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The chief role of mathematics in physics

consists not in its being an instrument (e.g.

computations) but in being the language of
physics.

Eugene Wigner.
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I.Introduction:

It is said that Plato wrote on the door of his Academy in
Athens: "If you are not a geometer, don't enter this place". This
illustrates the very important role geometry played in Greek thinking.
The rigorous deductive nature of this science became for them a model
for all branches of knowledge, to follow. Physics and geometry in the
works of the later Greek philosophers were more or less
indistinguishable. The universe in their opinion, was spherical in
shape, because the sphere is the most perfect of geometrical figures.
Plato thought that every thing consisted of various proportions of
atoms having wuniform geometrical shapes (equilateral triangles,
tetrahedron, cubes, ets.). Even such a modern philosoph€r as Spinoza
wrote his famous book "Ethics" in a form similar to that of the books
of Euclead, with axicms, lemmas, theorems and corollaries. )

Physics in the last few centuries has became a quantitative
science, and hence had to depend on mathematics to a large extenet.
Newton had to invent calculus in order to formulate his mechanics.
Since then, physics has started to drift away from geometry, and to
depend more and more on the analytical methods of algebra and calculus
even the mathematicians themselves neglected geometry somewhat, and we
can see this from what R. Courant wrote in the introduction to his book
"Differential and Integral Calculus", when he says that the difference
between modern mathematics and ancient mathematics is the close

association of the latter with geometry.

However, things have changed, and mathematicians have gone back to



study geometry intensively. New branches of geometry such as
differential and algebraic geometry(l) have appeared, and mathematics
now 1s as closeley associated with geometry as it ever has been.
Physics also has come closer to geometry. This trend started with
Einstein’s general theory of relativity (1916), which is basically a
geometrical theory. For a long time after that physicists were
interested in the quantum theory(Z) of matter and radiation, which did
not appear initially to have any geometrical significance, and for many
years only general relativists had anything to do wiht geometry, while
mainstream theoretical physicists, to quuotea famous saying by one of
them "neede only a knowledge of the Latin and Greek alphabet". This
deplorable state of affairs has changed in the last twenty years when
theoretical physicists have started to consider theories such as

(3)

Yang-Mills , Kaluza-Klien'"

5
S that

and supersymmetry theories
turned out to have direct geometrical interpretations, although this
took some time to be fully understood®. The discovery that
Yang-Mill’'s theories have a variety of classical in§tanton and monopole

solutions' lead physicists to see such theories as they really are:

as theories of connections'” on principal fibre bundles, objects whicl':
mathematicians have already studied intensively. A period of new
fruitful interaction between physics and mathematics have thus begun,
with benefits to both sides. Geometrical ideas helped physicists to
achieve a better understanding of their theories, and the problem they
faced gave an impetus for much new mathematical research. Powerful
arguments from Yang-Mills theory have changed the picture of the

theory of smooth four-dimensional manifolds (Donaldson),(m)

and led to
a great progress in the theory of complex geometry and Kahler
manifolds, and very recently the work of E.Wittem on topological

. (11)
quantum field theory .

Supersymmetry theory also led to a new area of mutual interaction.



. 12 .
E.Witten' ), using supersymmetry arguments, could prove many of the

theorems in Morse theory, thus opening the way for more research in

both mathematics and physics. Also anomalies have became a favourite

(13) (14)

topic for research among both physicists and mathematicians

The non-linear o-models proved to be closely related at least at the

. . . 15
classical level to the mathematical theory of harmonic maps( 2,

(16)

The recent interest in string theories has made physics and

geometry come even closer. One way to get four-dimensional string

theories 1is to compactify the ten-dimensional superstring on a

)

Calabi-Yau'’’ manifold (a Ricci-filat, Kdhler manifold), thus

introducing a new application of differential and algebraic geometry in

(18)

physics . Treating string multiloop diagrams leads naturally to

Riemann  surfaces and their moduli spaces, with Grassmanian
. 19 .

manifolds*® as a natural context for studying these spaces. The

0)

. . . 2
attempts to construct a covariant string field theory( have led to

consider non commutative geometries. Studying the string symmetries has

L

led to study infinite-dimensional differential gec:metry(z All these

problems have been considered by both physicists and mathematicians,
and made them work even closer.

No one knows the full extent to which this trend will go, but
perhaps in the near future we will see the application of such

. 22
mathematical structures as the Hopf algebras( )

(quantum groups) and
many others to physics.

In this thesis, we consider some mathematical mostly geometrical
as pects of non-linear o-model and string theories. The topics we shall
deal with include bosonization and supersymmetric sigma models.

The origin of bosonization (fermi-bose equivalence) goes back to
the work of Skyrmeuan who demonstrated that solitons in some two and

four dimensional model may have half-integer spin, and hence behave as

fermions.



The two dimensional fermi-bose equivalence was made explicit by

(24,25)

S.Colman and S.Mandelstam by relating the massive Sine-Gordon

theory to the massive Thirring model, i.e., to a two-dimensional

self-coupled fermi-field with vector interaction.

The Sine-Gordon field satisfies the following equation;

+(u?/B): sin[BB(x,t)]: = O (1)

3%8(x,t)  3°®(x,t)
at? ax”

where B is a real parameter, and p is a mass parameter. Eq.(l) and the

corresponding action are invariant under the transformation,
-1
d ——— & +2mnf (2)

where n€Z. This means that the vacuum posseses a discrete degeneracy
characterized by the index n.

Solitons are solutions of eq.(2) in which the vacuum well to the
left of the disturbance is different from the vacuum to the right. The
boundary conditions of solitons and antisolitons are defined by

lim &(x) — 0
K->t 0 ’

lim &(x) — F 278 (3)
X—+ -0
where -(+) corresponds to solitons (antisolitons).

24
Coleman( )

showed that if ﬂz>8w the energy density is unbounded
below; if ﬁz=4w the zero-soliton sector of the Sine-Gordon theory is
equivalent to the zero-charge sector of the theory of the free massive
fermi field; for other values of B the theory is equivalent to the
zero-charge sector of the massive Thirring model.

. (25)
Almost at the same time Mandelstam

constructed operators for
the creation and annhilation of quantum Sine-Gordon soliton which are

given by;



Il

+X .
(cp/2m) 2P ® caxp-2nig [ de®(£)-1/21B0(x)]: (4.a)

-0

¥o(x)

+X .
-iCep/2m) 2P % cexp - 2nip Tl de@(€)+1/21B8(x)]: (4.D)

-

It

ro(x)

where c=1/2i. These operators satisfy anticommutation relations; and
the field equations of the massive Thirring model. The field & above
has to satisfy the following boundary conditions;

lim <®(x)>

K—F 4@

I
<

lim <®(x)>

—>~

n/ = ,neZ . (5

Note that in the free case there are no topologically non-trivial
static soliton solutions unlike the Sine-Gordon field. However, if in
the free case the field & lives on a two-dimensional manifold wikh
spacelike has non-trivial homotopy group, and has values in a manifold
with mnon-trivial first homotopy group, there can be a static
topological non-trivial solitons. This is the case for the free bosonie
6)

string? (living on a Riemann surface) (X (£)) when some spatial
g g u

-

dimentions are compactified.

A two-dimensional free scaler field @(x) and its conjugate
momentum n(x)=ﬁ°®(x) can be written in terms of harmonic oscillators
and with Fourier coefficients satisfying the wusual commutation
relations. The corresponding two-dimensional fermion ¥ has a Lagrangian

density
= T(iv*
£ = ¥(iy a#-M)w

1.
We shall take 7°=a ,Y=ic and vy =-0_, where o_,0 ,0 are the
1 2 5 3 172773
usual Pauli-matrices.
The two quantum theories are equivalent if one makes the following

correspondence



fermion bilinear-1/2 ZF(ly)¥—1/2 : Fifem @, (5.a)

current J¥ =: iy“w e - [ 6“37® . (5.b)

Note that the current ./ =« 5#87® is  topological, since the

corresponding charge Q is
Q=§deo=§a¢>

which is a topological invariant not affected by a local changes in 9,
since such charges lead to representatives of the same cohomology class

as the original field (r (3))=H (Z,R).

(26)

In string theory bosonization (fermionization) was shown to

hold for any loop, (i.e. for any number g>1), by finding the spin
structure dependence of the {-function regulated determinant of the

Dirac operator D. It was shown that by combining the Quillen

27) 8)

. 2 - .
theorem' and algebraic geometry( that the explicit expression for

the Dirac determinant is;

2

detDTD = const (6) -

o[ S:] ol
2

where 0[:1](0|Q) is the theta divisor with chracteristics eland <,
2

which correspond to spin structures. Physically the spin structures

correspond to assigning a *1 multiplicative factor to the fermion field

¥ as we go arround non-contractible loops. Also in ref.(26) it was

shown that by summing over all instanton (soliton) sectors, the

partition function of a single boson on a compact Riemann surface X of

genus g with values in U(l), is given by

[ det' _vz n]-1/2 2
J g detIm ¢ ¢, €172 2/2)%

Therefore one concludes that the constant in eq.(6) is equal to

2
o[ :1](010)‘ (7N
2

the first factor in eq.(7), which also can be checked by using the



(30)

family index theorem or the relative Grothendieck Riemann Roch

(28)

(G.R.R.) theorem The bosonization formula on a torus obtained in

ref.(26) also can be obtained using the analytic torsion of Ray and
Singer(MJ which we will describe later on in this thesis.

The connection between the determinant or the volume form and the

theta divisor was first made in a non-explicit way by G.Falting“zt

In string theory bosonization was shown to be very powerfull. For
example, via bosonization, one can show the equivalence of the

Green-Schwarz and Neveu-Schwarz-Ramond superstring in the light cone

gaugema). Also understanding gauge and supersymmetry of the Hetrotic

4)

. (3 . . . . .
string and the construction of the covariant fermionic vertex in

. (35 . . .
superstrlng( ) was possible through bosonization.

(26)

Following the work of Alvarez-Gaumé et al. in this thesis we

(36)

give an explicit computation for the bose-fermi equivalence in the

case of D bosons on a Riemann surface £ of genus g, with values in a

d-dimensional general torus 1?=RP/AD, where A.D is a lattice in R°. We

. . B o, . I
assume that the symmetric matrix ka Z SpAPka is rational, where Pk”

p,k=1,...,D are the generators of the lattice. We will show that when
the matrix Q is the identity, then we recover the extended bosonization

formula (fermionization) obtained in ref.(26) for D bosons:

2D

, o2 D/2
. =(1/2)3’2'5°[I det’-V mn] 2 el dola
ose /g detl (e e ,)&( zzg) 2

.exp(hwinefez) . (8)

When Q is orthogonal in the above bosonization formula (eq.8), we
obtain the theta function associated with the quadratic form,
introduced by Mumford®”’ and denoted by 0Q. It is the generalization

of the product of D-theta functions and is given by;

2 eiwtrTN.ﬂ.N.Q+27ritrTN.Z

(8,D)
Nez '8



where

Z = (zl,...,zD) a gxD matrix

=
I

(nl,...,nD) a gxXD matrix

So in this case the bosonization formula reads;

, o2 -n/2
Z = Z (1/2)3/28D(detQ)"B/2[ f det' -V Nﬂ]

bose 2g. D
(e,,e)€C 27) g detl

2
‘aQ[ 3](0[0). .exp(4ritre e ) . (9)
2

Now we turn to the case in which the matrix Q is general. We will
show that in this case we get rational conformal field theoryme) in
the sence that the partition function is written as a finite sum of
terms each has the form of a product of holomorphic function fi(Q) and
an antiholomorphic function g:fﬁj.

From these results we see that, when we compactify D bosons on a
generic (rational) torus, we get a generalization of the wusual
formulas involving different type of theta functions. Therefore it is

-

natural to look for conditions on a twisted spin bundle LE’ which
ensure that our partition functions may rise from some generalized
bosonization formulas. For that we will use the G.R.R. theorem.

Also, in this thesis, we discuss some mathematical aspects of the
non-linear o-model and bosonic string theory whose classical solutions
correspond to harmonic maps”ﬁ{

A mathematical background for the theory of harmonic maps is given
so that this part will be self contained (section II). Also in this
section we will show that the second variation of the harmonic maps is
nothing but the second variation of the action of the bosonic

non-linear o-model using normal coordinate expansions which will be

discussed also in this thesis.



Finally, we give the explicit expression for the classical energy
momentum tensor Tf, where f corresponds to the imbedding or X“ in
string theory. We use the language of harmonic maps and show that Tf=0
if and only if the dimension in which the field is defined (the world
sheet in string theory) is 2.

As an application we look at the supersymmetric non-linear
o-model®® which consists of the ordinary bosonic non-linear o-model
coupled to fermions in a supersymmetric way with one, two or four
supersymmetries.

We consider the ultraviolet behaviour of softly broken N=1,d=2
supersymmetric non-linear o-model (soft breaking means the divergences
that the breaking terms induce are at most logarithmic). First we give

an extension of the supergraph methods ‘"

to include possible breaking
terms in two dimensional N=1 supersymmetry. Once this is done, the
method of supergraphs is wused to analyse ‘the structure of the

divergences“l) induced by the breaking terms. we will show that the

proposed breaking term;

1/4{ a?xds 6% R, (®) (D“@i)(na@l)(nﬁ@j)w &) )

B

yields a mnon-vanishing contribution to the three loop metric tensor
B-function even when the target manifold is Riceci-flat.

The thesis is organized as follows:

Section II is divided into two parts, the first part, II.A
containes some concepts from differential geometry required for
understanding the theory of harmonic map to which II1.B is devoted.
There we give the definition of a harmonic map, and its relation to
Euler-Lagrange equations, and give the first variation formula, and the
derivation of the second variation formula and the energy momentum
tensor.

Section III is also divided into two parts. In III.A we review the



theory of Riemann surfaces, and in III.B we give a brief account of the
theory of moduli space and study the line bundles that can be defined
on the moduli space.

In section IV we give the geometrical definition of the theta
functions, Dirac determinants and our work on the explicit computations
of the bose-fermi equivalence on Riemann surfaces of genus g.

Finally in section V we consider the two dimensional supersymmetry
and supersymmetric non-linear o-model, including our works on a two
dimensional N=1 supergrphs andexplicitly broken supersymmetries, and
the ultraviolet behaviour of softly broken N=1, D=2 supersymmetric

non-linear o-models.

10



II. DIFFERENTIAL GEOMETRICAL ASPECTS OF HARMONIC MAPS

AND APPLICATIONS.

In this section, we shall briefly review some of the concepts of
differential geometry such as vector bundles, connection, curvatures,
etc., mainly to establish our notations, and as a quick reminder to the

reader.

A. DIFFERENTIAL GEOMETRICAL BACKGROUND

1. Vector bundles:

Definition: A vreal (resp. complex) vector bundle E over a
¢”-manifold M is é Cm-mapping w:E——>M, such that wﬂ(x)=RF
(resp.Gk) Vx € M, and for every X € M ther is a neighborhood U of X in
M and a diffeomorphism %Zﬂﬂ(U)““——-—“* UXRF (resp.Uka). This means
that E is locally a direct product (trivial). N

The Cm-mapping n is called the projection, P, a trivialisation
over U, Ex=ﬂﬂ(x) the fibre at x and k is the rank of E. If rank k=1, E
is called a line bundle. A vector bundle E can be viewed as a family of
vector space Ex parametrized by a manifold M such that it is locally
trivial.

If ®, and ¢, are two trivialisation with UnVsZJ, the map

&w:UﬂV—————ﬂGL(k) defined by

) = (@0 )y ok k
guv<X = PP, YXxR" (resp.XxC)’

is a Cm—map and is called the transition function which satisfies the

following conditions;

11



g, (x) = identity in GL(k)
guv(x)gxu(x) = identity ,for Unv=g

guv(x)ng(x)gau(x) = jdentity ,for UnVnW=a

Given an open covering {Ua} of M and a Cm-map gaﬂ:UanU ——3GL(k)

B
satisfying the above conditions, then there is a wunique (up to
isomorphisms) real (resp.copmlex) vector bundle E——M with transition

functions {ga }.

B

A section of a vector bundle E is a map S:M——E such that
moS=identity. Two sections can be added to give a section and
multiplying a section by a real (resp. complex) valued function is
still remaining a section, therefore the set of all sections of E form

a module denoted by I'(E).

The dual bundle: If E——M is a vector bundle with transition

* -
function {gaﬂ(x)), then the dual bundle E ——M has (Tg (x) 1} as

af
transition functions.

-

The tensor product bundle: If E and F are two vector bundles of

ranks k and 1 and defined by the transition functions {ga

} resp.{ha }

2 B

on the same covering {Ua} of M, then the tensor product E®F is given by

the transition functions
G (%) = (g .)®(h ) eCL(R*eR') resp.GL(C'®GY)
af x) = gaﬂ afl P

If we consider the r' exterior power of E,A'E then the corresponding

transition functions are given by
r

th . :
where Arg(x) denotes the r  antisymmetrized tensor product. For r=k,

A'E is a line bundle, called the determinant bundle of E, det(E) its

12



transition functions are given by:

Gaﬂ(x) = detgaﬁ(x) €GL(1,R) resp.GL(1,C)

The pull back bundle: Let f:M——N be a differentiable map and E a

vector bundle over N. The pull back bundle, fﬂE———+M, its fibre at
point xeM, is defined by (fﬂE)X=Ef(x) and its transition function at
. . -1
that point is (f gaﬂ)x—gaﬂ[f(x)].
Examples:
(i) The tangent bundle TM, which is the set of all tangent vectors

X at all points xeM, in other words the union Ux TxM of the tangent

eM

spaces to M.

(ii) The tangent bundle T*M, the space of all covariant vectors at
all points xeM (also called the space of differentials of M).

(iii) The bundle of tensors of type (r,s);Tz(M), in particular the
tangent bundle TM=T;(M), is of type (1,0) and the cotangent bundle
T'M=T'(M) is of type (0,1).

