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. INTRODUCTION

The soliton in Classical Field Theory is a topologically stable finite
energy solution of the Lagrange equation of motion.

Its counterpart in a Relativistic Quantum Field Theory is the existence of
a sector in the Hilbert space of states, orthogonal to the vacuum sector
[1].

The quantum soliton appears as an operator in this "large” Hilbert space,
but it maps out of the vacuum sector, and it corresponds to a particle in
the theory.

Let us better define and analyze this situation.

In the algebraic approach to Quantum Field Theory a state © is called
“of interest in particle physics” [2,3] if the corresponding Hilbert space
X X obtained via the Gel‘fand Naimark Segal construction, carries a
unifary representation of the group of translations, whose
generators f " satisfy the relativistic spectrum conditions
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(our metric signature is -+++).

A phusical Hilbert space can then be defined as a direct sum of Hilbert
spaces K o (superselection sectors) corresponding to (inequivalent)
states "of interest in particle physics™
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If }{? carries a unitary representation of the full Poincare group and
there exists a Poincaré-invariant vector ﬂ,? 6%5, {vacuum), then }{}o is
called a vacuum sector, otherwise it is called charged.
One can divide the charged sectors into three classes:

1) Sectors which can be obtained by appluing {charged} local field to the
vacuum sectors [4] (e.g. charged sectors in the Yukawa theory);

23 Sectors which are labelled by unconfined charges obeying a Gauss law
[5] (e.g. charged sectors in Q.E.D.)



3) Sectors labelled by topological charges.

Whereas in case 1) it is known that these sectors carry a unitary
representation of Pi , in cases 2) and 3) this cannot hold in
general. For example, this is impossible for the charged sectors of QED
[5,61.

General results of the algebraic approach (3], however, suggest that this
is always true if there is a mass gap in the theory.

Sometimes the sectors in class 3) are called soliton sectors, and we will
follow this convention.

The euclidean approach to the construction of the vacuum sector is now by
far the most powerful [7,8l. From an axiomatic point of view its basis
lies in the Osterwalder-Schrader (0.5.) axioms and their reconstruction
theorem [9], which can be generalized also to gauge theories [10, 11].

In contrast, to construct charged (and in particular soliton) sectors, one
has followed an algebraic line [1,4,5,6,12] so far. For (local) soliton
sectors a purely euclidean approach has been sketched only in a few papers
{e.g. [13,14]; see also [15] for more general ideas).

The purpose of this thesis is to outline how to construct, classify and
analyze the soliton sectors (in boson theories) within the euclidean
description of Quantum Field Theary, making use of the so called disorder
fields [16].

gince the introduction of the disorder fields involves, in the continuum,
strong singularities and technical problems, we confine our attention here
to the lattice approximation. One believes, however, that the essential
features are not lost using this ultraviolet cutoff, since the construction
of the soliton sectors is really an infrared problem.

Our approach is based on a reconstruction theorem applied to joint
correlation functions of ordinary fields (with support on a lattice), and
disorder fields {with support in the dual lattice) carrying a charge with
value in a discrete abelian group ().

There is a dimension (depending on the explicit model) in which the
correlation functions of disorder fields depend on a set of points in the
dual lattice and on charges with values in .. .
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{This dimension (d) is e.0. d=2 for qé, =3 for (U(N Higgs), d=4 for
U(1) gauge theoru).
It turns out that in this situation

1} if the correlation functions of non vanishing total charge vanish, then
the Hilbert space obtained from the reconstruction theorem factorizes
into orthogonal subspaces labelled by the elements of < ;

2) if the cluster property holds the vacuum is unique and belongs to the
sector labelled by the trivial element of X, and the other sectors
are (lattice) soliton sectors.

In particular, this construction will provide us, naturally, with soliton
operators (non-local, in general) which, when applied to the vacuum sector,
produce the soliton sectors.

The disorder field can, in general, be localized on a string like region in
the dual lattice (eventually coupled to a Coulomb-like field near its
boundary) and the dependence of the correlation functions on this string
allows us to divide the (massive bosonic) soliton sectors into three
classes:

A} Local solitons
Mixed correlation functions of disorder field and ordinary fields
invariant under X gauge transformations are independent of the
string (e.g. kink sector in qﬁf;, vortex sector in (YM+Higgs)s).

B) Stringlike solitons
Mixed correlation functions will depend explicitiy on the string {e.g.
( Z,, gauge+Higgs)s models).

C) Solitons with Coulomb field
In this case a Coulomb-like field is attached to the boundary of the
string, and the mixed correlation functions (with " gauge
invariant ordinary fields) do not depend on the string but do depend on
the Coulomb field (e.g. monopoles in U{1), gauge theory and in the
Georgi Glashow madel).



The particle structure of sectors in class A) and B) can be analyzed when
suitable convergent cluster expansions exist (in the region of the
parameters of the model which allows the soliton sector to exist) by
means of the excitation expansion of Bricmont-Fréhlich [17]. (See sect. 3).
In these cases one can show that the two point function of the soliton
operator has Ornstein-Zernike decay [17,18], proving that the soliton is a
massive particle in those theories, and one can also estimate mass gap
and upper gap.

From heuristic considerations and results of the algebraic approach [3] one
expects that if the continuum limit of the mixed lattice correlation
functions exists it is euclidean invariant for (massive) solitons in class
A) and B) so that by "analytic continuation” [11] one obtains a unitary
representation of the full Poincarg group on the soliton sectors .

This should not be the case for the monopole sectors, where an argument
analogous to that used for charged "Gauss” sectors in [5,6] applies, based
essentially on the long range of the Coulomb tail. " For these sectors one
expects that the Lorentz group (in particular the boosts) is not unitarily
implementable.

Let us end this section with a description of the plan of the thesis.

In sections 2. and 3., we discuss the general techniques of the
reconstruction thearem and excitation expansion.

In sect. 4., we present a complete analysis of the soliton sector of
(Ising); , the easiest example which shares many of the essential features
of the general case.

In sect. 5. and 7., we analyze the sectors corresponding to local solitons
{class A).

The intermediate section 6. will provide the main tool for the particle
analysis: a suitable high-low temperature cluster expansion.

String-like solitons are analyzed in sect. 8 and monopole solitons in sect.
9.

we end by mentioning some open problems.



2. LATTICE QUANTUM MECHANICS

In this section, we discuss the reconstruction theorem for lattice field
theories.

This theorem will be the main tool, when suitably adapted, in the
construction of the soliton sectors.

We consider, in particular, the case of the Wilson loops of a lattice gauge
theory; more general situations will require just straightforward
modifications.

{The reader familiar with the reconstruction techniques may skip this
section).

Let | denote the lattice whose sites are given by

o
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where d is the dimension of the lattice,

The 0-th coordinate will be our time coordinate. By abuse of language, we

simply write L = Z\ and in the same way for the dual
I =7z ) '

The starting point in the reconstruction theorem for the Wilson loops is &

sequence of complex valued functions (correlation functions):

fs.(c. )L,

where C; are finite loops in [ not intersecting each other.

+)Here the symbol * denotes the dual, bath on cells, (e.g. if ¢, denotesa k dimensional cell
«
in L, @’K) isa d-k dimensional cell of M ) and on fields (e.q. iqu is
* +
definedon Kk -cells Cx éﬂ_/¢ isdefinedon - cells @k)’(eﬂ_

v b () = Ple )



Given any loop C in L we associate to it, in a unique way, lattice
coordinates X ( C) & Z s and a loop C%in the dual lattice, touching the
point O= (0, .. .,0) in such a way that the support of (°is contained in
the positive time lattice and the loop ( is given by the" XCC)
translate” of C° fnrmallg denoted by C+x(C). (See Fig. 2.1)

To construct X CC) P “‘consider the set of sites contained in
C with the lowest time cuordmate and take as X' this value. Between
the above selected sites consider the set with the lowest first space
coordinate and take this value as X" and so on.
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fig. 2.1

The toop (" is now defined by C = C '+ x(C) . Wowlet E denote
the set of all loops C° constructed as above from the set of all finite

loops C and define the functions S, ( - ) on (‘Z X E )™
by

S.OaC . o x, (2) =5, (0 Cu) @

with X = X (&)

This redefinition extracts the translational degrees of freedom of the
loops and although this is not strictly necessary on the lattice it is
needed in the continuum contruction [10].



Moreover, it allows a unified discussion of different theories, simply by
suitably changing the definition of & . For example to the correlation
functions of a spin theory with N-components gb‘l‘ o= L ¥

applies the same procedure, as above, with £ - {4 .. N},

We now consider the space S o of all finite sequences 30 =

= { £ % of complex valued functions ¥ on @r_f’ X E )57
vanishing except at finitely many points. -

We turn S _ into an algebra introducing the sum, the multiplication by

complex numbers, in a natural way, and a {non-commutative) product by
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and of the reflection 7 with respect to the time zero plane
P
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are defined in a natural way.
As usual we define
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where the upper bar denotes complex conjugation,
Using the sequences ; S o (G 7 X C:)gwe can define the functional
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Now denote by é ¢ the subspace of § &,gwen by all the sequences of
functions having support in the positive time lattice. Then we can state

Theorem 2.1 (Reconstruction Theorem)
If the functional S satisfies

1) Lattice translation invariance

S(R@ExR=8)=5(Exg)
\Vﬁi,gé_gg,a,@éﬁd; |

2) Osterwalder-Schrader positivity
S (9f x3) 20
ot
¥ e Se

L : ¢+
y S (9F xRE)a) ¥ F 4¢ S isbounded
uniformiyin = £ ¢ 2, .~ T
Then &  determines :

(2.4)
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i) a separable Hilbert space H .

i) a distinguished vector (). € M £ of unit norm, called the vacuum;

iii) a contractive, selfadjoint representation T of the positive time lattice
translations and a unitary representation U of the spatial lattice
translations, which satisfy

&

Tg((«")ﬂg: ﬂ.g, Vt“ = Z,;.

i (2.5)
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If, moreover, S satisfies
4) Cluster property
N e - - SO SV p

b S (F xR o) = S(F)S(2) (2.6)

A 00 - - - -
then

iv) I~ is the unique vector in){&_satisfying (2.5).
The structure (¢, Sle, e, Ug ) satisfying i-iii), is called a Lattice
Quantum Mechanics, by analogy witfﬁ the relativistic QFT in the continuuin.

Proof. The proof is fairly standard (see e.g. [11] for its continuum
analogue), so we only give an outline of the explicit construction
of O, Sler T Us ) Let Np=4 3€Sg « S(6fx$)=0}
and take the quotient of S7 by Ng w.r.t. the addition.

Denote the associated projection by

- o ot 7N et /
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Fah
and define an inner product <., . > on [_5.5] by
o A Al
<7, 4> = S (Ofxy)

From 2_) it follows that < . , .» is indeed a scalar product.



Hence one can define a Hilbert space through

where the bar denotes the closure in the norm induced by <.,..>.
The distinguished vector is given by

- Ay
where 1L =+ 24,0, .0, .}
on [ S 1%, dense in . by construction, we define

T (b Y _oTR= 4 A L oe
- Ly — . N J L '
i

By 1) and 3) these operators can be extended to the whole H g and
satisfy 111},

Remark 2.2 If Osterwalder Schrader positivity holds even for
reflections in the ¥’ - plane, then '7; is positive.

S S

Remark 2.3 On the dense set [ R(¢) S© ] " the operators ¢(f}
= F v,
are well defined (with

, , XM
SUE”PJC«“ c ( ):OIEJXZOHXL’;)
(2.7)

through the equation



Clearly one has

S(0gx R(z=(e,e))}) = <@ (2, Tt U@ PR
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(we will omit the symbol £ if this does not cause confusion).
In particular the operator corresponding to the sequence -ﬁf £ (where . is
a loop) given by -

]CM -0 ¥l
Lo €% = o(x . xts)] 0(C L)
is the Wilson loop operator usually denoted \X/(c/’ ) 10 8,

b (F,) = W(Z

The state
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with  , o defined by
- i"\' %Y

3- =0 ME M

g

W .
B O 2 xm €)= 0T 00K x(2) 9CCH, &)
will be denoted, for short,by | <&, ... Lo 7

Finally, let us remark that the set of operators

{g& Q_’ ) T(C‘) ; t € Z.,, ) f satisfying (2.?}} (2.9)

s

forms an algebra, as linear combinations and products are well defined.



Definition 24 The operator algebra (9(, generated by the fields (2.9) is
called the field algebra associated to the Lattice Quantum Mechanics
(H, L, T, V) |

Notice thatsince { ()50 £ ¢ 7 & isdensein j{, S is cyclic
for the algebra (o .~ = "

Remark 2.5 in concrete models the sequences:

[s ce ct

&<

"o

are usually given as thermodynamic limits of the expectation values of
product of fields in a finite volume Gibbs state.

For example, consider the case of a lattice gauge theory described in term
of a link variable ﬂéxw taking value in a compact group & . Then the
correlation functions of the Wilson loop are defined as foilows. Let
A (L) denote the finite lattice

A NP . VI S - 2 A
/'\giil.ﬁ} = '7) P ,}_L ) '/(j ; S v W c.g ..f,. 5
“

Cm

X denotes a character of G , d d..,. the Haar measure on G and
g “3*4,“\“” g the oriented product of the link variables J.. , belonging
fo’ the loop (.

Then define the finite volume Gibbs state through

CovoE Ldwty) ()=

YJr:w
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The functions S (C, .. C,“_) are then defined as
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One can substitute, in the Reconstruction Theorem, properties 1), 2) and
4) by

'\

1’) The measure M (g* /' is lattice translation invariant;

2') The measure oi 1 ( fj /) is Osterwalder-Schrader p051twe

i.e. 7 polynomial functions of the Wilson loops ¥ (% ¢} «,)'mth Ce
localized in the positive time lattice

~ G
Sdue) Wie, c.)0 (e, .y 20
where
OV (. C.)= Y 20

and the upper bar denotes complex conjugation.
4y Cluster property

!
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(For all models discussed here 2°) and 4’) hold for every function
belonging to L (j#(%g , provided it is gauge invariant).

Remark 2.6 Since we have discussed lattice field theories, no analytic
continuation in time is possible, however, if the correlation functions Sm



admit the time continuum limit and in this limit property 3) of
Theorem 11 is still satisfied, then
- EH

T(E) = e ,

with H selfadjoint and positive, and we can define a unitary
representation of time translations by
. _(FH
T (6] = &

If, moreover, the correlation functions admit the (full} continuum limit
and in this limit are euclidean invariant (i.e. property 2) of theorem 1.1
holds, replacing the lattice transiation group with the euclidean group)
then a unitary representation of the full proper Poincaré group can be
reconstructed, using the techniques of [11].

¥e close this section by defining what we mean by a charged sector in
Lattice Quantum Mechanics by analogy with the “continuum relativistic
case”.

Let (7, be the operator field algebra of a Lattice Quantum Mechanics ( / ,
SL, TV) as in def. 2.4,

Definition 2.7 Let the Hilbert space }{ of a Lattice Quantum Mechanics
decompose into orthogonal sectors }{‘,{ invariant under lattice translations.

Let X, be the sector containing the vacuum 57 and (2, < L  a
field algebra which applied to S0 generates A, .

Then a sector A, is called a charged sector if it is invariant under €1,
le. A X, ¢ MKy Jand if there exists no lattice translation invariant
vector Ve My .

Finally, a charged sector A, is called a (lattice) soliton sector if it is indexed
by a charge which is carried by a field (in(q ) with support in the dual
lattice.

In classes A) and C), defined in the introduction, the charge is of
topological nature, as explained respectively in remark 5.9 and 9.4.

14



5. PARTICLE STRUCTURE ON THE LATTICE

e e e S b o

In this section we will show how, using the Reconstruction Theorem
sketched in Section 2, one can analyze the particle structure of lattice
field theories. In the relativistic quantum field theories an isolated
eigenvalue m in the spectrum of the mass operator

M = \Vp_ 72 (3.1)

with H,?Sﬂthe generators of the translations, corresponds to a one-
particle-state of mass m.

Unfortunately, on the lattice we have no Lorentz covariance and
therefore we cannot use definition (3.1) of the mass operator. However,
there is a slightly different definition of M which works also for theories
which are not Lorentz covariant, provided there exists a contractive
(strictly) positive representation T of time translations and a unitary
representation of space translations.

In fact, from (3.1), see fig. 3.1,

Spec M= SpecH N X °

i
S two particle continuum —
B B (bound state)
S e e / -y
,._,\_?‘AM,_M..,-» / ) "!\i
' one particle state .
o
S vacuum S

fig. 3.1
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where Y~ is the generalized subspace of the (rigged) Hilbert space
[41] (51", X) given by the vectors of vanishing total momentum.(+)

~tfr

Since in the continuum T (F) ,1- € s With T= T'(i} s it is natural to

define

Ho= o~ T

and

M= = o (T H#) (32)

We already know that M has an eigenvalue O, and if the cluster property
holds its multiplicity is one. So we are interested in analyzing
spec M \ {10f . This spectrum can be related easily to the behaviour
in the time coordinate of the truncated correlation functions of fields:

< PE); THU@E dH)> =
= <@ Tl u@a) “ﬂﬂ}m

<‘?§’f+)ﬂ i \5175 >
as £ /0.

In fact, using the spectral theorem we can write

(+) [i.e. if we denote [ ¥ 1" #  the space of linear functionals F on
[st]" continuous in the tnpomgg of /S 7]

= Fe (&1 Pr = ol



J>f!’) - Ly et A L o 01)0 Cho@) %b e
<Plp)y T S o= g (3.3)
o~ - - “‘i - ’
with X\ efod] B efm,7"
and AJP 2 (»¥) a finite positive measure.
By comparing with eq. (3.2) we immediately obtain
wpp e, (0,8) € guec €
= Jjp el
i b / (3.4)
Moreover, using the fact that the set of vectors
; | +
lo(d)n, fe ST
is dense in A  we have
Sum‘) ; df (A D”\f‘} Uidy = g}sec eJ/l
L ’ S ‘ .
c T Te Sf_ | , (3.5)
where the bar denotes the closure in IR .
It is immediate from (3.3) that
e 0 T Ly —w) N
2 <O T UR )=
Te 24 -
(3.6)

Hence, using (3.4)-(3.5) one realizes that a behaviour of the truncated
correlation function (3.6) like

_wm({71l)E "R
: /M(JE ( i+ COMSFCZ“/‘I@‘)&)

(3.7

as [ /0o,

17



18

with /M f) and M ( f) strictly positive constants, means
that gﬁ(gﬁ- ) couples the vacuum to a one particle state of
mass my (r)
Let sm denote the mass gap, i.e. the distance between O and the first
gigenvalue of M , and let M denote the upper gap, i.e. the distance
between 9 and the next eigenvalue of
From (3.5) we see that
PN \
m o o= 4 z'njf ?}T(C—} pé%_‘f:(:%w);

L J -
and, supposing m > 0,

= L feST L (g)=m)

Following the Bricmont-Frohlich papers [17], we now show how to analyze
the behaviour (3.7) by means of statistical mechanical methods.
For simplicity, let us now discuss the case of a two-point function of a
spin system which admits a representation in terms of random walks @
whose boundary is { x, 4| :

. b3 .

‘ ¢ WXy

where 7(.) i a complex function on random walks..
The method discussed here will later be adapted to the analysis of

solitons.
we decompose every path <o into two parts

1) the regular part whose maximally connected components are called
straight lines and have a point as projection in the hyperplane orthogonal
to the time axis; (the bonds which belong to the regular part of w are
called regular bonds).

2) the complement, a set of lines whose projection on the time axis are
maximally connected and hence mutually disjoint.



