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INTRODUCTION

In this thesis work we investigate the asymptotic behaviour of the solutions of two classes of
variational problems with constraints.

In the first part , we consider a sequence of minimum problems for a second order functional
with bilateral obstacles of the form

®,) min{J.lAu|2dx+qudx:ueH(z)(D) , 0, Susy, on A},
D D

where A is an open set included in a bounded open region D of R" ,fe L2(D) »and (¢,) , (y)

are sequences of functions from D into R.
In the second part , we analize a sequence of Dirichlet problems in domains bounded by thin
layers with random thickness , where the role of the constraint is played by the Dirichlet condition

on the outer boundary of the layer . More precisely, given a bounded open region D of R",n>2,

for every h € N, we consider a random set A, such that

A2 D and supdist(x,D)<g,

xeAy
and the corresponding quadratic form F, , defined on L2(Rn) by
fIDulzdx te f IDul? dx if ue HyA,)
D

A,\D
+oo0 otherwise ,

0.1) F, (W) =

where (g,) is a given sequence of real numbers such that & —0 as h—+ee . Our aim is to study the

sequence of random minimum problems




@Q,) min{Fh(u)—-J.fudx cue LXRY ).
Ay '

with f e LZR").
Our investigation of the asymptoiic behaviour of the solutions u, of (Ph) and (Qh) , COnsists

in determining a minimum problem whose solution is the limit , in a suitable sense , of the
sequence (uh). For each of the cases introduced above , we find that , under some assumptions ,
such limit problem is no longer a minimum problem with constraints, but it consists in minimizing
an integral functional different from that one of the approximating problems (P,) and (Q,).

Both results rely on a compactness property of a class of functionals, suitably choosen
according to the problem, with respect on a notion of variational convergence of functionals :

I'-convergence in the first case (see, for example [11],[2] ) and Mosco-convergence in the second

one (see , for example [2],[15]) .

In the first part of the thesis we prove the following result of convergence for the solutions to

problems (P,,). For every f e L2(D) , and for every h € N, let us denote by (u,) the solution of

(Ph). Then, we show that there exists a subsequence (ua(h)) of (uh) which converges in HY(D) to

the solution u of a minimum problem that we can write in the form

) min{jIAulzdx+G(u,A)+ffudx:ueH§(D)},
D D

where G(e , A) is , for every A, a convex and semicontinuous functional from H2(D) into R,

independent of f .

Without any assumption of strong convergence on the sequences (¢y,) and (y) , the

functional G in (P) , in general , fails to be an obstacle functional of the form




0 if ¢su<wy on A
0.2) G, A) = ‘

+oo otherwise

with ¢ and y function from D into R . In some interesting situations, it turns out that G is finite

everywhere , and in this case it can be represented in the following integral form

0.3) G, A) = Jg(x ;) dp + v(A) ,
A

where g is a non negative Borel function , convex in u, (L and v are non negative Radon measures

on D, and p is absolutely continuous with respect to H2-capacity.

To apply the I'-convergence theory to the sequence of problems (P, ), we introduce a class G

of functionals .

Let A4 denote the family of all subsets of D. We say that a functional G : H2(D) xA—R belongs
to Gif Gis local, G(¢ , A) is lower semicontinuous in H2(D), G(u, °) is a measure on D, and G

verifies the following convexity condition ; if u,v € H2(D) andoa,fe RwithO0<a<B<1,
then

G(¢u + (1-d)v, A) < B G(u, A) + (1-)G(v , A)

for every ¢ € C*°(D) such that a < ¢(x) < B forallx € A.
It is not too difficult to verify that both the obstacle functionals like (0.2) and the integral

functionals like (0.3) , belong to G.

In chapter 1 (Theorem 3.3) we prove that G has a compactness property with respect to

I'-convergence. That is, we show that, given a sequence (G,) in G , there exist a subsequence




G . (h)) of (Gh) and a functional Ge G such that

2
| J [aul®dx + G @, A)
D

I-converge to

f |Aul®dx + G, A).
D

From this compactness property of G, by a well-known theorem ([11] , Corollary 2.4 )

about the equivalence between I'-convergence of a sequence of functionals and the convergence of
the corresponding minimum points, we can deduce the convergence of the sequence of the

solutions u, of (P, ) to the solution u of (P) .
Then Chapter 2 is devoted to find an integral representation for a functional of the class G.

We prove (Theorem 2.5) that if G € G and G never takes the value +e< , then G admits an integral
representation formula like (0.3).
In two examples (Chapter 1, Sections 5 and 6) we show significant cases in which the

hypothesis G < +eo is verified . In these examples we assume n > 4 and ¢, = -y ==

everywhere , except for a set E, which is the union of an increasing number of small balls , whose

radii tend to zero with a critical size . For this problem we find an explicit formula for the limit

functional in the form (0.3) . The same problem , in the case of unilateral obstacles ( , = +o°

everywhere ) has been studied by C. Picard in [16] . The main difficulty of the bilateral case ,
compared with the unilateral one , is the absence of monotonicity of G , which is essential in the
proof of [16].

The above results can be applied to the study of sequences of minimum problems in varying
open sets with Dirichlet boundary conditions of the form




P}) min { JlAulzdx + jfudx ‘ue Hﬁ(D\Eh) ),
D D

where , for every he N, Eh is an open subset of D and fe L2(D) . Problem (Ph') can be regarded as

a particular case of (P, ) if we set

0 in Eh
O =Wy = —oo elsewhere .

Among the results on this subject , obtained with different methods , we mention
[12],[13],[14],[8].

The basic result of the second part of the thesis is the characterization of the limit behaviour

of the sequence of random minimum problems (Qh).
For every h € N, let us denote by u, the solution of (Qh)‘ We prove that there exists a

subsequence (u o(hy Of (u,) which converges in probability, as h—>+ee, to the solution of the

following deterministic minimum problem

Q nﬁn{JlDulzdx+J.fudx+J-u2du cue H®D) ),
D D oD

where U is a non negative Borel measure , supported by oD, which vanishes on sets of zero

harmonic capacity.

Note that both the subsequence and the measure L do not depend on f e L2(D).

This result is the probabilistic version of a result obtained by G.Buttazzo, G.Dal Maso, and
U. Mosco in [5]. In the deterministic case , the asymptotic behaviour of the solutions of Dirichlet
problems in domains surrounded by variable thin layers , known as reinforcement problem , has
been investigated , by different thecniques, by several authors (see, for example, [1],[41,[61.[7]). k




We illustrate briefly the main ideas of the method used in the proof . First , we consider the

class £ of all convex, semicontinuous functions from L2(Rn) into R and we equip £ with the

topology of Mosco-convergence. This topology makes the space ‘E a separable complete metric
space (see [2]).

Then we regard the functionals F'h , defined in (0.1), as random functionals , i.e. measurable

maps ®—F, (w) from a probability space Q into £ .

Next , from an abstract compactness result for sequences of probability measures on a
complete metric space , we deduce the convergence in probability (at least for a subsequence) of the
distribution laws of the random functionals F, .

Hence, we prove , under suitable hypotheses , that the limit distribution law is concentrated
on a unique functional F : that is the sequence of random functionals F, converges in probability to
a deterministic functional F. Such hypotheses are made in terms of the asymptotic behaviour of the
expectations and the covariances of opportune random capacities associated with the random
functionals Fh.

Finally , using the variational meaning of the Mosco-convergence , we interpret this result as

convergence property of the sequence of the minimum points of the functionals in (Qh) .
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Part 1, Chapter 1 :

Variational inequalities for the biharmonic operator with variable obstacles




VARIATIONAL INEQUALITIES FOR THE BIHARMONIC
OPERATOR WITH VARIABLE OBSTACLES.

Summary. The asymptotic behaviour of the solutions of a sequence of variational inequalities for the
biharmonic operator with variable two-sided obstacles is investigated by describing the form of the limit problem,

which is computed explicitly in two meaningful examples.

INTRODUCTION

Let ¢, and y, Dbe two sequences of functions defined on a bounded open subset Q

of R", let feL?(Q), and let A be an open subset of Q. In this paper we study the limit

behaviour, as h—+e, of the sequence u, of the solutions of the following variational

inequalities for the biharmonic operator:

. 2
U, eHy(Q), ¢, <u <y, onA |

1 3 _[Aq1 A(v-u, )dx > ff(v——uh )dx

2
| forevery veHy(Q) suchthat ¢, <v<y, onA.

By using TI'-convergence techniques (Theorem 3.3) we prove the following

compactness result (Theorem 4.2): if there exists a sequence w, bounded in Hfoc (Q)
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suchthat @, <w, <wy, on Q, then there exist an increasing sequence of integers o(h)
and a function G(u,A) such that , for every feL2(Q) and for a generic open set

ACCQ, the sequence Ush) of the solutions of (0.1) converges in H1 (Q) tothe

unique solution u of the variational inequality

ueHA(Q), G(UA) < +oo

(0.2) } [AuA(v-u)dx + G(v,A) - G(u,A) 2 [t(v-u)dx

Q

| for every ve Ho(Q) with G(v,A) < +oe.
Moreover

: 2 2
lim ]Auc(h)] dx = J']Aul dx + G(u,A) .

h—ee

Q

In the most common situation the functional G has the form

0.3) GUA) = { 0 if psu<y on A,

400 otherwise,

where ¢ and y are suitable functions defined on Q, so the limit problem (0.2) is still

an obstacle problem .

However, in dimension n = 4 , one can find in the literature many examples
where G can not be given the form (0.3) (see [8], [9], [10], [2], [12], [14]).

In the general case, the functional G which occurs in (0.2) is local, G(°,A) is

lower semicontinuous on H?(Q) for every openset A c Q, and G(u,*) is a measure

for every ueH2(Q) (see [14]) . In addition, we prove that for every open set A € Q the
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function G(,A) satisfies the following convexity condition: if u, ve H3(Q) and o, are

two real numbers with 0 < a<B <1, then
Glou + (1—p)V,A) < BG(UA) + (1-0)G(V,A)

for every @eC™(Q) such that a < ¢(x) <B forall xeA .
By relying on our previous paper [5] , this last property allows us to prove that, if

G(u,Q) < +eo for every ueH3(Q), then G can be written in the form

GUA) = Jg(x,u) du + V(A) |
A

where p and v are non-negative Radon measures on Q, u is absolutely continuous
with respect to H2-capacity, and g is a non-negative Borel function, convexin u .

We use this integral representation theorem to compute explicitly the functional
G in two meaningful examples.

The first example concerns the limit of a sequence of Dirichlet problems for the
biharmonic operator A2 in domains with periodically distributed small spherical holes.
The same problem has been studied by different methods in [8] , [9] , [10] , [2].

In the second example we have

1 on Eh ,
Y = @, =
+o0 elsewhere ,

where E, is the union of an increasing number of small balls whose radii tend to zero
with a critical size. In spite of the fact that the lower obstacles ¢, and the upper

obstacles v, are well separated , the limit functional G can not be computed by
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considering separately the effect of the lower obstacles ¢, and the upper obstacle v, .

This points out the main difference between the problem considered in this paper and

the analogous problems for the second-order operators considered in [3] and [1] .

1. PRELIMINARIES

1.1. Capacities and quasi-continuous functions.

For every open set Q € R" we denote by H?(Q) the space of all functions
ue L2(Q) such that D®uel?(Q) for every multi index o with |a|] <2 . The norm in

H2(Q) is defined by
2
ully2ey = {Iaé IDull 2y }72.

For every compact set K< R" we define the (2,2)-capacity of K by

C(K) =int { lgl|%2g™ : 9 CZ (R, g1 on K .
The definition is extended to every open set A € R" by
C(A) =sup {C(K) : KS A, Kcompact }
and to arbitrary sets E € R" by
C(E)=inf{C(A): A2 E,Aopen}.

We say that a property P(x) holds quasi everywhere (g.e.) on a set E € R" if

P(x) holds for all xeE except for a subset of E with (2,2)-capacity zero.
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A function f:R"—R is said to be quasi continuous if for every € >0 there exists a
open set A, with C(A) <e such that f|pc is continuous on A°=R"-A .

It is well known that every ue H?(R") has a quasi continuous representative

which is uniquely determined quasi everywhere (see [11]). We shall identify every

function ueH2(R") with its quasi continuous representative.

1.2. T'-convergence.

To study the convergence of the solutions of the variational inequalities

considered in the introduction, we use the notion of I'-convergence.

Let (X,d) be a metric space and let f, be a sequence of functions from X into R

. For every ueX we set

C(d)liminf f, (v) = min { liminf f, (u,)) : u,—u }
h—see h—seo
v-sU

and

I'(d)limsup f,(v) = min { limsup f, (u,) :u,—u }.
ho h—ses
V—U

We say that f, I'-converges to a function :X—R ata point ue X if and only if

f(u) = T(d)limint f,(v) = T(d)limsup f.(v) .
h—eo h—e0
V—u v—u

In this case we write
f(u) = C(d)lim f,(v) .

h—eo
v—u
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It is clear from the above definition that the T-convergence is preserved under the
addition of a continuous term. The variational meaning of this convergence is given by

the following statement (see [6] , Corollary 2.4) .

THEOREM 1.1. Let f, be a sequence in X which T-converges to f in X . Let g

be a continuous function from X into R . Suppose there exists a compact set K ¢ X

such that

inf (f,, + 9)(v) = inf (f, +g)(v)

ve X veK

for every heN . Then we have

min (f +g)(v) = min (f+g)(v) = lim inf (f+g)(v)

ve X veK h—eo ve X

Moreover, if fy+g has a minimum point u,, in X and f+g has a unique minimum

point u in X, then u, convergesto u in X.

2. A CLASS OF LOCAL FUNCTIONALS

In this section we introduce a class of local functionals which contains the

obstacle functionals of the form

0 if psu<y ge.onB,
(2.1) G(u,B) =

+o0 otherwise ,

where ¢ and wy are arbitrary functions from R" into R.Let Q abounded open set in
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R". By B we denote the family of the Borel subsets of Q. By 4 we denote the family

of all open subsets A of Qsuchthat ACC Q (i.e. A iscompactandAc Q).

DEFINITION 2.1. We denote by G the class of all functionals G:H?(Q)xB — [0,+c°]

with the following properties:

(a) forevery AeA,the function u—G(u,A) is lower semicontinuous in H2(Q) ;

(b) for every ueH%(Q), the function B—G(u,B) is a Borel measure on Q;
(c) if uveH3(Q),Ac4,and UjA = VA . then G(UA) = G(v,A) ;

(d) if uveH?(Q),Ac4, a,peR with 0<a<B<1,then

G(ou+(1-9)v,A) < BG(U,A) + (1-0)G(V,A)
for every ¢e C™(Q) suchthat a<o(x) <P forall xeA.

EXAMPLE 2.2. Let cp,\y:Q—>F-i be two functions such that ¢ <y g.e. in Q. Then

the functional G:H?(Q)xB — [0,+] defined by (2.1) belongs to the class G.

DEFINITION 2.3. We denote by G the class of functionals Ge G such that

G(1,A) < +~ forevery teR and forevery Ac 4.

Every functional in G, admits an integral representation , as the following

theorem shows .

THEOREM 2.4. Let G be a functional of the class G, . Then there exist a Borel

function g:QxR—[0,+e[ and two Radon measures on Q, and v, with the following
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properties:

(a) for every xeQ the function t — g(x,t) is continuous and convex on R ;
(b) W(B) =0 forevery Borel set B < Q with C(B)=0;

(c) forevery teR and forevery Ac A4

2.2) GA) = [ gxt) i) + V(A
‘A

If, in addition,

(2.3) J.g(x,u(x)) die(x) + V(A) < +eo
A

for every Ae A4 and for every ue H2(Q) , then

(2.4) G(u,A) = Jg(x,u(x)) du(x) + v(A)
A

for every Ae A and for every ueH2(Q) .

PROOF. By the integral representation theorem for the class G, ([5], Theorem 2.5)

there exists a triple (g,,1,.v,) satisfying (a) and (b) such that

(2.5) G(u,A) = J 9o (X,U(x)) diLy(X) + Vo(A)
A

for every Ae 4 and for every ue H3(Q)NL=(A) .

Let now (g,u,v) be another triple which satisfies (a),(b) , and (c). We want to
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prove that

(2.6) G(UA) = J" g(x,u(x) dit () + v (A)
A
for every Ae 4 and for every ue H2(Q)NL=(A) .

Note that, in general, the equalites g = gy, L =H,, V=Y, do not hold.

Nevertheless we shall prove that

27) [ o060y cb -+ v (8) = [ gt oy + V(A
A A

for every Ae 4 and for every ue H3(Q)NL>(A) , which yields (2.6). Let A be the Radon

measure defined by A=p+v+p +v,. From (2.2) and (2.5) it follows that

dv

d dp
+ 2 (x)] dh(x) =J 90(x) —200 + =00 14A(Y)

du
J[g(x:o B+ <

for every teR and for every Ae 4. Therefore , using the continuity of g(x,t) and

g,(x,t) with respect to t, we can prove that there exists a Borel set N € Q , with

MN) = 0, such that

du dv0

(x) = golxt) —=2(x) + —=(x)

A, OV
2.8) gl =) + 2 + —!

di dA

for every teR and for every xe Q-N . From (2.8) it follows that



18

d d du dv
(2.9) 9%, U(X)) () + —(x) = Gg(X,U (X)) —gf—(x) + j(x)

for every xe Q-N and for every ue H2(Q)NL*(A).. Integrating (2.9) with respectto A
we obtain (2.7), hence (2.6) .

Finally, if (2.3) holds, then (2.4) follows from (2.6) by Theorem 2.6 of [5] . i

3. COMPACTNESS THEOREM

In this section we prove that the class G is compact with respect to

I'-convergence. To this aim we introduce a larger class of functionals , whose

compactness properties have been studied in [14] .

