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1. Introduction

Instead of making the usual sort of introduction, I would like to start
by presenting two figures which sum up the main ideas of the thesis and
give us overall guide to the work. Figure 1 illustrates observed properties
of the objects discussed here while Figure 2 is its theoretical counterpart
which summarizes all of the models calculated and described in detail in
this thesis. In fact, the graphs really ought to be three dimensional, with a
third axis representing viscosity and I will be considering various different
viscosity parameters {or the models represented in Figure 2. Both of the
figures show relationships between mass and accretion rate, which having
in mind connotations of accretion rate, translate into mass-luminosity re-
lations. For normal stars the mass-luminosity relation is of fundamental
importance and underlies our understanding of stellar structure and evo-
lution. What is the present state of our knowledge about the nature of
galactic and extragalactic x-ray sources? Here I will concentrate on Active
Galactic Nuclei and introduce a new class of theoretical models for accretion
disks - slim accretion disks (Abramowicz, Czerny, Lasota and Szuszkiewicz,
1988). The simplicity of these models combined with care in treating phys-
ical phenomena in the neighbourhood of compact objects, give rise to a
powerful tool for exploration within this extremely interesting field.

The M(M) relation in Figure 1 has been obtained using data avail-
able in the literature. As a main source of masses and luminosities I used
the paper by Padovani (1988) (a preprint of the Space Telescope Science
Institute). and translated the luminosities into accretion rates using the
M - L relation for slim disks. (The masses are measured in solar masses
and the accretion rates in cgs units). The most interesting objects, which
show evidence for the existence of accretion disks are represented in Figure
3, which shows a small part of the data in Figure 1. Among others there
are Fairall 9, whose spectral properties I studied in collaboration with Bi-
nette, Prieto and Zheng (1988}, NGC 1566, where disk instabilities seem
to explain line and continuum variability (Abramowicz, Lasota, Xu, 1986),
and PG 12114143, whose "blue bump” has been fitted by accretion disk
spectra calculated by Czerny and Elvis (1987).
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Figure 1: The M (M) relation for a sample of active galactic nuclei given
by Padovani (1988) and a few other interesting objects.
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Figure 2: A set of models for slim accretion disks with three input parame-
ters (a, m, m) projected onto the A - m plane. The unstable equilibrium
models are located in the region between the two siraight lines.
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Figure 3: The sources from the TOP TEN list {Chapter 6) plotted in the
M(AM) diagram.

The two straight lines in Figure 2 mark boundaries of the region
in which sliim accretion disk models become unstable according to the
limit cycle mechanism discussed in Chapters 5 and 8 (Abramowicz and
Szuszkiewicz, 1988). This sort of instability can give rise to quasi-periodic
oscillations with timescales typically of order thousands of days. In order to
search fui vaiiability with such timescales it is crucial to increase the sam-
ple of objects for which long term regular monitoring is available, This has
stimulated us {Barbieri, Cappellaro, Romano, Turatto and Szuszkiewicz,
1988) in pursuing a project of making optical observations of quasars at
the Asiago Observatory. Other types of instability are discussed in Chap-
ter 8 (Abramowicz, Livio, Soker and Szuszkiewicz, 1988), and Chapter 6
conttains an account of recent results for models of slim disks around super-

massive black holes.



2. The standard black hole model for ac-
tive galactic nuclei

Most interpretations of active galactic nuclei (AGN) invoke a massive
(10° — 10°My) and compact (size < 1 pc) gravitational center. The search
for the mechanism to power their active phase {10%® — 10*® erg/s) leads to
three well-known categories of models (Rees, 1978 and references therein):

- dense star clusters
- massive stars - spinars or magnetoids
- accretion onto massive black holes

It is very difficult to estimate the energy production efficiencies in
these systems. For the first type of model the maximum efficiency is given
by the maximum realizable energy of a supernova-like explosion, or by the
maximum amount of binding energy that can be released in stellar colli-
sions. For the second mechanism the limit is set by the onset of dynamical
instability., The third type seems to be the most powerful and in this case
about 10% of rest mass can be converted into electromagnetic radiation.

Systems dependent on gravitational energy, such as all of the men-
tioned above models, will undergo runaway instability. The almost in-
evitable cuupuint for any dense star cluster or supermassive star will be
the collapse of a large fraction of its total mass to a black hole. These
two arguments explain why the third possibility has been considered as the
standard model.

The standard model for AGN involves a supermassive black lLole, lo-
cated in a galactic center and accreting matter. Accretion occurs because
of the action of viscous stresses: gas orbiting the central black hole grad-
ually loses its angular momentum to the gas further out through friction.
As the balance of the centrifugal force against gravity shifts in the favor
of gravity, the inner gas spirals further inwards. Viscous stresses not only
drive accretion by transporting mass inwards and angular momentum out-
wards, but also convert the liberated gravitational energy of the matter
into heat. The heat diffuses towards the surface and is then radiated away.



The most important parameters which determine the observed appearance
of the model and the natural timescales connected with it are: the mass of
the central black hole A, the accretion rate ﬂ:f, the dimensionless viscosity
parameter a and the orientation angle © of the rotation axis with respect
to the line of sight. It is convenient to introduce a dimensionless mass pa-
rameter mg = M/10%AM and a dimensionless accretion rate rh, = ﬂ:[/ﬂ--.’IE.
Here 10®A{, was taken as a "typical” mass for the central black hole and
Mg = 1.4 x 10'(M/Mg) [g sec™?] is the Eddington accretion rate, which
is connected with the Eddington luminesity Lg by Lg = Mgc?.

The shortest timescale connected with the standard model is the
causal timescale {1, which is the light crossing time for the gravitational ra-
dius of the black hole (rg = 2G M /c?) and is given by . = rg/ec s 107 my
(in days). Models in different regions of the parameter space (m., «) are re-
ferred to as thin, thick and slim accretion disks. (Other models of aceretion
flows are reviewed e.g. by Treves, Maraschi and Abramowicz 1988.)

2.1 Thin accretion disks

The nature of the equilibrium and stability of these disks, which are
characterized by m. < 1, and 0 < a < 1 is rather well understood in
terms of the Shakura-Sunyaev model (reviewed by Pringle 1981). The
vertical height of the disk, i(r), is much smaller than the correspond-
ing cylindrical radius ». This allows a one-dimensional treatment with all
of the hydrodynamic equations being integrated in the vertical direction.
The thin disks have very sub-Eddington luminosities, I < Lg. They ro-
tate with ~-z-lar velocity 2 equal, at each radius, to the Keplerian value,
Qx =~ (GM/r®)/2, The corresponding orbital period defines the dynamical
timescale, t; = 27 /Qx. The orbital period is equal to the crossing time ol a
sound wave in the vertical direction, {4 = h/v,. Here v, is the sound speed.
It is assumed that the dominant component of the viscous stress tensor
is proportional to the total pressure, 7, = v(dInfl/dinr) = —aP, which
implies (for Keplerian rotation) that the kinematic viscosity coefficient 1is
given by v = av,h.

Most of the luninosity comes from the innermost part of the disk,
close to the radius r» = 5rg. For this particular radius, and for disks which
are radiation pressure supported and have opacity dominated by electron

scattering, the dynamical timescale, t4, thermal timescale, t; = tya™ !, and



viscous timescale ¢, = {,(h/r)"? are respectively (in days):

tq ~ 2mg t 2 2mga ! t, = ba~lm  mg (1}

9.8 Thick accretion disks

When cooling processes in the accretion flow are not efficient enough,
the vertical thickness of the flow cannot be small. There are two different
physical situations in which this happens: for radiation pressure supported
thick accretion disks (e.g. Abramowicz, Calvani and Nobili 1980) which are
characterized by . > 1, and a <« 1, and for ion pressure supported thick
disks (Rees et al. 1982) which have m, < 50a®. Thick disks of both types
have shapes resembling a sphere with two empty funnels along the rotation
axis. Most of the radiation is produced close to r = 5rg and emerges
through the funnels. However, while the radiation pressure supported disks
have super-Eddington luminosities, the ion supported ones are always sub-
Eddington. In both types of thick disks rotation is non-Keplerian.

Unlike the Shakura-Sunyaev model or its general relativistic version
calculated by Novikov and Thorne {1973), the thick disks correctly describe
relativistic effects which dominate the accretion flow close to the black
hole. These effects are due to the transonic nature of the flow and to
some peculiarities in the topology of the equipotential surfaces. One of
the equipotentials crosses itself and is reminiscent of the Roche lobe in
close binaries (Figure la). The crossing is not connected with the self-
gravity of the disk (which is assumed to be negligible) but with the general
relativistic ==ture of the gravitational field which is competing with the
rotation of the disk {Abramowicz, Jaroszynski, and Sikora 1978). The
crossing occurs at the cusp (7 = r;;) where the matter rotates with exactly
the Keplerian angular velocity. A nonzero thickness of the disk at the cusp
implies Roche-lobe overflow and, as in close binaries, dynamical mass loss.
The mass loss rate and the induced advective heat loss rate depend on
the surface density and vertical thickness at the cusp (Abramowicz [981):
M = const % YL H, L = const x SH®. The efficiency of the accretion np =
L/ﬂ;fcz is equal to minus the binding energy of the Keplerian orbit located
at the cusp. It ranges (for non-rotating black holes) from a maximum
value of about 0.1 {or small accretion rates {when the cusp is located at the
marginally stable orbit, v;, = 3rg) to zero for high accretion rates (when
the cusp is located at the marginally bound orbit, r;;, = 2rz). Because
of the decrease in efficiency for high accretion rates, the luminosity is not
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then proportional to the accretion rate, but rather L « log M. The cusp
is located in the transonic part of the flow. Thermodynamic conditions
at the pressure maximum of a thick disk in the Schwarzschild geometry
{(rin = 2.97r¢) are shown in Figure 1b, taken from Chakrabarti (1986).

(Gas blown from the walls of the funnel may be accelerated by the radi-
ation pressure gradient { Abramowicz and Piran 1980) or by electromagnetic
forces {Rees et al. 1982) up to highly relativistic velocities, forming well
collimated jets with Lorentz factors v > 10. Variability with an intrinsic
timescale t;, occurring in the jet (moving toward us at a small angle @} will
be observed witl a timescale shortened by a factor & = v/[1 — (vcos®/c)].
Here v is the velocity of the jet.

2.3 Slim accretion dishs

Slim disks are characterized by m. &~ 1, and @ < 1. They have
been introduced in a recent paper by Abramowicz, Czerny, Lasota and
Szuszkiewicz (1988). The slim disk combines the good features of both thin
and thick disk models while avoiding many of their problems. In particular,
by adopting the vertical integration used for the thin disks, the slim disk
models inherit the advantage of a one dimensional treatment. However,
as in the thick disk models, they also include the effects of the horizontal
pressure gradient and horizontal heat flux, the dynamical importance of
the accretion velocity and deviations away from strictly Keplerian rotation.
These effects (neglected in the thin disk models) are closely connected with
the Roche lobe overflow mechanism, and therefore are dominant in the
transonic pu.. of the accretion flows.