A tensor field T of type (r,s) is a function T:U———+T§M, where the
domain U of T is such that of M, such that for every x€U we have
T(x)e(TzM)x. If r=1, s=0, the tensor field of type (1,0) is a vectofr
field. If r=s=0, T assigns a scalar to each xe€U. If f is a ¢®-function

*
on UcM then for every =x€U, deE(TM )X=(T2M)X, thus the differential of

f, df:U———*T?&, is a tensor field of type (0,1).

2. Connections on vector bundles:

Let w:M——N be a c¢”-vector bundle and let T'(E),6(IM), and B(M) be
the set of smooth sections, the set of smooth vector fields and the set
of smooth functions on M, respectively. A connection on E is bilinear

map V on smooth sections:

13



V6 (TM)X[(E)——T(E)

V(x,s) = V_(s)
such that the following properties hold;

(i) Vx(fs) = x(f)+fvx(s)

(11) fo(s) = fo(s) , VX eC(TM), seI'(E), feC(M)

Vx is a kind of directional derivative which differenciates smooth
sections of E 1in the X-direction. sz is called the covariant
derivative of s in the direction of X. When E=TM, the tangent of M;V is
called a linear connection on M.

*
Connection on the dual bundle E : Given a connection V on E, the

*
commection on the dual bundle E is obtained by requiring that V
%
commute with the contraction Ex®Ex———*R in each fibre. In particular,

* * *
for s er'(E ),sz is defined by the formula;
X * = (V * * \Y
(s (s)) = (Vs )(s)+s (V. s) -

where XeC(TM), sel'(E).

The tensor product connection: Given two vector bundle E——M and

E'—M, the tensor product on E®E’ is defined by the linear extension

of V,

E E’
Vx(s®a) = (Vx s)®a+s®(Vx o)

where s&l'(E) and oel’(E').

The pull back connection: Given a smooth map f:M——N and a vector

bundle E——N with connection VE, the pull back connection on £E is
defined as a unique connection on £f'E such that;vXeM, with y=f(x)eN,

XETXM, sel'(E), we have

14



-1
£fE, 1 ~1,E
Ve (E7s) = £V, (s)

where f*:TXM————-——rTyN is the differential map between M and N also

denoted by df, and £ ls=sof a section in I"(f_lE).

If we set X(f)=df, then condition (i) in the definition of a

connection can be written as
Vx(fs) = (df)s+fos (")

Now (fs) can be thought as a O.form on M with wvalues in E, since
s€l'(E). Therefore A connectin V can be thought of as a linear map that

takes O.forms with values in E into 1l.forms with values in E, i.e.
V:A°% (E)—————A' (E)

is a "generalization" of exterior derivative.

3. Local description of a connection:

-

Let U be a neighborhood of point p in M and take in it a frame
field,i.e., K-sections, e=(e1,...,eK) which are linearly independent.

Then the matrix w of l-forms is defined by

the matrix of 1l-forms w=(w€) is called the connection matrix. The frame
e and the matrix connection determine the connection V, since for

sel'(E) |u=A°(E) |u we have

and

15



Vs = ds%e +s%ve = (dsa+sﬂwa)e
o a B«
Therefore

VXS = (Xsa+sﬂwZ(X))ea

If (xi) are the local coordinates on U, then the vector field X is
given by X=Xia/6xi and the covariant derivative in the direction of X,
of a section s is

3
axi

a, Ba, d
s +s wﬂ i))ea

ax

i
sz = (X

Let

- B8 _ B
v a _ea wa< axi)eﬂ Piaeﬂ
ax’
where F?a are the coefficients of the connection with respect to e,
1

¥

therefore,
sz = Xi( 9 .sa+sﬁFTﬂ)ea - B
ax"
Under the change frame fields in Elu:eé=g£eﬁ. The coefficient of the

connection with respect to the new frame field are given by

e A A
Vea @, e_y w gaeﬂ
but
B v B
LA
Vea dgaeﬁ+gaw7eﬂ
Therefore,

o'l = agh (g rgdul (8™

-1 -1 . .
or in the matrix form,w’'=dgg +gwg ,1.e., the connection form

transforms like a gauge potential in field theory.

16



4. The curvature of a connection:

Let w:E——M be a vector bundle over a manifold M where the

connection is denoted by V, then the curvature of E is defined by;

R(X,¥)s =V V -V V g-V s
Xy vx

[x,y]

where X,YECOO(TM), sel'(E) . The right hand side of eq.( ) tells us that
R(X,Y)s is a 2.forms with values in T'(E), i.e., the curvature is a
section of the tensor bundle Cw(Az(T*M))®Hom(E,E); where T*M is the
cotangent bundle of M and Hom(E,E) is the set of linear maps sending

sections of E into itself. Locally, set X=Xja/6xj and s=saea, then by

using the linearity of the curvature operator R(X,Y) we obtain
R(X,¥)s = R Xi)(‘jsﬂe
! Bii o

a . .
where R/Si' is the curvature matrix. R
J

If E=TM, there is a second important tensor associated to E, the

torsion T and is defined by

T(X,Y¥) =V Y-V X-V
oY) = VY XYy

Consider the case in which E 1is equiped with a fibre inner
. . . w _k %

product;i.e., an invertable section geC (E ®E ), where for each xeM, g

is a positive definite inner product on each fibre Ex' Then the

connection V on E is called compatible with g if Vg=0, that is to say
Xg(s,0)=g(V_s,0)+g(s,V_0) ,VXeC™ (TM) , s, 0el(E)

When E=TM, g is a Riemannian inner product structure, M is called a
Riemannian manifold.

One can show that there exists a unique torsion-free Riemannian
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connection called the levi-civita connection on any Riemannian
manifold.

The pull back curvature: If f:M——N is a smooth map between two

manifolds M and N, and E is a ve8

V and curvature R(X,Y), then the pull back curvature Rf via f is given

by

£
RY(X,, Y )8, = R(EL(R),E,(Y )op

where XX,YXGTX(M) are the vector field at x, and s=aofEF(f1E) is the
pull back section of E.

Now if the curvature tensor in N is Rzi. then the pull back
3

curvature M is given by

&%)

[+
ii’B

af af. R*
ax” P

i

ax

where the pull back connection is

fa if o
Piﬂ(x) = —T

ax" B
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B.Harmonic maps and its applications
1. Definition:

Let (M,g) and (N,h) be 2-Riemannian manifolds with dimension m,n
respectively. M is assumed to be compact and without a boundary.
A smooth map f:M——N (functional <class can be extended to

E;(M,N) induces a linear map f*:TM——~+TM peM. This is also

£(p)’

denoted by df, and can be viewed as an element of tensor product
* - -

Tp(M)@f 1(TN),where £ 1(TN) is the pullback of the tangent bundle

IN——N. Locally the differential £ 1is given by

a I3
af dxt 5 (1)

au® 14 (p)

f o=
* s
ax’

i« .
where @, B,...=1,...,n, i, 3j,...=1,...,m, X ,u are local coordinates
on M, and N respectively.

The energy of a smooth map f is the functional‘'®’defined by

1 2
E(f) = =5~ J E (2)
M T Me{ TN
*1 is the volume element of M, which is 1locally given

n

* -
by:*1=[det(g1j)fuzdxlA...Adx . The norm ”f*ﬂ, is taken in T M®f TN

and is locally given by

2 ij af” afﬁ _
I1£.07 - & o e (3)
i.e., "f*ﬂz is the trace of the pullback via f of the metric tensor of

N. Therefore, the energy functional is independent of the 1local
coordinates.

Note that the energy functional E(f) is finite since M is assumed
to be compact and f is smooth. f is called harmonic if it is a critical

point of E(f),i.e., satisfying the Euler-Lagrange equations:
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AFSHT

Ne afﬂ 8f7 gu

, , =0 (4)
Py ax"  9x’

where AfY is the Laplace-Beltrami operator on M;

T i[/? g2 f”‘] . (5)
J g ax ax”

Next, we would like to give an intrinsic definition of harmonic maps
and show that they are equivalent to above Euler-Lagrange eguations.
vM N . . .
Let , V' be the linear connections on M and N respectively, and
£

V" be the induced connection on f 'IN. If we denote by V the connection

* -
on the tensor product T M®f1TN, then the second fundamental form of f

is given by
B(E) = VE, . (6)

The map f is harmonic if the trace of B(f) with respect to g (the

Riemannian metric on M) vanishes,i.e.

r(f) =t tr(VE) = 0 (7)

In the litrature 7(f) is called the tension field of £f. Having
given the intrinsic definition of the harmonic map, let us now show the
equivalence between 7(£)=0 and the Euler-Lagrange equations. The

easiest way to see that is to go over to local coordinates; by using

eq.(1l) and the definition of the Christoffel symbols in M and N. Then;

a n
\v} (£) =V —fo-dXJL
9 i * g it ax’ aua
ax ax
3 Af*) . 5 8 £ Af*
- _[ .]de +[v 3 ]———7 dx’
ax-\ ax’ aua ——i au“ ax’
ax
*
TM . Bfa P
+{V P de] - >
Ei BXJ Ju
8% % 8 N.ya aff af®
S +T : ; dx
ax’ax’ aua pa auT ax>  ax’
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. (o4
_MT.J axt af. a
* ax’  au

03

. X th
Taking the trace with respect to g, of the « component of

T (£)
2 . o3 vel ¥
(r(£)) = 6_f ‘ _MFE afk Nrﬁa afi 3f‘
) ax" 8x’ Moax Toaxt 8%’
we get

., a2p0 . o A B Y
ra(f) - 813 af : _g:LJ MF.lf afk giJ NI‘ [0 afi 3f
ax" ax” Hooex By ax 3%’

. . B o
P2 F) = _L[/? g g fa]+gu N, a é}fi Gl
V : ax’ B ax~  ax’

_ Afa+gm Nf o afﬂ af?
By ax axj

(8)

i

so the equation ra(f)=0 is equivalent to the Euler-Lagrange equations.
From eq.(8), we see that harmonic maps are generalization of the
solution, of the Laplace equation Af=0. The relation between the
vanishing of the tension field 7(f) and the criticality of the energy
functional E(f) can be seen through the so called "the first variation
formula" which we represent next.

The first variation formula: For a given field v along f (a

section of f-LTN), consider a family of maps ft such that fo=f and
af /ot| _o=v.

If one takes ft(x)=expf(x)(tv), then the derivative of E in the
direction of v, DVE(f) is equal to dE(ft)/dt|t=O' Following ref. (15)
the first variation reads;

d
—EEE(ft)l = -J<v,r(f)>*l . €D
t=0 M
Therefore, if the map f is harmonic, then the first wvanishes since
T(£)=0.

Next we will give an explicit computation for "the second
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variation formula" the Hessian of a harmonic map.

2. "The second variation formula" (the Hessian):

A harmonic map f:M——M is a stable, if for every smooth homotopy
ft’ such that fo———f. The second variation

dZ

E(f.) > 0 . (1)
a2 Ul

The expresion for the Hessian of a harmonic map is given by the
following proposition;

Proposition: The Hessian of a harmonic map is given by;

2

4 5t )’ = Ho(v,v) = J[<va,va>-trRN(df,v)df,v>*l]
2 t f
dt t=0
£ N
~ J <V v-trR (df,v)df,v>*1 (2)
M

*
where A” =d d=—trVVf is the Laplacian with respect to the connection VfA

of the pullback tangent bundle £71TIN. RN is the curvature of the

manifold N, and v is a section in f—ITN,i.e., vEC(f_lTN) which can alsof

be, viewed as a zero.form with values in f_lTN denoted by A°(f_1TN) .
Proof: In the second variation formula we have to concider a

2-parameter variation <I>(.,s,t)=fsytcorresponding to two vector fields

v,w along £, i.e. v,weC(f—lTN). Just like for "the first wvariation

formula™ &(.,s,t) is constructed such that

£ = f

0,0

Y afs’t . afs’t 3
~ fs ! -3t

s,t=0 s,t=0
"The second variation" or the Hessian is a symmetric bilinear form on

-1 . a2
C(£ "IN) defined by H.(v,w)=3 E/Btasls,t___o.
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0] . . -1 . - P
Let V' be the connection in & "IN, consider the first wvariation

formula (II1.B.1 eq.9)

d ® 9o
3s <dfs,t’dfs,t> = <V 55 df ,t> . (4)

Acting now with the vector field §/dt, we obtain

2

a d d Jd
dtds <dfs,t’dfs,t> T8t <V s ’dfs,t>
d 4o & 3%
Vg 5 ge 8y SHV GV dE > (5)

& . .
But va/atdfs,tﬁv d/8t, which can be shown as follows:

For XeTM, we have
D T (MxR)

Vo 9t (g ) = FHAE LV

st Vg 9¢9t tVasae X

= (Vg aedf, X ; (6)

since [8/8t,X]=0.

. il @ .
Using the fact that Va/at(dfs’t.X)—Va/at(dQ.X), and the torsion
free condition;
0 = -va/atx+vxa/3t+[x,a/6t]
and hence one obtains V@ (d® X)zVéaé/at
4/8¢t ) X ’
d 4%
Vasae3ts,e? =V ot : 7

Therefore the second term on the right hand side of az/atas< , > can be

written as

<v©_%9_’va/atdfs > = <V®v,V¢w> (8)
S s, t=0
with
v o 02 v 22
~ 3s 's,t=0 ' at 's,t=0
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. . 2 .
To evaluate the first term in §7/dtds< , > we use the relation between

the curvature and the covariant derivative in the X and 48/38t

directions, namely

@ o_o & o
RY(X,8/8t) = -V, V0 4V, oV +[X,3/3t] = O . (9)

But the pullback curvature is
@ N N
R (X,8/8t) = R (d®.X,d%.8/3t) = R (d®.X,8%/8¢t)

thus the first term is given by

& 9o ®_& a%
Vasat’ Tas s & TV V0cas s,
N % | 9%
+<R (dfs’t.,—FE—)—-a*;*,dfs’t.> , (10)

Now V@ and d coinside on C(@ﬂTN)=AP(§iTN),i.e.

o_& ad o ae

V'Vasat as ~ YVa/at as
: a9 . -1 .
since Va/at 3s can be viewed as an element of €(® 'TN) and since the

map £ is harmonic. Therefore

*1 =0

*
f<v@ 9 4¥as >
s, t=0

3/8t 38s s,t

Finally, the second variation formula can be written as

a2

S __ms ) _ |«v®, vun1- |<errN (af vy daf, w1
dtds s,t
. s, t=0 M
o N
- I<v v trRY(df,v)df,wo*1 . (11)

M
We will give another proof of this formula, in section V.B.2, where we
discuss the "background field expansion", by using normal coordinates.
Before deriving the stress-energy tensor (energy-momentum tensor)
of a harmonic map, we would like to make the following remarks

concerning the relationship between harmonic maps and non-linear
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o-models.

The energy functional E(f)=l/2fMdeH2*l in component-form is

E(f)= Mgijafﬂ/axiafﬂ/axéha where gij is the metric of the compact

ﬁ)

manifold M, and ha is the metric of the tangent manifold N. E(f) in

B
this form is exactly the action for a (classical) non-linear o-model
where M is the space-time, and f the field defined on M with values in
N. Also E(f) can be thought of as the action for the bosonic string
where M is the world-sheet (for instance a compact Riemann surface) and
N is the space-time.

In o-model theory, choosing a critical point of the energy
functional ( a harmonic map) corresponds to choosing one "vacuum" say
fo.This vacuum will be stable to first order if the Hessian of E(f) is
positive definite. In perturbative quantum field theory, one studies
"perturbations" around a chosen vacuun, fo.

From the classical point of view, quantum fluctuations ¢’'s
correspond to perturbations around fo, which are in

T@(M,N)Iszf(quN),i.e.forgetting about their operator nature) quantum

fluctuations are section of the pullback tangent bundle at f .
o

15
3. The stress energy tensor‘'’’:

If g(t) is a smooth l-parameter family of metrics, g(0)=g and
6g=6g/6t|t:0, then for a fixed map £, the wvariation of E(f) with

respect to t at t=0 is given by

s j<Tf,6g>*l (1)
£=0 I

where Tf is the stress-energy tensor which is a symmetric 2-form and is

given by;
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*
T. = e(f).g-f h

. , (2)
where
. oacQ B
e(f) = 125025 8E ,
Bxi ax’ ap
o B
and £h =05 9F

ax' 9%’ ap ’
is the pull back metric on M. To prove the above relation for Tf, let
us first suppose that E(f) has the form E(f)=f£(f)*l, where E(f) is a

Lagrangian for f£. Then in this case, Tf=6£/ag+l/2g.£, which we can see

as follows;

[—35“) ] =J - Sg*].-l-J 22— (+1)g
t=0 M gkl M gkl

a )
(*1)
ngl g

[(detg)_uzdx;A....Adfﬂ
k1l

1 -1/2 1
= —5—[(detg) (cofactor of gkl)dx A...AdﬁT

i

—%—(detg)_l(cofactor of gkl)(detg)uzdxyA...Adxm

L 1 kl*1

2 3

. . . kLl . .
where m is the dimension of M and g is the inverse matrix of gk.
S

Therefore the stress-energy tensor is

L 1
Tf = —Eg— +*§—g.f . (3)

In our case

1 4y 8f%  aff
g :

BE - z ax 6xj

1

then we have
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h

9E [ag“] at®  aff
axi 8%’ ap

agkl agkl
Using the fact that gmg.=dl, we have
jm m

iJ

4 ik jl
OE, T € E '
k1
and
ar i g1 3E%  afP
ag_ & T 3 haﬂ
k1l ax ax
Thus
4k *
g -fh
Then the stress- energy tensor Tf, with £=ﬂdf”2 becomes
T, = £n
g = e-8"
it was shown in ref.(1l5) that
(divTy) = -<r,df> (&)

where (div Tf)i=gjkV (the tension field r=0). Therefore, if

'Tki
a/ax” ***

the map f is harmonic, the stress-energy tensor is conserved; diva=O.
this corresponds to the fact that the energy momentum tensor is
conserved when we have translation symmetry, by Noether theorem only
when equation of motion are satisfied.

