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Part One. Introduction

From a predictive point of view the best theory we have in
order to describe the macroscopic effects of the gravitational
field is General Relativity. The same is not true from a field
theoretical point of view. The main problem is that concerning
with the energetic content of the theory; just to start, with the
standard definitions, the so called canonical energy-momentum
"tensor" is not a tensor; secondly, the canonical definition must
be supplemented with surface terms. It is our belief that most of
this kind of problems iﬁ General Relativity arise due to a
misunderstanding of the foundations and an inadequate application
of field theory.

The Lagrangian for General Relativity contains second-order
derivatives of the fields, the components of the metric or any
other equivalent set. The previous fact has been considered as a
defect of General Relativity. People argue that due to the
presence of second-order derivatives in the Lagrangian a
Hamiltonian formalism is lacking. People then have recourse to

i. the Palatini first-order formalism in which g and T are

considered as independent fields; or

ii. to the IT Lagrangian, obtained by discarding second-order
derivatives through a divergence.

The first procedure has the disadvantage of not being a general

procedure, it is just a "lucky strike" that it works for General

Relativity, as do it for any metric field theory. Concerning the

second one, it is not true that the IT Lagrangian gives exactly

General Relativity since the boundary behavior of the fields is

changed.

As we already mentioned it, a further problem is related with
surface terms. In order to have the correct asymptotic behavior of
the energy, the linear and the angular momentum, one must
supplement the canonical definitions with surface terms. They were
first introduced by Regge and Teitelboim (1974).

All previous criticisms to the field theoretical aspects of
General Relativity can be overcome if one applies field theory in

its most orthodox way and avoid any ad hoc construction for
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General Relativity. Summarising, in order to correctly address the
field theoretical aspects of General Relativity, we must get
acquainted of higher-order field theory and how to correctly deal
with it. That is the subject of this work.

Apart from the previous motivation, there has been recently
much interest in the formulation of field theories governed by
Lagrangians depending on higher-order derivatives of the fields,
both for purely mathematical reasons and in view of their possible
applications to concrete physical theories, e.g., in the domain of
alternative theories of gravitation; see, e.g. (Ferraris and
Francaviglia, 1987) and references quoted therein.

A historical review of the role of higher-order Lagrangians
in physics it is not out of place here. The first suggestions of
higher-order Lagrangians date back to the early days of General
Relativity; in fact, just after the arrival of General Relativity
it was suggested that the Einstein equations for the gravitational
field be replaced by others involving derivatives of higher than
second order. Early suggestions (Weyl, 1921; Eddington, 1924)
concerned an attempt to include the electromagnetic field in a
unified geometrical framework, but this line of appfoach proved
unfruitful and was eventually abandoned (Pais and Uhlenbeck,
1950) . Later suggestions were given in (Lanczos, 1938); Buchdahl,
1948) .

The first known theory using second-order Lagrangians is the
Podolski electrodynamics (Bopp, 1940; Podolski, 1942; Podolski and
Kikuchi, 1944, 1945; Chang, 1946, 1947; Kanai and Tagaki, 1946;
Montgomery, 1946; Green, 1947, 1948, 1949; Podolski and Schwed,
1948; Matthews, 1949). The arguﬁent to introduce higher-order
derivatives is the fact that they are important for high
frequencies (ultraviolet), but they are not well described by the
usual second-order field equations. The quantisation of this
generalised electrodynamics gave finite energies.

The previous facts motivated a deeper study of the
generalised Hamiltonian formalism. The first contributions were
given by DeWet (1948). However, his formulation did not contain
classical mechanics as a particular case. Next Chang (1948) tried
to rewrite the higher-order Lagrangians in a first-order form.

Further developments were given by (Thielheim, 1967; Coelho de
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Souza and Rodrigues, 1969).

The success of the previous results 1lead to Pals and
Uhlembeck (1950) to study higher-derivative theories in the
general context of quantum field theory and to consider the
possibility of cancelling the divergent features of field theories
using Lagrangians containing higher-order derivatives. However,
they were not able to reconcile the convergence, the positive
definiteness of the free field energy aﬁd the absolutely causal
behaviour of the wave function for a physical system. Another
attempts to put farther the Podolski electrodynamics are due to
Katayama (1953) and Taniuti (1955, 1956).

Later on, for the séme reasons as in electrodynamics, to
control the high frequencies behavior and in order to permit
renormalisation of divergences in the quantum corrections to the
interactions of matter fields, quantum field theory also gave rise
to suggestions that higher-derivative terms be included in the
gravitational Lagrangian for quantum gravity (Utiyama and DeWitt,
1962; DeWitt, 1965; Sakharov, 1967). More recent use of higher
derivatives to regularise the stress tensor 1is reviewed 1in
(DeWitt, 1975). For a review see the book by Christensen (1984)
and references therein.

Most recently there have been proposals of adding a term
proportional to the extrinsic curvature, a second- order term, to
the Nambu-Goto Lagrangian in order to describe the fine structure
of strings (Polyakov, 1986; Alonso and Espriu, 1987).

In spite of the previous interest on the subject the
progresses done from a more mathematical and formal point of view
are not well known. The purpose of this work is to introduce the
most recent results, most of them original, concerning higher-
order field theories. The philosophy of the work can be well
summarised with the alternative title "How to deal with higher-
order field theories?"

The work is organised as follows. In sec.I.l we start by
introducing the fundamentals of General Relativity and showing
explicitly the defects we talk about at the very beginning. Next,
sec.I1.2 we consider some elements of differential geometry. In
fact, one of the most natural mathematical setting for dealing

with higher-order field theories is with the Poincaré-Cartan form
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over fibered manifolds. This formalism has Thowever the
disadvantage of being not known to the physics community. That the
reason why on parallel lines we present fhe formalism for dealing
with higher-order field theories as a physicist will do it.

Next we consider field theory from a local point of view.
There a physical system is described by a set of fields ¢ over a
four-dimensional space-time. We start by deriving the fields
equations from a variational principle. .

We show that a Lagrangian density of the form £=dHA“, where
dﬂ=d/dxu is the total, or formal, derivative with respect to x”,
yields identically wvanishing field equations. Accordingly, two
Lagrangians locally differing by a divergence yield the same field
equations; this property will be called d-equivalence. The
previous is a sufficient condition, and an important problem is to
show that the condition 1s also necessary, 1i.e. to show that
SA(ﬁ)EO, where 6A is the wvariational derivative, locally implies
£=dMA#. This can be easily done in Classical Mechanics, as well as
for its higher-order generalisations, and also for first-order
field theory; see, e.g. (Hojman, 1983). A classical constructive
method of proof, which, e.g., can be found in (Hojman, 1983),
consists into explicitly writing the total derivatives involved in
the field equations. The terms containing derivatives of each
different order must be independently zero. This means that the
factors multiplying them must be =zero, giving differential
conditions which might be integrated to obtain the explicit
structure of the Lagrangian.

We then construct the local canonical energy-momentum tensor
and consider the local conservation laws to which it gives rise.
In this connection we show then that the energy-momentum tensor is
not invariant under the addition of a divergence to the
Lagrangian, i.e., it 1s not d-invariant. It seems that the only
way to solve this impasse is by selecting a representative for the
d-equivalent Lagrangians. Suitable ways of generalising these
results is currently under investigation.

One of the main problems one must face in field theory is the
increase of the Dbase space dimension from one (classical
mechanics) to some dimension greater than one, two or four in the

physically relevant cases. There are two alternatives. The first




alternative 1is canonical field theory which is constructed as a
classical mechanics with infinitely many degrees of freedom. The
second alternative is covariant field theory (Tapia, 1988b) which,
on the contrary, 1s constructed as a multitime classical
mechanics.

We show how canonical field theory can be constructed still
on the same lines as classical mechanics. We then construct the
canonical Hamiltonian formalism. The canonical Hamiltonian 1is
defined as the time-time component of the canonical energy-
momentum tensor. When considering the time evolution of an
arbitrary functional one realises that the canonical Hamiltonian
is the correct time evolution generator. Furthermore, it induces a
symplectic structure over the phase space. Finally we consider the
conservation laws induced by the canonical energy-momentum tensor.

The  boundary conditions  appearing to  guarantee  the
stationarity of the action must be considered as constraints for
the formalism. This can be avoided (Tapia, 1987a) if one consider
them as sources at the boundary for the field equations.

We construct then a covariant field theory in which all four
directions of space-time are dealt with on the same footing
(Tapia, 1988b). For this aim an extra term must be added to the
canonical energy-momentum tensor. Contact with the canonical field
theory 1is made be considering the time-time component of this
modified energy-momentum tensor. The additional term turns to be a
surface term. The modified Hamiltonian has the same properties as
the canonical one, viz., it is the time evolution generator and
induces a symplectic structure over the phase space. The energy,
the linear and angular momentum,‘ all acquire an extra surface
term. Similar conclusions, in the sense that the physically
relevant quantities are the canonical ones supplemented by surface
terms, were reached by Ferraris and Francaviglia (1988) using the
Poincaré-Cartan form as extended to higher-order derivatives field
theories.

We next go to local higher-order field theory, i.e., one in
which the Lagrangian depends on higher-order derivatives of the
fields. The Lagrangian formalism can be developed on the same
lines as for the first-order case with the exception that momenta

must be defined in a generalised way depending on the order of the




Lagrangian.

We then address the problem of characterising Lagrangian
densities (of an arbitrary order) yieldihg identically vanishing
field equations. The Hojman method of proof complicates very much
for orders larger than one. Some partial results for second-order
field theory were obtained by Shadwick (1982); more general
results for the second-order case were also recently obtained by
the author (Tapia, 1987b). However, for.higher—order Lagrangians
this method of proof becomes practically unmanageable, and a new
method of proof must be looked for. In any case, an implicit proof
that 5A(ﬁ);0 is equivalent to the Lagrangian being a divergence
was given by Krupka (1982), in the context of the theory of
Lepagean equivalence. This proof, however, amounts only to an
existence theorem, and it is still interesting to derive a method
for constructing out in general the divergences which generate
identically satisfied field equations.

Inspired by some previous results by Vainberg (1964),
Atherton and Homsy (1975) and Engels (1975, 1978), Tapia et al.
(1988) derived, in the framework of higher-order field theory, a
remarkable identity for the Lagrangian, from which one can
immediately infer that the necessary and sufficient condition for
obtaining identically wvanishing field equations is that the
Lagrangian is a divergence. Furthermore, it enables us to remove
from field theory the ambiguities related to the non-invariance of
the energy-momentum tensor under the addition of a divergence to
the Lagrangian. |

We construct the canonical energy-momentum tensor. This can
be done on the same lines as for the first-order case. The
conservation laws for the energy, the linear and the angular
momenta, are constructed in the same way as for the first-order
case.

We then construct a d-invariant field theory, i.e., one for
which the energy-momentum tensor is independent of the divergences
which can be added to the Lagrangian. This must be done by
selecting a representative for d-equivalent Lagrangians. Once
again the previous identity helps us in this task (Tapia et al.,
1988); in fact, it allows us to select a local representative for

the d- equivalent Lagrangians from which the divergence part has
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been removed.

We then specialise the previous formalism to the second-order
case, i.e., a field theory in which the Lagrangian density depends
on up to the second-order derivatives of the fields. In analogy
with what was done for second-order classical mechanics (Tapia,
1985) the momenta are defined as the terms multiplying the
variation of the fields in the boundary term of the wvariation of
the action (Tapia, 1988a). The main difference with respect to the
first-order «case appears in the definition of the momenta,
functional rather than ordinary derivatives must be used.

We then construct the canonical Hamiltonian formalism. Lastly
we consider the surface tefms for second-order field theories.

To finish we apply all the previous results to General
Relativity. The conserved quantities are just surface terms.

Aldo the theory 1is written in a local form it can be
conveniently applied to asymptotically flat spaces where outside
the compact domain one can choose a single coordinate patch which

cover all of the infinity.
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I.1. General Relativity

Here we introduce the field theoretical aspects of General
Relativity. We start by considering some fundamentals of
Riemannian geometry at the manner a relativistic will do it. Later
on we consider the equations describing the gravitational field,
the Einstein equations. Then we 1look for the wvariational

principles from which they follow.

I.1.1. Riemannian Geometry

A Riemannian manifold is intrinsically characterised by the
metric tensor gyy. From it we can define the Christoffel symbols
1
FApu = (augUA + Bug“A - 6Agpy) (1.1.1)
and the contractions

r. = g" Ty (I.1.2a)

FA g FpuA , (I.1.2b)
where g"” i i i i i A =*

g is the contravariant metric tensor satisfying g gAV—6u.
Indices are raised and lowered with the metric g even for the
Christoffel symbol which is mnot a tensor. The following

derivatives will be useful in what follows

aT
o O 526}2 + 5 szﬁz; - 85 6:531) : (I.1.3)
oBpy
and the contractions
ar ar
A pv __Apy 1o af oy ay B By o
=g s =:(g" & +g s - Ts,
EE EE] 2 A A by
a®py o®py
aT ar
ol s A (T.1.4)
oBpy oBpy

The Riemann tensor is defined as

(8, &

+ 4 - 4 -3
ApZpy prBap aw8up Kp

N

R)\w/p g)/)\)
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agT
e Ty, Ty Ty (I.1.5)

The Ricci tensor is

1
R T2 & (3Apgua * auagkp ) akagup ) aupgka)

and the scalar curvature is given by

R AV R g

-8 & Apvp
(GMVHP + VP 9T (1.1.7)
Augpp & o\v TTpp’ el
where
v VoA 1 A v VA
R - I At - (1.1.8)

is the DeWitt metric. The Einstein tensor is defined as

1
G, =R, ~;RE, (1.1.9)

The Riemann tensor satisfies the Bianchi identities

Ra,BA,uu + Raﬂw/\ + Raﬁw\u =0 (1.1.10)
A double contraction of them leads to
¢ ~o0 . (I.1.11)

I.1.2. Variational Principles for General Relativity

According to General Relativity the field equations
describing the gravitational field are the Einstein equations

Guv =0 . (I.1.12)
They are second-order equations, tﬁerefore one hopes they follow
from a first-order Lagrangian. However, a first- order Lagrangian
cannot be constructed since it can be put equal to zero by means
of a convenient coordinate transformation. This impasse was solved
by Hilbert who noticed that if the second-order derivatives appear

linearly in the Lagrangian and only involved in a total divergence
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one can equally well obtain Einstein field equations. In this
case, furthermore, one can construct an Invariant Lagrangian

linear in the second-order derivatives. The solution is

I _ 2

r = J-g R B + d“V , (I.1.13)
_ VA . =H

zrr J-g (T ;Fxpu T Pp) , (I.1.14)

v~ Jog ot - TH . (I.1.15)

I.1.3. The Formulation a l; Palatini

The purpose of this formalism is to get rid of second-order
derivatives, 1i.e. to obtain a canonical form for Einstein
equations, that is to put them in the form d=3H/ap, ﬁ=-8H/8q. As a
preliminary step, we will rewrite the Lagrangian so that the
equations of motion have two of the properties of canonical
equations:

1. they are first-order equations; and

2. they are solved explicitly for the time derivatives.

The second property will be obtained by a 3+1 dimensional breakup
of the original four-dimensional quantities, as will be discussed
below. The first property is insured by using a Lagrangian linear
in first derivatives. In General Relativity, this is called the
Palatini Lagrangian, and consistsv in regarding the Christoffel
symbols Pa#u as independent quantities in the +wvariational

principle. Thus, one may rewrite (I.1.13) as

_ Ny 4
S J g R#V(F) d x , (I.1.16)

_ ) B B
R,(T) =T - T T T T, - (111D

Note that these covariant components Rﬂy of the Ricci tensor do
not involve the metric but only the affinity Fauu' Thus, by

varying g”y, one obtains directly the Einstein field equations

1 af _ 7
G = R#V(F) - B Ra (T gﬂy =0 . (1.1.18)

7y B

These equations no longer express the full content of the theory,
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since the relation between the now independent quantities Faﬂu and
gNV is still required. This is obtained as a field equation by

‘varying Papu. One then finds

py oy BB v vB Lk W B _
g o g a + 9 r op + g r op g r of 0, (I.1.19)
which can be solved for PQ#V to give the usual relation
¢ TR S (1.1.20)
pyo 2 Bu,v By, b pv, B ‘

I.1.4. The IT Approach

Most of later developments of General Relativity have been
based on the IT Lagrangian. In this case the Lagrangian is a
first-order one.

The corresponding momenta are

(af)p _ = peef =0 pr @p)
I (fff) B g (T I8 6(07)
S 2P Pt Py (I.1.21)

The corresponding energy-momentum tensor is

B _ (afrp b
£, Epp) =8 B I Epp) - 6, frp
R R R T
2 v afv v
varhy i 4 P 0 (1.1.22)

The formalism based on the IT Lagrangian it is not the correct
one; first of all, the energy-momentum "tensor" (I.1.22) is not a

tensor.
I.1.5. The ADM Formalism

One of the common procedures to formulate a Hamiltonian
theory of gravitation is based on a slice dependent formalism

which was developed around 1960 by Arnowitt, Deser and Misner, and

is commonly known as ADM formalism (Arnowitt et al., 1962). In its
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classical formulation it relies first on the choice of an
appropriate first-order Lagrangian equivalent to the Hilbert
Lagrangian obtained by pushing second—ofder derivatives of the
metric into a total space-time divergence. As a second step, one
then chooses a foliation of the four-dimensional space-time into a
continuous family of three-dimensional (space-like) hypersurfaces,
onto which the four-dimensional dynamical +wvariables can be
projected. This helps to select a set of three-dimensional
canonical variables, whose Hamiltonian evolution in time allows to
suitably reproduce Einstein field equations, see, e.g. (Isenberg
and Nester, 1980). ‘

It was soon realised. that, since General Relativity 1is a
constrained system, in the sense of Dirac (1950, 1964), the
standard Hamiltonian vanishes on the constraints and has therefore
to be properly corrected by the addition of suitable boundary
integrals, 1i.e., contributions at infinity, representing the
asymptotic mass and angular momentum, see (Regge and Teitelboim,
1974) .

The classical formulation of this formalism depends heavily
on the choice of coordinates or frames adapted to the foliation,
so that several problems arise when trying to restore the full
four-dimensional covariance of Einstein’s theory. In recent years,
various authors have therefore attempted to construct a fully
covariant approach to ADM formalism for first-order theories,
generally by relying on symplectic or multisymplectic techniques,
or on particular geometric structures implied by the choice of a
class of Lagrangians. Important work in this direction can be
found in (Isenberg and Nester, 1980; Sniaticki, 1985; Kijowski,
1985) and references quoted therein; we mention in particular some
papers by Szeczyrba (1978, 1981, 1987), which contain an important
discussion of ADM formalism for first-order covariant field
theories, together with an extension to cover the case of General
Relativity. These last papers are based on the extensive use of
the ©Poincaré-Cartan form as the basic tool to define the
Hamiltonian, or energy-momentum, of the given theory.

It has been often argued in the literature that the classical
ADM formalism applies to General Relativity only because this

theory behaves essentially as a Lagrangian field theory of order
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one. Moreover, doubts have been raised, see (Szczyrba, 1987),
about the existence of a similar general method for arbitrary
higher-order field theories. Nevertheless, also in view of recent
investigations concerning the physical interest of truly
second-order Lagrangians for relativistic theories of gravitation,
see (Magnano et al., 1987; Stelle, 1978; Whitt, 1984) and
references quoted therein, it is interesting, at least on the
theoretical level, to reconsider the éroblem and to provide a
fully covariant approach directly applicable to higher-order field
theories, i.e., to Lagrangians depending on higher-order
derivatives, no matter whether constrained or not.