19

The equivalence class w.r.t. 1attice translations perpendicular to the time
axis of such lines are called excitations and denoted by &  (see fig.
3!2)'

........ -1 Y
T T e by }
i L 7 :
Lo - T straight lines
x’wm pro—
*’ & g A SR
; r
5 ! & T
foy—- excitations
‘L....._.g” — [
?2 } [ SR |
€,
fig. 3.2

Jince an excitation is, by definition, adjacent to a straight line on the left
and a straight line on the right, we define its height h (£) to be the
vector difference between the projection of the two lines in hyperplane
perpendicular to the time axis. ‘We also define 1] (£) the projection
of ¢ on the time axis,

[ 77)| = 1ength of TCe)

{() = \ength of £
lel = A¢e)=lmee)



It £ is an excitation of a path- W joining & point with a time
coordinate 2 to a point with time coordinate b . then one says
that & is "allowed" in (2, bl

Finally two excitations &, ¢, are called compatible if

TCE) N IreE) =6

It is now clear that there is a one to one correspondence between sefs of
compatible excitations /¢, .. &,0s allowed in (o t] with Z h(g\ fr’end
paths o> joining (¢,5) to (t— y )

We denote the correspondence by

o v TEL E,,\}'

Let now 7 €, } denote any set of compatible excitations allowed in

20

[o k] and denote by w, the straight path (0, 5°) >(E, 7).

Then

(5,3 PlE, D> = Z (o)

(38)
T2 e [-VUE)] Sz Re)-T) ]
with
Jlg)) = v Zw)
Z ()
w v {gt

In all the cases we deal with here, there is an important factorization
property: —J  a function 5(5) s.t

—ugsh) |
= =11 26) (3.9)



so that U is a hard core exclusion potential and 5 ‘s are the activities of
the excitations. :

More generally, we require weak and short-range interactions between
excitations.

Formula (3.8) expresses the two-point functions of a lattice spin theory as
a partition function of a gas of extended particles, the excitations, moving
in the one-dimensional interval [0[ ¢] and weakly interacting.

If this gas is dilute, its pressure can be expanded in a convergent Mayer
series and the two point function takes the form

: P E)
ey o ey — | RS E'? é- /fgké'g /
< plos) U7 =z 1 VdE €% g
m

Jince the gas is confined to a finite interval, {:ﬂi &1 ,we can write

e

e~

FPoE) = E PR R E) + Pur®
e (3.11)

where
C{k i3 the thermodynamic pressure,
1:)1, ] (E‘) is the correction due to the interaction of the particles with

the boundary of [0,t]
EW{ EV) describes the effective interaction between the boundaries
of [0,&] mediated by the particles in the gas.
with the above assumptions

- ~cb
E—y o0
' i v Lok g - o
F ( [En/ Itﬁ\”,% \/G e f ‘P f q::?\ _/fu (k?} &.
P, (£ ons | b .
E AN COWS
bt (K A

{ 7@()() o Cé~ (5‘*’:} = 3 C{ >0/ (,z:c’_‘ oo s 88 X"-)DO, C.' ‘5’(&)59{&?}{:’_ S‘?Q‘)}

X-¥ oo
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Juch behaviour is most easily seen if (3.9) holds. In fact, the Mayer
expansion now converges if

! —C l&j
MOYR- (3.13)

with C large enough.

Let é denote a collection of excitations allowed in | %, 6“7 in which a

single excitation can occur an arbitrary number of times. Then the two
point function takes the more explicit form:

e (3.14)
J A7 e [ Ta )T e
£ 33

where fT (S) is a suitable combinatorial factor.
Then it is clear that the terms in the exponential which, for instance,

contribute to P,M (K) are families of excitations £ such
that (JT(s) > [o,t]  so that
fes
v

T 26) agp(e) ~— ¢ v

fe g (- -3 Lo
Now we insert (3.11), (3.12) in (3.9) and we obtain

< (0,0) plt, ) > = o?f(/\ 2) A et

e~1 LR -l L"‘PYC — r
- G_%M JME‘V ¢ FF et IR —uat
_a\-»w ‘

& & A

‘ ~-m€25')5 -M(E)E
A u,,rr d-4 j 4% € e 1+ consbe™™ )

with (%)= c-P&@)

e,



By comparison with (3.7)

m (5] =

- \ o prm——
o= A

Hence the decay rate of the straight line (W, corrected by the
thermodynamic pressure of the excitation gas for -2 gives the mass
of the one particle state qSﬂ , Whereas the decay rate of the pressure
due to the interaction between the boundaries of [0 ¢] mediated by the
excitations, gives an upper gap.

Remark 3.1 ‘we have a decay condition weaker than (3.?) which ensures
that z;ﬁ(f) couples to a one particle state of mass 7 , i.e. the
Ornstein-Zernike decay

<SP T ) > - C

i %, é‘ Q%:[

- b

Also this condition can be analyzed with the above method using the
K’ dependence of TZ (K. For details see [17,18].
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4. THE ISING MODEL

In this section we discuss the soliton sector in the low temperature
phase of the (Ising), model with + hd conditions. It falls in class A of
the introduction, i.e. that of local solitons.

Although almost everything about this soliton is known, we utilize the
full procedure of analysis as a guide for the more complicated models.

In the algebraic approach both vacuum and soliton sectors (for local
solitons) can be obtained by applying ordinary field operators and (the so
called) soliton operators polynomials (which are almost local [1,19]) to
the vacuum.

In the Euclidean strategy, however, one obtains the field operators from a
sequence of correlafion functions of euclidean fields via the
reconstruction theorem.

Therefore, it is natural to expect that the euclidean analog of the soliton
operator will arise from considering correlation functions involving some
special kinds of euclidean fields somehow related to the soliton.

Which fields are the desired ones is suggested by both, a common (mainly
heuristic) argument and by topological (better cohomological, see section
5) considerations dictated by the analogy with the classical soliton.
Without going into details (see e.g. [14]) we just say here that those
fields are the disorder fields [16].

Historically the first example of such a field was constructed in 1971 by
Kadanoff and Ceva [20] precisely in the (Ising), model. Let us briefly
review their construction.

The state with + boundary conditions (-)>+of the (Ising)y; model is
constructed as the thermodynamic limit of the finite volume Gibbs state

<O = lumE ey = {7 Teprpes]

Gy = | xe«/\

B L (4.
T ste-t) ¢) ) Z!

XEeOA A B ,,F_ (5 53}
where <& is the spin field, ":Zf 2 l/;@/\ T 35-1)

ST LI X EA KEDA
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4> which has support on links of A\DA .
Let £ =(C(y, -

To define the disorder fields we introduce a Zz gauge” field
givenby v,

ézﬂ é'/\‘% '7/%-;
Then we define the disorder fisld through

D(O\)) = —D'; (.ICA}\ Tt j;?ﬂ - /

/) { (C}( E;: o
«K)//é;/‘\ 76- &Y/ (4-2)

M) be a curve in the dual lattice whose boundary is

Ny y
~ &)

with
U\){‘:\v) el i 13{? <¥\},> ¢ C"¥
= -1 b <y e COF
i.e.
y — —2f S, bx
DoGe go) =11 e~ S

<eyz ¥

The expectatmn value <D L (4 - J2,§)>depends anly on f; Ufmcand not
an \, a

The easiest way to see this is to realize that
<oy = <Lty > = 20

A - (4.3)
Zf&

where Z (w)can be obtained from Z/\ by substituting, in the action,
for the derivative

(A,

= 0.~ G
% d

the Zz - covariant derivative

V.e), = %

S; - L\)(xy) CO)‘
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50 that the modified action is invariant under the (local) gauge
transformation

G, ’ ;x O g" BEE
" nys 2 ég Ry §, fx= & fo (4.4)
xeDA

In fact, this gauge transformation corresponds  just to change
Cin D.( Ji -+ don) 16aving fixed its boundary,

Bu abuse of language we then call {g.)».’gmf’the support of the
disorder field and often drop the symbol

Even correlation functions of the disorder fields are defined by

S (i ) = <Dy fon) > =

(4.5)

= /€WVI <D (é' 3727\}>/\
AT I
{;/\ }!ﬁzl)

Odd correlation functions are defined as limits of even correlation
functions when a point is removed to infinity (if it exists of course), i.e.

,512,,“_1 (34 j)zmﬂ ) = /u/&/m S P C“}; ..\‘g”“"%u@ (4.6)

\....':bo
U20+ 2 ?

As we will see non-trivial soliton sectors exist only if the limit {(4.6) is
zero.

Some care is needed if we now want to define joint correlation functions
of spins and disorder fields. In fact one immediately sees that

26



. +

eg. < Doy Yan) Bu o By >, xoe A
depends explicitiyon C .

This is obvious if we remark that this expectation value is not invariant
under the gauge transformation (4.4).

To have dependence only on the support of the disorder field and not on

the full curve ( , we thus need to use 2 , ~gauge invariant fields,
like

l

{ Veys= Uy Weg, B | <ome 2y [y

SZ»)’E w <L<§l ézh {\f‘:/’ {K‘f>fwx) =
Lo, /

_ ' | A +
- S DC (é §‘> ‘W; "7)‘<xz>£ > =

{

2 I é’& Exm s 63)”

et

i

N

Al u? STl wep Lrel\ (4.8)
v y xe DA
with
¥
C&)(KY? T:,«i oW C
Remark 4.1 Since the algebra generated by the fields Vuy,» is

gven (w.r.t.<=-5) it is not able to distinguish between + and - bd
conditions.

If we really want to distinguish between + and - b.c. we can introduce a
field depending on a string of the external > field which reaches, for
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every fixed lattice /\ , its boundary. For instance, we can define the
field

“]{}//’x‘(‘x‘) = % F (’“)<gz:> , xe/\
<gere L) ’

where [ x UO is the straight line in the negative space direction
joining X to the boundary of A

Such fields are invariant under (4.6) since g =4 on the boundary.

By standard methods, using cluster expansions, one easily sees that

I : -
s DR £ 7_: Yo (M) ) =

= SZM, m (%‘ }’Zfi?“” , Koo XW}

exists and since the ¥ are odd in 6 they are able to distinguish
between + and - bd conditions.
In particular

N ’ SN . -+
<\{/><,> = Z&)‘% 2<\3l/,\<><) ;\’ = Gy
[ Z°

we have now a sequence i Sm,m},,:,o of correlation functions, defined by
(4.5), (4.6), (4.7}, to which the reconstruction theorem can be applied .

To do this we really have to check that this sequence is lattice translation
invariant and 0-5 positive.

This follows easily from the following two facts (but see also next
section):

1) The state < >+ is lattice translation invariant and 0-5 positive;
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2) a disorder field D({4:14z;}) having support on a set of points y, living
in the positive time lattice and a set of points z, living in the negative
time lattice can always be rewritten using the © operation as

e (9:2) B D, (1zh)

where D+ is @ suitable field with support on the positive time Jattice.
Then a slight modification of the Reconstruction Theorem 2.1 gives us a
Lattice Quantum Mechanics { X, 50, T, U ).

In particular, foliowing the notation introduced at the end of Remark 2.3,
a state in corresponding to ordinary fields Veeys and
the n-point field D _(z.... z,) , will be written

-~ - Vv &~
?&,l o Za o <KYY L <X Y 2 >

The Hilbert space M has quite a different structure in the high
{small (9 } and Tow (large f; ) temperature region.

For large /% » in fact, using the cluster expansion in Peierls contours
one immediately shows that

S . _ EZ}
| S , =z Lo Z | <xy3 s LRy, )} L e ’B f
. (4.9)

P R

Hence, the cluster property holds also w.r.t. the support of the disorder
fields and in particular all odd correlation functions are zero from the
definition (4.6). (Here odd means in the number of disorder fields).

This second feature implies that all the states with an even number of
disorder fields are orthogonal to all the states with an odd number of
disorder fields:

3 : J b —
LZo Zymass 1 20z, . >=0



Hence % splits into two orthogonal sectors )fM and }éw both

lattice translation invariant.

Since the cluster property holds and the vacuum _ J2 belongs to

Hoer e o~/  does not contain any lattice translation (T,U)

invariant vector.

Mnreuver, both sectors are invariant w.r.t. the operator field algebra
‘Q , @enerated by the ordinary field operators (or more generally by the

field operatnr wmr:h generates )‘émﬂ P

Therefore, & A< .44 18 acharged state.

The charge 1abelling the sectors carried by a field with support in the dual

lattice -and . can be shown to be of topological nature (see remark 5.9),

therefore *j;g is a soliton sector.

For 1ow “% , it is well known, using the high temperature expansion that

e.g.

b S, (42) = consT >0

=

Therefore we see that there is no orthogonal splitting of }{ , and no
charged soliton sectors exist.

Having constructed, for large , the soliton sector we wish now to

analyze its particle content.
Let S(x?) denote the soliton operator defined by

{/
>~
{1

—
.
ps
t
™
ta
o
~
\\f/

{4.10)
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Cleariy
Sext Mo & S

o SR 4.11
S x1) /)“éam\( < H e i

Moreover in )H;

, +
Sixs = S(xY) and
Sty sixt =1 (4.12)

Equations {4.11), (4.12) show that <$(x%) x*+ e/ is an intertwiner
operator. ’

Let us now show that it couples the vacuum to a one particle state of
mass l() +0(cF) tor 1arge

Consider the two point function

&

S, oyl = <50 s T V(- x) syh >

- 1y - 4
where X = CU,X),é_(ljg,)

Using (4.1}, (4.7), (4.8) and defining @f'\)’ )i"’ = 21_. f;);w} we have
72 &P

A Tﬁ (ﬁ" i—i
Sz o [ %, 2) = z@mx\ V;f@'fﬁo sp'en & P e )
’ A\ 2
Ai Z Z ﬂd C ? C’v—<x)/>/ —'i) (4-13)

g eX /\\9/\ Lxy? /6’/\
jfzi
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with supp.(d ) T = { %y}

we use the standard techniques of the low temperature expansion to
express the quotient in {(4.13) as an expansion, conve;gent for large /5 .
in curves ), which are the support of the field U ™

By denoting 5 a collection of (even repeated) " one obtains:

N

2Pl g el
52/0 Cx,9) = Z i (if/‘fxy) T e f e f 10
RS ey (4.14)

where: 1) b/are maximally connected closed curves in the dual lattice,
and ny is a curve with <x 4 * boundary.

2) Ay § fg’”\)is a combinatorial factor which vanishes unless all the curves
in its argument touch each other.

Due to these properties, a ,\X// Eﬁ(} configuration giving a non vanishing
contribution appears, as in fig. 4.1.

P

X
1
J

fig. 4.1

Therefore, (4.14) can be seen as an expansion in random walks joining % to
y, similar to the one analyzed by means of the excitation gas in sect. 3.
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50 we how identify as regular bonds in the curve @ V }(x), the ones which
are parallel to the time axis, occur with multiplicity one and there is no
other bond in K v ‘g;/v having the same projection on the time axis.

The definition of straight lines and excitations goes as in sect. 3.

We now note an important factorization property of the combinatorial
factor Q.. [ ¥/ which can be seen by inspection of its explicit form
(see also sect. 6).

Let ¢ be an excitation and define

L= ) e

) Y=/ N
({X}/ C“’/ ‘{/‘ X/}/ : } é,

then, if the path fu 3@7 is in one to one correspondence with the set of
excitations Yo, g

W

- L “ . e o . o
~ . "

Therefore, if we define the activity of the excitation £ through

2,917";*{5,)‘ =Pyl 2 'i} x @)
;/L)/(f) = C f a/q’ ( b/C£>} Z‘(/x’r tg’j\g‘:(; | & ; ’ )
we have
S o *Z\F & —
}_ 5, U5 4) = ¢ > 77 Z?(a)
‘3‘3@"_// {E,.“E“‘g i=1

where the excitations in each term of the sum are allowed in [v¢] and are
compatible.
From the explicit form of CLQT‘ one derives the bound



e Of,‘/“
[ P~

T

) - b )
.] { TRE < P
PO LE /) :

for large ﬁ . Therefore, we are now in a situation similar to (3.12),
(3.14) and we easily get the estimate

where the first term corresponds to the straight line term = (w.) in
(3.14)and the correction is due to the smallest excitation: the jump.

Similariy,

e \K ) — -~
iR, 22 m A > 0
i 4

|

corresponding to the leading excitation with 777¢) >LCo¢J, 1.6,

by

So the soliton really appears as a massive particle in H  and it is
easy to show that it is the lowest one particle state in }63 Aol
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Remark 4.2 It is interesting to notice that the fact that the soliton is
really a (lattice) particle implies that to have asymptotic completeness
we need to consider also }J‘\m; in the physical Hilbert space
e Mo, = Hoen ® Hoad .

Moreover, for large f> s the spin-spin correlation functions are known
[21] not to possess an Ornstein Zernike behaviour; i.e. the spin state is
not a one particle state, for large f.\ , rather it corresponds to a two-
soliton state, and the soliton is really the physical particle of the theory.
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5. LOCAL SOLITON: construction of sectors

In the previous section we have seen that the expectation values of
disorder  fields and the Z‘,_ -gauge invariant ordinary
fields ..., =6xv),,, Uy , do not depend on the whole support of the
external gauge field > , but just on dw .

This independence property of mixed correlation functions of disorder and
suitably chosen order fields, is the characteristic feature of the lattice
field theories which possess local soliton sectors {(class A).

The dependence on dw only in the Ising model was ensured by the
invariance under the gauge transformation (4.4), which allows to absorb
every gauge transformation of the (> field in a redefinition of the spin
field U

This suggests a class of gauge theories to which the same mechanism
should apply and eventually produce local soliton sectors.

For the sake of compactness of notation, let us first introduce some
definitions.

A field with support on k dimensional cells, will be said of rank k. Given
a rank-k-field é taking values in a group G, one nafurally defines
arank k + 1 field dcﬁ through

('z (¢, 1T G is additive
C) ¢:;CKH> - ‘,’{
1 |
L% (75@& ) if G is multiplicative
CKC"@CL*{

(if & is abelian we justuse [| ).

Moreover, suppose there exists a group of gauge transformations takmg
values in a group G and acting on 76 by means of a representation K
Let O denote a rank-k+1, G'-valued gauge field. Then one defines the
rank -k+1 field *\T{U,?fv the lattice covariant derivative of ;6 relative

to L s DU
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' [ N ! . .
/ N \ ~ kY . ‘ / y
{ i / €0y i ] )’ i ( e ] - / -y g 4
LV Lo Q / C(f:zlei i % Rt T ‘*)L- C £ s

if G and G’ are additive,

b ®

(‘\u_ \&/,:}) ;D _;' L\'s"“f{/’i - r(/ . “"!"J"\wclﬂfu\') kC{I {éccim»u}

\\
|

/
if G and G’ are multiplicative.
Finally, for k=0 and G additive, we have the usual definition

I
i

— '-.\ i | % !
'\.( f [,'; i s ,‘,‘"f-‘-) o o C \ . Y y

< ‘yfi}‘) \;) ,f"‘i\,;’ o }r/ < l'ﬁ }( “ Wl x p / ;5 X
. o

Foe

The desired class of lattice field theories is then described by a state,
given as the thermodynamic limit of the finite volume Gibbs states

o S (oD
Ay (e TR ) (5.1)
/f Ay

;-

ZA (-) &,!\yf//\ [ if)/) O 2 (dp )

where

1) the measureg{\yﬂ(@) is invariant, except (at most) for a bd term,
under a group for local gauge transformation (of rank k) with values in a

discrete abelian group ¥ .{*) Let o denote the associated gauge field,

+) f é is a 6'-valued gauge field, then also a non z invariant 6' gauge fixing term is
allowed if the state is defined on G' invariant fields. ( See e.g. later on the Landau gauge fixing

in the U( 1) Higgs model with gaussian action.)
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2) The function 5 is local and S( f))ls ?{’ gauge invariant. le. if
R(%) denotes the action of the element ¢ of the gauge group on ¢

Sp (Viowy RGP =5, (Vi) (5.2)

Then in general a disorder field can be defined as

(5.3}

Using eq. (5.2) one sees immediately that

.

\ l*/ UU; /“D/‘

depends only on > modulo d% . If /\ is convex we know that there
is a bijective correspondence

o mod ;J;f{ e oA o

so <D(w)>; depends on clw .

Since the field <lco is discrete and closed o (dw)-Oby general arguments
it has support in the dual of a set of closed of-«-2 dimensional
surfaces.

To pursue the analogy with the (Ising), model we need d=k+g so that
these surfaces are pointlike.

