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I. Introduction.

I.1 Outline of the thesis’ contents.

We have decided to try to have almost self-contained chapters, in each of which
there is presented a specific framework together with our contribution to the par-
ticular area and to its discussion, because we got interested in several different,
albeit related, projects (some of which, not fully exploited, are not presented here).
Also, a large part of the work which won’t show up directly is the large number
of computer codes which have been developed. Numerical work played a very sig-
nificant part in the present work, although as a tool and not as an end for future
applications, as often happens in numerical theses. Hence we will not usually give
the details of the computer programs, but only their principles when they are use-
ful. Nevertheless we remark that it often took endless hours to produce a single

figure or a single number which is buried in the text.

We have organized the presentation of material according to the cosmological
‘clock’ (i.e. for different values of the redshift, 2): we will discuss first events which
refer to an almost primordial epoch (i.e. to the last scattering surface of the Cosmic
Microwave Background (CMB), with a redshift, for the effect which is of concern
to us, of z ~ 10%), then we pass on to intermediate epochs, those of possible
formation of galaxies and clusters of galaxies (z ~ (1)), and we will end with a

discussion concerned with superclusters (SC) at very recent epochs (z <k 1).

Of the following chapters, two (Chap. II and Chap. III) are concerned in
detail with the study of possible Large-Scale (LS) fluctuations of the CMB. This
topic is of paramount importance to the whole field and to cosmology at large,

and indeed these two chapters constitute the core of our thesis’ work.



In Chap. II we first discuss the effect we will be concerned with (the Sachs-
Wolfe effect) and then develop a new formalism which takes into account, in an
exact way, the fact that different experiments get different results even if they
are measuring the same fluctuation, because of different sizes of the experimental
beams used. This point, which might seem to be trivial, has important conse-
quences. We then present the first meaningful comparison between present results

on the LS anisotropies of the CMB.

In Chap. III we pursue further the study of LS CMB anisotropies and im-
plement and enlarge the formalism. We first give a discussion of the effect of
the beamsize on observations of possible cosmological hotspots. Then we discuss
the results of a recent experiment, and also clarify the validity range of the new
results we obtain by a direct application of the results of Chap. II to the data,
through a Likelihood Ratio method. We continue with a discussion of how to de-
rive meaningful confidence levels on upper limits for cosmic density fluctuations,
from experimental upper limits on CMB LS fluctuations that are quoted in the
literature. Then, through Monte—Carlo simulations of different realizations of the
CMB last scattering surface, we obtain upper limits on the amplitude of density
fluctuations (for the scale invariant spectrum) which are almost one order of mag-
nitude more stringent than those obtainable from the limits on the quadrupole
component of the temperature fluctuations. We conclude the Chapter with a dis-
cussion of effects which could have caused a recently reported ‘bump’ in the CMB

sky.

In Chap. IV we show the impact that different perturbation spectra, obtained
in ‘hybrid’ models, have on the mass-multiplicity function, evaluated with the
Press—Schechter formalism and with approximate formuls for the peak number
density. We then discuss the possible effect of an increase of the amplitude of
the galaxy spatial two-point correlation as a function of the limiting intrinsic
luminosity of the sample. An explanation of this effect is tentatively given in

terms of the theory of biased galaxy formation.

In Chap. V we present and discuss present catalogues of clusters of galaxies



and then concentrate on an analysis of the most recent available one. We discuss
the problems of distance estimates through apparent magnitudes, and then derive
a relationship with which we obtain distance and density estimates for this new
catalogue. We also discuss percolation algorithms including the one we devised
and have applied to this recent data. We then pass on to discuss the problem of
LS peculiar velocities, which is one of the ‘hottest topics’ at the moment in this
field, and review recent results and methodologies which try to get estimates for
the value of {}g. We close the chapter and the thesis with a discussion of the most
interesting SC we found by our analysis. The interest comes from the fact that
this SC is close to us (on a cosmological scale) and is in a very particular position.
Being close, this SC can be studied more easily than others which are much further
away, and therefore be a source of a wealth of cosmological information. On the
other hand, not only is its radial distance of interest, but also its direction: this
SC could in fact be mostly responsible for the observed peculiar velocity of our

Local Group (LG) of galaxies.

I.2 A ‘not so large’ overview (seeded with comments and
afterthoughts).

We will give here only a brief overview of the general framework, having already
given in the previous section an outline of the topics discussed in detail in the

following chapters.

We first outline some aspects of the Large Scale Structure and its current
problems. We prefer not to give detailed references to general problems men-
tioned in the following, both because of the overwhelming number of references
involved and the extremely fast evolution of the topic itself. Therefore we advise
the interested reader to start getting acquainted with this field through the many
summaries which appear in recent congresses and seminars like, for instance IAU
104-117-124-130, ESO/CERN 1°t-274-3™  Texas meetings, and review papers
which appear in Nature, in Ann.Rev.A.A, and in the proceedings of dedicated En-

rico Fermi Schools, Erice Schools, and Saas-Fee Schools. At the moment, the only
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widely used book which is dedicated to this topic is still Peeble’s The Large Scale
Structure of the Universef. Problems with this book are the fact that is hardly
pedagogical (although it includes almost all the basics) and that it is becoming
dated in parts (it is from 1980).

We assume that the reader knows the basics of the cosmological framework
that we will always adopt, i.e. the Friedmann-Robertson-Walker (FRW) models
(see any book on Cosmology), so we spare ourselves and the reader such discussion
and, to fix the notation, just say we adopt the convention a(t)'oc (1 + z)7! for the
expansion parameter. Usually everything is normalized to the present epoch, so

that a(t) = (1 + z)~1.

The basic problem to start with is how to identify structure: already at this
first point there is no clear or definite answer. What is meant by ‘structure’ ?
and what by ‘large’ 7 We do not want to get involved here with such formidable
questions, so we will simply say that the topic is the study of inhomogeneities
in the ‘spatial’ distribution of astronomical objects. We put the word spatial
between quotes because of what we consider to be is a real problem: most of
the available information is tied to our past light cone, therefore we have (and
expecially in future will have) to try to take into account evolutionary processes of
the possible tracers of Large—Scale structure, as we consider ever larger volumes of
space. This problem is, of course, most severe for redshifts of one or more, where
the information comes at the present from quasars and Ly, clouds, although a

galaxy has recently been seen at z 2 3 !

The main goal of the whole field is to find plausible mechanisms which are
capable of generatimg the observed structures, starting from a general cosmologi-
cal framework, usually that of FRW models. These models are preferred because
they are aesthetically simple, but mainly because they find very strong experi-
mental support from the presence and the smoothness of the CMB background

(in conjunction with nucleosynthesis arguments). On the other hand these models

T see also The Structure and Evolution of the Untverse by Zel’dovich and
Novikov)



imply (in the synchronous gauge) a complete homogeneity for eqﬁal time hypers-
ufaces: in a FRW model the universe is currently described as a continuous fluid
with the same composition and temperature everywhere (strictly speaking, the
same temperature for each background component on its own when not in ther-
mal equilibrium), which is expanding with a pure Hubble flow. The reality, our
reality, is of course very different from this description. Therefore having to work
in a definite background (i.e. the assumed FRW models), one is led to the fol-
lowing questions: ‘How did departures from the FRW homogeneity arise 7 How
did these departures lead to the observed objects 7 How well can a FRW model

describe a situation very different from a homogeneous one ?’

We will be concerned with the part of the second question which refers to
epochs which range from after nucleosynthesis up to the present time. The first
question is addressed by those working in inflation and other theories concerning
the early universe. We will be passive users of the main proposed types of small
fluctuations which perturb the original FRW smoothness, and that should grow
to the present structures. The third question is still to be fully investigated, and
~ is not even (yet) a pressing problem for most workers in the field. We just want to
say here that in our opinion the question: ‘Above which scale —if any at all- can
the observed universe be approximated as homogeneous ?’, deserves the greatest

consideration.

As noted above, one could try to say that a structure is defined by the
positions of the objects that we use as tracers. Leaving aside for the moment
evolutionary and completeness problems, we would like to have the full kinematical
description of these tracers in order to try to describe also their dynamics. This
means that one would like to know at least six quantities for each tracer, so as
to have its position in phase space (i.e. the three components of its position and

momentum vectors).

Unfortunately, already at this basic level, we are confronted with great, in-
deed almost insurmountable , difficulties. Leaving aside for the moment the prob-

lem of the mass of the tracer (i.e. going from phase to configuration space), what




fraction of the ‘minimal’ information is one usually able to achieve 7 Most of
the information comes from optical catalogues and, ignoring for our purposes the
problems that arise in some circumstances (e.g. error boxes on X-ray sources), we
can say that the position on the sky is well determined. Hence we have 1/3 of the
minimal information. Then, one can sometimes measure a redshift for the object
(emission lines, or absorption lines on its own continuum or when it is i]luminatéd
from behind). So, under the assumption of a pure Hubble flow, one would get the
full minimal information needed, because under this hypothesis redshift—distance
(neglecting Ho—value problems) and every object has zero peculiar velocity. Un-
fortunately, when one goes into some detail the latter assumption breaks down,
and one is faced with a decrease of a factor of two in the known fraction of minimal
information: this now is only 1/2 (i.e. two position coordinates plus the radial
velocity). With great effort and large errors in some cases it is possible to get
estimates of the radial distance which are independent of the redshift, so that one
attains 2/3 of the minimal information (i.e. the position plus the radial velocity).
This, however, seems to be the maximum information than one can reach when the
assumption of pure Hubble flow is dropped: what is needed is some method which
can directly measure transverse peculiar velocities of galaxies. A more detailed

discussion of the topic of peculiar velocities can be found in Chap. V.

Another tremendous problem is that of completeness of the catalogues: most
of the time observations have not been made with the explicit purpose of treating
large volume of space with the same procedure, so that very often people try
to understand something from data which comes from different bands, different
depths, and has been obtained by different techniques, so that they have different
uncertainty and precision. Hence large amounts of homogeneously taken data, are
badly needed. We point out that a large effort in this direction has been made at
CfA, whose optical catalogues at my;,, = 14.5 and my;m = 15.5 (at the moment
‘the slice’) have been milestones in this kind of studies. The same comment applies

to Abell’s catalogue of clusters of galaxies (more on this in Chap. V).

This is fine, but where is the structure 7 What has been observed (espe-

cially from optical surveys with measured redshifts) is that galaxies do not fill
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the available volume uniformly (in a Poisson sense). This was well known as was
the presence of aggregates (i.e. clusters) of the order of hundreds galaxies. Nev-
ertheless, up to a few years ago, say late seventies—early eighties, the large scale
structure did not emerge in its full glory. The common picture most people had
in mind was that of an almost uniform ‘sea’ of galaxies, in which were embedded
a few clusters, scattered around. This picture suffered dramatic changes when
observations showed what theory did not even hint at: the universe is structured
on almost all scales for which we have a fair amount of data. The more redshifts
became available, the more prominent structures showed up. Giant voids (better:
underdense regions) of size several tens of Mpc, filaments in the cluster distribution
of size hundreds of Mpc, bubbles in the galaxy distribution with typical diameters
of tens of Mpc, detailed radial structure in deep pencil-beam surveys, clustering
of quasars and Ly, clouds, and peculiar velocities of ten percent of the Hubble
flow over several tens of Mpc are all phenomena discovered and partly discussed

in very recent times (e.g. J.Oort, 1988, P.4.5.J. 40, 1).

One real problem is how to get quantitative measures of the presence of
structure, so as to pass from visual descriptions (notorious ‘artist’s impressions’)
to solid numbers. This problem has been addressed with a variety of techniques,
like filament statistics, Likelihood Ratios, percolation, fractals, multifractals, void
probability functions, spanning trees, genus of surfaces, cluster analysis, and cor-

relation functions.

Among these techniques the one most applied, most studied, and the one
which has led to the present greatest disputes, is evaluation of the two—point cor-
relation functions (spatial, {(r), and angular, w(f) with @ sky separation angle; a
related discussion can be found in Chap. IV). Observationally it is found that the
two-point correlation function is well-described by a power law over a wide range
of scales. It is worth noting that, at present, the various arguments about the
measured values of the amplitude and slope of the two—point correlation function
give an idea of our poor ‘understanding + available data’, especially because this
function should in principle be the most easy to determine. Indeed the two—point

correlation function by itself carries very little information, compared to the infor-
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mation one needs to fully describe the system (e.g. that obtainable through the
void probability function or multifractals). This function is in fact only the first of
a hierarchy of functions, which has a height proportional to the number of objects
under examination. Only when the distribution of objects is strictly Gaussian,
or when some scalings apply among the hierarchy, does the two—point correlation
function give an amount of information sufficient to describe the system. This fact
can be easily seen by comparing some outputs from N-body codes which simu-
late different types of collisionless dark matter (e.g. ‘hot’ and ‘cold’ types, which
at the beginning of the simulation have respectively large and negligible peculiar
velocity dispersions). These outputs have the same slope for the two—point corre-
lation function (the amplitude is obtained by rescaling coordinates), but describe
strikingly different situations (e.g. filaments, pancakes and large underdensities

vs. a hierarchy of finely distributed groups of simulation particles).

This is just to give a feeling for the great uncertainties that theorists are
confronted with and which are responsible for the large proliferation of models
which attempt (so far unsatisfactorily) to give a vague picture of the processes

which led to the formation of what we see (note the ‘see’).

In fact, for instance, we do not know: the specific value of the basic parame-
ters of the FRW model (i.e. 1/2 £ Hy /(100 hkm/s/Mpc) < 1,0.1 S Qoh? S1-3,
A =7), the amount and the type of the main matter components (we have only
bounds on the baryonic fraction, 1072 < Qoh? < 0.2 from standard nucleosynthe-
sis calculations), what are/have been the main mechanism(s) of galaxy/cluster
formation and which of these two kind of objects formed first (chicken or egg ?),
wheter the universe has been completely reionized at late epochs, what produced
the cosmic X-ray background (CXB; there is also the recently claimed Infrared
one), what is the dark matter which seems to influence dynamics, what is respon-
sible for the lack of neutral intergalactic hydrogen, and lots of other important‘
questions. This level of uncertainty leaves room for very ingenious proposals of

different pictures, which sometimes are quite different from each other.

In the literature several examples can bé found of tables in which the suc-



cesses and failures of different models are summed up with various marks awarded
(a variable number of plusses or minuses according to the authors’ taste), so we
think it is instructive to present at the end of this Chapter one of the latest (Pee-
bles and Silk, 1988, preprint), as an example of the maze of different classes of

theories (each with its own subclasses) which appear in the literature today.

We want then just to sketch the basic strategies in the game: one starts with
a given assumption for a density perturbation spectrum (sometimes already with
primordial ‘objects’) and a given composition for the universe contents (the only
component which is invariably present is the baryons, but in different percentages
and with varying dynamical importance). Then the evolution of such perturba-
tions is followed by use of linear theory, with a particular stress on the possible
consequences for temperature fluctuations in the CMB. After this, one enters the
no man’s land of nonlinear phases, that are usually tentatively tackled with the use
of massive N-body computations (which only in recent times achieved the degree
of sophistication necessary to —almost— reliably describe a self-gravitating system,
and are still very far from being capable of describing the hydro—gravitational cou-
pling really needed). Through these outputs, plus results obtained from the use
of semi-linear approximations or linear theory wherever these approaches are still
applicable, one then tries to squeeze the original parameters so as to be able to
obtain agreement with various observables. If the conflict with some major obser-
vational result (and we already noted how these are usually pretty uncertain) is
too large, an opportunely different set of initial parameters is then tried with the

hope of a better outcome, repeating the whole process.

The large scale structures and measurements constitute a very hard con-
straint on these theories, essentially because of the large scales, large times, and
large amounts of matter involved: it is not easy to move around masses of the
order of those involved in superclusters, even in an Hubble time. And this should

be done without perturbing the CMB.

It is worthwhile mentioning here a brilliant tactic for circumventing this

problem: biased galaxy formation. Roughly speaking, according to this theory, the




high degree of structure that is observed is not completely ‘real’: the observations
give the distribution of the light, not necessarily that of the mass. Therefore, if
some process exponentially amplified the light production per unit mass in some
particular regions, we would see the bottom of an ‘inverse iceberg’: a lot of smoke
with almost no flames. Hence, paying for the introduction of an additional degree
of freedom with a great uncertainty in the possible mechanisms (one could also
have anti-bias), one could reconcile the gross inhomogeneities by saying that these,
for the most part, are apparent (another bonus is an explanation of the observed

differences in clustering amplitudes of galaxies and clusters of galaxies).

On the other hand, there is a fundamental difference in the overall picture:
if there is severe biased galaxy (and cluster) formation, the universe should today
be pretty unperturbed on large scales, hence with small peculiar velocities. If this
were not the case, then, by a mere application of the continuity equation, huge
amounts of matter are moving around and have non—negligible peculiar velocities.
The latter issue is very important at the present moment (we would say a red-hot

issue) and is studied in detail in Chap. V.

We conclude here the ‘cubist’ picture we sketched above with a general re-
mark on this area of Cosmology—Astrophysics. The field is still in its infancy and
this partly explains the high degree of uncertainty which permeates almost all its
aspects, but makes it very promising and exciting to work in. On the other hand,
we feel it is important also that, while waiting for new, surprising observational
results, people who enter this field (including ourselves) should make every pos-
sible effort, whenever it is feasible, to go beyond the order—of-magnitude-minded
approach which is sometimes taken as an end point instead a starting point. At
the same time also more efforts should go into exploring and fully clarifying the

basic, fundamental questions that we mentioned above.
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A cosmic book

The Cosmological model

1) Qo ~ 0.1 and

a) zero space curvature &

by A=0 &
2) Q9 = 1 with dominant mass in

a) exotic particles ' £?

b) baryons e

3) New physics:
a) failure of the inverse square law, a 7** force, ... &s

The seeds for galazies

4) Primeval adiabatic fluctuations

a) Gaussian and scale-invariant &2
b) a specifically tuned power spectrum &t
5) Primeval isocurvature fluctuations &3

6) Massive cosmic string loops

a) Gp needed to make something £?
b) Gp needed for gravitational accretion &3
7) Primeval magnetic fields &2

The development of galazies

8) Gravitational instability &
9) Explosive amplification &2
The models
Baryonic adiabatic (2b, 4b, 8) Ed
Canonical Cold Dark Matter (2a, 4a, 8) E*
Cosmic strings loops (2a, 6b, 8) £s
Magnetized strings (2a, 6b, 7, 9) £
Baryonic isocurvature (1a, 5, 8) &

€ <1 is an ‘a priori’, subjective theoretical unit of probability (Peebles and Silk,
1988, preprint). The larger its power, the less likely is the scenario.
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II CMB : Large Scale Anisotropies.

II.1 Temperature fluctuations and the Sachs-Wolfe effect.

As already mentioned in the previous chapter, detection of possible anisotropies in
the CMB would provide a great wealth of information on the mechanisms which

originated the present structure.

On the other hand, notwithstanding almost 30 years of experimental efforts,
no cosmological anisotropy in the CMB has been firmly detected, with the excep-
tion of a dipole signal. The latter signal, though, is widely believed to be extrinsic
and due to our peculiar motion with respect to a uniformly expanding ‘cosmic
frame’, which could be defined in terms of the mean state of motion of the matter
at great distances (or in terms of the reference frame in which the CMB itself
appear to be uniform at a level just above the current upper limits on intrinsic
anisotropies). The reason is that the dipole signal is at a level ((AT/T3),,, ~ 1072,
see Lubin and Villela, 1986) which is almost two order of magnitudes greater than
current limits on the quadrupole amplitude and no theory so far seems to be able to
account for such a disparity between the amplitudes of these contiguous harmon-

ics. Of course this dipole signal and our inferred peculiar motion are also of great

interest to the large scale problems and will be discussed in detail in Chap. IV.

We now return our attention to the intrinsic anisotropies of the CMB, which
can broadly be divided in two general, overlapping groups, according to their

angular coherence scale on the sky, i.e. on large and small scales.

The Fig. I1.1 , taken from a recent excellent review paper (Kaiser and Silk,
1986) illustrates the main features of the problem. From this we can summarize

the main properties of the fluctuations which are of interest to us here. The
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Az = 150
A8= 7 Q2 arcMIN

AL= 150 Mpe

L=3 cty= 200 h "' Mpc
f=~2°

Figure II.1. A schematic diagram of the standard Big Bang (adopted from
Kaiser and Silk, 1986).

path of most of cosmic photons is assumed to be free after they have left the
last scattering surface, composed of ionized and recombining atoms. Because of
the finite duration of the recombination process the last scattering surface has
a finite depth and, because of photon diffusion, any signal on this scale (AL ~
150; Tp-ly pc, which corresponds to an angular scale of A8 < 8 Qé arcmin) is
washed out (Kaiser 4and Silk, 1986). The other interesting angular scale is that of
the causal horizon at the last scattering epoch, zg, which is of order ~ (Q0/24)3
and translates to Abhor ~ 2° for zg ~ 103, Therefore any temperature anisotropy
on scales larger than the latter one should carry information which completely
bypasses the effects of possible nonlinear processes, limited by the causal horizon,
and can then be directly ascribed to true primordial fluctuations. The angle above

which this should hold is however dependent on the actual value of z4: a possible
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energy injection sufficient to ionize again the cosmic baryons (‘reheating’) and
consequently cause the cosmic optical depth r to again reach unity, would lower
accordingly the value of z4 and increase that of Afy,-. In the most extreme case
though one would have (Kaiser and Silk, 1986) z4 2 30 and Af,» 2 10°. Such
a scenario would itself cause other temperature perturbations below such scales
( Vishniac, 1988). Nevertheless, as long as zg > Q;!, as occurs in the usual
scenarios, a given comoving region of size [y essentially subtends the same angle
on the last scattering surface (Hogan et al., 1982): 8(ly) =~ (Qo/2¢)loHy (a good
rule of thumb is that a linear scale of ~ 100 Mpc subtends ~ Qgh degrees). Also
of importance is the angle subtended by the possible spatial curvature radius,

Abeyry = Qo /(2(1 — Q) 7).

Up to this moment we have not discussed the mechanisms of possible tem-
perature anisotropies because, over the years, dozens of physical effects have been
proposed and scrutinized in detail by scores of theorists. Many good reviews on
the subject have been written and we dare not give even a mere (probably incom-
plete) list of these effects. We want just to point out a majority of these effects
involve causal processes at recent redshifts, so if we stick to large angular scales
we can ignore them for the reasons mentioned in the previous paragraph (some

possible exceptions will be discussed at the end of Chap. III).

We therefore will discuss the gravity-induced anisotropies in the context of
the standard FRW model and show that even this well studied framework can still

give new, interesting results.

We give a brief summary of the general framework, which is that of the study
of perturbations of the FRW metric. This approach, pioneered by Lifshitz (1946),
consists, as usual in physics, in expressing the perturbed quantities as the unper-
turbed ones plus a correction, assumed to be small. For instance the perturbed
metric is usually written as g,, = gfﬁ,) + hyy, where gfgj) is the unperturbed FRW
and the perturbation tensor h,, has negligible components with respect to that
of the unperturbed metric tensor in an appropriate reference frame (it is diffi-

cult to define the ‘smallness’ of a perturbation of the metric tensor: see Wald,
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1984). Problems can arise because of the possible choices of gauge, resulting in
non-physical smoothness or irregularity (Press and Vishniac, 1980). This can be
avoided by using the elegant gauge-free approach by Bardeen (1980) (for specific
applications to the CMB case, see Abbott and Schaefer, 1987, and Panek, 1987)
or by consistently using the time-orthogonal coordinates (Peebles, 1980, sect. 81).
The perturbations themselves (e.g. combinations of uv) can be divided according
to their behaviour under coordinate transformation into scalar, vector, or tensorial
perturbations (Landau and Lifshitz, 1979). In most scenarios the scalar perturba-
tions are the dominant ones and we will restrict ourselves to these in the present
discussion (further information on the other types can be found in Starobinsky,

1983; Abbott and Schaefer, 1987; Fabbri et al., 1987; Linder, 1988).

On large angular scales, for an observer with zero peculiar velocity (cf. the
above discussion), the anisotropy is essentially of gravitational origin: cosmic pho-
tons from different directions, which leave the last scattering surface from regions
that have different gravitational potentials, will suffer a slightly different amount
of redshift. This results in their still having black-body spectra (no spectral distor-
tions are induced by gravity alone) but with slightly different temperatures. This
effect, introduced by Sachs and Wolfe (1967 henceforth SW), simply amounts to
the difference in peculiar potential and its order of magnitude is simply given by
AT/Ty ~ £ & (£/r)?, where § = 6p/p is the density perturbation of comoving scale
¢ and and 7y = cty is the present horizon length scale (Kaiser and Silk, 1986); in
a flat universe 7o = (2¢)/(3H,) =~ 2000 A~ Mpc.

We want also to point out that Traschen (1984), and Traschen and Eardley
(1986) discussed possible modifications to the canonical approach we will use.
These modifications with respect to the SW results, mainly consist in a reduction of
the predicted level of temperature fluctuations (for the same amplitude of density
pertubations), due to the implementation of general relativistic causal constraints.
We will leave to future work the applications of the formalism we develop below

to this latter case.

The derivation of the exact SW expression is given by Peebles (1980, sect. 93),
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who also neatly summarized the hypotheses under which the following equation is

valid (Peebles, 1983):

§T(h12) _ Gpiof
T 3

/ @z [6; (%2 — X) — 6; (x1 — )] , (IL1)

T

where a is the expansion factor (¢ x (1 + 2)7t), 412 = 6 is the angle between
the directions of the points 1 and 2, separated by z12 ~ 2c8/(Q9Hoao), X are the
observer comoving coordinates, p is the background density, and the subscripts
1,0 denote, respectively, some starting redshift z; and the present time. The above
expression for the SW relation assumes (Peebles, 1983):

a) The optical depth for scattering since z; is negligibly small.

b) Non-gravitational forces on the scale z;1; may be néglected.

¢) Linear perturbation theory is a good approximation (reasonable be-

cause 6T /T ~ 107%).

d) Initial temperature fluctuations on the starting hypersurface at z =
z; are negligible (indeed (6T/T); ~ & < (6T/T)o ~ 6i(aizi2/t:)?
because the term in the last parenthesis is much greater than unity

for 8 > Abpor).

e) 14z > Q5! —1]so that the expansion rate at z; is well described
by the Einstein-de Sitter model.

f) The separation of the two lines of sight is smaller than the radius of
curvature of space, s0 0 < Afcyry -

g) The primeval perturbations are adiabatic.

Concerning the last item we note that the adiabatic assumption is a quite a
common scenario, although many others have been considered: for instance a
scenario with isocurvature perturbations would simply give a fluctuation ~ 5 times
higher than the corresponding adiabatic one with same §;, (Efstathiou and Bond,
1986), while isothermal fluctuations with ad hoc initial conditions or pure baryonic

isocurvature models would give no temperature perturbations on large scales.

It is common practice to Fourier-expand the primordial density perturbation
field with respect to comoving wavevectors k and then solve the linearized equa-
tions for the single modes. With this prescription the transform of the peculiar
potential for a given k, @i, becomes simply proportional to that of the density

perturbation at the same k (cf. Poisson equation): ¢ o« 8x/k?. Therefore we can
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write for the temperature fluctuation along a given line of sight (Peebles, 1980):

S .
A8, ¢) = T%"” ~1=-B Y 5ekw, (IL2)
k

where [ro| = 2¢/Hy, 6 and ¢ are angles of direction on the sky, and B = 2/r2. It

is useful to expand A in spherical harmonics:

AG,9) = D o YM0,9). (IL.3)

Lm

Being primarily interested now in the angular dependence we can define the
operator S = —B ¥, k™2 6} , obtaining A = Sy ¥ and find an expression
for the coefficient of the expansion of Eq. (II.3) by integrating over all possible
directions of ro (we will drop the subscript from ry for the remaining part of the

section):
/dﬂ "0, AQ) = S, /le V¥ () e (1L4)

Now k - r = |k||r| cosv, where v = Qy ,, so we can use the expansion

co

el? oSy _ Z (2n + 1) et jn(z) Pn(COS ’)’) , (115)

n=0
where j,(z) and P,(cosv) are respectively the spherical Bessel function and the

Legendre polynomial of order n. Substituting the previous expression in that for

ay’ we get

= S X et juli) [0 ) Peos). @19

n=0

By expanding the Legendre polynomials in spherical harmonics, P, (cos ¥) =
(2n+1) > o= —n Y2 *(Q) Y2 (Qy), we can take advantage of the orthonormality of
spherical harmonics, [ d9, Y *(02:) Y2 () = 8¢nbm s, and get rid of the last two
sums, so find (Peebles, 1980):

of = 4mit § galkr) Y7*(). (I1.7)
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I1.2 Power law spectra and a sketch of the linear theory.

We can pass now from the discrete to the continuous Fourier transform (3, —
J 4%k /(27)*) and make an important assumption about the primeval density per-
turbations: that these are described (on spatial hypersurfaces at constant time)
by a 3-D Gaussian random field, resulting in a Gaussian distribution for the given
Fourier component, which then has a phase totally independent of the other ones.
The latter assumption, which has been continuously used over the years, can find
its justification from speculations on possible processes which can have generated
such fluctuations: it would not be so easy to introduce correlations and phase
dependences over scales which exceed the present horizon. On the other hand,
the inflation scenario can give possible coherence before or during the inflation-
ary phase to perturbations on such scales (Ortolan et al., 1988 and references
therein). The ‘standard’ proposed mechanism for the generation of these pertur-
bations (Starobinsky, 1982 Guth and Pi, 1982; Bardeen et al., 1983) is zero—point

oscillations of the inflaton field and results again in random Gaussian fluctuations.

We note that to take the volume average is equivalent to taking the mean
value over the ensemble constituted by all the possible ‘fiducial’ cosmic observers.
This is an important point which will be expanded in Chap. III, where we will
discuss in detail the distribution over such an ensemble of the physical quantities

which are relevant for the present work.

With the assumption of random phases for the Fourier components, the cross-
product of different Fourier components average to zero (Peebles, 1980, sect 46)

so that the ensemble average of the square of modulus of Eq. (II.7) becomes

<| mlz) = (4rB)’ dk ol Ero)? Y7 ()2 IL8
) = @B [ s S Gl P@OF . ()
It is then convenient to define the average harmonic component as
1 ¢
2 m |2
“ = G o (1) (IL9)

and with (204 1)~ 3¢ _ 1Y () = (1/4x) we get

co dsk ‘6]('2
2 __ 2 . 2
a; =4rB /(; @ ke |7e(kro)|” . (1I1.10)
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The above equation gives the relationship between the average harmonic
coefficient and the density perturbation field: once the latter is known, one can
easily compute the rms temperature fluctuation, Az = <A2>§, by averaging
over the sky the square of Eq. (II.3) (more about this later). So we are led to
return our attention to the fluctuation spectrum, 8. As noted earlier, as long as
the perturbation approach maintains its validity, the Fourier components evolve
independently from each other, so that one can write Ox(z) = T(k, z) 6k (21), where
z1 is a suitably high initial redshift and the physical details of the model (e.g-,
component’s composition, law of growth for the given mode) are contained in the
‘transfer function’ T'(k, z) (of course T'(k,2z;) = 1). The latter function is usually
computed numerically and brings us back to the problem of the initial conditions,
6x(21). One of the widest and more commonly adopted choice for initial conditions
is to assume them to be scale-free (i.e. without a ‘built-in’ length scale) and to be

described by a power-law spectrum of index n:
|6 = 4 k™, (IL.11)

where A is an overall normalization constant of fundamental importance to be
determined from observable quantities, in that is the main tool to be used in
discriminating among models which belong to this class. Possible values for the
exponent n are usually taken to be |n| < 3, in order to avoid serious divergences
of physical quantities (see for instance the discussion by Peebles, 1980). While
gravitational interaction (and momentum conserving processes) can develop a k*
‘tail’ (Peebles, 1980; Carr and Silk, 1983), of particular importance is the case
n =1, the ‘scale-invariant’ or Harrison-Zel’dovich spectrum. This initial spectrum
has the simple and very nice property of causing the fluctuations to have the same
amplitude when they cross the causal horizon (i.e when the physical wavelength of
the given mode is comparable to the horizon scale): from this property comes the
denomination scale-invariant (although Peebles also proposed this spectrum on the
basis that is the one with the smallest degree of divergence, namely logarithmic,

Peebles and Yu, 1970)

We now make a crucial, albeit trivial, remark: as shown above the final

density field (and related quantities), to be compared with the observations, de-
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pends also on the transfer function which is itself a function of the wavevector.
Therefore, if still a power law, the final spectrum will have an ‘effective’ power
dependence, n.sy on scales of interest which is different from the primordial one,
n, and will depend heavily on specific details of the composition of the component
of the models, thereby giving very little information on n . We can circumvent
this difficulty, however, if we consider only very large scales (small k£): these uni-
formly experienced uninterrupted growth, so that the transfer function is no longer
wavevector-dependent but is a function of time only, T'(k,z) — T'(z). This is ex-
actly the case in which the Sachs-Wolfe effect takes place, so from the study of
large scale temperature fluctuations in principle we can get informations on both
the primordial spectral index, n, and the normalization amplitude, A. With such
information, as noted above, one can cross-check with the normalization ampli-
tude which is derived from smaller scales (i.e. number counts, peculiar velocities,

correlation amplitudes) according to the specific models.

With the above assumption for the spectrum, substituting Eq. (II.11) in

Eq. (IL.10) , we obtain
B> Arl-m
22

/ do 2™ o) . (IL12)
0

a; =

Now, because

I‘(3.-q) T (zﬁf:—l)

- 2 -
T ()" 1 (2=)
if we substitute for B its definition, we can finally write (Fabbri et al., 1987; Bond
and Efstathiou, 1987)

, (IL.13)

/ do ot [jo(e) = m2e7?
0

2714  T(s-n) T (321
r(()n+3) [I-. (%3)]2 1-\(2£+25—n) .

(IL14)

o =

I1.3 The temperature fluctuation autocovariance and the

effect of beam smoothing.

As will be discussed in the next section, anisotropy experiments adopt subtraction

techniques to detect temperature fluctuations: what is actually measured is the
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temperature difference of two separate directions on the sky, then repeated and
averaged on (ideally) all the points of the sky which have the same angular sepa-
ration. We therefore need from the theory a prescription to compute such a value,

which is obviously a function of the separation angle.

To this end it is very important to consider the function C'(a), the temper-
ature fluctuation autocorrelation function (henceforth acf), which also completely
describes the statistical properties of the temperature field because of its Gaussian

distribution. We can then define the acf as

Ofa) = (i) 7))

where o = cos™!(%; -42) and the average is here taken over the whole sky and over

(I1.15)

the ensemble constituted by all the possible realizations of last scattering surfaces.
We will discuss in the next chapter the effects of dropping the latter assumption

(i.e. the ensemble average). We note also that C(0) = AZ_ .

