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Introduction

INTRODUCTION.

During the past several years the asymptotic analysis of boundary value problems in highly
perturbed domains, as well as of the Schroedinger equations with rapidly varying potentials, has
been strongly developed.

A motivation of this development resides in the increasing interest in physics for the
potential and scattering theory in domains with many obstacles, and in engineering for the
behaviour of the so called composite materials (eleétric conduction, heat propagation,
transmissions through thin isolating layers, etc. in multiphase media). For an initial approach to
the mathematical aspects of the subject matter see, for istance, [10], [48] and [13].

Among the various problems which can be attacked, the Dirichlet problems in domains
with random boundary and the Schroedinger equation with oscillating stochastic potentials, play
an important role. As a matter of fact, it is enough to stress that when we describe, for instance,
the structure of a composite material, the best approximation is the random one.

The main object of this thesis is just to provide a new general setting for investigating limit
problems of this kind.

More precisely, given a bounded open region D of Rd, d = 2, and a function fe L2(Rd), we
focus our attention on the asymptotic behaviour, as h—+ee, of the solutions up of the following

equations:

(I1.1) Dirichlet problems in domains with random holes.
-Au, =f in D\E,
ueH!DE,) ,

where (Eh) is a sequence of random (closed) subsets of D;

(I.2) Stationary Schroedinger equation with stochastic potentials.
-Auh+qhuh=f inD
H'D
uh € O( ) ?

where (q;) is a sequence of (wildly varying) random potentials;
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(I.3) Dirichlet problems in domains surrounded by thin layers with random
thickness.
- Ay, =1 inD

- &, Auh =f in Ah\D
1
u, € Ho(Ah) ,

where the natural transmission conditions on 0D are satisfied, (eh) is a sequence of real numbers
such that sh—->0, as h—+eo, and, for every heN, Ah is a random (open) set such that Ah 2D

and

sup dist (x,D) < g,
XEA,

The first significant result on the subject (I.1), which has been obtained by using the
theory of Wiener sausage, can be found in the pioneering paper [38] of Kac. Successively,
similar problems have been studied by many authors, who have contributed to produce a lot of
methods. For instance, Brownian Motion techniques are used in the works [46], [47], [7] and,
more recently, for problems on Riemannian manifolds, in [18], [19], [20], while Green function
methods have been employed in [44], [45], [37].

There has been much work also on the corresponding deterministic case. In particular, we
mention [39], [40], [41], [42]. Further interesting results can be found in [21], [22], [23], [24].
For the nonlinear case see the recent papers [28], [27].

To our knowledge no specific reference is avalaible for the full probabilistic problems (1.2)
and (1.3). v
A limit analysis of the problem (I.2) in the case of highly oscillating periodic potentials has
been discussed in [2], [3], [12]. '

The corresponding deterministic cases of (I.3) are known in literature as reinforcement
problems . In fact, they represent the mathematical model of an elastic rod in torsion reinforced
by .a thin coating of increasingly strong material.

Recent results on these topics have been obtained by several authors (see [17], [11], [16],
[15] ). In particular, nonlinear reinforcement problems have been attacked in [1].

In our research the problems (I.1), (I.2) and (I.3) have been tackled with some tools of the
Calculus of Variations, known as variational convergences . They are especially useful for the
limit analysis of sequences of variational problems. More specifically, I" - convergence methods

(see [2], [33], [34], [35] ) have been applied for investigating (I.1) and (I.2); while, the notion
of Mosco - convergence ( see [2], [43] ) has been used for dealing with (I.3).



Introduction

In Chapter 1 of the thesis work we describe a general variational framework for studying
both the Dirichlet problems in domains with randomly distributed small holes (I.1), and the
stationary Schroedinger equation with rapidly oscillating random potentials (1.2).

Such problems can be regarded, in a unified context, as particular cases of the so called
relaxed Dirichlet problems (see [14], [25], [30], [31], [32] ), formally written as

-Au, +pu, =1 inD
1.4)
u, =0 ondD ,

where () is a sequence of non negatlve Borel measures on D, which must vanish on sets of
zero (harmonic) capacity, but may assume the value +oo on some subset of positive capacity.
According to [31], we have denoted by fMO the class of all Borel measures of this type.
Problem (1.1) can be written in the form (1.4) by taking My, = °°Eh for every he N, where
Oth is the Borel measure on D defined as

0 if cap(Br\Eh)z 0

oo if cap(BmEh)¢O

while, problem (1.2) can get the form (I.4) by assuming that

b (8= [ 4,60 dx
B

At this stage of the analysis, the basic tool has been the variational L - capacity defined as (see

[31])

(L.5) C(u,B) =inf { f |Dul? dx + J-(u- 1? du ; ue H(l)(D) }
D B

for every e 9\/[ and for every Borel set B € D.
In fact, by endowing M with the minimal © - algebra for which the rnaps C(-,K) are
measurable for every compact subset K of D, the concrete probabilistic problem to attack can be

formulated as follows.
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Let (Q,Z,P) be a probability space. We are interested in studying the asymptotic behaviour,
as h—+oo, of the solutions u, of the relaxed Dirichlet problems of the form (I.4), where Hy for
every he N, has to be regarded as a random measure, namely, a measurable map from £ into £M0

We have found necessary and sufficient conditions (Theorem 4.1 of Chap.1) on () for
the convergence in probability of the sequence (u, ) toward the solution of a deterministic relaxed
Dirichlet problem of the form

-Au+vu=f inD
(1.6)
u=0 onodD ,

where Vv is a suitable Radon measure of the class M o

These conditions have been given in terms of the asymptotic behaviour of the expectations
of the random variables C(1, ,B) and of the covariances of the random variables C(;,Lh,A) and
C(w,,,B) for disjoint subsets A and B of D.

The result has been obtained as comsequence of a study concerning sequences of
probability measures on M o equipped with the topology attached to a notion of convergence for
measures in M o called y - convergence ( see [31], [25]), defined by means of the I -
convergence of the functionals

J’Du|2 dx + juz du
D D

Note that, with this topology, ,‘Mo becomes a compact metric space (see [31]).

Similar problems of convergence of measures on spaces endowed with topology related to
I' - convergence have been studied in [26], [29].

Our study has also led to a meaningful characterization of the limit measure v appearing in
(1.6). We have shown, under our assumptions, that the expectations of the capacities converge
weakly (in the sense of [36]) to a countably subadditive increasing set function o(B) (which
turns out to be equal to C(v,B)) and v is the least measure greater than or equal to o. This

generalizes a result proven in [9].

Chapter 2 of the thesis has been devoted to explore further the notion of the least Borel
measure, [, greater than or equal to a given nonnegative countably subadditive set function .
This notion has been also employed in several recent papers (see, for istance, [25], [27]),
concerning the asymptotic behaviour of relaxed Dirichlet problems.
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The aim has been to seek a relation between the measure L, and the set function o. In the
case in which o is the set function C(,+) defined in (I.5) and p is finite , it has been proved in
[14] that L, = p and the measure {1 can be reconstructed by derivation of o with respect to a
given Radon measure . This result is based heavily on the properties of the p - capacitiy and the
associated Euler differential equations.

Our main result (Theorem 1.1 of Chap.2) consists in showing that the same derivation
theorem holds for an arbitrary nonnegative countably subadditive set function ¢.. The new proof
is based on general measure theoretic techniques, in particular on a refined version of the Vitali

covering theorem.

The limit analysis of the problem (I.3) has been tackled (Chapter 3) using a method slightly
different from that employed for investigating (I.1) and (L.2).

First, for every he N, we have considered the quadratic form on L2(Rd) associated with
(1.3) and defined by

JIDuI2 dx + & J.|Dul2 d«  if ueHyA)
Fw= 1 ° ApD
+00 otherwise

It must be stressed that the solution uy of (1.3) coincides with the solution of the minimum

problem

min { F,(u) - 2jfu dx :uel’®Y }

Ay

Next, we have introduced the class ‘E of all convex semicontinuous functions from L2(Rd)
into R. By endowing  with the topology attached to the L? (Rd) - Mosco - convergence (a notion
of variational convergence especially useful to study sequences of convex functionals), it
becomes a separable complete metric space (see [2]).

Finally, by associating with the problems (1.3) a sequence of random functionals, namely,
measurable maps ©—F, (0) from a probability space Q into E, the problem can be reduced to
analyze the asymptotic behaviour of the sequence (F).

The first outcome of the research on this subject has been a compactness theorem for
sequences of random functionals (Theorem 4.1 and Remark 5.5 of Chap.3).
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It has been deduced from an abstract compactness result for sequences of probability
measures on a complete metric space (Theorem 2.3 of Chap.3).

We have shown that, under suitable assumptions on the sequence (F, ), there exists a
subsequence (F 1) converging in probability to a constant random functional F. Moreover, this
functional turns out to be associated with the equation formally written as

-Au=f inD
1.7
du
= +uu=0 on dD

where W is a measure of the class MO supported by dD and n denotes the outer unit normal to D.
The assumptions of our theorem are expressed in terms of the asymptotic behaviour of the
expectations and the covariances of suitable random capacities associated with the random
functionals F, .
We conclude this Chapter by proving a result which permits, under our hypotheses, to
compute the limit measure | appearing in (1.7), hence to determine the limit functional F.
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Random reiaxed Dirichlet ;ﬁroblems

RANDOM RELAXED DIRICHLET PROBLEMS

INTRODUCTION.

In this paper we provide a general framework to study both the classical Dirichlet
problem in domains with randomly distributed small holes and the stationary
Schroedinger equation with rapidly oscillating random potentials.

More precisely, given a bounded open region D of Rd ,d>2, and a function
Pe1%(p), we deal with problems of the form:

-Au=2F in O\F
(0.1) '
we Ho (D\F)

where F  isarandomsubsetof D ,and of the form:

—Aa+ geou = P in D

0.2
©-2) ue Bl

where q is a random potential. _
Problems (0.1) and (0.2) can be considered as particular cases of the so called
relaxed Dirichlet problems (see [5], [8], [20], [21], [22]) formally written as: '

12
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~Au+puw = £ in D
(0.3)
us=0 on &D

where At is a non negative Borel measure on D, which must vanish on sets of
(harmonic) capacity zero, but may assume the value +co 0n some subssat of positive
capacity.
Following [20] we denote by Mo the class of all Borel measure of this type.
Problem (0.1) can be written in the form (0.3) by taking m=c0x , Where oo ¢ is the
Borel measure on D defined as:

o if Cc."P(SOF)::O
OaF (B):
+oo ifeap(Baf)=0.

Problem (0.2) can be written in the form (0.3) by taking
M(B) = S q¢x) dx
B .

In this paper we give a variational method for investigating sequences of
Problems of the form (0.3), where /A are random measures of the class 7] ,.
The basic tool in our anzalysis will be the variational x- capacity defined as:

CCpB) = angﬂo IDu fdx + fB(u-nQd/LL ;e Hé(m}

for every,ua”f‘rlo and for every Borel set Be D .

The probabilistic problem we shall consider can be rigorously stated as follows.
Let (., = , P ) be a probabilistic space. We consider a sequence M2 of random
measures, i.e. of measurable maps between (., 3 ) and T ,» endowed with the
minimal ¢ - algebra 63(7}'10) for which the maps C(-, K ) are measurable far every
compact subset K of D .

The problem is to analyze the asymptotic behaviour, as R >0 , Of the solutnons
UL of the random relaxed Dirichlet problems:

13
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Up =0 on &b

We find necessary and sufficient conditions on ™ for the convergence in probability
of the sequence Uy toward the solution of a deterministic relaxed Dirichlet problem of
the form: '

~-AU + \JU =£ in D

(04 Ue Hg (D)

where vy is a suitable Radon measure of the class ’}’Ylo . These conditions are given in
terms of the asymptotic behaviour of the expectations of the random variables C(T™; &)
and of the covariances of the random variables C(H, Nand €4, 8 for-disjoint subsets
Aand B ofD.

When these conditions are satisfied, we obtain also a meaningful
characterization of the limit measure v . In fact, in this case, the expectations of the
- capacities C(M. ,B> converge weakly (in the sense of [26] to a countably subadditive
increasing set function «(®) (which turns out to be equalto C(v,8)) and v isthe
least measure such that ¥ > «. This generalizes a result proved in [6].

As a first application of our results we consider the asymptotic behaviour of a
sequence of Dirichlet problems

—AU, =P on D\Fe

(0.5) 1

in which the random sets F; have the form:

£
(0.8) Fe= U (x7+2,.K)
where (x%) ...z is a family of independent identically distributed random variables in
D with distribution law )B given by:

BB = [Roodx  (ReP(®)
B .

14
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K is an arbitrary compact subset contained in the unit ball and (ze ) is a sequence of

positive real numbers such that
i ezj‘Z =€ < + 0o
£ == 00
We prove that in this case the solutions Ue of the random eguation (0.5)
converge in probability to the solutionU of the deterministic equation (0.4) with v=¢ g
where ¢ =€ C(K ,ﬂ?d‘), and.
C(K ‘Ri) = min{JmilDu [Pclx;Ue H“(ﬁ?&), uz4 g.e. On K}
Problems of this kind have been investigated in [4], [32], [38], [40], by Brownian
motion methods and in [36], [37] by Green function methods. Recently
the fluctuations around the solution of the limit problem have been investigated in [29] .
The corrisponding deterministic case has been studied in [30] by an orthogonal
projection method, and in [31], [35] by a capacitary method. Other results on this
argument can be found in [34], [13], [14], [15], [16]. Moreover, similar problems on
Riemannian manifolds have been studied in [9, Chapter IX], [10], [11].
The second application of our abstract thecrem concerns the asymptotic

behaviour of a sequence of stationary Schroedinger equations with random potentials
of the form

Uge gt >

where g, isgivenby

Ke if xe F.

-/
Qe x> =
AN

O otherwise,

te are the sets defined in (0.6) with K equal to the closed unit ball, and(ke) is a
seqguence of real numbers.

We prave that, in dimension d=3,if &m \/E_ e, =+ o0 ,thenthe solutions Ugv

R—-o0o

15
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of the random eguations canverge to the solution of the deterministic equation (0.4),
with v=cp ,where C=2 C(B4, R).
Problems of this kind have been studied in the deterministic case in [2], [3] and

[7].

| would like to thank Prof. G. Dal Maso, for suggesting me this research work, with
the precious aid of his advice.
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1. NOTATION AND PRELIMINARIES

Troughout the paper we denote by D a fixed bounded open subset of RA with
d> 2. Moreover, we dencte by L the family of all open sets Us D and by 3¢ the
family of all compact sets K< D .

Let us recall some well-known definitions which will be often used in the sequel.

DEFINITION 1.1. For every compactset K e X we define the capacity of ¥
respectto D by:

C(K.D) =in${leD~p{2, weCZ(D)  #24 on K}
The definition is extended to the sets Ue UL by:
C(UDY= sup {C(Eﬂ‘, Kecu , ke ‘:K}
and to arbitrary sets E ¢ D by:
C (D)= irp { C(UY; U2E , Ue U]

When no confusion can arise, we will simply write  C(EY  instead of C(E,D) .

Let E be any subset of © . When a property Pux> s satisfied for all xe E
exceptforasubset NS E suchthat CCNY =0,then we say that Py holds quasi
everywhereon E (ge.on E ).

Aset A=D s said to be quasi open (resp. quasi closed, quasi compact) in D
if for every £ > 0 there exists an open (resp. closed, compact) set U< D  such that
C(AAU) < &,whered denotes the symmetric difference (the topological notions are
in the relative topology of D ).

We say that a function £: D R is quasi continuous in D if for everye >0
there existsaset e p suchthat C(D-E) < & andthe restrictionof £ to E s
continuous.

We denote by B (D) the Saobolev space of all functions in [*(p) whose first
weak derivatives belongto [*(DY ,andby HJ (D) the closure of €2 (D) in SH6))

Forevery xe R* znd every = >0 we denate by

Bz(.x3={‘ée R™ . ly-x|< "c:}

17
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the open ball centered at x with radius z .

By the symbol 1B, ¢y | we mean the Lebesgue measure of the ball. By B, we
denote the ball of radius 'z centered at the origin.

Let ue H* (D). Itis well-known that the limit

Lm d J U lgray
=0 Byl B ()
exists and is finite for quasi every xe D
In the sequel we always require that for every xe D

Lining 4 j ulgidy ¢ uwx)g -Q,nms.u.{; - J‘LLO&)CL%
0 IBpxd| e —> 0O ] 5';0‘7\
B0 D x)

Thus, the pointwise value Qoo is determined quasi everywhere in D ,andthe
function . is quasi continuousin D .
It can be shown that

4

for every subset £ of D . :

For these properties of the capacity and of the function of H*(D) see [28].
We denote by (>  the G -field of all Borel subsets of D . A nonnegative countable
additive set function defined on 43 and with value in [0, +o°] is called a Bore/

measure on D . A Borel measure which assigns finite value to every compact
subsetof D iscalled Radon measure.

In our paper we deal with a peculiar class of Borel measures, defined as follows:

*
DEFINITION 1.2. 11, is the class of all Borel measures /.( on D suchthat:
a) M@Y=o forevery Be 3  with CCB>=0

b) MDY = ing {}.LCA): A quasi open ‘B&A} for every Re (3.

*
An easy example of measure belonging to Y] o is the following:
p (@) - [fax
B

18
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where 4 ¢ l_"ﬂ;_.‘gc (D) . More generally, every Radon measure M on D which
satisfies a) belongsto m ,
We remark that the masures belonging to ’"‘Lo are not required to be regular nor
¢ - finite. For istance, the measures introduced in the Definition below belong to the
class ]as .(see[17], Remark 3.3).

DEFINITION 1.3. For every quasiclosedset F = of D wedenoteby co.  the
Borel measure defined by:
o £ <c(FNBY=O

o BY) = .
F (8 {Ho iP c(FnB)zo

forevery B e 63

Other examples are given in [21].
Now, we give the definition of the variational M - capacity associated with any measure

AE "(‘q: . This will be the basic tool in our investigation.

DEFINITION 1.4. Let & € ’i’TL: .Forevery Be 03 we define the/u -capacity
of B as:. ’

C(Mm B, D)= ind { fD'Du 1% = +_f¢“-*’2d}4 jue Hi(mj
8 .

When no confusion can arise, we will simply write C(}l‘s) instead of C(1t BD).
Since the functional is lower semicontinuous in the wezak topology of HID)  the
minimum is achieved.