Proposition: Let f:(M,g)——(N,h) be a non-constant map, then
Tf=0+————4dim M=2 and the map f is conformal (f is conformal if f*h=pg,

0 -
where p is a positive C -function).

Proof: Set m=dimM, and recall that
2 *
e=1/2|df||*=1/2txrf h

and
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Then

i.e.

Tf=((m—2)/2)pg. Thus for m=2, T

string theory , since dimM=2,

trT

k3

==f h = e.g.

*
= e.trg-trf h = 0

m=2=dimM. Conversly,

(16)

*
suppose that £ h=pg, then e=mp/2 and

f=0.

Note that this proposition is applicable to the classical bosonic

In particular, T is traceless, because

of the invariance of the string action (the energy functional) under a

local rescaling of the metric.
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ITI. RIEMANN SURFACES AND THE MODULI SPACE

A .RIEMANN SURFACES

Let us first recall the definition of complex manifolds‘*®’ and

(&4)

then give the definition of Riemann surfaces as a special case of a

complex manifold.

1. Definitions: A Hausdorff topological space M 1is called a
complex manifold of complex dimension n if there are given open

covering H&} and a family {@iy

of homomorphism of U onto (v
i€l i

iel

(n-dimensional complex space) such that in the overlap Uint, the

mapping @ o® . & (UU)—® (UNU) is biholomorphic  (i.e.,
i 3 J J 1 J

holomorphic homeomorphism). M 1is called the underlying topological

space of this complex manifold, and we say that {Iﬂ’@ihEI define a

complex structure on M.

¥

A Riemann surface ¥ is a one dimensional complex connected

-

manifold.

Example: The sphere s* can be given a complex structure. s? can be
thought of as the one point compactification of the complex plane C,

i.e. Sz=Cu{m}, where C is the z-plane. Set
U=C , ® :U —C, @ (z)=z
1 1771 1

1/z , zeGC-{0)

U_=(CU(=))- (0}, @ U ——c, @z(z)=[ ]

, for z=w

Thus {U ,® ), i=1,2, makes CU{»} a Riemann surface called the Riemann
1 1

s‘:here .

Topologically, a compact Riemann surface ¥ is characterized by its
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"genus" g, the number of handles that must be fastened to the sphere
in order to obtain ¥ . Given two Riemann surfaces, 21 , 22 and a
continuous map f between them; f:Zi———+22, then f is called holomorphic
if for each point ZGZ1 and any coordinate system & and ¥ around z and
f(z), respectively, the function w[fﬂ(é)] defined in the complex plane
G,is holomorphic. ZH,ZZ are said to be conformally equivalent if the

continuous map is biholomorphic.

Harmonic and holomorphic forms on a Riemann surface: Since Riemann

surfaces are considered as real 2-dimensional differentiable manifolds
of class Cw, then the forms that we can construct on a Riemann surface
are of order only up to 2.

Definition: Let U be an open set of a Riemann surface Z. A
differentiable 1l-form w on U is said to be an abelian differential of
the first kind . If it is of the form w=fdz, (a (1,0) type), where f is
holomorphic, i.e.,af/dz=0.

The Hodge operator,¥*:Let w be a complex-valued one-form and set

w=wi+wz, where w, is of type (1,0) and w, is of type (0,1). The hodge

operator * on w is defined by *wmi(;a-az). The complex valued 1l-form w
is called harmonic if dw=d#w=0.

Another equivalent definition of the hodge or the conjugate *
operator is given by writting a 1l-form on a Riemann surface as

a=U(x,y)+V(x,y)dy, then the conjugate operator *, is defined by:

*o = -Vdx+Udy , 1
hence

*dx = dy i *dy = -dx . (2)

Other important properties of the * operator are the following:
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(1) If £ 1is a function, then *(fa) = f(*a).
(2) aA*B = BA*a, where a, and B are l-forms.
The product aA*E is a (1,1) form, i.e., can be integrated over a

Riemann surface Z to give a number;

(a,B) =j ah*f : (3)
>

This new product («a,8) defines a scalar product. this can be

checked as follows;

le|| = j ah¥*aq = f (|u|%|v|?) dxady ,
> )

since (IU‘2+|V‘2)>O unless a=0, i.e., ”a”=(a,a)=0= =a=0,

The *-operator on Abelian differentials: Abelian differentials of
the form w=f(z)dz can be written as: w=ot+i*a, where £(z)=U+iV and
dz=dx+idy. Using the properties of the *-operator we obtain the

following identities;

*w = -iw *w = iw . (4)

The genus g of a Riemann surface 3 is equal to half the number of
closed curves needed to generate the first homology group; }H(E,Z),€
i.e., there are 2g-closed curves Ty .725 such that every closed curve
in ¥ is "homologous" to a unique integral linear combination Zni'yi.
Recall that two l-cycles C,C'eZl(Z) are homologous if J;w = j;}o for
every closed l-form w.

Also, one can show that 2g is the number of linearly independent
real holomorphic differential forms of degree 1, i.e., g 1is the
dimension of the space of holomorphic 1l-forms (the dimension of the
cohomology group Hl(Z,R)).

Let us now consider a Riemann surface X with a simplectic basis

(al,...a;bl,...b) of Hl(E,Z) ,which means that we have on this
3 3
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homology group a quadratic form J represented by the intersection

matrix:
a.a a.b 0 I
- g
b.a a.a -1 0
&
This particular basis is called the canonical homology basis.A Riemann

surface with a canonical homology basis is called a marked Riemann

)

surface. The cup product(45 of two cohomology classes represented by

the 1-forms a and B is given by the Riemann identity;

g
JaAﬂ=EJaJﬁ-JﬁJa (3)
z i=1 a bi a, bi

If W0 is a basis of the complex-vector space of holomorphic
8

differentials on X, then the complex gx2g matrix;

a= [f “’"I w, (6)
ai J bi J]

is called the period matrix of Z.
Riemann observed that it is possible to choose the basis W,

such that j‘w.=6__ and j;w.=ﬂ_‘, i.e., the period matrix becomes;
aj ij SIS
0= (9 (7

2 in eq.(7) is called the canonical period matrix of X. Using the
Riemann identity, one can show that '0-0 and Im>0. A set of Q's having

this property is called the Siegel upper-half plane, and is denoted by

X .

g
The period matrix 0 determines the complex analytic structure
according to theorem of R.Torelli, which says that given a marked
Riemann surface Z, then two complex structures on Z having the same

period matrix , are isomorphic.

The Jacobian of a Riemann surface: Let C be a compact Riemann

surface of genus g with first homolog9 basis 71,...725, and with
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w ,...w 1its corresponding dual in Hl(C,Z). The vector integral

[ ([ o] ) ,

is called the period.

Given a fixed base point p on a Riemann surface C the following
o
vector integral

(== (o] )

pO PO
is well defined modulo periods. In this way, we obtain a mapping from

the Riemann surface C into C®/periods and is called the Jacobian of c,

denoted by Jac(C).

2. Sheaves:

6)

. . . 4 . . .
The essential idea in a sheaf theory( is to associate with each

point x of a topological space X an algebraic structure ?x (such as a
ring structure, group structure, module structure, etc.) called the
stalk, the union of these structureXIeJXZFX is treated as a topological”
space, and is called a sheaf.

After this brief intuitive idea of a sheaf, now we turn to the

formal definitions of presheaves and sheaves:

Definition of a presheaf and sheaf: A presheaf F is determined if,

given a space X, we associate with every set U of X an algebraic
structure F(u) such that

(1) If U is empty, F(u)=0 (i.e., consist of zero only).

(2) If VcU, there is a holomorphism pz of F(u) into F(v).

(3) If WcVCU then p§= pzop: and pz is the identical mapping.

A sheaf ¥ over X is a presheaf such that whenever V=IiJVi the following
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are satisfied;
(&) If seF (V) and.s]v.=0 for any i, then s=0.
1

(5) Given s €F(V ) such that Vi,j s,|
1 1

=g then there is
ilvilwg jlvﬂwj’

S€F (V) such that slvi=si, by (4) such s is necessarily unique.

Examples:

(i) On a complex manifold X, the structure sheaf OX is defined by
OX(u)=(f|f:U——~+C,where f is holomrphic) with the homomorphism pi being
the restriction functions.

In the mathematical literature, a topological space X with a
structure sheaf OX is called a ringed space (Espace Annalé)

(ii) Let 22 C be a holomorphic line bundle over a Riemann
surface C. The sheaf £c of holomorphic sections of £ is defined by
Ec(u)={a|a:U~——+wﬂ(U),where ¢ 1is holomorphic} and P being the
restriction.

(iii) The canonical sheaf of 2, is a sheaf of differential
l-forms, whose sections are locally given by o=f(z)dz, and is usually
denoted by w, or Kc. The jth canonical sheaf has sections of the form

a=g(z)(dz)j, and 1is denoted by wi. Physically this corresponds to a

-

field of spin j.

(iv) For any abelian group G we define the constant sheaf GX by

G (u) =G , P =id

As an example we have Zx’ the sheaf of integer valued functions.

Direct image sheaf £ F: Let f£:X——Y be a continous map (in

particular f is holomorphic whenevr X,Y are complex manifolds). For any

sheaf F over X we define its direct image sheaf £ F on Y by
£,F(U) = F(£(U))

Homomorphism of sheaves: Let ¥,Y be sheaves on X, a homomorphism
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@ F—1Y of sheaves on X 1is a collection of homomorphisms
@U:T(U)———+y(U) which are compatible with restrictions in the sense

that the diagram

(U Y (U)

[}
pU.V pU.V

F) Y (V)

comutes, i.e. s = s . is an isomorphism, whenever ¢'s are.
, e ()| e ()] - e P , ®

A short exact sequence of sheaves is a sequence of homomorphism

such that F=Kerf and #=coKera.
*
Examples: on a Riemann surface C, let Z,0,0 denote the constant
sheaf of integers, the structure sheaf and the sheaf of non-vanishing

holomorphic functions. Then we can form an exact sequence

‘ SN £ *
0 +Z +0 0 +Q

. . . . . 2wif
where Z«——0 is an inclusion map and f is the exponential map e .

Cohomology of sheaves: The cohomology group HY(X,¥) of X with

coefficients in ¥ is defined through the Eech procedures which can be
described as follows;

If U=(Ui) is a finite open covering of X by open sets Ui, and
qe{0,1,2,...)=I, then a q-cochain with respect to U is a function f
that assigns to each (io,...iq) an element f(io,...1q)eF(Uon...an,7),
subject to the condition that f is an alternating function in the
indices. The set of all gq-cochain with respect to U is denoted by
Cq(ﬂ,T). Define the coboundary operator 8:Cq(ﬂ,7)———*cq+l(ﬂ,f), by

qt+l

Fa)

(6E)G ,...1 ) = E(-l)jf(i,...,i,,...i )
o qt 1 o J

j=0
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here " denotes deletion. In particular if f=(fi)EC°(ﬂ,?)
(6£)(1,3) = -fi+fj

and if £ = {fhj)GC’(W,T),
(§E)(i,5,6) = £+ £

A qg-cochain f is called a cochain if 6f=0, and it 1is called a
coboundary if f=§g for some gecqﬂ(ﬂ,T). A direct computation shows
that 606=0, i.e., a coboundary is a cocycle.

Let 2z%(U,F)=(fec¥(¥,¥):6£=0) and BY(U,F)=6(C*(U,¥)). Then the
cohomology group with respect to the covering ¥ and with values in F is
defined by;

z2%(U,¥)

H(u,5) =

BY(Y,¥)
The cohomology v, ¥) depends on the covering ﬂ=(Ui) of X, but by
passing to a finer covering, (going to the inductive limit) it can be
made independent of the choice of the covering, and the result is the
cfh cohomology group of X with wvalues in 7, Hq(X,T), and is called the
¢ech cohomology.

For q=0, one has H'(U,F)=z°(%,F)=F(X), to see that first the
Oth-cohomology group vanishes, i.e., Ho(ﬂ,?)=ZO(H,F). But wusing the
definition of the coboundary operator §, one concludes that a 0-cochain

(fi)eCO(W,T) belong to z°(U,¥) precisely if

Vi,je(0,1,2,...).

filuiﬂVj fj!uiﬂVj

Using sheaf axiom ( § ), fi fit together to give a global element

f€F (X), therefore, H'(U,F)=2"(U,F)=F(X).

47
Examples( )

(1) HI(X,G), G is a lie group. Let X be a complex manifold and U
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an open set in X. Let w={U1}'e be a covering of X by open sets U and
1 * 1

I
I(U) be the set of indeces needed for covering.

A U-cocycle is a function f that associates two ordered elements

in I(U) with an element f_.,fi.EI‘(U.ﬂU_,G) such that
1§’ 13 i3
fij(x)fm(x) = fiK(x) for erimanUk, i,3,k€L(U).

Note that the multiplication takes place in G.

In the space I'(%,G), of maps from U into G, the unit element, is
given by £ =neutral element in I'(U ,G) and the inverse element is

11 1
(fi ) )_l=f e If vcu, then we have a restriction map
J 3

u .1 1 . . . 1 u
pv:H (U,g)——H (V,g). The inductive 1limit of the system (H (U,g),pv)
is denoted by Hl(X,g).

Two cocycles f and f' are said to be equivalent if there exists an

element giEI‘(Ui,G) for all ieI(U) such that

£ (x) = g {(x)E (X)g (%) in U U
i3 i i3 i

E N |

The set of equivalence classes is denoted by Hl(U,G).

(i1) The isomorphism classes of fibres bundles E with base B,
fibre F and structure group G are in one to one correspondence with(
Hl(B,G). The unit element of Hl(B,G) corresponds to the trivial fibre
bundle E=BXF.

To see that, let 'y=(gij) and 7'=={g;j} be two equivalent cocycles,
i.e., g;j=g;lgijgj in Uint with giEI‘(Ui,g). For XEUi’ the mapping
h:(x,f)~—-*(x,g;1(x)f) is a homeomorphism from ijF onto ijF. For
xEUint, (x,£) and (x,gij(x)f) are identified in the fibre bundle ET'

But from the definition of the homeomorphism h, we have

h(x,g, () = (x,g](x) g ()5)
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- (8] (®) g, (D) :

so h(x,gij(x)f) and (x,ggl(x)f) are identified in the fibre bundle E'y’

which means ‘that h defines a homeomorphism Ev—*Ev,. Hence, we see

that the fibre bundle E is determined by the class of cohomology in

Hl(U,G) up to isomorphisms.

3.Divisors, line bundles and the Riemann Roch Theorem(za):

A divisor D on a compact Riemann surface £ (or an algebraic curve
C) is a finite sum D=Z np, of points piEC with multiplicities n . The
set of divisors on C form an abelian group denoted by Div(C). D is
called effective if nizo, for all i. A degree of a divisor D is defined

by the following map;

deg:Div(D)—2Z, deg(D) = ): n
i

Let U be an open subset of C, and £ a non identically vanishing
meromorphic function on any connected component of U, then f defines a
divisor (f)=iécvi(f)pi, on C , where ui(f) corresponds to the order of

f at P, which is defined by

k if f has a zero of order k at P,

orderi(f) - [ -k if f has a pole of order k at P,

Since a meromorphic function f on C has as many zeros as poles,
therefore deg(f)=0.

A divisor DeDiv(C) 1is called principal if there exists a
nofl-vanishing meromorphic function f such that D=(f), the set of
principal divisor is denoted by divp(C).

The set of divisors of degree zero on C is denoted by divo(c),
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divb(C)Cdiv(C) and divp(C)Cdivo(C), therefore one can form the
following quotient: PiC(C)EDiV(C)/DiVP(C) which is called the Picard
group of C, also we can form its subgroup Pico(C)EDiVO(C)/Divp(C).

An alternative definition of a divisor on a Riemann surface C is
defined by assigning to each open set u of the covering {ui) of C, a
meromorphic function on fi such that fij=fi/fj is a non-vanishing
holomorphic function on UJﬂL. Clearly {f“} defines a l-cocycle in the

J

multiplicative sense, namely fm'?ﬂ'%u=l' Hence a divisor defines an
element of Hl(C,O*) where 0* is the multiplicative sheaf of the
non-vanishing holomorphic functions. From example (ii) above, one
concludes that Hl(C,O*) corresponds to the set of all line bundles £
over C which has a structure of a group, the group operation being the
tensor product of line bundles, and the inverse is given by dual line
bundle £ '. As a consequence of the alternative definition of divisors,

Pic(C)=H'(C.07).

From the following exact sequence;

[ A—ry * —
0 2 0 € L0 v O

where e(f)=exp2nif, we have the associated exact cohomology sequence
1 1 1 * 2 2
H(c,2) —— H'(c,0) —— H(c,0 ) —— H"(c,Z) — H'(c,0)
where § is the connecting homomorphism;
1 * 2
§ : H(c,0 ) —— H"(c,Z)

2
But on a Riemann surface one can show that H (C,0)=0, therefore the

above exact cohomology sequence becomes;

*
0 — HY(c,0) /H (c,2)—— H'(c,07) —— H%(c,2) ——0 .

This shows that the homomorphism § is in fact an isomorphism which
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*
takes a line Dbundle £EH1(C,O ) into its first Chern class,
Cl(L)=6(L)eH2(C,Z), since HZ(C,Z)zZ, hence Cl(L) is integer-valued. It
can be shown that Cl(L)=deg(L).

Riemann Roch theorem: Let £ be a line bundle on a Riemann space C,

and set hi(£)=dimCHi(C,£) then
h°(2) - h'(2) = degt - g + 1

From the Serre duality for line bundles on Riemann surfaces, one has
Hi(C,£)=H°(C,£_1®k), where k is the canonical line bundle. Therefore

the final form of the Riemann Roch theorem is
h°(2) - h°(kef ') = degf - g + 1

since h?(kﬁw—l) is non-negative, we obtain the Riemann Roch inequality;
h°(E) = degf - g + 1

In particular, if deg(Z) = g + 1, then h?(C,B) > 2 and there exist at
least two linearly independent sections NER of Z over C such that
f=sl/s2 is a non-constant meromorphic function on C. Thus the Riemann
Roch theorem, for Riemann surfaces gives imformation concerning the
existence of meromorphic functions with given divisor on C.