Accretion onto black holes is always transonic and so stationary so-
lutions have critical points at which some additional regularity conditions
must be satisfied. These conditions cannot be satisfied for all of the choices
of the boundary conditions (accretion rate, energy, angular momentum far
away) and parameters {equation of state, opacity, viscosity) which describe
the astrophysical situation. This creates forbidden regions in the param-
eter space of the problem and implies that not all of the astrophysically
acceptable boundary conditions can lead to regular stationary flows.

2.4 Unified scheme for active galactic nuclei

The different types of accretion disk discussed in the previous sections
may explain several observed properties of AGN. A few "unified schemes”



for such an explanation have been proposed (see e.g. Begelman, Bland-
ford and Rees 1984). The most recent review on this subject is that by
Abramowicz, Calvani and Madau (1988). The optically quiet radio galax-
ies (e.g. M 87 or CUygnus A) may be associated with subcritical ion tori
whose total emitted luminosity is channelled into kinetic energy of the jets.
In this case much of the energy powering the source might be extracted elec-
tromagnetically from the spin of the hole {Phinney 1983). Bright quasars
and Seyfert galaxies may be powered by nearly critically or supercritically
(L = Lg) accreting black holes. Such a scheme would associate an in-
creasing ratio of nonihermal to thermal emission with decreasing m.. The
two parameters mg, 7. are in some sense intrinsic for the source. What
we observe depends also on how the source is situated in observer frame.
The statistics (Cavaliere et al., 1986) and source appearance is aftected
by the orientation angle © of the rotation axis with respect to the line of
sight. The main mechanisms for anisotropy are Doppler heaming, along
the direction of motion of the radiation emitted by material in a relalivis-
tic jet (Blandford and Rees, 1978) and the strongly anisotropic radiation
field emitted from thick supercritical accretion disks (Sikora, 1981). The
shape of the disk may be relevant for understanding the polarization prop-
erties of Seyfert galaxies (Antonucci, 1983) with higher polarization being
expected from thin disks. The different modes of accretion would then pro-
duce different kinds of emission spectra. Thermal emission from thin disks
and radiation tori produces a peak in the optical/UV continnum of quasars
and Seyfert galaxies can be decomposed into a single power low F,, oc ™"
with @ == 1 nlus a superimposed optical/UV bump. Properties of ther-
mal components are crucial for constraining A and 3/. The observational
classification of active galaxies has been reviewed by Lawrence (1987) who
stressed ideas which can lead to a unified phenomenology for these objects
with the hope that "there is only one kind of AGN”. The observed variety
then arises from four degrees of freedom:

dust opacity
- viewing angle of the relativistic jet

duty cycle of activity

the overall luminosity

A final unified scheme shouwld combine the bhoth observational and
theoretical schemes.



3. Thin accretion disks

The theory of thin accretion disks was developed in classical papers
by Pringle and Rees (1972), Shakura and Sunyaev (1973), Novikov and
Thorne (1973) and Lynden-Bell and Pringle (1974). We will consider here
the thin disk models, discussing their most interesting properties, treating
them as the small accretion rate Hmit of slim disks.

3.1 Equations

In all classical papers concerning accretion disks around black holes,
the inner disk boundary coincides with the marginally stable orbit of a test
particle. For a Schwarzschild black hole this orbit has a radius of 3re, where
reg = 2GM/c? is the gravitational radius. For r > rg the disk rotation is
Keplerian, for r < rg the matter is freely falling into the black hole. It is
natural to adopt a no torque boundary condition at the inner disk radius,
Tin =TMs = ITg.

Stoeger (1976) pointed out that classical models give infinite gas den-
sity at rin. To avoid the singularity Stoeger (1980) and Kato et al. (1981)
considered gravitational and viscous effects but neglected hydrodynamical
ones. This type of approach leads to unphysical effects, such as a disk with
monotonic pressure. The proper treatment of the inner boundary condi-
tion in tue wsk models was initiated by Paczytiski and Bisnovatyi-Kogan
(1981), Muchotrzeb and Paczyriski (1982) and will be discussed later in
the Chapter devoted to slim disks and critical points. Figure 1 shows the
schematic structure of the thin disk. The pressure gradient and radial ve-
locity gradient in the equation of motion is neglected. The advective term
in the energy balance equation is assumed to be not important. The angu-
lar momentum in the pseudo-Newtonian potential (Paczynski and Wiita,
1980),

7 M
B G (1)
T —7Tg
is given by:
T
lp = (GMr)/? —— (2)
T —7Tqa

These assumptions give us the following set of equations:

10
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Figure 1: Schematic structure of a thin disk with its angular momentum
distribution.
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angular momentum conservation with the standard « viscosity pre-
scription
M(lg — lgin) = 477’z P (3)

energy balance equation with @%, the heat input due to viscous pro-
cesses , equal to J7, the heat loss due to radiation leaving the disk surface.

dQI\'

QF = ﬂ':f(lﬁ' — i )(— 7
T

y=drrF~ =@~ (4}

Hydrostatic equilibrium in the vertical direction:

n P
Q-‘Zﬁ_:- = B.q"‘”“ (5)
P
Here: ‘
M = Bgdnrpzv, >0 (6)
is the accretion rate,
T
F_ = Bs—c‘a (T)
Kp 3z

is the radiative flux in the vertical direction,
K = K, (8)

is the opacity coeflicient, which at the moment is only due to electron
scatterizg 7, o, and T are usual thermodynamic quantities, z is the half-
thickness of the flow. [g;, is the angular momentum at the inner edge of
the disk and B; are coefficients depending on details of vertical structure
with the following values: By = 6, By = 6, Bs = 0.5. These coeflicients
puzzle many people and touch a very important problem (see Chapter 5B).

For convenience we will rewrite these equations using the following
dimensionless quantities:

-
r = —
Ta
M
m =
Mg
.M
T = T
M

12



where

GdnrG A

CHe

ﬂ;fc =

We will also introduce the dimensionless angular momentum;
g

!
K

———— T l - ==
(GMro)/2 — % 7 v 21

and the dimensionless angular velocity:

Q}f _ Q L r_l/g
(GM/r3ye — 0T T

We will use also the logarithmic derivative of the angular velocity, which is

dinflg ~ 3r—1
dr 2r(r —1)

Let us denote
dinQlg

dr

=D

and
(Ig — lgin) = F.

Now the equations have the following form:

2¢8 Y
P3/2p_1/2x ¢ B_I/ZI-c_lv’_‘fﬂ;‘;m_lﬁta“l

GA, *
P_1/2P—1/2T4 = 4\/§CB;131/3(_§)—17-‘1”DF751
PV = 92073 G M By Pt m

3.2 The standard solutions of the thin disk structure

The equations describing the structure of the disk can he solved an-

alytically in two particular cases. This occcurs when either the gas pressure

or the radiation pressure domunates the total pressure. Every structural

quantity can be expressed in terms of other structural quantities: for ex-
ample, the three control parameters (m, i, a), and the radial distance
from the central source, r. This is what was done by Shakura and Sunyaev
(1973) using the Newtonian gravitational potential, by Novikov and Thorn

13



(1973) for a Kerr black hole and by Abramowicz 1987} using the pseudo-
Newtonian potential. We are repeating here the same formulas for the
pseudo-Newtonian potential in a slightly different form. We would like to
ciiscuss them in more detail, considering also different opacity prescriptions.
For those who are curious about how we derived the constant coetlicients,
the explicit formulas, including only physical constants and B; coefficients,
are given.

The fluid is described in the general case by the following equation of
state;

k -
P= le~pT+§T* (12)

The standard solutions for the disk structure in two lmiting cases:

(T)
Pga.s e Prud

and (IT)
Pgaa & -Praci

are listed below. We discuss the properties of these two models comparing
the physical quantities one by one.

(I) Equatorial temperature [K]:

T = Tgfs_l/ﬁfgv(r)m_l/srhg/sa_lla (13)

8v2e’ /5, @15, Ky 8
To——(m) (g) (;ﬁ) = 4.98 x 10 (14)
fr(r} = r—3/5f2/5p1/sﬂ}g5 15)

The behaviour of the function fr{r) is shown in Figure 2. The temperature
at the inner disk radius is equal to zero. The maximum occurs at aboul
6?‘@.

(II} Equatorial temperature [K}:

T = Tor ™ fp(r)ym =12 =1/4 (16)

14
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sure is dominated by radiation

1B.RB ) _

Ty = CCM:‘ f)”“ S)H = 3,04 x 10 (17)
T G) -

fr(r) = pHip-1/aqi/t (18)

The temperature in the thin disk has no maximum. There is not enough
cooling to balance viscous heating, giving rise to a thermal instability in

the inner region
(I) Density [g/cmn?]:
p = por™ O (1) /10525~ T/10 (19)

2¢* ~6/5 8v/2¢? —3/10; % 3/10
GMy B”Z(HH) BGi, '3l =863 (20

Po =

16
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Folr) = pm10 ERISps10q 0 (21)

This function is shown in Figure 4. The density distribution is similar to

the temperature distribution.

(I) Density [g/cm?):

p=por fo(rym ™ m 2! (22}

_ CBiB g w107 (23)
P G '

folr) = T']:_ZPM:SQK {24)

In the case of thin disk the density diverges at the inner edge (Figure 5).
(I} Total pressure {dyn/cm?:

P = Pgﬁ,_gjlufp(T)ﬂl_g/lum4/5a_gllo (25)

17
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The pressure distribution in the disk is showed in Figure 6.

(II) Total pressure [dyn/cm?):
F = Pc,rc_lf}:a(r)ﬂrr._la-_1

C‘;Bg

= —— " —9215x 10'5
G.ﬁf@qu\/‘E

P

fe(r)=rT'D10g
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Figure 8: The thin and slim disk thickness (1)

The behaviour of the pressure is shown in Figure 7.

{I) Half-thickness of the disk [cm]:

= zof{_lfmf-(r)mg/mrh,l"sa_l/w

ﬂfo 8\/5(.'6)1/10 &

22
- 5 1/2
0 = V2B, 7 G Mg nH

)2/5(%)“/“’ —8.81 x 10°
C B

f(r) = T—3/10J_—1/5D1/109;(9/10
The radial function f.(r) is monotonic (Figure 8).

(II) Half-thickness of the disk [cm]:

== zpf.(r)mm
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Figure 9: The thickness of the disks (II)

- JIGM
% = lﬁB“Bi “Mo _ 5 36 10° (35)
2
f-(r) ="' FDOG (36)

The thickness of the thin disk is very similar to the classical thick disk
shape (Figure 9).

(I) Surface density [g/cm?]:

Y= Enfﬁ_é/sfg(r)mafsa'4/5n11/5 {(37)

895 ko a
T = s\/icz(BsG—%) 1/5(;};) 4f5(§)1/5 = 1.525 x 10° (38)

falr) = r—T,’Ej:-:S/SD—-l/SQ;CI/E (39)
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Figure 10: The surface density of the thin and slim disks (I)

The radial distribution of surface density is shown in Figure 10,

(IT) Surface density [g/cm?]:

Y = Sor M felr)m el (40)

_ B;'B;

0 2\/§

]

felr) = F7'D7? (42)
Figure 11 illustrates the radial distribution of the surface density.
(T) Dimensionless radial velocity

v_ ‘vgfi_lfsfv(r)n1._1/577'12/5a4/5 (43)
c
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100

.k 8v/2c8
Vo = \/QBglc"“(*)4/5(E)_I/S(W[C—)l/s =210 x 107*

pH' '3 ByG g

fulr) = P23 =D Ql®

The radial drift velocity is divergent at r;, = 3rg (Figure 12).