REMARK 1.1. [tis easy to see that if .t isthe measure oo ¢ of the Definition 1.3

with ¥ quasiclosedin D ,then C (M,B)= C(3nF) forevery Be &

The main properties of the )—L -capacity can be summarized in the next Proposition
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PROPOSITION 1.1. For every Moe /Y}'Lf the set function C()ux-) satisfies the
following properties:

a) C(}J.¢)=O
o) if B..,Bs e @ and ByeBa ,then COMBD <c (fug,)

c) if (Be ) isanincreasing sequence in 6 and :J Bs = B ,then

C(u,B) = sup CCp, Be)

d) if (RBe) isasequencein 63 and BSEB& , then
CuB) & I CluBe)

8) CIM B.UBLY + C( M, RNBy) S c (M, B)+C(u,By)

for every R:,Rae
i C(Mm.B) g CCB A for every Be 63
g Clu,Bdy & (B forevery Be 63
h) COME) = in@ JCRULY; ReU, Uell]

forevery Ke 3¢
) C(u.BY = sup {COuB); RSB, ke X ]

forevery Be @3

For a proof we referto ([17], Theorem 2.9 - Theorem 3.5 - Theorem 3.7).
The previous properties allow to show an explicit formula to reconstruct a
measure M & ’m: from the carresponding M - capacity (see [17], Theorem 4.5).
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THEOREM 1.1. Let w e TYJS .Thenforevery Be 3  wehave

= & l C ,Ev RL
/(JLB) -2‘—:'1: ;ezd_ (/‘l (a] &.)

where K. denotes the cube:

L 'é‘- ] ':R ':kﬂ
Re =l Iz 32 ]

. i o
forevery e N  andforevery t=(l4,..,la)e &

In our paper we are interested in studing a class of equations formally written as:
(1.1) Av+ pus$ in D

(1.2) us= on 9D

Q
[e)

where ge HYUDY, £ e L2 (D) and M e’ﬂ"[:
Following [20] we shall call the equation (1.1) & relaxed Dirichlet problem in D.
In order to give an appropriate sense to the equation (1.1), we need the following
definitions. '

DEFINTION 1.5. A function u < ’r—\fanC (oYn Lzﬁac_ (D, )4) is said to be a local
wezk solution of the equation (1.1) if ’

fDu Dy clx '+J-uu dp = J:ﬁdx
b D D
forevery e BY(D) A Lz(/.z D) with compact supportin D

DEFINITION 1.6. A local weak solution of (1.1) is said to satisfy the boundary
condition (1.2) if , in addition, L -g e Hd (D)

The non trivial relationships between the definitions above and the definitions in
the sense of distributions are discussed extensively in [21].
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REMARK 1.2. It can be proven (see[20]) thatif ge H (D)  isgiveninsucha

way that there exists some woe H*' (DY LH(D, 1) with t3-ge Hs (D) |, then

there exists a unique weak soluticn of problem (1.1)-(1.2), this solution belongs to
H‘(u}nf{D,}ﬂand coincides with the unique minimum point of the functional:

Z() = ] IDoitelx +5U‘cf,u - QJ‘T’U L x
D © '
D
on the set {«J': e HY(DY -G € Ho (D7}

In what follows we give two examples of relaxed Dirichlet problems which will be
essential in the applications of our main thecrems.

EXAMPLE 1.1. Dirichlet problems in domains with holes.
Let Ke'Zc cLet eo i be the measure introduced in Definition 1.3. h‘},{ = 8o ”
and Q=0 then the problem (1.1)-(1.2) becomes :

—Au+co£qu=$ in D
(1.3)
‘ u=0 on Op

It can be seenin[21] that a function ue 4H190C(D)m L_ZQ‘=c (b, #) isalocal weak
solution of equation (1.3) if and only if ‘ is a solution in the usual sense of

D\E '
the boundary value problem:

-Au=2 n D\K
u € Ho (D\K)

and U =0 qe.on K.

EXAMPLE 1.2. Schroedinger equation.
Let g e Lfe,c (D) with g 20 f /,L(.B):jq&)d.x
' B

then the problem (1.1)-(1.2) becomes
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-Au+qoolu = P in D

ue H2 (D

We shall also study the following relaxed Dirichlet problem:
~Au +(p +X'm.)u‘= £ inD
Uu=o on oD
where ME ’Yq: , Pe [FLD) , m denctes the Le‘besgue measure on RA andAzo.

In view of Remark 1.2 we can define a family of operators from L[> (D) into LA(D)
which are called resolvent operators.

P

DEFINITION 1.7. Forevery A 2o andfor every ie 1o ,the resolvent
operator Rj‘i is the mapping which associates with every Pe [2(D) the
unique weak solution e Fd (oynLZC D, ) < L* (D) ofthe problem (1.4).

A , '
REMARK 1.3. R/u is & linear continuous operator between [*¢(oY  and L"'(.D)
(see [5], Definition 2.3).
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2. vy- CONVERGENCE

In this section we introduce a variational notion of convergence for sequences
(Ke) in "ntj which will be useful to study the perturbations of the relaxed Dirichlet
problem (1.2) - (1.3).

L\nNith every /LL € ’WL: we associate the following functional F/u_ defined
on L°(D)

(D l® + | u?d 12 ue HolD)
Jput v wrduwus

F/J. (U) =
. 2 o
+ do ‘ i® ue (DY | ug Ho (D)
Since M(B)=0 ferevery Be 6 with C(B)= o ,thefunctional Fy
is lower semicontinuous in [2(D)
The following definition of ¥y -convergence for sequences of measures ( Le )

belonging to /m: is given in terms of the [ -convergence of the correspending
functionals F}x ¢ - Forthe definition of [ -convergence and its applications to the
study of perturbation problems in calculus of variations, we refer to [2], [23], [24],[25].

E
DEFINITION 2.1. Let (M2 ) beasequencein %], andlet le m’f ; we say
that (/u &) - converges to M if the following conditions are satisfied:

a) forevery u e HI (D) and for every sequence (Ugz) in HJ (D)
convergingto u in L*(D) we have:

b) forevery ue W} (D) , there exists a sequence (Cuwg) in Hilo)
convergingto u in [ 2(py suchthat:

Pl (w) > £imsup Fu, (u.)
- 20

- . . . ®
REMARK 2.1. There exists a unique metrizable topology on ¥¥| ,  which induces
the y —convergence, which will be called the topology of y - conavergence. All
topological notions we shall consider on /l’YLf are relative to this topology, with
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; EN
respect to which 1o is compact ([17] - Remark 5.4).
A relevant aspect of Definition 1.7 for our purpose is contained in the following
Proposition (see [5], Theorem 2.1).

PROPQOSITION 2.1. Let ( ALz be a sequence of measures in ’mf and let u e’rrl:'. '
Given A 20, let R;\J{_ be a sequence of resolvent cperators associated with the
measures M¢ and R:L the resolvent operator associated with M . The following
statements are equivalent:

a) (/U~,g_) Y - canverges to S

b) (R}ik) converges to R’)i\ stronglyin - L*(D) .

The foIIoWing Proposition states the relationships between the y - convergence of a
sequence of measures (Lg) and the behaviour of the corrisponding /4 - capacities,
(see [17], Theorem 6.3 and Theorem 5.9).

#
PROPOSITION 2.2. Let (le) asequencein /h‘]_: and M= ’Wlo - Then (U2)
Y- converges to u in mM® if and only if the inequalities

a)  C(kU) € Bmin® C (U, V)

e

and

b)  C(M.K)2>Lmenp COMa KD
'&*Qoo .
hold forevery Ke JC andforevery Ue UL

REMARK 2.2. In view of Propaosition 2.2 a sub-base for the topology induced by v-
convergence on ’YYI; is given by the set of the form {/L!.é ’Trl;t TC(,U) >t}
and {Me ’W‘ P CuR)<st with t,s€R*, Ue WL and Ke'1C.

We denote by 63 ( ’h’[:) the borel ¢ - field of /YVL;E endowed with the
topology of y- convergence.

25



Random relaxed Dirichlet problems

PROPOSITION 2.3. RB(4M3) isthe smallest ¢ -fieldin Y3 for which the
functions ¢ (-, V) from /WL;" into R are measurable farevery Ue 1L
(respectively the functions C (-, k) are measurable fcrevery keS)

Proof: Denote by 24 the smallest ¢ -field in ’m: for which all functicns
o i
C(-, U) , UeWU ,are measurable, and by zzthe smallest 6 -field in o for
which all func*xons C(,K), ReX ,are measurable.
First, letus showthat 3 = S |
It is encugh to prove that

a)anyfuncion C(-,K). ,KeX is 2, -measurable;
and
b) any function C(-,U) , Ue 1l isZ.,- measurable.

Let us prove a). Forevery K € % , consider the decreasing sequence of open set:
= {XeD td (x,R) < 4/£§

We remark that Uz ™\ K . By (h) of Proposition 1.1 we have

Clpe, k)= L C(rU)
' Re N
forevery \e f}”r]_f , wWhich proves a).

Assertion b) can be proved in the same way, by chcosing, forevery Ue 1L ,
increasing sequence (Kw)in ¥ suchthat .kfg. AU and by using Proposmon
1.1, ().

The proor of the Proposition is complete if we show that (‘B(fm_o ) =24 . Tne inclusion
2, ¢ @L/h’l ) istrivial beczuse C(C, V), Ue 1L is lower semicontinuous on ’TT]_P
by Proposition 2.2 (g). In order to show that 3 (/Lx.( ye 2, , we have only to
cbserve that the sub-base for the topology of the v - convergence given in Remark 2.2
is containedin 2_ ., (because Z 2. ) andthat /I'YL: zdmits a countable basis
for the open sets. -

The next Carollary follows directly from the previous propaosition.

COROLLARY 2.1.Let (. , = , P ) beameasure space. Let M bea
function from (2. into ’m; . Tne following statements are equivalent: '
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a) Mis =- @(’YY]‘:) measurable;

by C(M¢), U) is 2 -measurable forevery Uell ;
c) ¢ (MG k) is S~ -measurable ferevery K e '3C .

We need also some result about th/e\ measurability of the function C(-,B)  for
every Be(® .Let us denote by 63 C’TY[:) the 6 -algebra of all subset of ’ﬂ’lj
which are universally measurable with respectto 63 (/VVL:) (i.e. Q.- measurable for
every probability measure @ on . ( mf,ﬁ(m:)). ,

FaN
PROPOSITION 2.4 Faorevery Be 63  the function C(+.B) is 65(’”];)- measurable.

Proof: Let Q be a probability measure on @C’YY]_:) .Forevery Be L 0K, we set
«(8)= [ clpmyaq

By properties (h), (i) and (e) of CT?';,L ) in Proposition 1.1 we have that:
(@.1) %(k)= n? o) ) vak  Uel]

for every "£<, e, |

2.2) X = swp{eR); KU ke

forevery Ueg 1L ,ana
(2.3) (R,URI+alK,N K,‘z)sa(Kn+olu<z)

forevery K, , K, €' .
We can extend the definition of & by

(2.4) «(B) = n¥f {eL(U) iU 2B .Ue’bk}
forevery Be 63 . We infer from (2.1), (2.2), (2.3). (2.4) that &« is a Choquet

capacity on B (see [27], Theorem 1.5). Applying the capacitabily Thearem (see [12])
we get '
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(2.5) L(3) = sup {alR); K<b  KeX}

forevery Be (3 .Now, fix RBRe 6> .By(2.4)itfollows that forevery € >0
there exists We WL , U2B suchthat

(2.6) x(BYres, > (U

Mareaver, by (2.5) we also get that for every € >0 there exisis a KexXx, K KeB
such that:

(2.7) <(BY-&, < (KD

By (2.6) and (2.7) we getthat forevery € >0

(2.8) f R [C<}A‘U7-C(}X.k)1d_Q<&

Mo
Since C(¢- . g)SCC-B) < C(C-, ) , (2.8) gives the measurability of CC |\ B)
respect to the g~ - field of zll subsets Q. - measurable.Finally, the assertion follows

noting that QL is an arbitrary probability measure on 63 Cm’]_‘f ) . -

At the end of this Section we recall some probabilistic noticns which we use in
' the sequel. _ o

By @"(’Y‘q:) we mean the space of all probability measures defind on B (.’TTL:) :
i.e.anelement Qe £ M isznon negative countably additive set function defined
on G CrHwith QUME) =1. '

We reczll the concept of the wezk convergence for 2 sequence (Q ) of
measures belonging to (536447‘;')
DEFINITION 2.2. We say that a sequence (Qsa) of measures in 63(’?71;)
converges weaklyto a measure Q in §(13) i -

s

for every continuous function -Qz’h’[; —> R.
Simillar problems of weak convergence of measures on spaces endowed with
topology relatedto T -convergecs have been studied in [18] and [19].
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The two results that we give in the following hold for a generic compact metric space.
For the proofs we refer respectively to [1], Theorem 4.5.1 and to [39], Theorem 6.4.

PROPOSITION 2.5. Let (Q.) Dbe asequence of probability measures in Pem)
andlet @ ¢ @C’Wlo _The following statement are equivalent:
a)( Qe ) converges weakly to Q in GDL’YYLO

0) i jfdaﬁ L%dg

for every function £ : W@ —> R suchthat

Q_{}JQ’YYL: . P is continuous a\;’r/u}:ﬂ'

PROPOSITION 2.6. For every sequence (Qe.) of measures in @(’m_ﬁ) there exists
a sub-sequence (Qe.,) weakly convergentin ¢ Cm;‘ )

We conclude with some definitions:

DEFINITION 2.3. For every B( #v]s) - measurable function X we denote by
£q [xJ the expectation cf X in the probability space (mj'@(m;') Q), defined

by ,
Eq X3 =jfrrgx</"” Q)
andby Vavy, Cx1  the variance of X inthe probability space (M, 8(mH &)
defined by |
Vara Tx3d = ‘EQ_ C(X - E Q.EX:I)zJ

2
DEFINITION 2.4. For every X ,Ye L ( ’mf , @(’W@t ) L,AU) we denote by
Cove [X\ Y3 the covarfance of X and Y inthe probability space (mj,@(qrzj‘),Qf

defined by
Covg [X Y1 = EalXy3I- EalX] EQ_[YJ
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3. THE MAIN RESULT

In this section we prove the main result of this paper: a necessary and sufficient
condition for the convergence of a sequence (&) of measures on ’”‘13' of the class
P2 o ameasure J, € 63(’\’7’{;) of the form:

o if VEEg
(3.1) 39(8)2'/

4 if veg

Lor every E€ ®(mM3> ; %
where v is a finite Borel measure on ©  of the class e . This condition is

expressed in terms of the asymptotic behaviour, as & — «= , of the functions C¢*,B)
Re 63 , considered as a random variables on the probability spaces ('77[:' BC"{?), Be)

We begin with some definitions. Let (Q2) be a sequence in 63(’771:).
First, forevery Ue 4L we define:

«'(U)s Zomin® Eq, LCC ]

and

oL (0 = Gvasup Ea, Lcc.o]

where € Qs denotes the expectation in the probability space (’Y&(_f, G%Lm;‘)JQ&J
Next we consider the inner regularizations <~ and «! of o'

and &" definedforevery U e U by:

(32) 2 (U) = sub [@'(V); Ve, Veu]
and

(3.3) L0y =g { AV Vel VU]

Then we extend the definitions of «. and <" tothe arbitrary
Borelsets B D .by:
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(3.4)  «_(B)= (ng {«l(U); UeU, U2}

and
(3.5 AL ®= [l (U); UelU , U28]

forevery Be 63

Finally, we denoteby V' and V" the least superadditive set functions on
B greaterthanorequalto «. and ! respetively.

We are now in a positicn to. state our main result.

THEOREM 3.1. Let (&R2) be a seguence of measures on "Yq: of the class
Q). Assume that

) V(B = VUB) < 4o forevery De &
and denote by Y®)the common value of v'C®&Y and v'(8) for every Be §3

Suppoese in addition that
ii) there exist a constant € >0, anincreasing continuous function
£ :RxR —>R
with § (6,0)=© and a Radon measure F - on € suchthat

f:i:bF I Covy LeC ), €, W] ) § B (Qiam U, ceam V) L) 8%

for every pair U , Vel suchthat UnV = qS with diam U < ¢
anddiam V < &,
Then
a) v isafinite Borel measureon €  ofthe class ’7"’(: ;
b) (Qe) converges wezkly to the probability measure dy defined by:
I,ey=g T VEE
N4 if ves

for every 5 e &(M3)
C) ot (B) =M (B)=Cv,BR) forevery Be ©

REMARK 3.1. Let op: W —> R be anincreasing set function defined by:

31



Random relaxed Dirichlet problems

o (T) = Eg LCC )]
and let o : WL —> R be an increasing set function defined by

() = Clv,U)

Then the conditicn ¢) of Theorem 3.1 is equivalent to say that (&g) ccnverges weakly to
o inthe sense of [26] (with respect to the pair (44,3 ).

For the proof of Thecrem 3.1 we need some preliminay results. We begin with a
general probabilistic Lemma.

LEMMA 3.1. Lst (2, = ,P ) be a probability spacs. Consider a sequence (xe)
of non negative random variables on (&, Z , P>
Suppose that =

) Xeel (L P forevery RelN
i) Xe convergesto X for P -almostevery wae SL .

i) €ivm war(xe)=0
L —>o0

Then there exists a constant X, such that X(wdy=X, for P-almost every Loe SL

Proof: Choose a non negative sequence &g such that

Lom £eco and  Raowa T EE)
Hnoe Bz e E_é

=

Set
'Eg_ = UaY¥ (xa)

. £z
Then there exists a subsequence of t g. , still denoted by te , such

that i l:&.( 3+ 00
Rem
Consider the sets

Bo={wey @ Ixa-ELxe ]| 280
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By Chebychev's inequality we have P (Ba) < e for every £ and by
Borel-Cantelli's Lemma it follows that

Liwga, B = O
PC &‘_)%P e)
Ccnseguently, if w4, <23 aretwoelementsin N\ %W%Ba, we obtain
-3 o2
| X2 () = Xe(wadlc 28,

for -2 large enough. Passing to the limit , as 8- —> « , we get the proof of the

a ion.
assertio .

In the next Lemma we prove a result concerning increasing sat functions, i.e. functions
ol 63—=R suchthat «(a) S (8D whenever AR € & and AsB
First we need some elementary definitions.

DEFINITIONS 3.1. Asubset D of W is said to be dense if for every pair

U, Ve WU such that _(5 eV ,there exisis a set W ¢ D such that
Gc\)(/cw cV . -
LEMMA 3.2. Let & : @ —R be any increasing set function. Then the set:

D:={Wwel: Wed, alWi=a ()

isdense in U

Proof: The Lemma is an immediate consequence of Proposition 4.7 of [26]. For the
rezders convenience we repeat here the proor’ in our particular case.