Example: If Z=K, h°(k)=g, then by the Riemann Roch theorem, the
degree of the canonical line bundle K is 2g-2, and as a consequence the
spin bundle L=K'? has degree g-1.

Finally, we would like to make the following remark concerning the
relationship between the index of the Cauchy Riemann operation coupled
to a holomorphic line bundle £ on C and the Riemann Roch theorem. The

index of EE is defined by

index(az) dim keraf - dim coker&x
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Now the wvector space kergf, is the space of holomorphic sections
— —%
of £, and cokerd=kerd is the space of antiholomorphic differential
l-forms, and is isomorphic to the space of holomorphic differential

— — —
1-form. So coker8£=ker6£®k=ker8£®k

. 1ndex(3£) = dim keraf - dim cokeraﬁ

h(2) - h°(ker ™)

It

deg(£) - g+ 1

i.e., the Riemann Roch theorem in this case reduces to the index

theorem for 6£
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B. THE MODULI SPACE"‘®

1.Introduction:

The concept of moduli arieses in connection with classification
problems in algebraic geometry. The basic set that enters in moduli
theory 1is the collection of algebraic objects modulo the obvious
equivalence relation (isomorphisms) of these objects. The main aim is
to give, some algebraic-geometrical structure to this set.

The origin of the moduli space of curves, goes back to the theory
of elliptic functions where one shows that there is a continuous family
of such function whose parameter space is the field of complex numbers,
G.

Riemann in his famous memoires (1857) gave a heuristic argument
that the space of conformally inequivalent Riemann surfaces % of fixed
genus g=2 has a complex dimension of 3g-3.

It was during the second world war that the German mathematician
Teichmiller gave a rigourous proof for Riemann’s conjecture. By using
the Riemann-Roch theorem, he was able to identify the 3g-3°
complex-parametrers as the dimension of the space of quadratic
differentials. Actually, it turns out that the so called Teichmiller
space Tg is a complex ball in ¢®*°. The moduli space Mg is the
quotient Mg=Tg/Fg, where Pg is the group of components of orientation

preserving diffeomorphisms of ¥ (the mapping class group).

. . 49
2.Families, and deformation therory( ’

In this section, we review briefly the concept of a family, and

the Kodaira-Spencer-Kuranishi deformation theory in which one studies
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complex structures "close" to a given one.

let x and S be complex spaces, and let m:x——S be a surjective
proper holomorphic map. A holomorphic family of compact complex
manifolds consistesof the triplet (x,n,S) such that

(1) Every fibre xs=w—1(s), s€S, is a connected complex manifold.

(i1) w is a simple (smooth) holomorphic map, i.e., for each point
X€x, there is a neighbourhood U, an open subset of Vce” and a
biholomorphic map 5:U——n(U)xXV such that the diagram

n
U +T (U)XV

7 (U)

is commutative.

Sometimes, a family is denoted by (Xs)seS instead of (yx,w,S). If

the parameterizing space S of the family {xs)sE is connected, then we

S
say that X is a deformation of X for any s,t €S.

One can prove that all the fibres are diffeomorphic to each other
and have the same real analytic structure. Therefore, one can regard
the complex structures of the fibres to be complex structures on ae
given compact differentiable manifold that we denote by X. If X is a
complex structure on X, then a holomorphic family (x,s,n) is said to be
a holomorphic deformation of X if there exists an isomorphism,
i:X————*xS where X is the fibre at a reference point s, in S. Such
a deformaiion is d;noted by (x,s,ﬂ,sQ,X,i).

Example: Lét Tg be the Teichmiller space of compact Riemann
surfaces of genus g=2. For sETg, let Xs be the compact Riemann surface
corresponding to t. Then {Xs}seTg is a family of compact Riemann

surfaces of genus g. This familly has the following properties:

(i) For any compact Riemann surface Z of genus g, there is a point
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seTg such that, ¥ is biholomorphic to Xs'
(i1) For any reference point (p)eTg, there is an open
neighbourhood U of (p} in Tg such that XS is not biholomorphic to Xp

VseU-{p}.

49)

Construction of the Kodaira-Spencer map( and the dimension of

the moduli-space of algebraic curves, (compact Riemann surfaces) Ml :

Let (X’ﬂ’B):{Cs}seBk be a family of compact Riemann surfaces
parameterized by a ball BA={seCm,|s]<A). We can fix O as a reference
point in BA’ and set wﬂ(0)=Co=i(C). From now on we will not
distinguish between C0 and C. Let waEXBA be a covering of x (where
{Ui} is an open covering of C) with coordinates (zi,s“). On each
intersection ﬂinﬂk, one obviously has zi=fik(tk,s#)

Now given a tangent vector v=v 3/ds ETSBA one can construct the

holomorphic vector-valued one-cochain oik(s) on csrmk by

ra (5] 6
0ik(s) =V rfik(zk’s) o
ds azi

From the cocycle condition f? (z ,s)=f?.([f.(z ),s],s), one gets a
ik k ij jk "k

cocycle condition

6. =80 +4
ik ij gk

on the # 's. Finally, we can associate to v the cohomology class
1
[B%k(s)] in Hl(CS,es) where @ is the sheaf of germs of holomorphic
1

vector fields. We get in this way a map: PS:TSB ———&f(CS,es). Called

A

the Kodaira-Spensor homomorphism. The deformation (x,B,«,C,i) is

complete
iff PS surjective
(uni)versal iff PS is an isomorphism.
Now to compute the dimension of Mg it is enough to compute the

. . 1
dimension of the base of a versal deformation, i.e. dlmCH (CS,GS).
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We can now compute the dimension of the moduli space #  of
algebraic curves which amounts to compute the dimension of tangent
bundle to Mg. Now by Serre duality Hl(C,e)=H1(C,w:)=H°(C,wz) where w,
is the canonical bundle (the tangent bundle). Riemann Rock theorem for

a line bundle, L on a curve C reads;
dim H°(C,L) - dimﬂ"(c,wC@L’l) - degL-g+l

for L=wz the term dimHo(C,wC®L_1)=O by the Kodaira vanishing theorem,

therefore

. o 2
d:LmMg = H'(C,0)) = 3g-3

3.Line bundle over the moduli space(so'aa):

Let M; denotes the moduli space of smooth algebraic curves without
automorphisms. One can show that it is a complex manifold. On A° one
has a universal family of automorphism-free curves ﬂ:XQ-———+M; whose
fibre at [c]eﬁ; is a representative curve of the set of equivalent(

classes of Riemann surfaces [c].

The hodge bundle: The differential dr maps TX

° onto TMO, and its
g g
kernel is called tha relative tangent bundle Tx’ i.e., we have an exact

sequence
o
O——————+Txo/Mu TH 0
v o, . .
the dual wxo/Mo=0(TXo/Mo) is the relative canonical sheaf.
The hodge sheaf Rfﬂ*w o,,0 is by definition the sheaf associated

x /M

with the presheaf on M; given by
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M; S U—H (" (W), 0 o

X /mo)

clearly Réﬂ*w is the locally free sheaf of rank g, which may be thought
of as the sheaf of sections of the vector bundle U oHO(C,w ) whose
. [{m]CSmg n C
fibre at C is the space of abelian differentials on C itself.
m m

Having given the definition of the Hodge bundle, we next consider
the universal family of smooth curves, f:X;———iM; and find what the
natural line bundle on M; will be. The fibres here are smooth curves,
therefore the dualizing sheaf w, and the sheaf of holomorphic 1-forms
on C are isomorphic: wczﬂé. The hodge bundle E on M; has HO(C,wc) as a
fibre of the space of differentials, and because of the Serre duality
HO(C,wC)zHl(C,O). HO(C,wC) is a g-dimensional vector space, therefore
the natural line bundle L on M; would be the determinant of this Hodge
bundle, i.e., L= U ABH°(C,0 ).

[e] c
By combining Harer theorem with that of Arbarelle and

51,52
Cornalba( )

the Hodge bundle L over M; has. the following
non-trivial properties: -

(1) L is non-trivial on M;, i.e., its first Chern class Cl(L)=A#O.

(i1) X generates the group HZ(M;,Z)=Z, so that the first Chern
class of any other line bundle L' on M; is an integral multiple of X,
i.e., L'=L" for some integer n.

On x; we could consider another sheaves as the n" power of the
canonical sheaf, i.e., HD(C,win). For any such line bundle (n=1) over
the wuniversal family X;, Riemann-Roch theorem tells wus that
H°(C,£[Cm)=cn, i.e., independent of mEM;. So the
collection[E]Hoo{q(c),f) over M; is a vector bundle denoted by ﬂ!E,
and called the push-forward of the relative line bundle £ on X;. The

corresponding determinant line bundle on M; would be [E]AnHo(wﬂ(c),f),

and is denoted by detw'f.
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An interesting example that comes up in string theory is the

construction of the push-forward of the relative dualizing sheaf
~ @2 . . ~ @2 o . .

squared, w‘(wc ). Since the fibre of w'(wc ) at [c]ed” is given by

}f(C,wC®z) which 1is the holomorphic cotangent space to M;, therefore

~ ®2 o ~ ®2 .

w‘(wc ) corresponds to the cotangent bundle to Mg, and det(w'wc ) is

the canonical 1line bundle of the moduli space KME (i.e. 1locally
1 3g-3 i . . * 0

generated by ¥ A....AY ) where 3  are local basis in T Mg. From

the properties of the hodge bundle L, we have KMo=LF for some m.
8
To compute the first Chern class we apply relative G.R.R. theorem
to our case. If E is the relative line bundle to X; and T is the

relative tangent bundle to X;, the the relative G.R.R. theorem reads as

follows;
Ch((x,E) = = (Ch(E).Td(T))
Using the fact that T= = then

Td(T)

1-1/2c1<;)+1/12cj<;;>+ .....

Ch(E) 1+cl(E)+1/2ci(E)+ .....

If we think of n, as an integration along the fibre of = , then keeping

only four forms on the right hand side, then
-~ o~ —~ —~ 2 ,~
Cl(le) = w*(l/zcl(E)-l/ZCI(w).Cl(E)+1/12C1(w))

Now we apply this formula to the hodge bundle LFW|5 and tothe
canonical line bundle of the moduli space, ng. The first Chern class
of the hodge line bundle is A=C (L)=r,(1/12C.(@)). Using the fact that

~@2 ~@2 . ~22 ~
Cl(KMg)=Cl(detﬂ!w )=Cl(ﬂ!w ), with Cl(w )=201(w), we get

~&2 2~
Cl(KMg) = Cl(ﬂ!w ) = w*(13/12C1(w))=13k
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4.The determinant line bundles and the Quillen metric‘®®’:

Let E be a complex vector space of dimension n, and P be an
endomorphism of E, then the determinant of the operator P is the linear

map is defined by

detP(e A....Ae ) = C e A....Ae
1 n 1

n

where {ei} is a basis in E, and C is a complex number called the
determinant of P. If e is an eigenvector basis for P, then C is the
product of the eigenvalues. Note that detP:DETE——DETE where DETE=AnE,
isthe highest exterior power of E. If the operator P is not an
endomorphism but a linear map, P:E——F, where F is another complex
vector space with dimE=dimF, then we have an induced map, the
determinant map detP:DETE——DETF, in this case detP is not a number.
Also we cannot define an eigenvalue problem for P, since the operator B
is in Hom(E,F), and detP <(DETE,DETF) - (DETE) ®(DETF). So
detP=Cp(f1A...f;)@(fTA...f:), where {f;} is basis and {et) is the dual
basis to {ei}.

Consider now the case in wich E and F are vector bundles over a
parameter space X, and assume the general case in which E and F do not
have the same rank. Suppose that the operator PX:EX——-———*FX varies
smoth 1.y over xeX. The operator PX is not invertible, hence, the above
construction fails. However, if we write EX=(kerPx)+E£, FX=(cokerPX)+Fé
where Eé and Fé have the same dimension, then the above construction
for the operator Px restricted to these spaces holds. It turns out that
in this case (DETE ) ®(DETF, )=(DET kerP )" (DET cokerP ); i.e., detP is

*
a point in (DET kerPx)@(DET cokerPX).
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Now U(DET kerPX)é(DET cokerPX)EDETP is the "determinant" line
bundle of the family P whose section is detP. For example, let us
consider the determinant line bundle of the Cauchy Riemann operator 4§
over a family of Riemann surfaces. For that let m:X——S be a
holomorphic family of compact Riemann surfaces, and let E be a
holomorphic vector bundle over X. Then F=E®w, where w is the relative
conjugate cotangent bundle, sometimes denoted by ;X[S'

level, the Cauchy Riemann operator § with values in E is defined by;

At the fibre

EE’S ¢ (w M (s) ,E)————C 7 (r N(s) , Eow)

We denote the family of these operator by 5E' Therefore,

R

— — % —
DETd U(DET kerd ) ®(DET cokerd )
E s s s

I

*
(AhOEo) ®(Ah1E1)

h° = dim kerEE g = dim H(x *(s),E)

h' = dim cokerEE = dim Hl(w_l(s),E)

,S

The Quillen metric on the determinant line bundle, DETEE: As
before let x:X——S be a holomorphic family of compact Riemann
surfaces, and E a holomorphic vector bundle over X, Let | "T be a C
hermitian metric on the relative tangent bundle T on X and let | ”E be
a G hermitian metric on E. Then on the space of differential forms
Qo'q(E) with wvalues in E , we have an inner product which in turn
implies that we can define the formal adjoiﬁt Cauchy Riemann operator

3t : Fi : ; 3T
aE associated to aE and its Laplac1an,AE 6E.6E.

The Quillen metric on DET5E=(AmaxkergE)(@(Amaxkerg;), is obtained
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by multiplying the Ib-metric | HLZ on DETEE by the regularized zeta

determinant det'AE=exp(—§'(O)), ice.,| “2=(det5E*5E)” uzz. In

Q L
particular we can consider the Quillen metric associated with

max.

determinant line bundles DET5n=(A kergn)~1®(Ammker_l), where

3_: P ——r @ ® ™) ,
and K® is the n™ canonical bundle on a Riemann surface in this case,
2 = K . Y . . .
I ]]Q——(detan an)NM "lg. Recalling that kerao—(global holomorphic section
on a Riemann surface)zcg, and coker5~=(holomorphic 1-form). Thus the
o

Quillen metric on (A" kerd )_1®(Ammker51) is given by
=] o]

det'A
2 _ o

Q det(wi,wj)fZJ g

where (w } is a basis of holomorphic one-forms, and 1 is a constant
1

tion, (L,1) =1} = ZJ .
section, ( )g ” "g f g

As an application let us consider the Polyakov bosonic string

-1
|| (wA. .. .Awg) ®l|

(54)

which is described by the following partition function for genus, g=2

3g-3 B w2 det’'A -
Zg = J M d@iAd@ildet(wi,wj)! / ( - ]
ie1 det(wi,wj)fZJ g

[
detng

det(® ,2 )
i 3

where {@i}, i=1,...3g-3 is basis for Ho(Z,wz), and (wi} i=l,...g is an
orthonormal basis for Ho(Z,w), and d is the dimension for the target
space which is assumed to be Rd.

By wusing the Quillen metric, the partition function can be
rewritten as;

3g°3 - -a/2 = y-d 2

zg =J iUl d@iAinldet(wi,wj)I .(Hdetaonq .Hdetaz”Q)

The quantized bosonic string described by Zg will not suffer from

conformal anomalies if the integrand in Zg is a holomorphic function
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rather than a section. This will happen when

®(-d)

o, [CoETa )| | pecmEra)®, | ] = o

-(d-26)(x) =0
when d is equal to 2B, the partition function is

b

2873 = -13 2
zg=f M d@iAdqnildet(wi,wj)l |F(@) |

i=1

where F(<I>)=——((wlA...Awg)*m.((l)lA...A(I?3 3)_l) is a pglobal holomorphic
8-
®(-13) _ -13

section of (DET52)®(DET5°) Kex . The form F(®) 1is called the

Mumford form, so the bosonic string measure in d=26 is the square

. -13
modulus of the global holomorphic section @ of K@X

5)

. .. . (5 . . .
Next we consider the fermionic string whose action is given by

S=Jax1\'.§x+§/ia¢ ,

where En:KnMKn®AO'1=Kn—1EZ, 3:9 _:KY? ez

1/2

4 The differential

operator d depends on the choice of / K ( i.e. on the choice among the

28 spin structures). The partition function for the fermionic string

-

is given by

B T2, . 7 = !
W= (detao) (detallz)(detaz)(detaalz)

To obtain the critical dimension for the fermionic string we use the

identity Cl(DET 3 )=(6n2-6n+l)A. the partition function W is a section
n

of

®-d/2 5 "y = ®-1
(DETallz)(DETaz)(DETaal ) ,

(DET3 )
o] 2

so W has no conformal anomalies if

®-d/2 O

®- 1]

¢ [(pETS ) (DET3 ) (DETd )(DETA_ )
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0 = (-d/2-d/4+13—11/2)01(>~)
i.e. d=10.

N.B.: Note that in this case all determinant line bundles should be considered

on the moduli space of Riemann surfaces with spin structure. As it is well
known that these give a finite covering space of moduli spaces. Accordingly
the vanishing of conformal anomalies is a priori not sufficient to guarantee

absence of the mapping class group anomalies.
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IV.Theta functions, Dirac determinants and bosonization

; . . 28
1.The geometrical meaning of the theta function'?®’:

Before giving definitions of theta functions and their properties,
we first review some geometrical aspects of the theta function‘?®’.

