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Introduction

Any fundamental understanding of the microscopic properties of a solid
surface requires a reasonably detailed model of the atomic geometry. It
is well known that for many metals and semiconductor surfaces the two
dimensional periodicity of the outermost layer is not identical to that of an
equivalent parallel layer in the bulk ( “peconstruction”) and that the spacing
between adjacent layers in the surface zone is not the same as in the interior
of the crystal ( “relazation”).

Surface reconstruction was first observed about 30 years ago by LEED
(Low-Energy-Electron-Diffraction) on studies of clean Si and Ge crystals,
and it is now recognized as a common phenomenon on semiconductors.
By contrast, for clean metal surfaces, it was thought that reconstruction
was not important since until fairly recently the only known examples were
the low index faces (100) and (110) of Ir, Pt and Au. But more recently,
curfaces of a number of other metals, including the (100) surface of Mo, W,
V, Cr and Al and the (110) one of Al, have been reported to reconstruct
spontaneously [1], even if for some of them the reconstruction phenomenon
seems to be attributable to the non perfect cleanness of the surface. Also
the close-packed Au(111) has been seen to reconstruct. Furthermore it has
become evident that in many systems the presence of chemisorbed species
can induce a rearrangement of the outermost metal atoms.

Thus the reconstruction phenomenon, is not only of fundamental inter-
est in studying atomic geometry, electronic structure, electronic density of
states, electronic work function, surface phonons, surface phase transitions,
some phenomena of crystal growth and epitaxy, but may be essential also
for the understanding of the nature of the adatom-substrate and adatom-
adatom interactions in metals.






The experimental evidence for surface reconstruction has come primar-
ily from investigations by LEED and, more recently, by HEIS or RBS (High
Ton Scattering or Rutherford Backscattering), RHEED (Reflection High
Energy Electron Diffraction), FIM (Field Ion Microscopy), TEM (Trans-
mission Electron Microscopy), TED (Transmission Electron Diffraction),
STM (Scanning Tunneling Microscopy) and by HAD (He-Atom Diffrac-
tion). Additional, but less direct information has been obtained by correla-
tion of structural data with measurements concerning the surface electronic
structure, that is, photoemission and work function, and with chemisorp-
tion studies involving the kinetics of adsorption, diffusion and desorption,
and surface phase diagrams.

It seems clear that surface reconstruction is driven by the tendency to-
wards minimum surface free energy. However, an accurate calculation of
the free energy from first principles is very difficult and theoretical predic-
tions of the equilibrium geometry of metal surfaces are almost completely
lacking. Only some phenomenological approaches have had success, as it
will be clear further.

The experimental evidence suggests that reconstructive rearrangements
are favoured on fcc metals, whereas displacive rearrangements (i. e. rear-
rangements in which no interatomic bonds are broken and no new ones are
formed) are favoured on becc metals.

The preferred models for the (fcc) noble metals Ir, Au and Pt surface
reconstructions are based on the assumption that the surface atoms tend
to form a close-packed [111]-like configuration. The reconstructed surface
then has fewer “dangling bonds” per surface atom. Obviously, this cannot
be true in general, since no reconstruction is seen on clean Ag and Pd
surfaces, for example. The explanation of the displacive rearrangement on
clean W(100) and Mo(100) also depends on a detailed understanding of the
surface electronic structure.

This thesis focuses on gold, which stands out for its remarkable recon-
struction properties. In fact, it is the only metal which exhibits reconstruc-
tion on all its low-index surfaces, including (111).

Reconstruction, just like many other bulk and surface properties of met-
als, cannot be described by simple models based on pairwise interactions.
On the other hand, first principle methods, fully taking into account the



presence of conduction electrons, require a considerable computational ef-
fort to study systems with N ~ 100 atoms, and cannot be used for much
larger systems, such as those required to study reconstructions with large
unit cells. To fill this gap, several phenomenological many-body scheme,
able to mimic the effects of electrons in metals, have appeared in the last
few years. One of these schemes, reviewed in detail in Chapter 1, is the so
called “glue-model” introduced by Ercolessi, Parrinello and Tosatti. The
main idea behind this model consists of introducing an energy dependence
of each atom upon its coordination, which in turn is assumed to be a quan-
tity characterizing well the electronic environment around the atom. This
mechanism seems to be particularly well suited to model noble metals.

Chapter 2 contains a review of previous applications of the glue model,
by Ercolessi et al., to bulk and surface properties of gold. In particular,
the behaviour of Au(100) surface reconstruction is characterized by the
superstructure (1 x 5), which takes into account the reconstruction in the
fivefold direction and by the (34 x 5) one, that considers also the possibility
of reconstruction in the multifold direction. Also the Au(110) missing-row
(1 x 2) reconstruction is reproduced in the glue scheme.

In Chapter 3 we focus our attention on Au(111) surface not previously
studied. First of all the complex experimental and theoretical situation will
be reviewed. There have been various attempts to explain its superstructure
(p x V/3) with p ~ 23. In some of these the epitaxy between the first and
the second layer is characterized by an alternance of fcc and hep domains
separated by “soliton” walls. In the second part of this Chapter the glue
model, coupled with a standard molecular-dynamics strategy, is used to
search the optimal structure of Au(111) surface at T = 0. It is found to
be reconstructed, in qualitative agreement with known facts. With this
simulation, we also investigate the low temperature properties, while high-
T phase transitions [2] cannot be pursued due to our small size box and
short simulation times.

Iu view of the satisfactory description which the glue model yields for
all low-index surfaces of gold, one is encouraged to try to use the same
model to study higher index surfaces. Au(100)- and Au(111)-vicinals ap-
pear particularly interesting, due to the possible interplay effects between
steps and reconstruction. We have chosen to investigate the (/,1,1) family
of Au(100)-vicinals (Chapter 5), and the family of Au(111)-vicinals (Chap-
ter 6).



Before treating gold vicinals, we review (Chapter 4) some general physi-
cal properties of vicinal surfaces. In particular, we describe the Wulff polar
plot of the surface free energy as a function of the orientation of the vici-
nal and the associated construction of the equilibrium crystal shape. The
Herring criterion, for which a vicinal chooses to form a “hill and valley”
structure or regular array of steps is also reviewed, together with the be-
haviour of vicinal surfaces at finite temperature (roughening transition).
At the end of the Chapter, what is known experimentally about the two
classes examined of gold vicinals is reviewed.

Our main observation, which is further pursued quantitatively in Chap-
ters 5 and 6, is that the presence of reconstruction on the low-index faces
must induce an effective locking force between the steps. In particular,
steps may rearrange themselves so as to form terraces, whose length is such
to accommodate an integer number of reconstruction unit cells. Therefore,
certain “magic” vicinal surfaces must be preferred to others, and should
ubiquitously appear in the faceting habit of the crystal.

Chapter 5 contains our results for the vicinals of Au(100). The main
result is that two magic vicinals are expected, namely (5,1,1) and (11,1,1),
in perfect agreement with experiments.

Chapter 6 describes our studies of the Au(111) vicinals, where we do
not find similarly sharp magic vicinals, but rather a slight preference for
vicinals, where terrace lengths are multiple of the basic (111) reconstruction
cell length. This finding may, in fact, explain Kaiser and Jaklevic’ s STM
data [3], where steps have been observed in perfect registry with the basic
reconstruction period.

At the end of the thesis (Chapter 7) further comments on our results
are reported, along with some possible outlooks.



Chapter 1

A review of the “glue” model

1.1 The failure of pair potential

It has been known for a long time the theoretical inadequacy of the
model, used to describe the cohesion of solids, according to which the metal
is composed by single entities (undeformed atoms or molecules) with a pair-
wise interaction. The main physical feature of a metal is the multitude of
conduction electrons that constitutes a sort of quantum mechanical “glue”,
which in no way can be taken in consideration by a pairwise model.

In spite of the absence of any theoretical foundation, the pairwise model,
which arranges a center of force in every lattice position, has been for long
time the only way to do many predictions, at least for bulk properties.
However it has many shortcomings:

(a) it cannot account simultaneously for the cohesion and the melting
behaviour of a metal. In fact with this model the ratio C = E./kgThr,
(where E, is the cohesive energy per atom and Ty is the melting tempera-
ture), which is around 30 in metals (and 10 in rare gas solids), turns out to
be always nearly 10. This means that a system with the correct cohesion is
stiff compared to the real material and melts at a much higher temperature,
while a system with a nearly correct Thr has a cohesion too low [4].

(1)) By the pairwise model, it results that the vacancy formation energy
E, is nearly equal to the cohesive energy E., while in metals F,/E. results
about 1/3 [5].

(¢) It fails in reproducing the behaviour of the elastic constants of met-
als. In fact it predicts the “Cauchy relation” [6] between two of the three



independent elastic constants in a cubic crystal

C"lz = 6144 (11)

while the real ('44 (one of the shear moduli) is much lower in metals,as also
suggested by the high ductility and malleability of these materials.

(d) It fails completely in explaining surface properties, especially sur-
face reconstructions; besides, it leads to an outwards relaxation of the first
surface layer, while metals usually show the opposite behaviour.

(e) It predicts an extremely high evaporation rate near the melting tem-
perature, as seen from molecular dynamics simulations [7,8]. This results
in a high value for the vapour tension.

Some of these difficulties can be solved by adding a volume dependent
term to the total potential energy [9,10]; this correction contains a linear
term in the volume

V=1 S ) +me 0 (12
iJ,J#e

If p, = %(C’lg —(las), (“Cauchy pressure”) the correct behaviour of elastic
constants can bhe predicted.

We conclude therefore that, in order to give a realistic description of the
strong cohesive character of the metallic bond and of the defects formation,
in particular of the observed structure of real metal surfaces, we cannot
disregard the presence of the conduction electrons, whose “gluing” role can
in no way be simulated by a pairwise interaction.

So, in order to consider the electronic effects, a many-body term must
be added to the interatomic two-body potential and this must be density
dependent. This fact can be explained intuitively, considering that the
common feature of every defect formation process, including surfaces, is a
local change of the atomic arrangement in the zone where the defect has
been created.

For this reason, when we attempt to model such a situation in noble
metals, the key variable to consider is the local atomic coordination, that is
the number of neighbours of a given ion. Assuming that the coordination
around an ion represents in some way the amount of local electronic density,
we can take this coordination as the variable characterizing the environment
in which the ion is situated. So we can think that when its coordination



is nearly equal to the bulk coordination, the ion moves in a normal way,
interacting with the other ions through an effective two body-potential.
However, motions which tend to change the coordination in an appreciable
way are greatly discouraged by their high energetic cost. Such a mechanism
cannot be modeled by two-body forces because a two-body scheme implies
a linear dependence of the energy of an atom upon its coordination. An
essential feature of an alternative scheme must be the non-linearity of this

dependence.

1.2 The glue Hamiltonian for gold

1.2.1 The glue concept

Many attempts have been done to construct Hamiltonians which include
a many-body term. One of such schemes is that developed by Ercolessi,
Parrinello and Tosatti (EPT) [11,12,13], where the total potential energy
of the system is written as:

V=2 Y Blrg)+ X Un) (1.3)
i, #1 i
A standard two-body part ¢(r;;) is still present together with the new many-
body term U(n;), which replaces the volume dependent term in Eq.(1.2);
it is a function of the coordination of each atom i and associates an en-
ergy value to this coordination, including the previously discussed “gluing
effects” of the conduction electrons; for this reason it has been named “the
glue”.
It is natural to impose U(0) = 0. In this way the total energy is referred
to that of a system of N atoms at rest, infinitely far each from the other.
The coordination n;, for each atom 7 in the system, is constructed as a
superposition of contributions coming from the neighbours of atom ¢

ng = Z p(ris)s (1.4)
S
where p(r) is a short-ranged, monotonically decreasing function of the dis-

tance. This equation essentially counts the number of neighbours of atom :.
This is done in a continuous way, so that nearby atoms give a contribution

~1



to n; larger than far atoms. The final result for n; is a real number that
generalizes the usual idea of coordination.

Some points to be underlined are [11,14]:

(a) the units for p (and n) are arbitrary; in particular, given p(r) and
U(n), p(r)=cp(r) and U(n) = U{n/c) describe the same physics, giving rise
to the same forces for an arbitrary value of c. As a consequence, we have
the freedom to define a scale for n. We can take, conveniently for a bulk
fec or hep atom in an undistorted lattice n, = 12. If we think to apply the
equation for n; to such an atom, we can have a normalization condition for
p(r). In fact, if p(r) has a range limited to the first neighbours, we have:
n, = 12 = 12p(d) (from (1.4)), where d is the first neighbours distance,
from which it derives the normalization condition p(d) = 1.

(b) There is an important invariance property of the glue Hamiltonian:
it gives rise to forces, which remain unchanged when the functions ¢(r),
U(n), p(r) are 1ep1aced by &( (r), U(n), p(r)

¢(r) = ¢(r) + 2Ap(r) (1.5)

U(n)=U(n) — An (1.6)

and A is an arbitrary real number.

This fact can be seen immediately by substituting such functions in the
glue Hamiltonian (1.3). From this invariance, many examples take to the
Conclusion that it is not possible to attribute a physical meaning to either
[/{(n) or ¢(r), when considered separately, in spite of the apparent well-
defined distinction between the two and many-body term. Only invariant
quantities can be related to physical properties. Examples of such quantities
are /"'(n), which is directly connected to many-body effects as shown below,
and the “effective potential”

$(r,n) = ¢(r) + 2U"(n)p(r) (1.7)

which defines, roughly, an effective pairwise interaction in an environment
characterized by an average coordination n. A particularly convenient con-
dition that can be imposed, removing the ambiguity, is

U'(ny) = 0. (1.8)



With this condition U(n) has a minimum in correspondence with the
bulk coordination n,.

Very briefly, it can be seen that the glue Hamiltonian removes the
Cauchy discrepancy in the elastic constants. In fact the Cauchy pressure
results [14]

%(Ou — Cag) = i\g/—gpl

Among the others, the glue Hamiltonian solves also the problem of the

()27 (12). (1.9)

low vacancy formation energy compared to the cohesive energy; in fact the
former, neglecting relaxations, is the energy associated with the breaking
of 12 bonds, and the change of the coordination of the 12 neighbour atoms
from 12 to 11, and it can be expressed as

E, = —66(d) + 12(U(11) — U7(12)) (1.10)

while the latter is

E. = —[6¢(d) + U(12)] (1.11)
giving rise to (E,/E.) <1, as a consequence of the non-linearity of U(n).

As it will be shown, the glue Hamiltonian also explains the presence of
surface reconstruction on noble metal surfaces.

On the other hand, as seen by calculating the dynamical matrix for the
glue Hamiltonian, the glue term does not have any effect on the transverse
phonon frequencies, which are completely determined by the two-body po-
tential [15]. This can be understood intuitively by noting that the coordi-
nation remains roughly constant in a transverse mode, while it changes in
a longitudinal mode.

From this fact it derives that the elastic constants associated to the
transverse modes (i. e. the shear moduli) are also determined only by the
two-body part.

1.2.2 Construction of the glue Hamiltonian for gold

The three functions ¢(r), p(r), U(n), appearing in the “glue” Hamilto-
nian, have been constructed by fitting a certain number of physical quan-
tities (expressed by the three functions now nominated of the glue Hamil-
tonian) to the experimental values for a given material (in our case gold).

9



For the gold fit, a fcc crystal structure, a first neighbours range for ¢(r)
and p(r), the normalizations for n and p (n, = 12, p(d) = 1) and the
condition U’'(n,) = 0 have been assumed.

The two most important expressions, that can be found from the glue
Hamiltonian and can be used in the fit, are those for the cohesive energy
(1.11) and for the bulk modulus of the system

B = (%‘-?—) "(d) + (%@) p(d)2U"(12). (1.12)

In the fitting procedure, the following experimental data have been fitted
exactly [11,14]:

(1) T = 0 lattice parameter a, = 4.0704 A.

(2) Cohesive energy E. = 3.78 eV /atom.

(3) Surface energy o = 96.8 meV /A%, This value has been fitted on a
not reconstructed, but relaxed (111) face.

(4) Bulk modulus B = 1.803 10*? dyne/cm®.

(5) Frequency of the transverse phonons at point X of the Brillouin
zone, vp(X) = 2.75 THz.

Moreover the following quantities have been reasonably reproduced:

(6) Vacancy formation energy E, = 0.95 eV.

(7) Thermal expansion coefficient o = 15.8 107¢ K™,

(8) Melting temperature, T3s = 1336 K.

(9) Instability of the ideal surface structures.

(10) Phonon dispersion relations, even if they can be fitted only in an
approximate way, as it is well explained in [14].

The analytic forms used for the three functions of the glue Hamiltoni-
ans and the details of the fit are discussed elsewhere [14]. What we want
to remark is that these details are generally dependent on the material
which is to be reproduced, so that different materials may require different
procedures and different analytic forms.

Most of the quantities listed above allow a determination of the functions
or of their derivatives only at some particular values of the arguments. For
instance, Eq. (1.11) connects the cohesive energy with ¢(r) at r = d and
U(n) at n = 12.

In constructing the three functions ¢(r), p(r), U(n) there remains a
large freedom in the shape of these functions far from these fitting points.
Therefore it is possible to construct many different triplets of functions, all

10



of which fit the same quantities listed above, but describe different physi-
cal systems. Anyhow one can confidently hope to find (by some powerful
selective tests) in the large space of all the possible choices, a realization
with overall properties similar to those of the real material.

Thermal properties constitute the most useful test. In fact, when the
atoms vibrate, they sample wide regions of the three functions, so that
the behaviour of the system depends on their whole shape, ever relatively
far from the fit points. The thermal test is particularly severe at high
temperatures, where anharmonic effects play an important role. In fact
properties like the thermal expansion coefficient or the melting temperature
are very sensitive to tiny details in the shape of @, p, U. For instance, the
slope of the core-core region in the 2-body potential turns out to be crucial
in determining the melting temperature.

Besides the thermal properties, other stringent tests for the glue Hamil-
tomian are linked to the description of defects and in particular of surface
properties.

To resume, thermal and surface properties depend on the detail of the
glue Hamiltonian in a complex way, so that they are not easy to fit. How-
ever, by using molecular-dynamics and a trial and error approach, it is
possible to reproduce them rather accurately. This work requires a suit-
able parametrization of ¢, p, U flexible enough to allow shape variations of
the functions within the constraints given by the fit points.

From what it has been said before, it is clear that it is not possible to
find an “optimal” realization of the glue Hamiltonian. The search for such
an Hamiltonian terminates when a satisfactory realization is found.

The shapes of ¢(r), p(r), U(n), obtained by this procedure are shown
in Fig. 1.1.

Some remarks are to be done:

— ¢(r) is an usual two-body potential with a cutoff 7, = 3.50 A,

$o = ¢(d) is the depth of the potential, which, using (1.8), determines
the partition of the cohesion between the two-body part and the glue part.
It also determines the anharmonicity of the potential: a deep potential is
more harmonic than a shallow one. This has visible effects, for instance, in
the thermal expansion coeflicient.

— p(r) itself cannot fit any physical property. Only some combinations
of p(r) and U(n) are related to quantities of the physical system (like, for
instance, the equation of the bulk modulus (1.12), which has been used in

11
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Figure 1.1:

The three functions (a)é(r), (b) p(r), (c) U(n) optimized for gold.

the fit).

The cutoff region between 3.5 A and 3.9 A has been located in corre-
spondence with the minimum between the first and second neighbours shell
in the pair correlation function (as determined by high T simulations).

The shape of p(r) in region around r = d is very important because
it determines how the atoms gain and loose coordination when their mu-
tual distances are varied. Since the changes in the energy associated with
coordination changes are large, slight modifications on p(r) for 7 around
the first neighbours distance can have dramatic effects on the thermal be-
haviour and in surface properties. For example the presence of surface
reconstructions can be switched on or off by acting on p(r) for r < d.

— U(n), the glue function, is characterized by a strong rising above
n = 12. This rise corresponds to a sort of core-core repulsion, but obtained
through the glue term instead of the two body term. This peculiar be-

haviour permits to have a system with the right melting temperature and

12



enough anharmonic to yield a realistic thermal expansion. In particular, the
core-core region is soft enough to allow large vibrational amplitudes of the
atoms (thus obtaining a realistic melting temperature); the anharmonic-
ity (which gives rise to a correct thermal expansion behaviour) is, instead,
supplied by the glue: at high temperatures, in fact, the shape of the glue
around n = 12 favours fluctuations which tend to decrease, rather than
increase, the local coordination. The system reacts by increasing slightly
the lattice parameter.

The realization of a Hamiltonian with a “hard” glue, which permits to
nmaintain a soft two body potential, favours also surface reconstructions,
involving large atom rearrangements and shrinkage of the bond lengths.

A final important remark to do is that the glue is central (or not direc-
tional), that is the glue energy depends only on the number of neighbours
around an atom, while how these neighbours are disposed is not relevant.

As a consequence, when the interaction is limited to the first and second
neighbours, the fact that the energies of fcc and hep crystal structures are
degenerate, can be attributed to this shortcoming. In fact, the first- and
second-neighbour shells contain the same number of atoms at the same
distances in the two structures, and the only difference is in the angular
distribution of the second neighbours.

However, this lack of angular forces, even if absent in other alternative
approaches, is very convenient from a computational point of view.

1.3 Other many-body force models

It should be pointed out that some alternative approaches lead to the
same scheme as the glue Hamiltonian, by starting from first principles con-
siderations. In particular, two families of such approaches can be found in
literature: one is the “embedded-atom-method” (or EAM), the other is in
connection with the tight-binding model.

Daw and Baskes [16,17,18] describe the EAM of treating metallic sys-
tems where fractures, surfaces, impurities can be included. This method is
based on the earlier “quasi-atom-theory” [16]. In this scheme an impurity
(called quasi-atom) is assumed to experience a local uniform or only slightly
non uniform environment (uniform density approximation). In other words,
each atom of the metal is seen as an impurity embedded in a host, com-

13



prising all the other atoms. In the density functional theory framework by
Hohenberg and Kohn [19], using the uniform density approximation, the
energy of this impurity can be written as a function of the host electron
density (before the introduction of the impurity) ny(7) at the impurity site

R

Eimp = F(na(R)). (1.13)

In the EAM the total energy of a solid can be calculated from the
embedding energy. So they take the following ansatz for the total energy

B = Z F(n;) (1.14)

where n; is the electron density at the site of atom ¢ of a system in which
atom 7 is missing. n; can be approximatively constructed as a superposition
of atomic densities:
ni= ) plrij), (1.15)
BNE

Here p(r) is the electron density distribution of a free atom, taken from
Hartree-Fock calculations. If we add a two-body potential to account for the
core-core repulsion, the Daw and Baskes Hamiltonian is formally identical
to the glue Hamiltonian. Also in their scheme it is necessary to use an
empirical fit procedure to find the optimal functions for a given metal.

However, the function p(r) is fixed in EAM, while it is available for
the fit procedure in the glue scheme. Another difference is that n is the
electron density in the EAM, while in the glue scheme it is simply an
auxiliary variable which is similar to the atomic coordination.

A Hamiltonian based on the same spirit as the glue Hamiltonian has
been proposed by Finnis and Sinclair [20] to calculate vacancy and surface
energies in bcc transition metals. Their Hamiltonian contains a central pair
potential and a many-body term (similar to the glue); its dependency from
the coordination n; has the analytic form

U(n) = —A/n. (1.16)

Also in this case the coordination n; depends from a density function

f(R), n; = %; f(Rij), which, with the two-body potential ¢(r), is built

14



empirically, fitting to experimental data for a perfect crystal many physical
quantities.

The particular form for U(n) in Eq. 2.16 comes from the second-moment
approximation to the tight-binding model [21].

A similar scheme in which the role played by the atomic coordination
is very important, has been developed by Tomanek and Bennemann [22].

In their model surface reconstruction is a result of the minimization of
the surface free energy, which at T = 0 reduces to the surface energy -~y
given by

1 Mz

v = = [Econ(bulk) — E.on(7)]- (1.17)

Ns is the number of surface atoms, N7 the total number of atoms in the
crystal; E.n(i) denotes the atomic binding energy of an atom at site 1.
E.on(1) is decomposed into an attractive band structure and a repulsive
Born-Mayer part.

The model assumption of a single band solid, of local charge neutrality
and the same band-shape (except for a rescaled band-width) at each site,
allows to relate the band structure energy at each site to the bulk value,
without assuming a model density of states (rectangular or Gaussian, for
instance),.which is a very simplification in the theory.

The repulsive part of E.n(i) is proportional to the coordination number
Z, and can be therefore expressed using pairwise interactions, while the
attractive part is, like in the Finnis-Sinclair Hamiltonian, proportional to
AL

They apply their general simple theory to study multilayer relaxations
at fec and bee surfaces. At the surface with a lower coordination num-
ber Zgurface < Dbulk the attractive part of E.x(i) outweighs the repulsion
and induces a surface contraction. This contraction, however, simulates a
higher coordination number Z > Zpuk in the second layer with full bulk
coordination. In this region the repulsion outweighs the attraction and
causes an expansion of the next interlayer distance. In this way a damped
oscillatory relaxation is induced in the following layers.

Within this model it has been possible to obtain damped oscillatory
multilayer relaxations and predict results for the reconstruction at clean

(110) and (100) surfaces of Ir, Pt, and Au.
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1.4 Molecular dynamics for the glue model

Standard molecular-dynamics (MD) [23] have been used to investigate
a variety of bulk and surface systems, using the glue force model introduced
in the previous Sections.