{II} Dimensionless radial velocity

l‘

— = v fu(r)i’a
c
4B,
Vg = —=—— = (.04
= /2BiB,

fulr) = r U FD?

In this case the velocity does not diverge (Figure 13).
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Figure 12: The distribution of radial velocity in the thin and slim disks (1)

(I) and (II) radiative flux [erg/s cmn]

F~™ = Fy 67 friwe(r)m ™t (49)
2¢°
EF- = = 3. y 26 5
o Gl 3.64 10 (50)
fru=(r) = 7V FDOQg (51)

The flux reaches the maximum at about 5r¢ (Figure 14).

The flux in both cases (gas dominance and radiation pressure dom-
inance) is the same because of the assumption about optical thickness of
the flow. The radiative flux for the thin and slim disk models is shown in

Figure 15.

2.3 Sequence of equilibrium models
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Figure 15: The flux for the thin and slin disk from the surface (II}. The
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Figure 16: Lower and middle branches with the asymptotic solutions

We can study the sequence of equilibrium models at a fixed radius, r,
but with different values of the control parameters. It is natural to choose
the region where the most energy is released, that is r = Are. How do
physical conditions at this radius depend on m, 7 and a? We represent
the models in the. log{rh}—log(X) plane (Figure 16). Two dashed lines cor-
respond to the already discussed standard solutions. For the lower branch
(Prad < P,o,) accretion rate is proportional to the surface density to power
%, for the middle (F,q, < P..q) the slope of this relationship is equal to
-1. Therefore, the curve ¥ = E(ﬂ:.‘[ ) has somewhere for P,,, ~z P,z 2 turn-
ing point. We can find easily the turning point from eqguations (9)-(11},
requiring that log(X)/log(m) = 0. The result is

dinS _ 5(3 —2/5)
dindf 38 +2

At this point P, = 3/2P..s. The dependence of accretion rate at this
point on other parameters as m and « is described by the following exact
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formula:
= Tilghi_l/arll/af_] @—B/BQ}!Sm‘-—I/Sa—l/B (52)

Coeflicient rirg is equal to

) - B;%/8pa/s ~10/8 a. . k :
Mo = ¢ 1/2((17713%\/5 Y 9/8(73_) 1(;[?)9/16 (53)
T4V @ . .

How the ¥ — m relation depends on the mass of the black hole and on
viscosity parameter is shown in Figure 17 and 18,

a) More realistic opacity coefficient

Electron scatiering is not the only one mechanism for opacity in the
disk. We can ignore line opacity and bound-free opacity, but we must
include the free-free absorption which plays significant role in the cooler
part of the disk. The opacity coefficient can be expressed by Kramers rule:

K=K, + .*:ng—T/z (54)
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Figure 18: Lower and middle branches for different values of the viscosity

coeflicient
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where &, is the opacity due to electron scattering and the second term
describe the free-free absorption, k¢ = 0.64 »x 10*°. We can obtain the
asymptotic relations for ¥ when free-free absorption become dominant,
using the new form of . In case (I) (gas pressure greater than radiation
pressure) opacity has the form:

K = korit
The result does not depend on m and «. The surface density is given by

5 . T/5  —
Y oa P e,

In case (II) (radiation pressure is grater then gas pressure)

1/9,5,-16/9 \ ~1/9

Ex=m T m

and
8/0 . T/9 _—8/9
Y2 m O,

The slope of the (X)) relation changes direction somewhere near x, = xyy.
Schematically it is shown in Figure 19. Again one turning point can be
found requiring that logL/logm = 0. For this purpose we introduce a new
quantity, £, which is the ratio of free-free absorption coefficient to the total
opacity. We find at the turning point that

3

15

3

This means that the ratio of free-free absorption to electron scattering must

be equal to % at the turning point.

b} Different viscosity prescriptions

The viscosity coeflicient « may strongly depend on the accretion rate,
cdue, for example, to the Papaloizou and Pringle (1984, 1987) instability,
which for very small accretion rates may produce strong turbulence and
thus viscosity, but {or higher accretion rates switches off {Blaes, 1987).
Assume that the viscosity coefficient depends on the accretion rate through
the purely phenomenological relation

o = aoe:cp(—lcﬂ-;[/ﬁ-fc). (55)

The Shakura-Sunyaev models (k& = 0) and their modifications (k£ = 0.1, 1.)
are shiown in the Figure 20.
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Figure 19: The influence of the opacity on the ri — £ relation.

¢} The angular momentum is not exactly Keplerian

Consider the angular momentum which is not exactly Keplerian. The
hydrostatic equilibrium in the radial direction has the {orm:

1dP 5
SE < (0 - )
p dr

We have allowed for some deviation from this standard distribution, keep-
ing the derivative of angular velocity still equal to the derivative of the
Keplerian angular velocity. We have found: Q2 == 7. Therefore the surface
density is described as follows

-1 _—1
SaemToa .

The result is presented in Figure 21.

d) Turning on the heating (cooling) in the Shakura-Sunyaev approx-
imation

The only difference we did was to add a new term in the energy
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Figure 20: The m(X) relation for the Shakura-Sunyaev models with modi-
fied « viscosity given by equation (55).
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Figure 21: The 7i2(Z) relation showing the influence of the slightly different
angular momentum distribution.
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Figure 22: The effect of the additional term in energy halance equation.

balance equation. Equation (3) now has the form:
mFD +q=dnrF~ (56)

We will consider only the case of radiation pressure dominance, when the
addition.: Looting (cooling) can stabilize the middle branch. The radial

heat transfer can be written in the following way:

This approximation leads us to a new surface density-accretion rate relation
1 Lo -
Y —r "B DO rme (57)
16w

The surface density does not depend on the mass of the black hole. The
M — T relation has a positive slope. The effect of an additional term in the

energy balance equation is shown in Figure 22.

3.4 A single disk with fized accretion rate
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Figure 23: The standard disk spectrum.

The maximum temperature in the disk appears at about r = 2r,.
The dQ./dr is equal to zero there. This is a property which does not
depend on m, m, a. At this point the maximum temperature is given by

1/47";11/4 (58)

Tmuz: mme

asstuming thermal radiation from the disk. The maximal emission frequency
—1/4_:.1/4

Winae = m " it (59)

occurs in the range from optical to x-rays for disks around galactic black
holes (10Mg) and in the optical/ultraviolet for supermassive black holes
(10%). The standard shape of the spectrum radiated from the disk is shown

in Figure 23.
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4, Thick accretion disks

In the standard theory of accretion disks described in the previous
chapter one assumes a priori that the angular momentum distribution is
Keplerian and that dissipative processes can be expressed by a-viscosity
law.

Abramowicz, Jaroszyniski and Sikora (1978), Kozlowski, Jaroszynski
and Abramowicz (1978), Paczynski and Wiita (1980), Jaroszynski, Abramow-
icz and Paczynski (1980) proposed a new type of accretion disk, a thick disk,
due to its almost spherical shape. In order to construct a model, a surface
distribution of angular momentum and flux radiation is assumed. Given
these two fuuctions one can compute not only the total luminosity L and
the accretion rate, M, but also other disk characteristics.

4.1 Super-Eddington luminosities

It is well known that if the disk’s luminosity exceeds the Edding-
ton value then, some material would be blown off by the pressure of the
supercritical radiation flux. This may lead to the conclusion that an ac-
cretion disk will not be able to have a luminosity much in excess of the
Eddington one, because of the strict assumption of the small thickness of
the disk. Maximal luminosity of any nonrotating, stationary, electromag-
netically ucuiral object cannot exceed the Eddington luminosity. Only
rotating objects can have L > Lpgy and the reason for this is the follow-
ing: in mechanical equilibrium the flux of radiation, emitted locally from
the surface of a stationary and electromagnetically neutral body reaches its
maximum value when the effective gravitational force is balanced by the
radiation-pressure-gradient force. Therefore the maximal luminosity is

c
Loz = "‘Efvgeff -dE, (1)

where T is the surface of the body and dX is the oriented surface element,
Eesy is the eflective gravity on the surface. In the case of a rotating object

we have
V gejs = dnlGp ~ 207 4+ 2w° (2)
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the rotating matter. The existence of the cusp for any stable angular mo-
mentum distribution is due to the reason that the distribution of [ is stable
if { increases outward (Seguin, 1975). Therefore in general, the angular
momentum distribution can cross the Keplerian one in two points exactly
like in the { = constant case (Figure 1).

Abramowicz, Jaroszynski and Sikora (1978) gave five topological pos-
sibilities for the cusp existence, (all quantities are explained in Figure 1):

Yo < lme- A disk will not form.

1
2) lo = lys. The disk exists as an infinitesimal thin unstable ring,
located on the cirele r = r,,.

3) lms < lo < Ly, Many disks can form without cusp but only one
with a cusp.

4) lp = lnp. A cusp is formed and is located on the marginally closed
equipotential surface.

5) lp > lmp. The disk has no cusp.

The cusp is located between the marginally bound and marginally sta-
ble circular orbit, and very close to the sonic point. For the Schwarzschild
black hole it is

2rg < rs < 3rg

where 75 is the location of the sonic point. When M < Mg the cusp and the
SONIC puin. o.ncide with the marginally stable orbit, while for M > Mg
the cusp goes very close to the marginally bound orbit. The energy per
particle released in the process is the binding energy of the circular orbit
located at the cusp. Since this goes to zero at the marginally bound orbit
a stationary disk with M > Mg has very low efliciency compared to a
standard disk.

There are two families of thick disk models: Jaroszynski’s disks and
b-disks (Jaroszynski, Abramowicz and Paczynski. 1980). These families
together cover a substantial range of a physically relevant disk. {r) is
subject to the following restrictions:

(hydrodynamic stability)

al
— >0
r
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Figure 2: The Jaroszynski angular momentum distribution

{positive accretion})

A(lr—?)

< §
ar

and {(mechanical equilibrium)

/r'""(zﬁf _ Py = 0.

Tin

The boundary conditions require the angular momentum to be Keplerian
at both the inner and outer edges. These two sets of models are very
different within the funnel region. In the first set, the disk surface rotates
rigidly (Q =constant) in the region close to the cusp, 7 2> 7. In the
second family, the angular momentum, [, is constant in this region. These
two cases are limiting cases and a real disk should have its properties in
between near the cusp. Because of stability problem and restrictions given
by the outer houndary conditions neither 2 = constant nor ! = constant
can be continued all the way {from 7, to r4y;. There are many possibilities
to choose an angular momentum distribution in the remaining part of the
disk. Following Jaroszynski, Abramowicz and Paczynski (1980) we discuss
two of them here.
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The first is shown in Figure 2. Abramowicz, Calvani and Nobili (1980}
showed that this particular distribution maximizes the luminosity for a
given 7;, and 7. Both the thick disk luminoesity and accretion rate de-
pends only on r;,. The resulting relation between luminosity and accretion
rate is shown in Figure 3.

