559794 =,28560246 =.28560097
LA 0.00180283 0.00179737 0.00179910
=300 % Wi, =,00457860 -.,00461829 -.00463003
F -.29011892 -.29016408 -.29017408
Viero 1400175382 .00173346 00174246
T=500% W -.01159161 -.01174218 -.01172230
7 =.29697846 =,297T0T457 -.29708419
oo .00165100 .00162297 .00163203
T=800 % W, -.02547657 -.02584701 -.02578900
F -.31024188 =.31044918

-.31045192
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Tadble 4.7(1)

5 N Rs cos LY Weero F
0,000 11,0000 11,0000 0,000 =180,371 1.127 =179.244
2.94 .9990 1.0028 016 =180,350 1 118 =179.232
5.88 .9980 11,0054 036 =180,297 1.108 =179.189
8,82 9966  1,0088 052 =180.219 1.097 =179.122

11.76 9954 1.0122  .074 -180,086 1.085 =179.001
14,70 .9934 1,0162 092  =179,931 1.072 =179.859
17.64 9914 11,0210 110 =179.730 1.057 =178.673
20,58 .9888 1.0264 134 =179.432 1.040 =178,392
23.52 .9861  1.0326 156 =179.083 1,021 =178.062
26.46 .9830  1.0400 178 =178.654 999  =177.654
29.40 9793  1.0492 .202  =178,090 973 =177.117
32,34 9742 . 1.0616 .232  =177.266 .938  =176.327
36.46 9678 1.0796 268 =175.161 921 =174.740
Table 4.7(2)

5 7 i: c-o'é? wl wzero F
0,000 1.,0000 1.,0000 0,000 =178.717 1.369 =177.348
2.94 9994 1,0016 024 -178.768 1,363 =177.405
5.88 .9986 1.0032 048 =178.766 1.357 =177.410
8,82 .9980 1.0052 OT4 =178,735 1.348 =177.387

11.76 9966 11,0074 094 =178.678 1,346 =177.332
14.70 9954 1.0098  ,120 =178.549 1.331 =177.218
17.64 .9943 1,0128 144 =178,411 1,318 <177.093
20,58 9929 1.0154 J166 =178.221 1,309 =176.912
23,52 .9907 11,0198 o190  =177.999 1.295 =176.704
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Table 4.8.1 T=300°K and P=0

Test 1 configuration parameters:
nl-OaQSSQ, 12-1,0290, cosf=.l300 and 8=17,64 Kbar
number of
spscial points 'L 'zoro (a,ul wT ¥ ¢
128 -.285627 ,001618 -,005418 -,289427 -.291632
32 -e285627 ,001618 =,005427 -.289435 -.291841
8 -.285627 .001619 =-.005397 =-.289405 -.291610
2 -,285627 .001627 =,005276 -,289276 -,291481
Test 2 configurétion paraneters:
M, =0.9740, A,=1,0500, ©cos§ =.1900 and s=23.52 Kvar
nuzbsr of
special points gL wzero (8,1} iT ¥ ¢
128 -.283646 ,001538 -,005780 =-,287890  -,292559
32 -02B3646 ,001538 -,005793 =.287901 -.292570
8 -¢283646 ,001539 -,005765 -,2B87872 -6292541
2 -6283646 001546 =,005653 <=,287754 -e292422
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Table 4.8.2 T=925% and p=0,

Test 1 configuration paramster:
11¢0.9954; 12-1.0122, cosP=0.074 and S=11.86Kbar,
number of v
special points Wl Wlzero ta.u.) H'1‘ F G
128 -.284633 0,001456 -.,034639 -,317816 -.318636
32 -.284633 0.001456 -.034897 -.318074 -.318894
8 -.284633 0,001457 =,034818 =.317994 -.318815
2 -,284633 0,001463 =,034489 «,316616 =,321657
Tesi 2 configuration parameiers
2,=0.9830, 7A,=1.0400, cosf=.178 and Se=26.46 Kbar,
Z’Qiziifioms " ¥gero ¥ ) ¢
fa.u)
32 -.281591 0,001343 -.,036699 =,316947 -,321988
2 -.281591 0.001348 =-,036373 =,316616 =,321657
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Table 4. 9 el