DEFINITION 3.1. We denote by G, the class of all functionals G : H3(Q)xB —[0,+c°]

with fulfil conditions (a), (b), (c) of Definition 2.1 and, in addition, have the following
property
(d") if u,ve H3(Q) and Ae 4, then

Glou + (1-9)v,A) <G(U, A) + G(v, A)

for every ¢e C*=(Q) suchthat 0<o@(x)<1 forall xeA.

To state the compactness theorem for G we need the following definition.
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DEFINITION 3.2. A subset ® of 4 isrichin A4 if and only if , for every family

(At)te]o,1[ of elements of A4 suchthat A, CC A, for s<t,theset {te]0,1[:AgR} is at

most countable.

THEOREM 3.3. Let G, be a sequence of functionals in G . Then there exist a

subsequence Gc(h) of G, , a functional Ge G , and a rich family K. of open subsets of

Q such that
(3.1) J' aul? dx + G(u,A) = T(H' (Q))lim [ J' AV dx + G (WA)]
h—eo
Q v—u

for every ueH?(Q) and for every AcR.

PROOF. By Theorem 1 of [14] (with minor changes in the proof, for which we refer to

[13]) there exist a subsequence Gc(h) of G, , afunctional Ge G, , and a rich family X

of open subsets of Q for which (3.1) holds for every ue H2(Q) and Ae 4. Note that

the boundedness hypothesis (H,) of [14] is not necessary because the functional G

is not required to be proper.
To conclude the proof we have only to verify property (d) of Definition 2.1.

Let u,veH2(Q),let Ac 4, let o,BeR, and let e C=(Q) be such that 0<o<e(x)<p<t

for every xeA . We have to prove that

(3.2) G(ou + (1-¢)v,A) < BG(u,A) + (1-0)G(V,A) .

Clearly we may suppose G(u,A) < + , G(V,A) < += , and Ae R.. By (3.1) there

exist two sequences u,, and v, in H2(Q) which converge respectively to u and v in
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H(Q) , such that

(u, , Al —J|Au|2 dX < 400
0

. 2
33 Gu.A=in [I]Auh] dx+ G,
Q

(34)  GW,A) =lim] J' av,fdx + G

h—00
Q

2 p
h)(vh , A)] -—JIAVI AX < 4o
Q

It follows that Au, and Av, converge weakly in L2(Q) to Au and Av respectively.

Since o@u,+(1-¢)v, convergesto ou+(1-¢)v in HY(Q) , by the definition of T-limit we

have

Glou + (1-g)v , A) < limsup [ | [A(ou, +(1-p)v, ) dx -

h—eo

- SJ; IA(fpu +(1=o)I° dx + Gc(h)((puh+(1——q>)vh ,A)] <

< ”thUp [ ] 1Alp(u,—u) + (1 —<P)(Vh—V)]|2dx +G G(h)((PUh + (1-@)v, , A)] <
)

< limsup [ | oA (u,-u) + (1-¢) A(v,~v) | dx + G (Qu, + (1-9)v, , A)] <
Q ;

< limsup [ J.(pIA(uh..u) |2+(1-q>)| A(v,~v) |2 dx + C,-}c(h)((puh +(1-9)v, , Al <
Q

h—eo
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< limsup [ jﬁlA(uh~u)|2+(1—oc)|A(vh-v)[2 dx + [3C:‘46(h;(uh A) +(1-a)G
h—ee 4]
Q

. 2 2 ‘
< B limsup [J |Au, | dx —J. |Au| dx + Gc(h)(uh , A +
Q Q

h—eo

+ (1-o)limsup [J. ]Avhl2 dx ——J lAv|2dx + Gc(h)(vh ,A)] =

h—c0
Q

=BG(u, A) + (1-a)G(v , A),

which concludes the proof of the theorem. |

4. BOUNDARY CONDITIONS AND CONVERGENCE OF THE MINIMA

Let G and G, (heN) be functionals of the class G and let Ae 4. Throughout

this section we assume that

41y J AU dx + G(u,A) = T(H (@))lim [J' AV dx + G, (vA)]
h—e
Q v—u

for every ueH2(Q) . Moreover we assume that there exists a sequence wy, , bounded

in H¥(Q) , such that

(4.2) sup G, (W, ,A) < +oo.
heN
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This implies easily that G(¢,A) is proper (i.e. not identically +o) . We shall prove that for

every weH2(Q) and for every fel?(Q) the sequence of the solutions u;, of the

minimum problems

4.3) min [JlAvlz dx+ G (v, A) + jfv dx ]
v-we Ha(Q) o

Q

converges in H'(Q) to the solutions u of the minimum problem

(4.4) min [J.IAVIZ dx+G(v,A)+jfvdx]
v-weH(@) o

To this aim, for every we H2(Q) we consider the functionals F,F, : H2(Q)—=[0,+e]

defined by

- { [ |Auf? dx + G(u,A) if u-we HZ (Q)
uj) = Q
400 otherwise ,
. { [ 1Auf? dx + G, (u,A) if u-we HZ (Q)
uj)= Q
h 400 otherwise ,

We are now in a position to prove the following theorem.
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THEOREM 4.1. Under the assumption (4.1), we have

h—yee
v—ou

Fw(u’)‘.: r(H'(@) im Fr(v)

for every uweH3(Q) .

PROOF. Let us fix u,weH?(Q) . We have to prove that
(a) for every sequence uy in H2(Q) which convergesto u in HY(Q)

FY (u) <liminf F* (uy) ;
h—

(b) for every €>0 there exists a sequence uy in H2(Q) which converges to U in

H'(Q) such that

FY (u) + e = limsup R (uy) -

h—-)oo

(a) Let u, be asequence which converges to u in HY(Q) .
We may suppose that liminf Fhw(uh) < +eo , Which implies that there exists a subse-

h—oo

quence of u,, still denoted by u,, ,such that

(4.5) | lim F () < +oo

h—o

From (4.5) it follows that uh——wer(Q) and sup JlAuhlz dx<+eo .
h Q

Therefore a subsequence of u,—w converges weakly in H2(Q) . Since up—w

converges to u-w strongly in HY(Q), it follows that u-we Hf(Q) . By the definitions of
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R and F* and by (4.1) we have

FY (u) = | |Au dx + Gu,A) <
Q

< liminf[ [ JAug 2 dx + Gi(up,A) 1 < liminf R (up) -
h—ee Q h—e0

(b) We suppose u-we Hf‘(Q) (otherwise we can choose u,, =u) . Then

FY (u) = | |AuR dx + G(u,A)
Q

and by (4.1) there exists a sequence vy, in H2(Q) , converging to u in HY(Q) , such

that

(4.6) FY (u) = lim [ | JAv, [2 dx + Gp(vi,A) ]
h—e Q

Now we modify the functions v, in neighbourhood of 2Q to obtain a sequence
of functions u,, which still fulfils (4.6) and satisfies, in addition, the boundary condition.

u,—we Hg (Q) . Given e>0, we fix Q' 4 suchthat A CC Q' ccQand | |AuPPdx<e.
o-Q

Let 9eC°(Q) with 0<¢<1, ¢=1 on Q', and let u, =ov, + (1-e)u . Then

u,e H2(Q) , u,—we Hg(Q) ,and u,=v, on A. Moreover for every € >0
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f jAu, | dx < -1-1- j loAv, + (1-g)aul® dx + 1 J |2D(Dv, ~Du)+A¢(v,~u)|” dx <
b £
Q

Q Q

<L vahlz dx +—— J{Aul2+Ch ,
1-¢ s -1-¢

where lim C, =0 since v, converges to u in H1(Q) . Thus we have

h—eo

limsup F, (u,,A) = limsup [ J‘|Auh| dx + Gy (u,,A) ] <

h—ee h—eo
Q

< limsup — [JlAvhl dx + G (v, A) 1+ — j|Au| dx =
h—oee 1— 1-
Q Q-Q'

Since e>0 is arbitrary, we obtain (b) and the theorem is proved.

Given weH2(Q) and feL2(Q), we now study the minimum problem

(4.7) mln JlAvl dx + G(v,A) va dx]
v——waHO(Q) Q

Since G(e,A) is proper (by (4.2)) and there exists a constant K such that
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(4.8) lully2q) < K lIAull2q)

for every ue HS(Q) (see, for instance, [7], Lemma 5.17), by using the direct method of

the calculus of variations it is not difficult to prove that problem (4.7) has one and only
one solution u , which can be characterized as the unique solution u of the variational
inequality

ueH2(Q), u-weH2(Q), G(UA)<+ee,

J 2[ AuA(v-u) dx + G(v,A) — G(U,A) + | f(v-u) dx 20
Q Q
L WeH2(Q): vweH2(Q), G(VA) < 4o

An analogous result can be obtained for the functionals Gy, .

We are now in a position to prove the convergence of the solution of problems
(4.3) to the solution of problem (4.4).

THEOREM 4.2. Assume (4.1) and (4.2) . Then for every We H2(Q) and for every

fe L2(Q) the sequence of the minimum values of problem (4.3) converges to the

minimum value of problem (4.4) . Moreover, if unh and u are the minimum points of

(4.3) and (4.4) respectively, then u,, converges to u strongly in H(Q) .

PROOF. First we observe that the minimum problems (4.3) and (4.4) are equivalent to

the minimum problems
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(4.9) min [F:(u) + J.fu dx ]
ue H(Q) o

and

(4.10 ) min [F (u)+ qu dx1,
ueH(Q) o

in the sense that (4.3) (resp. (4.4)) and (4.9) (resp (4.10)) have the same minimum

values and the same minimum points .

By (4.8) for every e€]0,1] and for every ue H3(Q) with u-we Hg'(Q) we have

2 1 2 1 2
u < — llu—-w + — |lw <
lullg g < 7o Wil + o Wz,

1 2 1 2 1 2
< — KllAu — K [|AW — |lw
— Kllaullzg,+ 5 Kl + 2 Mg,

so there exist two constants a, B > 0 such that

@.11) Frw) + [fudk 2 ol -
Q

for every heN and for every ue H¥(Q) .
By (4.2) and (4.11) the sequence uy, of the minimum points of (4.9) is bounded in

H2(Q) , hence it is relatively compact in H'(Q). Since F,* T-converges to FY¥ in HY(Q)
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and Jqu dx is continuous in H1(Q) for every feL2(Q) , the result follows immediately

from Theorem 1.4. | |

5. DIRICHLET PROBLEMS IN DOMAINS WITH HOLES

In this section we study the T-limit of a sequence of functionals related to Dirichlet
problems for the biharmonic operator A2 in domains with many small holes .

Assume n > 4 . Forevery heN let0<r,<R,= 2-h  Let us divide R" into a

family (th)iezn of cubes with side 2R,, . More precisely for i=(iy,....i,)e Z" we set

n ik ik+1
Q= 1;1[]7-—1- b1 L
2 2

Let us denote by xh1 the center of Qh1 and let B\: = B(xhi , 1p,) and Dh1 = B()ﬁwi ) R,) be
the open balls of center ><h1 and radius r, and Ry, respectively . Let

Ey= U B,.

iez"

Let Gy, : H3(Q)xA-[0,+] be the functional defined by

0 if u=0 g.e. on E NA

400 otherwise

for every ueH2(Q) and for every AeA(Q) .
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THEOREM 5.1. Assume that

fim (2R =2

h—eo

and that O < a < +e . Then for every Ae A with meas(0A) = 0 and for every ue H2(Q)

(5.1) T(H'(Q)) lim [j Av] dx + G, (v,A) ] = j IAuf dx +aC” J u® dx
e | a A
where
(5.2) C*= min { j auf? dx ue HA(R") , u=1on B, } = (n-4)(n-2)°S _
Rn

B, isthe unit ballin R" and S, is the (n—1)dimensional measure of dB,, .

PROOF. By the compactness theorem (Theorem 3.3) for every subsequence Ggp, of
G, there exist a subsequence Gy Of CGop) - @ functional Ge G and a rich family R of

open sets in Q such that

h—o0
v—u 2

j AP dx + G(u,A) = T(H' (@)lim [J V) dx + Gy V)]
Q

for every ue H2(Q) and for every Ae R. We shall denote this subsequence G, .
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We shall prove that

(5.3) GuA) =aC" j u? dx
A

for every ue H3(Q) and for every Ae 4.
Moreover , in Lemma 5.2 we shall prove that every open set AccQ with
meas(dA)=0 belongs to the family R. Since the limit does not depend on the

subsequence , we conclude that (5.1) holds for every Ae 4 with meas(dA)=0 , (see , for
example , [4] , Proposition 1.135) .
By Theorem 2.4 to prove (5.3) itis enough to show that

(5.4) G(tA) = aC* * meas(A)

for every te R and for every Ac 4.
It is clear that it is sufficient to prove (5.4) when A is the union of a finite number of

open rectangles whose vertices have dyadic coordinates . We recall that a dyadic

number is a real number t of the form t=r2s , with r,seZ .

Let us fix such an open set A and let | ,(A) = {i Zn: anA # @} . Note that by the

particular choice of A there exists ke N such that Qh1 c A for every h=k and for every

il (A) . Therefore

(5.5 anE = U B

for every h=K .
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To obtain (5.4) we construct an auxiliary sequence of function w,, . For every
p> 0 we denote by B(p) the open ball centered in the origin with radius p . For every

heN let w, be the solution to the following minimum problem

(5.6) min {J aul? dx : ue HA(B(R,)) , u=1 on B(r,)}
B(Ry) ‘

We extend w, by setting w;, = 0 on R"-B(R,) . Forevery ie Z" and for every xeR"

let W, (x) = Wy (x=%, ) and let

(5.7) V=2 w
iel(A)

Then v,, belongsto H2(Q) and v,=1 on U Bhi (which is equal to ANE, forh
i€l (A)

large enough) . Moreover v, converges to zero in HY(Q) ( this can be proved , for

istance , by using the explicit representation of w, we shall give in (5.11)).

Let us fix te R and let u,=t-tv, . Then u,e H2(Q) , u,=0 on E;NA (for h large

enough) and u, converges tot in H'(Q) . By the definition of I-limit we have

h—eo

(5.8) G(t,A) < liminf J jAu, | dx .
Q
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In the sequel we shall give an explicit representation of wy, from which it follows

that

h-—eo

(5.9) lim J \Auh12 dx = aC* t* meas(A) .
oo

Moreover we shall prove that

(5.10) imin [ 1az,° dx 2 fm [ 180, ox
h—e o h—e0 a

for every sequence z, in H2(Q) converging to t in H1(Q) such that z,=0 on E;NA . From

(5.8),(5.9),(5.10) we obtain (5.4) .

To conclude the proof of the theorem it remains to prove (5.9) and (5.10) .

The solution w, to the minimum problem (5.6) coincide on B(R,,)-B(r,,) with the

solution of the following boundary problem

A2Wh =0 in B(Rh)-B(rh) ,
ow,
Wy, = e 0 onoB(R,) .
oW,
Wh=1’-§-ﬁ_=o onaB(r,) .



The function wy, can be written explicitely .

(5.11)

where

n—2 2-n 2n-4
h — Ry
a, = 2n(n-4) 5
h
R;nrﬁn~—4 _ E—4
b, = 2n(n-2) 5
, h
2 Ri.nr;—z 2 R:_nr;%
¢, =-n (n—4) D, + n(n-2) D,
R - R
d, = n(n-2)(n-4) 5
h
with
D, =—4n [ 1+ In 12" = 2n(n—4)( -—r“—)
h™ Rh R,

33

Using polar coordinates we have

w(p) = ahpz“” + bhp4“" +Cp + dhp2

Rﬁ—anin—4
_4n___........___
Dh
n-2 o Thn  Thona
+ n(n-2) [(ﬁ;) +(-§;) ]

Let us prove (5.9) . For h large enough we have
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leuhl dx = t J.IAvhl ax=£ Y levh[ dx =

ie I (A) o

-t card JlAwh| dx_'c2 meas(A) J-IAwhl2 dx .

B( N (2R) " BR,)

By computing explicitely the last integral we obtain (5.9) .

To prove (5.10) we fix a sequence z, in H2(Q) converging to t in H'(Q) such that

z,=0qg.e. on ANE, . lt is not restrictive to assume that z, converge to t weakly in H?2 (Q)

Toc

Since

2 2
J‘ |Az, [ dx —J |Au, | dx 22 j Au Az, -u, ) dx = -2t jAth(zh—uh) dx ,
Q Q

we have only to prove that

limsup | Av,A(z,-u,)dx <0

h—e
Q

The distribution szh can be decomposed in the following way

2y, =
AVp =L, +V,,




35

where

suppp, < U aD,i,,
i Ih(A)

suppv, < U thi.

ie I (A)
Since z,—u,=0 and d(z,~u,)/on=00on U thi (see (5.5)) we have <v,z,-u,>=0.
ielp(A)
Therefore it is enough to prove that
(5.12) lim <My,z,—U>=0

h—3co

Since supp p, cAccQ and z,—u, converge to 0 weakly in H2 (Q) , to obtain (5.12) it is
h h~"h Toc

enough to show that p, converge in H2(Q) .