Very briefly we can say that by MD, one can manipulate a system of IV
interacting particles to bring it to the desired thermodynamic state. The
initial positions and velocities can be chosen in a variety of ways; we have
used as initia] positions regular arrays of points of opportune geometry, with
suitably randomized small displacements and all zero-velocities. Starting
from these initial conditions, the time evolution of the system is followed
by numerical integration of the classical Newton’s motion equations. If
the system under study is ergodic, thermodynamic informations can be
extracted by time averaging over runs of adequate length.

Following Rahman [23], the total energy E of such a system, which is a
conserved quantity (microcanonical ensemble), is given by:

A
E = V+§Zmirf; (1.18)

the reduction of all 7; by a factor @ < 1 will reduce the energy E and
vice versa for a > 1. The choice of a, and the frequency with which it is
applied varies according to circumstances. At this point, we can introduce
the temperature scale for measuring the kinetic energy. Writing

1 : 3

we shall say that the system has a certain “temperature” T at time ¢ to
imply that it has total kinetic energy at time ¢ equal to g—NkBT(t). The
average of T(t) over a sufficiently long dynamical run will be referred to as
the temperature of the system for that run.

Using this terminology, the reduction or increase in F, the total energy,
is achieved by “cooling” or “heating” the system. Heating the system, has
some problems; in fact if T'(¢) at any moment ¢ is high enough, the system
will dissipate by a process of evaporation or explosion, depending on the
circumstances. Also the cooling of the system has some limits. Firstly, the
factor a equal to 0 is the ultimate in reducing the temperature at time ¢
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to 0; however, immediately afterwards, the temperature will start rising by
conversion into kinetic energy of some of the potential energy of the system
at time ¢: thus, drastic temperature reduction cannot be achieved in one
step; secondly, as the system 1is cooled, it gets more and more sluggish and
takes longer and longer to sample the configuration space available to it.

It is therefore clear that MD can be also effectively used as an energy
minimization tool, by removing kinetic energy from the system until the
particles have reached an equilibrium position. To this purpose, we have
used two different methods:

(a)“quenching”, by which the system is driven, by a direct cooling,
towards the nearest (or one of the nearest) energy local minimumn; this is
practically obtained by scaling the velocities by @ < 1 at each time step of
the simulation;

(b)“simulated annealing”, by which the system is thermally annealed
at finite temperature, and then gradually cooled down to T = 0.

We must observe that with the quenching procedure, even if faster, the
danger of trapping in a local energy minimum is high. Simulated annealing
requires more computer time, but energy barriers can be overcome and
the real energy minimum can be reached, if it is deep enough, even if the
initial conditions were very far from this minimum. With respect to this,
energy minimization using simulated annealing offers a clear advantage over
traditional methods [25].

The problem of MD is to convert differential equations into a set of
difference equations, which enable us to go from time ¢ to t + At with a
suitably chosen At. This can be done with various algorithms. In our
calculations, it has been used a fifth-order predictor-corrector algorithm,
which can be found in a report by Gear [26].

The calculation of the forces is the most consuming part of the whole
simulation, so that particular attention has to be paid so as to make it as
efficient as possible. For this reason, the three functions ¢(r), p(r), U(n)
are pre-calculated and stored in tables, and quick numerical interpolations
are performed by the program. Square-root computations can be avoided
by tabulating ¢(r) and p(r) at constant 7? (instead of r) intervals.

The standard MD programs, based on two-body interactions, can be
easily extended to include the glue forces [14], given by:



TT ! ! / 7’7
—= =3 (U (na) + Tyl (r) 2 (1.20)
t J 1]

Fi=-VV==3 ¢(r)
j

The glue Hamiltonian is particularly convenient from the computational
point of view, since the atomic positions appear only in the form of distances
between pairs. In spite of the intrinsic many-body character of the glue,
there are no explicit three-body or more complex terms in this expression.

To include the glue forces in MD programs, the number of computations
required with respect to a pairwise system is roughly doubled. The proce-
dure requires two passes over all the interacting pairs. In the first pass, the
two-body forces and the total coordination are calculated for each particle.
In the second pass, the glue forces are computed. This splitting is necessary
because all the coordination n; must be known to calculate the glue forces.

An important physical remark to do about the expression which gives
the forces, is that F, depends on the value of n; for all atoms j, whose
distance from i is less than 7., the cutoff of p(r). But n;, in turn, depends
on the positions of all atoms k& within a distance r,, from j. Thus, an
atom k, at a distance up to r,, influences the force acting on ¢, so that the
“effective interaction range” of the glue forces is twice the range of p(r). In
a fec structure, this means that a first neighbours ranged p(r) can couple
together neighbours up to the seventh shell.

A procedure, which avoids the expensive computation, at each time
steps, of all the N(N — 1)/2 distances is that invented by Verlet. One can
state that for several At of MD, the neighbours up to a distance 7., which
is linked to the cutoff of the potential will be, in large majority, unchanged.
A few move out of range 7. and a few will move within range. Thus, if at
any moment we construct a list of neighbours not up to r, but up to r. + 5,
where S denotes a skin thickness, then for several At after that moment,
we need to consult only this list (and not the whole system) to identify the
neighbours up to 7. and to throw away those beyond r.. It could be shown
that there is an optimum balance between the value of S and the number
of At for which the list, once made, may be used.

The Verlet method is useful when dealing with moderately large sys-
tems. For very small systems (N from 100 to 200) such procedure is not of
any use, and for very large systems ( IV larger than 5000) further elaboration
of the procedure becomes necessary.
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For what concerns periodic boundary conditions (pbc), that enable us to
extend a parallelepiped box to infinity by an integral number of translations
in the three directions, one can observe that for potential functions which
are short-ranged, as our glue, compared to half the box size, the effect of
phe will be rather small.

In visualizing a system with pbc, it may be convenient to think in terms
of a box with walls and particles “entering” from one face when leaving from
the opposite face. However, since the box can be drawn anywhere in space,
as long as it has the correct size and it is never tilted, one can always think
of any particle as being at the center of the box rather than at one face or
another. Both ways of visualizing pbc are equally valid.

Another consideration to do is that, when a particle goes beyond +L/2,
where I is the measure of the box supposed cubic, it has to be reset so as
to bring it back into the box from the opposite face. This operation simply
recognizes that the image is already in the box and transfers the particle
tag to its image.

When we study by MD a physical system with surfaces, we usually
represent it by a “slab”, i.e. a seminfinite system composed by a certain
number of parallel layers with pbc only in the two in-plane directions (z
and y) of the layers. In the direction z not subjected to pbc we choose the
thickness of the slab in such a way that the two surfaces do not interact,
or equivalently that the physical quantities do not depend any more on the
chosen number of the layers.
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Chapter 2

Previous applications of the
glue model

2.1 Bulk and surface properties of gold

Using the standard MD technique, discussed in Section 1.4, the bulk
thermal properties of gold have been studied, within the glue Hamiltonian.
We can list very briefly the most important results, referring for a detailed
description to Ref. [14].

(a) It has been proved the stability of the fcc structure of gold against
the bee structure up to the melting temperature, in the absence of pressure
or stress. Such transition might happen, in fact, also spontaneously if
at a certain temperature the two phases have the same free energy. For
this purpose, a version of the MD program, using the Parrinello-Rahman
technique [24], in which changes in the shape of the MD box are allowed,
has been used.

(b)The variation of the lattice parameter with temperature is in good
agreement with experimental results.

(¢)The melting temperature obtained, Tpr = 1357 +5 K, is well compa-
rable with the experimental value Ty = 1336 K. T has been determined
as the temperature at which a liquid-solid interface remains stationary.

(d) The pair correlation function of the liquid has been calculated. The
results show that there is a good agreement on the position, height, and
width of the first peak. The calculated g(r) has, however, the first minimum
too deep and the second shell slightly too close when compared with the
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experimental g(r).
(e) The vacancy formation energy, taking into account the relaxations
of the atoms around the vacancy, is also reproduced fairly well.

Besides bulk properties, the glue model can reproduce well also some
particular gold surface properties, in particular the occurrence of recon-
struction on all low Miller index surfaces (100), (110), (111) [28,29]. While,
for Au(100) and Au(110) we report in the two next Sections the most im-
portant results predicted by this model, we refer to the next Chapter for a
detailed description of all problematics concerning the Au(111) surface.

As a general consideration valid for all surfaces, to get the T' = 0 surface
energies o, we have used the above described energy minimization strategy
based on MD. To compute o, we have used n layers-slabs, with suitable
dimensions in = and y directions (M x cL), where pbc are active. M is the
size in z-direction, L in the y-one (in units of d =2.88 A, first-neighbours
distance); c is a geometrical factor, which depends by the geometry of the
surface examined. ¢ is given by

E(N)— Ne,

g = T, (2.1)

where N is the total number of particles in the sample, E(N) the total
energy of the slab (computed by MD), €. the cohesive energy per atom
(3.78 eV/atom for Au), A the slab area and the factor 2 accounts for the 2
surfaces on the slab.

The zy size of the MD box must contain, of course, an integer number
of surface unit cells. Surface reconstructions with long periodicities can
therefore be studied only by using very large, appropriate MD boxes.

Moreover, reconstructions in noble metals usually imply the presence of
a number of atoms N larger than in the corresponding non-reconstructed
structure. Since N is conserved in MD, the extra atoms must be added
from the beginning. This has been done in different ways, as discussed in
more detail in the following.

For completeness, we recall that the glue model has been applied also
to small clusters of atoms [14,27], where surface forces presumably play
a crucial role in determining the structure. Usually reconstructed surface
layers quite often yield a better energetics. Generally, cuboctahedra result
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to be energetically favoured. However, amorphous clusters of high stability
are also uncovered, which for N < 200 become favoured over clusters with
a “crystalline structure”.

2.2 Au(100) surface reconstruction

2.2.1 Experimental studies

It is now well established that the Au(100) surface reconstruction is
characterized by a close-packed hexagonal overlayer on a square substrate.
The first, low resolution LEED measurements indicated a (1 x 5) recon-
struction cell [30,31]. This pattern was interpreted as due to a geometry
where six rows of atoms lie on top of five [011] (henceforth y-direction) rows
of substrate atoms in a [011] (henceforth z-direction). This arrangement
requires a 3.77% contraction of a perfect triangular lattice in the 6-onto-5
direction.

Later, LEED measurements with improved resolution [32] suggested
(20 x 5) as a better unit cell for the reconstruction. This was interpreted
to imply a small contraction also in the z-direction, so as to accommodate
one extra row over 20 [011] substrate rows.

In a RHEED study Melle and Menzel [33] confirmed the previous (20 x 5)
model, although they mentioned some discrepancies from the LEED results
in detailed points.

Subsequently LEED [34] and He scattering studies [36] suggested a much
larger unit cell such as ¢(26 x 68).

In a recent STM real space investigation Binnig, Rohrer, Gerber and
Stoll [35] propose a (226 4°8> unit cell where —5 < z < 0, implying the
possibility of small rotation (about 0.1 degrees) of the whole overlayer over
the substrate.

Very recent TED and TEM analysis [37] confirm the rotations of the
hexagonal lattice with respect to the underlying square lattice. The hexag-
onal lattice results contracted by about 3.6% and 3.3% in the multifold and
fivefold directions respectively. The superstructure has been found (p % q)
with p >~ 28 and ¢ ~ 5 and it has been interpreted as a periodic arrangement
of the two kinds of the (1 x 5) reconstruction.

It may be interesting to observe that in TEM and in TED analysis the
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periodicity of the superlattices in the five-fold direction fluctuates largely
around g = 5 and reaches even ¢ = 4 and ¢ = 6. This uneven periodicity
suggests that the periodicity is bounded by values which are commensurable
with the lattice constant.

The long periodicity of 48 deduced by LEED, for example, can be due to
a periodic array of commensurable periodicity (¢ = 565565565..) giving rise
to an average value of 5.3 (48/9). Unevenly spaced superlattice fringes are
often seen on narrow terraces in TEM images, while they are not noticed
on experimental studies of flat rotated superlattices. So this effect might
be caused only by steps and might have been concealed on flat surfaces.

These detailed studies by TEM and TED have clarified also the problem
of the rotation of the hexagonal lattice with respect to the underlying square
lattice, which seems an intrinsic peculiarity of the flat Au(100), going to
disappear on stepped regions.

Profile Imaging [38] studies also confirms the (28x5) supercell, with a
corrugation of the topmost layer with a period of about 14 A. The observed
amplitude of the corrugation (0.3 — 1.1 A) is similar to the values (0.4 —
1.2 A) reported by STM [35].

Detailed experimental studies on stepped reconstructed Au(100) have
been also done, and they will be reviewed in Chapter 4.

2.2.2 Au(100) surface reconstruction at T=0 in the
glue model

An investigation of the Au(100) surface structure predicted by the glue
Hamiltonian has been carried out previously using standard MD [12,13].
This has been done by studies of 14-layers slab with in-plane periodic
boundary conditions and initially 5x5 = 25 atoms per (100) plane. The
area of the slab and its square shape have been kept rigid to prevent trans-
formation into a (111) slab.

This procedure has been initially applied to the clean, unreconstructed
(100) faces. In the first atomic layers, after annealing, one can note that the
surface atoms have shrunken together, leading to formation of close-packed
stripes (five atomic rows each) separated by a gap. This configuration has
a surface energy of 109.6 meV /A%, This gap in turn can be seen as leading
to the formation of two atomic steps, here very near to one another (as it is
seen in Fig. 2.1). The second layer has remained a basically perfect (100)
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Figure 2.1:
Configurations of (100) slab after thermal equilibration and subsequent annealing.
Two molecular dynamics cell in [011] direction with 3 layers in the [100] one are
shown.
(a) The starting configuration was a perfect (100) slab. The atoms have shrunken
in 5-rows wide stripes, leaving a gap (indicated by the arrow) in between; o = 109.6
meV /A%
(b) Respect to (a) 5 atoms have been added in the starting configuration. They
are absorbed, giving rise to a 20% denser quasi-triangular reconstructed first layer
with a ABCCBA stacking; o = 102.3 meV /A2
(c) Respect to (b) the registry is different and the stacking is ABCDC B; o = 102.6
meV /A2
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Figure 2.2:

Surface energy versus the adatoms present in the starting (5 x 5) (100) slab. The
minimum is at n =5 (¢ = 102.3 meV/A?).

plane.

Iustead. by a careful quench of a perfect crystal, not preceded by heat-
ing and thermal equilibration, a relaxed but perfect (100) surface has been
produced. Its surface energy, however, is higher than that of the configura-
tion with the gaps (128.5 meV/A? vs. 109.6 meV/A?). Furthermore, such
structure is unstable.

The formation of close packed stripes on the annealed samples is a clear
indication that the Au(100) surface wants to reconstruct into a denser layer,
even within the constraint of this small 5x5 cell. To test this, it has been
done a series of runs where a number n of extra adatoms is added on top
of the first layer; n is varied fromn =1 ton = 25. For n small, the extra
atoms are absorbed into the first layer giving rise, after annealing, to a
denser packing. A minimum in o(n) is obtained for n =5 (102.3 meV/A?)
(Fig. 2.2).

The fact that the minimum in o(n) is obtained for n =5 in a (5 x 5)
cell, has brought to the conclusion that the best configuration is given by
a (1 x 5) superstructure with 6-onto-5 atoms in y-direction [011]; o for this
configuration is 102.3 meV/A? (Fig. 2.1).

The amplitudes of the corrugation predicted for the first four layers
are §; = 0.47 A, 6, = 0.21 A, 83 = 0.13 A, 64 = 0.08 A. The relaxations
of the distances between average layers positions are Ady,/dS, = +3.6%,
Ady/dSy = +2.2%, Adse/dS, = —0.2%. The increase of the distance be-
tween the first and the second layer, and the second and the third may
appear unusual for a metal. However, it is an inescapable consequence of
the glue Hamiltonian, where coordination plays a key-role. The first layer
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Structure o
(meV/A?)
(1x3) relaxed 108.6
(1x8) relaxed 103.3
(1x5) relaxed 102.3
(1x12) relaxed 103.2
(1x7) relaxed 103.7
non-reconstructed, ideal 143.1
non-reconstructed, relaxed 128.5
Table 2.1:

Surface energies values for several (100) geometries. (1 x 7),{1 x 12),(1 X 8) are
configurations of the kind 8-onto-7, 14-onto-12, 10-onto-8 rows, while
(1 x 3),(1x5) are of the kind 4-onto-3 and 6-onto-5 rows.

reconstruction, while not succeeding in raising the first layer coordination
to 12, has the effect of increasing that of the second layer above 12. Out-
wards relaxations of the first layer relative to the second (and of the second
relative to the third) is required just to keep the second layer coordination
from getting too high.

The stacking of the rowsis ABCCB4; a local energy minimum has been
also found at another stacking ABC'DC'B (Fig. 2.1). In this arrangement
the surface energy is slightly higher and the corrugation is larger (6; = 0.74
A). In all cases this strain is not uniformly distributed: the surface density
is higher in a hilltop row, and lower in a valley row, where the atoms are
not far from their ideal hollow site positions over the square substrate.

It has been examined also the role played by the cell size in these calcu-
lations; so various cases have been examined corresponding to the different
cell sizes, as seen in Table 2.1. All these surfaces reconstruct into a denser
overlayer, but their surface energies are all higher than the (1x5) ABCCBA
structure. We observe that the (1x4) and (1x6) cannot be realized with
a single surface unit cell because for the triangular reconstruction an even
number of rows is required in the topmost layer.

For completeness we recall briefly that also the reconmstruction in z-
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Differences of o of (M X 5)-reconstructed ABCCBA slab, as a function of M.
The two basic y registries (ABCCBA and ABCDC B) show a slightly different
behaviour.

direction has been considered, following the suggestion of many experi-
mental studies. The optimal contraction in the z-direction at T = 0 has
been searched by studying the surface energies of reconstructed (M x 5)
12-layers-slab. It has been found that generally the odd M cells cost more
energy to realize that the even M cells and that the best configuration is
(34 x 5), but the minimum of 7 is so flat as to make this precise value al-
most meaningless. Any value of M between 28 and 38 is about equally good
(Fig 2.3). In particular the surface energy of (34 x 5) is only 0.003% less
than (26 x 5), which is a unit cell very close to the suggested experimental
cell (26 x 48).

In the y-direction the best structure remains the ABC'CBA, but some
of the small distortions that take place break the exact mirror-plane sym-
metry, giving rise so, effectively to an ABCCBA structure (Fig. 2.4). All
details of the structure of this surface can be found in [13]. We want only
recall that the strain in the z-direction is concentrated in highly corrugated
regions which have a one-dimensional soliton appearance, with a width of
about 10 A. These solitons form a two-dimensional lattice six of them for
each rectangular unit cell of size (34 x 5). Except for a small distortion, this
arrangement corresponds to a centered rectangular lattice with two solitons
per cell, of size (34 x 5/3).

In the dilute limit, i.e. M very large, from the fit of the soliton-related
change in the energy Ao, it is possible to extract the soliton-chemical po-
tential (—48 meV) and the effective soliton-pairwise repulsion (1370 meV).

In the regions between the solitons, the corrugation-pattern in z, along
y-direction, shows a single-maximum-single-minimum structure (“smooth”
stripes), with a total excursion of 0.48 A, in the middle of the area; on top
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of the solitons, instead, the corrugation in z, along y, is double-maximum-
double-minimum, with a total swing of 0.80 A (“rough” stripes). These
morphological features compare well with STM experimental results [35].
The most serious difference is that the smooth stripes in the glue model are
wider than the rough stripes, while in the STM picture their width seems
nearly equal {about 20 A). This difference might be due to temperature
smearing effects.

From soliton theory, which will be explained in more detail in the next
Chapter, we expect an arctg-behaviour for the phase ¢ of the solitons,
defined for a given row as

2T
where k is an index running from 1 to 35 (number of atoms in a top row
for a bulk cell of 34), zx is the z-coordinate of atom k, d is a/V2 and b
is a constant (equal for all the rows). We have referred the phase angle
to an ideal perfect square lattice rather than to the actual substrate layer,
which is slightly distorted. It is apparent in Fig. 2.5 that the 360° total
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Figure 2.5:

Soliton phase (Eq.2.2 :) as a function of z for each row.

phase shift within a cell is achieved by a row through two distinct steps: a
larger phase-shift across the soliton-region and a smaller phase-shift, when
the row runs between two solitons.

The difference in energy between the even- and odd-M cases is related
to a difference in the shape of the solitons, as explained in detail in Ref.

[13].
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The second and deeper layers, which have not reconstructed, have not
retained their perfect square lattice positions. On the contrary, the second
layer is severely strained and warped. Moreover, some “multilayer relax-
ations” propagate down to the third and fourth layers.

Finally, the average interplanar distance is also modified. By averaging
over all atoms of each layer, we obtain Adi»=+5% (Adi2 = (dia — d5y)/dSs;
d9, is the bulk interplanar spacing), Adz=+2.1%, Adzs = —0.3%.

It may be interesting to note that the EAM of Daw and Baskes, used to
calculate the reconstruction of the Au(100) surface [39], gives very similar
results to those obtained by EPT [12] for the (1 x 5) reconstruction. How-
ever, the values for surface energy differ considerably with the predictions
by EPT, and with estimates based on experimental data [40], being smaller
by roughly a factor of 5.

For what concerns the observed rotation of the nearly-triangular top-
most layer respect to the square-substrate [35], which was not considered at
all in the calculations made by the glue model, we refer to Okwamoto and
Bennemann [41]. They describe the top atomic layer as a two-dimensional
isotropic continuum influenced by a square-net substrate potential, which
can be expanded in Fourier series.

The Au(100) top layer lattice is described as incommensurate in two
directions. The rotation observed at the Au(100) surface is explained as the
Novaco-McTague rotation, observed for rare-gas monolayers on the basal
plane of graphite, dominated by particular Fourier components (Vigsi) of
the substrate potential. The extremely small rotation angle, from their
calculation, results from the competition between the components V3, and
Va_y.

Their theory, which has been applied also successfully to the Au(111)
surface reconstruction and which will be described in more detail in the
next Chapter, is similar to that used for physisorbed gas-monolayers [42].

2.3 Au(110) surface reconstruction at T=0
in the glue model

A large amount of experimental data is available for the Au(110) sur-
face. They have been obtained by LEED, He diffraction, low, medium and
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high-energy ion scattering, STM, X-ray diffraction and TEM ([29]). These
data show strongly that Au(110) (together with Ir and Pt (110)) exhibits a
(1x2) reconstruction, meaning that the surface unit cell length is the same
as in a truncated bulk along the [110] direction, while it is twice as long
along [001]. By now it is well established that the surface structure, giving
rise to this reconstruction pattern, is the so-called “missing-row” structure,
where every other [110] row is missing on the topmost layer. Occasionally
also (1 x n) unit cells, with n = 3,4, are occasionally observed [44,45].
These are also interpreted in terms of the missing-row model.

A (1 xn) missing row model consists of n—1 rows missing in the topmost
(110) layer, n — 2 in the second layer, and so on. This gives rise to (111)
facets (each of them n+1 [110] rows wide), forming an ideal angle of about
35 with the flat (110) surface plane.

Using MD as a tool for searching the energetically optimal configura-
tion predicted by the glue Hamiltonian, simple quenching and annealing-
quenching procedures have been applied to (110) slabs of sufficient thickness
(twelve to twenty-four layers) and variable lateral (z,y) size with in-plane
periodic boundary conditions [29,43].

In this case the optimization is not a “complex problem” because with
both procedures the same minimum is obtained, differently from what hap-
pens for the Au(111) surface (see Chapter 3). This procedure has been ap-
plied to a flat Au(110) and then to the (1 x n) missing row reconstruction
models.

The results are summarized in Table 2.2.

First of all, the (1x2) missing row structure turns out correctly to be the
optimal structure. The surface energy gain of the relaxed (1x2) missing row
with respect to the ideal bulk termination amounts to about 30%, of which
about 10% comes from removing the missing rows and the remaining 20%
from allowing subsequent relaxations. The energies of the (1 X n) missing
row structures with n = 3,4,5,6 are very close to the optimal surface
energy. This confirms the suggestion of Binnig et al.[45], that the driving
force for the Au(110) reconstruction is the tendency to form (111) facets,
which is due in turn to the low (111) surface energy compared with that
of the unreconstructed (110). In the glue model, atoms on a (111) face
are energetically favoured by their high coordination number. In fact, as
Table 2.2 shows, even the surface energy of a 35°-tilted (111), corresponding
to the (1 x oo) limit, is lower than that of a relaxed (1 x 1) (110) either
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Structure o (meV/A?) | Adiy (%) | Adaa (%) | Adaa (%)
(1x1) ideal 150.4 0 0 0
(1x2) ideal 139.5 0 0 0
(1x1) relaxed 122.5 -33.9 +6.9 +1.3
(1x2) relaxed 107.4 -27.5 -4.7 -2.2
(1x3) relaxed 109.8 -30.8 -4.8 -10.2
(1x4) relaxed 109.5 -31.9 -5.2 -8.3
(1x5) relaxed 109.4 -36.0 -6.9 -10.0
(1x6) relaxed 110.0 -33.1 -14.1 -8.3
(1x00) rel.(111) 118.3

(1x00) rec.(111) 108.0

Table 2.2:

Optimal ¢ and multilayer relaxations for various models of Au(110). All the
structures except the (1 x 1) are of the missing-row type; the values relative to
(1 x o0) are based on (111) surface energies: o3¢, =105.1 meV /A2, 07¢,=96.6
meV/A2, 57¢¢=88.1 meV/A?; these values for Au(111) surface are obtained in

Chapter 3.

when the (111) is taken to be not reconstructed (118.3 vs 122.5 meV/A?)
or reconstructed (108.0 vs 122.5 meV/A?).