It is now necessary to derive the relationship between C(a) and the density
field. The direct way is to use the results from the previous section, expressing
C(a) in terms of the a}*’s. First we can expand the acf in Legendre polynomials
and we will adopt here the definition commonly used in the current literature: we
will not consider the monopole term, unobservable by difference experiments, nor
the dipole term which is commonly assumed to be of extrinsic origin (cf. discussion

in Sect. II.1 ). Therefore we define:

Cla) = Z ce Pp(cosa) . (11.16)
£=2 :
We now express the coefficients {c;} in terms of the {a}*}. By the orthogo-

nality of Legendre polynomials we have that

: 1
cj = (—2‘1;—12 /_1 d(cosa) Pj(cosa) C(a) (I1.17)

which can be rewritten by substituting for Eq. (II.3) and for Eq. (IL.15) as

2j+1) [
Cjz—(——lé—l-—-—l /1 d(cosa) Pj(cosa) X

(IL.18)
X <Z ay Y (80) Z aﬁ*Yf*(Qz)> )

£>2,m n>2,p

21




where (2; denotes the angles of the vector v; and we use the condition a =
cos™ (4 - "72) One can expand further the expression above through Pj(cos a) =
(ﬁ—_’;l—) 3__3 Ys(ﬂl)Y"*(Qz) and note that here the average reduces to < >
— [ dQy [ d2; /(47)%. Taking then repeated advantage of spherical harmonics

properties one can derive the very simple result (Peebles 1982b):

1 < 1 o,
- - \; (lap > = = (2t+1)df, (I1.19)

and then get the general expression for the theoretical acf (different from the ob-

served one, discussed below):
1 & |
Cla) = = E— (20+1) a} Py(cosa) . (I1.20)

which, by Eq. (II.14) , can be rewritten in a compact way showing its dependence

on n:

C(a,n) = f(n) Z (£,n) (2£+1) Py(cosa) , (I1.21)
£2>2

where we have defined a = 4r f(n) g(¢,n) so that

2"1 A(n) T(s-n)
f(n) = TFn P i
g™ [T (45)]

(11.22)

where, having in mind the need to confront with observations, we have shown also
the dependence on n of the normalization factor 4, and

T (22+27'L~—1)

Before discussing the issue of the possible formal divergence of the quantity
C(a) as derived above, we want to point out that a closed form for Eq. (II.21) can

be found for a particular value of n, luckily for the scale-invariant case, n = 1
(Starobinsky 1983). In fact we have that g(£,1) = (£ — 1)!/(£ + 1) = 1/[€(¢ + 1)]

and therefore

Cla,n =1) = f(1) Z [ﬁ—l— + %—} Py(cosa) . (I1.24)
£=2
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Now we can add and subtract the appropriate monopole and dipole components
to complete the sum and take advantage of formula 8.926 in Gradshteyn-Ryzhik
(1980) to get

C(a) = ——;?_— a3 {ln [sin (%)] + z—cosa + -;—} , (I1.25)

where we expressed the normalization in terms of the average quadrupole compo-
nent, a3 (cf. Eq. (II.14) ). Indeed this is a common practice and we see that here

the quadrupole value is simply proportional to the value of the acf at = lag:

C(r) = '2%? o (IL.26)

We want now to have a closer look at the expression for C(a,n). For large £
the product (2£+1)g(¢,n) o £™~2 so it easy to see that the sum in Eq. (I1.21) di-
verges for n > 1 and there is a logarithmic divergence for the scale-invariant case.
Of course this nasty behaviour just reflects the divergence present in the power-law
assumption for the spectrum. Nevertheless physically there is no need for some
sort of renormalization or a modification to the spectrum itself to be applied:
there is in fact a natural cutoff which is due to the observing process. Indeed
the noted divergent behaviour happens when £ — co: this translates to an ever
increasing resolution, § — 0 (the zeros of a Legendre polynomial of order { are
separated by ~ 1/¢). But only an ideal, perfect detector would be able to record
ever increasing angular details: real detectors do not. Real detectors have a given
resolution which of course averages out such details. Formally the recorded signal
is the com‘rolution of the ‘true’ intrinsic signal and the detector response function
(cfr. discussion in the last section of Chap. III): the ideal detector has a Dirac’s
delta as response function so that the observed signal and the true one coincide.
In the cases considered here (microwave differential bolometers; for a complete
review see Partridge, 1988) the detector response function is well described by a

2-D Gaussian function of dispersion o.

This fact has been considered considered and applied to the CMB first by
Doroshkevich et al., (1978), and by Wilson and Silk, (1981), to obtain an expression

for the observed acf. The former authors gave an approximate solution in integral
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form, which we will discuss below, and the latter also gave an (almost) exact
integral expression which had then to be numerically integrated. Consequently,
because of the integration burden, many authors applied a sort of rule-of-thumb
correction which consists in truncate the sum in Eq. (IL.16) beyond fmq. = 1/0,
roughly mimicking the attenuation of harmonics which have many zeros within
the beamsize (e.g. Lukash, 1987;Lukash and Novikov, 1987; or Fabbri et al., 1987,

who estimate the uncertainty due to this procedure to be at most a factor 2).

We want to show now another solution to the above problem, which will have

useful and far reaching consequences.

We will take as a starting point the expression (Wilson and Silk, 1981) for

the ‘smoothed’ acf:

= [ 4% ooy 1 (22w {[ (5E)]}

where I is a modified Bessel function and has been obtained by expanding as far as

possible the analytic integration of the double convolution of a Gaussian response
function of dispefsion o < 1 with the unsmoothed acf, C(a) (the upper limit of
integration was extended from the original 27 to infinity because of the effective
cutoff given by the Gaussian which makes the integrand completely negligible much
before 27: usually o is at most few degrees). If we now expand the unsmoothed
C(a) through Eq. (I1.20) we can swap the integral and the sum operation because

of the uniform convergence of the latter sum to get
1 (e8]
Cloy0) = o= ; (2¢+1) a2 wy(a,o), (11.28)

where we defined

o= [ 22 ety 1(22) eno{[- (S5E)]) - oo

The above integral looks (and is) impressive from a numerical point of view, be-
cause of the presence of the highly oscillatory Legendre polynomial (from argu-
ments above we expect in typical situations to have to consider quite high orders,

most times larger than £ = 50). The presence of the function Iy retards only
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slightly the Gaussian decrease (its asymptotic behaviour is Io(z) ~ e® for large
T but z = ¢/ because in most cases a/s ~ a few, while the argument of the

Gaussian is of course ~ —z?/2).

We tried with little success to évaiua,te this integral with the use of standard,
robust methods ( Press et al.,, 1987), which did not reliably converge even for
values of £ much smaller than ¢,,,,. We then implemented a self-made integration
routine with an adaptive step size, capable therefore of handling also very rapidly
varying integrands and of computing with little error the weights wg(a,&) up to
values of £ 2 60 — 70. Evident, but really time-consuming because of the large
number crunching involved (~ 30 — 40 minutes of CPU time on a Vax 8800 for
a typical run), is the fact that the weights numerically computed in this way are
valid for given values of the pair of angles « and ¢. This fact would have caused an
insurmountable difficulty for the rest of the work, which, as we shall see, required

many different evaluations of C(e, o).

Hence we tried to fit some interpolating function of a and o, beginning with
the simplest case, e.g. oo = 0 for which Iy = 1 in the integrand (note that still P, 5
1), and found that a good but not quite perfect representation was the Gaussian
form w¢(0,0) =~ exp[—(£o)?] as could be guessed from the expected behaviour for
large £ and the dominant part of the integrand (one can rethink the formula as
we(0,0) =~ exp[—(€/lmaz)?]). On the other hand, no simple modifications of the
Gaussian seemed to give a good representation of the behaviour of we(a, o) for

a > 0.

After several unsuccessful further fitting attempts we tried to look for a
modification in the type of approach and used the approximation Py(cos @) =~
Jo[2(€ + 1/2)sin(¢/2)], which holds for large ¢ ( Gradshteyn-Ryzhik, 1980, Eq.
8.722.1), and simply reduces to Py(cos ¢) =~ Jo[(£ + 1)¢] for ¢ < 1 (cf. Peebles,
1980, sect. 46). This approximation was the key to the problem: we found first an
analytical solution for the special case oo = 0, which is obtained through Eq. 6.631.4
in Gradshteyn-Ryzhik (1980), w,(0,0) = exp{—[(£ + 2)o]?} and then the general
solution as we(a,0) = Jo[(£ + %)a] exp{—[(£ + %)0]2} through Eq. 6.633.4 of
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Gradshteyn-Ryzhik (1980). This is very nice, provided that the former approx-
imations are fully satisfied in our situation: indeed this is the case because of
the dominance by the Gaussian of the integrand, which becomes negligible for
¢ 2 40 < 1. Nevertheless we checked this solution against the weights computed
directly through the expression of Eq. (II.29) fitting as parameters the argu-
ments in the derived functional forms: the result of the fitting gave an excellent
agreement (e.g. fitting as argument a + bf gave a = 1/2 and b = 1 in both
the arguments of the Bessel function and the Gaussian with a > 0). Such an
agreement was maintained when we substituted back the Bessel function with the
appropriate Legendre polynomial (another independent confirmation came from
the subsequent appearance of the paper by Bond and Efstathiou, 1987, in which
was given a similar expression, obtained through different approximations, which
agrees with the one discussed here in the large £ limit —without the factor 1/2 in

the argument of the Gaussian). Therefore we have the following relationship:

wy(a,0) = Py(cos o) et )l (I1.30)

With the previous relationship we then obtain the general expression for the

smoothed acf as

co 2

1 m —[(e+1)e]? q
Cla,o) = i E Z <|ae |2> Py (cosa) e l+3)e] (I1.31)
£=2 m=-—{

which is valid for arbitrary a]*: it does not depend at all on the fact that we
are studying a given set of models of anisotropies. The only assumptions we

made in its derivation are that of a Gaussian beam of dispersion ¢ < 1 and that

(a7 as*) = Supbms (JaT*]?).

Although we are completely satisfied with the above formula Eq. (11.30) ,
which agrees with the direct computations better than a few parts in ten thou-
sands for the relevant values of £ (within the estimated precision for the integral
computation) and is supported by the analytic solution for the Jy, we had (and
still have) the feeling there should exist a complete analytic proof which connects

directly the integral of Eq. (I1.29) with the solution we found. We searched the
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W,(a,o)

Figure I1.2. The weights wy(a, ) computed from direct integration of Eq. (11.29) ,
points, are confronted as a function of £, with their simple expression from
Eq. (IL.30) , lines, for two typical angles and dispersion o = 3.5°. Squares
and solid line: a = 0°, triangles and dashed line, o = 8°.

literature in the hope of finding such a proof without success. For instance, noting
that use of the above approximation of the P, by the Jy before swapping the inte-
gral and sum in Eq. (II.27) gave something similar to a Schlémilch sum was of no
use as were similar tentative attempting at further refinements through peering at

various tables of transforms (e.g. Hankel transforms).

We therefore did not invest further time on this secondary issue and pro-
ceeded to the applications of Eq. (II.30) exploiting its power: the CPU time
required for the computation of C(a,0) for a given couple of values « and o

dropped by almost four orders of magnitude and this fact allowed for most of the
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results presented in the remaining part of the present Chapter and also most of

the next one.

In our particular case of power law density spectra, the general solution given

in Eq. (I1.31) becomes:

C(a,o,n) = f(n) Z (4,n) (26 +1) Pe(cosa) exp{—[(£+ 1))’} (IL32)
£>2 )

which is the form that will be used for the rest of the Chapter.

exp{~[(t+1/2)0]]

Figure 11.3. The ezact weighting (solid line) as a function of the harmonic
order, £, is confronted with the rule-of-thumb weighting (dashed line). Here
o= 2.2°

We want now to confront the solution we obtained for C(a, o) with those

appearing in the literature. The rule-of-thumb translates in our formalism into
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considering w};°*(a,0) = 5(3,,,,@; — £)Py(cos o) where 6 here is the step function.
therefore it is sufficient to confront the behaviour of exp{—[(¢ + 1/2)s]?} as a
function of £ with a step function up to £ = 1/o for a typical value, e.g. o =
2.2°. This is shown in Fig. II.3 . The difference is evident, but reflects itself
in a inaccuracy which increases with the increase of the assumed spectral index,
n. As we already noted above, the /-dependent part of the unsmoothed C(«)
(cfr. Eq. (IL.21) ) goes roughly as ~ £2~™. Therefore the beam smoothing is not
very important for n < 0 and completely uninfluential for » — —3 when only the

quadrupole a matters. The opposite of course happens for n larger and larger.

We now pass to examine the approximate solution of Doroshkevich et al.,

(1978). These authors gave the following solution for the smoothed acf in the case
akl:

\ co 1
0<D>(a,a>=(2£1;> f o dk / dp iy e 6 Jo(Ca),  (I133)
0 -1

where p = cosa, ¢ = kro+/1 — p2 (ro the same as in Sect. I1.2 ), and in our case

the perturbed photon intensity is |iy|* o |6 |?/k* = Ak™~*. Therefore we have:

1 ]
C(D)(a,a,n)oc(i—ﬁ-) / du / dk k"2 eTHED Jiagk),  (I1.34)
-1 0

where we clearly showed the k dependence by simply putting ¢ = ¢ /k. The
first thing to note is that the above integral is well defined (i.e. converges) only
for 1 < n < 3. For the scale-invariant spectrum one finds again at the origin
the logarithmic divergence, as we discussed earlier, that would arise were £ not
a discrete variable but a continuous one allowed to go to zero (one can make a
‘parallel’ between the behaviour with respect to the spatial transform, k, and that
with respect to the angular transform, £, because the only scale involved, Ty, 1s
a constant). We are then led to consider, for instance, the two cases n = 2 and
n = 3 (the divergence of the latter case can be circumvented as shown below). For
this purpose are useful the equations 6.631.5, 6.618.1, and 6.631.4 of Gradshteyn—
Ryzhik (1980), with which we solve the second integral of Eq. (I1.34) .

It is convenient to consider the smoothed a.c.f. normalized at zero angular
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C(a,0)/C(0,0)

o]

o(’)
Figure 11.4. The smoothed acf, normalized to zero lag and with o = 3.5°, s
plotted for the Doroshkevich et al. approzimate solution (dashed lines) and
the solution from the present work (solid lines); n = 2 upper curve, n = 3

lower curve. The dotted line is the acf assumed by Davies et al. (see next
sections).

separation:

R(a,0) = [C(“"’)] .

o) (11.35)

Having defined 6 = 20, for the n = 2 case we find:

D) o? o2
R (a,o,n =2) = I [W} exp {— [-2—67} } , (11.36)

and for the n = 3 case:

RPN a,0,n = 3) = exp {- [-Z‘—;} } . (11.37)
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In the latter case a logarithmic divérgence is present coming from the integral in
dp which, once solved that in dk, does not depend on the angle o and therefore

cancels out from the ratio R.

We can now check the validity range of the Doroshkevich et al. approximate
solution, by comparison of the R(P) for the above two cases with that obtained
from our solution through a direct summation of Eq. (I1.32) . This is shown by
plotting R in Fig. IL.4 as a function of the angle a. The approximate solution is
indistinguishable from the correct one in the neighbourhood of the origin, a = 0,
but, surprisingly, breaks down quite early in the more interesting case n = 2, for
a X 10—20° (a factor of two of difference for a = 20°), while we would have rather
expected a larger range of validity (even for small values of o, we expect very large

discrepancies for n 2 1).

We now can finally show the behavior of C(«,o,n) for different n. This
is shown in Fig. IL.5 and can be understood by remembering that, for £ > 1,
ai ~ £™73. Hence, for negative n the sum in Eq. (II.32) is dominated by the
first few terms. In this case the cérrelation function is significantly non zero even
for large separations, since it is dominated by the low order harmonics and the
effect of the finite antenna beam is negligible. On the contrary, for n > 1, high
order harmonics dominate the sum. The correlation is then very steep, it goes
rapidly to zero because of the cancelling contributions of P,’s for large £, and the
antenna beam is crucial in introducing a coherence angle in the otherwise scale—free

temperature distribution, which would diverge at the origin.

II.4 Currently available experimental results.

We refer to the recent review of Partridge (1988) as the today’s best available source
of information regarding experiments on the CMB and the inherent difficulties and
will limit ourselves to a brief outline of those experiments which are of importance

to our discussion.

As noted above, anisotropy measurements are made through differential tech-
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Figure I1.5. The smoothed autocorrelation function, normalized to zero lag,
as a function of the sky separation is plotted for different primordial spectral
index n; n = 3, dotted line; n = 1, solid line; n = —1, dashed line; n = —2.9,

dotted-dashed line. Here o = 3.5°.
niques: through opportune wobbling of mirrors and phase switching the signal
from a direction in the sky is compared to that coming from one (or two) other

directions.

Two main configurations have been used for large scale anisotropy studies,
see Fig. I1.6 , which will be referred to as ‘single’ or ‘double beam’ subtraction
and ‘double’ or ‘triple beam’ subtraction respectively (caveat reader from possible
confusion !). The double beam subtraction measures the first difference of two
directions separated by an angle a on the sky, i.e. simply records the signal

AT = T4 — Tp (or viceversa). The triple beam configuration instead subtracts
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Figure I1.6. A skeich of common ezperimental configurations: double beam
subtraction (left), triple beam subtraction (right). The beamirough (separa-
tion) is a and the beamsize (dispersion) is o.

from the signal of the central beam the average of the sum of tile signals coming
from the two lateral directions, each of which is separated by o from the mid one,
so that the recorded signal is the second difference: AT = Ty — %(TB +Tc). It
is then trivial, by the use of Eq. (IL.15) , to express the squared sky average of
temperature fluctuations, AZ_,, (cf. Sect.IL1 ), as a function of C(a): for a single

subtraction experiment we have
Aima =2 [O(O) - C(a)] ’ (1138)
and for a double subtraction experiment

1
A2 = %C’(O) ~ 20(a) + 5C(20). (IL39)

Therefore, remembering that, by definition, C(0) = A2_, and with the def-
inition of Eq. (IL.35) we can derive the value of the smoothed acf at zero lag
directly from the observed temperature fluctuations. In fact, for a single subtrac-

tion experiment, we have

C(0,0) = 3 (%ﬂob,) (1~ R(a, o) (IL40)
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or, for a double subtraction experiment,

-1

AT \* [3 1

C(0,0) = | —|obs ] - |z — 2R(a,0)+ - R(2a,0) . (I1.41)
T 2 2

These relationships are of great importance: they will allow us to relate

directly results obtained in experiments which differ, e.g., in the subtraction tech-

nique and/or the values of a and/or ¢.

We now pass to summarize the experimental data. Because of the experi-
mental difficulties and the sophisticated equipment which is needed, there are not
many available observations of the CMB angular distribution on the intermediate

and large angular scales.

Fabbri etal (1980) reported a positive detection of CMB temperature fluc-
tuation, which has been commonly considered as an upper limit because of the
uncertainties in possible galactic contamination. The experimental configuration
involved a single beam subtraction with o = 6° and ¢ = 2°.2. The deduced up-
per limit (Melchiorri et al., 1981, hereafter M)) is, at the 90% confidence level,
Arms <4-1075,

More recently, Davies et al. (1987, hereafter D) reported also a positive detec-
tion of CMB temperature fluctuations. The experimental configuration involved a
triple beam subtraction, with o = 8.2° and ¢ = 3.5°. After applying the Likelihood
Ratio method, a value of C(0,0)'/? = 0.10mK/T; was obtained. A Likelihood
Ratio analysis requires an explicit guess for the functional form of the temperature
correlation function and, due to the Bayesian approach used, it is not straightfor-
ward to give confidence levels to the quoted value: this issue will be discussed in
great detail in Chap. IIL. D assumed C(a,c) = C(0,0)-exp { —a?/ [2 (20% + 62)] },
with a sky intrinsic coherence angle of . >~ 4°. In prinéiple the likelihood results
could depend strongly on the assumed functional form for the a.c.f. For example,
in the gravitational instability scenarios, for an initial scale free power spectrum
(i.e., |6x|* = Ak™), at least for n > 1 the CMB temperature fluctuation should not
exhibit any intrinsic coherence angle. According to the acf assumed by D, we get

the value A,.,4(8.2°,3.5°) = 3.0-107° (cfr. Eq. (I1.38) ).
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Experiments with large sky coverage give upper limits on the quadrupole ani-
sotropy. The Berkeley and Princeton groups (hereafter BPG) set a; < 1.1-10~%
at the 90 % confidence level (see , e.g., Lubin and Villela, 1986, for a recent
review). Here we take into account the proportionality between a? as defined here
and the @12%3 used by BPG. According to the Berkeley convention used by these
groups, the quadrupole of the temperature fluctuations, which in our notation is
Ay = anzz a Yo", is Wriil;ten as Ay = ch:l Qr X, where the basis functions
{X1} form an orthogonal, but not orthonormal set (here we adimensionalize the
coefficients: Q; = Qf"k/Tb). These functions are (Smoot and Lubin, 1979):
X = %sinzé - %; X, =sin2bcosa; X3 =sin2ésina; Xy = cos? §cos2a; Xy =
cos? § sin 2 (a is the Right Ascension and § the Declination). By the orthogonality
it follows that <A§> = Zi___l @i X2, which, by our definitions, is also Q2% = <A§> =
5a3. Expressing therefore the {X)} as linear combination of the {¥;*} and, taking
advantage of the orthonormality of the latter in averaging the squares, one can
find that (AZ) = 382202 4+ Q2 + Q3 + Q2 + (2] (see also Peebles, 1981). The
coefficient Q; was not actually measured in the quoted upper limit on the average

component, so that we have a2 = & <Q2>, with £ = £18%,

The Princeton Group ( Fixsen et al., 1981, hereafter F) placed also an upper
limit on the acf itself : C(a,2.9°) < 1.4 -107° for 10° < o < 180°.

More recently, the RELIC satellite borne experiment (as quoted by Lukash
and Novikov, 1987, hereafter R) set C'(20°,2.4°) < 5.5:107%% and Q, < 1.1 -10™*
at the 95 % confidence level (there is a factor 47 between our and R’s definition
of @3). Assuming n =1 in the fitting procedure makes the latter limit even more

severe: (; < 7.1 -107%.

II.5 The first meaningful comparison of different experi-

ments for various spectral indices.

From the formalism developed in the preceding sections we can see how different

experimental configurations can give different outputs even if they are testing the
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same underlying fluctuations. Indeed often in the literature the figures from differ-
ent experiments have been taken at face value and compared together, as if they
were homogeneous quantities or ‘scalar’ ones: for instance one would have drawn
(as did many workers in the field) the conclusion that the M result, Appms ~ 4-107°,
was ‘above’ the D result, A,y ~ 3-107° (note that also several authors mistakenly
quote the value 3.7 -107° for A,ms, a value which refers instead to the C'(0,0)
derived according to the D assumed acf !), and similarly that the R acf limit,
C ~5.5-1071% was much ‘below’ and hence much ‘better’ (by a factor of ~ 2 !)

than the F one, C' ~ 1.4-107°.

In our opinion this approach is too coarse and can give highly misleading con-
clusions. Indeed we can think of the measured temperature fluctuations as if they
were a kind of ‘vector’ quantity whose numerical value is strongly dependent on the
environment (i.e. the experiment) in which the measures were taken. Meaning-
ful comparisons among results from different ezperiments can only be made after
having reduced these quantities to a common yardstick. Also, in order to relate
fluctuations observed on a given angular scale to those observed on a different one,
the assumption of a given law for the autocorrelation properties of the underlying
fluctuations field is of fundamental importance. It is obvious therefore that the
conclusions which can be drawn have a range of validity which is limited by the
latter assumption. For instance, the results of the following discussion can hardly
have any meaning but for the assumed power law spectra and could not be applied
to others in which, say, primordial processes produced ‘kinks’ or cutoffs on scales
comparable to the one of interest here. On the other hand, whatever the power
spectrum, the devised formalism and the related procedures can still be applied
quite easily, once a relationship (e.g. some scaling law) among different harmonic
coeflicients {|a}*|?} is derived (we will leave for future work possible extensions to
non-Gaussian fluctuation cases; the interested reader can find this issue treated by
Bonometto et al., 1986, for the 3-D case and by Coles and Barrow, 1987, Coles,
1988, for the CMB case).

Therefore, in order to have a first comparison among the different experi-

ments mentioned in the previous section, we proceed as follows. We assume, for
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the time being, that our CMB large scale fluctuations are well described by the
C(a,0) obtained through ensemble averaging as in Eq. (II.9) (we will present a

more general, proper statistical treatment in Chap. III).

In the following, the comparisons were made through numerical evaluation,

by direct summation, of various ratios of the type C'(a',0’,n')/C(a,o,n).

By using Eq. (II.40) for a given n, we convert the M upper limit on A,
to an upper limit on C(0,2.2°). Then, using Eq. (11.40) , we evaluate, again for a
given n, C(0, 3.5°), the result that M would have had with a larger beam. Then we
take the F upper limit on C(10°,2.9°) and, again through Eq. (I1.40) , we evaluate
C(0,3.5°). ’

The same procedure is then applied to the R limit on the a.c.f. Similarly, we
obtain the same quantity from A,,,s, obtained above for the D experiment and
Eq. (I.41) . We have then for each n four values of C/(0,3.5°): three upper limits
(M, F, and R) and one detection’ (D).

Within our assumptions the comparison between these different experiments
(see Fig. IL.7 ) implies that the D ’detection’ is consistent with the F and R upper
" limits only if n > 1. The M upper limit implies a rms temperature value smaller
than the one implied by the D experiment (cf. the naive above conclusions ! —the
same is true in the C case for large n). Also, it is more stringent than the F and
R upper limits for n > 1 (for n < 1 the opposite holds). In the same figure is also
plotted C(0,0 = 2°.1) obtained from the D result. This curve should predict the
result of an ongoing experiment of the same group, carried on with the same (and
double subtraction) but a different ¢ (FWHM= 5°), under the assumption that
the D experiment really provides a positive detection of primordial fluctuations of

the type considered here.

The comparison shown in Fig. IL.7 is fairly independent on the density
parameter (3. In fact, also for 0.2 < Qy < 1, all the curves would have the same
relative amplitude. In fact the angles involved are smaller than that subtended by

the possible space intrinsic curvature, Ao, in Sect. II.1 (Peebles, 1981, 1982a),
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Figure IL.7. The values of C(0,0 = 3.5°,n) derived from the M (dashed line),
D (solid line), F (short dash-dotted line), and R (long dash—dotted line)
ezperiments are plotted vs. the spectral index n. The dotted line shows the
predicted value C(0,0 = 2.1°,n) for the new, ongoing D experiment.

which would accordingly limit the a range of validity of curves in Fig. I1.5 .

Another comparison among different experiments can be made by predicting
the quadrupole anisotropy implied by the values of C'(0,0) deduced from the M,
F, and D experiments. The predictions have the meaning of upper limits, except
for the one deduced from the D experiment. The a(n) derived with the above
methods are shown in Fig. I1.8 , where we also plot the direct observational upper

limits on the quadrupole anisotropy.

The M ‘upper’ quadrupole is lower than that derived from the D experiment,

for any value of the spectral index n. Both curves are consistent with the BPG
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Figure I1.8. The rms quadrupole component derived from the D ezperiment
(solid line) and the ‘upper’ inferred from M (dashed line) and F (dotted line)
ezperiments are plotted vs. the speciral index n (b, right panel). The direct
observational upper limits from the BPG (upper dot-dashed line), and the R
(lower dot-dashed line) experiments are also shown. The upper limit set by
the R experiment if n = 1 is shown by the arrow.

upper limit for n 2 0. Also, the M ‘upper’ quadrupole is lower than the F ‘upper’
quadrupole for n > 1. The D ‘predicted’ quadrupole anisotropy is consistent with
the R upper limit and with the F ‘upper’ quadrupole only if n > 2 and if n > 1.5,

respectively.

The comparisons made in Fig. I.8 are valid only for a flat universe: if indeed
2 # 1 there is no longer a simple correspondence between the fitted a, and the
theoretical one as given in Eq. (IL.9) because of different relations among the

a; themselves (Wilson, 1982, 1983; Traschen and Eardley, 1986; Abbott and
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Schaefer, 1986).

II.6 Brief summary of the chapter.

In this chapter we described a general method which, starting from the analytical
expression for the smoothed CMB temperature autocorrelation function, allows

one to make several predictions and to check against different experimental results.

We provided a discussion of the dependence of the large scale fluctuations of

the CMB on the primordial spectral index n.

From the theoretical point of view, the value n = 1 is highly motivated from
the standard inflationary scenario (see Turner, 1987, for a review). However, the
possibility of having values different from unity for the primordial spectral index
should be kept in mind and may arise, for example, in power law inflationary

scenarios (see, e.g., Vittorio et al., 1988, and references therein).

If the D experiment really provides a measure of the primordial CMB tem-
perature fluctuations and the RELIC result sets a realistic upper limit on the

quadrupole anisotropy we have indications that n should be greater than 1.

This conclusion is also hinted at from a comparison of the C(0,0)’s derived
from F and D experiments and is then fairly independent of the assumed value of
the density parameter {29. We defer a more detailed discussion of the statistical
relevance of the latter point on specific cosmological models (Scaramella and Vit-
torio, 1989), but here we want just to point out that the large scale power implied
by the D result would be in contrast with the standard cold dark matter scenario

(the disagreement would be even greater for a scenario with positive bias).

All the discussion presented here is independent of the detail of the com-
ponents of the universe (i.e., presence of dark matter, type of dark matter, etc.).
In fact, the intermediate and large scale CMB temperature fluctuations are de-
termined by scales which experienced uninterrupted growth, preserving the pri-

mordial spectrum. The assumptions we made are that of a Gaussian, adiabatic,
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scale-free initial density fluctuation spectrum and that we live in a typical region

of the Universe which is well described by ensemble averages.

Part of the contents of this Chapter have been presented at a meeting held
in Trieste (Scaramella and Vittorio, 1988a), and published in the Astrophysical
Journal (Scaramella and Vittorio, 1988b).

41



References to Chapter 11

Abbott, L.F., and Schaefer, R.K., 1986, Astrophysical Journal 308, 546.
Bardeen, J.M., 1980, Physical Review D 22, 1882.

Bardeen, J.M., Steinhardt, P.J., and Turner, MS., 1983, Physical Review D 28,
679.

Bond, J.R., and Efstathiou, G., 1987, Monthly Notices of the Royal astronomical
Society 226, 655.

Bonometto, S.A., Lucchin, F., and Matarrese, S., 1987, Astrophysical Journal 323,
19.

Boynton, P.E., and Partridge, R.B., 1973, Astrophysical Journal 181, 243.
Ortolan, P., Lucchin, F., and Matarrese, S., 1988, Physical Review D 38, 465.
Carr, B.J., and Silk, J., 1983, Astrophysical Journal 268, 1.

Coles, P., 1988, Monthly Notices of the Royal astronomical Society 231, 125.

Coles, P., and Barrow, J.D., 1987, Monthly Notices of the Royal astronomical
Society 228, 407.

Davies, R.D., Lasenby, A.N., Watson, R.A., Daintree, E.J., Hopkins, J., Beckman,
J., Sanchez—Almeida, J., and Rebolo, R., 1987, Nature 326, 462.

Doroshkevich, A.G, Zel’dovich, Ya.B., and Sunyaev, R.A., 1978, Soviet Astronomy
(Letters) 22, 1.523.

Efstathiou, G., and Bond, J.R., 1986, Monthly Notices of the Royal astronomical
Society 218, 103.

Fabbri, R., Guidi, I., Melchiorri, F., and Natale, V., 1980, Physical Review Let-
ters 44, 1563.

Fabbri, R., Lucchin, F., and Matarrese, S., 1987, Astrophysical Journal 315, 1.
Fixen, D.J., Cheng, E.S., and Wilkinson, D.T., 1980, Phys.Rev.Lett. 44, 1563.

Gradshteyn, Rhyzik, 1980, “Table of integrals, series and Products,”, Academic
Press.

Guth, A.H., and Pi, S.Y., 1982, Physical Review Letters 49, 1110.

Hogan, C.J., Kaiser, N., and Rees, M.J., 1982, Phil. Trans.R.Soc.Lond.A 307, 97.
Kaiser, N., and Silk, J., 1986, Nature 324, 529.

Landau, L.D, and Lifshitz, E.M., 1979, “Classical Theory of Fields,”, 4** ed.,

42



Pergamon Press.
Linder, E.V., 1988, Astrophysical Journal 326,, 517.
Lifshitz, E.M., 1946, ZRETF 18, 587.

Lubin, P., and Villela, T., 1986, in Galazy Distances and Deviations from Universal
Ezpansion, Madore, B.F., and Tully, R.B., eds. D.Reidel Pub. Co.

Lukash, V.N. 1987, .LA.U. Symp. 114, Kormendy, J., and Knapp, G.R. (eds.),
D.Reidel Pub. Co.

Lukash, V.N., and Novikov, I.D., 1987, I.A.U. Symp. 127, Hewitt et al. (eds.),
D.Reidel Pub. Co.

Melchiorri, F., Melchiorri, B.O., Ceccarelh'r, C., and Pietranera, L., 1981, Astro-
physical Journal (Letters) 250, L1.

Panek, M., 1986, Physical Review D 34, 416.
Partridge, R.B., 1988, Rep.Progr.Phys. 51, 647.

Peebles, P.J.E., 1980, “The Large~Scale Structure of the Universe,”, Princeton
University Press.

1981, Astrophysical Journal (Letters) 243, L119.
1982a, Astrophysical Journal 259, 442.
1982b, Astrophysical Journal (Letters) 263, L1.

1983, “The Origin and Evolution of Galazies,”, Jones, B.T.J., and
Jones, J.E. eds., Reidel Pub. Co.

Peebles, P.J.E., and Yu, J.T., 1970, Astrophysical Journal 162, 815.
Press, W.H., and Vishniac, E.T., 1980, Astrophysical Journal 239, 1.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., 1986, “Nu-
merical Recipes,”, Cambridge University Press.

Sachs, R.K., and Wolfe, M.A., 1967, Astrophysical Journal 147, 73.

Scaramella, R., and Vittorio, N., 1988a, “Large-Scale Structure and Motions in
the Universe,”, Giuricin, G. et al. eds., in press.

Scaramella, R., and Vittorio, N., 1988b, Astrophysical Journal (Letters) 331, L53.

Scaramella, R., and Vittorio, N., 1989, in preparation.

Smoot, G.F., and Lubin, P.M., 1979 Astrophysical Journal (Letters) 234, L83.
Starobinskii, A., 1982, Physics Letters 117B, 175.

1983, Soviet Astronomy (Letters) 9, L305.

Traschen, J., 1984, Physical Review D 29, 1563.

Traschen, J., and Eardley, D.M., 1986, Physical Review D 34, 1665.

43



Turner, M.S., 1987, in Qbservational Cosmology: confrontation between theory and
experiment, E. Fermi school proceedings, in press.

Vishniac, E.T., 1988, Astrophysical Journal 322, 597.

