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Introduction

The first systematic study of periodic solutions of nonlinear
differential equations was started and developed by Henri Poincaré. His
first work on the existence of periodic solutions appeared in 1883, and his
great interest on this subject was to remain constant duriﬁg all his life.
From the very beginning Poincaré realized the importance of the theory
of fixed points, and made explicit use of topological degree arguments.

The work of Fredholm on linear integral equations, the topological
contributions of Birkoff and Kellogg, and the further developments of
functional analysis, mainly by Banach, Schauder and the Polish school,
brought to a new way of considering boundary value problems: the
problem of the existence of solutions was replaced by that of finding the
fixed points of an operator T , defined on a suitable space of functions,
which in some cases is compact, i.e. has the property of transforming
bounded sets into relatively compact ones.

In 1934, the Brouwer's finite dimensional theory of the topological
degree was completely extended by Leray and Schauder [83] to operators
of the form I - T, with T being a compact operator. This theory
permits in many cases to establish the existence of solutions to a certain
boundary value problem by simply proving that the set of all possible
solutions is in some sense bounded. In other words, it is sufficient to
prove some a priori estimates on the set of solutions in order to conclude
that this set is nonempty. The theory developed by Leray and Schauder
provides a very powerful tool in nonlinear analysis which has been
extensively used for proving existence and multiplicity results for
boundary value problems.

A different approach to the study of boundary value problems is
possible when the problem has a variational structure. In this case, the
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existence of solutions can be reduced to the study of the critical points of a
functional, defined on a suitable space of functions. In particular, when
such a functional is bounded from below or from above, one can try to
find out if a point of minimum or maximum exists. For instance, if the
functional is coercive and satisfies a lower semi-continuity condition, it is
easy to show that a minimum must exist. This relatively simple idea was
already applied in some of Poincaré's works; it led Cinquini [30] in 1938
to an elegant proof of an existence result of Hammerstein [71] for a
Dirichlet problem with nonlinearity "to the left" of the spethUm.

However, such a simple situation rarely occurs, and it can happen
that the given functional is unbounded both from below and from above.
In order to attack this kind of problems, Morse started to develop a
general topological theory making wide use of algebraic topological tools.
His book [116] on the calculus of variations in the large appeared in 1934,
and it was again in the same year that Ljusternik and Schnirelmann [86]
presented their topological theory for variational problems, proposing a
different approach to the problem.

These theories have been extended by Palais [121,122,123], Smale
[124,136] and Rothe [135] to infinite dimensional manifolds, thus
providing new tools to the study of boundary value problems and
inspiring a series of generalizations and new theorems for the
applications. In particular, the Mountain Pass Theorem by Ambrosetti and
Rabinowitz [10] and the Saddle Point Theorem by Rabinowitz [127] have
been extensively used in proving existence and multiplicity results for
boundary value problems.

In order to understand better the problems we are going to
consider, let us begin with a simple example. We look for 27 - periodic
solutions of the following linear equation:

x"(t) + Ax(t) = h(t) , M)
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where A is a real parameter. It is well known that if A & {n2:ne N},
there are 21 - periodic solutions to (1) for any forcing term h . On the
other hand, if A =n? forsome ne N, (1) has a 2w - periodic solution

if and only if h satisfies
2n 2n

[ht) sinnt dt = [h(t) cosntdt=0 . (2)
0 0

The above is a simple application of the Fredholm alternative to a
selfadjoint differential problem. Notice that the homogeneous equation

x"(t) + Ax(t) =0 3)

has nontrivial 27 - periodic solutions if and only if A = n? for some n €
IN , in which case the set & of solutions is made of functions which are

linear combinations of sin nt and cos nt . The real numbers n2,ne N,

are called the eigenvalues of the 2w - periodic problem associated to
equation (3).

When one considers 2x - periodic solutions of a nonlinear equation
of the type

x"() + gx(©) =h(®) , 4)

one would like to extend the known results of the linear case to more
general situations. Denoting by G a primitive of g, we remark that in
the linear case when g(x) = Ax , one can write A = g'(x) = g(x)/x =
2G(x)/x2 . Beginning with Dolph [44] (for the Dirichlet problem), many
papers have been devoted to the study of the existence of solutions to
boundary value problems where the asymptotic behavior either of g'(x)
or of the quotients g(x)/x and 2G(x)/x?2 has been compared to the
spectrum of the differential operator. For the periodic case, see Loud
[88].

According to whether solutions exist for any forcing term h or
not, the problem is called nonresonant or resonant, respectively. For
example, if the function g satisfies the following condition:
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2« hrmnf gto/x < limsup g(x)/x <@+ 1)?, (5)
X|—>o0

X|—00

for some n € N, it can be proved that the problem

[ x"(® + gx()) = h(D) ,
k x(.) is 2w - periodic

is nonresonant. On the other hand, if for example the first strict inequality
in (5) is replaced by a non strict one, the problem is resonant with the
eigenvalue n? , and some further condition has to be considered for a 2 -
periodic solution of (4) to exist.

It seems to be unknown if a condition like (2) alone is sufficient in

the above situation to assure this existence. Assuming the function g(x) =
g(x) - n2x to be bounded, Landesman and Lazer [78] proposed their by
now classical condition in order to prove the existence of a solution:

(LL) if v is any function in the above defined space ©
2r

jhv > liminf g(x) _[ v - limsup g(x) J

| X—>eo >0} X—>-00 {v<0}

In the same setting, Ahmad, Lazer and Paul [2] proposed the following
condition, which can be shown to be more general than (LL):

2n
(ALP);  for ve &,  lm j [ - G(v(®) + h(t) v(t) ] dt = £ oo,
Vil—eo
where G denotes a primitive of g , and |l is a norm in the

two - dimensional space © .

Dealing with the more general equation

x"(0) + g(t, x(1)) =h() , ~(6)
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one can consider a situation like the following:

a(t) < liminf g(t,x)/x < limsup g(t.x)/x <b() , (7)
[x|—o00 Ix|—o2

a and b being, for instance, bounded functions. It can then be proved
that if for any choice of a function p such that a(t) < p(t) < b(t) the
equation

x"(t) + p(t) x(t) = 0

does not have any nontrivial 27 - periodic solutions, then there exists a 27
- periodic solution of equation (6), for any forcing term h . This is a
particular case of a theorem by Lasota and Opial [79] on systems of
ordinary differential equations. There is in the above fact a similarity
with the homogeneous case, the eigenvalues being replaced by bounded
functions.

Another generalization for equation (4) was given by Fucik [60,61]
and Dancer [38,39], considering a nonlinearity g with a quotient g(x)/x
which, instead of verifying a condition like (5), has different behaviors at
+ o and - o . Such kind of functions g were called "jumping
nonlinearities". Generalizing the above results for equation (6), Habets
and Metzen [69] were able to prove essentially the following: assume

a(t) < liminf g(tx)/x < limsup g(tx)/x <b() ,
X—>+oo X —>+o00

c(t) £ liminf g(t,x)/x < limsup g(t.x)/x <d(t) ,
X—y—o0 X—y—co
for some bounded functions a, b, ¢, d, and suppose that, for any choice

of functions p and q such that a(t) < p(t) <b(t) and c(t) < q() <d(),
the equation

x"() + p® x4 (O) - q(O x () =0,
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where x, = max {x,0} , x. = max {-x,0} , does not have any nontrivial

27 - periodic solutions. Then there exists a 2w - periodic solution of (6),
for any forcing term h .

In Chapter 1 we will show that the above results can be extended to
systems of differential equations having nonlinearities which are in some
sense asymptotically positively homogeneous. We will moreover give
some applications to second order differential equations of Liénard type:

x"(t) + fx(O)x'(® + g(t, x(1) = h(®) ,
and of Rayleigh type: |
x"(0) + {(x'(©) + gt x(0) = h() ,
and to third order differential equations of the form
x"(t) + ax"(t) + bx'(t) + g(t, x(t)) = h(t) ,
where the nonlinearities are of "jumping” type.

In Chapter 2 we will study the 2r - periodic solutions of equation
(6) in the setting of assumption (7), admitting the possibility that either
the equation '

x"(t) +a(t) x(t)=0
or the equation
x"(t) + b(t) x(t) =0

or both, do have nontrivial 2w - periodic solutions. In order to overcome
this double resonance situation, we will impose at both sides some
Landesman - Lazer type conditions, thus generalizing for an equation like
(6) the numerous results in the literature dealing with a one - sided
resonance situation.
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In Chapter 3 we will compare different approaches to the study of
an equation like (6), and we will give a characterization of the Lasota -
Opial condition in terms of quadratic forms, thus generalizing various
existence results by e.g. Mawhin, Ward, Gossez (cf. [65,99,108,109]).

In Chapters 1, 2 and 3, the main tool used to prove our existence
results is the theory of the topological degree as developed by Leray and
Schauder. More precisely, we make use of the more general coincidence
degree theory by Mawhin, of which we will recall the main features in
Appendix 1. An abstract existence result related to those in Chapters 1 and
3 is also given in Appendix 1.

There exists a completely different way to study the periodic
solutions of equation (6). It comes out in fact that this problem has a
variational structure, and it is possible to define on a subspace of the

Sobolev space H1(0,27t) a functional
2n

fx)= [[ LIX®P - G, x(®) + h©x©] dt
.0

whose critical points correspond to the 27 - periodic solutions of (6).
Using this approach it seems more natural to consider assumptions on G
rather that on g, since the function g does not appear in the definition
of the functional f . In order to find a critical point of the functional f,
the first idea is, for example, to look if there exists a point of minimum.
Using an argument of Mawhin, Ward and Willem [110], it can be shown
that if G satisfies

limsup 2G(t,x)/x2 <0 (8)

[x|—o0

for any t, with strict inequality on a set of positive measure, then the
functional f 1is coercive and has a minimum, which is a solution.
Condition (8) means, roughly speaking, that the nonlinearity lies to the
left of the spectrum, 0 being the first eigenvalue of our problem. The
result is still true for Dirichlet problems associated to partial differential
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equations of elliptic type (cf. [110]). For these problems, de Figueiredo
and Gossez [41] showed that even in case equality in (8) holds for all t, it
1s possible to prove the existence of a solution by imposing a density type
condition on the quotient 2G(t,x)/x? . Different arguments were used by
Berger [21], Mawhin [104,105] and Anane [11] to prove the existence of
solutions under certain assumptions for which a minimum can be found
for the functional f.

In Chapter 4 we give a general abstract theorem for ‘the coercivity
of a functional like f, and show how all the above mentioned results can
be generalized in this setting. Different kinds of boundary value problems
for ordinary or partial differential equations of elliptic type will be

- considered. Here, the Ahmad - Lazer - Paul condition plays a fundamental
role. In fact, condition (ALP), can be interpreted as a coercivity

assumption on f along the space @ . We show that, even if the (ALP)_

condition is necessary for the coercivity of the functional f |, it is not
sufficient to guarantee the existence of a solution. It is our aim to show
'some way in which (ALP), can be strengthened in order to assure this

existence.

In Chapter 5 we will again deal with a periodic problem for an
equation like (6), where the nonlinearity is in resonance with the first
eigenvalue, but, roughly speaking, stays to the right of it. An Ahmad -
Lazer - Paul type condition will be considered at the first eigenvalue, and
a nonresonance condition at the second one. In this case the functional f
is not any more bounded from below, and we will prove the existence of a
saddle point by means of the theorem of Rabinowitz we mentioned above.

In Chapter 6 we will consider the periodic problem associated to
conservative systems of second order ordinary differential equations, or
to first order Hamiltonian systems, with a periodic nonlinearity. We will
prove some multiplicity results by means of a theorem of Chang [27]. A
survey on the algebraic topological concepts used in this chapter will be
found in Appendix 2. Our results generalize previous theorems by Cohley
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and Zehnder [34], Mawhin and Willem [111,113] and Mawhin [107]. As a
very particular case, one can consider the pendulum equation

x"(t) + A sin x(t) = f(t) , 9

where f(t) is a forcing term with mean value zero, and recover the result
that (9) has at least two periodic solutions.

In Chapter 7 we study equations like (9) with a periodic forcing
term 1(t), and we study the existence of subharmonic osciﬂations, 1.e. of
periodic solutions having as minimal period a multiple of the period of f.
Our main theorem uses Morse theory together with some iteration
formulas for an index associated to the solutions of (9).



Chapter 1

PERIODIC SOLUTIONS OF ASYMPTOTICALLY
POSITIVELY HOMOGENEOUS DIFFERENTIAL
EQUATIONS

§1. INTRODUCTION.

First studies of periodic solutions for a differential equation

X + CX + g(x) = e(t),
where g is asymptotically linear in some sense, are due to W.S. Loud [88]
and A.C. Lazer [80]. This was the starting point of a vast literature on
Liénard equation

X + f(x) x + g(t,x) = e(t) (1)
and its special case, the Duffing equation

X + CX + g(t,x) = e(t). (2)
One can mention for example the papers by R. Reissig [132], M. Martelli
[95], J. Mawhin and J.R. Ward [108], J. Mawhin [99], C. Fabry [55] and
the literature therein. In these papers, the asymptotic behaviour of the
nonlinearity g is controlled through inequalities such as

a(t) < hm inf g_gt__)_ < lim sup &(—) < b(t). (3)

[xl—>e0 [x]—e0

These tend to keep away the quotient g(t,x)/x from the spectrum of the
linear operator Lx = - x as Ix [ — oo. Closely related results can be
found in J. Mawhin [97], J. Mawhin and J.R. Ward [109], P. Omari and F.
Zanolin [120]. Similar results for systems have been worked out in A.C.
Lazer and D.A. Sanchez [82], P. Habets and M.N. Nkashama [70], for a
Rayleigh equation in R. Reissig [133] and for third order equations in G.
Villari [140], O.C. Ezeilo and M.N. Nkashama [54]. See also the
references therein.




Asymptotically positively homogeneous differential equations

A major generalization was considered in E.N. Dancer [38], [39]
and S. Fucik [60], [61]. There, existence of solutions for the equation
x +g(x) = e(t) 4)
is investigated when the function g is asymptotically positively
homogeneous, 1.e.

lim gx) ): L, lim gx) ): V. (5)
X—>+oc0 X X——co X

Noticing that the quotient g(x)/x could vary from one eigenvalue of L as x
— - oo to the next one as x — + o, or even could cross eigenvalues of L,
S. Fucik called the function g a "jumping nonlinearity". These authors
considered the positively homogeneous equation

X+px, -vx =0, (6)

where x L= max(x,0) and x_ = max (-x,0) and introduced the set K, known

as Fuclik spectrum, of points (1L,v) € R% such that (6) has a non zero
periodic solution. Basically they proved that if (i,v) ¢ K and g satisfies
(5), equation (4) has a periodic solution. Later, condition (5) has been
generalized for a Duffing equation (2) using assumptions of the type (3) .
In P. Habets and G. Metzen [69], the asymptotic values of the quotient
g(t,x)/x are controlled by the inequalities

a(t) < lim inf gu < lim sup g_(___) < b(t),

X—>+oo X—>+oo

c(t) < lim inf g(__l < lim sup g(LX—) < d(b),

X —y—0c0 X——o0
together with a condition called property P. ThlS property replaces the
assumption (1,v) ¢ K by imposing that zero is the only periodic solution
of the positively homogeneous equation

X + cx + p()x, - q()x_=0,

whenever a(t) < p(t) < b(t), c(t) < q(t) < d(t). Such a property P appears
already more or less implicitly in A. Lasota and Z. Opial [79] and S.
Invernizzi.[76].

11
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Recent results along these lines are in P. Drabek and S. Invernizzi
[45], R. Iannacci, M.N. Nkashama, P. Omari and F. Zanolin [74]. In the
case of one-sided growth restrictions, see also P. Omari, G. Villari and F.
Zanolin [119] and L. Fernandes and F. Zanolin [57].

A similar phenomenon was observed by A. Fonda and
F. Zanolin [59] for the Liénard equation

X + 1GOx + g(x) = e(D). (7)
Assuming (5) as well as
Im f(x)=p, Im f{(x)=aq,

X—y—o0

X—>+oo
they indicate a set K in the (l,v,p,q) space which generalizes the Fucik
spectrum and is such that if (iu,v,p,q) ¢ K, the equation (7) has at least
one periodic solution.

The original motivation of our paper was to prove the existence of
periodic solutions for (7) using a property P so as to weaken the above
conditions on f and g. Our purpose was also to apply these ideas to other
- problems such as the Rayleigh equation

X + £(tx) + g(tx) = e(t) ®)
and the third order equation

X + ax + bx + g(t,x) = e(t). 9)

The paper is organized as follows. In section 2, we consider a
general 15t order equation in R"

x = F(t,x). (10)
We describe what we mean by F being asymptotically positively
homogeneous and check this property in applications . Section 3 is
devoted to property P and the main existence theorem for periodic
solutions of (10). In section 4, we investigate property P for equations in
R2 using phase plane methods. This applies to Liénard and Rayleigh
equations. Section 5 studies property P for equations in R3 using L2
estimates on the solutions and their derivatives. In section 6, we deduce

12
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some existence theorems for Liénard equation (1), Rayleigh equation (8)
and the third order equation (9).
These contain and generalize results in P. Drabek and S. Invernizzi [45],
P. Habets and G. Metzen [69], A. Fonda and F. Zanolin [59] and O.C.
Ezeilo and M.N. Nkashama [54].

§2. THE MAIN PROBLEM.

2.1. Consider the periodic boundary value problem
x = F(t,x)
x(0) = x(2m) ,

where F : [0,2r] x R® — R™is a continuous function.

The following assumption expresses the fact that F is
asymptotically positively homogeneous.

(11)

ASSUMPTION H.

(i) Let
G(tx,u) = Gy(t.x) + G (tx)u, (t,x,u) € [0,27] x R™ x RP,

be a continuous function which is positively homogeneous in X, i.e.

V(txu) € [02x] x R®x RP, V A > 0, G(t,Ax,u) = AG(t,x,u) ;
(i) let
o:[02n] - RP and B :[0,2r] — RP
be continuous functions and

(111) assume that for any € > 0, there exist Y> 0 and a continuous function
u(t,x) such that for every (t,x) € [0,2r] x R™ one has
ut,x) € [ot)-ee,B(t)+ce ],
where e e RP is the vector with all components equal to 1, and
IG(t,x,u(t,x)) - F(t,;x)I <.

13
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This assumption holds true in several important applications.

2.2. Application 1. Consider the system of equations
X = y - f(t,X),
= e<t) - c(t7X)7

where f,g and e are continuous functions defined for t € [0,2x],
x € [R. Recall that the Liénard equation

(12)

X + h(x)x + g(t,x) = e(t)
can be written in such a form.

In this application, we assume the following.

ASSUMPTION Al. There exist continuous functions a,b,c,d,p,q.r,s such
that the following inequalities hold uniformly in t:

a(t) < lim inf ftx) o lim sup f(t.x) < b(t),

N—34-o00 X n—+eo X
t

bty

c® < lim inf 28X < fimsup LX) < qqp),

n——oo X n——oo

X
p(t) < lim inf g(_t_)_g_)_ < lim sup &(EX—Q q(v),

n—>+oo n—too

r(t) £ lim inf g-(i——l < lim sup g(—)- < s(b).

n——oo n——oo

Let us show that the function

F(tx,y) = (y - f(tx) , e(t) - g(t,x))
satisfies assumption H.

We shall first introduce the functions

14
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d(a,x,b) = a , if x <a,
= X , if x € (a,b),
= b , if X 2 b,
and
ox)y = 0 , if x € (0,17,
= x-1, if x € (1,2],
= 1 , if X > 2.

With these notations and for any € > 0, we write (12) as

X=y- u, (X)X, + u, (6X)x_+ hy(6,x),

y=- u3(t,x)x+ +u,(Lx)x_+h,(6x),

where
X, = max (x,0), x =max (-x,0),
0, () = 8(a(t)-e, X g(lxl), b(oy+e),

u,(t%) = 8(e®-e, X (1D, dae),

w(6x) = 8(p(0-e, ZE2 oD, q)+e),
() = 3(r(0)-e, B2 o(ix), sy+e).

Notice that we can choose R large enough, so that if x = R one has
a® -e T b + ¢,
p(t) - ssg(—;’—’i)-g q(t) + €.

Similarly, if x < - R, one has
e -e <8 <d +e,

(1) -es@s S(0) + €.

15
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If we define
u= (ul,uz,u3,u4),
GOy,u) = (¥ - uyX, +U,X , -UgX, +1U X ),

o(t) = (a(t),c(t),p(t),r(t)),

B(t) = (b(D),d(1),q(1),s(1)),
it is clear that

o) -ee<utx)<P)+ece

and that the function

h(tx) = F(txy) - Gryu(tx)
=(f+ux, -u,Xx , e-g+ugX, -u,x)

is bounded as it is continuous with compact support.

2.3. Application 2. The Rayleigh equation

X + f(t,x) + g(t,x) = e(t)

can be written in vector form

X =y, y=e - gtx) - flLy).

(13)

As in application 1, we assume that the functions f,g and e are
continuous functions defined for t € [0,2n], x € Rand y € R. We also

assume that assumption A1 holds.

It 1s then easy to see that the function

Ftx,y) = (v, e(t) - g(t.,x) - f(t.y))
verifies assumption H with
G(x,y,u) = (y, Uy, U Y -UX ++U4X_),
u(t,x,y) = (uy(6,y),u,(6y)us(t,x),u,(t,x)),
where the functions u,, o and B are defined as in application 1.

16
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2.4. Application 3. The third order equation

X + aX + bx + g(t,x) = e(t,x,%,%)
can be written as

X=y, y=2z, 7= e(t,x,y,z) - g(t,x) - by - az. (14)
We assume that the functions g and e are continuous functions defined for
te [02n],xe R, yeR, z e R, and that the following condition holds.

ASSUMPTION A3. There exist continuous functions. p,a,r,§ such that the
following inequalities hold uniformly in t

p(t) <lim inf @ < lim sup g@ < q(),

X—o0 X—+oo
r(t) <lim inf 8GX) < iy g 8O0 (o
X—>—co X X—>—o0 X
and there exist 80 > 0, Ay > 0 such that for anyt e [0,27],

x,y,z) € ﬂQS, one has
le(t,x,y,z)l < 60 + Ag (X + Iyl + Izl ).

Let us prove that the function

F(tx,y,z) = (y, z, e(t,x,y,z) - g(t,x)‘- by - az)
verifies assumption H.