LetU, Vbein AL suchthat UeV | By Uryshon's Lemma there exisis a
function L€ ¢2 (v) suchthat ©s@(xYs4 forevery xeV and L=4
on Y .Forevery teJo, A0 ="T we considerthe open set:

U":": {X":V . -Q(X3 >‘t}

Let =K T—R be the function defined in the following way:

g.(k) = a (V)
- - . r_'
Then g isa decreasing functian and for every te 'l we have:

Cr2 Gs) > lU) » o (UL) > b G
S«t S>t
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Since the function 3 has at most a countable set of discontinuity peints in T
there exists £+2 U suchthat L LU, ) » L (Us)  and this proves the Lamma. -

In the follcwing we give sufficient conditicns in orcer to have that a probability
measure @ & (_/Y‘/L;‘ ) be equzl to the measure Sv defined in (3.1). The
canditicns are given in terms of the functions C(-®),Be © considered as randam
variables on (M]3 |, B, Q)

LEMMA 3.3 Let @Q_be a prcbability measure on (M35 of the class Fnd.
Define L ()= E4 (¢ (-, U)] forevery Ue W , and

& (B)= in2 {'d.(.U3 ) U228 ‘UﬁLL}

forevery B¢ & . Assume that:
(i) There exists a Racdon measure @J on € suchthat

P¢2 o on 6 ;
(i) There exist a constant & >0, 2 Radon measure /Sz on 63 znd an
increasing continuous funclicm & :Rx R —=Rwith Flo.o=0 sit.:

(3.6) Vv LCce v, cc V]ls £ (am T dianV) B, () B

forevery pair U, Ve AU suchthat UaV = ¢ ,withdiam U < & and
dem V < ¢.
Let V be the least superadditive sat function on ® suchthat V > on B . Then
v isameasure on € ofthe class M& and i

Q:J\i'

Proof: The function ¢ is countably subadditive an % (hence on 03 ) by the
countable subadditivity of CC M, ) (Propasition 1.1, (d)). Therefcre vV is a
measure by Lemma 4.1 cf [17]. We observe that the measure v is'w ’TYZf because it
is & Radon measure and V(&8)=0 whenever CC®) =0 by Prepositicn 1.1, (). By
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properties (h) and (i) of Proposition 1.1 we can extend the relation (3.6) to each pair of
disjcint sets A s € @ andcheckthat:
«(B) = Eg [c (- 3]

for every Be 63
the random variable on the prebability spacs

Let us denote by z (- ,B)

(“[: B ) defined by:
z(M.B) = By

for every Be 63
By Theorem 1.1 we have that:

3(8)= 2m L C( BaR)
L—>00 (.4,74
where Re denotes the cube defined in Theorem 1.1. We apply

for every B e (3
is a costant random variable. Therefore, we

now Lemma 3.1 to show that Z (- ®)
have only to prove that:

‘v Varg [Z"Z c(- B(\Qg‘)l- o

R oo
Now, letusfix Bed with B ¢ D . For every ReN , we have:
3.7) 2 Verg Ll BaREN] =

Lez
z, {Ea[cc-ﬁn Qé)lj- (GQ [CC¢LRORY] }

N

ST Ea_EC< BarIYIs
re 77

> C(eaRrs) Eq [C ¢ Bari)] <

a’gzd-
sup  C (BaRs) 5. = (BaRI < s B.(B)
(‘GZ dczd‘
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where we have set s, = Sub  C(3a R_._ )

Fe 2t
We observe thal s, — © &S & — se Dbecause the dimension d is greater than or
equal to 2 and B s compactin D . On the other hand, by hypothesas there exists
R,eN suchthat, forevery -4 > 2o , '

3.8 | =, COVQ_[CC-,Bn F?i),CC.' Ba &f)]\<

b:ezd‘
t.#.)

%Z”' E (deawm (BORL), daus (BaRE)) B ( BaRa) Balen R3¢
L7

f(d.:.u,u. Qe, ob;w._g )ZZ ﬁICBO@)ﬁQ(ﬁqﬁi)s
cF S

Fleean RE, dvame RD) [gat]’

By (3.7), (8.8) and by hypothesis we get

‘&m UE‘*‘QEZ C(_ EnRa)J

Lo~> p0 te 7%

- ® < -+ L )
ol Zy g [eCmomd] 2 «So0a [eCanrd) et B Ryl
LE3

f::: {5*;%((6) ¥ (dvam Re. ‘&-waz)[% (gﬂl} =0

Therefore Lemma 3.2 implies that for every Borel set 2 (- B is a costant radom

variable. Now, !et us compute the expectation of Z (. B) . Since the sequence
(Zzi C( ,Bn ac):‘ ny IS increasing, we get
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Eo (¢ 8®)1- f"’"“ Ea. {2 cC ®are)]=

oo Ce72

lom 2. X (BaRe) = v
A i-:.Zd'

for every Be 63 |, where the last equality is proved in [17], Lemma 4.2.

Hence, forevery Be 63 there exisis a subsat Mg of ’YYL: with & (1Mz =4)
such that 2(}1‘@,: v(3) for e\/éryi/{le ’YYLB. Let D be a countable dense satin U
and let us consider:

= UQD My
We obtain that Z(p,U)= vLU) forevery u=m and Q. 1)=1 . This implies that
(M) is 2 Radon measure on &  for every M« 1 ,and since 2CM,)
coincides with v onadensesst D in ‘U , we candeducethat 2(u,3y= v(B) for
every ®e 3 and for every M= 1 . This conciudes the proof of the Lemma. o

Proof of Theorem 3.1: The set function < is subadcitive on L , being the upper

limit of a sequence of subadditive set functicns on 1L . Tnerefore its inner
regularization o~ is countably subadditive on W by Theorem 5.6 of [26]. It is now
easyto seethat ! iscountably subadditive on B ,sothat v" is a measure by

Lemma 4.1 of [17]. Moreover, v"(8) =0 whenever C(R) =0 by Proposition 1.1(f).
This proves assertion (a).

Since ( m: ) is sequentially compact space and V' znd v do not change by
passing to a subsequence, in order to prove (b) we can assume that Qe caonverges
wezkly to & probability measure Qe @(’ﬂﬁ ) and we have only o prove that
Q=dv

By Lemma 3.2 the sat:
D-{vew -salece, Bl €g L, 1}

is dense in WL . .
Consequently, forevery Ue D | the equaiity Clp,U) = Clp, )
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hoids for & - almaost all Me ’W[: . Therefore, by Proposition 2.2:

o] peMs t €U is y combinuous _;4—)43:4

forevery Ue D . Then, by Precpesiticn 2.5 we have:

9  Lom B e ]= €4 0cc o= (D) (D)

Lo—> 0o T
for every UeD and

(310) Lim Ea, LCO-DIC( V)] = Ea [C(- (- W]]
L= o

forevery U,Ved .
By (3.9), (3.10) by hypothesis (i) and by the properties of the)l-capacity (Propcsition
1.1, (h) and (i)) we get that

@A Eq [C(- 1 ]= al (V) =al (o)
farevery we 1L ,an;i

|Coug [CC ), € W] ¢ ?(wmv, SamaV ) pCU) BLV)

for every pair U, Ve 1L withdiam U < g anddiam V < & such

that TaV =@

Assertion (b) fellows now from Lemma 3.3.

Assertion (c) can be obtained from (b) and (3:11)by using (34), (3.5 and the property of
C(M, ) stated in Proposition 1.1, (n) and (i). - .
REMARK 3.2 Conditions (i) and (i) of Theorem 3.1 are alsa necessary. In fact, if

Qe converges weakly to a probability measure of the form Iy (see (3.1)), where v s
a finite Borel measure on 6> of the class ’TTl: , then (3.9) and (3.40)imply that there
exists a family ) dense in AL such that

(3.12) < WY " (U) = ClV,U)
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forevery Ue 9 snd
(3.13) :g:«'m |covg, LCC W (-] =0

forevery U Ve with U AV = ¢ . By the properties of the capacities C( M -)
(Propositicn 1.1, (h), (1)), (3.12) implies that

(3.44) AL(B) = &L (B) = C(V.8)

for every Re 03 and (3.13) implies condition (i) of Theorem 3.1. The condition (i)
follows now from (344)and from the characterization of V as the least superadditive
set function greater than orequalto C(v,-) , (see[17], Theorem 4.3)
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4. DIRICHLET PROBLEMS IN DOMAINS WITH RANDOM SMALL HOLES.

In this section we consider an application of our results to a Dirichiet problem in a
domain with small heles. In order to semplify the computzations we assume d2>3.

Let (L, P ) be a probability space. We shall dencte by £ and
by Cov respectively the expectation and the covariance of a random variable,
with respect to the measure P

o
DEFINTION 4.1. A measurable function M: o — /WZ," will be called random
measure.

We recall that necessary and sufficient conditions for the measurability of a
function M : SL—= 41X  aregivenin Corollary 2.1.

Let M be a random measure.

DEFINITION 4.2. The probability measure in 0 M3 defined by
Qe)=P{m ()} foray Be B(md)

will be called the distribution law of the rand}om measure M1

Let ™ & beasequence of random measures and M arandem measure.
Let QLg be the sequence of the distribution laws of ™, and let (Q  be the
distribution law of ™M

DEFINTION 4.3. We say that ™ o converges in law  to the random measure ™

if and only if the distribution laws  Q, converges wezkly in (P ( ’D’L: ) tothe
distribution law ~ Q '

Let Q  be the distribution of a random measure [ . ltis ezsy to see that:

1) EqQ TC(-,uvy]= E[C(Mc-)lu)‘] forany Ue W
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(42) Covg LC( V(- V)]s
e[c(mo, oy e e vT-£lcemey wle[cMe n]e
Couw (M), 0)y c (M) V)]

forany pair U, v ¢ AL

Let Mg be asequencs cf random measures and let Qg bethe corresponding
saquence of distribution laws.
Let us define the set functicns:

(4.3) KUY 2 Liming £ LMLy, vl
(4.4) 2" (V)= Livmsub E[C (M) U)]
£ - e

forevery Ue 1L

In the sequel we will denote by o and L1 respesciively the inner regularization
of &' and =" asdefinedin (3.2) and (3.3). _
The functions ' and " will be the least superadditive set function on 63
greaterthan orequalto «. and o" , respectively.

REMARK 4.1. Equalities (4.1), (4.2), (4.3), (4.4) allow to reformulate the hypotheses
of Theorem 3.1 in terms of the expectations and covariances of the random variables
C (M), V) .Bydefiniticn 4.3 the theses of Theorem 3.1 can be reformulated saying
that the sequence Mg convergesin law to a random measure ™ such that
M(w)= v for P -almestevery wse S (i.e.tothe constant random measure

M =)

REMARK 4.2. ltis well known that, whenever ™ is a constant random measure,
the convergence in law and the convergence in probability toward M of the
sequence M of random measures are equivalent. Thus, by Remark 4.1, we can
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deduce that, if the assumptions of Theorem 3.1 hold, then the sequence Mg converges
in probability to the measure v in AY|3 |, thatis:for every ¢ >0

Cirm P{u&eﬂ : cta»(Me_(u.n'v)>gS=o

.- oo

where c’.a/ is any metric on fh'z'; which induces y-convergence ( Remark 2.1).

We wish to study the following sequence of random relaxed Dirichiet problems:
—-VAua, +(He,-rA'm.)ue. =2 D
‘ g, =0 Ow &D

where A 20, 2e¢ (D) , A denotes the Lebesgue measure on RY,

% . .

Let Ye /YYl_o andlet R"  be the resclvent operator associated with v

The next Theorem states a relationship between the previous results and the
convergence of the resolvent operators R’; associated with the random measures

Me

THEOREM 4.1. Let ™z  be a sequence of random measyres. Ll «'and. " be
the functions defined in (4.3) and (4.4) and let v and v"  be the least
superadditive sat functions on (2 greater than or equalto &L and c(’ respectively.

Assume that:
M V()= V(BY<ree forevery B3

anddenote by v (R®Y) the common value of v'(8) and \?“CB') forevery e .
Suppose, in addition, that: '
(i) There exist a canstant & >0, anincreasing continuous function
? :RxR — R with %‘ (0,0)0=0
and a Radon measure ﬁ> on & suchthat:

Gmseb 1 Cov LOMal) D) C UMt VI ¢

Flekiome Uy diam V) BLUY pLV)
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for every pair U,V el suchthat L—JnV = ¢ andwith diem U < &

dam V < &. ,
Then, forevery A 20, R‘Z_ ccnverges strongly in probability to R” e

. . A - RA e -
Lo Piwen IR G[2I-R C,JHECD)mS_Q

forevery g€ >0, andforany L& [(2(D).

Proof: By Remark 4.2 we have that the sequence ™M,  converges in prebabiiity
to v in frrl: . To get the assertion it is encugh to reczll that, by Propositicn 2.1, for
every we the ssquence of measures M v-convergesto v ifandonlyif
the resolvent aperators R’; {w) convergeto R+ stronglyin L*CD) . ||

Next, we wish to consider a particular sequence M=o of randcm measures
related with Dirichlet problems in domains with random hoales.
Let ¥ (D) bethe family of all clcsed sets contzinedin D

DEFINITION 4.4. Afuncticn F:<u —> 2(pD) is called a random set if the

function M : < —= ’h’l;‘ definedby M () = S iy foreach toe fL

is 2 - measurable, where o = isthe measure in "nl; as in Definition 1.3.

- REMARK 4.3. Let F:r o — 50D be a function. By Corollary 2.1 and by
the equality C (o2 \B)= CLEARD the following conditions are equivalent:

a) F  arandom set. ‘
b) C(F)AV) is . -measursble for every Ue ¢os

c) C(FLYaK) is 2 -measurable for every K e 3(_
Let us take a sequence 'Fa, of random sets. Let U le be the sequence of

random measures so defined:

Me (L) = e (D) foreach «oeSL
[
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Let £¢ L*) and X 20 areal parameter. We shall cansider the weak
solutions W of the following Dirichlet problems on random domains:

~Aug +Ale = £ on D\Fg

(4.5) ‘
uee He (DVED)

In view of the example 1.1, setting Ye =O onthe set Fe , we have that
is the local weak solution of the relaxed Dirichlet problem :

—Aue, +(wF&+Am)ug\ =2 inD

Q=0 on 9D
where v denotes the Lebesgue measure in Rd,

" We are interested in the behaviour of the sequence U, as R — oo . More
specifically, we will study the convergence of the resolvent operators R3  associated
with the measures co 3 , Which are related to the resolvents operators /Fii of the
Dirichlet problems (4.5) by

A
N Re (27 on D\Fg
R (2)=

—

O ocn te

(see example 1.1).
To do that we consider the distribution law Qs of the random measures
Me= 0o g, ,defined by

(4'6) Q.E.(E):?("O F. € @) Dov any g;(ﬁ(lwto*‘)
It is easy to check that:

Ea, LCL WI=E[CcGEO,W] forany Ue U
and

Covq&'[c Co)al- WY = o [c(Berav) , c(fmeyav)]
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forany par U,ve 4

In this case the funciicns o' " definedin (4.3) and (4.4), take the following
form:
(4.7) QL((U) = Lwming E EC (Fa () GU)]
. Pl
(4.8) LM (VY = -_(’éfmSup E[c(Bt)nvl]
-2 Go

forevery Ue L

An interesting case occours when the probability distribution of the random set is
specified. We will assume the following general hypotheses:

(i4) Let ‘3) be a probability lawon O of the form
pee = § fax
&
forevery Re @ - ,where £¢ *(D)

(i5) Forevery LeWN weset Iz =,...,2} and we consider & measurable
functions Xx: :<L—>D  CeT & ,suchthat (X ).z, is afamily
of indipendent identically distributed random variables with progability
distribution £ -

(i3) Let & o  be asequence of strictly positive numbers such that:

d~
v ke R =

L. —o o

for scme constant € < + oo

Let x¢ R Let T  beaclosedsetof RA. We define the set x+F  by:
x-F= {ge RY 1 x-y eF]
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The next Lemma will be useful to identify a class of random sats.
LEMMA 4.1 For every compac: set K of R9 the function
2 4
(X4, X)) —> C[H(hﬂ-F)r‘\KJ from (R*)" into R
is upper semicontinuous in Rd.

Proof: Foreach n<|N] we define the set;

Fn:{xeﬂzd . dust (x,F) < éf}

Set Xa(x4,...,x2) .Let (X )xep be asaquencein (RY)N convergingto X in (RN,
Then, forevery helN there exists ko € N such that

(xXg); +F € X, +Fn

forevery K = K, andforevery e {4,...,2} .
Hence, for every M eN and for every compact set K of RY, we obtain:

g N byt
C((gr+Fr)a k) > Gmsub C((UGo+F)aR)
3 . _—bw sz

Since:
€ _ s L
O, LY xsFaak]: (UxsB)nk

by property (h) of Propositicn 1.1 we get that:

2 2 :
U X'e 2 e{ S .‘n :
ClYxi+F)NK)2 Lomsup C(YU (R +F)OEK)
which proves the Lemma. =

Let K beacompactsetof RY suchthat Kew, -Forany fen ,we
denoteby K * the following sat: -

Ko [xeRT: 2 ek

and by Kf_‘ the random sets
< .4 3
K,‘_‘{X&.D. E(K—X..)e K}

we note that Kf‘ < BQ(XS) . Finally, we denote by ¥,  the random sets:
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<
(4.9) Fe= U KS 2enN

BEMARK 4.4 By Lemma 4.1 anc Remark 4.3 the sets kg, are actually random sets
in accarding to Definition 4.4.

We wiil prove the following thecorems:

THEOREM 4.2 Lst F. be the sequence of randem seats defined in (4.9). If the
general hypotheses (i4), (i) and (i5) heid then the sequence Q. of disiribution laws
defined in (4.8) converges wewiy to the distributicn law J, defined Dy:

_ AT ve&®
y(2)= {_ o otherwise

for any Ee@(ﬂ[’;where V= ¢fi~> c=0clx, m"") and

C(R {Dfi - l‘ﬂo{j‘ \Du.\ ueH'f(,foL) =i 9.<€. OhK}

THEOREM 4.3 Let = be the sequence of random s&is defined in (4.9). Assume the
general hypctheses (i1), (ip) and (i3). Tnen, for any Se|3(D) endforevery € >0

o . A - pAle -
P P{weﬂ . WRE () [23-RA[RI N 2y 7ES = ©
A . . . .
where R (w)is the sequencs of resalvent operators zsscciated with the random
measures & = znd R* is the resclvent operator assaciaied with the measure v .

Mare specifically, Theorem 4.2 will foHow by zpplying Thearem 3.1 and Proposition

41: while the proof of Thecrem 4.3 will be obtained by Tnecrem 4.1. and propoticn
4.1.