The optimal (1x2) relaxed structure is shown in Fig. 2.6. In the inset, a
view from the top, shows the sliding distortion of the top row atoms relative
to the third layer atoms underneath. It can be seen that there is a large
inward relaxation of the top row Ady,/d?, = 27.5 %. Distortions of deeper
layers are also present. The second layer shows a “pairing distortion” of the
rows, which move slightly inwards, that is towards the top rows. The third
layer undergoes a large buckling of total amplitude 0.37 A. The atoms below
the top rows are “pushed down” by them, while the others are not, and
“Hoat”. By averaging the z-coordinates in each layer, there is indication of .
overall contraction also below the surface layer. All these features of the
structure are in qualitative agreement with experiments, while in the detail
the distortions obtained are a little too large.
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Figure 2.6:
Side view of the optimal Au(110) (1 x 2) “missing row” structure. The top row
contraction, the second layer inwards pairing and the third layer buckling are

visible.

Finally, all the relaxed structnres exhibit a small sliding distortion of the
top rows along [110], i.e., parallel to themselves. On the optimal structure
the distortion amounts to 0.26 A for the top row atom and to 0.06 A for
the third layers atoms underneath. A MD study at finite temperature has
shown that at around 230 K there is a phase transition by which the full
average symmetry is restored. It is not well-established whether the true
Au(110) should have a similar phase transition, or whether it is an artifact
of the glue model.

Implications of the complex reconstruction/relaxation pattern of the
missing-row surfaces on the surface dynamics, and in particular on the
surface phonon spectrum, have been studied in detail [46]. In this work,
as a typical signature of the missing row reconstruction, the existence of
anomalous high frequency modes has been predicted.

The dynamical behaviour of the Au(110) missing-row surface in the glue
model has been investigated by using MD, instead of the standard lattice
dynamics. In fact by MD it is easier to take in account complex distortions,
anharmonic interactions and temperature effects, including possible diffu-
sive motions and phase transitions. Approximate surface phonon spectral
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densities are extracted from the trajectories through the k resolved, first-
layer velocity-velocity correlation functions.

The main striking feature of the spectrum obtained consists of two
anomalous high frequency surface modes with rather flat dispersion (Hj,
around 20 meV, and H, around 17 meV). To clarify their origin, it has
been made a separate study of their eigenvectors. At E=0 they are so
characterized :

(a) in mode H; the top rows atoms and the third-layer atoms just be-
neath move essentially along =, while the second-layer atoms move mainly
along y with a small z component. These four atoms move essentially to-
wards (or away from) their center of mass, thus clarifying the large stiffness
of this mode. Third-layer atoms below the missing rows remain almost mo-
tionless. This form of this eigenvector indicates that this high frequency
mode arises because of the deep sinking of the topmost row, giving rise to
a stiffening of surface force constants.

(b) In mode H,, all motions are essentially along y and only second-
layer atoms exhibit some z component. This mode is very close to the bulk
mode, and might be difficult to detect in practice, differently from the H,
mode which should be easily detectable by either inelastic He-scattering or
by electron-energy-loss-spectroscopy.
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Chapter 3

Au(111) surface reconstruction

3.1 Review of the experimental facts and
the proposed models

3.1.1 Experimental results

Concerning the surface reconstruction of gold, we know since earlier
work by Fedak and Gjostein [30] that the gold surfaces (100) and (110)
exhibit superstructures, respectively (1 x 5) and (1 x 2), but the (111)
surface was generally described as an unreconstructed one [47,48]. However
LEED photographs of Au(111) obtained during these studies, exhibit large
areas of intensity at the integral order reflection positions, instead of sharp
narrow beams.

Then, w1 1974, Perdereau et al. [49] have observed by LEED a super-
structure on a (111) gold surface. According to these authors, the outermost
layer looks like an hexagonal one, compressed by nearly 5% compared with
the layer in the bulk.

Zehner and Wendelken [50], using the same technique, have found that
the geometry of the reordered layer is similar to that described by Perdereau
et al. [49], but the compression is only 4%.

More recently, Melle and Menzel [33] have observed by RHEED a (p x
V/3) superstructure with p = 22 — 23 of the Au(111) face; in the [112]
direction the outermost layer has the same parameter as the bulk, but in
the perpendicular [110] direction, it is compressed by 4.2%. Therefore, the
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surface net has only a twofold symmetry instead of a sixfold one.

The same superstructure has been observed by Yagi et al. [51,52] by
UHV TEM and by Heraid and Metois [53] by TED.

Tanishiro et al. [2] have been the first who have studied the temperature
dependence of the diffraction spots, increasing the temperature (Fig. 3.1).
Their TEM and TED observations have led to the following scheme of

Figure 3.1:
Change of the surface structure image at high temperature. It is well evident the
domain separation [2], with the fringes parallel to one of the [113] direction. It can
be noticed the change of the fringe orientation and the contrast.

the surface structure change: with increasing temperature the unidirec-
tional shrinkage of the surface layer transforms gradually from anisotropic
to isotropic at high temperatures. Moreover the amount of shrinkage seems
to reduce. At about 1000 K the reconstruction disappears. This phase tran-
sition was also noticed by Melle and Menzel [33] in their RHEED study.
The most important evidence given by TEM is, besides the domain
structure, that the fringes are not simple interference fringes due to the
shrunk surface and the underlying lattice. The observation suggests the
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Figure 3.2:
He-Diffraction scans from the Au(111) surface. The crystal temperature was 300
K.
(a) Along [110] at k; = 3.90 A1 (E =7.95 meV);
(b) along [112] at k; = 5.64 A~' (E = 16.6 meV).
(c) Schematic representation of full diffraction pattern. The patterns in the [112]
have been shifted towards the center, but otherwise the relative positions are to
scale. The crosses indicate the diffraction peaks locations expected for the unre-
constructed surface. The central diffraction peaks D and K are shifted outwards
by AG = 0.054 A from the expected location G = 2.5154A.

existence of some definite regions with structure strains like those of misfit
dislocations, where the whole contraction should be concentrated. Such
local displacements (strains) give rise to diffraction contrast in the bright
or in the dark field electron microscopy image.

More recent highly resolved TED experiments by Takayanagi and Yagi
[54] suggest that the shrinkage along [110] is not uniform, but localized in
two very narrow transition regions, where the stacking changes abruptly
from ABC (fcc structure) to ABA (hcp structure) per unit superlattice
cell, the transition region containing 0.5 atom each.

The non-uniformity of the contraction along [110] direction has been
confirmed by He-atom diffraction by Harten et al. [55] (Fig. 3.2), even if
the above defined transition regions seem less narrow than those observed
by TED. Their estimated half-width is, in fact, about 11.8 A.

Recent experimental studies by Profile Imaging [38] have confirmed the
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superstructure (p x v/3), with p ~ 21, slightly smaller than the precedent
superstructures observed. The contraction along the [110] direction is seen
both when the surface is seen in the Profile Image along the direction
perpendicular [112] and along the same [110] direction.

Anyhow, in contrast to these observations, Marks, Heine and Smith
[56,57] have reported electron microscopy studies which reveal an expansion
of about 5% both normal to and within the surface normal.

3.1.2 Models for Au(111) surface reconstruction

The first complete interpretation of the LEED diffraction pattern has
been given by Van Hove et al. [34]: three 120° rotated domains, each
domain consisting of rectangular 22 x /3 cells. They notice that a model
consisting of 4.55% uniaxially contracted hexagonal top layer satisfies the
observed diffraction pattern, the contraction direction being, as already
said, a [110] direction.

Van Hove et al. [34] propose other two kinds of models. One is a domain
structure model involving alternate stripes 11 atoms wide of different bulk
termination. An interesting possibility is that half the stripes have the
normal fcc termination, while in the other stripes an hep termination occurs
through slippage of the topmost layer to different hollow sites of the second
layer. For this model to be stable the two types of termination should have
only a small difference in surface energies.

Another possibility, according to Van Hove et al., is based on the concept
of charge density wave. In fact, in general, some surface reconstructions
have been suggested to be caused by charge density waves in which the
conduction electron density has periodic fluctuations with a wavelength a
few times the lattice constant, inducing a static wavelike deviation of the
atomic equilibrium position with that same wavelength. For the Au(111)
surface reconstruction, in particular, a possible model consists of charge
density waves with an unusually long wavelength of about 22 lattice con-
stants. Such possibility, however, was later ruled out by He-diffraction and
electron microscopy experiments.

Takayanagi et Yagi [54], to interpret their TED experiments, suggest a
refinement of the first Van Hove model, with a non-uniform shrinking along
z-direction, but localized in transition regions where the stacking changes
from fec to hep.
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We must observe that only some phenomenological approaches to ex-
plain gold surface reconstructions have had success, as it will be clear after;
in fact to make a theory at the “ab initio” microscopic level is a very difficult
task.

Heine and Marks [58] have described a possible microscopic mechanism
at the origin of contraction and expansion, observed in Au(111) surfaces
by Marks, Heine and Smith [56,57]. It could explain, in general, all noble-
metal surface reconstructions. They observe that in the bulk noble metals
Cu, Ag, Au there is an opposition between two types of forces. The first is
a pairwise repulsion between the atoms due to the full d shells, the second
is a multi-atom electron gas attraction due to the sp electrons and sp — d
hybridization. They believe that it is the competition between these two
kinds of forces, that causes the complex behaviour of noble metals surfaces,
especially gold.

In this paper by Heine and Marks [58], perhaps the key result is that
they can reconcile apparently conflicting experimental reports of both ex-
pansion and contraction, like observed in Au(111), without any difficulty,
because the final result is strongly dependent upon the local geometry of
the surface. In fact, the geometry of the samples in these experiments, in
which the expansions were observed [56,57], was not that of a large, flat
surface, but instead, that of a somewhat rough surface with many short
surface rafts. These arguments, however, are rather qualitative and do not
allow quantitative predictions to be made.

3.1.3 Models for Au(111) surface reconstruction with
solitons

Since some models have been proposed to explain the non-uniform
shrinking along the [110] direction, which are based on the theory of solitons
[59], we recall very briefly how, from the Frenkel-Kontorova model [60]
in the solution of Frank and Van der Merwe [61], the concept of soliton

and the mathematical expression which describes it, are introduced. The
Hamiltonian of Frenkel-Kontorova model is the following:

H=> (Tns1 — Tn — a)* + V(1 — cos gbzfcn) (3.1)

It describes at T' = 0 an unidimensional array of atoms connected with
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harmonic springs, which interact with a periodic potential of period b. a,
is the lattice constant which, in general, would be incommensurate with b.

Incommensurate structures generally show up in systems with compet-
ing periodicities. Rare gas monolayers adsorbed on graphite constitute a
two-dimensional realization of this situation.

Another example is given by a reconstructed surface. A reconstructed
surface, in fact, can be formed from the regular surface, by applying, for
instance, a periodic lattice distortion. The two periodicities are evidently
that ot the regular surface and that of the distortion.

The ground state of the 1D-model now described was found in 1949 by
Frank and Van der Merwe [61], with the extra assumption that the discrete
index n can be treated as a continuous variable. Introducing the phase ¢,
by the equation

b
T, =nb+ —o, 3.2
v = bt b (3.2)
and transforming to the continuum limit
dg
In = Pn-1 — T, 3
O = Pn1 = = (3.3)

the Hamiltonian becomes

 dd 2
H = / [% (ﬁ — 5) + V(1 - coquﬁ):l dn; (3.4)

p=1and § = %(ao — b) is the natural misfit between the two lattices.
With p > 1, H describes the transition to a commensurate phase of
order p. The phase is the shift of the atoms relative to the potential min-
ima. The phase ¢(n) = 0 is the commensurate phase and the imperturbed
incommensurate phase is given by the straight line ¢ = én.
The ground state, which minimizes the Hamiltonian is found among the
solutions of the 1D sine-Gordon equation:

d’¢
dnz P
One of the solution of this equation is just the soliton

V sin po. (3.5)
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d(n) = %arctan(exp(pﬁn)). (3.6)

The solution describes a wall, centered at n = 0, which separate two

commensurate regions, one with ¢ = 0, the other with ¢ = 2. The wall

represents an extra atom which has been added to the chain within a region

given by the soliton width [, = ﬁ.

In general the solutions are regularly spaced solitons, a soliton lattice

(Fig. 3.3)
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Figure 3.3:
(a) Single-soliton solution obtained by Frank and Van der Merwe. The soliton is
a domain wall between two commensurate regions.
(b) Regular soliton lattice solution to the sine-Gordon equation. The straight line
corresponds to an imperturbed incommensurate structure.

The soliton lattice is a compromise between the “umklapp” term cos po
and the elastic energy which favours ¢ = §n. The concept of walls, now in-
troduced, plays a very central role in all existing theories of commensurate-
incommensurate transitions [59].

Introduced very briefly the concept of solitons, we can come back to
review all models which use this concept to explain the Au(111) surface
reconstruction.

Harten et al. [55] provide support for the model proposed by Takayanagi
and Yagi [54], for whom the shrinking along [110] direction is not uniformly
distributed. '
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The essential feature of their model is a division of the surface in fcc
(C' site) and hep (4 site) domains. It must be observed that in the case of
Au(111) surface the (' site should be favoured, if a continuation of the bulk
structure occurs. But following the suggestion by Heine and Marks [58], a
redistribution of sp electrons in the surface may favour a reduction of the
interatomic separation from the bulk value.

The competition between occupying the C' sites and reducing the mean
interatomic separation in the surface layer, is resolved by accommodating
both 4 and C' sites, thus reducing the mean interatomic separation in the
surface layer through the creation of local defects or, in this case, solitons.

In particular, in the model by Harten et al. [55], within fcc and hep
regions the atoms are at positions defined by bulk lattice spacing, i.e., in
registry with the second layer. The transition between C' and A regions is
described by a gradual z-dependent shift ( where = runs along [110]), given
by the soliton expression

flz) = —2—arctan <exp <Km§>> (3.7)

™

where 2AS is the half-width of a soliton centered at the boundary between
A and (' regions. In this model the transition region is larger than the
narrow transition region proposed by Takayanagi and Yagi [54].

In such a region, where the soliton causes a very gradual shift from
the 4 to the C stacking, the atoms are raised up in the z-direction by a
z-dependent amount H(z) modeled by a Gaussian with height H and half
width AS centered at the solitons. There is an undulation in the y direction
([112]), whose periodicity is the double of the periodicity of the corrugation
in the z-direction (see Fig. 3.4). In their model it is also allowed that the
(' and the A regions have a different relative size R (which removes the
otherwise twofold rotation symmetry of the surface layer).

To test their model, they have performed hard-wall eikonal [62] calcu-
lations, to compare the calculated diffraction peaks with those obtained by
their High-Resolution-He-Atom-Diffraction experiments. The agreement is
very good for the choice of parameters R = 0.7, AS = 5.9 A, H = 0.15
A, and assuming an additional uniform contraction of 2% extending to
subsurface layers.

The diffraction pattern remains unchanged when the temperature is
varied between 120 K and 700 K. For this reason Harten et al. [55] conclude
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Figure 3.4:
(a) Hard-wall corrugation functions at three points of the unit cell.

() Crosses represent the second-layer and circles the surface-layer atoms.

that the interaction between solitons is probably so strong that it overrides
the entropy contribution to the free energy, which might otherwise cause
temperature-driven transitions between phases of different soliton density
or disordering of the walls.

To resume the physical situation, we can say that the soliton superlattice
may be indicative of the existence at the surface of two competing potential
contributions of different periodicities. In the top layer, due to a change
in electronic structure relative to the bulk, as it has been hypothesized
[58], it is favoured a confraction to a smaller lattice constant, but the
competing interaction with the bulk compels the surface atoms to stay
in their normal bulk positions. Then, this situation may well be a physical
realization of the Frenkel-Kontorova model of competing interactions [60].
The ground state of this model is a lattice of regularly spaced soliton type
walls, which separate commensurate regions. So, the soliton superlattice
can be regarded as a compromise between a fully incommensurate, and in
this case compressed, structure in which the surface layer forces dominate,
and an unreconstructed surface with bulk forces dominating.

In a following model [63] the reconstruction of the Au(111) surface
has been interpreted in terms of a new type of misfit dislocations, namely
double-sine-Gordon-type-dislocations (DSG). It is just an improvement of
the sine-Gordon (SG) solitons by Harten et al. [55], since the simple SG
model cannot justify a priory the unequal areas of the regions with stacking
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A (hep-like) and C (fec-like).

In the case of the fcc surfaces the topology of the underlying substrate
potential is that the minimum energy path for the transition from one site
type (fcc) to the other (hep) is effected across the shared bridge sites. Po-
tential energy minima are located at the 4 and (' sites, while a saddle
point is found at the bridge site. The resulting zigzag shape of the un-
derlying potential can be described by a one-dimensional potential. The
non-degeneracy of the A and C site energy minima suggest a DSG-like sub-
strate potential, while it cannot be taken into account at all with a simple
SG chain.

The corresponding Frenkel-Kontorova Hamiltonian has the form

N - N
I 8V 2me; 4z,
H = 5;[miH—mi—(a—b)]Z_*_M____*— ) f?%{[1—005( 5 )} + [1 —cos( 5 )}}

(3.8)
V' is the peak-to-peak amplitude, b is the potential periodicity, a the equilib-
riun interparticle spacing, x; is the displacement of the ith particle from the
bottom of the ith C' well, u the elastic constant of the surface layer, N the
number of atoms in the chain; the range of the parameter R (0.0< R <4.0)
makes the potential at the C site take the minimum zero-value, and at the
A site vary from zero at R =0 (SG case) to V at R = 4.0.
The continuum limit of the motion-equation has stable solution of the
form

4\ dmn
tan(mu) = (1 + —}—z—> csch (m) , (3.9)

with v = z/b and [? = ’%. The solution can be viewed as a configuration of
two bound 7 solitons, each with an effective length of Lzﬂ and center to center
separation L ~ fkln% (in the limit R < 1.0) (Fig. 3.5). El-Batanouny et al.
[63] have fitted the He-Diffraction data [55] to the DSG (with the mismatch
22/23, I, = 8b, R ~ 0.01).

First of all, to determine the equilibrium metastable configurations of
such a DSG chain they have used molecular dynamics [64]. Subsequently, to
construct the (23 x \/§) unit cell of the reconstructed Au(111) surface, they
have used the equilibrium positions of the particles, constituting the DSG
soliton, as the z-coordinate (along [110]) of the atomic centers, while the
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Figure 3.5:
(a) A schematic diagram of a DSG-like Frenkel-Kontorova model where Vi = W
and V2 = (1 - R)W.
(h) Profile of a DSG soliton chain showing the displacement u, of the nth C-type
well. Inset: Individual DSG soliton [63].

y-coordinates (along [112]) and z-coordinates (along [111]) were determined
from a hard-sphere stacking model with the interatomic separation of the
bulk. A typical planar view of the atomic arrangement is shown in Fig. 3.6
and it is very similar to that obtained by Harten et al. [53].
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Figure 3.6:
Planar view of the atomic arrangement involving DSG soliton. Notice the
atomic displacements in the [110] direction and the zig-zag stacking of solitons
along the [112] direction.

The soliton stacking pattern in the [112] direction results in a zigzag like
pattern. Similarly to the previous authors, they superimposed a Gaussian
charge distribution on the atomic center positions in order to reproduce
the surface corrugation, and the atomic beam diffraction intensity were
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computed, using the hard-wall and eikonal approximation [62]. The results
are similar to that obtained by Harten (Fig. 3.4, [55]).

Another phenomenological model, which tries to explain the non-uniform
shrinking in the reconstruction direction, due to the presence of solitons,
is that by Okwamoto and Bennemann [65], who have applied a similar
model to the Au(100) reconstruction [41]. They improve a precedent model
by Kanamori and Kawakami [66], who have studied the reconstruction of
Au(111) surface, by applying a two-dimensional elastic model to the sur-
face layers of the atoms. In this precedent model, it is assumed that the
top-layer tends to contract isotropically and the minima of the substrate
potential form a triangular lattice commensurate witlh the bulk (111) layer
structure.

Okwamoto and Bennemann, taking into account the experimental ob-
servations of the domain wall structure, modify the Kanamori-Kawakamj
theory. Taking into account also a theory used for physisorbed gas monolay-
ers [42], they treat the surface layer of atoms as a two-dimensional isotropic
continuum, with structure induced by the potential of the underlying sub-
strate lattice, considered as a rigid substrate, with the structure of a perfect
bulk. They also do the following hypotheses:

(a) the minima of the substrate potential are at positions of fcc and hep
termination, i.e. they form an honeycomb lattice;

(b) the structure with hep termination is degenerate with the one having
fce structure;

(c) the top layer contracts isotropically, when the top layer lattice be-
comes uniformly incommensurate in two directions with respect to the sub-
strate lattice. This is called the “unstrained state” of the top layer.

Obviously there are two competing lengths: the lattice constant “c” of
the unstrained state of the top layer and the lattice constant “a” of the
triangular lattice of the second layer.

With these hypotheses, and keeping from the theory of the physisorbed
gas-monolayers [42], in the continuum approximation, the expression for the
strain energy of the top-layer, which contains f (the shear-modulus) and
K (the bulk-modulus), they can obtain an expression for the total energy.
Variation of the total energy with respect to i, the atomic displacements,
gives an equation from which it is possible to get the equilibrium structure
of the top layer at zero-temperature. They calculate the energy for three
types of domain-walls (extremely narrow with large contractions (10%)),
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in three slightly incommensurate lattice structures:

(a) unidirectionally contracted in z-direction;

(b) unidirectionally contracted in y-direction;

(c) isotropically contracted (“unstrained state”, triangular lattice).

For all the three cases, it has been calculated the critical value of c,,
below which the incommensurate structure becomes stable relative to the
commensurate structure.

On the basis of their results for the three cases examined, and taking into
account qualitatively the effects of the difference of the substrate potential
energies, referring to fcc and hep-positions (called “A”), they conclude that
the unidirectional contraction occurs in the [110] direction at the Au(111)
surface, since the calculations show that ¢ > ¢ for K/u < 10. Without
taking into account the effects of A, instead, the favoured structure becomes
the isotropic one. Furthermore, they speculate from the expression, which
gives the wall-width, that the ratio K/u is larger than 2.

Within their scheme, including quantitatively the effects of A, it could
be possible to study the phase transition from the unidirectionally con-
tracted state to the isotropically contracted one [67], observed by TEM
[2].

3.2 Simulation studies of Au(111) surface re-
construction in the glue model

3.2.1 Au(111) surface reconstruction at T=0

After the review of the complex experimental and theoretical situation
about the Au(111) surface, we describe in this Section our investigation on
structure and energetics of the Au(111) surface using the glue Hamiltonian.
As shown in the previous Chapter, this model successfully predicts the oc-
currence of reconstruction on Au(100) and Au(110). In both cases, the
reconstruction appears to be driven by the tendency to form close-packed,
(111)-like topmost layers. On Au(100), this is accomplished by the forma-
tion of quasi-triangular overlayer, while Au(110) facets into a sequence of
tiny (111) microfacets. Au(111) is already well-packed, and in fact it does
not reconstruct on Ir and Pt, which both exhibit (100) and (110) recon-
struction very similar to Au. However, as we have seen in the previous
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Section, in Au the tendency of surface atoms to pack seems to be so strong
s0 as to induce even a (111) reconstruction by in-plane contraction. As it
turns out, this tendency is even stronger in the glue model, giving rise to a
(111) reconstructed surface whose in-plane density is larger than that given
by experiments. The qualitative aspects of structure and energetics appear
however to be in good agreement with experimental data.

For this study, we have investigated by the usual MD strategy both
surface energy and shape of a series of 10-layers slabs, with free boundary
conditions in the [111] direction, and periodic boundary conditions in the
in-plane directions [110] (henceforth z-direction) and [112] (henceforth y-
direction).

The size of the periodically repeated MD hox has been taken M x LV3
(in units of d = a/\/2, where a = 4.07 & is the T = 0 lattice parameter).
M and Lv/3 are the lengths in = and y directions respectively.

The number of atoms in a general layer is 2LM, while that in the
outermost surface layers is permitted to increase to 2L(M +1), by requiring
each atomic row in the [170] direction, which is the reconstruction direction,
as suggested from the experiments, to compress so as to accommodate M+1
atoms over M. Since the number of particles must be constant in MD, these
extra atoms must be already present in the initial state, which has been
constructed as an uniformly compressed triangular lattice. L does not play
any role in the reconstruction (the reconstructed unit cell has [, — 1), so
that we have fixed it to be I = 2 in most calculations for computational
convenience 1.

The relaxed, but unreconstructed Au(111) (calculated with a very small
cell 3 x 2v/3 where no extra atoms were added) is found to have a surface
energy o1 = 96.6 meV /A2 The slabs are relaxed to a minimum-energy con-
figuration either by a direct quenching or annealing/quenching procedure,
as discussed in Section 1.4. The surface energy o is defined as usual as in
Eq.(2.1). 1t can be seen that the increase of the density by contraction in
the z-direction leads to a lowering of this value.

The problem has been to find the size M of the cell in [110] direction,
which corresponds to the optimal density (M +1)/M to the minimum o.