The case ¢l>k+o will be briefly discussed later.

In o=k-9 the field dw, since it is - valued, can be completely
defined in terms of its support, a set of points i@;f in the dual
latfice, and its value at these points, a set of charges ic[;f '
4,62 \{o}{here O means the identity of -7, .

So in this context we set

3%
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DO Uy ) 54)
/}\ o Lr{ L ( C Lot ‘,;‘ st ’C’{ ; I3 r,m‘: = \5 i
= 0 ¢ Fherwice

By explicit construction, since w is of compact support, neces-
sarily 2 4. =0 .

Remark 5.1 In the <~ /., case we can omit the g's and
identify o™ with its support, call it C , since Z, has only one non
trivial element. Then we are left with the definition used in the Ising
model.

MNotice that ;=0 coincides with the requirement of an even number of
points for the disorder field.

It iz obvious that if we take expectation value of a disorder field and
"7 gauge-invariant ordinary fields (eventually wo -dependent), this
expectation will depend on dw and not on

Denote by ’L,f a transiation and reflection invariant set of connected
sets of cells (e.g. loops, paths, etc.), Let [' €~ and Y(I")denote a &
gauge invariant field with support on [

- Then we can define the correlation functions

S m (Xeide or d g Te oo Tn) 2
{5.5)

"' < D (X, ¢ Co : o L \

= 'Vﬂ(’ﬁ("n{\ D L Xt {L e X ['f!“ff \J/ (!i) v ?Lhmf//}

eyt
AL

where X, ¢ AT, g; 2 \ioy, the ' ’s are non-intersecting.
Correlation functions with non vanishing total charge are defined by a
limiting procedure which removes a total compensating charge to infinity.
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More precisely for Z O[t :Q

, X, ty 0 K -
SmlW\ C)"icfi vo "{'"f‘- AL I A NN " =

{5.6)
- o .
- ZC':TOQ Q‘Hrt; m (i T X 6/'“ Z-Qi he Pm)
if the limit exists.
(For convenience we set
. —1 ™ . .
§’?\f'2;m (‘Xl'“ Oj""'z D/ S iﬂm) = €;me (Xi"'#ﬂffl)‘\nn))

To make this somewhat abstract setting more concrete let us give some
explicit examples of lattice models satisfying the above requirements.

Examples 9.2
dfr . .
A) with +bd conditions  d=2

In this case the field ¢> has support on sites and is real valued; the
measure ¢l V7, (95) is given by

a)z“

25

O)VA(?S,\) ~ T Dy € K@Ag(@wﬁq}

[
>
—~
"S\X -
’\5
i
O

where dgéxis the Lesbesgue measure on K , 2, AelR 3 and the
function 5,\ is given by *

S g == Llpl =7 1(p-p)

<vreh & C <oved 2 .
The measure dv), s invariant under g—>-0,, x €ARAS0 &= Z
If w{,w@%z{@i% denotes the associated gauge field, the covariant

derivative is defined by (v ¢> _ ;ﬁ e i Cx)éxy;¢
W ey - X
¥

[ e
s0 that

D(w) = I eep [ ,(?5} ((f T @ ey 1) fﬁxj

Ly e g U/?ff? o



AS an example of a < gauge invariant field we can take e.g.

4] LT e

= or : . e ,

JOX LT ?bx s t"éﬁxu ¢;}_
7 &

where | x4, is & curve conhnecting x o Y .

Using cluster expansmn techmques, ohe can see that also the

field I#A(x/ = 9{? 421/ iy T’ s allowed.

This plays a role similar to that of %\(x) in {Ising), in distinguishing

between + and - conditions.

B) Higgs model.

In this case the measure ¢ /1\7 depends on a gauge field defined on links A
and on a field defined on sites ¢ » the Higgs field.

We discuss two models:

i) _U(1) Higgs with gaussian gauge action.

Here A is real, 6;3 is  valued and

P A0 M}\(szbzrz‘
C}j \;'\ ( @,'A) - Z(l/_,\ d?é)( c /é ' ) ¢ (Prz«r“gna‘)‘

)(6/6‘)!’\

4 1 —wplieAn,,) 8,1°
T, T R
S = 2 AT

and F(A’/ is the necessarg gauge fixing term, ¢c~//€ F o
We can take e.g. the Landau gauge fixing.
£, i‘/’r) +C

T2
F(A) = 1/\

with ¥ C  suitable constants; {see e.g. [23]). The measure A% (;é/ A)
is invariant under '

41

A 7 Aoy + L Nays Noxys €2,

So if we consider the 2nd-rank field (o with value in éﬂ'Z )

D(w) = I &pi L@ A +wp)"- (dA?,j]
Fe P
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As an example of ?.Z/:_%zrz gauge invariant fields we can take e.g.

or its non local version, the Wilson loop;

/j/ ( C/\ = 7—{# ’QM" e /4<.><>«>

ey (O

where C is a loop, and the string variable

?g’f LT s Aﬂ‘-’r‘v*”) ‘éé

\’/\.\,, € r)ﬂg‘

ii) Higgs Model SU(N)  d=3

In this case the gauge field ¢ takes values in the SU(N) group and the
Higgs field (> in a Hilbert space V, with scalar product ( -, ) carrying
a unitary representation U of SU(N)/ Z, (for simplicity we

assume (¢ O)=J) .
. - A Re ‘r@xg U( «y)) g)"’iJ
Ao (3,0 = T dg., Tag T o or/®

<Ry Xef » Sryde A

L

S, (dg) = L ‘ﬁé/\ Re (f"){(cqr@?)ﬁi)

¢



with f{g‘;x@the Haar measure on SUN, ){ a faithful character
of SUN) . e YKTL . (5[“(;5){ a measure on

This plx';‘-’\ measure is clearly invariant under

(é.:%‘y} — s

Ly

Hence if «o is a rank 2 field, Z  valued,

N
Dlwy= T £ “ -1 Ke | )/ W —
J j;, £ o uip[ij " /7 i 62_ Ve ( f’ g? P>
- 7/“ A(,ﬂ {,11 ? . »«w-{
- Algep)

C) Rank k-Stuckelberg models d=K+2

Let A, be a real valued field of rank k , and BH a J(1) valued
field of rank-k-1 {for K=0 we set B_‘:«O y and take

A0 (A Bew)= T dA () T dE,_ ()

Cp €N Cieg EA

- ‘—ﬂ— C,z},‘, f P [C&)< c AK Cee) + o B, Cc K}) - ij 75

CK(’? A \

S,\ Cp) - é_ S (alAK Ccu,))&,

; Cicﬂ A

e %f e / 5/ & WZZNC S

43
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where 9’/&‘&@&) is the Lesbesgue measure on /H)\ and fb) ig the
Haar measure an U(i); z,e¢ Ry,
The model described by the thermodynamic limit of

. 8/\ CD! A}‘()

e N / P - N\ - \%}
& ( ) /;: - m;{/:, (C/\! yj/{ ( A K Bk~~x ) c C 7 F(Ak /
“p

where F@k is a gauge fixing term (and Ffﬁg}gﬁ ), is sometimes
called rank-k Stukelberg maodel.

For = ¢ it reduces to the coo ¢ theary. ,

The gauge fixing [(4) is necessary if k> o since g\(dh) is
invariant under

A

K.

AK > AK "“('//\);.-1 EA

A, Cc)e K
so that the function %f: - ,9\&/&) is not ON,\ integrable.
The gauge fixing term can be chosen as

M N N 2
;:(A \) = p "Zﬁ E [@’i %A)(CM)] + C
K —

where C is fixed in such a way that

¢ Aot : ) \ |
K.«f‘l, F (Ak > 7‘}-‘ Ol /\\ [T g*—» Cl‘?*() S i
Comr © /\\7\%;
with /., a maximal k| tree. (This is a generalization to k>1 of the

gauge fixing discussed in [23]),
In this CﬁSEZ:.ZéD'ZL, corresponding to the invariance of c’\?under

Aca) — Aa) + F nlGd | Aol

¢

" and the external gauge field > has support onk+1 cells, so that

D &)) et W—' /QX/P i ‘*',}/: [(O’{A 2 C Ckﬂ) + W)chh))z"" (dAKCCH‘)):ﬂj(

[ P
- Svbp
C“‘C &> I,L/J At

AS 2’/ gauge invariant field one can take e.g.



. I f . .M
P N ! ‘~;f{/“ ‘; i
C%T‘ e AK CCK> + 0{ ;{;:‘kg,,.:

or, a choice which is more familiar [19] in the co- ;zf model,

CO& Z@ /‘tg{ (C:(\} + <“Hﬁ’lk”(cﬁ~7

Having in mind these specific examples, let us come back to the general
discussion and prove the

Theorem 5.3 (Reconstruction Theorem)

If the state < ()> = %V"Zof f«i”/%n[ ) defined in (5.1) is lattice
translation invariant and OS5 positive and the correlation

functions S o, m defined in (5.5), (5.6) are uniformly bounded in
their time coordinates, then the sequence

T o

J -
Z S’V\/m (Xif’(fi “‘X?\C[n;rl.wf’{m> %

PR ; W=D
determines a Lattice Quantum Mechanies { £, 0., [, U )

Remark 5.4 The non trivial statement of this theorem is that only the
properties of the state < ) of the lattice field theory are involved in the
reconstruction theorem also for mixed correlation functions of ordinary
fields and disorder fields.

Proof: The idea, of course, is to slightly modify the standard
recunstructmn theorem 1.1.

go let 5 be the set of all finite sequences iqr { jﬁflf of
complex functions OQ “ on (Z x%\@}) vanishing except at finitely
many points.t+)

Turn S¥ into an algebra, define lattice transiation in the obvious way and
define the & operation by

(+) Here the * is not the dual but just a symbol to distinguish quantities associated to the disorder
fields.
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2 (Xeqe 0 Xmfa) = +, (¥ ~d0 o0 WXy wq,ﬂ)

{

Now let fgﬁhe the set of sequences relative to the ”)\f/-ﬁelds with
support on ~ [7c [ and set

S = s”

s

95,

A
Define the functional on the sequences ‘F @g{ :

& D e Ton e )
S , ; @:7 (9 EERE Z D m m ( :?{’\h ) ’h‘{{ e i}
< e M om0 C
where
\ ”:“‘ A —
MW\(]()V\/O”” = Z d _ZT 2 J
l?f’i X,(‘:?Z }:i (3_}‘?;2.1
A€ I\ reee”
(5.7
o N
S (%l g g T g T

& ‘ .
5 j—m (*?‘f\.{, f{i (IR X n (;{W) ’ - av) Cji .L BN ‘é o }’)IWI )
and extend S to ;ﬁ by hnearltg.

Therefore, from the lattice transiation invariance of the
state<” >follows the lattice translation invariance of  the
functional S in eq. (3.7). From the boundedness of the

functions _S~, . in their time coordinate, hypothesis 3) of theorem 1.1
fallows.

So the proof is deferred to the following lemma.
Lemma 5.4 If the state < > is 0.5. positive then the
functional S is 0.5, positive.

46
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Proof. We show it in the

S(o¢g/ed)x ed))

(51, - 0

= jQ(x/%\) =l

case, which only involves the two point function
S ‘xad X ")
2,0 WX 9 X9

The general case follows easily by the same method.

We have to prove that for every complex function f(x q) with support on
L X \{oy

(Zf;ﬁ is the positive time dual lattice) which vanishes except at finitely

many points,

2 Z E E ﬁ(xq}ﬁ(x

ez 4 ged oy xez AN

NS, , g wl-q) > p

where the bar denotes the complex conjugation, and ‘¢ the reflection
w.r.t. the &= plane.

oA
To prove this inequality let ;{ be a point in Z  and consider the path
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. U = /- gt A1y , 1 od-2
fa - y (E,u7 7)) —— (6, %y Y
—> > (b, 0,...0,0) > (0, ... ,0)
if \3 is in the strictly positive time lattice and
‘ V- 1 G-ty by d-L
Yo ood= L0y > (4, 4t )
(4 94 9" 0) —
—_— A R O > - —=>(4,0...0)—

!

LN
[
S
~/

if 4 isin the £= O plane. (See Flg 5.1).

We now put a compensating charge Gf q at z=(v ,Z) and take as sup-
port for the “gauge” field o the dual of the curve Ve U)o Uz Urlfz
(see fig. 5.1). With charge g on Yx, ~¢ o)y, —9 on )=,

q' on 2y, , then the field ¢ naturally decomposes into

) = Og),i_-f'bx)_.

where w+ has support on Y)Y, (’Zﬁ Ur 9/&) and we have the facto-
rization pmpertg

D(w)= Diw,) D (woy =
= Dlxq,2-9) D (2 x -4’z 9q')

Mow

D(2x'~q’/zq{)c O DK Cf’/z”‘ﬂ"i e D(xq{{Z%{')
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and hence

2 2 E) ﬁ(x q) }va{/‘

xe g qge ANEY erN‘ 7’ez\<m

S 0 (x{x /ZX‘F)VC?I/}: &'M < 2 f}‘
K | Z-5ee /\ 712 ZX 79 + 9

xq, 2-9) ] 9[‘{ Pexq) Ding,z-9)1> 2

by0.5. positivity of the measure a//uﬁ .

[ =
L -5 ) 7Y t=0
z
Z Ya CI,
‘Z(}/Xs
zx' q
fig. 5.1

- A
Remark 5.5 On [ $* 'S ;] operators

O (Feg) TLE)

+ )
are well defined, with :_f‘@r% € i\;_x é?i; having support in the time
coordinate contained in the sfrip Cotd,
They are defined by

¢ (%) Tle) H*@H =[ (xR © (g% Rie)g)"
Clearly, for £&Z, ""”674 “and w= (F g{’)
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- <P FTeg) I, T VW) b (RFsL) >
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we are now ready to construct the soliton sectors.

Theorem 5.6 (Construction of the local soliton sectors)

If the state < >, defined in (5.1}, has the cluster propetty also wrl the
support of the disorder field (this implies in particular, by (5.6), that all
correlation functions with non-vanishing total charge are zero), then the
Hilbert space M of Theorem 5.4 splits into orthogonal sectors X, labelled
by the elements q & < and the sectors corresponding to the non trivial
elements of < are soliton sectors.

Proof. The ideas of the proof are very simple:

1) By the cluster property, JL s the unique translation invariant vector
in

2) Define the projection Pq of )€ onto a sector of fixed total charge q
by

Pq - H > XK,

[Fog1" > L R$7pgq 1"

H‘ ﬁﬂ";i ﬂfog 5:3% ) 7[3:’0('1 q> X759 )

_J:Z*'C%i 9e XL%.,) 5%“12/% P }

From the vanishing of the correlation functions with non null total charge
it follows that the sectors %‘1 are orthogonal and from

50
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Z’ P = T/
. , 9¢ Z :
it follows
- Pra
= & A
q@/: ‘

Each sector fis invarlant by inspection, under T and [/ and
since SL= [ 4"® 477, by 1) all the sectors Hf ,4#0 do not possess
translation invariant vectnrs

Finally, the field algebra

[0 (47 e) T o sopp gue (Do el x2%e )"
clearly leaves invariant each sector since:
O 1 eg )T () [ A @€ ]"=

= [UWTXREET) @ (g x R(E2)]"=
= LR ) w(ax king)]"

Remark 5.7 Cunsxder the operators labelled by the spatial
coordinates X & /"i and the charge o/c ;Z\{o‘(defmed by

S‘i (?) lxiqj v X C/m,' r; FW\>:

=] 0OR 9, e X g T T D

(In the notation used in the proof of Theorem 5.3

p(1;, o1)
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_ ()’OM,@)}D)) gchq m =4 )

Wwe notice that they are defined on | S* s _i';f]A‘and since S‘;L(Yc")‘ 9_6{()@
(the adjoint T s taken w.r.t. the scalar product in 7€ ) they are
isometric and can be extended to the whole £ .

They are called soliton operators and, as in the (Isingl, model, provide
nhatural intertwiners between the }(f;{ sectors.

Examples 5.8

A) For the ¢4 model we will show that the conditions of Theorem 5.6 are
satisfied in d=2 in the two phase region (broken symmetry region).
Therefore, the above construction gives us the soliton sectors of QS o s the
so called kink sectors. The operator = CX’) introduced in (5.8} is the
lattice analogue of the soliton intertwiner between vacuum and soliton
sectors introduced in [19] by means of an algebraic construction. For
fixed bd conditions the above considerations show that there is a unique
vacuum sector }f+ and a unigue soliton sector }‘{5 labelled by the non
trivial element 16Z = 7o 4},

However, if we introduce the operator [ qb—~>-¢ which turns +bd conditions
into -bd conditions, we recover also an "anti" soliton sector ?(‘3- besides
the vacuum sector ¢ .

B i) For the U(i)Higgs model we will show that the conditions of Theorem
9.6 are satisfied in d=3 in the superconducting (Higgsian) region and the
above construction provides us with the Z_ vortex sectors.

B _ii} For theSUCN)Higgs model, we will show that the conditions of
Theorem 5.6 are satisfied in d=3 in the Higgs phase and we obtain the
ZN vortex sectors.

C} For the rank k Stb‘ckelberg models <Z soliton sectors exist in d=ke2
for large =z and small & 3 for K=0 we obtain the kink sectors of the
sine-Gordon d=2 model. (= Cos )
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Remark 5.9 (Cohomological considerations)

In this remark we show how to extend the argument on the dependence
on oo of <I}€w>>ﬁ\made for A convex to the case of a general lattice
complex, making use of the concepts of cohomology.

The k-th cohomoiogy group with coefficient in Z (discrete abelian
group) of the lattice complex A\, denoted by H* (/‘\, ‘2"} is defined to
be the quotient of the closed ZZ valued local field of rank K , w.r.t. the
exact < valued local field of rank K . e if @K denotes
a < valued k- rank field with support in A\ :

k+
Hocaz) = Z A7) . 4t dg =0}

4 C (A Z) 16 AP, with p-d ]
where the quotient is taken w.r.t. the addition.

The r-skeleton of /\ is defined to be the set of all < <'-. dimensional
cells in /\ and is denoted by A, .

An open cell Cl is defined by

Ce = C\De,

where ©) denotes the boundary.
Then if /\ is a lattice complex, A‘\{Ek§is still a lattice complex and

/\z = i\/\\ i Cx%/}m 2 <k
Let now S (dw) denote the set of all open cells dual to the
support of the external "gauge” field w.

L
support of

open cells

d=2
fig. 5.2
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Then we have:

Proposition 5.10 The expectatmn value < D Diw) ,> depends anly on the
cohomology class L] ¢ H ¥ (A\S (du) ;z)

Proof., We first remark that ( AN S (dw) =N tor
%=1, .+l i.e. cutting out S (des)  does not change the set uf cells of
dimension less than «+2 ,
Therefore,  substitution of /\ by A\S@w)does not change the
measure which does not involve fields of rank higher than k+4 ,
Hence,

) In = <Dlw)>
But on A\ S(dw) we have yla) = 0

(AN S(aw), Z),

A\ f [d S\u‘;}

K+4

i.e. o e Z

We already know, however, that < D( W)Z\ is invariant under

W — b\)-f—dg

where f is a . valued k-rank field defined on A and hence
on A\ § (dw). Therefore, <Plw) 2, depends onlyon w mod o£§ =
=Cwd e 057 (AN S(dw) /2’)

[We remember that D(w) has been defined only for (/OLM 0 if this
condition is not satisfied we modify the bd conditions in the way
suggested by subsect. 7.12 and the proof of the proposition now works in
general as it stands]

This proposition shows that a natural classification of disorder fields on
the lattice can be made by means of cohomology (at least for the present
case), without any assumption of continuity needed in the the homotopic
approach.

It is also worthwhile to remark that if A has non trivial homoi logy (see
remark 5.11), e.g. is humuluguus to a torus, then S(dw) = q§ does not

imply H*" (A, %) =0, e wecanhave < D(w) 2 non trivial,
still with ol vo =0 on the whole A . (See e.g. [15]).
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Let us end this section with the answers to the following two questions.
What happens if:

1) the dimension d is greater than x+2 ;

2) we do not choose . gauge invariant ordinary fields to construct the
mixed correiation functions.