Vittorio, N., Matarrese, S., and Lucchin, F., 1988, Astrophysical Journal 328, 69.
Wald, R.M., 1984, “General Relativity,”, Univ. of Chicago Press.

Wilson, M.L., 1982, Astrophysical Journal (Letters) 273, L2.

1983, Astrophysical Journal 273, 2.

Wilson, M.L., and Silk, J., 1981, Astrophysical Journal 243, 14.

44



III CMB : Further developments.

III.1 Beam smoothing and sky temperature pattern.

In this Chapter we will show others applications of the formalism developed in the

previous Chapter.

In this section we want to extend results given in the literature for the theo-
retical sky pattern, to obtain the observable pattern which would result from such

theoretical skies.

As discussed in Sect. I1.2 , the common assumption that the density fluctua-
tion are a Gaussian field in 3-D, will result in a 2-D Gaussian fluctuation field for
the CMB sky intensity. Therefore in these models an ideal map of the sky will be
pretty rough, showing peaks and troughs of the signal with respect to the average,
probably interlaced in a complex pattern. These peaks and troughs are usually
nicknamed ‘hot’ and ‘cold’ spots, respectively. Now, because of the differential
type of anisotropy measurements (see Fig. I1.6 and Sect. I1.4 ), it could happen
that we receive a signal much higher than the average rms fluctuation: in a single
subtraction experiment, for instance, in which the ‘left’ beam output is subtracted
from the ‘right’ output, the result from a ‘lucky’ situation, in which the ‘left’ beam
is scanning a, say, —3 Apm, through and at the same time the ‘right’ beam is scan-
ning a +2 A, peak, would be a net total of a +5 Apps signal amplitude ! This
fact is obviously of great importance in trying to exploit the maximum detection
probability for a given experiment, by opportunely choosing the best experimental

configuration (i.e. type of subtraction, beamthrow and beam dispersion).

The attention on this kind of cosmological hotspots (we will briefly discuss

different kinds of spots arising in anisotropic cosmological models in the last sec-
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tion of this Chapter) has been first drawn by Zabotin and Nasel’skii (1985) and
Sazhin (1985). Then, Vittorio and Juszkiewicz (1987, hereafter VJ) and Bond
and Efstathiou (1987) developed this subject further and discussed in detail the
quantities of interest for the theoretical sky, i.e. the unsmoothed fluctuation field.
On the other hand, both the experiment sensitivity and characteristics are crucial

in determining the effective possibility of detecting such spots.

In our case we will discuss the effect of smoothing by the beam only, assuming
a comparison among equipment with the same sensitivity. Indeed, a non-detection
of high level spots by an experiment with large beam dispersion would not nec-
essarily rule out their existence: a too large beam could have simply averaged
out adjacent hot and cold spots because of the poor resolution, completely miss-
ing them. This possibility is of course also a function of the shape and spatial

frequency of the spots and therefore of the assumed fluctuation spectrum.

Hence, with the previously derived information on the acf, following VJ, we
can evaluate the large scale pattern of the CMB temperature distribution, as ob-
served with an antenna of resolution o, for different primordial spectral indices. All
we need (see VJ) is, besides C(0, o), the values of the second and fourth derivative
of the acf with respect to «a, evaluated at zero lag. These can be calculated from
Eq. (IL.32) through the approximation (Gradshteyn-Rhizyk; formula 8.722.1),
valid for ¢ < 1:

Prn(cosd) = Jo(n) + sin® (g) {_{12_(;7’12 — Ja(n) + %Js(n)] , (IIL.1)

where n = (2m + 1) sin®(#/2). Therefore, to compute the quantities (VJ)

t? =C(0,0)

u? = (—j%ﬂaﬂ)) |a=0 (II1.2)

v? = (%C(a, a))

we can expand up to IVt order in a Eq. (IIL.1) and substitute for Eq. (I1.32) to

=0
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get:
t? Z (2X) g(¢,n) exp[—()o)?]

>2
) L (1 1 2
EONCPIUE (5-5) =l-0)7 (11L3)
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where A = £+ 1/2. The ratios only of these three quantities suffice to determine

the values of interest.
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Figure IIL.1. The total number of upcrossing regions Ny is plotted as a func-
tion of the beamsize o, for different primordial spectral index n; n = 3, dotted
line; n =1, solid line; n = 0, dotted-long dashed line; n = —1, dashed line;
n = —2.9, dotted-dashed line.
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Then, we can evaluate the total number of maxima in the CMB temperature

distribution, expected in all the sky as (VJ)

2 v\2
ot =—= (—) . 1114
Ner=57= (3) (I1L4)
This number is plotted in Fig. III.1 as a function of the antenna beam o, for

different values of the primordial spectral index n.

For n < —2 the quadrupole is the dominant ha.rmohic and the number of
maxima is slightly above 2 as it should exactly be for a pure quadrupolar pattern.
For —1 < n < 3, the total number of detectable hot spots is to a very good ap-
proximation proportional to %, the resolution of the antenna. For these values
of n, the temperature distribution is scale free and the oniy characteristic scale
involved is the antenna beam size. As noted in VJ, this implies that the tem-
perature fluctuations in the CMB due to the Sachs-Wolfe effect mimic unresolved
sources: their number continuously increases on improving the antenna angular

resolution.

From an observational point of view, however, one is interested in the number
of regions in the sky where the temperature fluctuation is higher than the threshold
v times the rms temperature fluctuations [i.e., t = C/2(0,¢) as from Eq. (I11.2) ].
If these regions are sufficiently abundant and large, one could look for rare but
very hot spots in the sky. The number of hot spots is well approximated, for
v > 1, by (see, VIJ):

2

Nyp = N.(o,n) ve iV, (I11.5)

The function N.(o,n) is plotted in Fig. II1.2 , as a function of o, for different

values of the spectral index n. For n > 2, N.(o,n) < o72.

For smaller values
of n, the dependence on ¢ is weaker and weaker. In fact, lowering n reduces the
small scale (relative to the large scale) power and having a finite antenna beam
becomes irrelevant. Eventually, only the quadrupole matters and N, tends to 2.
If only the quadrupole is present, however, C1/?(0) = \/f;ag (cfr. Eq. (11.20) ).
Then looking for regions with » > 1 (the limit in which Eq. (IIL.5) is valid)

implies looking for very improbable values for the quadrupole anisotropy. Hence

the actual number, N,, of hot spots tends to zero.
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Figure II1.2. The guantity N., related to the total number of upcrossing re-
gions Ny, is shown for different values of n as a function of o. Line types

as in Fig. III.1 .

For moderate v’s, the temperature profile of the upcrossing regions is slightly

steeper than the shape of the correlation function. If the temperature field is very

correlated the profile is very flat and hence beam switching at an angular scale less

than the typical hot spot angular diameter leads to the risk of a strong reduction

in any detectable anisotropy, because of the differential technique.

Knowledge of the typical hot spot angular diameter can at least guide the

design of the observational configuration, of course taking into account other trade-

offs, such as atmospheric and ground emission. The expected angular diameter is
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Figure I11.3. The average diameter D times the threshold v. Line types as in
Fig. II1.1 .

inversely proportional to the number of hot spots and depends on the threshold as
v~! (for v > 1; see VJ). The quantity D - v is plotted in Fig. I11.3 . For fixed v,
D increases linearly with o for n ~ 3, but flattens out to 90° (formally for v = 1)
when only the quadrupole is dominant (i.e., n < —2). In this limit, however, the

same comment applies that we made before: a quadrupole with amplitude much

higher than C*/2(0,0) is improbable.

As an example of the application of the above results to a practical situation,
the angular diameter of a CMB temperature fluctuation, for ¢ = 3°.5 (as in the

Davies et al. experiment), with v = 2 has an angular diameter of ~ 13.5°ifn = 1,
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and of ~ 21° if n = 0. The expected angular diameter of the hot (or cold) spot is
less than 8°, the characteristic angular scale of the Davies et al., experiment, only

ifr>3forn=1,0orif v 2 1.7 for n = 2.

We can also define the probability of measuring, e.g. in a triple beam exper-
iment, a temperature fluctuation greater than or equal to the rms value (see VJ

and Eq. (I.35) ):
P[> rms] = erfc {[3 — 4R(a,0) + R(2e, 0)]—-1/2} . (I11.6)

If o = 3°.5 and a = 8°.3, this probability is ~ 4% if n = 1, but it can be ~ 30%
if n = 3. This estimate is fairly independent of any assumption of the density
parameter {Jg (see discussion at the end of previous Chapter). Eq. (IIL.6) does
not depends on the actual value of C'1/ 2(0,0), as the probability is determined only
by the pattern of the temperature field and by the geometry of the experimental
configuration (i.e., double or single subtraction). It is of course necessary to specify
a model in order to fix the actual level of rms sky temperature fluctuations, {. The
latter quantity is then to be confronted with the sensitivity of the experiment in
order to get the final estimate of the detection probability. We will leave this
point to future work, as also the extension to non ensemble-average cases of the

evaluations for the above interesting quantities.

IIL.2 Applications to the interpretation of a recent experi-

ment.

Recently Davies et al. (1987; hereafter D) reported a possible positive detection
of temperature fluctuations of the microwave sky. The experiment operated at
10.4 GHz and used a double subtraction technique (cfr. Sect. I1.4 ), in order
to minimize atmospheric contamination. The antenna beam size was ¢ ~ 3°.5

(corresponding to 8°.3 FWHM), and the beam switching angle was a = 8°.2.

The published data refer to a strip of the sky at constant declination (6 =
40°), in the RA range from 12" to 17", avoiding the galactic plane. At a similar
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angular scale, a = 6° and o = 2°.2, a positive detection of the sky temperature
fluctuation was also found in a far infrared balloon borne experiment (Melchiorri
et al., 1981). Both these experiments may be contaminated by local effects, but, if
confirmed, they will be fundamental in testing current ideas on galaxy formation
and in providing a direct measure of the amplitude of the primordial density

fluctuations.

The D data were analysed with the maximum likelihood method for esti-
mating the intrinsic sky temperature fluctuation. This method may have some
advantages (Kaiser and Lasenby, 1987) relative to the standard method (Boynton
and Partridge, 1973) based on the Neyman—-Pearson lemma.

This standard method consists in defining a x2-like statistics, such as xZ =
Z;{\;l 1y Sf,,_,,.,., where S?_  are the instrumental variances, and D?, are the

i,err 0,1

recorded fluctuation data, assumed to be statistically independent and each ngi

is assumed to be drawn from a set of {D?}. Then (Kaiser and Silk, 1986) the

2

common procedure to determine an upper limit (UL) to the sky fluctuations (57,

is the sky variance, i.e. C(0,0)), is to ask what is the value S%; such that, if
Seky = Sur, a value of x? as low as that observed, x2 = Y7\ D?./S?... would

occur only a fraction 1 — ¢ of the time. The number S% is then taken as upper

limit on the sky variance at confidence level e.

A possible problem with the above procedure (Kaiser and Silk, 1986; Kaiser

and Lasenby, 1987) is that if the instrumental variance S?,. is overestimated then

err
one would get a ‘too good’ (even negative one !) upper limit, S7;, much smaller
than the one obtainable from the sensitivity of the experiment (~ O(S2../N)). As
an example, consider the following situation (Kaiser and Silk, 1986): let S? = S2,_|
assuming for simplicity the experimental errors to be always the same, so that

x* = Zfil D?/S?.., and negligible or zero intrinsic fluctuations, S2,, < S2,...

According to the above procedure, not knowing anything on the real level
of sky fluctuations, one would have expected instead the rms value for the given

fluctuation to be <Df> = S+ kay. So <x2> = N(S5%.,. + kay)/Sezr,. with

. 2 .
variance var(x?) = % (x2)". Hence one wants to determine S%; such as to have
N UL
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the following probability: P[x?(Sur) < x2] < e.

For a large number of different observations, N 3> 1, the probability distri-
bution function of the x? tends to be Gaussian, so one can rewrite the condition on
the probability as (Xz(SUL)> — %% = 0 Jvar(x?)]? = 6. (XZ(SUL» \/2/N, where
0. is the appropriate ‘number of sigmas’ to get the confidence level 1 — ¢ (e.g.

fe=0.05 = 1.65). Hence, solving for S7,; one gets (Kaiser and Silk, 1986):

2 2
st =52 | =X/l a g [Z‘N- - 1] . (IIL.7)

err (1 _ oe\/;zv:) err

Now, in general, x*/N = 14+ O(N~!/?), and as expected the upper limit is propor-
tional to the sensitivity: S%; ~ §%..N~1/2. But in the present case x:o1/82,..,
so that, if there is a systematic error in the estimate of the experimental error this
reflects into the reliability of S% .. More specifically, if there is an overestimate of
52, then the value for x? becomes too low and §3; & [(Z;N=1 D;,/N) - Sez,.,,]

err
is severely underestimated (‘too good’) with the possibility of having a negative

value !

The other problem with the above method lies in its assumption of the sta-
tistical independence of data coming from different fields: this in general is not
necessarily true and this assumption is wrong for the large angular scales in the
general models we are studying here, as we saw in the previous Chapter (see

Fig. IL5 ).

To circumvent the above mentioned problems of the x? method use of the
Likelihood-Ratio slightly different than the canonical one used by the Bayesian
approach has been proposed (Davies et al., 1987; and Kaiser and Lasenby, 1987).
This approach consists in updating the a-priori ratio of probabilities for two dif-
ferent hypothesis, say Hy and H;, thrdugh the use of the Likelihood-Ratio to
get:

posterior

(IIL.8)

P(Hy) [P(datal[—[l)] P(Hy)
P(Ho) P(datalHo) P(Ho)

In our situation, the main advantage of such an approach is that one is not limited

prior

by the assumption of zero correlations among experimental data, and that we have
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to test just two Asimple competing hypotheses, i.e. zero or non-zero intrinsic sky

fluctuations.

However, if it is true that the likelihood may exhibit a pronounced maximum
for a certain choice of the model parameters, it is also true that the result depends

strongly upon the model used.

D assume that the temperature fluctuations of the microwave sky have a
Gaussian correlation function; taking into account the finite resolution of the an-

tenna, they have:
a?
C(a,a') = OD €xXp [—mj} y (IIIQ)

where 6. = 4° is assumed to be an intrinsic coherence angle.

Although plausible as a choice, this function is not what one would expect in
the framework of the gravitational instability scenarios, where the density fluctu-
ation power spectrum is usually assumed to be a power law, with a spectral index
n: |8k|> = Ak™. The acf for this case has been derived and fully discussed in the
previous Chapter (see Sect. I1.2 and Sect. I1.3 )

For this C(e,o,n) (cfr. Eq. (II.32) ), unlike the Gaussian correlation func-
tion, one expects anticorrelation on angular scales around 7 /2, for any reasonable
choice of the spectral index n (see Fig. I1.5 ). Also, the correlation can be larger
than suggested by the Gaussian form on the angular scales of several degrees,
which are of interest here (see Fig. I1.4 ). In the rest of the section we will drop

the explicit dependence of the acf on its arguments —o is constant— and denote

Co = O(0,0’)

The value to be determined from the experiment, Cjy, is the variance of the
CMB temperature fluctuations, as defined through an ensemble average taken over

all the sky and all the possible realizations of last scattering surfaces.

Technically, the likelihood (L), for Gaussian multivariate data, can be written

as:
emp[——% > A,’S{;IAJ']

L o BEE

(I11.10)
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Here A; and Aj are the temperature fluctuations measured in the i —th and j —th
directions. The correlation matrix element, S;;, relative to these directions, is
Si; = S'f]h +02,..8:;, where o, are the experimental errors at 1 standard deviation,

and §;; is the Kroenecker symbol. The theoretical correlation matrix is:

S8 = o {;} R((i = §)8] = (R(G =38 — o] + RI(i = )00 +a] ) +
| (II1.11)

1 . .
+ Z(R[(z —7)00 —2a] + R[(1 — 7)60 + 2a])} )
where 8 is the sampling angle interval, and o is the beam switching angle.

Using Eq. (I1.32) , Eq. (I11.10) and Eq. (III.11) , we have analysed the D
published data. As a check, we assumed the Gaussian form for the correlation
function, and we recovered the D result: 0117/ > = 0.10 mK. Then we used the
correlation function expected for spectral indices —3 < n < 3. This wide range of

values was taken to show the dependence of the result on different assumptions.

For each choice of the spectral index, we varied Cy in order to find the value

Co,Maz Which maximizes £. For assessing a non-zero temperature fluctuation, we

computed the Likelihood Ratio (LR) defined as £(Cy)/L(Co = 0).

This quantity is a measure of the posterior confidence of having C(0,0) # 0

(the greater the ratio the better the odds). In Fig. II1.4 we plot C;’/AZ,_,M and

LRaaz as a function of the spectral index. The values of C; ,/Azlaz increase as n
decreases. This is because the D experiment measures the second difference of the

sky temperature fluctuations, A (see Sect. I1.4 ).

In terms of correlation function, we have (Eq. (IL41) ) A2, = Co[1.5 —

2R(a,0) + 0.5R(2c,0)]. If the three beams are very correlated, the quantity
in parenthesis is small, and tends to zero for a very flat correlation law (i.e.,
R(a) — 1), so that C(0,0) must increase in order to be consistent with a given
set of data. For n — —3, the correlation is indeed very flat on angular scales up

to ~ 10°.

The LRpsq. shows a peak value ~ 10 for spectral indices between 0 and 1.
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Figure II1.4. The quantities C;,/Azl;z (dots), and LRpgqe. (open squares) ob-
tained by analysing the data of Davies et al. (1987) are shown as a function
of the assumed perturbation spectral indez. The amplitude of the error bars

on the C;,/AZ,IM values have been calculated imposing a LR = 0.1 LRpsq5. Scale

invariant (n = 1) and white notse (n = 0) spectra show the larger values of
mazimum Likelihood Ratio.

Thus a similar value for LRps4 was found analysing the D data with the Gaussian

correlation function or a white noise or scale-invariant spectrum.

We investigated the stability of the above results for the n = 1 case through a
’jackknife’-type analysis (Efron, 1979). This kind of analysis consists in eliminating
subsets of data, in order to test the stability of the results obtained using the
complete data set. Since the D data are heavily oversampled (there are only seven
truly independent data in the D data set) we need to eliminate at least 10 data
around a given D data point. By changing this point, we built 61 pseudosamples
of 60 data each.

We then applied the likelihood analysis to each of these pseudosamples and
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Figure IIL.5. Results of the jack-knife analysis for the Davies et al. data.

Continuous and dotted lines refer to C;,/Jau and LRpr,=, respectively. The
region around o = 220° shows a minimum in LRpr,. and two null results

for C’; ,/ 1\2/Ia -
accordingly derived the distributions for LR ps.» and C’; ,/I\Z:Iaa:' The results of this

analysis are shown in Fig. IIL5 .

A null result for C;,/Jf,fu is obtained around o = 219°, with LRpser ~ 1.
This suggests that most of the signal in the D data comes from that region (cfr.
Watson et al., 1988). Apart from this region, this analysis reveals a fair stability

of the derived C; {;lu (~ 0.16 mK), although the LRps,. strongly fluctuates.-

In order to evaluate the statistical significance of the above likelihood result
and in order to have a fair comparison between the;)ry and observations, one must
estimate the probability of detecting CMB temperature fluctuations in a given
theoretical scenario and for a given experiment. This can be done by simulating

observations of the theoretical sky, including effects such as noise (detector, atmo-
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sphere, instrumentation, etc.), sky coverage, modulation geometry, beam pattern,

data sampling, etc.

We simulated the D experiment in the following way. We generated 1000
random strips of the sky with a numerical algorithm described elsewhere (Vittorio,
1989). Each of these strips is ~ 160° wide and has a resolution of ~ 0°.8. They
are realizations of the theoretical microwave sky expected in a flat universe, where
density fluctuations are Gaussian distributed, adiabatic, and scale-invariant (i.e.,

n=1).

Then, by sampling each strip with the same density D had, we generated a
data set of 70 points per strip. Each data point represents the result of a double
subtraction, with a beam switching angle o = 8°.3 and with an antenna beam size
o = 3°.5. To simulate the receiver noise, we added to the ‘true’ CMB temperature

fluctuations at each point an uncorrelated Gaussian ‘noise’ of amplitude (rms)

Terr.

As an example, we plot in Fig. II1.6 the original D data and one of the
simulated data sets, extracted from a theoretical ensemble with C';/ 2 =0.16 mK

(the value found analyzing the D data for n = 1) and oerr = 0.22 mK (the

amplitude of the D error bars).

We carried out our numerical simulations for 6 different ”signal to noise”
ratios, SNR= C’é/z/aer,~ = 0, 0.5, 0.75, 1, 1.5, 2. The analysis of each simulated
data set provides two values for C;I/\; and LRasaz. We have then, for each SNR,
1000 pairs of these values and we can plot the histogram of their frequency. It is
easy to verify, using Eq. (I11.10) , that the shape of the distribution depends only
upon the value of SNR. Since the data A; of each strip represent a realization
of the theoretical ensemble, the value Co arqr Which maximizes the likelihood in

Eq. (II1.10) is not expected to coincide with the ensemble average, C(0, 7).

If SNR— 0, most of the simulated data sets provide a maximum Likelihood
Ratio 1 < LRpfaz < 2, some provide LRpsqr ~ 5, only 5 provide LRasq- ~ 10. So,

one would not infer any detections, if LRasaz 2 10 is required for a statistically
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Figure II1.6. Comparison between the Davies et al. data (upper panel) and

one simulated data set, similarly sampled, with C’;/z = 0.16 mK, Oerr =
0.22 mK, generated by scale-invariant density fluctuations (lower panel).

significant detection.

The probability of having a LRase- > 10 (and C’; ,/;I“ > 0) continuously
increases from ~ 1% to 11%, 22%, 43%, 83%, 94% for the SNRs we have consid-
ered. For small SNR, the distribution of cases with LRpsqz & 10 is narrow and
peaked around a value C; > Cy. In this case, in fact, only few realizations have
temperature fluctuations significantly larger than the noise. Increasing the value
of the SNR, maximum Likelihood Ratios 2 10 become quite common, C; — Cj,

and the Cyps distribution approaches the intrinsic theoretical one for the CMB
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temperature fluctuations.

We can use our Monte Carlo simulations in order to state a firm upper
limit on C;/z in the D data. In fact, we can test the hypothesis Hy : Cy = 0,
against the hypothesis Hy : Cy = Cy using as a test statistic the Likelihood Ratio
LR a4z, whose distribution has been found via the Monte Carlo simulations. From
these, we found that H; is preferred (i.e., the LRpsqz is greater than the measured
value LRafaz =~ 10) in 95% of the cases if the SNR is 2. This would imply
C:l/z = 0.44 mK if oerr = 0.22 mK as in the Davies et al. experiment. On
the contrary, if in fact Cy = 0, we have that H; is preferred only in 1% of the
cases. This means that 0.44 mK is an upper limit on C; & at a confidence level of
95%, with a power against the null hypothesis Hy of 99% (a very significant upper
Limit !).

In the D experiment SNR= 0.75 (C';/2 = 0.16 mK, oerr = 0.22 mK) and
LRMaz =2 10 . The corresponding distribution (see Fig. II1.7 ), obtained from the
Monte Carlo simulations has a mean value of 0.22 m K, with a standard deviation
of 0.04 mK and is marginally consistent with the D result. In fact, only 5% of
randomly placed observers would measure LR 2 10 and C’; 1/\; < 0.18 mK, so the
D result is in the 5% tail of the distribution. Increasing SNR to unity (C’g 2 =
Oerr = 0.22 mK) does not change the previous conclusion. In fact, the mean value
of the new distribution is 0.24 mK, and its standard deviation is 0.05 mK. The
theoretical predictions are still marginally consistent with the D result, as only 5%

of the realizations have LRz, < 10 and C;ﬁ < 0.185 mK.

If the same level of CMB fluctuations (i.e. Cy ? =0.16 mK) were confirmed
from data with smaller error bars, the consistency with the theoretical model would
have a higher confidence. Lowering the simulated experimental noise to, e.g.,
Terr = 0.16 mK (which corresponds to doubling the D integration time) implies
comparing the D result with a theoretical distribution which has still SNR= 1,
but 03/2 = 0.16 mK. For such a distribution (see Fig. III.7 ) the probability
of recovering the assumed level of fluctuations is higher. The mean value is now

0.17 mK, with a standard deviation 0.03 mK and 5% (30%) of the realizations
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Figure III.7. Histograms of the probability density, p(C;ﬁ,LRMw > 10),
and the corresponding cumulative probability. Units are on the left and right
azis, respectively. The continuous histogram and the dotted dashed cumu-
lative correspond to simulations with SNR= 0.75: as in the Davies et al.

ezperiment C,g/z = 0.16 mK and oerr = 0.22 mK. The dotted histogram
and the dashed cumulative refer to SNR= 1: the lower scale holds for C;/z =
Oerr = 0.16 mK, while the upper scale holds for C;/z = Oerr = 0.22 mK.

have LRagaz 2 10 and C2/% £ 0.13 (0.18) mK.

Before concluding this analysis, we want to stress that the likelihood analysis
provides only the best estimate of the model parameters, but not a confidence
interval. Hence, it is necessary to check the L results using numerical simulations,
which seems to be the only way to build up a probability distribution for the
parameters. In this way, given our theoretical assumptions, we saw that in order
to have a high confidence (~ 95 %) on the likelihood results, a SNR as high as

two is needed.
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We believe that this method of comparing theory and observations is very
powerful and will become widespread, since it takes into account all the impor-
tant experimental parameters, otherwise neglected in a purely theoretical analysis.
Also, ]f.'or a given model, this method can be used to define the best experimental
configuration and observational strategy for detecting CMB temperature fluctua-

tions.

I11.3 Distribution functions for different cosmic observers.

Up to now, the discussion has been restricted to values obtained through ensemble
averaging, that is taking the mean value of those that would have been measured
by all the fiducial observers. This was accomplished by taking a spatial average
over all the comoving positions (cfr. Eq. (I1.8) ), after having taken an angular
average for each of these observers. The key point is that, due to differences
of phases of the Fourier components of the density field, different observers will
measure different amplitudes for the temperature fluctuations, because their last

scattering surfaces will sample different parts of the density fluctuation field.

Because we are one such possible observer (i.e. we ‘see’ only one among
the possible realizations of last scattering surfaces) it is of extreme importance
to be able to estimate how far the actual values we observe can differ from those
which could be measured by the other observers: we need the probability distri-
bution function (hereafter pdf) for the quantities of interest. While in the case of
small angular scales (e.g. a few arcseconds) because of the short-range correlations
among the signals we can still have independent samples from different, well sepa-
rated sky patches, and hence have several probes of the population from which the
reéorded values are drawn, here, because of the long range correlations, we can test
only a single value (e.g. only a single value is measurable for the quadrupole) and

therefore we are in a bad situation as far the statistical information is concerned.

This fact, as very well evidented by Sazhin (1985), makes dangerous to

extrapolate to large scale situations the statistical methods used on small scales.
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Hence, as noted also by Coles (1988), the only possible line of approach seems to

be the derivation of the pdf by numerical Monte-Carlo simulations.

We already noted in Sect. II.3 that in our derivation of the expression
for the smoothed acf (Eq. (IL.28) ) we did not make use of spatial averaging,
just of sky averaging. Indeed, by the use of the definitions of Eq. (II.3) , of
Eq. (II.15) , and of Eq. (IL.18) we can write, taking only angular averages (< >—
J dQa/(4r) [ d2p/(47)) and with the condition of fixed sky separation «, between

the directions 4 and vB:

;= ) [ Dni) [ 22 a(rs)x
x / du Pj(1) 26(s — 54 - 45) = (I1L.12)

-1 f 40 MG Y7 (3a) [ 402 A"(32) V7 32)

p=—j

(here p = cos @), and we recover the relation between ¢, and {a}*} shown in
Eq. (II.19) . We prefer to rewrite the relation Eq. (I1.20) as

Cla) = — Z Q7 Py(cos ) , (I11.13)

£>2

where the {Q}} differ only by a factor 47 from the {c,}:

£

Q3 > e (I11.14)

m=-{

il

The important thing to note is that the {a]'} are stochastic variables, Gaussianly
distributed, all with the same expectation value (here the average is an ensemble
average):

<!ae ?) = =2 (IIL.15)

This follows directly from Eq. (I1.7) and from the assumption that the field &,
has a Gaussian distribution. Note that (a7*) = 0 and that £2 coincide with the

. o 2
previously considered a?.
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Because of the randomness of the temperature distribution, a single realiza-
tion of the microwave sky (e.g. our own universe) is then characterized by random
values of the @%’s. The pdf of a given Q? is that of x2 with v = 2£ + 1 degrees
of freedom (Abbott and Wise, 1984a,b, hereafter AB; see also the Appendix of
Fabbri et al., 1987 for a nice derivation). Hence expected value over the ensemble

of possible observers is

(%) = (2£+1) %} ' (I11.16)

while its variance is

Var(Q%) = 2(2¢+1) T . (II1.17)

It is then straightforward to obtain the same quantities for the acf because of the

independence of different @Q2’s (AB, Bond and Efstathiou, 1987):

(C(a) Zl’ Z ) Py(cosar) (I11.18)

Var (C(a)) = (-‘%7;) Z Var(Q3) P} (cosa) . (I11.19)
£=2

The above relations refer to intrinsic temperature fluctuations. Observing the
sky with an antenna of finite resolution implies applying a low-pass filter, which
strongly attenuates high order harmonics. Assuming a Gaussian beam of disper-
sion ¢, this effect can be easily taken into account by opportunely weighting the
terms of the above expansions, as shown in Sect. I1.3 (that derivation still applies
here). We can therefore restrict ourselves again to power law models and give the

general expression for the acf (cfr. Sect. IL.2 ) by writing

C(a,o,n) = A(n) - S(a,0,n), (111.20)

gn=l4  T(3-n)
P A

2

An) = (I11.21)

S(a,o0n) = Z XZ - Wi(e,o,n), (I11.22)

where A(n) is an overall adimensional normalization factor (A(1) = A/(x?r}) for

the scale-invariant case, n = 1), X2 = Q?/ < Q3 > is a stochastic variable with a
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normalized X%z ¢+1) Pdi, and finally

2¢4n-1 2
Wi(a,o,n) = (20+1) —;——E—ﬁ——————“ !25_%; P;(cosa) exp { - {(E + %) 0'] } . (II1.23)

2

Having developed the formalism we can now proceed to implement it to the

derivation of pdf’s.

Before tackling the numerical part, though, we can get an idea of the amount
of statistical uncertainty by considering the variance of the acf, from Eq. (II1.19) we
find that

Var(C(a,o,n)) = A Z (2«4_3-1_)_ Wi(a,a,n) (I11.24)
£=2

Therefore, with the new definitions (cfr. Eq. (I1.35) )
(R(eyoyn)) = (C(a,0,n)) /(C(0,0,n)) ,

) (I1L.25)
(AR(ayoyn)) = [Var(C(a,0,n))]7/(C(0,0,n)) ,

we can obtain from the plots shown in Fig. III.8 a grasp of the possible variations
of the acf for different observers and for different values of the primordial spectral

index, n.

Before commenting on the plots of Fig. II.8 we note that the values plotted
have been computed, and are fully valid, for different given values of the angle «
as statistically independent quantities. The same argument does not apply to the
acf function itself which, once the stochastic variables X7 of Eq. (II1.21) have
assumed their particular values for the given realization, is completely and deter-
ministically determined for all the values of a. Therefore the +1 s.e. band shown
in Fig. II1.8 must be in principle visualized for each value of a separately, although

in practice it gives a very useful guide to the overall uncertainty.

The first thing evident in Fig. I11.8 is the huge differences in standard devi-
ation amplitudes for different values of n (note that the vertical scales are not the

same for all the cases, to improve readability). These are due to the properties

of scaling of the weights: Wy(a,o,n) o« €772 (cfr. Sect. IL.2 and Sect. IL3 ).
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Figure I11.8. The ensemble average value for the acf (solid line), its standard
deviation (dashed line), and the %1 s.e. band (region within the dotted lines)
are shown as functions of the separation angle, o, and four values of the
primordial spectral indez, n.

This fact influences the relative contributions and hence the statistical relevance
of the stochastic variables X}’s. For n very negative only the quadrupole com-
ponent matters in the C' sum (cfr. discussion in Sect. III.1 ) and therefore the
pdf of C itself is that of a x? with 5 degrees of freedom which is quite wide:
[var(x2)]7/ (x}) = v/2/5 = 63 %. On the contrary, when other harmonics also
enter into play, the C' pdf starts to become narrower and narrower: for n large
many harmonics contribute to the sum with no dominant ones and we find that

the global variance much smaller as a percentage than in the other case because

66



it is the sum of many comparable variances, say IV, and therefore is almost the

variance of the average contributing term divided by V.

It is appropriate to make the technical remark that in our situation it is not
possible to invoke the Central Limit theorem to infer that C, being a sum of many
stochastic variables, has a nice Gaussian distribution: the validity of the theorem
requires in fact not only the sum of several stochastic variables, but also that they
have comparable expected values. Here this is not always the case and therefore we
want to stress that, different from what many naively would have expected, the

pdf of the acf is not Gaussian.

It is also important to note that, for small values of n, the minimum un-
certainty happens to be near the zeros of the acf itself. The acf variance has its
angular dependence through the square of the Legendre polynomials (note the
symmetry with respect to 7/2) and has nonzero minima (except for the case in
which the quadrupole only matters) which are close to the values of a for which
the acf has its zeros, this fact can have important consequences in determining the
best experimental strategy for the detection of fluctuations. We note that, due
to the different amplitudes for both the signal and the related uncertainty among
different angles, the optimal choice for o is no longer necessarily the one, say &,
for which the average acf reaches its minimum, as has been generally considered

up to now.

We will leave the detailed study of this point to future work, but we want
here to just sketch the line of reasoning: it is true that, on average, at & the
observable signal would be at maximum strength, but, because of the non mini-
mum uncertainty at the same point, the observer would take the risk of a possible
‘unlucky’ situation in our last scattering surface, in which the different phases con-
spired to give at & a value for the acf much higher than the expected one, therefore
diminishing the net observable signal (cfr. Eq. (I1.38) ; of course one could have
also the possibility of an opposite ‘lucky’ situation with an enhanced signal !). A
different experimental choice could be that of playing more safely and choosing for

a the one corresponding to the minimum uncertainty, and looking then for a level
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of the signal which is in principle less profitable but more reliable.

We are therefore led to the task of simulating numerically many possible
values for the acf (for different values of its parameters o, o and n) to Monte-

Carlo approximate its ‘true’ pdf.

We proceed as follow: by inspection of Eq. (II1.20) and Eq. (II1.21) we see
that we need a general algorithm to generate pseudo-random numbers according to
x?2 distributions of different degrees of freedom (dof) v. We then take advantage
of the definition of a chi-square as a sum of squares of independent Gaussian

v 2

variables: x2 = Y i_, z7, where the z; are drawn from a Normal distribution with

zero average and unit variance.