For any € > 0, we write (14) as
X=y,y=z
zZ= u (6x,y,2)(IXI + Iyl + Izl) - u, (X)X, + uy(t,x)x_ -
- by - az + h(t,x,y,2),

where
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ul(t,xgy,z) = e(t,X,¥,Z) (p(-g—-(lxl.+|yl+|zl))/(lXI+lyI+lzl),
. 0
0, = 3p(0)-e, B g(ix, qe).
u,(tx) = 3(r()-e, 8-%&(9(1;(1), S(D)+€).

If we define
G(x,y,z,w) = (y, z, ul(lxl+|yl+|zl) - UpX + UgX - by - az),
at) = (- Ay, P(B), 1),
B(®) = (Ag, q(®), s(t)),
it is clear that
aft) - € e <u(tx,y,z) < B(t) + ce.
Moreover

h(t,x,y,z) = F(tx,y,2) - G(x,y,z, u(t,x,y,z))
= (0,0, hy(tx,y,z) + h,(t,x))

is bounded since the functions
hl(t,x,y,z) = e(t,x,y,2) - ul(t,x,y,z)(lxl+lyl+lz|)

hz(t,x) = - g(tx) + uz(t,x)x 4 u3(t,x)x_

are continuous functions with compact support.

§3. PROPERTY P AND THE MAIN THEOREM.

3.1. Definition. Given functions G(t,x,u), o(t) and B(t) as in
assumption H, we say that the triplet (G,o,3) has property P if for any u
e L? such that
V t €[0,2w] u(t) € [a®),p®)],
zero is the only solution of the boundary value problem
x = G(t,x,u(t))
x(0) =x(2m).

18
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3.2. In order to prove our main theorem, we need the following two
lemmas. '

Lemma 1. Ler G(t,x,u), o(t) and B(t) be as in assumption H. If
(G,o,B) has property P, then there existse > 0 such that
(G,o-ce,p+ee) has property P.

Proof. Suppose the contrary is true. Then for any n € N, there exists
u € L? such that

vte [02n]  w®e [a®-1e BO)+ Le]

1
and X, € H-, X # O such that

k() = Gltxp (0,u;(6) (15)
x,(0) = x,(2m). (16)
The positive homogeneity of G in x allows us to choose X, such that
x_II . =1.
n Hl

As Cc Hl, the X, are uniformly bounded in Il,,. The u, are
also uniformly bounded. Hence from (15) it follows that the X, are
equ(i:continuous. Going to a subsequence, we can then suppose
Xn ___) X.

Likewise, since u,, is a bounded sequence in L2 we can suppose u,

2
iy , for some u € L2 1t follows that
L2

Glxpuy) = G(x,w).

I;ldeed, forany ¢ € L2 we have
OJ [G(t.x, (), (®) - Gltx®)uw)]p)dt =
2 2n
= OJ [G (6%, (D) - Goltx(®)]o(t)dt + OJ [G(tx, () -

2%
- G (LX) ]u (DDt + OJ Gy (XU, (©) - u®)e(t)dt.
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From Lebesgue dominated convergence theorem, the two first terms go to

. 2 .
zero. As u, 2 u, the same holds true for the third one.

Taking the weak limit of (15) in L2, and the limit in (16) we
obtain

x (0= Gtx®,u()

x(0) = x(2m).
Asuy 10 u, it is easy to see that for each i = 1,...,p and almost

(17)

every t € [0,27], one has

o.(t) € lim infu (t) £ lim sup u_ (t) < B:(t).
1 n—eo 1 n—eo 1 1

Hence changing u on a set of measure zero, we can assume
vV te [0,2n] -, u@® e [a®),p®].
As (G,o,B) has Property P, we deduce from (17) that x = 0.

On the other hand, from the positive homogeneity of G in x, we
can find K > 0 such that

V(t,x) € [0,2] x R}, v u e [out)-e,B(t)+e], | G(t,x,u)l < KIxl.
Hence we can write

2

T
2+||Xn|| 5

1 =l 2= lixll
n 1 n L

H L
2n
< 2mikx 112 +] G2(t,x,, ()0, (©)dt < 2r(1+K) 2k 112
which implies
x =lim x_# 0.
n

This is a contradiction. |
3.3. Lemma 2. Suppose F(t,x) is such that assumption H holds and that

the triplet (G,o,) has property P.

Then there exists a constant ¢ > 0 such that if X € Cl is a solution
of (11), then lIxll_<c.
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Proof. Assume the lemma were false. Then there exists a sequence of
solutions X, of (1) such that V ne W, ||Xn”o<,2 n. Let

*n

n_ .
TP

v

By Lemma 1, we can choose € > 0 such that (G,a-ge,B+¢ee) has

property P. Next, from assumption H, we can choose ¥ > 0 and
u(t,x) € [ot)-ge,B(t)+ee]
such that
H(t,x) = F(t,x) - G(t,x,u(t,x))
verifies
H,x) <.

The functions v , are solutions of

H(t,
\./'n(t) = G(t,Vn(t),u(t,Xn(t))) + __I(Iz_(__xl_l_ir_ll_foi)z

(18)
vn(O) = vn(27'c).

Clearly the \'/n are uniformly bounded. Hence the v are bounded in H!

. 1
and, going to subsequences, we can assume Vh H y e Hl,

o are uniformly bounded, we can
assume u 2 ue L2 Going to the limit in (18) we obtain

n
v(®) = G(Lv(D),u(b)
v(0) = v(2).

Vv,V # 0. Likewise, as the functions u

As in Lemma 1, it is clear that changing u on a set of measure zero, we
have

Vte [0,2x] u(t) e [a(t)-ce, B(t)+ee]

. . C
and, from property P, that v = 0, which contradicts vy — v. B

3.4. To prove the existence of solutions of (11), we shall apply
coincidence degree theory [98]. It is clear that Leray-Schauder's degree
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[87] coﬁld be used at the expense of reformulating the problem as a fixed
point problem.

Given functions F(t,x) and G(t,x,u) as in assumption H, and a
continuous function Uy - [0,2n] — RP, we shall use the following

notations :
Dom L = {x € ClIx(0) = x(2m)} ;
L :DomL —C, x—>x';
Ny :C - C, x = F(x);
Ny :C = C, x = Gxup). (19)

It is clear that N and N, are L-compact on bounded subsets of C and

that L is a linear Fredholm map of index zero.

Theorem 1. Assume :

(1) F satisfies assumption H ;

(ii) the triplet (G,o.,) has property P ;

(iii)for some continuous function uy: [021] — RP such that
vV te [0,2r] ug(® € [ou®),B®],

one has
d (L—NO, QO) = 0,

where NO is defined as in (19) and QO= {xe Cllxll <1}.

Then the problem (11) has at least one solution.

Proof. We consider the homotopy

Lx-A Nyx - (1-K)NOX =0
which corresponds to the boundary value problem
x = AF(t,x) + (l-l)G(t,x,uO(t)),

x(0) = x(2m). (20)

For any A € [0,1], the function
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P(t,x,A) = AF(t,x) + (I-K)G(t,x,uo(t))

vérifies assumption H with the same functions G,o,3. Indeed, let us fix €
> 0. There exist Y > 0 and u(t,x) € [o(t)-€e, B(t)+ee] such that the
function

H(t,X) = F(t,X) - G(t,X,u(t,X))
verifies [H(t,x)| <. Further, we can write

Y(tx,A) = G(t,x,?»u(t,x)+(1-K)uo(t))-i- AH(t,x)
which is such that

Au(t,x) + (1-k)u0(t) e [a(t)-c e, B(t)+e €]
and
IAH(t,x)l < .
From Lemma 2, there is a constant ¢ such that, for any A and any solution

x of (20), -
xll = c.

By invariance of the degree with respect to an homotopy and excision,

one has
d(L-Nl,Ql) = d(L-NO,Ql) = d(L—NO,QO) #0,

where ,
Ql={xe Clixll  <c+1}.

Hence, there exists x € ﬁl such that Lx = le, i.e. the problem (11) has

at least one solution. |

Corollary 1. Assume :

()F satisfies assumption H ;

(ii)the triplet (G,o,B) has property P ;

(iii)for some continuous function ! [0,2x] — RP such that
Vie[02n]  ug® e [a®BW)],

the function G(t,x,uo(t)) is linear in X.

Then the problem (1) has at least one solution.
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The proof follows from the observation that property P implies L
- N() is one to one and therefore that d(L - NO, QO) # 0.

§4. THE PROPERTY P FOR SECOND ORDER SYSTEMS.

4.1. Consider the equation

x = G(t,x) 21
where the function G : [0,27] x R2— R2 satisfies Caratheodory
conditions and is positively homogeneous in X :

V(tx) € [027] x R2, ¥V A>0: G(t,Ax) = A G(t.X).

We will establish some conditions under which the only 27-
periodic solution of (21) is the trivial one. To this end, let us introduce
polar coordinates

x = (r cos 0, r sin 6).
One computes
0 = G(t,cos 6,sin 0) =

22
=cos 0 Gz(t,cos 0,sinB) - sin 6 Gl(t,cos 0,sin 6). (22)

Consider also comparison systems

x = A(t,x) and x = B(t,x),
where the functions A and B are positively homogeneous in x and such
that the functions
A(t,X) = X1A2(t,x) - X2A1(t,X), B (t,x) =X1B2(t,x) - szl(t,x)

are continuous. Introducing polar coordinates, we have respectively
6 = A(t, cos 0, sin 6), (23)
6 = B(t, cos 6, sin 6). (24)
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Proposition 1. Assume
A(t,x) < G(t,x) < B(t,x) (25)
and let © be a solution of (22), © be a minimal solution of (23) and ¢
be a maximal solution of (24), each of them defined on [0,21] and such
that 6(0) = ¢(0) = y(0). Then for any te [0,2n] one has
(1) < B(t) < W(b).

Proof : See P. Hartman [72] Theorem 4.1 p. 26. &

Corollary 2. Assume (25) holds. For any 0, € [0,27], suppose that the
functions @, minimal solution of (23) such that ¢(0) = GO, and
y,maximal solution of (24) such that y(0) = 60, are such that

[e(2m),w(2m)] N (27) Z = P.
Then equation (21) has no nontrivial 2n-periodic solution.

Suppose now that A and B are independent of t and that for any x

B(x) = X1By(x) - x5 B{(x) <0. (26)

Then we know that ¢@(t) and y(t), solutions of (23) and (24), decrease. In

this case, let t(Pand t‘!’ be the time necessary for ¢ and y to decrease of
27.

Corollary 3. Assume (25) and (26) hold and A, B are independent of
t; @ and  are defined as in Proposition 1.

If tq) > —ng% , then any 2m-periodic solution x of (21) has at

most 2(n+1) zeros in [0.2 [ and if 1> 2=

then x has less than 2(n+1)
n+l

Zeros.

If t\l’ < 2?715’ then x has at least 2n zeros and if t\lf< %—:—c- , X has

more than 2n zeros.
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4.2. In order to compute t(pand t‘lf in applications, we often have to

investigate a comparison system which is piecewise linear

. ( . ) (X1>

; X

X, -K -L 2
and corresponds to the scalar equation

x +Lx+Kx=0.
The equivalent of (23) reads then

6 =-(sin 26 + L cos O sin 6 + K cos 20), 27)
the solution of which is decreasing if
124K < 0.

Let tl(L,K) be the smallest positive time such that (27) has a

solution with
— n w——
8(0) = 5 e(tl) = 0.

One computes (see P.B. Bailey, L.F. Shampine and P.E. Waltman [16] p.
36)

2

LK) = | do L sl (28
0

sin”0+Lcos6 sinf+Kcos“0 B K-1.2/4 WK

It is easy to see also that if we define ti(L,K) (i=1,...,4) as the time
T

necessary for a solution of (27) to go from 6 =T - i 5 to
=L ;T
0 > 12,onehas

t, (LK) = t,(-L.K) = t5(L.K) = t,(-L.K).

4.3. Application 1. Considering (12), we have to investigate property P
for the functions

G(xy,u) = (y - uyx + upX_, - ugx +u 4x_),
o= (aacspar)a (29)
B = (b,d,q,s).
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We shall assume for simplicity that the functions o and B are constant.
Hence, we must prove that under appropriate conditions on o and B, the
system .

X=y- ul(t)x++ uz(t)x_

. 30
y =-ug(0x_ + uy(Ox_ (30)
has no nontrivial periodic solution if u € C and
o <u(t) < B.
Proposition 2. Assume a<b,c<d,p<q,r<sand
a%-4p<0,b%-4p<0,c?-4r<0,d?-4r<0,
and that for somen e N
T 1 -1, a 1 -1, d
< cos (- ) + cos  (—=
n+1 4q-a2 g " 4s-d2 s
1 c -1, b
cos (- —— ) + ———CO0S (-——
4s-c* \I 4q b?
1, b c
< cos cos (——
4p b2 \J 4r-c?
1 d 1 T
+ cos’ ( cos (——-—)<-— (31)
V4r-d2 PN 4p-a> 2Vp

then the triplet (G,a.,B) defined in (29) has property P.

Remark. Notice thatifa=b=c = d 0, the assumption (31) reduces to

2 _ 1 .1 1
TR o2

which is the usual condition imposing that the rectangle [p.q] x [r,s] keeps
away from the Fuéik's spectrum (see e.g. [69]).

Proof. Let u be a function such that o < u(t) < B and let (x,y) be a non
trivial solution of (30). Consider the functions
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A (xy) = y-ax +dx_;ify=0,

= y-bx++cx_,ify<0,
Az(x,y) = -qX,+SX,
B,(xy) = y-bx +cx_,ify=20,
= y-ax +dx_,ify <0,
B, (x.y) = “PX,FIX .
One easily checks that (25) and (26) hold. Next one computes from (28)
t(p = tl(—a,q) +t (d s) +t (-c ) + tl(b,q)
2 1 2 -1, d
= cos cos (—=
\ 4q-a* 2“/~ \] 4s-d° s
2 -1 2 -1, b
+ cos cos (——
Vas-c \/— 4q-b2 Wq
21
> n+1
and |
t\I’ = tl(—b,p) + tl(c,r) + tl(-d,r) + tl(a,p)
2 -1, b 2 -1, €
= cos (- ) + cos (——
\dp-b2 Wp~ arc2 Vr
2 1, d 2 -1, a
+ cos (- ) + cos (——=
4r-d? 2 4p-a2 Vp
<
n
From Corollary 3, it follows that the number N0 of zeros of x on [0,2x%[
is such that
2(n+1) > N0 >2n,
which is a contradiction. E
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Corollary 4. Assume a=b,c=d,p<q,r<sand

az-4p<0, 2 -4r<0
and that, for some ne N
11 1 L1 < 1 + 11 ,
oLy 4q—a2  4s-c* \/ 4p-a2 \/ 4r-c> 1

then the triplet (G,0,B) defined in (29) has property P.

Proposition 3. Assume a<b,c<d,p<q,r<sand
a2-4q<0, % -4s<0.

Assume further that

1 + 1 > 2.
\/ 4q—a2 \/ 4s-c?
Then the triplet (G,o.,) defined in (29) has property P.

Proof. To prove this result, one computes as in Proposition 2

i b
t.> + > 2m.
©

4q—a2 \ 4s-c?
From Proposition 1, it follows that the time necessary for 6 to decrease
of 2r is larger than t(p > 2n. Hence, we have no nontrivial periodic

solution. B

Proposition 4. Assume a=b,c=d,p<q,r<sand
a2-4q<0, 2 -4s<0.
If further

1 + 1

v 4q—a2 \ 4s-c

then the triplet (G,0,B) defined in (29) has property P.

>1,

3%

Proof. As above one computes
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21 o

t. = + > 27t,
, ¢ N /qu-a2 4s-c*
and the proof follows. &

~ The following proposition gives a necessary and sufficient
condition for the system with constant coefficients

X =Yy -ax,_+CX_

y =-DPX, +IX_

to have only the trivial solution.

Proposition 5. Assume a=b,c=d,p=q,r=s. Then the triplet
(G,0.,B) defined in (29) has property P if and only if one of the following
does not hold :

()a?-4p<0,c?-4r<0;

oy C a

(i1) 7 + \/5 0;
(i) (e +

4p—a2

1

4r-c

)'1 e N.

2

Proof. The proof follows from direct computation of the solutions (see
A. Fonda and F. Zanolin [59] Lemma 1).

4.4. Application 2. To investigate periodic solutions of (13) we
consider property P for the functions

Gx,y,u) = (¥, -ugy,+ Uyy_- uzX, +uyx_),
o = (acpa), - (33)
B = (b,d.qg,s),

and we assume as above that o and 3 are constant.

Proposition 6. Assume a<b,c<d,p<q,r<sand

a2 - 4p<0,d*-4r<0, c-4r<0,b”-4p<0.
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If further
nﬁ T < \/_4%1:5_2 cos™! (23&) + 4(11_C2 cos’! (- Ef/:q—)
+ \/:1—1:1_2 cos™ (zil/g) + \/_418_7003-1 (- Zis
< ——Z\/_Il)____—?cos'l (23[15) + 411”12 cos ! (- '2—3';'
+—Lcog! L cos! (- —b—") <t (34)

) +
v 4r-c? Nr 4r-b? Nr o
then the triplet (G,o,) defined in (33) has property P.

Remark. As for Proposition 2, we notice thatif a=b=c=d =0,
assumption (34) reduces to (32).

Proof. Letue L2 | be such that o < u(t) < B and (x,y) be a nontrivial
solution of

X =y, y =-uy(0)y,+ uy(Dy.- us®)x,+ uy(Dx..
Consider the functions

Axy) =(y, - by, +cy_-qx), if x20,
=(y, -ay, + dy - sx), if x<0,
B(x,y) = (v, - ay, +dy_- px), if x20,
=(y, - by, +cy_-x), if x<0.
The proof follows then as the proof of Proposition 2. B

Statements similar to Corollary 4, Propositions 3 and 4 are easy to
obtain. For example we can write the following.
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Proposition 7. Assume a=b=c=d, qu,' r<s,
a?-4q<0 , a’-4r<0

and
1 1

+ >
, \/ 4q—a2 \/ 4r-a%
Then the triplet (G,o,B) defined in (33) has property P.

1.

The constant coefficient case can also be investigated and need
some more care.

Proposition 8. Assumea=b,c=d,p=q,r=sand
a+c=0.
Then the triplet (G,0,B) defined in (14) has property P.

Proof. Property P refers to 2m-periodic solutions of the differential
equation

x=y,y=-(ay, -cy) - (px,-rx)). (35)
Assume a+ c <0 and let (x(t),y(t)) be such a periodic solution. We
can assume that for some t;> 0
y(0) = y(tl) =0 and Vte (O,tl), y(t) > 0.

Consider next the closed curve defined by the function

v:i002t 1 RY, t<t = v () = xO).y0)

t> t; =y () = x(2t-1),-y2t;-1)).

It 1s easy to see that this curve encloses a bounded domain I in R? which
is negatively invariant for (35). The upper part y of the boundary is the
orbit of a solution of (35). For any point v (t),
te (t,2t;) on the lower part y_one computes

Y () = (- y(2t1—t), -a y(2t1 -t) -p X+(2t1-t) +r x_(Zt1 -1))

and
GH®) = (- y(2t1-t), c y(2t1-t) -pX +(2t1-t) +T1 X_(2t1—t)).
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Since
Cy-px,+rx<-ay-px,+rx,
it follows that the vector field G points outward. The orbit of (x(t),y(t))

leaves I" at time t and cannot come back at the point (x(0),y(0)) € oT.
This contradicts the periodicity of (x,y). ||

More generally we can prove the following necessary and sufficient
condition for the constant coefficient case to have property P.

Proposition 9. Assume a=b,c=d,p=q,r=s. Then the triplet
(G,w,B) defined in (33) has property P if and only if one of the
following does not hold :

()a’-4p<0,a?-4r<0;

(i)a+c=0;
1 1 -1, a
(i) « [\@—2 cos 2\/__ \/___ (o} (——2\/?)] e IN.

The proof is by direct computation of the solutions and since it is
rather involved, we prefer to omit it.

§5. PROPERTY P FOR 3D ORDER SYSTEMS.

5.1. Consider the equation

X = v, y =z, z=- u2(t)x++ u3(t)x' -by - az (36)

or, which is equivalent,
X + aX + bX + 1,y (DX, - uy(Dx = 0 37)
together with the conditions:ae€ R, be R,

p(t) < uy(®) < @),
r(t) < u3(t) < s(t) .
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Proposition 10. Let a# 0 and assume that for some ne N
n’as<p®=r) ,  q@©)=s0 <@+,
both inequalities being strict on a subset of [0,2n] of positive measure.

Then the triplet
Gx,y,zu) = (y, z, WX+ UgX_ - by - az), (38)

a(t) = (p(v), p(v) ,
B = (q®), qv) ,
has property P.

The proof follows from Lemma 1 in O.C. Ezeilo and M.N. Nkashama
[54]. B
We can extend this result to the somewhat more general equation

X=y, y=z, z2=u)( (xlyl+lz) - uy(Ox, +uy(x_-by -az.

for which we have the following.

Corollary 5. If the triplet (G,o.,B) with G defined as in (38) and

a(t) = (p(M.r(®) , B) = (qt),s(1)),
has property P, there exists €y > 0 such that the triplet
é(x,y,z,u) = (y, z, ul(lxl+lyl+lzl) - U,X, +UgX_ - by - az),
a(t) = (- £g:p(®).1(D) ,

B = (epa®ys)
has property P.

Proof. It is clear that the triplet

A o ~
G, a(®) = 0.p®,r®), B(t) = (0,9(1),5())
has property P. The proof follows then from Lemma 1. &
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5.2. Proposition 11. Ler u>0,v >0, p 20 and define
m = min(u.v), M = max(uv), by = p( 2512

Assume m > p and one of the following conditions holds :
(i) a<0;

(i) a>M + bO ;

(i) b>1 —bO ;

(iv) m > ab + by, (a + [b+by) ;

(v) M <ab - b (a++/b+by) .

Then the triplet
G&x,y,z,u) = (y, z, -UpX, + UgX_ - by - az) ,

o= (UW-p, v-p),
B = (u+p, v+p)
has property P.

Proof. Let us suppose that x is a nontrivial 2x-periodic solution of (37)
and let

£(6) = (-u, (1) x,(8) - (v-u () x_(0),
Equation (37) reads

X + ak+bx +px, -vx_ = (). (39)
Multiplying (39) by x and integrating gives
2 o2
m lellL2 - HfHL2 llxllL2 < alleL2 .

We notice further that IIfll 5 S plixll ,, from which follows
L L
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0 < (m-p) ||xufsau£d|52 40y

i.e.
a>0.
This contradicts (i). -

Multiplying (39) by x and integrating, one gets

Ix 12 -bix 2 T<nfl 0xl ,<plixil , Il
L2 12 L2 12 L2 1.2

and from (40)
lllxllz-bllxlI2|< a 72001 =bn>'<||2
L2 L2 p( ) L 07" 2
i.e.