T=300°K, P=0 and s=8,82 Kbar

A

7“1 2 oos? ¢ .
0.,9955 1,0110 .048 -0290853
0.9950 1,0120 0052 -.290858
0.9945 1.,0124 +056 -4290862
0.9945 1,0128 « 060 -.290883

Table 4.9.2 T=925°K, P=0 and s=2.92 Kbar

7\1 ;\2 cos ?? [t}

0.9954 1,0090 .024 -.318235

0.9954 1,0090 028 -¢318240

0.9950 1.0098 .032 -0 318345

009950 150093 0036 bt 3}-524?
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FIGURE CAPTIONS AND FIGURES

Figure captions:

Fig. 2.1 (a) Lattice cell and (b) unit cell of the Bl structure. (c)
unit cell of B2 structure.

Fig. 2.2 Brillouin Zone for (a) face-centeres cubic; (b) simple cubic
lattices.

Fig. 2.3 (a) Bl structure, (b) bcc lattice, (c) B2 structure.

Fig, 3.1 Geometry of the system of three ions A, B and C. P represents
a point in the volume over which the integration in eq.(3.10) is carried out. P'
is the projection of P’onto the plane made by ABC, Both PD and P'D are perpendi-
cular to AB. ? is the angle between PD and P'D.

Fig. 3.2 Schematical representation of the configuration (XMM; R
Res’ LERE

Fig., 3.3 (a) The variation of VB(MXX;R,R, ¥) with R for KC1, for the

ca’

cases of )’: 70.5°, 90° and 109.5°. (b) The variation of V3(XMM;R,R, i ) with
R for KCl, for the cases of Y= 70.5°, 90° and 109.5°,

Fig. 4.1 Detail of the Bl to B2 transition mechanism proposed by Par-
rinello and Rahman. (A) shows a body-central tetragonal lattice, lattice vector
'a','g;?:*; length a,a, £a respectively. (see chapter II, Fig.2.3). The ions are
indicated by ¢ and ¢, This is an fcc lattice of e ions., The other species shown
as ® , two species of ions togefher complete the Bl structre. The thick arrow
in A indicates a dilatation, resulting in B, Fine arrows in B indicate displace-
ments of particles with a common;3 direction coordiante, resulting in the final
structure C. A is the Bl and C a B2 structure.

Fig. 4.2 Shear deformations occurred during the first step of the
Bl to B2 fransitiﬁn, the figures in dashed lines represent undestorted fcc lat-

tice in which configuration parameters are A,= ;=1 and cosf = 0. (a) C
44

type shear deformation in the (100) plane of the Bl structure. (b) Cll - C12

type shear deformation in the (010) and (0C1) planes of the Bl structure.
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Fig. 4.3 Phonon dispersion curves of KC1 crystal under an uniaxial
tensile load S and hydrostatic pressures P = 0, 12 and 44 Kbar. The solid lines
givé the phonon dispersion curves for case of § = O, i.e. for the case of equi-
librium of the crystal under the hydrostatic pressure. The dashed lines give

the phonon dispersion curves for the crystal under the uniaxial tensile load,

whose value is equal to Sm

Fig. 4.3(a) P = 0.
Fig. 4.3(b) P = 12 Kbar,
Fig. 4.3(c) P = 44 Kbar.

Fig. 4.4 The variation of the frequancy of Tal mode of [100],zone
boundary phonon with uniaxial tensile load S for the cases of hydrostatic pres-

sure P = 0, 12 and 44 Kbar.

Fig. 4.5 The variation of lattice energy wl with the uniaxial

tensile load S for cases of hydrostatic pressure P = 0, 12 and 44 Xbar,

FIGURES:
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