To this aim we introduce the distributions §,, and 8:( , defined by

(5.13) <8i,h'¢>=_[¢ds
aD,,
and
* o0
(5.14) <8, 0>=[ 2L as
aD;,
Since
dAv,
<H,,0>= [JAV 9 dS - J ¢dS],

e 'h @ an,
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from the explicit expression of w, we obtain

b 3
Mp=2 [8, Ry 8+t 8 ]

il (A)
where
4n(n=2)2(N=4) _-n n4 f
Sh= D thh [1_(ﬁ-)]
h h
and
2n(n-2)(n-4) _-n n—4 2-n n 2 2
=2 D:( LR (2R? rh +nr — (n-2)R;) .
Note that
im s, = ~2"(n-4)(n-2)° and fim 1, =0 .
h—eo h—ee
Since
Sn . -1
(5.15) D, R, > — 1, in H'@
. ie I, (A) ’

(see for example [2] lemma (2.3)) and

Sn

n

(5.16) &, - A(—:l— 1,) weaklyin H-(Q),

ie |, (A) 2
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it is easy to see that p, converges strongly in H-2(Q) to the function
(n—4)(n—2)%aS_ 1,

This proves (5.12) and concludes the proof of the theorem . |

We now prove the lemma used at the beginning of the proof of Theorem 5.1 .

LEMMA 5.2. Let Gp(h) be a subsequence of G, . Suppose that there exist a rich

family R of open subsets of Q such that

5.17)  TH' (@) lim [ ] |av] dx+G (v.A)]= jmu[ dx +aC Ju dx

h—e
v—u A

for every ue H2(Q) and for every Ac R.. Then (5.17) holds for every Ae 4 with
meas(dA)=0

PROOF . Let G',G" : H3(Q)x4—]0,+<] be the functionals defined by

j Aul® dx + G'(U,A) = T(H ' (Q)) liminf [ J' lavl dx + G (VA
Q b 9

.[IAU|2 dx +G"(u,A) = T(H (@) limsup(| |Av[® dx G (VA).
o e
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Then for every Ae R and for every ue H3(Q)

(5.18) ac* juz dx = G'(U,A) = G"(U,A) .
) .

By inner regular approximation , this implies that

(5.19) ac* juz dx < G'(U,A) < G"(U,A) .

A

for every ue H3(Q) and for every Ac 4.

Since G"(u,e) is increasing , by (5.18) we have

(5.20) G"(u,A) <inf{aC* J'uz dx : ADDA , Ae®)} =aC” J' u? dx
A’ A

So (5.19) and (5.20) imply that

ac? J u® dx < G'(U,A) < G"(u,A) < aC* f uZdx,
A A

which yields (5.18) for every Ae 4 with meas(dA)=0 .
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6. EXPLICIT DETERMINATION OF THE LIMIT OF A SEQUENCE OF
OBSTACLE PROBLEMS

In this section we study an example of a sequence G, of obstacle functionals of
the form (2.1) where the corresponding obstacles ¢, and v, satisfy the inequality

¢, <-1 and y, 2 1. In spite of the fact that the obstacles are well separated, we shall

see that there is a strong interaction between lower and upper obstacles in the

determination of the limit functional.

Assume n >4 .Forevery heN and forevery ieZ" let r,, R, , Qh1 : Bh‘ , Dhi » Ep,

be as in Section 5. Let Gh:HZ(Q)xJZl—>[O,+oo] be the functional defined by

0 if -1<u<1 ge. on ENA,
G, (u,A) =

+o0 otherwise .

Note that Gy, is the functional corresponding to the obstacle ¢, and v, defined by

1 on E,

Yh="0P= {
+o0 elsewhere .

To state the convergence theorem , for every t > 1 we define

C(t) = min { JIAUIQ dx : ueH*®R", 1<u<sl on B}
Rn

where B is the unit ball in R" . By explicit calculation we obtain
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Clt) =S, % (n=2)(n—4)

if 1<t < (n+4)/(n-4) , and

2 ()" P=(2=n)A(t)"

C(t) = S, 4n(n-2){(n-4)
(A=) 2 (redn ()

if t > (n+4)/(n—4) , where A(t) is the unique solution Ae[0,1[ of the equation

n(1-1%) _ b
4-mA"P(n-ap”

THEOREM 6.1. Assume that

lim (2R, = a

h—eo

and that 0 <a < +e. Then forevery Ae A with meas(dA) =0 and for every ue H2(Q)

(6.1) r(H'@) tim [ [ javf dx + G, (vA) ] = J.[Aulz dx + G(U,A)
h—eo
vou Q

where
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(6.2) GUA) = j g(u) dx

and

0 if [t <1
at) =

aC(ltN(t|-1)2 if Jt|>1

for everyteR .

REMARK 6.2. For [t|<1 the obstacles ¢, and w, have no influence on the limit
functional. In fact g(t)=0.

For 1 <t <(n+4)/(n-4) only the effect of the upper obstacles v, is present.
Indeed in this case g¢(t) coincides with the function g'(t) corresponding to the
obstacles cg: =—co and \y; =y, (see[14], Theorem 5) .

For t 2 (n+4)/(n—-4) the effect of both obstacles ¢, and vy, is present and the

influence of ¢, in the determination of g(t) increases as t increases.

Note that
limA(t) =1,
t—roo
hence
lim C(t) =C*

f—ee
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where C* is the constant , defined in (5.2) , which occurs in the problem considered in
Section 5. This means that for very large t the functions g(t) behaves as the function

g2(t) which corresponds to the sequence of functionals
5 0 if u=1 q.e. inE NA
G (UA) =

400 otherwise .

PROOF OF THEOREM 6.1. As in the proof of Theorem 5.1, we may assume (6.1) and
we have only to prove (6.2). By Theorem 2.4 it is enough to show that

(6.4) G(t,A) = g(t) meas(A)

for every teR and for every open set ACCQ which can be espressed as the union of

a finite number of open rectangles whose vertices have dyadic coordinates.
Let usfix t and A as required. If |t <1, then (6.4) follows from the fact that

G,(t,A)=0 for-every heN.

Let us consider the case t > 1. To obtain (6.4) we construct an auxiliary sequence

of functions w,, . Let ©= (t+1)/(t—1) . Forevery p >0 we denote by B(p) the open ball

centred in the origin with radius p . For every heN let w, be the solution to the

following minimum problem

(6.5) min { f Auf? dx : ue HA(B(R)) , 1 <u<t onB(r,) }
B(Ry)
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Starting from w,, we construct the sequence v, asin (5.7). The sequence u, is
now defined by u, = t-(t=1)v,, . Then u,eH?(Q), -1 su,<1 on E NA (for h large

enough) and u, convergesto t in H(Q) .

In the sequel we shall give an explicit representation of w, from which it follows

that

(6.6) im | Jau, |® dx = aC(t)(t -1)° meas(A) .

h—oo
Q

Moreover we shall prove that

(6.7) liminf ]Azhizdle’im j IAu, | dx
—300
Q

h—eo

for every sequence z, in H2(Q) convergingto t in H'(Q) such that —1 < z, <1 on
E,NA. Asin Theorem 5.1, from (6.6) and (6.7) we obtain (6.4).
To conclude the proof of the theorem it remains to prove (6.6) and (6.7) .

For every heN there exists A= xh(fc)e [0,1] and two spherically symmetric

functions wh1 and wh2 , defined respectively on B(R,)-B(r,) and B(r,)-B(A,r,) , such

that

w' on B(R,)-B(r,)
w, =1 W  on B(r)-B(hr)

T on Byr)
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and the triple (4, , wh1 , whz) is the unique solution of the following system

1 2 2
A*w, =0 on B(R)-B(r,), AW =0 on B(r)-B(r)

1
ow
(6.8) w = —"=0 on 3B,
2
1 2 aW; ow, 1 2 -
Wh = Wh = 1 s —a—r—]—- = _é_n— s AWh = AWh on (rh)
2
2 ow, 5 SBOL
W=t FTS =Aw, =0 on JdBAn).

The dependence of A, on t can not be given explicitly. On the contrary, given a

constant Ae]0,1[ there exists a unique t =1,(A) such that the system (6.8) has a
solution with %, (t) = A , and this number t as well as the corresponding functions wh1

and wh2 can be computed explicitly in terms of A . More precisely we obtain

1
D, (

Moo
69) %= =g {4127 + F07m 3] (R +

. 2n-4 fe \n-4
+2n0 20 (D) + -2 -)(2) -
h h

r

+ n(n—z)(x“—xz)(ﬁ';)n +2n(1-A%) }

where
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r on-
D,(A) = 2[4-m\"%+ (n—4)A"] + 2n(n—4)(1-x”)(%)“'2+ 2n(x"‘2—x")(R—“)2 "
h
n- r n
+ n(n-2)(A"2-1 )(F:—“) ‘. (n-2)[ (4-n) — "2 + 2(n—2)x”](§h;) :
h .

Let us define

~n(n-4)( -E:“— )" 4 n(n-2)( -I;i‘- "™ ~2n
max _ o 0) = h h
Th _Th( ) - rh n rh n-2 rh n—4
(n~2)(n~4)(—R;) -—2n(n~4)(§;) +n(n-2)(g-) -8
h
By (6.9) we have
T <y

for every Ae]0,1[. Sofor t=17  we have A, (t)=0 and the last line in (6.8)
disappears.

Using polar coordinates, the expression of wh1 and wh2 interms of A =}, (1) is
given by

1 ah(?\') 2-n bh()“) 4-n C:h(k) dho\') 9
w(p) = P+ p o+ + P
D, (M) D, (M) D,(A) D,
2 o) . B . %A §(Y
w(p) = P+ pr o+ + P
D, (A) D) D) D,

where




46

a (1) = n(n-4) A" 2ANRE T - 2(n-4) (1A
b, (M) = n(n-2)( R 2n(1 A"
r n n— n r n n— r n
c (M) = n(n-4)(1—x“)(-ﬁ“—) + 202" -ﬁi‘- P 4 n(n-2) (A" 2-1)( —R'l) ~
h h h
d (1) = (n-2)(n=4)A"—1)R;"r 2 + n(n—4)(1-A" DR, 1y
2-n 2n—4 -n 2n 2

0, (V) = 2(n-4A"r — n(n-4"Re e+ (n-2)(n-4AN"R, Ty

B, () = n AR 2B — n(n-2)A" PR
r r
Yh( ) [n(n 4) 1_)\‘”) —— ]( F‘,h )n 2 2n(}~n—-2_xn)( Rh )4—2n
h h
h n-4 n rh n
(n=2)(x" ~=1)( ﬁ") + n(n—2)A ( -ﬁ—) +2n

5.() = n(n-4)R- "¢ — 2(n-4)r — (n-2)(n-4)R, "y

To prove (6.7) we fix a sequence z, in H2(Q) converging to tin H'(Q) such that

-1 <z,<1 ge. on ANE, . Itis not restrictive to assume that z, converges to t weakly

: 2
in HZ,_(Q) .
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Since

j Az, | dx —J jAu, [ dx > 2 j AU AZ -, ) dX = ~2( -1 )fAth(zh-uh) dx
Q Q Q h Q

we have only to prove that

-u,><0 .

; 2
limsup <A®v,,z -u,

h—e0

The distribution A? v, can be decomposed in the following way:
A2vh=uh+vh+nh ,

where

suppp, < U 9B, R,).,

suppv,, ¢ U aB(xhi,rh),
ielp (A)

suppm, < U aB(>§:,7\hrh).
i1, (A)

By the minimum property of w, we have v, 20 and m_ <0 . Since z,—u, <0 on

supp v, and z,—u,20 onsupp m, we have
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for every heN . Therefore it is enough to prove that

(6.10) lim <p,,z, —Up>=0
h—eo :
Since supp p, € ACC Q and z,-u, converges to 0 weakly in H‘]?OC (Q2) , to obtain

(6.10) it is enough to show that p, ‘converges in H2(Q) .

Since

3 aAv
(6.11) aos= DO | J.Avha ds - j h 0dS],
el 5pl oD,

the distribution p, can be expressed in terms of the distributions %, and 5:‘,1\ defined
by (5.13) and (5.14). In fact, from (6.11) and from the explicit expression of w, we

obtain

= D [s,)RDyp + th)30 1.

ie 1, (A)

where

nn4 n

r
sh<>x>=1 " 2n(n-2)%(n-4) " —x“><ﬁ“;> — 4n(n-2)(n-4)(1-1"")]

and
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d
Dh

T 4 2n(n-2)(n-4)(1-A" DR +

Ryr [2n(n-2) (n-4) " 2ANRE

t,(\) =

+ 2n(n-2)(n-4)(A"=1)r" ]

For every Ae]0,1[ we define

2
(6.12) () = —0=) = lim ().
4-m\"Za(n-an" o

Let A(t) be the inverse function of t(A) on the interval ]1,n/4[, and let A(z) =0 for

T 2 n/4. By (6.9) and (6.12) the functions <t (A) and t(L) are continuous and

invertible on 10,1[ so the function A, (t) and A(t) are continuous on ]1,5 [ and

11,n/4[ respectively. Since
lim 7™ =n/4,
h—eo

it follows from (6.12) that

(6.13) A(t) = lim A (t)
h—ee
forevery 1 <t<n/4.ltis easy to see that (6.13) holds also for T= n/4 . On the other

hand if &, convergesto Xe]0,1[ then

2n(n-2)(n—4) (" 2-1) o

(6.14) lim s (A)=s(}) = .
h—es 4-nA"" 4+ (n-4)\"
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and

(6.15) lim t,(A)) =0

h—e

By (5.15), (5.16), (6.13), (6.14), (6.15) it follows that p, converges strongly in

H=2(Q) to p=s(M(r))2"S, 1, and this concludes the proof of (6.7) .
Equality (6.6) can now be obtained by direct calculation as in Section 5 , by using

(6.12) , (6.13) , and the explicit expression of w; . |
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and

(6.15) lim t,(A) = 0

h—ee

By (5.15), (5.16), (6.13), (6.14), (6.15) it follows that p, converges strongly in
H™2(Q) to p=s(A(t))2™" S, 1, and this concludes the proof of (6.7) .
Equality (6.6) can now be obtained by direct calculation as in Section 5 , by using

(6.12) , (6.13) , and the explicit expression of w,, . |
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Part 1, Chapter 2 :

Integral representation of some convex local functionals
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INTEGRAL REPRESENTATION OF SOME CONVEX
LOCAL FUNCTIONALS

SUMMARY. In this paper we prove an integral representation thearem for a class of convex local functionals
related to the study of limits of solutions to minimum problems for higher order functionals with bilateral obstacles.

INTRODUCTION

The purpose of this paper is to prove an integral representation theorem for a
class of local functionals which arise in the study of the asymptotic behaviour of
minimum problems for higher order functionals with bilateral obstacles (see[14]).

Given a bounded open set Q € R", we consider a non-negative real valued

functional G(u, B) defined for every ue W™P(Q) and for every Borel set BS Q. We

assume that G is local, in the sense that G(u, A) = G(v, A) whenever u=v on an
open set A S Q . Moreover we suppose that G(c , A) is lower semicontinuous on
WM-P(Q) for every openset A C Q andthat G(u,°) is a Borel measure on Q for
every ue WMP(Q) . Finally we assume that for every open set A € Q the function

G(- , A) satisfies the following convexity assumption : if u, ve W™P(Q) and o, are

two real numbers with 0 <a<B <1, then
(0.1) G(ou + (1-9)v,A) < BG(u, A) + (1-a)G(v, A)

for every ¢eC*(Q) suchthat o< (x) <P forall xeA.
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We prove that, under these assumptions, the functional G can be written in

the form

G(u, B)= [ gx  uidu(x) + (),
‘ B

where g : QxR—[0, +e[ is a non-negative Borel function convex in the last variable, p
is a non negative Radon measure on Q which vanishes on all Borel subsets of Q

with (m,p)-capacity zero, and v is a non-negative Radon measure on Q.
In a forthcoming paper we shall use this integral representation theorem to

prove some new results about limits of minimum problems for the functional
2
j AUl dx
A

with bilateral obstacles .
Integral representation theorems of this kind were proved in [9], [8] , [4] for

functionals defined on W'2(Q) and in [2] for functionals defined on W''P(Q) . A similar

theorem for functionals defined on W™M™P(Q) was proved in [7] , where the convexity
condition (0.1) is replaced by a monotonicity assumption, which is the natural one in
the study of limits of minimum problems with unilateral obstacles (see[2] , [5],[6] , [14]).

The new assumption (0.1) leads to a deep change in the proof of the integral
representation theorem, which is completely different from the proofs of the quoted

papers.
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1. SOME PROPERTIES OF A CLASS OF LOCAL FUNCTIONALS

In this section we examine the properties of a class G of local functionals on

WMP related to the study of limits of obstacle problems for higher order functionals.
Let us fix two ihtegers m,n>1 and areal number p with 1 <p < +e.For every
open set A in R" we denote by W™P(A) the space of all functions ueLP(A) such that

D%ueLP(A) for every multi-index o with |al <m with the norm

1
Mullmp = { = DS YP

ol <m

For every compact set K € R" we define the (m,p)-capacity of K by

. p . oo N
Cm’p(K) = Inf{ ”(P”Wm,p n) . (PECO(R ) 3 @21 on K}

(R

The definition is extended to every open set A € R" by

C..(A) = sup {Cm’p(K) :K € A, Kcompact }

m.,p
and to arbitrary sets E € R" by
Cm’p(E) = inf {Cm'p(A) :A2E,Aopen}.

We say that a property P(x) holds (m,p)-quasi everywhere ((m,p)-g.e.) on a set
E S R",if P(x) holds for all xeE exept for a subset of E with (m,p)-capacity zero.
A function f: R"—R is said to be (m,p)-quasi continuous if for every €> 0 there

exists aopenset A, with C., (A) <e, suchthat f,c is continuous on A°=R"-A.

It is well known that every ue W™P(R") has an (m,p)-quasi continuous

representative which is uniquely determined (m,p)-quasi everywhere (see [13]). We
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shall identify every function ue W™P(R") with its (m,p)-quasi continuous

representative.

We say that a non-negative Borel measure p on R" is (m,p)-absolutely

continuous if u(B) =0 for every Borel set B € R" with Cm,p(B) =0.

Let us fix a bounded open set Q € R". We denote by 4 (resp. B) the family of all

open (resp. Borel) subsets of Q.