Numbers can be drawn according to a Normal distribution in an elegant way
through the Box-Muller algorithm (see e.g. Press et al., 1986). According to this

algorithm one can obtain a couple of variables, z; and z,, normally distributed as

a = (=2In&)7 - cos(2réy) , (II1.26)

n = (-2l&)F - sin(2rd)

where ¢; 5 are drawn from the uniform distribution on the interval (0, 1]. It is then
straightforward by the chi-square definition given above, to derive the following
expression, which allows the computation of pseudo-random numbers with a chi-

square pdf for an even or odd number of dof v:

Xzp = —2ln(&-&-&-86)

(11L.27)
Xovq1 = —2In(& & &5--&) —21n(€py1) - cos® (2w éuya) -

We can then use the above method to obtain a random set of {X}} and,
with the same set of {X}} for all quantities, compute through Eq. (III.22) and
Eq. (II1.20) the values of interest for various angles o and smoothing ¢. In this
way we get a single realization of the sky. This procedure must then be repeated

for a large number of times, in order to get a sufficiently accurate sampling of
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Figure II1.9. The modulus of the weights Wy(a,0 = 2.4°,n = 1) for the case
a = 0° (squares) and o = 10° (triangles) is plotted for different harmonic
number, £.

the space of possible outcomes. As a godd compromise between accuracy and
computational cost (e.g. CPU time and memory disk space) we choose to have
Niot = 10000 realizations of last scattering surfaces. We will also limit the present

discussion to the scale-invariant case, n = 1, which is the most interesting one from
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a theoretical point of view.

In Fig. II1.9 we plot the behaviour of the modulus of the weights from
Eq. (II1.23) for the cases o = 2°.2 and o = 0,20° with different choices of the axes
scale to better show the interesting features. In the top panel we have a double
linear scale which shows clearly that in practice high harmonics (£ 2 30 — 35)
contribute very little and that the dominant ones are for £ < 10 — 15. In the mid
and bottom panels are clearly seen the power law and the exponential decrease,
respectively. Note also the typical oscillatory behaviour given by the Legendre
polynomials for a # 0.

It is important to have an idea, of the effect of different realizations on the
shape of the acf as a function of the angle o. In Fig. II1.10 we show in the top
panel five different realizations of the total weights at zero lag (e.g. X7 - Wi(a =
0,0 = 2°.2)) and their effect on the behaviour of the C(a, o) in the bottom panel.
Here n = 1. It is very interesting to note that for most ranges these curves differ
little from the + 1 s.e. band: the only exception is the dot-dashed line beyond
~ 100°. This behaviour can be understood by a close inspection of the broken
line with the same line-type in the top panel: in this particular realization the
harmonics £ = 2,4,5 happen to be greatly depressed with respect to that with
£ = 3 which then dominates the sum when the other harmonics interfere one with

each other.

Having developed the necessary numerical tools we can now pass in the next

section to one of their most interesting applications.

I11.4 Upper limits to the amplitude of primordial density

fluctuations.

As we discussed in Sect. II.1 and Sect. I1.2 , one of the most interesting aspects
of the large scale CMB anisotropies is that they can directly reflect the primordial
fluctuations. Because no firm detection of such temperature fluctuations has been

achieved, we will discuss in detail how to constrain the amplitude of the possible
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Figure II1.10. Five different random realizations (broken lines) for the product
X} Wi(a=0,0=2°2,n=1) are shown in the top panel together with the
average value (heavy solid line). The corresponding realizations of C(a,0)
are shown as a function of the angle a (same line types as in the top panel)
together with the average value and the & 1 s.e. band (heavy solid lines).

primordial fluctuations from the experimental upper limits (see Sect. II.4 ).

The first who pioneered this approach were Abbott and Wise (1984a, 1984b
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hereafter AB). They noted that it was incorrect to derive upper limits (ULs) to the
normalization amplitude by direct insertion of the experimental ULs in relations
which are valid for ensemble averages only: indeed, as shown in the previous
section, the observable quantities can vary quite a bit from observer to observer
even when the normalization amplitude is constant. Their discussion concentrated
on the statistical uncertainty related to sihgle harmonic components. Here we
will enlarge their discussion to the acf and to joint and conditional pdf’s and also

complete the procedure by the inclusion of a simple but non-trivial point, neglected

by AB.
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Figure II1.11. The pdf numerically obtained from 10000 different simulations
s shown for four interesting quantities.

Before starting to describe the method, we want to present in Fig. II1.11 the
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pdf obtained for quantities of interest in the following discussion (we remind the
reader that D stands for Davies, F for Fixen and R for Relic: the experiments
and results are described in Sect. II.4 ). Of course the only pdf which has an
analytical expression is the one for the quadrupole, @2, and we tried to fit the
others through Gaussian or chi-square distributions with poor results (a fit of
the quadrupole distribution with a normalized x2 gave a = 5.00 + 0.02, which,
because of the binning in the histogram and Poisson noise, can be considered to
be an excellent result). The shapes and the width of these distributions have a
non trivial dependence on the smoothing parameter, o, and the beamthrow angle,

.

Let us now consider a given observable, y, for which an observational upper
limit yy;m, is available. Let us also assume that this observable is theoretically
distributed according to a pdf Py(y) and with an expected value (y). It is then

possible to define a parameter v, such that

Pin(y < 7ve - (y) = . (111.28)

For y = yiim we obtain Pin(yiim < 7 - (y)) = € or, equivalently,

Pip (Y1im > 7e - () = 1—e¢. (I11.29)
Then, at the (1 — €) confidence level (hereafter c.l.), one has yiim > 7. - (y).

This implies at the same c.l. an upper limit on the ensemble average of the

observable y :

() <970 viim - (I11.30)

For € small, 0 < 7. < 1. Because of this the upper limit on (y) obtained through
Eq. (II1.30) is weaker than that obtained by limiting (y) directly with yim. For
example, as shown by AB, one finds that the upper limit on the expected squared
quadrupole is almost one order of magnitude greater than the observational upper

limit at the 99% c.l.

The c.l. considered so far take into account only the theoretical probability

distribution. On the other hand, the quoted upper limits yi;m have a confidence
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level by themselves, which should also be taken in account (AB treated such ex-

perimental limits as ‘frozen’).

Hence a more realistic approach consists in considering the joint probability
with c.l.
1—e((y) = Peap(yiim) - Pen((y) < 77" - ytim) 5 (T11.31)

where P,,, is the experimental pdf from which the UL value yi;m has been derived
together with its c.l.

Now, a good approximation for experiments with large sky coverage (Kaiser
and Silk, 1987) is to consider P., to be a Gaussian of dispersion oe.. for the

quantity y;;m. Therefore we finally have that

1—€((y)) = erf [j;-’: ] < Pi({y) <47 - viim) - (111.32)

Table I11.1

Observable Experimental limit  yiim Ensemble average Upper limit on fluctuations
y quoted adopted (96%) 7()_.;1 upper limit (95%) amplitude A,,.o (95%)
Q: [BPG] 2.5-107* (90%) 3.1-107%  /9.01 9.3.10"% 8.3.107%
Q: [R] 1.1.10~* (95%) 1.1-107%  B.01 3.3.107* 1.0-10°8
©(10°,2°.9) 1.4-107° (90%) 1.8:107° 1.85 3.3-107° 1.4.107°
C(20°,2°.4) 5.5-10°'° (95%) 5.5-10~*° 4.0 2.2-107° 2.0.10~°

Table II1.1. The upper limits derived on the amplitude of primordial fluctua-
tions for the scale-invariant case.

As an example, let us consider the available limits on the quadrupole and
the a.c.f. for the scale invariant spectrum, n = 1. The appropriate numbers are
reported in Table III.1 . We proceed as follows. We convert published upper
limits, quoted to a given c.l., to new limits at the 96% c.l. The limits on the
expected values of different observables are then obtained by Eq. (III.32) with
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Yo.01- The resulting upper limits on the expected values are therefore at 95% c.1.
(see Table ITI.1 ). It is then possible also to obtain upper limits at the same c.l.

for the overall normalization A by using the relations of Sect. IL5 .

It is of interest to note that the most stringent upper limits come from those
on the acf’s and that the acf seems to be the most powerful observable to constrain

primordial amplitudes.

We now pass to outlining methods for checking the self-consistency of differ-
ent experimental results within the framework of the present model, taking proper

account of the inherent uncertainties.

The recently claimed detection of CMB temperature anisotropy (Davies et
al., 1987) provides in principle a unique tool for determining the amplitude of
density fluctuations in a self consistent way, in the framework of the linear theory.
Also, it would provide a way of checking the consistency of this experiment with
other upper limits. This has been done by taking into account only expectation
values (cfr. Sect. II.5 and Scaramella and Vittorio, 1988a). We want here to
generalize the argument by properly taking into account the statistical distribution
of different observables. Independently of the confirmation of the Davies et al.
result, we want to stress a method that would provide a self consistency check of

the theoretical assumptions, given a set of observations.

As we see from Fig. III.12 , upper limits on the quadrupole value reflects
very poorly on limits on the temperature fluctuations under scrutiny, so we will

pass to discussing those obtained on the acf itself.

The R experiment (see Sect. I1.4 ) sets an upper limit C* = 5.5-101° on the
amplitude of '(20°,2.4°) (see Table II.1 ). Then, following the formalism given

in Eq. (II1.20) an following, we have

(5(20°,2°.4))

O* Z 0(200,2.40) = « (C(2O°72.4°)> F—3s (5(00535»

(C(0,3°.5)) . (IIL.33)

Here o = [C(20°,2.4°)/ (C(20°,2.4°))] and (S(«, o)) is the value of the sum defined
in Eq. (III.22) and obtained by direct summation of the appropriate values for
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Figure I11.12. Isoprobability contours for the joint distribution of the value
of the acf at zero lag with o = 3.5° and the quadrupole value. Dotted line:
99 %, solid line: 95 %, dashed line: 90 %.

Wi(a, o) (remind that (X;) = 1). On the other hand, (see Eq. (I1.38) ), for the D

recorded temperature we have that

(A7) =2 (0(0,8°.5)) + 2 (C(8°,3°.5)) -

~ 0.248 (C(0°,3°.5)) .

(C(16°,3°.5))

D=

(IIL.34)

The last factor comes from assuming the appropriate scaling for the (|a]*|?) for

the Zel’dovich spectrum. Then by substituing in Eq. (II1.33) we have

o> 15(20°,2°.4)) (A%) o (S(20°,2°4)) A?
Z o (5(00,3.50» 0.248 = 0.248 <5(00,3.50)> 'B"?

(I11.35)
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where A? is the D measured value and B is the actual measured value in units
of the expected value. Substituing the observed upper limit C*, the measured

A* = 3.0-107° (see Sect. IL5 ), and the values [(S5(20°,2°.4))/(5(0°,3.5°))] one
gets

A\ ?
a < 061 ( A) i (I11.36)

A similar result is obtained on using the Fixen upper limit with a similar line of
argument. In fact in this case, correcting the F limit upwards to have 95 % cl.,

one gets

| s
a < 072 8 (‘2) : (II1.37)

Using our simulation, we find that 1843 and 1139 realizations, out of 10000,
satisfy the inequality given by Eq. (II1.36) and Eq. (IT1.37) respectively, for
A* = A and 1094 case satisfy both inequalities at the same time. Therefore we
have at this stage that a level of temperature fluctuations A = A* would be in
contrast with the measured upper limits with a low final confidence level: 77.5 %
from the R limit, ~ 84 % from the F limit and only ~ 80 % if one considers
their union. The cause can be understood by considering the joint distribution
of A?/(A?) and [C(20°,2°.4)/(C(20°,2°.4))], which is given in Fig. II1.13 . Note
that the distribution of A2/(A?) is very narrow around the unity value, a fact
which implies that different observers should measure an anisotropy which differs
from the expected value at most by 20%, quite independently of the actual value
of [C(20°,2°.4)/(C(20°,2°.4))].

On the other hand, one can take advantage of the sharpness of the A distri-
bution, which is much steeper than the Gaussian of the experimental upper limit:
if we consider the values for C* at 90 % c.l., we obtain that the numbers in the
inequalities of Eq. (III.36) and Eq. (II1.37) become respectively 0.51 and 0.59.
Now only 1149 and 238 cases, respectively, satisfy these constraints, with final
confidence levels of ~ 80 % and ~ 88 %. The latter limit shows that the best
constraint comes from the F experiment (only one out of the 238 cases does not

satisfy the R constraint also), mainly because of its angle, very appropriate for the
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Figure I11.13. Isoprobability contours for the joint distribution of the temper-
ature fluctuations as measured by the D experimental setting and the value

of the acf with the F parameters. Dotted line: 99 %, solid line: 95 %, dashed
line: 90 %. Note different azes’ scaling.

range of angles used by D. Indeed from Fig. II1.14 we can see that, although cor-
related, there is a large uncertainty in the mutual regression of the acf evaluated
for the R anf F cases (e.g. slightly less than a factor of two in the actual value for

R if the value for F coincides with its average).

Up to this moment, we have used information on C(a, o) at a given angle .
Results of the simulations (see Fig. II1.14 ) show that C'(20°) and C(10°) are weakly
correlated. On the other hand, for a given observer, C(a, ) is uniquely determined
for all a's and we will show the importance of having the full information available.

Before starting the discussion of this new kind of approach it is useful to have a
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Figure I11.14. Isoprobability contours for the joint distribution of the values
for the acf as measured with parameters appropriate for the F and R upper
limits. Dotted line: 99 %, solid line: 95 %, dashed line: 90 %.

direct comparison of the relative widths of the theoretical distributions considered
so far: they are shown in Fig. IIL.15 . The acf seems to get broader as o increases,
but one should remind that the beam dispersions are different, as they are for
the Melchiorri ef al. (M) setting (single subtraction) and the one by D (double
subtraction). Hence detailed computations are needed for each case. On the other
hand, the nuﬁerically computed variances are in very good agreement with the

analytical estimates (cf. Eq. (II1.24) ).

We pass now to discussion of the possible use of the known upper limits on

the shape of the acf. The Relic satellite provides us also with upper limits on
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Figure II1.15. A direct comparison of the widths of the pdf’s for the values
of the acf considered so far, left panel (solid line: D at zero lag; dotted
line: F; dashed line: R). The same for two different settings for (AT/T)?
measurements (solid line: M; dotted line: D). 10000 simulations.

the correlation function on angular scales 20° < a < 150° (Strukov et al., 1986).
These new, revised upper limits (the limit on the acf is 5/4 of that quoted by
Lukash and Novikov, 1987) are still more stringent than the F ones by at least a
factor of two. These limits are plotted in Fig. II1.16 .

‘We have then built up the probability distributions for the quadrupole and
the Melchiorri et al., Davies et al. experiments, under the condition of normalizing
each realization with the maximum amplitude compatible with the R and F upper
limits on C'(a, o) ta,ken‘at the 96 % c.l. Two of these cases are shown as an example
in Fig. I11.16 . This provides us with the maximum amplitude of fluctuations

observable for a given observer.

These distributions differ from the ones shown in Fig. II1.11 . In that
case we plot the intrinsic theoretical distribution, in units of the expected val-
ues. Fig. II1.17 shows the distribution of the quadrupoles measured by different
observers, under the previously discussed assumption. At the 95% final confidence

level, we expect that the quadrupole value (99 % of the numerical pdf is below
Q% = 5.0-1078K?) is less than the quoted R upper limit (Q2 < 8.2-1078K?) by
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Figure II1.16. Present upper limits on the acf oscillation band are plotted
as heavy solid lines: outer straight lines are the F limit, jagged lines are
the R limit.
simulations, are shown as dotted and long-dashed line, while the mazimally
compatible ensemble average acf is shown as heavy solid curve.

~ 40 %. The same analysis has been applied to the D and to the M experiments.

Two mazimally compatible shapes for the acf, out of 10000

The relative distributions are also shown in Fig. IIL.17 .

Despite the similarities of the reported upper limit and detection, the two

distributions show some differences. In particular, if we compare the distribution

with the M upper limit, we find that the quoted upper limit (A2 < 1.16-1078K?)

roughly identifies the maximum of the distribution. In other words, it is the value

that most of the observers, under the condition of being maximally consistent
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Figure I11.17. Posterior df ’s obtained for each realization -10000 stmulations-
from the mazimum amplitude compatible with the known upper limits.

with the R and F upper limit on the C(a, o) would have measured. In the Davies
et al. case (A2 = 6.6 - 107°K?), on the contrary, only ~ 5% of t.he observers
would have measured A 2 A*. Therefore we are led to the conclusion that a level
of fluctuation such as the one found by Davies et al. cannot be compatible with

present upper limits at the overall ~ 91 % c.l. in the theoretical frame we assumed.

It is also of great importance to determine the maximum ensemble amplitude
‘safely’ compatible with the upper limits on the acf. We found that with an
amplitude (A) = 9.6 -107*°K? only 1 % of 50000 cases would violate the upper
limits at 96 % c.l. Our conclusion is then that with 95 % c.l. such ‘safe’ ensemble

amplitude for a scale-invariant spectrum is: (A) < 1.3-1071°,
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We can make the comparison of this value with that quoted as a 95 % c.l.
upper limit on the quadrupole for the Zel’dovich spectrum by Lukash and Novikov
(1987) and by Strukov et al. (1986). In these papers, the values 2 - 10~° and
1.6 -107° are respectively quoted as limits obtained by fitting the spectrum C2
(2n 4+ 1)/[n(n + 1)]. By this description we were led to think that this limit was
obtained by fitting the average spectrum. Different to our first understanding,
though, the procedure followed in obtaining such a limit was very similar to the
one we adopted here. The procedure (Klypin, private communication) consisted in
simulating ~ O(100) theoretical skies and then feeding this pattern into a selection
function which contained all the details of the experiments, like the sky areas with
different weighis due io different sampling, the experimental noise, the receiver
response, and so on. Taking into account the different definition of quadrupoles
(cfr. Sect. II.4 ) we have that QF < 5.7.10~° while from our limit we find
@2 < 3.7-1075 which translates into a decrease of ~ 35 % with respect to the R
limit. The R limit is higher because we enforced also the F upper limit on the acf
and this constrains ~ 1/4 of the possible shapes (e.g. ~ 1/4 of the acf simulations
‘hit’ this limit) and perhaps because of their use of the whole information about
the experimental details which could not entirely be represented by the published

acf confidence band.

Therefore, by using the whole information stored in the acf shape, we have
been able to decrease by one order of magnitude the upper limit on the quantity
A from that obtained by the use of the ‘best value’ alone (cfr. Table III.1 ). This
conclusion is limited here to flat universes, as discussed in Sect. IL.5 . We will leave
the application of this method to open universes to future work. In the meantime
we want to note that, using standard normalization (e.g. AM/M(R,) = 1/b for
R, = 8! Mpc with b a bias factor) for the cold dark matter (CDM) spectrum
and the derived upper limit on (A4), one has that [Acpar/ (A)]M? ~ (1/2) 671 Al
Hence we find that the global normalization for the ‘standard’ CDM model (Qo =
I, n =1, Hy = 50kms™*Mpc™!) in the unbiased case (b = 1) is only a fac-
tor of two below the‘upper limits: previously it was thought instead that this

model allowed plenty of room, almost one order of magnitude. Similarly one
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can limit the nonlinearity epoch of a massive neutrino model. With the nor-
malization AM/M(R,) ~ 0.6(1 + znz) and a neutrino free-streaming length of
Afs >~ 13h"2Mpc, we find that, for A = 1/2, the nonlinearity epoch is severely
constrained: zyr < 2 (even lower for anti-biased models). We will leave also to

future work the full discussion of these effects on the various cosmological models.

ITII.5 A recently reported ‘bump’ in the CMB sky: when

could it have originated 7

In a recent meeting, the Tenerife group reported preliminary results (Watson et
al., 1988) of the new experiment, which had the same setting as the one described
in Davies et al. (1987), the only difference being the smaller dispersion o (3.5° —
2.4°).

Because of the increased resolution, the data now showed to the eye a positive
‘bump’ which is not explained by known radiosources contribution. Watson et
al. suggested that the level of anisotropy found in the Davies et al. analysis
was essentially due to the signal coming from the bump region, ~ 15h, as we

independently found with our ‘jack-knife’ analysis of the Davies et al. data (see

Sect. IT1.2 ).

The bump has a span of ~ 30™i® < 6° at the scan declination, and with a
signal level of ~ 0.3m K. Watson et al. noted that in the same direction on the sky
lie two interesting astronomical features: the Bootes void and a string of galaxies,
suggesting that gravitational effects alone from these features are an unlikely cause

for the bump.

Because of the importance of such a finding for its possible cosmological
implications, we want to give a more detailed discussion of these points, with the
stress put more on the procedure than on the possibility of reaching a definitive

conclusion, because of the partial amount of available information.

It is useful for the following discussion to have an estimate of the surveyed
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Figure II1.18. (adopted from Watson et al., 1988) The scan with the smaller
beam dispersion (upper panel) and the one with the larger beam dispersion
(lower panel) are shown together with the estimated radiosources point con-
tribution

area: the experiment scanned the sky at fixed declination, § = 40°, with Gaussian
beams of dispersion ¢ = 2.4°, a beamthrow angle & = 8° and double beam
subtraction (the same configuration as that given in Davies et al., 1987, only
the beam dispersion is dif‘ferent).. The best data come from the range in Right
Ascension between 12! and 18" and a generous estimate for the width of the
surveyed strip is ~ 10° (e.g. a ~ 40 band, up to where the beam response falls
off by 90 % from its peak value). With the above values the covered area results
§A ~ 0.21 sr, that is only 1.7 % of the sky.

One of the possible causes for the bump is that this signal is directly related
to the primordial perturbations at the recombination epoch, and therefore that
the position and the characteristics of the bump have a statistical origin. If a

fluctuation field is present in the density distribution of the matter on large scales,
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this will reflect into temperature fluctuations of the CMB through the Sachs—
Wolfe (1967, S-W) effect (see Sect. II.1 ). Zabotin and Naselski (1985) and Sazhin
(1985) explicitly noted that the temperature pattern originated in such a way
would of course show peaks and troughs, giving therefore detection chances also
to experiments which could come close in sensitivity but not reach the average

(e.g. rms) fluctuation level.

The properties of the resulting fluctuation field have been studied in de-
tail by Vittorio and Juskiewicz (1986, hereafter VJ) and Bond and Efstathiou
(1987), under the hypothesis that the matter density field in a flat universe has a
Gaussian distribution with a scale-invariant (Harrison—-Zel’dovich) spectrum (see
Sect. ITI.1 ). The results given in the previous papers are relative to the expected
values taken over the ensemble constituted by all possible observers: unfortunately
on the large angular scales, in contrast to smaller ones, it is not possible to justify
a spatial ergodicity (see Sazhin, 1985) and hence it seems that the only way to
get probability density distributions is to resort to Monte—Carlo numerical simu-
lations. This is essentially due to the fact that temperature fluctuations on large
scales are correlated even for directions which differ considerably (see Sect. I1.3 ,
Coles, 1988, Scafamella and Vittorio, hereafter SV, 1988a). With the caution
given abové, let us then discuss the case for primordial power law density spectra
(|6x])* o< k™) which have a Gaussian distribution in a flat universe. For the case
n = 1, scale—invariant, an application of the theoretical curve for the smoothed
temperature autocorrelation function C(a, o) (hereafter acf, where a is the sky
separation angle) due to the SW effect (SV, 1988) to the data taken from the
same experiment with a larger beam (G = 3.5°) gives (see Sect. II1.2 , Vittorio
et al., 1989) ¥ = [C(0,5)]7 = 0.16 mK/Ty ~ 6-10° (T} is the background

temperature).

Following VJ one can evaluate the probability of having a spot which is a
peak (or a well) of amplitude v times the rms level, ¢{. Because the observed hot
spot appears to be almost resolved, one cannot take advantage of the subtraction
technique and the appropriate probability is here that for an ‘absolute’ detection.

An excursion in temperature of amplitude A > v -t subtends a mean angle of
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D(v) = 2v2 t/(vu) degrees, where v = —45 C(a,0)|a=o (see Sect. IIL.1 ). On
the other hand, for a given intrinsic value, the recorded level of fluctuation is a
function of the amplitude of the beam dispersion (Sect. III.1 , SV, 1988a), hence
we must convert the above value of # to that appropriate for the smaller beam,
finding ¢ = [C(0,0)]7 = 0.18 mK/T;. Now a fluctuation peak of A = 0.3 mK/T}
is not much above the mean level: ' = 1.7. We can then get an approzimate idea
of how probable a detection of such a peak would be if we still continue to use
the asymptotic expressions given in VJ, although these are fully valid in the limit
v > 1. Defining § = 20, for n = 1 one has D(v) & 2.80 F(8)/v ~ 20°/v, where
F(8) = [In(1°/6) + 3.78]7 = 1.5 (see VJ). Hence we can estimate the average
number of hot spots between 1| = 1.5 and v} = 2 as

N.(}) = N.(h) = f@%%%]? [u; e (n'2) _ e-(vé”/Z)] =11 (IIL38)
over the whole sky. Therefore one would expect ~ 0.9 of such spots with v ~ '

per steradian and a ~ 20 % chance of getting one in the surveyed region.

On the other hand the value for # used above seems to depend strongly on
the particular hot spot examined here (Sect. II1.2 , Vittorio et al., 1989; Watson
et al., 1988) and if this is the case the above argument does not apply because
the estimated value for  is no longer representative of the mean rms. We can
instead try to get an estimate for the value of ¢: this should be greater than
that which would give a very small chance for a positive detection. Indeed if we
in principle allow only a 5% detection probability (only three such spots on the
whole sky), this obviously increases the peak height: v = 2.8 (hence a better
confidence in the relations used), which would allow a background value for ¢ as

low as t ~ 0.11 mK/Ts.

The previous estimate, though, should be raised somewhat when one takes
into account the fact that the spot should at least fill the beam in order not to
loose too much of the signal (cf. discussion below) and its chance to be exactly on
the axis of the receiver is quite low. Therefore one could still argue in favor of in-
termediate values for the peak height, 2 < v < 3, getting ¢ ~ 0.10—0.15 mK/[T,.

To consider a different n for fixed v would increase (decrease) the average number
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of hot spots for n > 1 (n < 1) while the opposite behaviour is expected for the
mean diameter, D (Sect. III.1 , SV, 1988b). On the other hand, we want to stress
the fact that in order to make more precise and meaningful estimates one should
first have a two—dimensional map of the isotemperature contour of the bump on
the sky and then evaluate directly the probability of such an occurrence through

specific Monte-carlo simulations.

Large fluctuations in the temperature pattern on the sky, albeit related to
primordial effects, are not necessarily due to large scale perturbations such as those

considered in the previous paragraph.

If one is willing to abandon the hypothesis of the isotropy of the universe and
hence the basic Friedmann-Robertson-Walker (FRW) model, some of the aniso-
tropic homogeneous models (e.g. Bianchi-type) show an effect which can be of

great relevance to the observed bump.

As pioneered by Novikov (1968) and then extensively analyzed mainly by
the Russian school and by Barrow and collaborators (Barrow et al., 1983; Lukash
and Novikov 1985; Barrow et al., 1985; for a review see Barrow, 1986, and ref-
erences therein) some universe models, because of the anisotropy present in their
expansion, show a peculiar feature in the temperature pattern: a cosmological ‘hot

spot’.

This phenomenon happens in open universes (but not necessarily in all open
models) and more specifically in the anisotropic models Bianchi-V and Bianchi-
VIInzo (see Mac—Callum, 1979, for a general discussion). The typical quadrupole
pattern of axisymmetric Bianchi-I gets focused in a small region of the sky, whose
extent increases with 9. In models Bianchi-VII¢ also a spiral pattern is super-
imposed (Barrow et al., 1986). The size of this focused region is ~ 80 Qo degrees,
therefore for © < 0.1 one would get roughly the right scale of the reported bump.

As stressed by Barrow (1986) the discovery of a unique such spot in the
sky would prove the universe to be open. The very same uniqueness of this phe-

nomenon, on the other hand, makes its chances of being detected, if present,
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inversely proportional to the fraction of the sky covered by the experiment, which
in the present case (see above estimates) is very low: ~ 1—2 % (moreover, in an
"unlucky’ situation in which by chance the direction of such ‘hot spot’ is within a
few degrees of the galactic plane, we probably would never be able to separate its

signal from the galactic emission).

The ulterior effects of the beam smearing and of scattering due to a possible
reheating of the universe are discussed in detail by Bajtlik et al. (1986). Also,
from their Fig. 3b is clearly seen that if the metric is not axisymmetric, both the
two hot and the two cold spots are focused in a small region (= 5° for Qy = 0.1)
and integration by the beam would then greatly depress the original signal, hardly
giving the observed shape.

Another possible cause for the signal is that of a ’localized’ extragalactic
origin. We will discuss the likelihood that the signal could be due to nearby
(0 < z < 1) known structures, such as those hypothesized by Watson et al..

In the field of view corresponding to the direction of the recorded signal a
siring of galaxies is present (Tago et al., 1986). Because of its unusual distribution
in space, this structure has been suggested to be a relic of a pancake collapse in
which the two smallest among the eigenvalues of the initial deformation tensor (see
Zel'dovich and Novikov, 1983) had same value. Here only the number of galaxies

and their position on the sky is of interest.

First we note that, for completely unresolved sources, the dilution factor of
the present beam is high: Qzl = (2mo?)”1 = 92. Therefore one needs quite
2 powerful radiosource to generate the recorded signal: because we are in the
Rayleigh~Jeans region (R-J), one has that §, = 2kg T Q4 /X? (Pacholczyk, 1970)
and hence that the required flux density for a single on—axis point source would be
S, £ 10 Jy. Such a powerful source would have already been taken into account by
Watson et al., who subtracted known sources with Sy > 1 Jy, listed by Kuehr et

al. (1981). We can estimate the required average contribution from these galaxies
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as follows: the response from the beam is

tee oo 2 Y
R,,(:L',y)::ﬁl—; /dw' dy'Il,(:c',y')exp{—~[(w m);;y y)]}, (II1.39)

where the signal from point-like sources can be written as

N
L(z',y') = > Sui 6(zi—2') 8(yi = ') (I11.40)
i=1 .

IR

Therefore we have R,(z,y) = Q3" (S,) f(z,y), where (S,) is the average flux

from these sources and

N 2 N2
flz,y) = Z exp {—— (o -2’ + (v =) ) } (II1.41)

202

i=1

From the galaxies listed in Table 2 of Tago etal we find that for the beam
center positioned at o = 14" 55™ and § = 40°, f < 3. It follows that one would
need at least (S,) = Q,2kgT A72/f 2 3 Jy. Obviously at least some of these
galaxies would have been well above this average value and therefore would have

certainly shown up in the aforementioned catalogue of radiosources.

Let us now examine two possible effects on CMB due to the void alone,
namely gravitational and inverse Compton ( Zel'dovich and Sunyaev, 1969; SZ

effect).

The Bootes void, discovered by Kirshner et al. (1981), is one of the largest
underdensities near us: according to Kirshner et al. (1987, KOSS), the greatest
sphere that can be fitted to the data has a radius B = 31 h~! Mpc and its center
lies at a = 147 50™, § = 46°, and at a distance D = 155 h™! Mpc (note that its

projected diameter spans =~ 23° on the sky !).

This void, which has not been totally surveyed, is not completely empty,
but its average number density of galaxies is estimated to be less that 25 % of its

surroundings, a result consistent both in optical (KOSS) and in infrared (Strauss

and Huchra, 1988).

Effects on the CMB due to nonlinear matter distribution have been studied

mainly for clumps of matter through the use of exact spherical solutions (Rees‘%
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and Sciama, 1968; Dyer, 1976; Raine and Thomas, 1981). Recently a similar
line of approach was used by Thompson and Vishniac (TV, 1987), who gave an
approximate solution for the case of a completely empty sphere. They matched
an interior Minkowski metric to an exterior pressureless, flat, FRW model. The
solution obtained is approximate in that the shell of matter at the void boundary is
treated as thin (in reality one needs a ‘compensated’ hole in order to keep the outer
universe Friedmannian, and perhaps the use of an exact solution could modify the

results of the following discussion).

Because of its closeness (the void center is at z = 0.05) and its smallness on
a cosmological scale (R/cH; "' ~ 1072, Hy = 100 hkm s~! Mpc™? is the present
value of the Hubble parameter), it is possible both to consider the void as a
sphere (the unphysical sharpness of the boundary makes little difference because
it gets severely smoothed by the beam) and to use euclidean geometry as an good

approximation.

According to TV the difference in temperature along a line of sight through

the void is given by

A = p? costp {g o — é—? cosz*(b} , (111.42)

where % is an angle defined in their Fig. 1, 5 = R/(cto) = 3R/(2¢H;?') =
1.5-1072, and « here is the exponent of the assumed growth with time of the void
radius in comoving coordinates: R(¢)/(1+z2) « #*. For a void whose boundary is
at rest with respect to the Hubble flow o = 0, while a typical value for self-similar
solutions after a cosmic explosion is o ~ 0.13 (TV; Ostriker, 1986; Bertschinger,
1985, and references therein). It is important to note that different from ‘lumps’
of matter, for which the Rees-Sciama effect gives A = (6p/p)n® and the density
contrast §p/p can be much greater than unity, for a void the effect is at most
of order A = 7* < 1 because, by definition, |6p/plvoia < 1 and the only way

of increasing the amplitude of the effect is increasing the size of the void itself,

making 7 grow.

Already at this stage one can see that the gravitational effect from Bootes

void is far from reaching the required amplitude for A (Watson et al.), but we feel
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Figure I11.19. Theoretical signals due to the ‘empty’ void: cases [a] and [b] are
respectively for a comoving boundary or one with non-zero peculiar velocity.
The upper panels refer to a scan through the void center, the lower ones
to the actual declination of the ezperiment scan. Dotted lines refer to the
theoretical assumed signal, dashed lines to the smoothed signal, solid lines
to the output of the double subtraction. All curves are normalized to the

mazimum unsmoothed signal.

that the results of the following detailed analysis are nevertheless quite instructive,

both from the methodological point of view and from the final amplitude levels

we derive.

If we define 6 as an angle on the sky from the center of the void, we can

express 1 as a function of § through
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v=oe (5am)
D ==y cotg (II1.43)

_ tg0 2 2 2y, 291%

In Fig. III.19 we present for the two cases o = 0 (Fig. IIL.19 [a]) and
a=0.13 (Fig. IIL.19 [b]), three curves obtained with a theoretical scan through
the center of the void (§ = 46°; for simplicity we will also approximate constant
declination paths as straight lines on the void projected circle). These curves show
the profiles appropriate for the emitted signal (i.e. that seen by a perfect, ideal
receiver, dotted line), for that recorded by a single Gaussian beam of dispersion
o (i.e. that seen by an ‘absolute’ measurement, dashed line), and finally that of
interest to us, namely that obtainable by the Watson et al. experimental setting
(e.g. double beam subtraction, solid line). All the curves have been normalized to

the maximum unsmoothed signal and the zero refers to the background level.