If d>ke2, the support of g\'?(‘(,.v)f is given by a set of closed
d- k-2 >0  dimensional surfaces. Hence the expectation
value <D(w)22  will depend on these and on some set of "< charges.
For d=rr2 given a set of points in the dual lattice and
charges {u, g:% , as we have seen, it is not guaranteed that we can find
an < contained in A\oA such that svpp (Aw)¥= {4} and ddw (4:7) =9,
However, if we have to deal with closed surfaces of dimension d-x-2% ©
and A is convex, as we assume here, those are always the boundary of
a d-i-1 dimensional surface in A .

30, given a set of closed surface in the dual ]attice{S’;}and charges 9. ,
we can always find a field w in A\JA such that (dw Y has support
on 42:t and dw(Ceeg) =9, if cmz“"‘egg,

Therefore, to introduce disorder fields in J>k+2 in the models
discussed in this section cannot give rise to local soliton sectors, which
require simultaneously the vanishing of correlation functions with « of
infinitely extended support, having dw finite support. (See fig. 5.3).

« oo gupport of @
support of o

fig. 5.3
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If we do not use 2 gauge invariant ordinary field then the mixed
correlation function will acquire an explicit dependence on the external
gauge field o .

However, this is essentially a dependence of topological (homological)
nature.

To show this, let us give two examples: the spin in 7545, and the Wilson
loop with fractional charge in (U(1) Higgs)s.

In the ¢; model

L Dloowds) @, o Py, > =

= < D(w) ng)ﬂf ?Sxf ei"Zxﬂ Q’S?““ >’

(5.9)

where ?x; =0 if the support of d? fgdoes not enclose point X, .
Therefore the correlation function (59) is invariant under w-w+d? if the
paths which are support of «™ and of (v +d})“are homotopic in RA\ix,.x,[.
Analogously, for «(e/R\zZ in the (U(1) Higgs); model consider

D T e A

o
D =
Gyrel, % c=p (510

This correlation function is invariant under w—-»wdf, ZW e u 2.
if the path corresponding to supp w™  and supp (w0 +df)¥ are
homotopic in JR°\C .

Remark 5.11  {Homological considerations)

For lattice theories it is more appropriate to speak of homology instead of
homotopy, since homotopy involves the concept of continuity which is not
shared by lattice objects.
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Let us just sketch how the previous arguments translate into homological
language.

Given a <7 valued field of rank 1</?, we associate to it a < valued
chain ¢, 1 N by -

N *
ol N\ —~F
f.g: - Z Zk‘. CCV»‘] Ly
CK*

.

The k-th homology group with coefficient in X of the lattice
complex A , denoted HKCA,Z),is defined to be the quotient of the
closed k chain w.r.t. the K boundaries. Le. if &, denotes a k-chain
in A\ with coefficient in 7

HK(/\/ZZ) = /e, D6, ,:o}"/ggbL TG, with 26, =G}

kvt

where the quotient is taken w.r.t. the addition.
In this language, we will say that the correlation function (5.9) depends
on g through the homology class (see also remark 5.9) ©

[Wfele HoCZiN1 o), Df,2,)

and the correlation function (5.10) through?
[@r), ] e B (2N (&), z)

More details will appear elsewhere.
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6. HIGH-LOW TEMPERATURE CLUSTER EXPANSION

In section 4, the particle analysis of the Ising model was based on a
convergent low temperature expansion.

Similarly, for the models discussed in section 5, we need a cluster
expansion which is convergent in the region of the parameters where
soliton sectors can be constructed.

Although clearly this expansion changes from model to model, some
characteristics are common to all, and in this section we outline this
general construction.

The specific examples will be discussed in the next section together with
the particle analysis of the soliton sector which is the main output in our
context.

Let us start with some general considerations on the role of the
group < .

The main difference between the models in section 5 and the (Ising),
model is that whereas the symmetry group < is still a discrete group in
the first one, as in the latter ones, the fields are continuous variables in
¢*, Higgs and Stuckelberg models.

Therefore, to pursue the analogy, we decompose the field ¢ in such a way
to emphasize the role of the group 7 and, as a consequence, the defects
associated with it. This can be done in complete generality by
associating, in a natural way, to the field ¢ in {5.1), taking value in a
metric space Y/, the pair of fields (e ) taking values in
(W/Z, X

To clarify this point and the next steps let us see what happens in the
specific case of v , the general case will follow easily.

The map defined above in this case reads

(f)xé;-,fR /(fxszﬁx;eﬁ?\uf_)B’KESc‘gﬁbgﬁ,{éZ)

This decomposition would hardly work in the continuum, but it is very
useful on the lattice.
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we take as field variables O, and the analogue of the Ising gauge-
invariant U -variable:

£3%4

e Q)(xy,?
djz%;f) = éﬂ:&] e {)")(

we can do so because all correlation functions in @W we discuss are
Z ., 9auge invariant {eventually co -dependent) and will therefore depend
on < only through the field V" .

The field U satisfies

C{ v = ﬂ{é&)

and from the definitions (5.1)-(5.3) one has, for instance, the following
representation for the v.e.v. of the disorder field:

Z, ()
. Nl dvsdw
<Dy, = Zalle T
,\ — (6.1)
7 > Z, (v
vidv=0
AFyc s x‘\_?’ i
with
, ~>\ (Px“oz> :% (ﬁ"vﬁ;)‘a
Z, oo =T dp. I |
XEA / <>~y> e
o I 6.2)
Prfa (Viey, = 4 - - (
e T 5 (px-po)
Layv EN ke DA ) o

where  d Px 18 the Lesbesgue measure on ﬁ{, The analogy of {6.1)
with (4.3)-(4.13), made exphcrt bg the substitution
77/ {l ( Lryy T
& <———--—w—-_> Z (v

Lxyr & A
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is immediate.
Since the 7 valued " field in the numerator (resp denominator)

satisfies <[v=dw (respdv-o), it has support in the dual of a set of lines
with boundary supp( clw )*(resp vanishing boundary); moreover, a given set
of such curves completely characterizes a U~ field configuration.

Therefore, supp (V) " = f Yi oo e E» ,

s
where [; are maximally connected closed curves in the dual lattice
and ™ is the union of all the maximally connected curves of the non-

vanishing boundary. (See Fig. 6.1).

d=2
PASD 7
| -
— —
f ) ! !
T 3 =1
¢ ) T
A M
e i
b - —
fig. 6.1
Hence we can rewrite, for a U satisfying (6.2),
P s
Ll = Zy (e T y*)
and
, - Z Z CYa - w
*(;\_ D{W’) > = /&m {53 (fmfb/w} A {”\/ )




The closed curves )/ are nothing but the defects, called Peierls contours,
of the (Ising),model underlying I corresponding to the discrete
spin variable & . ‘

The open ended curve <j’ s a distinguished defect associated to the
introduction of the disorder field L(w) [See e.g. 10]. |

Remark 6.1 From the above considerations, the following intuitive
picture emerges.

To introduce a disorder field corresponds to "open” some Peierls contour.
In a “particle” picture one can interpret the Peierls contours as the
worldlines, in the euclidean section, of pairs of virtual solitons; therefore,
to open a contour corresponds to create a soliton at one end and destroy it
at the other end of the "open” contour.

Remark 6.2 In general, equation (6.1} is valid in the class of lattice field
theories considered here, V™ being a ¢ valued field of rank <+4 . In
this case the support of U™ in =z, (v) in the numerator (resp
denominator) is the dual of a set of d-k-{ dimensional surfaces with
boundary supp { dw ¥ (resp vanishing boundary). In general v~ is also
characterized by some charges q; ¢ \{ofrelative to these boundary
surfaces.

The closed surfaces are the analogue of the Peierls contours. Also from
this point of view, one can see that the soliton in this class of models can
exist only in o= k+2, since this 1s the dimension in which the Peferls
contours are unidimensional. Moreover, it is intuitive that soliton sectors
can be constructed only in a phase where the contours do not condense.

These general preliminaries suggest that a convergent cluster expansion
for <D{)»in the region where a soliton sector can be constructed,
should contain a contour expansion relative to VU~ and could be seen as a
generalization of a lattice version of the Glimm Jaffe Spencer [22]
expansion for ¢(g (see also [23]).

The expansion we discuss here is, in fact, similar in spirit to the G.J.S.
expansion, but, after the Peierls contour expansion, instead of using the
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expansion around a gaussian, we use the simpler high temperature
expansion.

This is possible because we are working with lattice field theory. Clearly
this is not a good starting point for & continuum analysis. However, for
lattice models it has the advantage of nicer decoupling properties between
the clusters.

The main assumptions to set up the expansion are the following:

1) The presence of a contour gives rise to a strongly decreasing exponential
factor, proportional to the length of the contour (and the square of the
associated charge). )

2) The meagsure cdv( 05) =4V (P} (since Av( ? ) is A gauge
invariant it does not depend on U) is strongly peaked around a
value 0, of f , and fluctuations around (. c¢an be well approximated
by gaussian fluctuations.

Point 2) implies that S, (fv)= S _ (v should not, with high

Tt
probability, differ from S o, ) , and therefore
Clagt T

a2

- E.. g::’w; Cﬁl}') - SCW (/oo;\-’)]
£ {

should not be very different from 1in large regions, so that we can apply
to it the standard method of the high temperature expansion.

Moreover, in the convergence proof, we exploit the locality property of
S/’\ and ¢ \?A ( fo) shared by all models discussed here, (i.e.

N

where S; just depends on the fields 50 and U with support in C e
X 3

and

Avpy =T dvipcc)

L&A )

and the property
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S (e, 0=0 (6.4)

Cety

Let us start by considering the simpler case of the partition function.
We can write (see also (6.1))

- - S (fo U’)
= 2 c et )
a vidveo Sen EN ‘FQ’ >/‘a (/D)
/ ~ - (6.5)
. . [ S CK:H Cf U') - 5(:%* L’D) ,j—)v‘ N
" i | 2 \ + 1 )}'
Ckf; [S7AN

Introducing the notations
rS

— L =, kP/ U‘) - SCM—[ (’)Od/vo).fi —
e — 1

Y
0

C v)

C 0
ki) 1,

AF o) = dvipe)
o

(6.6)

Y ‘ ) \
) =T jdf'pcmy
AN S (peaw)
developing the sum in the integral and dividing by Z (A), (6.5
ives
: 2= R - Sf\ (po,v)
Z =Zm) L L ¢ |
A Vidw 20
' >m XT d \/‘}J{f‘ Ccd) T [f (/fhi'w/' p, ) { (6.7)
v e A e X | Cevp €N -



where X is a set of maximally connected clusters X of k+| dimensional

cells, X= 4 Xa... Xau)

V¥
Let v={ 5 . U., ", where the support of (U;) is maximally connected,
then property (6.4) gwes the factorization

/QXf]"’ - 5}\ {;D’)} Lf} = ;qi SC&H—; (/00} “7) $
’ ' ey & >/xzzr %

------- SUpp v

Now call

Zvy) = Qﬁ) { CV.HG SUpp SC““ ‘ Fe) V‘) ;

() = T -
Z &Xd}{ MJ (i ( FL»*}) T I {Qﬂ/’ P, {;)

I
CKCX Cerl X&

These can be considered as activities of two different types of polymers
v, - and we can write

Z-Zm L X 0z T =

(6.8)
Xyooo X

" V“"\)'m

We now group together all the U -polymers and X—palgmers into
single "connected” clusters, as is done in [23].

A configuration 1.V, S Xo- Yh‘s said to form a cluster on

g%

C::. SU/’;P(UiX \/)/U‘)

=

b4
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if
2T (U Xy D))
¢

; a

is connected.
One defines the activity of the cluster ( by

Ze) = J I =cow) fljz[x;)

- N B
AV X elusters onl (6.9)
T
R S
ST | |
i B F I f“'“““’!“‘t ;
¢ i ] b f”'“i !
5 I a * R .
Aoy ome |
A configuration forming I ¢
aclusteron (=X Usypvr 02— —— )
k=0
fig. 6.3
Mow we can write
Z - oo
A e/
A = X I =(c) (6.10)
ZA) €y Cp A7

(clusters (', are then "maximally connected").
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Eq. (6.10) is in the standard form of a cluster expansion, and we can
formally take its logarithm by the well known formula

—
'

,/g“?\f "'”\ = Z T Z;({:;E C{)ch) (6.11)
ZN ¢ cec WAL

a3

where
1) Q is a collection containing clusters repeated an arbitrary number of
times; _
¢! = I | n(C)
~ sp C 1 Cel
M () =4 % Ccel
with the same support, supp C}
3) Let E@ denote the sum over all connected graphs G, having as vertices
the elements of E s let <, C - denote a link in the graph and

. C, (0 C o
v (c¢,) = { = AR &
O L, acC . = fj‘,

_ _/cee)
Then  Fp (C) = 2. T Ce ~1)

<Cl Cg_/? [ G

(Motice that the combinatorial factor a,. , used in sect. 4, is given by

(v )

Before giving & sketch of the arguments for the convergence proof of
expansion {6.11), let us first discuss what happens to the correlation

.,

function <D (w] > ~  When the thermodynamic limit gives the two point

soliton function, i.e.

/&/md <D6W)>/\ = S&& {LXC{ ém?)
/’1'7!2(;
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Afterwards, mixed correlation functions can be worked out easily.

As previously discussed, the introduction of disorder
field D(w) introduces, in the sum over the field configurations U™ in the
numerator of (6.1) and (6.3), a component v such that @r“’)% has
support on a curve ¥ with boundary {xy }

Therefore, from (6.1) and (6.8) we get

Zi) =% () 5 R T

g

PR—

zZ (X)) z(v?)

Q-
M
e

kY
Again, between the connected component of P@) (JJX . from which we
form the clusters, there will be one which contains v,  The

corresponding cluster , which necessarily contains also xy , is
denoted by C

Now, a configuration 4 vy ... Vi, V¥, X ... Xm,}

(all v's are disjoint from each other; all X' ‘s are disjoint from each

other) is said to form a clusteron & = supp (U () X5 Uv™)
it svpp (Vv 0X; U e *) is connected.
' d

Then we can write

) o z(C)z (™)
— {C, Cm,C ¥ ¢=1
AN ﬁh@éw)w}f‘

‘We now use standard technigues of the cluster expansion (see e.g. [10]) to
write



{Diw) )=

= 6%0,{ j@@

DY
ce”