Let T=Cn/A be an n-dimensional complex torus with period lattice
A,i.e.,A=Zyl+...+Zyzn, where the 7;s, i=l,...2m, 2m=n are the

generators of the lattice. A holomorphic function f£:C"——C is called a

theta function with respect to A, if it satisfies the condition
(1) f(z+g) = pg(z)f(z) vzeC", geA.

*
where the "theta factors" pg:C'——C are functions of the form

(ii) pg(z) = eLg(z),

n

and L (z)= ¥ a z+b 1is an affine linear function. From (
g k=1 gk’ k g

e
~
i

for any two elements g g'eA, f(z+g+g') is given by

fz+gtg') = #g+g,(z)f(z) = #g(z+g')f(z+g')

= #g(2+g')ug,(2)f(2)

Therefore, if f(z)=0 then the pés satisfy the

relations

ug+g,(z) = ug(z+g')ug,(z) for all zGCn,g,g’EA.

*
Example: Take n=1, so ACC , and can be written as A=Z+Zr, Imr>0.
The series 0(2)=E€Zemme27rlnz converge§ very rapidly with respect to
n

A, and satisfies the above condition.
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Given two theta functions fland. fzwith f2¢0, then the function
F=f1/f2 is pgiodic with respect to A, and therefore defines a
meromorphic function on T=C"/A. Usually pg#O, then a theta function is
not periodic with respect to the lattice A, hence does not define a
function in the usual sence. However, one can identify the theta
function with a holomorphic section of a line bundle on the complex
torus G /A.

To see that, first let us recall that a line bundle L is a vector
bundle of rank 1 with fibres Lx isomorphic to the complex numbers,GC.
However, the isomorphism LX=C is not wuniquely determined, but is
determined only up to a factor AEC*. Thus a holomorphic section
s:T——L cannot be interpreted as a holomorphic function on T=C"/A.

Now given two holomorphic sections sl,sz:T———+L. with sz¢0, the
quotient f=sl/s2 is a well defined meromorphic function on T. In this
case the indeteminacy cancels out.

Let ug:Cq———+C*,geA be a system of theta factors. we would like to
associate to this system a line bundle L on T=C"/A. For that, let us"
define on C™XC an equivalence relation (z,v)=(z',v') if there exists an
element geA such that z'=z+g, v'=pg(z)v. Set L#=CnxC/~. The projection
map prlzcnxc———»c“ induces a map w:Lp~*—4T, with all fibres isomorphic
to C, and Lp becomes a line bundle over T. By construction the
holomorphic sections of L are in one-to-one correspondance with
holomorphic functions f:Cn———*C* satisying the theta function
condition. With the geometrical meaning given above to the theta
functions as sections of a holomorphic line bundle on an n-dimensionel
complex torus, now we give the definition and the properties of the
theta function associated with the period matrix Qi;ﬁﬂuwj, where {wi)
i=l,...g 1s a basis of C-vector-spaces of holomorphic differentials on

a Riemann surface 3.
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2.Theta functions and the Dirac deteminants:

The theta function is given by series expansion:

(z|q) = Z . exp (im nOn+erin.z) , (1)

nez
where z=(zl,...zg) and Q=(Qij) are coordinates on G® and the siegel
upper half-plane Kg respectively. Given a point Qe%g,consider the
lattice AQcc® generated by (1,8), i.e.,AQ=Zg+Zgﬂ. So we can form the
complex torus Jac(Z)=Cg/AQ. The theta function on it is holomorphic in

ngﬂg, and satisfies the quasi periodicity property:
§(z+n+'m.0,Q) = exp(xi'm.0.m-27i'm.z)4(z,0) (2)

for n,mezg. This means that when we shift the argument z by an element
in the lattice AQ, the theta function is mulitplied by a simple factor.

However, when we shift by half the lattice, namely z goes into z+n,

nezg, the theta function is periodic. So if f£(z) is an entire functiom

such that
f(z+m) = f(z2) (3)
£(z+0m) = exp(-7i'mOm-27i'm.z)f(z) (4)

37
then one can show that f(z)( )

is a theta function up to a costant,
i.e. f£f(z)=const.f(z,Q). Later on we will need this fact when we come to
the Dirac determinant.

Another important property of the theta function is its evenness
with respect to =z, 5(-z|9)=0(z]ﬂ), which can be proved easily by

reindexing the summation.

A theta function with characteristics: Given a, berR® a theta
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function with characteristics a, b is defined by;

6[:] = 2 exp(iﬂT(ma).Q(n+b)+217r(n+a),(z+b)}
nez®

_ eiwaﬂa+21ﬂa(z+b)

8 (z+0a+b | Q) . (5)

So the theta functions with characteristics are mnothing but the

translation of 9(z[ﬂ)=0[g ](z[ﬂ) by an element in the lattice LQ times

an elementary exponential factor. For Ei,égE{O,l/z) we define

1 1
€ €
.1 .2
SOl R O
_ B &
1 2
where i,3=1,...,g.Then one can show that

0[5 -zl = -1)*1% o[C1] z]@)
2 2

This means that 9[21](z|ﬂ) are even or odd according to whether
h.elez=0 (mod2) or 1l(mod2), respectively.

Dirac determinants: It was shown explicitly in ref.(26) that by

combining the Quillen theorem, gauge invariance and the vanishing
Riemann theorem, the {-function regulated Dirac determinant can be

-

expressed in terms of the theta divisor 8.

The Quillen theorem(27)

shows that, when a given differential
operator DX on a Riemann surface varies holomorphically with x, where x
is a point in the complex parametrizing manifold, then the determinant

line bundle: DETD——X has a holomorphic structure, and if DX has no

index, then the ¢(-function regulated determinant satisfies:

detDT

_ o max,x) 2
Dy = e |detD_| : (6)

where deth is a holomorphic function on X, and gq is the quadratic
function defined by choosing an origin in family of differential

operators;

56



q(D)=[|D-D0[[2 - i/27rJ tr(D—DO)TA(D-DO) . (7)
by

To express the spin structure-dependence of the determinants of
the Dirac opérators, one needs to know how spin bundles (line bundles
of degree g-1) are characterized. Holomorphic line bundles of degree
zero are parametrized by wunitary equivalence classes of flat
connections, where the transition functions are constant. This
corresponds to the first cohomology group with wvalues in
U(l):Hl(Z,U(l))=Pico(2)=RFS/Zzg. The section s along the a cycle 1is

. . s R —2midi -1 .
identified with e *"°°' times s along a, and s along b with e
1

2mil®
times s along b;{

Therefore a trivial holomorphic line bundle corresponds to a point
on PicO(E). So any holomorphic line bundle £ is completely chracterized
by any integer (its first Chern iclass or degree), and a point on
Pico(Z). In particular all line bundles £ of degree g-1 are given by
La®V(8,¢), where La is a fixed bundle for some chosen spin structure «,
and V(8,®) is a flat holomorphic bundle. Since the dual spin bundle Lél

has degree 1l-g, the square of the tensor bundle La®L-1 is trivial. So_

B

spin structures are in one-to-one corresponence with half-points in
Pico(Z), i.e.(9,d)e(1/2Z)/2.

The spin-structure dependence of the Dirac determinant in ref.(26)
has been found by coupling the chiral Dirac operator on L&l to a flat
U(l) gauge field A, constructed in terms of the harmonic l-forms:

bs . g
A= 2ri( ] 8- LeB) : , - (8
i=1 i=1
Writing the 1-forms ai,ﬁi in terms of the Abelian differentials w and

their congugate 5, one can show that eq.(8) becomes;

A = 27i(®+00).(0.0) .o +h.c. ' (9)
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Therefore, the chiral Dirac operators coupled to A takes the form,

D(z) = V;1+27ri(<b+ﬂ®) @nte , (10)

where z=3+06. If (@,@)6(1/22/2)2g Then the chiral operator D(z) is

explicitly spin-structure dependent.

Applying the Quillen theorem to D(z), and using the identities
J‘ w =0 , 1/21{5 Aw=1InQ ,

3
one can show that

. - -1
detaDT(z)D(z) = elﬂ(z'z)(ﬂnﬂ) (Z-Z)Ig(z)lz ) (1)

where g(z) is holomorphic function of =z. Shifting z by z+ntOm
corresponds to well-defined U(l) gauge transformations on X given by

P P
u(p) = exp[-2wi(mj a-n{ B)]
P p

o] Q

Under this shift, the regulated determinant eq.(ll) transforms into

. - . — 2
elﬂ(z-z)(ﬂ-0)+1ﬂm(ﬂ‘ﬂ)lg(z+n+ﬂm)l (12)

But the whole expresion must be gauge invariant, since the {-function
regularization is gauge invariant. Therfore to cancel the non-gauge
invariant prefactor exponential, the holomorphic function g(z) must

transform as follows

g(z4n) = eznln.ag(z) ’
g(z+0m) = e—2w1m.be—1wmﬂm-zn1m.zg(z) ’ (13)
where ezw1n.a’eaw1m.b are the unitary representation of z%. The

behaviour of g(z) is the same as the entire function f(z) discussed

above (see eq. 3. and 4.). Therefore, we conclude that
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g(z) = const.&[i}(z|ﬂ) (14)

where a,b are real characteristics to be determined.

The chiral Dirac operator D(z) 1is the same as Cauchy-Riemann
operator 8 acting on sections of the line bundle £(z) parametrized by
the Jacobian of Z. Therefore to determine the holomorphic section of
£(z) is equivalent to determining its divisor, i.e., the zeros of g(z).
By using Riemann wvanishing theorem, one can show that to any spin
structure one can associate a symmetric translate of the ©-divisor
which are translated by points of order 2 and in particular some spin
structures corresponds to the ©-divisor itself, i.e., without a
translate. Therefore, if we denot this particular spin structure by Do,
then

0
detD pip = const.lﬁ[o ](Olﬂ)iz

o

, (15)

and for other spin structures which correspond to the translate of the

8-divisor, we have

detDaDTD = const.lﬂ[; ](OIQ)IZ (16)

6) (28)

by combinig the bosonization formula‘? and the G.R.R. theorem one

can show that the constant is given by

[
det — V 2
const. = [ ]

J J g detImQ
Z

-1/2

Therefore the fermionic partition function for a given spin structure o
is;
2 ~1/2

det'— v o )
] |a[ﬁ 1cola)] (17)

J B detImf2
z

[+

detD DTD = [ J

Note that on a torus T, the expresion for the Dirac determinant

(fermionic partition function) can be obtained directly using the

59



. - . . 31
analytiec torsion theorem on elliptic curves Ray and Slnger( >

The analytic torsion on a Riemann surface, for a non-trivial
representation of wl(C) with hermitian metric is denoted by T(C,x) and
is defined as the positive root of Long(C,x)=-l/2§'(O).In this theorem
the expression for the torsion was shown to be given by;

. 2
miv'r
e Hl(u—rv,r)

TP(T,X) = (18)

n(r)

» 0 -
for p=0,1, where 91(U,T)=0(1/2-V,T), n(r)=e7r”/12 r] (1—e2"lkr) is the
k=1
Dedekind function, and x 1is a mnon-trivial character given by

2ni(mudnv
x(mr+n)=e ¢ {

The determinant for the scalar Laplacian in terms of the

{-function is;

detéA = detég 7= e 510 . (19)

The spin bundle on a torus is topologically trivial, since its degree is

Therefore the scalar Laplacian determinant and the spinor Laplacian on
elliptic curves coincides, i.e., we have bosonization. i

The explicit expresion for the fermionic partition function can be_

obtained by using the definition of a torsion on a Riemann surface

1.,
Long(T,x) = -—¢'(0)
thus
s _ 50
(detga a)fermionic* e
. 2
e7er Tﬁl(u-rv,r) 2
20
n(r) 20
using, ﬁl(u-rv,1)=0(rv+uz-u,r) and
v rtami (1/2-0)
[ v ]( l']‘) - e'ler T+2m1lV /2~ .0(TV+1/2‘U.,T)

1/2-u
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then eq.(20) can be written interms of a theta function with
characteristics v and (1/2-u). However, if we want to make contact with
the bosonization formula for g=1 obtained in ref.(26), we set ©=v, and

&=1/2-u, then one obtains;

st 7 TR ICIET
(dety 9) = n(r)

(21)

3.Explicit computation of the bose-fermi equivalence on Riemann

surfaces of genus g:

3.1. Introduction:

. 26
Alvarez-Gaume, Moore and Vafa'?®’

have shown that by summing over
all instanton (soliton) sectors, the partition function of a single
boson on a compact Riemann surface I of genus g with values in the
circle U(l), (i.e., compactified on Sl), is equivalent to the partition

of a single Dirac fermion with spin structures summed over. More

explicitly, it was shown that

Zbosa - Z Z(m’n)
(inst.)=m,n € A
= 2 z ~ with
fermi
spin structures
det — ¥V 2 -1/2
Z(m,n) = [ ] exp(-E_ ($))

N

- z - Z (1.1

(Quantum) (inst)

The factorization of Z into the Quantum partition function Z
bose Quant

and the instanton partition function Z. , can be seen as a consequence
ins

5)

of the fact that the Hessian'® of the energy functional E(¢,g) does
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not depend on the instanton sectors. Therefore evaluating the partition
function at one loop in the non-linear o-model one obtains eq.(l.1).
If, for simplicity, there are no twists (8=0, &=0) around the homology
basis a, biin HI(Z,Z) , i=l,...,g, then the contribution from summing
over all instantons in the bosonic partition function is given in terms
of the theta functions with characteristics

EE ]0 [z:] (OIQ)[Z exp(4 = i elez) ,

€ ,€ cz®
1" 722
where €, €, are the half-point on the Jacobian of the Riemann surface
2 which corespond to the spin structures and @ is the period matrix.
The aim of this work is to give an explicit computation for the
instanton summation for D bosons compactified on a D-dimensional torus,
D D . . . .
T =R /Ap, where Ap is a lattice with generators Pg, b,k=1,...,D. Notice
that the matrix § P#-PA=P ‘P =Q , is ofcourse a DXD symmetric and
BAk UV Tk v kv

positive definite matrix. we assume it is also rational in order to

relate the instanton sum to the theta function 0Q associated to the

quadratic form Q as introduced by Mumford®’’.

In section 2 of this work, we will show that when the matrix Q is -

. . . 26
the identity matrix, we recover what one expects( )

, namely the
product of eq.(l.l) D-times, and we recover the usual bosonization
formula. When Q is assumed to be an orthogonal matrix, the instanton
sum gives rise to the quadratic theta function 89 with characteristics.
However, when Q is neither the identity nor an orthogonal matrix the
result is still given in terms of theta functions but with twisted
characteristics. In this generic case we will show that we get rational

conformal field theory,(aa)

in the sence that the partition function is
written as a finite sum of a holomorphic function fi(ﬂ) times an

antiholomorphic function gi(n).

Finally, in section 3 we consider a fermion multiplet, i.e. a
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section of a spin bundle L, twisted by a vector bundle E and we look
for necessary conditions on E such that the partition functions
considered above may arise from bosonizing such a fermionic system. We
will find that the relative Grothendieck-Riemann-Roch theorem (GRR)

8)

(2 o 3 ' . s
theorem puts conditions on this sort of non ablian bosonization.

3.2 The instanton Sum:

Let ¥ be a Riemann surface of genus g and with a fixed homology

basis a , b in Hl(Z,Z), i=l,...,g; and let TD=RD/ADbe a D-dimentional
1 1
7
torus, 5 is its lattice with generators denoted by Pk, B,x=1,...,D,
. . A LA . .
such that the symmetric DXD matrix ka—ZapAPv Pk-PU Pk is rational and

positive definite.
Following the work of reference (26), the energy functional (the
action) E(¢) for the instantons ¢ (harmonic maps) on the Riemann

. . D .
surface ¥ with values in T , can be written as -

D
E(¢) =27 9 J dg’ A * ag , (2.1)
p=1

if we assume that there are no twists around the cycles a (resp. b )
1
then the boundary conditions as we go around those cycles are

respectively given by
' =+ Tal B ¢ = Im) P (2.2)
v v

where n? and m? are the winding numbers around the cycle a (resp.bi).
i
The instantons (solitons) are nothing but harmonic maps, therefore the

instanton solutions satisfy the following equation

& ;
v o4 i v o4 i
}_j (n, P o +m P B) (2.3)
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where @, ,Bi in Hl(E,Z) are harmonic forms dual to a , b cycles.
1 1

The energy functional for the instantons, E(¢) therefore reads

_ 7 voadt By g
E(¢) = 2 = S}J agt A * dg z 5 f agt A * dg
B BA
=21rEQ (nl_)A_‘nlf+ml_)B__m1f
vk i ij hi i iJj J
U,k
+n’ ¢ mf +nm’ C n) (2.4)
i i3 J 1 1]
where
A“=IaiA*£, B”=fﬁiA*f,
igj 1]
c,, = j ot A x gl = I gt A * o’ . (2.5)

(37)

In the formalism of Mumford the energy functional, eq.(2.4),

can be written in a more compact form, namely

E(¢) = 2 © tr[Q-('N-A-N + 'M-B-M + 'N-C-M + 'M-G-N)] (2.6)
where the N=(n1,....,nD), M=(m1,....,mD) are gxD matrices, 1i.e.,._
N,Mez(g’D), the matrices A, B and C are gxg matrices and Q was defined

before.
Next we compute explicitly the matrices A, B and C which will be
needed later on. The dual homology basis ai, ﬂi in terms of the Abelian

differentials w and their complex conjugate can be written as

@ =A w +c-c ; B, =X w_ +c-c , (2.7)
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= O ) = 6 b

b_aJ \[ﬂj I

i i

w =6 , ‘[w.=ﬂ ) , (2.8)

4 J 13 3 ij

i i

we get

a = [ —Q_] w + c.c ,
2 -0 713 J

B = {—-———1:—-—] w + c.c , (2.9)
Q-0 ij J

To obtain the matrices A, B and C we need the Hodge *-operator

properties on Abelian differentials and the Riemann bilinear

. . 44
1dent1ty,( ) namely

e UL [0

% i i i i

from which B

Therefore the matrices A, B and C in terms of the Riemann period matrix

2 read ;

3

2: O Q 2 3 (0 + Q)
A=——— ;B=——, and C = ——— . (2.10)

The partition function for all the instanton takes then the form

e-zwn:[Q-(TN-A-N+TM-B-M+TN-C-M+TM-C-N)]

inst. ( D)
N, MEZ &

Next, we want to apply the Poisson summation formula to the sum
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over M, keeping N fixed. In the g-dimensional case, the Poisson
summation formula applied to a test function £, on R®  is

Y gf(n)= Y gf(n) where f denotes the Fourier transform of f. Thus in
n€Z n€Z

analogy with the usual case, the Poisson summation formula in our case

would be
) 0D = ) £00)
Mez ‘8D’ Mez (&P’

Now the natural Fourier transform definition of a test function f which

is of the form of eq.(2.11) would be

}(K) - J F(X) exp(2 « i tr ('K-X)) dX (2.12)
R(S.D)

(g.D)

where the measure dX is on R , a gxD variable matrix, the matrix

variable k is also a gxD matrix.