The second is presented in Figure 4. The thick disk surface consists
of two sections, one with a constant angular momentum and one with the
following prescription:

Q= Qautlf;ut = const for r. <7 < rou

for some constant 1. The exponent b is chosen in such a way that the
hydrostatic equilibrium is satisfied (0 < & < 3). The relation luminosity -
accretion rate also for this case is shown in Figure 3.

Paczynski and Abramowicz (1982) constructed a geometrically thick
accretion disk orbiting a 10 Ay black hole. The interior is assumed to be in
the convective equilibrium, and the accretion flow and heat generation are
confined to the layers close to the equatorial plane. I would like to discuss
these models in some detail because their structure is very similar to those
obtained in a slim disk. Two models are given; one with a critical accretion
rate, 1, and another with twice the critical accretion rate. The meridional
cross sections of the disk models taken from that paper are shown in Figure

5.

4.3 Roche lobe overflow

Accretion onto the central object in the vicinity of the inner edge is
driven by a slight overflowing of a critical equipotential surface, W = W,
by the surface of the disk. It represents a small violation of mechanical
equilibrium. In this case no viscosity is needed to support the accretion.
Such a mechanism was suggested by Paczynski (1978, unpublished). There
are three conditions for Paczynski’s mechanism to work:

1) The surface W = 1V, should intersect itself at the inner edge,
the central object should be inside the region hounded by W = W, and

W (rm, 0)] < |W,| < |Ws].

2) There should be no infinite potential barrier between r;, and the
surface of the central object.

3) From the inner edge to the surface of the central object the matter
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Figure 3: The L — M relation for the two described angular momentum
distributions. The straight line corresponds to the maximum efficiency of
converting accreted mass into outgoeing radiation, i.e., to the case vy, = 7.
a/M = 0 - Schwarzschild black hole, a/M = 0.998 - "canonical” Kerr
black hole. The numbers, 1 and 2 correspond to Jareszynski distribution
and b-distribution of angular momentum (Jaroszynski, Abramowicz and
Paczynski, 1978)
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Figure 4: The so-called b-distribution of angular momentum

should move freely - [ = const. Between the inner edge and the surface of
the central object there should be no stable circular orbits for free particles.

These conditions cannot be satisfied in Newtonian mechanics: Paczynski’s
mechanism is purely general-relativistic. The reason is that the Newtonian
Keplerian distribution of angular momentum is monotonic, while in general
relativily ii Les minimum at the marginally stable cireular orbit.

As was noticed by Abramowicz {1981) the mass and energy loss con-
nected with the relativistic Roche lobe overflow mechanism is able to cure
a thermal instability to the disk, at least close to the sonic point. This will
be discussed in detail in the Chapter 5.
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Figure 5: The meridional cross sections of a disk model with m = 1 and
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5. Slim accretion disks

The slim accretion disk models (Abramowicz, Czerny, Lasota and
Szuszkiewicz, 1988} take advantage of the simplification due to vertical in-
tegration as used for the thin disks, but at the same time they use the cor-
rect thick disk approach to the transonic part of the flow. The momentum
and energy equations for the slim disk, which we take from Paczyiski and
Bisnovatyi-Kogan (1981), contain more terms than the standard Shakura-
Sunyaev (1973) equations. The additional inertial term, v, dv, /dr, describ-
ing the dynamical importance of the accretion velocity v, and the hori-
zontal pressure gradient term, p~'dP/dr are included in the momentum
equation, while the advective, horizontal heat flux, v.7'dS/dr, is added
to the energy equation. The remaining equations are the same as the
Shakura-Sunyaev ones. The pseudo-Newtonian potential {Paczynski and
Wiita, 1980) is used to describe the gravitational field of the central hlack
hole. The inner boundary condition uses the fact that there is no viscous
torque across the surface of the black hole, while the outer boundary condi-
tion states that at large radii the model of the flow agrees closely with that
of Shakura and Sunyaev. The equations together with the boundary con-
ditions and the regularity condition at the sonic point define an eigenvalue
problem for lg, the specific angular momentum of matter crossing the hori-
zon of tho %1k hole. We have solved this eigenvalue problem numerically
using a modification of the method described by Muchotrzeb and Paczyniski

(1982).

Our models form a three parameter family, with dimensionless pa-
rameters (a,m,m). Here m = ﬂ[/]lfo and r = I'I'I/JI‘IC The accretion
rate is scaled in terms of ﬂfc = lﬁﬂIE rather than AIE, because, for small
accretion rates, 1/16 is the efficiency of accretion in the pseudo-Newtonian
potential. Therefore the total (rachatzve) luminosity of the disk, expressed
in the Eddmngton units L/Lg = nﬂf/,ME for small accretion rates is equal
to L/Lg = ﬂf/ﬁfc. Here 7 is efficiency of accretion. Figure 1 shows the
total luminosity for our disk models {solid line} in function of the accretion
rate.

The dashed line represents the rate of energy generation by viscous
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Figure 1: The total luminosity for slim disk models (solid line) in the
function of the accretion rate . The dashed line represents the rate of
energy generation by viscous stresses. 7h is a accretion rate in terms of
critical accretion rate, Mg = 647G M /cke,. All the models are computed
with central black hole mass M = 10Mg, viscosity parameter a = 0.001.
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Figure 2: The vi{Z) relation for slim disk models for three fixed radit,
r/Rg = 4 (solid line), 5 (dashed line), 10 {dotted line). ¥ is a surface
density in gem™*.

stresses. The gap between these lines is due to heat lost through the inner
disk radius: for higher accretion rates the heat trapped in matter becomes
importau., wul the flow of matter induces non negligible advective, hori-
zontal heat flux. Thus, for higher accretion rates efficiency goes down and
luminosity increases not in proportion to the accretion rate, but slower
(Jaroszynski et al., 1980, Chapter 4, I'igure 3). Smaller efficiency means
that the inner radius of the disk goes closer to the black hole.

Sequences of models with different accretion rates, 0.001 < m < 50,
and with the two other parameters fixed at m = 10 and a = 1073, are
shown in Figure 2. The relation between the accretion rate M and the sur-
face density ¥ at the fixed radius R has a characteristic S-shape with the
three branches (lower, middle and upper) defining three regimes of accre-
tion. On the lower branch the gas pressure P, is greater than the radiation
pressure P, and the opacity is dominated by electron scattering. The cool-
ing is provided by the vertical radiative flux. Accretion is stable against
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local thermal and viscous perturbations - as indicated by the positive slope
of M = Il:I(E). On the middle branch the opacity and cooling mechanism
are the same as on the lower branch, but P, <« F, here. Accretion is
thermally and viscously unstable - as indicated by the negative slope of
M = M(Z). The thermal instability is due to an insufficient dependence
of the rate of radiative cooling ¢J~ on the vertical thickness of the flow
H. For radiative cooling @~ =~ H, while for viscous heating Q* =~ HZ2.
Thus, overheating causes expansion and expansion overheating and a ther-
mal runaway instability arises (Pringle, Pacholczyk, and Rees, 1973). The
general criterion for thermal stability of the Shakura-Sunyaev model is
(OlnQ* /0InH)s < (0ln@Q~/3InH)y which, for this model, is equivalent
to 3= Py/(P;+ P.) > 2/5. On the upper branch accretion flows cannot be
described by the Shakura-Sunyaev model. Here P, < P, and the cooling is
provided by both vertical radiative flux and horizontal advection. Because
for advective cooling @~ = H®, thermal runaway is avoided and the accre-
tion flow is thermally stable (Abramowicz, 1981). This corresponds to the
positive slope of the M= ﬂ:’I(E) curve,

The existence of the S-shaped M = ﬂ:I(E) curves connected with the
3 > 2/5 instabilities and advective cooling was first suggested in 1985 by
Abramowicz and Lasota in an unpublished paper (see also Abramowicz,
Lasota and Xu, 1986). The analogy with the dwarf novae case (Smalk,
1984) is quite appealing. It may indicate the possibility of quasi-periodic
outbursts or switching between high and low states for flows with accretion
rates which belong to the unstable middle branch of the M(Z) curve.

3.1 Basic assumption and equations of the model

Paczynski and Bisnovatyi-Kogan (1981) assumed that the vertical
thickness of the flow, H(r), is much smaller than the corresponding cylin-
drical radius, H/r = € < 1, and in each equation kept only terms of lowest
order in €. For the dimensionless ratios of the horizontal velocity compo-
nent v,., and the sound velocity v, = (aP/ap)ls” with the azimuthal velocity
component, v, they adopted v./v, ~ ¢ and vs/v, = ¢. Because the verti-
cal velocity component v. is of the order of ev, , they assumed that v. =
They also assumed Jv,/0z = 0 and Gvyeepni/0z = 0. Strictly speaking,
these assumptions about the velocity field can be made tndependently of
the assumption H/r « 1 and one can obtain consistent physical models
with H/r < 1. Therefore, the physical validity of the model is not directly
connected with the small vertical thickness of the flow. However, the nu-
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merical method used here works for not too high accretion rate, m < 50.
Numeerical difficulties are connected with the radial integration (iteration to
get the eigensolution which crosses the critical point); they do not depend
on the accuracy of the vertical structure.

If the action of viscosity is due only to shear viscosity and the bulk
viscosity can be neglected, the above assumption assure that the enly rel-
evant component of the viscous stress tensor entering the Navier-Stokes
equalions for the slim disk is
dinf}
dinr ) ()

where v is the kinematic coefficient of shear viscosity and £ = v, /7 is the

Tor = Trp = pril

angular velocity of rotating matter. According to the Shakura-Sunyaev
(1973) viscosity prescription,

Tor = —00F (2)

where &« = const is a dimensionless, phenomenological viscosity parameter
and the pressure is taken at the equatorial plane, = = 0. According to
(2) the viscous torque across a cylindrical surface » = const is g(r) =
drr*aPH. Using (8) this can be written as g(r) = Mr(P/p)Byv,. Because
v.{Rg) = oo, one has g(Hg) = 0, i.e. there is no viscous torque across the
surface of the black hole. Although this gives no additional restriction, we
shall call the fact that g(Rg) = 0 the inner boundary condition. It will be
used later for the integration of the angular momentum balance equation.
General relativistic effects are included in our purely Newtonian treatiment
by using the pseudo-Newtonian potential (Chapter 3, eq.(1)). The self-
gravity of the accretion disk is totally neglected. The radial component
of the gravitational force on the equatorial plane z = 0 can be writlen
conveniently as [} /r® or Qr, where [x and g are the specific angular
momentum and angular velocity on Keplerian, circular orbits in the pseudo-
Newtonian potential . The stable Keplerian orbits, with dig /dR < 0, have
radii greater than the radius Hjrs of the marginally stable orbit located
at Rars = 3Hg and the binding energy of the Keplerian orbits, Ex =
U+ (Qglx)/2, changes sign at Ryrp, the radius of the marginally bound
orbit. QOrhits with radii B < Hpp = 2ZHe are unbound. The standard
equation of state for a mixture of perfect gas and radiation is assumed:

p=ory o, (3)
7 3
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where g is the mean molecular weight (¢ = 0.6 in what follows). The first
law of thermodynamics is used to calculate the entropy gradient in terms
of density and temperature gradients:

TdS = E[(lQ—lU.Bﬁ)£—(4—3ﬁ)d—p . (4)
P T P

All of the quantities in our model are defined on the equatorial plane.
The equations containing only thermodynamical quantities or their func-
tions {equation of state, first low of thermodynamics, viscosity prescription,
opacity law) refer to the equatorial plane with no change in form. The same
is true for the momentum equation in r and ¢ directions which contains no

> derivatives: P p
: 9 9 gars
_ Q" . Q“, 1 = .
P d’!‘ ( Ig)r+1r d,r 07 (5)
M(l~lg) = g{r) ~ g{Rg) = 4nr*HaP (6)

In the derivation of the last equation the inner boundary condition was
used. The equation of hydrostatic equilibrium in the z direction, the conti-
nuity equation, and the energy equation, which contain z derivatives, are all
integrated vertically. As the vertical disk structure is known only approx-
imately, the results of the integration contain some correcting factors B;,
all of the order of unity. They convert the average vertical values of their
z—integrated quantities to their equatorial plane values used in our model.
In particular, the equation of hydrostatic equilibrium in the z direction and
the continuity equation read:

P

2. H*=B,—, By;=6 (7)
g
M = BgdnrHpv., Bs=0.5, (8)
while the energy equation is
. dQ 48
M~ lg(-—)+ B\MT— =4srF~, B, =0.67 (9)
dr dr

In the energy equation the term connected with the horizontal lux of ra-
diation has been neglected, since it is always much smaller than the other
terms, and in particular, much smaller than the vertical radiation flux, F'~:

_ ¢ aT*
F- =18 n_p3_H (10}
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The last formula assumes that the effective optical depth in the vertical
direction,
Tess = (Kestigs)/*(5/2) (11)

is grealer than one, and therefore radiation transfer can be treated in dif-
fusion approximation. Here s, and k;; are the electron scattering and
free-free opacity coefficients, and £ = 2Hp is the surface density. In the
numerical calculations the opacity coefficient, x = x(p,T), was taken from
Cox and Steward (1970).

We have adopted values of B; from Paczyniski and Bisnovatyi-Kogan
who estimated them using a polytropic equation of state and averaged,
somewhat arbitrarily, the n = 3 and n == 3/2 cases. The solution depends
only very weakly on the particular choice of B;.

From equations {5) and (8) one gets

d['n,vr . ﬂf(l =+ dfﬂH/lelT‘) + “{‘i(_l — Qi/ﬂg)

= 12
dinr v? — a% (12)
where as 1s a "sound” velocity defined by
b dP dp -1
LR Gn Y i 1
@t = (SN (13)

Only for isventropic flows is vs = ag. The numerator and dencminator of
the right hand side of {12) vanishes at the same sonic radius rs where

't’f(rs) = “?.é'(f’s), (14)
ol e, Mo
dinr rs = _a%(rs)[l - QE(TS)] {(15)

Because dinH/dlnr > 0, it follows (Abramowicz and Zurek, 1981) that at
the sonic radius the angular velocity is smaller than the Keplerian value.

I

5.2 Construction of the model

There are four independent first order derivatives in the problem: two
in equation (5) and two in equation (9). However, the number of indepen-
dent integration constants which uniquely determine a regular transonic
solution is not four, but three, because of an extra algebraic condition (15}
at the sonic radius. These three independent integration constants may be
connected with the physical conditions at very large radii where we assume
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that the solution agrees very closely, although not identically, with that of
Shakura-Sunyaev. In the Shakura-Sunyaev approximation to the full prob-
lem one neglects the horizontal pressure gradient dP/dr and inertial force
vede, /dr in equation (5) and the entropy gradient in equation (9). Equa-
tion (5) reduces to | = [ or } = Q. Putting this into the already reduced
equation (9) eliminates the last derivative from the problem, which becomes
purely algebraic. The location of the inner edge in the Shakura-Sunyaev
model is given by r;, = 3Hg. It is assumed that in this model g(r;,) = 0.
Therefore, the constant Iy = {5 (3Rg) = (3/2)%2Rgec. The algebraic equa-
tions which determine the Shakura-Sunyaev solution are nonlinear and we
have solved them numerically. However, when opacity is dominaled either
by gas, or radiation, the asymptotic forms derived in the Chapter 3 can be
used. The Shakura-Sunyaev model is artificial singular at » = 3Rg. This
is caused by incorrect treatment of the flow close to 7;,, as first noticed
Stoeger (1976). Slim disk models are similar to the thick ones at small
radii and they have no singularity in »r;,.

Qur method of constructing a regular solution with "almost” Shakura-
Sunyaev outer boundary conditions follows, with only minor modifications,
that of Muchotrzeb and Paczynski (1982). We recall here only the most
important features of it, leaving the technical details of the numerical code
to the later section.

First, the value of the central mass M and viscosity parameter o are
specified. Next, a value of M is chosen, and then, with these values of M,
o, M we construct the Shakura-Sunyaev solution. This solution is used
to determine an initial estimate of the three integration constants needed
to start integration from 7., downstream. The fourth has already been
fixed - it is M. However, for a regular solution, the three integration con-
stants cannot all be given by their Shakura-Sunyaev values, as they are not
independent: the regularity condition at the sonic radius (15) gives an im-
plicit relation between them which is not known a priori. Thus, the initial
choice of the three constants must be adjusted, until, for a particular set,
a regular transonic solution is found. In the actual numerical procedure
instead of adjusting the three outer boundary conditions (i.e. the three in-
tegration constants) we change only the integration constant /y, the angular
momentum of matter at the surface of the central black hole. It appears
in equation (6) and, as we explained earlier, is the eigenvalue of the prob-
lem. The above procedure leaves two unspecified constants in the problem,
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Figure 3: The angular momentum distribution for the model with m = 50
and boundary conditions given in roy = 102 R¢ (dashed line) and 10°Rg
(dotted line). Solid line represents the Keplerian angular momentum. An-

gular momentum is given in (GM Rg 2,

connected with differences between the functions at the outer radius roy

almost completely insensitive to these remaining degrees of freedom: when
the outer boundary conditions are close to the Shakura-Sunyaev ones, the
regular transonic solution at small radii is alinost uniquely determined by
M, o and M. The value of the outer radius r,,, where the outer boundary
conditions are imposed does not influence the solution at the small radii
(Figure 3}).

5.3 The S-curves

The most important result found in the paper by Abramowicz, Cz-
erny, Lasota, and Szuszkiewicz (1988) is the existence, at any fixed radius,
of an S-shaped relation M(T). We present this first for a fixed radius,
r = 5Rg, and then for all radil rs < 7 < rou. We choose the first particular
value of # = 5Rg hecause most of the heat is produced close to r = 5Rgz
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Figure 4: The m(X) relation for r = 5Rg. Full transonic solution (solid
line), Shakura-Sunyaev approximation (dashed line), analytic asymptotic
solutions for the gas dominated (dotted (20) line) and radiation dominated
pressure {dotted (19) line), approximation for the upper branch slope dot-

ted (29) line).

o

(see Figu.: 12) and therefore this region is most relevant for the observed
properties of the disk.

Figure 4 shows the relation between the accretion rate M and the
surface cdensity © at » = 5R¢ for models with o = 0.001 and M = 10M.
The solid curve represents our full transonic solution and the dashed one
shows the corresponding Shakura-Sunyaev approximation. The two dot-
ted lines, labelled by (19) and (20), are the analytic asymptotic solutions
for radiation dominated pressure and gas dominated pressure, given by
equations (**) and (**) in Chapter 3. The meaning of the third dotted
line, labelled by {29), was explained also in Chapter 3. The two circles
show the models computed by Muchotrzeb and Paczynski (1982). The
Figure quite clearly indicates that both the lower and middle branches of
the S-curve are very well described by the Shakura-Sunyaev approxima-
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tion. Thus the physical properties of the accretion flows belonging to these
branches, in particular the stability properties, maybe understood in terms
of the Shakura-Sunyaev model. Stability properties of the lower and middle
hranch models have been already summarized in the Introduction. We have
recalled there the classical result that the positive slope of the M(Z) curve
corresponds to stable models and the negative slope - to unstable models.
We discussed further details of these models in the Section 3. Now we furn
our attention to the upper branch of the S-curve. Obviously, this branch
cannot be approximated by the Shakura-Sunyaev model.

General relativistic effects in the gravitational field of a black hole,
modelled here in terms of the pseudo-Newtonian potential (*), cause a
characteristic behaviour of the equipotential surfaces close to the inner
edge of the disk, defined as the smaller of the two roots of the equation

U7rin) = lx{7in) (16)

The larger root corresponds to the physical center of the disk. On the
equipotential surfaces, the total potential (gravitational plus centrifugal),
defined by

Wir,z) = ¥(r, z) +fl2(r)r_3dr (17)

is constant. In Figure 5, the equipotential surfaces (solid lines) are shown
for a particular model with M = 10M.. The surface of the disk is marked
with dashed lines. The location of the sonic point rs is indicated by a small
cross. Note that rs < 7, in agreement with our comment in connection
with equation (15). One of the equipotentials, IV = Vg, crosses itself at
r = ;. When 7, < 3Re a characteristic cusp is formed at the crossing,. If
the surface of the disk, W = W, slightly overflows the critical equipotential
W = Wh, called the Roche lobe, then the mechanical equilibrium is slightly
destroyed causing mass loss, and consequently also a heat loss. The physical
picture is analogous to Roche lobe overflow in close binaries. In the case
when 7;, > 3Rg no cusp is formed and the Roche lobe mechanism does not
operate. The heat loss rate close to the cusp has the behaviour

Q- =~ H® (18)

Exact formulae for mass loss and cooling due to the Roche lobe overflow
mechanism have been given by Abramowicz (1986). The criterion men-
tioned in the Introduction for thermal stability of Shakura-Sunyaev disk
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Figure 5: The equipotential surfaces (solid lines}and the surface of the disk
model with = 10 (dashed lines). Cross indicate the position of the sonic
point.
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models states

AlnQ)~ An Q™
( olnH LR MNnH e (19)

and will be described in full details in the Chapter 7. Because for the

standard viscosity law (2) the right hand side of this inequality is equal
to 2, and for Roche lobe overflow cooling the left hand side is equal to 3,
according to (18), the inequality is fulfilled, which means that the region of
the disk cooled by the Roche lobe overflow mechanism is thermally stable.