DEFINITION 1.1. We denote by G the class of all functionals

G : WM™P(Q) x B—[0, +] with the following properties

(a) forevery Ae A4, the function u—G(u, A) is lower semicontinuous in W™P(Q) ;
(b) for every ue WM™P(Q) , the function B—G(u , B) is a Borel measure on Q;

() if u,veWM™P(Q),AcA,and up=Vj, then G(u,A)=G(v,A);

(d) if u,veWMP(Q),Acd, o BeR with 0<a<B<1,then
Glou + (1 - @), A) < BG(U, A) + (1 —a)G(v, A)
for every e C™(Q) suchthat a <o@(x) < forall xeA.

We give now some examples of functionals belonging to the class G.

EXAMPLE 1.2 (Obstacle functionals).
Let (p,\g:Q—ﬁ be two functions such that ¢ <y (m,p)-g.e.in Q and let

G : WMP(Q) x B — [0,+e0] be the functional defined by :

0 if opsu<y (mp)-qge. on B
G(u,B) = |

+00 otherwise .
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Then G belongs to the class G.

EXAMPLE 1.3 (Integral functionals).
Let g:Qx R—[0,+e] be a Borel function and let 1 ,v be two positive Radon

measures on Q, suchthat p is (m,p) absolutely consinuous. We denote by G the

functional defined by

(1.1) G(u,B):fg(Q,u(x))dp(x) + v (B)
B

for every Be B and for every ue W™P(Q) . If the function t—g(x,t) is convex and lower

semicontinuous on R forevery xeQ, then G belongs to the class G.

EXAMPLE 1.4 (Functionals depending on u andgradu ).
. let m=p=2,n=1,and Q=1-1,1[.Let F,G:W22(Q)x B[0, +o] be the

functionals defined by

[0 if 0B,

Fu,B) = { (u () if 0eB and u(0)=0,

400 if 0OeB and u(Q)=0,

0 if 0eB,

0 if 0eB,u(0)=0and Ju(0)<1,
G(U,B): J. ’

+o0 if 0OeB, u(0)=0 and

+oo if 0eB,u(0)=0and |u'(0)>1.

It is easy to verify that F and G belong to the class G.
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EXAMPLE 1.5 (T-limits of obstacles for second order quadratic functionals).

Let p=m=2 andlet ¢, ,y,: Q—R be two sequences of functions such that ?,

Sy, (2,2)-q.e.on Q forevery heN . We consider the sequence of functionals G, of

the class G defined by

0 if opsu<vy, (22)>-ge onB

+o0 otherwise

Let 4 be a family of open subsets of Q with the property that for every A, , A,e 4
with A, CC A, there exists A'e 4' such that A, CC A' CC A, . Suppose that for

every A'e 4 the sequence of functionals

fl Au {2 dx + G, (u,A)
A

[-converges in W2(Q) to the functional

(1.2) leu Pdx+ G (uA)
A' .

where G : W22(Q) x B — [0, +oo] satisfies
G(u, A) =sup{G(u, A") : A'eq , A'ccA}.

Then G belongs to the class G, as we shall prove in a forthcoming paper. More

generally, the same result holds if we assume only that each functional G, belongs to
the class G . In other words, the class of all functionals of the form (1.2), with Ge G, is

closed for the T-convergence in W'2(Q) .
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DEFINITION 1.6. We denote by G, the class of all functionals Ge G such that

G(k, A) < + for every Ae 4 and for every keR.

REMARK 1.7. Properties (b) and (c) of Definition 1.1 imply that , if Ge G, then

G(u, B) = G(v, B) forevery BeB and for every'pair u, v of functions of WM-P(Q)

which coincide on a neighbourhood of B .

We shall prove that every functional G of the class G, admits an integral

representation like (1.1). The same result does not hold in the larger class G, as

Example 1.4 shows. We observe that the functional G of Example 1.4 can be
obtained as I-limit of a sequence of obstacle functionals. In fact, if in Example 1.5 we

take n=1,Q=1]-1,1[, and

. 1
x| Ix|s
V) = =9, () =

+o0 oterwise ,

j—

then the T-limit in W'-2(Q) of the sequence

f|u" Pdx+ G, (uA)
A

is given by

J-lu“ Pdx+ G(u,A)
A

for every Ae 4 such that 0e0A , where G is the functional defined in Example 1.4.

This proves that the integral representation (1.1) does not hold for all functionals G
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which belong to the I'-closure of the obstacle functionals described in Example 1.5.

Before proving the integral representation theorem, we study some properties of

the functionals of the class G, . Let us fix Ge G, .

PROPOSITION 1.8. Let Ac.4.Then G (u, A) < +e for every ue WMP(Q)AL=(A) .

PROOF. We fix ue WMP(Q) NL*>>(A) . Then there exist two constants k', k" such
that k' < u(x) £ k" for every xe A‘. For every A'e 4, with A' CC A, there exists a
sequence u, of functions in WMP(Q) N C=(Q) N L=(A") convergingto u in WMP(Q),
such that k' <uj(x) <k" forevery xeA' and heN . Therefore there exists a sequence

¢, in C=(Q), with 0< g, (x)<1 forevery xeA' suchthat u, = @K + (1 -0, )k" . From

the properties (b) and (d) of the functional G it follows that

G(u,A) < liminf G(up , A) <G(K', A) + G(k", A)
h—eo
for every A'e 4 with A' CcC A. Taking the limitas A' T A we obtain
G(u,A) £ GK,A) + G(K", A) < +o,
which proves the proposition. |

PROPOSITION 1.9. Let Ac4 and let u, ve W™P(Q) ~ L=°(A) .Then

G(ou + (1-9)v, A) SJ‘(p(X)G(u,dX)+J-(1-(p(X)) G(v,dx)
A A

for every function ¢e C™(Q) with 0<¢op<1on A.

PROOF. Since G(ou + (1-9)v, A) < +o, for every &> 0 itis possible to find n + 1
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real numbers t;, with 0 =1, <t;<..<t,=1 and |t -t_ | <e forevery i=1,..,n,such

that the sets E; = {xeA : ¢(x) = t} satisfy G(ou + (1 - @)v, E)=0 forevery i=1,2, ..,

n-1.We set
A={xe At <ox) <t} i=2,..,n-1
An={xe Alox)>t, 4}

Then

where G(ou + (1 —9)v, N) = 0. From the properties (b) and (d) of the functional G it

follows that

Glou + (1= , A) = 3. Glou + (1-g)v, A) <

1=1

Mo

i
"
-

[tGu.A)+(1=t_)G(v,A) ] =

™=

() [ Gu,A)+Gv,A) <

e
"
-a

f G(u, dx) + 1ti)G(v,dx)]+i_§2 (t
A

fcp(x)G(u , dx) +f(1—q)(x))G(v ,dx)+€ [ G(u, A) +G(v, Al
A A

Since &> 0 is arbitrary, the proposition is proved. |

Let us consider the set function v : B— [0, +e[ defined by
(1.3) v (B) =inf{ G(u ,B) : ue W™P(Q)NL>=(Q) }

for every BeB.
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PROPOSITION 1.10. The set function v is a Radon measure on Q.

PROOF. Since v(B) =inf{ v(A) :A2 B, AeA4}, we have only to prove that v is

subadditive, superadditive , and inner regular on A4 (see[10] , Theorem 5.6). The last

two properties are proved in a similar context in [4] (Lemma 3.5). So we have only to

verify that v is subadditive. Let A, A, , A,e 4, with A, CC A, Forevery £¢>0 there

exist two functions u, , u, in WMPQ) N L=(Q) such that :

V(A,) +§> G(u,, A,) and V(A,) +§> G(u,, A,)

Let e C™(A,) ,with 0<¢@<1 and ¢=1 ina neighbourhood of A, . We set

u=(1-@)u; +9eu, . Then from properties (b), (c), and (d) of Definition 1.1 and from

Remark 1.7 it follows that
V(A UA) < G(u, A,UA,) <
G(u, , A;-A,) + G(u, ,K'Z) + G((1-9)u, + ¢u, (A2~K'2)mA1) <
G(u, , A-A,) +G(u, Ay ) +Glu, , (A,-AL) NAL) + G(u, , (A-A, ) NA,) <
G(u +€.

A)+G(Uy, Ay) < V(A,) + V(A

1 2) 2)
As €10 and A, T A, we obtain

V(A;UA,) < V(Ay) + V(A)

which proves that v is subadditive on 4. i

THEOREM 1.11. For every ue WM™P(Q) n L=(Q) the measure G(u,?) — v(¢) is
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(m,p)-absolutely continuous.

To prove Proposition 1.11 we need the following lemmas.

LEMMA 1.12. Let Ac 4, let uve W™P(Q) n L*(A), and let keR be such that

v<u<v+k (m,p)-g.e.on A.Then

(1.4) G(u,B)-v(B) <[ G(v, B) - v(B) ] + [ G(v+k , B) —v(B) ]

for every Borel set BCS A.

PROOF. It is enough to prove the lemmafor B=A.Let w=u-v. Then

we WMP(Q) N L>°(A) and 0 <w <k (m,p)-g.e. on A . Therefore for every A'e 4, with

A' CcC A, there exists a sequence w, of functions in C*(Q) N W™P(Q) n L=(A") ,
converging to w in W™P(Q) , such that 0 <w, <k (m,p)-q.e. on A' for every heN. If
uy, @, are the functions defined by u,=v+w, and ¢, = (k- wy)/k,then ¢ eC™(Q),

0<@, <1 on A", u,=¢v+(1-¢,)(v+k) , and u, convergesto u in WMP(Q) . From

Proposition 1.9 it follows that

G(u, , A) = V(A) <

J. 0, (X) [ G(v, dx) = v(dx) ] + J. [1-9, (x) ][ G(v+k , dx) —v(dx) ] <
A A

[G(v,A)=Vv(A) ]+ [ G(v+k , A) = v(A) ].

Therefore, by the lower semicontinuity of G(e,A") in W™P(Q) we have

G(u, A") - v(A") < liminf [ G(u,, , A') - v(A') ] <
h—co

[G(v,A)-v(A) ]+ [ G(v+k, A') - v(A) ].
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Taking the limit as A' T A we obtain (1.4) for B=A.. |

LEMMA 1.13. Let Be® with C, (B)=0. Then

G(v+k , B) - v(B) < G(v, Q) - v(Q)

for every keR and for every ve WMP(Q) N L*=(Q) .
PROOF. It is enough to prove the lemma when B = K is compact subset of Q.
Let Cp, o(K) = inf [191lyym.pgany where the infimum is over all ¢eC3(R™) such that

0<e<1 on R" and ¢=1 in a neighbourhood of K . Since Cpp(K) =0, we have

also G, ,(K) =0 (see[1], Theorem A, and [12] , Section 9.3.2) . Therefore for every
he N there exists a function ¢, C™(R") and an open set A, € R" such that A, 2K,

(1.5) K=n A

We fix now ve W™P(Q) N L*=(Q) and keR. Let w, =v + k(1 -¢,) ; then wy, =v
(m,p)-g.e. on A, , the sequence w, convergesto v+kin WMP(Q),v<w, <v+kon Q

for k>0,and v+k<w,<v on Q for k< 0. Using Lemma 1.12 and the properties

(b) and (c) of the functional G we obtain :

(1.6) G(w, , Q) v(Q) = G(w, , Q-A,) - V(Q-A,) + G(v, A) - V(A,) <

G(w, , Q-K) = v(Q-K) + G(v, A,) = V(A,) <
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G(v, Q-K) - V(Q-K) + G(v+k , Q-K) —v(Q-K) + G(v, A;) - v(A,)

On the other hand the functional G(+,Q) is lower semicontinuous on W™P(Q) , thus we

have

(1.7) G(v+k , Q-K) = v(Q-K) + G(v+k , K) -v(K) < liminf G(w, , Q) —v(Q) .

h—ee

Since G(v,K) - v(K) = lim G(v,A,) - Vv(A,) by (1.5), from (1.16) and (1.17) it follows

h—eo
that
Gv+k , K) - v(K) < G(v, Q) -Vv(Q),
which concludes the proof of the lemma . |

PROOF OF THEOREM 1.11. We fix ue W™P(Q) n L=°(Q) . Let Be B with
Cpmp(B)=10. Since

inf { G(u, Q) —v(Q) : ue WTP(Q)NL=(Q) } =0,
for each £>0 there exists a function vee W™P(Q) N L*(Q) such that

G(vg , Q) — v(Q) < &/2 . On the other hand there exists two constants k', k" eR such that

Ve+K < U < v +K' (m,p)-g.e.on Q.

Using Lemmas 1.12 and 1.13 we obtain

G(u,B)-v(B) <
[Glvg +K ,B)=v(B)] +[G(vg + K", B) - Vv(B)] <
2[G(vg, Q) -v(Q)]<e.

The theorem follows now by taking the limit as € goesto 0. |
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2. AN INTEGRAL REPRESENTATION THEOREM

In this section we shall prove that every functional G of the class G, can be

represented in the form

(2.1) G(u},B):J.g(x,u(x))du(x) + v (B)
B

where g , pu satisfy the hypothesis of Example 1.3 and v is the Radon measure

defined in (1.3) .

Let us fix a functional G of the class G, .
The measure u, occurring in (2.1) will be constructed by means of the sequence

of measures p, defined by

1(B) =[ G(k, B) - v(B) ] + [ G(-k , B) = v(B) ]
for every Be B.

REMARK 2.1. For every ke N the measure ,_is (m,p)-absolutely continuous by

Proposition 1.11. Moreover we deduce easily from Lemma 1.12 that
G(u, A) = v(A) S (A)

for every Ae 4 and ue W™P(Q)NL>=(A) with |Jul|j (A) <k.

In the following lemma we prove that an integral representation formula like (2.1)

holds in the class of all constant functions.

LEMMA 2.2. For every keN there exists a Borel function g, : Qx]-k , k[—=[0, 1] such
that :
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(a) forevery BeB and for every te ]-k, K[

G(1,B) = [ g,(x. ) dhyx) + V(B)
B

(b) forevery xeQ the function t—g,(x,1) is continuous and convex on ]-k , K[ .

PROOF. We fix keN . As we observed in Remark 2.1, if te |-k, k[ then

G(t,A) - v(A) <p (A) forevery AcA. By the Radon-Nikodym theorem there exists a

Borel function f(-, 1) : Q[0 , 1] such that

22) G(1,B)= [ f,6x,1 cy () + V(@)
B

for every BeB.

We shall prove now that there exists a set Ne B, with p, (N) = 0, such that the
function t—f,(x,1) is convex on ]-k, k["Q.

Let t,,t,el-k,kInQ, Ae[0, 1]nQ, and t=At;+(1-A)t,. Since G is a convex

functional there exists a set N(A, t, , t,)e B, with i, (N(A, 1, ,1,)) = 0, such that

f (¢, 1) SM(x, ) + (1= V) (x, 1)
for every xeQ-N(A,t,,t,) . Let N bethe union of all sets N(A, 1, ,t,) for
t,, te]-k , k[nQand 1[0, 1]nQ . Then p,(N) =0 and f(x,-) is convex on
J-k , kK[nQ for every xeQ-N .
Since f, is bounded for every xe Q-N, the function fi(x ) is locally Lipschitz

on ]-k, k[nQ and this property guarantees the existence of the limit

lim f,(x,s)
s—t
seQ
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for every xeQ-N and for every te]-k, K[ .
Let g,: Qx] -k, k[—[0, 1] be the function defined by

limf(x,s) _ if xe Q-N
gk(x,t) = seQ
0 if xeN

It is easy to check that g,(x ,t) =f(x,t) forevery xeQ-N andte]-k, klnQ and
that the function g is convex and continuous in t for every xeQ.
Since for every Ae 4 the function t—G(t , A) is finite and convex (hence

continuous) on ]-k , k[ , we can extend the representation formula (2.2) by continuity.

Thus we obtain

G(t,A) = | g, () di ) +v(A)
A
for every Ae 4 andtel]-k, k[ . The extension of this equality to all Borel subsets of Q

is trivial. ' |

The following lemmas provide some continuity properties of the functional G
which will be essential in the proof of the integral representation theorem for arbitrary

functions in WM-P(Q)NL™(Q) .
First we give an estimate of the modulus of continuity of G in L™(A) for every
Ae 4.

LEMMA 2.3. Let Ac4 andlet n>0. Then

1
|G(u,A)-G(v,A)|= 1 K (A) IIU—VHL«,(A)
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for every u, ve WM™P(Q)NL**(A) such that [|u][j* (A) < k-n, [|v|l,_ca(A) <k-m.
PROOF. We consider the space W™P(Q)NL*(A) with the seminorm ”‘”L‘”(A) . Since
G(-, A) is convex and

0<G(u, A)—-v(A) s (A)

for every ue WMP(Q)NL™(A) with ”U”L‘_”’(A) <k, the thesis of the lemma follows easily

from the well known estimate of the Lipschitz constant of a convex function on a

normed space (see, for instance, [11], Chapter |, Corollary 2.4). |

We now prove that G(-, A) is continuous in LT(A, ).

LEMMA 24. Let Ae 4. Then

(2.3) | G(u, A) - G(v,A) | <] |u-V| duy,
' A

for every u, ve W™P(Q)NL*=(A) with HUHL‘?(A) <k and ||v|||fo(A)sk.
PROOCF. Let u, ve W™P(Q)nL™(A) be such that u-ve C=(Q) and Hu||lf°(A).§3k

For each £ >0 wetake n+1 points t; in R, with O=t,<t; <...<t =6k and |t -

t_4 <e fori=1,2,..,n,suchthat p({xeA:u(x)-v(x)|=t})=0 for i=1,2,..,
n-1.Let A,, ..., A, be the open sets defined by

Aj={xeA:lu(x)-v(x)| <t}

A={xeA:t_j<|u(x)-v(x)| <t} i=2,..,n-1

A ={xeA:|uXx)-v(x)|>t_4}.