ADM start by consiaering the wusual action for General

Relativity

S = J e da*x = J R /g d'x , (1.1.23)

which yields the Einstein field equations when one considers
variations in the metric (e.g., g#V or the density Q#U=J?§guu).
These Lagrange equations of motion are then second-order
differential equations.

The three-dimensional quantities appropriate for the Einstein

field are

By, = 8B, o (I.1.24a)
N=- (Mgt ' (1.1.24b)
4
N = &, » (I.1.24c)
= TR g T g™ 8T g (1.1.269)
Pa Pq rs

Here and subsequently we mark every four-dimensional quantity with
the prefix 4, so that all unmarked quantities are understood as
three- dimensional. In particular, gij in (I.1.24d), 1is the
reciprocal matrix to 8, - The full metric hgﬂu and 4guu may, with

(I.1.24), be written as

4

g =N + N N, (I.1.25a)

00

where Ni=gijN', and
3

[



= - W, (I.1.25b)
Yo% = 1N® (I.1.25¢)
et = gt e N NN (I.1.25d)

One further useful relation is

J-'g =N Jg . (I.1.26)

In terms of the basic quantities (I.1.24), the Lagrangian for

General Relativity becomes

_ _4 4 - . ij 0 _ i
L =/-"¢g R 8, atw N X% N1 b2
NN NS Nt T ) (I1.1.27)
where
£’ = - Jg R+ g " (2 -7y, (I.1.28a)
i3
=2 (1.1.28b)

. 3, - .
The quantity "R is the curvature scalar formed from the spatial

metric gij, | indicates the covariant derivative using..this
metric, and spatial indices are raised and lowered using glJ and
gij Similarly, w=wii. We have allowed second-order space
derivatives to appear by elliminating such quantities as Fkij in
terms of 4 g .

ki

One may verify directly that the first-order Lagrangian

(I.1.27) correctly gives rise to Einstein equations. One obtains

0.8, =2N g1 (m, . - B g, ) v N TN, (I.1.29a)
A AE S ; R gt
ok T
PISCI YL R L S N 12
m 2
+ /g at ! gh? Nlm]m) + (ntd Nm)lm

| 8




SN ™o (1.1.29b)
| m | m
B i3
(g , o) =0. (I.1.29¢)
i
Equation (I.1.29a), which results from wvarying ﬂij, would be
viewed as the defining equation for '3 in a second-order

formalism. Variation of N and N yields equations (I.1.29c), which
i :

are the QGOP=ARO“-§4R6Z=O equations, while equations (I.1.29b) are

linear combinations of these equations and the remaining six

. . . 4
Einstein equations ( G =0).
ij

I.1.6. Surface Terms

It has been recognised long ago that there are drastic
differences in the Hamiltonian formulation of General Relativity
depending wupon whether three-space 1is open or closed. DeWitt
(1967) noticed that in the case of an asymptotically flat
space-time the usual Hamiltonian

H = J NGO 2°(x0) + N (x) ¥ (x)] d% (1.1.30)
for General Relativity must be supplemented by the addition of a
surface integral at infinity (Arnowitt et al., 1962)

E[gij] = J (gik’i - gii,k) dSk’ ’ (I.1.31)
in order for the modified Hamiltonian

H=H +E[g, ] | (1.1.32)
to coincide asymptotically with the wusual expression of the
linearised theory. However Dewitt stated at the same time that:
"...although such a partial integration leaves the dynamical
equations unaffected it does change the definition of energy...."
This point of view seems to be commonly accepted; Dirac (1959),
for example, also states that: "The removal of this surface
integral does not disturb the wvalidity of Hmain [our H of
eq.(I1.1.32) with N=1 and N;=O] for giving equations of motion, but
it results in Hmain not vanishing weakly...."

We would like to point out that with a proper definition of

(9




the functional space of the gravitational fields the inclusion of
the surface integral (I.1.31) in the Hamiltonian is not a matter
of choice and that it is not necessary either to justify it by
making appeal to the linearised theory. Rather, in our case, the
usual Hamiltonian Ho not only does not give the correct equations
of motion (Einstein's equations) but, worse than that, it (HD)
gives no well-defined set of equations of motion at all. It will
be in fact shown that if the phase space of the system 1is to
include the trajectories representing the solutions of the
equations of motion, which is a necessary and basic consistency
requirement for any Hamiltonian theory, then the Hamiltonian for
General Relativity must be expression (I.1.32) which includes the
surface integral (I.1.31). If one would use HO given by (I.1.30)

instead of H he would find that Hamilton's principle

SJ Ldt =0 (I.1.33)

has no solutions.

Once one sees that the surface integral (I.1.31) must be
included in the Hamiltonian to start with by a fundamental reason
and not by some ad hoc considerations, the logical procedure
leading to the identification of the energy in General Relativity
becomes considerably simpler: the energy is just the (non-zero!)
numerical wvalue of the Hamiltonian which, on account of the

initial wvalue equations

=0, ' (I.1.34a)

¥t =0, (1.1.34Db)

is precisely the surface integral (I.1.31).

In much the same way as the energy 1is identified as the
conserved quantity (the Hamiltonian) associated to invariance of
the action under time displacements at infinity one can identify
the momentum

Pt -2 J ot dzsj , (1.1.35)

and the angular momentum

(I.1.36)

3
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as the conserved quantities associated to translations and
rotations at infinity.

What we are trying to emphasize at this point is that the
identification of energy, momentum and angular momentum can be
achieved without solving (even 1in  principle) the constraint
equations and, consequantly, before fixing the space-time
coordinates and finding the corresponding reduced Hamiltonian of
the theory ("true Hamiltonian" in the terminology of ADM). On the
contrary the reduced Hamiltonian corresponding to a particular
fixation of the coordinates is obtained by inserting the solutions
of the constraint equations (I.1.34) into the surface integral
(I.1.31). It becomes then trivial to see that any fixation of the
coordinates leads to the same wvalue for the energy. Similar
remarks apply to the other conserved quantities. ADM worked in the
opposite direction, reducing first the Hamiltonian and then
identifying the value of the reduced Hamiltonian with the energy.
It is then not obvious at all that different reductions will lead
to the same value for the energy (Arnowitt et al., 1961).

The understanding of the necessity of including the surface

integral E[g . ] in the Hamiltonian to start with clarifies also a

difficulty fédnd by ADM, who discarded the surface integral at the
beginning but found that if they would do so also at the end
(i.e., after coordinate conditions are imposed) they would be left
with mno Hamiltonian. To bypass the difficulty they stated
(Arnowitt et al., 1960, 1962) that "It should be emphasized that,
while the energy and momentum are indeed divergences, the
integrands in the Hamiltonian and in the space translation
generators are not divergences when expressed as functions of the
canonical wvariables." What ADM seemed to have in mind is that
before solying the constraints one can assume that Egij and 6n°°
vanish sufficiently fast at infinity so that SE[gij]=O, but that,
on the other hand, one cannot make such an assuption after solving
the constraints, because at that moment the bahavior of some of
the canonical variables 1is determined by the behavior of the
others. As we will see, in our approach the asymptotic behavior of
Sgij and §x°’ is determined from general considerations having

little to do with imposing coordinate conditions. Such an

asymptotic behavior stays the same before and after solving the
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constraints. Consequently a surface 1integral that can be
eliminated at the beginning (as the surface terms other than
E[gij] in (I.1.32)) can also be elimimated at the end. On the
other hand, a surface integral having a non-zero variation at the
beginning (E[gij]) will also have a non-zero variation at the end
and consequently cannot ever be discarded.

Another bonus of the present treatment is a clear cut proof
of the correctness of Dirac's result (Dirac, 1959) in the
reduction of the Hamiltonian for maximal slicing of space-time.
(It should be emphasized that although we find the result to be
correct we are not satisfied with the original reasoning of Dirac.
In this aspect we agree with ADM (Arnowitt et al., 1960) who found
the original Dirac’s procedure "logically incomplete.") For the
sake of completeness we also show how the reduction of the
Hamiltonian by ADM cootdinate conditions 1s achieved in oﬁr
approach.

Finally the problem of invariance of the theory under
Poincaré transformations at infinity is considered. To begin with,
the previous results are generalised so as to allow for asymptotic
Poincaré transformations among the permissible deformations of the
hypersurface. In that case nine surface integrals besides (I.1.32)
contribute to the Hamiltonian. These 1integrals are the six
momentum and angular momentum expression (I.1.35), (I.1.36) and
three other quantities related to the "center-of-mass” motion. If
one fixes the coordinates in the "interior" but still leaves open
the possibility of making Poincaré transformations at infinity
then the ten generators of the Poincaré group are obtained by
inserting the solutions of the' constraints into the surface
integrals in question, in total analogy with the procedure for
reducing the (less general) Hamiltonian (I.1.32). The steps
described above are not however the end in achieving a Hamiltonian
formalism  which is manifestly covariant  under Poincaré
transformations at infinity. To reach this goal one must
introduce, according to the general method of Dirac (1951, 1964),
the ten variables describing the asymptotic location of the
surface (together with their conjugate momenta) as extra canonical
variables besides, and in the same footing with, the (gij,wij). In

doing so one acquires ten new constraints which enter into the
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Hamiltonian in the same footing with eqgs.(I.1.34). The new
Hamiltonian obtained in this way vanishes then weakly and is this
quantity which is the analog of HO given by (I.1.30) for compact
spaces.

The true phase space of the gravitational field for
asymptotically flat spaces is therefore the space of the (gij,ﬂij)
"completed by the introduction of boundary conditions as canonical
variables.” We might mention, incidentally, that in this enlarged
phase space the canonical transformations involving inverse
Laplacians used by ADM (Arnowitt et al., 1962) become one to one
and time independent, two properties which they did not
ij

simultaneously possess in the original space of g, «
i
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I.2. Field Theory a la Poincaré-Cartan

Here we introduce the fundamentals of field theory formulated
as a variational principle over a fibered manifold. One of the
principal bases for any reasonable physical field theory consists
of the principle of general invariance (or also general covariance
or relativistic invariance). Many formulations of this fundamental
principle may be found in the 1literature, but all of them
esentially amount to requiring that the differential equations
governing the dynamics of fields (i.e., the field equations) have
the same form for all the observers, i.e., for all frames of
reference in space-time. Differential calculus over manifolds
tells wus that this happens if and only if field equations have
tensorial character, a property which was known since the
formulation of Einstein’s theory of General Relativity. What seems
to be relatively less understood is that general invariance does
not require all fields to be tensor fields over space-time, but
merely the much less stringent requirement that fields may be Lie-
dragged along the flow of any vectore field in space-time. Again,
differential calculus over manifolds tells us that this happens
only if the fields are fields of geometric objects, which, roughly
speaking, amounts to requiring that changes of coordinates in
space-time define uniquely the transformation laws of the object
themselves. Lagrangian field theories depending on geometric
objects and having generally invariant field equations will be
called here geometric field theories; space-time will be generally
denoted by M. |

Geometric field theories are important for several reasons.
To our understanding, the main feature of this class of theories
consits in the fact that they are the mnatural framework for
defining and investigating the physically fundamental concept of
energy. In fact, for any generally invariant Lagrangian £ and any
vector field X on M we can uniquely define a vector density
Ei(E;X), called the energy flow of £ along X, such that its
divergence vanishes along all solutions to the relevant field
equations (namely, the Fuler-Lagrange equations of £). According

to this property, Stokes’ theorem implies that the integral of E'
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is zero over any closed (i.e., compact without boundary)
hypersurface of M; this justifies the physical interpretation of
E' itself as the flux of energy associated with all fields. The
vanishing of the divergence of o expresses then the conservation
of energy.

As 1is well known, the physically most significant theories
are those which describe the interaction of several fields, or,
even better, the dynamics of a single field which unifies more
than one elementary field. Acoording to a standard viewpoint, when
dealing with theories of interacting fields one tends to select
some of of the fields involved and to interpret them as the basic
fields, considering the rémaining ones as sources for the basic
fields. Widely known examples are provided by the relativistic
theories of gravitation (see, e.g., Misner et al., 1973) and by
gauge theories of elementary particles interacting with
fundamental forces (see, e.g., Carmeli, 1982). More generally, one
may envisage situatons in which the fields are split into more
than two groups.

In all these cases, it is either assumed a priori or obtained
by some trick (such as, e.g., partial Legendre transformation,
spontaneous symmetry breaking, etc.), that the Lagrangian
governing the theory splits into a suitable number of partial
Lagrangians f(a)' Each partial Lagrangian ﬁ(a) is then interpreted
as the basic Lagrangian for one or more of the fields. Physically
meaningful interpretation of these partial Lagrangians are in fact
available only if some additional requirement is made on the
splitting, like, for example, the minimal coupling conditions.

When dealing with interactihg fields, it 1is a classical
procedure to describe the details of their interaction through
suitable tensorial or pseudotensorial objects, called stress
tensors or stress pseudotensors, which roughly speaking express
the response of some of the fields when the remaining ones are
subjected to deformations induced by changes of coordinates in
space-time. Again, we see, just from this naive definition, that
geometric field theories constitute the mnatural framework for
defining and discussing the mnotion of stress tensors. In this
chapter, we shall deal with geometric theories of interacting

fields, with the aim of providing a general framework suited to
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investigate energy, conservation laws, and stress tensors for any
Lagrangian theory of geometric fields, no matter how many fields
are involved and how many of their derivatives enter the
Lagrangian.

We start by discussing some generalities concerning the
global structure of higher-order calculus of variations. We shall
assume that the reader is familiar with the main concepts from the
theory of fibered manifolds, jet prolongations, and bundles of
geometric objects. All manifolds, mappings, and objects considered
here are assumed to be smooth (in the c” sense). Further
discussions of these genefal concepts may be found, for example,
in (Choquet-Bruhat et al., 1977; Pommaret, 1978; Schouten and
Haantjes, 1936; Haantjes and Laman, 1953a, b; Kuiper and Yano,
1955; Salvioli, 1972). ’

Next we consider geometric field theories and natural
conservation laws, i.e., Légrangian field theories which are based
on the jet prolongations of bundles of geometric objects. This, in
fact, is the natural framework for introducing the concept of

natural conservation laws.

I.2.1. Fibered Manifolds and Jet Prolongations

Let M be a differentiable manifold, with dim(M)=m. The
following standard mnotation will be wused throughout: diff(M)
denotes the set of local diffeomorphisms of M into M; T(M) denotes
the tangent.bundle of M; and Az(M), respectively Sz(M), is the
vector bundle of p-contravariant and g-covariant skew-symmetric,
respectively symmetric, tensors over M. In particular, the bundle
AP(M) coincides with the qth exterior power Aq[T*(M)] of the
cgtangent bundle of M.

Let B=(B,M,B) be a fibered manifold over the manifold M. We
shall adopt the following notation: aut(B) is the set of all local
automorphisms of the fibered manifold B; Cw(B) is the set of local
sections of class C. of B; and V(B)=(V(B),B,VB) denotes the
vertical bundle of B. V(B) 1is a vector bundle over B, whose
sections are called vertical wvector fields over B.

The kth-order jet prolongation of a fibered manifold B, where
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k is any positive integer, will be denoted by Jk(B)=(Jk(B),M,ﬁk);
we agree that the zeroth-order prolongation of B coincides with B
itself. We recall also that for any h=k there 1is a canonical
projection ﬁz from Jh(B) onto Jk(B) , such that
Ji(B)=(Jh(B),Jk(B),ﬂi) is a fiber bundle; in particular, we Lknow
that Jiﬂ(B) is an affine bundle. Furthermore, if Z=(Z,Jk(B),§') is
a fibered manifold and h 1is any integer larger than k, the
pullbaék (B:)*(Z) is a bundle over Jh(B); accordingly, any fibered
morphism f:Jh(B)—*Z over the projection ﬂz may be canonically

h)*(Z) over

identified to a section of the pullback bundle (ﬁk

JU(B) . \
We consider now the following family of vector bundles over

JE(B)

Ai(M) o APV [IN(BY]) (1.2.1)

where (q,p,k) are three non-negative integers, which will often
enter our nexts considerations on higher-order calculus of
variations. Given any integer h>k, one can use the canonical
projections ,Bz and ﬂh to identify, by pullback, the bundle above
with a vector subbundle of A;q[Jh(B)] which will be denoted by

@z(ﬂz) . Accordingly, any fibered : morphism

[=2

f:Jh(B)-+ASI(M)®AP{V*[Jk(B)]}, over the projection , may be

=

canonically identified to a section of the bundle @p(ﬂi), i.e., to
q

a suitable (p+q) form on Jh(Q). Clearly, this applies also to
local fibered morphisms, which give rise to local (p+q)-forms.

Let us now give some local coordinate notations. In any local
chart (U;xi) of the manifold M, we define the following, local,

forms

ds(x) = dx'A...Adx" | (1.2.2)

ds. L (x) =8, J...Jahljds(x) . i i (1.2.3)

177 r r
The m-form ds(x) defines a basis of the wvector bundle AO(U), while
m

the (m-1) forms (dsl(x),...,dsm(x)) constitute a basis for the
vector bundle Az_l(U).

Now, let B be a fibered manifold over M. In the sequel, we
agree to consider only charts (W;za) of B, with a=1,...,dim(B),

which are fibered over the charts of and atlas of M; these charts
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will be shortly called fibered charts of B. The corresponding
coordinates, called fibered coordinates, Will be generally denoted
by (xi,yA),, with i=1,...,m, and A=1l,...,dim(B)-m, where (Xi)
stands for any system of local coordinates in the open subset
B(W)CM.

For any fibered chart (W;xi,yA) of B there exists an induced
fibered chart (V(W);x',y",v") of V(B), where V(W)=(v)) (W), which
is called the natural fibered chart of V(B), induced by the
fibered chart W of B. Moreover, any fibered chart (W;xi,yA) of B
induces, uniquely, natural fibered charts in each one of the
bundles Jk(B), V[Jk(B)] an@ JS[T(M)]. The domains of these charts
will be denoted by J*(W), V[J“(W)] and J°[T(W)], respectively,
while the corresponding local coordinates will be denoted,

respectively, by

i, A _A A

(X:yyyjy-'~;yj J)’

) iy
L _A A A LA A A

(x,y,yj, A PR » U J),
1 1 k 1 k

(x*; x*, ...,Xij DR (1.2.4)

1 s

We finally recall that for any fibered manifold B and any
integer k, k=0, there exists a canonical isomorphism
ik:Jk[V(B)]*V[Jk(B)]. Fof any local differentiable function
f:Jk(W)éR, where WCB is the domain of a fibered chart, we shall
denote by di(f):Jk”(W)ﬁR the formal partial derivative of £ with

respect to the coordinate x .

I.2.2. Linear Connections and Tensorisation Procedures

We shall recall here the procedure which allows us to replace
the partial derivatives of the components of a vector field,
having non-tensorial character, with a suitable set of tensors
constructed using the symmetrised covariant derivatives of these
components with respect to an arbitrary, linear, connection.