PROPOSITION 4.1 Let R be the seguence of random sets defined in (4.9). Let
o', " be the set functions as defined in (4.7), (4.8) respectively. Then, if the
general hypothesas (i4), (ip) and (iz) held we have: '
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(t) v'(e) = v (@Y= c pLR) forevery e &
1

(to) there exist a constant £ >0, an increasing continuous funcion
‘RxR — R with E(0,0) =0
and a Radon measure f-’” , such that

’ﬁfé’msu}> { CoJ[C— (F&C'70U)'C(FRC')HV)] [ <

Z (uamU, dham V) B, (U) B (V)

forany U,V €1 su¢hthat0n\7=q5 with diam U < € anddiam V < £

For the proof of Proposition 4.1 we need some preliminary results. First, we give a
result which allows us to estimate from below the capacity of the union of a family of
sets (E) ceT Dby means ofthe sum of capacities of the sets  E ¢

LEMMA 4.2 Let (Eicz beafamily of subsetsof © andlet E = 52)1 EL

- Assume that:

there exist a finite family (x:);¢p of pointsin D  and two pesitive real numbers £, R
such that: '

) oex <« R ;

L

() E.eB,(x)EB (x)eD for Ce T
(i) Box) 0 B (x;)=¢ for v 5el L= ).
Let us set:
At d-2
JeJ(EY= 4 = (R v deamEY

R
Then, if J <1 wehave:

C(EY = (4-5)° 2'% C (E:,Bz =)
L&
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Proof: Let u ¢ He (D)kesuch that:

C(ey= IDul?dx
. D
and W= 4 ge.on £

It is well known that W is the unique solution of the variational inequality
ue Kg : f Du D(v-u) dx >0 Lovr ve R
O

where Kaz.{ue(—-{g (b) ;, Uvz4 4qe. O‘nE/}

Assume that:
(4.10) u<d gqeon QBR Cx:) forevery CeT

We prove that the assertion follows. Let us define the functicn:

= Lu-J)T
A-g

ltis easy to see that: JTe K5 (D) A7 21 ge. on £E and U=0 ge.on DBRCP’O
foreach Le I . Since (i) holds, we have:

(Bl Brixd) S f\Do-

R(.xn)
forany CeX . Hence,
(4.11) j‘D IDol?elx > J Do dx > >
tel BRO‘\J

S (') Bg )
teT

On the other hand, by definition of 47 we also have:
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2, 2
(412) fbt DU‘ Cl)‘ -(4—331 J‘D[D(U—J)‘-[ d-x <
1 JlDO’\zd.x . _4A_ CcE
(A-T1* Jg (4-a)*

By (4.11) and (4.12) we obtain the assertion.

Let us verify (4.10). For every LeT wé consider the function W, defined
by: ‘
d-2
W (x) = T A 4 xe B
Ix- X.‘,i;"z

It is not diffucult to checkthat w. [ e H;c(llﬁand that

d.
—Au; 20  on R
(4.13)
U =4 own Be (%)
for any ve T .Lletusset
d
(4.14) 20x) = 2wl xe R

veT

We seethat z¢ Héx,(_u‘l"") and it satisfies the following conditions:

—Az = o0 mD
(4.15) 2 = 4 g.e. cn E
2 z2o0 on ©D

By a classical comparison Theorem ([33], Chapter Il, Theorem 6.4), we can get, by
(4.13) and (4.15), that: '

(4.16) u <z ge. on D
Let %Q,DBR LX) for cel fixed. We wish to estimate 2(y) . By (4.14) we
have: :

50



Random relaxed Dirichlet problems

d-2

(4.17) 2y s L

N o =2
JeT lxj-"é\

To estimate the right-hand side we introduce the following sets:

CKO&‘r) - {X&@d ck B¢ ix-gt (k=D RJ k=04,...

Moreover, let
Tylg) = {eeT : xie Cp (9]}

and let Nk (%) be the number of elements of T~ C$). Since ‘X_,"% > R for
each je T , it is easy to see that:
X dismE 144
418 s, _4 < A N (g)
jeT (xJ-‘é\“-'z ;2::( (kR)-2
where [ a. ] denotes the integer part of a.
Letus estimate N () .Since, for k fixed,
U_  Boude Jxe RY: (ko
x) & . (k- -
v eTeey) Rt {Xe t (K- & Ix—g < (K+1){€}
we have:
ad
mess [ o Ba] € wa RT [lkeaYre (v ]
hence, using (iii),
=h -
(4.19) Ne (@) € (k=) .Qr<—s)°l < 4 K"L *
By (4.17), (4.18), (4.19), we obtain:
A2 [EsmET+S
b oL
202) & 4= 2 K <
& Rd"-z k=1
st 2R [au;me A\
R&-2 = * S
d-2 A B
L4 et fg (RuvciamE) ] o' 20 (Rvaeme)
Rd—i R Rcl
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This inequality, toghether with (4.16), shows that assumption(4.10) is always satisfied
and this completes the proof of the Lemma. -

For each subset 2D we define the random set of indices:
: e
T (2) = &.bﬂrg. O N 62}
and the random variable:
(4.19) Ne(=2) = number of elements of T, (2
1
3
Foreach RelN ,let Re = (%_‘S-)/i where S isa positive real number

(we note that by (iz) Ze < Ri for £ large encugh). For s fixed we also
consider: ‘ '

3 . : - - s
Ig,(?:)-:. { LE—_IF(%) : 33 ele , L7 such TRt \X%-Kf‘\ < RQ} A
and
S _—3
(4.20) ‘N&LE) = number of elements of L ()
The following estimate is crucial for our result

LEMMA 4.3. If (i) and (i) hold then:

S
B ELNZ (Y]
L. = oo e

cwysferax
()

forany Ue W ,where O dJ isthe volume ofthe unit baﬂ.

- -3 : .
Proof: Fix Ue AL .ltiseasytocheckthat c€& Le COY if and only if
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S X (x%) >4
g=4 BRs LX})(\U
. &

Therefore, we see that:

&

2 &
(4.21) NS (V) ¢ 22 (x5

e=d 3=; Bgs X nu

Y

By (4.21) and the assumptions (i4), (i) we obtain:

s & & e
@22) E [Ng (U)]< {3 :)? _L}?_C B (Xf‘(w)mu(x‘@ﬂdag):
JEL =
L %
\% o j [ ,( X (X)d{&LX)JdP(‘%)

jiL0D D Bgicg)hu

< <
5:2 ; JD P (Bps (sd0U) d Pl

S#e
(-0 jb{b(BRi () ALY dpiy

Finally, by (4.22) we get:

firnens ELNZ (DY
L —= o e

<X

: 2
s Gmap[ L [ P (B 10L) Aply) =

s 'Q_é:mg’““’? S 2L 2o lx ] Lepdy =
- Res
o' Y p VBRI B35 AU

S ool j:@lg%s g
|
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by Lebesgue Theorem.

Proof of the Proposition 4.1:

Forany Ue 1L Jet

(4.23) Us = [xe U st (£ 0U) >Rz ]
and

(4.24) U, ={xc—,D:d.¢§‘;:(x\U)< Rj}

' Al
We cbservethat: Ue €U € Ug,
Moreover, we note that:

(4.25) ]’C_ (US) = ToUHNT )

is the set of all elements (e Ie., which satisiy the following cond.itions:
(21) xteu
(ap) BR:. (?‘f‘) cU

(23) [xf- xt1 > RS forany Je Lo  with =)
Dencte by Fe: the rancdom sat:

Fo = U

T e Jp U
We have:
(61) % B, (x%yec B o (x%y
1 i - L) = F?. R

(b2) B (xadgs (x=¢ for (5 T, (L) with =)

Let us set:

54



Random relaxed Dirichlet problems

d-1 2
A_J"‘" Te (aLl.Jvn.U)

(4.26) gw,e)=s 4 (R
. e ded
Choosing € = \S/co ,where Co=4 € Dby assumption (ig), we see

that J (U, &) will be lessthan 1 for h large enough and diam UL < €

?

Thus, by Lemma 4.2 we obtain that, for each WelL:

(4.27) C(Fle) a3 C (L) 3 (- T(0LN Z | CUKE Bgs (x2) >
CeJe () &

(4-502) [Ne (V) - Vi ] c xS B o ) =

3 2 T e (Ud) _ NI (V)2 =22
(4-3(uan® [Hat 220 | e C(.K‘ERQ/‘L_:>

whenever h is sufficiently large and diam U< ¢ .0On the other hand, by using
the elementary properties of the capacity, we immediately get that

428) C(FLnL) s> C(f B,s (x5))=
ce To (LY ' TRe

Vel O p 2 ¢ (o .
—-—.__%:_..-— 2, ( lBRt/te_B

forevery Ve 4L ,
Now we are in position te prove (i) and (tp) of the Proposition 4.1.

Proof of (t4): First, we observe that by the Law of Large Numbers we have:

(4.29) Lo ELNOOT | op EDXRO] 8wy
£ 00 2 Lo s 2

forevery Lell with A(dU)=0
Moreover, by (i3) and (4.26) we obtain:

(430) Lo (L) = TLUY = ColcwamU)™
&— s

[V}
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o+
where cCo=4¢ €

Next, we obsarve that for every compact subset K< Bg

231) Lom C(E Bad=C(R B

R—>oo

By Lemma 4.3, (4.27), (4.28), (4.29), (4.30) and (4.31) we deduce that:

(4.32) « ()& cBB)

forevery Be @ ,and

(4.33) d\_ (B) = (A - Z__O (duawm &')2)2 c [ﬁLS) - Wy SSEZQICE!,)Cig]
forevery Be 63 with sufficiently small diameter. By (4.32) we have that:

YV(8) = c BLB
forevery Re 63

Therefore, we have only to prove that:
(4.34) Vi) 2 ¢ f&LBB for every Re 63

Lstusfix e 6 .Next forarbitrary 4] >0 choose apariiion (Bi)iex  of B
suchthat B.€ & and diam ® < 7 forevery veT . Then, by (4.33)
appliedwith § = 1 ,we getl: ‘

(4.35)  VI(®Y = 2 V(B2 T &l (8) 2

vel (T

-3 -
(4-m) clply) —w, M j-B:E‘ ) 23 ]

Since 1 is arbitrary, (4.34) follows from (4.35).
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Proof of (i5): Preliminary, we note that by the Strong Law of Large Numbers we
have:

(4.36) Nz (U2) > BV as wel

2 )
and

el
i i Qo

(4.37)  Nea (L . B0 in L (&)

= 8 —>ee
forany Ue AL . Moreover, since MNe (L) is an equibounded sequence of
random variables we also have: &
wag  NxCYSl g0 n 1Al)

£ L—"ce

forany Ue W . We obsearve that: (4.36), (4.37) and (4.38) hold also with Uei
replacedby U ,provided B(OU)Y=0O.
By (4.27), (4.31), (4.30) we have:

(439) Lo E [CLROAWC(ROAV)] 2

L.~ oo

(4= T (0N X (A= TOY <7 x

o Pe (D VeV [ Vatid) 102 e O Vs
x%j:j:*" {E[ = ‘at.} e[‘é_g,w%(wj_e[ aeu\/e)_we‘:mj}

—

forany pair U,V e WL suchthat UnV = ¢ | dam U < & ,dam V <¢
with & = VS,

By (4.38) we have:

4.40) Lo ERUR) L DV T2 BLOYR LY
( £ [ 2 _'&——1 @ )@ 4

-2 oo

Moreover, by Lemma 4.3 and (4.36) it follows:

57



Random relaxed Dirichlet problems

(441) Lmsup E[”‘“w“) ”"LV’_] Wy gLU)sf”‘

ﬂ—b&

and

wb NalVe) 2 (D) T ¢ w 22
(4.42) Rl B[ X 2D T e Bl sju el
forany U, v € WL

Then, (4.39), (4.40), (4.41) and (4.42) give:

(443)  Lomin? E e (8 aV) e (Fal)aV)] 2
(4-25(U) - 2TCuN & x
[ BEIBVI- BLUIey jf = U)oy s [ 27
forevery U Ve 40  ,suchthat OAV =¢ withdam U < € ,diam V <e
By (4.28) and (4.38) (applied with U,' instead of L, ) we also deduce:
(4.44) %15:!? tlC(RGaV) CLREIAVY] g c® BLOY B V)
forany U ,ve 4  with pc9u>=@cav3;0 ) |

Estimates like (4.43) and (4.44) for the upper and lower limit of the sequence

ELC(RGInUIT ELC(RGaV]] - can be obtained in the same way .
Therefore, we deduce that:

(4.45) Lemsup | Coo [C (FaldnL) , C(Rt1AV)] | <
U —s 0o

2BCVY VI =[4-2T WY - 2TV e* [aloy pLyu) - BLo) woy s (£7etx -
peoy ped-L 1< Dptor pLud - puor o s 8

_ F;cvawdsjfzct;j <
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Flewrw,s [ 2%s « Pl ey s(2%x + 2[5y TIBLBONT
\ )

forevery U, vedl sucathat Uav=d¢d  with diam U <& ,damV <¢g
Teking < =max{diam U,diam V }, by (4.30), fcrmula (4.45) beccmes:

(4,45) Ly msap | covTe (FlraV ) CLRGAVIL T ¢
—> Ao

c*{Btoriss § £ & puney Sjune:'d_x +2¢, S BLOY AL e

C“s{PCU‘)\S‘\;’?-Zch « B c\/)jf’-a.x s ploygont

forevery UV e L such that qu = ¢ withdiam U< & and dzmV < &
In the last inequelity we have sat Cy = c?* max{ W, 7.¢c.}. The assertion (tg)
follows by (4.48) teking {51(,(_)) = BLV) +5 D2 dx for every Vel and

v

%r\.x\ )-—'—‘ maX{ x \\'( }, e |
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5. SCHROEDINGER EQUATION WITH RANDCM POTENTIALS.

In this section we consider ancther application of our main Theorem. We study a
problem concerning the stationary Schroedinger equation in RS  with particular
random pctentials. '

We stiil denote by (&L, 22, P) a probability space. Moreover, forevery R € N

we consider a family (xf) CeTe of random variables satisiying the general
hypotheses (i4), (i0), (i3) in the previous section.
Denoteby . , e the following random sets:
£

| €
F—C. = l:\;/: Bt:’_ (X\.)

Let (k.) be a seqguence of positive real numbers.
Foreach 2e N Wwe define the random function:

q, () - e ToxeRe
X ) =
= N

O otherwisa.
We will study the equations:
’ - AUQ’.(.RLCX)Q,L-&—XL[A:Q in D
(5.1)

ue,é‘Hc\. (D)

where A 20 is arealnumberand Lc [*(p)

To use the theory developed in section 3 we consider the sequence Me of
random measures defined by '

(5.2) M, (B) =j g, 00 dx
B

forany Re
REMARK 5.1. Forevery Ue AL thefunctions C(M,_(-) L) are

2 -measuréble, each of them being the infimum of a sequence of measurable
functions. To see this, it is enough to use the variational definition of C(M,(), L) and the
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fact that the functions q, are bounded so that
2
C(Me (Y U) = tnP {j 1D i dx +j(U-47 qg‘(')d-x}
| veH Lop D

X . . - 1 . . . , *
where B is a countable dense subset of H ot (D) . Therefore the maps M, 1 Qo= 'TT[O
are actually random measures by Corollary 1.1.

The problems (5.1) are equivalent to the following relaxed Dirichlet problems:
~AUe t(MealdsAm)ue = £ in D
ue\_ =0 an BD

We shall prove the following theorems:

THEOREM 5.1. Let R, be the sequence of distribution laws on /\"(L: associated
with the sequence of random measures M&_ defined in (5.2). Assume that the general
hypotheses (i1), (in), (i3) hold. Moreover, we suppose also that:

(i) Lo (K ze =400

L de

Then, Qe converges weakly to the distribution law J,; defined by:

A if Yve &
S,(8)=
\

o otherwise

for any 8665C’\’1’L:) , Where \J:c{?} P, C(_E>4,(Q3) and
C (B, @?) Isdefinedasin Theorem 4.2 .
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THEOREM 5.2. Let M, be the sequence of random measures defined in (5.2).
Assume that the general hypatheses (iq), (i2), (i3) hold. Suppose also that:

(iz) L. VKe Tg = +
'e\.—:vco

Then, for any 2= [*(d)and forevery € > 0

G~ oo

where Ré\_ is the sequence. of resolvent operators associated with the random
potentials ¢,  (i.e. with the random measures Me )and R*  isthe resolvent
operator associated with the constant potential <  (i.e. with the measure c7& )

The proofs of these theorems will depend on the next Proposition 5.1. In particular, the
procf of theorem5.1 will be obtained by applying Theorem 3.1 and Proposition 5.1; the
Theorem 5.2 will follow from Theorem 4.1 and Propasition 5.1.

PROPOSITION 5.1.Let Mg be the sequence of random measures defined in
(5.2). Let ' and «"“ be the satfunctions as defined respectively in (4.3) and (4.4).
‘Assume the general hypotheses (i1), (i0).(i3). In addition, suppose that:

(i4) 2y ’\}_!;;_‘r_a. = +0o

Lo o0

Then, the following assertions hold:

) V@ - v'(BY=c pCBD forevery Be @

(to") there exist a constant £ >0, an increasing continuos function
E:Rx R —>R with %(_qo):o and a Radon measure Fm such that:

Bivasub leeg [C (M) L), C (M) V)] s ﬁ(&'wud#w\/) 8009, 8, (v

Cm> o

for any UIVQ/LL such that Dn_\; .—.(}5 withdiam U < g diam V < ¢

The proof will be based on the following two lemmas.
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LEMMA 5.1. Let AL & /WL;‘ . Then, the Lemma 4.2 hoids if we replace  C€(E) by
C{ M, E).

Prcof: Itis encugh to replace the functicn & used in the procf of Lemma 4.2 with
.. s . e . i’ IS AP
the A -capacitary petential of E in D ,dsfined as the unigue funciicn weth, (T
such that
2 ' 2
C(p &) =f IDwl™ elx +j (W-4d7 a1k
D =

and to use the comparison Theorem for relaxed Dirichlet probiems ( [20], Theorem
2.10) instead of the classical comparison Thearem for variational inequalities. -

We now compute the A - capacitary potential of a ball with respect to a
concentric ball, when }.l is the Lebesgue measure (multiplied by a constant).

LEMMA 5.2. Let = , R be twc positive real numbers such that k < R . Moareaver,
let  u be the Berel measure in ’i"rz_;* defined by:

Al = K Sactx

forany Pe & ,where ¥ isconstant.
Then, the M -capacitary potential associated with C(/u‘ Bx B ) is the
function: ' ' .