The results are summarized in Table 3.1, where also multilayer relax-
ations are reported. It can be seen that ¢ decreases to the minimum value

A MD box with L = 1 can not be used, since it would imply interaction of each
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Structure a(meV/Az) Adyy Adss Adsy
(%) (%) (%)
(4%/3) 114.4 +1.4 | +24 |-0.3
(5% v/3) 99.4 -0.5 +2.5 | -0.3
(6%v/3) 93.2 -1.8 +2.6 |-0.3
(TxV/3) 90.4 2.6 +2.6 | -0.3
(8<v/3) 89.1 -3.2 +2.6 |-0.3
(9%V/3) 88.5 -3.7 +2.6 |-0.3
(10xv/3) 88.3 -4.1 +2.6 |-0.3
(11%v/3) 88.1 -4.4 +2.6 |-0.3
(12x/3) 88.3 -4.6 +2.6 |-0.3
(13%V/3) 88.4 -4.8 +2.6 |-0.3
(15xv/3) 88.8 -5.1 +2.6 |-0.3
(18%v/3) 89.3 -5.4 +2.5 |-0.3
(23x/3) 90.2 -5.8 +2.5  |-0.3
(33x/3) 91.4 -6.1 +2.4 |-03
(50xv/3) 92.5 -6.4 +2.4 |-03
non-reconstructed, relaxed 96.6 -7.9 +1.2 -0.1
non-reconstructed, ideal 105.1 0 0 0
Table 3.1:

Surface energies and variations of the average interplanar distances
Ad; ;41 = (diip1 — do)/do, where d, = 2.35 A is the bulk (111) spacing, for
several (111) reconstruction geometries.

49




o, = 88.18 meV/A? for the optimal choice M = 11, which is smaller than
that expected from experimental data M = 22 — 23. For this best case,
we have also checked that the results are independent from the choice of
L, by repeating the calculations for L = 3,5,6. Increasing M, in the limit
M — oo, the density and o() are expected to recover the unreconstructed
case.

It is seen that the average first-second layer distance di; exhibits a
contraction. This is another mechanism by which surface atoms can gain
coordination in our model. The contraction decreases when A is decreased
to compensate for the increment of in-plane packing. For the optimal struc-
ture (11 x v/3), the average first-second layer spacing is contracted by 4.4%
(0.10 A) with respect to the bulk value, while the second-third layer spacing
is increased by 2.6% (0.06 A).

From the examination of the values of o, the surface energy minimum
at A = 11 is very asymmetric and shallow, only if M is increased above
11. For example is still as low as 90.2 meV/A? when M is as high as
23. This means that grand-canonical fluctuations (allowed in presence of
source terms, which could be present in the form of steps, etc.) might tend
to increase the average value at finite temperatures. In turn, this would
bring the theoretical result closer to the experimental value M ~ 23.

The behaviour of o( M) is reproduced reasonably well by a second order
expansion in powers of 1/M:

b c

o(M) ~a+ % + e (3.10)

with b ~ 200 meV/A? and ¢ ~ 1200 meV/AZ%. b can be regarded as the
chemical potential of the reconstruction stripes.

It should be noted that an exact energy minimization of reconstructed
Au(111) turned out to be a difficult optimization problem. In fact, for
a given M there is a very large number of local energy minima, which
are very close to each other; typically they are all within 0.1 meV/A? in
surface energy, corresponding to ~ 10 K per surface atom. Structurally,
these minima differ for tiny registry shifts of the topmost layer relative to
the second, along the reconstruction direction [110]. A direct quenching
procedure brings the surface into the local minimum corresponding to the

particle with itself through periodic boundary conditions.
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registry nearest to that of the initial configuration. A thermal annealing
procedure followed by quenching, on the other hand, is not able to select
the global minimum due to the exceedingly small energy differences be-
tween minima, and brings the surface into any of the minima essentially at
random.

The small energetic differences make, however a precise determination
of the global minimum somewhat academic and almost meaningless, since,
for example, already at 100 K the thermal fluctuations overwhelm those due
to this sort of “spin-glass” problem. For this reason, we have attempted an
exhaustive search by using a direct quenching and starting from 36 different
initial registries, only in the case M = 11. The values for o, that we have
obtained range from 88.14 to 88.22 meV /A% The values, reported in Table
3.1, correspond in each case to a single, arbitrary initial configuration,
and therefore they probably all contain an intrinsic error of less than 0.1
meV/A? with respect to the true surface energy minimum.

All these T = 0 structures present a typical division in narrow domains
in which the epitaxy is alternatively of the type fcc (ABCABC stacking)
or hep (ABAB stacking). These domains are separated by wide smooth
transition regions, in which the atoms of the topmost layer are in bridge
with those of the second layer (Fig. 3.7, Fig. 3.8 and Fig. 3.9).

An example of the registry shift discussed above can be seen by com-
paring the two configurations in Fig. 3.7 and in Fig. 3.8. While they look
almost identical, there are small differences in the atomic positions. In that
of Fig. 3.7 with ¢ = 88.14 meV /A2, the lowest value obtained, the centers
of the regions fcc and hep and of the transition areas pass just in the mid-
dle of the atoms. In that of Fig. 3.8, which has o = 88.18 meV /A2, the
centers of the regions fcc, hep and of the transition areas, instead, do not
pass through the centers of the atoms, but among them.

What disagrees with some experimental results [54,55] is the fact that
the shrinking in the z-direction for each [110] row is nearly uniformly dis-
tributed along the whole row, instead of being localized in narrow soliton-
type regions, separating wide fcc and hep regions, as Harten et al. suggest
[65] (see Section 3.1.2).

The absence of solitons has been confirmed by the calculation of the
phase ¢, that, for each row can be defined, following the suggestion of
Frank and Van der Merwe [61] and similarly to the Au(100) case, as
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Figure 3.7:
Top view of the (11x+/3) configuration with o = 88.14 meV/A% 4 MD boxes
have heen drawn along [112] for visual convenience. The vertical lines indicate the
centers of regions fcc, hep and the transition regions in which the atoms in the
topmost layer are in bridge with those of the second layer.

FCC S HCP S

Figure 3.8:
Top view of the (11x+/3) configuration with o = 88.18 meV/A%. 4 MD boxes
have been drawn along [112] for visual convenienence. The vertical lines indicate
the centers of regions fcc, hcp and the transition regions in which the atoms in the
topmost layer are in bridge with those of the second layer.
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Figure 3.9:
Side view of (111) slab in the [112] direction. Only the top 5 layers are shown.
Note the undulation in [112] direction.

o(zn) = %dI(Tn — nd + c) (3.11)
where n is an index running from 1 to 12 (number of atoms in a top row
for the optimal cell of M =11), z, is the final coordinate of the n atom of
the quenched sample; nd should be the position of the n-atom, in absence
of reconstruction; ¢ is a constant, which is taken equal for all the rows.

Instead of finding for ¢(z,) the expected arctg-behaviour [59], we have
got altogether an almost linear trend (Fig. 3.10), which indicates that the
strain in the [110] direction is not concentrated in small soliton-like portions
of the row, but rather distributed all over the row.

Another characteristic of the morphology of the structure of Au(111)
at T' = 0 is the “undulation” in y-direction on each single top layer atomic
row, with maxima and minima corresponding to atoms in fcc and hep
positions respectively. The total amplitude of this undulation (that is the
[112] distance between the atoms in fcc and hep positions) is about 1.0 A.

A corresponding small vertical undulation is also present, with the max-
imum z-coordinate reached by the atoms in bridge positions and the mini-
mum by those in the centers of regions hep and fec; so the periodicity of this
undulation is half of that in the zy plane. The entity of this corrugation
is very small (=~ 0.12 A), but comparable with that proposed by Harten
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Figure 3.10:

The phase ¢ (Eq. 3.11) for the atoms on a [110] row, versus the atom number.
Note the almost linear trend.

et al. (0.07 A) [55]. Finally, note that the extension of the fcc areas is
nearly equal to that of the hcp areas in our scheme, while experimentally
the fcc areas seem to be slightly larger [55]. This is to be expected, since
the glue model defined in terms of first neighbour interactions is not able
to differentiate energetically the fcc and hep structures.

3.2.2 Au(111) surface reconstruction with increasing
temperature

Within the same MD scheme and the glue model, we have undertaken
a study of the temperature dependence. In particular, we have been in-
terested in studying the high temperature behaviour. Experimentally, as
reviewed in Section 3.1, Au(111) exhibits a transition from a configuration
in which the shrinkage in the topmost layer is unidirectional along [110], to
a configuration in which the shrinkage becomes isotropic (i.e., shared be-
tween [110], [011] and [101]) and a slightly smaller one. Moreover, around
1000 K the reconstruction disappears [2].

First of all, we have followed the simple hypothesis that the lowest
energy configuration is (11xv/3) also at temperature different from zero.
Of course, a more appropriate procedure, which we have not attempted,
would have been to calculate and to minimize as a function of the cell
length, the surface free energy, at each temperature.
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Following a simpler way, the only modification which we have done
to our MD box to perform runs at finite temperature has consisted of
changing for each temperature the lattice parameter, following the bulk
thermal expansion, as obtained by a previous simulation of bulk gold by
the same model [14]. At each temperature the system has been run for
4500 time steps, of which the first 1500 are required to reach equilibrium
and are not considered in subsequent data analysis.

To study better the region of high temperatures, where we could expect
large fluctuations of the fcc-hep domain walls, possibly leading to the dis-
appearance of reconstruction, we have used a big MD box, multiple of the
elementary one, as large as (22x10\/§). In this case, to reduce the number
of particles, we have worked with 5 layers only and, among these, the two
bottom ones have been assumed to be rigid in their bulk- like positions to
mimic the contact with a seminfinite bulk. In total our system has 2240
particles, of which 1360 are moving and the remaining are kept fixed.

With these big samples we have seen that the reconstruction is still
present at temperatures as high as 1400 K, i. e. above the melting temper-
ature, while experimentally it seems to disappear around 1000 K [2]. The
fce and hep domains are still recognizable and the walls, which separate
them, are only slightly disordered, as it can be seen in the series of snap-
shots reported in Fig. 3.11 and in Fig. 3.12, where the region of very high
temperature is showed.

This fact has been confirmed by the analysis of the phases ¢ along the
[110] rows, that show no important variations with temperature, calculated
using both instantaneous and averaged coordinates over the MD run. They,
in fact, retain their almost linear shape with increasing temperature.

Only above 1400 K we have observed in the snapshots the formation of
dislocations and it becomes no longer possible to individuate well the walls
which separate fcc and hcp areas.

All this means that the reconstruction has an extremely strong character
and that very high temperatures are required to destroy it. In fact, it turns
out that reconstructed Au(111) in the glue model is so stable to allow
overheating of the system above the bulk melting point in MD simulations.
Usually, instead, in two-body systems the surface becomes very disordered,
well below T, and it acts as a suitable nucleation site for the liquid phase
when Ty is approached.

These facts have been confirmed by more careful calculations made by
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Figure 3.11:
Snapshots of the Au(111) reconstructed surface at T = 900K. A MD box, con-
taining a 2 x 10 array of (11 x V/3) reconstruction unit cells is shown.
(a) Whole sample.
(b) Top view.
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Figure 3.12:
As Fig. 3.11.
(a) Top view at T = 1100K.
(b) Top view at T = 1300K.
(c) Top view at T = 1500K .
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C'arnevali, Ercolessi and Tosatti [70] on the surface melting behaviour of the
Au(111) surface in the same glue scheme. Their most important conclusion
is that the reconstructed Au(111) surface does not show any evidence of
surface melting, at least within their equilibration times range (10719 —
107%s which, with a time step At = 7.14 x 107'%s, equal to that used by
us, correspond to 10* — 10° time steps). Such MD runs are much longer
than ours, which are ~ 5000 time steps long. This can explain the fact that
they obtain a melting temperature Ty = 1357+ 5 K, that compares very
well with experimental results Ty = 1336 K, while in our calculations the
system is not yet melted at 1500 K.

So these calculations indicate us that all crystalline states above 1357
K that we have got, studying in temperature the reconstructed Au(111)
surface, are in reality not effectively stable equilibrium states, but only
metastable ones.

This non melting behaviour seems to be an effect of the many body
torces. Specifically, the energetics of surface atoms, very poor in a system
with two body forces (such as LJ), becomes much better once the many-
body forces are included. As a consequence, all entropy related quantities,
such as thermal vibration and expansion, and defect concentration, are
expected to rise much higher near Ty in a two-body system than in a many-
body system. The case of Au(111) is perhaps extreme and surface stability,
due to the glue term, is so strong as to prevent microscopic melting, allowing
even the surface to be overheated at least in the absence of surface steps.

We have continued the study in temperature, even if by metastable
states, monitoring the behaviour of in-plane phase correlations at various
temperatures to check a possible variation in their trend before and after
the disappearance of reconstruction.

From the theory of commensurate-incommensurate transition [59] we
know that the “order parameter” correlation functions take the following
forms in the various commensurate and incommensurate phases (¢ is the
wave-vector of the phase) at long distances:

(a) commensurate :(5(0)S(7)) ~ cos(q, - 7+ ¢), ¢, commensurate,

(b) incommensurate :(5(0)S(7)) ~ cos(§- 7+ ), ¢ incommensurate,

(c) fluid :(S5(0)S(7)) ~ exp(—ar)cos(q- ),

(d) floating :(S(0)S(7)) == r~7cos(q- 7+ ¢).
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It is important to remark that the floating phase with incommensurate
wavevector and power-law decay, is believed to exist only in two dimensions,
because in two dimensions an incommensurate phase with long-range order
cannot exist. Shortly, we can say that for large separation 7 a non-zero
constant limit of the correlations indicates long-range order, an exponen-
tial decay indicates disorder, and a power-law decay of the correlations is
expected for a two-dimensional incommensurate (or floating) phase.

We expected that the reconstruction related ordering have been disap-
peared over 1400 K, the temperature at which in our precedent study the
disorder starts to appear and that this transition (commensurate - disorder)
was present also in the behaviour of phase correlations.

We could expect such a behaviour, following the suggestion of what
happens for the W(001) surface [71], where the transition from the com-
mensurate (2x2) phase to a disordered one occurs through a sequence of
narrow, but well defined intermediate phases, which results, just from the
behaviour of surface spatial phase correlations, to be incommensurate.

In the case of Au(111) we have calculated the spatial correlations of the
cosine of the phases, defined in the previous Subsection 3.2.1 (Eq. 3.11).
The correlation function is defined to be, in this case,

C(R) = <cos 2—;&1 cos %—;—r-"cm> (3.12)
where R is the distance between the two generic [ and m atoms. We have
calculated it by averaging over a circle or row by row. When we calculate
them row by row, we mean that the atoms [ and m are on the same row
in z direction and the average is done on all atoms on it, whose distance
is less than L./2, where L, is the length of the MD box along =z. When
we calculate them on a circle, we mean that the atoms / and m are within
a circle of radius min(L,/2,L,/2). The same we have done in y-direction,
substituting d with dv/3, the distance between two nearest neighbour atoms
in y-direction:

2
Cy(R) = <cos E%yl Ccos %ym> . (3.13)

We have calculated spatial phase correlations also in y-direction both
row by row and on a circle, to study especially the behaviour of the undu-
lation observed in this direction.
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For what concerns the phase correlations in z-direction, up to 1400 K,
we expected to get, in a graph with [nC'(R) in function of In(R), a straight
line with angular coefficient equal to —1/2. In fact the coefficient 7 for the
power law decay of correlations 7" cos(§- 7) in a floating phase is shown
to be n = 2/p* by Schulz [72], with p linked to the number of domains
separated by the walls of solitons. In our case p = 2 for the presence of the
fce and hep regions.

Over 1400 K, instead, we expected to get a straight line in a graph with
InC'y(R) (i = z,y) in function of R, that is a power law decay of correla-
tions, being in a completely disordered phase. But the shape of the graphs
has not resulted like we expected but rather as a series of slowly decaying
rapid oscillations. As we expected, instead, we have seen that the corre-
lations decrease if the distance increases. As an example in Fig. 3.13 and
in Fig. 3.14 the trend of z-correlations on a circle at the two temperatures
1000 K and 1500 K has been reported.

We have got the same results, independently by the various sizes of the
MD hox (11 x 2v/3, 22 x 24/3, 22 x 131/3) used. With the biggest one we
have worked with 5 layers and the two bottom ones had fixed particles,
while the two smaller boxes had two free surfaces.

An oscillating behaviour has been, in fact, obtained for all kinds of
cotrelations calculated. Having the suspect that the persistent oscillating
behaviour was linked to the fact that the walls, which separate fec and
hep domains, bend very slowly in the intervals of time used initially for
the simulation (around 5000 time steps), making a periodical structure to
persist, we have followed for longer runs the movement of these walls. We
have had the confirm that also in reasonable intervals of time in which we
can expect large movements, the walls never cross each other, but remain
almost in their positions, keeping the fcc and hep domains well separated
and clearly distinguishable.

To summarize, by the glue model and MD, it has not been possible
to study the transition from the uniaxial shrinkage to the isotropic one at
around 1000 K and to check the disappearance of the reconstruction, by
the trend of phase correlations, which we would expect to show a transition
from an incommensurate phase to a disordered one.

We must admit, in fact, that our method has resulted to suffer of vari-
ous shortcomings. By fixing the shape of the MD box from the beginning,
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it is already predetermined whether one will go for an uniaxial or hexag-
onal reconstruction. In fact, one should from the beginning construct an
hexagonal cell to be able to get an isotropic compression. However, this
cell shape poses a problem for the uniaxial reconstruction, in that if [110]
is the reconstruction direction, the fcc/hep domain walls must be oriented
along [011] or [101] instead of the orthogonal [112] direction in order to have
a match through the periodic boundary conditions. A similar problem is
encountered when using a 60%-parallelogram box.

We have seen, moreover, that the many-body term together with the
fixed number of atoms, contribute to keep very stable the reconstruction
with the typical division in fcc and hep domains, allowing overheating of
the system.

Furthermore, the size of the box in a MD simulation cannot be large
enough and, perhaps, the simulation times cannot be sufficiently long to
allow roughening of the walls, and formation of vortices, as one expects
in such systems. Just these phenomena should cause disappearance of the
reconstruction.
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Chapter 4

Review of physical properties
of vicinal surfaces

4.1 Surface crystallography

By cutting a crystal a few degrees away from a low index orientation,
it is possible to create a surface, which does not correspond to one of the
equilibrium faces of the crystal. This particular surface is called a “vicinal”.

For clean vicinal surfaces it is often more energetically convenient, as it
will be clear further, to assume a stepped configuration, than to break up
into large facets of low index orientations, 1. e., they assume terraces of the
nearby low index plane and they can be, usually, one or a small number of
atomic layers high.

The model of a vicinal surface, composed of terraces of low-index orien-
tations separated by monoatomic steps, is an example of the Terrace-Ledge-
Kink (TLK) model, first introduced and investigated by Kossel et al. [73]
and Stransky et al. [74]. The TLK model is based on a very simple scheme
of a crystal (Kossel crystal); it is viewed as a compact structure packed to-
gether out of rigid elementary building blocks, which may, for instance, be
of cubic shape, corresponding to lattice cells. It completely ignores lattice
vibrations, electronic structure, dislocations, relaxations and other essential
features of realistic crystal surfaces. In the TLK model the step direction
and the average step separation are determined by the orientation of the
vicinal surface. Also the distance between steps (that is, their density) is
simply related to the inclination angle towards the low index plane. If the
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normal of the macroscopic vicinal surface is inclined to the normal of the
low index surface by the angle # and the step height is d (which is equal to
the separation between the low index planes), the average distance between
neighbouring steps is then given by A =dtand. The average direction of
the steps is parallel to the line of intersection between the low index and
the vicinal surface. The step direction may coincide with the direction of
close-packed atom rows (low-index direction). In this case the edges are
smooth. For other directions the edges will contain kinks which connect
portions of smooth edges.

Usually there are two ways to indicate vicinal surfaces, that is simply
by the Miller indices of the direction, which forms the angle # with the
low index direction, or by a more complete nomenclature due to Lang et
al. [75], which indicates the terrace orientation, the terrace width and the
edge orientation. In general a stepped surface is represented in this scheme

by

E(S) — [m(h, k1) x n(k', k', 1')]. (4.1)

E designates the element, the postscript S means “stepped”, m gives the
number of rows in the terrace of (h, k, ) orientation, n the number of atomic
layers giving the step height and (A, %’,!') the edge orientation.

There are three main types of structural features that can appear on
vicinal surfaces; besides the configuration characterized by one atom high
steps separated by terraces of width m, already described (the monoatomic
height step terrace configuration), there are multiple height step configu-
rations (where the steps are higher than one interplanar distance) and the
“hill and valley” structure. This consists of very large (~100 A) low Miller
index facet planes, separated by multiple height steps, which would give to
the surface an aspect of an ensemble of hills with valleys between them.

4.2 Experimental observations

Stepped surfaces may be prepared either by cleavage or by standard
metallographic procedures. In the first case the overall surface orientation
is that of the low index cleavage plane. Regions of various step densities
and step orientations are more or less randomly distributed over the so
prepared surface. Temperature treatments of cleaved surfaces will tend to
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establish the low index plane all over the surface because this is the state
with the lowest surface energy.

If, instead, a macroscopically flat vicinal surface has been prepared by
usual metallographic techniques and has been given an annealing process,
it will develop either a regular step structure or a “hill and valley” structure
formed by facet planes of lower Miller indices, as above.

Ordered steps have been sometimes observed on both metals and semi-
conductors; so they might appear on Miller index surfaces of all types of
crystalline materials, independently of the chemical bond. Many experi-
mental and theoretical studies, as it will be explained later, have been done
about the stability of this type of surfaces with respect to that of the lowest
free energy low-index surfaces.

Anyhow, it is especially on metal vicinals that regular step structures
are predominantly observed and are stable up to temperatures close to
the melting point. This is true especially for vicinals of close packed low
index planes with edge directions parallel to low index orientations. When,
instead, the edge directions are not parallel to a low index orientation, there
is the formation of kinks which are usually randomly and not periodically
spaced. Vicinals with high kink concentration show a marked tendency to
form “hill and valley” structure (that is they are composed of microfacets
of neighboring orientations). Such stabilized structures on vicinals with
step edges parallel to low index directions have been observed on Cu(100),
P1(100), Pt(111), W(110), Pd(111), Ni(100), Ni(111), Au(111), Ir(111) [76]
by LEED. Also on semiconductors Ge(111), Ge(100), Ge(110) [76] ordered
step structures have been observed at least up to 850°C , which is already
close to the melting point of 937° C.

He-atom diffraction studies have been done on Pt(997) and Cu(117)
[77,78]. They can give informations also about the electron charge distri-
bution at the step. A rounding of the electron distribution at the step-edge
in both cases is observed.

To study the nature of roughening transition much experimental work
has been done on vicinal surfaces. In this respect the (K,1,1) surfaces of fcc
metals, especially Cu and Ni have been studied with He-Atom-Diffraction
(79,80,81] and Synchrotron X-Ray-Scattering [82].

Also copper, nickel and silver (100)-vicinals under oxygen, sulphur and
nitrogen [83,84,85,86] have been investigated, and in particular their faceting
behaviour. It is seen that they obey a structural relationship between the
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stable vicinal facet appearing after faceting and the superstructure-mesh
on the low index-face at the same coverage.

Recently a series of studies has been initiated to check a possible faceting
of vicinal faces of bare reconstructed low-index orientations. In particular,
regular and stabilized stepped structures have been observed on metal sur-
faces, which are intrinsically reconstructed, in particular on Au(111) and
Au(100) [3,38,88], and also on semiconductor surfaces, like Si(111) [89]. For
more details see Section 4.5. This fact has made us suppose, as it will be
explained later, that a mechanism, which can compel vicinal surfaces to
have a regular stepped structure is just the reconstruction.

In general the structural properties may be drastically changed by im-
purity adsorption. Usually the tendency for facets formation is enhanced
by this process, but there are also indications that impurities can stabilize
regular step structures. Also in other physical situations regular step struc-
ture on vicinals become favourite, for instance in kinetics of step motion
under condensation and evaporation and in capillarity driven shape change
of metal surfaces [76].

Experimental observations on vicinal surfaces (like Pt [91]), which are
stable up to the melting temperature have been performed; many studies
have been done to explain why the various mechanisms, which should desta-
bilize the stepped structure (surface diffusion, evaporation, bulk diffusion)
cannot be sufficient to destroy the ordered configuration. The remarkably
strong thermal stability is probably due to the difficult routes which the
crystal must take to develop an equilibrium shape.

From the experimental observations one may so conclude that the regu-
lar step structure on vicinal surfaces is one of the possible equilibrium state
of lowest free surface energy. The other state conforms with a “hill and val-
ley” structure set up by lower index facet planes. The theoretical reasons
for the prevalence of one structure or another will be clear in Section 4.3.

The differences in free surface energy of the two possible states may
be quite small and may change sign with temperature, as indicated by the
reversible surface structure of Ge(110) vicinals [90]. If the vicinals show
irreversible faceting at higher temperatures, one may regard this as the
state of lowest energy in the entire temperature range. One might attribute
the initial lack of well developed facets to the rather low mobility of surface
atoms, not allowing the equilibrium structure to form within a reasonable
time.

66



4.3 Theoretical considerations: the Wullf plot
and the faceting of a vicinal surface

One of the most important theoretical problems connected with the
stepped surfaces is that of their stability at high temperatures. In fact many
studies have been done about the reasons for which a vicinal in some cases
chooses a regular stepped structure instead of an “hill and valley” structure
and about the surprisingly high stability of regular stepped configurations
with respect to thermal effects.

Before reviewing briefly these problematics, we must recall the meaning
of the most important variable in surface thermodynamics, the surface free
energy (called also the specific surface work or, sometimes, surface tension)
[92,93]. Tt can be defined as the reversible work v required to form the
unit area of new surface by cleavage at constant temperature and pressure,
that is the partial derivative of the Gibbs energy G of the whole system
with respect to the area of surface formed (at constant T, pressure P,
and number of moles for each component n;) G = G(P,T,n;,4), v =
(OG/OA)pTn;- It can be symmetrically defined in terms of the free energy
in conditions of constant volume or, more frequently, in terms of the grand
potential Q (at constant T', volume V', chemical potential y).

Once introduced this thermodynamical variable, the “geometrical ther-
modynanics” studies the dependence of ¥ from the orientation of the faces,
solving the problem of how this function can be used to determine the equi-
librium form of the crystal.