(b - bO)lIXII2 <nxn2 <(b+b0)llfcllz'2. 41

In particular, by Wirtinger inequality,
1<b+b,,

which contradicts (iii).

Multiplying (39) by x and integrating, one gets
c 2 . . ) .
m | X"L2 | fIIL2 Il x "L2 <alx ||L2 <Mlx “L2 + |l f||L2 Il x ||L2 . (42)

From (40) and Wirtinger inequality we have
as<M+ bo ,

contradicting (ii).
From (42), (41) and (40), it follows

[m - by(b+by) 2] IIxI|2 <anx||2 5 <a (btby) Ikl 2,
L

and
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m - by(b+by) % < a (b+by)

~which contradicts (iv).
Similarly, it follows from (42), (41) and (40) that
a(b-by) Il % |l L22 <all ¥ nL22 < [M +by(b+b) 2] 1% ufz

and
a(b-by) <M +by(b+by)2,

which contradicts (v). |

5.3. Let us consider the constant coefficients case
X + ax +bx +px, -vx =0, (43)
with (,v) € R? . We define a subset U(a,b) of R as follows.

1) If a=0 or b<1,set
U(a,b) = {(K,v) : p.v >0}

2) If a#0,b>1 and ne N is such thatb e [n2,n+1)2 [, set
U(a,b) = {(n,v) I u.v>0, (1L - ab)(v - ab) > 0} U
U (V) 1,y e Jan?, a@+1)? [}

Proposition 12. Assume (U,v) € U(a,b). Then the triplet

G&,y,zw) =(y, z, -uyx + UsX_- by - az)

o) = (1,v)
BO = w.v)
has property P.

Proof. It is a consequence of Propositions 10 and 11, together with a

symmetric formulation of Proposition 11 for the case p < 0,
v < 0. :
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Remark. Proposition 12 gives sufficient conditions for a third order
system with constant coefficients to have only the trivial solution. In case
W =v,itis well known (see [54]) that a necessary and sufficient condition
for property P to hold is

w#0andV ne N*[b#n?oru # an?].
One can check that such an assumption is equivalent to

(1, u) € Ua,b).

Hence, Proposition 12 generalizes the linear case. Necessary and
sufficient condition in the general case | # v seem to be unknown.

§6. EXISTENCE OF PERIODIC SOLUTIONS IN APPLICATIONS.

6.1. Consider the boundary value problem
x =y - f(t,x),
y =e(®) - g(tx) , (44)
x(0) = x(2m), y(0) = y(Zn).

Theorem 2. Assume

(i) the functions f, g and e are continuous and defined for
te [02n],x € R ;
(11) assumption Al holds ;
(1i1)the triplet
G(x,yu) = (y - WX, + UK, - UgX + u4x_),
a(t) = (a(t), c(t), p(), r(t)),
B = (b(), d(v), q(®), s(®)),
has property P ;
(iv) there exists some constant u° € R* such that
am < u <B).
Then the problem (44) has at least one solution.
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Proof. We will apply Theorem 1. From paragraph 2.2 it is clear that
assumption H holds.

Next we can fmd a path ot = (u?‘ 72‘, A 7‘) in ﬂ?4

A e [0,1], that links u” to a point u! such that
1 1 .1 1

Up =ty Uy =1y

and for any A e 10,17, '
A A
112 ul

A A
\ Uy )

Hence, from Proposition 3, the differential equations

# 0.

izy-u}l‘x +u;‘ :
. A 17, 4
y=~u;‘ x++u21‘x_ < 0.1 (45)

have no nontrivial 2n-periodic solutions. As for A = 1, (44) reduces to a
linear system, it follows that for QO {xe C: lell <1} and N defined
in (19),

d (L - NO’ QO) # 0.

The proof follows now from Theorem 1. ||

Conditions for (iii) to hold are given in Proposition 2, 3, 4 and in
Corollary 4. Other methods can be used as in P. Habets and G. Metzen
[69]. Theorem 2 generalizes among others results from [69] and A. Fonda
and F. Zanolin [59].

6.2. In our second application we consider the boundary value problem

X=y, y=e)-gtx) - f(ty),

x(0) = x(2m), y(0) = y(2). (46)
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Theorem 3. Assume :
(Dthe functions f,g and e are continuous and defined for
te [02r],x € R,y e [R;
(i1) assumption Al holds :
(iii) the triplet '
Gx,yu) = (y, - Wy, + U,y - X +u,x),
alt) = (a), c(®), p(t), (1) ,
B® = (b, d(®), q(t), s))
has property P ;
(iv) there exists some constant wPe R4 such that
a(t) < u¥< Bb).
Then the problem (46) has at least one solution.

Il

The proof is identical to the proof of Theorem 2 but uses
Proposition 8 instead of Proposition 5. Conditions ensuring (iii) are
given in Propositions 6 and 7.

6.3. Consider the third order problem
X +ax+ bx+ g(tx) = e(t,x,fc ,ii) ,

x(0) = x(2m), x(0) = x(21), X(0) = X (27). 47
Theorem 4. Assume :
(1) the functions g(t,x) and e(t,x,y,z) are continuous functions defined for
te [02r],x e R,ye R,ze R;
(i1) assumption A3 holds ;
(i1i)the triplet
G(x,y,zu) = (y, z, - UyX,, + UsX_ - by - az),
a(t) = (p(v), 1(t)) ,
B(® = (q(v), s(t)

has property P ;
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(iv)there exists some constant u° e U(a,b), where U(a,b) is defined as in
5.3, such that ' ‘
o(t) < u® < Bb).
Then there exists €y> 0 such thar if Ag < €y, the problem (47) has
a solution.

The proof of this theorem goes as the proof of Theorem 2. One
has only to notice that from Corollary 5, there exists €y > 0 such that the

triplet
A ,
G(x,y,z,u) = (y, z, u(lxl + Iyl + Iz]) - UyXy, +UsX_ - by -az),

at) = (- g4, p(t), 1(D),

A
M = (gy q®), s(t)
has property P.
Assumption (iii) can be obtained from Propositions 10 and 11.

Theorem 4 generalizes then a result of O.C. Ezeilo and M.N. Nkashama
[54].

6.4. Let us remark that in Theorems 2 and 3, assumption (iv) can be
replaced by :
(V') there exists some functions

w0 = @ ©,v? ®, v ©, ud ©)
such that
o) < u’@® < B).
In this case, the proof uses Corollary 1 instead of Theorem 1.

A similar statement holds for Theorem 4.
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Chapter 2

PERIODIC SOLUTIONS OF NONLINEAR DIFFERENTIAL
EQUATIONS WITH DOUBLE RESONANCE.

1. INTRODUCTION
Consider the nonlinear periodic boundary value problem

x"+gtx)=0 (1)
x(0) - x(T) =x'(0) - x'(T) = 0 2)

where g:[0,T]x R — R satisfies Carathéodory conditions and grows at
most linearly. More precisely, letting I = [0,T], we assume the existence
of two functions a,b € L=(I) such that

a(t) < lim inf &;’9- < lim sup &;Q <b(), 3)

xl— oo %|— oo

uniformly for a.e. t € I. We will suppose that a(t) < b(t) on a subset of I
of positive measure. The following property will be imposed on a,b :

(A) Taken any function p € L= such that at) <p() <b(t) a.e.
on 1, the inequalities being strict on sets of positive measure,
the problem

X"+pt)x=0 4)
x(0) - x(T) = x'(0) - x'(T) = 0 (2)

has only the trivial solution.
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If the trivial solution is also the only solution of (4) (2) for p=a and for
p = b, the problem (1)(2) can be called nonresonant. Such problems have
been extensively studied : let us mention, among many others, the works
of Lasota and Opial [79] (where a property analogous to (A) does already
appear), Mawhin and Ward [108], Mawhin [99], Habets and Metzen [69].

In this paper, we are interested mainly in the case where the
problem (4)(2) has nontrivial solutions for p =aand for p = b ; this will
be called a double resonance situation. This occurs, for instance, when,
for some n € N, we have a(t) = n*(2/T)? and b(t) = (n+1)% (21/T)2.
For such problems, we will assume that a pair of so-called "Landesman-
Lazer conditions" is satisfied. Such conditions, introduced by Landesman
and Lazer [78], appear in many studies of resonance problems : see, for
instance, the papers of Brézis and Nirenberg [25], de Figueiredo [407],
Tannacci and Nkashama [73] and references therein. However, these
papers always consider situations in which (4)(2) is admitted to have
nontrivial solutions for p = a or for p = b, but not for both. For different
type of conditions, we refer to Ding [42] and Omari and Zanolin [120].

The proofs of our results are based on coincidence degree
arguments (see Mawhin [98] for the basic theory). The paper is organized
as follows : in section 2, we associate to the functions a, b a positive semi-
definite quadratic form which will play a major role in the proof of our
main result. In section 3, preliminary lemmas are presented, which will
be useful to produce a priori estimates for components of the solutions of
(1)(2). The main theorem is then proved is section 4, whereas section 5 is
devoted to the more specific case when 0 is the first eigenvalue of the
operator L : x — —x" - a()x. Finally, in section 6, we describe the
resonant case to the left of the first eigenvalue.
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2. PROPERTY (A) AND POSITIVE DEFINITENESS OF A
QUADRATIC FORM.

To the functions a,b appearing in (3), we associate the linear
operators L , Lb : Dom L, =Dom L, < LZ(I) — L2(I) defined by

Dom L, = Dom L, = {x € H3(I) | x verifies (2)} ,

Lax =-x"-a()x,

be =-x"-b()x,
where HZ(I) ={x:I- R Ix and x' are absolutely continuous on I and x"
e LD)).

It is well known (see, for instance, Eastham [47] ) that La, Lb are self-

adjoint operators with discrete spectrum whose eigenvalues, denoted
respectively by o, and B; , are such that

Oy <0y S0y <0, <06<... and o, > coas n — oo,
B, <[32$B3<[34S]35<... and B —o0as n—oeo,
any double eigenvalue appearing twice. Moreover, a comparison

argument shows that '
Bi <o for 1=1,2,..

Using the spectra of L, and L, , we will relate property (A) to the

positive semi-definiteness of a quadratic form, defined on the space

Hr = (x € H'O 1x(0) = x(T)},
where
H'(D) = {x : TR | xis absolutely continuous on T and x' e L2(D).

Proposition 1. The following conditions are equivalent
(i) the functions a,b satisfy property (A);

(ii) either 3, 20 or, for some 0 > 1, one has 0-<0< BH+1 ;
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(iii) the space L2(I) can be decomposed into a direct sum H ® HY, where
either ’ '

| H =(0), H'=L*D,
in which case, for any x € H}r \ Ker L, , we have

[x?-bx%) >0
I

or, for some n =1,

H=@,

+
i=1,..0 Ker(La - och), H =.

sien KerLy -B D), 5)

in which case, for any x =X +X e HL, with X e H',X € H*, we have
B, ,(x) i= jI (X2 - bx?) - jI (X' - ax3) >0, (6)

the inequality being strict when x ¢ Ker La1 @ Ker Ly

Proof : a) (i) = (ii) Suppose (ii) is not true. Let n be the largest integer
such that B _< 0. Then, B,.; =0 and a > 0. Defining

P, (®) = (1-M)a(t) + Ab(t) and using the continuity of the eigenvalues with

respect to A, we conclude that there exists = 10,1[ such that the nth
eigenvalue of LPX (defined as L . and Lb) is equal to 0. This contradicts

®.
b) (i) = (iii). In case B; 2 0, take H™ = {0}, H = L(I). Then, for
any x € (H,lr M H2(I))\ Ker L, , one has

jl(x'2 - bx?) = (Lyx, x)L2 > o lxll 52

for some ¢ > 0. Since HZ(I) is dense in Hl(I) , it follows that, for any
X € H}r \ Ker L, .

[ x? - bx%) 2 o Ixl 52> 0. ()
1 |
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In case O <0< Bﬁ+1 ,take H, H  as in (5). Since the dimension of H™ is

finite and equal to the codimension of H*, we will have LZ(I) =H ®H"
if we can prove that H ~ H* = {0} (see Lazer [81]).
Take x € H m HT ; we then have

2 _ 2 2
o xll %, 2 (Lyx, %) 5= jI (x'* - ax®) =

> [(x?-b) = Lx 0 2B nxui2 ®)
I

If x # 0, it then follows that o~ = B = 0 and also that
(Lax, X) = (be, x)=0.

On H', the quadratic form (Lax, x) vanishes only if x € Ker La ; similarly

n +1

on H N HZ(I), the quadratic form (be, x) vanishes only if x € Ker Lb ;
since x € H N H*, we conclude that x € Ker L,NKerL,.
But, it is easy to show that Ker La N Ker Lb = {0}, because a(t) < b(t) on

a subset of positive measure. Hence, we have proved that
H™ N H* = {0}, from which follows that L2(I) = H" ® H* . Moreover, if

Xe H,lr N HZ(I) is decomposed into x =x + X withxe H,Xe H", we

have

B, (0 = (X, %) - (LX, %) > BE+1"£“52 - o I "52 ,
and
B, ,() 20 uxnf2 ©)

for some & >0, unless X € Ker Lb and x € Ker L,. By a density

argument, (9) still holds for any x e Hl ,unless X € Ker Lb and X €
Ker La .

c) (ili) = (). Take p as in property (A) and let x be a solution of

(4)(2). Multiplying (4) par (x - X) and integrating over I, one gets
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0= [JIx?-X%+p&-5H) ] 2B, (),
I

the last inequality being strict unless x = 0 (the functions x and X cannot
vanish simultaneously on a set of positive measure if x is a nontrivial
solution of (4)). Condition (iii) then implies that x = 0. E

3. A PRIORI ESTIMATES.

The main result of this paper is prepared by the lemmas given
below. One of the purposes of this section is to provide a priori estimates

for components of any solution to (1)(2). We want to distinguish between
the component in Ker L, the component in Ker L, and a complementary

component. Therefore, we introduce the subspace H* such that L2(I) =
KerL @ KerL @® H* and for x € L2 @), we will write x = x? + x° +

X* w1th x? e Ker La, xP e KerLb, x* e H*,

Lemma 1. Assume that a.b satisfy property (A). Then there exists a &
> 0 such that , for every x € Hy

B, ,(0) 2 8 ¥l 2y (10)
Proof. Notice first that B (x) = (x*) Hence, if (10) does not hold,
there exists a sequence (x ) in H* such that lIx Jl ;=1and B b(x ) =0

forn — eo. Taking a subsequence we can suppose that ) converges
weakly to some x in H M H*. Then, using the decomp031t10n X, = X +

x of Proposition 1, we assert that (x ) converges strongly to X in H! (I)
since all norms are equivalent on a finite dimensional space, and (x )
converges uniformly to X, since Cy(D is compactly imbedded in H! D.
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Consequently,

J G- [ 02+ @)2-axd) for nooe (11)
I I

and, by the weak lower semi-continuity of the ~L2-norm, we obtain B p(X)
< 0. By Proposition 1, this implies that B, (%) =0 and that

x € Ker La @ Ker Lb' As we also have x € H*, we conclude that
x = 0 and, from (11), that j (i;l)z — 0 forn — oco. This, combined with

the uniform convergence ofI(in) and the strong convergence in Hl(I) of
(in), shows that Hxnll 1= Oasn — oo, contradicting the fact that
H .

llxnllH1 = 1. |

The next lemma shows that, if Ker La = {0} (resp. Ker Lb = {0})
property (A) is stable with respect to small perturbations of
a (resp. b).

Lemma 2. Let the functions a,b satisfy property (A). If Ker La = {0},

there exists € > 0 such that the functions a - €, b still satisfy property (A).
Symmetrically, if Ker Lb= {0}, there is an € > 0 such that the functions

a, b+ € satisfy (A).

Proof. By Proposition 1, condition (ii) holds. If Ker L, = {0}, we have
either o, >0or o~ < 0< BE+1‘ If o, > 0, then Bl = 0 by (ii) in

Proposition 1. Hence, property (A) holds for any functions a,b with 2 <

<0< Bff+1’ we deduce from (9) that Ba-e b(X) 2 0, for any
e < lo n—l the inequality being strict, except when
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x € Ker L, ® Ker L,. The conclusion then results again from

Proposition 1. , B

In the sequel, it will be useful to decompose the function gin (1) as
the sum of a "pseudo-linear”" function and a bounded function. For this
purpose, we introduce the following hypothesis :

(H) If Ker La # {0}, there exists a function H e L2(I) such that,

for every x e R, ‘
sgn x [g(t,x) - a()x 1= - H(t) (12)

If Ker Lb # {0}, there exists a function K e L2(I) such that,

for every xe R,
sgn x [b(t)x - g(t,x) 1 > - K(v). (13)

Lemma 3. Let the Carathéodory function g verify (3), hypothesis (H)
and be such that, for all R > 0, there exists hR € L2(I) such that

lg(t,X)I < hy (1) for Ixl < R. (14)
Assume that the functions a,b satisfy property (A). Then, there exist

functions a,b e L™(), with a(t) < a(t), b(t) < b(t) a.e. on I, a,b still
satisfying (A),(H) and we can write

a(t,x) = xy(t,x) + h(t,x) (15)
where

a(t) < y(t,x) < b(t) (16)

forae.te I,all xe R, and h(,.) is a function satisfying Carathéodory
conditions and such that
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h(t,x)l < hoo) an
for ae.te I, where ﬁ € L2(I).

Proof. By (3) and (14), given € > 0, we can find R > 0 such that, for x >
0, '

g(t,x) = (a-e)x - hR(t) - la-el R;
a similar inequality holding for x < 0. By lemma 2, if Ker L, = {0},
chosing € > 0 small enough, the functions a-£,b satisfy property (A). In

this case, we take a = a - € ; we notice that (12) holds with a replaced by a
and H replaced by hp. ‘

If Ker L, # {0}, we take a = a. The function b is defined in a similar

way. The functions a,b satisfy property (A) and we can now use, in all
cases, the inequalities (12),(13) if we replace therein a by a,bbyb. We
introduce the function § : R> — R defined by

minfu,v} if x < min{u,v}
8(ux,v) = ymax{u,v} if x > max{u,v}

X otherwise.

Let us then define y(t,x) and h(t,x) by

.)1;5(5@))(, g(t,x), B(t)x) for x = 0
Y(t,x) = ' ’

a(t) for x =0

h(t,x) = g(t,x) - x Y(t,x) ;

the function +(t,.) need not be continuous at 0, but the function
X = xy(t,x) will be (for a.e. t € 1) ; so will be the function h(t,.).

50




Double resonance

It is clear from the definition of y(t,x) that (16) holds. On the other hand,

(17) will result from (12) (13) (a,b having been replaced by a,b) with h
(t) = max {IH(t)l, K(t)]}. B

In the sequel, we can assume, without loss of generality, that a = a,
b=b. Using Lemma3, we can obtain an estimate of the component in H*

of any solution of (1)(2).

Lemma 4. Assume that g,a,b satisfy the hypotheses of Lemma 3. Then,
there exists a constant C1 > 0 such that, for every solution x of (1) (2),

we have

ux*né*1 <Cp il (18)

L
X* being the component of x in H*.

Proof. We decompose g as in (15) ; multiplying (1) by (x - X), where X,
X are as in Proposition 1, and integrating, we get

0= [ L&Y - &2+ &-Ptx) + & - Hh(e0)]
I

= B,y + [[R2((t0) - a(®) + K2(b(0) - y(t.x))+(X - Oh(t,x)].
I

By the remark preceding this lemma, we can assume, without loss of
generality, that a(t) < Y(t,x) < b(t) . Hence, by Lemma 1 and inequality
(17), we have

0> 8 Ix*i2
H

A
- Cixli , fthi 2

1 L2 L
for some constant C . The conclusion then follows immediately.

Consider, as in Lemma 1, the decomposition
LZ(I) = Ker La ® Ker Lb © H* ; as above, forx LZ(I), we write
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x = x® + x° +x*. The next lemma will be useful to estimate x° (or x?)

when x is a solution of (1)(2).

Lemma 5. Ler ab satisfy property (A) and (s,) be a sequence in
LZ(I) converging weakly to a, and such thar a(t) < sn(t) <b(t) a.e. on L
Let x_ be a solution of

X +s (0x_ +h(tx)=0, (19)
x,(0) X (T) =x_(0) - x_ (T) =0, @

where his a Caratheodory function satisfying (17). Then, there exist
constants C,, C3 such that, for any ne N,

b,2
Ix I < C2 lenllLz + C3. (20)

Remark. Any norm can be used for x?l, since Ker Lb is finite

dimensional.

Proof. As in Lemma 4, we multiply (19) by (in - in) and integrate,

which yields
0= Ba,b(xn) + { [irzl (s‘n(t) -a(t)) + iﬁ (b(t) - sn(t)) + (in - in) h(t,xn)]dt.
Since Ba b(xn) >0and sn(t) > a(t) a.e. on I, it follows that

A
5 Il 5

L

J %2 (b - s (©)dt < Cix_i
I L

for some constant C. Isolating the component of in in Ker L., we obtain
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fI (Xg)z(b(t) -5 ()dt < C uxnuL‘2 nﬁuL2 +

b

2 b, ~ b
At 2Ixnl Ixn—xnl]

+1Ib-al _ J[Ixn—x
L g

A
<C Hxnll 5 I 5+ b - al

b2 b
P+ 21xP
L2 L L 2 n

~ b
nl" L2 Ix - %1 (21)

[IX -x
oot L2

We claim that there exists 1 > O such that, for n sufficiently large, we
have

[ &%) - s, 0)dt 2 m 1xP12 (22)
I

Indeed, if this would not be the case, we could find a subsequence, which
will still be denoted by (xn), such that

b
J (ng)z (b() - s (1)dt - 0 asn — oo, (23)
1 Xy

Since Ker Lb is finite dimensional, we can assume, without loss of
generality, that xﬁ/llxgll converges uniformly towards a non-zero function
y € Ker Lb' By (23), it follows that

[ v?® @) - at)dt =0,
I

Since a(t) < b(t) on a subset of positive measure, we conclude that y
vanishes on such a subset. But since y belongs to Ker Ly, this would

imply y = 0, leading to a contradiction. Consequently, we deduce from
(21) and (22) that, for n sufficiently large,

b2 A = b,2 b ~ b
nix 1" < CllxnllLz llhllLz + 1b - alILoo [ X - x| L+ 2 ”Xn”LZ X - Xn"LZ ].
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b

a 1s a compoﬁent of X:, the result follows from Lemma 4 and

Since in -X

easy computations. [ |

A result similar to Lemma 5 can of course be proven when the
sequence (sn) converges weakly to b, with a(t) < sn(t) < b(t)

a.e. on I. In that case, we obtain a relation of the form

a 2 1 1
lx nll < C2"Xn"L2 + C3.