4- (a1t ) r<s\xig R
(5.3) w(ixy) = /
4 - csin BVKx o <lxlg %
1x\
for X e BR , where
=R - —% R? wsP (Jr =)

sme (Ve 2) s (VER- 4R e)ess B (R &)

& = ‘{/—‘ER COSE.(.‘J;’tA
Sine (YR e) » (Ve R- 4Re) s (VR )
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R
<= Sim e (y=z) T (VeR- rz) cas & (VE=)
Moreover, setting  cL< w () we have

(5.4) (- DT C(Br Bg) s (M B2, Br) $C(Br Re)

Proof: The proof of (5.3) is obtained solving explicitly the Euler equation of the
functional \' '

Flu): IDul*dx + k| u?dx
Bg ) 52
with the boundary condition w-4 € HLC BgD . In order to preof (5.4) we note

that the relation C(R , B2, ,B) < CR» Ba) follows by the property Le) of Proposition
1.1; moreover let us define

_ Lw—d.§+
T Ta-d
ltis easy to seethat uve & (Rz) and w>1geon Ba
Hence,
I D(w-)' 1% A 2
C sj —_— ¢ Dw \"clx = C
(52;5?.) B &’{"d)l < (:(_d)z { (/{ CL\ </“t BZ\ R)
R B
which proves (5.4). R i
Proof of Proposition 5.1.
Fareach e W™ let us define a sequence Ma of Borel measures in the

fallowing way:

M (®) = KQ_J‘BG{-%

fcrany Be &
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Let Ue U Let U and e be the sets defined in (4.23) and
(4.24) respectively. By 7T, (U we denote the set of indices defined in (4.25).
Furthermore let J (v &) beasdefinedin (4.26) , Ne (U) asin (4.19) and
x\J:(U\ as in (4.20). By hypothesis (i3) , by Lemma 5.1 and Lemma 5.2 we can get that
foreach we S ;

i ' e
55) C(Ma VY 2 (4= T(V, e‘”f}g b T UFe Brel) B, (x1)-

(4= (0,2 (Ve lOL) - U5 (VYT CC M Brs, Bay) ¥

(4- a’(u\av)z[wg,(u;) Vs (VY (4= Ve CBZM&R:) =
' S
(4 - Jo.2) (- ) [ 220 - BEO) Tap, C (B, Bes )
_ T

whenever £ is sufficiently large and diam U< & ,with & = \/;5:
By (5.3) we have that foreach -fc M <

da = _ 4
=2+ [ VR Re (A- Ls s ) [ oote (TRee)
So, by hypothesis (ig) it follows that

On the other hand we have by the properties of the /Lt caoamty

(56 C(Meu) < 2 C(/ie-gha.(")%%@))’

Val0d) € (pe, Bey By, ) s
Me, (Vs ) C_Cﬁz&,?)z ) = UL(UQ) Eze C(B4, B 2a )

Re,
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By repeating the same steps made in the proof of the assertions (t{) and (to) of
Proposition 4.1, we get by (5.5) and (5.6) immediately the equivalent assertion in this

case. . : B
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A derivation theorem for ‘countably subadditive set functions.
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A DERIVATION THEOREM FOR COUNTABLY
SUBADDITIVE SET FUNCTIONS.

1. INTRODUCTION AND STATEMENT OF THE RESULT .

Let o be a non negative countably subadditive set function defined on the o - field

B(Q) of all Borel subsets of an open set Q € R".
A well - known result of measure theory states that there exists a minimal element

i, in the class of all Borel measures 1 on Q such that oo < p on B(Q) .

The measure p_is used in [2] to define a "limiting capacity measure” for a

sequence of closed sets in Q, in order to study the solutions of the diffusion equation in
regions with many small holes .
The notion of the least measure p  is also employed in several recent papers

([4], 5], [1] ) concerning the study of asymptotic Dirichlet problems with boundary

conditions on varying domains from the point of view of I - convergence .

The aim of this paper is to investigate the relations between the measure p_ and

the set function o .

An explicit formula which allows to represent the measure p by means of a is

the following ( see , foristance [4], Lemma 4.1) : for every Be B(Q)

o (B) = sup = o(B)

il
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where the supremum is taken over all finite Borel partition (B;),c| of B.

Our main result , stated in Theorem 1.1 , shows how to identify the least measure

i, by means of the derivation of the function a with respect to a given Radon measure

Aon Q.

THEOREM 1.1. Let o : B(Q) — [0,+e] be a countably subadditive set function such
that o(@) =0, let A : B(Q) — [0,+e] be a Radon measure on Q , and let f be the

function defined for every xeQ by :

(B, ()

(1.1) f(x) = liminf

p=0"  A(B,(X)

where Bp(x) is the closed ball centered at x with radius p .
Assume that -
(i) f(X) < 4eo A+ 0)-a.e xeQ

(i) fel

loc

(1)

Then

ua(B)=f f dA
B

for any Borel subset of Q2 ; moreover, the liminfin (1.1) is a limit A - a.e. xeQ..

When the set function « is just the L - capacity considered in [6] , this result has

been obtained in [3] .
Theorem 1.1 will be deduced from Theorem 3.1 in which we prove a

differentiation result with respect to a more general "Vitali system” of sets .

72



A derivation theorem for countably subadditive set functions

Section 2 of the paper is devoted to recall the definitions and the results of
measure theory that we need .
In the section 3 we give the proof of the main result and discuss some its

consequences .

| wish to thank Prof. G. Dal Maso for having introduced me to the subject and for

his many suggestions .
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2. BASIC DEFINITIONS AND PRELIMINARIES.

In the sequel we collect some definitions and results of measure theory . We shall
denote by Q any open subset of R" and by B(Q2) the c-algebra of all Borel subsets of Q.

A non-negative countable additive set function w defined on B(Q) with values in
[0,+o0] such that u(@)=0 will be called a Borel measure on £ .

A Borel measure ‘on Q which assigns finite value to every compact subset of Q

will be called a Radon measure on Q .

DEFINITION 2.1. Let xeQ . A family FCB(Q) of non empty sets is said to be fine at x

if and only if for any p > O there is a set Fe Fsuchthat xeFanddiamF<p.
Let 1 be a Radon measure on Q.

DEFINITION 2.2. A Vitali system for i is a family /< B(Q) which has the following

properties :
(a) Vis fine at each point xe Q ;
(b) if E is any subset of Q and ¥ is a subfamily of 7/ which is fine at each point

xe E, then there are countably many disjoint sets V,, V,,....., V;,.... in Fsuch

that :

WE-U V,) =0
heN

where p* is the outer measure associated to , i.e. for any subset Aof Q

W (A) = inf{W(B): BeBQ), B2A}
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Some examples of Vitali systems for every Radon measure p are the following :

(i) the family of all closed cubes contained in Q with sides parallel to the axes ( see,

for istance, [7] Theorem 3.2.) ;

(ii) the family of all closed balls contained in Q (see, for istance, [7] Remark 3 of
Theorem 3.2.) . '
The examples (i) and (ii) are particular cases of the following Theorem due to A.P.
Morse [10, Theorem 5.13] :

THEOREM 2.3. For every xeQ let C(x) be a family of convex subsets of 2 with the

following properties:

(a) xeC forevery Ce(X);

(b) inf{diamC;Ce((x)}=0;

(c) there exists a constant M > 0 such that» for any xeQ and for any Ce ((x) there

are two positive members r, and r, with r,/r, <M for which

B, x)cCcB (x
1 2

Then the family C=U () is a Vitali system for every Radon measure L .
Xed

Let ¥ be a Vitali system for a Radon measure p on Q and let F be an R valued set

function on B(Q) .

DEFINITION 2.4. For any xeQ we define:

(@) liminf F(V) = sup inf{ F(V) : Ve ¥, xeV ,diam V <p}
V3V—x p>0

(b) limsup F(V) =infsup { F(V): VeV, xeV ,diamV <p}
V3V-—3% p>0
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Moreover, we write:

(c) lim F(V)=q ifandonly if q = liminf F(V) = limsup F(V)
VoV—x VaV—x VaV—x

We remark that (c¢) holds with ge R if and only if for every e > 0 there exists p >0

such that | F(V) - q | < ¢ for all sets Ve Vfor whichxeV anddiamV <p.

The following basic theorem on differentiation with respect to a Vitali system
holds (see [8], Theorem 2.9.5 , Lemma 2.9.6 , Theorem 2.9.7 .) .

THEOREM 2.5. Let p, v be two Radon measures on Q, and let V be a Vitali system

for u ; then the limit

_ i v(V)
g(X)_'Vlal\r}Lx my

exists and is finite for | - almost every xe Q, and the function g is | - measurable on

Q .Moreover, if v is absolutely continuous with respect to u, then

v(e) = [ g
B

for every Be B(Q) .

Next, with the notation above we define the "derivative" of a Radon measure v

with respect to another Radon measure .
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DEFINITION 2.6. Let u,v be two Radon measures on Q with v absolutely

continuous with respect to u , let ¥/ be a Vitali system for ., and let xe Q . Then the

quantity

gl(x): lim YM
du vs3V-x (V)

will be the derivative of v with respect to p at the point x relative to the Vitali system 7.

Let o : B(Q)—[0,+] be an increasing countably subadditive set function such
that o(@) = 0. The existence of the least Borel measure on Q greater than or equal to o

on ‘B(Q) is guaranted by the following result ( for a proof see , for istance , [4] , Lemma_
41).

PROPOSITION 2.7. Let u be the least superadditive set function on B(Q2) such that

L=o onB(Q). Then for every Be B(Q2) we have

wB)=sup Z o(B;)

iel

where the supremum is taken over all finite Borel partitions (B;),.,of B. Moreover, | is

iel

a Borel measure on Q.

DEFINITION 2.8. We denote by 1, the least Borel measure on Q such that i 2 o

on B(Q) .

Later we also need the following proposition ( for a proof see [9], Theorem 17.2.2) .
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PROPOSITION 2.9. Let A be a Radon measure , and let V be a Vitali system for \ .

Then the function defined for every xeQ by

a(V)

f(x) = liminf ———=
VaV-x  A(V)

is A-measurable .

78



A derivation theorem for countably subadditive set functions -

3 . PROOF OF THE RESULT .

We will deduce our main result from the following theorem :

THEOREM 3.1. Let A a Radon measure on Q , and let o : B(Q)—[0,+o0] be an

increasing countably subadditive set function such that a(g) =0 . Consider the Borel

measure | introduced in Definition 2.8, and assume that p (Q) < +co. Let vV be a

Vitali system for A+u . For every xeQ define

(3.1) h(x) = liminf %(%’)l

Suppose that

(i) h(x) < 400 for (A+u )- almost every xeQ,

(i) hel

loc

Q1)
Then

u (B) =g! h o)

for every Be B(Q) . Moreover the liminf in (3.1) is a limit for A-almost every xe Q.

REMARK 3.2. The proof of Theorem 1.1 is an obvious consequence of Theorem 3.1;

infact, it is enough to note that, whenever we choose as Vitali system the family of all

closed balls contained in Q, the liminfin (1.1) is greater than or equal to the liminf in

(3.1); and that, by Proposition 2.7, p_(B) = 0 for every Be B(<2) such that aB)=0.
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The proof of Theorem 3.1 is essentially based on the next lemma :

LEMMA 3.3. Let a, nu be as in Theorem 3.1. Let vV be a Vitali system for K, - Then

lim V)

VEN ua(V) =1

for - almost every xeQ.

PROOF: For any xe Q we set

To get the assertion it is enough to show that f(x) > 1 for i _-almost every xe Q.
For any te]0,1[ we define the set :
E={xeQ:f(x)<t}.
By Proposition 2.9, for each te]0,1[ the set E, is u - measurable . The proof is

accomplished if we show that p (E,) = 0 for every t€]0,1[ . Preliminarly, we prove that

for every Be B(Q2) such that BEE, we have :

(3.3) oB)<tp (B).

o

Fix te]0,1[ and Be B(Q) with BSE, . For every 1 > 0 there exists an open set U, U2B

such that p (U) < (B) +n . By the definition of E, , for every p >0 and for every xeB
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o(V)
He (V)

o

there exists Ve ¥/such that xe V, VU, diam V < p and <t.

Let ¥ be the subfamily of V/so defined :

7 ={Ve v:veu, XY i Bav=g)
~ (V)

By the previous remark ¥ is fine at each point xe B ; thus, by condition (b) of Definition

2.2, there are countably many disjoint sets V,, V,, ....... Vi, e in Fand a set Ne B(Q)

suchthaty (N)=0andBc U V, UN.
heN

Therefore we have :

< 2 pg(Vy) +gN) <
heN

Stp(U) <tp (B)+tn.

Since m is arbitrary the inequality (3.3) follows . Next , consider any set Be B(Q) . We

see that :

(B) < wBNE) + o(B-E,) <

<t p (BNE)+ p (B-E).
For any Be B(Q) define :
mB)=t u (BNE) + p (B-E,).

It is easy to see that p, is a Borel measure on Q . Since o <p, on B(Q) , by the
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definition of p  we have also i < H, on B(Q) . Hence ,

which proves that p (E,) = 0, and this concludes the proof of the lemma . |

PROOF OF THE THEOREM 3.1. Since (A + 1 ) is a Radon measure , by Definition

2.6 and by Lemma 3.3, we obtain that there is a set E with i, (E) = 0 such that :

d Vv
(3.4) () (x) = lim ) im 2
d(7x+ua) 2 3V—x (k+ua)(V) 2 3V—x ;,La(V)
= lim ) iming 2 A

vsvox A+ ) (V) vaVox MV)  wavox (A ) (V)

for any xe Q-E .

We remark that , by hypothesis (i) , the equality (3.4) holds even if

Moreover , noting that

for (A + u ) - almost every xe E , and that
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Y
he = fiminf S < jim K
vsVox  MV)  wsvox A(V)

for A - almost every xe Q , we also have that the equality (3.4) holds for (A + 1 ) - almost

every xe Q . This implies that :

di d\
3. < d(M = h d(A
(3.5) Bj T 0 Bf Ty 0

for every Be B(Q) . By hypothesis (ii) and by (3.5) we obtain
J' du = 'f h d\
B B

for any Be B(Q) . To prove that the liminf in (3.1) is a limit , it is enough to observe that ,

by Lemma 3.3,
hoo = fimint S < jimsup V)
v3V-x  MV) vsVox  A(V)
- im &Y im Mo (V) hx)
YV 3V-x }.la(V) YV 3V-x 7\.(V>
for A - almost every xe Q , which completes the proof . |

An interesting corollary , whose proof is deduced trivially from Theorem 3.1 , is
the following :

83



A derivation theorem for countably subadditive set functions

COROLLARY 3.4. Let o be asin Theorem 3.1. Let A be a Radon measure on
Q. Suppose that there is a constant ¢ >0 suchthat a<chon B(Q).Let V bea

Vitali system for A . Then the limit

(3.6) i) = im Y

V3V-sx 7\(V)

exists for A - almost every xe Q and

u(;(B) =ffdx
B

for any Be B(Q) . |
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Chapter 3 :

Dirichlet problems in domains bounded by thin layers with random thickness

In this part of the thesis we present some results obtained in collaboration with G. Paderni.
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DIRICHLET PROBLEMS IN DOMAINS BOUNDED BY THIN
LAYERS WITH RANDOM THICKNESS.

INTRODUCTION

Recently G. Buttazzo, G. Dal Maso, and U. Mosco have proposed in [6] a new
capacity method to investigate the asymptotic behaviour for Dirichlet problems in domains
bounded by thin layers. In this paper, taking inspiration from that method and from some
variational techniques developed in [3], we provide a setting to analyze the cases in which the
domains are surrounded by thin layers with random thickness.

Let us describe more closely the Iﬁroblem we deal with.

Let D be a bounded Lipschitz domain of R™, n > 2, and let (8h) be a sequence of real
numbers such that g — 0 as h —+ec. For every he N let us consider a class ﬂh of subsets of
R™ defined by

ﬂ.h = {ACR", A2D: sup dist(x,D)< R

xeA
. 2 . . . .
Given fe L“(R™) we are interested in the solutions of the equations

‘(0.1) -Auh =f inD -€, Auh =f .in Ah\D

where Ah is a random set of the class }Zlh Uy = 0 on aAh and the natural transmission

conditions on oD are satisfied.
Let F, be the quadratic form on L?( R™) defined by

JIVu Pax + e, jIVu Pdx  if ueHLA,)
Fh(u) = 31D A\D

+ oo otherwise

The solution u, of (0.1) coincides with the solution of the minimum problem

min { F (W - 2.ffudx : wel’®RY }
A

Our aim is to characterize the behaviour of the sequence (u,) in the limit as h — +oo,
First, we introduce the class ‘E of all convex, semicontinuous functions from L2(R™)into R.
We equip £ with a topological structure (L% RM) - Mosco - convergence) so that it becomes a
complete metric space. Then, we associate with the problems (0.1) a sequence (F,) of
"random functionals", that is measurable maps ® — F, () from a probability space € into
E . In this way the problem consists in analyzing the asymptotic behaviour, as h — +ee, of
sequence of random functionals (F, ).

The first result we prove is a compactness theorem for sequences of random functionals
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(Theorem 4.1 and Remark 5.5). It is deduced from an abstract compactness result for
sequences of probability measures on a complete metric space (Theorem 2.3). We show that,
under suitable assumptions on the sequence (F,), there exists a subsequence Fyny)
converging in probability to a constant random functional F. Moreover the functional F turns
out to be associated with the equation, formally written as

Au=f inD

(0.2)

where [ is a Borel measure on dD that vanishes on any set of zero (harmonic) capacity, but
may assume the value +oo on some subset of positive capacity and n is the outer unit normal to
D. ’

The second result we obtain is a characterization of the limit functional (hence of the
measure W that appears in (0.2)). For both results the assumptions are made in terms of the
asymptotic behaviour of the expectations and of the covariances of suitable random capacities
associated with the random functionals F,, .

In the deterministic case problems of the type (0.1) are known as "reinforcement
problems". They have been investigated in the last years by several authors (see for istance [1],
[51, [71, [8]).

To our knowledge no specific reference for the stochastic cases is available. We only
mention the paper [11] which provides a general framework for the study of probabilistic
problems in calculus of variations.

Our paper is organized as follows.

Notation and preliminaries.

Some abstract probabilistic results.

Mosco - convergence and random capacities.

Main results.

Dirichlet problems in domains surrounded by thin layers with random thickness.

AN B~ W

An example.
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1. NOTATION AND PRELIMINARIES.

1.1  Letn be an integer with n = 2. We denote by U (resp. X, B) the family of all bounded
open ( resp. compact, Borel ) subsets of R". We recall some definitions which will be often
used in the sequel. For every Ue U and for every Ke X such that KEU, we define the
capacity of K with respect to U by

| ) o
cap (K,U) = inf { J ID¢| dx : 9eCo(U), ¢=1onK | ;
U

the definition is extended to the sets Ve U with VEU by

cap (V,U) =sup {cap K,U) :KeX,KSV } ;
and to the sets Be Bwith BEU by

cap (B,U) =inf { cap (V,U) :Ve U, V2B }.

We say that a Borel set B of R" has capacity zero if cap (BNU,U) = 0 for every Ue U.
When a property P(x) is satisfied for all xe B, except for a subset NCB with zero capacity,
then we say that P(x) holds quasi everywhere on B (q.e. on B). We say that a function
f: B—R is quasi continuous on B if for every Ue U and for every € > 0 there exists Ve U,
VEU, with cap (V,U) < € such that the restriction of f to (BNU)\V is continuous. A subset A
of R is said to be quasi open (resp. quasi closed , quasi compact ) if for every € > 0 and for
every Ue U, there exists an open (resp. closed, compact) set VEU such that
cap ((AnU)aV,U) < g, where A denotes the symmetric difference between sets. We recall that
a bounded set BER" has zero capacity (resp. B is quasi open or f is quasi continuous on B) if
and only if the above conditions are satisfied for some Ue U with BEU.