Let C be any linear connection on a differentiable manifold

M. The connection C induces a linear isomorphism
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r
¥ JTTAD] @ s8I0 (1.2.5)
¢ p=0 p
having the following local representation

h h h h
(x, X, X T X ; ; )
1 17"y

s (xM, XN, v XY, v, v oz, (1.2.6)
i (Jl---‘Jr)

where V denotes the covariant derivative with respect to C. Notice
that we can also define a dual isomorphism for any pair of

non-negative integers (q,r)

- L% *

Pt (A0 DJeW TN » (4 " anle[ @ STan] . (1.2.7)
by setting

<SITE)> = <P () [P, [37X)]> (I.2.8)
for any point ¢ in [A;;(M)] ® {Jr[T(M)]}* and any vector field X.

Let

(X Zhl hq zh1 hq,jl Zhl hq’Jl Jr)

3 i ) l 3 ) i ?
) h_...h h ...h ,J h ...h ,3_ ...J
',z b Yzt ozt T 2.9

now, respectively, be mnatural fibered coordinates in the two

e r

vector bundles [A °q(M)]®{J”[T(M)]}’ and [A° (M) ]e[ ©sP(]. In
m= . omg p=

these local coordinates we can describe as follows the action of

the dual morphism %c' We first représent the point ¢ and its image

¢_é§) as follows

"h_...h
CTE>=ds <2 T @>
L
D OB TE®> = tds
1 q
h ...h
x <Z T T (1.2.10)

h ...h h ...h
where <z '  Yi"(X)> and <z ' "9 [37(X)]> are the, skew-
symmetric, tensor densities defined by the following expansions
ho...h b ...B ) LU S
<z NiT@X)> = z TX + z 4 X'

J
1
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T L L o o, (I.2.11)
J +..3
1 . r
and
hl. h hl. .h ) hl h bd
<Z q|¢>c[jr(X)]>=Z Txt +z 4 v X
J
1
hl...h ,Jl...J .
+ ...+ Z E * vV X . (1.2.12)

v, .

oG s
The explicit relations between the coefficients z and Z may be
thus obtained by applying (I.2.8), i.e., by equating the right-

hand sides of expressions (I.2.11) and (I.2.12).

I.2.3. Bundles of Geometric Objects and Lie Derivatives

The correct setting for dealing with generally invariant
field theories is the framework of bundles of geometric objects,
of finite order, also known as natural bundles. In fact, in the
formulation of physical field theories it 1is wunavoidable to
introduce non-tensorial entities, like, for example, jet
prolongations of tensor fields and linear connections. We shall
here assume that the reader is familiar with the notion of bundles
of geometric objects and we shall limit ourselves to recall its
role in the definition of Lie derivatives. Further details and
references may be found in (Schouten and Haantjes, 1936; Haantjes
and Laman, 1953a, b; Kuiper and Yano, 1955; Salvioli, 1972;
Ferraris, Francaviglia and Reina, 1983a, b).

Let B=(B,M,B) be a bundle of geometric objects, of finite

order, over a manifold M. A functofial mapping is then defined as

(), ifEQD > aut(®) (1.2.13)

which 1ifts any local diffeomorphism ¢ of the basis M into a,
unique, local automorphism ¢y OVer o, of the bundle B; this
automorphism is called the natural 1lift of ¢. Examples of bundles
of geometric objects over a manifold M are the following: the
tangent bundle T(M), with the 1ift given by ¢=+T(p); all tensor
bundles over M, with the natural lift defined by the push forward
of tensors; and the bundle C(M) of linear connection over M, with

the lift defined by the natural action of diff(M) on connections,
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etc. Recall also that for any bundle of geometric objects
B=(B,M,B) the tensor bundles (Tz(B),M,ﬁOT:), the bundle
(V(B),M,ﬂOUB), and all the jet prolongations (Jk(B), M, ﬂk) are
bundles of geometric objects over M.

Let X:M->T(M) .be a vector field on M. Using ()B we can
associate to X a unique vector field XB:BéT(B), which is called
the natural 1ift of X to the bundle B. The vector field XB is
defined as follows: for any beB one sets

X, () = d [(p), BI],_, (1.2.14)

where P, denotes the local flow in M generated by X. The mapping

(), cTrranl - ¢TI, (1.2.15)

defined by X*XB, is linear and satisfies the following properties:
(i) for any vector field X over M one has T(ﬂ)OXB=X0ﬂ; and
(ii) for any pair (X,Y) of wvector fields on M, one has
([X,¥Y]) =[x, ¥ 1.
Now, let o be a local section of B, i.e., ¢:U=»B, and X be a
vector field over U. We can define a local section Lx(a):U+V(B) of

the bundle (V(B),M,ﬁOVB) by setting

LX(U) = T(o)oX - XBoa . (I.2.16)

The local section Ik(o) is called the Lie derivative of o along
the wvector field X and it satisfies the following property:
VBOLX(0)=6. We now recall that for any positive integer k=0 there
exists a canonical isomorphism from V[Jk(B)] to Jk[V(B)]. Then, it

can be shown that the following holds

L[3°()] = 3L (], (1.2.17)

for any local section ¢ of the bundle B and for any local vector

field X over the basis manifold M. Moreover, the following

properties hold:

(i) For any vector field X over M, the mapping aéLk(o) is a

first-order quasilinear differential operator.

(ii)vFor any local section o of B, the mapping X+Lk(a) is a linear
differential operator, having as order the order s of B as a
bundle of geometric objects.

From (i) and (ii) above it follows that the local
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representations of Lk(a) have necessarily the following form

xiOLx(a) = x' oo , yAOLX(a) = ona ,
A i A 1 A i A3y i
vioL (0) = X'y o[j7(e)] +b" (x, yoo) X' +b T (x, yoo) X'
i 1 J

A eed .
+ ... +Db i(x, yoo) X o, (1.2.19)
N |
: . 1 s
where (xl,yA,vA,yA.) are natural fibered coordinates and the
1
Aj ...
coefficients bA,(x,y) and b ! p‘(x,y), with l<p=s, are
1 1

functions of (xigﬁ) which depend on the choice of the fibered
chart in B but do not depend on the particular section ¢ chosen.
We finally recall from (Yano, 1955) that a bundle of
geometric objects is said to be of differentiable type if it
admits, at least, one natural atlas whose fibered charts (xi,yA)

are such that the coefficients bé(x,y) vanish identically, while
1
Aj ...
the coefficients b © i‘x,y), l<p<s, depend only on the fiber

coordinates yA. We remark that, to our knowledge, all the bundles
of geometric objects which enter the formulation of physical field
theories are precisely of this type. Accordingly, in the following

we shall restrict our attention only to this class of bundles.

I.2.4, Calculus of Variations on Fibered Manifolds

We mnow have to recall some concepts we need from the
geometric formulation of the calculus of wvariations on fibered
manifolds, as it was developed in (Krupka, 1973, 1975a, b, 1982;
Ferraris and Francaviglia, 1982). In these papers the reader may
find more details and further references, also concerning
alternative viewpoints.

According to Krupka (1973, 1975a, b) a variational problem of
order k is defined by assigning the following:

(i) a fibered manifold Q=(Q,M,n) over a differentiable manifold M
of dimension m, and ’
(ii) a morphism £:Jk(Q)»AZ(M) of fibered manifolds over M.
The fibered manifold Q is called the configuration space and its
local sections represent the physical fields. The fibered morphism

£ is called the Lagrangian density of the wvariational problem; it
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defines the action functionals fD:CméR by

£ (o) - J £oi® (o) (I1.2.20)
D
where DCM is any compact domain. Solving the wvariational problem

consists thence in finding the critical sections of the action
functionals, 1i.e., those 1local sections aeCw(Q) which make
stationary all functionals above when D ranges through all compact
domains of M. |

We remark that there exists the following canonical

isomorphism of vector bundles over JK(Q)

) 1a%an] = %00 o AW @1 (1.2.21)

Therefore, according to the remarks of sec.I.2.l, the Lagrangian £
can bé canonically identified to a global section &(£) of the
vector bundle @2[Jk(Q)] i.e. to a global m-form over Jk(Q).

Then, let f:Jk(Q)*Ag(M) be a Lagrangian, of order k, over the
configuration space Q=(Q,M,n) and let Z£=ds(x)®L be its local
representation with respect to any system of natural fibered
coordinates. Restricting T(£) to the wvector subbundle V[Jk(Q)] of
T[Jk(Q)] and taking into account the linearity of the tangent map,
we may define uniquely a fibered morphism over the identity of M,

p(2): 3@ a0 o VI @] . (1.2.22)

According to sec.I.2.1l, the morphism p(£) can also be interpreted
as a global section @[;(f)] of the wvector bundle @;Lﬁ(B)] over
Jk(B), i.e., as a global (m+l)-form over Jk(B). It can be seen
that the (m+1l)-form @[;(ﬁ)] so defined is in fact the exterior
differential d®(£) of the m-form ®(L) which 1is canonically
associlated to the Lagrangian £ itself. The action over V[Jk(Q)] of
the morphism g(f) may be represented as follows for any system of
natural fibered coordinates

A

<p(£)|v>

ds(x) <p(L)|v>

J
ds(x) [p,(L) v* +p, (L) v
1

i o

Sy ot ], (1.2.23)
Jl...Jk

where we have set
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pA(L) =3,L,

Jl...J Jl...Jh

P, (L) =9, L, l<h<k . (1.2.24)

The critical sections ¢ of our variational problem satisfy
the FEuler-Lagrange equations, which, although being generally
written in  coordinates, are globally and intrinsically
well-defined over M, see e.g. (Krupka; 1974). In fact, these

equations may be represented as follows

e(£)oi (o) = 0, e(®): I Q) - Ai(M)@V*(Q) , (I1.2.25)

a global morphism of fibered manifolds over M. The action of e(f)
over V(Q) is defined, for any natural fibered chart, by the
following local expressions

<e(B)|v> = ds(x) <e(L)|v> = ds(x) [e, (L) W1,

d
e, (L) =p, (L) -d [p, (L]
1

J.e..d
1 J

+ ...+ (-5 a ...4 p, Sy . (1.2.26)

d d

This morphism is known as thz Eul;;-Lagrange operator associated
to the Lagrangian £, see e.g. (Krupka, 1974, 1982). We remark that
it can be canonically identified to a global section @[g(f)] of
the wvector bundle ¢i[J&KQ)], i.e., to a global (m+l)-form over

J*Q) .

I.2.5. First Variation Formula and the Poincaré-Cartan Forms

This section is a short discussion about the role which the
Poincaré-Cartan form plays in the formulation of the first
variation formula in higher-order variational problems. The
results developed here will be of use for a precise definition of
stress tensors and energy-momentum tensors, which will be
investigated in secs.I.2.6 and onwards.

Let £:Jk(Q)*Ai(M) be a Lagrangian, of order k, over the
configuration space Q=(Q,M,m). It is passible to show that there

exists, at least, one global morphism f(£) of fiber bundles over
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k-1

J° Q)

k

£y 37N - At an e VIR (I.2.27)

such that the following holds

<p(£)oi (o) |i¥ (v)> = <e(£)oi** (o) |v>

+ d<%(£)oj2k‘1(o>|jk“1(u)> , (I.2.28)

where v:U~V(Q) is any local section and ¢:U=»Q is the local section
of Q defined by o=v,ov. Integrating (I1.2.28) over any compact
domain DCU, we recover thg first wvariation formula, over D, for
the Lagrangian £. Accordiﬁg to the results of sec.I.2.1l, also in
this case the global morphism %(f) can be canonically identified
to a global section @[%(3)] of the wvector bundle @;;[JEVIUD],
21<_1(Q). The action of the global

morphism f(£) on the wvector bundle V[Jhﬂ(Q)] is defined, in any

i.e., to a global n-form on J

natural fibered chart by the following local expression

<E(2) |v> = ds (x) <f (L) |v>

1

i A J.-'jl A
=ds (x) [f° (L) v - + £ (L) v

i A A Jl

ijl"'jk—l A
+ ...+ f (L) v R (1.2.29)
A Jl...Jk_l

Moreover, rewriting (I1.2.28) in a natural fibered chart we find

the following local expression

<p(L)oj" (6) |35 (v)> = <e(L)oi?* (o) |v>

+ di<fi(L)oj2k—1(a){jk_l(v)> ., (1.2.30)

which is more significant than (I.2.28) itself, since, roughly
speaking, it amounts to decomposing the first variation of £ into
field equations plus a formal total divergence. From the physical
viewpoint, the divergence appearing in (I.2.30) will allow us to
define the Noether’'s conserved current, see secs.l.2.6 and
onwards.

As far as the uniqueness of the morphisms ;(ﬁ) and %(ﬁ) is

concerned, we remark the following:

(i) 1In general, there exists a whole family of global
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A

morphisms f(£) which satisfy the properties above. In any case, no
matter which one of them is chosen, the morphism ;(f) such that
(I.2.28) holds is uniquely defined. This property is known as the
unicity of the Euler-Lagrange operator, see e.g. (Krupka, 1974).

(ii) The morphism %(f) is uniquely defined if the order of
the Lagrangian is 1, no matter which is the dimension m of the
basis M, i.e., m=l, k=1 (Goldschmidt and Sternberg, 1973). It is
also uniquely defined if the basis manifold is one dimensional, no
matter which is the order k of the Lagrangian, i.e., m=1, k=1, see
(Sternberg, 1977).

(iii) However, when m>2 and also k=2, the morphism %(f) is
globally bgt not uniquelytdefined. In fact, let %1(£) be a global
morphism which satisfies the required properties; then, if we

consider any global fibered morphism over JkQ(Q)

A

2k-2 * k-2
h: IFTT@ A e v IR, (1.2.31)
and we denote by
div(h): J¥7NQ » A% ) eV [IFQ] (1.2.32)
its formal divergence, we see that the global morphism

%2(£,h)=fl(£)+div(h) satisfies the required properties, too, see
(Krupka, 1982). For example, as was shown in (Garcia and Muifoz,
1982; Ferraris, 1983; Kolar, 1983), from any such morphism one can
generate a whole family which depends on a connection.

(iv) We finally remark that in the particular case m>2 and
k=2, there exists a canonical global morphism %(ﬁ) satisfying the
required properties, which is defined, in any natural fibered

chart, by the following local expressions

i i i
£ A(L) =D A(L) - djp A(L) , (I.2.33)

i3 i3
£ @ =" (D) . (1.2.34)

Let us now remark that, taking into account the methods
discussed in sec.I.2.l, to any kth-order Lagrangian and to each
global morphism %:{?rl(Q)ﬂAh?l(M)®V*[Jk-l(Q)] there corresponds a
global m-form 6(£,F) over J*7(Q), defined by the following

prescription
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2k

oz, B =« H () + a(F) . | (1.2.35)

According to the terminology wused by VKrupka (1982) when the
morphism % is any one of the morphisms %(ﬁ) which satisfy
eq.(I1.2.30), the corresponding m-form H[f,%(ﬁ)] is said to be a
global Lepagean equivalent Lagrangian £. Any such m-form can be
assumed as a Poincaré-Cartan form associated to the Lagrangian £.
According to our remarks above, we see thus that the following
holds:

(1) the Poincaré-Cartan form is uniquely defined if the order of
the Lagrangian is 1, no matter which is the dimension m of the
basis M, i.e., m=1, k=1, as well as if the basis manifold M is one
dimensional, no matter which is the order of the Lagrangian, i.e.,
m=1, k=1; |

(ii) when m=>2 and also k>2, there exists a whole family of global
Poincaré-Cartan forms, which 1locally differ by a formal
divergence, for example, one can generate a family of global
Poincaré-Cartan forms which depend on a couple of connections; and
(iii) in the particular case m=2 and k=2, there exists however a

canonical Poincaré-Cartan form.

I.2.6. General Invariance,

Geometric Field Theories, and Energy Flow

One of the fundamental reduirements of physical field
theories over space-time 1is the 1invariance of their field
equations with respect to any change of (local) coordinates in the
space-time manifold itself; this requirement, which has been
generally accepted since the early developments of Einsten’s
theory of General Relativity, 1is commonly known as general
invariance (or relativistic invariance, or also as general
covariance). However, when dealing with Lagrangian field theories
one usually makes a stronger assumption; namely, one requires the
general invariance of the Lagrangian itself. Requiring the general
invariance of the Lagrangian allows us then to apply the second
Noether’s theorem and to generate, as a consequence, a whole

family of natural conservation laws, i.e., those conservation laws
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which are naturally associated with the dragging of physical
fields along the flows generated by vector fields over the basis.
We shall assume here that the reader 1is familiar with the
fundamental concepts and ideas of this theory; for a detailed and
comprehensive account of them we refer to (Trautman, 1962; Krupka
and Trautman, 1974; Krupka, 1974, 1976, 1978) and references
quoted therein.

We are now in position to give the following definition: A
kth-order Lagrangian theory is called a geometric field theory if
the following two conditions are satisfied.

(i) The configuration space Q=(Q,M,w) is a bundle of geometric
objects of order s. '

(ii) The Lagrangian £ governing the dynamics of fields 1is
generally invariant (Krupka and Trautman, 1974).
The order s of the bundle Q is the geometric order of the theory,
while the sum r=k+s-1 is the differential degree of the theory.
This terminology will be clarified later.

According to standard results (Krupka and Trautman, 1974),
requiring the general invariance of the Lagrangian £ in a
geometric field theory implies that £ should satisfy the following

relation

T(£)03"[L, ()] = L [£03 ()] , (1.2.36)

where X is any vector field over the basis manifold M and o is any
(local) section of the bundle Q. Since £0jk(a) is a scalar

density, the following holds

LX[£0jk(a)] - di{Xi[LOjk(a)]} ds(x) . (1.2.37)

As a consequence, relation (I.2.xx) can be rewritten as follows

T(L)oj*[L (0)] = 4 (X' [Loi" ()] . (1.2.38)

We can now apply the general relation (I.2.30) to obtain the
following result: for any vector field X over M and any local

section o of Q we have

d [E'(L;X,0)] = - <e(L)oj2k(a>|Lx<a)> , (I1.2.39)

where the vector density Ei(L;X,a) is defined by
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B (L;X,0) = <£ (L) ™ T (o) 13" (L, () ]>

ST INC I (I1.2.40)

If we restrict the above relation (I1.2.39) to any Ilocal
section o of Q which satisfies the Euler-Lagrange equations

e(L)oj*(0)=0, we find

di[Ei(L;X,a)] -0, vXeCT[T(M)] . (1.2.41)

Relations (I.2.41) express the (weak) natural conservation laws
associated with the Lagrangian £ (Trautman, 1962, 1967).

The following remarks are in order here

(i) We can alsq define a (local) (m-1) form E(£;X,0) on the

basis manifold M by setting

E(f:X,0) = B (L;X,0) ds_(x) . (1.2.42)

This form is the energy flow of the Lagrangian £ along the vector
field X and the (local) section o of Q. Using the energy flow
E(£;X,0), the natural conservation laws (I.2.41) are turned into

the equivalent expression

d[{E(£;X,0)] = 0 . (I.2.43)

Using the Stokes theorem, eq.(I1.2.43) implies in turn the

following relation

J E(;X,0) = 0 , (I.2.44)
aD

where 8D denotes the (m-1)-dimensional boundary of any regular
domain DCdom(e)CM. This last relation expresses the natural
conservation laws in their integral form.