4. THE MAIN RESULT.

As explained above, we want to prove the existence of solutions for
the problem (1)(2) in particular when a double resonance does occur, i.e.
when the problem (4)(2) has non trivial solutions for p=aandforp=h.
For that purpose, we introduce the following "Landesman-Lazer
conditions".

(LL) For every ue Ker L, \ {0},

0< J lim inf [g(t,x) - a(t)x Ju(t)dt + j lim sup [g(t,x) - a(t)x Ju(t)dt
X—>+oo u<) X-—>—oo

u>0

For everyve KerL, \ {0},
0< f lim inf [b(t)x - g(t,x) Jv(t)dt + J lim sup [b(t)x - g(t,x) Jv(t)dt.
v<) X——oo

v>0 X—>too

Theorem 1. Ler the function g verify (3), hypothesis (H) and the
Landerman-Lazer condition (LL). Moreover, assume that, for all
R > 0, there exists hR € L2(I) such that
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Ig(t,x)I < hR(t) for KXISR.

Assume that the functions a,b satisfy property (A). Then, problem
(1)(2) has at least one solution.

Proof. By classical afgurnents from the theory of the coincidence
topological degree (see Mawhin [98]), the result will be proven if we can
find an a priori bound for the solutions of the problems

x" + Ap®)x + (1I-A)g(t,x) =0 (24)
x(0) -x(T) =x'0) -x'(T) =0 (2)

where A € ] 0,1 [ and p(t) = (a(t) + b(t))/2 (notice that, with this
definition of p, the problem (4)(2) has only the trivial solution, by
property (A)).

As the function

g, (t) = Ap(®x +(1-V)g(t.x)

verifies the same hypotheses as the function g, with the same functions
a,b 1n the inequalities corresponding to (3), the estimate (18) of Lemma 4
will hold for the solutions of (24)(2), with a constant C1 independent of A.

By contradiction, suppose that there exists sequences x,); (Xn),
with IIx_II | — oo, such that X, is a solution of (24)(2) with A = A o Set

u =x /ix Il ,;u_ then satisfies the equation

H h(t,x_)
ut + A, p@®) + (1A )YEx )l u_ + (1)) n

TR (25)
n Hl

where we have used the decomposition (15). It is easily shown that the
sequence (un) is bounded in HZ(I) ; therefore, passing to a subsequence,

we can assume that (u_) converges weakly in HZ(I) and strongly in CI(I)

to a certain map u. Moreover, letting

s, =A p® + (LA )y(tx (D),
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we can suppose that (s,) converges weakly in L2(I) to some function s

and, by the weak closure of the set {c e L2(I) ra(t) £o(t) < b(t) ae. on
I}, we have that a(t) < s(t) < b(t) a.e. on L Hence, passing to the weak
limit in (25), we obtain
u"+s(t)u=0
u) - w(T) =u'0) -u'(T) =0

and, by property (A), we conclude that either s = a,s=b,oru=0. But
this last possibility is excluded since lul ;=1andu 4 converges strongly
to u in CI(I). So, we must have either s = a and Ker La #{Olors=b
and Ker Lb # {0} ; let us consider the first case, the other one being
treated in a similar way. Multiplying (25) by v, = xi/uxnll ; and

H
integrating we get, using the fact that vy = - a(t)vn,

Ay | 0® -a@)u v di+
I

h(t,x )
+ A [ [(rex)- a@) u v, + —-0
I

Ix i
n

v 1dt=0. (26)

gl

Since s, converges weakly to a, we can apply Lemma 5 ; by the estimate

(20) of Lemma 5 and the estimate (18) of Lemma 4, it is easy to show that
vV, —> uasn — oo and, consequently,

lim [ (p(®) - a®)u, v dt= [ (p(o) - a@)? d.
= I

So, for n large enough, the first term of the sum in (26) is positive and,
therefore, we have the inequality

h(t,xn) -
[ovex) - a@yu_v_di+ v, 1de <0,
I n'yl
which implies
lim sup jI (g(tx,) - a()x Jv_dt<0 @27)

We want to apply Fatou's Lemma ; for that purpose, we need to find a
function y e LI(I) such that
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(g(t,xn(f)) -a()x (1) v () 2 y(t) ae.on L

This function will be obtained in two steps. First, since (v,) is uniformly
bounded and since h satisfies (17), there exists a function Y € LI(I) such
that ,

h(t,xn(t))vn(t) 2v,(t) ae. onlL (28)

Secondly, using the relations
2
2x x82-(x - xY =-x” +xg)22-2[(x:)2+(x3)2]
and the fact that y(t,xn(t)) = a(t) a.e. on I, we obtain

1 *\2 by2
(V(Ex,(0) - 20)x, () v, () = - — -1, ©) - ) [ )P+ D
n
H
Using the estimates of Lemmas 4 and 35, it is then an easy matter to find a

function vy, € L}(I) such that

IIx

(y(t,xn(t)) - a(t))xn(t)vn(t) 27,(t) ae.onl (29)

Combining (28) and (29), we can now apply Fatou's Lemma to the
integral in (27). The sequence (x ) converges pointwise to + oo on the set

{t € I: u(t) > 0}, while it converges to - o on the set
{te I:u(t)<0}. The application of Fatou's Lemma gives

[ liminf[g(tx ) - a®x_Ju@dt +

i
>0 N—>+oo

u<

+ | lim sup [g(t.x,) - a(dx, Ju(dr < 0,

contradicting the first of the two Landesman-Lazer conditions in (LL). =
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5. RESONANCE AT THE FIRST TWO EIGENVALUES.

When o, =0, the first part of condition (LL) can be replaced by a
different hypothesis, using the fact that Ker L, is of dimension 1 and
consists of functions of constant sign.

T heorem 2. Assume that 0(1, the first eigenvalue of L, is 0. Let Ker

= {k¢ : k € R}, where @ is a positive function. Let z‘he function g
verzfy the same hypotheses as in Theorem 1, except that the first part of
condition (LL) is replaced by the following assumption : there exist
functions h*,h” e L*(T) and a number d> 0 such that

g(t,x) - a(x = h™(t) forx>d, ae.te I (30)
g(t,x) - a(tHh)x < h'(t) forx<-d, ae.tel (31)
[ it o de > 0, (32)
I
| B®e®at < 0. (33)
1 .

Then, problem (1)(2) has at least one solution.

Proof. The proof begins as the proof of Theorem 1. Deflmng u ands_

in the same way, it is shown that (u ) converges strongly in c! @D to some
u e Ker La U Ker L and that (s n) converges weakly in LZ(I) to some
function s. If a(t) < s(t) on a subset of positive measure, the proof is
unchanged with respect to that of Theorem 1. The only case that needs to
be treated here is the case where s = a. In that case, multiply (25) by

Ix I ;u and integrate over I. Since u"(t) = - a(t)u, this yields
H

Ay [ @O - a)x Oumdt + (12 ) | [g(tx,) - a®)x_Ju(®dt = 0 . (34)
I I

Since Ker La \ {0} consists of functions of constant sign, let us assume,
for instance, that u(t) > 0, V t € I, the other case being treated in a similar
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way. We ‘then have, for n sufficiently large, un(t) > (0 and Xn(t) >d,Vte
I. Consequently, using (30), (32), we have, for n sufficiently large,

J Tettx) - a®x Ju@®dt 2 [ h¥(Hude > 0.

I I

On the other hand, since p(t) > a(t) on a subset of positive measure, we
have 4

1i_r>n f (@) - a(®)u_(Hu(ndt = _[ (P - a(t))uz(t)dt > 0.
n—=ee I

Hence, the first term of the sum in (34) is positive for n large, while the
second is non negative, leading to a contradiction. &

Remarks.

1.Ifh*(t) = - e(t) + I', h'(t) = - e(t) + v, the conditions (30), (31) become
gtx)-at)x +et) =T forx >d,ae.te I,
g(tx) -a(t)x +e(t) <y forx<-d,ae. te I

and (32)(33) write
Y s,—},— f e()o(t) <T.
I

In the particular case where a(t) = 0, this corresponds to a result of
Mawhin and Ward [109], Ker L N consisting then of constant functions.

2. When y=T = 0, the above assumptions become

x[gtx)-a)x +et)]=20 forixi>d, ae.te I, (35)
| eoadt = 0. (36)
I
Similar conditions have been proposed by Iannacci, Nkashama and Ward
[75] for elliptic problems. Notice that this situation also covers the linear
resonant case, when g(t,x) = a(t)x - e(t).
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3. A counterexample of Iannacci and Nkashama [73] shows that conditions

(35)(36) are not sufficient to guarantee the existence of solutions when 0
is an eigenvalue of L, other than the first one.

4. Conditions (30)(31) could be replaced by conditions of integral type :
there exist functions k* k™ e 12 (I) and a number d > 0 such that
x [g(t,x) - a()x] = k™ (1) forx>d, ae.tel
X [g(t,x) - a(t)x] = k() forx <-d,ae. te ]
| x*madt >0
I .

| x®dt > o.
I

6. RESONANCE TO THE LEFT OF THE FIRST EIGENVALUE.

For the sake of completeness, we consider in this section a case of

one-sided resonance, assuming only the existence of a function b e L™(D)
such that
hm.gﬁ—l<ba) 37)

[x|—ec0
uniformly for a.e. t € L

Let us introduce the following assumption, which is the analogous,
in the setting of the above one-sided condition (37), of property (A).

(A") Taken any function p € L™(I) such that p(t) < b(t), a.e. on
L, the inequality being strict on a set of positive measure, the
problem

x"+pt)x=0
x(0) - x(T) =x'(0) - x'(T) =0
has only the trivial solution.

Notice that g is no longer required to grow at most linearly. As in
Proposition 1 and Lemma 1, one can prove :
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Proposition 2. The following conditions are equivalent :
(i) the function b satisfy property (A') ;
(ii) [312 0,
(iii) for any x € Hr} , one has

B, (x) = jI x2-bx%) >0,

the inequality being strict when x ¢ Ker L.

Lemma 6. Assume thatb satisfies property (A"). Let H* be such that
L2(I) = Ker Lb © H*. Then there exists a &> 0 such that, for every x =

xP 4+ x* e HIT, with x° e Ker Lb’ x* € H* one has

B, (x) > 8 llx*llél. (38)

We will also assume that the second part of condition (H) holds.
For convenience, we rewrite it under the following form :

(H") If Ker Lb # {0}, there exist functions kK, k e LZ(I) and a
number d 2 0 such that
b)x - g(tx) 2k*(t) forx>d, ae. te I, (39)
b(t)x - gt,x) <k (1) forx <-d,ae.te L (40)

A slight modification of the proof of Lemma 3 gives the following
(see [40,Lemma 2]).

Lemma 7. Let the Carathéodory function g verify (37), hypothesis
(H') and be such that, for all R > 0, there exists
hR € L2(I) such that

lg(t,x)I<hg(t) for xI< R,
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Assume that the function b satisfies property (A"). Then, there exists b

e L™, with b(t) <B(t) ae. on 1,5 stll satisfying (A", (H') and we
can write

g(t,x) = x Y(t,x) + h(t,x)
where

Y(t.x) < b(t)
forae. te Lallxe R, and h(,) is a Junction satisfying Carathéodory
conditions and such that

h(t,x)l < h(t)
for a.e.t e 1, where ﬁ € L2(I).

We are now able to prove the analogous of Theorems 1 and 2.

Theorem 3. Let the function g verify (37), hypotheses (H") and the
Landesman-Lazer condition

(LL") For every y e Ker L \ {0} such that y(t) >0 a.e. on 1,
{13{@_&&) [b(Dx - g(t,x)]w(t)dt < 0 < J;légirgof [b(Dx - gt x)]w(t)dt.

Moreover, assume that, for all R > 0, there exists hR € L2(I) such that
lg(t,x)l < hR(t) for IxI < R,

If b satisfies property (A"), then problem (1) (2) has at least one solution.

Theorem 4. Assume that [31, the first eigenvalue of Lb’ is 0. Let Ker
Lb ={ky:ke R), where v isa positive function. Let the function g

verify the same hypotheses as in Theorem 3, except that the condition
(LL") is replaced by
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[ x® yimdi<o< | '@ q}(t)dt. 41)
I I

Then, problem (1) (2) has at least one solution.

Proofs. The proofs start in the same way as in the one of Theorem 1,
with the only differences that one choses p(t) =b(t) - 1 and, by Lemma 6,

where we assume without loss of generality that b= b,
Y(t.x) < b(t)
forallxe R, ae.t e L.
Once we arrive at (25), multiplying by (- u_) and integrating one

has
h(t,x ) .
I 1l n’
n Hl
which converges to zero as n — o. This implies, by (38), that

1 . : e :
u: B o. Passing to a subsequence, Ker L, being finite dimensional, we

| @l-sud= [ @-a)
I I

1
can assume ug — u e Ker L., and hence u, BEuzo. Multiplying (25)
by Ix I ;u and integrating, by the choice of p, one obtains
H
Ay ] x,@u@de+ -2 [ eox, - g(tx Nu()dt = 0 (42)
I I

Since u € Ker Ly, \ {0} and Bl is the first eigenvalue, u has constant sign.

Let us suppose u(t) < 0 a.e. in I, the other case being treated similarly.
By the strong converge u q > U, we have that, for n sufficiently large,

xn(t) <-dforae.te I. By assumption (H'), a contradiction is obtained

from (42) and (41), proving Theorem 4. On the other hand, from (42)
one has

lim sup [ (b(®)x, - g(tx Hu(d)d < 0. (43)
=

By assumption (H'"), the Fatou's Lemma can be applied to (43), and this
leads to a contradiction with (LL"), thus proving Theorem 3.
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Chapter 3

QUADRATIC FORMS, WEIGHTED EIGENFUNCTIONS
AND BOUNDARY VALUE PROBLEMS FOR NONLINEAR
SECOND ORDER ORDINARY DIFFERENTIAL
EQUATIONS

1. INTRODUCTION

This paper is devoted to the study of various auxiliary tools
employed when dealing with boundary value problems associated to
second order differential equations of the form

x"+f(tx)=0. (1)

Many existence conditions for (1) deal with the relation
between the asymptotic behavior of the nonlinearity f and the spectrum
of the differential operator. In particular, Mawhin and Ward (cf. [99,
108,109]) have introduced and used some quadratic forms associated to
the eigenvalues and eigenfunctions of - x". They were able to treat in this
way many cases where f(t,x)/x stays asymptotically between two
consecutive eigenvalues or to the left of the spectrum.

On the other hand, Lasota and Opial [79] introduced a method
of study of some boundary value problems for (1) which gives the
existence of solutions in particular when f(t,x)/x behaves asymptotically
as a function p(t) such that the equation

x'(t) + p(Ox(t) = 0, @)

with the corresponding boundary conditions, has only the trivial solution.
This approach was recently extended by Habets and Metzen [69] to the
case of a jumping nonlinearity. '
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It is natural to study the relations between the two approaches.
The aim of this paper is to provide a complete comparison as well as
some abstract theorems generalizing the above mentioned results.

Section 2 emphasizes the fact that many known existence
results for some boundary value problems associated to (1) when f(t,x)/x
stays asymptotically at the left of the spectrum of - x" or between two
consecutive eigenvalues still hold when we only assume that some
quadratic forms, naturally associated to the asymptotic behavior of
f(t,x)/x , are positive definite. This observation, combined with
topological or variational approaches, provides some general existence
theorems.

In section 3 we prove the equivalence of the approach based on
the quadratic forms and the one based on the above property of the
associated linear problem (2), in the case of the Dirichlet or the Neumann
conditions. This is done in a straightforward way by using the weighted
regular Sturm-Liouville theory as developed in [15,52,53]. The extension
of this linear theory to the periodic case would make possible to prove the
analogous of Theorems 5 and 6 under periodic boundary conditions.

2. EXISTENCE RESULTS BY THE USE OF QUADRATIC FORMS

We consider the following second order differential equation:

x"+f(t,x)=0

where f:IxR - R (I=[0T] isa Caratheodory function, i.e. f(.,x)
is measurable for every x € R and f(t,.) is continuous for almost every
t € I. Moreover, we assume the following condition.
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(C) For every R>0 thereisa kg € L) such thar

I£(t,%)! < kg(t)

Jor all IxI <R and almost every te.

Associated to equation (1) we consider one of the following
boundary conditions:

the Dirichlet conditions:
x(0)=x(T)=0 ;
the Neumann conditions:
xX0)=x(T)=0 ;
the periodic conditions:

x(0) - x(T) =x'(0) -x(T) =0 .

We will look for Cl-functions x with absolutely continuous
derivatives (i.e. x e W2.I(I)) verifying (1) almost everywhere and one

of the above boundary conditions. Such a function x will be called a
solution of the considered boundary value problem.

Accordin% to which of the boundary conditions is considered,
we will denote by Hx and W, the following sets:

Dirichlet problem:

Hi = {x e HI(T) | x(0) = x(T) = 0} ,
W = {x e W21(I) | x(0) = x(T) = 0} ;
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Neumann problem:

Hi = HI(T)
Wi ={xe W2 I x'(0) =x(T) =0} ;

periodic problem:

Hi = {x e HI(D) | x(0) = x(T)} ,
Wi = {x e W2I(I) | x(0) - x(T) = x'(0) - x'(T) = 0};

Our first existence result is the following generalization of a
result in [99].

Theorem 1. Letr b e L1() be such that

(A1) for every € >0 there exist Bg,ye € LI(I) such
that
f(t,x)x < (b(t) + €)x2 + Be(t) IxI + gg(t) ;

(B1) for any x € Hi\ {0} one has J’I((X')2 -bx2)>0

Then (1) has a solution in W .

To prove Theorem 1 we need the following lemma, which is
essentially proved in [99].

Lemma 1. Condition (B1) is equivalent to

(B2) there exists € >0 such that for any x € Hi one has

fI ((x")2 - bx2) > & ||x||71 .
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Proof. It is clear that (B2) implies (B1). If (B2) is false, we can find a
sequence (X,) in Hi such that Xpllyt =1 and II((x'n)2 -bx,2)— 0.
Taking a subsequence we can assume x,; — x in HI(I) . Then (xp)

converges uniformly, and the weak lower semicontinuity of the L2-norm
of x', implies J{((x')2 -bx2)<0.By (B1), x =0, and the above
implies ||xp||qt = O, which is impossible.

Proof of Theorem 1. Let us define the following operators.
dom(L) = Wi
L :dom(L)- LY , x - x" ,
N:CO-LYD , x- (., x()).

It is well known (cf.[62,98]) that N is L - completely continuous, and
the result will be proved if we find an a priori bound for the solutions in
W of the equations

"+ MEx)+ (1 -M)b(Hx =0 3)

for every N € [0,1[ . To this aim, fix € < & , multiply (3) by (- x)
and integrate, to obtain

0 =1 ()2 - Mtx)x - (4 - Mb(D)x2
> .fI(X')2 - Ab®) +e)x2+ Be®Ixl + ye)] - (1 - N)b(t)x2
> (& -e)|xllg - C HBellLxlut - llrellLt -

The a priori bound follows.

X
Let us define the function F by F(t,x) = ff(t,s) ds . Then
0

we have a result which is the analogue of Theorem 1 and extends
Theorem 1.1 of [104]. '
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Theorem 2. Ler b e LK) be such that

(A2) for every € >0 there exist Bg,¥e € L1 such
that
2F(t,x) < (b(t) + ) x2 + Bg(t) Ixl + y(b)

and suppose (B1) holds. Then (1) has a solution in W.

Proof. We consider the functional associated to our problem, defined on

b

p(x) = 1 [x'(©)? - 2Rex(®)] dt . )

One can easily see that p is weakly lower semicontinuous. Moreover, fix
€ < € .ByLemma 1,

p() 2 J1 (%72 - [(b@®) + £)x2 + B Ol + 7o (D]}
> (e - &)lIx/If1 - cllBellL x|t - lwellt .

Hence p is coercive, and then it has a minimum, giving the solution we
are looking for.

Remarks. 1) Theorems 1 and 2 can be extended in a straightforward
way to the vector case. In Theorem 1 the products have to be replaced by
scalar products in R and for Theorem 2 the system must be supposed to

be in variational form, i.e. f=D,F for some F:Ix R0 > [R .

2) Using the hypothesis (C) it is easy to show that assumption
(Al) is verified if, for some b € L1(]), the following holds uniformly for

almost every tel:
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limsupjy| - o f(t,x)/x < b(t).

Analogously assumption (A2) is verified if, uniformly for almost every
tel,

limsupy) - o 2F(t,x)/x2 < b(t) .

3) Sufficient conditions for (B1) to hold can be found in
[65,99].

We will now introduce a condition (B3) which generalizes
(B1) and prove analogous existence results.

We begin with the following lemma, which is an immediate
consequence of condition (C) .

Proposition 1. Assume a,b € L10) are such that

(A3) a(t) < liminfiy| - o f(t,X)/x < limsupyy o f(6x)/x < b(t)

Then the following holds:

(Ad)for every € > 0 there exist gehg :IxR - R, fg e
L(T) such that

f(t,x) = gg(t,x)x + he(t,x)
a(t) - € < ge(t,x) <b@®) + &
lhe(t,x)| <Rg(t) .

The following theorem is a generalization of a result in [99].
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Theorem 3. Let ab e L1() satisfy (A4) and

(B3) L2() =H- © H*, where H- is finite dimensional and
contained in HL, and for every x =% + X € HL \ {0},

with X € H- and X € HY | one has

Bap(® = (X2 -b%2) - Ji(x2 - a5 >o0.

Then (1) has a solution in W.

To prove Theorem 3 we need the following lemma, which is
essentially proved in [99].