Then, using Lemma 2.3 with n =k , we obtain



i |
by A) + 2 J U=V Ot =€ 1Ly (A) + _[ Ju-v] i .

Since &> 0 is arbitrary, (2.3) holds when u-veC>(Q) and ||U||L°°(A) < 3K, |||l (A) <
3k '
Let now u ,ve W™P(Q)NL>=(Q) be such that HUHE"(A) <k and ||V|lL°°(A) <k.We
set w=u—v, and for every A'e 4, with A'CC A, we consider a sequence w, in
C=(Q)NWM™P(Q) , converging to w in W™P(Q) , such that ||wh||Lco(Av)s2k for every
heN . Let u,=w,~v;then u,-veC™(Q) and HUhHL‘”(A') < 3k for every heN.
Moreover u, convergesto u in W™P(Q) , thus by passing to a subsequence, we may
also assume that u, convergesto u (m,p)-g.e. on Q (see [13]), hence p,-g.e. on

Q.

From the previous step of the proof it follows that

G(u, , A) <G(v,A) + J lu, —v|du,, -
Al

Therefore, by the lower semicontinuity of G and by the dominated convergence

theorem we have

G(u, A) < liminf G(u, , A') <G(v, A) + J Ju-v| d,,
Al

h—ee

Taking the limit as A' T A we obtain
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G(u,A)sG(V,A)+jlu—vl Aty -
Ju

By exchanging the roles of u and v we obtain (2.3) . |

THEOREM 2.5. Let G be a functional of the class G, and let v be the Radon

measure defined in (1.3). Then there exist an (m,p)-absolutely continuous Radon

measure u on Q and a Borel function g : QxR—[0, +eo , such that :

@ Glu, &) = [ g, u() du(x) + v(A)
A

for every Ae A and for every ue WMP(Q)NL™(A) ;

(b) for every xeQ the function t—g(x,t) is continuous and convexon R.

PROOF. Step 1. Let Ac A4, keN , and ue C=(Q)NW™P(Q)NL™(A) such that i|u|[Laa(A)
<k andlet n=k-|jullj® ). Foreach e>0 let t,, 1, such that —{|ull=a) =tp <11 <

<ty = ||u|||_m(A) -t ql<e forevery i=1,..,n,and p({xeA:u(x)=t}) =0 for

every i=1,...,n-1.Let A, .. A, bethe open sets defined by
A, = {xeA:u(x) <t}

o]
I

= {xeA it <u(x) <t} i=2,..,n1

>
[

{xeA:u(x)>t_4}.

Then A= (U A)UN where n(N)=0.Since ||u||Loc(A) <k we have also G(u, N) -
i=1

—v(N) = 0 and from Lemmas 2.2 and 2.3 it follows that

N

(2.4) G(u,A)-Vv(A) = 2 [Gu,A)-V(A)] <

iz1 1

< ﬁ:[G(ti,Ai)-—v(Ai)+-§-pk(Ai] =
i=1 n
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N

1=1

[} gy(x s i () + £ (A)
A n

Since g,(x,-) isa convex function and 0<g,(x,t)<1for |t <k,we have

o (x,8) - g (x,1)| <n Is - t| forevery s, teR suchthat [t| < |[u|||_°°(A) R 1|U”L°°(A) .
Then (2.4) hields

25) Gl A=V < [, v + = i)
A

Since (2.5) holds for every € > 0 we have
Glu, A) = [ g (¢, ul))du () + v(A)
A

We can now exchange the roles of G and of the integral to obtain the inverse

inequality.

Hence

(2.6) G(u,A) = jgk(x » u(x))di, (x) + v(A)
A

for every ue C=(Q) n WM™P(Q) n L=(A) with |]u[||_oo(A) <k.
Step 2. Let Ae 4, let keN, and let ue W™P(Q) N L>=(A) , with ||u|||_eO(A) <k.For
every A'e 4, with A'CC A, there exists a sequence u,, in C=(Q) N W™P(Q) n L=(A")

such that u, converges to u in W™P(Q) and ||Uh”L°"(A') < k forevery heN .

Moreover we can assume that u, convergesto u (m,p)-q.e. (see[13]) and therefore,

by the (m,p) - absolute continuity of p, and by the dominated convergence theorem,
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sequence u, convergesto u in L1(A", H,) - Thus, by lemma 2.4 we have

G(u, A) = lim G(u,, A).
K—eo

We use now the results of step 1 and the dominated convergence theorem to

prove that

EXCRICOE S RRYEY
Al
Taking the limit as A' T A we obtain (2.6) for every ue W™P(Q) nL>=(A) , with llulli=(a)
<Kk.
Step 3. Let p be the Radon measure defined by

WB) = i 2~k 1 (B)

for every Be B. Since each measure p, is (m,p)-absolutely continuous (Remark 2.1) ,

the measure p is (m,p)-absolutely continuous. For every ke N we denote by C%%Lk the

Radon-Nikodym derivative of p, with respect to p and we define the function f, :

Qx]k , K[—[0, +oo[ by fi(x,t) = gi(x , 1) c%jik(x).

Then

(2.7) G(u,A) = jfk (x, u(x))di(x) + V(A)
A

for every Ae 4 and for every ue W™P(Q) N L*°(A) with ||U||L°°(A) < k. Moreover for

every xe W the function fg(x, ) is continuous and convex on Ik, K.

Let h,keN and teA ,with |t| <h <k.By (2.7) it follows that
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th(x,t)du(x) +v(A) = Gt,A) = Ifh(x,t)du(X) + V(A)
A A

for every Ae 4. Therefore there exists a set N(h, k, t)e 8 with m(N(h, k1)) =0 such
that

(2.8) fo(x, 1) = f(x,1)

for every xe Q-N(h, k,t). Let N be the union of the sets N(h,k,1) for h,keN and
te 4 with |t <h<k.Then p(N) =0 and (2.8) holds for every xe Q-N and for every h,
keN and tea with |t <h <k. Since f.(x,-) and f(x,') are continuous the equality

(2.8) continuos to hold for every te R with [tj<h<Kk.

Let g : QxBR—[0, +[ be the function defined by

0 if xeN

a(x,t) =
£ (X, 1) if xeQ-N and |t| < k

It is now easy to see that the function g is continuous and convex in the second
variable and that

G, A = g, u)du) + v(A
A

for every ue WmP(Q) n L=(A). |

We conclude this section by proving an integral representation theorem on

WMP(Q) .

THEOREM 2.6. Let G be a functional of the class g, , let v be the Radon

measure defined in (1.3) , and let g and p be respectively the function and the

measure given by theorem 2.5. The following conditions are equivalent :
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(@ G(u, Q)<+~ forevery ue W™P(Q);

()  Jg(x,ux)du(x) + v(Q) < +eo for every ue WM™P(Q) .
Q

Each of the previous conditions implies that

(2.9) G, A) = [olx, u)cne) + viA
A .

for every ue W™P(Q) and for every AcA.

PROOF. We first prove that

(2.10) G(u,A) < Jg(x,u(x))du(x) + V(A)
K

for every AeA and ue W™P(Q) . Suppose

[t utnaueo + vim) < s
]

Then for every A'e A, with A' CC A there exist a sequence up in WM™P(Q) N L*=°(Q)

which converges to u in W™P(A') , such that |u,| <|u| and u,u =0 (m,p)-g.e. on A’
for every heN (see[3] Theorem 2) . We may also assume that u, converges to u
(m,p)-g.e. on A' (see[13]), hence m-g.e. on A'. Since g is a convex function, we
have g(x, uu(x)) <g(x, u(x)) + g(x, 0) forevery xeA' and heN . By Theorem 2.5 we

have

Gy, A) = [ o0, u()dutx) + viA)
]

for every heN . Thus the lower semicontinuity of G and the dominated convergence

theorem imply
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G(u,A) < limG(, ,A) = JG(X , u(x))du(x) + v(A")
K ,

Taking the limitas A' T A we obtain (2.10) , which proves that (b) implies (a) .
Let us prove that (a) implies (b). Assume (a). For every AeA the function G(-, A)
is convex, lower semicontinuous, and everywhére finite on W™P(Q) , thus it is

continuous on WMP(Q) (see, forinstance [11] Chapter |, Corollary 2.5). Let ue W™P(Q)

and, for every A'e A, with A'CC A , let u, be the sequence considered in the first part

of the proof. Since m is (m,p)-absolutely continuous, from the Fatou lemma and from

Theorem 2.5 it follows that

jg(x , u(x))du(x) + v(A) < limiang(x , U (X))di(x) + v(A) =
A A
= IimGup,A) = Gu,A) < +=

Taking the limit as A' T A, we obtain

[ atx. utnoue) +via) < G, A) < +en
A

for every ue W™P(Q) and for every Ae 4. This proves (b) and, together with (2.10) ,

yields (2.9) . [
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Part 2 :

Dirichlet problems in domains bounded by thin layers with random thickness

In this part of the thesis we present some results obtained in collaboration with M. Balzano.
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DIRICHLET PROBLEMS IN DOMAINS BOUNDED BY THIN
LAYERS WITH RANDOM THICKNESS.

INTRODUCTION

Recently G. Buttazzo, G. Dal Maso, and U. Mosco have proposed in [6] a new
capacity method to investigate the asymptotic behaviour for Dirichlet problems in domains
bounded by thin layers. In this paper, taking inspiration from that method and from some
variational techniques devéloped in [3], we provide a setting to analyze the cases in which the
domains are surrounded by thin layers with random thickness.

Let us describe more closely the problem we deal with.

Let D be a bounded Lipschitz domain of R™, n > 2, and let (g,) be a sequence of real
numbers such that g,— 0 as h —+eo. For every heN let us consider a class ﬂlh of subsets of
R defined by

A, = {AcR", A2D : sup dist(x,D) < e} .

XeA
. 2 . . . .
Given fe L“(R™) we are interested in the solutions of the equations

(0.1) -Auh=f inD -sh Auh=f mAh\D

where Ah is a random set of the class ﬁlh U = 0 on aAh and the natural transmission

conditions on dD are satisfied.
Let F, be the quadratic form on L% R™ ) defined by

flvu Pax + e, JIVu Pdx i ueH(A,)
Fh (uy= 9D A\D

+ oo otherwise

The solution u, of (0.1) coincides with the solution of the minimum problem

min{Fh(u) -Zqudx : uELz(Rn) }

Our aim is to characterize the behaviour of the sequence (uy) in the limit as h — +eo.
First, we introduce the class E of all convex, semicontinuous functions from L2( R? ) into R.
We equip E with a topological structure (L?( R™ ) - Mosco - convergence) so that it becomes a
complete metric space. Then, we associate with the problems (0.1) a sequence (F,) of
"random functionals”, that is measurable maps © — F, (w) from a probability space € into
E . In this way the problem consists in analyzing the asymptotic behaviour, as h — +oo, of

sequence of random functionals (Fh).
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The first result we prove is a compactness theorem for sequences of random functionals
(Theorem 4.1 and Remark 5.5). It is deduced from an abstract compactness result for
sequences of probability measures on a complete metric space (Theorem 2.3). We show that,
under suitable assumptions on the sequence (F,,), there exists a subsequence (F_ )
converging in probability to a constant random functional F. Moreover the functional F turns
out to be associated with the equation, formally written as

Au=f inD

0.2)
—gﬁ- + pu=0 ondD ,

where L is a Borel measure on dD that vanishes on any set of zero (harmonic) capacity, but
may assume the value +e= on some subset of positive capacity and n is the outer unit normal to
D.

The second result we obtain is a characterization of the limit functional (hence of the
measure L that appears in (0.2)). For both results the assumptions are made in terms of the
asymptotic behaviour of the expectations and of the covariances of suitable random capacities

associated with the random functionals Fh .

In the deterministic case problems of the type (0.1) are known as "reinforcement
problems". They have been investigated in the last years by several authors (see for istance [1],
[51, 171, [81). |

To our knowledge no specific reference for the stochastic cases is available. We only
mention the paper [11] which provides a general framework for the study of probabilistic
problems in calculus of variations.

Our paper is organized as follows.

1.  Notation and preliminaries.

2.  Some abstract probabilistic results.

3.  Mosco - convergence and random capacities.

4.  Main results.

5.  Dirichlet problems in domains surrounded by thin layers with random thickness.
6.  Anexample.
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1. NOTATION AND PRELIMINARIES.

1.1 Letn be an integer with n > 2. We denote by U (resp. X, B) the family of all bounded
open ( resp. compact, Borel ) subsets of R". We recall some definitions which will be often
used in the sequel. For every Ue U and for every Ke X such that KEU, we define the
capacity of K with respect to U by

2 O
cap (K,U) = inf { j |Do| dx :0eCy(U), 02 lonK } ;
U

the definition is extended to the sets Ve U with VEU by

cap (V,U) = sup {cap K, U) :KeX,KSV } ;
and to the sets Be B with BEU by

cap (B,U) =inf { cap (V,U) :Ve T, V2B }.

We say that a Borel set B of R" has capacity zero if cap (BNU,U) = 0 for every Ue U.
When a property P(x) is satisfied for all xe B, except for a subset NEB with zero capacity,
then we say that P(x) holds quasi everywhere on B (g.e. on B). We say that a function
f : BoR is quasi continuous on B if for every Ue U and for every € > 0 there exists Ve U,
VU, with cap (V,U) < € such that the restriction of f to (BNU)\V is continuous. A subset A
of R" is said to be quasi open (resp. quasi closed , quasi compact ) if for every € > 0 and for
every Ue U, there exists an open (resp. closed, compact) set VEU such that
cap ((AnU)aV,U) < g, where a denotes the symmetric difference between sets. We recall that
a bounded set BER" has zero capacity (resp. B is quasi open or f is quasi continuous on B) if
and only if the above conditions are satisfied for some Ue U with BEU.

1.2. For every open set UCR" we denote by H1(U) the Sobolev space of all functions in
L2(U) whose first weak derivatives belong to L2(U), and by H’o(U) the closure of C8°(U) in
H1(U). For every xe R" and for every r > 0 we set

B,(x)={yeR":Ix-yl<r)
and for every Borel set B& R" we denote by IBI its Lebesgue measure. Let Ue U. For every
ue H'(U) the limit

(1.1) u(x) = lim L ju(y)dy
0 IUmBr(x)I B0

exists and is finite g.e. on U. The function i defined g.e. by (1.1) is quasi continuous on U.

Moreover, it can be shown that for every Be B, with BcU
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cap(B,U) = min { _[ |Dul®dx : ue Hy(U) , a2 1 ge.on B .
J _
For a proof of these properties of the capacity and of the functions of H' (U) we refer to [18].

1.3. A non negative countably additive set function defined on the Borel ¢-algebra of R" with
values in [0,+eo] is called a Borel measure . A Borel measure which assigns finite values to
every Ke X is called a Radon measure . In our paper we deal with a peculiar class of Borel
measures.

Following [10] we denote by M; the class of all Borel measures L such that:
(a) W(B)=0 for every Borel set BcR" with capacity zero;
(b) W(B)=inf{l(A): A quasi open, BEA} for every Borel set BCR".

An easy example of measure belonging to M:; is the measure [ defined by

()= fax
B

for every Borel set BCR", where fe L1 (Rn). More generally, every Radon measure [

loc
i b

satisfying (a) belongs to Mo. We remark that the measures belonging to MO are not
required to be regular nor ¢-finite. For instance, the measures introduced in the definition

below belong to the class M; (see [10] , Remark 3.3).

Definition 1.1. For every quasi closed set FCR" we denote by oo the Borel measure

defined by
0 if FMB has capacity zero

°°F(B) = {

| +oo otherwise
for every Borel set BCR".

" ,
Other examples of measures in M, are given in [13].

1.4. Troughout we denote by D a fixed set of U with a Lipschitz boundary and by L a fixed
elliptic operator of the form

Lu=- 2 Di(ai,j(x)Dju) ,

ij=1
where a, =2, € L°°(Rn) and for almost every xe R" and for every Ee R" we have

n

AJE2S Y o 00EE <A lEI2

ij=1
where A ,A,€R with 0<A, <A, <+ee. Let us fix a sequence (g,) of positive real numbers such
that & —0 as h—+eo. For every he N we consider the operator
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n
) z: (h)
L u———” lDi(ai,j(X)Dju)’
1,1=

where

. a-’ (x) if xeD
3"} () ={ . :
’ €, J.(x) if xeR -D.

)

We denote by a (x €) and 2’(x, £) the quadratic forms associated with the matnces (a( j ) and

0 3, j(X) ifxeD
a.i J X) - :, n
! 0 ifxeR -D,

more precicely,

n

(1.2) a8 = D LS, |

ij=1

ao(xvg) = Z ag(x)glgj .

i,j=1

Let (11,)) be another sequence of positive numbers such that nh——>0 as h—+oo,

Definition 1.2. For every he N we consider the class of sets

ﬂhz { Ac U :A2D, sup dist (x,D) <n,}
XEA

and we denote by ,‘ﬁ] the class of all functionals F : L2(Rn)——>[0,+oo] defined by

J' a™(x,Du)dx + _[ a 2dooaA ue H'RY

F () = R R

+oo otherwise

sk
where A is an open set belonging to the class 4, and e, is the measure of MO defined in
Definition 1.1.

Remark 1.3. By definition 1.2. we have F,NJ, =@ forh=k.