For small accretion rates the stabilized region lies in the immediate
vicinity of the inner edge, but for M > Mg the size of the region is sub-
stantially greater, as demonstrated by the following argument. Consider
a fluid element located at a distance Ar from the inner edge of the disk,
in the unstable part. The element expands vertically in the thermal time
tu, = 2m/Qe because of the overheating caused by the thermal instability.
At the same time it is traveling downwards in a radial drift time, #4. which,
in Shakura-Sunyaev model, equals the viscous time, t,;, = t(H/r)™2 I
the element is able to arrive at r = r;, before it expands the distance H, the
Roche lobe overflow mechanism will cool the element, and the instability
will be suppressed. Therefore, in the stabilized region ., = fs, or H=r.
In the above argument the expressions for ty, and t,;, have been taken from
Shakura-Sunyaev model, which assumes a Keplerian distribution of angular
momentum. However, for the disk with sufficiently high accretion rates the
angular momentum at small radii is not Keplerian, but almost constant
(see Figure 9). Thus less viscous reprocessing of the angular momentum is
needed and +ha element travels the distance Ar in a time shorter thant,,.
This simple argument correctly predicts that the Rocle lobe overflow sta-
bilization is important for flows with accretion rates M = Mg or greater,
and therefore, that the S-curve should bend at approximately M =~ M.
The Roche lobe overflow cools down globally the whole innermost part of
the disk. Locally, however, at some radius r < 5RAg, the advective flux Fuq,
could either cool or heat the flow . At higher accretion rates the advective
flux in the more distant parts of the disks is always an important cooling
mechanism (Figure 6).

At the radius r = 5Re the accretion rates at the lower (labelled B)
and upper {labelled A) turning points of the S-curve are

Mp(5Rs) = 0.09M¢, AM4(5Rg) = 4.5M¢ (20)

Figure 7 shows the accretion rates at the turning points for different radii

56



06 * ] T I ' 1 i 1 ! 4
02
{r,
—
LLE L
02 F
e Ml I
-06 ] i ! ) i
0 3 16 13

r/RG

Figure 6: The ratio of the advective and radiative fluxes as a function
of radius for three accretion rates m = 1, (solid line) 4, (dashed line} 10
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Figure 7: The location of the turning poinis on the S-curves as a function of
radius (solid lines labelled A and B). The dashed lines indicate the lines of
the constant 4. The dotted one represents the location of the sonic point.

(solid lines marked A,B). In the same Figure the dashed lines are those of
3 = const. They are labelled by the values of 3. The dotted line represents
the locatinn ~f the sonic point in the models with different accretion rates.

With the exception of a small region at r = rs the Mp(r) curve agrees
with that for § = 2/5 for all r as it should be in the Shakura-Sunyaev model.
In particular, for » = 6.4R¢ it has a minhmum

Moin = 0.1M¢ {21)

predicted by the Shakura-Sunyaev model. The Shakura-Sunyaev approx-
imation for the Mpg(r) curve gives an analytic expression (Abramowicz,
1987, also Chapter 3)

mfr) = 8.796 x 107C~Y/BRT/ DB F 1o~ By 2/ (22)

This diverges at » = r;,, = 3Hg, but this is an artifact of the Shakura-
Sunyaev model, connected with the improper treatment of the flow close
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to the inner edge. Accretion flows with M < ﬂ:Im,'n are everywhere stable
against the /7 < 2/5 instability.

The location of the sonic point changes from the radius of the marginally
stable orbit Ryrs = 3Rg for simall accretion rates, to the radius of marginally
bound orbit Ryrg = 2Rg for very high accretion rates. This is typical be-
haviour for thick accretion disks, which have very low values of a < 0.001.
(See e.g. Madau, 1988 or Begelman, Blandford and Rees, 1984 for a discus-
sion of the limits on « in thick disk). Kozlowski, Jaroszynski and Abramow-
icz (1978) proved, using an exact analylic method, that for o = 0 the inner
edge of a thick disk is always located between Rjrg and R B, while other
authors (e.g. Paczynski 1980, or Rézyczka and Muchotrzeh 1982) who used
numerical thick disk models with o <« 1 found a behaviour similar to that
shown in Figure 7. However, {for accretion flows with higher values of o the
situation is remarkably different. We discuss this point in Section 6.

5.4 Details of the slim disk models

Figure 2 in the Introduction shows how the surface density ¥ depends
on accretion rate for three radii, 7/Rg = 4, 5, 10. The behaviour at other
radii is similar.

To discuss other properties of slim disks we have chosen five models
with
m = 0.01, 0.1, 1, 4, 10,

located at characteristic points of the S-curve. (The three hranches and
two turrin~ nnints ). Figure 8 shows how the thickness of the ow depends
on radius for these five accretion rates. The initially thin disk (H/r <« 1}
becomes thicker with increasing accretion rate but always remains shim, i.e.
the assumption H/r < 1 is always satisfied.

The question of how to specify the correct boundary conditions at
large radii is not an easy one. Figure 9 clearly indicates that with increas-
ing accretion rate the angular momentum differs more and more from the
Keplerian distribution at both small and large radii. The tendency of the
angular momentum distribution to become flatter with increasing accretion
rate , evident in our numerical models, was found, on general theoretical
grounds, by Begelman (1978) in the thick disk case. The agreement suggest
a continuous path from slim to thick disks along the sequence of models with
increasing accretion rate, correctly placing the slim disks between the thick
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Figure 8: The thickness of the flow for the different accretion rates: v = 0.1
(dashed line), 1 (dotted line), 4 {dashed-dotted line), 10 {solid line).
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Figure 10: The location of ri,, 7, and [p as a function of accretion rale

and thin ones. However, this path cannot be completed in practice with
the actual method used by us, because the method fails for A > 50M¢.

We lLave already discussed the meaning and the physical importance
of the points r, and r;, at which I(r) crosses the Keplerian distribution,
Ig(r). Th- 1--ation of these points, and the value of ly, the angular mo-
mentum of matter at the black hele surface, are all shown in Figure 10 as
a functions of the accretion rate.

For small accretion rates, lp = lprs, and 7, = Hars = 3Hg as in the
standard Shakura-Sunyaev model. The precise location of 7. for small ac-
cretion rates cannot be correctly estimated in the standard model, because
it depends critically on the details of heat and angular momentum balance
which are not treated properly in this model; the curves {(r) and Ix(r} are
almost parallel close to r = r,. For high accretion rates, rjn = Ryp = 20
and lo = lyrg, in excellent agreement with the thick disk theory. Because,
as we have already mentioned, for high accretion rates {(r) = const at small
radii, from the above described behaviour of ri, and Iy it follows that, for
high accretion rates, r, should be = 5Rg, which can clearly be seen to be
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log (r/Rg)

Figure 11: The temperature distribution for
models with rix = 0.001, 0.1, 1, 10. The boundary of the region where
Terr < 1 is shown by the dashed line.

the case in our numerical models. Figures 11 and 12 show the variation of
the temperature with radius and also the closely connected variation of the
vertical 1awiwmon flux F~. These curves are very similar to those familiar
from the Shakura-Sunyaev models. In particular, the maximum value of the
temperature, T, is reached at a small radius, between 4H¢g and 6 Rg, with
the precise value depending on the accretion rate. The function Thoeo{ M) is
shown in Figure 13 by the solid line. The Shakura-Sunyaev model predicts
logTimaz = }Zlogﬂlff. Our models where constructed for 7.5y > 1; c.f. eq (11).
This condition was always checked a posteriori and it was found to be true
almost everywhere in all the models, with exception of a small region shown
in Figure 11 (left from the dashed line).

5.5 Discussion

In this section we discuss only the assumption about the magnitude
and form of the viscosity, because only this assumption is really restrictive.
Modifications of it introduce qualitative changes in the physical properties
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Figure 12: The radiative flux from the disk surface as a function of radius
for m = 0.01, 0.1, 1, 10.
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Figure 13: The accretion rate-maximum temperature relation.

of the model. The other assumptions and approximations are relevant for
accuracy, but not for physics.

a) The magnitude of @ in Shakura-Sunyaev viscosity prescription (2)

The fact that transonic accretion flows with small and large « are
qualitatively different was noticed by Muchotrzeb (1983) and has been dis-
cussed by many authors (e.g. Matsumoto et al., 1984). In Figure 14 we
shiow the location of the sonic point as a function of the accretion rate for
a =107 5x107% 0.1, and 0.5. For small «, equal to 107%, the typical
behaviour for the thick accretion disks is evident: with increasing accretion

rate the sonic point moves from Rprs towards Harg (c.f. Paczynski 1980
and Rozczka and Muchotrzeb 1982).

For the highest value of «, equal to 0.5, the sonic point moves with in-
creasing accretion rate in the opposite direction , while for the intermediate
value, a = 0.1, the behaviour is more complicated, but for both small and
large accretion rates it is similar to that for a« = 0.5. The plysical reason
for these two different behaviours i explained in Figure 15 which compares
the Keplerian angular momentum distribution (the dotted lne) with the
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Figure 15: The comparison of the Keplerian angular momentum distribu-
tion (dashed line) with the distribution in the models with o = 0.001 and
1 (solid lines), belonging to the two types of accretion.

distribution in two accretion disks models (the solid lines): one with small
o = 0.001 and the other with high a = 1.

In the low viscosity case, the I(7) curve crosses the Keplerian one in
two points corresponding to the physical center r. and the inner edge r;, of
the disk (in addition r;, < 3Rg). It is well known from the thick accretion
disk theory (e.g. Abramowicz, Calvani and Nobili, 1980} that in this case
the Roche lobe overflow mechanism operates at » = r;,. Accretion onto
the central object is due to a slight violation of mechanical equilibrium and
needs no help from viscosity. In the high viscosity case the angular mo-
mentum is everywhere sub-Keplerian, the Roche lobe overlow mechanism
does not operate, and accretion is due only to viscous processes. The same
is true if [(r) crosses the Keplerian curve, but all the crossing points are at
r » 3Hg. Muchotrzeb-Czerny {1986) found that when the outer boundary
conditions are very close to Shakura-Sunyaev ones (in the sense discussed
in Section 3), then, which of the two different types of accretion actually
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occurs depends on whether « is greater or smaller than a critical value,
a =~ 0.01. She also found, that in the high viscosity case ( the second
type of accretion flow) the solution is not always unique. For this reason
the lines on the right hand side of Figure 14 should really be replaced by
stripes. I the magnitude of the viscosity parameter, fixed in this paper to
be e = 0.001, was increased to put the models into the second regime, the
whole physical picture described here would change.

) Different viscosity prescription

We have used the original Shakura-Sunyaev viscosity prescription (2)
which assumes that the only relevant component of the viscous stress tensor,
Tepy i8 proportional to the total pressure. For strictly Keplerian accretion
disks this is equivalent, with accuracy up to an irrelevant constant factor,
to another phenomenological viscosity prescription

v=oqauv,H (23)

However, when the rotation law differs from the Keplerian one, the two vis-
cosity prescriptions lead to physically different models. The formal reason
for this is that the original Shakura-Sunyaev viscosity prescription suppress
the derivative d2/dr, in 7.,. Thus, with the viscosity prescription given
by (23) there is no more differential equation in the problem. Abramow-
icz and Kato (1988) found that in the case of isothermal accretion with
the viscosity prescription {2), the sonic point is either of the saddle or the
nodal type, while for the viscosity law given by (33) only the saddle type
is allowed. The different topological types of the sonic {critical) points are
connected wiw stability and are thus physically relevant. Another widely
used variation of the original Shakura-Sunyaev viscosity law assumes that
Tor = aPy, i.e. that the viscous stress is proportional to the gas pressure
rather than total pressure. It is known that in this case the J < 2/5 insta-
bhility is absent, which implies that the JU(E) curves may have shapes very
different from those presented here.