Let us first consider the following Fourier transformation

I exp[-7 tr("X-B-X)-Q + 2m tr('K-X)] dX , (2.13)

R(g,D) i
where X and K can be thought of as D columns vectors, each of which is
a gx1 matrix, i.e., X=(x1,...,xD), K;(kl,“.,kD). Since the matrices B -
and Q are symmetric and positive definite of rank g (resp. D) it
follows from linear algebra that there exist non-singular symmetric
matrices F, G which are gxg (resp. DxD) such that B=F2, Q=G2. Changing
variables by setting Y=FXTG, eq.(2.13) becomes

0 ©
1

-5,21__J Lmer YY) camier(KFKG )
- ©

(detF) /% (detQ) ay

T -1,.-2 -1
B B - i - G F "KG
—(detF) "’ ?(detQ) g/ZJ__Ie Ttr (Y+1Z)(Y+1Z)'e wtr(G K ) 4y

-g/Ze-ﬂtr(KB_lKQ-l)

— (detF) "/%.(detQ) (2.14)

where the second step is obtained by setting 7=F 'KG™'. Now we have to
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apply the Poisson summation formula to the expression

2 i Q+Q 0+Q
DR [ G PN A WS % P

(g,D) Q-0
Mez ' &’

Note that the terms linear in M can be considered as shifts in

Fourier transforming the quadratic term in M. Therefore, by using

eq.(2.14), with B=1/ImQ, the Poisson summation formula applied to

1
eq.(2.15), finally gives the following contribution

gh/2 D/2 -g/2
(1/2) (det(Im Q )) (det Q)

T eefmfer () Qo) e m () ) ]

(g,D) -
Mez (2.16)

by combining the terms in the exponential of eq.(2.16) with the

quadratic term in N of eq.(2.11) the instanton partition function

becomes

gD/2 D/2 ' -g/2
;= (1/2) (det(ImQ))  (detQ)

(inst.

exp [m e ("N(Q-0)N.Q) + 1m/zer (CN(QHQ)M)

NMe z'® D)

+ inz te(CN(QHDN) +im/a tr(TM(n-ﬁ)M.Q)]

gh/2

= (1/2)®? (det(1m2))”’? (detq)™*?

al A8
N e MM e T (2.17)

N, Mez 8D’

where

Ag —am (N + M2 Q7YY 0 (N + M/2 Q H)Q

cam oee(N - M/2 Q70 0 (N - M/2 Q7Y -Q : (2.18)

2
=
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Not that in obtaining eq.(2.17) we did not use eq.(6.5) of ref.(l).
Having obtained the expression for the instantons partition functiomn,

next we consider the following three cases:

(i) Q = I,

T -1 ]
(i1) Q@ = Q 7, an orthogonal matrix,

(ii1) the case in which Q is generic (rational and positive

definite).

Q

Thus in the first case, Q=I, AN M and ANQM are given by

ANM=i1rtr(N+M/2)Q(N+M/2)
_N1M=-iwtr(N-M/Z)ﬁ(N-M/Z) : (2.19)
To relate the instanton partition function Z(inst) to the theta

function with characteristics, we have to decouple eq.(2.17) with Q=I,
into two independent summation in which each one gives rise to the
theta function with characteristics. To achieve that, we follow the

trick used in ref.(56), and set let N=(A+B)/2, M:(B-A)/2+§1, where_

g,D)

A,BEZ( and gle(Zi)P Now the eveness of AR is necessary so that N,

(g,D) (g,D)

M are in 2 , therefore if we were to sum over A, B in 2

keeping the eveness, we should include in our sum the following Dirac §

function mod (2) given by

§(A-B(mod(2)) = (1/2)BD E: exp(zwnm(A-B)-iz) . (2.20)
s’

Thus with these new variables; the instanton partition function

becomes;

4Titr€ . €
3gD/2 €08,

2
-(1/2) (det(mm)”/?. ) lo1£11 0l ] e
E1’526(22)13 -~

(inst.)

and therefore the full partition function is ;
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1

2 -D/2
det - V !

(bose)

=<1/2>35”’2[ }
f17s  det(Ima)
b

Y | 6 (510fa) Pexplumieze ¢ ) . (2.21)
€ ,e €(Z )gD e
—1 —2 2

Following again Mumford’s notation, this coresponds to

e det - v 2 -D/2
(bose):(l/z) ’ [ — ]
j] 8 det(ImQ)
z
z | o (510 |*Pexplemn ¢ e ) (2.22)
A=A 2
1 2
e €78
2
where we denote by ¢ =(¢_,¢_,...€ ),e =(¢_,e_,...e_) two D-vectors with
-1 1’771 1/ '=2 2’ 2 2

costant entries.

Thus summing over all instanton sectors in the partition function
of D-bosons on a Riemann surface with values in a D-dimensional torus,
D .D,.D ‘s . . . .
T'=R"/A" corresponds to a patition function for D-Dirac fermions with

spin structures, (el,ez) summed over.

Now we come to the case when the matrix Q is orthogonal. Since the

square root of the Q and its inverse are then equal, one can write ~
A%and a° as
N,M N,M

b 1

ANQM = amer (N + M/2)Q(N + M/2)-Q

A, = -imr (N - M/2)Q(N - M/2)-Q . (2.23)

Following the same procedure as in the first case one can write the

coresponding full partition function as ;

1

2 -p/2
det - V /

2 (Q

(bose)

3gh/2

~ (1/2)

(det Q )"5’2[ ]
jJ g det(Im)
pX
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2 exp( (imex (B+e )Q(B+e )-Q)
A,BGZ(E;D;
£1’52E (Zz)

e:><p{—i7rt;:c(£\.-_e_1 )ﬁ(A'il) -Q}exp{zmtr(A-B)EZ}

-g/2 det'- v 2 "b/2
= (1/2)%"%(detQ) [ _ )
€0€,620)" gs det (Im)
| 6% (51¢0]a) |*explimier ¢ ¢ ) (2.24)
-2

where 4 Q is of course the theta function associated to the quadratic

form Q. In the pesent case we can express ZES) , in terms of the theta
ose

(57)

lattice by writing eq.(2.23) as

oy = AT (UM /2) @ (8 + M/2)

iy = AT (- MT/2) @ (N - M'/2) (2.25)

where in this case, the lattice AD and its dual, T\D are equal, i.e.,”

N' ,M’GZS®AD=L . As before, the partition function can be writen as

' 2 -p/2
det - V
Z(Q) - (1/2)35D/2(det Q )'8/2[ ]
(bose) J"J s det(Imﬂ)
b
EZ | o, [EI(OIQ)] |?.exp (um ) (2.26)

€ ,e €1/2L/L DT 2
1’ "2

€ ~ ~ ~ ~
oAD[€1(0|n)] = ) exp(im(NHE ) .QQWE Jram (N+E ). E
Nez®® A

Finally we consider the case in which the rational matrix Q is
generic, the procedure for obtaining the §-function from the instanton

sum follows basically the same strategy as before the difference,
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however, being that the lattice, AD and its dual, KD are not assumed to
be equal and KD does not contain AD as a whole. Therefore the variables
N'",M’ in eq.(2.25) are in A=Zg®AD (resp. K=ZS®KD). Now if X 1is the
intersection lattice between A and A, then due to the rationality of Q,

it is a non empty D-dimensional lattice, making the following change of

variables
N' =a+ g8 axa € X, BE A
' ' -
M = a' + B' a € X, BEA/N.

the expressions for A and AN, M,become

'

N',M"

hN
[

in (e +a' /2 +8+8'/2) 0 (a+a'/2+8+8'/2)

|
i

sim (@ - a' /2 + B -B'/2) Q (e -a' /2 + B - B'/2)

Now A and A are still dependent on each other, and to decouple them we

let a=(y+6)/2, a'/2=(6-v)/2+9 where v,6el and He()\/2)/). The partition_

function then becomes

det,- v 2 “bs2
Z(Q) = (1/2)35D/2(detq)_5/2[ ]
(bose) 175 det(Ima)
>
Z 6 [ﬂiﬂ;ﬂ/z] (010Q) 9 ['ﬁiﬂ;ﬂ/?‘] (OIN) - exp (4mi (848/2) - n)
,n€1/20/) 5
B.B" € /X, /X . (2 .27)

Due to the fact that A/X (resp. A/)\) are finite sets, the summation
above is finite, we see that when Q is rational we get rational

conformal field theory.
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3.3. Bosonization formula for a twisted spin bundle L

EZ

As we saw, when we compactify D bosons on a generic (rational)
torus, we get generalization of the usual formulas involving different
type of {#-functions. It is mnatural to ask wheather some kind of
bosonization formula holds even in this more general setup. One
possibility‘comes from non abelian bosonization.

To examine this case, we couple a fermion, that is a section of a
spin bundle L on a Riemann surface (IF=K, K being the canonical bundle)

to a vector bundle E and ask when we may have bosonization formula of

the form,

Z[det"V'

— -D/2
|| det d o |l = ] |F)|? (3.1)

fle det(ImQ)
2
where F(Q) is holomorphic function on moduli space # . The equality in
&
eq.(3.1) implies conditions on the vector bundle E. The easiest to get,

(28,50)

come from the relative GRR theorem When applied to the

determinant line bundle, Det aL@E whose section is det6L®E this theorem

reads

= ®2
Cl(f!(DET ah@E) ) =2f (Ch(LeE) .Tds (3.2)

f)a

where f 1is the projection map of the universal family of compact

is the relative tangent bundle. By

Riemann surfaces; f:X—H and Tf
g

recalling that:

Ch(E) = rank(E) + C (E) + (Clz(E) - 20 (E))/2 + ...,

TA(T) = 1+ C (7)/2 + (ci(r) +C (TN/MA2+ ...,

and that
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Ch(1®E) = (ChL).(Ch(E)) ,

we have

Ch(L®E) = rank(E) + C_(E) + Clz(E)/Z - G, (E)
+ rank[C (L)] + C_(L)-C_(E)/2

+ rank[C i(L)]/2 . , (3.3)

where we have kept only terms up to 4 forms.
The relative tangent bundle 7 and the spin bundle L are related to
the canonical K, by Tkt (resp. L=K”2), Therefore eq.(3.2) after some

algebra becomes

- ®2 2
Cl(f!(DET 81®E> ) = Zf*[cl(E)/Z - Cz(E)

+ rank{Ci(K)/lZ - € (L).C_(K)/2 + Ci(L)/Z)]

By substituting L for KY? and using the definition of the first Chern

class of the Hodge bundle, A=f*(l/12Ci(K)) one obtains

C, (£, (DET 31@E)®2 =-rank(E)A_+2£,(1/2C (E)-C_(E)) (3.4)

on the other hand, the first Chern class of the determinant of the
boson Laplacian is twice the Chern class of the Hodge bundle A,
therefore in order that eq.(3.1) holds the rank of the vector bundle E
must be D and f*(l/zci(E)-Cz(E))=O.

It may be nice to relate this condition on E to the non-Abelian
bosonization conditions one gets iIn representation theory of the

Kac-Moody algebra‘ss).
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V, TWO DIMENSIONAL SUPERSYMMETRY AND SUPERSYMMETRIC

NON-LINEAR o-MODEL

A.TWO DIMENSIONAL SUPERSYMMETRY

1. Supersymmetric Algebra and Superspace(sg):

A supersymmetry (SUSY) algebra is a graded version of the Poincare
algebra, i.e., its composition rule contains both commutators and

anticommutators. The structure of the algebra is

[P,P] =0 [M,M] ~ M [P,M] ~ P

I
o

(P,Ql]

(M,Q} ~Q {Q,Qy -~ P (L

where P, M are the generators of the translation, and the lorentz
rotations respectively, and Q is the super generator.
Superspace:The N=1 - D=2 superspace has its points labeled by the

coordinates ZA = (XNU; 9”), where x#v=(7a)”vxa is the space-time

-

coordinate with {7a,7ﬂ}=2gaﬁ and 6 is a Majorana spiﬁor. The
representations of SUSY generators are differential operators acting on

superfields and are given by

. v _
P = 1id , = i{(d - 6 id 2
o = 1, Q, @, o) (2)
and
M = -i/2(x* 8 .+ 06 8 ) NES
iy (B VYA (g v

Note that the spinorial derivative 6# (the anticommuting partial

71



v

f-derivative) satisfies 8#6v= 6u.

Under the supercoordinates transformation

x MY VL BV (B Y) : (4)

g' = gt+ (5)

where €, ¢ are Grassman parameters, the superfield ¢(X#? 9”) goes

into
PG 1/2e 407 ety = expl-1(6MR o T B 0H ()

i.e., supersymmetry transformations are vrealized as rotations and
transformations in superspace.

Note that the above transformation is also shared by the
space-time derivarive of the superfield 3#U¢. However, the spinorial
derivative apw, do not transform covariantly. The spinorial derivative

that anticommutes with QP is given by

N B
D =4 + ig"8 . 7
B B HA )

-

This is not to be confused with the covariant derivative (there is no

connection). The D algebra is isomorphic to the algebra of Q
(b,.D} = 248 . (8)

Superfields are in general reducible representations of the SUSY
algebra, however, by imposing constraints on the superfields using the
covariant spinorial derivative, one can construct 1irreducible

representalons.
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Integration in superspace:Integrating over a single Grassman

variable v is defined such that the integral is invariant under
translation, i.e., one is forced to require fdy =0, fdy v =constant
normalized to 1 which are both translation invariant. A function of 7,
£(vy),in Taylor series is f£(y)=£(0)+yf’(0) since +°=0, the +'s
anticommute among themselves,therefore fdf(1)=f'(0), i.e.,integration
is equivalent to differentiation.

Applying this to the spinorial coordinates we have

I df =4 (9
a «

and hence,

Jda 0P _ 5 9P _ 5P ' (10)
(04 s} a4

2 2 _l_ B ) _
Jdﬁ() - aaﬁ(oea)— 1 1D

therefore the 2-dimesional 6 fuction 62(9) can be defined by

62(0)=-02=-~%- Gaﬁa these techniques can be used in the superspace

-

integration and one gets

J &x d’( ) = J dx D°C )|, : (12)

Note that we are using the spinorial derivative instead of aa, but

after the calculation is carried out, # is put equal to zero.
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2, N=1 scalar superfield:

The N=1 real scaler field ¢ is an irreducible representation of N=1
SUSY. To make contact with ordinary space-time, the superfield ¥ is
expanded in a terminating Taylor series in §

, with the component

fields appearing as the cooficients of the different powers of §;

B(x,0) = A(x) + e%a— 9%F(x) (1)
where

A = 6,0,

w(x) = D d(x,0)],_4

F(x) = D%¢(x,0)|,_, (2)

where ¥ is a two component magorana spinor, the component fields A, F
are real and bosonic, F is called the auxialiary field, it is a
non-propogating field. The presence of F is to make the SUSY alg;bra
off-shell closed which also means that the fermionic degrees ™ of
freedom=bosonic degrees of freedom off shell.

Using the above definitions of the projection one then can find

the component action from their superspace counterparts. The kinetic

action for a scalar N=1 superfield is given by

112 .2, @ 1l te 1 B a
S = —[de d*s DD _¢ = — de 5 DD, (%D 4) (3)
S = Lfdzx [—DﬂDaqSD D ¢ + 2D%$D°D qs” (4)
4 B a o 9=0

to get the scalar A, the spin ¥ and the auxialiary field F we use the

following identities,
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2,2 .2 _ s B
(D)™ =0 , D Da laaﬂD (5)
then § takes the form
_ 2. r_ 1 l 2 . o B
S = Jd.x[ pADA +—F = i3 ] (6)

This 1is all we mneed to know about the matter superfields to
discuss later the supersymmetric non-linear o-models. Now we should
like to present a general description of the formulation of the N=1

-D=2 supersymmetric gauge theories.

3. N=1, D=2 gauge superfield(jg):

In case of the gauge superfields, we wuse the gauge spinor
potential Fa which contains the vector two component gauge potential.

Abelian case: In the abelian case, the gauge transformation is

-

given by 4I' = —iDX, where X is a real scalar superfield. The vector

potential is constructed as

Tap = 727 Pl | 1

and transforming as
araﬁ = —18aﬂX (2)

the spinor field strength Fais given by
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— ipP - ;
Fa = iD Darﬂ , D Fa =0 (divergence free) (3)

the vector field strength Fa is related to Fa through

B

Faﬂ = iD(aFﬁ) (4)

just like the components of ¢, the different components of Fa are

obtained by projections of Fa onto the #-independent sectors

o = Falomo  fap = PGFplam0 = Faploo )

since the spinor strength Fa is divergence free, therfore, DZF!0=O is
. 2 _ hsa B .
not independent D Fa16=0_ 21aa Aﬁ. Fa can be thought of as the spinor

component of a connection super-1 form

_ o af
r = Fadﬁ +Faﬂdx (6)

where Faﬁ’ Fa are superfields, having defined the spinor connection,

and the vector potential thus one can form the different covariant

derivatives namely; -
V =D +7T , vV, =8 ,+7T (R

and think of them as components of the pgauge covariant derivative

vA=(Va’vaﬂ) which satisfy the algebra

) 1
(VyVg) = 219 4 1) =~ S F (8)
(V V] =—=(C_ F. +C, F ) (9)
afl’ 6 2 ay 68 B a

where the curvature Fa, F are the spinor and vector field defined

af

above. The non-abelian case is defined by eq.(7) and eq.(8) where the
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connections and curvatures are lie algebra-valued.