Defimtlon 1.4. The class of measure (e :M such that spt L € 0D will be denoted by
IM (@D) and the class of all functionals F : L (R )—[0,+e<] defined by
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j a’(x,Du)dx + f a %du ifu e H'(D)
oD

Fu)= { P

+oo otherwise

where jie My, (D) , will be indicated by 7,

Remark 1.5. It can be seen that there is a one to one correspondance between the functionals
of the class ,‘Fh and the measures ooy, With Ae ﬂlh and between the functionals of the class f
and the measure [l fM (aD)

With every functional Fe #, we associate a Dirichlet problem of the form

() .
( L™, +Au, =g inA

(1.3) 1
l u, € Ho (A)
where A>0, Ae ﬂh, and ge L2(Rn). Let u, be the unique weak solution of (1.3). Let us
consider the function
{ u, on A
Wh =

0 onR"-A.

Defmltlon 1.6. leen Fe ?‘h , for A=>0 we define the resolvent operator
R" A): L2 (R" )—-—>L (R") associated with F by setting
R Mgl =w

With every functional Fe 7 we also associate a problem formally written as

Lu+Au=g in D
1.4
(19 §E+uu=0 on dD
on

where A > 0, ge L? ®R", pe fM ,(dD), and n is the outer unit normal to D.
A variational solution of the problem (1.4) is a function u such that ue H (D),

Ye12@D.w) and

D
for every ve H1(D) with Ve L (oD,). Let u be a variational solution of the problem (1.4); u is

the unique solution of the minimum problem

n

Za Dub,v ?dx+Juvdu+ X_].uvdx ngdx
Lj=1 )
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(1.5) min fa(x,Dw) dx + f w 2dp + xf W dx — 2J gwdx ; weH'(D)).
D aD D D

Let w be the function

uonD
w = 0
0 onR-D.

Definition 1.7. Given FO € 70 , for A > 0 we define the resolvent operator
R°) : LZ(Rn) - L2(Rn) associated to E; by setting
(1.6) R'MW)[g] = w.

Remark 1.8. It can be shown that (1.5) and (1.6) hold also in the case A = 0 when there
exists a constant ¢ > 0 such that for every he N M, = g, , Le. if the following relation is
satisfied

(1.7) Ac( xeR" : dist(x,D) < cg, }.
Let us set
(1.8) F=F, 0 UF).
heN

In the following we define a set function of capacity type associated with any functional
Fe F. It will be the basic tool in our investigation.
Let (Dg)s.q be the family of the open subsets of D with Lipschitz boundary 0Dy such

that DSZCCDS 1fo_r 8,>8, and D = ak)o Dj. For every Ve U we set Vg= (VUD)\D;.
>
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Defimtlon 1.9. Given Fe ¥, for every Ue U and for every 8 > 0 we define the following

set function

(19)  b(F,V)=min { J a®(x,Du) dx + J'ﬁ %dpg : ueH'(V),u=10n3D, )
v v

8 )
where )
) a (x§) if Fe F,
a (x§) = o
a (x,§) if Fe J,
and
: %05 with Aeﬂlh if Fe Th
He = . * .
1 with pe M, (@D) if Fe F,

For Fe ¥ we extend the definition of by to the Borel sets Be B by
by(F,B) = inf { bg(F,V) : Ve U, V2B }
The minimum in (1.9) is achieved by the lower semicontinuity and the coerciveness of

the functional.

Remark 1.10. In order to study Dirichlet problems in domains bounded by thin layers, in [6]
the authors introduce two set functions, depending on the choice of a pair V,Ue U such that
VcU. By Lemma 3.5(c) in [6], it can be seen that, for Fe TO, the set function bs defined in
(1.9) is equivalent to the set function b° defined by (3.11) in [6], i.e. for every Be B

b (F,B)=b (jJ.F,B U) where U is an arbitrary open set of U contalmng the region D.
Moreover for Fe %, , the set function by is equivalent to the set function by h defined by (6.7)
in [6], i.e. by (F,V)—bs h(V,U) with A—Q “h and U,Ve U such that VEU.

If Fe 7, the main properties of the set function by(F,*) can be summarized in the next

proposition.

Proposition 1.11. For every Fe ¥ and for every 3 > 0, the function bg(F,*) satisfies the
following properties:
(a) bs(F,@) =0
(b) if B,,.B,€ B, with B, B,, then bg(F,B,) < by (F.B,);
©if (Bh) is an increasing sequence of sets in Band B = (uBh) , then

b, (F,B) = sup{by(F,B;) : heN B
@if (Bh) is a sequence of sets in Band B is a Borel subset of (uBh), then

b, (F,B) < z b, (F.B,);

(e) if B,.B,e Brhen by(F.B, UB,) + bs(F.B, MB,) <by(F.B ) + b, (F,B,);
(f) if Be Band Ve Uwith (BNdD) € V and VNdDg=0 then b:(F,B) < A2cap(Bm8D,V);
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(g) if Be Bthen by(F,B) =by(F,BNdD) < W(BNAD), where W is the measure in Mg
associated to the functional F;

(h) for every Ke X, , b, (F,K) = 1nf{b (F,U): Ue U,KSU};

(i) f B,,B,e B and dlst(B 1»Bo)= o >0, then for every me ]10,1[
b(F.B, )+b (F,B,) < (1-1) by(F.B uB2)+4A2n 's?|D-D, ;

() for every Be B, by (F,B)=sup{bg (F, K) Ke X, KEB};

k) if pe M (0D) is the measure associated to F, then W(BMdD) = sup{b(F,B) : 6>0} for

every BeB.

Proof.The properties (a), (b), (c), (d) can be deduced by standard capacity theory arguments.
In view of Remark 1.10 the properties (€),(f),(g),(h),(i) follow directly from (3.12), (3.13),
(3.14) and Lemma 3.5 in [6]. The property (j) is an easy consequence of properties (h),(c),(b),
and the Choquet capacitability theorem (see [9]). The property (k) follows from Theorem 3.6
in [6]. B

Finally we recall the definition of capacity relative to the operator L(h)

Definition 1.12. For every he N we define

cap(h)(B) =min { J a(h)(x,Du) dx + j u2 dx : ue Hl(Rn) , u>1 g.e.on B }

R" R

for every Borel set B SR™.

2. SOME ABSTRACT PROBABILISTIC RESULTS.

In this section we set up the probabilistic picture of our paper and give some results
which will have a crucial role in the proofs of the main theorems in section 4.
Troughout we deal with the following abstract framework.
(2.1) (X,d) is a complete metric space;
(2.2) X, is acompact subset of X;
(2.3) (X)) is a sequence of subsets of X satisfying the following proprerty :
if (x,,) is a sequence of elements of X and (X)) is any subsequence of (X, ) such that
X, € X then there c:xist a subsequence x_ ) of X and an element xe X such that

Xi(n) CONVETZes to X 1n X.

Remark 2.1. From (2.1), (2.2) and (2.3) it is immediate to deduce that for every open
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neighbourhood U of X o there exists h o€ N such Xh c Uforeveryh2 ho'

We denote by B(X) the Borel o-field of X. A probability measure Q on (X,B(X)) is a non
negative countably additive set function defined on B(X) with Q(X)=1.By AX) we mean the
space of all probabilty measure defined on B(X). On P(X) we consider the following
definition of weak convergence.

Definition 2.2. We say that a sequence (Q, ) of measures in P(X) converges weakly to

Qe AX) if
Jf dQ, = _[f dQ

h-—>+oo

for every fe CI:(X), where Cb (X) denotes the class of all bounded continuous functions
f:X->R

Let Qe A(X). For every B(X) - measurable real valued function f we define the expectation of f
in the probability space (X,B(X),Q) by

Eyifl = [raQ.
X
Let f,g be two real valued functions in L2 (X,Q). Then the covariance of f and g is defined by

Covlf.g] = Eqlfg] - Eqlf] Eqle]
The variance of f is defined by
VarQ[f_I Con[f f]

For every he N the Borel c-field of X, equipped with the induced topology is denoted by
@(Xh) Let Qh be any probability measure on (Xh,CB(X )). We associate Q with the
probability measure Qh in AX) defined by
24) Q,(® =Q,BNX,)
for every Be B(X).
In what follows we consider sequences (Qh) of probability measure in P(X) with Qh defined
by (2.4). We note that a probablhty measure P on (X,’B(X)) can be written in the form Qh
given by (2.4) if and only if P X)) =1 ,where P denotes the outer measure associate with
P,. Infact, if B (X ) =1, then P, = Qhwnh Qh defined by Qh (B) =R, (B) for every
Be B(X,)-

We can state the following compacteness result.

Theorem 2. 3 For every sequence (Qh Yin P(X) of the form (2. 4) there exist a
Subsequence (Qc(h)) and a measure Q in AX) such that Q(X )=1and (Qa(h) ) converges
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weakly to 6 in ‘P(X).
The proof of theorem (2.3) needs the next lemma.

Lemma 2.4. Let (é\h) be a sequence in PX) of the form (2.4). Let f,ge C;(X). Assume
that there exists M > 0 such that

|£G0) - g)| <
for every xeX Then

limsup Ex [f-gl<n.
<,

h— +e

Proof. Since the set U = { xe X : If(x) - g(x)l <1 } is an open neighbourhood of X, by
Remark 2.1 we have X, ¢ U for h sufficiently large. Thus we obtain
limsup Ex [f-g] =limsup J |£- g| th<n

h— + e Qh h—+ee

and the proof is complete. E

Proof of Theorem 2.3. Let (Qh) be a sequence in P(X) of the form (2.4). The proof is
articuleted in two steps. In the first step we show that there exists a subsequence (Qc(h) ) of
(Qh) such that the limit

(2.5) lim  Eg [f]
h— +ee ah)

exists for every fe CE(X) In the second one we prove that there exists a measure ﬁe P(X), with
Q(X ) = 1 such that the limit (2.5) is equal to EQ[fJ for every fe Cb(X)

Step 1. Let G =(g;); . be a countably set which is dense in C (X ). For every ie], let

f.e Cb(X) such that f; |X = g;. By a diagonal procedure we can find a subsequence (QG (h)) of
(Qh) such that

im E» [f
h—>+ooQ []

ofh)
exists, for every ie I. Denote by I(fi) this limt. In order to prove that the limit (2.5) exists we
show that for every fe C;’(X) the sequence (E@ o [f]) is a Cauchy sequence. Let fe C;(X). For
(1
every € > 0 let us take g, G such that :
(2.6) sup 1) - g )| <& 8

xe X,

Then, by (2.6), and by Lemma 2.4 we obtain that there exists koe N such that
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By [ﬂ~E6[ﬂl <

ak)

< |Eq [f] - By [£]| + |Eq [£]- By [£]] + | Eq [£]- Eg [A1] <
) R % % %o Uy

< 3+ |Eg [£] - Eg [£]]
Lo %
for every k,1 2k . Since (E" [f 1) is a Cauchy sequence, we get the first assertion.
Step 2. Let us denote by T 3:?;‘/ extention operator from C (X ) into Cb(X) and let us introduce
the following maps:
@ I:C(X) >R defined by
If) = lim Eg [f]

Bot+ee Som
(b) J: C°(XO) — R definedby J)=IoT) (D).
Noting that J(1) = 1, by the classical Rietz Theorem's (see for example [20], Theorem 2.14) it
follows that there exists a probability measure Q on X such that

I(g =Jng0
Xy

for any geC (X ).
‘Let Q be the measure in AX) defined by Q(B) Q, (BnX ) for any Be B(X). Then, by Lemma
2.4 we get

I(f) = I(Tf|xo) = J(f,xo) =J £dQ, =Eplfl
X0

for every fe CI’; (X) . This accomplishes the proof. §

Let us set

y=x,u(U X,)
heN

We conclude this section with a basic result for our purposes.

Lemma 2.5. Let (Qh) be a sequence in BX) of the form (2.4). Let Qe PX) such that

Q(X ) = 1. Suppose that (Qh) converges weakly to Q in AX).Let g:Y — R be a function

bounded from below. Assume that

6)) g| Xo is lower semicontinuous;

(i) ler (o(h)) be any sequence of natural numbers such that o(h) — +eo as h — +eo, then
() < liminf g(x,)

h— +o
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for every sequence (x,,) converging to xe X oin X and such thar x, € Xc(h) for every heN;
(ii) g]Xh is ‘B(Xh) - measurable for every he N.
Then
2.7 EQ[g] < liminf EQ,,[g]

h— +e

where Q= 6] x and, for every heN, Qh is the probability measure on (Xh, ‘B(Xh)) associated
Q . ’
with Q, by (2.4).

Proof. Let fe C(X o) such thatf < gon X . To get the assertion it is enough to show that
. < . .
2.8) EQ[f] < liminf EQh[g] .

h— +e
Infact, since X o is compact, there exiéts an increasing sequence ) of functions in C°(X 0) such
that fk(x) — g(x) for every xe X o, 8 k — + oo; then, the inequality (2.7) follows from (2.8) and
the monotone convergence theorem. Let us prove (2.8). Let he C;(X) be such thatf=h [Xo-
Preliminarly, we show that
2.9) limsup sup (h(x)-gx)=1<0

h— +e XEth)

Suppose by contraddition 1 > 0; then there exist a subsequence Xy of Kyyy) and a
constant ¢ > 0 such that

sup (h(x) - g(x)) > ¢

*€ X e
Hence,there exists a sequence (xh) in X such that X, € Xc(t(h)) and h(xh) >g (xh) + c. By passing
to a subsequence, by property (2.3) the sequence (xh) converges in X to xe X o Moreover, by (ii)
and by continuity of h we obtain f(x) = h(x) > g(x) + ¢, which is in contraddiction with the
assumption on the function f. This proves (2.9). Finally, the proof of (2.8) is obtained by noting
that, if (2.9) holds then there exists a sequence 1, of positive real numbers such thatn, — 0 and
h(x) < g(x) +n, forevery xe X and heN. §

3. MOSCO CONVERGENCE AND RANDOM CAPACITIES.
In this section we define a variational notion of convergence, introduced by U. Mosco in
[19], for sequences of convex functions and discuss some its useful implications for the study of

Dirichlet problems in domains surrounded by thin layers.

Definition 3.1. Let (X,t) be a topological space. Let (F},) be a sequence of functions from X
into R. We say that a function F : X—R is the sequential I"-limit of (F,) and we write
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F= Fseq('c) lim F,
h—es

if
(a) for every xe X and for every sequence (x, ) converging to x in X we have

F(x) < liminf F, (x,) ;

h—ee

(b) for every xe X there exists a sequence (x,,) converging to x in X such that

F(x) = limsup F (x,) .

h—oe

For a general definition of I'-convergence and for its applications in calculus of variation
we refer to [14],[15],[2]. Let X be a Banach space, we consider on X both the weak and the
strong topology, denoted by w and s, respectively.

Definition 3.2. A sequence (F,) of function from X into R is said to be Mosco convergent
to Fif

F=T Seq(w) lim Fh=Fseq(s) lim F, .

h—s+4oo h—+oo
In other words the sequence F, Mosco converges to F if
(a) for every xe X and for every sequence (x,) converging weakly to x in X we have
F(x) £ liminf F (x,)
h—eo
(b) for every xe X there exists a sequence converging strongly to x in X such that

F(x) = limsup Fh(xh) .

h—oo

Definition 3.3. We denote by ‘E the class of convex, lower semicontinuous, proper
functions from L2 (Rn) into R.

We note that the class ¥, defined in (1.8), is contained in E. On ‘E the Mosco
convergence is attached to a metrizable topology (see [2], Section 3.5), which will be called the
topology of the Mosco convergence and denoted by T, . For our purpose the relevant
topological aspects of the Mosco convergence are contained in the following theorem (see[2],
Theorem 3.36).

Theorem 3.4. There exists a metric on ‘Ewhich induces the Mosco convergence topology

and which is complete and separable.
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If we consider F endowed with the topology induced by T, the following compactness
results can be obtained by adapting the proofs of Theorem 4.1, Lemma 5.2, and Lemma 6.2 of

[6].

Proposition 3.5. (a) 9-'0 is compactin F; (b) let ( f]—'m(h)) be any subsequence of ( _‘Fh), then
for every sequence (F) in F such thar F e Tm ) there exist a subsequence (F (h)) and a
functional F e F_ suchthat (F; () Mosco converges to F, .

For any sequence m(h) of natural numbers such that m(h)—+ee as h—+oo, let (F,) be a
sequence in ¥ such that F, e :Fm(h) and let Fe . Given A>0,let R (A) and R(A) be the
resolvent operators introduced in Definition 1.6 and Definition 1.7.

The next result is an easy consequence of Theorem 5.5 and Lemma 5.2 in [6].

Proposition 3.6. For every A > 0 the following statements are equivalent:
(a) (Fh) Mosco converges to F;

(b) (R, (V) converges to R()) strongly in L°R").

The same result holds also for A =0if My, = Cg, (see Remark 1.8 ).

The following propositions show the connection between Mosco - convergence of a
sequence of functionals in Fand the behaviour of the corresponding functions b, introduced in
Definition 1.9.

Proposition 3.7. Let (Fh) be a sequence in F and let Fe F. Suppose that (Fh) Mosco
converges to F and one of the following assumptions holds :

() F.Fe ¥ ;

(ii) F, ,Fe Tm, where m is a fixed natural number ;

(iii) F e Tm *) for every he N and Fe 1770, where (m(h)) is any sequence of natural numbers
such that m(h)—+o0 as h—+oo. Then the inequalities

3.1 bs(F,U) < liminf bs(Fh’U)
h—+eo

(3.2) by(F,U) 2 limsup by(F,,U")
h—+oce

are satisfied for every &> 0 and for every pair U,U'e U such that U'ccU.