1.2. For every open set USR" we denote by H](U) the Sobolev space of all functions in
L?(U) whose first weak derivatives belong to LX(U), and by H(U) the closure of CSYU) in
H](U). For every xe R" and for every r > 0 we set

B(x)={yeR":Ix-yl<r)}
and for every Borel set BC R" we denote by IBl its Lebesgue measure. Let Ue U. For every
ue H'(U) the limit

~ 1
(1.1) u(x) =lim ‘——-————l— Ju(y) dy

—0 UﬁBr(X) UnB.(x)
exists and is finite g.e. on U. The function U defined qg.e. by (1.1) is quasi continuous on U.
Moreover, it can be shown that for every Be B, with BcU

Cap(B,U)=min{J.|Du|2dx:ueH:)(U) ,1;2 1g.e.onB }.
18]

For a proof of these properties of the capacity and of the functions of H’(U) we refer to [18].
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1.3. A non negative countably additive set function defined on the Borel ¢-algebra of R" with
values in [0,+co] is called a Borel measure . A Borel measure which assigns finite values to
every Ke X is called a Radon measure . In our paper we deal with a peculiar class of Borel
measures.

Following [10] we denote by M: the class of all Borel measures [ such that:
(a) W(B)=0 for every Borel set BCR" with capacity zero;
(b) W(B)=inf{lL(A): A quasi open, BEA} for every Borel set BER".

An easy example of measure belonging to .’M is the measure L defined by

u(B)=| fox
B

for every Borel set BCR", where feL (R"). More generally, every Radon meaSure )
y

loc
satisfying (a) belongs to fM We remark that the measures belonging to 9\/[ are not
required to be regular nor o-finite. For instance, the measures introduced in the definition

below belong to the class Mg (see [10], Remark 3.3).

Definition 1.1. For every quasi closed set FER" we denote by oo the Borel measure

defined by
0 if FAB has capacity zero
<(B) =

+oo otherwise
for every Borel set BER".
*
Other examples of measures in M0 are given in [13].

1.4. Troughout we denote by D a fixed set of U with a Lipschitz boundary and by L a fixed
elliptic operator of the form

n
Lu=- Z Di(ai‘j(x)Dju) ,
i,j=1
where a, =3 € L°°(Rn) and for almost every xe R" and for every Ee R" we have

AEPS D 008E <A IEI?,

i,j=1
where A, ,A,eR with O0<A <A, <+ee. Let us fix a sequence (g,) of positive real numbers such
that & —0 as h—-+eo. For every he N we consider the operator

L® = Z D,(d (x)D u),

where
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A a.’.(x) if xeD
ai( J)(X) = { N . n '
! €4, ’J.(x) if xe R'-D.

We denote by a(h)(x,&) and a’(x,£) the quadratic forms associated with the matrices (a].( h; ) and
a, j(x) if xeD

2 x) = {
' 0 if xeR"-D,
more precicely,

(1.2) a®(x %) = Z a(f,})(ﬁiﬁj )
ij=1 .

n

2x8) = ), al(EE, |

i,j=1

Let (1) be another sequence of positive numbers such that nh—>0 as h—+oo,

Definition 1.2. For every he N we consider the class of sets

A ={AeU:A2D, supdist x,D) <m, }
xeA

and we denote by ’fh the class of all functionals F : Lz(Rn)-a[O,+oo] defined by

.f a™(x,Du)dx + J' a 2dooaA ue H'(R")
Fuy= 4 © K
' +oo otherwise

Y

L 3
where A is an open set belonging to the class A4, and o<y, is the measure of MO defined in
Definition 1.1.

Remark 1.3. By definition 1.2. we have F, n¥, = @ forh #k.

sk
Definition 1.4. The class of measure [Le MO such that spt @ € dD will be denoted by
sk
MO (0D) and the class of all functionals F : L2(Rn)—>[0,+oo] defined by

-

j a"(x,Du)dx + j iy if u e H'(D)
F(u) = 3 D oD
+oc0 otherwise
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*
where e M, (dD) , will be indicated by ¥, .

Remark 1.5. It can be seen that there is a one to one correspondance between the functionals
of the class Th and the measures %A with Ae ﬂlh and between the functionals of the class ,’F
and the measure e £M (D).

With every functional Fe %, we associate a Dirichlet problem of the form

(M) .
[ L™y, +Au, =g inA
(1.3) 1
l u, € Hy(A)
where A0, Ae A, and ge L2(Rn). Let u, be the unique weak solution of (1.3). Let us
consider the function
u, on A
w, =

0 onR"-A.

Deﬁmtlon 1.6. G1ven Fe ?h , for A =20 we define the resolvent operator
R A): 2 (R" )—>L (R") associated with F by setting
R, (Wlgl = w

With every functional Fe F. , we also associate a problem formally written as

Lu+Au=g in D
1.4
(1.4) o +uu=0 ondD
_ on
where A >0, ge L ®R", ue M ,(0D), and n is the outer unit normal to D.
A variational solution of the problem (1.4) is a function u such that ue H (D),

Ve (3D, and

D

e}
za DuDv\|dx+J‘uvdu+ Auvdx = J-gvdx
b=l ) a D

for every ve H1 (D) with Ve L (oD,1). Let u be a variational solution of the problem (1.4); uis

the unique solution of the minimum problem

(1.5) min Ja(x,Dw) dx + j w 2dy + xJ. w” dx — 2J gw dx ; weH' (D)].
D D D
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Let w be the function

uonD
W = o
0 onR-D.

Definition 1.7. Given F o € j—’o , for A > 0 we define the resolvent operator
R°0) : L2R") — L%(R")  associated to F, by setting
(1.6) R°(M)g] = w.

Remark 1.8. It can be shown that (1.5) and (1.6) hold also in the case A = 0 when there
exists a constant ¢ > 0 such that for every he N m_ = cg, , i.e. if the following relation is
satisfied

(1.7) Ac{ xeR": dist(x,D) < cg, }.
Let us set
(1.8) F=F,u( JF ).
heN

In the following we define a set function of capacity type associated with any functional
Fe F. It will be the basic tool in our investigation.
Let (Dg)s,q be the family of the open subsets of D with Lipschitz boundary dDg such

that D82CCD5 1’for 8,>6, and D = SL)O D;. For every Ve U we set V= (VUD)\ISS.
> .

Definition 1.9. Given Fe ¥, for every Ue U and for every 6 > 0 we define the following

set function

(19) b (F,V)=min { j 2P x,Du) dx + JG %du, : ueH'(V),u=10ndD, }
A\

8 V5
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where )
a (x,&) if Fe Th

a(F)(X,&) = { o
a (x,) if Fe Fs

and
{ o3y With Ae if Fe 7,
u =
] b with pe M, @D) if Fe 7,

For Fe J we extend the definition of by to the Borél sets Be B by
bs(F,B) = inf { bg(F,V) : Ve U, V2B }
The minimum in (1.9) is achieved by the lower semicontinuity and the coerciveness of

the functional.

Remark 1.10. In order to study Dirichlet problems in domains bounded by thin layers, in [6]
the authors introduce two set functions, depending on the choice of a pair V,Ue U such that
VCU. By Lemma 3.5(c) in [6], it can be seen that, for Fe ¥ , the set function b& defined in
(1.9) is equivalent to the set function b: defined by (3.11) in [6], i.e. for every Be B

b, (F.B) = b:(uF,B,U) where U is an arbitrary open set of U containing the region D.
Moreover, for Fe Th the set function b8 is equivalent to the set function b: h defined by (6.7)
in [6], i.e. by(F,V)=b, M(V,U) with A=Qh and U,Ve U such that VEU.

If Fe F o the main properties of the set function ba (F,*) can be summarized in the next

proposition.

Proposition 1.11. For every Fe J_ and for every & > 0, the function b (F,*) satisfies the
following properties:
(a) b(F,.0) = 0;
(b) if B,,B,e B, with B, C B, then by(F,B,) <b,(F,B,);
(c)if (Bh) is an increasing sequence of sets in Band B = (uBh) , then
bs(F,B) = sup{bG(F,Bh) : heN };
@if (Bh) is a sequence of sets in Band B is a Borel subset of (uBh), then
bs (F.B) < Z b, (F,B,);
- (e) if B,,B,e Bihen by(F,B;UB,) + by (F,B,NB,) <b,(F,B,) + by (F,B,);
(£ if Be Band Ve Uwith (BNdD) € V and VNoDg=0 then b, (F.B) < Azcap(BmBD,V);
(g) if Be Bthen by(F,B) = b (F,BMdD) < W(BNAD), where | is the measure in Mg‘
associated to the functional F;
(h) for every Ke X, , b, (F,K) = inf{bB(F,U) :UeU,K<EU};
i) if B,,B,e B and dist(B ] ,B2)=G>0, then for every me ]10,1]
by(F,B,) + by(F,B,) < (1-1)'by (F.B,UB,) + 4A,n”'o” | D-D, |;
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() for every Be ‘B, by (F,B)=sup{b8(F,K) :Ke X, KEB};
.
(k) if pe MO (dD) is the measure associated to F, then |L(BNJD) = sup{b,(F,B) : >0} for
every Be B.

Proof. The properties (a), (b), (c), (d) can be deduced by standard capacity theory arguments.
In view of Remark 1.10 the properties (e),(£),(g),(h),() follow directly from (3.12), (3.13),
(3.14) and Lemma 3.5 in [6]. The property (j) is an easy consequence of properties (h),(c),(b),
and the Choquet capacitability theorem (see [9]). The property (k) follows from Theorem 3.6
in [6]. B

Finally we recall the definition of capacity relative to the operator L(h).

Definition 1.12. For every he N we define

cap’(B) = min { j a™(x,Du) dx + j u’dx : ueH'(R"),u2l ge. on B )

R R

for every Borel set B CR™.

2. SOME ABSTRACT PROBABILISTIC RESULTS.

In this section we set up the probabilistic picture of our paper and give some results
which will have a crucial role in the proofs of the main theorems in section 4.
Troughout we deal with the following abstract framework.
(2.1) (X,d) is a complete metric space;
22) X o is a compact subset of X;
(2.3) (X,) is a sequence of subsets of X satisfying the following proprerty :
if (x,) is a sequence of elements of X and (X, * )) is any subsequence of (X, ) such that
X, € X () then there exist a subsequence x_ ., of x, and an element xe X, such that

X () CONVETges to X in X.

Remark 2.1. From (2.1), (2.2) and (2.3) it is immediate to deduce that for every open
neighbourhood U of X o’ there exists h o€ N such Xh C Uforeveryh=h "

We denote by B(X) the Borel o-field of X. A probability measure Q on (X,B(X)) is a non
negative countably additive set function defined on B(X) with Q(X)=1.By AX) we mean the
space of all probabilty measure defined on B(X). On P(X) we consider the following

definition of weak convergence.
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Definition 2.2. We say that a sequence (Q, ) of measures in P(X) converges weakly to

Qe AX) if
J.f dQ, = jf dQ

h —>+ oo
for every fe C;(X), where C b (XD denotes the class of all bounded continuous functions
f:X-R.

Let Qe AX). For every B(X) - measurable real valued function f we define the expectation of £
in the probability space (X, B(X),Q) by :

Eqlfl = JfaQ.
X
Let f,g be two real valued functions in L2 (X,Q). Then the covariance of f and g is defined by

Cov,[f.g] = Eylfg] - Eqlf] Eqlg]
The variance of f is defined by
Var[f] = Cov[£.f]

For every he N the Borel o-field of X, equipped with the induced topology is denoted by
B(X,). Let Q, be any probability measure on (X, B(X, ). We associate Q, with the
probability measure ah in ‘AX) defined by
2.4) Q,(B)=Q,BNX,)
for every Be B(X). '
In what follows we consider sequences (Qh) of probability measure in P(X) with Qh defined
by (2.4). We note that a probablhty measure P on (X,B(X)) can be written in the form Qh
given by (2.4) if and only if P (X ) = 1,where P denotes the outer measure associate with
P,. Infact, if Ph (Xh) =1, then P, = Qhw1th Qh defined by Qh (B) = P (B) for every
Be B(X,).

We can state the following compacteness result.

Theorem 2.3. For every sequence (Qh Yin PX) of the form (2. 4) there exist a
subsequence (Qo(h)) and a measure Q in KBX) such that Q(X )=1and (Qa(h) ) converges
weakly to am PX).

The proof of theorem (2.3) needs the next lemma.
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Lemma 2.4. Let (ah) be a sequence in P(X) of the form (2.4). Let f,ge CE(X). Assume
that there exists > 0 such that

|£(x) - g0l <m
for every xeX .Then

limsup Ex [f-gl<n.
<,

h— +e

Proof. Since the set U = { xe X : | £(x) - g(x)| <n } is an open neighbourhood of X by
Remark 2.1 we have X, & U for h sufficiently large. Thus we obtain

limsup Ex [f-g]=limsup J |f-g| d6h<n

h—>+4ece R S hotee

and the proof is complete. B

Proof of Theorem 2.3. Let (Qh) be a sequence in P(X) of the form (2.4). The proof is
articuleted in two steps. In the first step we show that there exists a subsequence (Q(j ") of
(Qh) such that the limit

2.5) lm E@ [f]
h— +e “dn

exists for every fe CZ(X). In the second one we prove that there exists a measure 6& AX), with
Q(X ) = 1 such that the limit (2.5) is equal to Ea[ﬂ for every fe C;(X).

Step 1. Let G= (g1 il be a countably set which is dense in CO(X ). For every ie], let

f eC (X) such that f. IX =g;. By a diagonal procedure we can find a subsequence (Qc(h)) of
(Qh) such that

lim Eg [f]

h— +e Qqh)

exists, for every ie I. Denote by I(f;) this limt. In order to prove that the limit (2.5) exists we

show that for every fe C;(X) the sequence (Eﬁ " [f]) is a Cauchy sequence. Let fe C;’(X). For
g

every € >0 let us take g, € G such that '

(2.6) sup (%) - gl <§-
x€ X,

Then, by (2.6), and by Lemma 2.4 we obtain that there exists k & N such that
|Eg [f] “Bq| 1l <

o)
< |Eq [f] - EA[f]|+|E/\[f] Eg £l + |Eg 151~ Eq [f1l <
cxk) ouo cxk) ab ca)

<—+IEA [£] - Eg [£]1
2 c(k) 0(1)

for every k.1 2 k . Since (Ea o [f;]) is a Cauchy sequence, we get the first assertion.
g
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Step 2. Let us denote by T any extention operator from CX o) into Cbo(X) and let us introduce
the following maps:
@ I1:CJX)—>R defined by

If) = lim Ey [f]

ot Qo
(b) J:C°X,) >R defined by I(f)=(oT) (.
Noting that J(1) = 1, by the classical Rietz Theorem's (see for example [20], Theorem 2.14) it
follows that there exists a probability measure Q_ on X such that

1@ = [ gaq,
X,

for any ge CX o) -
Let (/2\ be the measure in AX) defined by G(B) =Q,(BNX) for any Be B(X). Then, by Lemma
2.4 we get

() = (T, ) =Ty ) = j £dQ, = Eglfl
XO

for every fe CZ (X) . This accomplishes the proof. &

Let us set

y=x,u(U X, )
heN

We conclude this section with a basic result for our purposes.

Lemma 2.5. Let (Qh) be a sequence in ‘AX) of the form (2.4). Let Qe PX) such that

Q(X ) = 1. Suppose that (Qh) converges weakly to Q in ‘AX).Let g:Y — R be afunction

bounded from below. Assume that

() g|x is lower semicontinuous;

(i) let (o(h)) be any sequence of natural numbers such that c(h) — +eo as h — +eo, then
g0 < liminf g(x,)

h— +oe
for every sequence (x,) converging to xeX in X and such that x,e X () for every heN,;
(i) g| X, is B(X,) - measurable for every heN.
Then
2.7 Eqlel = hmlnf EQh[g}

h— +e
where Q Q] X, and, for every heN, Qh is the probability measure on (Xh, %(Xh)) associated
with Qh by (2. 4)
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Proof. Let fe C°(X o) such thatf < gon X . To get the assertion it is enough to show that
< T
(2.8) EQ[f] < liminf EQh[g] .

h— +eo

Infact, since X | is compact, there exists an increasing sequence (f,) of functions in CX ,) such
that fk(x) — g(x) for every xe X 0 a8 k — + oo; then, the inequality (2.7) follows from (2.8) and
the monotone convergence theorem. Let us prove (2.8). Let he CE(X) be such thatf=h X,
Preliminarly, we show that
(2.9) limsup sup (h(x)-gx)=1<0
h— +e xX o)

Suppose by contraddition 1 > 0; then there exist a subsequence (Xc(t(h))) of (Xc(h) ) and a
constant ¢ > 0 such that

sup (h(x) - g(x)) >c¢ .

%€ X e
Hence,there exists a sequence (x ) in X such that x, € D S and h(x, ) > g (x,) +¢. By passing
to a subsequence, by property (2.3) the sequence (x,) converges in X to xe X,- Moreover, by (i1)
and by continuity of h we obtain f(x) = h(x) > g(x) + ¢, which is in contraddiction with the
assumption on the function f. This proves (2.9). Finally, the proof of (2.8) is obtained by noting
that, if (2.9) holds then there exists a sequence 1 of positive real numbers such thatm, — 0 and
h(x) € g(x) + ny, for every xe Xoand heN. |

3. MOSCO CONVERGENCE AND RANDOM CAPACITIES.

In this section we define a variational notion of convergence, introduced by U. Mosco in
[191, for sequences of convex functions and discuss some its useful implications for the study of
Dirichlet problems in domains surrounded by thin layers.

Definition 3.1. Let (X,t) be a topological space. Let (F,) be a sequence of functions from X
into R. We say that a function F : X—R is the sequential I-limit of (F,) and we write
F=T lim F,
h—oo
if
(a) for every xe X and for every sequence (xh) converging to x in X we have
F(x) £ liminf F, (%) ;
h—eo
(b) for every xe X there exists a sequence (x,) converging to x in X such that
F(x) = limsup Fh(xh) .

h—eo
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For a general definition of I'-convergence and for its applications in calculus of variation
we refer to [14],[15],[2]. Let X be a Banach space, we consider on X both the weak and the
strong topology, denoted by w and s, respectively.

Definition 3.2. A sequence (F, ) of function from X into R is said to be Mosco convergent
to F if

F=T Seq(w) lim F, = l"seq(s) lim F_ .

h—>+oo h—+ee

In other words the sequence F, Mosco converges to Fif
(a) for every xe X and for every sequence (x,) converging weakly to x in X we have
F(x) £ liminf Fh(xh) ;
h—ee
(b) for every xe X there exists a sequence converging strongly to x in X such that

F(x) = limsup Fh(xh) .

h—ee

Definition 3.3. We denote by ‘E the class of convex, lower semicontinuous, proper
functions from L2(Rn) into R.

We note that the class ¥, defined in (1.8), is contained in E. On E the Mosco
Convergence is attached to a metrizable topology (see [2], Section 3.5), which will be called the
topology of the Mosco convergence and denoted by T, . For our purpose the relevant
topological aspects of the Mosco convergence are contained in the following theorem (see[2],
Theorem 3.36).