4. The Feynman supergraph rules:

The formulation of supesymmetric field theories in terms of
component fields is not the most suitable one, and if one wishes to do
perturbation theory, the numerous propogators and interaction vertices
lead to a considerable number of graphs to be calculated. Once a
supersymmetric theory is written down in terms of superfields
(constrained or non-constrained), the best way to be followed is the
so-called quantum superspace: Feynman supergraph rules can be written
down by means of a direct inspection of the superfield action.

The Feynman ruels for the scalar superfield can be read directly
from the Zagrangian. By considering the generating functional for a
massive scalar superfield ¢(x,0) with an arbitrary self-interaction

£(4), B,

il

z[J] I pg o x4 4D g HE ()+75]

2.2 3 2.2 1 2
_ efd xd yf(——a—j—)J 04 efd xd 0 [——¢ (D"+m) $+J4] 1)

we complete the square in the usual fashion, do the Gaussian functional
integral over ¢ and obtain:

2.2 d 2.2, 1 1
_ efdxd 0f (5~ efdxde —J— J 2)

zlJ] D +m

By using the identity;
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: : (3)
D +m O-m
we can write
b-m
<T($(1)$(2))> = — -0y (4)
k'+ m
where
0 5
Dla(k) = o + kaﬂ (3)
1

remembering that

2 2.2 2
5 (€£4 62)D1 ) (91— 02) =6 (61— 92) (6)

This is all what we need to carry out superfield loop corrections.

We illustrate what was explained above a

by calculating
; . 3 . .
self-energy correction to a massless model with a A¢ -interaction. It

is represented by the graph drawn below,

K .
$(-P;6) KeD BP0
P

the effective action contribution of such a graph is:

2
r =22 J"(LE” d’6d’0' ®(-p;0')8(p;0).
2 2

(2n)

Xszk D%6%(0-6") D%6%(8'-9) 7
(2m) 2 K2 (k+p) >

The terms in # can be reduced upon superspace partial integration:

D6%(9-6")D*6 (8" -0)B(p;6) = 6°(6-6*) [D’D*62(8'-8) .(p;8)
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+D aD262(0'-6).Da@(p;0)+Dz6z(6'-9).D2®(p;0)] (8)
however, using the identity
(0% - -

and

we can reduce our superspace loop computation to

2 2
r, = JLP—Z % @(-p;ﬁ')Dzé(p;ﬁ)j d kz - L : (9
(2x) (2r)” k" (kt+p)

This is a finite correction to the ®&-kinetic term.
Now, in calculating loop corrections to supersymmetric non-linear
o-models, we have basically to deal with the Feynman rules derived

above, as only scalar superfields are involved in their formulation.

5. Two-dimentional N=1 supergraphs and explicitly broken

-

supersymmetries(qo):

There is a renewed interest in two-dimensional supersymmetric
theories (especially non-linear o-models) in connection with
superstring theory. Here, we propose to analyse the effect that
explicit breakings of N=1, d=2 supersymmetry might have on models
constructed in terms of scalar and gauge superfields. The former are
indeed of major relevance in connection with N=1 supersymmetric

. (60,39,61)
non-linear o-models .
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Our main purpose here is first to set up modified Feynman rules to
perform our analysis while working in superspace, even though
supersymmetry has been broken. Instead of treating the breaking terms
as spurionic vertex insertions into propagators, we shall adopt the
technique of shifted superpropagators(sz). This will permit us to
account for all powers of the breaking parameters to a given order in
perturbation theory.

Once this step has been accomplished, we shall present the results
of our superspace calculations, and discuss the effects of the
breakings on the infinity structure of the effective action. This 1is
the initial step towards a broader programme concerninig the analysis
of the breaking terms for the more interesting situation of the
two-dimensional supersymmetric o-models.

Notice that a complete analysis of all possible soft breakings of
N=1 d=4 supersymmetry has been made in ref.(63); however, dimensional
reduction of these results would be cosistent with breakings of N=2,
d=2 supersymmetry, and not the N=1, d=2, one which intend to consider

here.

The following (anti-)commutation relations for N=1 supersymmetry

in two dimensions will be of use in the course of our algebraic

manipulations:
2 2
{Da)gﬂ)_caﬂ ’ [D ’004]&])(2 3 [Da;o }"'0
(D%, 6%]=-1+8D . D=4 +i6%s : (1)
o o a a

where § is a Majorana spinor and C is the charge conjugation matrix. We

shall adobt here the notation and convention of ref.(59).
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Scalar superfields @(x,) can be defined by the following

projections:

AGx) = 2x;0)],_, . W (x) = D _2(x;8) ]|

§=0 ’

F(x)

2 i . .
D ®(x;0) ] ,_, : (2)

To consider the case of gauge theories, we need to specify the

superfield wich accommodates the massless gauge vector field, v, and

its fermionic partner, A. It is a real spinor superfield Fa(x;ﬂ)(ﬁh)
whose components are defined by
o
I-‘cz!0=0 B g‘oz ’ D I‘<:z|€==0 =B,
D T l - (gauge field plus gauge-invariant
(B ) 8=0 af physical scalar)
DﬁD r | = A (gaugino) (3)
a B'6=0 o )
Considering now a set of scalar superfields @i(x;ﬁ)(i=1, ey M),

we add to the quadratic supersymmetric action
£ =t Vd% %Ny (D oty—|d% M o' (4)
Q) 4 o 2 i3

terms which explicitly break N=1 supersymmetry; their net effect is to
shift the masses of the physical scalar and spinor fields contained in

@i(x;ﬁ). They are collected into the breaking lagrangian, tB' given by

1 2 27 2 i o i 3
£B=—§—Jd g 6 Dn“¢7® i, (D72) (D 2 )] , (5)

where m’and u are symmetric MxM mass matrices.
Further on, other explicit breaking terms will be discussed in

considering possible couplings for the superfield @i(x;ﬁ). The most
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interesting ones are of the kind [d’f ¢%8°, [d%% ¢°a(d%2)(D @),

Jd®s #*2(p%s) (D*®), [d’0 6°(D°®) (D7) (D 2).

Concentrating now on the terms contained in £0+£ the first step

B’
will consist in the derivation of the superpropagator <T(®%§)> with
the breaking parameters m’ and 4 taken into account to all orders.

By coupling the superfield @i(x;ﬁ) of Lagrangians eq.'s(4) and (35)
to external sources, it follows that the most general superpropogator
has in principle the following form:

12

P(x,6,;%,,0,)= -[1+¥Z; XnAn(xl,Gl)](Di+M)—16(x1-x2)62(81-02)26)
where the coefficients X; are c-number valued MxM matrices to be
determined, the operators A.n are defined below, and Di stands for

1 o
TD (Xl,a)Da(Xl,Hl) .

A=D> , A=¢6"D , A=0%_ , A=f°D°,
1 2 o] 3 o 4

A=0%% , A=0%"D , A=23 p%2pf . A =3 6%,
5 6 a 7 af 8 af

A=a 0 , A =00%% , A =0%°pD*, A _=46°. (7)
3 aff 10 a 11 a 12

Because of the (anti-)commutation relations among the D's and §'s given
in eq.(l), the truly independent operators can be shown to be just Al,
Az’ Aa’ Aa’ and Alzz all the others can be written as linear

combinations of them. Moreover, Ai’ Az’ Aé, AB, and Alzform a closed
set under multiplication.

This observation considerably simplifies the task of obtaining the

superpropagator of expression of eq.(6), which reduces to
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N 2 12, 2,,
?(xl,ﬁl,xz,ﬁz) (1+XA2+YA4+ZA8+WA12)(D1+M) ) (x1 XZ)S (01 02) )

(8)
with the matrices X, Y, Z and W being determined by
(I+A)X+HOCZ = -A , CX+(1l+A)Z = -C ,
2(A-B)X-(1+2A-B))Y+200CZ = B ,
2i0CX-2i0(A-B)Z+(1+2A-B)W = D . ¢))

A, B, and C are matrices given in terms of the masses of the theory:

Fig.l. Tadpole graph for the real scalar superfield.

A = ——%—‘T(Mpi—mz) , B = ————————1—2-—2—-(2M/,L+mz)
O-M -m 0O-M" -m _
C = i————~l;-z—p , D= —————};——;—(Mm%+2wm) .o (10)-
0O-M" -m O-M"-m

After some algebra, our superpropagator reads
P(k;0,6 ) = <T(2(1)8(2))> = a(k) (D2 -10)6° (8 )
2, 0 2 2, ,2.2.2
-B(k™)4 D1a6 (012)+7(k )01D16 (012)

+in(kz)kaﬁ91 D

2 2, ,2.2
o 156 (012)-e(k )016 (912) , (11)

where
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a(k)= , B(k%Y = Ra(kH)M+izZk?a(k®)
k% -M%-m?
v(k?) = Ye(kH)M-Wa(k®) |, 5(k?) = iXa(k®)+Za(k®)M
e (k%) = YkZa(k®)M+Wa (k*)M . (12)

Having the complete expressions for the superpropagators acconting for
the breaking terms, we next present the results of our supergraph
evaluation of different supersymmetric breaking couplings. In doing so,
we can have a first estimate of how the breakings affect the structure
of the divergences of the effective action of the supersymmetric model.

Case(i): the coupling is (A/3!)fd26@3. In this case, the
supergraph of fig. 1 contributes the following term to the effective

action:

2 2
AJ—-‘—”‘— a(kZ)sze <I>+AJ d’k 7(kz)Jd20 0% (13)
(2m)? (2m)?

The diagram of fig. 2 contributes the term

Fig. 2. One-loop self-energy for the real scalar superfield.

2
AZI_Q—E_E(Za(kz)V[(k+P)2]'2Ma[(kz)}-Ma(kz)v[(k+P)2]}-
(27)

2
szaqxb +AZJ&Z{2a(kZ)e[(k+p>2]+2/s(kz)ﬁ[(k+p)z]
(2m)
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+4B (kP )y [ (ktp) 21 -7 (K2 ) v [ (kp) 2 1420 (K2 ) [ (etp) 2162

2
sza 800 +A2J—9—E—Ea(kz)a[(k+p)2]Jd29<D2@)q>
(2m)

AZJ d*k 2 2 J 2
A |———a (k) B[ (k+tp) " ]|d4D[§ 2]
(21)? a

-2A2f“gi5—~a<k2>w[<k+p>2}fd29[<eznz+eab )e]e. (14)
(zw)z a
In this case, the mass breaking terms do not affect the ultraviolet
behaviour of the exact model, as already expected by a power-counting
arguments. The only logarithmic divergence is the one arising from the
supersymmetric piece of eq.(1ll) [the term proportional to a(kz)], and
it can be eliminated by a field redefinition of the physical scalar A.
case(ii): the coupling is (1/2)[d’6@(D"®)(D_8). The result for the

tadpole of fig. 1 is

2
2A2I-&z[a(k2)mp(kz) ]Jd"‘m

(2m) -
2 2
+,\I—-‘3-15———[7(1<2)-ﬂ<k2)]fd290°‘n @-2AI~9—k—e (kz)fdzea%. (15) -
(2m)? * (2m)°

We would like to remark that the first (supersummetric) piece of the
above contributon contains a term coming exclusively from the breaking,
namely, the term proportional to ﬁ(kz). It can be shown to wvanish in
the case p=0, but if p=0 this term introduces a mnew logarithmic
contribution to the effective action. It is also worthwhile to notice
that if either m or pu is non-vanishing, the term proportional to e(kz)
in eq.(1l5) is also logarithmically divrgent, however, its contribution

has an explicit f#-dependence and hence is non-supersymmetric.
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case(iii): the additional coupling term is ,(A/3!)fd2€02@3, which
explicitly breaks the supersymmetry, introdusing a three-scalar vertex.
The contribution of the tadpole graph to the effective action is
d’k 2.1 2,2
AJL——-~—a(k )jd 66°% , (16)
2
(2m)
which is a logarithmically divergent F-term.
case(iv): the additional coupling term,(A/2)fd2002®(Da@)(Da@),
which breaks supersymmetry. The contribution of the tadpole graph is
a’k 2 2 2 2
AJ-———E [Ma (k™) -B(k )]Id 6 679 . (17)
(2m)
In this case there 1is no supersymmetric contribution and the
logarithmic divergences arise from the supersymmetric and supersymmetry
breaking parts of the propagator eq.(11).
The latter, however, shows up only in the case u=0.
case(v): the additional coupling term, Afd2€02®(D2©)(Dz®), which
breaks supersymmetry and whose coupling constant is dimensionless,
generating an on-shell non-polynomial interaction in the physical

scalar A.

]
53

Fig. 3. Gaugino mass one-loop correction.
In this case the tadpole graph contributes
2
—A—I—Q—E——[Ma(kz)-2ﬂ(k2)+y(kz)]Jd20¢ . (18)
2 (zn)z

So, the whole contribution is linear in F and hence supersymmetric.
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This breaking introduces a logarithmic divergence only in the case u=0.
case(vi): the coupling breaks supersymmetry and the coupling
constant is dimensionless, (A/2)fd2662(D2®)(Da@)(Daé), generating
an on-shell a quaric four-fermion coupling, (¢a¢a)z.
In this case the tadpole graph contributes
d’k 2 2 2
AJ;—————— [Ma(k™)-4(k )]Jd 6% , (19)
(2m)*
which is supersymmetric and diverges logarithmically only in the case
p=0 .
Let us finally contemplate the interesting case where the matter
superfields @i(x;ﬂ) are coupled minimally to the gauge multiplet
Fa(X;H)(Sg'SA).

The gauge piece of the action is

1t 2, ko« A 1tz .2, 2, f
S = _E_Jd xd“ (DD Fn)(D DaFA) _ZE_Jd xd (D Fa)D (D Tﬁ)
| a2xda®s #2m(D"Dr )(D’D T.) (20)
2 K a A !

where a 1is the gauge-fixing parameter, and the last term 1is the
explicit breaking which gives the guagino a mass m, while keeping the
gauge vector boson massless.

In this case, by adopting the Feynman gauge (a=1), the operator we

need to invert in order to get the vector superpropagator is
o = @-ma -mia )6 - m(1-a_-24 )iP . (21)
a 1 8" 2 T T a

By using the algebra of the operators Al’Az’Aa'Aeand Alz,we can work
out the expression for (Oﬂ)l. Since it is very cumbersome, we do not

report it here.
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Finally, we would like to mention that with the superpropagator of
eq.(1ll), it can be shown that the supergraph of fig.3 generates among

other terms a finite contribution whose superspace dependence is of the

form

2,2 2, K. Q A
Jd xd“6 6°(DD Fn)(D DQFA) , (22)

which is the term giving the gaugino a mass.

To summarize, we have in this section pursued an attempt to extend
well-known techniques for N=1 d=2 supersymmetry in order to include
explicit terms which may be of two types: quadratic terms shifting the
mass of physical field in the same supermultiplet, and interation
terms. We derived modified Feynman rules and applied them to analyse
the effect of the breaking terms on the divergence structure of the
effective action. All breaking terms presented here can be classified
as soft breaking terms, in that the divergences they induce are at most
logarithmic, and hence not worse than the divergences already present

in the unbroken theory.
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. . £589,60
B. Supersymmetric Non-linear oc-model )

1. Introduction:

The action that describes a two dimensional Non-linear o-model is

given by

2 .2 2,2 a.a b
S = Id =xd" 6 £=Jd xd" 4 gab(é)D & Da@ . (L)

The superfields % are coordinates on a Riemannian manifold M, called
the target manifold.

The @a’s, =1,..... dimRM are real N=1 superfields and &b is the
Riemannian metric tensor of the target manifold M. The superfield

can be written in the form
82 = A%+ Gy - 99+ 96F° (2)

where A? is a set of real coordinate, ¥ and E take their values in the

tensor product of two dimensional Weyl spinors and the Pullback tangent
. . a

bundle, i.e. the space of tangent vectors at the point A~ of the target

manifold.

The equation of motion associated with the action ( 4) is given by

__EH%;~ - Da__Qg__ =0 ) (3)

3% ap%s®
Under an infinitesimal variational §6% in the superfield @a, the

change in the lagrangian density 6Z,is given by

§2 = D [——%—;5@5‘]
ap%a

By using eq.(l), the Euler lagrangian equation (eq.3) is
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VD e =0 (&)

where V is the covariant form of D with respect to the target manifold

M;

v*p 8% = D% 8% + '?
a o b

p%Pp &° (5)
C (o2

Pic is the Christoffel symbol in M. In mathematics, the field

(superfield) % that satisfies eq.(5) is called a harmonic map ,i.e. a

generalization of the harmonic equation.
DD &% = 0 (r? =0)
o c
Under the ordinary supersymmetry transformation
a .,
SQQ = i(¢ Qa) (6)

a . . . .
where ¢ 1is a Grassman parameter, the action in eq.(l) is manifestly

invariant.

-

2. Quantisation: The background field method, normal coordinate

. (65,61)
expanslion '

The wvacuum to vacuum amplitude in the presence of a source J
corresponds to the generating functional of the full Green’s function,

i.e.