Proof. The case (i) and (iii) require minor changes in the proof of Lemmas
6.3,6.4,6.5,6.6,5.2 in [6]. In the case (ii) we can adapt Lemmas 5.5,5.6 and Proposition 5.7
in[10] B
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Proposition 3.8. If (F,) is a sequence in F_,Fe F_,and (F. ) Mosco converges to Fin
h 0 0 h

¥, then the inequality
by (F.K) 2 limsup b,(F, ,K)

h—>+eo

holds for every Ke KX and for every 6 > 0.
Proof. It is enough to use (3.2) and the property (h) in Proposition 1.11. &

Let us indicate by T, the topology on ¥ induced by T, by B(t) the Borel o-field of £
equipped with 7, and by B(t ) the Borel o-field of ¥, endowed with T . As a consequence of
the Propositions 3.7 and 3.8 we have that for every & > 0 the functions bg(s,U), Ue U, and
by (e ,K), Ke X, from 9—' into R, are @(1: ) measurable. We have also to say somethmg about
measurablhty of the function by(+,B), Be B, from ﬂ-’ into R. Let us denote by fB('t ) the
o-field of all subsets of ¥ Wthh are Q measurable for every probability measure Q on
(%,,B(z)). The following result holds.

Proposition 3.9. For every Be B and for every & > 0 the function b (e,B) from To into
Ris iB('co) - measurable .

Proof. The assertion can be obtained by suitable minor changes in the proof of Proposition
24in[3]. H

For he N fixed, let cap(h) be the set function of Definition 1.12. We recall the following
result (see [10], Theorem 6.3, Theorem 5.9, and [4], Lemma 2.2).

Proposition 3.10. Let (FJ.) be a sequence in F, and let Fe th. Then (FJ.) Mosco
convergesto Fin §, if and only if the inequalities

@) cap™(UMdA,) < liminf cap™ (UMOA; ),
oo j

®) cap™(KMdA;) 2 limsup cap " (KMIA )
jo e J

hold for every Ue U and for every Ke X, where Ag, A € 4, are, respectively , the open
sets associated with F and Fj (see Remark 1.5) .

For each he N let us denote by T, the topology induced on the class F, by Ty

Remark 3.11. From Proposition 3.10 we deduce that a sub-base for the topology T, is given

by the sets of the form {Fe Th : cap(h)(UmaA ) >t} and {Fe th cap (KmaAF) < s}, with
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t,se R", Ue U Ke X, where AFe ﬂh is the set associated with Fe fh.
We indicate by B(t, ) the Borel o-field of %, endowed with the topology T, .

Proposition 3.12. B(t,) is the smallest o-field in F for which the functions
F——)cap(h)(UmaAF) from ¥, into R are measurable for every Ue U (respectively, the

functions F ——>cap(h (Kr\aAF) are measurable for every Ke X) .

Proof. Denote by %, the smallest o-field in 7, for which all functions F——acap(h)(UmaA )s
Ue U, are measurable and by 21;' the smallest o-field in Th for which all functions
F———)cap (KmaAF) Ke X, are measurable. Let us show that 2' = 2,". It is enough to prove
that
(a) any function F—)cap (KmaA ), Ke K is 3 measurable;
(b) any function F-—-acap (UmaAF) Ue U is 2, measurable.
Let us prove (a). For every Ke 27( consider the decreasing sequence of open sets

{xeR 1 d(x,K) < 1\n}.
We remark that U, LK. From the well known properties of Cap( we have

cap ™ (KADAL) = inf cap (U, M3A,)
heN

for every Fe %, , which proves (a). Assertion (b) can be proven in the same way, by choosing,
for every Ue U, an increasing sequence (K,) in X such that K, TU. The proof of the
proposition is complete if we show that @(’ch) 2. The mclusmn PGS CB('ch) is trivial
because,by Proposition 3.10, cap( (KmaA ), Ke K, and cap( )(UmaA ), Ue U, are
respectively upper and lower semicontinuous on #,. On the other hand, noting that the
sub-base for the topology T given in Remark 3.11, is contained in Zh and that ,‘}'h admits a
countable base for the topology T, We obtain the inclusion @(th) c Z',: |

The next corollary is a direct consequence of the previous proposition.

Corollary 3.13. Ler (Q,Z) be a measure space. Let F be a function from Q into ¥, .The
Jollowing statements are equivalent:

(a) Fzs Z—Q?('c ) measurable;

(b) cap (UmaAF(.)) is Z-measurable for each Ue U;

(c) cap (KF\BAF (,)) is Z-measurable for each Ke XK.

We conclude this section with some results on the functions b8(°,B), BeB,5 >0,
considered as random variables on the space £. We shall deal with weak convergence of
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measures on the space E. Similar problems of weak convergence of measures on spaces
endowed with topology related to I'-convergence have been studied in [11],[12], and[3].
Lemma 3.14. Let Q be a probability measure on ( ?'0,@(1:0)). Then the following relations
(3°3) EQ[bS(.oB)] = Sup { EQ[bs(.bK)] : KE :K:? K g B }’
(3.4) EQ[b5(°sB1)b8(°,B2)] = Sup {EQ[bs('aK1)b5('aK2)] . K1 ,K2E X K] & B] > K2 = B2}
hold for every & >0 and for every B,B,,B, e B.
Proof. We only prove (3.4) since (3.3) can be proven with similar arguments. Fix 8 > 0 and
B,e B. For every Ee (UUX) we define

B(E) = Eq[by(*E)bg(B)] .
By properties (e),(h),and(j) of Proposition 1.11 we have that

(3.5) B(K, UK,) + B(K,NK,) < B(K ) + B,
for every K1 ,Kze X

(3.6) BX)=inf { BU): Ue U, U2K }

for every Ke X, and

3.7 BU) =sup {BK):KeK,Kc U}

for every Ue U. Moreover, we can extend the definition of § by
(3.8) B(B) =inf {B(U): Ue U,U2B}

for every Be B. We deduce from (3.5),(3.6),(3.7),and (3.8) that 3 is a Choquet capacity
(see[16], Theorem 1.5). Applying the capacitability theorem (see [9]) we get
(39  B®)=sup (BK):KeX K SB )=

= sup { EQ[bs(-,K])bs(-,B2)] 1K, e X, K, €B, 1 <
SEQ[bS(-,BQbG(-,Bz)] <inf { EQ[bs(o,U1)b6(~,U2)] :U,eU, U, 2B, } =
=inf { B(U1) :U,eU,U, 2B, } = B(B1).

for every B, € Band B,e B fixed. From (3.9) and from the formula we can obtain exchanging
in (3.9) the roles of B1 and B2, we get (3.4). E

For every he/l\\l let Qh be a probability mf\asure on ( th,ﬂ(th)). From now on we
consider sequences (Q,) of measures in ‘A‘E) with Qh defined by
(3.10) Q,B)=Q,BnF)
for every Be CB(TM).
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Lemma 3.15. Let (Qh) be a sequence in Q’(E’) of the form (3.10), and let Q be a measure in
‘P(‘E) such that Q(T )=1. Suppose that (Qh) converges weakly in ‘E) to Q Then, for
every 08>0 and U,U'e Uwith UccU, we have

(3.11) Eqlby(\ U] S limint Eq [by(+ U],
h— 4o
(3.12) Eqlbs(-U)] 2 limsup Eq [b (- U1 ,

where Q=6| X, and Qh is the probability measure on (Fh,fB(’ch)) associated with 6h by
(3.10).
Proof. By Proposition 3.7 and by applying Lemma 2.5 with g(F) = b (F,U) for 8> 0and
Ue U fixed, we get the inequality (3.11). Let us prove (3.12). For every Fe ¥ and for 6 >0
fixed we define '

b*(F,U) = inf { by(F.U") : U'e U, UccU' }
for every Ue U. Preliminarly, we show that, for every Ue U,
(a) b*(=,U) | Fo is upper semicontinuous;
(b) let (m(h)) be any sequence of natural numbers such that m(h)—+oe as h—+oo, then

b*(F,U) 2 limsup b"(F, ,U)
h—+oo
for every sequence F, , with F e ?_m(h)’ which Mosco converges to Fe F_;
©) b*(-,U) | ?m is upper semicontinuous, where m is a fixed natural number.
We prove (a). Properties (b) and (c) can be obtained by repeating the proof of (a) with suitable
changes. Let (F,) be a sequence in ¥, Mosco converging to Fe ¥, and let Ue U. For every
t> b*(F,U) there exists U'e U, with UccU' such that t > by (F,U"). Let U"e U be such that
UccU"ccU" Then by (3.2) it follows that |
t>by(F,U) > limsup by(F,U") > limsup b*(F,U)

h—+eo h—+e
which proves (a). Now, by applying Lemma 2.5 to the function g(F)= —b*(F,U) with Ue U

fixed we have "
EQ[b (,U)] = limsup E [b (-, U)].

h— 4o

Let U'e U such that U'ccU. Then
Eq[by(+,U)] 2 Ey[b"(+,U] 2

2 limsup EQ [b (' U9] = limsup EG [bg (=, UN]

h— +ee h—> +oo

which proves (3.12). #
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Lemma 3.16. Let (Qh) be a sequence in P(‘E) and let Qe P(E) as in the Lemma 3.15.
Then for every 6 >0

(3.13) Eq[b(-U)bg(+Up)] < liminf Eq [b5(+U )b (+Uy)]
(3.14) Eqlby(Up)bg(Up)] 2 limsup Eq [bg(Upby(+U3)]

for every U, ,U Ug,Use Uwith U, iccu, and U. CCU2, where Q= Q|X° and Q, is
the probability measure on (Fh,QB(‘ch)) assoczated with Qh by (3.10).

Proof. Let us fix 6 > 0; we set N(E,U1 Uy ) = by (F,U, )b (F.U,).
Let (F,)) be a sequence in ¥ and let Fe F. By Proposition 3.7, if (F, ) Mosco converges
to F and one of the assumptions considered there is satisfied, it follows that

(3.15) A((F,U,,U,) < liminf A((F,,U,,U,)
h—+4oo

(3.16) A(F,U,,U,) 2 limsup N(F,,U;,U})
h—+ee

for every U,,U,,U;,Use U with UijccU, and U,ccU,. From (3.15), by applying
Lemma 2.5 with g(F)= Q\C(F,U1 Uy) for U, ,U ed flxed, we obtain (3.13). Let us prove
(3.14). For every Fe F and for every U, ,U,e U we define
A*(F,U,,U,) =inf { AL(F,U},Uy) , UpULe U, U, ccU;, U,ccUy, )
Preliminarly we show that for every U,,U,e U
() N (F, U,,U,)] 7, is upper semicontinuous;
(b) let m(h) be any sequence of natural numbers such that m(h)—+oe as h—+oo, then
9\£ (F,U,,U, ) 2 limsup 9\[ (F,,U,U,)
h—+ee

for every sequence (F,) in F, with F eF mhy which Mosco converges to Fe _‘};,
(c) 9\[ (e U U )| ,‘F is upper semicontinuous, where m is a fixed natural number.
We prove (b) Propertles (a) and (c) can be obtained by adapting with minor changes the proof
of (b). Let (Fh) be a sequence in ¥, with Fhe Fm(h), which Mosco converges to Fe 9—’0‘ For
every t > N*(F,U] ,U2) there exist Ui,U'ze U with U CCU' and U ccU' such that
t> N(F,U;,U’z). Let Uy,Use U be such that U, CCU"CCU and U2cc:U ccUs5.
Then from (3.16) it follows that

t > N(F,U{,Ué) 2

> limsup A((F,,U;,Uy) 2 limsup AC"(F,.U,,U,)
h—+eo h—s+400

which proves (b). Properties (a), (b), and (c) allow to apply Lemma 2.5 to the function
g(F) = -AL*(F,U,,U,) with U,,U,e U fixed. Thus, we obtain
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Bo[AC'(-U . Up)] 2 limsup Eq (AL (+.U.U,)]
h— 4o

for every U1 ,Uze U. Finally, by taking U;,U"‘?,U1 ,Uze ‘Zl ‘such that U,‘CCU1 and
UéccUz, we have

EQ[AL(.U U] 2 Eq[AL" (U}, U] 2

> limsup Eq_ (A" (U U] 2 limsup Eq [A((,U}U)]

h—+ee h—+eo

which proves (3.14) and the proof is accomplished. H

Lemma 3.17. Let (ah) a sequence in ‘‘E) and 'Q\e ‘KE) as in the Lemma 3.15, and let
8 > 0. If we assume that

lim COVQh [b6(°,U1)b8(°,U2)] =0

h—s+eo
for each pair U1 ,UQE Usuch that I-J1 0172:@, we have
Covg [by(+,U )b (U] = 0

for any U,,U,e U, with [—51062=®.

Proof. Let U, ,U?_,U,',U'ze U such that UiCCU1 , U'2<:c:U2 and U, mU2=®. By (3.13)
and (3.12) it follows that

(3.17) Eqlby(+,Upbs(+Upl < liminf Eq [by (+Upbs(+,U3)]
h—+eo

(3.18) Eqlbg (s UpIEq[by(+U,)] = limsup Eg [by (UDIEq [bs(U)]
h—+oe

By subtracting (3.18) from (3.17) we obtain

(3.19) Eq[bg(Uby (+,U5)] = Eqlby (.U )IEq[by (U] <

< liminf Covg, [b,(+U}).b (U] =0.

h—>+eo

By (3.14) and (3.11) we deduce that

(3.20) Bqlbg (- Ubg(+Up)] = limsup Eg [by (-Upby(U3)]
h= oo
(3.21) Bqlbg (. UpIEQIDs(+.Up)] < liminf Eq, [bg (~UpIEq, [b;(-.U)

By subtracting (3.21) from (3.20) we have

(3.22) Eqy[bg (U )bg (U] = Eg[by (s, UpIEq[by(+,.U)] 2

> limsup Conh [b6(°,U'1),b8(',U'2)] =0.

h—+oo
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By (3.19), (3.22), and Lemma 3.14 we get the assertion. §

4. THE MAIN RESULTS.

This section is devoted to state and to prove the main theorems of this paper. They give
full answer to the following questions.
(a) Foreveryhe N,let Q, be a probabality measure on (F, »BT,))-

Under which COIldlthI‘lS a sequence of measures (q1) in E) of the form (3.10) has a

subsequence (ch(h)) which converges in AE) to a Dirac measure Q 5 w1th Fe f]—" ?
(b) How can this limit be characterize ?

We will show that both the answers depend on the asymptotic behaviour, as h — + oo,
of the functions by (+,U), considered as random variables on the probability spaces

(Thsg(Th)’Qh)'

Before to state our main results we put some definitions. For every Ue U we define

ag (U) = Lnfini EQh[bS (=,U)]
ag (U) = }lirfiuf EQh[bS («,U)]

where EQh denotes the expectation in the probability space ( F B(t,),Q,, ). Next, we consider
the inner regularizations B¢ and ¢ of the set functions o and o, defined for every Ue U by

4.1) | B (U) =sup { a(V) : Ve U, VccU }
4.2) ¢ U =sup { a/(V) : Ve U, VccU }

We extend the definitions of B'sand B¢ to the Borel sets Be Bby
By(B) =inf { B (U) : Ue U, U 2B }
e B)=inf {B;(U):Ue U, U2B}.

Finally, we define

4.3) V'(B)=sup { B5(B): Be B,5>0 )

4.4) v'(B)=sup { By (B) : BeB,5>0}

We are now able to state our results.

Theorem 4.1.(Compacteness Theorem) Letr (Q,) be a sequence of probability measure on
( Th,QB('th)) for every he N let Qh the measure in ‘P(‘E) associated with Qh by (3.10).
Assume that there exists a Radon measure  with spt 3 € 0D such that
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4.5) limsup E [ba( )1 < BO)

h— +e
for every Ue Uand 6> 0.
Moreover, suppose that for every U,,U,e U, with ﬁ1r‘ﬂjz= @,
(4.6) lm  Covg [by(+U )by Uyl =0

h— 4o

Then, there exists a subsequence (ac(h)) of (ah) and a functional F e TO such that (Ga(h))
converges weakly on ‘H(‘E) to the Dirac measure SF € 'K‘E) defined by
o}

0 ifFeA
4.7) 8 (A) =
o 1 ifF cA

for every Ae B(ty,).
The limit functional F | is determined by the next theorem.

Theorem 4.2, Let (Qy) be a sequence of probability measures as in Theorem 4.1. Assume
that there exists a Radon measure 7y such that
(4.8) V'(B) =Vv"(B) =v(B)
for every Be Band call v(B) the common value of v'(B) and v"(B).
Suppose that (4.6) holds. Then,
(t)) VisaBorel measure of the class M* (dD);
(t,) (Qh) converges in ‘KE) to the Dzrac measure 8 e ‘KE) defined in (4.7) where F, is
the functional in F associated to the measure v accordmg fo Remark 1.5 .

We now show some preliminary results which allow to get the proofs of Theorem 4.1 and
Theorem 4.2. The next lemma gives a peculiar representation of a measure [le Mj (0D).

Lemma 4.3. Let pe .‘M:(&D) and let F be the corresponding functional in ﬂfo' Then, for
every Be Bwe have

H(B) = lim ) by(E.B)

-0 IEIS

where, for every &> 0, (B:’)ieI is any finite Borel partition of B.
5

Proof. Let Be ‘B. For every 6 > 0 fixed, denote by (B:’)ie 1, any finite partition of B. Then, by
(g) in Proposition 1.11, we have

W)= D, 1B 2 ) by(F.B)

el el

Hence
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)
4.9 B)>1 b.(F,B.
“.9) u(B) > imsup >, b(F.E)

YV je I
On the other hand, by (k) and (e) of Proposition 1.11, for every real number t < p(B), there

exists O o> 0 such that

3
t < by(F,B) < z bs(F.B.)

ie Iy
for every 8 < &,. Thus we have

)
t < liminf b.(F,B.
imin D byEBD)

ie I
Hence
(4.10) W(B) < liminf D by(F,B)
‘ 8 - 0 ie IS t

The inequalities (4.9) and (4.10) give the assertion. B
The following proposition provides a sufficient condition in order that a probability

measure Q on ( 70,28(’50)) be equal to a Dirac measure SF .
0

Proposition 4.4. For every 6> 0 we define

a5(U) = Eq[bg(e,U)]
for every Ue U, and
o5 (B) =inf { a5(U) : Ue U, U 2 B}
for every BeB.
Moreover, let us set
V(B) = sup ocS(B)
§>0

for every Be B.