The equilibrium shape of a crystal is determined by the condition for
the free energy F to be a minimum (for given T', i, and volume V of the
crystal) or, which is the same thing, by the condition for its surface part to
be a minimum [94]:

F = /'ycl.s = rminimum (4.2)

the integral being taken over the whole of the crystal. Let z = z(z,y) be the
equation of the surface of the crystal, and let p = 0z/9z, ¢ = 0z /0y denote
the derivatives, which determine the direction of the surface at each point;
~ can be expressed as a function of these partial derivates, v = v(p,gq). The
equilibrium form is given by the condition
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/’Y(P,Q)\/mdwdy = mintmum (4.3)

with the added condition of constant volume

/zdmdy = constant. (4.4)

This mathematical condition, can be shown to be equivalent to the well-
known geometrical construction introduced by Wulff [95]. It consists of
plotting radially (), as a function of the angle 8, which the high index
Miller surface forms with the corresponding low index Miller direction. The
equilibrium crystal shape is then obtained drawing planes perpendicular to
the radius vector at each point of the v plot. Then the volume, which
can be reached from the origin, without crossing any of the planes has a
shape similar to the equilibrium shape of the crystal. In other words the
interior envelope of the family of planes, described above, is a convex figure,
whose shape r(¢,T) is that of the equilibrium crystal, where ¢ is the angular
variable in describing the crystal shape.

It is interesting to note that there is a relation, which connects 6, the
angular variable in the Wulff plot, with ¢, the angular variable on the
crystal shape: the plane perpendicular to the direction 4 is tangent to the
equilibrium crystal shape at a point (or points) labelled by ¢; this relation
may or may not be one-to-one, as it will be described further below. If
the surface free energy is v(0,7T), the Legendre transformed free energy
with natural variable ¢ and T is just the equilibrium shape r(¢,T"). This
is natural, if we think that the Wulff plot provides tangents to the crystal
shape, and it is this geometrical notion of tangency which is at the center
of the idea of the Legendre transformation (Fig. 4.1). If the v plot has
strong cusps in a certain direction, the equilibrium crystal shape will be
a polyhedron formed by planes, whose normals coincide with the cusps
directions. These directions correspond to orientations of low Miller indices.
All planes that are not part of the equilibrium shape are unstable.

In summary, the equilibrium shape of crystals at low temperatures [96]
is characterized by the presence of facets, i.e. plane sections, each of which
corresponds to the emergence to the surface of a crystal face with definite
Miller indices.

This nonanaliticity of the shape is a manifestation of the dependence of
the surface energy of the crystal on the angles determining the orientation
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Figure 4.1:
The Wulff construction. The outer curved line is the polar graph (the Wulff plot)
of ¥(8,T) at fixed T. The inner figure is the corresponding crystal shape r(,T').
Straight lines illustrate the construction described in the text.

of the faces. Specifically the surface energy is a continuous function of the
angles, but this function has discontinuous derivatives everywhere. The
linear dimensions of the planar parts for the various faces are proportional
to the corresponding jumps of the angle derivatives of the surface energy,
which in turn are proportional to the step energy for the face in question.
All these quantities have their greatest value in the case of the most closely
packed faces, and rapidly decrease with increasing Miller indices.

The thermal motion washes out the planar parts of fairly small dimen-
sions; therefore, at any finite temperature only facets with not too large
indices occur on a surface. A rise in temperature usually leads to the dis-
appearance of the planar parts for the increasingly close-packed faces, and,
finally, to the total disappearance of the facets. Therefore each crystal is
characterized by a set of critical faceting-transition temperatures (or rough-
ening transition temperatures). The highest of them is the temperature be-
low which the crystal first assumes its nonanalytic equilibrium shape. The
rest are connected with the appearance of planar parts of the various types
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of faces. It may also be said that the discontinuities of the angle deriva-
tives of the surface energy or the finite step-energy values first appear at the
critical points of the faceting transitions. The concept of roughening-phase
transition was introduced by Burton and Cabrera [97].

The roughening transition of a crystal surface is characterized macro-
scopically by the disappearance of a facet of a given orientation from the
equilibrium crystal shape. This corresponds to the disappearance of a cusp
in the Wulff plot. Microscopically, instead, the roughening transition is
characterized by the free energy of a step on the facet becoming zero, or
alternatively by the appearance of strong fluctuations in the location of
the facet. A microscopic description of the roughening transition [98] can
be achieved within the solid-on-solid model (SOS model). It describes the
interface in terms of a set of discrete-valued variables h;;, defined on a two-
dimensional lattice, describing up to which height the interface is built up
at each lattice site [ij]. One obtains a statistical mechanical model by as-
signing to each interface configuration h;; an energy E(h;;). A SOS model
is shown to undergo an infinite-order phase transition of the Kosterlitz-
Thouless type at the roughening temperature 7, (which results, usually,
one-half of the experimental melting temperature T3;). The roughness of
the surface is described by the height-height correlation function in refer-
ence to the low-temperature smooth surface. The correlation-length associ-
ated with this function diverges exponentially as T' — T, and stays infinite
for T' > 1.

For vicinal fecc (K,1,1) surfaces a statistical description of the thermal
roughening of the steps line was recently given by Villain, Grempel and
Lapujoulade [79] based on a modified SOS model. In this model, the hamil-
tonian describing the atomic picture of a rough surface assumes two inter-
action energies, the step-step repulsive energy w, and the kink creation
energy Wop. Having w,, < T' < Wy under general experimental conditions,
the theory derives the roughening transition temperature T, from the rela-
tion

(wn/T,)exp(Wyo/T,) = R. (4.5)

Coming back to the description of the equilibrium crystal shape, derived
from the Wulff plot, we must observe that besides the planar parts, the
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crystal surface may contain singular lines and points at low temperatures.
The first of them are the so-called edges, along which finite jumps occur
in the orientation of the normal to the surface; the second are conical (or
angular) points, near which the crystal surface has the shape of a cone.
The appearance of these anomalies, as the temperature is lowered also
determines a set of critical temperatures characteristic of the given crystal.

Analysing in more detail the construction of the Wulff plot, we must
observe that every point on the equilibrium crystal shape has a tangent
plane belonging to one (or more) directions ¢ in the Wulff plot, whose per-
pendicular planes are not tangent to the equilibrium crystal shape. When
this happens, the equilibrium crystal shape lacks tangent planes with cer-
tain orientations. As a result, it posses sharp edges (or points). Such
regions, which do not contribute to the equilibrium crystal shape, have
no significance, and, indeed, from a fundamental statistical point of view
they are not even well defined! Passive regions of the Wulff plot are like
metastable states in bulk thermodynamics [99]. They appear at T = 0
and in mean-field approximations, where such states can be given a clear
definition; however, for T > 0 they are not and cannot be defined thermo-
dynamically, since they do not persist at long times. In fact, as it will be
explained in more detail later, it has been shown by Herring [100] that, if
0 does not contribute to the equilibrium crystal shape, then a lower free
energy can always be achieved by taking in place of the flat interface a
“hill-and-valley” formation, which uses only orientations which appear on
the equilibrium crystal. Thus, what happens in practice is that the flat sur-
face does not equilibrate but rather reconstructs (on an appropriately long
time scale) into Herring’s “hill and valley” formation. Such reconstruction,
called thermal faceting, is in fact, observed experimentally on high index
surfaces of certain metals at relatively high temperatures. It may be in-
teresting to observe that thermal faceting is visible only when it occurs
on accessible time scales. Large-scale “hill-and-valley” formations require
macroscopic times. What is typically observed experimentally is only the
initial stages, which require transport only over short distances. Unstable
interfaces may remain unreconstructed for long times. In conclusion the
upshot is that the flat surface in these particular directions never equili-
brates, so the equilibrium measurements cannot be made. Thus passive
regions of the Wulff plot lack thermodynamic significance; in other words,
the directions belonging to these regions are forbidden.
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Figure 4.2:
A generic selection of equilibrium crystal shapes with corresponding Wulff plots.
Faceted and curved surfaces may appear, joined at sharp or smooth edges in a
variety of comhinations:
(a) entirely faceted, no curved surfaces;
(b) entirely curved, no facets;
(c) curved surfaces with edges, but no facets;
(d) facets and curved surfaces, no edges;
(e) facets, curved surfaces and edges.

In summary, from the precedent analysis, we can say very briefly that
the equilibrium form of the crystal determined by this procedure, will in-
clude a number of plane areas (corresponding to crystal planes with small
values of the Miller indices), which are joined by rounded regions instead of
intersecting at sharp angles. The size of the plane areas rapidly decreases
as the Miller indices increase.

To show some examples, various equilibrium crystal shapes, which can
be derived from the various Wulff plots, are displayed in Fig. 4.2, with the
corresponding Wulff plots [99]. Of course, it is the interatomic forces which
determine which one of these possibilities is actually realized.
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Figure 4.3:
Section of v plot illustrating reduction in surface energy for direction 71, by a “hill
and valley” structure formed by facets of orientation n; and 3.

A theoretical question, linked to the problems now examined, is con-
nected with vicinal surfaces [76], whose v values are described by portions
of the v plot in vicinity of the corresponding low index cusp directions.
The question is, whether a regular monoatomic stepped structure or a “hill
and valley” structure leads to a lower value of the surface free energy per
unit length. Herring [100] has been the first, who has given a general treat-
ment of the conditions for faceting from the shape of the v plot, and, later,
Bennema [101] has reviewed in more detail Herring’s theories.

Very briefly this condition consists in observing the position of the point
(called M), which is given by the projection (onto the radius vector of a
particular vicinal) of the vector joining the origin with another special point
(called C), obtained as the intersection of three facet planes, drawn normal
to three radius vectors (called, for istance OBy, OB;, OBs). It M lies inside
the v plot, the vicinal may lower its free energy by forming the facets (“hill
and valley” structure) with the normals over indicated. If, instead, it lies
on the v plot, the terrace-step structure is favourite (see Fig. 4.3). We must
observe that the surface free energy of a faceted surface per unit area of
the macroscopic surface would be

vs = v1f1 + 72f2 + v3f3, (4.6)

where 71, 72, 73 designate the surface energies of the three facet planes and
fi, fa, fs are the areas of the planes per unit projected area in the plane of
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the macroscopic surface.

Various models [93] of y have been derived from different types of in-
teraction potentials, especially for pairwise interatomic interactions. In all
these models the crystal is taken to be semi-infinite and defect-free and
v is simply equal to the energy per unit area of surface associated with
breaking at T' = 0 of the bonds that would connect the crystal to that part
occupying the other half of space.

It is interesting to note that the Wulff plot, derived from these broken
bond models with only first neighbour interactions, is composed of spheres
which meet each other in steep cusps and valleys. Cusps correspond with
flat faces occurring on the equilibrium form and valleys to stepped faces.
The spherical areas correspond to kinked faces.

The conclusion, derived from the analysis of different types of interac-
tion, seems to be that faceting is an indication of the deviation from the
ideal pairwise bonding behaviour. In fact the inclusion of longer range inter-
actions leads to the occurrence of additional cusps (in the limit a cusp would
be predicted at all rational orientations [100]). With a simple pairwise in-
teraction, the portions of the Wulff plot between two cusps, corresponding
to low index orientations, are spherical.

Besides the pairwise interaction model, spherical portions in vicinity
of a cusp can also be phenomenologically rationalized in terms of a step
structure, for which an additional step energy 3 per unit step length has
been introduced [76):

_ Y i
a(0) = cos b (70 + g 51119) ; (4.7)

Yo 1s the free surface energy of the low index direction, d the step height,
 the angle between the vicinal and the low index surface direction. It can
be shown that the Wulff plot derived from the precedent expression has a
spherical shape with a radius, which increases with the strength of 3.

Herring has showed that the condition of stability of a stepped structure
respect to faceting in facets with normals 7}, n3y, riy is fulfilled when this
spherical portion of the v plot lies over or inside the sphere given by the
equation ¢'-7n; = 7; where C represents the vector joining the origin with
the 7 —th point, obtained as the intersection of the three facet planes with
normals n; i=1,2,3. This condition is naturally equivalent to that before
described.
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The condition of stability respect to faceting may be fulfilled or not
depending on the material and on the orientation. 3 is higher for kinked
steps, giving less stability to the vicinal.

4.4 The interaction among steps on a stepped
surface

If we introduce higher order terms in the phenomenological expression
above described (4.7), we can take into account the step-step interaction
without making any hypothesis about the nature of the interatomic forces,
other than that the step interaction energy goes to zero at sufficiently large
step distance. The expression, which has been utilized, results:

o(8) = cos (v, + /—j- tan § + o, tan® 8 + agtan® 6 + .....). (4.8)

By this model it has been possible to estimate, from the plot of Cu(100)
vicinal the value of (3/d) ~ 1072 eV per atom at 100 K.

We have followed a similar way for our studies of interacting steps on
gold surfaces, as it will be explained in Chapters 5 and 6.

The nature of the interactions between surface steps has been a very
controversial question. The problem has been considered, using the pair
interaction model by Wymblatt [102] for steps on the (100) surface of a fcc
cubic crystal. The interactions were represented by the Morse potential:

$(rig) = D(e2e070) — gemalris=ra)), (4.9)

D, r,, « are empirical constants derived from known bulk properties; r;; is
the separation of a pair of atoms. The interactions of pairs of steps have
been found to be weak and repulsive.

Also considerations made on the entropy associated with the formations
of the kinks of the step edges [104] take to the conclusion that the interaction
among steps must be repulsive.

The origin of the step-step repulsive energy arises from the lattice strain
in vicinity of a step. In particular, the possibility of a long-range elastic
interaction, due to the overlap of the displacement fields at the steps has
been suggested by Blakely et al. [103].
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The interaction energy between two steps separated by a terrace long I
can be thought similar to the interaction energy of two parallel walls lying
a distance [ apart, deduced within an elastic model [105]. It results that
the interaction energy per unit length of the wall (or the step) is a long-
range interaction, which is proportional to the inverse of the square of the
distance [ between walls (or steps). This kind of step-step interaction, both
short- and long-ranged, gives a cubic term in the step density [106] in the
free energy per unit area.

We should recall that also dipolar interactions between steps have been
also considered; they have a I~ dependence too and can be attractive and
repulsive, while longer ranged interactions related to Friedel oscillations
have a much more complicate trend [42].

If the interaction energy between two steps (per unit length) separated
by the distance [ is proportional to [72, the energy change wy; when a step
is shifted with respect to the neighbouring ones is expected to vary as [~*
[79,80]. This dependence seems roughly to be verified in Cu(100)-vicinals
(K,1,1), for which some estimates of wy, and Wy, the kink formation energy,
from roughening temperature measures have been given [80].

4.5 Experimental observation on interplay
between steps and reconstruction

Recent experimental observations of regular arrays of steps on Au(111),
Au(100), Si(111) [3,37,38,89,88,87] vicinals seem to suggest, being all these
surfaces intrinsically reconstructed, that reconstruction on a crystal surface
may be very effective in “locking” the distance between steps. In particular,
steps might tend to rearrange themselves so as to form terraces, whose
length is such to accommodate an integer number of reconstructed unit
cells.

In particular, for the Au(111)-vicinals by STM [3] regular [110] [87] and
[112] steps have been observed, the latter with a periodicity in the [170]
direction, which exactly fits the well-tested reconstruction periodicity of 23
of the flat surface; for the Au(100)-vicinals by LEED [88] and Electron-
Microscopy (Profile Imaging, TEM, TED) [38,37], [011] steps have been
seen with a periodicity of five (or slightly longer) in [011] direction, which
recalls the (1x5) structure of flat Au(100); for Si(111)-vicinals [89], inclined
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along the [112] zone-axis, a study in temperature has shown that the incli-
nation of the surface changes continuously and reversibly from 6.3 & 0.4°
(steps of height 3.12 4+0.07° A and separation 28.4+1.6 A) at high temper-
ature (T > 810K ), where there is no reconstruction to 17.0 + 3.0° (steps of
the same height with separation 10.4 + 1.7 A) at low temperature, where
the (7 x T) reconstruction appears.

4.5.1 Experimental studies of (K,1,1) Au(100)-vicinals
The first studies on stepped Au(100) were done by RHEED [33] by

Melle and Menzel. They found a rotation of the structure, a ( 2 g) recon-

struction on stepped surfaces inclined along the [011] zone-axis. The close
packed atomic row is then rotated by oy =0.7° respect to the [011] direction
of the fecc lattice.

Also Sotto et al. [88] by LEED have observed several faces, cut along
the [011] zone-axis, (K,1,1) vicinals. The LEED patterns, even if very
intricate, have shown that, except for the faces having large terrace widths
(i.e, vicinals with Miller index K> 11) and the (5,1,1), a faceting occurs on
the other faces. In all cases, there appear reconstructed (100) facets and a
regrouping of (5,1,1) facets.

T. Hasegawa et al. [38] by Profile Imaging have observed on the terrace
of the (K,1,1) vicinals the (28 x 5) superstructure. In Fig. 4.4 it is shown

Figure 4.4:
(100) reconstruction around a step. It is seen the T-onto-6 terrace-configuration
(38].

that in the [011] direction, the five-period superlattice persists right up a
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step, while over a terrace it seems that a T-onto-6 reconstruction prevails.
The atoms, for each [011] row dispose symmetrically around the central
atom, which rises up in the [100] direction. The atoms at the end of the
row, on the terrace, instead, are in valley. In their measurements, it has
been also noted that the relative shift of the structure at the step is 3/2 of
the atomic distance.

More detailed studies by TEM and TED [37] have confirmed for stepped
Au(100)-vicinals the superstructure as (p x ¢), where p and ¢ fluctuate
around the central value of 28 and 5. Their experimental observations
have been interpreted in terms of an alternation of the two hard spheres
models, the top-center and the two-bridge models, by which also the (1x5)
reconstruction of flat Au(100) has been explained. This alternance keeps
also across the steps, as it is shown in Fig. 4.5. The names of these two
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Figure 4.5:
(a) Top-center and two-bridge sites of the hexagonal lattice of the (28 x 5) structure
(top view). The alternating top-center site and two-bridge site along the multifold
direction continues on the lower terrace.
(b)Side-view of the (28 x 5) structure for the top-center site and for
(c) the two-bridge site.

models, which give an hexagonal arrangement in the topmost layer, derive
from the fact that in the two-bridge model the atoms in the first layer in
registry with the second one occupy twofold bridge-sites, while in the top-
center model they are positioned directly on top of the atoms in the second
layer.



Since the two models appear alternatively on flat surfaces, they are
expected to have a similar energy on wide surfaces. Anyhow, the preference
of the top-center model on narrow terraces was found to be due to the fact
that the reconstruction can be terminated at up and down steps by the
most stable hollow-site atoms in the top center model.

These experimental studies have also described the rotation of the top-
most hexagonal layer on the terraces with respect to the underlying square
lattice. The conclusion seems to be that the rotation of the unit cell vectors
of the hexagonal lattice respect to the square substrate is a characteristic
of the flat (100) surface, since in regions of low step density (large terraces)
is bigger than in regions of high step density (small terraces). Besides that,
this rotation is minimum for terraces with [011] steps respect to terraces
with [011] steps.

It may be interesting to observe that in TEM and in TED analysis the
periodicity of the superlattices in the fivefold direction fluctuates largely
around ¢ = 5 and reaches even ¢ = 4 and q = 6. The unevenly spaced
superlattice fringes are often seen on narrow terraces in TEM images, while
it is not noticed on flat rotated superlattices. So this effect might be caused
only by steps and might have been concealed on flat surfaces.

4.5.2  Experimental studies of (M+1,M~-1,M) Au(111)-
vicinals

Several scanning-tunneling microscopy (STM) studies of surface steps
on Au(111) have recently appeared [3,37,108,109]. From these studies, one
can extract a fair amount of information on the step structure and on their
interplay with the reconstruction of flat surfaces.

The first STM study of Au(111) surface and Au(111) vicinals has been
performed by Kaiser and Jaklevic [3]. In their experiments, the resolution
is not suflicient to resolve individual atoms. However, the presence of steps
can be unambiguously detected, as shown in the maps in Fig. 4.6. A first
topograph (Fig. 4.6 (a)) shows an array of monoatomic steps (each 2.35

in height) parallel to the [112] direction in the surface plane. There is
no sign of any isolated atom or single row on this surface. Scans along
various directions showed no evidence of any corrugation effect (within
their vertical resolution 0.1 A). Interestingly, the steps are almost equally
spaced with a periodicity of 23 4 2 atomic rows, i.e., nearly equal to the
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Figure 4.6:

(a) Surface topograph of Au(111) showing an array of monoatomic steps aligned
with the [112] direction. The array extends through the entire area covered by this
image: (550 Ax 1400 A). The array forms an ordered step reconstruction with a
period of 6646 A (23 £ 2 atomic row spacings).

(b) Surface topograph of Au(111) showing an array of wide, flat terraces linked
by large amplitude steps. The image covers a region of (450 Ax 425 A). The
step-height is uniform through this large area and is equal to seven atom-layers.
The facets exposed at these steps are (311) and (100) type.

Au(111) reconstruction periodicity length [34,50,2,54,55] The regularity and
periodicity of these steps continues over many periods and over a very large
surface region.

The precedent observations suggest, for Kaiser and Jaklevic, a picture
of the reconstruction on Au(111) in terms of step arrays rather than a top
layer contraction. In other words, they believe the stepped configuration to
be the stable reconstructed surface, which, in their interpretation, should
be lower in energy than the flat (111) surface. Our calculations will demon-
strate that their conclusion is wrong because a stepped surface is always in
a metastable state respect to that of the flat one. However, reconstruction
may play a role in stabilizing the distance between the steps to a value close
to the reconstruction periodicity, thus explaining their observations.

In a second topograph (Fig. 4.6 (b)), a region with an average 10°
slope, instead of consisting of many closely spaced narrow monoatomic
steps, is found to facet into wide flat (111) regions separated by seven-
atom-height steps exposing a (3,1,1) facet. (100) facets also appear. In this
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case, the absence of periodic monoatomic steps contradicts their previous
interpretation, and it rather indicates that a 10° slope corresponds to a
vicinal surface unstable with respect to faceting.

Finally, in a very recent STM study, Brodde et al. [87] investigate
a stepped Au(111) sample, with the steps oriented along the [110] (i.e.,
orthogonal to those studied in [3]). Also in this case, the distance between
steps (about 30 A) appears to be rather stable. Moreover, neighbouring
steps tend to run parallel to each other even in the presence of kinks,
indicating that they interact rather strongly. However, these results are
difficult to interpret in terms of a reconstruction-induced stabilization, since
the steps are aligned with the contraction direction.

In other recent STM studies with high resolution on Au(11l)-vicinals it
has been ohserved that the terraces on stepped Au(111)-vicinals are not flat,
as Kaiser and Jaklevic affirmed [3], but show approximatively a corrugation
of 0.3 A [108]. Finally by STM [109] it has been seen also surface features
change with time. Individual [112] steps on Au(111) have been observed
to move by acquisition of atoms diffusing across terraces or along the steps
themselves, at temperatures around 30° C.

Motivated by these observations, we have undertaken a study of the
structure and energetics of gold vicinal surfaces [107]. We have used the
glue force model, which, as discussed in the previous Chapter, is able to
explain the occurrence of reconstruction on all the low-index surfaces of Au
and therefore constitutes a good starting point for this investigation.

In particular, we have studied the stability of these vicinals with respect
to the corresponding low index surfaces and the interplay between steps and
reconstruction, testing the idea, suggested by experimental results, that,
among the vicinals, those with terrace sizes, which contain about one or
few reconstructed unit cells, could be energetically favoured. The results
of these calculations are reported in the next two Chapters 5 and 6.
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Chapter 5

Simulation of Au(100)-vicinals

5.1 General description of (K,1,1) Au(100)-
vicinals

We have undertaken a quantitative study of the Au(100)-vicinals in-
clined along the zone [01I] axis, giving rise to faces with Miller indices
(K,1,1), with K odd [107]. These consist of [017] (henceforth z-direction)
straight steps, separated by (100) terraces which are M = (K +1)/2 atoms
wide in the [011] (henceforth y) direction, and infinitely extended along z,

as it is shown in Fig. 5.1.

Figure 5.1:
Au(100) vicinals inclined along the [01T] zone-axis (geometrical scheme); the
dashed line indicates the infinite extension along the [011] direction.
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The length of the terrace along y determines the angle of inclination of
the vicinal, 8 = arctan(y/2/K). We also shall call z the [100], ¥’ the [2KK],
and =’ the [K11] direction.

zy'z' form an orthogonal system, obtained by rotating the zyz system
by an angle 6 along the z-axis.

We have seen in the previous Chapter that the basic nature of the flat
Au(100) (1 x 5) surface reconstruction is characterized by groups of five
consecutive atoms along a [011] row, which are replaced by groups of six
atoms arranged in a zig-zag chain, so as to give rise to a nearly-triangular
atomic structure on the topmost layer. Accordingly, we take each (100)
terrace to be reconstructed by replacing every [011] row of M atoms with a
row of M + N atoms, arranged in a zig-zag chain, creating again a nearly-
triangular ! overlayer. We shall call N the “reconstruction order”; N =0
is the unreconstructed case, in which the perfect square lattice is preserved
also on the topmost layer.

Moreover, we require the triangularity of the surface structure to be
preserved even across the steps.

In the starting configurations, the atoms are arranged in lattice-like
positions, which could be rather far from the true equilibrium positions
for our force model. To relax the systems in order to study structure and
energetics, we have used energy minimization techniques based on MD,
already used for flat surfaces, which we recall to be:

(a) “quenching”, where the system is directly driven towards the nearest
(or one of the nearest) energy local minimum, by adding friction forces to
the dynamics;

(b)“simulated annealing”, where the system is thermally annealed at
finite temperature, and then gradually cooled down to T' = 0. For a more
detailed description of these techniques, we refer to Section 1.4.