(ii) If one eliminates the arbitrary vector field X and the
arbitrary section o from the relation (I.2.36) [or, equivalently,
from (I.2.39)], one obtains a set of first-order differential
equations in the unknown Lagrangian £. These equations
characterise the whole family of generally invariant kth-order
Lagrangians over Q, i.e., depending on the given fields together
with their derivatives up to the order k. See (Krupka, 1974, 1976,
1978; Ferraris and Francaviglia, 1983) for examples of

application.
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I.2.7. Energy Momentum Tensors

Associated to a Generally Invariant Lagrangian

In this section we shall investigate in detail the energy
flow defined above. Recalling that the geometric order of the
theory is s, from eq.(I.2.40) we see that the energy flow E(£;X,0)
satisfies the following properties.

(1) For any (local) section o of the configuration space Q,
the mapping X-E(£;X,0) is a linear differential operator of order
equal to the differential degree r=k+s-1.

(ii) For any vector field X on M, the mapping ¢-~E(£;X,0) is a
(generally nonlinear) differential operator of order 2k-1.

From these two properties we infer the existence of a morphism of

fibered manifolds

E(f):J“‘"l(Q)»[Am?l(M)]@{JWT(M)]1* : (1.2.45)
such that the following holds
EY(L;X,0) = <E* (L)oj** (o) |37 (X)>
= <E (L) |37 (@)>0i % (o) (1.2.46)

where ¢ is any (local) section of Q, X is any vector field over M
and Ei(L) denotes the ith component of E(Z), i.e.,
E(f)=dsi(x)®Ei(L). Representing the relation (I1.2.46) in any

natural fibered chart we obtain the following expansion

. ) _ i3 -
E*(LiX,0) = [e' (1)ei” ()] X" + [e ' (L)oi”™* T(0)] X°
3
1
ijl"’jr 2k-1 h
+ ...+ [e (L)ej (o)] X L (1.2.47)
Jl;..-.Jr Py s
h ,h _h h h i Hy Hyeeod
where (x, X, X ,..., X" ) and (x",e" ,e y ..., € )
Jl Jl...Jr h h h

denote, vrespectively, the mnatural fibered coordinates in the
vector bundles Jr[T(M)] and [AE:KM)]®{Jr[T(M)]}*. Let us now
remark that the sections of these vector bundles are fields of
geometric objects over the basis manifold M, but in general they

do not have tensorial character. Therefore, also the coefficients
, ij IR N
(e” ,e .., 8 h), which aresymmetric woith respect to

the upper indices j, are mnot tensors over M; they are the
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energy-momentum pseudotensors associated with the Lagrangian Z£.
This clarifies the meaning of the differential degree r: it is in
fact the maximum order of derivatives of X which appear in the
expansion above. In other words, for any theory of differential
degree r there are exactly r+l energy pseudotensors.

Using the general procedure described in sec.I.l.2, we can
reexpand the energy flow E(£;X,0) by means of tensorial
coefficients, rather than with the pseﬁdotensors above. Let us
then consider any linear connection C over the basis manifold M,
together with the linear isomorphism

r

Y IT(TOD]~> ® sty (1.2.48)
C p=0 )

and the dual morphism

P18 0 anIeTITan ) +1a ° anlel o sPan] (1.2.49)
m m- p=o0 1

(defined above). Equation (I.2.8) then gives

<E®) 37 (0> = <P [E@) [P 137 (XR) 1>, (I.2.50)

from which follows immediately the equivalent expansion
. . h ijl N
<ET (L) [T (X)> = Elh(L;C) X'+ E 7 (LiC) V. X
3
1

iy ...3

+ ... +E * F(L:C) Ve, -V X (1.2.51)
J J
1 r

The coefficients (Eih(L;C),Elth(L;C),...,Elal..dr(L;C)), which
appear in (I.2.51), are tensor densities, symmetric with respect
to their upper indices j. They are the energy-momentum tensor (of
the Lagrangian £) associated with the connection C.

We can now insert the explicit expansion (I.2.47) into the
natural conservation laws (I.2.41) and eliminate the arbitrary
vector field X from the resulting expression. Owing to the
linearity of the differential operator X-E(£;X,0) and to the
Leibniz rule for the formal derivative di, it turns out also that

the quantity dn[Ei(L;X,a)] may be expanded as a linear combination
1

.o h h .
of the quantities X and X ., with l<p<r+s=k+s. Therefore,
Jl...Jp
eliminating X amounts to setting all the coefficients in this

expansion equal to zero, which gives rise to the following set of

(first-order) linear differential equations in the pseudotensors
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. SIRRRER
e (L) and e L (1

i(jl...j )

e rh(L)=o,
(3.3 .23 ) (133 ...3 )
e 12 T(L) +d [e 12 z ()] =0, (l=p=r)
d [e ()] =0 . (1.2.52)

These equations, which are completely equivalent to the single
equation (I.2.41), take often the name of conservation laws for
the energy-momentum pseudotensors.

It is clear that an  equivalent set of natural
conservationlaws may be obtained also for the energy-momentum
tensors (associated with any connection C). To obtain these
equations, which are rather more complicated than eq.(I.2.52) (and
therefore will not be written here explicitly), there are at least
two possible ways. A first method consists in inserting directly
into eq.(I.2.52) the explicit expressions of the energy-momentum

13, 1 ..

pseudotensors (elh,e L e rh) in terms of the tensors
N SR
(E " E R ,E h) and the appropriate jet prolongation of

the connection C itself; the resulting equations may be further
simplified by taking suitable 1linear combinations which are
directly suggested by their very structure.

The second approach, on the contrary, does not require us to
express explicitly the pseudotensors in terms of the corresponding
tensors (which, as we said above, is not always a simple matter).
The method consists first in reexpressing the natural conservation
laws (I.2.41) by means of the formal covariant derivative with

respect to the connection C chosen; one finds

a

Qm%m&w]=zw%mx@]+T“wH#@mpn,(sz)

where Tabi(C) denotes the torsion of C. Then the expansion
(I.2.51) should be inserted into eq.(I.2.53) and the resulting
expression should be rewritten as a linear combination of the
components X" and their symetrised covariant derivatives
V(jl...vj )Xh, with l<p<r [this is, of course, possible, in virtue
of the 1ipnearity of the differential operator X-E(L;X,0) and of

the bundle morphism gbc]. Finally, the appropriate set of
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first-order differential equations for the energy- momentum

ij ij ...
Jl Jl J

tensors (EZUE y ..., B rh) is obtained by setting equal to

h
zero all the coefficients of the resulting linear combination. We
remark that, owing to the commutation rules for iterated covariant
derivatives, the equations so found will contain explicitly the
Riemann curvature tensor and the torsion of the connection C,
together with their covariant derivatives up to the order at most

r-2. These equations may be further simplified by using Bianchi

identities and all the existing symmetries of the Riemann tensor.

1.2.8. The Notion and the Existence of Superpotentials

Superpotentials (Benn, 1982) are of primary importance, since
they provide a method for generating the energy content of
relativistic field theories. An example is represented by the
theory of General Relativity itself, which is still source of
debate since there 1is yet no agreement on the concept of
gravitational energy. There are however indications, based on the
general theoretical framework described in sections I1.2.5 and
I.2.6 above, that the gravitational energy may be described
through a slight generalisation of Komar's superpotentials (Komar,
1959, 1962), as it was first suggested in (Kijowski, 1978). In
recent investigations (Robutti, 1984), we have thus constructed a
general framework for defining superpotentials, as it will be
shortly discussed below, since it appeared that a consistent and
general theory was still missing, in spite of the very many known
examples.

As we remarked in section I.2.5 and I.2.6, expanding E(L,v;¢&)

as a linear combination of symmetrised y-covariant derivatives of
Apl...p
& does not provide completely symmetric coefficients Ea

p
However, the following result was proved in (Robutti, 1984) and
announced in (Ferraris et al., 1986a, b): For any pair of
connections (7,?) thre exist at least a global (n-2)-form
U(L,v,;;f) over JZkﬂB, such that

(i) the following holds

E(L,v;€) = E(L,v,7;€) + div[U(L,v,7;€)] ; (1.2.54)
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(ii) the energy-momentum tensors of E with respect to 7y are
totally symmetric.

The form E is the reduced energy denéity (with respect to the
connection ;). We can now take any local section o€l'(w) defined in
the neighbourhood of a compact hypersurface XM with smooth
boundary 8% and recall that for any p-form weﬂpﬁﬁkﬂB) it is by

definition

2k g

2k ToyTe) . (1.2.55)

L2k-1 F .
(j o) (divw) = d[j
Accordingly, if we pull back (I.2.54) via (jZkﬂa), by integration

over the domain X and an application of Stokes’ theorem we find

f E(o) = J E(o) + J U(o) (1.2.56)
= = 3=

with E(U)x(jZkﬂa)*E, E(U)=(jmrla)*i and U(U)=(ij1a)*U.

However, for any free theory, the reduced energy density E(o) has
to vanish along any critical section, as it may be immediately
seen by relying on the general covariance of L and on field

equations. Therefore, for any critical section o we have

f E(o) = J U(o) , (1.2.57)
by D

so that the whole energetic content of a geometric (free) field
theory along its critical sections is generated by the (n-2)-form
U(L,y,;,;ﬁ). For this reason this form is called a superpotential.

Setting locally

UGo) = 1 ut? ds\ | (1.2.58)
(in the natural basis dsAp of QFQ(M)), eq.(I.2.54) will read as
follows

R dﬂU“A . (1.2.59)

According to (I.2.54), also U(o) is a 1linear partial
differential operator of order r-2 in the wvector field £. Thence,

the skew-symmetric coefficients UﬂA may be expanded as follows

Ap Ap Lo Aup a
U o= u, £+ u, (8p€ )

. +u o (@, .0, &%, (1.2.60)

or equivalently
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Ap AL Lo Aup a
U = Ua &+ Ua (Vp§ )

App o o.p
LR A O SR SRF IO I (I.2.61)
pr—2 ,01
App .. p ALp, Py
The coefficients u, P respectively Ua , which
are skew-symmetric in Ap and symmetric in p., are the

superpotential pseudo-tensors, respectively the superpotential
canonical tensors. Here canonical refers to the choice of the
already given connection vy to expand U as a linear combination of
symmetrised covariant derivatives of the Vestorfield £; ,one
might, of course, choose a further connection vy to expand U, but

the procedure would be, of course, rather artificial.

I.2.9. Superpotentials at Order Three

Calculating explicitly the energy-momentum tensors and their
superpotentials is in principle possible at all orders r, although
the process of symmetrising higher-order covariant derivatives,
which requires one to use higher-order commutation relations,
becomes increasingly more complicated at large orders. On the
other hand, for the purpose of application to relativistic
geometric theories of gravitation it 1is of course enough to
investigate in detail only the case r=3. In fact, we have either
k=2 and s=1 for purely metric theories, or k=1 and s=2 for purely
affine and metric-affine theories.

Superpotentials at order three were calculated explicitly in
(Robutti, 1984; Ferraris et al., 1986a, b), obtaining the

following results. Starting from the explicit decomposition

A AL

oL ea*p (ap§“> o+ ea*p“ <apaaga) (1.2.62)

it is found that for any 1linear connection < the following
explicit relations hold among the energy-momentum pseudo-tensors

and tensors associated to the connection v



-y e . (I.2.63)

ac,p K
In order to calculate the superpotentials, it turns out to be
convenient to introoduce the auxiliary covariant derivative

*

o a . . .
VA—VA+T )’ where T 3 is the torsion of . Integrating by parts

the tensorial analogue of (I1.2.62) one finds that the covariant
expansion of the superpotential U=U admits the following

coefficients

U App _ 4 E [Ap1p
a 3 04

?

*
g Mg A2 g g DI
o o 3 pa

Lt g felmr (I.2.64)
3 po «

while the corresponding expansion in terms of pseudo-tensors is

given by
u App _ 4 o [Aplp ’
a 3 [0
G Mo DL g PO g potd 1 (I1.2.65)
[+ o (o4 e PO

where we set
5 pox _ o poXy 1 pod (1.2.66)
[o] (073 2 [0

Accordingly, the reduced energy flow E admits the following

expansion in terms of energy-momentum pseudo-tensors

3z Apo - e (Apo)

2

[0 a

3 Ap _ o (Ap) PN g(Ap) + 4 wo LA va ’

a a g a wo
e r et e M g o I Ly PO LB (1 9 67)
@ a [ p a a po

I.2.10. Application to General Relativity
In this section we will discuss a basic ekample of

application to relativistic field theories, by considering the

generally covariant Lagrangian density describing the standard
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gravitational field.
Let us now consider the generally covariant Lagrangian

density describing the standard Einstein ﬁheory

£(i’g)= fﬂ(jzg) =/-gR, (1.2.68)

where Ra (jzg) is the Ricci tensor of the metric guu'

=R
B op

Using directly (I.2.40) and taking into account the
linearity of the partial differentialA operator EA(f,y;ﬁ) with

respect to £, one finds explicitly
A ’ A
EN(E, () 56 =E (2,0 ) 58
8 H 4

A Ao o' ’ A
5{ aﬁ}g - g LE{ aa}g] - ﬁH &, (1.2.69)

where { ) denotes the Christoffel symbol of gﬂy, with gaﬁ=jtggaﬂ.
8

- gL

We insert now the explicit expressions of the Lie-derivatives
into (I1.2.69), and we apply the result of section I.2.9. By a
covariant integration by parts with respect to the Levi-Civita

connection { } , we obtain the following results
4

BN, 00 56 -2 g6 €
) Ap B _pp A
MICA S o)

N
-2 /8¢, ¥

14

— A Ap
BM[J-g(F , D01 ¢€

14

_ AP g GHP sA L T (TPr L TP
(8,8 987 6, + /g I - T D13 ¢

Ap p up A v
(7" 6, - g7 6)8.38¢ . (I1.2.70)
Accordingly, the reduced energy flow for the Einstein theory is

the following

=A . _ - A w
ET(E,, 00 58) =2 J-g G - (I.2.71)

while the superpotential has the following expression

UA“(fﬁ,{ ) iey = - (g v et - gPP v ety (1.2.72)
g P P

It must be remarked that, owing to the field equations
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G =0, (1.2.73)

the reduced energy flow Ek(ﬁﬂ,[ }g;g) vanishes identically "on
shell.” On the contrary, the superpotential UAu(fﬁ,{ }g;g) does
not vanish "on shell," but reduces to the following

N O T L S JC el LR (1.2.74)

8 P P

which is non-zero for a generic vector field ¢. Thus, according to
our view point, the energy of the Einstein theory turns out to be
generated by the superpotential (I.2.74). This vresult is in
agreement with the expression found by Komar (1959, 1962) for
time-1like Killing vectors and for Einstein'’s theory, generalising
it to an arbitrary vectorfield and to theories other than
Einstein's theory of gravitation. Moreover, the above results
agree also with those obtained by considering the equivalent
purely affine picture, which in (Ferraris, 1985) was shown to
generate a coherent unified theory of gravitation and
electromagnetism. We finally remark that superpotentials bearing
some analogy with (I.2.74) have been heuristically considered in
(Benn, 1982).
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IT. Part Two. Local First-Order Field Theory

Field theory is the study of dynamical systems in which the
dimension of the base space is greater than one. With an eye on
physical applications we will concentrate our efforts in a
hyperbolic four-dimensional base space. Currently people restricts
the considerations to Minkowski space buf it is advisable to admit
some more general geometries and topologies, e.g., de Sitter
spaces.

In field theory a dynamical system is described by the fields
¢A(xu), where A=1l,...,m, aﬁd m is the number of fields; we assume
they are sections of suitable vector bundles over the base space.

x“, pu=0,...,n-1, are local coordinates in the n-dimensional base

space; most of the times we will we thinking of n=3, such that X#,
with p=0,1,2,3, are local coordinates in the four—dimensional
space-time; i=1,2,3, has the usual meaning of a space-like index.
We assume the base space to be a hyperbolic Riemannian space.
We restric our considerations to  Minkowski  space; the
generalisation to other geometries and topologies is
straightforward. We assume that the region  of the space-time
over which the theory is formulated is simply connected. We then
can locally write Q=2®[tl,t2], i.e., the space-time can be
conveniently splitted in space and time with the introduction of a
system of simply connected space-like surfaces % and a transverse
time-like vector field over Q; this is equivalent to the splitting
X“z(t,xi). The region Q is then limited in the time-like direction
by the space-like surfaces 21 and 22 at times t and €
respectively. In the space-like direction is limited by 8Z. For a
closed without Dboundary = no additional assumptions are
introduced. If X is closed with a boundary 4% we assume Z=I18S,
where I=[0,a] and S has the topology of 8%. For an open space we
assume S to have the topology of a two-sphere, Sz, and I=[0,=); in
this case we formally put the boundary at infinity, a-»w. In the
last two cases we call r the coordinate on I and r=a the boundary.
We start by introducing the fundamentals of field theory. We
introduce the Lagrangian formalism. We consider identically

vanishing field equations. We construct the canonical energy-
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momentum tensor. We show that field theory is not d-invariant.

In classical mechanics the time plays a quite preferential
role since it is the only coordinate of the base space. When going
to field theory one must face an increase of the base space
dimension from one to four. There are two possibilities. Firstly,
one can consider field theory as classical mechanics with an
infinite number of degrees of freedom, the canonical theory, or,
secondly, one can consider it as multi-time classical mechanics,

the covariant theory.
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ITI.1. General Aspects of Field Theory

Here we consider the foundations of field theory.

IT.1.1. The Lagrangian Formalism

As in classical mechanics the dynamical information of a
physical system is contained in the action S which is given as an

integral over a region 2 of the space-time of the Lagrangian

density
2= r(g", ¢Au) , (II1.1.1)
s[e] = J e a'x , (IT.1.2)
Q

A A . . s . . .
where ¢ #=3¢ /ax“. For simplicity we restrict our considerations

to the case in which the Lagrangian density does not depend
7

explicitly on the coordinates x of the base space; the
generalisation to the explicitly dependent case is
straightforward.

The variation of the action is
§S[E] = J R s d'x + J aA“x 56" dz | (II.1.3)
Q a0 B
where

sE=08r-4da"e . (I1.1.4)
A A LA

dﬂ=d/dxp is the total, or formal derivative with respect to x* .

The last term has been obtained by partial integration using the

fact that

A A
50 =43 § . II.1.5
“tﬁ “45 ( )

As for the classical mechanics of discrete systems the
equations of motion are obtained by requiring 6S[L]=0. The first
integtal in (II.1.3) depends on the values of 6¢A in the interior
0 while the second one does it at 3Q. Therefore both terms must be
independently zero. |

For the second integral it must be
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Al _
56" 150 = 0 (I1.1.6)

but 6¢A is unrestricted and arbitrary in the rest.

Since the variations 6¢A in the first integral are arbitrary
what must be zero are the factors multiplying 6¢A. The sufficient
condition is

6A£ =0 . ’ (I1.1.7)

Equations (II.1l.7) then imply that in order to integrate the
field equations (II1.1.3) a complete set of Cauchy data is provided

by the functions ¢Alaﬂ.

IT.1.2. Identically Vanishing Field Equations

The operator 6A acting on a four-divergence of the form

£=d#A”(¢) is identically zero

7 -
5,(a,0%(4)) =0 . (I1.1.8)

The previous is a sufficient condition. The necessary condition
can be obtained following Hojman (1983). The general solution to
this problem will be provided in the context of higher-order field
theory.