Let us come to th

Z / ;7 ‘A )
/ir e T ) \}
%}7 (£,¢ T = (c)z )
Joir tee o |
I Lo d=2
k=0
1L i = e

,,,,,,

~~~~~~~~~

links on which
hecessarily v=0

fig. 6.4

e problem of convergence of (6.11), (6.12).

The convergence proof is based on the following steps:

1) obtain upper bounds on
2) Using 1) and {6.9) obtain upper bounds on

(and = (v™) )
Z(¢) tand z (C¥)).

Z(v), Z(X)

3) Using 2) and (6.11) {or (6.12)) obtain the convergence of the expansion.
Let us first fix some notation.
we denote all constants in the bounds by o <¢; < 3 if one depends on

the parameter of

the model it will be denoted by ¢ @) , where ¢ is

intended to be small in the convergence region of the expansion.
The bound on Z7v) is typically trivial

}Z(v)l

— Cy(e) g%
o 1

-

w”
Cr+t € WI?E;?"U' G, (e) e

e V0

(6.13)
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The bound on Z{X) Jis typically obtained by the Holder inequality (see e.g.
(101

e .,L
rr
(”} < | JW_ d»?(@(@c) T)(‘VKHPV))J
CK“H eX  — Cr€DCuyy
where |~ :{ number of <. cells sharinga <, cell}.

We  now  approximate d?(pak))with a normalized  gaussian

measure M. ( [ m) (whose normalization factor we denote by Zé )
satisfying

T avcpeen Pl <[ 2o

- ’L
C‘&G'@Ckfl a | %Jd\/(lo( y;ﬁ—é g{:ﬁ (fcc‘t)j f(c“’”

evaluate the last term by gaussian integration, and bound the first term,
typically, by using the Jensen inequality.
One typically gets

[X Osoppl _ce) | X\ (X0 Svpp ) |

Z(X)| £ ¢
Z()[ < ¢ = (6.14)
¢, @) \/700 Cole) >> €, (8)
a¥o

The bound on the cluster activity is obtained using the following

Lemma 6.1 [23] Let Y and W denote  sets of cells in /\ ,
7@ a function on the subsets of cells of A , and define

”jH{K = Sup 2 lqﬁCY)z C‘Km cwe

x e Y. Y /'OVCAQ,QX

£, W]

Y :each Y touches W

LW



Ta app}g tms lemma, if X # / 2_, we first sum over all charges
in 2 N\{o" “, on every cell in the support of U , using

— Cue) gt e
2 e N
76 X\ 1%

(e omit in the following ¢, , it will be adsorbed in  C,(e) ).
Then, denoting by )| the support of V;, we have

< e =Jeate) ¢ el]] - ¢ )| X,
zco)) < 2 e
SR . (6.151)

A Xkl ¢

‘{WJI' ";{6':7 C[Uﬁf‘ers ghc

N - I X n%()f‘»g‘w "J’g
where we have used (. (e) >> ¢, ) to bound €,

We now observe that

N
3

(since X 's and | ‘s can overlap) and we extract an exponential factor
decreasing as [C| . We then substltute L& Xﬂ 10; )gmusters on C
with  the  collections { X1 of y's and X's  just
touching ([ (dividing by the number nf identical permutations).

5o, for ¢, <'¢le) large enough, we get

- (&) -c)c| — e < lx]
| Z )] e L T e #reseasin
| ?f% o S pe;f
each %X Fovehes C
and, applying lemma 6.1: :
-C. (-
['Z (C)} ¢ C“@zce%@)]d o S lle ) I, lC[: G-.(czce%cb)fq
(6.16)
where e -4 C'>H
C¢= S IC o TCe

70
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If we have V' in the cluster, we cannot sum over all the charges on the
support of U, and in the collection jf used in (6.151i) we must start
with @ minimal " , having the length f}’xy} of the shortest line
connecting X and é

Therefore, for the two point function of the charge ¢ soliton we have:

, < T = (&le)—C,e) |y
vV w t

{d/i i(&’bw}&

{V:,Xé,w“’}’ clustery on %

{6.17)
- 2 T o —c, @[ X5
e\Zco(e)af - <, (e)] i(}« [ 77 o 2 &} ¢

N

Ty gl
,*.-;C 0‘\9) \f .

{ e
Finally, to prove convergence of {(6.11), we use the following

J
- o120, Ty | o ~er-cl )™

Theorem 6.4 [23] The cluster expansion (6.11) converges if
= £, kro, such that, for the activity of the cluster z(c¢), the following

bound holds:
|zl (4« 1)< 4

[ o

Using bound {6.16), is easy to see that

, R *[Ca(e)—céjl‘}
” b Qt}jik’ € “ € “k &f O
¢, ce) /oo (6.18)
Now, for =z (C*), define
wlevl
12700, = 2 lzc9le e R,

/

CM)
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Notice that all C must contain X, 4 , 80

~ [c m(c’)@/h C e~ Zc%j[}/xﬂ (6.19)

Theorem 6.5 Under the same hypothesis of theorem 6.4 and assuming

_7(,\) N ‘;\ o
Ihz2 e revr 0 the cluster expansion (6.12) converges
and, moreover,
= ( ws ’ o
e ‘ L 2Ol
> ) R (6.20)
I Ly 1- (i ry HL:{;);;HH&

The proof of theorem (B.5) is a straightforward modification of the proof
of theorem (6.4) and we will omit it.

Notice that, as a result of the above bounds (and analogous bounds for
ordinary fields), if the expression sketched above converges for all mixed
finite lattice correlation functions:

1) this proves the existence of the thermodynamic limit for the correlation
functions by standard cluster techniques;

2 24 =g , from (6.19)and (6.20)

| S (ks dove X m 2795 . )]~ o Colzlq"

N1
! Izl — 00

where (C(¢) :Ofcocw) ‘
Therefore, the conditions for the existence of the soliton sectors are
satisfied.
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7. LOCAL SOLITON: particle analysis

In this section, to study the particle structure of the soliton sectors in
class & {local soliton), we will use the excitation expansion of sect. 3.

It tumns out that the soliton state, corresponding to
the S, ( X') intertwiner operator introduced in (5.8), appears in these
sectors as the lowest lying (massive) one-particle state with non
vanishing upper gap.

Before giving a sketch of this adapted excitation expansion, and to apply it
to specific models, let us first state a general theorem which shows that
to know the mass gap we just need o analyze the two-point soliton
function.

Theore 1. If the measure (| M <ﬁ ,) . defined as the
(thermodynamic weak limit) of (5.1}, is invariant under reflection wrt. the
t=0 plane, then the mass gap ™M, , in the (- soliton sector }{q L qed \{o]
of theorem 5.6, coincides with the soliton mass defined by

mg o= A =L <5 ) s, T S, (B0 0>=
g N - | )
£ —=oo
,, (7.1)
= dm _ 1L An S, (0 - &0 9)
% co t '

Proof: It is essentially similar to that of Theorem 5.6 in [24] and is given
in Appendix 7A.

we then consider the two point function S (0 -4, &7) c() \
In the previous section we have seen that it can be expressed in our
models in the form

5, = bm 2 T 2Ce) Z(e®) Gl ™

0
| Atz g CMen ek [l @2
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which appears as a sum on a “decorated” path from 0 to (¢, ) since = O
unless all (C touch each other.

Let us see which configuration Q ,C ~ produces the leading term in
the sum.

Clearly, one must have C rf and the support of ¢ must be ‘the
smallest possible: the dual of a straight line joining 0 and = - E=(£D7).
Let us call wathe corresponding cluster, it is easy to see that it is
composed of t disjoint k+1 dimensional cells that are orthogonal to the
time axis.

o =8
11

o b

SRR

— Fiwﬁ

and the corresponding term is simply
- €

| Z Ce= )]

Clearly, this is also the leading term in a similar expansion for

Z S, (09 &Y a)

.t

(7.3)

where (c cu)xhas support on 0 and on a point in the hyperplane x=t. (See
also [17]).

Now, we identify regular parts and excitations in a configuration cc v ;
as needed for the particle analysis.

Definition 7.2 A k+1 cell ¢,,E{S,C*f 1s called regular if:

1} it is orthogonal to the time axis,

2 it oceurs only in C7,

3) there are no other cells having the same projection on the time axis,
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4) it is not connected to other cells.

As in section 3, the maximally connected set of regular cells are called
straight lines.

The complements are sets of cells whose projections on the time axis are
disjoint.

A maximally connected subset modulo vertical translation is called an
excitation &

Define

C(e)=C Nne CVE) = Ne

then, if a path {C ,C%) (with .(ScJe) contains the excita-
tions {g, &\ (compatible, allowed in [0, ¢ ] along definition in sect. 3)
by inspection we have the factorization property (see definition 3.) after
eq. (6.11))

n

Jr—

SN
Fo (L, C70 =

o (Cle),CHCe))

Then, we see that every straight line of length 2 gives, in the sum
(7.1)  {or the corresponding one in {7.2)), a contribution
[Z (C"= CH«UT" and an excitation gives a contribution

T Zccen z<e®s) g (U0 %)

C(é)e C(E) (ol
Therefore, if we define
i o o frce)
;(&) = ﬁ Z(Ce) Zz(c™e) Cﬁr Lele) ) [ZCCSCHJ] )
C‘CC')(—AC;(&) /CCS)“

as activity for the excitation (see section 3), one can write

S5 (0409 =]z (0] 5 T 56
795 , € .8 =51

0
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Moreover, using the bounds of the previous section, the bound

G -~ | ’ 2 5:' P e ) A ‘w' T M(/:C (G) —'@ 3 7 /ﬁ ] ‘!}
\ L) C& ) 3 Q 5;'1 § i g[c}/ L Uw}) / j{t 6 2 5o~ /\.a(f,!
i Ay CleyeC (£)
{ ‘7~ ) NG A { ‘ s

: - |
—[eeccrgc,ce) pc. T hmrey) ~LG @ =2l 1c“el . | Te),
c = l{ /=4 Ce | lﬂ'(,}g e 2 :{! ) l (¢ :Ckfi)(

is obtained.
Moy, using

(G (L0, D[ et

| ¢l

where c is a purely geometrical factor (see e.g. [17]), and if we are able to

prove
2 2
- -G, g™ , / —C, (L9
Cz C o L wazck-m) < C, @ | {7.4)
one gets
. ~ce)~ch—-c)lel
W(Hlé congl g T ST L
(?.5)

Therefore, if we formally exponentiate:

W

;,/” Z T— ¢ (& — ’”‘é T /e c } (7.6)
p '.i.f. )) 2y ; ?eg T(e) wls)

s
[¢]l

“
R AN
P

the expansion in the exponential converges for ¢ (¢) large enough.
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“len 7Lty . . .
Denote by t (,:%3 e vE/ 7, respectively the lowest (highest) time
coordinate in ¢ . We split the sum over the clusters ¢ of the
excitations allowed in }:Oz £1 , in the right hand side of {7.6), into
three terms:

oL E7 (e el ETce) & (o,¢]
h !‘ ] g

2 £ Lty <o b (g) »¢€
S N ’?"/; N

3 f (& 20 ETCe)>t o
ETiE) <0 AP

We now add to the first term the clusters of excitations allowed in

(2o, roo) and, by adding them to the first term, we ge
17 € allowed in{ —co, too )kt (e} & [0 £),

2') is defined subtracting from 2) all the excitations present in 1’), such
that T¢:) O 0" 1,

3’} is defined subtracting from 3) all the excitations in 1) that are not in
1oand el Z ol

<
<
t

Therefore, using the translation invariance of the sum over excitations in
15
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~T ("‘
From eq. {¥.5) we obtain that for large t, the sum é 2! ) behaves like
a constant, and xﬂt_ a\; "/ decrases expunentlangJ in t, since every
excitation in 3 ) has 7 2 >00 k.
Hence Lep £ "\’f\;;(:" =" for some uo.
Eg the spectral tﬁenrem
S, (7) 5L ST (8 U () % () =
- fgﬁpﬂ A K e e
J -)CF
vhere dpﬂ is a positive measure and
Jﬂi —_ M O/ 5 -
spec ¢ o supp APy A0
/ |

Using the above expansion we have shown that

>

2 <SP IL, TIH U < 5) S

= | de. (4,7 e ~~ e e (4re)

- £ =00

where - is the mass of the soliton {and, by theorem 7.1, the mass gap
inthe q - soliton sectors). From (7.7) we can identify

/m Zr C “Cu“ )+ Z T éf()k@f(é)](?a}

e (e) o (£l
To have more detailed information we now need an explicit analysis for the

models which will be also helpful in clarifying the previous, somewhat
abstract, setting.

Example 7.3 (,5_ with +bd conditions.

Using eq. (6.2), Z , can be represented as




| -/ /v}ox ey -
Z, =2 JT s e T Stpep) -

vigdv=o X&OA {7.9)

”_____ V3 ) \

C/br ( (P = Pal PPy (Ve L
()Qv) :—/\ i | C / l /D‘f ﬁ._ M /}

One easily identifies

{

~A (/jf" o 3’('/,3{( N f&)) x e DA
AViex) = dix e ,

y L
This measure is clearly strongly peaked around Po if A b is large
(requisite 2).
The function § (p, vl is given by

VZL (/ﬁ"’fq,f ”T’[f’}, 2{ (-1"4,,/))

so that

(7.10)

Therefore Peierls contour {support of ¥ Clr =~1)) gives, in (7.9), a
strongly decreasing exponential factor if fa is large (requisite 1).
The activity of - and )( -polymers are easily recognized to be

_ 2P,
Z (v) = €& )D "yl (X,VHMJ‘:’D
: T f’*(}a’fﬂff(w>"§
z (X} = JT"“‘”'lwex[gi T
= ‘\‘l//ﬂrh 0/\\? o 4)&“‘/ ”T:\
J v I P e g0

where X is a connected cluster of links.
Let us now come to the upper bound for Z(X).

79
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Define \/M ) the normalized gaussian measure on TK with
covariance C(, 2\11 and mean fﬁ , and Z@its normalization factor.
By Jensen mequah{g, we have

f
o . L
’ jfljfml%f g = j dn, () | 4- Al pe<o )j ,Q»s:i;/;,s?_x\gg;fnfu i

_A <(P.»c fv}z((’xvfpﬁ)‘z‘az:’?1;,2Cf’x"”{7071> _\{'Z —
‘ ‘LO(@ O)Z/C

(ff" J>j/

with < > expectation value with respect to {/"{y .
Forlarge )\ p2 2nd A= 0(4), T =0(4).
Let r = {# links sharing a site }, then using

2 - 2
RO P
e ~
and the Holder inequality:

L
Zo0l « T T [doo 450 | B e vl J %

Lot X L
Ly C A

s
rd /i () N o . | “L_/J X
Tz 77 exX [ J'/‘f""e»(f%} diipg) | T ey sp,0)]
If 7 - -1 we use the gaussian bound
(AN (A i
C o) Btn | Bt 6 o] % O0p5)- 0
It v, =+l ,byusing | P| <4 and the Jensen inequality

f”//u ({JX ﬁ//{ k F (<x7> (D/ J‘é)ﬂy/ _Jr‘j'> ;
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[
I
et
A
-
NG
i
}
=
>
|1
/\..\\
N

[ Pye

where <~ is now the expectation value w.r.t. a{,{(} P a//él_({
Therefore, we obtain: |

N I
-0 (4n Al ) fl HAX N ?y}nj@p*w; O l/_j_ XN sore L‘} (7.11)

.
\//‘\\/

Z(xi 1< e

|7

Making comparison with (6.13), (6.14), we get

-
c,(e) = 2p,
c,e) = O (In )/“o)ﬁ

(7.12)

It is now evident that, for C.,(e)>>C ()  the convergence condition for

thearems 6.4 and 6.5. o e)=ciyr \
as (, Ao, is satisfied . From eq. (7.11) we also get estimate (7.4) in
the form

—2 ()f

S -2p) p
2 (chep) <o e e 0 2 (Ko )

[ , » y ” z; 3 (?- ‘ 3)
} A( Xtdm)f} ‘ v;:\/) . ‘L> ( Ei;_, Oé»:‘%}
so that for large >\
(A



(Note that the second term in (7.13) is due to the pnsmmhtu that the

<=y~ link, support of ) , is also one of the clusters )\ of the high

temperature expansion).

From (7.12), (7.14) one immediately obtains the estimate for the

excitation activity
[v,g "]

i/'
i s $
AN

— WO(:W/\P(;") = C gzég
C 6

which, for large }&pj’ » Quarantees the convergence of the excitation
expansion.

We are now ready for the estimate of the soliton mass and the upper gap
in the two point soliton function.

The leading contribution of the excitations in the sum 1) is given by
configurations like

w

- C
A EFFF DR R ER ~- sy )
\(?\-&h#\b"}
which gives a contribution < . 80 that from {(7.8)

P O( 'J?"‘ /}{‘ ‘,:4‘ 4 ,j

7
e = 2 (/)v,;. ~t e

-’

An estimate on the upper gap 4{ is obtained by considering the leading
term in the sum 3’), cnrrespnndmg to an excitation configuration like:

w

g

C
-t -4 FETFFIH P+ __ supp («r“’)g
—_ 0{3‘)\)&{’0[
and hence gives a cantrlbutwn of order c
Therefore, = Oftn s 9)
One can alsu easily prove the Ornstein Zernike behaviour.
we collect all these results in

Theorem 7.4 The ¢ 2 model deﬁned in examples 5.2,A) for large
Po and large X f ( 25> bahpl ) (broken symmetry phase)

possesses superselection sectors labelled by Z sector }{ corresponding

&2
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to the non trivial element 1 of 27 /02, 1" is a soliton sector with mass
gap:

—Of én ApS
M = 02/’-57' Cht}

and the one-soliton state is the one-particle state with lowest mass in % "

Examples 7.5 (_U(1) Higgs)s with gaussian gauge action.
we first rewrite the partition function of the model (see Example 5.2 B 1)
in term of the v-field. This has been done in [23] but it follows, quite

naturally, also from the general procedure outlined in section 6.
The result is

— w}\ p;mﬁ;u_
Z/\ = 2 7/’ ﬁ{/}’z@w s’} f e Y
vidu= 0 =T\ ’ xe A
; (7.15) )
= e b ey (1=cooe Ats) L dAes)”
- - }/\‘a e
Loy 6'/\ ’NQA

P {
where "V,a is a field which takes values in j(f’ii g /i{,,(},.} is a field

which takes values in [-IL L T) and a/A is the corresponding Haar
measure on V(1) ~ [& m) .

The field 0« takes “yalues in ¥ andaP/J is the Lesbesgue measure
on K,.
We now make a shift 0.—9 P+ [0 s0 that f, takes vaiue in E-fb,fWTl

As a formal "Higgs mechanism®, this will produce a "mass term” for A in
the form:

0l (1= e h) ~ plet A

Euo

Mow, defining



&4
dv f{’« ~ 4 )(Ox ,?/?'? ; ~/\[ }wrfﬁ + 4‘1"0 )Ox )

) ; Z N
A7 (Aer) = dho, L= P2 (1~ @ e hy,)r i (7.16)

v

| £ A ) — {l{, : ’f“ﬂ‘)j PR
:»);)k/'l\i}\,/ LAy, iif)

Plers o A) = ep {-L gt w

(Lot paPr( 4= ceAa,, )l -
Ty e~ R

it

/’) . ) ; o T
L ( }/ , /L \‘l y 0 ) s QA))){/ )L fd A}) 4 U 7 ) ([‘ p— 1 V}

we can rewrite (7.15) as

= 7 C A el A R w0rn )
. 2 j T de(Aa,) Z;MAWX/

To have a large exponential decreasing factor from the Peierls contours
associated to non vanishing Vortices U , one needs, (reqmsme 1) e W
be small so that, from (7.16iii)), C&fo -1 v, z L — Zr* L

is large (n is the charge of U7 ).

In order to converge the high temperature expansmn in A ) 9 . étsne needs R
(requisite 2) large p.e so  is strongly peaked around A =0 ,and
large )\ Po toensure Ju(p) strongly peaked around Po

Now let U= { T UL Y where Sopl ‘U";*' is maximally connected.
! H
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Denote by /< a maximally connected union of links and plaguettes. Then,

/\ o~
ROSPIRRY Xy
’f s {:}: l’k 4 I ‘7"1 \“( :

< {

£ F jff,r/z!m v p
! o ) o (717
2 )= [T 5@ T Plowiph)
J e )(\0 SN /Qéf

&
N N e ”A N o A o .
Z (/\ } N /i[ (\‘ 9( ‘.YD ({’[;‘\ ‘ 7{]M S\(/l‘ \‘s ’ "/; oo ‘/",«» ,A’[ {
X{J_/\ 1% [ “' ‘:“V’\Y.;)'EAVJ —&

wWe now get an upper bound on Z(X) » Separating, at first, the
(<wv and P(p) by means of a Schwartz inequality, and

{

contribution of 7 (<~
then using the Holder inequality:

N b { S
RV , e o ! ( '),
{ Z(,&/: T i ) j;“
L >{\ — J :.‘f‘,n}'} <
i
P r - S
. r ‘ J . AN d
[ | PO &/ Yory g >
o e

72 = {number of plaquettes sharing a link}

¥, = {number of links sharing a site}

We now proceed as in the }4’5: treatment.
Using the two inequalities



I B [ oo s I
@"/" i - S T /4- / ’>/! '—‘:}E‘ _, | j’l R S / [ 7{%‘;
~ s s a0 3 S l ~ 1 N ,D Z
é”q + 9 T2 Tx ‘vf ;‘9 o \’)c /f,(- joo X
and approximating A V(A.,.. ) wnh a gausswn measure with mean zero

and covariance (, = £/ /zyg <, and o v({ py) with a gaussian
measure with mean zero and covariance \:’;’;«af— /¢ )\f Jfrom gaussian
evaluations we have the following bounds

< t«t:vp
v VT | / /f A ZE/H{'%?) -
! AT a =y | -
b z) j’/")(@P/ g ”{X\X‘:}) \/‘{); Y o . o
< //M> (1 + 0 fé—"?%\ e 0 (§=)
7, Lf ol
s / } 1.2/72 7‘12—%1 < 0/ W‘{ﬂ
,’; J% é/< KCM)) v L /i\y {O\J }i il?\;/x 50/ /&)! ] — k},:{{?{;
Hence
/ TR /A

EZ/K\' < e OKE}L*Z)TO(PQ;%%) ,

/1 Me 74\(0} PiVp = lm

¢ ,  (7.18)
) —0( M pde)fx \ X0 W);/;U[ AS> e

) N soen s ) ,
Mj"ﬁ O ) IXON X Osoppa] 5 2

Summing over all "M;Z\{ o*}in each plaguette in the support of the
vortices v~ , and for small € , and for large fﬁ. , we get

/2))267\-?\3 L H{ﬂ O(vLi>7LO( éfw 1
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<9 24, g m i~ j\} /w (7.19)

AS before, a cunflguratmn ! Xs S, .U fis ;ﬂld to form a cluster
on £ = svpp L/X /zf it supp L))(er U (vz) is connected.

From (6. 9), (? 1?), (7. 18), {7.19), denntmg t:g ¥: the supports of (v\, . e
get

[

Z ?JACJ‘:’ , < Y, N e Lcﬁ:l (1~ ‘9('};@ /"" Otn ,.Péf)) 1\5!52

\_ | & /

7, X, v clusters on C

= 0lhped K, o
L c it Awoe”©
4

(otherwise substitute O/ /60 with " hipy /)