To this end, we have set up a MD box with the edges oriented along
zy'z'. Periodic boundary conditions are used along z and y', while free
boundary conditions are employed along z’. The length of the box along
y', L, is such as to accommodate two terraces (and two steps), giving
L, = Kd/ cosf for a (K,1,1), where d is the bulk first-neighbours distance.

LA perfect triangular lattice has to be contracted by a factor (2/V3)(M/(M + N))
along [011] to fit with the terrace length.
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Due to the reconstructed nature of the terraces and the requirement
that the triangularity has to be preserved across the steps, two terraces
correspond to the minimum periodicity length in this direction. Moreover,
these two terraces must be kept equivalent from the point of view of the
relative positions between the first- and second-layer atoms. This can be
achieved by a proper choice of the top-layer registry (d/4) along = (see
Fig. 5.2 b). In Fig 5.3, instead, an unreconstructed sample is shown with
the square lattice also on the topmost layer.

The z-direction, parallel to the steps, does not play any particular role,
and the choice of the cell length L, can be driven by mere convenience.
We have chosen L, = 5d; this particular value is low enough to avoid
excessive use of computer resources, and has the additional advantage to
allow a reorientation of the (1 x 5) reconstruction parallel to the steps, if
the system finds it favourable to do so. This, however, never occurred in
our simulations.

For practicality, these MD boxes have been constructed by starting from
a (100) slab with two steps in a zyz-oriented box, and applying a rotation
operator on the particles coordinates to pass to a zy’z’-oriented box. As a
result, the area of the slab increases by a factor 1/cosf. The rotation creates
a perfect match between the box and its image at the box boundary. For
example, the first layer of one box connects smoothly with the third layer
of the adjacent box.

Instead of setting up such a “tilted MD box” we could have constructed
a vicinal by starting from a (100) slab with two steps in a zyz oriented
box, and modifying only the periodic boundary conditions in such a way
to get the match between the first layer of a box with the third layer of the
adjacent box. But this way has resulted to be much more complicate than
that described previously, due to the various modifications which would
have to be done to MD programs.

Initially, our system consisted of 12-layers slab with two surfaces iden-
tically treated. The result of an annealing-quenching procedure applied to
a (9,1,1) slab of this type is shown on Fig. 5.4.

1t is evident that the presence of steps on both surfaces generate forces,
which elastically deform the whole slab, tending to flatten the steps and
thus lowering the surface energy at the expense of bulk elastic strain energy.

This phenomenon would clearly disappear in the limit of a slab with
infinite thickness. The impossibility to simulate significantly larger systems
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(a)

Figure 5.2:
(9,1,1) in the case N = 1. Perfect sample. Two MD boxes are represented in v’
direction. The atoms at the step-zone are drawn with a e.

(a) Slab profile.
(b) Top view. Note that the triangularity is preserved across the steps.
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Figure 5.3:
(7,1,1) in the case N = 0. Perfect sample. Two MD boxes are represented in y’
direction.

(a) Slab profile.
(b) Top view, where the square lattice is well visible.

85



I@X
R0
feecee:

X
%g ,‘

A .1 AN
OO 1.1%
LSOO KOO

Y0099 ‘.A s

It :
¢ N .1.‘ )
.1’.-\ :
e

. S
AL 980

(

e

Figure 5.4:
Slab profile with two MD boxes along y' direction in the case V = 1 of an annealed
(9,1.1) sample with two free surfaces.

forced us, however, to overcome this problem in a different manner.

In particular, we have constructed a 20-layers slab, with five atomic
layers frozen (i.e., with the atoms kept fixed in their lattice positions). Due
to the short-range character of the interactions in our model, such a small
thickness is sufficient to avoid surface effects from the rigid side, that is
all moving atoms “see” the rigid side as an infinite bulk. In this way we
effectively simulate 15-layers on a fixed seminfinite substrate. Just to have
an idea of the size of the samples constructed, the biggest sample considered
(59,1,1) in the case N = 1, contains 3160 particles and among them 750
are not moving.

To calculate the surface energy we have kept the usual definition

E(8) — N(9)e.
g) =
="
taking into account that we are considering vicinal surfaces by the fact that
now A(f) indicates the area of the tilted surface. E(8) is, as usual, the total

energy of the slab, €. the cohesive energy per atom, NV the total number of
atoms.

(5.1)
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5.2 Structure and energetics of quenched and
annealed samples

Our MD simulation results are shown in Table 5.1, Table 5.2 and
Fig. 5.5, and will be commented in the next Subsections. Anyhow, from
the first examination of the surface energy in function of the Miller index
K for the orders of reconstruction N =0, N =1, N =2, N = 3, we can
notice (Fig. 5.5) at once:

130.0 ] i i I
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£ 120.0
=
f=13]
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<
=
=
Q
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=
3

1 ! ! !
100.0
0] 10 20 30 40 50
K
Figure 5.5:

Surface energy versus the Miller index K for vicinals (K,1,1). +, *, o and x
refer to quenched samples for the orders of reconstruction N =0, N =1, N = 2,
N = 3 respectively. x and o for small K (vicinals with high inclination) refer to
few annealed samples in the cases N = 0 and N = 1 respectively. The dashed line
indicates the limiting value (102.3 meV/A?) to which the lower envelope of the
faimnily of curves tends.

(1) in the cases N = 0 and N = 1, for which we have performed
both direct quench and annealing-quenching cycles, the differences in the
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surface energy between the direct quenched and annealed samples are big,
especially for the vicinals with higher inclination.

(2) If we compare only annealed samples, the differences in surface en-
ergy between the cases N = 0 and N = 1 are very small, particularly up
to the vicinal with K = T; in both cases there is a shallow minimum in
correspondence with K = 5.

(3) In the case N = 1, there are two distinct minima in the surface en-
ergy in function of K: one for the annealed samples at K = 11, the other for
the quenched samples at K = 17; the lower in energy is in correspondence
with the (11,1,1).

(4) If we limit ourselves to examine only quenched samples for the three
orders of reconstruction N = 1, N = 2, N = 3, each curve has a minimum
in correspondence with M,,;, ~ 5N + R with R ~ 3. We recall that 5N is
the optimal periodicity in the reconstruction direction for the Au(100) flat
case, varying the order of reconstruction. It is the presence of the steps,
which shifts the position of the minima towards bigger cells, as it will be
clear further.

(5) The lower envelope of the family of curves tends, for K — oo to
a limiting value oo = 102.3 meV /A2 ie., the surface energy of the flat
reconstructed Au(100), as it is natural to expect, considering that the step
contribution should vanish in the limit of infinite terraces. The lower enve-
lope of the family corresponds to vicinal surfaces where the top layer atomic
density is always kept around the optimal value (corresponding to keeping

M/N ~ 5).

5.2.1 The (3,1,1), (5,1,1) and (7,1,1) vicinals

For the smallest cells (i.e. vicinals with higher inclination) K < 13, we
have tried several kinds of annealing schedules, differing substantially in the
heating temperatures and in the cooling rates. The results for the NV =0
and N = 1 cases, corresponding to a non-reconstructed and a reconstructed

(with extra atoms) starting point, are reported in Table 5.1.

It can be seen that, with a single exception, the surface energy for a
given vicinal depends very weakly on the annealing schedule chosen, the
differences being of the order of 1%. Somewhat unexpectedly, for (3,1,1),
(5,1,1) and (7,1,1) the surface energy is nearly independent on the choice
of the initial configuration (N = 0, N = 1). This fact will be discussed
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Table 5.1:
Surface energies of the vicinals with highest inclination, using three different
annealing schedules.

Structure | 250 IK-Anneal | 300 K-Anneal | 500 K-Anneal
N=0 o (meV/A?) o (meV/A?) o (meV/A?)
(3,1,1) 107.51 107.50
(5,1,1) 106.55 106.52
(7.1,1) 108.59 106.95
(11,1,1) 112.10

Structure

N=1

(3.1,1) 113.72 107.50 108.40
(5,1,1) 106.55 107.70 107.31
(7.1,1) 107.91 107.92 107.91
(9.1,1) 105.06 105.04 105.05
(11,1,1) 104.31 105.58 104.31
(13.1,1) | 104.77 104.54 104.53
(15,1,1) 104.38

(17,1,1) 104.48

(19,1,1) 104.72

(23.1,1) 105.31

below.

Table 5.2 reports the surface energies of several directly quenched vicinal
surfaces. Comparison with Table 5.1 indicates that

(a) the surface energy for the case N = 0 is much higher in the quenched
samples, indicating that extensive rearrangements of the atomic positions
with respect to the initial state, unattainable by simple quench, are required
to energetically optimize the surface;

(b) in the case N = 1, annealing still gives better results than quenching,
but the difference is not so dramatic, and tends to vanish as the terrace
length increases (see, for istance vicinals with K > 13). Visual examination
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Table 5.2:

Quench results for several vicinals and different orders of reconstruction.

Structure | N=0 N=1 N=2 N=3
o(meV/A?) | o(meV/A?) o(meV/A?) | o(meV/A?)

(B3.11) | 11412

(5,1,1) 122.88 123.59

(7,1,1) 125.41 116.03 120.86

(9,1,1) 126.51 108.79 118.91 125.67

(11,1,1) 126.98 106.14 113.73 122.60

(13,1,1) 127.44 104.77 118.90

(15,1,1) 104.76 109.08

(17,1,1) 104.50 106.26 116.07

(19,1,1) 104.91 105.14

(21,1,1) 104.93 104.52

(23,1,1) 1056.39 103.78 106.69

(25,1,1) 103.78

(27,1,1) 106.40 103.95 104.61

(20,1,1) 104.24 104.12

(31,1,1) 106.52 104.04 103.93

(33,1,1) 103.35

(35,1,1) 106.82 104.56 103.47

(45,1,1) 107.58 103.87

(59,1,1) 108.42

of the final states helps to understand the differences in energy in the case
N = 0. As an example, Fig. 5.6 and Fig. 5.7 show respectively the structure
of a N = 0 (5,1,1) vicinal for a quenched and an annealed sample. It
can be seen that in the quenched case the square structure present in the
initial configuration is perfectly retained. In the annealed samples, on the
other hand, in spite of the lack of extra atoms, [011] rows slide laterally
and form a nearly-triangular reconstructed structure which has a much
lower surface energy. In fact, the surface density is effectively higher in
these configurations, since relaxations tend to flatten the steps, almost fully
exposing to the surface atoms, which were previously covered by other
atoms.
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(b)

Figure 5.6:
(5,1,1) in the case N = 0. Quenched sample. Two MD boxes are shown in y’
direction. For details see Fig. 5.2.
(a) Slab profile.
(b) Top view.

Figure 5.7:
(5,1,1) in the case N = 0. Annealed sample. Two MD boxes are shown in v

direction. For details see Fig. 5.2.
(a) Slab profile.
(b) Top view.
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In the quenched stepped surfaces, whose terraces retain the initial square
lattice structure, the surface energy increases as § — 0, tending to 128.5
meV /A2, that is the value of the metastable state of the unreconstructed
(100) flat surface (obtained by a careful quenching [14] of a perfect crystal).
This peculiar behaviour seems to indicate that the square structure on a flat
Au(100) is so much disfavoured so as to give a local surface energy higher
than that found in the regions around the steps. This clearly anomalous
and unrealistic situation changes drastically when thermal annealing takes
place. Annealing, in fact, systematically destroys any square structure for
the smallest cells up to K = 7.

Table 5.1 also shows that the surface energy of the (5,1,1) vicinal, 106.5
meV/A? in the best case N = 0, is remarkably low, lying below that of the
less inclined (7,1,1) and only 4% larger than that of the flat, reconstructed
(100). This can be qualitatively understood by noting its very regular and
well-packed quasi-triangular structure in Fig. 5.7 b. In particular, this high
degree of packing is obtained by a relaxation mechanism (Fig. 5.7), where
the atoms at the base of the step increase their distance (up to 13%) from
the neighbouring atoms of the “bulk part” in the same (100) layer, this
fully becoming part of the surface layer. At the same time, atoms at the
top of the step strongly relax inward. This mechanism effectively rises the
surface layer density, allowing the triangular reconstruction to take place
by an alternate sliding of the [110] rows. Besides, this fact causes also the
presence of a less sharp step, that is the step orientation is less tilted than
in the unrelaxed case, with a consequent minor cost in the energy.

This might explain why this surface is found to be particularly stable
in experiments, whereas (7,1,1) and (9,1,1) tend to facet into (5,1,1)+(100)
[88].

Basically, the same relaxation pattern (for the N = 0 case) appears on
the (7,1,1) surface (Fig. 5.8). In this case, however, the surface energy is
higher in spite of the lower step density. Presumably, this is due to the
lower degree of packing which can obtained, since the terraces are longer
(4-instead of 3-atoms wide). A better packing is obtained in the case N =1,
where the starting point consists of terraces already reconstructed by the
insertion of an extra row. However, terraces on (7,1,1) are not long enough
to make this configuration particularly convenient, as insertion of the extra
atom causes an ezcessive amount of packing. In other words, the (7,1,1)
terraces length fits badly with the reconstruction periodicity. The situation
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Figure 5.8:

(7.1,1) in the case N = 0. Annealed sample. Two MD hoxes are shown in y'
direction. For details see Fig. 5.2.

{(a) Slab profile.

(b) Top view.

changes with (9,1,1) and (11,1,1), where the N = 1 case is clearly favoured
(see Table 5.1).

Before proceeding to analyse larger cells, let us note that annealed
(3,1,1), (5,1,1) and (7,1,1) have almost the same energy in the N = 0 and
N =1 cases, perfectly the same for the vicinal (3,1,1). While this can be
understood for (7,1,1) in terms of the previous discussion, it seems rather
surprising for (3,1,1) and (5,1,1), where compression should be enormously
large in the V =1 cases.

However, the final configuration after the annealing procedure looks
very similar; it can be seen, for instance, comparing Fig. 5.9 with Fig. 5.7,
and observing also Fig. 5.10, where the final configuration of (3,1,1) in the
case N = 0 is reported, which is almost undistinguishable from the case
N =1, according to the nearly equal to zero differences in the surface
energy.

The final effect of the extra atoms is simply that of increasing slightly
the slab thickness. This confirms the substantial correctness of the struc-
ture found by simulated annealing, since the same structure is obtained by
starting from two very different initial states.
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Figure 5.9:
(5,1,1) in the case N = 1. Annealed sample. Two MD boxes are shown in y
direction. For details see Fig. 5.2.

(a) Slab profile.
(h) Top view.

Figure 5.10:
(3,1,1) in the case N = L. Annealed sample. Two MD boxes are shown in y'
direction. For details see Fig. 5.2.
(a) Slab profile.
(b) Top view.
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5.2.2 Sharp and smooth steps

Let us now proceed by analysing larger cells, in particular the (9,1,1)
vicinal. This surface has 5-rows wide terraces, and therefore it seems ideally
suited to accommodate on each row a (1 x 5)-like, 6-over-5 reconstructed
structure. This is what indeed occurs. However, the final configuration
is strongly dependent on the optimization strategy adopted (annealing or
quenching). While for the simple quenched configuration (Fig. 5.11) we
have a (1x5) smooth structure with stacking resembling the ABCC'BA,
found on flat (100) surface [12,13], the structure of the annealed slab
(Fig. 5.12), is characterized by a strongly asymumetric disposition of the
atoms in the first layers, with those in the fifth position having higher
z-coordinate than the others, giving rise to a sharp step.

The origin of this difference can be better understood, by observing
the trend of the energy per atom and of the coordination for the atoms
on the terrace; for the annealed sample the atoms in fifth position have
a big maximum in the energy (and consequently a deep minimum in the
coordination), while for the directly quenched sample there are no sharp
peaks, but rather a regular increase, except for a little minimum for the
atoms in fifth position up to the end of the terrace. Anyhow, the sharp step
structure is energetically slightly favoured because for the atoms in third
and fourth positions the energy is much lower, as it is seen in Fig. 5.13. The
opposite trend is found, naturally, in the coordination, with deep minima
in correspondence with high maxima of energy and vice versa (Fig. 5.14).

The same differences are well evident in the (7,1,1), (11,1,1) and (13,1,1)
vicinals too. For istance, for (11,1,1) two different annealings give different
results for the surface energy (see Table 5.1), just for the reason that in
one case the structure is much more asymmetric, with the characteristic
sharp point (Fig. 5.15), than in the other case, which results similar to the
directly quenched sample (Fig. 5.16)

Sharp step structures are also sometimes observed on (13,1,1), while
only smooth step structures are found for larger cells. For example, Fig. 5.17
and Fig. 5.18 show that similar smooth-step structures are obtained by
quenching and annealing for (17,1,1), with only a small stacking difference.

We can summarize the results for the vicinals in the interval (7,1,1) -
(13,1,1) in the following Table 5.3:
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Figure 5.11:
(9,1,1) in the case vV = L. Quenched sample. Two MD
direction. For details see Fig. 5.2.
(a) Slab profile.
(b) Top view.

Figure 5.12:
(9,1,1) in the case N = 1. Quenched sample. Two MD boxes are shown in 3’
direction. For details see Fig. 5.2.
(a) Slab profile.
(b) Top view.
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The energy per atom for the 6 atoms in a row in the y’ direction on the topmost
layer for the annealed and quenched (9,l,1) samples. o refers to the annealed
sample and # to the quenched one.
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Coordination per atom for the 6 atoms on a row in the y’ direction on the topmost
layer for the annealed and quenched (9,1,1) samples. o refers to the annealed
sample and * to the quenched one.
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Figure 5.15:
(11,1,1) in the case N = 1. Annealed sample. For details see Fig. 5.2.

(a) Slab profile. Two MD boxes are shown in y’ direction. AR
(h) Top view.
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Figure 5.16:

(11,1,1) in the case N = 1. Quenched sample. Two MD boxes are shown in 3’
direction. For details see Fig. 5.2.

(a) Slab profile.
(b) Top view.
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(17,1,1) in the case N = 1. Quenched sample. For details see Fig. 5.2
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Structure | Sharp Smooth
step step

(7,1,1) 107.92 | 116.03
(9,1,1) 105.04 | 108.79 =
(1
(

1,1,1) |104.31 |105.58
13,1,1) | 104.54 | 104.53

Table 5.3:
Surface energies of N = 1 vicinal surfaces in the sharp step and smooth step
configurations. All values are obtained by simulated annealing, except those
marked with a *, obtained from quenching.

Among the vicinals, for which it is possible to distinguish well the
two configurations, the sharp and the smooth step structures, the sharp
step structure implies a big energetic gain with respect to the other, espe-
cially for vicinals with highest inclination (8.1 meV/A? for (7,1,1) and 3.8
meV /A2 for (9,1,1)). However this difference decreases for increasing K,
until at { = 13 (8-onto-7 atom terraces) the smooth step structure is more
convenient (—0.01 meV/A2).

We can qualitatively affirm that, when the system is too much under
compression, as it happens in reconstructed small size vicinals, the sharp
point structure has lower energy, because the stress can concentrate espe-
cially in the sharp point, keeping the other parts of the terrace less stressed.
Instead, when the terrace is longer and so less stressed for the reconstruc-
tion, the sharp step structure is not more convenient.

The sharp step configuration has a minimum at (11,1,1) (7-onto-6 atoms
terraces), while for the smooth step configuration the minimum is in cor-
respondence with the vicinal (17,1,1) (10-onto-9 atoms terraces). Between
these two local minima, the lowest in energy is that corresponding to the
vicinal (11,1,1). This fact compares well with the experimental results by
Hasegawa et al.[38], who also obtained as the best vicinal the (11,1,1).

But our structure of the 7 onto 6 terraces (Fig. 5.15), with its asym-
metry above described is, however, a little different from that shown in
Profile Iimaging micrographs [38], which seems to have a corrugation just
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in the middle of the terrace (see Section 4.3), more similar to our quenched
configurations.

If, on this annealed sample, we consider (100) tilted layers within a
single MD box, the first one of these layers (Fig. 5.15) shows an area with
an inward relaxation, followed by a very little one (two atoms wide), in
which there is a strong corrugation (0.8 A) and finally another region with
inward relaxations.

This relaxation pattern propagates until deeper layers. Anyhow, if we
consider the average z coordinates (in (100) direction) we can say that
the distance between the first and the second layer, in average, slightly
increases, similarly to what happens between the second and the third, and
finally that between the third and the fourth again decreases.

The average relaxation of the first layer respect to the second one is quite
close to that obtained {13,12,14] with the (1 < 5) cell, on flat surface, and
also the behaviour of the relaxation of the deeper (100) layers is qualitative
similar to that obtained in the flat case (see Section 2.2).

The results got from simple quenching in the orders of reconstruction
N = 2 and N = 3 give as the best configurations the vicinals (25,1,1)
(Fig. 5.19) and (33,1,1) (Fig. 5.20) corresponding to 15 onto 13 and 20
onto 17 atoms terraces.

As it is natural to expect, we observe in the (25,1,1) and (33,1,1) re-
spectively, two and three symmetric configurations ABCCBA, i. e., for
each atom added a configuration (1 x p) appears, with p >~ 5.

5.2.3 A model for surface energies of quenched sam-
ples

While for the smallest cells (up to K=13), it is not possible to find a
simple analytical expression for the surface energies of the annealed sam-
ples, which fits our MD results, instead, a very simple model can reproduce
the trend of the quench results for NV > 1.

As it will be clear further, we have adopted the solution of considering
the physical situation described by this model for the orders of reconstruc-
tion N > 1, while for N = 0 and IV =1 the physical conclusions are done
on the MD points.
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Figure 5.19:
Annealed sample.
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Figure 5.20:

(33,1,1) for the case N = 3. Quenched sample.
(a) Slab profile. Two MD boxes are shown in y' direction.

(b) Top view.
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The simple model consists of separating the surface energy in a terrace
and in a step contribution:

(M, N) = Grerrace(M, N) + 0step(M, N). (5.2)

In this splitting, the terrace is regarded as a piece of flat, reconstructed
(100), while effects associated with relaxations near the steps are thought
to be incorporated into the step term. For flat (1 x M)-reconstructed (100),
it turns out that the behaviour of the surface energy as a function of the
cell length M, for M = 3,...,7, as extracted from a previous study, using
the same model [12], can be well reproduced by a quadratic expression in

1/M

1y b 1 12 3

”“‘“<M>—“+ <M>+C<M> (5:3)

with @ = 117.88 meV/A2 b = —155.75 meV/A2%, ¢ = 389.38 meV /A2

With this choice of the coefficients, this expression has a minimumn for

M = 5, exactly corresponding to the value 102.3 meV/A?, found by energy
minimization [12].

We can regard the independent variable 1/M = (M + 1)/M — M/M as
the average excess atom density (due to reconstruction) per unit area. On
a terrace with length M and reconstruction of order N, the excess density
is (M + N)/M — M/M = N/M.

We are thus led to write, for the “flat terrace contribution” to the surface

energy,
N N N\?
et () oo () o2
Tt ( ) O flat IV a—+ M +c M (54)
For N = 1,2,3..., this expression has a minimum for M = 5,10,15....

However, MD results indicate that the minima of the terrace part are rather
located near M=10,13,17..., that is terraces prefer to be larger than what
predicted by Eq.(5.4).

We may tentatively explain this discrepancy by noting that, at the ter-
race side, near the base of a step, atomic coordination is relatively high.
Therefore, for the arguments discussed in Chapter 1, the tendency to recon-
struct should be weaker in this region. Schematically, we may then divide
the total terrace length Myd of the optimal terrace with the reconstruction
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order IV, in two parts:
53
J\f[Nd:Ad+(]bIN+N—)\)6d, (5.5)

where d is the bulk spacing between rows, A indicates the number of non-
reconstructed rows near the step base, while the remaining M + N — X rows
in the terrace are assumed to be reconstructed, and therefore optimally
separated on the average by (5/6)d. This condition yields My = 5N + A,
predicting a shift of the minima.

In this scheme, the surface energy of a generic terrace can also be divided
in two parts, weighted by the area fractions occupied by the two regions:

‘ AL A N
gterrace(]\/l’N) — MO— + (1 - ﬂl) O flat <J‘/I _ )\> 3 (56)

where o” is the surface energy to be associated with the region near the
step base, and oy is the expression (5.3). The argument N/(M — A) is
the excess density, due to M + N — \ rows stacked above M — A.

" is unknown, but note that the term ff o™ is proportional to the step
density and can be very naturally incorporated into the steps contribution
to the surface energy discussed below. Therefore, we shall simply drop this
term from (5.6). A has to be regarded as a free parameter to be fitted.

Of course, the real situation is more complex than this scheme, as re-
vealed by inspection of the quenched configurations. The inter-row spac-
ing, in fact, changes gradually rather than abruptly, so that one cannot in
practice identify a boundary between two different regions. However, the
argument is valid and (5.6) reasonably fits the results.

To ultimate the description of the various contributions to the surface
energy, we must analyse the step term in (5.2). We can schematize the
energy per unit length (in the direction of the steps, i.e. = direction) of
a system of p interacting steps, with terrace length Md onto a distance
L = pMd with the expression

h .
(Md)?’

E
Estep - T

I, Pt

(5.7)

€ is the energetic cost of the step, h is the strength of the step-step interac-
tion, which depends from the square of the distance between two steps, as
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it is explained in Chapter 4. The contribution of the steps to the surface
energy is given naturally by Egtep/L:

€ h
Tstep = ]‘/_[d + (J\/Id)s (5-8)
_ B9 (5.9
T = 00 T M )

1t is naturally interpretable as the chemical potential of the steps. In our
simple scheme, we take ogtep independent from the order of reconstruction.
We recall that the interaction is generally repulsive (¢ > 0), due to the
lattice strain in the vicinity of a step.