The viscosity coefficient a may strongly depend on the accretion rate
due, for example, to the Papaloizou and Pringle (1984, 1987) instability,
which for very small accretion rates may produce strong turbulence and
thus viscosity, but for higher accretion rates switches off (Blaes, 1987).
Assume that the viscosity coeflicient depends on the accretion rate through
the purely phenomenological relation

o = agerp(—kM /Mc) (24)
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The Shalkura-Sunyaev models {¥ = 0) and their modifications (k = 0.1, 1)
are shown in Figure 20 Chapter 3. Although all of the above examples in-
cicate clearly that the exact shapes of the S-curves depend strongly on the
viscosity assumption, they should not be taken as a case against the gen-
erality of the existence of the S-shaped relation M(Z). In the innermost
part of the accretion disks around black hioles (which belong to the first
type of transonic accretion} this relation is due , as we have explained in
Section 4, to the relativistic Roche lobe overflow mechanisim and strong ad-
vective cooling connected with it. The mechanism operates independently
ol viscosity. Thus, the existence of the S-shaped M () relation does not
depend on the viscosity assumption, even if the details of particular models
are very sensitive to it.

¢) The mass of the central black hole

Here we consider only the case m = 10, which is relevant to the
galactic black holes. Physical processes discussed here do not depend on
a particular value of m, however. The slim accretion disks around super-
niassive black holes, relevant for active galactic nuclei, will have ilie same
general properties. The scaling from small to large masses is no linear and
to get the quantitative description of slim disks in the case of m > 10°% one
must repeat the calculations presented here. The results of this calculations
are presented in the next Chapter.

3.6 Conelustions

We have discussed the role of horizontal pressure and entropy gradi-
ents in accretion disks with moderate super Eddington accretion rates (slim
accretion disks}). We have found, that these gradients are very important in
the innermost, transonic part of the disks orbiting black holes. The most as-
trophysically relevant effect produced is a strong horizontal heat flux, which
changes the energy balance in the disk. Due to this advective flux the well
known g < 2/5 instability disappears when accretion rate is high enough.
For this reason the relation between accretion rate and surlace density is
characteristically S-shaped. The S-shaped A (Z) relation in the case of ac-
cretion disks in dwarf novae plays an important role in the explanation of
the outbursts (see e.g. Smak, 1984}, Similar non-stationary, quasi-periodic
hehaviour should be expected also in the innermost, transonic part of the
slim accretion disks.
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5A. Schematic structure of the numerical
code

From the numerical point of view, our problem is treated as a two
point boundary value problem, which means that the ordinary differential
equations are required to satisfy boundary conditions at more than one
value of an independent variable. The "standard” two point boundary
value problem has the following form: we want the solution to a set of N
coupled first-order ordinary differential equations, satisfying n; boundary
conditions at the starting point z; and a remaining set of n, = N —ny
boundary conditions at the final point z».

One of the two classes of numerical methods for solving two point
boundary value problemsis the shooting method, in which we choose values
for all dependent variables at one boundary. They are arranged to depend
on arbitrary free parameters, whose values we initially guess "randomly”.
We then integrate the equations, using initial value methods,up to the
other boundary. In general we find discrepancies from the desired boundary
values there. Now we have a multi-dimensional root-finding problem: find
thie adjustment of the free parameters at the starting point that cancels the
discrepancies at the other boundary point. More details about this class

of methods can be found in e.g. Press, Flannery, Teukolsky and Vetterling
(1986).

There are two important problems: the eigenvalue problem for differ-
ential equations and the free boundary problem, which both can be reduced
to the standard boundary problem and solved using the described method.

The equations of the structure of the disk presented in this chapter
are rewritten, for numerical reasons, in the following way (Muchotrzeb,

1983):

dinT 3p

& = " TonBee(l—B)Przi" (1)
dnp (4381 -U)(%E) + (1 - £)0rg - UREG
dr U—p3{1-U) (2)



0 ) ds
_E) + MBlT?{T; — drr T (3)

dF,

= M{l - i}

where U = v}p/P. (The other quantities are defined in the previous
chapters).

The input parameters are ; o, m, m

These input parameters are put into the program and are kept there
always constant.

The outer boundary conditions result from the assumption of asymp-
totic Keplerian character of the solution.

The outer boundary conditions are:
P(rout) = pﬁ'(rout)
T(Tout) = TI\'(raut)

_ 16w c(1-8r)Pr . dinT
Fr(raut) — _3_-83 ,{p;{ ‘T-—I\.' dr i

where the index K corresponds to the value obtained from the disk
structure equation {3) and algebraic equations ((6)-(8) in Chapter 5) in the
case [ = g, F. = 0, By = 0. Because of the unknown parameter I in
equation (3) a fourth boundary condition is necessary. It is placed at the
inner edge of the disk.

The free input parameter is:ly

For a given a, m, m, the free parameter, Iy should be searched for in a
such manner that a smooth transonic flow is obtained. We guess the initial
value of this parameter and then we integrate inward starting from outer
boundary. At the inner boundary we check the regularity condition which
must be satisfied at the inner point and if necessary, we change ly and start
the integration again. We repeat this procedure until the condition at the
inner edge is satisfied. The equations are integrated from r = r,,; = 100rg.
The few first steps of integration are shown in Figure 1.
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Figure 1: The integral curves for few values of free parameter /o

For some set of runs this procedure does not converge. In the neigh-
bourhood of a critical point the change of Iy by a factor Al = 1077 gives
a divergence and no fransonic solution is obtained. In such a case smaller
step is needed. The procedure is shown in Figure 2. The two integral curves
correspond to Iy and lp + Al, calculated in the first integration. They are
close to the critical one but not enough to pass through the sonic point.
Following integration we check the distance between them. If it reaches
a small assumed value, §,then we stop the calculation. Having stored the
values of all variables in this particular point we start integration from this
place taking these values as the boundary values. Now [y is fixed and we
look for a critical solution, changing the boundary values, choosing them
always in the interval between integral curves. If none of them enables pass-
ing through the sonic point, we calculate again until the transonic solution
is reached.



Figure 2: The finer integration scheme.




5B. A puzzle of B, coefficients

I call this mini-chapter -a puzzle of B; coeflicients- not because they
cause a problem by themselves. They appear in a particular approxima-
tion (Paczynski and Bisnovatyi-Kogan, 1981) of a two dimensional hydro-
dynamical flow around compact objects. They form a small and maybe
not important part of the problem which, on the other hand, is extremely
important and still needs to be solved. We already discussed how they were
obtained. Now I would like to place them in more general picture.

We have studied stationary, axially symmetric, equatorial plane sym-
metric, shock-free accretion of non-self-gravitating gas onto a central object,
with a mass M and a small enough radius Ry Ry < 3rg i.e. a black hole.
We use a Newtonian model for the gravitational potential for this object.
It describes the relevant general relativistic effects very accurately, as long
as the central object is nonrotating or rotating slowly. Long range electro-
magnetic fields are assumed to be absent. We have assumed that accreted
material 1s a mixture of a perfect gas and radiation. We treat radiation
transfer inside the flow in the diffusion approximation. The optical depth
is assumed to be large in both horizontal and vertical directions. The opac-
ity coefficient is taken, as a function of density and temperature from Cox
and Steward (1970). The action of viscosity is described in terms of the
viscous stress tensor. Here we adopt the Shakura-Sunyaev prescription.

The above assumptions define a two-dimensional hydrodynamical prob-
lem with dissipation, differential rotation, heat transfer, radiation, and
transonic motion - too complex for the existing numerical codes. The ques-
tion of how to reduce it to something tractable without removing relevant
plysics is the question which we would like to address.

In a standard treatment, the equations describing the structure of the
disk , except for the momentum equation in the vertical direction {which
describes vertical hydrostatic balance), are simplified by integrating the
equations over the vertical coordinate. Integration is sometimes replaced
by the corresponding mean value multiplied by thickness of the disk, which
gives rise to unnecessary uncertainties in the basic equations. Hoshi (1977)
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has introduced a concept of polytrope in the vertical distribution of accre-
tion disk matter in order to get rid of those uncertainties.

The same approach was used by Paczynski and Bisnovatyi-Kogan
{1981), who vertically integrated most of the Navier-Stokes equations and
obtained a set of ordinary differential equations describing the problem.

Paczynski (1978) gives derivation of the coefficient By which appears
in hydrostatic equilibrium in the z direction, showing that

where n is the polytropic index. The vertical disk structure can be ap-
proximated with a polytrope with n between 1.5 and 3. From some rather
arbitrary evaluation of the polytrope index, one can get the numerical value
of B4. Having the density distribution in the z direction:

p=pll—=)"

wlere p. is central density { at the equatorial plane} and zp is the thick-
ness of the disk from equatorial plane to the surface, one can integrate
the density, pressure, viscous stress and energy loss rate over the vertical
coordinate z, and evaluate the other coefficients B,.

Czerny (1983) studied how good this procedure of vertical integrating
for the small accretion rates is. She used the fact that for small accretion
rates the distribution of angular momentum is very close to the Keplerian
value. The vertical structure of a Keplerian disk can be calculated in a
similar way as for calculating the structure in stellar interiors. The com-
parison between the structure of such a disk and a disk with the vertical
integrated equations gives quite good agreement, Czerny (1983).

Another way to simplify the problem is to consider a geometrically
thin conical flow (Abramowicz and Zurek, 1981). They expand equations
describing the structure of the adiabatic flow with respect to powers of
cos®, keeping only zeroth, first and second orders terms. The resulting set
of two algebraical and five ordinary differential equations for seven unknown
racial functions has a trivial analytic solution in the case of a nearly radial
accretion flow, i.e. when ve = 0{cos’®). This assumption of a nearly
radial flow is severe. A more general case has also been considered, in
which Abramowicz, Livio and Lu (1986) obtained a set of nine equations,
forming a closed, self-consistent system.
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However, all presented methods have their weak points and limita-
tions. They restrict both the geometry and thermodynamics of the flow.
It is necessary to treat the vertical structure of the disk in more detail
using analytical or semi-analytical methods. A fully realistic model will
perhaps not be obtained until a numerical code capable of dealing with all
complexity.
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5C. Analysis of the critical points.

Transonic accretion was discussed by Liang and Thompson {1980),
Abramowicz and Zurek (1981}, Loska (1982), Kato et al.,(1982), Muchotrzeb
and Paczynski {1881), Muchotrzeb (1983), Matsumoto et al., (1984) and
recently by Abramowicz and Kato (1988). The last paper gives us a way
to treat the inner boundary conditions in the disk correctly. Differential
equations describing transonic dissipative flows have critical and subcritical
points (Flammang, 1982). We require our solution to pass through these
points regularly. In other words, we are looking for a smooth, continuous
solution with no shocks.

Abramowicz and Zurek (1982) found that in the case of dissipation-
free black hole accretion, the forbidden region separates two physically dif-
ferent regimes. The first one, Bondi accretion, contains a solution with
the sonic point far away from the hole. The second regime, disk accretion,
contains a solution with the sonic point close to the hole.