By comparison with {(6.15), we get

Se) = (42 0( L)

e 2 ,’ K./
:’L ) = (0 (6?\ F@c// >y r”
e {':2’"; { {:f‘ﬂ /')"\u (() ’; / /\ SN

From this bound we easily see that for large f,,)\, large pe and
small & the cluster expansion converges.

To get the convergence of the excitation expansion we also
need péez to be large so that for a suhton of charge % in the

formula L nl 0 + O 24, ‘
C - Ci“oif%;é)/ ) Fo ::'
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: pom /

_ar ;
e Y f’/ﬁ. 0&#}

the term [/ {f ﬁ‘-;:/ is small compared with 1.
Then the first contribution from excitations in the sum 1°) is of order

.

— 0 mpye) _ -
e if N2 €
i e f & if e e
j

and comes from configurations like

A Ve
The leading contribution in the sum 3') is of urder

e_o(én poe) b A oS e

\ "y
Lol

s
P
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Therefore, the mass
by me Z \io’ is given by

= or mt(d ,,,‘{._,{}/;L)q,
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of the soliton in
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/\>> €
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and the upper gap in the two soliton point function is estimated by
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We collect all these results in the

Theorem 7.6 The ( U(4)Higgs), model (defined in example 5.2 B i) for a

small ¢, large )\ p.° 2L (superconducting phase) possesses
superselection sectors labelled by Z. ; sectors ) n, M€ Z\{o" are

soliton sectors with mass gap

v = OCen e Ly

- o

— T m2 / / -
Ma= LT (L O(fg)) +{ gmoctit) e

and the one-soliton state is  the one-particle state with lowest mass in)%M

Remark 7.7 A similar theorem halds for the ( U(4)Higgs)s model with
compact action for the gauge field, having a period g-times the period of
the Higgs field. In this model one gets the .2, soliton (vortex) sectors
and similar mass gap estimate. |

Example 7.8  SU(N) Higgs Model

To analyze tms model we first go into the unitary gauge, i.e. we fix a
‘;«%, =1/ with ( <y @{,: | and change variable e (}Mm such a way
that -

4, UG, 60 = (6., Uil )

(we will henceforth omit the prime).
Then, we represent the partition function in terms of the v-fields as

Z/\ ) qr%u“;o JW 3*:0 { \[Re¢aldgd f’)ﬁ)

Ry EN

1 o) )
]} 2:& é’ E?\é’ /f)gp;((})l)}; I}’}" “" )Wn?f/y%—/}

where 013 ... 18 the Haar measure on SU(N }/Z/_N and V. takes values

in 9y . A N4,
i Zy o, Zy {04 N1}
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We identify
-

S (qv) =L L Ko d(nsy) co0vp + Lo N i,,gs;a)%’ﬁ’? Vo =L

—/d -

A

sa that
Vp# O gives a strongly decreasing factorif ¢ is small (requisite1).

Moreover, since Re (¢, Ulz,,,,)6,)-120and =0 only for 3..,,=LeSUM/Zy
this term peaks the measure f} around i}: L if X is large
(requisite 2).

However,as we shall see, this requirement is not strong enough for our
purposes.

The analysis now proceeds as in the previous examples with only a slight
modification in the estimate of Z(X), which requires the previously

mentioned stronger condition. Here X' is a connected set of plaquettes

— _ '.\1‘ 3o 0 7.*"‘ T ( o R
/ ( X ] v/ Denys ! ?]x X i ; .

P .
RV A I Dl ]
V‘, v é{ Wy LT W < ¥ ~ e,

A
L

L oD r) - j T i o~y ,
T ‘{; é%“’}} - "Q/C'i? ,({}/J_ [ ne /((9%>~j O&")JP —

— E/}m 7{ ( :,f - i’> Mo, VY r ] Q)} — i

The main difference is that we do not approximate directiy cf»”(/gfm) with a
gaussian measure, but we split the integration over 4 in a
neighbourhood [{; of SVW)/Z, identity  and its complement N© 5 the
gaussian approximation is used only in the first [25]. To be more precise,
suppose in /A, is defined the exponential map e ! Ri—eG« and let A
o= 4. q = (dimensmn of G=SUW)/Zy ) denote the associated
coordinates in fx{{" "N, .

Then we define



e g meg A TAT S OR) ]

“

where T "are the generators of the SU(N) algebra.

m
1) , .
(91 ﬁf \*y (A CRYD , s < 1 + ‘//\ /4)<y> > ) :;[ /1 C)()/)

where A is the Lesbesgue measure on R ) A= CrAY,

< X‘.),)

2} the following inequality holds

I ,, 1A%
:Z{- /4 - 4_3 A é .j,"' CO"’)A 7 /3?
S0 that, if J,i is a bounded function on G:
r ? , X Zc (/4 V;J
g\j{ /O(,(),) ‘F({;L) g Jl 1% / (if* g’,‘v/)’) 6 7[’(%’3 (*\
N orf, s
vhere S & A
= (e DY) 8

N, we also have , roughly,

P(poeg,v) o [1- oodh, +0e)] o,

+ | A, +0(e’)) | »om U,

C
The integration over m is, instead, roughly estimated by
i . =, r . C-
L= (fo,UCae,) $o)) 20 n NN
so fhat

)\{j{a{v[g) )ﬁ(@)j < el /\.Q May }ﬁ(@;}

91
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Moregver, in /\( |

o e
If()v;ﬁg,v)} < e of =)

Lo/

> \
so  that | () is dominated by the exponential  factor
@*}‘a if 1/Aes<<c (this is just due to a too rough estimate; large

€ should suffice).
Using these estimates it is not difficult to prove

Ve T Lo e (o= 0L, ) 18N vpp
(- SO A '\

T o ke O(L) T | 1 X\ K s »f“x‘

O~ 4+ OC\
La/&\/.,; 0&# >€

/ ‘\ / N / ‘_,.J

and hence the

Theorem 7.9
The SU(N} Higgs model (defined in example 5.2 B ii) for small € large Je
(hov% et in (=3  possesses superselection sectors labelled by 2y ;

the }6% sectors corresponding to the non trivial elements 2 e /,, are
soliton sectors with mass gap

*O(&/M\Gay
/}ﬂm‘: -—-L Ci"wﬁ ?T{ H) + €

e N
and the one-soliton state is the one-particle state with lowest mass

in %,

Remark 7.10 This theorem can be generalized to a G-Higgs model with G
compact, having non trivial discrete center Zg, if the gauge action is
given by characters in which Zcr is faithfully represented and the Higgs
field takes values in a Hilbert space carrying a unitary faithful
representation of &/Z .

For suitable values of the parameters we obtain Z& soliton sectors in d=3.
We simply state without proof {which is now trivial),
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Theorem 7.11 The rank k-Stiickelberg \model (defined in example 5.2 C)
forsmall ¢ and large ze° {—6’12 whhze)in o= k+2. possesses super-

selection sectors labelled by £ ; the sectors ,,,3%?1} corresponding to the
non trivial elements 7 ¢ 2 are soliton sectors with mass gap

— ( Jf}z Z.C'.z‘)

| 6 . o
and the one-soliton state is the lowest one-particle state in }ém .
-
AN
‘ %2 or I }3
: 1 \ ugn) SU(N)
- % oy >
E‘mi\ ~ (H]ggs)3 t“gtizgﬁ

1%

Phase diagrams showing the parameter region where we have proven that soliton sectors exist.
( Shaded region)
fig. 7.1
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7.12 Soliton mass and surface tension

In this subsection we will show that the soliton mass coincides with the
(corresponding) surface tension [26], in the convergence region of the
previously discussed expansions.

Let us first define what the surface tension is in the simplest model, the
(Ising),, model and discuss its relation with the soliton mass in the low
temperature region.

Let A= T x| be the rectangular lattice, centered at the origin, with side
length in the time (space) direction TL (£+7),

Define /A i:{ xedN xt D% ok , and put + bd conditions on Q/H and -
bd conditions on 9A_ ; then the partition function is given by

: 2
- o E(oxry) z
Z, (TxXL)=Z Il e T o(s,t) i oy
+ - L <oy ef X, A U
O xTEl x el 2/ Tl

Let Z( TXL)denote the partition function with +bd conditions, then the
surface tension is defined by

el g L A Za- (T
e Ll T 7w (T XL

The above defined tbd conditions force an open Peierls contour, called
Bloch wan(whuse boundary is given by the points (see fig. 7.2.)

bl

{(l;+ﬁ/o),(~-§~i/@)j )

in the Tattice A .
If the surface tension is not zero, the intrinsic thickness of the Bloch wall
is non zero, even in the thermodynamic limit.
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Bloch wall
L1 .
_____ ; f
closed Peierls =9 _—
contours | S .
v ; ’ I
1 [— T o

fig. 7.2

The situation for the contours is quite similar to that of a disorder field
with support given by two points; it is, therefore, natural to investigate
whether there is a relation.

&n immediate observation is that if

SV mmz;gxls Gg,@,>gs ";/@jg

//"'"'\

using a local gauge transformation, we have

7.
Zpo (TXL) <Dlw)

e (TXL)

=X

In fact, let(}/ be the dual of the support of «, then, making the
change 6% —> —Gx for all the x on the left of ¥"in the shadowed

region in fig. 7.3, we have



KL ZL (TR SR e e Ay
I —~ (6, .+ ©y)
T ‘p X C p—— —
/} 6 ) //T g‘{,@}"é’/ .
< \//e(x*‘ XEDA
e . ,;’ o Y ) T
— 4 Z /!UM é 7,‘ (f} i;} ﬁ ([k ,__Z/
Z,i_(\_TXL> S‘:)(T’W;'/Ké/\ Kn € /\\ @/\M rﬁ”@/&f— /

fig. 7.3

The soliton mass is defined by
,/W)ﬁ = 6{/);1 {:fr%\ — J——- /&/\ < T)L_O;U)> =
é’,}l 0o L/r[)/ 0o (L,_ L«X ‘T’

= w1 A < Do)
t7 00 & &
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where D (»UJ denote a disorder field with

¢ 7 5 :
’;Y 3 e %- (‘“ t‘, }4
sopp dw= v (£,0), (-£,0)]

l

Therefore, we have
Mo = e — L b B9
7 T Ao » ‘r < D’{‘i /9\)) >‘T‘ XZ

We now use the excitation expansion to obtain
267

< J T
< f{, { ’Mz = e { /QX,]/) ’3 g /':f g[g) C[o{’ (,‘E)
IR el
P R M_Z j =5 e ey fmiE )
< vaj.r{ { vl }f\‘ — Q’ﬂ { 5% '}”} < Z_ i ) AL g‘i it ; {\,
Xz Logemxz ol T
§0 that
e " e . P A
b SUsive o T 0T 560 pie)
- &~ o T
< L" ) )> £CZ - 3 i
€ < T'X 4.

we now give a bound on this sum, using the fact that all the contributing
families of excitations & must connect the boundary of 8( to the

boundary of ['X 7 (’D{PKZ:) =4 b= I:i:i é’“ - ;

g

= ) T
ez T

------ 7
r.._..}
r= |
PR N
i
-
t= = )
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Using the symmetry for reflection w.r.t. the [~ O plane and the obvious
bound

o & 3 !
G (E)TT 120 — =(2p-0)|g] —2p~c)lg]
< e = e

] é“ ! ¢ m’%

we obtain

oo - Ythif(l‘ﬁ g
- “. s
Z Supp € D 4K Xt
! P

- o
oL . N e g <
- = =10 5
T A Q}M§V/Z S , —
- Supp & 24 XXt
j e h o

Therefore,



: L i
e e e LS T g

. 7 Ao /%CZZ‘ Eé,ﬁv é}{i i

_ £ TXL T
< D Cornk™ ( / o TGF‘@ = 0
T /w T S d e o 1
i.e.
- 7

This is a general argument in the context of the models discussed here.
Let in fact 375 (e, 5) be the decomposition discussed in sect. 6 and,
moreover, let A:TXL"“‘ denote the dimensional lattice centered at the
origin, with length of the side in the time direction T+{ and length of
the sides in the space direction Lt 1.

Consider ©)A  as a d-1 dimensional lattice, and let " be a curve in its
dual (which is well defined since 2(DA)=¢) joining

oo (=T,00.0) te Xy=(Td 0..0)
The dual of " is a set of d-2 dimensional cells in @A and the dual of >
are two d-1 dimensional cells in 9A . dince the soliton arises in
dimension d=k+2, theg field has support exactly on d-2 dimensional
cells.

30 we can impose to all o ,with support on the dual of B , the condition

NGE () where g ¢ .7 1is the element labelling the soliton sector we

cnnsmer, and § (6 ~p) for all the other < in @A .,
The partition function with such "g"-bd conditions is denoted by %CTxL ),

and the related surface tension is defined by

— I
/J\/Y = /{ﬂ[ &%; _— TL /Zﬂ 45 ff {\f T X L )
T/eo  L/w r Z ., (X

Using the 7, gauge invariance of

AN \‘p
< D( 2PN T X/ 5;-{

one can easily show again that

— ey A ]
o Z (TAXL )
/ o p

=, (T x")
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with obvious meaning of the symbols.
Then the argument previously discussed applies in & straightforward way,
with an easy modification of inequality (7.20) if d=2.

Therefore, we have the general

Theorem 7.13  For all the models discussed here in the region of the
parameters where the expansion in excitation Converges, the solitonn mass
equals the corresponding surface tensionl: »

= T
i
Since the mass M, is analytic in the ccupc&ing parameters, this equality
extends to their whole analiticity domain.

Appendiz 7.A  Proof of thearem 7.1

First, we show that for a generic element

b (7.A1)

s, =C
Cz“‘@} OHS{

Instead of proving this inequality in full generality, et us consider the
case

¢ (F7ed) oL =Ixaqe X dn ) G b S

Y
et

where (, refers to the Wilson loops WG,
Then,
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~ R

°. 1 (5) TR e X Crot M,\):: [0 - Koo X u Cj"‘{”m -’
and we have (let X+C=(x*t, <) )

< <09 Xeqe o Com| S (B T(8) 5(5)10-9 % (m> =

1 1

=<O[D(0-g e o) T VT [D (oo nwE ) T4

T weces) 15

4o

- & O Z'Dfl.;t 9, A § r >;F\ \/‘/(C m, —Dli('iz:‘”/ E q)]f
DS - mrh ) WCC&W ) b 5-q 5] >

where we have used the invariance of < 5 w.r.t. the time translations.

Using the Schwartz inequality, w.r.t.[z(o&/«) and time translation
invariance, again we obtain

FADEL < O] D04 1) ﬁ-” Jee) |
D (O q b"() > E L) (0 -0 "C{M) W V“/(Cgﬂ)fz“ (7.4.3)
!

o
. D ((’?wq éw%)/}z
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Now, the two terms are equal by the invariance of < > , w.r.t. reflection

in the t=0 plane, and applying the Schwartz inequality w.r.t.<) &7, we
immediately get

(F A3 € < D(o—g b9) O D (o~atg)>2

?

) ‘/. o ‘. o 'L ,TT., ; s ) [ -
z\[«) (0 T ey, ﬂ’%;( (g::z @ 1 D(q”ﬁ ‘/*\) i *//f(; e
i 1
Ao
, r} ~, T s e )
— C ; ¢ & ;L Ry -/(( J?m i L/ g &,; {2 ) j(l /')
— A
Pictorially,
. - i .
\1 7. ; ‘n\v >
/ | /
reflection invariance — -
Sz, !/l '\\ s
- < DS
N V4 AN

Now define

a Mg

AN A
=T ¢ so that o< T MK, <4
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o reXt et ( Ye
Since by construction ’a (L2 &= is dense in /tz ) &0
' such that '

SR f;}wc ):353”
[

C[sadia) Teolza STl > e

But then, by inequality (? A1) and using the spectral representation:

_ £l

/0 S A
. ~ o’ N
6 P e {wﬂ — M i
A e
T T ¢ Ve 1" o=
A I T B
= N S _ ’/\ ”5“ >
,?s'!’ f)j dPZC-ij%qL { =
l . X
FAEE
- A N
7 Fr " £ (a" < ’/ } I . \(‘ B
- - »\;” QIH - df ﬁf‘ VSL it {,é tj } o j} o~ }lﬂ\" o ,}f}’é .
oo { ! S |
By arbitrariness of 3 we conclude



8. STRING-LIKE SOLITON

In this section we discuss how to construct soliton sectors with solitons
of infinitely extended (euclidean) time-like support.

These sectors arise in (gauge+Higgs) models with fields taking valuesin a
compact discrete group in d=3, as remarked in [15].

To be precise let n be a rank one and m a rank O fields, with value
in Z, ~{o0, ... N-11,

Consider the lattice field theory defined by the state< D given by the
thermodynamic limit of

gﬁro %IL (el %) igi

s § c

) T {
S ! ; oy T e :
// (’ . \\7 - — i {‘ ?l Zr . ] (';M

A ‘,e"‘ . - - A i I3 !
N A 4’_{/\ Pc’“/\ {8- 1 )
N Oy
; nocod 2 {dm N cnss ) \
ﬁ’ e I v
Lxy
where
- T -+ —
(ﬁ”'\ - w;; 2 ] o = 4
Mewy, & Ly, <xyse A Mac 2y . XN

In d=3 the phase diagram for such models is likely to be

\
- f
b
¢

S

fig. 8.1
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where the shaded regions denote the convergence domain for a high (I) and
a low (II) temperature, respectively, expansion and the solid lines are the
expected phase transitions.

Using the techniques of the previous section, one easily sees that in the
marked region of the A= O line the pure gauge Z, model possesses
soliton sectors for each g € <,/ \{o

The state "[v,,  is clearly invariant under

"

. y e 0D, .
<xy? 7 Noexyn JEEXs (8.2)
"’)x/ . \\—',} 6 fﬁ?—/u‘

In the region A O , however, the measure

o o A s g {Am, e
’ T ) —_ Loty S C R
}Yf‘ e ﬂ - N ;>

!
Kl

is no longer invariant under the transformation (8.2), so the construction
of the soliton sectors carried out in the previous sections breaks down,
since it is based on the invariance under (8.2).

However, if X is small in the II region, one should not expect dramatic
changes, so it is natural to think that in some way the soliton should
survive.

One point, however, is clear: due to the non invariant A -term, the
correlation functions with the w external field introduced to construct
the solitons will now depend on the whole support of cw , which is a
stringlike region and not just on  Jw

This is the characteristic feature of the models in class B of the
introduction.

whereas in the class A models the creation of the string between the
support of the charges of the external field «) does not cost “energy”
(really action); in the class B models, which we discuss here, it costs an
"energy” growing with its length.
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Therefore, in order to construct soliton states of finite energy we need
both to arrange the support of ¢ in a suitable way and to normalize the
correlation functions.

These requirements will lead to a slightly weaker form of the
reconstruction theorem.

Ta make all these statements more explicit, let us refer to a concrete
example: the simplest case of the Ising gauge model with 2, Higgs
fields in d=3 (= Z, Higgs)s. It is common to discuss this model in terms
of the multiplicative Z, fields

iTr /n()‘c‘:a,r:;; !‘77' M)(
T = < G.= €

<=y

so that (8.1) reads

et

- CTpp—240
T ) I
< (>,

. -l S e
Z, Tews T GoveA pea
G 7 b X &N
/) ] A 6x e, 0 b
i @ o

La :// \,‘t/k

To simplify the problem, let us first consider how to construct a state
describing a soliton in the t=0 plane.

The { Zz Higgs)s; model is well known [27] to be self dual and the duality
transformation maps the Wilson loop into the disorder field. (This point
is sketched in a somewhat different situation in the appendix of [32]).

Mow Fredenhagen and Marcu [28] constructed a charged state in
( ZLHiggsk essentially making use of an increasing sequence of Wilson
loops, so one expects that the soliton state is the dual of this charged
state.

Translated into our language the dual of the Fredenhagen Marcu
construction defines a soliton state < St R, () Sex)y > on the
operator field algebra (0 corresponding to the <  gauge invariant
fields as follows.

Let us fix a spatial direction in the lattice, say x* and consider the
path 3':;( made by straight lines on the dual lattice
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4 %
X=io,x — (XX e
Y i @ 3 A0 PN 1 v 2
ey D Xl XY s (D, XTrZe X )

see Fig. 8.2, and let f«)f, be a ZB_ valued (external) field defined by

s : e \H
{ \{ = f =L / (?‘L kX?{hﬁ}
fe
-4 pe lpx
Then define the field
o R / R Y - R
M FRN DAL S ) 22 Th
‘ i D 'b) ok T 54
d‘c‘ (X, = e t = ){ c ’
i fé’/\ pESp e

fig. 8.2

Now let }Ar< T‘bP w}?; 6-8 "’[\é'x),}{;x ; Px Lrvp C [:C?/b:?{ f-‘zza> be

a;Z gauge invariant field, let <+ denote the corresponding field

operator, and let "/ (&) be the time translation, then following F.M.
define
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7
‘ :  FH 4 FA .
7 7 ] foo o R “
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AV AR / \ /ﬂ -’fg 5 s E,g e ‘J M . | ~
o ﬂ'z, (X 9 Ol n (X /3\
Pictorially,
iy \\
/\ D (}{‘"‘i s ;))
i ¢
\-4
\>

fig. 8.3

To show that (&%) JL is a soliton state we first need to show that it is
orthogonal to the vacuum, i.e.

= M
<, SIS = @m« ,p’f‘wz\ ) < [E: ( ?>//k
e ATES S LA(R) Q&KPM/K)P{B 3)

=0
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The denominator in (8.3} has perimeter decay [10] for large both in high