It is interesting to note how the original ‘cold’ signal (which has however a
‘hot’ ring in the expanding case) gets diluted by the beam smearing (simulated
by 2-D FFT) and further modified by the double subtraction, which, although it
is capable to produce an ‘hot’ ring also for the non expanding case, still gives a

negative difference at the center of the void.

Moreover the path of the scan of this experiment (§ = 40°) did not pass
through the void center, but almost midway between the void center and its
boundary: taking into account this fact we get that the profiles shown in up-
per Fig. IIL.19 [a,b] are modified to the corresponding ones shown in the lower
part. The curves in the latter figure are still normalized to the maximum un-
smoothed signal of Fig. II1.19 : we see that the original maximum signal for case
[a] (nonexpanding boundary) gets diluted in the measurement process by a factor
~ 0.4 toafinal A ~ —3-.1077, and by a factor ~ 0.5 for the case [b] (expanding
boundary), where A ~ —1.5.1077. Therefore the possible gravitational signal
not only has the wrong shape (sign and width) but also falls short by < 3 orders
of magnitude (vs. only one and a-half order of magnitude given by the simple

argument A &~ n® ~ 4.1079),
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In general, one of the most. likely source of anisotropies in the CMB is a
further electromagnetic interaction between matter and background photons after
the recombination epoch. This interaction can be due to various processes, among
which are reprocessing by dust or scattering by plasma electrons. The scattering
can be due to thermal electrons in hot gas typically in clusters (SZ) or can be
coherent and due to bulk flows of ionized matter (Hogan, 1984; Ostriker and

Vishniac, 1986), typical for instance of the explosion scenario.

Most of these interactions, though, occur at redshifts greater than unity and
their effect can show on typical angular scales of few arcminutes up to ~ 1°, with
little hope of being capable of giving birth to a single signal coherent on a scale
~ 5°-10° (the volume subtended by such an angle at z ~ O(1) is impressively
large).

Here we want to examine the possibility that matter connected to the void

could be responsible for such an interaction.

First we note that a coherent scattering given by a possible expanding shell
at the void boundary is an unlikely possibility. In fact in order to form the galaxies
present on the boundary the shell must have cooled down to T' < 10* K (e.g.
Wandel, 1985) and cold electrons would havé now little effect on the background
photons. Moreover for an expanding void the net distortion should be given by the
imbalance of the competing effects from the nearby side of the shell and the far one.
These boundary shells would indeed have along the line of sight opposite peculiar
velocities of slightly different amplitude, an the same would have for temperature

and density values, because of the different times for the photons—shell interaction.

We therefore concentrate on a possible non relativistic S-Z effect. The Comp-
tonization parameter, y, which is physically proportional to the integral of the

electron pressure along the line of sight, is given by

y(21,2) = / na(z) cop FBL(Z) (%) iz, (I11.44)

2
2 mec

where n. is the electron density, assumed spatially homogeneous, T, their temper-

ature, o is the Thomson cross—section and m, is the electron rest mass. In our
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Figure II1.20. Curves analogous to those shown in Fig. IIL.19 for the signal
due to the §-Z effect.

case, because we are comparing the signal from across the void to that outside,
we are dealing with the difference in Comptonization parameter, 6y, along these
different lines of sight. Here, because the void is so close, for simplicity we can
approximate the effects of the cosmological expansion, taking as reference values
those relative to the center of the void, for which z = 5.102 (the far side is at
z3 £ 6 -1072 and the close one at z; & 4 -1072). Assuming adiabatic cooling for

the gas we get dy(z) = (1 + 2)* fyo =~ (1 +4%) byo ~ 1.2 §yo, where

kT,
6yo = 2R o1 6n.(0) %7%92 (I11.45)

is evaluated at the present. Numerically this amounts to dyo = 1.20-10~% A Tyo 60,
where 6Q; is the the present difference in plasma abundance between background
and void in terms of the critical density, and Ty is the present gas temperature
normalized to 40 keV/kp. Now in the R-J region the effect on the batkground

temperature is A & —2§y(Z), so we get

0
A~ —6-10"5h Ty (%—5‘1) . (11146

This amplitude is only a factor 2 within the desired level for h = 1 and 6§, =
0.2 (the latter is the maximum value compatible with standard nucleosynthesis,

Boesgaard and Steigman, 1985).
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We can then try to simulate the signal shape as was done in the previous
section. The optical path within the sphere, £, is connected to the previously

defined 6 b
e [R? + tg%6 (R? — D?)]

(1 +1g26)
The relative signal is presented in Fig. II1.20 for the unsmoothed, single beam,

2 = (I11.47)

and double subtraction cases. We again see that there is a lower dilution factor of
~ 0.5 when we consider the final signal at § = 40°. Hence, assuming 6Q2, = 0.2 as
difference for the gas mass density, one would need a gas temperature Tyo ~ 4 h™?

to get the right amplitude.

One possible concern at this point would be not to have an X-ray emis-
sion level from this gas such as to violate the observed level of isotropy of the
X-ray background (XRB). The observed XRB has a spectrum which is well fit-
ted by free—free radiation due to hot gas with T3y = 1 (Boldt, 1987, and refer-
ences therein) and is isotrope within few percent of its average value on angu-
lar scales of ~ 5° (Shafer and Fabian, 1983). The measured XRB intensity at
€ = 10keV is I% = 3.2 keVem 2571 keV 1 sr~! (Marshall et al., 1980). The
angle-integrated free—free emissivity of the gas associated with the void would
then be €/f(z) = 1.03 - 107! [§n.(2)]? Te_%(i) exp[—e/kpT.(2)] Gss cm®s 1K3,
where §yy is the velocity averaged Gaunt factor (Rybicki-Lightman, 1979). As we
are in an optically thin case the maximum received intensity at ¢ = €* would be

I o (1 4 £)® 2R /7(0)/(4x), so that

: 1 0\
179~ 3.95.1075 B Ty, 7 el~0227/Twl 5 (%ﬁ) em™2s7 st L (I11.48)

By requiring Tyo = 4h~1, s ~ 2.5, and one gets I?°%¢/I% ~ 1.5-107° h% which
is quite satisfactory. On the other hand, looking at Fig. II1.20 , we can see that,
after having taken into account the double subtraction, there is a sign problem:
to get a positive A, we would need a negative §y and hence §Qy < 0. This in turn
would imply that an uniform diffuse hot gas is present everywhere but into the
void volume. Now, while both gravitational underdensities and cosmic explosions
could in principle account for baryonic matter evacuation from the void during its

formation (although for dimensions such Bootes’ one would need a hierarchy of
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explosions, Carr and Ikeuchi, 1985), it is difficult to imagine what mechanism could
keep the gas outside the void during recent times. Indeed for a gas with T' < 10° K
the sound speed is such that the gas would cross the void within a Hubble time.
Also an even hotter remnant gas left behind from cosmic explosions could not
prevent the outer gas from filling the void by means of pressure equilibrium because
this would result in éy = 0. Other difficulties are given by energetic constraints on
the heating of the gas (Field and Perrenod, 1977) which however would still need
to have a higher temperature than that observed for the XRB, and the fact that
some such voids without gas would easily induce fluctuations such as to violate
the mentioned isotropy limits of the XRB and those of CMB on smaller angular

scales.

The presence of a ‘hot spot’ in the same area of the sky, on the other hand,
was already reported in the literature, a fact which adds interest to this particular
problem. A 1978 balloon borne experiment (single subtraction, beamthrow of 6°
and dispersion of 2.2°; see Fabbri et al., 1982, for a complete description) scanned
an area which contained the direction o ~ 13" and § ~ +40°. This data were
used (Ceccarelli et al., 1983) to perform an analysis of the possible SZ effect quite
similar to the one made above, from which was derived an upper limit on the rms
temperature fluctuation of 0.1 mK (at a different wavelenght, almost at the peak
of the CMB specfrum), and consequently a limit on the comptonization parameter
of [§y| < 2:1072 (cf. the limit we get here: |6y| < 10™%, having taken into account
the factor of two which comes from the beam pattern). The data reported in their
Figure 2, though, seems to indicate the presence of the characteristic tilted ‘S’
shape similar to the one expected from a concentrated signal at o ~ 132 in the
case of a single subtraction. The problem is that the sign of this signal cannot be
determined by the figure, without the essential information about whether signal
from the beam trailing in Right Ascension was subtracted from the signal from the
other beam or viceversa (the ‘S’ flips its sign by changing the subtraction order).
Moreover the reported data span quite a range of different declinations, making

difficult immediate comparisons with the previous discussion.

The same group then reported (Boynton et al., 1983; see their Fig. 1 and
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Fig. 3) through data from a second flight, the presence of a large region whose
average temperature, as shown in their figures, is ~ 1mXK higher than its sur-
roundings and should correspond to a gradient of ~ 0.1 mK as seen by the single
subtraction used by this experiment. This very large region (roughly 20° x 20°) is
on the other hand far from the void region and it should probably have been de-
tected also by american balloon experiments and the russian satellite experiment,
which covered almost the whole sky (Lubin et al., 1985, see also the comment by
Wilkinson, 1983). These experiments could probably have detected also the bump
reported by Watson et al.: indeed the bump amplitude is ~ 1/10 of that of the

well detected dipole anisotropy.

Therefore detailed surveys of this zone, made at different wavelengths with
enough spatial resolution and coverage, would be a great source of information,
albeit not necessarily cosmological (perhaps a galactic cloud could be responsible
for the bump —it would be interesting to have a direct cross—check on the IRAS
database—; we note that also the existence of very large intergalactic clouds has

been suggested by studies of differential optical extinction: see Rudnicki, 1986).

I11.6 Brief summary of the chapter.

In this chapter we made applications and extensions of the formalism developed
in Chap. II. We generalized the estimates for the average number and diameter
of hot spots expected on the sky, through the inclusion of the beam dispersion
effects within the formalism. This is an important point which can be exploited
in the choice of the best experimental configurations, which have to maximize the

detection probabilities expected within a given theoretical model.

Another application was the direct fit to the data of Davies et al. of the
shapes of the acf appropriate for the scale-free models. The results showed how
the final figures are sensitive to the theoretical choice: a fluctuation level ~ 60 %
higher than the one quoted by Davies et al. was found for the scale invariant

spectrum. On the other hand we also discussed in detail the Likelihood Ratio
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method and showed how the final results are (of course) sensitive to the signal to
noise ratio of the experiment: this statistical approach seems to be, in our present
opinion, really more powerful than the method used before, especially because can
test properly the assumption of a given set of models (e.g. those which have long
range correlations), although care must be exercised in the interpretation of its

outputs.

We then extended the formalism to the more general case of a random ob-
server, who can obtain very different values for the same quantities that another
observer has measured, and obtained probability distribution functions for the ob-
servables of interest through numerical simulations. This resulted in the derivation
of much more stringent upper limits on the amplitude of primordial fluctuations
than those available in the literature, taking full advantage of the reduced statis-
tical uncertainty of the whole correlation function with respect to that of the only
quadrupole component. We also pointed out that proper account should be given
to the uncertainty of the experimental upper limits, a fact which reflects heavily
in the final confidence levels. We also note that, more than the improvement of
almost a factor of nine in the theoretical upper limits, the importance of these
results resides in the entirely new method developed, which can be readily imple-
mented to future data (the factor of nine is the square root of the ratio of the
upper limit on the value of A obtained from the the R quadrupole and the value

we obtained from constraining the acf shape).

We also examined in detail some of the possible causes of the reported buﬁlp
in the microwave sky. We think that this kind of signal deserves the maximum
attention because of its potential wealth in cosmological information, since, as
we discussed above, there are not many mechanisms capable of giving such an
ample signal, a lucky, very uncommon situation as far as fluctuations in the CMB
are concerned. While more data are necessary to proceed further in the analysis
of this particuia,r’Vp’he'ﬁomenon, we showed the necessity of detailed comparisons
between theoretical signals and what could be actually recorded from these signals:
of importance is not only the amplitude, but also the sign and the shape of the

final signal. Indeed, within the limits of the processes examined here, apart from
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the low probability of occurrence we estimated for some cases, we can confidently
exclude the possibility that the string of galaxies or the Bootes void generated the
reported bump: this is of course not an astonishing novelty in the gravitational
case because simple back of envelope calculations show the implausibility of such
explanation, but we think that the ‘overkill’ of a factor of ~ 30 with respect to
the simple order of magnitude estimate, which we showed results from detailed

computations, is a serious warning for future, not so clear-cut cases.

"Part of the containts of Sect. II.1 and of Sect. II1.4 will appear in the
proceedings of two recent congresses (Scaramella and Vittorio, 1988b, 1988c). The
material of Sect. II1.2 is due for publication in the Astrophysical Journal (Vittorio
et al., 1989; I want to acknowledge here the people I collaborated with on this
specific topic for drawing figures and the numerical work of Sect. III.2 , which, in
contrast to the rest of the material presented in this thesis, was essentially carried
out in Rome). Finally, the contents of Sect. II1.3 and of Sect. IIL.5 will be soon
submitted for publication (Scaramella and Vittorio, 1988d, and Scaramella, 1988,

respectively).
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IV Two issues on hierarchical clustering
and biased theory of galaxy forma-
tion.

IV.1 Different perturbation spectra and the Press-Schechter

mass function.

Among astronomers there is a general consensus that on cosmological scales most
matter is in the form of weakly interacting particles (WIMP’s), the so-called dark
matter (DM), rather than in the baryonic form we have been familiar with so
far. The reasons for this belief are known: foremost for the theorists there is
a prejudice stemming from inflation (Guth, 1981; Albrecht and Steinhardt, 1982;
Linde, 1982), a concept which solves at once the monopole, flatness, isotropy, initial
perturbations and horizon problems. Indeed inflation prescribes for the cosmic
density the critical value o = 1 (more precisely it requires that the space curvature
vanishes; see however Madsen and Ellis, 1988), while the baryonic density, whether
estimated from the observation of luminous matter (Oort, 1932 and 1960) or from
theory of the primordial nucleosynthesis (Schramm and Steigman, 1981; Yang
et al., 1984; for a recent review see Trimble, 1987), is known to be much less
abundant, Qop < 1. It is then obvious to postulate the existence of as much DM
as is needed to satisfy 2g = 1. In particle physics (for a review see Turner, 1987)
there are so many candidates for this role that it would be very surprising if there

were no DM at all or indeed if there were one kind only (Shafi and Stecker, 1984).

One then has the two extra bonuses that DM by itself may solve i) some, if
not all, of the missing mass problems that exist on smaller scales, from clusters of

galaxies to individual galaxies to dwarf irregulars (Aaronson, 1983 and 1987; Faber

and Lin, 1983), and ii) the problem (Vittorio and Silk, 1984; Bond and Efstathiou,
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1984) of the undetected small scale fluctuations in the microwave background
(Uson and Wilkinson, 1984) at the the level required by pure adiabatic baryonic
models. Incidentally earlier on these two arguments by themselves were considered
a sufficient motivation for introducing DM. Only in the solar neighborhood is
it likely that the missing matter is in fact subluminous, and therefore unseen,

baryonic matter (Bahcall, 1987).

In reality the phase space argument of Tremaine and Gunn (1979; see also
Madsen and Epstein, 1985) showing that the light neutrinos that might bind clus-
ters of galaxies (Szalay and Marx, 1976) cannot be trapped in smaller structures,
forces us to explore the alternatives roles of two extreme forms of DM, hot (H)
and cold (C). These are defined by the fact that the corresponding WIMP’s are or
not relativistic at radiation-matter equivalence. One understands from the basic
theory of gravitational instability of free streaming matter (Bond et al., 1980) and
from the pancake theory of Zel’dovich and coworkers (Zel’dovich, 1980; Doroshke-
vich et al., 1980) that HDM (typically 30 eV neutrinos) generates the first structure
on the scale of superclusters: it is the top-down scenario in which galaxies form
later - and unfortunately too late - by fragmentation. On the contrary (Peebles,
1982; Blumenthal et al., 1984), CDM generates structure first on the subgalactic
scales and then on the larger ones via hierarchical clustering along the lines of

what is known as the bottom-up scenario.

While the latter view appeared more successful than the former for some
time, it became clear eventually that it had to be modified in some basic way. The
first problem to show up, the so-called 2-problem, was the fact that dynamical
observations (Tamman, 1986; Davis and Peebles, 1983; see the review by Peebles,
1986) stubbornly indicate Q¢ =~ 0.2 in conflict with the theoretically appealing
unit value. Explored solutions range from biasing (Kaiser, 1984; Davis et al.,
1985; Bardeen et al., 1986) to a cosmological constant (Turner et al., 1984) to
WIMP’s decaying in recent times to a relativistic component (Dicus et al., 197T;
Gelmini et al., 1984; Olive et al., 1985) to the existence of a hot diffuse component
(Bludman and Hoffman, 1986). Among these, perhaps bias seems to be the most

promising, while the other suggestions have more difficulties .
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Recently the existence of a large amount of power on large scales (precisely
i) in the cluster-cluster correlation function: Bahcall and Soneira, 1983; ii) in bub-
bles: de Lapparent et al., 1986; and ii7) in large scale streaming motions: Collins et
al., 1986; Dressler et al., 1987) casts doubts on the gravitational instability picture
in its simplest form for CDM: indeed that much power on the large scales cannot
be accounted for by the linear adiabatic or isocurvature (Efstathiou and Bond,
1986) theory of primordial perturbations with the Zel’dovich spectrum, once the
amplitude of the perturbations themselves is normalized to fit the observations
on small - i.e. galactic - scales. Explosive galaxy formation (Ostriker and Cowie,
1981; Ostriker and Ikeuchi, 1983; Carr and Ikeuchi, 1985; Dekel et al., 1987) may
be a way out for large scale voids. Alternatively it may be the right time to
resurrect HDM (Melott, 1985 and 1986) (which naturally implies large peculiar
velocities, Kaiser, 1983; however see Vittorio and Turner, 1987) in combination
either with cosmic strings (Vilenkin, 1983; see the review by Turok, 1986) or with
double inflation (Silk and Turner, 1986; Turner et al., 1987) to meet the challenge

of the timely formation of small scale structure.

For the above reasons and with particular emphasis on the formation of
structure, it is worth while pursuing our earlier work (Achilli et al., 1985) where
we assume that the basic scenario is bottom-up, but in the presence, for the sake
of generality, (see also Umemura and Ikeuchi, 1985) of a free streaming component
consisting either of light (< 100 eV ) or of intermediate (~ 1 keV ) fermions; as
usual the latter case will be dubbed warm (W). Concerning the CDM component
we will assume that it consists of massive (> 1 GeV ) fermions. Incidentally the
reader may be reminded that it seems now rather unlikely that neutrinos may close
the Universe by themselves in view of recent upper limits to their mass (Winter,

1986; Hillebrandt et al., 1987).

We have then considered pure adiabatic scalar perturbations as suggested
by inflation and we have numerically integrated the equations for the linearized
evolution of density perturbations relative to a cold component, a massive free

streaming component and radiation. Our basic parameter is then the abundance
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of the CDM component

n = Qcpm (IV.1)

under the simplest assumption that either HDM or WDM makes up the remaining
(1—mn) fraction of the Universe in order to satisfy £y = 1, while baryonic matter is
assumed to be dynamically unimportant. In addition to pure models (only hot, or
warm, or cold plus radiation) we considered four hybrid models consisting of CDM
for a fraction (n = 0.5,0.1) and a free streaming component either hot or warm for
the remaining part. The hot WIMP was chosen to be a massive neutrino of mass
90(1—n)eV, while the warm WIMP was given a mass of 750(1 —n)eV’; the former
has the canonical “temperature” of 1.9 K, while 1 K is assumed for the latter. The
redshift of equivalence is determined by the existence of two massless neutrinos
for the the hot cases and of three massless neutrinos in all the other cases. The
reduced Hubble constant i (in units of 100 km/sec/Mpc) is assumed to be unity
throughout; likewise an initial n = 1 scale invariant Harrison-Zel’dovich spectrum
is assumed in all cases. Computations for the linear adiabatic perturbations in
other hybrid models (hot plus warm) were performed by Valdarnini and Bonometto
(1985a and 1985b); for the hot plus cold hybrid case, detailed considerations for
the non linear evolution were given by Umemura and ITkeuchi (1985) and by Ikeuchi
and Norman (1987) for a different model, where an isocurvature perturbation is

also present.

In Fig. IV.1 we give in the left panel the transmission factor T'(k) as a
function of comoving wavenumber k and in the right panel we give the rms mass
fluctuation X(M), both quantities being evaluated at the present. The transmis-
sion factors, here normalized to unity on large scales, show clearly the following
features: 7) the existence of two knees relative to the horizon scale at equivalence
and to the free streaming length; 1i) the existence of residual power below the free
streaming scale in the hybrid cases due to the stunted growth of the cold com-
ponent prior to the catch-up of the free streaming component (see Achilli et al.,

1985). The mass variance, given by
Y3 (M,z) = A/dsk W(kR)P(k,z) , (Iv.2)
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Figure IV.1. In the left panel a plot of the transmission function T'(k) vs.
wavenumber k for different cosmological models: from top to bottom full lines
refer to the pure CDM model (referred to in the tezt as C), to the pure
warm model (referred to in the text as W), and to the pure hot model. The
normalization is chosen to be unity at small wavenumbers. The pure hot
model shows the sharp drop due to free streaming, the pure warm model first
follows closely the pure cold model, then drops ezponentially. Dotted lines
refer to the n = 10% hybrids and dashed-dotted lines to the n = 50% hybrids.
In the right panel a plot of the variance & evaluated at the present for v =1
vs. mass M for different cosmological models: as in the left panel, from top
to bottoem full lines refer to the pure CDM model , to the pure warm model
and to the pure hot model (in the latter case the variance is eztrapolated
below 10'* Mg as the numerical computations become unreliable much below
the free streaming mass). Again dotted and dashed-dotted lines refer to the
hybrids. The n = 10% warm hybrid is indistinguishable from the pure warm
model; on the contrary the hot hybrids are appreciably different from the pure
models.

where W (kR) and P(k, z) are a Gaussian filter and the power spectrum, is normal-

ized in all cases to the galaxy counts (Peebles, 1982) so that X(r',z = 0) = 1/v

where v is a bias factor and r' ~ 8/1.555 h~'Mpc is the appropriate filtering

length. In Fig. 1b we set v = 1.

although in reality this normalization is appropriate to the bottom-up scenario

Just for comparison purposes we show the variance for the pure hot case,

only; henceforth we will not treat the pure hot case, but only its hybrids which

can give rise to hierarchical clustering, although their variance looks nearly as flat
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as in the pure hot cases. For shortness we will label HA the n = 10% hybrid and
HB the n = 50% one. As far as WDM is concerned, its 7 = 10% hybrid does not
differ appreciably from the pure case neither in the variance nor in the derived
quantities for all the scales of interest, while the n = 50% hybrid is practically
equivalent to the pure CDM case; therefore we will limit our discussion to the
pure warm case, which we will label shortly W. The pure CDM model will be

referred to for comparison simply as C.

Following suggestions by Schaeffer and Silk (1985 and 1988) we use the above
results on the mass variance in the Press and Schechter (1976) algorithm to es-
timate the mass function for the galactic scale and above; the underlying idea of
this method is that bound objects grow by pure dissipationless gravitational clus-
tering. In our opinion the simplicity of the method and its predictive power make
it worth exploiting it, despite the rigidity of its assumptions and its inadequacy to

fully describe the complex physical processes involved.

The basic assumption is that mass fluctuations, épr = §M/ (M), have a

Gaussian distribution,

(6, 2) = L&y ] (IV.3)

1 1
Vaw (M) ©F [ 257(M,2)
Accordingly, one can define the fraction of the total density in bound objects

F(M,z) = /1 ” d(8ar) W(6ag, 2) (IV.4)

where we assume that a perturbation becomes bound as soon as its s becomes
unity. The factor two which takes in account the secondary infall from adjacent
underdense regions disappears when evaluating the distribution of objects per unit

mass; hence we neglect it.

It is convenient to introduce ®, the dimensionless distribution of bound ob-

jects per logarithmic mass interval:

&(M, 2) =.~Mflf—c(-l-]]“—"’4’—’iz

~ g (ar) | a0

(IV.5)
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Figure IV.2. Plot of the dimensionless distribution ® defined in Eq. (IV.5) for
different cosmological models (in different panels) and at different redshifts
as indicated: solid lines always refer to the present, dotted and dashed lines
to earlier times. On the horizontal azis we give the entire mass range we
have explored, 10° Mg < M < 10'"Mg. In panel a) the pure cold case: the
arrow underlines how the Press and Schechter scheme describes hierarchical
clustering and the gradual shift of power toward the larger scales. In panel b)
the HA model (7 = 10% hybrid): in comparison with the previous case where
curves of almost constant height move to the right with time, here there is
an almost vertical increase in amplitude; hence the vertical arrow. In panel
c) the pure warm model: the peaks remain at the galactic mass scale over a
large redshift interval and only later move to larger masses; hence the vertical
and the horizontal arrows. In panel d) the HB model (n = 50% hybrid): its
behavior is intermediate between those of panel a) and panel b).

a quantity already considered by us (Occhionero and Scaramella, 1987).

In Fig. IV.2 we plot ® at various epochs for different models.
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Direct comparison shows very different trends with time: in the pure CDM
case the distribution shifts from left to right at almost constant height (a similar
plot is given by Couchman, 1987b), indicating how hierarchical clustering displaces
power from the small to the large scales. The HA hot model which suffers most
from free streaming, behaves in the opposite way, in that while the distribution
peaks at nearly constant mass scale, the amplitude rises vertically. The other hot
hybrid, HB, shows simultaneously the two features of the above trends: both the
peak amplitude and its mass scale increase with time, so that the peak position
in the log® — logM plane shifts diagonally. Also the pure warm case W shows
the two behaviors, but in a sequence: first there is an almost vertical rise of the
peak at galactic scales, then a rightward displacement. It is interesting to note
that only in the W case the distribution changes little between 1 + z = 10 and

14 z = 4, a range which is likely to encomiaass the galaxy formation epoch.

To compare with the observed mass distributions, it suffices to multiply &
by the average background density, (p) ~ 3 - 101 Q¢hZ Mo Mpc~3,

dp
dinM

= (p) 2. (Iv.6)

Furthermore we add for comparison two more theoretical pictures to the
above one: the first contains a moderate amount of bias, v = 2, in the same Press
and Schechter scheme; the second, as suggested by Schaeffer and Silk (1988),
derives galaxy counts from the theory of the number of peaks in the density field
above a given threshold, for which we use only an approximate expression. As
first shown by Doroshkevich (1970) and then by Bardeen et al. (1986), Peacock
and Heavens (1986), Couchman and Rees (1986), in the large threshold limit,
(v > 1), very simple approximate formulze can be obtained for the number density
of maxima. Of course the identification of a peak with a bound object is a non
trivial step, as stressed by Bardeen et al. (1986), but the concern lessens somewhat
for high thresholds since the region surrounding the peak is then usually simply
connected. Indeed it has become widespread in the literature (Bond, 1986, Bardeen
et al., 1986, Silk and Vittorio, 1987) to fix the appropriate biasing threshold or
the smoothing length by requiring the number density of high peaks to match the
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observed number density of objects (i.e. bright galaxies or rich clusters).

In line with these considerations we chose to consider the case v = 3 as a
good compromise: indeed it lies almost at the high end of the canonical range of
v (Blumenthal et al., 1984; Bardeen et al., 1986, Dekel and Rees, 1987) and at
the same time is large enough to allow the following approximations. Neglecting
terms of order ¥~2 the number density of peaks is given as (Doroshkevich, 1970;

Bardeen et al., 1986)

3/2
dNpk 1 (k%) 5 V2
_C-ZV = Npk ~ [ voexp|— '2— . (IV.7)

where (k?) is an average over the spectrum.

To the same approximation, once v is related to T as described below, the

mass distribution becomes

‘Z;I}’c ~ (23r)2 [<’;2)r/2 2222,;[,0) (dz)zl(ﬁz\;[,o)) ezp [_.’{;] (IV.8)

which we will use below in the form

dp 2 dnpk
dinM -M dM (IV'9 )

From the observed luminosity distribution one can infer a mass distribution
after making appropriate assumptions on the M (L) behavior. Following Schaeffer
and Silk (1985 and 1988) we find it convenient to consider a luminosity function
of the Schechter type

40 = % (3)  ewl-L/L] (1v.10)

(Schechter 1976, Felten 1985) both for galaxies and for clusters (Bahcall, 1979).
The resulting mass distribution is shown in Fig. IV.3 . The differences be-
tween the small and the large scales, besides the obvious differences in the values of

o, P4 and L, for galaxies and clusters of galaxies, are also due to the assumption

of an increasing M /L with the scale. Indeed reasonable values are thought to be
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Figure IV.3. Observational constraints over the mass range we want to ez-
plore, 10° Mg < M < 10'"Mg; the uncertainty which derives mostly from
our poor knowledge of M/L, is shown by the solid lines; as an ezample we
show as a solid dot the value of the distribution for M /L = 100 on the scale

of groups.
M/L = 807F30° for galactic scales (Faber, 1982) and M/L = 65017100 for cluster
scales (e.g. Coma); we also plot a point corresponding to a value of M/L = 100
on the scale of groups to stress the great uncertainty implied on the relative scale

(Geller, 1984).

In Fig. IV.4 we plot the theoretical results for the present time and we
compare them with the observational constraints of the above paragraph (dotted
lines). We use three panels to illustrate three models: the Press and Schechter
algorithm, Eq. (IV.5) and Eq. (IV.6) , with v = 1 in panel a), the same algorithm
with v = 2 in panel b), and finally the approximate peak method, Eq. (IV.8) and
Eq. (IV.9) with » = 3 in panel ¢). In each panel the C model is shown by a
solid line, the W model is shown by a dashed line (practically coincident with the
previous one on these scales) and the HA model by a dashed-dotted line.

The C and the W models are indistinguishable because the normalization at
8h~! Mpc in this gives case identical power on large scales (see Fig. IV.1 ); the
HB model is not shown because it looks quite similar. On the contrary the HA
model differs from the others below 10'® Mg mainly beca.usé of an appreciable free

streaming effect and also because of a slight difference in the equivalence epoch
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Figure IV.4. Theoretical predictions on the large scales for three models of
formation of condensations: in panel a) the Press and Schechter scheme
with v =1, in panel b) the Press and Schechter scheme with v = 2, in panel
¢) the approzimate peak scheme with v = 3. Solid lines refer to pure CDM
models and to pure warm models which give practically coincident results on
these scales; doited-dashed lines refer to the HA hybrids; dotted lines yield
the constraints of Fig. IV.3 .

(two rather than three massless neutrinos).
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The overall similar behavior does not allow us to select one model over the
others in panels a) and b): in fact the agreement of the theoretical results for

1 < v < 2 with the dotted constraints is remarkable. On the other hand all the

models behave rather poorly in panel c).

The main features of this plot can be qualitatively understood in the following
way: the sharp drop on the right hand side of each panel is determined by the
exponential cutoff which becomes increasingly effective the lower is the value of
the variance ¥ (hence the progression with the bias factor). On the left hand
side of each panel there is instead a rising trend which is independent of bias, but
distinguishes markedly between the Press and Schechter approach on one side and
the approximate peak formula on the other: in the former case the theoretical
counts are proportional to 1/X, in the latter to 1/5* i.e. respectively proportional
to M(9+3)/¢ and to M2(a+3)/3 where q is the effective spectral index of the power

spectrum.

Therefore it seems that the observed large scale mass distribution is in reason-
able agreement with the predictions of the Press and Schechter algorithm (almost
insensitively of the chemical composition) with a low bias 1 < v < 2, while the high
bias peak approximation shows a net deficit on both ends of the large scale range
examined here and looks less favorable. Of course these results depend crucially
on the adopted normalization; furthermore in the case of moderate thresholds a
more precise treatment is of course needed (Bardeen et. al., 1986, Couchman,

1987a, Martinez—Gonzales and Sanz, 1988).

In order to work on this scale we first estimate for each model the average
redshift at which a galactic mass becomes bound by the requirement %.(z;) =
1/v where .(zp) is evaluated at M, ~ 10''7'2M. Since for the redshifts of
interest for all models ¥ o (1 + z)™?, then (1 + z) & v Z.(z = 0). This gives
(1+2z) = 10, 6, 3, 2.5 for the C, W, HB, HA models respectively. We now make the
assumption that galaxies once created are not destroyed (for example we consider
mergers to be negligible). Hence the number of galaxies of each cosmological model

must be evaluated at the binding redshift of that model. In this way galaxies can
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Figure IV.5. Theoretical predictions on the small scales for three models of
formation of condensations of Fig. IV.4 ; again the observational constraints
are shown as dotted lines. Solid lines refer to pure CDM model (14 z, = 10),
broken lines to pure warm model (1 + zy = 6), long dashed lines to to the HB
hybrid (1 + 2z, = 3), dotted-dashed lines to the HA hybrid (1 + z, = 2.5).

be counted as individual objects even when they become part of larger systems. In

addition we must take into account the fact that a galaxy actually lights up only
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when the rough criterion between cooling and free—fall time Tcoo1 < Tsf is satisfied
(Gott and Rees, 1977, Blumenthal et al. 1984, Silk 1985, Dekel and Silk, 1986).
Following the suggestion of Schaeffer and Silk (1985) we crudely mimic the complex
underlying physics by imposing an exponential cutoff of the form ezp[—M/M.]
where on the basis of cooling considerations M, = 10'> Mg (Q5/Q)~%/2.

The results of these computations are shown in Fig. IV.5 , where we have
three panels in complete analogy to Fig. IV.4 , i.e. with the Press and Schechter
algorithm with v = 1 in panel a), the same algorithm with v = 2 in panel b), and
finally the approximate peak method with ¥ = 3 in panel c). In each panel the
observational constraints are given by dotted lines, the cold C model predictions
at 1+ z, = 10 by a solid line, the warm W model predictions at 1 + 2, = 6 by a
short dashed line, the hybrid HB model predictions at 1+ z; = 3 by a long dashed
line, the hybrid HA model predictions at 1 + z; = 2.5 by a dotted-dashed line.

In panels a) and b) we note that the C model has an excess of power on
the small scales: this circumstance has already been remarked by Schaeffer and
Silk (1985) and poses a difficulty for the CDM scenario (which however could be
overcome; Dekel and Silk, 1986). On the other hand we note that in the pure
CDM scenario the possible feedbacks due to the first condensations are likely to
exert a great influence, thereby giving rise to a rich, complicated physical scenario
for which the pure hierarchical schemes we examine here can be inadequate (Rees,
1985, Couchman and Rees, 1986, Couchman, 1987b). The latter difficulty should
be much lessened, though, for those models - W, HA, HB — which show a less grad-
ual transfer of power from the small scales to the galactic scales (e.g. Fig. IV.2 b,
c, and d ). In the same panels we see that the free streaming models (W and HA)
have the best slopes to fit the observed counts: however the amplitude of the HA
model is far too small, while that of the W model is about right given the limits
of the present approach. In panel ¢) model C is in lesser disagreement with the
dotted lines only on the low mass side, but not on the high mass side; the other

models shows a larger disagreement (in fact model HA disappears from the plot).