Here we will prove that, in spite of what is usually believed
to be correct (Hill, 1951; Courant and Hilbert, 1953), the
converse statement may be stated in more general fashion. In other
words, two Lagrangians may differ by the divergence of w”(¢,6¢)
whose dependence in d¢ will be explicitly found in what follows.
We will prove that even if Wt depends on ¢ and d¢, A will still be
a function of ¢ and d¢ only, and the two Lagrangians will have
exactly the same Euler-Lagrange derivatives.

Now for the proof. Consider A and assume it has identically

vanishing Euler-Lagrange derivatives

sA=aA-03" 4 -8 e ¢ Zo0. (II.1.9)
A A B A o B A Y
The problem consists in finding the most general function A which

will satisfy identity (II.1.9).
Due to the fact that eq.(II.1.9) has to be identically
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satisfied and the second derivatives of the field appear only in

the first term, one must have that

vV, M B -
aB aA £ ¢ v 0, (I1.1.10)
- Pp 4% =
aAA BBBA L ¢ 4 0, (I1.1.11)
holds simultaneously.
Define
v _ 5 % Pe -y (11.1.12)
AB A B BA
i.e., by definition, ¥ 1is symmetric wunder the simultaneous
interchange of capital Latin and Greek indices.
The most general solution to identity (II.1.10) is
yPe _ _ yop (IT.1.13)
AB AB
because
B B
A (IT1.1.14)

and ¥ does not depend on second derivatives of the field ¢.
Therefore
yoP - .y (I1.1.15)
BA AB
due to eqgs.(II1.1.12) and (II1.1.13).

Consider now the third derivatives of A

yBY _ 5% By Tp : (I1.1.16)
ABC A B C
Then
CyoBY g By _ g Byar _ 5 0B (11.1.17)
ABC A BC B AC Cc AB

and it 1s straighforward to see that W:gz is antisymmetric under
‘the exchange of any pair of (Latin or Greek) indices. Similarly,
the kth derivative of A,
VOPY ol g By Y R (11.1.18)
ABC...X A B C K
is completely antisymmetric under the exchange of any pair of
indices.

Define I by
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Il = min(m, n) . . (I1.1.19)

It is clear that the (I+1)-th derivative of A vanishes (because it
is a completely antisymmetric object with at least two indices
with the same value). This fact implies that A is a polynomial in
the derivatives of the field of degree I at most, i.e.,

1 o -
A= f(¢) + k§l FA

o4 A
k

. A
k 1

1"'Ak<¢) o al...¢ o, ) (IT.1.20)

where the F's are arbitrary functions of the fields ¢, completely

antisymmetric under the interchange of any pair of (Latin or

Greek) indices. Thev expression (II.1.20) is the most general

solution to identity (II.l:lO).

Consider mnow identity (II.1.11). It 1is clear from the
structure of identity (II.1.11l) that the terms of A with different
powers of derivatives of the fields do not mix. Therefore,
identity (II.1.11) must be satisfied separately by each term of A.

For the zeroth-order term one gets

f(¢) = £ = constant . (I1.1.21)

For the kth term one gets from identity (II.1.11) (the square
brackets mean complete antisymmetrisation)

x ... .
8 F ! Ak](¢) 20, (11.1.22)

[a ..
k+1 1 k
i.e., the "curl" of F vanishes meaning that F is a "gradient,"

@y a e
F o a @ =8 F @ (II.1.23)
1 k k1 k-1
Fr %1%
where FA A (¢) 1is an arbitrary function of the fields ¢
177 k-1

completely antisymmetric under the interchange of (Latin or Greek)
indices.

The same result can be stated in the language of differential
forms saying that eq.(II.1.22) implies that the k-form F is closed
and, therefore, locally exact, which is the statement equivalent
to eq.(IT.1.23) (Spivak, 1965). The most general solution A to
identities (II.1.10) and (II1.1.11) is

@ e o Al A
Ny B[A FA Coa ] (¢) ¢ o R o (I1.1.24)
ko1 k-1 1 k

where f is a constant and the F's are arbitrary functions of the

M b~

A=f+
k

fields ¢ completely antisymmetric in its indices.
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It is straightforward to see that

i £<P I o e Al AL,
W' o= + k§1 FA o (¢) ¢ o R} o s (I1.1.25)
1 k-1 1 k-1
is such that
A=d o, ; (I1.1.26)

0f course, w’ is not unique, but the point is to show that

the most general A can be written as a divergence of o which
depends on the first derivatives of the field ¢. Proving that A
defined by eq.(II.1.24) J[or by egs.(II.1.25) and (II.1.26)]
satisfies identity (II.1.9) 1is straigthforward, and it 1is not
necessary to go through the steps in detail.

It is now perhaps convenient to comment on why this result
remained unnoticed.‘The already classic review paper by Hill on
symmetries and conservation laws (Hill, 1951) wrongly states that
the mnecessary and sufficient condition for two Lagrangians
densities to have exactly the same Euler-Lagrange derivatives is‘
that their difference A may be written as a total divergence of e
which may depends on the fields only. This claim is not proved in
(Hill, 1951) but rather the readers are referred to the also
classic book on mathematical physics by Courant and Hilbert
(1953). As a matter of fact, the proof in (Courantvand Hilbert,
1953) is correct, but it is done only for the case of one field.
From the arguments given previously, it is clear that when either
m=1 (one .field) or n=1 (one independent variable, i.e., classical
mechanics), I=1, and therefore, the "standard" result holds [see
eqs.(II.l.Z&) and (II1.1.25)]. Whenever m>l and n>1l, a more general
situation arises. It is fair to say then that the statement made
in (Courant and Hilbert, 1953) is correct but misleading, while
the one in (Hill, 1951) is wrong in general.

The result presented previously then makes it possible to
understand why two Lagrangians which do nor differ by the total
derivative of w”(¢) have the same Euler-Lagrange derivatives.
Finally it should be noted that the determinant of any (square)
matrix obtained by suppressing rows and/or columns of ¢Aa will
have Euler-Lagrange derivatives which are identically zero. Also,
the product of such determinants by an arbitrary function of the

fields which appear in the square matrix considered will have the
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same property.

IT.1.3. The Canonical Energy-Momentum Tensor

In field theory the conservation laws are written as
covariant continuity equations

aqt -0, (II.1.27)

ua
where a indexes them. Examples of conservation laws are provided
by the energy-momentum tensor.

Contracting the field equations (II.1.7) with ¢AV one obtains

that the energy-momentum tensor

A

7 _ Bp oM
Wy =¢" afe -5, (II1.1.28)

is a covariantly conserved quantity

H -
dﬂ% u(f) =0 . (IT.1.29)

The conservation equation (II.1.29) does not determine
uniquely the energy-momentum tensor since they are not altered

under the replacement

B B A
BT (£) AT () + 4,77 (I1.1.30)

with ﬂA”V antisymmetric in X and p. U is called a superpotential,
however it must not be confused with the superpotentials
introduced in sec.I.2.8. Its existence has been used to satisfy
different requirements for the energy-momentum tensor. For
example, when there is a metric available, the canonical
energy-momentum tensor is not symmetric. Then, it is possible to
choose ﬂA”V such that the resulting energy-momentum tensor is
symmetric (Belinfanfe, 1939; Rosenfeld, 1940).

When the energy-momentum tensor is symmetric the quantity

ey = T @) 2 - TV ) 2 (T1.1.31)

is covariantly conserved

D/\/ﬂ)"w/(f) -0 . (I1.1.32)

This corresponds to the angular momentum of the field.
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For 1isolated systems the quantities derived from the
energy-momentum tensor show the right asymptotic behaviour only if
their canonical definitions are supplied with convenient surface

terms. This aspect of the problem will we considered in sec.II.3.

II.1.4. Field Theory is mnot D-Invariant

A mnice property of classical mechanics is d-invariance. This
property is however not possessed by field theory. Let us remember
that the operator 6A acting on a four-divergence 1is identically
zero. This does mnot mean however that one can add a
four-divergence to the Lagrangian density without changing the
field equations. The previous fact is due to the appearance of
surface terms and therefore changing the boundary behaviour of the
fields. Furthermore, the energy-momentum tensor is not invariant
under the addition to the Lagrangian density of a divergence.

Let us now consider two first-order Lagrangians £ and £’
differing by a divergence, which for simplicity we choose of the

A
form d'uA‘u(qS)=8AA”¢ )

2ro=r +dafg) =2+ 08 AF gt 11.1.33
9 R ( )

Since

s =62, (I1.1.34)

A . A

the field equations to which they give rise are the same. For the

canonical energy-momentum tensor we obtain instead

TR _ ph A Boop A A |
2 (E") B () + 4 8. 5,80 ¢ . (I1.1.35)

This expresses the non d-invariance of the energy-momentum tensor
we mentioned above.

The construction of a d-invariant field theory and that of
identically wvanishing field equations will be postponed to
higher-order field theory, where we will show the existence of a
convenient substitute of the energy-momentum tensor which 1is

independent of the pure divergences added to the Lagrangian.
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II.2. Canonical Field Theory

In the classical mechanics of discrete systems the time plays
a quite preferential role since it is the only coordinate of the
base space. The Hamiltonian is at the same time the generator of
the time evolution and a conserved quantity. ‘

Canonical field theory mimics the Lagrangian mechanics of
discrete systems considering the system as a mechanical one but
with an infinite number of degrees of freedom, the values of the
field components at the various points of the space-like surfaces
% for fixed t. This canonical formulation of field theory was
first given by Heisenberg and Pauli (1929). The first step is to
individuate an evolution parameter playing the role of the time.
The 1+3 splitting of the space-time provides the answer to this.
The time is given the role of the evolution parameter. The second
step is to consider the system as a mechanical one but with an
infinite number of degrees of freedom. These infinite degrees of
freedom are the wvalues of the field components at the wvarious
points of the space-like surfaces I for fixed t. Then the discrete
label i in qi (of classical mechanics) becomes a continuous label
x plus additional discrete labels A; in this way q.l is replaced
by the fields ¢A(xi). The sum over the discrete label i becomes an
integration over the continuous label x' over all % plus a sum

over the discrete label A, in such a way that the Lagrangian is

Lg% (x")] = f et x4t =Y, ¢t M) az (11.2.1)
=(t) J
where £ 1is the Lagrangian density. The derivatives of the field

components with respect to the time, &A(xi), are defined as the
velocities., In what follows we will suppres the continuous label
xi; this cannot give rise to any confusion.

The equations of motion can be considered as those from
classsical mechanics but with an infinite number of degrees of
freedom. In this case one must face an increase of the
configuration space dimension from n to infinity. In this
transition  partial derivatives  become  partial functional
(Lagrangian) derivatives. The way in which we will obtain
canonical field theory is by considering a 1+3 splittong of the

results of the previous section.
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IT.2.1. The Lagrangian Formalism

The action is now written as
t2 tz
S[E] = J L dt = J I £ dz dt . (I1.2.2)
t1 ()

Under arbitrary variations of the fields the wvariation of the

action is given by

t
ss[e] = | * § £ s4" dz + 3 Pr s¢* as | at
A A

tz = 8%

t

! (1I1.2.3)

+ J 3 £ 54" dz
A «
b t
: 2
BApbﬂlaAlf, with n, the outer normal to 8%; dE and dS are the
1 1
volume and surface elements on X and 8%, respectively; dZ=drdS;
¢*=dg”/ac.
The functions multiplying the wvariations 6¢A in the second
integral are defined as the momenta Dk(ﬁ) canonically conjugated

to the fields ¢

Hk(ﬁ) = 6A£ . (I1.2.4)

As for the classical mechanics of discrete systems the
equations of motion are obtained by requiring §S[£]=0. The first
integral in (II.2.3) depends on the values of 6¢A in the interior
of the interval [tl’tz] while the second one does it at t1 and tz.
Therefore both terms must be independently zero.

For the second integral it must be

6¢°(t) = 88°(t) = 0, (II.2.5)

but 5¢A is unrestricted and arbitrary in the rest.

For the first integral there exist drastic differences
depending upon whether the three-space £ is open or closed with or
without boundary. For a closed without boundary space one is
certain that no complications could possibly arise since then §Z=0
and the surface term does not appear in (II.2.3). For an open or
closed with boundary space the presence of the surface integral is
unavoidable.

Since the variations 6¢A in the first integral are arbitrary

what must be zero are the factors multiplying 6¢A. The sufficient
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condition 1is
6A£ =0 (I1.2.6)
plus, in the case of an open or closed with boundary space, a
condition on the boundary behaviour of the fields
P =
9, %|as =
Equations (I1.2.5) then imply that in order to integrate the

0 . (IT.2.7)

field equations (II1.2.6) a complete set of Cauchy data is provided
by the functions ¢A(t1) and ¢A(t2) restricted only to satisfy
(I1.2.7).

IT.2.2. The Canonical Hamiltonian Formalism

A Hamiltonian mechanics for field theory may be set up still
in parallel with classical mechanics. The canonical Hamiltonian is
defined as the time-time component of the canonical energy-

momentum tensor integrated over the space-like sections, i.e.

[«

H [£] =J #° (2) dz =J (¢* m(2) - £) az . (I1.2.8)
s ° > A
This allows to define the canonical Hamiltonian density

X (2) = ;c"o(::) = ¢ L) - E (I1.2.9)

The wvariation of %c(ﬁ) is
SE (B) = - 8P 6¢% - 82 s + 4" s (B)
c A A i A

- - (6,2 - a,8,'2) 64" + $" 61 (2) - d (82 647 , (I1.2.10)

which shows that # (£) has the dependence
Lo}

X (@) =% (8% 8% 8T (11.2.11)

The energy is defined as the numerical value of the canonical

Hamiltonian, i.e.

E[£] =J (8" m(e) - £) &z . (11.2.12)
s

It is furthermore a conserved quantity
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E[2] = - J " 9P ds =0 . ’ (I1.2.13)
D> A

The variation of the Hamiltonian is

c

§H [£] = J ch(f) ds
)

LA | i A
B Jz [¢ -6HA(£) ) (adf ) DiaA £) 6¢ ] d

] J N s as . (11.2.14)
)X
From here one obtains
5% A
o .
gﬁ——=¢ , (112158.)
A
§% )
c - - _ 1 N\
o (62 - a3,’z) . (II.2.15b")
When the field equations (II1.2.6) hold eq.(II.15b’) reduces to
&4
o .
el Dg(f) . (I1.2.15b)
6
The time derivative of a functional
F = J ¥ das (1I1.2.16)
=
is
F=(F, H) + f 8% $* ds | (11.2.17)
c A
iz
where
. X p
(F, G} = J (5 i(z) 6 6(z) | (r++g)] ai(z) | (11.2.18)
% ‘o (2) SHA(z)

is the Poisson bracket; & is defined as § except in that the
range of Greek indices is restricted to Latin indices.

At this point a further restriction is unavoidable. In order
to induce a symplectic-like structure on the phase space we must

require

38 P:;l =
SFY
In this way eq.(II1.2.17) reduces to

0 . (I1.2.19)

F = (F, H) . (1I1.2.20)

The canonical variables can be written as functionals with a

delta function as kernel
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$h(x) = J #"z) §(x - z) §3(z) , (1T.2.21a)
=

(3)

I (x) = J I (z) § (x - z) §Z(z) . (I1.2.21b)
A 5 A

where boldface letters stand by space-like coordinates. This

allows to define the densities

o (x; z) = ¢°(z) 87 (x - 2) | (II.2.22a)
MG 2) =0 (2) 67(x - 2) . . (11.2.22b)
Then, one obtains the Lagrangian derivatives
‘_Sffﬁ_(_}_c_;.z_l=5A5(3)(x_z) ’w=o’
5¢°(z)  ° 671, (2)
6ﬂ (x;2) SH (x;2)
———— -0, ——— =5 § PV (x-2) | (11.2.23)
54" (2) 51, (2)

Therefore, for the canonical variables one obtains

(3)

("), L) =6 67 (x - ¥) . (11.2.24)

The Hamilton equations are obtained by putting F equal to the
canonical wvariables in (II1.2.20). Commutation relations are also

obtained for ¢5
1

x . (3)

(¢" (), L) = - 6 6= -y . (1I.2.25)

II.2.3. Conservation Laws

In canonical field theory the conservation laws are
obtained by rewritting the covariant continuity equations

(I1.1.27) in a 143 form
ita

B 0 i ~
duQa = dea + dQ o , (IT.2.26)

where a 1indexes them. The conserved quantities, called the
charges, are the time-like components of Qa“ integrated over the

space-like sections, 1i.e.

0
q, = fz Q" az . (I1.2.27)

Examples of conservation laws are provided by the energy-momentum
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tensor. The canonical energy is one example. Analogously one can

obtain other conservation laws. For example

f

P (£) f T (2) d= | | (I1.2.28)
1 2 1

then

P (2) 5‘?J. r ds . (I1.2.29)
* )

1
This quantity measures the flux of momentum at the boundary.
Superpotentials are transformed in surface terms. In fact,

let us consider the energy, then the modified energy is

E =E + | au'’
mod c J i o]

dz ., (I1.2.30)

due to the antisymmetry of the superpotential. Finally, then

o

E =E + | v® as . (11.2.31)

mod c J 0

Further conserved quantities are obtained analogously for the

angular momentum

M (2 =J 1o ey as | (11.2.32)
5
In particular

M (2) =f A7) ds , ete. (11.2.33)
z
For isolated systems the quantities derived from the energy-

momentum tensor show the right asymptotic behaviour only if their
canonical definitions are supplied with convenient surface terms,
i.e., a convenient superpotential. This aspect of the problem will
we considered later on.

The non d-invariance of field theory also manifests in the
canonical formalism. In the example given in sec.I.4 the two
first-order Lagrangians £ and £' differing by a divergence
dﬂA”(¢)=6AA”¢Ap gave rise to canonical energy-momentum tensors

related by
B ooy _ ph A B e A oA
# V(f ) =% V(f) + ¢ y BAA SV BAA ¢ I (II1.2.34)

The canonical energy is now given by

E[L"] =I #° (2 dz =J x° ey - d Ahy dz
5 0 5 0 i
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= E[£] - j AP ds . (I1.2.35)
s

where AP is the component of A" normal to the boundary 4% of Z; dS
is the (n-2)-dimensional volume element of 48X. The canonical
energy can, therefore, be given an arbitrary value, unless
boundary conditions are chosen so to satisfy ATZ0 on 8%, but in
this case the arbitrariness is shifted to the boundary behaviour
of the fields. The energy can, therefore, be given an arbitrary
value. This expresses the non d-invariance of the energy-momentum
tensor in the canonical formalism.

The construction of a d-invariant field theory and that of
identically vanishing field equations will Dbe postponed to
higher-order field theory, where we will show the existence of a
convenient substitute of the energy-momentum tensor which 1is

independent of the pure divergences added to the Lagrangian.

IT.2.4. Field Theory with Surface Terms

There are some problems with the previous procedure. In fact,
for an open or closed with boundary space the Cauchy data, evolved
with (I1.2.6), must satisfy (II.2.7) they cannot be given all
independently. This means that the system is a constrained one.
The Hamiltonian formalism is then constructed as for a constrained
system with (II1.2.7) as constraint.

The energy is defined as the numerical value of the function
generating the time evolution. For a closed without boundary space
this quantity is directly provided by the canonical Hamiltonian.
For an open or closed with boundary space one is dealing with a
constrained system and HC does mnot give the correct field
equations. In this case the function generating the time evolution
is the canonical Hamiltonian plus a linear combination of the

constraints

H = H + Jaz aApzz A as (I1.2.36)

. A s 1k . . .
with X some Lagrange multipliers. Therefore, the Hamiltonian is
the canonical one plus a surface integral.