Let us assume that
(i) there exists a Radon measure B such thar v(B) <B(B) on B,
(ii) Con [bs(e,U,),bs(e,UNI =0

for every & > 0 and for every pair U,.U, of sets in U such that I—J'1 r‘\ﬁQ =0.
Then ,

(t1 ) Vis aBorel measure of the class 9\[: (9D);

t,) Q= SFO, where F_ is the functional in fFO associated with V.

Proof. From (b) and (d) of Proposition 1.11 we deduce that the function v is increasing and
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countably subadditive on ‘B. In order to prove that v is a Borel measure we first note that, by
(h) of Proposition 1.11 and by (3.3), we have
(4.11) 0t5(B) = Eq[bg(*,B)]
for every 6 >0 and BeB.
Thus, from (i) of Proposition 1.11 we deduce that
4.12) oa5(B,) + a5 (B,) < (1-n)! ag (B,UB,) + 4A2n'1 o2 |D-D5 |
for every 1, 8 > 0 and for every pair B ;» Boe Bsuch that dist (B, By)=0>0.
By taking first the supremum over all & > 0 and then the limit as 1 goes to zero in (4.12), we
get _

V(B,) +Vv(B,) <Vv(B,UB,)
for every B |, B,e B such that dist (B; ;Bz) > 0.
Applying the Caratheodory criterion (see[17], 2.3.2(9)) we obtain that v is Borel measure.
Finally, the hypothesis (i) and Proposition 1.11 ((f),(g)) infer that ve M : (0D) and this
completes the proof of (t1 ). Let us prove (t2). Let us denote by Z(+,B) the random variable on
the probability space (¥,,B(t,),Q) defined for every Borel set B of oD by

Z(F,B) = W(B)

where L is the measure in M: (9D) associated with Fe f}’o.
We note that, by Lemma 4.3, for every Fe ¥, and for every Borel set B of aD,

)
ZEB)=lim D, byFB)
30 T,
where, for each 6 > 0, (Bi&)i < 1,18 any finite partition of B. Our aim is to show that Z(¢,B) is a
3
constant random variable. In view of Lemma 3.1 in [3], we have only to prove that

(4.13) : lim Va.r [ Z by, B ) 1=0

§— 0 1615

By (h) of Proposition 1.11 and by (3.3) and (3.4), we can extend the relation (ii) to each pair
of disjoint sets B,, B, e B. Therefore, to get (4.13) it is enough to prove
H]
4.14 lim Var,[bs(s,B.)] =0
(4.14) “01; o2+ B0]
Let B be a Borel set of dD and let (r5)5, and (Rg)s. be two sequences of positive numbers
such that : (a) I, < R& for every 0 > 0,
(b) s; =cap (B, (0) BR (0)) > 0as 6 — 0;
©) for every xe BD Bp (x)naD @.
For every & > 0, let us choose a ﬁmte partition (B &)1eI of B such that

sup (dlarnB )<-—
ie I
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moreover, for every 1eI let us fix X *such that B < B, (x ) c BR (x; )

Since BR (%; )r\ BD @ by (f) of Proposmon 1.11 we have
by(F.B;) < A, cap (B, By (x7)).

Then, for every 6 > 0 we get

@“.15) EI: Var by« B)] =
1€ 5
=D {EqlbyB0Y1 - (Bylby-B])*} <
iely

< D BolbgB )1 < A, ) cap (BB, () Eqlby(+B )<

ie I ie I

<A, sup {cap(B (x)B (x ))} ZEQ[bB( B)]<

ie I

<A, cap (B O)B, (O) D, 0B <A, 55 D BBY = A, 5, B(B)
ie I ie Iy
By taking the limit as § — 0 in (4.15) we get (4.14) and this proves that Z(s,B) is a constant
random variable. Now, let us compute the expectation of Z(¢,B). By taking in account that the
function 8 — b (F,B) is decreasing and by applying Lemma 4.3 with Bi6= B for every ie L
and for every & > 0, we obtain
EQl2(+B)l = sup Eq[bs(e,B)] = v(B)

where in the last equality we have used (4.11).

Therefore, for evéry Borel set B of dD there exists a subset ,‘FB of }; with Q( SL'B ) =1 such
that Z(F,B) = v(B) for every Fe fB .

Finally, by means standard density arguments (see for istance the proof of Lemma 3.3 in [3])
we can deduce that there exists a subset F of E such that Q( F) = 1 and Z(F,B) = v(B) for
every Fe F and for every Borel set B of dD. This completes the proof of (). H

Proof of Theorem 4.1. By Theorem 2.2 there exists a subsequence of (Qh) converging
weakly to a measure Q in AE) such that Q( T ) = 1. By (4.5) and by Lemma 3.15 we obtain
Eq[by (-] < BD)
for every & > 0 and Ue U, where Q = Q 7
It is easy to see that also the relation EQ[bs(o,U)] < B(U) holds.
Hypothesis (4.6) and Lemma 3.17 yield
Covy[bg(e,U1) be(,U2)] =0
for every & > 0 and for every pair U,,U,e U with U, NU, = 3.
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The thesis is obtained easily from Proposition 4.4. #

Proof of Theorem 4.2. By Theorem 4.1 and by (4.8) we can assume that (Q,) converges
weakly to a Dirac measure 6,_. € HE) for some F TO. By Lemma 3.15 it follows that
0

(4.16) E 5, [05(-U)] = by(F,,U) = BYU) =B;(V)

for every Ue U. By extending (4.16) to an arbitrary Borel set in D we have
’ bs(F,B) =B¢B) =P (B)
for every Be B, which gives

v(B) = sup b(F,B)
§>0

Property (k) in Proposition 1.11 implies that v is just the measure in Mf: (dD) associated with
the functional F . This concludes the proof of the theorem.

5. DIRICHLET PROBLEMS IN DOMAINS SURROUNDED BY THIN
LAYERS WITH RANDOM THICKNESS.

In this section we apply the main results proved in the previous section to Dirichlet
problems in domains surrounded by thin layers with random thickness.

From now on (Q,Z,P) will denote a probability space, that is, £ is a set, X is a o-field
of subsets of 2, and P is a probability measure on .

Definition 5.1. (a) For every he N a random functional of the class ¥, is any measurable
function F, : Q— %, , where ¥, is equipped with the Borel o-field B(t, ) generated by the
topology T, induced by T, (topology of Mosco convergence); (b) a random functional of the
class F o 18 any measurable function F_ : Q— ¥, where 7 is endowed with the Borel o-field
B(t,) generated by the topology T, induced by Ty,

Remark 5.2. We recall that necessary and sufficient conditions for the measurability of a
function F| : Q— %, are given in Corollary 3.13.

Let F, be a random functional of the class fl-'h and let Q, be the probability measure on

( Th,‘B('ch)) defined by
Q,(A) =P(E,”(A))
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for any Ae B(t,). Q, is called the distribution law of F,. In the same way, given a random
functional F | of the class }; we can define the distribution law Q of F.

For every he N let Q, be the distribution law of a random functional F, of the class %,
and let Qh be the measure in P(E) associated to Q, by . 10) Moreover let Q be the
distribution law of a random functional F of the class 9—' and let Q be the measure in P(E)
defined by

Q®) = QBNF,)
for every Be Q%('CM).

Deﬁmtlon 5.3. We say that F,) converges inlaw to F  if (Qh) converges weakly in

ME) to Q.

We denote by E and by Cov respectively the expectation and the covariance of a random
variable on Q, with respect the measure P. It is easy to see that, for 5>0 and for every heN,

5.1) Eq [b5(+,U)] = E[by(Fy ()]
for any Ue U and
(5.2) Cc>th[b8(~,U1 ),bg (2, Ux)] = COVQh[bs (F (), U Dby (Fp (), U,)]

for any U,,U,e U.

Remark 5.4. Equalities (5.1) and (5.2) allow to reformulate the hypotheses of the
compactness theorem in terms of the expectations and covariances of the real random variables
b, (F, (2),U), 8 > 0. By Definition 5.3 the thesis of Theorem 4.1 can be restated by saying that
the sequence of random functionals (F, ) has a subsequence F(G ") which converges in law to a
random functional F_ on _‘To such that Fo((o)zF o for P-almost every we £ (i.e. to the constant
random functional F_ on fo).

Remark 5.5. Since Z is a metric space (let d,, be the metric) the convergence in law of the
sequence (F, ) toward the random constant functional F is equivalent to the convergence in
probability. By Remark 5.4 we can deduce that if the assumtions of Theorem 4.1 on the
random variables b (F, (¢),U), 6 >0, Ue U, hold, then the sequence (F})) has a subsequence
(F ) Which converges in probability to the constant functional F e 7, that is,for every € > 0
Im P{weQ: dM(Fc(h)’F) >e} =0

h—o+ee

a(h)

For every he N, let A, be a function from the set Q into the class of sets A, (see
Definition 1.2). For every we Q let F, (w) be the functional in Th associated with Ah((o) (see
Remark 1.5).

Definition 5.6. We say that the function A, : Q— 4, is a Random set of the class 4, if
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the function Fh - }'h is a random functional of the class ﬂ—'h.

Remark 5.7. Necessary and sufficient conditions in order that a map A, : Q—A4, be a
random set, can be deduced by Corollary 3.13.

We are interested in the study of the following sequence of random Dirichlet problems
associated with a sequence of random sets, that is, for every we Q

h) .
L' u +Au. =g inA (w)
(5.3) { h h h

u e H (A, (@)
where A > 0, ge L2(Rn). .
For each we Q and A 2 0, let (R, (M[]) be the sequence of resolvent operators associated
with the sequence (F, () (see Definition 1.6). We are now able to state a new version of the
compactness Theorem 4.1.

Theorem 5.8. Ler (A,) be a sequence of random sets and let (F,) be the corresponding
sequence of random functionals. Assume that there exists a Radon measure Y with spty < oD
such that

6.4 limsup E[b,(F, (), U)] < ¥ (0)

h—+eo
for every 8 >0 and for every Ue U. Moreover, suppose that for every U,,U,e U with
6] ml-32=® we have
(5.5) limsup Cov [bg(Fh(')’Ul)ba(Fh(°)’U2)] =0.

hoteo
Then there exist a subsequence (R (h)(k)) of (RhO\.)) and a functional F e fl-‘o such that, for every
A>0, (R . (h)OL)) converges strongly in probability to the resolvent operator R | (A) associated to F,
(see Definition 1.7 ), that is

lim P {0eQ: IR Mgl -RyMWIell] , . >e)=0

h 540

for every € >0 and for every ge L2(Rn) . If my, =ce, then the same result holds for A=0 (see
Remark 1.8).

Proof. By Remark 5.5 we have that there exists a subsequence (Fc(h)) of (F,) which converges in
probability to some Fe ¥ . So the assertion is obtained easily by Proposition 3.6. #

For every he N let Fh be a random functional of the class Th. Given the sequence (Fh)’ let us
define for every 8 >0
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o (U) liminf E[b (Fh( )U)]

h—+ee

o (U) = limsup E[b (ORI

he+co

We denote by B, B{ respectively the inner regularization of a.;, o, as definited in (4.1), (4.2)
and by V', v" the set functions as defined in (4.3), (4.4). It is easy to see that by (5.1), (5.2),
Definition 5.3, Remark 5.4 and Remark 5.5, Theorem 4.2 can be restated in the following way.

Theorem 5.9. Given a sequence of random sets (A,), let (F,) be the corresponding sequence of
random functionals. Assume that there exists a Radon measure Y such that

V'(B) =v"(B) £Y(B)
for every Be Band call v(B) the common value of V'(B) and Vv"(B). Suppose that (5.5) holds,
then, for every A >0 ’

lim P{wcQ: IR I -RMIAI , a1 =0

h —+4e

for every € >0 and for any fe L (R ), where R (?\.) is the resolvent associated to the functional
F € F_, which corresponds to the measure V & M* 0Q). If n;, = Cg, then the same result holds
for A =0 (seeRemark 18 ) .

6. AN EXAMPLE.

In what follows we assume that the domain D of R" has a c? boundary and that, for every
heN, My, = cg, (see Remark 1.8) .
By (Qih )i 1 we denote a finite open cover of dD such that
max diam Q}; -0
iely
as h — +oo, Let (¢ )1(EI be a partition of unity on dD, subordinate to the cover (Q )151 and let
(x )1e1 be a family of mdlpendent random variables defined on the same probabilistic space
(Q,2 P) with values in the interval [c,1], where ¢ is a positive constant. We regard the family
(x].h )i p, asa vector random variable th) from Q into [C,l]Ih. For every 7\,=(?\.i)i€ 1 in [c,l]Ih, we
define the set (see fig.2)
B, =1 {xeR":x=0+tn(c),0edD,0<t<e A¢;(0) )
iely :

where n is the outer unit normal to dD. Let us set A, (\)=DUB, (A).




109

B, (%)

We stress that the assumption on 0D ensure that the mapping (o,t)—0+t n(o) is invertible on Bh(K)
if h is sufficiently large so that the boundary of the set A, (M) is given by

A, M= U {xeRn:x=G+ehki¢?(c)n(G),ceaD }.

iel,

We note that for every Ae [C,l]Ih the following inclusions hold

(h)

6.1) D"={xeR":dxD)<ce } SAM S (xeR":dx.D) <g, }

Furthermore, we associate with every Ae [C,I]Ih the functional Fh (K):Lz(Rn)—>R defined by

(h) ~ 2 oo 1,0
Ja (x,Du) dx +J u - d 24,00 ueH (R)
FMw= | ¥ R’
+oo otherwise

where a(h) is the quadratic form defined in (1.2). Our aim is to show that the composit function
m—th(ﬁ(h)((o)) from Q into fTh is 2-B(t, ) measurable, i.e. is a random functional of the class ,‘Fh

To get this we need the following lemma.

Lemma 6.1. For every Ke X the function K—ecap(h)(aAh MNK) from [C,l]Ih into R, is upper

semicontinuous in [C,l]Ih.

Proof. The lemma is similar to Lemma 4.1 in [3]. For the reader convenience we adapt the prbof
in our particular case. Let (7“i )ie N be a sequence in [c,l]Ih converging to A in [C,I]Ih‘ For every
je N we define the set

EJ ) = { xeR" : dist(x,dA, W) < 15 . - |
By definition of dA, (A) we have that for every je N there exists i € N such that EnJ M) 20A, ()




110

for every i 2 i . Hence, for every je N and Ke K we obtain

cap (E (AMNK) = limsup cap( )(aAh(K NK) .

1—pto0
Since
M (E (X)r\K) oA (k)mK
jeN ‘
by the well-known properties of the capacity cap(h) we get

cap™ (@A, WNK) 2 limsup cap @A, (A)NK) ,
: 1—>+eo

which proves the lemma. #

)

Remark 6.2. Lemma 6.1 and Corollary 3.13 imply that the funcuon co—-aF (& (w)) is a random

functional of the class 7, or equivalently, that the function ®w—A (E’; (co)) is a random set.

h)

Let us set Fy (0)=F, (& (w)) for every we Q. In the following we want to show that the

sequence (F, ) satisfies the assumptions of Theorem 5.8.
For every xe R", let us define the function

u, (x) = {1 -—1— d(x,D)\l v 0.

ce, )
By (6.1) it is easy to see that for every Ue U, 8 > 0, and Ae [C,l]Ih, the function u, has the

following properties
u, =0 ge.on UndA, L),
u, =1 qge.on dDy.

Thus, for every 6 > 0, Ae [C,l]Ih, and Ue U, we have
6.2) by(F,(MU) <, j a(x,Du) dx <

©®D)~u

1
<A,€, leuh|2dx=A2£h J — dx =

()

|O™/D)"U]| .

1
c &
By (6.2) it follows that for every 6 >0 and Ue U
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Al
Elb (F,(»)Ul < =2 — 1@"/D)nul,
¢ €

hence, for every Ue U, and & > 0, we have

6.3) limsup E[b (E (V)] < .1_\2_ H"(@DNU)
h—s+eo c '
which proves the assumption (5.4) of Theorem 5.8.
Now, let I be any subsct of I, . We denote by IT; the projection of [c, I]Ih on [c, 1]I For every
Ue U we set [(U)={iel, : Q AU # @}. By Definition 1.9 it is easy to see that, for any 6 > 0
fixed, the function A—b s (F, (A),U) from [c, l]Ih into R is actually a function of the variable -
A= I(U)(?\.) So if we consider two sets U,,U,& U such that U r\U =@, we find two disjoint
sets I,,I, of I such that, for any 8 >0 and ke [c, 1]I
B EMU) =y, () and by (B, (.U = wp(\)
with 7”'=HI1 (A) and 7\."=H12(7L).
As the random vectors

h h h
g( )— (X iel, and g( )_ X5 1EI
are indipendent, it follows that the random variables
h h
oy, (&M and -y, (ES) (@)

are indipendent too. This proves the assumption (5.5) of Theorem 5.8.

Finally, we point out that, by (6.3), the measure v of Theorem 5.9 turns out to be absolutely
continuous with respect to the (n—1)-dimensional Hausdorff measure " Therefore, by
Radon-Nikodym theorem we obtain that there is a unique function he L (Hn_1) such that

v(B) = j h dH"
B

for every Borel set of dD.
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