Lemma 2. If (B3) holds, then there exists & >0 such that, for every
X € Hi,
(B4) Bup(x) 2 & [Ix|ff1 -

Proof. If the conclusion is false, one can find a sequence (Xxp) in Hl
such that ||x,||yt1 =1 and Ba(xn) = 0. Taking a subsequence, we can
suppose x, — x in HI(I). Then X, - X in H(I) , all norms being
equivalent in a finite dimensional space, and then also X, = X uniformly.
So,

Jiziz > [yox2 + )2 - ax2)
and by the weak lower semicontinuity of the L2 -norm of X'y we get

Bap(x) <0 . Then, by (B3), x =0. It then follows from the above that
[IXnllyt = O, which is a contradiction. '
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Proof of Theorem 3. Fix ¢ <E. By the arguments in the proof of
Theorem 1, the proof will be complete if we find an a priori bound for
the solutions of (3) in Wy for every X € [0,1] . Multiplying by (X - X)

and integrating we get

0= J.I X240 ge (LX) (X2 - X2)+ Nhg(t,x)(X - X) + (1-N)b(1)(X2 - X2)]

2 fx [(X)2 - (X')2 + (a(t) - €)%X2 - (b(t) + €)X2 + Ahg(t,x)(X - X)]

2 (8 - &) IIXIIf1 - cllfgllL1lIxllnT

and the a priori bound follows.

A similar result can be obtained by a variational method if
assumption (A4) is replaced by an analogous one concerning the primitive
of f. In this case we have to consider the functional p defined as in (3),

whose critical points are precisely the solutions of the boundary value
problem associated to (1). Let us recall the definition of the Palais - Smale
condition.

Deflnltlon The functional p satisfies (PS) if any sequence (x,) in
Hi such that p(x,) is bounded and p'(x,) - O has a convergent

subsequence.

Proposition 2. Assume ab e LI(I) are such that
(AS) a(t) < liminfyy,,., 2F(t,x)/x2 < limsup .. 2F(t,x)/x2 < b(t)

Then the following holds:
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(A6) for every £¢>0 there exist Gg Hg:1 x R - R, #
LY(I) such that

2F(t,x) = Gg(t,x)x2 + Hg (t,x)
a(t) - e < Gg(t,x) < b(t) + ¢
[He(t,x)] < 7(t) .

Theorem 4. Ler abe LI(I) satisfy (B3) and (A6). If moreover the
functional p satisfies (PS), then (1) has a solution in W.

Proof. Take in (A6) e=¢/2,with £ as in Lemma 2. If X e H- , one
has, by (A6) and (B4),

p(%) L [(K'(1))2 - Gg(LR(1)R2 -He(LR(Y)] dt

< i 192 - (any - %]+ 1L
=-Bg b( ) + 8H><||L2+C
- @2) IRl + C

where C = ||7]|_1 . Analogously, if X e H+, one proves that
o - <2
p(x) 2 (&/2) [IX]l1 - C
The above implies that we are in the geometrical setting of the Saddle

Point Theorem of Rabinowitz (cf. [129]), and since p satisfies (PS), the
result follows.

Remark. Conditions which imply (B3) are given in [55, 65, 68, 99,
108,109].
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3. A COERCIVE QUADRATIC FORM FOR SOME CLASSES OF
NONCOERCIVE LINEAR PROBLEMS

In this section we will restrict ourself to Dirichlet or Neumann
boundary conditions.

Theorem 5. Given be LI(I), the following assertions are equivalent:
(1) assumption (B1) holds;
(ii) for each p e LY(I) such that p(t) < b(t) for almost every
te I, the equation

x"+pt)x =0 )

has only the trivial solution in Wy;
(iii) for every A <0 the equation

x"+ B +1)x=0 (6)

has only the trivial solution in Wi.

Proof. To show that (i) implies (ii) , take p asin (ii) and let x bea
solution of (5) in Wy . Multiply (5) by (- x) and integrate, to obtain

0 = Ji(x)2 - px2) 2 [i((x)2 - bx2)

It then follows from (B1) that x =0 .
It is clear that (ii) implies (iii). Let us then show that (iii)
implies (i). By the theory of linear second order differential operators

(see [15, 52, 53]), the eigenvalues of (6) with Dirichlet or Neumann
boundary conditions form a sequence A < A, < ... which tends to + oo ,

and the corresponding eigenfunctions ¢ , ¢, ... are an orthonormal base
of L2(I). Hence, given any x e Hl we can write
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“ x(t) = 2321 Ci oi(t)
and

Ji@2 - ox2) = 2oy c2fr(on
= Dis1 OF KJIq)i

= 7\.1_[[)(2 .
By (ii1), A4 > 0, and (B1) follows.

2_b¢2

An analogous result holds when (B3) is considered. Given
a,b e L1(I) as in (B3), we can suppose without restriction that a(t) < b(t)

for almost every t e I. In fact, by Lemma 2, if a,b verify condition
(B3), this is also true for a-¢€/4,b +¢&/4

Theorem 6 . Given abe L1(I) such that a(t) < b(t) for almost every
te I, the following assertions are equivalent

() assumption (B3) holds;
(j) taken pe L1(I) such thar a(t) < p(t) < b(t) for almost
every te I, the equation

x"+p)x =0 @)
has only the trivial solution in Wy ;

(3j) for every pe [0,1], the problem

X"+ [(1 - pa®) +pb®]x=0

(8)
has only the trivial solution in W

Proof. Assume (B3) holds. Multiplying (7) by (X-X) and integrating,
one has
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0 =1 ()2 (®)2+ p(R2 - %2) = B, o(x) .

Hence x =0, so that (j) implies (jj).
It is clear that (jj) implies (jjj). Let us show that (jjj) implies
(j). Notice that (7) can be written as

x"+ax+ub-ax=0. 9)

The theory developed in [15, 52, 53] can be applied: the eigenvalues of
(9) with Dirichlet or Neumann boundary conditions form a sequence
< Hg < ... which tends to + oo . The corresponding eigenfunctions v , v
, ... are an orthonormal base in the space LZ ,(I) of measurable

functions u such that

Jib®) - a®) u@2 dt <+ oo ,

with scalar product given by

(ulv) = [ - a®) u(®) v(o) dt .

Hence, for i#j, one has

Ji - a) wiy; =0
and, as one can easily check,
JI (vi' ' -ayjy;) =.[I (vi'yj' -bwjy;)=0. (10)

Given x e Hi , we can write x(t) = Zm civi(t) . By (jij), there are no
eigenvalues p, in the interval [0,1] . So, either Ly > 1, or there exists
an=21 suchthat ;<0< 1< .If py>1, define

~={0} and H*+*=1¢Z_(I) . Then, by (10) one has:
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B.o®) = Ji((x)2 - bx2)
= Yt o2l w2 - by
=Y a2 (- D) G - a) v
> (- 1) [0 - 2) %)

and (B3) follows. On the other hand, if p,<0<1<p,,,set H = span

{wi, .., vy} and H* = span { y,,1, V.2, ... } . With analogous
calculations, one has

Ji@2 - 32) 2 oy - 1) [ - a7 2)
[i@)2 - ax2) <, i@ - 2)%2)

and (B3) follows in this case, as well.
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Chapter 4

SEMICOERCIVE VARIATIONAL PROBLEMS AT
RESONANCE :
AN ABSTRACT APPROACH

1. INTRODUCTION

This paper is concerned with the existence of solutions to elliptic
boundary value problems at resonance with the first eigenvalue. We
consider the Dirichlet problem

-Au-Au+gxu)=0 in Q
u=0 on JdQ,

(P)

where Q is a bounded open subset of RY, and A, the first eigenvalue of
(-A) on H(l)(Q). The Caratheodory function g: Q xR — R is supposed
to satisfy the usual growth condition

lg(x,u)l < aluld! + b(x)

where q <o if N=2,q<2*=2N/(N-2) if N>3,and where b(x)
e LI(Q) , with q the Holder conjugate exponent of q;if N=1, it
suffices to assume that for any r> 0,

sup lg(x,u)l € LI(Q) .

lul £r

Under this condition, the associated functional

fw) = 2o V2 - 402 + [ Gxu(x)) dx |
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u

where G(x,u) = f g(x,s) ds , is a weakly lower semicontinuous C!
0

functional on H-1 whose critical points are the weak solutions of (P). It
follows that if f is coercive (i.e. f(u) = + oo as llull = oo in H1 ), then

f has a minimum and consequently (P) has a solution. We are mainly

interested in this paper in the conditions which guarantee the coercivity of
f.

The functional f(u) can be written as the sum of a quadratic term
a() = 5] g [IVul? - A lul?]

coming from the linear part of the equation, and a term

b(u) = j oGx,u(x)) dx

coming from the nonlinear part. Denoting by H the space spanned by the
first (positive) eigenfunction ¢, of (-A) on H(l) , We see that a necessary

condition for f to be coercive on H(l) is that f be coercive on H , i.e

that b be coercive on H . A condition of this type was first considered
by Ahmad, Lazer and Paul [2] in a slightly different situation. One can ask
whether this condition is also sufficient for the coercivity of f, or at least
for the existence of a solution to (P). The answer to this question is
negative, as is shown by the following

Example 1. Consider the one - dimensional problem
u" +u=sxu+h(x) on ]0,x[

u(0) =0 =u(m) .

Q)

The associated functional is
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fw) = [ [5@)?- 5 - s60) u? + h(x)u] .
0

The coefficient s(x) in (Q) is defined as follows: first choose C> 0 in
such a way that the graphs of the two functions

uy(x) = C(e?* - e2) |, u,(x) = - sin(2x)
be tangent one to the other at a certain point X € ] -275,75 [ ; then take

5 if xe [0,x]
s(x) =

-3 ifxe[X,m].
It follows that the corresponding homogeneous problem

u" +u=sx)u
u(0) = 0 = u(mw)

has a nontrivial solution given by

u(x) if x e [0,x]
up(x) =

u,(x) if x e [x,7] .

T
This implies that if _[huo # 0 then problem (Q) has no solution. For
0

such h's the functional f can not be coercive; actually it is easily seen
directly that f is not coercive on the line Rug . Nevertheless, f is

coercive on H . Indeed
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(r sinx) = (1%/2) [s(x) sin®x dx + 1 [h(x) sinx dx
0 0

and since
1 X T
[s(0) sin?x dx = [5sin®x dx + [- 3 sin2x dx >0 ,
0 0 -

X

one has f(r sinx) = 4+ o as Irl — oo .

In order to try to understand what can go wrong with the coercivity
of f when b is coercive on H , let us write the orthogonal

decomposition H(l) = H® H , where H is generated by the higher

eigenfunctions of (- A) on H} , and for every ue H: ,let u=1 + 3 ,

with ute H, U e H . Taking Fourier's expansions, it is easily seen that

the functional a is coercive on H ; more precisely, there exists & > 0
such that

a(u) > § T2

for every u e H(l) . One reason why this semi - coercivity of a on H(l)

together with a coercivity assumlption of b on H do not necessarily
imply the coercivity of f on Hy is that b may decrease too rapidly

outside H . This phenomenon is apparent in the above example where one
has b(ruy) — - o with speed 2 as Il — oo (since b(ruy) = - a(rug) +

T
T J’huO ).
0
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This suggests to try to impose some control on the decreasing speed
of b outside H . One can also reinforce the coercivity of b on H and

look for a compromise with the decreasing speed of b outside H . These
ideas are the content of condition (iii) of our abstract theorem in section
2. A particular case of this theorem deals with the situation where b is
Lipschitz continuous (see Remark 2). We provide in this way an abstract
explanation for the use in [104] of a boundedness assumption on the
nonlinearity g(x,u). This particular case can also be used to recover a
theorem of Mawhin [105] relative to the situation where b is convex (see
Corollary 1).

Beginning with Hammerstein [71], several papers have been
concerned with the study of problem (P) under conditions on the
asymptotic behaviour of the quotient 2G(x,u)/u2 . In [110], Mawhin,
Ward and Willem proved an existence result by assuming

liminfy, . 2G(x,u)/u? >0 1

fora.e. x € Q, the inequality being strict on a set of positive measure. In
[41], de Figueiredo and Gossez considered the case in which equality holds
in (1) fora.e. x € Q and proposed a so called density condition in order
to obtain existence. Conditions on the quotient G(x,u)/lulP for 1 <p<2
were also considered by Anane in [11] (see also[12]).

In section 3, we show how these results can all be recovered and
sometimes improved or generalized by using our abstract theorem. The
present approach in addition provides a new insight to the role of some
assumptions in the above mentioned results; this is particularly apparent
for the linear growth restriction imposed in [41] on the nonlinearity
g(x,u) .We also consider the limiting situation where p = 0 in the
quotient G(x,u)/lulP , in which case the functional may not be coercive.
Our result here is related to some recent work of Ramos and Sanchez
[131] and provides an improvement of a theorem of Berger (cf. [21],
[104]).
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We finally observe that most of our results can be adapted to
systems of differential equations or to other types of boundary conditions
like the Neumann conditions, or, for ODE's, the periodic conditions.

3

2. AN ABSTRACT THEOREM

In this section we study the coercivity of functionals of the form f
=a+ Db, where a is semicoercive with respect to a subspace and b is
coercive on a complementary subspace.

Theorem 1. Let H be a normed space, H = H® ﬁ, and for any u e H,

write u=U+ U ,with i0e H,Ue H.Let ab:H — R be two
functionals satisfying the following properties:

(1)  there exists & >0 such that
a(u) = & T2
for every ue H;

(ii)  liminf lh(‘ﬁ% >0;

lull—eo 1l

A A
(ili) there exist a functional b: H— R ,b<b, and B=1
such that

N N
Ibu) - b(w)l < Iu - wil [Adlall + lwil)B-1 + B 0

for every u,w € H , and either
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A
b(u)
1m = 3)
lall—seo  I1EI12B-1) (
ue H
or
b

lidll—eo  [1alIB
ue H

Then the functional f=a+Db is coercive on H .

Remark 1. When 1< < 2, property (ii) is a consequence of (2);
moreover one has 2(Bf - 1)< B and so (3) is a less restrictive
requirement than (4). On the contrary when B > 2, (4) becomes less

restrictive than (3). If ‘?) is differentiable, it is easily seen that (2) is
N
equivalent to the following growth condition on b' :

N .
Ib'@ll < A'lluliB-1 4+ B, (2

Remark 2. In the case B =1, condition (iii) becomes:
“sw . A A A . .
(1i1)' there exists b: H— R such that b<bon H,b is coercive

on H and Lipschitz continuous on H .

Proof of Theorem 1. Assume by contradiction that there exists a
sequence (u,) in H and a real constant C such that Il - o and

f(u,) < C for every n. Then, by (i),
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G 12 bu,) C
o & 5+ nz < T,
T I R TN

which by (ii) implies that Iia_|I/ llu I = O. As a consequence

liminf I Il /o Il >0 , (5)
and, in particular, G Il — .
Assume that (3) holds. By (iii),
~ 2 A N N
f(u,) 2 6 I I+ b(u,) - b(m,) + b(u,)
~ ~ - A - K
> § I I - I, [ACh !+ 13, DB + BY + b(a,)

~ ~ ~ o A2 _ A
> 8 IIT I - BIG I - g- T 1% - S gl 15 2P 4+ b )
> 11,2 - B G, 1] +

o by a2 (el
I IPB-D 28 g

+ 1)2B-D] g I2B-D | (6)

which by (5) and (3) goes to + o as n — o, in contradiction with our
assumption.

Assume now that (4) holds. By (iii),

bu) b@) NI I, I
m—— Bls - —+ —
i 1B B g i | i

which goes to 0, by (5). Consequently, by (4),
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A
b(u,) s
I 1P

liminf 0,

. - e A . .
which implies b(u,) — + e and so also f(u,) — + oo, a contradiction.

The theorem is thus proved.

Remark 3. When [ =1, condition (i) of Theorem 1 can be weakened to
the following:

(1)"  there exists o :R, — R , bounded below, with ot) = + oo
as t — + oo, such that

a(u) = oIl Il
for every ue H.

Indeed assume by contradiction that there exist a sequence (u,) in H
and a constant C such that llupll = o and f(u,) < C for every n.

Then

(Il 1) 11l B(un) g C
o(Tugh) Tunll + or(lugll) Mugll = a(ion ) Toall -

A - . . . ° .
Since b is Lipschitz continuous, this implies

(Il Il iyl
a(llug Tugll — Y - (7)

It is not restrictive to assume o increasing and concave (cf. [66]). As a
consequence, llupll — oo . Indeed, if this is not true, there exists a
subsequence, still denoted (up) , such that Hﬁnll is bounded. Then
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.. gl
liminf T, =1 (8)
and so, for n large enough,
1
oy . oGl
liminf () > liminf ——_———oc(llunll) >0 )

since a(2t) <K ot) fora certain K >0 and all t sufficiently large. A
contradiction with (7) then follows from (8) and (9). Now, if £ is the

Lipschitz constant of ‘t/; , one has
~ — A A A
f(up) = o(lapDIpll + buy) - b(y) + b(ag)
> [o(llFall) - £] IEqll + D(iy)

A
Since the first term in the above sum is bounded below and b(up) — + oo,
we have that f(up) — + oo, a contradiction.

We deduce from Theorem 1 with B =1 (actually from Remark 3)
the following result which contains a theorem of Mawhin [105] obtained
by convex analysis methods.

Corollary 1. Letr H be as in Theorem 1, a:H — R a functional

A
satisfying property (1)' and suppose thar b : H — R satisfies b>b , with

A —
b:H — R a convex and continuous functional which is coercive on H .
Then f=a+Db iscoercive on H.
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: A
AN
Proof. By Remark 3, it suffices to show that there exists b: H — [P
A A A . - . .
with b< b on H, b coercive on H and Lipschitz continuous on H .

o /\ ° - . - ° . -
Since b is convex continuous and coercive on H , it is easily seen that
there exist constants C; and C, such that

B(@) > C,lill - C,

- - . A
for every e H . Moreover, adding a constant to b , we can always

assume C,=0.Forevery ue H , define a linear functional Ly on the
one - dimensional space Ru as follows: L,(tu) = C; tllall . By the Hahn -

A
Banach theorem and the continuity of b , Lﬁ can be extended on the
whole space H into a continuous linear functional L such that L'y(w)

< ‘/t\>(w) for every w € H. Define

A
b(w) = sup L'5(w) .
ieH
A A A ; — A
Clearly b<b on H ; moreover, b®d) > Cillull on H, and so b is

AN
- AN
coercive on H . It remains to see that b is Lipschitz continuous on H .

The continuity of l/; implies that the linear functionals L'l-1 ,ue ﬁ ,
remain bounded, say HL'il <M .Given vywe H and €>0,take 1 e
AN
- AN
H such that b(v) - € < L'-(v) . Adding and substracting L's(w) and
AN

A
letting € — 0, one gets g(v) —'g(w) < M llv - wll , which yields the
conclusion.
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Remark 4. If

Ib(u) - b(w)l < C

for some constant C and all u e H then the coercivity requirement on
b in the above results is equivalent to an analogous requirement on b .

3. APPLICATIONS TO PROBLEM (P)

As an immediate consequence of Remark 2, Corollary 1 and
Remark 4, we have the following result (which could also be deduced
from the arguments in [104]).

Theorem 2. Assume that

lim . oG, 10,(x)) dx =+ oo . (10)

A
If moreover there exists a Caratheodory function G(x,u) which is either
convex in u or Lipschitzian in u with a Lipschitz constant independent
of x,and which satisfies

IGxu) - Gou)l < o(x)

for some function c(x) e LI(Q) , then problem (P) has a solution.

Theorem 2 is an application of Theorem 1 with the choice B=1.
The following result deals with a case where Be[1,2].
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Theorem 3. Let 0 <p <2 and c(x) e L=(Q) be such that
liminf | ,_,_ G(x,0) / P > c(x) an

uniformly for a.e. xe Q.If
[ e oyx)P dx >0 , (12)

then problem (P) has a solution.

Proof. Fix € >0 as follows:
e < g e 01007 ax (Jg 0160P dx ) 1.
There exists k, € Ll(Q) such that
G(x,u) 2 (c(x) - &)ulP - ky(x) .
Suppose first 1 <p < 2. Set in this case
A
B(w) = J g [(c(x) - €) E)P - k()] dx .
Then
N -1
Bl < g le(x) - €l p E)P1veol dx
< Clic(.) - ell, TalP-Livil |

for a certain C>0 and every v e H(l) , so that llg'(u)ll < A Pl
with A = C llc(.) - €ll., . This implies (2) with B =p, as was observed in
Remark 1. Moreover

B(roy) = P [(c(x) - €) ()P dx - lcgll; 1 .
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By the choice 6f e, lim l/;(rq)l) /1rl® > 0, and consequently (4) is

verified. So Theorem 1 with  =p implies the result in this case.

Suppose now 0 <p <1 . Define é(x,u) as follows:

(c(x) - &) lulP - lc(x) - €l - ko(x) if lul>1

A

Gx,u) =
(c(x) - €) - le(x) - €l - ke(x) if <1 .

Then é is a Caratheodory function, which is Lipschitz continuous in u ,
A
with a Lipschitz constant independent of x . Moreover, G < G , and
A A
defining b(u) = J oGx,u(x)) dx , one has

Bop) 2 [, [(€) - £) Ird (P - 2 lo(x) - el - ke(x)] dx

2 1P ] o (c(x) - €) 01 (x)P dx - 2 lle(.) - ell, 1 - Ikl 1 .

S0, B(roy) — +ee as Il > e , and the conclusion follows from
Theorem 1 with B=1.

A result analogous to Theorem 3 for 1 < p < 2 was obtained in
[11, 12]. The case p =0 will be considered at the end of this section.

As can be seen from Example 1 given in the Introduction, Theorem
3 is not true when p =2 . In this case one has to reinforce condition (12).
This is done in the following theorem. (The fact that the condition on
c(x) below implies (12) with p =2 follows easily from the variational
characterization of the first eigenvalue of an elliptic operator.)
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Theorem 4. Let c(x) be such that
liminf |, 2G(x,u) / u2 > c(x) (13)
uniformly for ae. x & Q, with ce LN?(Q) if N>3,ce LYQ) for

some r>1 if N=2,ce LI(Q) if N=1. Suppose that the first
eigenvalue of the operator Lu = - Au - Au+c(u, withw Dirichlet

boundary conditions, is positive. Then problem (P) has a solution.

Proof. Let p; be the first eigenvalue of L . Problem (P) can then be

written as

- Lu + pyu =m(xu) ,

where m(x,u) = g(x,u) + (q - c(x))u . Denoting by M the primitive of

m with respect to u, we have

liminf |, 2M(x,u) / u? > p,
uniformly for a.é. xe Q.So,thereisa ke LI(Q) such that

M(x,u) > (uy/Hu? - k(x) . (14)
Let us now decompose H(l) according to the eigenfunctions of L (instead

of those of - A) . We set H to be the space spanned by the first
eigenfunction of L and we define

a = L[Luw)y 2 - wylul ],

bw) = Jo Mxu(x)) dx .
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The result then follows from Corollary 1 since, by (14), b is minorized

by a convex continuous functional which is coercive on H .
As a consequence of Theorem 4, we have the following

Corollary 2. (Mawhin, Ward and Willem [110]). Let c e L=(Q) be
such that (13) holds uniformly for a.e. x € Q.If ¢(x) 20 for ae. x
€ Q , with strict inequality on a set of positive measure, then problem
(P) has a solution.