For a closed without boundary space H is the correct
C
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Hamiltonian. For an open or closed with boundary space the correct
hamiltonian is Hl. The energy is then the numerical wvalue of Hl.
The surface energy term has been long known in general relativity
(Dirac, 1959; Arnowitt et al., 1962; DeWitt, 1967; Regge and
Teitelboim, 1974).

I1.2.5. Field Theory without Surface Terms

It is shown that the surface terms appearing in the variation
of the action can always be given account by means of an extra
term in the Lagrangian, which does not modify the action, in such
a way that there is no need for impossing conditions on the
boundary or asymptotic behaviour of the fields for the
stationarity of the action.

In field theory the surface terms appearing in the variation
of the action are currently taken away by fixing the boundary or
asymptotic behaviour of the fields. The previous procedure
involves a sufficient condition for the stationarity of the
action. The mnecessary condition leads to a source term at the
boundary in the field equations. In this case it is not necessary
to fix the boundary behaviour of the fields. This is the correct
field theory following from the given action. The conditions at
the boundary diminish the number of Cauchy data which can be given
independently, therefore both approaches 1lead to different
theories. '

The field equations with the source term can be obtained from
a new Lagrangian constructed in terms of the original one, which
does not modifies the action, but having no surface terms and such
that the action remains the same. The Hamiltonian formulation of
the theory is then straightforward.

The necessary condition in order that the first integral in

(IT1.2.3) be zero can be obtained by rewriting it as
& A
J J [5A£ +2 9% 5(r—a)] §¢° dr dS dt . (I1.2.37)
t Y%
1

The field equations are now

§,£ + 2 aApzz §(r-a) = 0 . (1I1.2.38)
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The extra term can be considered as a source or Fforce at the
boundary depending however on the fields.

As in classical mechanics, when a generalised force is
present, one would like to find a Lagrangian £’ giving account of
the extra term in (II.2.38). Difficulties appear when trying to
formulate the Hamiltonian formalism since it is not known how to
deal with the surface term appearing in (II1.2.14), unless of
proceeding as in (II.2.36), 1i.e., by impossing aAP£:82=o.
Therefore, nothing is gained unless the new Lagrangian gives mno

rise to surface terms.

The solution is

[ _ P ‘_ A
b £~ 292 8(r-a) ¢ (I1.2.39)

where ¢A=qfﬁ.¢A, with n' normal to 4% and satisfying n%y=l; 6 (x)
P i i

is the Heavyside step function

1 for x>0
f(x) = 1/2 for x=0 . (I1.2.40)
0 for x<0

Let us observe first of all that the action remains the same

S’ = jﬂ rrod'x = JQ £ d'x =g . (IT1.2.41)

The variation of the primed Lagrangian is

sE!

il

A 0 A i A
aAIZ Y] +3A£ 6¢O+6A£ 6¢i

-2 5[3%
A

A P A
EZJ 8(r-a) ¢ o 2 aA‘E a5 0(r-a) §¢ .

I

5L 66" + D (r, 64" D, (8,72 54"

5 96(x-a) 54"

. P
25PA£ 3

A p
82] f(r-a) ¢p + 2 aAf

-25[31’.13
r{ A

5 0(r-a) 545“‘] . (I1.2.42)

The previous variation must now be integrated over the region Q.

The first and fifth terms add to give

{5134—231’33
A A

A
o5 6(r—a)] 5¢ (II.2.43)

The second one is the same appearing before and represents no

problem. The third and sixth terms cancel exactly. The fourth term

¢6



gives no contribution.

A comment is relevant here concerning the unequal treatment
of the last two terms in (II.2.42). The last one was partially
transformed by partial integration to a boundary term. The same
was not done for the first term since it involves the variation of
a funtion, not a functional. One can from here conclude that
8;T a5 @ funtion, behaves as a constant with respect to
funtional derivation. Therefore, in the second term of (IT1.2.42)
derivatives are taken only with respect to r in # and ¢AP. This is
assumed in what follows.

The variatibn of the action is then
r P ' _ A 4
§S' = Jﬂ [6AE + 2 aA L §(r a)] §¢ d'x

t

2 (I1.2.44)
t

1

which is equivalent to (II.2.3). It must be noticed furthermore

+ fz T (2) 5% dz

that

aApﬁ'laZ =0 . (I1.2.45)
Therefore, one can give account of the extra term in the field
equations by means of an extra term in the Lagrangian without
however modify the action.

The energy density is

A
0

o]

' P p . A
€' = ¢ 8A£ £ € + aAt a3 8(r-a) ¢ o (I1.2.46)

such that the total energy is

E' = jz ¢’ d= = E . ' (I1.2.47)
Furthermore, it is a conserved quantity

dE___ A Po, _
ac = faz ) o aA‘f dS2 0, (I1.2.48)

due to (II.2.45).
Now for the formulation of the Hamiltonian formalism. We
first observe that the canonical momenta are the same
’ — 0p, -
HA(X ) 6A£ HA(£) ) (I1.2.49)

The canonical Hamiltonian is the function appearing at the

right-hand side in the definition of the energy, such that the

6+




energy is the numerical value of the Hamiltonian. Due to (II.2.49)

the equation (II.2.47) rewrites as

H' =H . (I1.2.50)

The fact that H'C and Hl in (II1.2.36) differ is not strange
since when introducing conditions at the boundary one is not
dealing with the same theory. The possibility for H'C of
reproducing the standard results, e.g., the behaviour of the
energy for asymptotically flat spaces in General Relativity, 1is
not excluded since it is evaluated on solutions of (II1.2.38) while
Hl does it on solutions of (II1.2.6) subjected to (II.2.7).

To conclude, for any lLagrangian there exists a new Lagrangian
equivalent to the original one in the sense of giving the same
field equations but lacking of surface terms and not changing the
action. Therefore, we have been able to free field theory from the
surface terms or, equivalently, from the conditions on the

boundary behaviour of the fields.
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IT.3. Four-Dimensional Hamiltonian Formalism for Field Theory

and Surface Terms

We develop a formalism for field theory in which all the
directions of the space-time are treated in an equivalent way.
Consequently four velocities and four momenta are defined for each
component of the fields. The role of the Hamiltonian is played by
the energy-momentum tensor modified by an (unique) identically
conserved tensor. This gives the covariant version of Hamilton
equations, Poisson brackets and of the Jacobi identity. The
surface terms of the canonical field theory, appearing for the
energy, for the linear and angular momentum, found a natural
explanation within this formalism. ‘

The deadly sin of canonical field theory is to give a
preferential role to the time over the space. Many arguments have
been given in favour of the canonical approach and people feel
that, no matter how arbitrary the distinction between space and
time may be, the conventional language is both necessary and
appropriate. Something which is not under discussion is the fact
that covariance has not been respected. At this point a covariant
formalism is mnot only desirable but conceptually strictly
necessary.

The first steps towards a covariant formulation of field
theory were given by Born (1934), Weyl (1934) and de Donder (1935)
in the thirties. Unfortunately they failed in their attempts.
Recently other attempts has been done by Marsden et al. (1986) and
by Crnkovic and Witten (1986).

In a covariant field theory all the four space-time
directions are treated in an equivalent way. Then all the
coordinates of the space-time take the place that the time alone
takes in classical mechanics. The four space-time derivatives of a
field component are treated as four independent. velocities and
four momenta are defined as the partial derivatives of the
Lagrangian density with respect to the four velocities. The fields
and the momenta defined in this way span a covariant phase space.
The canonical energy-momentum tensor, even when being a conserved

quantity, is not the generator of space-time displacements. The
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only possible modification 1is the addition of an identically
conserved tensor. The requirement of a symplectic-like structure
on the covariant phase space fixes uniquely this term. The
covariant versions of Hamilton equations, Poisson brackets and of
the Jacobi identity naturally follow.

Contact with the canonical formalism is made when considering
the time-time component of the modified energy-momentum tensor
integrated over the space-like sections; This quantity turns out
to be the canonical Hamiltonian plus a surface term. The same

considerations are extended to the linear and angular momentum.

II.3.1. The Modified Energy-Momentum Tensor

Let us start by considering the canonical Hamiltonian tensor

density

w Y _ oV ALY ) kY
c p(£> L&) ¢ L 6“ £ (I1.3.1)

The variation of %cyﬂ(ﬁ) is

14 14 A A 174
S, ,(B) = - 6, 8 E 84 + ¢ 67
A v v A A
+ (5p L7 - 5# 3, £) 54 NE (I1.3.2)

The first unpleasant aspect of this variation is the fact that the
term multiplying the variations 6¢AA does not cancel by virtue of
the definition of the momenta as happens in classical mechanics.
This 1impasse 1is overcome by observing that %Cyﬂ(ﬁ), as
derived from (II.1.29), is defined up to an additive identically

conserved quantity ?Vp(f) of the form

Yopy = a5V (e 3.
F “< ) = d,F u( ) (I1.3.3)

with IAVp(ﬂ) antisymmetric in A and v. The modified Hamiltonian is

then defined as

vV vV v
Eooa g =2, @ 7 @ (I1.3.4)

Then, eq.(II1.1.29) is correspondingly written as

v
duxmm p(ﬁ) =0 . (I1.3.5)
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The canonical variables (¢A,HA#(£)) span a covariant phase
space. In classical mechanics a symplectic structure is induced on
the phase space when considering the time- derivative of the
observables. Here we would 1like a symplectic structure to be
induced on the covariant phase space when considering the
derivative with respect to  of a generic observable

F-F (6", 1" (2))

oF 1%

oF_ an? . (11.3.6)
oIl
A

ag”

We would like to write the previous equation as something like

dF = o+
p p v opa

v B vV
d#F = a (F, &md “(ﬁ)}u + B8 (F, Rmﬁ V(f)}“ (I1.3.7)
where

(F, G} = dF aG 96 JdF (11.3.8)

A [ A G
¢ anA ¢ 6HA

is a covariant Poisson bracket. Then, it must be

A ax dA o dAA
8, - a m°x £, g —me , (I1.3.9a)
Ehis o ¥
A v A A
y an_ a_
amnY = - q—22 B _p_2° s, (II.3.9b)
uoA 6¢A 6¢A P

with a and B numerical constants.
Equations (II.3.7) and the requirement of not having terms
6¢A in the wvariation of # v (£) determine uniquely ad (£). The
A mod [ 7

solution is

Av A A v v A
FELE = -4 (5“ mo® -8, @), (I1.3.10a)

7 ) = - dA[¢A (52 O HAA(f)]] . (II.3.10b)
In spite of the resemblance, this term has nothing to do with that
obtained by Belinfante (1939) and Rosenfeld (1940) in order to
symmetrise the energy-momentum tensor and to guarantee the
conservation of the angular momentum.

The modified Hamiltonian is

v A v
N ¢ 4,0,

SO RN nr@ - ¢t amt@) . (I1.3.10)
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Its variation is given by

v _ v v ) A A
68 gy = [d“HA &) +5 [BAE d,1I, (f))] )
v A A v A A A
tE, 0y S 5 (6,72 - L (@) 64 \
-t (5% 67 - 62 6Y) sanfy (11.3.12)
LB B u oA e
From the definition of the momenta, it follows that % Y (£
mod [

depends only on ¢A, H?”(ﬁ) and duﬂgﬂ(f). The price paid in order
to have the correct dependence on ¢A and H?”(ﬁ) is the additional
dependence on dyﬂg”(ﬁ) coming from ?V“(ﬂ).

From (II.3.12) one can write

a%moduﬂ(f) 14 v
6¢A - deA £y - 5/i 5A£ , (IT1.3.13a)
ag{moduﬂ(f) v A
ek 5# 8"\ (II1.3.13b)
om, = (£)
Y @)
mod K A a v vV
--9¢ (6767 -5 6% . (I1.3.13c)
aDanAﬂ<£> bop wop

At a first sight eqs.(II.3.13) are more than those necessary to
establish the equivalence with the original field equations. The
point is that many of them, as can be seen by using (II.3.11), are
identities. We can restrict our considerations to the following
ones. If the field equations (II.2.7) hold then eq.(II.3.13a)

reduces to
Sy

mod ”(ﬁ) v
- = - d HA (&) . (I1.3.14a)
a¢ H
From a contraction of eq.(II.3.13b) it follows that
o Y (2
mod L A
: = 4 L (II.3.14Db)
BHA ()

Equations (II.3.14) are the covariant Hamilton equations.
Comparison of eqs.(II.3.14) and (II.3.9) gives a=1, B=0, in

such a way that eq.(II1.3.7) can be written as

1%

d#F = {F, ¥ &y . (I11.3.15)

mod 4 1%
This shows that the modified Hamiltonian is the generator of
space-time displacements.

For the canonical variables

12




A 14 A WV
(67, M)} =6, 6, (I1.3.16)

and all other brackets equal to =zero. The covariant Poisson
bracket induces a covariant symplectic structure on the covariant

phase space. The Jacobi identity is

{F,{G,H)(#} +»{G,{H,F}(#} + {H,[F,G}(#} =0 (I1.3.17)

V) V) V)

where (-) denotes symmetrisation.

II.3.2. Surface Terms

The meaning of Tyﬂ(ﬁ) is made clear when looking at the
canonical field theory. In the same way in which the time-time
component of the canonical Hamiltonian, %:z(f), is identified
with the Hamiltonian density of the canonical formulation, the
time-time component of the modified Hamiltonian is identified with
the Hamiltonian density of a modified theory. Let us consider

0
mod 0

0

i0
K@) =i " @) + DY (@) . (I1.3.18)

Integration of eq.(23) over I gives

H (£) =H(£) + J ¢* mP(L) ds (I1.3.19)
mod c E A

where dS is the surface element of 8% and V&

=nivi with n, the
outer normal to dS. Therefore, the extra term corresponds to a
surface term in the definition of the energy. This surface term
has been dealt with from another point of wview in (Tapia, 1987).
Additionally ?V#(ﬁ) gives, without awkward calculations, the
Lagrange multiplier appearing in eq.(6) of (Tapia, 1987), the
answer being AA=¢A.

The same results can be extended to other physically relevant

v pA LA

quantities. If % VA=% p" , with n the metric of the Minkowski
c c

space, is symmetric we have a further conservation law

damca””(x) -0, , (11.3.20)

where

& ey = x ey ¥ - 1 ey x* (II1.3.21)
(o] C Cc
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is the angular momentum tensor density. As for the energy-
momentum tensor, (I1.3.20) 1is defined wup to an additive
identically conserved tensor. We would like to have M constructed

in terms of ¥ 4 rather than in terms of # . Then, the solution is
mo [o]

ho @y = ey + [7a“(£) - ey - f””“(ﬁ)] :

m

- d““(x) <7 - xmod“”(ﬁ)'x“ - FHYSey Lo (11.3.22)

mo
The second term in (II.3.22) is identically conserved due to the

remarkable identity

Dar“”a(£> Z ey - ey . (I1.3.23)

We can therefore rewrite (II.3.20) as

DA ey =0 . (IT.3.24)
@ mod
From the continuity equations (I1.3.5) and (II.3.20) we

obtain: the energy

0
E'mc>d(d?g) =J Jimod 0(13) d=

5

- E (2) + J $* TPe) as , (I1.3.25a)

c A

E
the linear momentum
p"°% (2) =J% ° @) az
i 5 mod i
=2° (@ -8 J o HA°(£) as , (I1.3.25b)
1

4z
and the angular momentum

M My = J & P ey as
mod 5 mod

- Mcﬂv(f) + Jaz [ yPU#(ﬁ) < . Jrpou(f) <M ] ds . (I1.3.25c)

Concluding, %mmup<£> together with the covariant Poisson
bracket (II.3.8) provides a correct covariant approach to field
theory. As a by-product the surface terms of the canonical field
theory appearing for the energy, for the linear and angular
momentum are easily calculated by means of eqs. (II.3.25). It must
be furthermore remarked that no asymptotic or boundary conditions

on the behaviour of the fields are needed in order to obtain the
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surface terms. In general relativity the previous surface terms
have a long history (Dirac,1959; Arnowitt et al., 1962; DeWitt,
1963; Regge and Teitelboim, 1974); however, they are introduced in
a quite ad hoc and not systematic way. Conclusions similar to
ours, in the sense that the physically relevant quantities are the
canonical ones supplemented by surface terms, were reached in
another context by Ferraris and Francaviglia (1987) wusing the
Poincaré- Cartan form as extended to higher-order derivatives
field theories.

To finish it must be observed that the modified Hamiltonian
gives rise to the same dynamics as the canonical one

F=(F, H }. (11.3.26)

mod
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Part Three. Local Higher-Order Field Theory

We consider higher-order field theory, i.e., Lagrangians
depending on higher-order derivatives of the fields. We start
introducing the fundamentals of higher-order field theory. The
momenta are defined as the terms multiplying the wvariation of the
fields in the boundary term of the variation of the action. The
main difference with respect to the first-order case appears in
the definition of the momenta, functional rather than ordinary
derivatives must be used.

We establish a remarkable identity for the Lagrangian. Then
we study the problem of identically wvanishing field equations. The
previously established identity helps wus to prove that the
necessary and sufficient condition for identically vanishing field
equations is the Lagrangian being a divergence. Then we construct
the canonical energy-momentum tensor. As was mentioned previously
the canonical energy-momentum tensor 1is not d-invariant. Once
again the previous identity helps us to solve this problem. In
fact, with it we are able to select a representative for d-
equivalent Lagrangians such that when the Lagrangian 1is a
divergence the representative is identically zero, therefore it
has also an identically null canonical energy-momentum tensor.

We study then secoﬁd—order field theory. Some developments
are done only for the second-order case, 1i.e., Lagrangians
depending on up to the second-order derivatives of the fields.
Where not explicitly written the notation is the same as that

introduced in Part Two.
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ITT.1. Higher-Order Field Theory

IIT.1.1. The Lagrangian Formalism

The dynamical information of the physical system is contained

in the action §

s[e] = J £ a'x (III.1.1)
Q
where now the Lagrangian density is of the following type

A A A
L =2=r , v ' yee ) . ITT.1.2
@8y ) ( )
¢Ap 4 denote the s-th order partial derivative of the fields
10.0 s N

with respect to the local coordinates, which appear into £ up to a

maximum order k, which is called the order of the Lagrangian. The

B p
following notation is also used: BA ! s=6/8¢AM A
RS
The action can then be rewritten as
t,
S = j J £ d¥ dt . (IT1.1.3)
t. YE(t)

Under arbitrary variations of the fields the wvariation of the

action is

t
§S = f 2 J R §¢* dz dt
e e

k Bk A
+ 3 f 5 L5 s (III.1.4)
n=1 A L. p "
1 n-1 n
where
se=82r-4d5¢6 ", (II1.1.5)
A A LA

with the operator SA” recursively defined at all orders by

sH gt as ¥t
A A vV A

s W Za M as M

. KA , etc. (III.1.6)

is the Lagrangian functional derivative. The last terms have been
obtained by integration by parts using the fact that § and du

conmute.
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The functions multiplying the variations 5¢A, 5¢A ,

AR

m
5¢Ay P etc., in the boundary term are defined as the momenta
R
4 v Booe B
Hg £), HA &, ..., HA (), etc., canonically conjugated
A A A
to the fields , s e , etc.
¢ 45# ¢ﬂ1“.“
S
o Py =6 Pre
A A
HA“”(ﬁ) = 5A““£ , etc. (I11.1.7)

The field equations are obtained by requiring 6§S=0. The first
integral in (III.l.4) depends on the values of 6¢A in the interior
of the region Q while the Boundary term depends only on the values
of 8¢A on 4. Therefore, both terms must be independently zero.