In conclusion, we may say that at least from a qualitative point of view the
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Press and Schechter algorithm with a moderate amount of bias, 1 < v < 2, gives
a remarkably good description of the observations on the large scales, in spite
of its simplicity. In fact, the formation of large scale structure in a bottom-up
scenario occurs in agreement with the assumptions of a smooth, dissipationless
hierarchical clustering upon which the Press and Schechter forecast is based. All
this is of course almost entirely insensitive to the chemical composition of the
cosmic medium, but occurs when free streaming is important. On the galactic
scale, instead, our results do depend on this composition, so that in principle
a test is possible: in particular the warm dominated model shows a much closer
agresment with the observations than the other models both in the slope and in the
amplitude of the theoretical curve, the two relevant quantities after the ”external”
imposition of the cutoff. Furthermore the warm model looks very attractive also
because of its unique feature of exhibiting a peculiar staticity of ® at the galactic
scale for a wide range of redshifts. It should be ﬁnally recalled that the free
streaming of 1 keV WIMP’s naturally yields the galaxy mass (Bond, Szalay, and

Turner, 1982).

IV.2 Optical luminosity bias and clustering amplitudes.

It seems quite reasonable to expect that biased theories of galaxy formation
(Kaiser, 1984; Politzer and Wise, 1984; Bardeen et al., 1986; Dekel and Rees,
1987) lead to galaxy clustering properties depending on the intrinsic luminosity.
A test of such dependence can be performed using the information on intrinsic
luminosities I provided by samples of galaxies with known redshift. The 2-point
function obtained for a sample of galaxies with L > Ly;, should keep the form
§(r) = (ro/r)Y with 4 ~ 1.8, while , should depend on Ly, itself. Although the
nature and strength of such dependence are related to the specific biasing model
adopted, it is reasonable to expect the clustering to be stronger for bright galaxies.

We shall discuss this point in more detail at the end of the section.

Starting from a fully different point of view, in a number of recent papers

(Calzetti et al. 1987, Pietronero 1987), the idea has been pursued that matter

119




distribution has a fractal nature up to very large scales, possibly exceeding the
present horizon scale. These authors show that, if galaxies have a stmple fractal
distribution (we will henceforth drop simple) and if a sample occupying a volume
of size D is then analyzed according to current methods, the 2-point function will
still show the form £(r) = (r,/7)”. However, when another sample with different D
is considered, the clustering length r, would also appear to be different, according
to the proportionality law

ro < D. (IV.11)

A test of this dependence can be performed using the information on distances

furnished by catalogues of galaxies with known redshift.

If we consider all galaxies with L > Li;y, in a fair sample including galaxies
with apparent luminosities { > [* (or, apparent magnitudes m < m* : magnitude
limited sample), this amounts to considering all galaxies of the sample up to a
limiting distance

Diim = (Ltim /4xl*)}/? (IV.12)
provided that cosmological and K—corrections can be neglected. Detecting a de-
pendence of 7, on Lj;;, might therefore indicate either an intrinsic effect, as is
expected in biased models of galaxy origin, or a dependence of r, on Diinm, as is
expected within the framework of the above fractal model. However, owing to

Eq. (IV.11) and Eq. (IV.12) , the latter model predicts
ro o< LY (IV.13)

with b = 1/2. Biased models, instead, do not lead to such stringent predictions,

although it may be reasonable to expect b < 0.5 for them (see below).

In principle one could distinguish between the two above effects by analysing
either subsamples of fixed size D down to various Lj;m, or subsainples with fixed
Li;m but for various D. Available samples are however quite limited and any
subsample whose size D < 40 h~! Mpc (h is the Hubble constants in units of
100 Km s™! Mpc™?) is likely to be polluted by local effects. Furthermore the
dependence of 7, on Lj;, is expected to be stronger at larger L;m and the number

of objects which may be taken into account then becomes embarassingly small.
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Therefore the value taken by b may still be the best indicator of the nature
of a possible dependence of r, on L. In the next section we shall discuss the
dependence of available outputs on 7, on Ljim, coming from the CfA catalog

(m* = 14.5).

The value of the correlation length for the galaxies was initially deduced from
the correlation angle derived from apparent magnitude limited samples (see, e.g.,
Peebles, 1980, and references therein). The value of r, deduced in this way is
based on the validity of the Limber equation. In turn the Limber equation holds

provided that r, does not depehd on L.

The dependence of r, on Ly, can be therefore tested only in catalogs of
galaxies with known redshifts. An extensive analysis of the data contained in the

CfA galaxy sample (m* = 14.5) was carried out by Einasto et al. (1986).

Here we shall argue that such analysis leads t0 0.17 < b < 0.39in Eq. (IV.13).
Before giving more details on the procedure for data analysis, let us outline how
it allows us to conclude that the values b = 0 and b = 0.5 can be excluded at
the same confidence level (they lie just outside the 90% confidence level of the
x? contour plot). The former value would indicate no dependence of clustering
on luminosity. This does not exclude that a constant r, is, after all, consistent
with observational data, but, according to our analysis, the Einasto et al. (1986)
outputs furnish no more support for a fractal scenario than for constant r, (see

also Jones et al., 1988).

Among the large set of data elaborated by Einasto et al. (1986) we selected
those of depth D > 40h~! Mpc. At a distance of 40h~! M pc a galaxy of luminosity
L* (L* is the turning point in the galaxy luminosity function) appears of m =

14.5.

Einasto et al. (1986) found the values for r, for subsamples of different
Liim in two different directions of the sky (sets A and B). This allows to fit the

dependence of 7, on Li;m Eq. (IV.13) estimating also an error on b.

121



] T 1T [ 1T

r, (Mpc/h)

3 — —

I | | l [ , I | ! I L i
2 5 1 .2 5 10
L/L

Figure IV.6. Observational points and error bars obtained from Einasto et
al. (1986) —circles; see Table I- and from Davis and Peebles (1983) and
Maurogordato and Lachieze-Rey (1987) —square-. Only the former points
for distances > 40h~ Mpc (Liim > L*) are used to obtain the best fit line.

In spite of the limited amount of data a simple least-square fit, performed by
suitably weighting the points in different celestial areas by the number of bright
galaxies present there, directly yields b = 0.28 = 0.11 (further details are given in
Table I).

Let us also remark that quite similar results on b and its error are obtainable
if the points of sets A and B (see Table I) are fitted separately and the different
results are then suitably weighted. Results would be most reliable if different L;;p,
data could come from completely independent samples. Here, though, subsamples
corresponding to different L;;,,, partially intersect. The effect of any such residual
interdependence within the data seems to be maximally diluted in the frame of
our former approach. Einasto et al.(1986) put together the observed increasing
trend of 7, at the distances and luminosities considered here with points obtained
from smaller volumes of size ~ 20 A~ Mpc and with cluster correlation data. This

inhomogeneous set of data was then fitted by Calzetti et al.(1987) and Pietronero
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(1987) with Eq. (IV.13) using b = 1/2 as is to be expected within the frame of

the above fractal models of matter distribution in space.

Table IV.1
(Llim) log (ro h™! Mpc) [Nyai log (ro h™! Mpc)
log T

Subsample A | Subsample B | mean dispersion best fit
0.00 0.884 [576] | 0.462 [118] |0.812 |1.58-10~! | 0.740
0.40 0.905' [238] | 0.695 [196] |0.810 |1.04-10~1 | 0.852
0.60 0.916 [425] | 0.841T [65] |0.906 |2.54-10~2 | 0.908
0.80 0.959 [220] | 0.987 [65] |0.965 |1.17-10~2 | 0.964

- Table IV.1. The above values are directly obtained from Einasto et al.(1986),
apart those marked by a dagger which are given by linear interpolation. The
weight of the latters is accordingly halved. The value of b obtained from the
above table [log(ro) = a+ b-log(Liim/L*)] is 0.28; the small resulting x>
(=~ 0.38) reflects into the large errors.

However, if we add the data relative to a distance of 20 ™1 Mpc to the fair
sample (D > 40h™'Mpc) of data we used in Table IV.1 , the value of b does
not change appreciably from the one we obtained. The formal error however
decreases, the full error bar being contained in the error bar for b given here
(the comfidence limit on the values b = 0 or b = 0.5 becomes accordingly more
severe). To consider also data from cluster of galaxies might increase the value
of b; within the framework of any biased theory of galaxy formation, cluster data
are however not homogeneous with galaxy data being related to different values

of the smoothing scale R, and of the bias parameter v .

According to Table IV.1 , the best fit value for 7, —at Lym = L*— is
5.50 A~ Mpc. This is to be compared with Davis and Peebles (1983) result yield-
ing 7o = 5.4 £ 0.3 h™! Mpc. This result was obtained considering 1230 galaxies of
the northern emisphere with L > L*. More recently Maurogordato and Lachieze-
Rey (1987), analyzing a subset of the CfA sample, including 396 galaxies with
L > L*, also finding To =54 h~*Mpc. These points are also shown in Fig. IV.6 .
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It is important to note that the same value has been obtained from these au-
thors for the same Li;m but for different depths (D = 40 A~ Mpc for the latter
and D = 100 ~~* Mpc for the former), directly in contrast with the above fractal

scenarios.

All the above authors note the existence of a possible dependence of r, on
Liir. Analogous suggestions, on different bases, are given by Shaeffer (1987a and
1987b).

In the wide scale range from galaxies up to Abell clusters it is reasonable to
associate each scale with a precise value of the smoothing radius R, . Peaks of
different height, but above a critical threshold §. , will probably virialize at different
times. Clusters which are observable today are peaks which have virialized before

the present epoch and have not merged in larger structures yet.

This picture is appropriate to describe hierarchical clustering of collisionless
systems which can however merge and loose their own individuality during their
subsequent evolution in time. This view, started by Press and Schechter (1974),

reflects in the current bias approach, relating volumes (and masses) to R3.

On the other hand, within the framework of biased theories of galaxy for-
mation, the mass/luminosity range occupied by individual galaxies is likely to be

selected by precise physical effects.

Individual galactic masses can be related to various different initial conditions
and the existence of an appreciable range of galactic masses is probably mostly
due to the impact of different local geometries on fluctuation evolution rather than

to gravitational collapses over different scales R,.

A tentative way to find the statistical impact of this wide set of variables
starts from considering a single smoothing radius Ry, related to the typical scale
above which primeval fluctuations can hardly cool down into individual galaxies.
Different luminosities will then be related to the different residual heights of the
individual smoothed fluctuation. This is likely to dilute the impact of some initial

geometries; however, for large galactic masses, i.e. at the bright end of the lumi-
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nosity function, we are probably considering notably high peaks, which differ less

in geometrical details.

If one considers the peak distribution
po(2) = Det,r,y () = V05,5, (IV.14)

(ob,r, is the the background mass variance over the scale R,), the size S of the
volumes where the argument of the step distribution ¥ is positive is not the same
for all peaks and can be related to the peak value ¢, of the smoothed fluctuation

field ey r S,(ac) in the volume where the threshold value v, - o , 1S overcome.

Let us outline the difference between R, —approximated by a unique value-
and S : the actual mass of the final galaxy and its luminosity L will certainly be
related to the volume ~ S* involved within the protogalactic size. Therefore, as
S increases with e, selecting objects with L > Ly;», is equivalent to taking peaks

with €p > €p,lim = VIim0Ob,R,,-

This is equivalent to saying that, on top of a physical bias —allowing only
peaks with ¢,/03 r, > 14 to turn into galaxies—, a further selection (optical bias,
see Bonometto et al., 1987) occurs, with respect to more severe thresholds v;;, >
vg. There can be little doubt that vj;, is an increasing function of L;;,. The

details of such dependence can be tentatively discussed as follows.

Bardeen et al. (1986) and Couchman (1987) considered the question of the relation
between s and €. In Fig. IV.7 we report the form of €, r(z), obtained after
averaging over angles, for a standard CDM scenario, in the case of a primeval
Gaussian spectrum with spectral index n = 1, for different values of the peak
density contrast e,. Such profiles are characterized by a slope which keeps fairly

constant, both with respect to €p itself and for r S Ry. The expression

n,(r) = &g (E—)M (1v.15)

can therefore furnish an approximation to €, r(r) up to r 2 R;. The exponent

6 € 1 avoids a cusp at r = 0.
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Figure IV.7. Continuous lines represent angle-averaged mean densily profiles
of primeval peaks in a standard CDM model (h=1, n=1, Q, = 1), for different
values of the peak height e,.
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For large €, (i.e. for large L) we may therefore take S e;“é and therefore

Liim I/Zm with # = 3(1 — §) + a. The quantity o is enclosed here to allow
considering the effects of a secondary infall of matter into a fluctuation of size S
(see Hoffman and Shaham, 1985; Hoffman, 1988). For large v and for a Gaussian
spectrum, in the linear regime ¢, g, () ~ Vzﬁb,Rg(r)/or%:g. Then, owing to the
observed law £(r) = (r,/r)Y, we expect 7, x v*/7 L?i/f;'ﬁ. Comparing this
output with Eq. (IV.13) we see that, for 1.7 < v < 1.8, 0< § < 0.2 and a =0,
= 2/P~ falls in the range 0.37-0.49. Considering o > 0 would widen the above

interval towards smaller values. The observational interval 0.17-0.39 (see above)

would suggest 0 < o < 1.

In our opinion the above arguments can be taken at least as an indication
that the Ly, dependence of ,, observed at large L, is likely to fit the trend found
within the framework of a simple bias model not requiring a fractal scenario. In
this context it seems clear that a reliable determination of the dependence of r,

on L, based on wider samples, would be helpful in understanding the details of
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the bias mechanism and of the process of galaxy formation.

While we agree with Pietronero (1987) that systematic variations of the av-
erage number densities with D can be present in data, the most significant de-
pendence of r, seems to be the possible one on L. In turn this raises a number
of technical problems in defining a universal galaxy luminosity function, which
would depend on position. Distance calibrations, relevant to possible distortions
of the Hubble flow, therefore become more complicated and their neglect certainly
increases observational errors above currently accepted values. Furthermore de—
projection procedures, such as the ones implied by the Limber equation, become
much more involved and a number of results deduced just from angular data should

be reviewed in this light.

IV.3 Brief summary of the chapter.

We will comment on the contents of the two sections separately, because the ma-

terial presented there is self-contained.

In the first section of the Chapter, following a suggestion by Schaeffer and
Silk, we attempted to estimate the present distribution of galaxies from the linear
growth of primordial adiabatic fluctuations. The latter are studied in flat Universe
models dominated by dark matter, in one of its three popular varieties ~hot, warm,

and cold- or in some mixture thereof.

The mass distributions are derived either from the canonical Press—Schechter
(PS) mechanism or from an approximate peak count, within an assumption of
high bias. Our theoretical curves are then confronted with those derived from

luminosity functions of galaxies and clusters.

On the large scales the PS approach seems to give acceptable agreement
with the data for all models, regardless of their chemical composition (i.e. the
nature and the abundance of the dark matter components); the approximate peak

approach seems instead to represent the observations less closely.
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On small scales on the other hand the results are so strongly sensitive to the
chemical composition that it is possible to draw some conclusions: the pure warm

model is the one which overall fits the data best.

This work has been accepted for publication (Occhionero and Scaramella,
1988), and is in the main stream of a renewed theoretical interest in the prediction
and evaluation of mass—functions and their application in various astrophysical
contexts. Several papers have appeared in the literature or in (yet) preprint form
after most of the above material was completed (early 1987) and were not referred
to in the text. Among these, just to name a few, are predictions of quasar dis-
tribution (Efstathiou and Rees, 1988), consideration of the Sunyaev-Zel’dovich
effect from cluster evolution (Cole and Kaiser, 1988), extension of the formalism
to non—Gaussian statistics (Lucchin and Matarrese, 1988), estimates on the X-
ray luminosity evolution from clusters (Cavaliere and Colafrancesco, 1988), and a
more sophisticated peak treatment than the one presented here (Colafrancesco et
al., 1988). The most recent review on this important topic that we are aware of is

‘that by Lucchin (1988).

In the second section of the Chapter, available observations on the depen-
dence of the galaxy correlation length 7, on luminosity were discussed. Their trend
is not incompatible with a canonical bias model. On the contrary the behaviour
expected within a simple fractal model of matter distribution in the Universe finds

no more support in data than the assumption of constant r, does.

This work has been widely circulated last year in a preprint form (Scaramella
and Bonometto, 1987), and is currently under the refereing process. After its
completion other papers appeared on this issue: while Blanchard and Alimi (1988)
argue that the trend observed in the data of Einasto et al.(1986) can be due to
the numerical estimator used for the computation of the correlation function, a
luminosity dependence of the amplitude of the two—point correlation function has
been confirmed by studies of the CfA sample by Hamilton (1988) and Davis et al.
(1988), who use data also from a new survey in the South. These latter authors find

a dependence of 7 on the intrinsic limiting luminosity which translates into a value
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for b &~ 1/4, which confronts very well with our above estimate of b = 0.28 4 0.11,
and argue that no dependence of ry is observed on the physical depth of the
sample, again in agreement with our discussion and in contrast with the simple

fractal predictions.

From the theoretical side also of relevance are the recent discussions of Hoff-
mann (1988) and Ryden (1988), who respectively stress a dependence of the mass
bound to a proto-peak on the height of the peak itself, and computes explicitly
such a dependence, finding a relationship of the type M o« v®, where o depends
upon the adopted effective spectral index. This supports and is in complete agree-
ment with our basic explanation of the observed trend, that is a dependence of
the mass, and hence of the optical luminosity, of large galaxies on the height of
their proto-peaks over the general fluctuation background. Indeed we want to re-
mark that the line of reasoning exposed above could lead to important information
on the shapes, and therefore on the fluctuation spectrum, of primordial peaks on

galactic scale lengths, through an observable quantity (i.e. b).

It is also appropriate to comment, and is useful for considerations discussed
in the next Chapter, that such luminosity dependence on the mass of the galaxies
(for the most luminous galaxies) is expected to be due to processes related to the
formation of the galaxy itself. Other processes, which would for instance trigger
bursts of star formation, would not necessarily be correlated with the primordial
perturbations, and hence would probably not be reflected in the suggested lumi-
nosity dependence of the correlation amplitude. This argument is in fact very
appropriate for the IRAS sample galaxies, where the infrared luminosity is very
dependent on the present star formation rate. Indeed Davis et al. (1988) find that
the trend observed in optical luminosity does not show up in a similar sample of

IRAS galaxies.
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V Superclusters and large-scale peculiar
velocities.

V.1 Cluster of galaxies catalogues and the new ACO cat-

alogue.

We will briefly review here the basic properties of the currently available catalogues
of cluster of galaxies and the main results appearing in the literature on this topic.
More detailed information can be found in reviews by Bahcall (1977, 1988), Oort
(1983), and Geller (1987).

Currently, four main catalogues of cluster of galaxies are available: Abell’s,

Zwicky’s, Schechtman’s, and ACO (from Abell, Corwin and Olowin).

All of them have been optically and visually selected according to different
criteria, and therefore have various biases and are not homogeneous among them-
selves, except for Abell’s and ACO. Only Abell’s catalogue has been extensively
studied from a statistical point of view, with results which have great importance
for our definition and comprehension of large scale structures. Most of the infor-

mation in the following summary is taken from Bahcall, (1988).

The Abell (1958) catalogue of rich clusters of galaxies contains a total of 2712
clusters that are the richest, densest clusters found on the Palomar Sky Survey

plates and are identified by a well-defined set of selection criteria.

Of these rich clusters, 1682 constitute Abell’s statistical sample, and are dis-
tributed over 4.26 steradians of the sky and satisfy the following selection criteria:
(a) A cluster must contain at least 50 members, after proper correction for back-
ground, in the magnitude range ms to mj + 2, where m3 is the magnitudeof the

third brightest galaxy; (b) the X2 50 members should be contained within a cir-
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cle of radius 1.5 A~ Mpc around the center of the cluster (this corresponds to
the Abell radius R4 = 1.7'/z, where z is the cluster redshift; clusters wich have
counts between 30 and 50 are still considered rich but do not belong to the statis-
tical sample); (c) the cluster redshift should be in the range 0.02 < z < 0.20; and
the cluster should lie north of declination § = —27° and within the completeness

region given in Abell (1958).

The clusters’ distances were estimated by Abell by the magnitude of the tenth
brightest galaxy, m1o. For each cluster the catalogue lists the cluster postion on
the sky‘; myo; the distance group D (estimated from mjo); and the Richness
classification, R. The latter is related to the number of member galaxies brighter
than m3 4 2 and located within R4 = 1.5h~! Mpc from the cluster center, after
having corrected for the background by comparison counts in a nearby field. Lucey

(1983) gives an assessment of possible incompletness in the Abell catalogue.

Table V.1
Population | # of clusters | qrrg® | Ditance | mean | range
30 — 49 1030 0 1 0.027 | 13.3—14.0
50 — 79 1224 1 2 0.038 | 14.1-14.38
80 — 129 383 2 3 0.067 | 14.9 —15.6
130 — 199 68 3 4 0.090 | 15.7—16.4
200 — 299 6 4 5 0.140 |16.5—17.2
> 300 1 5 6 0.180 |17.3—18.0

Table V.1. Richness and distance group specifications for the Abell’s cata-
logue.

The Abell catalogue covers the northern Galactic hemisphere and a part of
the southern hemisphere. To complete the sky coverage, the late G.0. Abell,
H.G. Corwin and R.P. Olowin compiled a catalogue of clusters of galaxies (Abell
et al., 1988, hereafter ACO; because of its recent completion, at the moment we

have only a brief preprint version of the catalogue characteristics and will not go
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into great detail in its discussion), with the same criterion used to select clusters

as for Abell’s catalogue.

The ACO catalogue, which lists 1638 clusters south of declination 6§ < —17°,
has some important differences, though, from Abell’s catalogue. ACO lists more
information, in that it gives for each cluster, besides m1g, also the first and third
ranked magnitudes, m; and m3, the number of galaxies N, between m3 and m3+2
(Abell’s lists only a discrete classification, see Table V.1 ; later Struble and Rood,
1987, listed N, for Abell clusters), and morphological classification (a five class
division from regular to irregular, R-RI-IR-I, and Bautz-Morgan classification,

see Bahcall, 1977).

Two other important differences are the quality of the plates from which the
catalogue has been compiled and the richness class estimates. While the Abell
catalogue was compiled on red band plates, the ACO has been drawn from plates
in the J (almost blue) band (survey of United Kingdom’s 1.2m Schmidt Telescope
~UKST-) which are of better quality and complete to a deeper magnitude than the
ones used for Abell’s compilation: this fact makes ACO complete to a deeper dis-
tance than its counterpart (the listed magnitudes, though, have been recalibrated
and referred to the V band). On the other hand, ACO suffers, in our opinion,
from a drawback caused by a different procedure for background estimates: while
in Abell’s the background was estimated locally, by counts in a nearby field, for
ACO the background has been estimated globally, through an assumed galaxy lu-
minosity function. This procedure makes the details of the counts Ny to determine
the richness of the cluster less reliable and therefore also the partition in classes of
different richness R (see Table V.1 ), especially because for some of the clusters,
the number of galaxies N, listed is zero or even negative ! This is of course an
overcorrection: if the number were less than 30 the “cluster” would have not been
classified as such in the first place. We now pass on to summarize, for comparison

purposes, the characteristics of the other two catalogues.

The Zwicky et al. (1961-68) “Catalogue of Galaxies and Clusters” contains
over 30000 galaxies brighter than 15.7™ identified on the Palomar Sky Survey

137




o @
tz
Y
=
= B
>.8
pe
£z
tes
]
. 3
- -
g R
Q-
> |
e
Y
L
-~2
-,
(=}
o
ey
()
=~
(18]
ad
Y
=
(8

While the strong decrement in the number of clusters for |b| < 20° is due to

Figure V.1. Equiarea projection of the ACQ clusters in galactic coordinates.
galactic extinction, the absence of

the limited sky coverage of the ACO catalogue, §

shown by the dashed line.
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plates and 9700 clusters of galaxies visible to the limit of plates (m = 20). The
criteria for including a cluster in the catalogue are the following: (a) The cluster
must contain at least 50 galaxies in the magnitude range m; to my + 3, where
my is the magﬁitude of the brightest galaxy; (b) these galaxies must lie within
the cluster’s contour, defined as the isopleth where the projected galaxy density
is about twice that of the neighbouring field; (c¢) no limit on the cluster redshift
is specified, but aggregates such as the Virgo cluter (which cover very large areas
of the sky) are not included in the contour maps; and (d) the cluster must lie
north of declination —3° and within certain areas specified in the catalogue. The
cluster distances are classified according to estimated redshifts as: near clusters
(z £ 0.10), medium distant (z = 0.10—0.15), very distant (z & 0.15—0.2), and
extremely distant (z 2 0.2). Cluster population (richness) is defined as the number
of galaxies visible on the red Palomar Sky survey plate, corrected for the mean
field count, that are located within the isopleth of twice the the field density.
Because of the latter condition from the the field density and the counts are taken
to the plate limit, the population in Zwicky clusters depends systematically on the
cluster redshift. Other problems are pointed out by Abell (1975).

The Schechtman catalogue is based on an automatic procedure applied to
the visual counts of Shane and Wirtanen (1967). The clusters are selected as
local density maxima above a given threshold value of the galaxy counts in 10
bins. This procedure selects 646 clusters with declination § > —22.5° and Galactic
latitude |b] > 40°, which are considerably poorer than the Abell’'s R > 1 clusters.
Scechtman finds that ~ 40 % of his clusters are members of the Abell’s catalogue,

with a space density which is about 6 times higher than Abell’s R > 1 clusters.

We close this section with the remark that two further catalogues of galaxies
(and clusters of galaxies) are being built by means of ‘objective’ algorithms through
automatic scanning of plates (COSMOS in Edinburgh and APM in Cambridge).
These catalogues will make a dramatic improvement in the quality of the data and

will add much reliability to their statistical analyses.
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V.2 Estimates of distance and density of the ACO cata-

logue, and a percolation algorithm.

As already remarked in the introduction, it is of great importance to be able
to assess the distances to given objects. In the case of clusters of galaxies we
principally have three different levels of possible knowledge, that we now discuss
briefly. The first method is to evaluate the so-called ‘distance modulus’, that is to
estimate the distance from apparent magnitudes, making definite assumptions on
a universal luminosity function; we will discuss this method below in more detail
for a preliminary analysis of the ACO catalogue. The second method is to measure
the mean redshift of the cluster and assign a distance through the assumption of
a pure Hubble flow. The third method is the use of distance estimators more
sophisticated than the single observed magnitude, like the Tully-Fisher relation
for spirals and the Faber-Jackson and similar relationships for ellipticals. These
latter methods, together with redshift estimates are used to try to map the peculiar

velocity field, as we will see in detail in the next sections.

To have measured redshift for clusters obviously gives much more precise
information on the cluster radial distance than estimates through apparent mag-
nitudes but to obtain such redshifts has not been easy (hopefully, with the use of
multislit spectroscopy, this will not be the case for new catalogues, ACO included):
it took more than 20 years before there appeared in the literature (Hoessel et al.,
1980) the measured redshift for a small, nearby subset of the statistical sample
of Abell’s catalogue ! With this information (104 clusters of R > 1 and D < 4)
Bahcall and Soneira (1983, and 1984) were able to discuss the clustering of clus-
ters themselves (sometimes called ‘superclustering’ or ‘second order clustering’)
through a compilation of a supercluster finding chart and the first evaluation of
the spatial cluster—cluster two—point correlation function, {..(r) (given also con-
temporarily by Klypin and Kopilov, 1983). On the other hand, as stressed by
Postman et al. (1988), to have a reliable mean redshift for the cluster requires at
least ~ 5 —10 measures of z for different galaxies thought to belong to the cluster,
both because of the presence of interlopers and because of the spread in radial

velocities along the line of sight due to peculiar velocities within the cluster itself
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(the “finger of God’ effect; a typical value for a cluster is o', & 700—1000 kmn/sec
along the line of sight ).

In the ACO catalogue case we are presently in almost the same position
as we were after the Abell catalogue release: scarce redshift information is avail-
able. Having as a goal the identification of primary targets for subsequent redshift
studies, we will discuss a preliminary study of distance estimates for the ACO

catalogue, because we are still working on this very recent dataset.

A detailed study of distances estimates through the use of mo for Abell’s
catalogue is given in Postman et al. (1985). These authors found that the use of
mio as a distance estimator is very unreliable for z > 0.1 (m19 > 16.5), because
of foreground contamination (the tenth brightest galaxy does not belong to the
cluster) and systematics in Abell’s magnitude estimates. After corrections for the
Scott effect ( richer cluster have systematically brighter M;o) and K-correction
(see below) a calibration on 561 Abell clusters, according to Postman et al., gives
a linear relationship between log(z) and m;9 which has a standard error of 14 %
on the logarithm (Az/z = 32 %). Part of this observed scatter (o'm,, = 0.70 mag)
is estimated to be intrinsic (Postman et al. estimate oMy, = 0.48 mag from the
galaxy luminosity function) and part to be due to errors in the Abell’s visual
magnitude estimates (they obtain Omye = 0.39 mag by quadrature subtraction,

while Abell’s own estimate (1958) was om,, & 0.20 mag).

In the ACO case we are in a different situation: the catalogue lists only 145
clusters with measured redshifts (plus another 23, which are highly unreliable).

We will now discuss the preliminary distance estimator we derived.

In a FRW universe for non-negligible redshifts the simple euclidean relation-
ship L oc d™2 , which implies m — M = 5log(d/10 Mpc), does not hold but can
be appropriately generalized through Mattig’s formulee (see Sandage, 1961, or
Weinberg, 1972, or Peebles, 1980) to the following relationship:

5log[Dr(z)] = m—-M, (V.1)

where the quantity Dy, the so—called ‘luminosity distance’, is a function of the
y
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redshift, z, and of the cosmological FRW model (assumed to be pressureless)

through the deceleration parameter go = Q0/2 :

H
“C—ODI(27QO) = ¢ {QOZ + (90— 1) [v1+2qoz—1” : (V.2)
Proper and comoving distances, r and d = (1 + z)r respectively, are then related

to the luminosity distance by

D
P D)

(1+2)?

(V.3)

The above relationships hold for an ideal situation, i.e. bolometric magni-
tudes, no extinction, and, when applied to different objects, assumes a common

intrinsic magnitude M.

We then applied corrections to take in account the physical effects involved
as much as possible (cf. above discussion). These are: galactic extinction (we
corrected observed magnitudes with a simple cosec|b| law, where b is the galactic
latitude), the Scott effect (we included a logarithmic dependence on the listed
number of galaxies, Ny, taking the maximum between N, and 30 to try to mini-
mize the problems caused by the aforementioned ‘global’ background correction),
and finally the K—correction. The last correction takes into account the fact that
the observed magnitudes refer to given spectral bands and are not the bolometric
magnitudes assumed by Eq. (V.1) . These facts reflect into two separate modifi-
cations, one of which is dependent on the spectrum of the original galaxy, while
the other depends only on the redshift. Because of the cosmic expansion, a given
observed wavelength interval, §)o, corresponds to a narrower interval at the emis-
sion redshift, zem, so that §Ag = §Aem /(1 + zem ). Because myp, o 2.5log [f fAcl/\]
with f the received flux, this amounts to a correction for the observed magnitude
of Am = —2.5log(1 + z), which is the same for all galaxies at the same z. The
other part is also due to the redshift effect, but varies from galaxy to galaxy and
from band to band because it is dependent on both the galaxy spectrum and on
the actual observation wavelength, A\g. More precisely if we denote by S()) the ob-
servetional bandpass function and F'(A) the spectral flux of the emitting galaxy, we

have that what is actually observed, instead of the convolution f;~ S(Xe)F(Ae)do,

142



is f° S(Ae)F[Ao/(1 + 2)]dXo, because the redshift means we are sampling a dif-
ferent part of the emitted spectrum.Hence we will write the total K—correction

as

[ SOVF 2]

K(z) = —2.5log |2 +2.5log(1 + z) . (V.4)

J S(A)F[A]dA
0

We took the numerical value from Ellis (1982), as given in Shanks et al. (1984),
relative to elliptical and S, galaxies (the most likely morphological type for the
mg + 2 brightest in a rich cluster). This is K(z) = 4.14z — 0.4422.

We also decided, pending the uncertainty in the value for Hy, to sometimes

1. so that the reader can easily convert to

quote the distances directly in km sec™
distances in Mpc through his preferred value for Hy (we will also sometimes use
the standard notation Hy = 100 hkm sec™*Mpc~! when appropriate for direct
comparisons with results given in the literature). To ease comparison with other
authors’ work we also will assume an Einstein-de Sitter universe (i.e. g = 1/2).
The latter assumptions has little effect (at most a few percent) at the distances

which are of interest here and it is dwarfed by the present uncertainties due to the

assumed laws for extinction and K~correction.

We therefore fitted the following relationship to the 145 clusters with mea-
sured redshifts, that are listed in the ACO catalogue:

f(z) =log[Dr(2)] +0.2K(2) = A + Bmy, + Clog (-é]\%-) . (V.5)

We then defined the sample variance estimate as afample = fi_";” [fi,meas —
fi]?/(Nop; —v), where Nyp; is the number of calibrating objects and v (here v = 3)
is the number of degrees of freedom in the fitted functional relationship. We found
that two among the 145 original clusters we examined had estimated redshifts
which were strongly inconsistent with the derived relationship. These two clus-
ters in fact had measured redshifts which were beyond three sigma’s from their

estimates, suggesting a spurious redshift or m;o attribution. Hence we calibrated

Eq. (V.5) on the remaining 143 clusters, obtaining the following values for the
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Figure V.2. Estimated redshifts versus measured redshifts are plotted for the
calibrating sample of 143 ACO clusters (log-log plot, upper panel, linear-
linear plot, lower panel). Dotted lines denote the £04ample confidence region
(for ‘perfect’ estimates all points would lie on the solid lines on diagonals).
Effects of the non-linearity of the K(z) term can be seen in the upper panel
for z 2 0.2 (of course for such values of z the distance is no longer simply
proportional to the redshift).
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fitted parameters and the estimated sample dispersion:
A= -4.45290 ; B =0.2085 ; C =0.1998 ; osampte =0.1136. = (V.6)
In Fig. V.2 we show the data which have been used for the present calibration.