Proof. Let L be the operator defined in Theorem 4 and let Ky and yy

be the first eigenvalue and the corresponding normalized eigenfunction of
L . By the variational characterization of the first eigenvalue of an elliptic
operator and Poincaré's inequality, we have:

1y =l 1V 2 - O - iy ] > [ IV, P -0 by 21 20

Hence we are in the situation of Theorem 4.

The following example, which is a variation of Example 1, shows
that a function c(x) may satisfy the assumption of Theorem 4 without
being nonnegative a.e.. Theorem 4 applies to problem (P) with g(x,u) =
c(x)u + h(x) , while Corollary 2 does not.
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Example 2. Choose C > 0 such that the graphs of the two functions

1 (0 =C (B e By u ) =-sin (V5 (x - m)

be tangent one to the other at a certain point x € [0,] . We define

5 if xe [0,x[
c(x) =

-3 if xe [x,n].

Then the first eigenvalue of the operator Lu = - u" - u + c¢(x)u on

H(l)(o,ﬂ:) is 1 and the corresponding (positive) eigenfunction is

u(x) if xe [0,x]
ug(x) =

u,(x) if x € [x,7] .

We will now apply Theorem 1 with 3 possibly greater than 2 to
a situation where c(x) in (13) may be identically equal to zero. Let us
first recall the following

Definition 1. Let E be a measurable subset of R and v e [0,1] . We
say that E has a positive Vv -density at + oo if

fiminf m{(E N [vr,1])
o Tm (e T
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where my is the Lebesgue measure on R.An analogous definition can

be given at - oo .

The following two theorems provide some improvement to results

in [41].

Theorem 5. Assume that there exist B >1,with B<2*% if N>3,
A
and a Caratheodory function /g\ : QX R — R such that, if Gx,u) =

u
J /g\(x,s) ds , one has é <G and
0

(a)

(b)

(©)

JAN
G(x,u)

e 20

liminf
Jul—eo

uniformly for a.e. x € Q, where ¢ =min {f3, 2} ;

there exist a constant A and a function B(X) € LI(Q)
such that

18(x,u)l < APl + B(x) (15)

for a.e. xe Q andall ue R (here q' is the Holder

conjugate exponent of the exponent q considered in the
introduction; if N=1,then q = 1);

there exists a full subset Q' C Q and M >0 such that the
set

A
E.= M {ue R:Gxu 2 ulP
n XEQ,{ (x,u) 2 nhlP}

has a positive 0 - density at both + oo and - .
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Then problem (P) has a solution.

Theorem 6. The result of Theorem 6 remains true if condition (c) is
replaced by the following:

(¢c') there exist W, ,®_ open subsets of € and corresponding
Jull subsets ®,'C o, and ' < ©_ with the following
property: for every v € [0,1[ there exists M >0 such that
the set

JAY
Ef= N fue R : G(x,u) = nulf}

xe,'
has a positive v - density at + o , and the set

E. = M {ueRk :é(x,u) ZnIuIB}

n xe o'

has a positive v - density at - oo .

The proofs of these two theorems are based, as in [41], on the
following lemma.

Lemma 1. (cf. [41]) Let Q be an open subset of RN with finite
Lebesgue measure my(€2) . There exists a constant ¢ >0 such that

m; (B)N
2N

my(u1(B)) > c

for any nonconstant Lipschitz continuous function u , with Lipschitz

constant R(u) , which vanishes on 0Q and any Borelian set B in the
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range of u . The same inequality holds for functions w which do not
necessarily vanish on 0Q when Q is an open parallelepiped.

Proof of Theorem 5. We will apply Theorem 1 with [3 as above.
A A
Condition (ii) follows from (a). Set b(u) = _[ oG x,u(x)) dx . From (15)

one can easily deduce (2) (see Remark 1). In order to prove (4), suppose
by contradiction that there exists a sequence (r,) such that Ir | — oo

and

. A

lim IrB [ Gxr0,()) dx 0. (16)
Taking a subsequence if necessary, we have either r, — + e or r, —

- oo . Let us consider the first case (the second case is treated similarly).
By assumption (c), there exists a positive number 7y such that, for n
sufficiently large,

my (Ey n [0, 1y max ¢4]) 2vyr, max ¢; .

Setting u=r,0; and B=E; N [0, r, max ¢¢] , we have u-l(B) n Q' C
(xe Q: é(x, r,01(x)) 21 rnB ¢1(X)B} := F, , and consequently, by
Lemma 1,

Y1, maxq>1 )N

L =k>0

mp(F) 2 ¢ (

for n sufficiently large, where L 1is the Lipschitz constant of ¢; . Now,
by (16),

G(x.r,0,(x)
r,P 6,(x)B

Gx,ry0,())
n rnB ¢1(X)B

tim ( J; 0,0 dx + JQ\FH 0,08 dx ) <o,
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and consequently, by Fatou's Lemma together with (a) and the definition
of F,,

n liminf [p ¢1(0P dx <0 .

This leads to a contradiction since my(F,) 2k forevery n.

Proof of Theorem 6. The proof goes as that of Theorem 5, except for
showing that there exists k > 0 for which my(F,) 2k for every n .

Assuming without loss of generality that ®_ is an open parallelepiped
and setting u =r1,0{,B =E" N [r, inf 01, 1, supd;] , we get here from
n W, (O

Lemma 1 and Definition 1 with v=inf ¢; /sup ¢,
o, o

<4 .
v rn(syp 0 -1l 0q)
T ) =k>0

my(Fp) 2 ¢ ( T,

for a certain positive constant y" and n sufficiently large.

Theorems 5 and 6 exhibit some kind of compromise between the
growth condition on the nonlinearity and the density condition. This goes
in the line of the main idea behind our abstract Theorem 1. The linear
growth restriction on the nonlinearity imposed in [41] can be partially
relaxed in this way, as illustrated by the following

Example 3. Take [ as in Theorem 5 with in addition 1 < f < 2* and
define

G(xu) = ulP (1 - sin log(1 + lul)) + h(x) u
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where, say, h(xV) e L=(Q). Direct computation shows that Theorem 5
applies (with (A} = Q).

To conclude, we show that Theorem 3 still holds when p = 0. In
this case the functional f need not be coercive.

Theorem 7. Assume that there exists an integrable function c(x) such
that

liminf |, ., G(x,u) 2c¢(x) (17)

uniformly for a.e. x € £2, and

IQ c(x)dx>0 .

Then problem (P) has a solution.

While this paper was being completed, we learned of a slightly
more general result by Ramos and Sanchez [131]. Their proof is based on
the verification of the Palais - Smale condition at the level of the infimum
of f . The proof below gives some insight of the geometry of the
functional. It is based on the following simple lemma.

Lemma 2. Let H be a reflexive Banach space and f:H—> R be a

weakly lower semicontinuous and differentiable functional. Assume that
there exists a R >0 such that for every u with llull = R, one has f(u)
> f(0) . Then f has a critical point.
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Proof. The restriction of f to Bg = {u : llull < R} attains its minimum
at some point @ € By . By assumption, G must be in the interior of Bgr,
and is thus a local minimum for f on H, hence a critical point.

Proof of Theorem 7. Suppose by contradiction that f has no critical
point. Then by Lemma 2 there exists a sequence (u,) in H(l) such that

llupll=n and f(u,) < f(0) . By (17), there exists d e LY(Q) such that
G(x,u) > d(x) fora.e.x and all u . Since

f(0) 2 f(uy) = 3 112 - lidlly 1,
i Il is bounded. It follows that Ilayll = o and that for a subsequence,

u,(x) = w(x) fora.e. x ; this implies that lu (x)] = oo a.e..By Fatou's
Lemma,

0 > liminf (£(u,) - £(0)) > liminf [, G(x,u,(x)) dx
> | liminf Gexuy(x) dx = [ cx) dx >0 |

which gives the contradiction.

Remark 5. The uniformity in (17) is used in the proof above only to
guarantee the existence of d € LI(Q) such that G(x,u) > d(x) fora.e. x
and all u.

As an easy consequence of Theorem 7 and Remark 5, we have the
following corollary which generalizes in several ways a result of Berger
(cf. [21,104]).
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Corollary 3. Assume that there exist d e LY Q) such that

G(x,u) = dx)

for a.e. x and all u, and a subset Q, of Q with positive measure such
that for a.e. X € QO ,

G(x,u) >+  as lul— oo,

Then problem (P) has a solution.

Corollary 3 can also be derived from Theorem 1 with f =1

(which shows that the corresponding functional is coercive). This is done
by constructing a function (A}(x,u) with the following properties: é is
Caratheodory, é <G, é(x,u) is Lipschitz continuous in u with
Lipschitz constant independent of x , é(x,u) 2 d(x) and, for ae. x €

A
Qy, GEu) =+ as lul — e,
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Chapter 5 |

PERIODIC SOLUTIONS OF SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS AT THE FIRST TWO
EIGENVALUES

1. INTRODUCTION.

In this paper we study the existence of periodic solutions of second

order differential equations of the form

- X'(H) = gtx(1) ,
where the nonlinearity g interacts, roughly speaking, with the first two
eigenvalues of the differential operator. More precisely, we impose at the
first eigenvalue a resonance condition of the type introduced by Ahmad,
Lazer and Paul [2], and a nonuniform nonresonance condition at the
second eigenvalue.

We prove the existence of solutions using a variational approach.
Our geometrical setting is the one of the Saddle Point Theorem of
Rabinowitz [127]. It is obtained by splitting naturally the considered space
into the eigenspace generated by the first eigenvalue and its orthogonal
space.

The main technical problem lies in the verification of the Palais -
Smale condition. This is done in the line of an argument introduced in
[119] in order to find an a priori bound for the solutions of a Liénard
type equation, and later developed in [57,74].

In order to obtain the Palais - Smale condition, we have to require
g(t,x) to be bounded below for x positive and bounded above for x
negative.

Our theorem then gives a partial answer to a problem raised by
Mawhin [102] . However, the problem of eliminating the boundedness
assumptions on g remains still open.




O.D.E.'s at the first two eigenvalues

2. THE MAIN RESULT.

We consider the following one dimensional periodic problem.

x"(t) + gtx() =0 (1)
x(0) -x(T) =x'0)-x(T) =0 .

Being T >0, we set I =[0,T] . The function g:IXR — R is of
Caratheodory type, i.e.

(a) g(.,x) is measurable for every x € R ,
(b) g(t,.) is continuous fora.e.te I,

and
(c) forevery R >0 there exists a kR € Ll(I) such that

lg(tx)l < kR(t)
forall IxI<R andae. teI.

Statements concerning the variable t will always be intended to be
true a.e..
We define the function G as follows:

G(tx) = | g(ts) ds .
0

Theorem 1. Assume the following conditions.

(1) There exists K € LI(I) such that

g(tx) 2 -K(t) for x>0,
gtx) £ K@) for x<0.
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() lm [ Gtx)dt=+o.

[x[—eo 1
cey qs 2
(iii) 1)1(1_g Sup gtx)/x < T () < 2rn/T)",
where T, T_e LY(D) and the set

S={te [0,T]: T (1) < @m/T)* and T (1) < (2/T)*}

has positive measure.

Then problem (1) has a solution.
Remark 1. Condition (i) generalizes some assumptions which are
frequently made in studying a problem like (1). It is in particular satisfied
if one of the following holds.

@' I p>0: gtx)x=20 (xI=p).

(i) 3J ke lLl®D: Igtx)I<k@® (xe R).
(1)"  g(t,.) is increasing.

In the following, we will denote by H}r the Hilbert space of
absolutely continuous functions x : I — R such that x(0) = x(T) and
whose derivatives are square integrable, with the usual norm

Il = { | [x()? + X)) de} 2.
I

Define the functional f: H,lr — R, associated to problem (1), by

fx) = [ [A/2)K'®P - Gtx®)] dt .
I
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It is well known that solving problem (1) is equivalent to finding a
critical point of the functional f.

Remark 2. Condition (ii) imposes the functional f to be coercive on
the space of constant functions, i.e. on the eigenspace associated to the
first eigenvalue of the operator (-x") wunder periodic boundary
conditions. An assumption of this type was first introduced by Ahmad,
Lazer and Paul in [2] .

Condition (iii) means, roughly speaking, that the nonlinearity stays
asymptotically below the second eigenvalue. Assumptions of this type are
usually called "nonuniform nonresonance conditions”, and were first
introduced by Mawhin and Ward [99,108] .

Proof of Theorem 1. We will use the Saddle Point Theorem of
Rabinowitz (cf. [129]). Let us write Hrlr = HO @ H1 , wWhere H0 is the
space of constant functions, and H, is the space of functions having mean
value zero. First of all, we will show that there exists an R > 0 such that,
setting

So=(xe Hy: Ixll =R}

one has

né%Xf<1}I{1ff' (2)

Indeed, proceeding as in [99, Lemma 2.2], from (iii) it is possible to

finda 8>0 such that, forevery x, e H,

jI [Ix; (OF - T, (kO - T_(Olx] ©)12] dt > 281x I,
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where, as usual, x* =max {x,0} and x~ = max {-x,0} .
Moreover, (iii) and (c) imply that there is a K5 & L'(D) such that

G(t.x) < (1/2)(T, (1) + 8) x* + Kg(t)

for every x 20, and

G(tx) < (U2)T_(1) + 8) x* + Kg(®)

forevery x <0.

Then, for X{ € H1 , we have

f(x) = [ (1/2)lx;@0)de - J’{ | Gltxy ) dr - [ Glx0 a
1

X120 {X1<0}

> (1/2) [ [Ix{©F - @0 + xT®F - (T_(1) + DO - 2K5(0)] de
I
> (1/2) [28 llx 1 - 8 llx 1 2] - WKl

This implies

llflllf f>- ”K8“L1 .

On the other hand, if X € H0 ,

f(xg)=- | Gltxy)dt .
I

By (i1), there exists an R > 0 such that, if leoll = R , then
f(xo) <- ”KSHLl - 1. So (2) is satisfied. ‘
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To conclude the proof, we need to show that the functional f
satisfies the Palais-Smale condition. By means of [129], it will be
sufficient to show that, if (xn) is a sequence in H,lr such that f(xn) is
bounded and f' (xn) — 0, then Hxnll is bounded.

First of all we show that (x_) is either uniformly bounded from

above or from below. In fact, if this is not true, there must exist a
subsequence, still denoted by (xn) , such that

m_ =min X - -e 3)

and
Mn =max X —> +oo. (4)

Then there surely exist o, ,v, and & in [0,2T] such that,
extending by T-periodicity x over [0,2T], one has

,(0) = X,(B,) =0
x (>0 for te Jo B[
M =max {x (t): te [o B 1}
and
Xn(yn) = Xn(sn) =0
x () <0 for te ]yn,ﬁn[
m_ = min {xn(t) cte [yn,Sn]}.

Using a technical lemma proved in [74], we can say that, for a further
subsequence (x_), either there isa p_> 0 such that

8Il 8I'l
JIx 0P -T 0k ©P] dt>_/2) [Ix!©F d 5)
Tn Tn

orthereisa p,_ >0 such that
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B, By
J I P -T x0T dt>(p,/2) [Ix @ dt (6)
(04 O!.n

for n sufficiently large.
Assume for example that (6) holds. Define the function y, as

follows:

yn(t) = Xn(t)' when t e [ocn,Bn]
= 0 otherwise .

It is possible to see that ¥, € H,}, (cf. [77]).
Since f' (xn) — 0, for some constant C1 > (0 we have that

KE' (x), v)l < C, Iivl (7)

for every = H1 Fix e < P, 71:2/2T2 From (iii) and (c), there exists a
k e Ll (I) such that

g(tx) x < (T, (0 + ) x> + k(1)

forall x =20 anda.e. te I. Hence, by (7), the definition of Yy - and
(6), one has

Colly b =" ),y

By

J = 0P - gltx ©)x (©] dt
04

By

Jox P - @,0 +¢) k OF -k 0] dt

o
n

v
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’ B2 . ~
>(p,/2) [Ix!®Pdi-e (-—“———9) J @ ae -k
o (L a L
n n
B, 7
' 2 L
>C, ajlxn(t)l de- Kl
n

where C, 1s a positive constant. It follows from the Poincaré inequality
that

Bn
' 2
[1x @l dt<C,

o
n

for a certain constant C5 . But this implies
1/2
M <(TCy)™*,

which is in contradiction with (4). Analogously, if (5) holds, we get a
contradiction with (3).

We then proved that (x_) is uniformly bounded either from
above or from below. Let us suppose for example that (x,) 18
uniformly bounded from above by a constant M . Taking v=1 in (7)
we get

| [ gtx ) dd < CNT . 8)
I

On the other hand, since Xn(t) <M forevery n andae. te I, one
has, by (i), the compactness of [0,M] and (c), that
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g(t,xn(t)) dt = g < C4 . (9)

J / B+ |
(220} (g0} {0<x, <M} {£20}{x,<0)

Combining (8) and (9) one easily gets

[lgtx ) dt <Cs. (10)
I

The same conclusion (10) can be obtained when supposing (x,)
uniformly bounded from below.

.- _ . n n . n n
Writing X, =Xy + X , with Xy € H0 and X, € Hl , and

recalling the Sobolev inequality

lerllll o SNT/I2 I M,
L L

from (7) and (10) we get

CM = (f' (x ), xD)

JI [x,OF - g(tx ) x2®)] dt
= 52 -CANT/12 Iyl -
From the Wirtinger inequality we can conclude that
lx Il ,<Cg . (11)

L

Suppose by contradiction that llx Il is not bounded. By (11), this
implies that there is a subsequence, still denoted (x) » such that either
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Mn =max X — - co (12)

or
mn=min X = 400 (13)

In case (12) holds, by the definition of G, hypotheses (i) and (11), for n
large we have:
X,(®

[Glx, () dt= [[GEM)+ [eg(ts) ds] dt
I I M

n

2 [GEM) dt- [(M_ -x (K@) dt
I I

> [G(LM,)dt- C,, (14)
I

which tends to + e by hypotheses (ii).
Recall now that f(xn) is supposed to be bounded, i.e. there is a

constant C8 such that
L [k oF - Gex )] drl < ¢ .
I
This is in contradiction with (11) and (14). An analogous contradiction is

obtained when (13) holds. The Theorem of Rabinowitz can thus be
applied, to achieve the proof.
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Chapter 6

MULTIPLE PERIODIC SOLUTIONS OF CONSERVATIVE
SYSTEMS WITH PERIODIC NONLINEARITY

1. INTRODUCTION

The first aim of this paper is to extend the results obtained by
Mawhin [107] concerning the multiplicity of periodic solutions for a
second order system of the form

M(tu)' + Au + D F(t,u) = h(v), (1.1)

where M(t) and A are symmetric matrices, M(t) being positive definite, F
and D F are bounded and satisfy a periodicity condition along the

directions of the null-space of A, and h belongs to a suitable subspace of
Ll

The special case M(t) = Id and A = 0 has been studied in [112]. The
existence of two distinct solutions was proved, generalizing a result of
[111] for the pendulum equation (see also [103], [113]).

In [107], Mawhin proved,whenever A is semi-negative definite, the
existence of (m + 1) distinct periodic solutions of (1), where m is the
dimension of the null-space of A. His result unifies and completes
previous existence theorems for the satellite equation (cf. [106]), the
linearly coupled pendulum (cf. [94]) and the Josephson multipoint System
(cf. [84]). See also [46].

Here we will prove the existence of at least (m + 1) distinct
periodic solutions of (1), without requiring A to be semi-negative
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definite. As already shown in [107], if all the solutions are non-
degenerate, then there are at least 2™ of them. The proof consists in
applying an abstract theorem of Chang [27], which is based on algebraic
topology methods and Morse theory.

Our second objective is to give a multiplicity result for the
periodic solutions of a Hamiltonian system of the form

Ji+ Au + D _H(tu) = h(t), (1.2)

where J is the standard symplectic matrix, A is a symmetric matrix, H,
D H and D H are bounded and satisfy a periodicity condition along the
directions of the null-space of A, and h belongs to a suitable subspace of
L2

The situation differs from the above one for the fact that the
functional associated to (1.2) is strongly indefinite. A finite dimensional
reduction will be used in order to overpass this difficulty.

The special case A = 0 has been studied by Conley and Zehnder
[34, 35] and Chang [27]. Here we extend their results to the case A = 0,
and prove a theorem which is the perfect analogous to the one we have
for system (1.1). When the paper was written, we have received a
preprint of Chang [29] which contains very close results.

The paper is organized as follows. In section 2 we recall some
concepts of algebraic topology, two deformation lemmas and some results
of Morse Theory.

In section 3 we present two abstract existence theorems by Chang
[27,28]. The proofs are also carried out for the reader's convenience.

In sections 4 and 5 we apply the abstract results of section 3 to
prove multiplicity results for periodic solutions of (1.1) and (1.2),
respectively. ‘
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2. SOME PRELIMINARIES

Given a topological space X and a subspace A c X, we denote by
Hn(X,A) [H"(X,A)] the nth singular homology [cohomology] vector space
of X relative to A, with respect to a given field (e.g. R). ‘

We recall that the elements of H (X,A) are equivalence classes of

singular chains having zero boundary. These elements are invariant under
every continuous deformation T : X — X such that Tio = id A in the sense
that T induces an isomorphism T, of Hn(X,A) into itself, and we identify
each element of H_(X,A) with its image under 7. The analogous is true
for cohomologies, as well.

We state the following two properties of homologies, which hold
for cohomologies as well. ‘

(a) If X" is a strong deformation retract of X and A' = X' is a strong
deformation retract of A, then Hn(X,A) =~ Hn(X',A’).

(b) (Kiinneth formula) For any topological space Y,

HXxY,AxY)= @p [HP(X,A) ®H q(Y)]‘

+q=n

Let us now briefly recall the concepts of cup and cap products.
Suppose A and B are subspaces of X such that, for example, one of the
following three situations is true :

A=¢, A=B, B = ¢.
Then there exist an operation, called the "cup product"

H"(X,B) x Hm(X,A) - Hn+m(X,A U B) (2.1)
(w,p)—> wuUp

and an operation, called the "cap product"
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H X AUB)x H"(X,B) — H_(X,A) (2.2)
(z,0) —z N o,
which are bilinear and invariant under continuous deformations leaving A
U B fixed (in the sense we saw above).

The cup and cap products are naturally induced by two operators,
defined on the corresponding spaces of singular chains and cochains,
which are denoted by the same symbols U and .