. s A . .
Since the variations §¢ are arbitrary it must be

ar -dste=0. ~ (III.1.8)
A [T

By b

For the boundary term it must be 6A AR 0.

Y aq
Contracting the field equations (III.1.8) with ¢Ap shows that

the canonical energy-momentum tensor, defined by

A

R“V(ﬁ) -4 5A“(£) + ¢Aux 5AA“(£) + ... - 55 2, (III.1.9)

is a (formally) conserved quantity, i.e. it satisfies

© -
dp%.y(f) =0 . (III1.1.10)

The corresponding conservation laws are constructed as for a

first-order field theory.

ITTI.1.2. A Remarkable Identity for The Lagrangian

Inspired by some previous results by Vainberg (1964),
Atherton and Homsy (1975) and Engels (1975, 1978), Tapia et al.
(1988b) derived a remarkable identity for the Lagrangian. Its
importance is due to the fact that from it one can immediately
infer that a Lagrangian leading to identically wvanishing field
equations must be a divergence.

Let us consider a k-th order Lagrangian £ and define £ (2) by

18




1
£(2) - J [6°¢s Meen® + ¢ (8,7t + .1 ar, (IT1.1.11)
0 ‘
where (-)" means that in the corresponding expression all

variables, ¢, d¢, etc, have been scaled by a real factor r€[0,1]

(i.e., ¢=7¢, etc). Then we have

d f“(ﬁ) - - 4t f (§,(2))" dar + £ - £(0) , (III.1.12)

where f(O)—f(T)I . Since £(0) is an 1rrelevant constant we can

simply write

1
r 2 gt J (6, (&))" dr + dﬂfﬂ(t) X (II1.1.13)
0

This is the announced identity.

IITI.1.3. Identically Vanishing Field Equations

First we investigate the problem of characterising Lagrangian
densities (of an arbitrary order) yielding identically vanishing
field equations. A k-th order Lagrangian of the form £= d A where

A“=A“(¢A,¢Aﬂ,...,¢ i ,...) 1s any arbitrary functlon of

fields and their ]deri;atives at least up to the order k-1
included, du=d/dx“ is the total, or formal, derivative with
respect to x*, yields identically vanishing field equations. This
can be immediately verified just by direct replacement of dﬂAﬂ
into eq.(III.1.8). Accordingly, two Lagrangians differing by a
divergence yield the same field equations; this property will be
called d-equivalence. The previous fact involves a sufficient
condition for a k-th order Lagrangian to have identically
vanishing field equations.

An important problem is to show that the condition is also
necessary, i.e. to show that § (f);O implies Z= d AP, For the
necessary condition one must prove that § (f) =0 lmplles L= d A“
where the functions AY may however depend also on k-th order
derivatives. In fact, known examples show that second-order
Lagrangians yielding identically vanishing field equations may not
be divergences of first-order functions, while they can be
expressed as divergences of functions containing also second-order

derivatives of the fields; see (Shadwick, 1982; Tapia, 1987b).
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The necessary condition can be easily obtained in Classical
Mechanics, as well as for its higher-order generalisations, and
also for first-order field theory; see, e.g. (Hojman, 1983). A
classical constructive method of proof, which, e.g., can be found
+in (Hojman, 1983), consists into explicitly writing the total
derivatives involved in the field equations. The terms containing
derivatives of each different order must be independently zero.
This means that the factors multiplying fhem must be zero, giving
differential conditions which might be integrated to obtain the
explicit structure of the Lagrangian.

The problem, however,kcomplicates very much for orders larger
than one. Some partial resﬁlts for second-order field theory were
obtained by Shadwick (1982); more general results for the second-
order case were also recently obtained by the author (Tapia,
1987a). However, for higher-order Lagrangians this constructive
method of proof becomes practically unmanageable, cf. sec.III.2.3,
and a new method of proof must be looked for. In any case, an
implicit proof that 6A(£);O is equivalent to the Lagrangian being
a divergence was given by Krupka (1982), in the context of the
theory of Lepagean equivalence. This proof, however, amounts only
to an existence theorem, and it is still interesting to derive a
method for constructing out in general the divergences which
generate identically satisfied field equations.

Using the previous identity it is straightforward to prove
that 6A(£);O implies £=dufﬂ, which 1is the result we aimed to
establish. Furthermore, this method provides a constructive way to
find, through eq.(III.1.11), the function f#* such that the field
equations are identically vanishing. Summarising, we have provided
a constructive proof at any order of the fact that 6A(£);O is

equivalent to £=dﬂA“.
ITIT.1.4. D-Invariant Field Theory

We investigate the fact that, in Field Theory, the
energy-momentum tensor 1is not invariant under the addition of a

divergence to the Lagrangian. As it was mentioned in section xx in

field theory the energy-momentum tensor is not invariant under the
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addition of a divergence to the Lagrangian. Therefore, one must
select a representative for d-equivalent Lagrangians. Once again
the previous identity helps us in this task; in fact, it allows us
to select a representative for the d-equivalent Lagrangians from
which the divergence part has been removed. We can then construct
a "d-invariant energy-momentum tensor," 1.e. an energy-momentum
tensor independent on the divergences which can be added to the
Lagrangian.

In order to obtain a d-invariant energy-momentum tensor we
must find a method to pick wup a representative for the
d-equivalent Lagrangians, in such a way that the energy-momentum
tensor corresponding to a ﬁure divergence is identically zero.

We must therefore look for a linear operator f acting on

Lagrangians by

EZf@) -2+ dpgp , (III.1.14)

with gu some function to determine, such that the following holds

2 A z
b4 u((dAA )=) =0 . (ITII.1.15)

From the expression (II.1.9) of the canonical energy-momentum

tensor we conclude that to satisfy (II.1.15) it is enough to

require that f 1is identically zero when applied to a pure
A

AV, ile.

divergence dA

£(a,A") =0 . (ITI.1.16)

The operator f must furthermore be a projector, i.e., it must
satisfy

£ = £ . (II1.1.17)

An obvious solution is thence given by formula (III.1.13)

1
FLfeyie- d#f”(f) = ¢* J (6, (&))" ar . (IT1.1.18)
,

This is in fact identically zero when applied to a pure divergence

Lagrangian £;dAAA. It is furthermore a projector, since

Z

1
£22) = £(F) = ¢* f (5, (E))" dr
o}

1
¢ j (6,(2)" dr = £(&) . (I1II.1.19)
0
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We have been able to free Field Theory from the ambiguities
existing under the addition of a pure divergence term to the

Lagrangian.
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IIT.2. Second-Order Field Theory

We consider Lagrangian densities of the type

£ = £[¢A,¢A“,¢A ) . (III.2.1)

7Y,

The corresponding field equations are given by

§£=29¢ - dﬂaAﬂf + dpdVaA“”ﬁ -0 . (III.2.2)
These equations. are of fourth-order in the derivatives of the
fields and can be written in a more extended form displaying the
fourth-order derivatives a;

ar-dster+3dadas e
A [TAN LV oA

v [6Ma Me - 5 Ma Me 1 2 @ WPHA] 4B
A B B A p  AB LY A

aT B C

é + W#Z;p 4° -0, (111.2.3)

By, Ap
* 8A aB ac Lé BAp vor pyvAp

where

d =¢" 8 + ¢ 3 , (III.2.4)

and

WAL g By APy
AB A B

) (I11.2.5)
is a generalised Hessian matrix. _

From the definition (III.2.5) follows that W is symmetric in
the first and second pair of Greek indices and that

WHYAP _ PR
AB BA

(I1I1.2.6)

We are going next to consider the conditions under which the
Lagrangian field equations (III.2.2) reduce their order. This can
be considered as the extension to second-order of the results by
Hojman (1983) presented in sec.II.l.2. Some partial results on
this line has been obtained by (Shadwick, 1982). When the field
equations reduce their order there are some constraints on the
system. We are not going to consider this aspect of the problem

since it can be developed on the same lines as for classical

mechanics, cf. (Tapia, 1985; 1988a).
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The notation of differentiation with respect to ¢A“U has a
symbolic character. The derivative BAMV£ must be understood as the
factor appearing in d£=6A“V£ d¢A#U. Howevér, in the sum d#duaAﬂyf
the terms with psv appear twice, therefore, when differentiating
the real expression for £ with respect to some ¢Auy, with p=v, one
obtains a result double from that denoted by aA“”ﬁ. In order to
keep this observation in mind when assigning definite values to u
and v in formulae involving derivatives with respect to ¢A#V. The
following practical rule shows to be useful

. SApyﬁ for pu=v,
8 "'r really means (I11.2.7)
A y 1
ny
;aA L for p=v.

ITTI.2.1 The Lagrangian Formalism

In this case the variation of the action reduces to
tz A

§S = J [ 6A£ ¢ dI dt
t Z(t)

+ j s e oss® az + J § e s¢* ax
A 1 A v L

t
- J 2 J § B §¢° dz dt
€, VE(E) A

o t
ERIER: s az } S J 5,°r §% ds dt
X t =
1
[ . A 1®2 1 . LA
+ 6,£ 8¢" az Lt f SAP£ §¢~ ds dt
X t %
1
1[4 A 12 i A
+ - § 'r s¢° ds + J § "Pr s¢" ds dt . (III.2.8)
2 A i | A i
2 tl oz

The one half factors appearing in the fifth and sixth integrals
are due to the rule (III.2.7).

Let us now introduce the following definitions

o
s
]

) .
67 - 1 (2),

o
b
)
I

3r-datr+dda e,
A i A i 3 A
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I (2) = 52£ - N (@),

%2 =4 2 - diéAiz ,

N (£) =8L=208¢. (I1I.2.9)
From here one sees that functional rather than ordinary
derivatives must be used in the definitidn of the momenta.

From second-order «classical mechanics (Tapia, 1985) one
learns that coordinates, q's, and velocities, Q’s, must be treated
on the same footing as generalised coordinates. Analogously, in
second-order field theory kTapia, 1988a), the fields ¢A, its time-
and space-like derivatives, $A and ¢Ai, must be treated as
independent fields. Therefore, the functions multiplying the
variations 6¢A, 6$A and 5¢Ai in the boundary terms in (III.2.2)
are defined as 1independent momenta HA(ﬁ), NA(f) and NAi(ﬁ)
canonically conjugated to the fields ¢A, &A and ¢Ai.

The dynamical behaviour of the physical system is obtained by
requiring 6S=0. The first integral depends on the values of 6¢A
inside the region Q while the other ones do it at the boundary.
Therefore, each term must be independently zero.

In order to cancel the surface terms in (III.2.2) we assume

5,72 -0, (I11.2.10a)
3AP£ =0 , (I1II.2.10Db)
aAPif -0, (II1.2.10¢)

on d%. The previous procedure involves a sufficient condition, the
necessary condition, which considers the boundary conditions
(II1.2.10) as sources at the boundary for the field equations, can
be obtained on lines similar as for first-order Lagrangians
(Tapia, 1987a).

The dynamical behaviour of the physical system is then given

by

SAX =0 (I1I1.2.11)

restricted to the boundary conditions (III1.2.10). For the volume

gs



integrals it must be 6¢A(t1)=6¢A(t2)=O, 5¢A<tl)=5¢A(t2)=o,
6¢A.(t1)=6¢A,(tz)=O. Therefore, a complete set of Cauchy data to
1 1 .
integrate eqs.(III.2.6) is provided by the space functions ¢A(tl),
A LA LA A A
88 (e, #M (e, dM(e ), 8t (e, $° (2. )
Contraction of the field equations (III1.2.11) with ¢ u shows

that the canonical energy-momentum tensor, defined by

B _ A B A Ap M

b/ V(f) ¢ y 5A (£) + ¢ A 6A (£) 6u L, (III.2.12)
is a (formally) conserved quantity, i.e. it satisfies

” )
dp% U(f) =0 . (II1.2.13)

The corresponding conservation laws are constructed as for a

first-order field theory.

III.2.2. The Hamiltonian Formalism

The canonical Hamiltonian density is defined as the zero-zero

component of the energy-momentum tensor which turns to be
.A ..A
£ (2) =¢ I (L) +¢ N (&) - £
c A A

+ ; di(¢A NAi(f)) , (II1.2.14)

and it cooresponds to the canonical energy density. The scalar
canonical Hamiltonian, corresponding to the canonical energy, is

therefore
H [£] = J (B m () + ¢* N (®) - £) az
c 5 A A

+ J Da (¢t w @) ds (III.2.15)
322 i A

and, in virtue of the field equations (III.2.11) subjected to the
boundary conditions (III.2.10), it is a conserved quantity, E=0.
From the space-like variations of the canonical Hamiltonian

one obtains

5% . §*%
[+ r c hd
=4, == -1 (@,
61, s
% 67 _
=4, —= = - M@,
6N, )
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s §1 .
= =0 A° = - NA1(£> ) (III.2.16)
SNAl Y-
l 'y
The canonical wvariables (¢A,$A,¢A.,HA(£),NA(£),NA1(£)) span
1

an infinite-dimensional phase space. In first-order field theory a

symplectic structure is induced on the phase space when
considering the time derivative of a functional. In fact, let us

consider the family of functionals of the form

F = J F(g 6% 8" ,6%,4" 1 (&), N (&) a3 . (II1.2.17)
5 ' i iJ i A A

Its time derivative is given by

F = (F, H (2)) (II11.2.18)

where, in analogy with first-order field theory we define the

generalised Poisson bracket as

(F., C) = J [5 7(2)67(2) 7 (z) 576 (2)
Z(t) “6¢ (2)60, (2) 647 (2) 6N (2)

L 8%z 6 ﬁgz) - (F — g)] d=(z) . (I1I1.2.19)
5¢°,(2) 6N, (2)

The canonical variables can be written as functionals with a

delta function as kernel, e.g.

8" (x) = j $° () 60 (x - y) daz(y) . (II1.2.20)
Z(t)
Then, for the canonical variables one has

A (3)

(¢* (), I_(y))

A IO (1I1.2.21a)
@@, N =6t s V= -y, (I11.2.21b)
RO AN O I I SR AN C IO (111.2.21c)

and all other brackets equal to zero.
The generalisation to second-order of the covariant formalism

developed on sec.II.3 gives the modified energy-momentum tensor
AL _ A A " ok A
N I A O R CO R I €SP

RO RO AP (111.2.22)

For the modified Hamiltonian we obtain

§%




Ko@) =K (B) + diﬂi(f) , (II11.2.23)

with
gty = ¢* nAi(x) + ¢t NAi(x) + ¢Aj NAij(f) , (I1I1.2.24)
Now we can equally write
F=(F, H (&), ' (III.2.25)
mod
such that
H (&) =0 . (II1.2.26)
mod i

IIT.2.2. Non-Standard Lagrangians

As we saw at the beginning of this section a second-order
Lagrangian density yields fourth-order field equations. Here we
will consider the necessary and sufficient conditions for a
second-order Lagrangian density to yield third-order and second-
order field equations, which we will «call non-standard
Lagrangians. With the previous conditions one is making the
Lagrangian a constrained one. However, we will not be interested
in this aspect since it is a straightforward generalisation of
what was done in (Tapia, 1985) for classical mechanics. By abuse
of language we will call velocities and accelerations the first-
order and second-order derivatives of the fields, respectively.

The importance of characterising non-standard Lagrangians
lies on the direct applicability it has to some current field
theories, General Relativity at the first place. Furthermore, thre
has been some recent proposals in some alternative theories of
gravity of considering Lagrangians polynomial in the curvature.
For example, the Lovelock Lagrangian 1is defined as the most
general metric dependent Lagrangian yielding second-order field
equations.

A sth-order Lagrangian yields 2sth-order equations of motion.
One can introduce a hierarchical classification of the sth-order
Lagrangians by considering the necessary and sufficient conditions

under which these Lagrangians yield rth-order, r<2s, equations of

g8



motion. In classical mechanics for s=1 this classification is
trivial; there are only two hierarchies: standard and non-standard
Lagrangians. Non-standard Lagrangians are those linear in the
velocities. The case s=2 was studied in (Tapia, 1985). Its
extension to s>2 is straightforward. In field theory the case s=1
was studied by Hojman (1983). Here we will consider the case s=2.
Once again the extension to s>2 is straightforward, but with an
eye on physical applications we restrict our considerations to the
second-order case.

In classical mechanics the necessary and sufficient condition
for a second-order Lagrangian to yield second-order equations of
motion is to differ from a first-order Lagrangian by the total
time-derivative of an arbitrary first-order function. The total
time-derivative does not contribute to the equations of motion and
therefore one usually restricts the considerations to the first-
order Lagrangian. Furthermore, since a sth-order Lagrangian yields
2sth-order equations of motion, in order to obtain second-order
equations of motion one mneeds to consider only first-order
Lagrangians. The two previous facts have lead to the usual (wrong)
statement In field theory that the mnecessary and sufficient
condition to have second-order field equations is that the
Lagrangian density be of first-order.

In classical mechanics all the previous arguments involve a
necessary and sufficient condition. In field theory only a
sufficient one. The purpose of this section is to look for the
necessary conditions.

For a second-order Lagrangian density yielding third-order
field equations, case I, the Lagrangian density turns to be a
polynomial in the accelerations, its order being given in terms of
the dimension of the base space (the space-time) and of the number
of fields. The field equations are linear in the third-order
derivatives of the fields.

We find that a non-standard Lagrangian density yielding
second-order field equations, case II, must be a polynomial in the
accelerations. The order of this polynomial still depends on the
dimension of the base space (the space-time) and on the number of
fields. These conditions do not restrict the order of the

polynomial but act only as integrability conditions on the

g9




coefficients of the polynomial. We do not solve this integrability
conditions since they depend on the particular Lagrangian under
consideration. Instead we provide an explicit example of a
Lagrangian of this kind.

Finally, we consider some explicit examples: firstly, the
scalar field and, secondly, the two-dimensional case. The form of

the Lagrangian can be determined quite explicitly.

Case I

By non-standard Lagrangians of the case I here we mean those
yielding third-order field equations. In this case it must be

required, cf. eq.(III.2.3)

A
WAL 2o | (I11.2.27)
AB
where (-) means complete antisymmetrisation.
It is convenient to decompose WMZ;p as
WHYAP _ ghVAP L aBvAL (I1I.2.28)
AB AB AB

where S and A are the symmetric and antisymmetric parts of W with
respect to the first and second pair of Greek indices or, given
the eq.(II1.2.6), with respect to the Latin indices, respectively.
Then, it can be wverified that the condition (III.2.27) acts only

on the symmetric part of W

(I11.2.29)

b

gHivApY _ 5 MY APYp _ 0
AB (A B)

where {-) denotes cyclic permutation.

Equations (III1.2.29) are a set of differential equations for
£ with respect to the accelerations. Unfortunately, it seems not
possible to obtain the general form of £ without integrating eqs.
(IIT1.2.29) in a quite pedestrian way. We are not going to do that
but instead we will obtain some general but not less important
results.