Theorem 3.4. There exists a metric on ‘E which induces the Mosco convergence topology

and which is complete and separable.

If we consider Fendowed with the topology induced by T, the following compactness
results can be obtained by adapting the proofs of Theorem 4.1, Lemma 5.2, and Lemma 6.2 of

[6].

Proposition 3.5. (a) TO is compactin F; (b) let ( Tm(h)) be any subsequence of ( Th), then
for every sequence (F, ) in F such that F, e fm(h) there exist a subsequence (Fc(h)) and a
functional F e F_ suchthar (F, ) Mosco converges to F, .

For any sequence m(h) of natural numbers such that m(h)—-+e as h—+eo, let (Fh) be a

sequence in ¥ such that F, e e ) and let Fe ,‘}'O. Given A > 0, let R, (A) and R(A) be the
resolvent operators introduced in Definition 1.6 and Definition 1.7.
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The next result is an easy consequence of Theorem 5.5 and Lemma 5.2 in [6].

Proposition 3.6. For every A > 0 the following statements are equivalens:
(a) (Fh) Mosco converges to F,

(b (R, (A)) converges to R(\) strongly in L2(Rn).

The same result holds also for A =0 if My, =Cg;, (see Remark 1.8 ).

The following propositions show the connection between Mosco - convergence of a
sequence of functionals in F and the behaviour of the corresponding functions b introduced in
Definition 1.9.

Proposition 3.7. Ler (F.) be a sequénce in F and let Fe F. Suppose that (F,) Mosco
converges to F and one of the following assumptions holds :

(i) F,Fe Ty |

(ii) Fh,Fe Tm, where m is a fixed natural number

(iii) F e '(Fm(h) for every he N and Fe TO, where (m(h)) is any sequence of natural numbers
such that m(h)—+oo as h—+oo. Then the inequalities

(3.1) by(F,U) < liminf by(F,,U)
h—otee

(3.2) by(F,U) 2 limsup bg(F,,U")
h—+oo

are satisfied for every &> 0 and for every pair U,U'e U such thar U'ccU.

Proof. The case (i) and (iii) require minor changes in the proof of Lemmas
6.3,6.4,6.5,6.6,5.2 in [6]. In the case (ii) we can adapt Lemmas 5.5,5.6 and Proposition 5.7
in[10] &

Proposition 3.8. If (Fh) is a sequence in }'O , Fe Sfo , and (Fh) Mosco converges to Fin

., then the inequality
bg(F.K) > limsup by(F, K)

h—+ee

holds for every Ke K and for every &> 0.
Proof. It is enough to use (3.2) and the property (h) in Proposition 1.1 1. B

Let us indicate by T, the topology on ¥, induced by T, by B(ty,) the Borel o-field of £
equipped with T, and by B(t) the Borel o-field of 7 endowed with T,. As a consequence of

the Propositions 3.7 and 3.8 we have that for every & > 0 the functions b5 (e,U), Ue U, and
bé(-,K), Ke X from 950 into R, are B(t 0) measurable. We have also to say something about
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measurability of the function bs(-,B), Be B, from ffo into R. Let us denote by @(To) the
o-field of all subsets of F , Which are Q measurable for every probability measure Q on
( TO,C/B\(*C ,))- The following result holds.

Proposition 3.9. For every Be B and for every &> 0 the function bg(e,B) from ¥ into
Ris ’B(’co) - measurable .

Proof. The assertion can be obtained by suitable minor changes in the proof of Proposition
24in[3]. H

For he N fixed, let cap(h) be the set function of Definition 1.12. We recall the following
result (see [10], Theorem 6.3, Theorem 5.9, and [4], Lemma 2.2).

Proposition 3.10. Let (FJ.) be a sequence in ¥, and ler Fe ¥, Then (Fj) Mosco
converges to Fin ¥, if and only if the inequalities

@ cap™(UrdA,) < liminf cap ™ (UNdA; ),
jotee i
h) . (h)
(b) cap’ (KMdA;) 2 limsup cap (KmoAg )
jo e j

hold for every Ue U and for every Ke K, where Ag, Ap € 4, are, respectively , the open
sets associated with F and Fj (see Remark 1.5) . !

For each he N let us denote by 7, the topology induced on the class F,, by Ty

Remark 3.11. From Proposition 3.10 we deduce that a sub-base for the topology T, is given
by the sets of the form (Fe 7, : cap (UndA,) >t} and (Fe 7, : cap" (KNDA) < s}, with
t,s€ R+, Ue U, Ke X, where AFe ﬂh is the set associated with Fe Th.

We indicate by B(t,) the Borel o-field of % endowed with the topology ..

Proposition 3.12. B(t,) is the smallest o-field in F, for which the functions
F——)cap(h)(Ur\aAF) from F, into R are measurable for every Ue U (respectively, the
functions F—)cap(h)(KmaAF) are measurable for every Ke X) .

Proof. Denote by 3 the smallest o-field in , for which all functions F—cap " (UNdAy),
Ue U, are measurable and by Zh" the smallest o-field in Th for which all functions
F——)cap(h)(KmaAF), Ke X, are measurable. Let us show that 2 = 2" It is enough to prove
that
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(a) any function F—)cap (KmaAF), Ke X is ;1 measurable;

(b) any function F—>cap (UmaAF), UeU is 2" measurable.

Let us prove (a). For every Ke 17( consider the decreasing sequence of open sets
= {xeR : d(x,K) < I\n}.

We remark that U, UK. From the well known properties of cap h) we have

cap (KmaAF) = inf cap (UhmaAF)
heN :

for every Fe 7, , which proves (a). Assertion (b) can be proven in the same way, by choosing,
for every Ue U, an increasing sequence (X)) in X such that K, TU. The proof of the
proposition is complete if we show that @(th) 2. The 1nclus1on % c B(’ch) is trivial
™(KNIA,), Ke X, and cap " (UNIA,), Ue U, are
respectively upper and lower semicontinuous on F,- On the other hand, noting that the

because,by Proposition 3.10, cap

sub-base for the topology T,, given in Remark 3.11, is contained in 2, and that %, admits a
countable base for the topology T, , we obtain the inclusion Br)cx. B

The next corollary is a direct consequence of the previous proposition.

Corollary 3.13. Ler (Q,X) be a measure space. Let F be a function from Q into :Th The
following statements are equivalent:

(a) Fis Zrﬂﬁ(’ch) measurable;

(b) cap (UmBAF(.)) is 2-measurable for each Ue U,

(c) cap( (Kr\aAF(.)) is X-measurable for each Ke K.

We conclude this section with some results on the functions bs(',B), BeB,6 >0,
considered as random variables on the space E. We shall deal with weak convergence of
measures on the space . Similar problems of weak convergence of measures on spaces
endowed with topology related to I'-convergence have been studied in [11],[12], and[3].

Lemma 3.14. Ler Q be a probability measure on ( 9—;,@(‘5 ))- Then the following relations
(3.3) E,[bg(+,B)] = sup { Eg[b (-, K)] : Ke X, K< B },

(3.4) Eqlbg(+,B)bg(e.B)] = sup {Eq[by(-. K )bs(«.K,)] : K| K,e K, K, € B,,K, S B,)
hold for every & >0 and for every B,B 1Bo€B.

Proof. We only prove (3.4) since (3.3) can be proven with similar arguments. Fix 6 > 0 and

B,e B. For every Ee (UUX) we define
B(E) = Eq[by(+.E)by(+,B,)] .

103



Dirichlet problems in domains bounded by thin layrs with random thickness

By properties (e),(h),and(j) of Proposition 1.11 we have that

(3.5) B(K,UK,) + B(K,NK,) < B(K,) + B(K,)
for every K, K e KX

(3.6) BK)=inf { B(U) : Ue U, U2 K}

for every Ke X and

3.7 BU) =sup {BK) :Ke X,Kc U }

for every Ue U. Moreover, we can extend the definition of 3 by
(3.8) B(B) =inf {B(U): Ues U, U2B}

for every Be B. We deduce from (3.5),(3.6),(3.7),and (3.8) that 3 is a Choquet capacity
(see[16], Theorem 1.5). Applying the capacitability theorem (see [9]) we get
(3.9 5(B1)=SUP{B(K1)ZK1§K,K1EB1 }=

= sup { EQ[bs(-,K])bs(v,Bz)] :K]e X, K1 c B] } <
SEQ[bS(-,BQbS(',B»z)] <inf { EQ[bS(-,Ul)bﬁ(',Uz)] :U,eq, U, 2B, }=
=inf { B(U]) : U1e ‘U,U] 2 B1 } = B(B1).

for every B, € B and B,e B fixed. From (3.9) and from the formula we can obtain exchanging
in (3.9) the roles of B, and B,, weget(3.4). §

For every he N let Q, be a probability measure on (4,,B(t,)). From now on we
consider sequences (Qh) of measures in A ‘E) with Qh defined by
(3.10) Q.® =Q,Bn%)
for every Be @(‘CM).

Lemma 3.15. Ler (ah) be a sequence in ‘K'E) of the form (3.10), and let 6 be a measure in
‘K(‘E) such that 6( TO)=1. Suppose that (ah) converges weakly in ‘P(E) to Q\ Then, for
every 0>0and U, U'e Uwith U'ccU, we have

(3.11) Q[b (e, U] £ hmme [b (<, 0],
h— 4=

(3.12) [b (>,U)] 2 limsup th [b (-, U],
h—+oeo

where Qza[X o and Q, is the probability measure on (Fh,ﬂ(th)) associated with ah by
(3.10).

Proof. By Proposition 3.7 and by applying Lemma 2.5 with g(F) = b (F,U) for &> 0 and
Ue U fixed, we get the inequality (3.11). Let us prove (3.12). For every Fe ¥ and for & > 0
fixed we define
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b*(F,U) = inf { by(F,U) : Ue U, UccU' }
for every Ue . Preliminarly, we show that, for every Ue U,
(a) b*(=,U) | Fo is upper semicontinuous;
(b) let (m(h)) be any sequence of natural numbers such that m(h)—+ee as h—+eo, then
b*(F,U) 2 limsup b"(F,,U)
h—+eo
for every sequence F,, with F e F mehy which Mosco converges to Fe F .
(©) b (,U) [ 7 is upper semicontinuous, where m is a fixed natural number.
We prove (a). Propertles (b) and (c) can be obtained by repeating the proof of (a) with suitable
changes. Let (F, ) be a sequence in ¥, Mosco converging to Fe ¥, and let Ue U. For every
t> b*(F,U) there exists U'e U, with UccU' such that t > b (F,U". Let U"e U be such that
UccU"ccU"Then by (3.2) it follows that
t>b (F U) = limsup b (F U") =2 limsup b* (F,U)

h—+ee h—+eo
which proves (a). Now, by applying Lemma 2.5 to the function g(F)= —b*(F,U) with Ue U

fixed we have .
EQ[b (+,U)] = limsup E [b (-, U)].

h— 4o

Let U'e U such that U'ccU. Then
Eq[by (- U)] 2 Eg[b" (-, UN] 2

> limsup Eq_[b'(5U)] 2 limsup Eg_[bg (U]

h— +oo h— +eo

which proves (3.12). &

Lemma 3.16. Let (6h> be a sequence in ‘P(E) and let 6& ‘P(E) as in the Lemma 3.15.
Then for every 8> 0

(3.13) Eqlbg(+,U)bg(+ U] < liminf By [bg(+,U,)bg(+,U)]
" h—+ee

(3.14) Eqlbg (.U )bg(+,Up)] 2 limsup Eq_[bs(+,Upbg(+,U3)]
h—+eo

for every U,,U,,U, Use Uwith UiccU, and U,ccU,, where Q= Q|X° and Q, is
the probability measure on (Fh,‘B('th)) associated with 6h by (3.10).

Proof. Let us fix 8 > 0; we set ~ AL(F,U,,U, ) = by(F,U )b, (F,U,).
Let (F,) be a sequence in ¥ and let Fe . By Proposition 3.7, if (F,) Mosco converges
to F and one of the assumptions considered there is satisfied, it follows that

(3.15) A(F,U,,U,) < liminf AUF,,U,,U,)
h—+eo
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(3.16) A(FU,,U,) 2 limsup A((F,,U;.U%)

h—+eo
for every U,,U,,U;,Use U with UyccU, and U,ccU,. From (3.15), by applying
Lemma 2.5 with g(F)=9\[(F,U1 Us) for U,,U,e U fixed, we obtain (3.13). Let us prove
(3.14). For every Fe Fand for every U1 ,Uze U we define
N*(F,U1 ,U,) = inf { N(F,U;,Ué) ,UpUse U, U,y ccUy, U,ccU, }
Preliminarly we show that for every U,,U,e U
(a) A*(F, U, U,)] 7, is upper semicontinuous;
(b) let m(h) be any sequence of natural numbers such that m(h)—>+eo as h—++eo, then
5)\[ (F,U,,U, ) 2 limsup 9\[ (F,,U,.U,)
: h—+eo

for every sequence (F ) in ¥, with F eF ) which Mosco converges to Fe F, o
(c) 9\( (,U U2)l 7 is upper semicontinuous, where m is a fixed natural number.
We prove (b) Propertles (2) and (c) can be obtained by adapting with minor changes the proof
of (b). Let (Fh) be a sequence in ¥, with Fhe Fm(h)’ which Mosco converges to Fe F e For
every t > N*(F U U2) there exist U;,Ufze U with U, CCU' and U ccU' such that
t > AL(F,U,;,U;). Let Uy,Use U be such that U, CCU”CCU and U,ccUsccUy,.
Then from (3.16) it follows that

t> A(F,U;,US) 2

> limsup A((F,,U,Uy) 2 limsup A (F,,U,,U,)
h—>+eo h—>+eo
which proves (b). Properties (a), (b), and (c) allow to apply Lemma 2.5 to the function
g(F) = —AL"(F,U,,U,) with U, U e U fixed. Thus, we obtain
EolAL" (U, U] 2 limsup Eq [AC(\U.U,)]
h— 4o

for every U] ,Uze U. Finally, by taking U1,U U U e U such that U1CCZU and

U CCUQ, we have

EQ[A(-,U U2)1>EQ[9\£ (,UsU5)] 2
> limsup EQ (A (o JULULI 2 hmsup EQ [AL(-,U,UL)]

h—+eo

which proves (3.14) and the proof is accomphshed. I

2

Lemma 3.17. Let (Q\h) a sequence in ‘‘E) and 6& ‘A‘E) as in the Lemma 3.15, and let
d > 0. If we assume that
lim Conh [ba("Ul)ba("Uz)] =0

h—>+eo

for each pair U,,U,e U such that U1 mU;_,:Q, we have
Covy, [b (U b (+,Uy] =0
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for any U,,U,e U, with ﬁ1mﬁz=®.

Proof. Let U,,U,,U;,Use U such that UjccU,, U,ccU, and U, NU,=@. By (3.13)
and (3.12) it follows that

(3.17) EQ[bg)(-,U")bs(o,Ué)] liminf ‘EC1 [b (e U1)b( Uz)]
h= +eo

(3.18) Eqlbs(-UIEqIb( U] = limsup By [bg (UDIEq [bs(-.U3)]
h— oo :

By subtracting (3.18) from (3.17) we obtain

(3.19) E,y[by (+,UDbg (+,U5)] = Eglbg (+,U IE4 by (+,U)] <

< liminf COVQh [b5("U1)’b5("U2)] =0

h—+4oo

By (3.14) and (3.11) we deduce that

(3.20) Eqls(Upbs(nUR)] 2 limsup Eq [bg (- Upbg(+,U5)]
h—+oo

(3.21) Eq[bs (- UPIEq[by( U] < liminf Eq [bg (-UDIEG [bg(-,UY)]
h—+too

By subtracting (3.21) from (3.20) we have

(3.22) Eq[by (+,U,)by (-,U,)] = Eg by (+,UIE [bs (+,U5)]

> limsup Conh [ba(',U'l),ba(%U'z)] =0

h—+ee

By (3.19), (3.22), and Lemma 3.14 we get the assertion. #

4. THE MAIN RESULTS.

This section is devoted to state and to prove the main theorems of this paper. They give
full answer to the following questions.
(@) Foreveryhe N,letQ, be a probabality measure on ( Th B(T,)).

Under which conditions a sequence of measures (Q\) in AE) of the form (3.10) has a

subsequence (Qc(h)) which converges in AE) to a Dirac measure Q SFO with F e fo?
(b)  How can this limit be characterize ?

We will show that both the answers depend on the asymptotic behaviour, as h — + oo,
of the functions b25 (+,U), considered as random variables on the probability spaces

(F . B(1,),.Q,).
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Before to state our main results we put some definitions. For every Ue U we define

s (U) = liminf E [b (=, U)]

h— +o

Oca Q) = hmsup EQh[b (, U]

h— + o0

where EQh denotes the expectation in the probability space ( ij » B(%,),Q;, ). Next, we consider
the inner regularizations B and {34 of the set functions o.; and o, defined for every Ue U by

4.1) B'G(U) =sup { ayV) : Ve U, VU |}
4.2) ; B;’ (U) =sup { OL'S'(V) :VelU, VU }

We extend the definitions of B5and B4 ‘to the Borel sets Be B by
B.(B) =inf { B,(U) : Ue U, U 2B }
By B)=inf { Bg (U): Ue W, U2B }.
Finally, we define
4.3) Vv'(B) = sup { [3'5 (B):BeB,6>0}
@.4) Vv'(B) =sup { B! (B):Be B,§>0 )
We are now able to state our results.

Theorem 4.1.(Compacteness Theorem). Let (Qy) be a sequence of probability measure on
( Th,fB(’ch)); for every heN let ah the measure in ‘P(‘E) associated with Qh by (3.10).
Assume that there exists a Radon measure 3 with spt B € 90D such that

4.5) limsup E [b (,0)] < B(U)

h— +ee
for every Ue Uand 3> 0.
Moreover, suppose that for every U,,U,& U, with ﬁ1mﬁz= Q,
(4.6) lim COVQh[bS(”Ul)’bS(.’UZ)] =0

h— +e

Then, there exists a subsequence (Q\G(h)) of (@h) and a functional F e fo such that (a
converges weakly on "K‘E) to the Dirac measure SF € ‘KE) defined by
[¢]

0 ifFoeA
4.7) 8 (A) =
0 1 ifFoc-:-A

o)

for every Ae QB(’CM).
The limit functional F is determined by the next theorem.

Theorem 4.2. Ler (Q, ) be a sequence of probability measures as in Theorem 4.1. Assume
that there exists a Radon measure 7 such that

(4.8) V'(B) =Vv"(B) = Y(B)

for every Be Band call v(B) the common value of v'(B) and v"(B).
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Suppose that (4.6) holds. Then,
(t) VisaBorel measure of the class 9\/1* (@D,
(ty) (Qh) convergesin ‘K‘E) to the Dzrac measure 8 Oe ‘KE) defined in (4.7) where F is
the functional in ¥ associated to the measure v according to Remark 1.5 .