Ifze H , & AUB),oe H(X,B) and p € H*(X,A), then for
alme z,ce wandd e p one has

(n,cud)=(nnec,d), (2.3)

where (.,.) denotes the pairing between singular chains and cochains.
Moreover, denoting by ! the support of the chain 1, one has

InNnclcinl. (2.4)

We now consider a Riemannian manifold a/ of class C2 and a C1
functional f : # — R. We will use the following notations.

f={xe a:f(x)<a)
KC ={x e M: f(x) =c, df(x) = 0}.

That is, K . is the set of critical points at the level c.

The Palais-Smale condition, in short (PS), plays a funda-mental role
in the following deformation lemmas. Recall that (PS) holds iff every
sequence (xn) in M such that f(xn) is bounded and df(xn) — 0 possesses a
convergent subsequence.

Assume that at every point x of the boundary of 94, df(x) points
inwards in M. Then the following lemmas hold.

First Deformation Lemma. Assume (PS) holds for f. Fix
¢ € R and let Nbe a closed neighborhood of K. Then there is a
continuous map T : [0,1] x M — M, as well as numbers € >e>0such

that '
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1 t,. | =id,
(1 )IM\f'l([c-é, c+E]) :
(2) n(,.) =1id,

(3) N, fAN) « °°€,
(4) Vite[0,1], n(t,.)is a homeomorphism.

Second Deformation Lemma. Assume (PS) holds for fand thar df is
locally Lipshitzian. If there are no critical values in the open interval (a,
b), then {* is a strong deformation retract of (f° \Kp).

For the proofs, cf. [113], [31], [123], [27]. Since % is a Riemannian
manifold, we can consider the flow determined by the gradient of f. The
deformations are then constructed along this flow.

Let a < b, and suppose that Xys ..., X are the only critical points of f
in ! ([a,b]). Let Cn(f, Xi) denote the n critical group of X and suppose
that all these critical groups (which are vector spaces) are finite

dimensional, and that they are trivial for n sufficiently large. Then we can
define the Morse polynomial

=
M@ = ¥ (3, dim C,(f,x) .
=0 i=1
Moreover, the Poincaré polynomiél
P = ¥ dim H_(f°,f)"
n=0

is also well defined and we have that
M(L,£2,£%) = P(t,£2,£2) + (1+t) Q(p), (2.5)

where Q is a polynomial with nonnegative integer coefficients (cf. [113]).
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As a consequence of (2.5), if for every i e {1, ..., j} we have that

gb dim C_(f,x) <1, then

J>§;mm}1@bﬁ) (2.6)
n=0
This is the case if all the critical points Xps oes X; arE nondegenerate.

Indeed, in that case one has

C,(Ex)=8 R

|

where m, is the Morse index of the point X;.

3. AN ABSTRACT MULTIPLICITY RESULT
In this section we expose some results of Chang [27].

Definition. Let X be a topological space and A c X. Consider two

non-zero singular homology classes
1€ Hm(X A), z,€ H  (X,A).

n+m
We set z, <2, whenever n > 0 and there exists ® € H*(X) such that
Z,=Z,N O
(the cap product is as in (2.2), with B = 0).

Theorem 1. Assume (PS) holds for f. Let a <b be two real numbers

such that f has only a finite number of isolated critical points in £-1 [a,b].
If there are k non-zero singular homology classes z,€ H (fb ), .

’Zk
eH(ﬁﬁmmhz<z

2322y, then f has at least k distinct critical

values
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Proof. Define the following quantities :

c.= inf sup f(x) a=1,2,...,k).
1 nmez xeﬁﬂ

The Minimax Principle tells us that whenever ¢; 1s finite and the family of
sets z, 18 invariant under homeomorphisms, ¢, is a critical value of f. Since
z, € H, (fb ), for all m e z, we have that
nlc £, Hence ¢; < b. Moreover, since z, is supposed to be non-zero in
H (fb %), this rneans that for any 1 € z, We have that Inl has non empty
mtersectmn with 2 \ 2. Hence c.2a. So c. is finite; z; 1s invariant under
homeomorphisms, as we said in section 2.

So the c,'s are critical values of f. We want to prove now that we
have

€ <cy<...<Cp
Let us concentrate on ¢, and c,, the reasoning being the same for the
others. We know, since z, < z, that there exists ® € an'nl(fb),
n, -n; > 0 such that z, =z, N ®. This means that for any
M, € 2z, and any ¢ € ® we can define My =M, Nce z;,and by (2.4) we
have that |Tl1| < I, l. Hence
Vn,e z, 3 N ez Xsulp f(x) < sup f(x)

Sul xen,
This immediately implies c; SC,.

Suppose by contradiction that C; = C,, and denote by c this common
value. Then for every € > 0 there must exist a 1 5 € Z, such that In e
€, Since K. is a set of isolated critical points, we choose two
contractible nexohborhoods of K inf\f* : N < N'. We can then write
N, =T, + 15, where m2| < N' and 5l < AN
We can consider n2 as a cycle of 2 relative to 2 \ N. Hence
Myl e H_ (fb f\N)and [,] Ao e H_ (fb £ \ N). The cap product
does not chancre if we shrink N', and hence 1’]2, to a point. Since w €
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H"2"(£0) and n,-n, > 0, there exists c € @ which, applied to any chain
having support in N', gives 0. In particular, by the definition of the cap
product, 1, "¢ =0. Setn, =m, Nc e z;; then

Ny=M,Nc=n,Nc+Ny;Nc="n,Nc.

Hence ;I c iy nclc myl < €78 \N.

Consider now the homeomorphism T : f°"\ N — °€ given by the
First Deformation Lemma. We have that t(Im,) < "%, But

ToMy €z because of the invariance under homeomorphisms, and this
contradicts the definition of ¢ (=¢).

Given a compact manifold ¥, let us define cuplength (7)) as the
greatest natural number £ such that

(Vie {1,..2) Ak>0) @ oe H(): 0, U... Ua, 0.

It can be seen that for a compact manifold such a number indeed exists.

Theorem 2. Let L be a bounded self-adjoint operator with a bounded
inverse, defined on a Hilbert space H. Suppose that the negative space
determined by L is finite dimensional. Let 7V be a
Cz—compact manifold without boundary. Let g e CZ(H X V,R) be a

Junction having bounded and compact differential dg. Then the function
f(x, v) = %(Lx, X) + g(x, v)

has at least [cuplength (V) + 1] critical points.
Moreover, if all the critical points of f are non degenerate, there

are at least Y, dim H (V) of them.
n=0
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Proof. 1) In order to apply the previoﬁs theorem, let us verify that
(PS) holds for f on H x 7. Take a sequence (Xn, Vn) in H x 7 such that
(f(xn, vn)) 1s bounded and

df(xn,vn) = an + dg(xn,vn) — 0. (3.1

Since (dg(xn,vn)) is bounded by hypothesis, it follows that (an) is also
bounded. We deduce that, L having a bounded inverse, (xn) is bounded,
and since 7 is compact, the sequence (x,,v_) is bounded. Since dg is
supposed to be compact and %/is compact, there exists a subsequence
(xnk,vnk) such that (dg(xnk,vnk)) and (Vn ) are convergent. From (3.1) and
the boundedness of L‘l, it then follows that (xnk,vnk) itself is convergent.

2) Let H=H" @ H', where H" and H™ are the invariant subspaces
corresponding to the positive and negative spectrum of L, respectively.
Accordingly, every X € H can be written as
X = X'+ x, with x* € H* and x e H. Let v = dim H™. Set
€y = inf {lILx 1_LII e iII = 1}. These are positive numbers. If m is such that
ldgx, vl <m V (x,v) € Hx 7, set R, = (m+1)/ g, . From now on it

will be convenient to work on the manifold
M=(H+mBR)xH'x‘V.
+

In order to be sure that the Deformation Lemmas can be used, we have to
check that -df points inward to #¢ on each point of the boundary 09, i.e.
for every (x, v) such that lIixll = R .- Indeed in such a case we have

(-df(x,v), x7) = - (Lx"x™) - (dg(x,v), xP)

2 il

S-e+llx +m lIx

=-R+(8+R+-I¥1)=-R+<O.
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Since (on M)
f(x.v) < 7 ILIRZ - 2 ellx? + @ R, + Il + vl
and since 7/is compact, we have that

f(x, v) = -0 as IIxll = oo uniformly in x™ and v. (3.2)

It is not restrictive to suppose there exist only a finite number of critical
points, which are isolated and contained in fb\fa, for certain fixed a < b.
From (3.2) it follows that there exists an R1 > 0 such that

(H+mBR ) x (H\Bg ) x Y %,
+ 1
Since

f(x,v) = 3 &, RZ - 5 ILILIKIP - @R, + Il + livil)

this implies f is bounded below on (H* N BR+) x (H- N BRI) X v, and
hence there exists an a' < a such that

2 c " N By ) x (' \Bg ) x 7
and, again, there exists an R2 > R1 such that

(H" 1 Bg ) x (' \By ) x ¥ £

The Second Deformation Lemma gives us a strong deformation retraction
T, f* — f*. Moreover a strong deformation retraction

T, (H N BR+) X (H’\BRI) xV— H N BR_) X (H'\BRZ) XV
can be constructed by hand (see [6]). So 1 = Ty 0 Ty 1S a strong

deformation retraction from f% to (H™ N Bp ) x (H'\Bg ) x %, and we
+

2
have
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H () ~ H (34 1) (deformation)
=~ H (M H" N B ) X (H'\B ) x V) (deformation)
= Hn H x v, (H'\B )X 1) (Kiinneth)

R,
= @p +q=n [H H, H'\B ) ®H (‘I/)] (Kiinneth)
=~ p +rq=n [H (BR ,aB )® H (’1/)] (deformation)
~ Hn_y(’!/).
Moreover,
H'(f%) =~ HY()

= Hn((H+nB )xH‘fo)

~ p+qn[HP((H NBg )xH')®Hq(q/)]

=~ HY (.

Let £ = cuplength (7). Then, accorchng to the above isomorphisms, for

every 1 € {1, ..., £} there exists o, € H 1(fb) k > 0 such that

O U U, # 0. Hence there exists z, € H (fb,fa) such that

ki+ ... +kp+y

(zl,oz)1 U ... uw2)¢0.

. b ra
Then we can define recursively Zi,1 € H K+ .. gty (f",f%) by
i =40 @,
j=1,..., 2. We thus obtain (£+1) non-zero homology classes such that

Zy,1 %2y < ... <z, Theorem 1 then proves the first part of the theorem.

As for the second part, it is immediate from (2.6) and the above
isomorphisms.
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4. PERIODIC SOLUTIONS OF SECOND ORDER SYSTEMS

In this section we will apply the abstract multiplicity results of
section 3 to the following second order system.

M(Du’)' + Au + D _F(t,u) = h(t)

u(0) - u(T) = u'(0) - u'(T) = 0 4.1)

We assume T > 0, F = [0,T] x R™ — R is continuous, bounded and such
that

(1) F(t + T,u) = F(t,u) for all (t,u) € [0,T] x R™.
(i1) DuF exists, is continuous and bounded, and DuuF exists

and is continuous.

Moreover, S(R™,R™) being the space of symmetric real (n x n)-matrices,
we have A € S(R™,R™), M : [0,T] — S(R",R™) is continuous and such that,
for some L > 0 and all (t,v) € [0,T] x R™,

M@V 1 v) = vi?, (4.2)
and h e L1(0,T; R).

Using Schauder's fixed point theorem, one can prove the existence
of at least one solution to (4.1) whenever the "linearized" problem

M(tu)' + Au=0
u0) - w(T) =v'(0) -u'(T) =0 (4.3)

has only the zero solution.

We will consider the situation described by the following assump-
tions, where N(A) denotes the null-space of A.
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(A1) N(A)=span {a, ...,a_}, 1 <m <n, and problem (4.3) has as
solutions only the elements of N(A).

(A2) For every ve N(A),
T
6( (h(t) | v) dt = 0.

(A3) There are positive numbers Tl’ vees Tm such that

F(t,u + Tjaj) = F(t,u)

for every (tu)e [0,T]x R%and je {1, ..., m}.

Theorem 3. Under the above assumptions, problem (4.1) has at least
(m + 1) geometrically distinct solutions.

If moreover all the solutions of (4.1) are nondegenerate, then there
are at least 2™ of them.

Remark.  Theorem 3 generalizes previous results by Mawhin [107]
where A was supposed to be semi-negative definite.

Proof. Let us consider the Hilbert space
Hy = {ue H(0,T; R : u(0) = u(T))
equipped with the inner product

T
(ulv)= Oj [(MOu'®) | v'(0) + () | v(©)] dt.

The corresponding norm llull = (u | u)l/ 2 is by (4.2) equivalent to the
classical norm of H(0,T; RY).
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Let us define the operator L : H,lr — H,lr such that
. ,
Lulv)= f [(M(tu'(t) 1 v'(t)) - (Au(t) | v(t)] dt.
0

It can easily be seen that L is a self-adjoint operator on H% Because of the
compact imbedding of H: into C([0,T], R™), (I - L)' is compact. This
implies that, writing H%: =H @ H° @ H', where H", H® and H" are the
invariant subspaces corresponding to the negative, zero and positive
spectrum of L, respectively, the space H' is finite dimensional. Moreover,
by (A1), H®° = N(A).

Let us consider the space H=H" @ H™. Then L can be considered as
a bounded self-adjoint operator on H with a bounded inverse.

Let T™ = R™/Z™ be the m-fold torus, and define on H x T™ the
following functional

T m
g(u,(vl, cees Vm)) = Of (-F(t, u(t) + 21 Viai) + (h(t) 1 u(t))] dt.

By (ii), g is of class C2. Because of (A2), (A3) and classical arguments,
the critical points of the C2-functional f defined by

f(u,v) = %—(Lu,u) + g(u,v)

correspond to geometrically distinct solutions of (4.1). It is easy to see
that dg is bounded and compact, because of the compact imbedding of Hnlf
into the space of continuous functions. So all the assumptions of Theorem
2 are satisfied, and the result follows from the following well known
facts:
cuplength (T™) =m + 1 (4.4)
dim H_(T™) = (). (4.5)
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5. PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS

In this section we will give a multiplicity result for the following
Hamiltonian system

Ju+ Au + D H(tu) = h(®)

u(0) = u(T) -1

We assume T > 0, H = [0,T] x R?" — R is continuous, bounded and such
that

(i) H(t+ T,u) = H(t,u) for all (t,u) € [0, T] x mzn;
(11) DuH and DuuH exist, they are continuous and bounded.

Moreover, A is a symmetric real (2n x 2n)-matrix with null-space N(A),

0 -I
he L2(O,T; ﬂan) and J = ( I 61 ) is the standard symplectic matrix.
n

It is not difficult to see, by Schauder's fixed point theorem, that if
the "linearized" problem

Ju+Au =0

u(0) = u(T) (5.2)

has only the zero solution, then (5.1) has at least one solution.

We will consider the situation described by the following assump-
tions.
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(A1) N(A) = span {al, ey am}, 1 £m £ 2n, and problem (5.2) has
as solutions only the elements of N(A).

(A2) For every ve N(A),
T

[ (@ 1v)de=0.
0

(A3) There are positive numbers Ty, ..., T_ such that

H(t,u + Tjaj) = H(t,u)
for every (t,u) € [0,T] x R%" and je {1, ..., m}.

Theorem 4. Under the above assumptions, problem (5.1) has at least
(m + 1) geometrically distinct solutions.

If moreover all the solutions of (5.1) are nondegenerate, then there
are at least 2™ of them.

Remark. Theorem 4 generalizes previous results obtained by Conley and
Zehnder [34,35] and Chang [27] . They all consider the case A = 0 and
hence N(A) = R22 In [34] and [27] a conjecture of Arnold was proved

(cf. [13], [14D).

Proof. We define a self-adjoint operator L. on the Hilbert space X =
L2(0,T; R?®) :

D(L) = {u e H(0,T; R?Y) : u(0) = w(T)}
Lu=Ju+ Au.

It is well known that L is self-adjoint, has closed range and a discrete
spectrum o(L) = {... < 7‘-1 < 7»0 < 7\,1 < ...} unbounded from below and

from above, made of eigenvalues of finite multiplicity which do not
accumulate at any finite point.
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We define the operator N : X — X by
(Nu)(®) = - D _H(t,u(t)) + h(t).

By (ii), N is Lipshitz continuous and possesses a symmetric Gateaux
derivative given by

[N'(@n](®) = - D, Htu®m (@) (5.3)

for everym € X.

Let o be the Lipshitz constant of N. By the properties of 6(L) we
can choose o' = o and € > 0 such that [-(a' + €), -0'] N (L) and [o, o' +
e] M o(L) are both empty.

By the above definitions of the operators L and N, it is clear that
problem (5.1) is equivalent to the equation

Lu = Nu. (5.4)

In order to be able to apply the abstract results of section 3 we need

a reduction to a finite dimensional equation. To this aim, let us consider
{E7L : A € R}, the spectral resolution of L, and define the following

orthogonal projector in X :
o'+ e
P= [ dE,.

-(a'+¢g)

For any u € D(L), we will write u = v + w, where v = Pu and
w = (I - P)u. Equation (5.4) is then equivalent to the following system.

Lw =I-P)NHF+w) (5.5)
Lv =PN v+ w). (5.6)

Remark that, if V denotes the range of P and W the range of (I - P), then
V is finite dimensional, and for every u € D(L), Pu can be expressed as a
finite sum of terms in the spaces ker (AI - L) < D(L), with A € [-(a' + €),
o' + €]. Hence, if we pose E = C([0,T], ﬂ?zn), we have that Vc D(L)
E. From (5.3) it follows moreover that N';E is continuous.
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We will now prove the following

Claim. For each fixed v € V there exists a unique w € W which solves
(5.5). Further w € E and the map & associating wto vis
of class cl from V to E. Moreover, for every ve V and

je {1,..., m},
E(v + Tjaj) =E(v). (5.7)

First of all, notice that, taking e ]-(a' +€), a' + e [\ (L), (5 .5)
becomes equivalent to the following fixed point problem :
w=(L-) (1-P) [NV +w) - tw] =T, (w).

We want to show that, if T is appropriately chosen, the map T 1isa
contraction, for all v. Since

-(a'+¢€) +o0
L-'a-P) = [ &-9ldE, + [ a-vldE,
- oo o'+e

we have that
L -t l@-P) < (o' +¢ - Ity !
Hence, since N is Lipshitzian of constant o,
IT, (W) - T (W) < (o' + & -ty Lo + Il Iw - 1.

This shows that T is a contraction whenever Il < = (oc' + € - o), and such
a choice is always possible because of the structure of o(L). Then T has a
unique fixed point w, and we set

V) =w

Hence we have that, forallv e V,

EV) =L -t 1I-P) [NV +EW) -TE®)] . (5.8)
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It can be shown (see [100]) that & is Lipshitz continuous from V to W.

Moreover, for every v € H,
t

[(T - L) IvI(t) = exp [tJ(A - Dluy + [exp [(t - )I(A - ©)] Fv(s) ds
0
where

T
ug = [L,, - exp [TIA - D] [exp [(T - $)I(A - 1)] Jv(s) ds.
0]

This implies
(tl-Lyle 4x,E).

Hence from (5.8) we have that & is continuous from V to E. Now consider
the function

¢0:VXxE—>SE
oV,w) =w - TV(W).

Recalling the fact that N']E 1S continuous, since TV 1s also a contraction as
a map from E to E, we have that the implicit function theorem can be
applied to ¢. As a consequence, we have that € is of class C! from V to E.
Finally, (5.7) holds since, by (A3), equation (5.5) does not change if we
substitute v with v + Tjaj' The Claim is then proved.

By the Claim proved above, we have that equation (5.4) is reduced
to equation (5.6), with w = E(v), i.e. to

Lv = PN(v + §(v)) (5.9)

where v varies in the finite dimensional space V. By the spectral
decomposition of L we can write V = V- ® v ® V™', where Vv, v0 and
V™ are the invariant subspaces of V corresponding to the negative, zero
and positive spectrum of L, By (A1), V¢ = N(A).
Let us consider the Hilbert space H= V" ® V*. Then L can be considered
as a bounded self-adjoint operator on H with a bounded mverse.
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Let T™ = R™/Z™ be the m-fold torus, and define on H x T™ the
following map

T m
gwmgyw%m=JpHmwo+§@my+;¢ﬁ)+
+ (h(t), v(t) + E(v)(1)] dt.

Since & e Cl(H,E), H < E and N'|; is continuous, g is of class C2. Set
£(v,1) = 5 (Lv,) + g(v,0).

By (A2), (A3) and classical arguments, the critical points of the
functional f correspond to geometrically distinct solutions of (5.9).

It is easy to see that dg is bounded and continuous. Since g is
defined on a finite dimensional space, this implies dg is also compact. So
all the assumptions of Theorem 2 are satisfied, and the result follows
from (4.4) and (4.5).
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Chaptér 7

SUBHARMONIC OSCILLATIONS OF FORCED
PENDULUM - TYPE EQUATIONS

1. INTRODUCTION

In this paper we are concerned with the existence of subharmonic
solutions of second order differential equations of the form

X +gx)=1(1),

where f is periodic with minimal period T and mean value zero. We
have in mind as a particular case the pendulum equation, where g(x) =
Asinx .

First results on the existence of subharmonic orbits in a
neighborhood of a given periodic motion were obtained by Birkoff and
Lewis (cf. [22] and [117) by perturbation - type techniques. Rabinowitz
[128] was able to prove the existence of subharmonic solutions for
Hamiltonian systems by the use of variational methods. His approach is
not of local type like the one in [22], and permits to obtain a sequence of
solutions whose minimal period tend towards infinity in the case when the
Hamiltonian function has subquadratic or superquadratic growth. These
results have been extended in various directions, cf. [19, 32, 36, 50, 114,
139, 141, 142]. Local results on subharmonics for the forced pendulum
equation can be found in [143].

Hamiltonian systems with periodic nonlinearity were studied by
Conley and Zehnder [36]. They proved the existence of subharmonic




Subharmonics of pendulum - type equations

solutions under some assumptions on the nondegenerateness of the
solutions, by the use of Morse - Conley theory.

In this paper we will prove the existence of subharmonic
oscillations of a pendulum - type equation by the use of classical Morse
theory together with an iteration formula for the index due to Bott [23]
and developed in [49] and [17].