The first step is to rewrite egs. (III1.2.29) as

aA”“aB““f 20, (III.2.30a)
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g Hlg Mp 4 g Flg Mp Z o | (III.2.30b)
A B B A

g Hlg YYp 4 g PPy YYp 4 g Mg e Z o | (III.2.30¢)
A B B A A B

5 PHg Vp g Mg HBp 2 (ITI.2.30d)
(a B) (a B) ! T

g By Mp g Hrg PYp g HPy Vip o g (I1I.2.30e)
(a B) (a B) (a B) ' e

In these equations p,v,A and p are all different, there is no
summation over repeated indices and use has already been made of
the practical rule (III.2.7).

Equation (III.2.30a) implies that the accelerations with
equal indices, which we will call A-couples, appear at most
linearly. Deriving eq.(III1.2.30c) with respect to ¢C”V, p=r, and
using (III.2.30b) one concludes that the accelerations with
unequal indices, which we will call B-couples, appear at most
quadratically.

From (III.2.30a) and (III1.2.30c) we see that

g Hhg Wy Wpe Z o . (III.2.31)
A B C

Therefore, the B-couples involving at least one of the indices
already contained in one of the A-couples can appear at most
linearly.

Theorem. If equations (III1.2.30) are satisfied then £ is a
- polynomial in the accelerations of order at most n(n+l)/2.

Proof 1. Let us consider the term containing k, O<ksn,
A-couples. Then there are k[n-(k+l)/2] B-couples involving at
least one of the indices already contained in the A-couples,
therefore they can appear at most linearly. From the other
(n-k)(n-k-1)/2 B-couples, due to (III.2.31), only a number
Int{(n-k)/2], where Int denotes the integer part of, of them can
appear at most quadratically. Therefore we have

N =k 4 nn-l)

. n-k
. 5 + lnt[ } . (I11.2.32)

2

Maximisation with respect to k is obtained for k=n

N = N‘= n(n+l)/2 . (I11.2.33)

max

A second proof is by reductio ad absurdum.
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Proof 2. Let wus assume that £ 1is a polynomial in the
accelerations of order Nﬁa£=N+nu m>0. Let us consider the term
containing k, O<ksn, A-couples. The B-éouples will then appear
1=N+m-k>n(n-1)/2 times. Then, due to (III.2.31), there will be
1-n(n-1)/2 B-couples appearing cubically. The indices involved in

such B-couples cannot appear in a A-couple. Therefore

k<n-21[1 - nmn-1)/2] , ' (III1.2.34)

which implies

kzn+2m . (IIT.2.35)

The only form of satisfyiné this is through the equality with m=0,
i.e., N =N,
max

Proof 3. Equation (III.2.30a) implies that the Lagrangian is

of the form

n (LR p)
171 i"i71 2\,
L=z, (¢,0¢,(37°¢)")
1 i
A1 A2
¢ ) , (I11.2.36)
“1”1 “2“2

where (.)1 means that the couples of indices p u are not repeated
i 1

and that they appear in some standard order. (62¢)' stands by

those accelerations ¢Apy with p=v.

Equation (III.2.30b) can be rewritten as

B B oo BB B )

8 Me
A A ...B ... A
1 i
(B B oo b p 1)
+a M U1 il (I11.2.37)
B Al...A...Ai

From here one deduces

(B peo e B )
g Mg e T 1 il (II1.2.38)
A B A ...C ... A
(.) ! t

1. . . ) 2 . .
Therefore £ is linear in those accelerations (87¢)’' involving

at least one index of those already contained in (.)1

(B _p ~~-Mi#i)l

p 11
A ... A
1 i
3
ioppg g ) (v AoLoav X)) .
_ 1" 1 iti"1° 1 1 i j 2 2
= % L B ... B (¢,94,(87¢) )
1 i 1 3
B, B
3
X ¢ Y .9 U (I11.2.39)
11 J o3




where

ji = i(n-i) + i(i-1)/2 = i(2n—i-l)/2'. (II1T1.2.40)

(.)2 means that the couples of indices v A, v =X, with v or X
3 SIS 3 3

already contained in (.)l, are not repeated and that they appear

in some standard order. (az¢)" stands by those accelerations ¢Aﬂ

v

with p=r and neither p nor v contained in (.) . Equation
().,

(III.2.xx) implies that the coefficients bd are

antisymmetric in those AB indices which have at least one common
Greek index.

Equation (II1I1.2.30c) can be written as

O N N 2] (B B we b )
g bt i g Mg Brp Bt g (111.2.41)
A ce. A (AB) A B A ... A
1 i 1 i
where (AB)=AB+BA. Then, using eq.(III1.2.xx) one obtains
(B Bve b )
g Mg Mg BVp 11 i oo . (III.2.42)
A B o] A1 P Ai
() '

Therefore, gt depends at most quadratically on the

. 22 .
accelerations (8°¢)". Then one can write

(s ul...piui)l(ulkl...ujkj)

p 1
A A
k1 i J
_ Eif(ulul...pipi)l(vlkl...ujAj)z(plal...pkak)3(¢ 56
k=0 A ... A . ... ¢C ’
1 i 1 3 1 k
c c
x ¢ " é - (II1.2.43)
_ oo T oo 2.
11 k k

with 0<j<j , and k=(n-i)(n-i-1), where (.)3 means that the
1 1
couples of indices p o, ps=o , with p and ¢ mnot contained
k k kK ok k k
neither in (.)1 nor in (.)2, are not repeated and that they appear
in some standard order.
The value of k 1is restricted when considering eq.(III.2.304d)
1

which can be written as

VAf(#”“lﬂl"'ui“i>1

8
(A B) A
1 i
O NN T
+g Mg vy i TR (I11.2.44)
(A B) A1 e Ai
From here one obtains
(B B o i )
§ Mg Bvg BAg pAp T2 TRy (IT1.2.45)
A B C D A1 PN Ai '

This restrict the range of k to
1
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k'i = (n-i)(n-1i-1)/2 +Int[(n-1)/2] , (III1.2.46)

where Int[] stands by the integer part of. Equation (III.2.30e)
does not restrict more the range of k'’ , but only imposes some
1

symmetry conditions on the coefficients of the polynomial. The

maximum power, for fixed i, is given by

N - i+ n(n-1)/2 + Int[(n-1)/2] . ' (II1.2.47)

Maximisation with respect to i obtained for i=n

N =N = n(n+l)/2 . (I11.2.48)

Therefore, £ is a polynomial in the accelerations of maximum order
equal to N=n(n+l)/2.

This is not the end of the story because there are some other
conditions to be satisfied. We have not yet considered the
additional restrictions imposed by the symmetries in the Latin
indices, deriving from (III.2.30b) when A-couples and B-couples
have common Greek indices. This extra restriction is well
illustrated by the term containing N powers of the accelerations.
Then the last term in eqs.(III.2.30c¢c) does not appear and one can

conclude from (III1.2.30b) and (III1.2.30c¢c) that this term is of the

form
2 M1 2 A '
Fly . a @09 €. €d¢ .84 0 (II1.2.49)
177N n+l times
with [-] denoting complete antisymmetrisation. € are n-
dimensional Levi-Civita tensors, their Greek indices being

contracted with those of the derivatives of the fields (there is

only omne possible non-trivial contraction). Since F is

[a ...a]

1 N
completely antisymmetric with respect to the Latin indices this

imposes an additional restriction on the order of £. Then, for
m<N, NmmsN—l. The main point is that £ is a polynomial of finite
order in the accelerations.

A Lagrangian satisfying eqs.(III1.2.30) will vyield third-
order field equations. By looking at (III.2.3) it seems that these
equations will be quadratic in the third-order derivatives of the
fields. However, the coefficient multiplyng this term is, due to

(ITI.2.31)
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g (OTg MWy Ap _ g5 toTgmi0nAeL (111.2.50)
(c Y B) (c [a[B)
where |-| means exclusion from the symmetrisation. An analysis of

the symmetries of this object shows that it is identically zero

A

CAB=BAC = - BCA = - ACB = ABC = CBA = - CAB , (III.2.51)
(S

where U and A mean symmetric and antisymmetric with respect to

those indices, respectively.

Case II

By non-standard Lagrangians of the case II here we mean those
yielding second-order field equations. This means to require

8,6 Ve - g s Me oy o apwp<ﬁg*> o, (I11.2.52)
These additional restrictions on £ are only on the coefficients of
the polynomial expression for £ and do not restrict its order. A
look at eq.(III.2.3) shows that the resulting field equations are
polynomial in the accelerations of order N+1.

A concrete example of this kind of Lagrangians is provided by
the Hilbert Lagrangian for general relativity when written in term
of the fields describing the embedding of the four-dimensional
space-time into a ten-dimensional flat pseudo-Euclidean space
(Regge and Teitelboim, 1976; Tapia, 1988c¢). In this formalism the

Ricci tensor is of the form

_ AporT a b .
R“V = Mpuab (8¢) ¢ Ap & or (I11.2.53)

with ¢°, a=l,...,6, the fields describing the embedding. The
metric tensor depends on only up to the velocities, therefore the
Lagrangian £=/-gR is quadratic in the accelerations. The field

equations are

®* - (r/2) g") 4, =0 (T11.2.54)

and therefore are cubic in the accelerations.




The Scalar Field

Condition (III.2.33) is idenfically‘ satisfied when m=1, a
scalar field. In this case eqs.(III1.2.11) simplify considerably

aHHaHte Z 0 (II1.2.55a)
a*ate Z 0 ‘ (III.2.55b)
2 3" e + oM e Z 0 (I1I1.2.55¢)
L A A o T R N (III.2.55d)
Vo e 4 gMaPYe & aHPe e Z o (II1.2.55¢)

In this case the field equations will be automatically of second-
order since condition (III.2.52) is identically satisfied.

The general solution is

L =5be € ¢u - ¢” y
11 n n
Booo b v, v
+b € e ) NIRRT I
#1 1 “2 2 pn n
Lo V...V
+ o 1 n = 1 n ¢ , ¢ ,
BikY1Y2 Fa¥s ¥
+ ... + B, (I1I1.2.56)

where the functions b and B depend only on ¢ and its first order
derivatives., The number of independent components is given by 1,
n(n+1)/2, n’(n’-1)/12, etc. '

Particularly interesting is the two-dimensional case. In this
case the Lagrangian density is

_ Ny LA vp
£ a+b ¢“V + - € € ¢#V ¢A

[\ W]

P

11
=a+ b ‘¢Oo + 2 b ¢01 + b ¢11

S ORI CID S (I11.2.57)

Since the condition (III.2.52) is identically satisfied the field

1

equations are of second-order.
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Two interesting particular cases of the previous Lagrangian’
are

£=c (¢oo 4

2
. - (¢, 07 (II1.2.58)

11

with co=const. Then one can write

_ X _vp _ B
L=c, d#[e e’ ¢, ¢Ap) d o (I11.2.59)

The field equations are identically vanishing. This is due to the
fact that the Lagrangian is the divergence of a vector o which
depends, however, on the accelerations.

The situation is however different from that in classical
mechanics where the only cbmponent of " can depend on only up to
the velocities. Concrete examples of this kind are the topological
invariants for even dimensional, n>4, Riemannian manifolds.

The second example is given by

E=c ¢ (8,6, - ., (III.2.60)

1
with co=const. The field equations are
2
$o0 $,, - (4,0 =0 (II1.2.61)
This provides the simplest concrete example of a Lagrangian
depending non-trivially on the accelerations yielding second-order

field equations.

The Two-Dimensional Case

Besides being one of the simplest cases to start with the
two-dimensional case has direct applications in the determination
of the fine structure of strings (Polyakov, 1986; Alonso and
Espriu, 1987) where the fields ¢ are the functions describing the
embedding of the two-dimensional world-sheet in a D-dimensional,
D=2, flat space.

In this case eqgs.(IIT.2.30) reduce to

It
o

aA““aB““f , (III.2.62a)

g HHg e 4 g PHg e Z o | (II1.2.62b)
A B B A

3+




g Hlg Wp 4 g FEg Ve + g Mg Wp Z o | (III1.2.62¢)
A B B A A B

where uv=0,1, A,B=1,...,m. L is then given by

E-a+b® gt i et P 4t #,

Hy AB 12 P
aff Ay A B
* dAB < ¢ al ¢ By
pa vB Ay A B c
+ %wc e e e o) v @ 3\ o] ay (I1IT.2.63)

The functions a, b, ¢, d and e depend on only up to the
velocities, .5 is symmetric, dABC is completely antisymmetric;
" are two-dimensional Levi-Civita tensors.

The previous Lagrangian yields third-order field equations.
In order to obtain second-order ones one must still satisfy the

condition (III.2.52).
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IV. Part Four. Applications: the Klein-Gordon Field, the

Electromagnetic Field and General Relativity

Here we present applications of our formalism to the Klein-
Gordon field, to the electromagnetic field and to general

relativity.

IV.1. The Klein-Gordon Field

Commonly the Klein-Gordon field 1is described by  the

Lagrangian

£ - % 4, o +m %y F (IV.1.1)

where indices are raised and lowered with the Minkowski metric
nﬂy=d1ag(+---).

The canonical momenta is

w2 ) = | (IV.1.2)

The canonical Hamiltonian is

X2, =2 (4" - 6. ¢ - m® g% . (IV.1.3)

The surface term for the energy is

f n_ ¢ ' a®x . " (IV.1.4)
The d-invariant Lagrangian is
E o =-24@-n*¢) =2 +d 4" (IV.1.5)
K6 2 ~ “ke I ' T

where D=6ﬂa“. Since it differs for a total divergence from the
standard Lagrangian yields the same field equations. However, the
energy-momentum tensor must be constructed using the second-order
formalism, i.e., by introducing conjugated momenta of second-

order. These momenta are given by

7 _ 9t 8L 1 p

m (ﬁKG) 58— du(6¢ ) = ; ", (IV.1.6a)
KB 2%

ny -~ 3F _ 1 1%

T (fKG) = a¢#u = p ¢ n (IV.1.6b)




The corresponding energy-momentum tensor is given by

- _ 1 B By Br
U G IR C I SR 0 BRI o S (IV.1.7)
where we must put EKG=O. The canonical Hamiltonian is
X () =% () +-d (44" . (1V.1.8)

IV.2. The Electromagnetic Field

Commonly electrodynamics is described by the Lagrangian

rp =17 g
EM 4 py
_ 1, omA wvp o pp VA
> (""" n "t o) apAy BAAP
-1« B - B, BYY (1V.2.1)
1
where
F =48A -38A , ~ (IV.2.2)
Ny bV vV i
E =8A -03A , (IV.2.3a)
i 0 i i 0
B =  8°B° . (1V.2.3Db)
i ijk

The canonical momenta are

0
m (fEM) =0, | (IV.2.4a)

i

gl _ (IV.2.4b)

T (sz)

The canonical Hamiltonian is

%c(xEM>

N e

(E E' -8B BY +3 (o ED
i i i 0

= -~ (B +B%) + 9 (a B . (1V.2.5)
The surface term for the energy is

ijk

- J n (A E'-&'* A B) a%x . ' (IV.2.6)
i 0] 3 k

The d-invariant Lagrangian is
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S N (8,08, - 8.0A)
—e - Ya@a P (1V.2.7)
EM AN )
Since it differs for a total divergence from the standard
Lagrangian yields the same field equations. However, the energy-
momentum tensor must be constructed wusing the second-order
formalism, i.e., by introducing conjugated momenta of second-

order. These momenta are given by

a,p 6ZEM BEEM
m (fzm) T BA ) du(aA )
o, o, pv
R S BAAA) , (IV.2.8a)
a, LV, afEM
™ (ﬂEM) -
a,py
- - % N T o S (IV.2.8b)

The corresponding energy-momentum tensor is given by

- _ 1 B o p ap A
# u(xEM ) = . auAa (2 8"A J A n BAA )

1 a pA o ap A ol p
? BVGAAa (2 A" g 7 A 7 A™)

-t E (IV.2.9)

where we must put EEM=O. The canonical Hamiltonian is

- _ i ji_i D_ i
R E ) =® E )+ d (A F A" 8 A - A E). (IV.2.10)

IV.3. General Relativity

The solution is partially provided by our d-invariant

formalism. From there it is obvious that

1
Z - g#V j (V-8 ny)~ dr = /-g R = £H . (Iv.3.1)
0
Therefore the Hilbert Lagrangian is the correct d-invariant

1ol



Lagrangian to start with. The Hilbert Lagrangian is, explicitly

-/ HYAp uvp or
£H = J-g (G B#VgAp + G g Papu PrAp) (1v.3.2)
Some useful derivatives are
6£H Avor _p Apor v
6.5 ~ V8 Fgr + 6 For
APpuy
- gHver r*UT) . (IV.3.3)
i (/= Gaﬂuu) _ 1 /T_ (Gﬁupr e + gOVET Pﬁ
ptvE 2 V8 pr pT
-2 ¢PHT vy (IV.3.4)
LT

The previous formulae is obtained by using

v GHAP _ g girde  qavdp rh 4 ghere
p p ap ap

+ ghver r*ap I T (IV.3.5)

The corresponding momenta are

(W) A I S Apor _v Avor _u
II (ﬁH) = - J-g (G r or G r UT) , (IV.3.6)
(V) Xp -- _HVAp
I ) = - J-g G . (IV.3.7)
The corresponding energy-momentum tensor is
B _ — f—. A pA
% V§£H) = 2‘/ g G L dA[/ g (T , - T D1 (IV.3.8)

It can be easily verified that the second term, due to its
particular form, it is antisymmetric in A and 4, is an identically
conserved quantity. However, it contributes to the conserved
quantities with a surface term.

Application of formula (II1.2.17) to the Hilbert Lagrangian

gives
FE ey =0 (IV.3.9)
14 H N ’ T
such that
U (E) = 0 | (IV.3.10)

The energy for the gravitational field reduces then to the

expression

02



E(£H)

- f d [Jg @’ -1 a

i

] J Je @ -1t as . (17.3.11)

For a diagonal spherically symmetric metric the previous

formula reduces to

r
+ 00 11 '
- 4m Jr dr[J-g g g argoo] dr

E(Z,)

. — 00 11 +
-4r [-g g 8 8.8, {
r

(IV.3.12)

It is now easy to Vefify that for a Schwarzschild field E=0

in: satandard coordinates

ds® = (1 - 2m/r) dt® - (1 - 2m/r) " dr® - r% do® , (1IV.3.13a)

isotropic coordinates

ds® = [(2r - m)/2r + m)]? at?

- (1 + w/2r)t (ar® + £? aa®) (IV.3.13b)
and Fock harmonic coordinates
2 2 2
ds” = [(r - m)/(x + m)] dt” - [(r + m)/(xr - m)] dr
- (1 +w/r)? £? aa® (IV.3.13¢)
where
do® = dg? + sin?g do® . (IV.3.14)
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V. Concluding Remarks

We have considered the local aspects of higher-order field
theory. We have seen that in order to preserve d-invariance in
field theory one must unavoidably select a representative for the
d-equivalent Lagrangians. This 1is proportional to the field
equations and therefore, in general, it will be a second-order
one. Instead of dealing with this kind of Lagrangians by
substracting a total divergence containing the second-order
derivatives we must deal with the full Lagrangian, in order also
to avoid the d-invariance problem. After applying field theory in
the correct way it must be done we arrive to physically meaningful
conservation laws. In these the role of the surface terms is
clear. What is lacking now is the globalisation of the previous

results.
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