(I} and low (II) temperature regions of the phase diagram (fig. 8.1).
However, the numerator has quite a different behaviour in the two regions,
more precisely

o R S region I
e l~~ ] "‘ ( e~ 2C'Z.>32

- region II

Soonly inregion 11 < 52,0050 ) o = 0.

The fact that the state < “riw (1) sz sreally gives a soliton sector

in the region II can be shown by duality using the results of [28].

It is however convenient for the reconstruction theorem and the particle

structure anaigsis to modify slightly the above construction.

Let us consider the model with free db conditions and define now the
disorder Tields

0

b Top wp L)
e ; 7{/\((‘7;@ ﬁ‘)E”/%{ﬁ}:f}

O};/\ (% 3:> h ped,
with wp= - 4. if P is in the dual of the straight line };’T(’x} (25’7‘;&:"}}
in the time direction connecting ' to the boundary /A, directed
upwards ( ) *),for dp(x+) , downwards (2;") for d,(x,-) , and
wp=-t4 otherwise.

More generally, for a set of points

X ) WM xia gy

let ) po=T 1 P 5( Z/ 7"’%) Zf%xz)' A Z{ h@ “:a})

/
/

= +d otherwise ( A= g:g,owms?ﬁmc,
Aifference }
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Later on we will show that this limit exists.
Odd correlation functions are defined by the limits

r s [ i
{ { A P 4 a1
LAY S’Y* o L DA 4 o e AN Z ) ‘({ poe R >
‘/
T 00

2 K ”/,; ‘“{; P v

and correlation functions with X; < y é are set equal to zero.
Pictorially, e.q. grn C"",i bR L~ jz”/ _

sy

|
l)\\ ‘M,

A S N
A e ”

i
/”

P

~

&
Lo

(8.5)
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fig. 8.4

o

The program is now clear: we wish to apply to the sequences o, . the
reconstruction theorem.

Two observations are useful:

1) Smim are translation invariant;

2) if /\ is symmetric w.r.t. the t=0plane, © denotes the reflection
w.r.t. this plane ~ and the complex conjugation ({(as before),
Xyooo Xm are in the positive time lattice and @ Yo are in the
negative time lattice

d (Xt oo Kot oo dum) =

= o, Car o Xxnt) O dy (et o 2 mt)

Let E€< -‘*"% i"} and define ,S_X as the space of all finite

sequences ° of complex functions £ on (Z°Xx E¥ )"™  vanishing

except at finitely many points. Morsover, let _S .~ denote the space of

all finite sequences ¢ of functions on links and plaguettes.

The sequences of correlation functions { Sw [, define a functional
S o S S o through
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2Dy N
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S (Fegyy = / S (27 g
J T L - nNTTI )y
[ TS Mmoo M & 7
I 1A 5T m/(‘mz ] LY / C 3 Ji
”’" n oy
I P < 7 AN
== | ’I
iq C./« 1 & /E ; =29 "?r2< )(_lot_j 1
= 3 =1 £ oen ]
=1 X e Z} ; r(} e 7 R Ly %
) .
GO IR S
- Km ol I [ N I %“ :
: / 2,
2 > | §
i /r N - . . H‘
A { %o X o > 5, . - }
[T L0 A Fn o e i 4 ;! iy X < '

27 D v o X n
Take ,:’_; = { JQ ' w’ . - fw A 4+ ‘:’} }
and then, thanks to the previous ubservatwns, lt is clear that

the Reconstruction Theorem applies to the sequence of correlation
functions - S. .. J. .-, defined in (8.4) (8.5) and we obtain a
Lattice Quantum Mecnamcs( Ho.su LT, u ).

Moreover, if the cluster property holds wrt. the X 's, which in particular
implies that by definition all odd correlation functions vanish, then

1) the ;{acuum () is the unique lattice translation invariant vector
in

2) 7 splits into two orthogonal sectors )t = H-,@ X, corresponding
to even and odd numbersof X s

One then easily verifies that }{ 41 isa soliton sector wrt. the field algebra
corresponding to the ordinary fields *r? p o and g g Ty 6
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As in Sect. 5, one can also introduce a soliton operator 5. However, due to
the timelike infinitely extended support of the soliton operator, we do not
know whether Range (SI'A) is dense in \,r-(j because there may
exist W% e H, with H L/WD such that the vectur corresponding to
the formal expression < y is a non-zero vector in }{ wWe feel
that this cannot happen, but the proof is still missing.

Therefore, in order to prove that a soliton sector can be constructed in the
way sketched above, we must show that

1) the correlation functions defined by the thermodynamic limit (8.4)
exist. (This is not completely trivial since humerator and denominator in
the right hand side of (8.4) tend to zero in the A /2~ limit);

2) the cluster property holds w.r.t. the X coordinates and, in particular,
all odd correlation functions vanish (by (8.5)).

wWe prove now that 1) and 2) hold in the region II forsmall A

and large

This is done by applying the excitation expansion to exponentiate the low
temperature cluster expansion of Marra and Miracle-Solé [27].

Let us directly discuss a modified partitiun function

_ 4 (e, Ae,
. 5 / “’ 7 {,.-cy) u,&
4 ) = 4- 1 L l @
L L) , 1
" Gzl xel ped, iy €N
T{x?{g = i’ _i ; 4)(}/:'1 f.':/‘\
&

Denote by & the curve (in general not connected) in the dual lattice
which is the ' support of Ir;;{,, i.e. such that for [oe ((,0) * W T, = -1,
Clearly ~ HE = - S0ppo (0(44}} |

Now  decompose ¢ in a set of connected disjoint
curves ©) with 25:=¢ and a  curve 2 disjoint  from & not
necessarily connected but which has non vanishing boundary in each
connected component. So

. bow
-;{(5[ ‘\: _‘i...*ﬂ"’l ;\(‘: j



7 denote a set of connected disjoint curves

#nalogousiy, let (fé )
in the lattlce) E=+4 (f ‘ \c;;_x;.

(one dimension is suppressed)

fig. 8.5

Then we have

ir,. T - 1 :/{,{ .
[eok 31" Z00) = 2
U S, 7( =0
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{ . Mﬁ -
where the condition 00, = & is due to the gauge invariance of the model

and arises summing over the field. ¢
R

One clearly sees that the constraint o p =
A n (C’/)/ ?;;/.A

where -, is the number of intersections of €  and (f 4w

oo, fon such that

G 4

i.e. they do not intersect.

lon 2 gives

w¥)

m{c,ch)

Let us now decompose all these curves into clusters C = 2) 6"1

pem——

5
o (2

my
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)
Besides the clusters C there is also a distinguished cluster C which

contains £
n(wl‘ ”AQJ*)

The term  (—1) then factarizes into
SR (CelG, Co 0E) ML 2 2 AW £/ )
i) (=)
e o

— - - gz e |
7 (rt = /i P &
L ‘,,/{, i F{\f(l%/\,\
16;, 6,7 ec® 5
“/// /92")« i\ 4 CC,W\[ ku'/ C ),.*.':\.[/v*/) f’)wAwé‘)
we have the expansion
Zﬂrw; = Z [ () Zf':.::‘“‘i
. &
{C /\.Ué,‘
(b JRE ai”
- (8.6)
: /
and for [3 > In (f"fngb /\)
, ! el
é ﬁ..((“)g < () ( o A
e C - D28 + 00 tyhN)]
|20 < 0 (R om B 0L TN
For co of finite support the convergence of the expansion
A Tz z(es) GlL, )

s pn (el T
Z,  £.Cren cef (it @



follows.

However, this is not enough for our purposes, since in the thermodynamic
limit, our <o will acquire an infinitely extended support. It is hard then
to see, with this expansion (8.7) applied to numerator and denominator of
(8.4), cancellations between numerator and denominator, which both tend
to zero, since there is an infinite number of curves of arbitrary length

linked to °Z% " in the thermodynamic limit.

A
i

- f

To improve the situation, the idea is to use an exponentiation in terms of
excitations which exhibits explicitiy this cancellation.

To make things easier, we discuss just the simple case of S, (x+p-) but
the general proof of the existence of the thermodgnamib limit of
correlation functions and clustering would then easily follow.

45 a resulf, we also obtain an estimate in the mass of the soliton and the
upper gap in the two point soliton function. 3Jince this last is larger than
zero one has shown that S(X)Jr is a one particle state, i.e. the soliton
is a lattice particle although of infinitely extended support.

This is in agreement with the discussion of Buchholz and Fredenhangen [3]
on the locality property of a charged one-particle state in a massive
theary: it must be localized at most on a string 1ike region.

So let us start by considering (8.5) with

X ’ N v\ B -
Wy having support on ) (%) U y (o) x=(fH%X )
and 2,7  havingsupporton ¥ T(0) U ¥ (o)

Z

Then,
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oo x4 HD-}) = g SR
: >~ St ~ ket -~ O '}:‘?\}‘
i z{c) zCe™Y tr ”"C‘;’/L:m
vl e T
SR (el

Let us now identify in{C C ™ the regular bonds as those in the dual
lattice which are parallel to the time axis, and such that there exist no
other links in C UC™ J " having time projection on them,

If we omit all regular bonds, we are left with a set of disjoint excitations
which we divide into two classes

1) particle excitations & :  77(¢) ﬁﬁ/ SO e
P o . s -7 7 '"\‘».‘ - ‘#'\
2) string excitations & : m(e*) < (")

Only string excitations appear in the denominator.
We now assign to the excitations an activity defined by

2(5 e B ,
. e / k o -
S = € pr (C05), )
ot éif);?
Lo f

and
. S SRRV ‘ - N e W CS\\
5(’!’ jo= U BE: ) CE )) )i Z(C) Z L £5))
e e
| cE)!

117



118

and using the techniques of [17] we can write

— ;jfﬁi \f E i } . ;‘/:" ;&(
N S SR = ‘ — A e
K o o L
’ ".\243 ¥ \—
7 —ﬂ—m e
{‘E"i L€ ,515 55\3 t=4 J V-4 Ny, s
velafive Fo J4 i i

D
Lea.,, €,,§ ﬁ
re hlf’! Ve .‘"@ e
From the estimate (8.6) we see that the expansions in (8.81) converge for
large >~ v © ' ‘and for finite lattice, so that we can exponentiate
obtaining

. - T K
57 (‘ N ’ o — (:A: i ' {r §\‘ﬁ;‘ \F
‘ PSR LN
DT e &
CJ;” "f/ , P I S ;’?{gfjgm
LT ek ' | -
f{j_ ¥ Y4
(8.9)
o . T
-2 e T sy ¢
_L

[ éﬁcf\ , g\/ﬁi(

Y"E_lg f-ﬂl& E_C :«‘)Z
We now split the first sum in the exponential into four terms:
Fle e o) FTEy e (08

1)

<o



<00
i
3
4

It is now rather clear that the sum of the fourth term and the term
relative to «, cancel all the contributions fraom clusters € such that
do not touch et .
Then, the existence of the thermodynamic limit follows easily. In fact in
the sum over excitations, all the contributions which come from an
enlargement of the lattice involve now clusters of excitations <
which connect the boundary of the lattice to the line 0 —(t,3), so that
by bounds (8.6) they decrease exponentially fast as /\ increases.
Clustermg in time direction follows easily since as /o the term
e in eq. (8.9) tends to zero (and the excitation expansion
converges and, therefore, is uniformiy bounded).

Clustering in the space mrectmn follows from the fact that the sum of the

heights of excitationS 6«) must be equal to )< , but again from
expansmn cnnvergence e can extract for large ]\; a
term {u\\ 'which gives the exponential clustering. |
Fmang, “the particle analysis method still applies since we have on the
/Q soliton sector a contractive representation of positive time
translations and a unitary representation of the space transiation.
Therefore from

2 S(E)s T UK eyl s =
if) E
/ < P )
= - ({bg ? )T' 0 ~> P & @ ( “ o L /
X (- e

where w is the mass of the soliton and /M the upper gap in the two
point functmn, we obtain

= “ ) 4 ()/i’mwé )

Ly 'm‘fm @ Z’\f* \
0 /
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Let us now come back to the general ( Z% Higgs)s; models and state

Theorem §.1 The < p  gauge model with 4, Higgs field defined in
eq. (8.1) in d=3 for large ;’3 and small >\ possesses superselection
sectors ol " labelled by 96 LZy=do. V-1F and
sectors M, oD are soliton sectors.

The soliton with charge q has support (for A =0 ) on an infinitely
extended timelike string. It is a massive (lattice) particle with mass

s A | ca s PR r 3 - { r) (7,
/'ﬁq P i L N ,.:L"..kfw ) u{ ]{[ WU R
! / /

i L \)1 J

Proof The proof of this theorem can be obtained using the low
temperature expansion of Theorem 3.19 in [10].
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The models discussed up to now have all a massive spectrum.

There is, however, a well known class of topological solitons associated to
a massless theory: the monopoles.

Due to the absence of the mass gap in the spectrum, they are associated
to @ Coulomb (-like) field which, in a sense, makes them even less local
than the stringlike solitons of the previous section.

There are two main examples of monopoles.

1) The Dirac monopole in the U{1), gauge model in the Q.E.D. phase;

2) the t’Hooft-Polyakov monopole [29] in the (SU{2) Georgi-Glashow),
model in the QED phase.

The 1ast model can be described on the lattice by means of a SU(2) gauge
field & ’ and a Higgs field g;b& in the spin 1 representation of SU{2) by
the action

where 7( is the fundamental character of SU(2), and U, is the spin
representation of SU(2).

There are two (related) reasons to believe that an understanding of the
Dirac monopole gives an essential intuition also for the t’Hooft-Polyakov
one:

1} the large distance behaviour of the gauge field strength configurations
of both monopoles coincides;

2) the U{1), gauge model can be obtained as ) 7'co limit of the Georgi-
Glashow model, as shown in the expected phase diagram:

TS

\ Vi),

Y

?
v fg. 9.0 b TEAR
i
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where in region I we have QED phase.

In this section we explicitly discuss the U{1)4 model. Also in this simpler
model, however, the particle structure analysis of the monopole sector
cannot be completed, since we still lack a cluster expansion for U(1), in
the QED phase.

To analyze the U(1); gauge model we only have the expansion in
(renormalized) magnetic loops of Frohlich and Spencer [30,31] and we must
extract information from it.

To understand how to introduce the monopole in the theory, let us briefiy
recall two representations of the partition function of U(1)4in the Villain
form which explicitly show the monopole loops "analogue” of the Peierls
contours in ¢, .

The first method is essentially based on the intuition that the monopole
arises from the constraint on a H( -valued gauge field, which turns it into
a U(1) valued field. ‘

The second method exploits the duality transformation which maps U(1),
into a / -gauge field theory, then the monopole arises from the
constraint which imposes to the dual fR gauge field to be integer valued.
The U(1),model in the Villain form is described by the thermodynamic

limit of the state

T

‘ 7" ! R & é{a 1‘527,4/’2 . g
(ﬂ)’/é’/\ M Pel\ {' ™
CCOd = iy
wquient ~ '“"’}'T"’ o [§ -+ ,9
s ( u d (90&7") tj e ‘

- ST NN {? &N

DA

. . ) {
where d@w>is the Haar measure on U(1), 7~ f"“’y* ez ) e /A /
] T S ,(vhn
We now rewrite > as b3
M m:dap= o nof =

and, using the technigues of (33, 34}, we obtain
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whereA is the lattice laplacian with free bd conditions on Z/\ and
A, is ‘the Lesbesgue measure on /K .{+)

The tmrd rank field w1 , satisfying om =9, has support in the dual of a
sef of loops: these are the monopole loops we are searching for.

From eq. (9.2) one obtains that the monopole 1uops in the thermodynamic
limit interact via a Coulomb-like potential /.~ '= (MQAA) so it is natural
to expect that if one such closed contours is "opened” , at the end of the
broken contour, for the conservation of the magnetic flux, we will have a
Coulomb-like field.

On this line one is tempted to say that the two-point function, for a
monopole S (x4, could be written, by analogy with (6.1), introducing a
suitable external 3-field o with

supp (G) = {xy7

i - ¢

as (see also Fig. 9.2)

(+) If &, {@ arerank k fields with support in N

(«) ( = 2 dgmﬁi’w
A v
in par’ucular if /7/ gakﬂ rank field, so that 542 éﬁ?” 7/ isak field,

e B
4 iy £)= 1y, Jb/

}
!
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e

(9.3)

A=

where 0w takes care of the Coulomb field at the boundary of the
connected open component of supp@fﬂ) in the numerator.
If we leave this magnetic flux to spread out in the whole Z , we hardly
obtain 0.5. positivity, so a natural choice is to leave it tu gpread nnlg in
the hyperplane of fixed tlme coordinate corresponding to x° and Y .
Although such external o field could be directly introduced in the {9.1)
state, it is easier to understand its form by a duality argument.
By duality, in fact, a magnetic monopole with the Coulomb-like magnetic
flug in the U{1), model should behave like a charge in the dual model with
the associated electric Coulomb field.
Therefore, one is naturally led to consider the second method of
representing the U{1) model.
It is well known that the dual of the U{1), model in the Villain form is a
theory described by a Z_ -valued gauge field o/ with the measure

2

_ _ 5 W)
L3 T e 7
ZA <] pa«/\“‘
(9.4)

where /] denotes the equivalence class
[«y=4 ' A =duf

This model can be obtained as the /| /0o limit of the U(1) Higgs model
described by the action

124
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where A €/F and Q ey~ K2,

This limit exists by Griffith inequalities and imposes the constraint that
A is integer valued.

More precisely, the relation between the Villain U(1) gauge model and the
U{1) Higgs model goes as follows.

Let f//%(/}) denote the gaussian measure on the space of equivalence
classes

[Ad= {AdAS AT

determined by

. L]

I
<

where A ig the lattice laplacian with (O -Dirichlet condition on the
outer buundarg of A%
Using the Fourier expansion, write

Neons 2 (A rd e

1
, X o mu(Adp)
€ = / S, A e
. A
SR wa-en
™ 5(77/ A ) “~\J 4
A7 ea

Now, one can express the expectation value on the Gibbs state of U{1), as

. — LA —
N A 77123 Za Mcw>él f)‘él\“’

<><)/26'A

e M, (/32:) d ggmf >> (9.5)
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In particular, for the partition function we obtain

S e )
ARV ) o@a /f W) e 2 s 74 T
A\ My RN e/\?’\/ )\61*3‘ //r’f -
J v
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—— [T - sz AP
»oancpo (o) pen

and one easily recognizes in the # field the monopole loops (Xm ‘>)

It is now easy to introduce in the dual model a charged field ¢ with its
Coulomb tail spreading in a fized time plane. Via eq. (9.5) its two point
function will give in the U(1),; model the desired two point-function for
the monopole.

Denote by A (t) the restriction of the lattice laplacian L‘x to the fixed
time t sublattlce and consider the two points in the dual lattu:e X =(k, X )
=42,

An electric Coulomb field associated to a charge G{J:f'i in X, and a
charge q,=- din Xy and spreading in the {}} and ’E, plane,
respectively, is described by

p— S - “‘e . - /‘ \m ' '\:‘ .,,: ‘j a-m
Z:/\ Ky o, Xl )= A K,Aﬂ 100 At red Cxy

where d is here the 3-dimensional lattice differential, and 3; is & rank 0
field which is 1 in x and zero otherwise.
Therefore, the corresponding charged field is described by

'\}/ (x:l aj’, }(2 . %) : e V2T ;bCKi) ell Z}Y’"CA'/ E"\) éwl\l;f‘?(z’{zj (9.7)
/\ <L e ] g .

which is cleariy gauge invariant, since
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bin) —> iy ~ AL
Aceys—> A«.«,.w -
implies
(AEn) =5 CAER+ (4,08 )= (4 x)r Al