2. THE MAIN RESULT

Let T be a fixed positive number and k =2 an integer. Assume
f:R — R to be a continuous periodic function, with minimal period T,
and such that

T
[f®y dt=0. (1)
0

We consider the following equation:

x(0) + gx(D) = f(v) , 2)
where g:R — [R is a continuous function such that, setting

G = [gls) ds,
0

the function G is 2= - periodic.

We want to prove the existence of subharmonic solutions, i.e. we
look for periodic solutions of (2) having kT as minimal period. The kT
- periodic solutions of (2) correspond to the critical points of the
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functional ¢y , defined on the Hilbert space Hle ={x e Hl([O,kT]) :
x(0) = x(kT)} as follows:

kT
000 = [ SG@)? - GG() + fOx(®] dt . (3)
0

However, the critical points of ¢, do not necessarily correspond to

periodic solutions of (2) with minimal period kT, as can be seen from the
case g =0 . In fact, in this case the kT - periodic solutions of (2) are of
the form

kKT s t S
X(t)=CO—tElT-g(é[f(u)du)ds + g(gf(u)du)ds, 4)

where Cj=x(0) canbe chosen arbitrarily in R . Because of (1),

S

( [fw du)ds,
0

CD-.__~.__a

1 kT s 1
— [ (Jfwdu)ds ==
kT § 3 T
and then any x(t) like in (4) has in fact period T .

It can be shown, cf. [103,111,113], that the functional ¢, is
bounded from below and satisfies the Palais - Smale condition. So ¢
always has a minimum. If g = 0, the minimum points of ¢, are like in
(4), where C is an arbitrary real number. In particular, they are not

1solated.

Let xj bea T - periodic solution of equation (2). Define, for A

and t in R, the matrix

0 -1
A0 = (M—g'(xO(t)) 0 )

and consider the fundamental solution X, (t) which satisfies
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X, (1) = Ay (8) X5, (1)
X,,(0) = 1d.

It is well known (see e.g. [90]) that the eigenvalues G'k’T and G"X’T of
X, (T) have the following properties:

1A

(1)  either both Gt and © A are in R ,or ¢, 1 =0" 3

(iii) there exists Ay <A, such that the maps A =0’ ¢ and A =

c", ; are continuous and one to one if A <A;. Moreover,
0< Gm<1<0hT A <Ay
t et 1
Or=0"1€S Mg <A<A).

The T - periodic solution X, is said to be nondegenerate if 1 ¢

1 "
{6'yr:0 01} -

Given o e S!, we define J (xg.T,0) to be the number of negative
AL's for which ¢ e {c', ;,0", ¢} . The number J(x,,T,1) is then the
Morse index of the T - periodic solution X .

We are now able to formulate our main result.

Theorem 1. Assume the following conditions:

(a) the T - periodic solutions of equation (2) are isolated;
(b) every T - periodic solution of (2) having Morse index equal
to zero is nondegenerate.
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Then there exists a kg =2 such that, for every prime integer k 2 kg ,

there is a periodic solution of (2) with minimal period kT .

Remarks. 1) We have seen above that in the case g = 0 there are no
subharmonic solutions of (2), and the T - periodic solutions are not
isolated, and therefore degenerate. So, neither (a) nor (b) is verified in
this case.

2) In [36], Conley and Zehnder proved the existence of
subharmonic solutions for a system with Hamiltonian function periodic in
each of its variables. They showed that when all the T - periodic
solutions, together with their iterates, are nondegenerate, then there exists
a periodic solution with minimal period kT if k is a sufficiently large
prime number.

We don't need to assume, like in [36], that also the iterates of the T
- periodic solutions of (2) are nondegenerate. Since for a T - periodic
solution X, one has G'X,sz (G'x,T)k and c"x,kT= (G")\’T)k , it could then
happen in principle that 1 € {¢') 1, G”x,kT} even if 1 ¢ {o'
Gy 1t

AT

Proof of Theorem 1. Let us introduce the Hilbert space

kT
Ho={(XeH,: [X®d=0}.
0

By (1) and the 2r - periodicity of G, we have that
0, (x +2m) = 0, (%)

for every x € Hle .Set S'=pR /(2mZ) . It is then equivalent to consider

the functional vy, defined on st x ﬁk by
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v, (0 =0, X +X),

for every x =(X,X)€ st x I:Ik . The functionals Y, are bounded from

below and satisfy the Palais - Smale condition (cf. {103,111,113]). By
assumption (a), the functional Wy has only a finite number of crirical

points P A S It is clear that the functions X, (0 £1 <), extended by
T - periodicity on [0, kT] are also critical points of y, for k=>2.

We now assert the following.

Claim. There exists an integer kO such that, for k 2 kO and 0<i<n,
either J (x.l kT,1)=0 and X is nondegenerate, or J(xi XkT,1H)=>2.

Assume for the moment that the above Claim holds true. In case k
2k, is a prime number, since f has minimal period T , the critical

points of y, have as minimal period either T or kT . Assume by
contradiction that X, ... , X are the only critical points of y, . Since the

Poincaré polynomial of st x ﬁk is (1+1t), we have

Z%)Pk(t,xi) =(1+0[1+QW], (5)

where Q(t) is a polynomial with nonnegative integer coefficients and
Pk(t’xi) = ZJ' dim Cj(\pk,xi) ¢ is the usual Morse polynomial of X, (see

e.g. [113]). By the Claim, if J(x; kT,1) = 0, then Pk(t’xi) =1.
Otherwise, if J(xi kT,1) =22, then dim Cj(wk,xi) =0 for j=0,1. This

implies that equation (5) can never be satisfied, and we have a
contradiction.
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To conclude the proof of the theorem we need then to prove the
above Claim. In order to do so, let X, be a critical point of Wy and let

Ao <A, be as in property (iii). First of all, we claim that Ay 0.
Indeed, if on the contrary ?‘0 =0 , we would have, for every negative A,
0< G'K,T <l< G"X,T , which implies J(xi ,T,1) = 0 . On the other hand,
by (iii), 0"0’T =1=0"1,580 that x, would be a degenerate T - periodic

solution with Morse index equal to zero, in contradiction with assumption

(b).
Suppose KO > 0 . Then, for every A<0,wehave 0< &', ;<1<
G";\,T and hence J(xi ,T,0) =0 forevery ¢ e st By [23, Theorem 1]

we have

J(x, KT, = 3 3(x;, T,0) = 0.
ok=1

Moreover X,,asa critical point of W is also nondegenerate, since
0 < 01 — (GV )k < 1 < GH —_— (0." )k
0kT 0,T 0kT — 0,1/
Suppose now A, < 0. Then for every Ae Thy, Ag+el, for >0 small
enough, we have ¢, 1 = c"\ 1€ S! and

I(x,T,6% ) = 105 T.6" ) >0 .

Hence, for k large enough, we have

Ix, kT, = X J(x,,T,0) 2 2.
ok=1

This proves the Claim, and completes the proof of Theorem 1.
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Subharmonics of pendulum - type equations

Under a stronger assumption, in the following theorem we will
obtain the existence of two subharmonic oscillations.

Theorem 2. Suppose that the XT - periodic solutions of (2) are

nondegenerate for k=1 and for every prime integer k. Then there
exists ko > 2 such that, for every prime integer k > kO , there are two

geomerrically distinct periodic solutions of (2) with minimal period kT .

Proof. As a consequence of the assumption, for every prime number k ,
the number n, of critical points of Yy, 1s finite. Since the Morse

polynomial of St x ﬁk s (1+1), n, must be even. It follows from
Theorem 1 that, for k > kO » Iy > n, + 1 . Then, ny > n, + 2 , and the

proof is complete.
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A SKETCH OF COINCIDENCE DEGREE THEORY AND
AN ABSTRACT EXISTENCE RESULT

1. THE COINCIDENCE DEGREE

Let X and Z be real normed spaces,and L:domLc X — 7 a

linear Fredholm operator of index zero. By this we mean that the range
of L 1s a closed set and its codimension is finite and equal to the
dimension of ker L .

It can be shown that there exist continuous projections P : X — X
and Q :Z — Z such that

R(P)=kerL , kerQ=R(),
and a continuous bijection J : ker L — R(Q) such that L + JP : dom L

— 7 1s invertible.

Let Q be an open bounded subset of X ,and N: Q — Z a map,
generally non linear. We are interested in finding solutions of the
equation

Lx =Nx (L)

in the set dom L m Q . It is easily seen that this is equivalent to solving
the equation

x = (L + JP)I(N + JP) x

in the set Q. Let us introduce the following
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Definition. A map G :E — Z is said to be L - compact on the metric
space B ifthemap (L+JPYlG :E— X is compact (i.e. continuous
and such that the image of any bounded subset of E is relatively
compact). G will be said to be L - completely continuous if it is L -
compact on every bounded subset of E .

It can be seen that the above definition is independent of the choice
of P,Q and]J.
We will suppose N to be L - compact on Q ; this can be seen to

be equivalent to assuming that QN : Q — Z is continuous with bounded
image and, denoting by K, 0= Cliom L xer ») 1A - Q) the right inverse

of L, that KP’QN : S_i — X 1s compact.

If we moreover assume
Oe¢ (L - N).(dom LNnoQ) ,

since (L - JP)'JP , having finite dimentional range, 1s compact, it is
possible to define the coincidence degree as follows:

D/(L-N,Q)=D(I-L+IP)IN+IP),Q)),

where D denotes the Leray - Schauder degree for compact perturbations
of the identity. The notation is justified by the fact that D; =D; when L

=I. It can be shown that the above definition is independent of the choice
of P, Q and J. Moreover, one has

[-(L+JPy'(N+JP)=1-P-TIQN-K, N.

Here are the main properties of the coincidence degree Dy :
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1. Addition - excision: if €, and Q, are disjoint open subsets of

Qand 0e (L-N)fdomLnQ\(Q UQ), then

D (L-N,Q)=D;(L-N,Q)+D(L-N,Q,.

2. Homotopy invariance: if H: (dom L m 52) x [0,1] - Z isin

the form H(x,t) = Lx + N(x,t), where N: Qx [0,1] — Z is L - compact

on Q x [0,1] , and if 0 ¢ H((dom L N 0Q) x [0,1]) , then the map t —
Dy (H(.,t), ) 1is constant on [0,1] .

3. Normalization: if N is linear and L - N is injective, then

+1  if L-N)domLnQ
D (L-N-z Q)= if ze ( )(dom L n Q)

0 otherwise.

4. Existence: if D (L-N,Q)#0,then 0 e (L-N)domL N Q).

The following existence theorem is a consequence of the above
properties of the coincidence degree.
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Theorem 1. Let N, N': Q—7Z bel - compact and such that
(1) Dp(L-N,Q)=0;
() Lx = (1 -t) N'x +t Nx
for all (x,;t) e (dom L m 9Q) x 10,1] .

Then equation (1) has a solution in domL N Q .

Corollary. Ler N : Q-7 be L - compact, N': X — Z be linear
and L - completely continuous, and z € (L - N)(dom L N Q) . Suppose
that:

() L-N' is injective;
() Lx#(-t) (Nx -2z) +t Nx
Jor all (x,t) € (dom L m 9Q) x 10,1 .

Then equation (1) has a solution in domL A Q .

2. AN ABSTRACT RESULT

In this section we give an abstract version of the existence result of
Chapter 1, generalizing the concept of property P.
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Let X and Z be real normed spaces, and L:dom L c X — Z 3

linear Fredholm operator of index zero. Let N :X — Z a (possibly
nonlinear) L - completely continuous map. We are concerned with the
problem of the existence of solutions to the equation

Lx =Nx . (1

Let A be a weakly compact convex subset of a normed space Y,

and consider the comparison function

M:XxA-—>7Z

having the following properties:

(i)
(ii)

(1i1)

(1v)

(v)

M is L - completely continuous on X x A ;

M is positively homogeneous in its first variable, i.c.
M(rx,u) = r M(x,u) (rz0,xe X,ue A);

M is affine in its second variable, i.e.

M(x, tuy + (1 - t)uz) =t M(x,ul) +(1-1) M(X,uz)
(te [0,1],x € X, u.e A);

forany ue A, x=0 is the only solution of the equation
Lx = M(x,u) ;
there exists ¢ >0 and a function u : dom L. — A such that
IINx - M(x,u(x)ll < c, (2)

for every x € dom L .
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Theorem 2. Under the above assumptions, if there exists ue A such
that, being Q= {xe X:Ilxll<1},

D, (L - M(,D), Q) #0 ,

then equation (1) has a solution.

Proof. It will be sufficient to prove that there exists an a priori bound for
the solutions of the equations

Lx=tNx+ (1 -t) M(x,u) :=Ngx , (3)

for every t € ]0,1[ . By contradiction, suppose that there exists a
sequence (x,t)) in dom L x ]0,1[ such that lIx Il = e and

Lx, = Ntnxn .
Let v, =x_/Ilx Il . From (3), (ii) and (iii), one obtains:

Nx - M(Xn,u(xn))
lx

Lv, =t, +M(vy, tyux) + (1 -t)w), (@)

where u(x,) is defined as in (v). Set u, =tyu)+ 1 -t) u . Since A
is convex, u € A . Being A weakly compact, there exists a
subsequence, still denoted by (u,) , which converges weakly to some u
€ A . Moreover, applying the (continuous) right inverse KP,Q to (4), one

has

Nx, - M(xu(x,))
lx I

(I-Pv, =K o1, + M(v, ) . (5)
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It follows from (i), (v) and the fact that ker L is finite dimensional, that
v, has a subsequence which strongly converges to a certain v € dom L .

Passing to the limit in (5), one has
I-Pyw= KP,QM(V,U) ,
i.e.
Lv =M(v,u) .

By (iv), v =0, which is a contradiction since llv II=1 forevery n.
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SINGULAR HOMOLOGY AND COHOMOLOGY

1. SINGULAR CHAINS AND SINGULAR COCHAINS

We are given a topological space X, and we consider the set of real
sequences [Re°.

Let Ap < [R* be the convex hull of the following (n+1) points
Eo = (0,0....,0,...)

E; = (1,0,...,0,...)

En = (0,0,...,1,...).
We define a n-singular simplex of X to be a continuous map
C: An — X.

The image of a singular simplex o is called its support and will be
denoted by |o|. The support of a 0, 1 or 2-singular simplex will thus be a
point, a curve or a surface in X.

It is useful to be able to formally sum singular simplexes and
multiply them by real numbers. This is why we will consider the set Sp(X)

whose elements are the formal finite sums of the form
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ZIGG,
c

where the rs are real coefficients and the ¢ are n-singular simplices. This
set Sp(X) comes out to be a vector space over R, and its elements are called

n-singular chains of X.

The support of a chain 1 = )| rs ¢ is defined to be the union of the
G

supports of the ¢'s appearing in the sum, and is still denoted by |n|. So, for
example, the support of a O-chain is a finite number of points of X, etc.

A n-singular cochain of X is by definition a continuous linear map c
from Sn(X) to R. These maps form a vector space that we denote by
S%(X). We have a duality between Sp(X) and S(X) :

<> 1 Sp(X) x S(X) = R

defined by <n,c> = c(n). Clearly a n-singular cochain is determined, by
the linearity, if we know how it acts on the n-singular simplexes of X.

A CUP AND CAP PRODUCTS

There are two operations between singular chains and singular
cochains that we would like to introduce. In order to do this, we need the
following.

Fact. Let p <n and consider the face of An determined by the (p+1)

points Ejiy, Eif, ..., Eip.There exists an isomorphism between Ap and this
face.
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We will denote this isomorphism by
£(Eip, Eiy, ..., Eiy).

Given a n-singular simplex &, we will say that the p-singular simplex
coL(Ej, ..., Eip) is a p-face of ©.

Now we are able to define an operation called the "cup product”
SHX) x ST(X) — SHHM(X)
(c,d) -c ud
as follows : for each (n+m)-singular simplex ¢ we have
<0,c ud>=<60L(Ep, .., En,c>.-<06oL(Ey, .., Enem), d > . (D)

This means, intuitively, that ¢ U d acts on & by letting ¢ act on the "front"
n-face of ¢ and d on the "back" m-face of o, and then multiplying the two
numbers thus obtained.

The r.h.s. of (1) is the product of two real numbers. Considering the
first of these as a coefficient, we could write

<0G,c ud>=<<0oL(Ey, ..., En),c>06 o L(Ey, ..., Enem) , d>.

It is natural then to define an operation, called the "cap product”

Sn+m(X) X SUX) = Sm(X)
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Mm,c) =M nc

which, for a (n+m)-singular simplex &, is such that
C NCc=<0 OE(EO, ceesy En), cC>0 OQ(EH, ceey En+m)

and which extends to an arbitrary (n+m) singular chain 1 by linearity.
Intuitively, ¢ n c is the "back" m-face of ¢ with a coefficient given by the
action of ¢ on the "front" n-face of 6. Clearly the support of 1 N c is
contained in the support of 1, i.e.

| m ~elcml.
Moreover one has :
<Mn,cud>=<mn nc,d>.
3. DEFINITION OF SINGULAR HOMOLOGY AND SINGULAR
COHOMOLOGY
We define a "boundary operator” as a homomorphism
dn : Sn(X) = Spn-1(X)
such that for every n-singular simplex o,

n
0o = Y (-1)i GoL(Eg, .y i, ..En),
1=1

where ﬁi means "omit E;". So dno is the sum of all the (n-1)-faces of o,
taken with appropriate "orientation".
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If we define the space of n-singular cycles by
Za(X) =ker dp
and the space of n-singular boundaries by
Bn(X) =Im dn+1,

it is not difficult to see that all boundaries are cycles, i.e. Bp(X) < Zp(X).
The quotient space

Hn(X) = Zn(X)/Bn(X)
is called the n-singular homology vector space of X.

Dually, we can define the "coboundary operator”

80 ; SH(X) — SMH(X)

<mn, 8% >=<dm, c> (2)
for any (n+1)-singular chain 1 and any ¢ € S*(X).
We can analogously define the space of n-singular cocycles
Z"(X) = ker d",
and the space of n-singular coboundaries

B™(X) = Im §™1.
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Since BM(X) < Z™(X), we can define the quotient space
HY(X) = Z"X)/B"X)
which is called the n-singular cohomology vector space of X.

The above notions can be generalized as follows. Let A be a
subspace of X. Define the set of n-singular chains in X relative to A as

Sn(X,A) = Sn(X)/Sn(A).

Since the boundary operator &p : Sp(X) — Sp-1(X) reduces to the boundary
operator Oy : Sp(A) — Sp-1(A), it also induces a boundary operator

On : Sn(X,A) = Sp-1(X,A) @ dn [n] = [dnM]. (3)

So we can define as above the set of relative n-cycles Zn(X,A), the set of
relative n-boundaries Bp(X,A), and the relative n-singular homology

Hn(X,A) = Zn(X,A)/Bn(X,A).

Analogously to what we did before, we define the set of relative n-
cochains S"(X,A) as the set of continuous linear maps from S,(X,A) to R.
The coboundary operator

8n 1 SP(X,A) — SPL(X,A)
is defined as in (2), where Jy is as in (3). Finally we can define as above
the set of relative n-cocycles Z%(X,A), the set of relative n-coboundaries

B™(X,A), and the relative n-singular cohomology

HY(X,A) = Z%X,A)/BY(X,A).
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If A and B are subspaces of X such that one of the following
situations is true :

A=0, A =B, B=9¢
then we can define in a natural way the "cup product”

HY(X,B) x H™(X,A) — H'™(X, A U B)

by [c] u[d] =[c ud].
Similarly we can define the "cap product”
Hpm(X, A U B) x H'(X,B) = Hn(X,A)

by [z] n[c]=[znc].

4. SOME PROPERTIES

We will present here some properties of homology and cohomology
vector spaces which will be used later.

We are given the topological spaces A « X and A' X', and a map
f:(X,A) = (X',A") (i.e. a continuous function f : X — X' such that f(A) <
A’). Then for every n € W, there is an induced homomorphism

Hn(f) : HY(X,A) —» Hy(X',A"),

(whose explicit form is given by

Hn() [Z I O] = [2 I (foo)])
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which has the following properties.

(a) Hp(id) = id.

(b) Hn(gef) = Hn(g)oHn(f).

(c) If f and g are homotopic, then Hy(f) = Hy(g).

(d) Assume B to be an open subset of X whose closure is contained in
the interior of A, andleti: (X \ B, A\ B) — (X,A) be the inclusion
map. Then Hp(i) is an isomorphism.

We will now point out some consequences of (a), (b) and (c). Let us
first recall that A is said to be a strong deformation retract of X if there

exists anh € C ([0,1] x X, X) with the following properties.

h(tu) =u wheneverue A andte [0,1]
h(O,u)=u and h(lu)e A forallu e X.

Let Ac AcX. The following properties hold.

If A is a strong deformation retract of X, then
Ha(X,A) = Hp(ALA).
If A is a strong deformation retract of A, then

Hn(X,A) ~ Hy(X,A).

If = X — X is a homeomorphism such that T o =1da, then

Hn(7) : Hn(X,A) — Hp(X,A) is an isomorphism.
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Accordingly, one can identify any [z] € Ha(X,A) with the corresponding
Hn(7)[z]. Hence we will have that t([z]) < [z].

Here are some other properties.

@) Leti: (AR — (X,A)and j: (X,A) = (X,A) be inclusion maps.
Then for every n € N, there is a "boundary" homomorphism

3y : Ho(X,A) — Hp(A,A)

such that the sequence

s A A k) P o &) B9 peca) 8

1s exact.

(f)LetAc AcXand Alc AcX. Iff: X - X isa
continuous map such that f(A) < A'and f(;&) C 1&', then

dn o Hn(f) = Hn-1(f] o) © Jn.

g) For any point x in X, Hpa({x}) is trivial if n > O, while
Ho({x}) =R.

(h) If [z] € Hn(X,A) , there exist Xg and Ag compact such that [z] 1s
the image of the homomorphism Hp(X0,A0) - Hn(X,A) induced by
inclusion.

Eilenberg and Steenrod proved that the properties (a) - (h)
characterize homology theory.

155




Appendix 2

Here are some consequences of (a) - (h).
If Bm is a closed ball in Rm and S™ ! is its boundary, then

Hl’l(Bma Sm—l)
is, for n = m, isomorphic to R, and is trivial otherwise.

(Kiinneth formula). If X, Y are topological spaces and A < X, then
Hn(XxY, AxY) = @®p+q=n [Hp(X,A) ® Hq(Y)]
and the same formula holds for cohomologies, too.
The cup and the cap products are bilinear operations and they are

invariant under continuous deformations.
Finally let us define the Poincaré polynomial as

P(t,X,A) = Y, dim Hp(X,A)tn
n=0

whenever for every n € N, dim Hp(X,A) is finite and is equal to zero for
all n sufficiently large.
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