To fit our MD results to the full expression (5.2), we have proceeded as
follows:

(1) we assume that o(M,N) tends to the optimal value oo = 102.3
meV/A? for flat (100) when the vicinal angle § — 0, i.e., M — oo, but also
N — oo with M/N=5 to retain the correct excess density:

) M 1
1&13})00 (Z\f[, ?> = O flat (g) = 09; (5.10)

(2) all the minima in the family of surface energy curves corresponding to
different values of N are obtained by replacing o sia (—Mi_x) with the optimal
value oo in (5.6). From (5.6) and (5.9), it follows that these minima satisfy
the equation

f - )\0’0 g

U'mm(-Z\/I) = 09 + M + M3
From our MD results, we can identify the values of M corresponding to
the minima of the surface energy for N = 2,3, corresponding, respectively,
to M = 13 and M = 17. These two points, when surface energies are
plotted as a function of 1/M, appear to be perfectly lined with the point
(1/M=0, ¢ = 0o). This allows to estimate p = f— Aoo ~ 17 meV/A%
This value may be regarded as the “step chemical potential”. The effect of
the step interaction cannot be noticed on these terrace sizes.
(3) We subtract the minimum energy Omin(M) thus determined for all
M's from our data for N = 2 and N = 3. The resulting locations of the
minima allow us to estimate A ~ 2.6. At this point (5.6) can be used to

estimate Trerrace(M, N) for all M and N.

(5.11)
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(4) We calculate the analytic curve for iV = 1. This is quite different
from the actual MD results, particularly for small M, due to the smooth-
sharp step bistability discussed above, which is not taken into account by
the present model. A better agreement is obtained by assigning a finite
value to the step interaction. Our estimate, g ~ 45 meV/AZ, shifts the
energy of the NV = 1 minimum (M = 7.6) by 0.1 meV /AZ?; the shift is negli-
gible for N > 2. Note, however, that this estimate is extremely sensitive to
the choice of parameters. The curves obtained by this procedure are shown
in Fig. 5.21, compared with the quench results, in Fig. 5.22.

T i I T ! i T

135.0

N

Surface Energy(meV/4)

121.0

114.0

107.0

100.0
1/M

Figure 5.21:
Surface energy curves for the various orders of reconstruction N versus the step
density 1/M, as predicted by the Eq.(5.6) and Eq.(5.9). The slope of the dashed
line (which starts from the value of the surface energy of the flat reconstructed
Au(100)[13]) equals the chemical potential of the steps. The thick line, which
indicates the lower envelope of the curves, defines the effective vicinal surface
energy.

The thick line in Fig. 5.21 indicates the lower envelope, which defines
the effective vicinal surface energy. The dashed line indicates the linear
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Figure 5.22:

Comparison between the quench-results (+ for N = 1, o for N = 2, and x for
N = 3) and the fitted curves.

term in 1/M, whose slope is j¢ = 17 meV/AZ, giving rise to an energy per
unit length of the step € = pd >~ 50 meV/A.

The positions of the minima, which lie on the lower envelope of the
curves, are described by the relation Ay, >~ 5N + ), that is the size of
the optimal terrace is not simply a multiple of 5, for the reasons above
explained.

To our knowledge there are no experimental results on gold vicinals
about the strength of the chemical potential and of the step-step interaction
term, that can be compared with our calculations. Only for vicinal copper
faces, however, some estimates by thermal roughening studies have been
given [106] for the kink formation energy and the step-step interaction-
energy, as explained in Section 4.5.

While the analytic expression introduced is a useful model for the high-
index surfaces (which are expensive to optimize by computer), lower index
surfaces are better taken into account by directly using the energy mini-
mization results. In this sense, we have summarized the energetic infor-
mations into the graph of Fig. 5.23 where for N > 2 the surface energy
of Au(100) vicinals has been considered described by the fitted analytical
curves (Eqs.(5.6) and (5.9)), while for N = 0 and N = 1 we have limited

ourselves to consider their MD values.

107



[

Surface Energy(meV/A%)

135.0 ' ‘

121.0

114.0
Nfo =)
107.0 <
i | n [ 1 !
100.0
0.00 0.10 0.20 0.30 0.40 0.50

/M

Figure 5.23:
o indicate the best simulated annealing results for the vicinals of high inclination
(N = 0,N = 1), while the other curves represent the surface energies for the
various orders of reconstruction, obtained by the analytical expressions (5.6) and
(5.9). The thick line defines the effective vicinal surface energy. The dot on the
ordinate axis indicates the flat reconstructed Au(100) surface energy in our model
[12,13].
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5.3 “Stabilized” (K,1,1) Au(100)-vicinals

5.3.1 The “tilting” pressure.

Introducing an external field (a “tilting pressure” 7 in this case), we
have searched the minima of the “Gibbs surface free energy” in function
of the angle 8, g(8) = f(f) — 8 by a Maxwell construction, that is we

3 T T

135.0
128.0 | 1
& i
> 121.0 7
2
2 1140 ) .
107.0 7
I} 1 ] 1
100.0
0.00 0.10 0.20 0.30 0.40 0.50
¥ (rad)
Figure 5.24:
. . 9
The same as Fig. 5.23, but with f(f) = g@is—z) versus the angle 0.

have looked first of all for the first intersection between the straight line
7, + 78 (o, is the value of the surface energy of the flat reconstructed
Au(100) surface) and the lower envelope of the curves f(8) = o(8)/ cos ¥,
which defines the effective vicinal surface energy (see Fig. 5.24). We divide
a(8) by cos 8 because we want to take into account the increment of surface
due to the inclination, respect to the low-Miller index direction (100). By
considering f(0) instead of o(8), we regard mAf as the energy required
to increase the tilting angle from # to § + Af by inserting extra steps, by
leaving unchanged the total (100) area of the terraces, that is the projection
of the area of the vicinal in the plane perpendicular to (100) direction.
Only starting from a certain value of the tilting pressure, we get these
intersections. The value of mmi, is naturally linked to the slope of the
straight line tangent to the lower envelope of the curves of surface energy
for the various reconstructions (that is linked to the value of the chemical
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potential of the steps). Physically it means that only when we apply an
external tilting pressure at least equal to the chemical potential of the steps,
we can have stabilized vicinal surfaces.

As soon we have got the first intersection, corresponding to a certain
value of o, say oy, we start again from this point (6;,01/ cos ;) to perform
the Maxwell construction. So, with a pressure 7', we meet the curve in
another point, say (82, o,/ cos ), that is we apply again the relation

o1/ cos by + w'(8; — 6,) = 05/ cos b, (5.12)

and so on, until we cross the vicinals with the lowest Miller indices, corre-
sponding to the order of reconstruction N = 1.

Because of the particular shape of surface energy obtained for cells of
small size (Fig. 5.23), if we perform the Maxwell construction, we see that
all high Miller index vicinals are not stabilized; in fact, the above described
straight line o, 4+ w0 meets, as the first vicinal, the (11,1,1).

Then, starting from o(8)/ cos 8, corresponding to the (11,1,1) vicinal,
the second intersection corresponds to the (5,1,1) vicinal, and, at the end,
the (3,1,1) vicinal is met. The results for 7(#) are shown in Fig. 5.25.

5.3.2 The Wulff plot

To discuss the stability of the Au(100) vicinal surfaces inclined along
the [011] zone-axis, and in particular the tendency to formation of facets
(“hill and valley” structure) we could have some informations from the
Waulff plot. Here the vicinals cover the range between the (100) direction
(M — o) and the (111) (K =1, 8 ~ 55°).

The magic vicinals, found for Au(100), have no impact on the macro-
scopic crystal habit. In fact, a crystal will grow a given facet if

(a) it corresponds to a surface energy cusp in the polar Wulff plot;

(b) that cusp is deep enough to prevail on other neighbouring cusps (see
Chapter 4).

In our case, the magic vicinals can be thought as cusps, but they are
not deep enough, respect to those corresponding to (100) and (111) cusps,
to give rise to stable facets in the macroscopic crystal habit (see Fig. 5.26).
The equilibrium crystal shape, at T = 0 can be thought as composed of
(100) and (111) facets divided by sharp edges.

110



O.-— T T ] T 1
° (3,1,1) j
i
_ 4
0.4
—~ 0.3 |
~
‘g
= B i
0.2
(11,1,1)
o.1 |
(100) i 1 1 N | " J
0.0
0.0 25.0 50.0 75.0 100.0

T (meV/zokz/rad)
Figure 5.25:
The “tilting” angle versus the “tilting pressure”. Note the magic vicinals (5,1,1)
and (11,1,1).

Figure 5.26:
The section of the Wulff plot corresponding to the inclination angles of the (K,1,1)
studied vicinals, between the (100) and (111) direction. The dashed lines corre-
spond to the two (100) and (111) facets, which constitute the equilibrium crystal
shape. Note that the “magic vicinals” have no impact on the equilibrium crystal

shape.
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5.3.3 The faceting of (K,1,1) Au(100)-vicinals

Besides by the Wulff plot, we have tried to investigate which vicinals
are stable and which facet, following the experimental suggestion by Sotto
et al. [88], for which the (5,1,1) and all vicinals with K> 11 are stable,
while the (7,1,1) and (9,1,1) show a faceting in (5,1,1) and (100) facets.

To this end we have compared the energy of a configuration, in which
in a macroscopic length L there are p terraces all of the same size M(L =
pM), which individuate a vicinal (K,1,1) with K = 2M — 1, with all the
other possible configurations, in which the sizes M; of the p terraces can be
different among them, respecting, however, the condition

P
S M, = pM, (5.13)
=1
which imposes the macroscopic tilting angles to remain unchanged. It is
natural that we achieve the macroscopic limit when p goes to infinity.
The energy of a faceted configuration is naturally

M M,
e+ o(M,)—2

S4(My, .y M) = o(M;) (5.14)

cos 4,

where #;=0(M;). We want to find the configuration, which minimizes the
(5.14). This formula is similar to (4.6) (Herring criterion, Chapter 4), but
written in a different representation, since it uses the (100) orientation as a
fixed reference and not the vicinal, which corresponds to a terrace of length
M.

We have computed, for all possible combinations of terraces for p up to
7, the differences

UMy, ..., M,)  o(M)
pM cosf ’

§( My, ..., M,) = (5.15)
Of course, faceting occurs when § < 0.

For p = 2 and N > 2 the vicinals, corresponding to the minima of the
curves of o, do not facet and also the (3,1,1), (5,1,1) and (11,1,1) do not
facet.

Increasing p, all vicinals start to facet, except the (3,1,1), (5,1,1) and
(11,1,1). If p is big enough and M is bigger than 6, it is always favourite
a faceting in an area of vicinal (11,1,1) (M=6 terraces) plus a flat (100)
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Table 5.4:
Faceting energies, defined as in Eq.(5.14) and (5.15), with the condition (5.13),
for various p. The vicinals, which are reported in the Table, belong to the order
of reconstruction N = 1 until the (19,1,1), while the last three correspond to the
vicinals for which the surface energy has a minimum for the orders of
reconstruction N = 2,3, 4.

Structure | p=2 ] p=3 ] p=4 ]
My, M| (meV/A2) | My, My, M{ (meV/A2%)| My, My, Ms, My| (meV/A®

(7,1,1) 45 -1.14 3,3,6 -1.18 3,35, -1.14
(9,1,1) 3,6,6 -0.06 3,5,6,6 -0.04
(13,1,1) |68 -0.17 6,6 9 -0.12 6,6,8,8 -0.17
(15,1,1) 6,6,12 -0.25 6,6,6,14 -0.23
(17,1,1) | 6,12 |-043 6,8,13 -0.40 6,6,6,18 -0.57
(19,1,1) | 6,14 | -0.73 6,6,18 -0.92 6,6,6,22 -0.95
(25,1,1) | 8,18 |-0.02 6,6,27 -0.18

(35,1,1) 6,6,42 -0.09

(45,1,1) 6,6,57 -0.06

part. More particularly, if we have p terraces the configuration for each M
(M > 6) is characterized by p — 1 terraces of size 6 and a terrace of size
pM —(p—1)6. It is clear that, with increasing p, the latter terrace increases
in size, eventually becoming a large flat Au(100) face. The situation is a
little more complicate for the (7,1,1) and (9,1,1) (M < 6). By increasing p,
we observe in both cases the appearance of a good percentage of terraces of
size M = 3 (5,1,1) and M = 6 (11,1,1) and a very little one of size 5 (9,1,1).
So in a first approximation we can say that these two vicinals facet in (5,1,1)
and (11,1,1). Some of our results are summarized in Table 5.4. This analysis
strongly suggests that the (5,1,1) and (11,1,1) are extremely stable surfaces,
and that there is a clear tendency for other vicinals to facet into them, with
the exception of (3,1,1), which has a larger inclination. A shortcoming of
this scheme, however, is that it does not take into account the possibility of
faceting including also the flat Au(100), which could compare only in the
limit of terraces of infinite size.

So we have also adopted another method in which from the beginning

113



Figure 5.27:
Faceting of a vicinal inclined by an angle § into two facets inclined by 6, and 8,.
Angles are measured from the (100) plane.

this possibility is comprised. In this scheme only two different types of
facets are allowed. Following the suggestion of the previous analysis, we
limit ourselves to consider the following three cases: (a) (100)+(5,1,1); (b)
(100)+(11,1,1); (c) (5,1,1)4+(11,1,1). Geometrical considerations give us
the percentage of the macroscopic length (projected on the (100) plane)
L in which the two facets under consideration appear. In particular (see
Fig. 5.27) for a given inclination # of the vicinal surface and the faceting in
two types of facets of inclination #; and 6,, these two conditions must be
imposed:

Li+Ly=1L (5.16)

Litan#, + Lotanf, = Ltané, (5.17)

These conditions determine the fractions of the areas projected on (100)
plane, I, /L and L,/L, respectively occupied by the two facets.

To calculate an effective surface energy for the faceted geometry, one
has to properly take into account the areas of the two facets, whose sum
exceeds, of course, the area of the unfaceted surface. By referring the
surface energies to areas projected on the (100) plane, the effective surface
energy o(0)/ cos § becomes, after faceting,

Lio(6) | L a(6s)

2:(6,6,,60,) = 5.1
(6,61, 62) L cos#; L cosb, (5-18)
so that the faceting energy is given by
g
5(0,81,0) = T,(6,61,0,) — ZL9). (5.19)
cosf
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For each value of # corresponding to a (K.1,1) vicinal, we set 61 and 6, to
correspond to the cases (a), (b), (c) listed above (when compatible with
the conditions (5.16) and (5.17)) and then calculate §(8,61,62). For o(8),

we always choose the lowest value among those corresponding to different
reconstruction orders (see Table 5.2). The results are shown in Table 5.5

and in Fig. 5.28.

0.0
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Figure 5.28:
For each vicinal. only the case yielding the lowest 6 is reported. The indicated
vicinals belong to the order of reconstruction N = 1, N = 2,N =3. o indicate
faceting into (11,1,1)+(100), + into (5,1,1)+(11,1,1).

All the vicinals considered, except (3,1,1), (5,1,1) and (11,1,1) gain en-
ergy by faceting. As it is natural to expect, the energetic gain is higher
for vicinals, whose o values lie near the points of crossing between two
different orders of reconstruction, and lower for vicinals whose o values lie
near the points of minimum for each order of reconstruction. Naturally
the energetic gain achieved for all vicinals, represents the energetic gain in
the limit p — co of our previous calculations. The largest energy gain is
observed on (7,1,1). As it turns out, this surface can facet in two ways.
In the best case, it divides in a portion (52%) of (5,1,1) and another one
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Table 5.5:

Faceting energies ¢ of (100) vicinals into (5,1,1)+(11,1,1), (11,1,1)4-(100) and
(5,1,1)-+(100). @ is the vicinal angle, L, Ly and L, are as from Fig. 5.27, § is

defined by Eq.(5.14). We have examined the vicinals up to N = 3.

Structure | o(0)/cosé | L /L Ly/L § Li/L | Ly/L | §

(meV/A%) | (5,1,1) | (11,1,1)| (meV/A2) (5,1,1) (100) | (meV /A2
(7,1,1) 109.11 0.52 0.48 -1.31 0.71 0.29 -0.81
(9,1,1) 106.33 0.81 0.19 -0.14 0.56 0.44 +0.64
(11,1,1) 105.16 0.45 0.55 +0.95
Structure Ly /L L,/L

(11,1,1)| (100)

(13,1,1) 105.15 0.85 0.15 -0.42 0.38 0.62 +0.38
(15,1,1) 104.84 0.73 0.27 -0.44 0.33 0.67 +0.26
(17,1,1) 104.84 0.65 0.35 -0.68 0.29 0.71 -0.07
(19,1,1) 105.01 0.58 0.42 -1.05 0.26 | 0.74 -0.50
(21,1,1) 104.99 0.52 0.48 -0.78 0.24 0.76 -0.28
(23,1,1) 103.97 0.48 0.52 -0.35 0.22 0.78 +0.10
(25,1,1) 103.84 0.44 0.56 -0.28 0.20 0.80 +0.14
(27,1,1) 103.89 0.41 0.59 -0.43 0.19 0.81 -0.04
(29,1,1) 104.08 0.38 0.62 -0.69 0.17 0.83 -0.33
(31,1,1) 103.47 0.35 0.65 -0.38 0.16 0.84 -0.04
(33,1,1) 103.45 0.33 0.67 -0.20 0.15 0.85 +0.12
(35,1,1) 103.36 0.31 0.69 -0.17 0.14 0.86 +0.13
(37,1,1) 103.24 0.30 0.70 -0.24 0.14 0.86 +0.04
(39,1,1) 103.50 0.28 0.72 -0.39 0.13 0.87 -0.12
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(48%%) of (11,1,1); in this case §5=-1.3 meV,/A®. For a division in a part
(717%) of (5,1,1) and another part (20%) of flat Au(100), the energetic gain
is, instead, §=—0.8 meV /A% This type of faceting has been experimentally
observed [88]. (9,1,1) also facets in (5,1.1)+(11,1,1), with an energetic gain
§ = —0.14 meV/A:, while faceting in (5,1,1)+(100) yvields a small surface
energy increase (§ = +0.64 meV/A%).

As a check, we have also calculated the energetic gains for faceting
of vicinals into (X,1,1)-+(100), with varying K. Results for some vicinals
are reported in Fig. 5.29, where the horizontal axis represents the fraction
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Figure 5.29:

The energetic gain versus the percentage of (100) for some vicinals with order of
reconstruction N = 1. Each line corresponds to a vicinal, in particular, X refers to
(19,1,1), = to (15,1,1), + to (11,1,1)and o to (7,1,1). The Miller indexes denote the
orientation of one of the two facets, the other being a (100) facet. We can notice
that § for (11,1,1) is always positive, i.e., no faceting occurs. For each vicinal,
increasing the percentage of flat part, the Miller index K of the other vicinal in
which the faceting occurs, decreases. So, for instance, for the (15,1,1) the first
point on the left corresponds to a faceting in the (13,1,1) and (100), while the last
on the right corresponds to a division in (111) and (100). We can note also that
s minimum occurs for (19,1,1) and (15,1,1) when the faceting comprises a portion
of (11,1,1).
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of (100) facet with respect to the total (100)-projected area. The results
confirm that, as expected from the calculations presented above, (5,1,1)
and (11,1,1) are the preferred facets, although negative § may occur also
with other facets.

We have checked also the possibility of a faceting in three parts (the
vicinals (5,1,1) and (11,1,1) together with the flat Au(100)), but in all
cases the faceting in two parts gives a better energetic gain.

We have made an attempt to study the dynamics of faceting by MD. To
this end, we have chosen the vicinal (7,1,1), which has the strongest ten-
dency to facet, and performed a 10000 steps annealing/quenching thermal
cycle. Due to the large mass transport required to form facets, which pre-
sumably would imply a rather slow kinetics for the process, we have chosen
a relatively high annealing temperature (900 K). In the final configuration,
the original 4-rows wide terraces had completely disappeared, and parts
with a (5,1,1) orientation can be clearly distinguished (Fig. 5.30). On the
whole, however, the structure is rather disordered and the surface energy is
slightly higher than that of the unfaceted (7,1,1). This partial failure can
be attributed to the limited size of the MD box and, perhaps, more likely,
to the limited annealing time (corresponding to about 70 psec).

118



C ~C
05005608
pe oS s dotey
: 101“5?"1‘3‘0.1“““"13‘01".'{'1-
3 K @ 1 5.11.1““511.‘ \) ;
,\‘& @ ) ) 3 )3‘\) )
(<\)\ 5 | ‘.xﬂ )}.,) ))
1) (’\v P ) ﬂ.‘ ()
) ) ( QX )
e *"‘1‘.101'1‘.'1.‘101 e
( = '1. .x“.l ) (Y

Figure 5.30:
(7,1,1) in the case N = 0. Annealed sample (900 K). Two MD hoxes are shown in
y' direction. We can note that parts with a (5,1,1) orientation can be distinguished.
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Chapter 6

Simulation of Au(111)-vicinals

6.1 General description of (M+1, M—1, M)
Au(111)-vicinals

In this Chapter we present a study of the energetic and structural
properties of Au(111)-vicinals, conducted in a way similar to the study of
Au(100)-vicinals presented in Chapter 5.

We recall that the “glue model” predicts p = 11 as the best periodicity
for the (p x v/3) reconstruction unit cell of Au(111), differently from experi-
mental results, which give (p x v/3) with p = 21 —23. So all terrace-lengths,
about which we will speak about, will be presumably shorter than the real
ones by about a factor equal 2. Nevertheless, it is interesting to study what
the model would qualitatively predict also for Au(111)-vicinals.

In particular, we have undertaken a quantitative study of the Au(111)
vicinals, inclined along the zone [112]-axis [107]. These consist of [112]
(henceforth y-direction) straight steps, separated by (111) terraces, which
are M atoms wide in the [110] direction (henceforth x) and infinitely ex-
tended along y. The length of the terrace along = determines the angle of
inclination of the vicinal, # = arctan \/gﬁ%

We shall also call = the [111] direction, z' the [2 —3M,2+ 3M,2] and
z' the (M +1,M — 1, M) ones, respectively (see Fig. 6.1). z/,y, 2’ form an
orthogonal system, obtained by rotating the z,y,z system by an angle ¢
along the y axis.

The geometry of (111) makes the construction of a MD box with the
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Figure 6.1:
Au(111) vicinals inclined along the [112) zone-axis (geometrical scheme). The
dashed line indicates an infinite extension along the [112] direction.

free surface parallel to a (111)-vicinal surface rather cumbersome. In fact,
‘f we limit ourselves to the more practical parallelepiped boxes, the typical
ABC ABC... stacking of (111) layers forces us to include three terraces (and
three steps) in a single box in order to have a match by periodic boundary
conditions at the box boundaries. Together with the necessity to study long
terraces (dictated by the large periodicity of the Au(111) reconstruction),
this would give rise to very large MD samples.

Therefore, we have chosen to study a simplified system with the free sur-
faces parallel to (111), and two terraces separated by two opposite steps.
To study by MD such Au(111)-vicinals, in this case we have constructed
a very simplified, not tilted MD box with two steps that, with unchanged
PBC, does not simulate the real vicinal (Fig. 6.2). We expect the difference
with the tilted system to be rather small, particularly for the largest ter-
races, since the interaction among steps is supposed to decay in both cases
as their inverse square distance.

The size of the terraces has been taken (M X L+/3) in units of d, the bulk
first-neighbour distance; M, which is the terrace length in the contraction
[170] direction, has been varied, while L in [112] has been taken equal to
2, since it is not expected to play any particular role, not being the [112]
the reconstruction direction. In our geometry, the inclination is roughly
simulated by the size of the terrace along z. In a first approximation, we
can take § ~ \/gﬁli As in the case of Au(100)-vicinals, we study various
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Figure 6.2:
(a) An example of our MD box for a (12,10,11) perfect starting sample.
(h) Two MD boxes in z direction, which, with the usual periodic boundary con-
ditions, give a very simplified model of a vicinal.

orders of reconstruction, by accommodating M + N atoms over M in the
[110] direction on each terrace. .V = 0 means absence of reconstruction.
We have kept two free surfaces and used the symmetric geometry of
Fig. 6.2, which does not allow stresses to flatten out the steps. The two
surfaces are treated identically, and are both monitored in the calculation.
We have used 10-layers slabs and the biggest sample considered, corre-
sponding to M = 90, contains about 6500 particles.
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6.2 Structure and energetics of (M+1,M~-1,M)
Au(111)-vicinals

Following the strategy already described in Section 1.4, we have mini-
mized the energy of our slabs by relaxing them by MD. In some preliminary
cases. both direct quenching and annealing at finite temperature, followed
by quenching, have been used. The differences in surface energy between
these two methods are usually less than 0.5 meV/A? in favour of the an-
nealed samples; they increase a little only for the smallest cells (M < 5).
Because of these small differences, both in structure and energetics, we have
decided to perform the calculations by using only the direct quenching pro-
cedure, which requires much less computer time.

We have studied 75 configurations, differing in the terrace sizes (ranging
from 2 to 90 rows) and in the reconstruction order (from ¥ =0 to V = 4).
The surface energy results are summarized in Table 6.1 and in Fig. 6.3. Our
results artla()is(})lown for MD simple quenching in Fig. 6.3 and in Table 6.1.
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Figure 6.3:

Surface energy as a function of the inverse terrace length. Each curve corresponds
to a different order of reconstruction N. The dot on the ordinate axis indicates
the flat reconstructed Au(111) surface energy in our model (69,68].