Let now b/be a directed curve from Xz to X,, then (still denoting by f

the rank 1 field )tcm') =
=0 otherwise)

(9.8)

Inserting (9.7) and (9.8) in the right hand side of (9.5) we obtain

< {‘{/ (xy 9y X, ’) o Lom Fﬁ} f iz;/jg ~ i{-"i«‘é S
A

N 7%
C,rr [y p)r e A )]
5 , j CA'> o T C’V’TEA/A> ~
oty AN ,,\1 =
/1;724f ' , por (m A)
”ﬂZ?’W:O jé’/MA(A) c J | |
G e o (G e
oy = =
= A7z¢ m'zw::o (9*7‘?2/5 (n, 57 m)

By comparison with (9.3) we see that we have found our external field
gj: N ~ x N g
formally Wz w s )= ElOg X, q,, = &

~

O P o 5
Gx o Sp=16)

and the two-point function of the monopole should be

(9.9)
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fig. 9.2
Let us call
o N — S

— . o b RS e

w= wly) = &-r) CAT (9.11)
A

then it is easy to see that we can rewrite (9.10) as

) sl 8 oy
Sz (% 9/5 % (;73 ) = Cf’?’“ M dow = 0 _
N7 gz Z - .2(27@_[,) (‘m/ ﬁA ” )
M A = o

We check now that it is non vanishing. In fact by Jensen inequality

S, 44X 4 2> &

where

2

m! om0

R

- z.n}ﬁ (%ﬂ'imf
o |

(-)

) "’M -
Z

st das o

o L?ITLF (m A )

128

- “7'75 (w, & w) 6—47?3 <W,Adw>ﬁ



129

since the measure< >, is even in W , <M 2 M ;=7 and, moreover, it
is easy to show (see ﬁppendm 9.A) that (chnose for s1mphc1tg SVpp w ﬂzf

= {¥% %, § )

Vi .

(C\) /A W )= (f&\)/ﬁ )/ 1~('B’ A y /\i & ;,,,)&

The fact that it is, really, a good two-point function for the
monopole will be proved later.
Now let us remark that, since /~ represents the Coulomb electric field
associated to a charge and, by (9.10), (v represents the magnetic flux
associated to the monopole, eq. (9.9) is a form of the well known duality
between magnetic and electric fields.
The oriented curve  introduced in {(9.8) can be seen in the U(1) model as
a representation of the Dirac string of integer magnetic flux, whose
introduction gives a conservation of the magnetic flux | Jw = cL( Nl #)=0,
Let us now see how the field o appears in the angmal Yillain form of
U 1)
Using the fact that {E-—‘()’ ) satisfies condition (9.8), by the Harmonic
decomposition . )

E-y= 54 AF )
s0 that

Ay Ep)= @A L AED)

Then, using also {9.11), we have

. \jﬁ“ O{¢/x //,Mﬁ A e o (B +m A)e i 2m 5&1@};‘4;&} ~

Al 6:‘271" E—b///\) @ll Zﬁ’é’l)A’) - (9.12)
T (B, AR o k)

L), OB ) o)

: -5, V2 , Q—Jf/ ol

- Z 7T e z,{g P o A
L] peh”

5 yﬁ jgw/?

Lxyd €N peh

P |
3 (do,
«étdukz”ﬂw + 277’[3/\5?,0)



It is evident that this expression is invariant under

W —> 3+ d/m Y, G Z {9.131)

by the Harmonic decomposition:

Y

Ly Ses o on—oldy on (9.1311)

%
¢

' ! ol e
J' A‘/\ duy —> Dy D> +‘A/\ SodAn =

i
/

{
v

.
9 =, O+ o AA o

leaves (9.12) unchanged.

This invariance corresponds to the possibility of freely moving the Dirac
string 5’5" of the monopole [as one can see from (9.11)] and it is similar
to the invariance under the choice of the external field co , for fixed
A, in the case of local solitons. What is really changed here is that,
besides the source term, d(yf, we have now a Coulomb like field (0 , as
anticipated in the introduction.

Like in the theories with local solitons, we can introduce ordinary fields
together with the monopole, preserving the invariance of the expectation
value w.r.t. the shifts of the Dirac strings.

For example, we can take the (0 dependent field

. + (54 w)
Y S0 TOS

(9.14)

or its non-local version, corresponding to the Wilson loop

x(¢) - 1 S

ey 2 IM’:S,’@’.@:C

T cm'éo)P

(9.185)
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To joint correlation functions of such ordinary fields and monopoles we
apply the Reconstruction Theorem.

Let us start by noticing that the electric field, generated in the dual (U(1)
Higgs), model by n-charges fXefg o Xy m t » 15 Clearly given by

M

Elgoxag) = 2 E(xq)
1

a (9.16)

L=

Equation (9.16) expresses the Superposition principle.
If Zq;:{), then there exists a 27 -valued rank 1 field » such that

(9.17)

5 <E (/\w TR Tn) — =z ) — D

Let

[~ \VF
Wa =, (kg 0« Uu) = Ea (Keqpoe ko qm) ~ X/

Define the correlation functions S . o of monapoles and 17}/ P
fields [introduced in eq. (9.14)] by

S (Rs e s X s o oo pm) =

m, m

-1 {9.18)
. | —B (A0 +emm +F L)
- &m —L Z ’Tf O!Q’X:’“}CZT & : Fg:?'}/p‘}'(”‘“’,«) _

Rk Z/\ m L Lepen e/

From the invariance under the (9.13) transformations, it follows that
these correlation functions do not depend on the choice of = satisfying
(9.17).
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Finally, for > 9:=¢=0 we define

Sm (Xiqa o X qn | Ps oo pm) =

~ (9.19)
- Kpm gfw—i . m (Xeds ven X dn % ’5} ' }74... ‘}t’“ﬁ‘/‘)

/9@)90 '

In the dual representation in terms of /]( and p’(the QOstewalder Schrader
positivity (where 8. (X,9) —(7x-¢)) of the correlation functions (9.18) and
(9.19) is evident since the measure in ( /‘r} % ) is 0.5. positive, and the
£ field spreads out in fixed time planes. )
since [Z(t]i(xd) (resp A7 (x,Y)) vanishes when 0o as [x~yl™
(veop lx~g)§‘2) , and the U(1), measure is translation invariant, the
translation invariance of the correlation functions follows.

Therefore, the Reconstruction Theorem applies to the correlation functions
15 ey momey  defined by eq. (9.18), (9.19) and we obtain a Laftice

Quantum Mechanics ¢ X, S, T , U 1

Now if the cluster property holds also wrti the x 's (this implies in
particular from (9.19) that all correlation with non null total charge vanish),
then M decomposes into J sectors labelled by the total monopole
charge c{ and the sectors with Cf% 0 are the monopole (soliton) sectors.

Using the Kennedy-King techniques [42] applied to the dual of the two-
point function in terms of /A and 95 , one easily finds, by duality:
For small enough ﬂ: ’

C) % comsh u e
S, (rgq y-9) 2 const >0 /\%&/%QZ

and no monopole sectors can be constructed.

This can be heuristically understood from the fact that, for small enough
and large \ in the dual (U(1) Higgs), model, A is massive (Higgs

phase) with a mass fmém/\ﬁ,

Therefore,



A
e
-4 (E ptma) E)
S (ko g} o~oe 5{7:3 / 5 ,i
o X 7Moo

In Appendix 9.B we show that:

For large enough 5% , the cluster property for the 8(,,?,,.1 correlation
functions  holds. In particular, correlation functions with fotal
charge 9 ¥ 0O vanish.

This will be done using the method of [30, 32], which consists essentially
in a renormalization group procedure applied to the gas of monopole loops.
One renormalizes their activity in such a way that the partition function
can be written as a convex combination of positive measures on the
manopole loops, which are dilute.

This renormalization allows us to extract in 5,4,y -9)a factor

o 0(@)97 131 from the component of the monopole paths which has non
vanishing boundary, given by {x, 4 b

Hence, we obfain

— 0(8) %1%~y 9.20
S, eq y-a) ] < e (0:20

This argument can be generalized to all the gm,m correlation functions,
and gives an upper bound of the type

Z

,ujo - 57((5 ) ] Z [ e

where jZ(fm = Mun {{le( Z sahaf{es (U).I-Z)}.
This ensures that for large enough E monopole sectors do exist.

Moreover, since the support of the monopoie with its magnetic flux is
local in time, one can construct a éﬁ (R") monopole operator with dense
domain in% , formally defined by

S 00 T () 1uXe o PP =

= {q Xoogy Kgexooo }91*‘3’50-‘- me("
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For xe': (O » this operator

< ff % .4\": — v

-“‘(4; (NS — Sci (\>\ )

is unitary in ?f and corresponds to the creation of a monopole with its
magnetic flux in the time zero plane.

It provides, as for the local solitons, an intertwiner between sectors

i ed =N g o= ¢ £ 59
}fijq and }ﬁi*‘f! . Since for X= (o,%), 2 = ¢ )
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equation (9.20) shows that:
The mass of the monopole of charge 9 is

"m{{ = ¢ Ifﬁ O( i}) |

we callect all these results into the

Theorem 9.1 The U{l)4 model for large f& possesses super-selection

sectors M, , labelled by g € ZZ, and the sectors KW, q#0 are
monopole ?soliton) sectors. ‘

The soliton is associated to a Coulomb-like magnetic flux which extends
infinity in a fixed time plane. The monopole with charge ¢ has mass

My = 62'2' O( %/} ~
| |

Remark 9.2 Using the above defined field E directly in the U{1) Higgs
model with gaussian gauge action, one can construct the charged sectors
(in class 2) of the introduction) in the QED phase by means of an 0.5. like
reconstruction theorem.

The sequences to which one applies the theorem are, e.g.

SM,W\ <XJ%“" XT@“CN ,: C: e Cw) =

s oV E() <
T W) T o, ¢ St 24,20
4

‘*:“i d 7 .
x,eh 4y e Z\{0}
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and
< R PN . B
o M TN ( X A 'J?_!, [ X«y\ ':? " ) [ 3o C h;) == B
' o
/f S e . O ) for 4_’3 tffa = ;t‘g:gf)
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By the same arguments of Appendices 9,A and 9.B one shows that in the
QED phase the reconstructed Hilbert space decomposes into orthogonal
sectors labelled by the total charge CTéZZ. Fan{;&Othe sectors
are charged sectors.

More details will appear elsewhere [43].

Remark 9.3 It is clear that the whole construction of the monopole
sectors applies, if we take o given by a 3-form lying in the fixed time
1attice (corresponding to the time coordinate of the monopole) satisfying

AV

;\(f (JJ ,‘5 - " XL ¢ 1| }

and \VJ?,A b)"f “

The choice we have made for ¢ corresponds to a symmetric Coulomb-like
field around the monopole, which minimizes the energy.

There are two other interesting choices.

One ie to take an (s with support in a cone of strictly positive
opening angle. The corresponding soliton operators S is then localized
inside the cone.

The dual of the state S . YL in the QED phase of the u(1) Higgs model is
nothing but a lattice version of the state localised in a spacelike cone,
discussed in an axiomatic framework, by Buchholz, in QED theories [35].
Another interesting choice could be to take as (G3) % the electric field &
constructed as follows.

Consider a charge moving in the continuum in a lattice direction with
velocity {?z(v/ 0, @) which at the time t=0 is in the position

=5

AU AP A Gt f /4
X = { X7 X ,,\f’j % € /j/‘"" ’

.,
An electric field f(v’) i) is associated to that charge and we take its

lattice approximation at t=0 as our E<£ E ("U') = E(X q; v).
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The Fourier components are { €: unit vector in the i-th direction)

=~

K,
Cier (Ame) (dmv)
s k@) o)+ [l

PE R -

E ol (g) = \ -2 (1-¢e'™)

s [L-cwou, J(1 ) [L~wo Kt -0 K;i

[2 oo [d=v )+l -aporde[d o K

L5
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An interesting fact is that the monopole sectors constructed with

~ P
W = E(K 0{ ; *)“)

s L ., ’\'(
are orthoganal to those constructed with (v =k (xq, )",
In fact, whereas

(B (xq B 4, T), L ECrq, ¥ 4

-9 }”53)><w

we have that

—_— _ T..ra"‘ . *zj;:y
(E‘Cm{g,?r”' d»q,(f)/ll E (xq,V;Y-4.° )

/ I g

diverges.
This could be viewed as a lattice analogue of the superselection sectors

labelled by ‘i}“e[ii, i’]3 in the continuum discussed in [6] (for more
general sectors see also [35]).

Remark 9.4 It is well known that the U(1) hypergauge theories, i.e.
theories with a U(1) valued rank k>4 gauge field O with e.g. ¥illain
action, possess in o » k+3 a decoupling transition for large F [30].
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With the above methods one can easily prove that in the deconfined region,

for large ?> , the theory possesses /7. "monopole’-like soliton sectors
in d=k+3.

Remark 9.5  Also for monopole disorder fields, a proposition similar to

proposition 5.10 can be proved.

In fact, if D(w)denotes the disorder field associated to the monopole,

then, in a general lattice, 3 L a )”

D)y =< 7 & PLaFramnimaliol, = (o
! re S 2

depends on &7 and rw-c51e HETE (AN S (d(w-a)) Z),

Here one can also remark that if /\ is of non-trivial homology,

e.0. AT ¥, the expectation value <D(oo)>/\can be non-trivial even

if =0 , dw = O,

This would be the case for a "large” monopole loop encyrcling the torus.
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£
/9

lemma = A £ )<
Lefama o
Proof. Let £ =£(x¢ y~q), and, for simplicity, assuma Xz

The general case requires only a few, but straightforward, calculations.
define
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=1.

Let én; denote the unit vector in the i-space direction,
E (Z.) x, QIZf\g > /<zb,z,+"é’é> , ez, 7r§ > / E<Z,Z+@o&: )
then
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O R A L Rl v Lo
2 E.
) ' 2 L o Ko
vt
T T
., P < 5 T . i 3 A
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we finally obtain
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Appendix 9.8

Proposition  For large enough (> |
E

14 ,f’z} 2 !
| , \ -O(P) 9" Ix=
| i o ot P : ¢
| S?; > Xw? l ! e} NI R G]
Proof. Define a current density p as a mapping from the links

in A* into T 7 . and let E denote a set of current densities with
dist (p,¢)y 27 if ppel

£ is called a 1-ensemble.

we now quote[30] the

Lemma
S cor e
™ 2 e ' =
Ixys en® Ny = ~ 0 e
_ T (9,
= Z ;fe, L Li + K({‘) Lo (/1 P/_
v P ey

where O ranges over some finite index sets, each f(, is a 1-ensemble and

f/\v > O
(2
c |l
D<kip) € ¢
[O‘Z = ;\:‘w ]Dz.fx.il
} s

<Xy € C'/Ho &
4

with ¢ some [ independent constant.
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we also notice that

i 0 \ (/*) LE- 5)) e, A
— = famdu (A e 7T 1 e 77 7 (9.82)

P
. /\‘ o v K
:’ v 0 . £ A C*CX) =%

Inserting (9.B1) in the definition of S, , by duality we obtain

DTS
SZ (\,‘ficf b ém _4_4 {r}?/&l{\ (k) €
| /\/ ///Y é/‘\ J ’
-t a .

- = Lo e, A
T S e A

g [\1,/ ¢ L Y B . o (Q-E3}

Ll - /ﬂ’ i\¢,¢; g

Lom g\j{":f\ U*‘f) o (A ) E’?f\) ; Av T L 1+ K ”> 5 ﬁ nf’
A /7?;}/4 v o p{. &
/. <o

where we have used the fact that o{ /UAfﬁ/ ig even and

r ey
M A (A/‘ £ =0 unless évx,,zu =0,

j ¥
Given a set of links /\fc A~ define

|
N . < [
o

then, using the techniques of [32], one obtains the identity

o) ( A ) & ﬁ,’) f{i : .i 4 K/k"} oD (A} Sp/):} =
yo'(suW E-y)! f?f\
= i C - E ) (A, Eé) + K( F»’) oD ‘\A‘,» E/(}/*'/ﬁﬂﬁg-ﬂ.‘ﬂ

%
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AN

where ¢ is a current satisfying 5? =0, T ranges over a finite
. e S , f\"; o 2
index set, C ~ >0 and Hf\w,,{ Ly € 1T

o

Inserting (9.B4) into (9.B3), and using (9.82), we obtain that the
expression under the limit in (9.B3) can be written

r | T N ’ 7 3 S .
~ ; "ﬁ/f/lf{jz f". ‘f: / /)z & L Co {HA} c- X,JE + K(é':’ :J; ') {/}\ 6*‘)’{%"/9 /: .

Lk w03y du (A 2.
etn /oL |

r"; 3 \f? . ] T f— i / g ‘)
f‘& ST /‘"'O
Let now &%, {7 be a set of links in supp ¢ & (in supp p'~) ),
such that two dlfferent links in 65 ( bf) \ﬁo hot belong to a common

plaguette, and

> | P,

\<xys
<y & 65{,

N f?’ oo A ]

(one dimension is suppressed)
fig. 9.B1
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renormalization

{ AT 360,:) s,A E..{{-/)

(,\ E. _ )/ + j\ EITN’/};;’.'-*:)«‘} ) SRy féé%(ﬂ‘”

CE =y pT oy = (el (E -y

) P %'65f
- (5P ey

Lt

y <ky>605§ .
T

{9.B6i) s

) CRYS & 6?)(;



) 2.
o e
AP =T - & .
zi2) =" My
\ LNy X 5
(f e~ ;(j“ YDT T
AR I Ol B , & evy L/(P: )
S 2
— !" ;’1}\ f(' b "2"{}""" 6 - {v} /;-:j\i:;) k«" [’ ,} “\}
I e e v
L }fuf | . ! e @P v/

Using the bounds on [ (p), L/ /o7, , for some constant ¢, independent
on . we obtain ’ *

{
| .o LE"
) ~c, {8 J p P - <XYD
SR “;;665(37 (9.B6i1)
] o f [=oxrz ) /{f”wc»w )

For large enough is therefore less than 1.

To bound Z(Fp") we have to take care that the £~ field is very large on
the links near the boundary of Y.

Hence define

=

N — 5 o L i
[\i X, AZ Say> ; Sy | >/ ZL }V
LY )

Then, for some ¢, < ¢y

Z ~ ™~
Z ({5/ §r> < e “ %*CN(T—MW‘ Q%gl&‘xwuﬁxvfa/‘w

<Ry DE- ;
so that @Ffm N"a ub}
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PR o =g (=Tl
Z(ﬁzﬁr)fﬁmf e 0 Fc rior

which for large F is less than 1.
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Therefore, from |Zcood < [z we finally obtain:

25 £ o mar (=2(p) + 2] 50T )

N
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Now one uses the inequality
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, from (9.B6i,ii) we finally
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10. OPEN PROBLENMS

In this final short section we just want to mention some open
problems suggested by the previous sections.

1} The first and fundamental one i¢ the continuum limit of the lattice
soliton sectors. In particular: do they survive when the lattwe
spacmg go to zero? The answer is certainly positive for the g
or (o qE sectors, which have been explicitly constructed in HQ]
and [36] with algebram tools.
we also believe that the continuum vortex sectors in the three
dimensional Higgs models and the t’Hooft-Polyakov monopole sectors
in the Georgi-Glashow model do exist. On the contrary, there are
indications [15,31] that the U(1), monopole sectors will not survive
the continuum timit.

From a constructive point of view, the euclidean construction of the
local solitons in /=7 should not be very difficult. For example, in
the G'D"’ mode]l one should obtain the ewpectation value of the
dlsorder field at finite valume, substituting in the gaussian measure
the covariance (£\ = w*) (xu with the covariance(A (o) + an?) (xg)
where A (vs) isthe Z, covariant laplacian in ?\l\wip(ciw)

The thermndzgnamlc limit shnu'ld then be taken by means of a sort of
Glimm-Jaffe-Spencer expansion [22], which probably allows also a
particle structure analysis with the excitation approach.

2} A second natural problem is the extension of the technigues developed
here to other similar cases. In particular:

a) construction of the t’Hooft-Polyakov monopole sectors;

b) construction of the instanton [37] on sectors in d=5 in SU(N) gauge
theories.

In this dimension, in fact, one believes that SU(N) gauge theories have
a deconfining region for large ;9 and the instanton, a line defect in
Ad-5,should give rise to soliton sectors in class C.

3) To construct an excitation expansion also for sectors in class C, both
to analyze their particle structure, and to extend to these models the
equality between soliton mass and surface tension.

«ﬂ..
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4) To extend the soliton sectors analysis to models which include the
fermions.
In this context, the interesting new phenomenon of sectors labelled by
fractional charges should appear [368], together with intriguing aspects
on the relation between spin and statistics [39]. A simple model which
should be possible to analyze in this context is the (¢* Vs @ «y}
which, on general grounds, is known to possess soliton sectors in d=2

[40].
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