<0|0>; = 2[J] ; (1)

. . 4
2(3] = NJﬂ¢ elS[¢]+1fd‘xJ¢ (2

3



(n)

The full Green's function g (xl,.... ,Xn) is given by
g™ (x x ) = <|T($(x ). .. .dx))]>
REREREE DERRE ;
1 5 §
= — — ... — Z[J] . (3)
i 6J(Xl) 6J(Xn) J=0

The generating functional of the connected Green functions W[J] is

defined by,

. L f b i
<o|o>J - z2(3] - Nfﬂ¢els[¢]+1fd.xJ® _ G IWII] “

i.e., W[J] is defined such that W[J]=-ilnZ[J]. Correspondingly the

connected Green's functions are given by

(x7,....,x") = <|T(¢(xl)....¢(xn))]>c

- L. ~E Wi (5)

i 63 (x) 63 (x ) J=0

The effective action is the generating functional of all 1l-particle

irreducible n-point Green's functions which is defined by;

Tl¢ 1= W[J]-Jd“x N (6) -

class

(¢ Las corresponds to the classical field, the background field)
c S

6T [¢ ]

class
J

class

and

_ _8WiJ]
class §J

from which it follows that
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J+ifd'xT¢ _ Rl s]+ifd5xJ¢

clas

class

<0[0>, = z]J] = va¢ cHSLe

hence

il ] NJD¢ JiS[¢]+ifa'x(g-¢ )

e class™ = class (7)

with ¢=¢ﬂa“+w, where n is the quantum fluctuation.

Note that in the non-linear o-model, where the field ¢ﬂ£ss takes
values on a manifold, the quantum fluctuation would cocrrespond to a
section in the pullback of the tangent bundle of the manifold (see
section II.B.). Explicitly eir[¢ckms] can be written as follows;

+n]-ifd“x-%£—————.n

class

irfe ]

e class™ = NJIZ)W els[¢class (8)

From this equation, the total effective action may be split in the

following form;

Tl¢ 1 =S[g  J+T%P[4 ] 9

. . . . 1 .
where S[¢ ] is just the classical action, and I,mm[¢ ] 1is _the
class class

sum of all loop corrections to the effective action I'[¢

class
. 1lOOp . . ) 4 6T
elr [ class]= NJ:DW els[¢class+7r] lS[qsclass]e lde 5¢ -
) class

(10)
This functional was defined by de witt'®®? and is denoted by
QB[¢ 1 ], and it generates all diagrames containing at least 1-loop

class

and with amputed external legs.

The action of the bosonic non-linear o-model is given by
l N
s[¢] = —§—jdzx g, (#)3"s"5 ¢’ (11)
i3 M

where
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6 (0=l ()t ()

(12)

Since the quantum fluctuation n (x) fields are a coordinate differences

on the manifold, they are not covariant under reparameterization. Which

in turn implies that the perturbation thoery developed in terms of

i . - .
® (x) is mnot manifestly covariant.

To circumvent this problem, we can express the fluctuation = (x)

. . . i .
as a local power series in terms of new fields ¢ (x) which transform as

contrvariant vectors; these will be our quantum fields. To achieve this

we study the geodesic line connecting the two points whose coordinates

are ¢l (x) and ¢ (x}Hﬁ(x), and with tangent vector ¢*(x) at the
class class

initial point ¢ll (x). Such a geodesic can be written as
class

i

$(0) = ¢ Gortts - Tt O
jk

class

o

1 s 3.k .3
-31"jkl§‘§‘§ > +

for s =0 ¢ =

and for s =1 ¢ =

i 1 4 i
() = ¢t 5T *

class

Remark: the fact that wi(g)

can

. i .
contravariant vector ¢ (x) is of

2
3

be written

importance

(65)
(13)
(14)
(15)
in terms of
because instead

the

of

expanding a tensor T.1 ) (¢1. +n(¢)) in terms of ﬂl, we can expand
1i...10 ¢class

it in terms of ¢ (x) and such expansion will be covariant.
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T L@ ) =T () ’ (16)

k ...k 1 k ...k
1 m 1 m
1 48 ... 3 .. : :
To )= = =y (@] ¢
- ! i k .k
1 m n=0 a1 ¢ n 1 n =0
i i
_ 1 a ...... d T ¢ l.“.g n (17)
n! i ik k
n=0 = 4¢"1 3¢'n 1" Tn

class

the importance of this expansion is that it is completely written in
terms of the covariant objects, namely the tensor T itself and the
tangent vectors §‘i's. The coefficients of the power series can be shown
to be expressible in terms of the covariant derivatives of T and the
curvature tensor of the manifold.

Now the easiest way to obtain the manifest covariant form of the
coefficients is to use the method of normal coordinates. In such a
frame the derivatives of T with respect to g’i can be easily expressed
as covariant derivatives of T.

Normal coordinates: Suppose we have a geodesic passing through the

A . i . ] . 9
origin where it has tangent vector { . Its equation is thus given byf )

i i L sl ax2 1 i k,1 3
X(é)—w-zr';kgga 31§kl§8‘ga+ ..... . (18) -

where

' —srt-r"r ot (19)
jk1 J k1l k1l nl Jl kn

In this way each point of the geodesic (a fixed value of 4) has its
coordinates determined by a power series in ¢ . In the normal frame

: i =i =i
(coordinates Xl) , we have I‘fk=0 and I‘( 1 )zO, .... where (jk1) means
b 3

that the indices are symmetrized, so that the geodesic equation becomes

ii(é)=g’i6. Then we can see that the points of the geodesic in this new
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coordinates system are given by the coordinates ¢° of the tangent

vector at the origin,up to a scalar parameter 9.

So, that the tensor T (¢ +n(¢))= T () in the normal
i3 13

class

coordinates becomes 7 (¢);
ij

_ - - 8 : m m_n
TGO =T (O S | 2 B8y | e
J ) ac™ Mo ac™  ac 2o
1 3 3 8 | anx
* . . i I . (20)
ar™ ac™  ar 0

Our next step is to write the derivatives of T in terms of the
ij

covariant derivatives and curvature tensor. In normal coordinates we

have

T =vVT , as I‘l’c =0
as_m ij m ij 3 0
o2 ; Ly ggr.tg@ ;. L@ 7
ag_m ag_n i3 (m n) ij 3 (min) 1j 3 (mjn} ml

9 4 8 5 .y vy T +R v 1
ag_m ag_n 3§n ij (m n p) ij (mni p) 1j

R _ 1 -1 1 =1

(m j n p) il 2 (o npri 11 2 (m mp)j il

Now, since we know all coefficients in the complete covariant

form, we have in any frame

T (6 +n(0)) =T (¢) =7 ($)+ =2 :r_.<¢>l "
ij class 13 ij ag_m ij ¢
M i O s
o™ ac $
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+ =3 T ()] ¢™Tct L. (21)
m n 1 ij
a¢  a¢ 8¢ ¢
with
a -
m Jij(qs)' - vm:rij
as ¢
6m anT"(qS)! =V(V)T“+~—§~R? yi li %Rt ¥ il
1 m n 1 m)l 1
o¢” ¢t Mg ; e
and
9 g 38 - T”(¢)l =V VvV 7 +R 7
6§m ag_n ag_ ij (b (m n p) ij (mn i p) 1li
+ R V 7+ -ty gt

(mm j p) il 2 " (m np)i 1j

+—LV Rl

2 (m mp)j il (22)

As for the non-linear o-model, the tensor of our interest is
g (¢ 4+m). In this case, the coefficient of the previocus expansion

ij class

simplifies, and g  is covariantly constant, so we can write
iJ

8y Borans™™ = B, (B 0 R Ly R el (93 .

ij class class imnj 3 m inpj

Before writing the background field expansion of the bosonic
o-model action, one needs to know the expansion for 8#(¢ﬂm(§i)). By
recalling that the definition of ¢i(a)au(¢i+w(gi)) which is nothing but

the derivative of qSi(fA) at »=1, that is

i igy i i, bk, 1 i 5k
a”(¢ +n(¢7)) = 6u¢ +8M§ (5 alekg T+ B!aleklg SO £
i B (24.a)

Now the curvature in the normal coordinates can be written as
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R® =487 4T ,
Jkl k jlL 1 ik

i

and by using 4 f% =0 one obtains
(k jl)

—i 1 =i =i
akrjl ) (Rjkl+lej)

Therefore, the tensorial expansion for 6“(¢i+w(§i)) component up to the

. i
second order in ¢ reads

1

i i _ i i, L i ik
6“(¢ +r($7)) = 3#¢ +Du§ t = Rjkg [

where

D i -3 i+ri ia k
P SR

(24.Db)

By combining the expansion in eq.(23) and eq.(24.b), the background

field expansion of the bosonic non-linear o-model reads;

N ky M, d 3 2 J J
Lolg+n(£)] = fd xg, (498"6'8 ¢ +jd xg, 0 #°D ¢

1 |2 infh,d i.d, i M3
+ 5 jd x{guDyg D7t +Rﬂdd§ 'Y 8p¢ AP Y+, ..

(25)

Note that the second order in the bosonic non-linear o-model is

exactly the Hessian obtained in section II.B.2.

, Where we consideréd a

more general case, as the space-time in the non-linear o-model need not

be flat. Note the difference in notation, the latin indices here

correspond to the Greek ones in the second-variation formula and

vice-versa.
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3.0n__the wultraviolet behaviour of softly broken N=1-D=2

; } (41)
supersymmetric non-linear o-models :

Two-dimensional supersymmetric non-linear o-models consist of the
ordinary non-linear o-model coupled to fermions in such a way as to
make the theory invariant under one, two or four supersymmetries. The
restrictions on the nature of the target manifold of the supersymmetric
model arising from the requirement of invariance under extended
supersymmetries, provide a very appealing connection between
supersymmetry and complex manifold theory(ss'sg).

More recently, the interest. in these 2-dimensional models has
increased since o-models defined on a Riemann surface and taking values
in an arbitrary D-dimensional Riemannian space have a close
reléﬁionship with string theories‘®’’ . Also very fascinating is the
remarkable quantum behaviour of the supersymmetric o-models in the
ultraviolet limit. The N=1 and N=2 models are on-shell three-1oop
finite for Ricci-flat manifolds(ss'sa), whereas for N=4, finiteness
holds through to all orders in perturbation theory

In this section, it is our purpose to pursue a reassessment of the
convergence properties of a general N=1 og-model when supersymmetry is
explicitly broken. The breaking terms we propose to study here are all
soft breakings which modify the scaler-fermion couplings of the model.
For particular choices of target spaces, there may also occur a shift
in the fermionic masses. Performing supergraph computations, suitably

. s . . 36
modified to account for the explicit breaking terms‘®®’

, we shall
investigate the divergence structure of the softly broken o-model and

discuss how the breakings may affect the B-function of the exact model.

We wish to add to the action of the N=1 supersymmetric non-linear

101



o-model,
_ 1 [,z .2 Qi 3
S = - —Z—fd xd” 4 g“(é)(D o )(Da® ) (1)

new coupling terms which explicitly break supersymmetry but, contrary
to the mass terms in section V.A.5 (eq.5), respect the diffeomorphisms
invariance of the target manifold, F. The terms we propose to study

here are:

1 2 .2 2 Q. i 3

5 Jd xd™ 4 4 Mgm(é)(D & )(Da© ) (2)
and

") (3)

1 2 .2 2 o i 1 B.3
—E—Jd xd" g 6 ARukl(é)(D o) )(Da@ Y(D"e")Y (D

B

where p has the dimension of the mass, and A is dimensionless,and Rijkl
is the Riemann tensor of the target space F.

The breaking term (eq.2), besides modifying the coupling between
the physical scalars and fermions of the g-model, may also shift the
masses of the fields W;. Indeed, when F is a homogeneous space like the
n-sphere, for example, p is nothing but the mass of the fermionic
component fields. As for the breaking term (eq.3), it does not shlft
masses, but only affects the scalar-spinor couplings of the originally
supersymmetric o-model,

What is said above can be clearly seen if we rewrite the breaking

terms(eq.2) and (eq.3) in terms of component fields. They respectively

read:

1 2 i j
- 5 jd xygU(A)W U (4)
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1 2 gl gk
- —Z~Jd X AREjkl(A)(Q T7)('0) (5)

Before turning into our supergraph calculations, we would like to
quote the normal coordinate expansions of the tensors appearing in
eq.(2) and eq.(3). We present their respective expansions only up to
third order in the field {i relevant for our loop computations. The

results are:

g (241(C)) = g (B) R (&)¢ (K2
ij ij 3 1k13k2

k1 k2 k3

1
T3 PR (B6C
273

1 16 _m
5![ 3 Rkﬁk1(©)R

kikm<®)‘6Dk D, Rik_m @®].
37y 2 TR,

1

k1l k2 k3 k&

¢ e e 0 (%) (6)

and

Rijkl(®+7r(§)) - Rijkl(®)+DmRijkl(@)§

1 1 n
+ T[DmleZRijkl(®)+ 3 lemZi(Q)ankl(Q)

1 1

* Tlemzj(@)Rinkl(@)-*- _3_Rm1m2k(®)Rijnl(q>)
1l .n ml_m2 3
* TlemZL(Q)Rijkn(q))]g § +O(§ ) y (7)

where & 1is taken as a background field, and n({) 1is the quantum
' . i(69
fluctuation expressed in terms of the true quantunm field gl( Y

We can obtain superpropagators correct to all orders in the
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breaking mass parameter using the results of eq.(ll) in section
V.B.5. Denoting by §a(x;6) the quantum superfield with frame index, a

of the target space, our quantum propagator reads:

<1(c®1ycP2))> - 5% —Lp2s2s )
k

+8P—t(9%D 129%D% L %P5t ) (s
k2+M2 e Tt Lz ef 1 1 12

However, through the quantum-background vertices arising from eq.(2),
the parameter pu will still have to be taken 1into account when
calculating graphs. As for the dimensionless coupling parameter X, its
effect can not be introduced into the quantum propagators, so it will
always appear as coupling constant governing the quantum-background
vertices stemming from eq.(3).

We are now ready to start presenting and discussing the results of
our loop corrections.

Besides the well-known metric tensor renormalisation, which at
one-loop is the same as in the case of the unbroken model, the only
réle of the one-loop supergraph of fig.1 1is to renormalise the

supers etry-breaking vertex of eq.(3) by means of the term:
P yometry g q Yy

1 2 2., 1 m 4 m o i 1 B3 k
~§§;?—jd 8 87X 5 DmD RLﬁl+*§_RhJ%kl) (D”® )(Daé Y(D"® )(Dﬂé ) .
9

Notice however that such a renormalisation is required in the cases of
locally symmetric and Ricci-flat target spaces. The mass-breaking
parameter p does not require an independent renormalisation: the metric
tensor renormalisation automatically removes such an infinity.
Moreover, it would be worthwhile to remark that, power-counting and

reparameterisation invariance arguments, can be used to show that only
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the breaking parameter X, and not 4, can induce supersymmetric (i.e.
non-explicitly §-dependent) higher-order corrections into the effective
action.

Still at the one-loop level, we would like to consider the type of
diagrams depicted in fig.2. They fall into three different categories:
order zero, linear and quadratic in the breaking parameter A. They all
give finite one-loop contributions to the effective action, so that no
new renormalisations are rquired; however, it is interesting to mnotice
that they yeild supersymmetric corrections that arise exclusively from
the terms which break supersymmetry at the tree level. These finite

one-loop correction are:

2 . .
S f dk 1 L _|a%r g™ (%) (0 2%y (0Ps*)y (b o) |
64 (2 )2 kz k2_*_ 2 immj k 1 [ ﬂ
" s (10)
and
A [ d%k 1 2
128 J 2 2, 2 Jd ¢ R (DD Rklmn
(27)°  (k“+m ) oo
reg.
T S U L I s I R P ) )
3 pgk hlmn 3 pgl khmn 3 pam klhn 3 pqn  klmh
(0% (D 2%y (D7) (D ™) (D8 Yy (D &™) | (11)
o B Y
where m denotes an infrared cutoff mass.
reg.
At order Az, no  supersymmetric correction arises from the
supexrgraph of fig.2.
At the two-loop approximation, no genuine divergence (i.e., a

divergence in 1/¢) which appears alters the vanishing of the two-loop
B-function of the exact model. Graphs exhibiting the topology drawn in

fig.3 do contribute divergent two-loop corrections of order A to the
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metric tensor renormalisation. However, such divergences are of the
type 1/52, and so they do not give any contribution to the A-function.
Finally, going to the three-loop approximation, the situation
changes, as expected from power-counting arguments. Indeed, by
considering the supergrphs whose topology is as shown in fig.4, where
we have at the vertex 1 the quantum-background coupling following from
the breaking term eq.(3), one can show that a genuine 1/e¢ three-loop
supersymmetric correction is induced which renormalises the metric
tensor and is non-vanishing in the Ricci-flat case. Up to the numerical
coefficients and 1/¢-factor coming from the momentum-space loop
integrals, the tensorial form of this three-loop divergent contribution

is simply:
2 kmh_n 1 _i J
,\Jd 8 R, Rj R" (D@ )(Da<I> ) , (12)

and, as it has been checked, such a divergent correction is not
cancelled by any other three-loop contribution. This result clearly
shows that the breaking term eq.(3) yields a non-zero three-loop
contribution to the metric tensor B-function of the non-linear
supersymmetric o-model which persists even when the target manifold }s
chosen to be Ricci-flat. This is the lowest non-trivial contribution to
ﬂij induced by the breaking interaction term of eq.(3).

To conclude, we have studied two different ways of explicitly
breaking N=1-D=2 supersymmetry in the framework of an arbitrary
non-linear o-model. The breaking terms we have proposed here are both
soft breakings, respect the diffeormophism invariance of the target

space, modify the couplings between the physical scalars and fermions

of the o-model, and also lead to a fermion mass shift. The net result
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of our analysis is that the breaking accomplished by the term eq. (3)
yeilds a non-vanishing contribution to the three-loop metric tensor
B-function.

There still remains however the investigation and justification
for the ad-hoc breaking terms we propose in this section. Their origin
in a superstring compactification context, and also a more detailed
analysis of the two-, three- and four-loop supersymmetric corrections
generated by the dimensionless coupling parameter X, is now under

. . . 70
1nvest1gatlon( "
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