The following observations can be made:

123



Table 6.1:

Surface energies for several Au(111) vicinals and different reconstruction orders V.

Structure | o(6) o(8) a(8) a(8) a(6)
(meV/A?%) (meV/A?) (meV/A?) (meV/A?) (meV/A?)
N=0 N=1 N=2 N=3 N=4

(3,1,2) 126.14

(4,2,3) 113.86

(6,4,5) 104.22 104.60

(7,5,6) 101.85

(8,6,7) 100.89 98.68

(9,7,8) 96.88

{10,8,9) 96.55 101.49

(11,9,10) 98.70 95.29 08.43

(12,10,11) 94.72

(13,11,12) 93.98

(14,12,13) 93.45

(15,13,14) 93.08 94.22

(16,14,15) | 97.23 92.80 97.65

(18,16,17) 92.43

(19,17,18) 92.33

(20,18,19) 92.30 92.06

(21,19,20) 96.66 92.25 93.48 97.38

(22,20,21) 91.50

(23,21,22) 92.22

(24,22,23) 91.14

(25,23,24) 92.11 91.00

(26,24,25) 96.39 91.43

(27,25,26) 92.10 90.79

(29,27,28) 90.67

(30,28,29) 92.24 90.65 90.73

(31,29,30) 96.21 90.63 90.58 91.38

(33,31,32) 90.35

(34,32,33) 92.40 00.61

(36,34,35) 96.12 90.63 90.12

(38,36,37) 92.54 90.01

(39,37,38) 20.74 90.19

(41,39,40) | 96.06 92.64 89.93

(42,40,41) 89.93

(43,41,42) 89.83

(44,42,43) 89.93

(46,44,45) 89.94 89.69

(49,47,48) 89.60

(51,49,50) 90.05 89.58

(56,54,55) 89.57

(61,59,60) 96.33 93.31 91.94 90.45 89.65

(91,89,90) 91.48 90.55
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(a) BEach curve, corresponding to a given reconstruction order IV, has a
minimum for M ~ 11N + K, with K ~ 11. Asit will be further clarified in
the following, 11V is the terrace length which realizes the optimal packing
density (12 rows over 11) for each reconstruction order N. The surface
energy minima are shifted by K, since there is also a tendency to reduce
the step density due to the energetic cost of the step. Note that this would
be the only energetic term for a vicinal surface of a non-reconstructing
material, so that no minima as a function of the step density (or the inverse
of the terrace size) would be present in this case. The presence of a shallow
minimum, also in the unreconstructed case, will be explained further.

(b) As Fig. 6.3 shows, the lower envelope of the family of curves tends,
for ﬁlf —. 0 to a limiting value oo ~ 88.2 meV /A2, In complete analogy
with the Au(100) case (see Subsection 5.2.2), 09 is the surface energy of the
flat reconstructed Au(111), as established in Section 3.2. This is natural,
thinking that in this limit the presence of the steps has no importance.
The lower envelope of the family corresponds to vicinal surfaces, where
the top layer atomic density is always kept equal to the optimum value
(corresponding to keeping (M/N) ~11).

(c) Each curve (N fixed) tends for ﬁ — 0 to a limiting value oy > 96.6
meV /A2, This is the surface energy of a flat unreconstructed Au(11l), as
it is to be expected, since, in this limit, the excess density of the terraces
N/M vanishes as the step contribution. :

A typical final configuration is shown in Fig. 6.4, which refers to the case
M =11, N = 1. Terraces have here their optimal density, and exhibit the
atomic structure typical of the Au(111) reconstruction, with the stacking
changing continuously from fcc to hep and vice versa. Other configurations
are shown in Fig. 6.5 (M = 33, N = 2) and Fig. 6.6 (M =5, N =0).

It should be noted that, in our simplified geometry, the two terraces in
the first and in the second layer, are not treated symmetrically. Therefore,
as a consequence of the energy minimization, one of them might grow in
size at the expense of the other, if this contributes to lower the energy.
This effect occurred quite systematically when the top layer density was
far from the optimal value in the starting configurations. The resulting
in-plane stress originates a contraction (or expansion) of the “top” terrace,
which brings the terrace density closer to the optimum one. A contraction
is clearly visible in Fig. 6.6, where the two terraces have not the same
measure. The little shift of the topmost layer respect to the second one, is,
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Figure 6.4:

(12,10,11) in the case N = 1.

(a) Slab profile.

(b) Top view, in which it is possible to observe two (11)(4\/5) terraces, separated
by two steps. One step is located near the middle, the other near the right edge.
The atoms at the step zone in the upper terrace are drawn with a e

instead, visible in all the samples.

Such mechanism of contraction explains why in the N = 0 case vicinals
with large terraces have a surface energy slightly lower than that of the flat
non-reconstructed (111), o; = 96.6 meV /A2 In our model, in fact, non-
reconstructed (111) presents a large tensile stress, which terrace shrinking
on the pseudo-vicinal partially relieves. These effects are an artifact of
the simplified geometry, and would disappear if a real tilted vicinal was
constructed. In practice, however, they are important only for vicinals with
non-optimal packing, which are in metastable states, while in the remainder
of this Chapter we are concerned only with stable states (i.e, those on the
lower envelope in Fig. 6.3).
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(b)

Figure 6.5:
(34,32,33) in the case N = 2. Two (33 x 61/3) terraces are shown. The atoms at
the step zone in the upper terrace are drawn with a e.
(a) Slab profile.
(b) Top view.
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Figure 6.6:
(6,4,5) in the case N = 0. Slab profile. Note a slight in-plane contraction of the
terraces at the top.
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6.3 A model for the surface energies of quenched
samples

As done for Au(100) vicinals, we have tried to reproduce our results
with a simple model in which the surface energy is written as a sum of two
contributions, coming respectively from terraces and from steps:

(M, N) = Cperrace( M, N) + 0 yep( M, V). (6.1)

Similarly to the Au(100) vicinal case, the term due to the flat terraces is
obtained generalizing for every order of reconstruction the quadratic fit in
1/M of the MD results, obtained for the flat Au(111) surface:

N N M2
I flat (zﬁ) = “‘”’('M) te (ﬁ) : (6.2)

We have chosen the coefficients a = 95.40 meV /A2, b = —156.42 meV /A2,
and ¢ = 849.34 meV /A2, which differ slightly from those reported in Sec-
tion 3.2, but reproduce better the MD results in the region we are now
mostly interested in, i.e. around the minimum (M = 11). In particular,
T flat (III) = 09 = 88.2 meV/A? is the precise value of the minimum, as
obtained by MD. We are thus led to write

2
Crerrace (N, M) = a—}—b(%) +e <%) (6.3)
that is we regard each terrace as a piece of flat surface with a top layer
excess density N/M, due to the stacking of M + N rows over M.
Contrary to the case of (100)-vicinals, where a correction, shifting the
position of the minima, had to be introduced to reproduce quench results
(see Eqgs. (5.5) and (5.6)), this expression fits enough well the data obtained
by energy minimization. Note that the above formula works also for N = 0,
yielding a surface energy independent of the terrace length M, as expected
for a non-reconstructed surface.
For the step term, we assume

IN_ v 9
Tstep (M> =T (6.4)
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which is independent from the reconstruction order N. As discussed in
Subsection 5.2.3, this is derived by fitting p steps onto a distance L (whence
L = pMd), writing the total step energy per unit length as E = pud +
ph/Md?* and taking osep = E/L. i and h can be interpreted respectively
as the step chemical potential and the step-step interaction constant. We
take g = f;.

To fit 1 and g, we have used the surface energies of vicinals with M =
11N (N =1,2,3,4), as extracted from Table 6.1. All these vicinals, which

have the optimal density Oterrace = 70, should follow the curve

Umin:0'0+_/:b,—+“g—

AT (6.5)

With this procedure we have fixed p = 68.2 meV/A? and g = 480 meV /A2,
The resulting surface energy model is shown in Fig. 6.7. The lower envelope
of the family of curves, indicated by a thicker line, denotes stable states.
It should be remarked that the absolute minima as a function of M, for
fixed N, which occur at My =~ 11N + K, with K ~ 11 in the MD data,
and K ~ 5 in the parametrization, do not correspond to stable states. In
fact, by increasing M, the transition from the reconstruction order N to
N + 1 occurs before My is reached. In other words, the derivative of the
envelope curve, as a function of 1 /M, is always positive, in contrast with
the case of (100) vicinals, where the envelope curve presents true minima.
This is due to the high energetic cost of the steps on Au(111), which is so
high to move the position of the minima towards larger cells, which can be
in a state of density enough far from the optimal density of the flat surface
12/11. In fact, the step energy per unit length is € = pd = 200 meV/A,
which is about 4 times bigger than in the Au(100) case. Apart from the
obvious effect of the larger interplanar spacing of Au(111), an additional
reason for these differences may be found in the closer packing of Au(111),
which reduces the inward relaxation effects, and therefore makes the steps
somewhat more sharp.

In Fig. 6.7 we see that also the case N = 0 can be described within our
simple model. It consists of the constant a plus the step term and, as a
consequence, it has an increasing trend, if the step density increases. So for
Au(111)-vicinals with unreconstructed terraces, we can give an analytical
expression in the N = 0 case, differently from what happens in the Au(100)
case, where the surface energy of the unreconstructed surfaces (which are,
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Figure 6.7:

Surface energies curves for the various orders of reconstruction versus the step
density 1/M. The thick line (lower envelope) indicates the effective vicinal surface
energy. The pendency of the dashed line gives the chemical potential y of the

steps.

on the other hand, extremely instable), decreasing the step density, has an
increase trend.

Finally, we would like to comment on the step-step interaction constant,
which is g ~ 480 meV/A? for Au(111)-vicinals, but only g ~ 50 meV/A?
for Au(100)-vicinals. This behaviour probably again reflects the stronger
individuality of the (111) step. The details are not clear at this stage.
These two numbers, anyway, are not to be taken too seriously, because it
should be kept in mind that our estimates for the step-step interaction are
not very reliable, since they express very tiny deviations from linearity of o
as a function of 1/M and are very sensitive to the exact choice of the linear

coeflicient.
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6.4 “Stabilized” (M+1, M—1, M) Au(111)-
vicinals

6.4.1 The “tilting pressure”

The coefficient p of the linear term in Eq.(6.4) is linked also to the
minimum value for the “tilting pressure” which, also in this case, can be
introduced to perform the “Maxwell construction” to find the minima of
the Clibbs surface free energy g(8) = o(8)/ cos — 7 (see Section 5.3). Asin
the (100) case, this is done by calculating all the intersections between the
straight line 7 = 0, + 70 and the effective vicinal surface energy. Instead
of the step density 1/M, we have used the “tilting angle” 6 ~ \/gjld- as
the independent variable. As the tilting pressure 7 is increased above the
threshold value m. = \/-:Z;u ~ 83.5 meV/A?/rad, the value of the chemical
potential of the steps, § begins to increase. The increase is not continuous,
but rather by discrete steps, obtaining a series of stabilized high-Miller
index vicinals, each corresponding to a different order of reconstruction
(see Fig. 6.8). Of course N decreases with increasing 6, roughly keeping
N constant. When N becomes b or less, we find for each N rather than a
single stabilized vicinal, a plateau, starting with a vicinal with the nearly
optimal terrace (M ~ 11N) and continuing with denser terraces. In the
case N = 1, for instance, the plateau begins with M = 12 and includes
all M's down to M = 6. This behaviour can be seen more clearly in the
log-log plot of Fig. 6.9.

The analytic form for 7(6) near to the limit value 7. =~ 83.5 meV/A?/rad
when @ goes to zero, is linear.

7(8) = Tmin + AB (6.6)

with A = 09/2 meV /A2, This can be easily found by approximating the
envelope curve by

o(0) 3 N ') (142
ks 00—*-\/;&9-1—9(\/;) 6 (1+ 2) (6.7)

and making it equal to oo + 8. We observe that the factor 1/cos@ by
which o(8) is multiplied is crucial in determining the behaviour of w(8). In
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Figure 6.9:

Logarithmic plot of the tilting pressure; 7. represents the minimum value for the
tilting pressure to get an intersection in the Maxwell construction. The “islands”
of stabilized vicinals for the orders of reconstruction N = 0, N = 1, N = 2 are well

visible.
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fact, it gives a contribution 6%, which overcomes the step-step interaction
contribution of the order of §°.

It may be interesting to note that the motion of atoms, requested to
pass from an order of reconstruction to another one, could take place on a
very long time scale. For example, the 1 x 1 (metastable)— 1 x 5 (stable)
transition of Ir(100) requires an activation temperature of at least 800K to
be observed on a time scale of several minutes [110]. Therefore metastable
states could also be observed under certain experimental conditions.

Informations about the stability of the vicinals (M +1, M —1, M) could
have been obtained also from the Wulff plot, where such vicinals cover
the range of # between the (111) (M — oo) and (110) (M=0) (8 ~ 90°).
Resulting all vicinals higher in energy than the flat Au(100), like for the
Au(100) it has resulted that, in vicinity of (111) direction, none of the
vicinals is naturally preferred to the low index orientation ones.

The stabilized vicinals, above found, similarly to the stabilized (K,1,1)
Au(100)-vicinals, have no impact on the macroscopic crystal habit, i. e.,
they do not contribute to the equilibrium crystal shape, which is, in fact,

formed by facets (111) and (110) divided by sharp edges.

6.4.2  The faceting of (M+1,M-1,M) Au(111) vici-
nals

Similarly to the Au(100) case, we have proceeded to investigate the
possibility of faceting for Au(111) vicinals.

We limit ourselves to discuss our results for faceting in two parts. We
have taken the surface energies from our parametrization of F ig. 6.7. The
details of the calculation follow the scheme outlined in Subsection 5.3.3 for
the faceting of Au(100) vicinals.

Table 6.2 reports the faceting energies for all (M +1, M —1, M) vicinals
with M < 38. Only faceting into a flat (111) part and a more tilted part is
considered. For each vicinal, only the best case (the lowest §) is reported.
Vicinals which are missing in the list, do not facet (i. e., the best case has
still 6 > 0). Note that faceting does not occur for M < 13,19 < M <

22, 31 < M < 33. These vicinals have terraces lengths M ~ 11N, and
are therefore stabilized by reconstruction. Vicinals with 13 < M < 18
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Structure | L, /L Structure | L,/L Structure |é (meV/A?)
(14,12,13) | 0.92 (13,11,12) | 0.08 (111) -0.09
(15,13,14) | 0.86 (13,11,12) | 0.14 (111) -0.22
(16,14,15) | 0.80 (13,11,12) | 0.20 (111) -0.39
(17,15,16) | 0.75 (13,11,12) | 0.25 (111) -0.57
(18,16,17) | 0.71 (13,11,12) | 0.29 (111) -0.37
(19,17,18) | 0.66 (13,11,12) | 0.34 (111) -0.12
(24,22,23) | 0.96 (23,21,22) | 0.04 (111) -0.02
(25,23,24) | 0.92 (23,21,22) | 0.08 (111) -0.05
(26,24,25) | 0.88 (23,21,22) 0.12 (111) -0.11
(27,25,26) | 0.85 (23,21,22) | 0.15 (111) -0.18
(28,26,27) | 0.82 (23,21,22) | 0.18 (111) -0.25
(20,27,28) | 0.78 (23,21,22) | 0.22 (111) -0.16
(30,28,29) | 0.76 (23,21,22) | 0.24 (111) -0.08
(31,29,30) | 0.73 (23,21,22) | 0.27 (111) -0.03
(35,33,34) | 0.97 (34,32,33) | 0.03 (111) -0.01
(36,34,35) | 0.94 (34,32,33) | 0.06 (111) -0.03
(37,35,36) | 0.92 (34,32,33) | 0.08 (111) -0.06
(38,36,37) | 0.89 (34,32,33) | 0.11 (111) -0.10
(39,37,38) | 0.87 (34,32,33) | 0.13 (111) -0.14
Table 6.2:

Energy gains for faceting of (M + 1, M — 1, M) (111)-vicinal surfaces into a more
tilted vicinal plus a portion of flat (111). Ly/L is the fraction of area projected
onto (111), occupied by the facet, and Ly /L is the fraction of flat part. For each
vicinal, we have selected, among all faceting possibilities, that with the largest
energetic gain 6. Vicinals, which do not appear, are stable, i.e. they do not facet.
All cases from M = 13 to M = 38 have been considered.
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gain energy by faceting into (111)+(12,10,11); those with 23 < M <30
into (111)+4-(23,21,22), and those with 34 < 38 into (111)+(34,32,33). The
energetic gain is larger for those vicinals, such as (17,15,16), which fall near
the cusps (corresponding to points of crossing between two different orders
of reconstruction) in the envelope curve of Fig. 6.7.

This type of faceting is not the best one. It results, in fact, more
convenient for a vicinal with M = 11N + R (where R is an integer between
1 and 9 or 10) a faceting in which the vicinal of lower Miller indices has
M ~ 11N and that of higher Miller indices has M =~ 11(N 4+ 1), as it is
shown in Table 6.3 and in Fig. 6.10. Once again, vicinals near the cusps

0.00 (24,22,23) ! - T
03.4112)
§ -0.25 (28,26,2M
~
>
v
2
o
~0.50 | i
arise
—-0.75
0.025 0.050 0.075
?(rad)
Figure 6.10:

Faceting energy gains as a function of the tilting angle @ for the vicinals of order
N =1 and N = 2. o indicate the vicinals which facet in a part of (12,10,11) and
in a part of (22,20,21); * indicate the vicinals, which facet in a part of (23,21,22)
and in a part of (34,32,33).

of the envelope curve are those which gain more energy by faceting. Note

also the occurrence of faceting of (6,4,5) and (7,5,6) into (5,3,4)+(8,6,7).
To summarize, our calculations confirm the prevision that vicinals,

whose terrace length is such to accommodate on each terrace an integer
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Structure | L, /L Structure | L,/L Structure | (meV/A?)
(6 45) | 053 (5,3,4) 0.47 (8,6,7) 1.48
(7,5,6) | 0.78 (5,3,4) 0.22 (8,6,7) -0.85
(13 7 12) | 0.83 (12,10,11) | 0.17 (22,20,21) | -0.03
(14,12,13) | 0.67 (12,10,11) 0.33 (22,20,21) -0.14
(15,13,14) | 0.57 (12,10,11) | 0.43 (22,20,21) | -0.30
(16,14,15) | 0.44 (12,10,11) | 0.56 (22,20,21) | -0.49
(17,15,16) | 0.34 (12,10,11) | 0.66 (22,20,21) | -0.69
(18,16,17) | 0.26 (12,10,11) | 0.74 (22,20,21) | -0.51
(19,17,18) | 0.18 (12,10,11) 0.82 (22,20,21) | -0.27
(20,18,19) | 0.12 (12,10,11) 0.88 (22,20,21) -0.12
(21,19,20) | 0.06 (12,10,11) 0.94 (22,20,21) -0.03
(24,22,23) | 0.87 (23,21,22) | 0.13 (34,32,33) | -0.02
(25,23,24) | 0.75 (23,21,22) | 0.25 (34,32,33) | -0.06
(26,24,25) | 0.64 (23,21,22) | 0.36 (34,32,33) | -0.12
(27,25,26) | 0.54 (23,21,22) 0.46 (34,32,33) |-0.19
(28,26,27) | 0.44 (23,21,22) | 0.56 (34,32,33) | -0.27

Table 6.3:

Same as Table 6.3, but for faceting into a less-tilted vicinal plus a more-tilted
vicinal. Note that, with respect to Table 6.2, energy gains have improved, and new
surfaces have appeared. All cases from M = 12 to M = 27 have been considered.

136



number of “optimal” reconstructed cells (that is, M =~ 11NV in the glue
model, or M ~ 23N in real gold) are particularly stable, giving rise to an
ordered array of “locked steps”. Vicinals with terrace lengths which do not
allow an optimal packing (that is, with M ~ 11(N +1 /2) in the glue model,
or M ~ 23(N 4 1/2) in real gold) have a strong tendency to facet into two
stable orientations, one more tilted and the other less tilted with respect
to the vicinal orientation.



Chapter 7

Conclusions and possible
outlooks

Within the phenomenological many-body “glue Hamiltonian” scheme
of Ercolessi, Parrinello and Tosatti, able to overcome most of the difficulties
encountered when using a two-body potential to model a non-simple metal
as gold, we have described the structural properties of several gold surfaces:
in particular the low-index (111) surface and a class of vicinals of (100) and
of (111). As an introduction to this work, we have provided first of all a
review, based on Ercolessi et al. ’s previous work, of the Hamiltonian and
of its application to Au(100) and Au(110).

The main characteristic of the Au(111) surface reconstruction, well es-
tablished by experiments. is a slight in-plane contraction of the topmost
layer along one of the densely packed directions. This gives rise to a large
(p x v/3) unit cell, with p ~ 23, meaning that the amount of contraction is
~ -235, or 4%. Our study, using the glue model, predicts a more contracted
(11 x v/3) superstructure, whose structural features appear in qualitative
agreement with the experimental data.

Solitons, such as hypothesized by Harten et al. [55] are not found for
Au(111). The top layer contraction seems rather more uniform than in that
model, but the general feature of fcc-hcp alternating stacking is confirmed.

In both cases, following the idea that reconstruction could be expected
to take place on the terraces of a vicinal surface, we have considered vicinals
obtained by tilting low-index surfaces around an axis orthogonal to the
contraction direction. This gives rise to the (K, 1,1) family of (100)-vicinals,
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and the (M + 1, M — 1, M) family of (111)-vicinals.

Vicinals of Au(100) and Au(111) and their faceting properties turn out
to be easy to describe within the glue model. This is perhaps not very
surprising, since that model has shown to be rather good for the main
low-index surfaces.

In the case of Au(100), “magic vicinals” induced by terrace reconstruc-
tion are found to be the (5,1,1) and (11,1,1), which agrees with preliminary
experimental findings. The faceting of an arbitrary vicinal into these magic
vicinals is studied and corresponds to surface energy dips. In the case of
(11,1,1) this dip is directly related to the basic (1 x 5) Au(100) reconstruc-
tion geometry, as can be seen by checking the “G-onto-5” (actually 7-onto-6)
registry between the topmost and the second layer. The (5,1,1) is a little
more mysterious, and seems to correspond to the disappearance of a step
structure in the vicinal.

The case of Au(111) is different because we find no magic vicinals, but
rather groups of vicinals which seem preferred over others. The character-
istic of each group is to contain roughly an integer number of reconstructed
unit cells. Although we have not found detailed experimental studies of
the Au(11l) to compare with, our findings seem very much in line with
Kaiser and Jaklevic’s STM observation that ordered arrays of steps appear
on Au(111), which seem in exact registry with the basic reconstruction
periodicity.

Therefore, our main result in the thesis, for the two classes of vicinal
surfaces of gold studied, is just the appearance of particularly stabilized
surfaces, which compare in the faceting habit of the crystal. Their pe-
culiarity is the fact that, with exception of (5,1,1) for Au(100)-vicinals,
their terrace size contains an integer number of reconstructed unit cells.
Therefore, the appearance of magic vicinals, is essentially linked to the re-
construction, which is due, in turn, to strong many-body forces of electronic
origin present on noble metal surfaces. As a consequence, magic vicinals
would have not been obtained if a simpler pairwise model, not including
such forces, had been used.

While the magic vicinals have no impact on the macroscopic equilib-
rium crystal shape of the crystal, they influence strongly the “microscopic
faceting” behaviour of the crystal and can be well-observed experimentally,
even if they are in metastable states with respect to the corresponding low-
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index orientation surfaces. In fact, the edge separating the low-index facets,
when observed microscopically, should appear as a sequence of magic vic-
inals, each extending for one or at most a few terraces. Such picture is
supported by some electron microscopy observations. A detailed study of
the microscopic crystal face near facet edges is a possible future extension
of our work.

By adopting the powerful minimization procedure, based on simulated
annealing and molecular dynamics, the search for the “best” state is often
laborious, requiring a non-trivial amount of human and computer time.
However, simple relaxation procedures, if the initial state is carefully cho-
sen, are often already useful to obtain informations on the structural and
energetic trends when the tilting angle is varied, although they should be
used with great caution because the danger of trapping not in the lowest
minimum is high.

As a continuation of this study, other families of Au(100) and Au(111)-
vicinals, i. e., tilted along different orientations, as well as Au(110)-vicinals,
could be investigated. This would contribute to clarify further the inter-
play effects between steps and reconstruction. Au(110) vicinals, in partic-
ular, could behave in a quite different way, since Au(110) reconstructs by
a faceting mechanism rather than by a top-layer in-plane contraction like
Au(100) and Au(111).

Moreover, stepped surfaces could be studied at finite temperatures us-
ing molecular dynamics. Such studies are, however, rather delicate, since
phase transitions, especially those involving density changes, could be un-
detectable in practice as a consequence of the short simulation times and
small cell sizes. We have already encountered problems of this kind when
studying Au(111) at finite temperature, as discussed in Chapter 3.

Finally, it should be remarked that the reliability of the results discussed
in this thesis is strongly related to that of the interaction model that we have
used. The glue Hamiltonian has been constructed on empirical grounds and
therefore its reliability can be judged exclusively on its ability to reproduce
the behaviour of the real material in several different physical situations
(bulk, liquid, surfaces, finite temperature).

In this sense, the glue parametrization for Au can be regarded, overall,
as well tested and rather satisfactory, although some discrepancies with
experiments do exist.
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On the other hand a similar study, using first principle interactions, is
clearly not feasible at present, due to the relatively large unit cells, required
for high index surfaces.

Therefore, an extension of this study to other materials (metals or semi-
conductors) is clearly possible, but subordinate to the construction of an
appropriate phenomenological interaction model, as done for gold.
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