It is opportune now to make some comments on the above relationship. The
first comment is that the fitted coefficient of the apparent magnitude term, B,
differs only by ~ 4 % from the value 1/5, which is expected in a ‘clean’ theoretical
universe: if not by a mere chance, this is very a remarkable agreement. The
second comment is that we have been very conservative in keeping most of the
calibrating objects and that the value for the estimate of the sample dispersion
that we found, ¢ = 11.4 % is in agreement with that derived from Postman et al.
for the Abell catalogue (~ 14 %): although we fitted a slightly different relationship
on a different catalogue, for z < 1 we have that f(z) — logz, and then, in the
same limit, Az/z = 25 % (it is perhaps more instructive to make the comparison
on the magnitudes: we find < 0.60 mag, while Postman et al. find = 0.70 mag

—but we used a more detailed richness dependence on a better catalogue).

Other authors have also made similar distance estimates based on the same
ACO catalogue we used, although very little information is currently available
and that only in preprint form, because of the already mentioned novelty of this
catalogue. At the present moment (i.e. mid-October 1988) we have available a
just published letter from Bahcall et al. (1988) in which the use of a log z —mj¢ is
mentioned relationship but no detail is given of the functional form or the values
for any parameter, and another preprint by Couchman et al. (1988) in which
such a relationship is fully discussed. The latter authors fitted a relationship very
similar to the one we used in Eq. (V.5) but with some differences. It is not
clear to us from their wording if they imposed or found through direct fitting a
value for B = 0.20, but this is of little importance, as is the fact that they fitted
a linear K-correction term, while we took such a term from the literature. The
real discrepancy between their results and ours is in their estimate of osample:
they found a dispersion of only ~ 0.26 mags (i.e. Az/z = 13 %). The good

agreement we found instead with the Postman et al. estimates, makes us believe
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that the discrepancy of a factor two in the dispersion estimate for distances has to
be ascribed to their excessive curbing of the calibrating number of clusters Nop;
down to only 28 from the original ~ 160 listed in the catalogue (i.e. the 145 we
started with plus the unreliable 23) from which they find a dispersion of ~ 1.3 mag.
Indeed, such a low dispersion is already at the level of the error associated with
the visual magnitude estimates alone, without taking into account the much larger
contribute from the intrinsic absolute magnitude dispersion. We will accordingly
use our relation in the present work, although the effect of a calibration which
makes use of all the magnitudes listed in the catalogue (i.e. mj, m3, and my,, as
was pioneered by Leir and van den Bergh, 1976) is currently under examination

and will be discussed elsewhere (Scaramella et al., 1989).

We now pass on to discuss preliminary density estimates for the ACO cata-
logue. To this end it is useful to have estimates of the solid angle covered by ACO
catalogue on the sky. It is convenient also to discriminate among regions at dif-
ferent galactic latitude, b. We computed the following estimates through a simple
Monte-Carlo calculation, because of the elaborate geometrical boundaries. This
simple algorithm consists in the computation of the fraction of random numbers,
drawn uniforimily from a region of known area, which belong to the region whose
area is to be computed. Numbers can be drawn from a uniform distribution on
the unit sphere according to the following rule: ¢; and £, are drawn uniforimily

from the unit interval, and the polar angles § and ¢ computed by:

¢ = 2n& ; 6 =cosTH(1-2¢). (V.7)

In our case we have drawn random numbers uniformily from the region with
declination § < —17° and then counted their distribution in shells of given galactic

latitude b.

One of the known biases found in the Abell catalogue is a decrease of the
number of clusters going towards low latitudes. Bahcall and Soneira (1983) found
that this decrement for R > 1 clusters is well represented for || > 30°, by the
following law: N(|b]) = No dex [—0.3 (csc|b| — 1)]. The value they obtained for the
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Table V.2

|6 < 125+5 |35+ 5 (4545 |55+ 5 |65+5 (7545 (8545 |[|b] > 20

Q 0.75 | 0.64 | 045 | 0.35 | 0.28 | 0.21 | 0.09 2.77

Table V.2. Solid angles for different latitude shells for the ACO catalogue.

|| is the galactic latitude (degrees) and the solid angles are in steradians.
spatial density of the nearby statistical sample is n = 6-10~%( A~ Mpc)~3 from a
simple average for |b| > 30°. The latter value becomes ng = 9-107%(h~! Mpc)~3

when corrected for the cosecant decrease.

It is important to note that one would not expect such a decrement for plates
which are nominally complete for a magnitude much deeper than ms; + 2. One
obvious effect which is present in the data is that due to galactic extinction. This
effect, however, should not play an important réle for intermediate latitudes, at
least not at the level of missing many of the galaxies with unreddened magnitude
smaller than ms +2, so that the cluster is no longer considered rich because it does
not meet the minimum threshold of N; = 30. The probable cause of the decrement
in the compiled list of clusters lies in possible galaxy—star misclassifications and
the fact that the human eye is sensitive to luminosity density contrasts more than
to absolute values: hence, by peering into plates, one can easily miss a cluster of
galaxies embedded in a crowded star field, while the same cluster would have been
noted in an almost empty field. This fact stresses again the great importance of

data samples that are automatically selected.

We can proceed to a preliminary estimate of ACO clusters density as follows,
stressing the fact that it will be possible to obtain definite values only when a
redshift sample is available and complete to reasonable depths (here we have 143
clusters with measured redshift —a number greater than the 104 used by Bahcall
and Soneira in their study— but these are not representative of a complete sample,

so their space distribution is not significant).

One could naively think of assigning to each cluster the distance estimate
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obtained by simply using the listed value of myg, corrected for galactic extinction,
into Eq. (V.5) with the parameter values given in Eq. (V.6) and then deriving the
comoving distance (we are interested in comoving densities) from the estimated
luminosity distance. The problem with the above procedure is that one would
then almost use the inverse logarithm of the expected value of the logarithm of
the distance, and this is in principle very different frorﬁ the expected value of the
distance itself. We can in fact see that we are facing a situation formally similar
to the Malmquist effect: if we‘ ignore for example the K-correction term on the
Lh.s. of Eq. (V.5) , we can easily see that, because of the underlying assumption
of a Gaussian distribution of dispersion osqampte for the sum of r.h.s. quantities,
the luminosity distance has a probability distribution function which is lognormal.
Therefore, in the approximation K(z) = 0, we would have that for the expected
value of the luminosity distance: (Dp) = dex {({log(Dyr)) + [In(10)0?2,,. ;.1/2},
where (log(Dp)) is obtained by estimating from the values of mjo and N,. Hence
we would need to multiply the naive value dez[(log(Dy))] by the constant factor
dex [0.5 In(10)0? } = 1.035, which reflects in ~ 11 % decrease of the initial

sample

(too large) density estimate, which is not negligible.

In our case, because of K(z) # 0, the analytic pdf for the luminosity distance
is quite complicated and is a function of z, therefore we adopted the following
procedure to obtain what in the following will be referred to as the ‘reference
catalogue’. We estimated (D) for each cluster i as the mean taken from 1000

values, obtained by solving the following relation for z;:

Ny
Dr(z;)+ K(z;) = A 4+ Bmyg,; + Clog (—8%—) + &5 Tsample » (v.8)

where ¢;, 7 = 1,...,1000 is randomly drawn from a Normal distribution with
zero mean and unit variance. We can then immediatly evaluate Dy(z;) for each
j, once we have derived z;, and finally get the estimate for (Dr) by a simple
average. We then still get an uncertainty of <1 % on the precise figures for the
(Dp) estimate (~ (Az/z) - 1073/ ; of course the uncertainty of the real value of
Dy, is still of the order ~ Az/z), so one might think we wasted one hour of CPU

time of a Vax-station to get not much improvement; but now we have a random
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Figure V.3. Cumulative density (left panels) and differential density (right
panels) are plotted for ACO clusters with |b| > 30°. Upper panels show
richness class R > 1, lower ones show all rich clusters. The amplitude of the
error bars show uncertainties due to Poisson noise.

uncertainty on the given (D) and no longer a systematic one: because of the use

of a large number of clusters, this uncertainty should average out in the density

computation.

In Fig. V.3 we plot cumulative and differential densities obtained for all
the ACO clusters with |5] > 30° and those of richness class R > 1 (e.g. those

with Ny > 50). For a completely homogeneous distribution we would expect an

almost constant density up to a a certain depth, followed by a density decrease

due to catalogue incompletness. From the plots of Fig. V.3 we can note instead

that two features stand clearly out —see lower right panel of Fig. V.3 — from the
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possible uncertainties due to binning and Poisson noise: there is a prominent over-
density situated at a distance of ~ 175 h™! Mpc (the binwidth is 25 ™ Mpc)
and an underdensity at a distance of ~ 260 Ah~! Mpc. These features are particu-
larly noteworthy because they show up in an angle-integrated distribution. Apart
from these two features, we can see from the plots of cumulative density that a
‘plateau’ is present up to < 400 A™! Mpc (see also the behaviour of differential
distributions), a fact which roughly indicates the distance beyond which catalogue

incompleteness becomes non-negligible.

We can also try to make quantitative comparisons with the already mentioned
results from the Abell’s catalogue. However we have to bear in mind that, although
in principle the method of compilation is almost the same for both ACO and
Abell’s catalogue, the differences in original plates, and especially the fact that
we are using here estimated distances while the result for Abell’s is based on
measured redshifts, could have non-negligible effects on this comparison. Last, but
not least, there is the theoretical prejudice that the distribution of rich clusters of
galaxies should be the same in both the northern and southern galactic emispheres
(cf. Tully’s arguments (1987, 1988)). We indeed find a density of rich (R > 1)
clusters with |b| > 30° and within D = 400 A~! Mpc, which is higher by ~ 1/4
than the one quoted by Bahcall and Soneira (1983): their value for the density
is n = 6-107% A*Mpc—3, while we find n = (7.5 4+ 0.4) - 1074 A3 Mpc~3. Such a
discrepancy initially puzzled us very much. After various checks, though, we noted
that part of this difference is due to the already noted ‘nearby’ high peak in the
density distribution, for distances 150 < D < 200 k™! Mpc.

Indeed, if we neglect this huge overdensity and consider the density derived
from clusters which have estimated distances in the range 200 < D < 400k~ Mpc,
we find that n = (6.840.4)-107% A3 Mpc~2 which is a value in lesser disagreement
with the value from Abell’s, given the already mentioned differences, to which
we add possible richness misclassifications due perhaps to distance errors and to
the already noted problems due to the ‘global’ background correction. By close
inspection of the plots of Fig. V.3 , one can in fact see that the cumulative density

for clusters of R > 1 already has a slightly decreasing slope for D 2 330 A~! Mpc
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(although the differential keeps fairly constant between 330 and 400 h~! Mpc)
while the cumulative density for clusters of B > 0 shows a much more marked
transition from a constant to a decreasing slope. This behaviour could suggest
that part of the clusters in that distance range are attributed to the richness class
R = 0 instead of to R > 1 because of underestimates of the quantity Ny, causing
the small difference in slopes. We would indeed expect the opposite behaviour
in the absence of richness misclassifications (the completness distance range of
R > 1 clusters should be greater than or at least equal to that of R = 0 clusters,
because the former are more easily recognized and, having intrinsically brighter
magnitudes —cf. the Scott effect— for the third and tenth brightest galaxy, can be

selected further away).

Of course all the above estimates are preliminary in that definite comparison
can be made only when redshifts are available. Still, at the moment, we can make
another comparison which adds confidence to our present results. In their paper,
concerned with the estimate of the angular two—point cluster—cluster correlation
function w(@), Bahcall et al. considered ACO clusters of richness R > 1 wich
have galactic latitude —90° < b < —45°, and divided them into a nearby sample
with estimated distance D within 300 A~! Mpc, and a far sample with 300 < D <
600 A~! Mpc. These authors find 89 and 456 clusters in the nearby and far sample
respectively and only state that they used the tenth brightest galaxy magnitude for
the distance estimates, deferring the details of such estimation to a future paper.
For the same range in b and distances we find 95 clusters in the nearby sample
(47 % with respect to Bahcall ef al.), and 461 in the far sample (+1 %), for a total
of 556 within D = 600 h~! Mpc (+2 % with respect to their 545). Apart from the
discrepancy in the nearby sample, the overall agreement seems to be remarkable,
given the lack of information on the characteristics of their procedure. The same
authors say that they find two different decreasing trends in the ACO clusters
distribution: one with galactic latitude and one with declination. Both are said to
be well represented by cosecant laws, the one with the galactic latitude with a less
steep exponent than the one found by Bahcall and Soneira for the Abell catalogue

(0.2 instead of 0.3); We will leave the discussion of such points to future work
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(Scaramella et al., 1989) and just say that, with slightly different parameters for
the distance estimafor than those we present here which we used for the above
and following results, we found a decrese with the galactic latitude which has a
steeper slope than the one quoted by Bahcall et al., and in agreement with the

one derived from Bahcall and Soneira for Abell’s catalogue.

We now pass on to give an outline of a ‘percolation’ algorithm that we de-
veloped in order to find candidate superclusters (SC’s): these would be primary
targets for the first redshift surveys of the ACO catalogue. Above we put the word
percolation between quotes because of its frequent improper use that is in the as-
trophysical literature. In fact the meaning that astrophysicists usually attach to
percolation is that of a ‘friend of friends’ algorithm, that is to identify ‘chains’
of clusters which have each member of the chain within a given distance, usually
called ‘percolation radius’, of at least another member of the chain. This is done
with the goal of identifying the most prominent features in the spatial distribution

of the object under study.

As an example we can consider a one-dimensional case, some beads along a
straight string. Assume we have four beads, say A, B, C, and D, and that these
beads are respectively located in a given system of coordinates at positions 1, 1.5,
3, and 4. If we decide to consider chains which have percolation length 0.6, we
will find only one chain, with A and B as members. For a percolation length of
1.2 there are two chains, one is still composed of A and B, the other of C and D.
For percolation lenght of 1.5 or more, a single chain is present, which contains all
the beads. This is quite different from the meaning of percolation in statistical
physics, where the percolation length has a unique value, the value of a variable
at which the physical system under study has a sudden transition in some of its
properties (i.e. ‘percolates’). Obviously a discussion of this point is irrelevant here:
a nice, complete discussion can be found in Stauffer (1979). As we said in the first
chapter, this latter interpretation, that is finding the .percolation radius at which
there forms a chain which connects the opposite sides of a cubic sample of galaxies
without interruption, has been proposed as a possible way of discriminating among

possible topologies of the galaxy distribution (see Shandarin and Zel’dovich, 1983),
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but it does not seems to be very sensitive to differences in the galaxy distribution

(see Bhavasar and Barrow, 1983, and Dekel and West, 1985).

In our opinion, as can be seen from the simple example above, one of the
disadvantages of this type of approach is its intrinsic pairwise sensitivity: an object
which belongs to a given chain, could have been ascribed to it even if just barely
lies within the required distance (and the opposite situation could arise). This
‘hard’ behaviour can also lead to dramatic changes, if the included (or excluded)
object happens to be in a such position as to bridgen a gap between two other
chains: the result could be the formation (or destruction) of a much larger chain,
made from the union of the other two. A possible remedy to this problem is that
of having different descriptions derived from considering different values for the
percolation length, so studying a sort of hierarchical development of the chains.
We also note that, roughly speaking, smaller values for the percolation radius tend

to select denser regions.

In the case of clusters of galaxies this method has been used by Bahcall and
Soneira (1984) and by Batuski and Burns (1985).

The former authors mainly used the nearby, complete sample that they stud-
ied for the cluster—cluster correlation function. They gave a list of superclusters,
and its ‘evolution’ as a function of the value, f, of the density contrast threshold
for supercluster (SC) membership. The values that were considered for f spanned
a wide range: 20 < f < 400. The most interesting result from this work is the fact
that the superclusters appear to be highly compact: the authors estimate that the
fraction of the volume occupied by SC’s in the examined sample is only ~ 3 % for
f =20 and ~ 0.3 % for f = 100 (this values refer, though, only to SC’s composed
of clusters with R > 1). Also, the larger SC’s appear to have elongated structures.

Batuski and Burns (1985) extended this kind of work to a sample of Abell
clusters composed of 652 members which had measured or estimated redshifts
2 £ 0.13. Among these ~ 50 % had measured redshift. These authors gave a
list of candidate SC’s with the main purpose of giving to observers primary tar-

gets for future detailed studies. The lists consists of candidate SC’s because of
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the problem that estimated distances results in a uncertain attribution of cluster
membership to given complexes (‘chains’). Batuski and Burns used a log cz — m,
relationship to estimate distances, with an uncertainty in the estimated redshifts
of Az/z = 30 %. Their procedure was the following: first a number of ‘cores’ of
SC’s candidates were selected through percolation with a value for the percola-
tion radius of R, = 3000 km s~! (they actually quote R, = 40 ™! Mpc but use
Ho=T5kms™ ' M pc~!: therefore we prefer to quote distances directly in km s,
taking Hy = 1) for the whole sample. Then they considered the uncertainty in
the membership attribution by computing the likelihood of membership of those
clusters previously selected as core members. This was a pairwise estimate of the
mutual probability of being within distance R,, that each core cluster has with

the other core members. If the maximum among these probabilities was greater

than 15 % the cluster was included in the list.

Analysis of the derived list shows the presence of elongated, non—spherical
structures of sizes 7500 — 15000 km s~! and more spherical voids of similar dimen-
sions. Comparisons made with a random sample constrained to have the same
spatial two—point correlation function, derived by Bahcall and Soneira, showed
the presence in the data of more structure (i.e. information) than that which
could be described by the two-point correlation function alone. This is a quan-
titative conclusion based on the fact that the large-scale distribution today does
not have (at least as described by the observed clusters) an isotropic Gaussian
density distribution, even on typical clusters’ scale-length. The same authors gave
evidence for a filament of clusters which is ~ 300 A~ Mpc across (Batuski and

Burns, 1985).

The above mentioned procedure seems to have a potential problem, that
is that of not including clusters which can have a non negligible probability of
membership, but were not initially selected as core members, as would happen
instead, for instance, if the smallest distance from a core member was initially

2 R,.

Having in mind finding a similar list of candidate SC’s for the ACO catalogue,
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we tried another kind of approach. The procedure is the following. We decided
to make use of 100 simulated copies of the catalogue, in which the distance for
each cluster without a measured redshift was estimated once for each catalogue
by the method of Eq. (V.8) . We also built a percolation algorithm, based on the
partition of the given catalogue into different equivalence classes (the equivalence
relationship is of course that of having mutual distance smaller than the adopted
percolation length, R,). Then we ran this percolation algorithm on the reference
catalogue (i.e. that for which Dy = (D)), finding in this way some complexes
with a list of memberships. Up to this point we used a procedure very similar to

the selection of cores used by Batuski and Burns.

We then started a different procedure: we did not consider as interesting only
those clusters initially selected by membership of the reference catalogue. We in-
stead used the complexes found in the reference catalogue to mark ‘interesting
volumes’: these are defined as those spheres of radius R, centered on the positions
of the complexes themselves. The position of a complex is taken to be the mean
value of the positions of its members. We then checked in the 100 random cata-
logues all those complexes whose position fell into a given interesting volume, and
kept track of which clusters belonged to these complexes, so as to finally get the
number of times that a cluster was a member of whatever complex had a position

which happened to be within the interesting volume.

With this procedure clusters which were not included in the complexes found
in the reference catalogue have also the possibility of ‘showing up’ as candidate
members, with a frequency that should be proportional to the probability of their

‘true’ membership.

Although the interesting volumes found in the reference catalogue refer to
the complexes extracted from the most probable position of the clusters, these are
not necessarily those of the most probable complexes. We then decided to also
try using as starting interesting volumes the average of the union of those found
in 5 different random catalogues, where two interesting volumes are considered

joint if the distance between their positions is within R,. However, we were faced
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with the overwhelming number of possible complexes, given by all the possible
different chains which can form when the clusters are moved around: formally
a chain is no longer the same as soon it looses or gains a member ! It is this
fact which suggested to us considering interesting volumes: we can expect that
usually the position of a chain, being the average of its members, does not change
very much unless the chain itself suffers very drastic changes like, for instance,
being ‘eaten’ by a much larger one because of an intervening bridging cluster, or
being broken apart into two separate pieces because the usual backbone cluster
happens to be further away. In this latter case the situation has changed so much
that, correctly, no complex is listed as belonging to the interesting volume for this

particular random realization.

The procedures outlined above are of course not exact and involve a number
of assumptions which are arbitrary (although these have been derived through
much experimentation). On the other hand, at the moment, these procedures
seem to be the best we can think of, regarding both the implementation time
(it took several months of hard programming to develop and test the software
described in these short paragraphs), and the fact that this problem has no intrinsic
solution. Another point that we want to stress is that one should not, in the quest
for improvement, lose contact with the original goal: the risk would be to get a
list of candidate superclusters ready when the cluster redshifts had already been
measured in the course of time, so that the list, based on estimated distances and

probabilities, would have become useless !

At the moment we are still working on this issue, using different values of
Ry , different richness thresholds for the sample, and different distances estimates,
so that the actual figures of the complete list SC candidates (actually long, boring
computer printouts) will be given elsewhere (Scaramella et al., 1989). We want
to discuss below, instead, a preliminary result of this analysis which could be of
great importance for Cosmology. Before discussing this ~for the present moment—
exciting result, we must consider in some detail in the next section the general

frame of the discussion, which is that of possible large-scale peculiar motions.
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V.3 Large scale peculiar velocities.

One of the milestones of modern Cosmology was the discovery of the Hubble law:
redshift o« recession velocity o distance. As we saw in the previous section, in
Friedmann models this relationship is no longer linear, but still holds conceptu-
ally, hecause the basic assumption of homogeneity results in the fact that fiducial
observers follow geodesics which are orthogonal to equal time hypersurfaces, or,

more directly, have null peculiar velocities (see discussion in the first section of

Chap. II).

On the other hand, just by considering mass conservation, when an inho-
mogeneity develops this causes peculiar motions of the matter itself. This in-
evitably leads to Doppler effects, which reflect into the total amount of the ob-
served redshift (actually for llarge peculiar velocities and/or no longer expand-
ing regions this can lead to blueshifts, like that of M31). Therefore, because
1+ 2obs = (1 + 2cosm )(1 + 2Zpec), Where 1+ zpec ~ v/c for non-relativistic pecu-
liar velocities (as is usually true for motions of galaxies and clusters with respect
to their environment), one is led to attribute to such objects the wrong distance
d(2obs), instead of d(zcosm ). Of course, if the extent of such discrepancy is small

this is not a problem, but there are serious issues related to this phenomenon.

We will discuss very briefly only some of these issues here, both because of
their wide range of applications and the recent interest which has arisen around
some of them. Indeed, the question of large-scale peculiar velocities (LSPV),
on which we will concentrate henceforth, is completely unsettled at the present
moment and there are many different conflicting ideas and experimental results

on this important topic.

One of the key points of peculiar velocities is how to measure them: apart
from obvious distortions in redshift plots (e.g. ‘finger of God’ effects or systematic
differences in two-point correlation amplitudes between radial and projected sep-
aration components), one obviously needs a way of estimating distances which is
independent of the measured redshift. There are two main techniques used at the

moment, which try to estimate the intrinsic luminosity of a galaxy from measurable
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quantities (the distance is then derived from the measured apparent magnitude).
These are the Tully Fisher relationship, used to estimate the intrinsic luminosity
of spiral galaxies from their rotation velocity, as measured by linewidths, and a
recent update of the Faber-Jackson relationship used for elliptical galaxies. The
latter relationship relates their intrinsic luminosity to the magnitude of the star

dispersion velocity.

We now summarize the highlights of this problem. One of the aspects that
makes the question of LSPV extremely interesting is that one could in principle
measure the value of the cosmic mean density, i.e. the value of ¢ from it. In the
linear density perturbation theory, in fact, one has that matter density contrasts
grow self-similarly and, because the only potential in the game is the curl-free
gravitational one, the peculiar velocity is always aligned along the direction of the
peculiar acceleration. This latter vector, in turn, had the same direction that it
has today and is directly related to (in principle) measurable overdensities. This
is possible through the law of growth of linear density perturbation, which is also

a function of g . The basic formula (see Peebles, 1980) is:

8%§ 06

52 = 47 G(p) §, (V.9)

where § = 6p/ (p) is the density contrast, (p) is the background mean density, and
H(t) = (d/dt)in[a(t)] with a(t) the expansion parameter (acx (1+2z)71).

Now, Eq. (V.9) has a solution of the form 6§(x,t) = A;(x)f1(t) + 42(x)f2(2),
where the index 1 refers to the growing mode (at most a modest power law because
of the cosmic expansion, different from the usual exponential growth of the classical
Jean’s instability), and the index 2 refers to the decaying mode. The latter mode
can usually be neglected. For the matter dominated E.d.S. case one has simply
f1(t) < t3/® & (142)~1. The peculiar velocity vp associated with the perturbation

is given to a good approximation by
2 1A
vp(x) = 3 Hyt 7% gp(x), (V.10)

where g, is the peculiar acceleration, computed through a volume integral of the
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matter overdensity. Then one has

g0) = G [@r 50 (5) = Geets [drow) () (van)

with, as usual, (p) = Q¢pc. Substituting for the critical density value, p. =
3H?/(87G), one finds the following relationship, often used in the literature:

1

. Q0 H,D, | (V.12)

Vp =

where the peculiar velocity is expressed in terms of the dipole of the whole matter

density contrast,

D

S [eran (%), v

where the integral, formally extending to infinity (i.e. up to large scales, but
less than the horizon scale-length because of the Newtonian approximation used
in the above formulee), should at least encompass a depth such as to guarantee
its convergence to a definite value. This is a crucial point, as we will see in the

discussion below.

In the highly idealized case of a single, isolated spherical perturbation of ra-
dius R, the ratio of the peculiar velocity at the edge of the spere to the unperturbed

velocity, vy = Hy R, is then given by

;,"_’::; 3 _%Qg6 (8) [1+<—?]~5 , (V.14)

where (6) is the average contrast whithin the sphere and a correction which takes

into account mild non-linear regimes has been inserted (Yahil et al., 1986).

The above equation has been widely applied to the Virgocentric infall in
order to measure the value of Qy (Davis et al., 1980; see the review by Davis and
Peebles, 1983). The answers given by this method in its application to the Virgo
case have been recently criticized as inadequate, mainly because of difficulties in
the estimating of () due to redshift distortions (see Kaiser, 1987). Indeed a
great uncertainty in the values for {}o derived through Eq. (V.14) has been shown

in various N-body simulations, while of course the value for Qg assumed in the
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simulations is perfectly known (Bushouse et al., 1985;Lee et al., 1986; Melott,
1986).

However, Villumsen and Davis (1986) find in their detailed simulations that
the local peculiar velocity tracks both direction and amplitude of the peculiar force
extremely well. This happens also in presence of large asphericities in the flow
field. These authors conclude that the agreement between peculiar velocity and
acceleration vectors, expected in the linear regime, can be extended surprisingly
well into the nonlinear perturbations of the developing overdensities, up to density
contrasts of order (6) ~ 4 (for such a value for (§) the alignment is still within

~ 25°).

In the above picture, the observed dipole anisotropy of the cosmic microwave
backgroud (CMB) plays a fundamental réle: this anisotropy is widely believed to
be extrinsic (see detailed discussion in Sect. II.1 ), a Déppler effect caused by a
peculiar velocity of the Local Group (LG) of v&§,5 ~ 600 km sec™ with respect
to the CMB rest frame (the heliocentric velocity with respect to the CMB is
v/e ~ ATgip/Toack ~ 3 mK/3 K ~ 300km sec™!; to this must be added the sun
rotation velocity within the galaxy and our galaxy velocity with respect to the LG

barycenter).

As shown in the sketch of Fig. V.4 , one can test for the presence of LSPV
as pioneered by Rubin et al. (1973, Rubin-Ford effect, although at that time the
CMB dipole had not yet been measured). The basic idea is that of composition of
velocity vectors: by measuring distances and redshifts (hence peculiar velocities)
of a shell of galaxies these authors found that a sample of 96 distant spiral galaxies
appeared to have a peculiar motion with respect to the LG (this would result in a
peculiar velocity for the shell in CMB frame of ~ 1000 km sec™!). This result was
regarded by most workers in the field as spurious and perhaps due to incorrect
treatment of the Malmquist bias (Fall and Jones, 1976). So, when Hart and Davies
(1982), applying the same analysis to a less distant sample of 84 galaxies, found
that these were at rest with respect to the CMB frame, people generally assumed
the Jack of LSPV and a local (within a couple of tens of Mpc) origin for the LG
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B P A = 1a

Figure V.4. A skeich of the different velocity vectors discussed in the text.
The peculiar velocity of a shell of galazies is derived from the subtraction
from the peculiar motion of the LG with respect to the CMB (as inferred
by the microwave dipole), v&$;p, of the relative velocity between the shell of
galazies and the LG itself, vike!l. - '

peculiar velocity. On the other hand, quantitative information on possible peculiar
velocities is very useful in constraining cosmological models of formation of cosmic

structure.

The impression of a very quiet universe was reinforced by the work of Aaron-
son et al. (1986), who, measuring Tully-Fisher velocity widths from Arecibo,
showed a remarkable linearity in the Hubble flow for 10 distant clusters.

Up to this point, the only flow generally agreed upon was the Virgo infall,
with Virgo assumed to be at rest (for brevity we shall drop henceforth the speci-
fication ‘with respect to the CMB frame’). |

Then, things started to move and to change this ‘fdle’ picture: Lilje et
al. (1986) found evidence for a quadrupolar distortion in the Hubble flow in
our surroundings, with the major axis pointing towards the Hydra-Centaurus
supercluster (SC). Meanwhile, Tamman and Sandage (1985), in their life-long
‘quest for the Hy value (to measure which one needs accurate intrinsic distance

estimates), found that a possible explanation for the LG peculiar velocity was
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the following picture: the LG was feeling heavily the gravitational pull from the
nearby Virgo cluster, but both were falling towards the Hydra—~Centaurus SC, the

latter being at rest.

This new picture already involved quite a lot of peculiar motions on large

scales (our distance from the Hy-Cen SC is ~ 3000 km sec™!).

Just after these arguments appeared in the literature, the whole question
of LSPV literally blew off, even reaching newspapers’ front pages: at a meeting
in Hawaii there appeared the first of several products from a wide collaboration
(Burstein et al., 1986), in which, by studying elliptical galaxies, a peculiar, co-
herent bulk flow of velocity 600 + 100 km sec™! was reported within a region of
~ 6000 km sec™! (i.e., as early stated, a region of size ~ 12000 km sec™! shared
such a flow). The data showed that Hy—Cen SC was also moving and was not at
rest as assumed by Sandage and Tamman (think of the amount of gravitational

force involved: a SC is not exactly a pebble !).

Contemporarily, an independent confirmation of the existence of LSPC came
from Collins et al. (1986), who studied throughly 45 of the original 96 spirals
observed by Rubin et al. and confirmed the presence of LSPV of order ~ 1000 +
300 km sec™?.

The importance of these results for cosmological models was first considered
by Vittorio et al. (1986), who pointed out the inconsistency between the usual
cosmological models (e.g. CDM, HDM, and alike), the amplitude of the reported
bulk flow, and its misalignment angle with respect to the CMB dipole.

The collaboration who studied the sample of ellipticals, for short the ‘seven
Samurai’ (7S) as they have been nicknamed, produced several papers during a
short time span, in which they reflected step by step different stages of their un-
derstanding of the same set of data. We will briefly sum up some of the heightlights
of these papers (Dressler et al., 1987; Dressler et al., 1987; Lynden—Bell, 1986;
Lynden—Bell et al., 1986; the original set of data was enlarged and discussed by
Faber and Burstein, 19883).
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As noted above, the key point is to derive precise, redshift independent dis-
tance estimates: to be able to detect peculiar velocities of ~ 600 km sec™?! over
distances of ~ 6000 km sec™! requires uncertainties as small as 10 %. This ex-
plains in part the large uncertainties (resulting sometimes even in skepticism) in

the observational results.

The 78S results are based on a new relationship used to estimate intrinsic dis-
tances for elliptical galaxies. Previously the Faber—Jackson empirical relationship
was used, which connects the intrinsic luminosity of an elliptical galaxy to the
central dispersioﬁ velocity of its stars: L o< o™, where usually 3 < n < 4. This re-
lationship makes use of only two out of the three main quantities (i.e. luminosity,
size, and velocity dispersion) of the galaxy and had a large scatter giving large
uncertainties in distance estimates, > 40 % for a single galaxy (on the contrary

the infrared Tuily-Fisher can reach uncertainties of the order < 30 %).

The improvement came by considering a new relationship, ¢/* « D,,, with
D, a gi';ren isophotal diameter. This new relationship yields only a < 25 % rms
distance uncertainty for the given galaxy. Because of the well known fact that
bright ellipticals lie preferentially in clusters of galaxies, such kinds of measures of
several ellipticals, under the assumption that those belonging to a nearby cluster
are at the same distance, gave a final uncertainty of only <10 % on relative
distances between nearby rich clusters (if these had have been uncertainties in

absolute distances, one would have had a similar uncertainty in the numerical

value for Hy).

This great improvement comes from the fact that the measurable quantity
Dy, is of course a function of the luminosity/area ratio of the galaxy, and that
the elliptical galaxies are well fitted by the de Vaucoleurs’ law for the surface
brightness profile, i = po exp[—(r/r.)'/%]. This leads to a final relation of the
form L o ¢8/% 373/ ®, where I, is the integrated surface brightness within the
half-light diameter, A. (3. = Bz + 5log A. with Br total magnitude), and use
has been made of the relationships Dy, « 4. £¢/° and T, = 2L/(mA2).

The 7S obtained in this way very detailed and almost reliable information on
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the 3-D peculiar velocity field within a distance of ~ 6000 km sec™" (some argue
that the whole effect could be entirely due to intrinsic differences, for different
clusters, in the zero point of the callibrating relationship log D, — o). The first in-
terpretation was, as said above, that of a bulk flow, and the apparent disagreement
with the previous finding of Aaronson et al. that clusters were at rest, was argued
not to be significant because this latter sample has a very limited sky coverage
(such deep observations can be taken only from Arecibo). The flow direction hap-
pens to be orthogonal to the ‘disk’ defined by the clusters observed by Aaronson

et al. and therefore was not expected to show up in that data.

Then, with a new analysis, the 7S found in the elliptical data that the clusters
in the furthest shell of the sphere encompassing their sample appeared to be at rest
(i.e. with an unperturbed Hubble flow), while the velocity field of the innermost
clusters showed a shear and a convergence towards the direction of the Centaurus
cluster. The 7S found that the data were best fitted by a model of general infall
towards a single, unseen very large spherical mass, nicknamed the “Great Attrac-
tor” (GA). The model required the mass of this single overdensity to be enormous,
~ 5-10'® Mg, and this had to lie at very low galactic latitude, in an almost unsur-

1 seemed

veyed region. The distance of this putative mass, Dga ~ 4500 km sec™
to be consistent with a peak in the radial galaxy density obtained in a sparse

redshift survey of the Centaurus region by da Costa et al. (1986).