We now show some preliminary results which allow to get the proofs of Theorem 4.1 and
Theorem 4.2. The next lemma gives a peculiar representation of a measure [Le M: (@D).

Lemma 4.3. Ler ue M:(E)D) and let F be the corresponding functional in }'0. Then, for
every Be Bwe have

u(B)—hm Z ba(F,B.B),
ie I 1

where, for every &> 0, (Bi&)ieI is any finite Borel partition of B.
8 .

Proof. Let Be B. For every 8 > 0 fixed, denote by (Bf)ieI any finite partition of B. Then, by
5
(g) in Proposition 1.11, we have

bB) = D (B 2 ) by(FE)
ie Iy ie I
HCI’ICC
4.9) H(B) 2 limsup D byF, B )
ie I

On the other hand, by (k) and (e) of Proposition 1.11, for every real number t < P(B), there
exists 8, > 0 such that '

t < by(F,B) <Zb5(FB )

IEIS

for every & < . Thus we have

t < liminf bs(FB)
50

ie Iy
Hence
(.10) W(B) <liminf Y by(F,B)
80,7 I

The inequalities (4.9) and (4.10) give the assertion. H
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The following proposition provides a sufficient condition in order that a probability
measure Q on ( To,fB('cO)) be equal to a Dirac measure SF .
0

Proposition 4.4. For every 6 > 0 we define

0t5(U) = Eg[bs(+,U)]
for every Ue U, and
a5 (B) = inf { 0z(U) : Ue U, U 2 B)
for every Be ‘B.
Moreover, let us set

V(B) = sup ocs(B)
>0

for every Be B.

Let us assume that
(i) there exists a Radon measure P such thar v(B) <B(B) on B
(iD) Covg [bg(+,U ),bg(,U,)] = 0

for every &> 0 and for every pair U, Uy of sets in ‘U such that {-11 mGQ =0.
Then ,

(t;) VisaBorel measure of the class iMj (0Dy;

(t,) Q= SFO, where ¥ is the functional in ¥, associated with V.

Proof. From (b) and (d) of Proposition 1.11 we deduce that the function v is increasing and
countably subadditive on B. In order to prove that v is a Borel measure we first note that, by
(h) of Proposition 1.11 and by (3.3), we have
4.11) ‘ 05(B) = E[bg(,B)]
for every 6 >0 and Be B.
Thus, from (i) of Proposition 1.11 we deduce that
(4.12) as(By) + g (By) < (1) 015 (B;UB,) +4A,nL 62 [D-D, |
for every m, & > 0 and for every pair B 1» Bo€ Bsuch that dist (B,,B,) =0 > 0.
By taking first the supremum over all § > 0 and then the limit as 1 goes to zero in (4.12), we
get

V(B,) +V(B,) <v(B,UB,)
for every B, B, e B such that dist (B 1-B5)>0.
Applying the Caratheodory criterion (see[17], 2.3.2(9)) we obtain that v is Borel measure.
Finally, the hypothesis (i) and Proposition 1.11 ((f),(g)) infer that ve M ;k (dD) and this
completes the proof of (t1 ). Let us prove (t,). Let us denote by Z(<,B) the random variable on
the probability space (F_,%B(t,),Q) defined for every Borel set B of oD by

Z(F,B) = u(B)
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where [l is the measure in Mf (dD) associated with Fe ,‘To
We note that, by Lemma 4.3, for every Fe ¥, and for every Borel set B of dD,

Z(F.B) =lim Z by(F, B )
ie Iy
where, for each & > 0, (Bf‘)i < 1.1s any finite partition of B. Our aim is to show that Z(+,B) is a
s
constant random variable. In view of Lemma 3.1 in [3], we have only to prove that

(4.13) lim Var [ st( B )] 0

8-> 0 icl,
By (h) of Proposition 1.11 and by (3.3) and (3.4), we can extend the relation (ii) to each pair
of disjoint sets B, B, B. Therefore, to get (4.13) it is enough to prove

(4.14) lim ) Vary[by+,B)] =0

5—)0161

Let B be a Borel set of 0D and let (rs)s-0 and (Rg)s., be two sequences of positive numbers
such that : (a) rg < R for every 8 > 0;
(b) sy =cap (B, (O) BR ©0)—>0asd6—0;
(c) for every xe 8D BR (x)NoDg= @.
For every 6 > 0, let us choose a ﬁmte partition (B G)IEI of B such that
sup (diam B ) < >

ie I

moreover, for every 1eI let us fix X; *such that B < B, (x ) < By (x )
Since By (x A dD; Q by (f) of Proposmon 1 11 we have
bs(F,B.) < A, cap (B],B &9).
Then, for every & > 0 we get
d
“.15) D, Varfby(- B =

ie Iy

= > {Eby-B8 )1 (B [by+B )} <

ie Iy

< D EglbyB2Y 1S A, ) cap (BB, (%) Eqlby(+,B; )] <

IGIS 1615

<a, sop e 8, By 61} D BB <

1€
ie Is

<A, cap (B, (0B, O0) D, 05(B3) <A, 55 D BB = A, 5, BB)

IGIS 1615
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By taking the limit as  — 0 in (4.15) we get (4.14) and this proves that Z(*,B) is a constant
random variable. Now, let us compute the expectation of Z(+,B). By taking in account that the
function 6 — b, (F,B) is decreasing and by applying Lemma 4.3 with Bi8= B for every ie I,
and for every & > 0, we obtain

Eq[Z(~.B)] = sup Eq[bg(*,B)] = v(B)

where in the last equality we have used (4.11).

Therefore, for every Borel set B of dD there exists a subset fFB of fFO with Q( TB ) =1 such
that Z(F,B) = v(B) for every Fe Ig -

Finally, by means standard density arguments (see for istance the proof of Lemma 3.3 in 3D
we can deduce that there exists a subset 17-' of E such that Q( ,‘F ) =1 and Z(F,B) = v(B) for
every Fe ,‘F and for every Borel set B of dD. This completes the proof of (t,). B

Proof of Theorem 4.1. By Theorem 2.2 there exists a subsequence of (Qh) converging
weakly to a measure Q in E) such that Q( fF ) =1. By (4.5) and by Lemma 3.15 we obtain
Eqlbs (- )] < B(0)
for every 6 > 0 and Ue U, where Q = Q\] I
It is easy to see that also the relation EQ[b5 (>,U)] < B(U) holds.
Hypothesis (4.6) and Lemma 3.17 yield
Covq[bg(e,U1) b(+,U2)] =0
for every & > 0 and for every pair U,,Uy,e Uwith U,NU, = 2.
The thesis is obtained easily from Proposition 4.4. §

Proof of Theorem 4.2. By Theorem 4.1 and by (4.8) we can assume that (Qh) converges
weakly to a Dirac measure SF € 'K E) for some F o€ TO. By Lemma 3.15 it follows that
0

(4.16) E 5 [bs (U] = by(F,,U) = BU) =B (V)

for every Ue U. By extending (4.16) to an arbitrary Borel set in D we have
bs(F,,B) = B(B) =B;(B)
for every Be B, which gives

v(B) = sup by(F,B)
§>0

Property (k) in Proposition 1.11 implies that v is just the measure in fM;k (dD) associated with
the functional F . This concludes the proof of the theorem. §
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5. DIRICHLET PROBLEMS IN DOMAINS SURROUNDED BY THIN
LAYERS WITH RANDOM THICKNESS.

In this section we apply the main results proved in the previous section to Dirichlet
problems in domains surrounded by thin layers with random thickness.

From now on (£2,%,P) will denote a probability space, that is, Q is a set, X is a o-field
of subsets of €2, and P is a probability measure on X.

Definition 5.1. (a) For every he N a random functional of the class ¥, is any measurable
function Fh 1 Q— f}'h, where —th is equipped with the Borel o-field B(’ch) generated by the
topology 7, induced by T, (topology of Mosco convergence); (b) a random functional of the
class 170 is any measurable function F 0" Q— 9—'0 where Sfo is endowed with the Borel o-field
B(t,) generated by the topology T , induced by T,

Remark 5.2. We recall that necessary and sufficient conditions for the measurability of a
function F, : Q— %, are given in Corollary 3.13.

Let F, be a random functional of the class ¥, and let Q,, be the probability measure on
(4,,B(,))) defined by
Q,(A) =P(F,”(A))
for any Ae B(t,). Q,, is called the distribution law of F ;- In the same way, given a random
functional F of the class 5f we can define the distribution law Q of F
For every he N let Q, be the distribution law of a random functmnal F, of the class 7,
and let Qh be the measure in P(E) associated to Qh by (3.10). Moreover let Q be the
distribution law of a random functional F, of the class T and let Q be the measure in P(E)
defined by
Q(B) = QBNT,)
for every Be B(t,,).

Definition 5.3. We say that (F ) converges in law to F, if (Qh) converges weakly in
AE) 10 Q.

We denote by E and by Cov respectively the expectation and the covariance of a random
variable on (2, with respect the measure P. It is easy to see that, for 8>0 and for every he N,

6.1 Eq, [bg(,U)] = E[bg (F,(4),U)]
for any Ue U and
(5.2) Conh[b6(°,U 1):Dg (2, U] = Conh[b8 (F,(2),U )b (F, (+),U,)]

for any U,,U,e U.
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Remark 5.4, Equalities (5.1) and (5.2) allow to reformulate the hypotheses of the
compactness theorem in terms of the expectations and covariances of the real random variables
b6 (Fh (+),U), 8 > 0. By Definition 5.3 the thesis of Theorem 4.1 can be restated by saying that
the sequence of random functionals (F,)) has a subsequence F; () Which converges in law to a
random functional F0 on ,‘7—“0 such that Fo(co)=F o for P-almost every we Q (i.e. to the constant
random functional F ,on ﬂ-’o).

Remark 5.5. Since E is a metric space (let dy be the metric) the convergence in law of the
sequence (F,) toward the random constant functional F, is equivalent to the convergence in
probability. By Remark 5.4 we can deduce that if the assumtions of Theorem 4.1 on the
random variables by (F,(),0), >0, Ue €U, hold, then the sequence (F,) has a subsequence
(F, (n)) Which converges in probability to the constant functional F e ¥, thatis,for every € >0

lim P { OJEQ:dM(FG(h)’F)>8 }=0.

h—+ee

For every he N, let Ah be a function from the set Q into the class of sets ﬂh (see
Definition 1.2). For every we Q let F, (@) be the functional in Th associated with Ah(m) (see
Remark 1.5).

Definition 5.6. We say that the function Ay 1 QA4 is a Random set of the class A, if
the function Fh 10— }‘h 1s a random functional of the class Th

Remark 5.7. Necessary and sufficient conditions in order that a map A Q-4 bea
random set, can be deduced by Corollary 3.13.

We are interested in the study of the following sequence of random Dirichlet problems
associated with a sequence of random sets, that is, for every we Q

(h) .
L™ o, +Au, =g inA_(w)
5.3) { h+ AU, h

u e H) (A, (@)
2 N
where L 20, ge L°(R).
For each we Q and A = 0, let (Rh (M[w]) be the sequence of resolvent operators associated
with the sequence (F, () (see Definition 1.6). We are now able to state a new version of the
compactness Theorem 4.1.

Theorem 5.8. Let (Ay) bea sequence of random sets and let (F,) be the corresponding

sequence of random functionals. Assume that there exists a Radon measure Y with spty S oD
such that
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5.4 limsup E[b F, U<y )

h—+eo

for every &> 0 and for every Ue U. Moreover, suppose that for every U, U,e Uwith
U mU =0 we have

(5.5) limsup Cov [b (Fh( )»,Ub (Fh( ), U, =

h—+4eo

Then there exist a subsequence (Rc(h )(k)) of Ry (M) and a functional F K= }'0 such that, for every
A>0, R s (h)(?\.)) converges strongly in probability to the resolvent operator R, (M) associated to F .
(see Definition 1.7 ), that is

lim P {oeQ: [IR_)Igl -RyMgll le(Rn)> e}=0

h 4o

for every € >0 and for every ge L2(Rn) . If m,, = cg, then the same result holds for A=0 (see
Remark 1.5).

Proof. By Remark 5.5 we have that there exists a subsequence (K, (h)) of (F,) which converges in
probability to some Fe 7. So the assertion is obtained easily by Proposition 3.6. §

For every he N let F, be a random functional of the class 7, . Given the sequence (F), let us
define for every 6 >0
o (U) liminf E[b (Fh( ),U],

h—+oe

o (U) = limsup E[b (Fh( ),U)] .

h—+ee

We denote by B, B4 respectively the inner regularization of O, ¢ as definited in (4.1), (4.2)
and by V', v" the set functions as defined in (4.3), (4.4). It is easy to see that by (5.1), (5.2),
Definition 5.3, Remark 5.4 and Remark 5.5, Theorem 4.2 can be restated in the following way.

Theorem 5.9. Given a sequence of random sets (Ay), let (F,) be the corresponding sequence of
random functionals. Assume that there exists a Radon measure 7y such that

Vv'(B) =Vv"(B) <y(B)
for every Be ‘Band call v(B) the common value of Vv'(B) and v"(B). Suppose that (5.5) holds,
then, for every A >0
im P(weQ: IR i -RMWI!] 2”81 =0

h—+ee

for every € >0 and for any fe L R" ), where R (l) is the resolvent associated to the functional
F e fFO , Which corresponds to the measure Vv € £M* 0Q). If My, = C§,, then the same result holds
for A =0 (see Remark 1.8 ) .
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6. AN EXAMPLE.

In what follows we assume that the domain D of R” has a C2 boundary and that, for every
heN, My, = Cg, (see Remark 1.8) .
By (Qih Die Ih we denote a finite open cover of dD such that
max diam Qli1 -0
iel,

as h — +oo. Let (¢ )._; be a partition of unity on dD, subordinate to the cover (Q die 1 and let

ie I
(x, )161 be a family of mdlpendent random variables defined on the same probabilistic space
QX P) with values in the interval [c,1], where c is a positive constant. We regard the family
(xl.h dic  asa vector random variable §(h.) from Q into [c,l]Ih. For every k=(7Li)i€ 1 in [C,I]Ih, we
- define the set (see fig.2)

Bh(k) =U {xeR":x=0+tn(c),cedD, O<t<ehki¢;(c) }

i€ Ih

where n is the outer unit normal to dD. Let us set Ah(K)=I—)uBh(},).

B,

We stress that the assumption on dD ensure that the mapping (C,t)—0+t n(o) is invertible on Bh(k)
if h is sufficiently large so that the boundary of the set Ah(l) is given by

AWM= \U {xeR":x=0+g L ¢Xc)n(0),cedD }.
iel,

We note that for every Ae [c,l]Ih the following inclusions hold

61) D"V ={xeR":dxD)<ce, } €A M E {xeR":d(x,D) <¢, )
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Furthermore, we associate with every Ae [C,I]Ih the functional F, (?»):LQ(R“)—-—)R defined by

(h) ~ 2 : 1.0
(x,Du) dx +J u dwaAh(x) ueH (R")

n n

F,Mw= | R R

oo otherwise

where a(h) is the quadratic form defined in (1.2). Our aim is to show that the composit function
0—F, (F,(h)(w)) from € into ?'h is Z—B('th) measurable, i.e. is a random functional of the class Th
To get this we need the following lemma.

Lemma 6.1. For every Ke KX the function 7L-—)Cﬂp (E)Ah (AMNK) from [C,l]Ih into R, is upper
semicontinuous in [c, 1]I '

Proof. The lemma is similar to Lemma 4.1 in [3]. For the reader convenience we adapt the proof
in our particular case. Let O‘i )je N be a sequence in [C,I]Ih converging to A in [c,l]In. For every
je N we define the set

Eh ) = { xeR" : dist(x,0A (7»)) <14 }.
By definition of 0A 1 (M) we have that for every je N there exists i,e N such that Eh (A) 2 0A (7» )
for every i1 . Hence, for every je N and Ke K we obtain

cap™(E (MNK) 2 limsup cap™(@A, A)K) .

i—>+eo
Since
M (E AMNK) = aAh(K)ﬁK
jeN

by the well-known properties of the capacity cap(h) we get

cap™ (@A, (VNK) 2 limsup cap™(@A, W)NK) ,

i—+oo

which proves the lemma. §

Remark 6.2. Lemma 6.1 and Corollary 3.13 imply that the function 0)—>Fh(<";(h)(a))) is a random
functional of the class Th or equivalently, that the function ®—A (F,( )(co)) is a random set.

Let us set Fh(co)=Fh(<‘,(h)(co)) for every we Q. In the following we want to show that the
sequence (F, ) satisfies the assumptions of Theorem 5.8.
For every xe R", let us define the function

u, (x) = 1—-Ld(x,D)\| v 0.
h e, )
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By (6.1) it is easy to see that for every Ue U, 8 > 0, and Ae [C,I]Ih, the function u, has the
following properties

u =0 g.e.on UmBAh(X),

u, =1 qe.on dD;.

Thus, for every & > 0, Ae [C,I]Ih, and Ue U, we have

(6.2) b (F,(M,U) <e, J. a(x,Du) dx <
O®D)~U
2
<A, g _f |Du, |*dx=A, g, f —, dx=
O¥D)nU Oy ¢
2 1
=4 — [o®D)nul .
¢ &

By (6.2) it follows that for every 6 >0 and Ue U
A

Elb (F,()U < 2 — |@®/D)nul,

C Eh
hence, for every Ue U, and & > 0, we have
A n—1
6.3) limsup E[b 5(Fh(')’U)] < —?2 H “(@DNU)
h—4eo C

which proves the assumption (5.4) of Theorem 5.8.

Now, let I be any subset of I, . We denote by II; the projection of [c,11% on [c,l]I. For every
Ue U we set I(U)={ie L: Qih NU = @}. By Definition 1.9 it is easy to see that, for any § > 0
fixed, the function ?\.—-)b6 (F, (A),U) from [c,l]Ih into R is actually a function of the variable
7\’=HI(U)(?»). So if we consider two sets U,,U,e U such that U, mU2=@, we find two disjoint
sets I,,I, of I such that, for any 8>0and Ae [C,I]Ih,

by(F, (MU =y, () and by (F,(1,U5) = (W)

with ?»'=HI1(7») and 7\."=H12(7\.).
As the random vectors

(h_  h (N_,_h
1= & e, and 82 = et
are indipendent, it follows that the random variables
h h
o—v, (EM)@) and oy, (&M @)

are indipendent too. This proves the assumptiori (5.5) of Theorem 5.8.
Finally, we point out that, by (6.3), the measure v of Theorem 5.9 turns out to be absolutely
continuous with respect to the (n—1)-dimensional Hausdorff measure H”_]. Therefore, by
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Radon-Nikodym theorem we obtain that there is a unique function he L (Hn—]) such that

n—1
v(B)= | hdH
]

for every Borel set of dD.
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