After a short while, Dressler (1988), one of the 7S, published data relative
to a low latitude galaxy survey he just made in the same direction, at very low
galactic latitudes, and found two peaks in the galaxy number distribution, one at ~
3000 km sec™ !, the other at ~ 4500 km sec™!. The second one is located at almost
the distance predicted by the GA model. He then argued that this overdensity
is likely to be the GA itself, and that, through the use of Eq. (V.14) with the
assumption (§) = ([6N/ (N)]) |oss (i-e. galaxies trace the mass distribution, no bias
is present), the peculiar velocity observed in the sample of ellipticals, which is a LG
peculiar velocity component of ~ 500 & 100 km sec™! roughly towards Centaurus
(more precisely a direction within ten degrees from £ ~ 310° and b ~ 10°), could

be accounted for with a low value of the cosmic density: Qo ~ 0.1 — 0.2. We note
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also that Lucey et al. (1986), had already found that galaxies observed in the
Centaurus cluster area formed two clumps, the one at ~ 3000 km sec™! being the

proper Centaurus cluster.

There are however two very serious problems with the above conclusions.
One problem, as also noted by Dressler himself, is that of the validity of the
application of Eq. (V.14) : as discussed above, the assumption of being on the
edge of a spherical overdensity embedded in an otherwise perfectly homogeneous
universe is likely to be a gross oversemplification of the physical reality under
exainination. Indeed, the data of 7S show a very complex pattern of peculiar

velocities.

The other problem is the estimate for the mean overdensity, (§). First,
only a cone of space is surveyed, and not a volume such as to encompass this
entire sphere, so that one has to extrapolate the observed value of the galaxy
number contrast to a larger, unsurveyed volume. Second, the estimate of the
overdensity is obtained through a rescaling of the result to those from a different
survey which covered a larger volume, in order to estimate the biases of the sample
used (e.g. to get a reliable estimate for (IV)). This procedure is very coarse, as it
is the determination of normalization by rescaling to the overdensity estimated for
the Local Supercluster (LSC) through direct comparison of the required peculiar
velocity with that estimated for the Virgo infall. As noted (and criticized) by
Gunn (1988), the value assumed for the amplitude of the Virgo infall (i.e. v ~
250 km sec™!) is an ‘old’ value and is inconsistent with the very same picture of
the GA. In this scheme, in fact, Virgo is also moving and the LG estimated infall
1s reduced by a factor of two with respect to the one adopted by Dressler.

Another worry (for us) is the lack of any notable clumpiness in the Dressler
data: the overdensity claimed to be the GA is quite smooth and does not contain
any rich cluster of galaxies. This fact leads Dressler to speculate about a common
yet largely undiscovered class of superclusters (with a size of ~ O(50 At Mpc),
and a mass very comparable to a few tens of rich clusters), in which subclustering

has been totally ineffective. In our opinion this is in principle not impossible, but
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certainly completely novel and difficult to implement with reliably known physical

laws.

Utilizing the combined samples of elliptical galaxies used so far, and data
coming from other spiral samples (mainly Aaronson et al.’s), Faber and Burstein
(1988, Burstein, 1988; henceforth FB) fitted a slightly different model, in which
the GA is no longer a simple spherical overdensity, but has a pronounced core.
This model changes the simple ~ 1/r profile for peculiar velocity amplitudes to
a more complicated pattern, almost a ‘cylindrical flow’. Also the direction of the

peculiar velocity at the LG is raised a bit in galactic latitude (b &~ 10° — b =~ 20°).

FB also discussed a phenomenon dubbed the ‘local anomaly’. This refers to
~a totally unexpected fact within the picture— which one could call a peculiarity
with a possible explanation: there seems to be no distortion of the Hubble flow

1 centered on the LG (for another discussion of

within a region of ~ 700 km sec™
this effect and its bearing on the determination of the Hy value, see Tully, 1988).
This means that locally we have no peculiar velocities with respect to the LG, while
in general there is a lot of complex streaming. FB argue, on the other hand, that
we are within one of several different ‘patches’ that their data show to have very
little internal velocity dispersion within themselves. These patches, however, have
large relative peculiar velocities and give rise to the observed complex velocity field.
In particular, the smooth flow in the local anomaly would be due to the combined
effect of the ‘push’ from a local void and the ‘pull’ from a nearby overdensity, which
conspire to balance very well the gradient in the velocity field expected from the
GA model. Bertschinger and Juskiewicz (1988) recently studied the cylindrical
inflow model and found that is very unlikely to happen within the usual models. On
the contrary, Kaiser (1987) questioned the effective depth probed by the original
sample of the 7S and concluded that the CDM model could not be ruled out from

the data.

Further evidence for LSPV has also been recently advocated by James et al.
(1987). These authors study a sample composed of first-ranked cluster ellipticals,

and find from the components of peculiar velocities along the direction of the CMB
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dipole a large peculiar flow with amplitude of ~ 600 km sec™!. However, Lucey
and Carter (1988) find that the hypothesis that the very same sample is at rest

cannot be preferred over that of its non zero peculiar motion.

We now pass to illustrate another recent aspect of this area of LSPV: that

of local dipoles.

The basic philosophy is quite simple: one computes the dipole in the distri-
bution of some kind of tracers, as in Eq. (V.13) . Then, if the direction of the
computed dipole is in good agreement with the direction observed for the CMB
dipole, one assumes one has reached the zone of convergence of the peculiar accel-
eration. So one can use the amplitude of the computed dipole in Eq. (V.12) and
read off the value of .

In the simple procedure just outlined, however, there are at least two crucial
assumptions that have to be made. These are: i) the assumption that the peculiar
acceleration has converged within the effective depth of the studied sample, and
ii) the assumption that the distribution of the examined tracers can be somehow
well related to the real mass distribution. Three other major dificulties are: a) the
éstimating of the sample effective depth, necessary to obtain the quantity vy to
be used in Eq. (V.12) , b) the large and uniform sky coverage required to derive a

reliable dipole, and c) the actual computation of the dipole itself.

Up to the present time two different kind of tracers have been studied accord-
ing to the above procedure, that is the distribution of galaxies selected according
to their infrared distribution from the IRAS all-sky survey, and that obtained from
the merging of different optical galaxy cataiogues.

We want to sketch now the main results that have emerged in the past two
years from the IRAS data and we stress the fact that the different outputs and
different conclusions given initially by different experts in this field, have been
obtained starting from the same original database. The differences arise only from
different methods foliowed in this very difficult analysis, and can contemporarily

give a feeling for the reliability of the final conclusions.

167



Initially very few of the IRAS galaxies had measured redshifts, but the sit-
uation is now improving fast, so that point a) is likely to soon no longer be a
difficulty for IRAS. The same comment applies in the case of having a reliable
evaluation of the IRAS galaxy infrared luminosity function, which is of relevance

to point c).

The first papers on this topic which appeared in a very short sequence were

those of Yahil et al. (1986) and Meiksin and Davis (1986).

Both groups followed the above outlined procedure, but their final estimates
for the value of Qg were different by almost a factor of two ! (29 = 1and Qo =1 /2,
respectively, with misalignments IRAS dipole-CMB dipole of ~ 30°). The differ-
ence probably arose from different estimates for the effective depth of the sample,
derived through the computation of the IRAS galaxy angular two-point correla-
tion function and use of the Limber equation, from different criteria for selecting
galaxies among IRAS sources (misclassification with stars and galactic clouds are
possible), and from different treatment of sky areas which were unsurveyed or

excluded because of contamination.

Other subsequent studies of the IRAS dipole are those of Harmon et al.
(1987), Villumsen and Strauss (1987), Kaiser and Lahav (1988), and Strauss and
Davis (1988). We want to give here only few comments on the results from these
papers. As noted above, for samples of IRAS galaxies which have no measured
redshifts (after the identification of the optical counterpart) the sample effective
depth is estimated through an infrared luminosity function, on which there has
not been complete agreement. Even for the same sample and in the same paper,
several different solutions for the amplitude and direction of the dipole have been
listed. Differences arise from the treatment of unsurveyed areas (some authors
extrapolate the signal to these areas, some fill them uniforimily) and from the
possible weighting schemes used. The weighting is not a trivial issue at all because
of the great range of infrared luminosities. This fact introduces also the problem of
the relationship —if any— between the IR luminosity and the mass of a galaxy. Then

there is also what is considered to be a major issue: how well do IRAS galaxies
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trace the density inhomogeneities 7 The weak point in the IRAS’ results come
from the fact IRAS galaxies do not ‘see’ clusters of galaxies. This is related to
the fact that elliptical galaxies have little infrared emission and, as is well known,
clusters of galaxies are mainly composed of early type galaxies. Now, while in high
bias scenarios this would not be a problem, we find very disturbing the fact of not
being able even to identify deep potential wells, easily recognizable in both optical
tand X-ray bands, given that one is just looking for important signatures of the
gravity field. At the present, there is some tentative taking of this fact into account
by ‘boosting by hand’ the weight given to regions which show prominent optical
features (Strauss and Davis, 1988), but this is not regarded by some workers as the
best way to obtain reliable results on this delicate issue. Many other difficulties
have bevi pointed out and discussed in detail by Villumsen and Strauss (1987),
who estimate a factor of two uncertainty in values of 0y due to possible systematic

€ITors.

The most recent paper on the IRAS galaxy distribution we know of at the
moment, is that of Strauss and Davis, in which they give results from a sample .
of IRAS galaxies with measured redshifts. This allows a good determination of
the depth of their sample, which extends up to ~ 5000 km sec™!. These authors
compute the peculiar acceleration directly, and estimate the peculiar velocity at a

point rp as

_ Hoﬂg‘s 1 r; —rp
vp = ) zi:¢(ri) . (V.15)

4r (n -
Whgre @ is the selection function of the sample, and (n) is the mean galaxy density.
Eq. (V.15) is obtained from Eq. (V.10) by considering lgp| = G3,mus]? =
G (m) Y, s7%, and with Qop. = (n) (m) and s; = |r; — rp|. This is different from
considering the dipole of an observed electromagnetic flux and then, under the
usual assumption that the emitters trace the mass distribution well, equating it
to the density contrast dipole —both gravitational force and observed luminosity
decrease as the distance squared— of Eq. (V.13) , as was done for most other
dipole studies. Strauss and Davis initially assign to each of the ~ 2300 galaxies
they examined, the position according to the measured redshift, then move the

galaxy according to its estimated peculiar velocity, through the use of Eq. (V.15) .
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By iteration they get a self-consistent distribution of the examined galaxies and
hence a map of the peculiar velocity field. One obvious problem is that one should
be able to extend the sum of Eq. (V.15) to large distances, while the sample has
a limited spatial extension (this could cause possible problems for galaxies which

are in the outer regions).

Strauss and Davis find that the peculiar acceleration cémputed with this
method for the LG converges within a distance of ~ 4000km sec™!, and that
v, Q5% 2 500 km sec™. Hence they claim that their result is not consistent with
the GA model because of the ‘local’ convergence of the peculiar acceleration. They
find, however, an overdensity of §N/N ~ 0.4 in the sphere centered on the putative
GA position. They also find a qualitative agreement for the peculiar velocity field
as measured by the 7S, but the quantitative agreement seems to us to not be very
encouraging (the linear correlation coefficient between peculiar velocities of given
galaxies as predicted by this work and those measured, is < 0.6 for the 7S sample
and ~ 0.25 for a sample of spirals studied by Rubin. Of course a perfect agreement
would have given unit value). Moreover, Vittorio (1988) argued about the real
achievement of convergence within the surveyed sample, while we simply note that
in an open universe with £y = 0.2, as suggested by most dynamical studies (see
Peebles, 1986), the fraction of the peculiar velocity explained by IRAS galaxies
within ~ 5000 km sec™! would be less than half that observed by the 78S.

Related to the IRAS galaxies distribution, the existence of a galactic north—
south anisotropy was also noted by Rowan-Robinson et al. (1986), who argued
that this was due to non uniformities on scales ~ 50 — 100 h~! Mpc, and therefore
of cosmological relevance. On the contrary, Clowes et al. (1988) argued from
a sample with measured redshifts, that such an anisotropy exists but is of very
local origin, at a median distance of ~ 16 A~! Mpc. This fact shows how observed

disparities in IRAS fluxes reflect poorly into distance inhomogeneities.

Apart from IRAS galaxies, the other flux-computed dipole was obtained by
Lahav (1987), who merged different optical catalogues to obtain a large sky cov-
erage. He used ~ 15000 galaxies and obtained a dipole with a difference of ~ 40°
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from the CMB dipole and ~ 10° from the IRAS dipole (one of the earliest direc-
tions), and an amplitude such as to derive Q¢ ~ 0.3 from an estimated sample
depth of 50 h~! Mpc. The greatest problem with such an analysis was the great
differences in the merged samples (ESO, UGC, MCG). A recent reanalisys of the
optical data (Lahav et al., 1988), using only two catalogues (ESO and UGC),
finds a convergencé of the dipole signal within 4000 km sec™!. Now the direction
agrees with that of the CMB dipole within 10°, and the amplitude of the optical
dipole is such as to give 29 = 0.16 4 0.07. In the same paper another analysis of
the IRAS dipole is discussed, whose derived vector agrees with the CMB and the

optical ones, but has an amplitude such as to give {2 = 0.8 £ 0.1. Also this latter
1

dipouic scews to be due to clustering at distances within 4000 km sec™, in agree-
ment with the results of Strauss and Davis, mentioned above. The only serious
discrepancy between the optical and IRAS dipole seems to be the amplitude. This
fact, however, could perhaps be explained, according to Lahav et al., in a picture
of strong bias for early—type galaxies, which shows up only in the optical, and a
much milder bias for late-type ones. These authors consider also contributions
to the optical dipole from different sky zones, and find that, for a velocity of the
LG of 600 km sec™?, the contribution to the velocity from a zone of radius 15°
centered on Centaurus cluster is ~ 250 km sec™!, while that due to Virgo cluster
is ~ 100 km sec™!. They note that the ratio of these two velocities is the same as

in the GA model, but the velocities here are a factor 2 smaller than those in the

GA (~ 570 km sec™! and ~ 250 km sec™! respectively).

We want to mention that an overdensity of quasar at low redshifts, z < 0.5,
has aisu been claimed (Shaver, 1987). This overdensity in the number of quasars,
6 ~ 1 — 2, has an angular diameter of ~ 30° — 40° and should have a size of

~ 400 h~! Mpc at the distance of ~ 800 A~ Mpc.

As can be seen from the above summary, the situation is not clear at all,
both from an observational and from a theoretical view (there are also very recent
studies of velocity autocorrelations and derivations of complicated expressions for
theoretical window functions which take into account the fact that only the pecu-

liar radial velocities are measurable; see Szalay, 1988, Gorsky, 1988). Moreover, the
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‘bandwagon’ effect makes it very hard to have a complete update of the evolution
of the overall picture: ideas and results on this topic, have recently changed so
fast that it has become essential to have quick access to preprints and this, unfor-
tunately, is not always the case. Therefore we expect that most of what we have
summarized above (i.e. that we are aware of in mid-October 1988) will change on
a time-scale of a few months. On the other hand this is one of the peculiarities of

an extremely rich and fast evolving field of research, so we do not complain at all !

V.4 A large concentration of clusters beyond Centaurus:

can this be the origin of peculiar flows ?

We want to present in this section the most intriguing output we have obtained
from a preliminary application of the methods and results discussed in the previous

sections of this Chapter.

Recent results from a study Dressler et al. (1987) of the distances and
velocities of 400 elliptical galaxies out to ~ 6000 km sec™! have shown that the
peculiar motions of these galaxies with respect to the Hubble expansion, are best
fitted in the Cosmic Microwave Background (CMB) rest frame by a flow induced
by a large mass (Lynden-Bell et al., 1988), a Great Attractor of about ~ 5.4 -
10'% solar masses centered on [ = 307°, b = 9° at a distance of R,, = 4350 +
350 km sec™*. A redshift survey of about 900 galaxies in this direction (Dressler,
1988) shows that the excess in galaxy number counts in this area is due to a
substantial concentration of galaxies with peaks at v ~ 3000 km sec™ and v ~
4500 km sec™!. In this section we show that in approximately the same direction
there is also a unique, very rich concentration of clusters of galaxies which could
have important dynamical effects. The estimated redshift distance of these clusters
ranges from v ~ 3000 km sec™! to ~ 20000 km sec™, with a main complex at
v ~ 14000 kms. The barycenter of this concentration lies ~ 25° away from the
CMB dipole (Lubin and Villela, 1987) and ~ 10° away from the latest reported
position of the Great Attractor (Faber and Burstein, 1987, Burstein, 1988).
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The analysis of the distribution of clusters of galaxies is of fundamental im-
portance in understanding the matter distribution. Moreover, it is a powerful tool
in explaining the origin of the observed peculiar velocity field (Collins et al., 1987;
Lynden-Bell et al. 1988), and in estimating both the local peculiar acceleration
vector and the distance at which the Hubble flow becomes unperturbed (Aaronson
et al., 1985). Although their number is relatively small, the clusters, being peaks of
the density field, might avoid the problems that some other all-sky density tracers
(e.g. IRAS galaxies: Yahil et al., 1987; Meiksin and Davis, 1987; Villumsen and
Strauss, 1988; Harmon et al., 1988;, Strauss and Davis, 1988) have in describing
the large-scale density field.

To this end we have analyzed the southern part of the new Catalogue of Rich
Clusters of Galaxies (Abell et al., 1988; hereafter ACO), which lists 1638 clusters
with § $ — 17°. This catalogue lists bona fide redshifts for 145 clusters. Because
of the absence of completeness in the sample of clusters with measured redshifts,
it is obvious that, contrary to what has been done in the Northern Hemisphere
(Bahcall and Soneira, 1984), it is not sufficient to use these few clusters with
known velocities to map the large scale distribution of clusters in the Southern

Hemisphere.

Therefore we have used 143 redshifts to estimate a linear relation between
log[Dr(z)] + K(z) and the magnitude of the 10%* brightest member, including
also a correction for the cluster richness (Scott effect). D (z) is the luminosity
distance assuming ¢o = 1/2 and K(z) is the K-correction for E and S0 galaxies
{Snanks ei al., 1984). We find that the relation has a dispersion Tsample = 0.11
in log[Dr(z)] + K(z), corresponding to Az/z ~ 0.25 for small z. In deriving this
relation two clusters have bgen excluded because their redshift appeared to be
inconsistent (beyond three Siéma’s in the relationship) with the magnitude given
in the catalogue. Hereafter comoving distances d = Dr(z)/(1 + z) will always be
scaled by the value of Hy = 100km s~ *Mpc~! and therefore quoted in km s~1.

For a detailed discussion of this relationship see Sect. V.2 .

We have proceeded then to a preliminary identification of candidate super-
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Figure V.5. Equi-area projection in Right Ascension and Declination of all
the rich clusters with measured or estimated distances within 20000 km sec™!.
Triangles and squares represent Abell and ACO clusters respectively (some
clusters are listed in both catalogues). The star shows the direction of the
cosmic microwave dipole and the empty circle shows the latest direction of the
Great Attractor. Close to the latter is clearly visible the cluster concentration
discussed in the text. Dashed lines indicate the avoidance zone due to our

galazy plane (]b] < 20°).
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clusters through a percolation algorithm on the reference catalogue, that is the
catalogue with distances d = (d), where the average is derived from a Gaussian
distribution in log[Dy(2)]+ K (z) with variance o3, ;.- The statistical robustness
of these structures has been later verified on 100 random catalogues in which the
estimated redshift for each cluster was drawn according to the previous distribu-

tion. (see see Sect. V.2 ).

A detailed description of the z estimates and of the supercluster candidates
from the ACO catalogue, as well as of their robustness, membership efc. will be
given elsewhere(Scaramella et al., 1988). Of course, because of the uncertainty
in our distance estimates, some numerical details in the following discussion may

change slightly after observed redshifts become available.

In this section we discuss the existence (Vettolani et al., 1988) of a remarkable
concentration of clusters in the direction of Centaurus. This concentration (28
clusters within an area of about 0.1 steradian) is clearly evident in Fig. V.5 .
This figure shows an all sky projection of all the ACO and Abell clusters with a
measured or estimated distance smaller than 20000 km sec™!. A distance cut at
20000 km sec™! causes little loss of information due to the incompleteness in the
original catalogues and to the errors introduced by the redshift estimates, both
in the northern (Bahcall and Soneira, 1984) and in the southern (Scaramella
et al., 1989 see Sect. V.2 ) hemispheres. This concentration, in a volume of ~
2.7-10™ (km s™1)3, corresponds to a cluster density which is a factor ~ 10 higher
than the estimated mean volume density of all the other ACO clusters with (d) <

25000 km s~! and at comparable galactic latitude.

The complex formed by the clusters denoted by among those listed ‘a’, is
noteworthy and will be very interesting for future, detailed studies of supercluster
dynamics. This candidate supercluster consists in fact of a number of members
similar to that of the Corona Borealis supercluster (Postman et al., 1988), but has
the advantage of being almost a factor 2 closer and a factor 2 denser in clusters

with richness R > 1 than the Corona Borealis.

We now discuss the relevance of the listed clusters to the large scale peculiar
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Table V.3

ILD.# o 6 (d) Noeal
1736 201.07 —26.90 10225 104
3526 191.53 —41.03 3271 33
3528 192.90 —28.75 15922 70
3530 193.23 —30.08 13494 34
3532 193.65 —-30.10 14892 36
3535 193.77 —28.22 16902 30
3537 194.57 -32.17 4945 35
3542 196.48 —34.30 17108 45
3553 199.10 —36.92 15141 36
3554 199.18 -33.22 17220 59
3555 199.50 —28.72 17645 61
3556 200.33 —31.40 16916 49
3557 200.53 —28.62 16628 36
3558° 201.27 —-31.23 13948 226
35597 201.78 —29.27 13641 141
3560 202.25 -32.97 12349 184
3562° 202.67 —31.42 14422 129
35647 202.88 —34.97 12406 53
3565 203.45 —33.72 3241 64
3566 204.02 —35.30 15361 100
3570 205.98 —-37.67 10851 31
3571 206.15 —32.62 15259 126
3572% 206.32 —33.13 12992 49
3574 206.57 —30.05 4183 31
3575% 207.43 —32.63 13597 49
3577 207.88 —27.60 15152 103
3578 208.67 —24.48 9969 52
3581 211.15 —26.78 11931 42

Table V.3. Clusters within the region delimited by 190° S o < 212°, and
—41° S 6§ & — 25° with a mean comoving distance (d) < 20000 km s~1,
Clusters with I.D.# in boldface have redshifts listed in the ACO catalogue.
Clusters denoted with the letter ‘a’ tentatively belong to the main complez
cited in the text (value of the percolation radius R = 1500 km sec™?).
motions. Being wary of the use of the spherical infall model, in order to estimate

the effects due to this region, we have computed the acceleration g induced on the

Local Group by the clusters listed in Table V.3 as:
M; |
g = G ; Tg‘rz, (V'16)
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where the mass of each cluster

Nga.l _
M; = M(R=2)< - > (V.17)

106

is weighted by the number of galaxies in the cluster, N} ! and is expressed in terms
of the typicai values of an R = 2 Abell cluster ( e.g. Coma, for which Nf“l = 106);
we also assume pure Hubble flow for the proper distance, r; = d;Ho /(1 + 2), and
obviously this can introduce systematic errors because of the presence of coherent

peculiar flows.

About 50% of the total computed acceleration is due to the nearest chain of
4 clusters ((d) ~ 4000 km s~!, consistent with the quoted distance of the Great
Attractor) and the remaining 50% is due to the combined pull by the more distant
complexes, which are dominated by the one at (d) ~ 14000 km s~! (eleven clusters
denoted by ‘a’ in Table V.3 ). This fact could help in explaining part of the ‘large’
peculiar velocity of Centaurus cluster (Burstein, 1988) and is consistent with the
present lack of detection (Lynden-Bell et al, 1988) of a reversed sign for the
peculiar flow beyond 4500 kms™!. From 1000 simulations, in which the estimated
redshifts of the clusters were randomized around their nominal value, we see that
the standard error of the modulus of g is < 5 %, while the direction is always
within one degree from « =~ 201° and § ~ —33°. This direction is in excellent
agreement with one (a = 200°,§ = —33°) of the two possible directions for the
Supergalactic Center (Lynden-Bell et al., 1988) It is also close to a previously
reported quadrupolar distortion of the peculiar flow (Lilje et al., 1986), while
most of the oiotica,l dipole signal is due to a patch of sky also centered on the same
zone (Lahav et al., 1988). Indeed, although the close agreement of the latter dipole
with that of the CMB favours a ‘local’ (e.g. within ~ 4000 km s~!) convergence of
the peculiar acceleration, its contribution to the infall towards Centaurus (Lahav
et al., 1988), vgip ~ 250 km s~!, seems to account for only half of the observed

one, again in good agreement with our above estimate.

The peculiar acceleration gy, is then obtained by subtraction from g of the
acceleration expected from the mean density of clusters in the same volume. Using

the relation (Peebles, 1980) v, = 2H;' Q;%*g, and requiring that the compo-
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nent of our peculiar velocity, v, >~ 570 km s~!, toward this direction is entirely

due to the §, derived above, we have:

QO 0.4 v
—~ -1 P
Mn=y = 505 f (a‘z) (somms) (V-18)

where M5 = 1015 M.

The above relation shows that in an open universe it would be possible to
ascribe the required peculiar velocity to the observed clusters if the mass overden-
sity related to an R = 2 cluster were ~ 5 M75. Recent estimates (Merritt, 1987)
of the mass of the Coma cluster give Mcoma < 3 My5. The value of the masses we
require is undoubtedly high. But it can be lowered if the overdensity of clusters
reported here extends into the avoidance region. Moreover, the required mass is
not simply the mass confined within the Abell radius, but can be associated with
larger galaxy aggregates in which the clusters are imbedded as suggested by the
galaxy—cluster cross—correlation (Seldner and Peebles, 1977), Similarly, if we divide
the mass estimates (Postman et al., 1988) for the Corona Borealis Supercluster,
Msc ~ 26M;5, by the number of members (N.; = 6) and weighted as above by
the number of galaxies (Struble and Rood, 1987) we obtain M(p=2) =~ 6.6 M;s,
which is in good agreement with the value derived from Eq. (V.18) . Of course,
this is not the end of the story because a biased distribution of matter would not
be consistent with our assumption of clusters as tracers of the mass distribution,
although recent estimates (Kaiser and Lahav, 1988) seem to indicate a global

.biasing factor which is not very far from unity.

A value of 2y = 1 could still be made consistent with the constraints found
from Eq. (V.18) , either by boosting up the estimate for M ps) or, more re-
alistically, by not requiring that the peculiar velocity be entirely due to a ‘for-
ward’ gravitational pull. Underdensities and other great, comparable aggregates
(e.g. Perseus—Pisces, or another new candidate supercluster similar to the one we

present here but at larger distance) could have a relevant dynamical réle.

Before definite conclusions can be drawn one obviously needs the most com-

plete possible picture of our surroundings given by all of the available tracers.
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Ultimately such an effort can also be rich in information on the physics of the
tracers themselves. Indeed it would be of great interest to determine if clusters
of galaxies are responsible for the overall dynamics or, more unlikely, if we are
led to assess the existence of very large mass condensations (Mg = 54 M;5) in
which no very rich clusters are seen (Dressler, 1988). This implies the existence
of a physical process which would have coherently prevented cluster formation on

scales of 50 — 100 ~A~* Mpc.

In summary a detailed study of this region is of great importance, not only
because no similar nearby concentration of clusters exists over the rest of the sky,
but also because of its direction. It is hard to interpret as a mere coincidence the
fact that such a concentration of clusters of galaxies is so close on the sky to both
the direction of the CMB dipole and that derived from the peculiar motions of
galaxies with respect to the Hubble flow.

Further studies of clusters in this area based on intrinsic distance estimates
(Dressler et al., 1987b) should eventually find the distance at which the peculiar
flow reverses its sign thus delineating the region within which the bottom of a great
potential well lies (assuming that this is the major cause of the reported peculiar
velocities; Starobinsky, 1988). The concentration ‘a’, discussed here, appears to
‘be the best candidate for the bottom of such a well because of both the number

of clusters present and their particular richness.

V.5 Brief summary of the chapter.

In this chapter we have discussed some aspects of the large—scale structure which

refer to the present (in a cosmological sense) epoch.

We mainly examined the important topics of the largest known aggregates
in the Universe, the Superclusters, and of very recent developments in their large
scale kinematics and dynamics. We showed the preliminary results of an analysis
of distances and density estimates of the new ACO catalogue of rich clusters. Then

we discussed a possible way to derive a list of candidate superclusters, making our
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best effort to squeeze the maximum information from the present available data.

From this analysis we presented what we think will be a very wealthy source
of cosmological information: the richest among nearby superclusters. This iden-
tification will allow in future very detailed studies of this complex, which should
be able to determine its dynamical status and all the other relevant informations.
Indeed, one of the most intriguing questions at the moment is if these aggregates
are bound (or even already virialized) and what —if any- is the typical peculiar
velocity of rich clusters of galaxies. The answers to such question are of enormous
relevance for the dark matter problem for the possible cosmological scenarios (what
kind of perturbation spectrum can give these structures ? is a hierarchical sce-
nario still viable 7). In this context in fact Bahcall et al. (1985) suggested the
presence of large peculiar motions among rich clusters, while Bahcall and Burgett
(1986) proposed a possible spatial correlation among superclusters. The sugges-
tion of strong inhomogeneities on very large scales has also been put forward by
Tully (1986, 1987, 1988), who find that clusters of galaxies lie preferentially in
the supergalactic plane or in planes parallel to it. Tully’s suggestion is that there
is structure on scales ~ 0.1z, that is on scales which, roughly speaking, are one
tenth of the present causal horizon ! The importance for cosmology of gathering
as much information as possible on the physics of the superclusters is obvious, and

the closer they are, the better they can be studied.

Apart from being close and very rich, the supercluster that we have discov-
ered is of extreme importance because of its striking position: its barycenter lies
within a few degrees of the most recent determination of the peculiar velocity of
the LG (almost within the error of the latter; see also Fig. V.5 ). Can this fact
just be a coincidence 7 We think that this is a possibility, but it is noteworthy
that the agreement has been ‘a priori’. This is so, because the direction of the
LG velocity was independently determined without any knowledge of our finding
and we, at the beginning, had no idea of where this cluster overdensity would be
in the sky. We started to note this concentration among all the others we found,
and to realize its possible significance to the peculiar velocity problem, only after

having seen its reliability after many simulations. We then checked where this
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concentration was and had quite a surprise.

Of course, the above arguments have no relevance at all on the scientific issue
on whether this huge cluster overdensity has a great effect on the LG dynamics
or not, and if the source of the acceleration is entirely local. But, whether our
hypothesis is true or not, we will gain very valuable information in both cases, for

the reasons discussed in the previous section.

Before ending this Chapter we want to give a very preliminary estimate for
the answer to the obvious question: ‘What is the effect of such a big overdensity
on the CMB ?’ Because the values we found are more likely in an open universe
(e.g. Qo = 0.2), this aspect is particularly important (temperature fluctuations,

for a given density contrast, usually scale inversely with Qq).

We therefore make the following arguinent, with the caution that, until red-
shift are known, the results have to be taken as indicative. From the values of
Table V.3 , one sees that within within the specified boundaries there are 28 rich
clusters, with an average value of (V) ~ 72. We would expect roughly 3 such
clusters within the same volume at low galactic latitude, hence the overdensity is
§N. = 25. This translates (see Sect. V.4 for the notation) into a mass overdensity

of

{NVg)
M =~ 6N.— Mip—2) = 1TMg=2) =
106~ ( . ) (V.19)
~ 1017 ~1(0.4 P

where we used the result of Eq. (V.18) . Now the mean mass expected within the
same volume is M, =2 8.5-10% Mgh™1Qg, so we get for the mass density contrast
the following value:

M

oM —0.6 Up
M, 28 (570kms“1) ' (V.20)

This value for the mass density contrast is almost in the linear regime, so we
can tentatively apply the following simple estimates (we are aware, though, of its

enormous value: three times the mass required from the GA model).

From the values given in Sect. IL.1 (see Kaiser and Silk, 1986), we see

that the present angular extent of the horizon length at z; & 10° is Ay, S 1°,
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and that of the last surface scattering thickness is Afpicr S 7' Qol/z. A difficult
quantity to assess is the typical size to attribute to the overdensity we consider,
because of its shape. The cubic root of the region’s volume would give a typical
length of ~ 65 h~! Mpc, while the same volume corresponds to a sphere of radius
~ 40 h~! Mpc. On the other hand the region we are considering has a thin conical
shape, with an half-opening angle of < 10°. Therefore, also having in mind the
pancake theory, one could argue that a smaller length, typical of the transverse size,
would be more appropriate. If we consider the transverse size at the position of the
‘a’ concentration, i.e. at a distance of ~ 140 ™! Mpc, we get ~ 44 h™! Mpc. We
therefore will normalize the perturbation scale length to a value of A &~ 50 A~ Mpc,
bearing in mind the great uncertainty (~ 50 %) of this value. Such a scale on the
last scattering surface subtends an angle of A8y & 30' Qo(A\/50 R~ Mpc). We see
that, because of A8y 2 Ab;pick, any perturbation in the temperature fluctuation
is likely to be partially erased by photon diffusion. This is of course a crude
statement. However, one can argue as follows that not necessarily any anisotropy
should have already been seen because of such an overdensity. It is convenient to

evaluate the density contrast at z = z;,

(), = ool (37).., =

2 1-107% x(Q0) (%M) ~2.107%71057%% k()
z=0

(V.21)

where we used the growing solution for an universe with normalization for the case
Qo =1 (k(Q =1)=1, (o = 0.2) ~ 3) (Peebles, 1980) and took explicitly in
account that the fluctuation we are dealing with could easily be v times higher
than the mean rms density contrast at the same scale. Now, Kaiser and Silk give
an expression for simple estimates of AT/T due to perturbations which have a
scale comparable with the scale of the last scattering surface. From this we get

£~1<6M

T ~ 3 M) ~ 1.5-107% 7105708 k(D) . (V.22)

In a flat universe (k = 1) this level is smaller, even if v = 1, than the current upper
limits on angular scales of a few arc seconds, which are a few in ten-thousandths

(see Partridge, 1988). For an open universe the estimated level of temperature
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anisotropy would be much higher, but this fluctuation is very likely to be well
above the rms value (i.e. v > 1), so one could argue that there is no necessarily a
violation of present upper limits. Also, because in the open case AL;p;c increases
its value, the damping by photon diffusion becomes more severe. We conclude
here this very simple e crude argument, stressing again the uncertainties involved

in the above estimates.

As a general conclusion, while we think that the the great mass overdensity
here considered will not easily fit within the general picture (it is likely a downward
revision of its value), we cannot resist speculating that, perhaps, we have entered

into the phase of considering cosmological ‘Giant Attractors’...

. and then, what else ?

Part of the containts of this Chapter have been or will be submitted for publi-
cation, e.g. Sect. V.4 (Vettolani et al., 1988;, and Scaramella et al., 1988), and
Sect. V.2 (Scaramella et al., 1989), respectively.
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