Muchotrzeb (1983) studied a dissipative accretion onto black hole.
She suggested the existence of an upper limit of o, above which no sta-
tionary solution is possible. Matsumoto et al. (1984) showed that un-
stable nodal type transonic solutions exist beyond the boundary found by
Muchotrz~"  Abramowicz and Kato (1988) explained that the local reg-
ularity conditions and the global topological demands do not prevent a
steady, transonic, isothermal accretion flows to exist for any value of the
Shakura-Sunyaev viscosity parameter. However, these conditions cut off
some forbidden regions of the parameter space in the problem. Except for
isothermal flows a similar analysis for the more realistic situation is quife
complicated. Matsumoto et al. (1984) concluded that the generalization
(including viscous heating and radiative cooling), the qualitative nature of
the critical points do not change from that in isothermal case. This state-
ment needs deeper examination. We present results from the analysis in
the case of slim disk models below.

The aim of this section is to have a better understanding of the so-
lutions near the critical points. Such an analysis is crucial for constructing
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numerical methods.

5C.1 Equations

We will start from the most general form of equations (without as-
sumption that gradient of radial flux is negligible) (Muchotrzeh, 1983). She
discussed the diflerences between spherical accretion and disk aceretion.
The differences in a physical situation manifest themselves in differences in
the position of the critical points. In the adiabatic approximation a critical
point is described by

202,
T

where v,4 is the adiabatic velocity of sound and I'; is the adiabatic index.

(1)

o

In the non-adiabatic flow a critical point occurs when

2 2
=1 (2)
14+

The complexity in the case of non-adiabatic flow comes from the
multi-dimensionality of the problem. Here we present the equations in a
form convenient for analysis. The most general case can be written as

follows
4w N I A
—yo din Bac(1-3)y3
12 - 10.5/3 _(4 o 3'8) 0 Bl-%ﬁm F ﬁ B4-§annU;ﬁr‘m
14— 39) A +1) 1 0 0 e
; By din} -
%(4_3,6) %(313"’1) 0 - QU 0 pr Q(B_;__;"_
dinF,

i 1 0 0 0 0 11 55 I
where F' = gﬁ——%. Furtlier new definitions are:
r = v./v, (the ratio of the radial velocity to the sound velocity),

where v, = (P/p)!/?,
y = v, /v, (the ratio of the azimuthal velocity to the sound velocity},

Yk is the same as y but for the Keplerian motion, i.e. 2 = Q.. ris
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given in units of rg. The Keplerian angular velocity is given by:

(| <2

and its logarithmic derivative by:

If we neglect the term dF./dr

reduces to

' 4 — 343
12 — 10.53
3(4 —34)

| 34 -3p)

dinr

i}
—(4—34)
HA+1)

2(38 - 1)

§C.2 The standard approach
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in the energy balance equation the set
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Bye{1-ai
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dinfly,

dinr 1

Brzy
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Equations of the stationary disk structure in the slim disk approxi-
mation are written in the form:

A d@;

e

It can be treated as a classical dynamical system where the evolution occurs
not in time but in space. We can apply standard methods to find and

describe the characteristics of the critical points. First we rewrite these
equations in the form of a standard dynamical system as

d-QJ'
dr

F;
F

It is convenient to perform a coordinate transformation r — = where

dr
dr F

1
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and write the system in the form

49,

dr = 'E?J'(Qla rery Qn)

In that way we remove the singularity from the system. To keep track of
our problem, instead of going away into all details of the theory, we get the
meaning of ); as follows:

Q1 = InT
Q2 =Inp
@z = Inv,
Q4 = (nQ
Qs = InF,
(s = Inr

It should be stressed here that only three independent differential equation
exist in the problem. We used five because of sonie conveuience in alge-
braical manipulations. It will be necessary to compress that form, leaving
the z, y, and r as the parameters of the flow.

A point (@9, ...,Q%) is called a critical point of the dynamical system
if
FS‘(Q?’---,Q?J:O (3)
for all j. The problem of finding all critical points of the system and the
corresponwung solutions is thus reduced to the problem of solving a system
of algebraic equations (3).

5C.3 Location of critical points in the slim disk

From the method described previously we obtained the six following
equations

dinr BsmyF(l
dint ~ a 2
This equation gives the necessary condition for existence of tle critical

points. They appear if * = 23/(3+1), which is in agreement with relation
(2) {found by Muchotrzeb (1983). In that case vy = BP/p.

(8 +1)2* - 3) (4)

dinT GBgmyF(l

dint o« 2

(8 +1)2" - 3) (5)
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where we have chosen (@ to be the logarithmic derivative of the temperature.
For this reason the formula (5) is very similar to the previous one.

dinp _ BszyF ., din{ly
dint o (- —yx) +e ( dinr

The new condition describing critical solution follows from this equation .

1)~ Gl4-38)(5%° - 1) (6)

The term in brackets should be equal to 0.

dinv,  BzeyF{(3+1), ., . 20 dinQly 4 — 348 -
_ gt — iy — —2 (ERUE @
dinT 2c ({y" = wie) a4+ 1( dinr ) - € g+ ) ()
For the regularity of the solution the same condition as in ) should be
satisfied.
dinQd Bsr 1 )
T = P2 - 1)(A - g+ L)
LT T A
1 n . , dinf) , 1
(30 — (v — k) — 2 ~ DI G =38)" ~ 5] (8)
2 dinr 2

Also this equation gives the same condition. The last equation does not

give us any additional conditions. Right hand side of the relation is equal
zero when dinr/dint = 0.

dinF, _

dlinT
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where

fa=1(4—-38) + (12 - 10.54) (10)
forr = (4 =38)" + (3 + 1)(12 — 10.53) (11)

To summarize this very technical discussion we can say that the crit-
ical point appear when

. 28
= — 2
© =5 (12)
and 25 dinQ 4 - 33
2 1 aabadZiy o
i — iy - I - =G 13

It can be noticed that this result is similar to that obtained by
Abramowicz and Kato (1988). The left hand side is equal zero instead
of G(4 —33)/(8 + 1). In fact this term is vanishing in the isothermal case
because G = dInT'/dinr.

The simplified case, without dF/dr in the energy balance equation
is actually even more complicated. The procedure is equally easy but the
expressions describing the critical solutions are quite complex. The frst
equation we would like to consider is

dr

dinr -

which leads to the fourth order algebraical equation:

det(A,-J-) = FG -

e (32 (B + 1)(12 - 10.59) + (4 — 38)%)) —
2?[(4 - 39) 5o + E((4 — 38)* + (12 — 10.58))] +
4 -38)5%- =0 (14)

It is easy to show that this equation has always (for all values g) four
different, real solutions. Two of them are positive and are two negative
and located symmetrically on both sides of x=0. Physically we are inter-
ested only in the two positive ones. x depends explicitly only on [ and o.
Introducing the function g

2
a4

BBy

9(8,e) = (4~ 34) + Bsfs (15)
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Figure 1: Critical solutions for i & 1

then it is possible to write the solutions in the form

. Cﬁgf;-i 1(4— /3)
9(8,0) — \[gH(3, ) ~ Thiagt=)

e 16

’ Bs fs11 (16)
9(B, ) + /925, @) — Thmlt=20)

2 X )

oo (17)

Bﬁfﬁ+1

The exact solutions for different values of parameter o and for all 3’s are
illustrated on the Figure 1. The first solution corresponds to the sonic
point, but the second one is also connected with o, that is with angular
momentum transport. These two points are the candidates for the critical
ones. Clareful analysis is needed to extract the physical one. We noticed
that two cases are important: one with the gas pressure dominance (4 = 1),
the other with the radiation pressure dominance ( = 0). The intermediate
situation is very rare (Figure 2).
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a) 4= 1

This assumption is correct for small accretion rates in the inner part
of the disk. In this case the solutions of the equation (14) is a function of
o only

. 3ag—l—§i\/9a‘*—t—§a2+% _
Ty = - 5 = (18)

For small a these two solutions give

The dependence on viscosity can have some reasonable influence only when
e == 1. For this reason, we first consider the zero order approximation,
assuming that viscosity is negligible and then we will discuss the general
case.

From the condition that all numerators sliould at the same time be
equal to zero we get

and .
o 2
R 2

This relation is analogous to that given by Abramowicz and Zurek
(1981) fo- »~~dissipative accretion. The same conclusion is easily reached:
the angular momentum at the sonic point is smaller than the Keplerian
value. Going back to the equations of the disk structure we can estimate
the physical conditions at the sonic point, expressing them for example in
terms of the temperature in this point. Thus

. 5k
W= DT, 21
z, = (BéiT,)”?ngﬂ (22)
pH '
MQy
e ey (23)
T o5 4 (4) r"uH 3
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The angular momentum as a function of the position of the sonic
point is shown in Figure 3. The temperature at the sonic point is chosen
as a parameter.

The general case (for any value of viscosity) should be qualitatively
the same. The necessary and sufficient conditions for a critical points give
the relation identical to (19} with the difference that now z*
general solutions and

is one of the

5Bix?Bi(4z? — 5) + 2a%r? + 5o’ dinQy
4BZx?By{4x? — 5) — 8a?z? + 16a?" dinr

v - yk = -1)  (24)

b) A =10

For high accretion rates, m > 1, the disk is almost completely dom-
inated by radiation . As we can see from Figure 2, 7 = 0 is an excellent
approximation in the inner part of the disk.

The nondissipative (a ~ 0) case is analogous to the situation where
gas pressure is dominant. The solutions of the equation (14) are

2(3a?) + V362 + 6ol & 16

2
m1.2 = -

{

For the viscosity it reads

T =, Ty =

(26)

-1} o

Our analysis of the type of the critical points is extremely difficult,
because of the multi-dimensionalily of the problem. The result of this
analysis will be given in a forthcoming paper.



6. Slim disks around supermassive black
holes

6.1 How big are supermassive black holes?

a) Starting at the beginning (The birth of a supermassive black hole).

Rees (1978}, Begelman and Rees (1978), and Rees (1984) have sketched
possible routes by which a supermassive black hole may be born via a run-
away evolution in an active galactic nucleus. They found a standard mass of
~ 10°Mg. Recently, Kochanek, Shapiro, and Teukolsky (1987) presented
a simple way of estimating the size of a supermassive black hole formed
during the collapse of an unstable spherical star cluster. Their black holes
have masses in the range: 10° < M /Mg < 10°.

b) Emission lines as a mass indicator.

The method is based on the assumption that the rotation of the gas
in the neighbourhood of the nucleus is compensated by the gravitational
attraction of the central hody. This was originally due to Woltjer (1959).
The expression for the mass has the form M = v?r/, where v is the
velocity distribution of the clouds at the gravitational center, » is a size
of the region where the lines are formed (Broad Line Region, BLR), ¢
is the gravitational constant. Gas velocities have been determined from
emission lines in the spectra of galactic nuclei by various authors (e.g. Dibai,
1984, Wandel and Yahil, 1985). They used the half-intensity level of the
line profile to measure the gas velocity. The next problem is to evaluate
the characteristic size, r, of the BLR. This quantity can be derived from
two parameters: the electron density of the gas and the geomeiry, (the
volume filling factor). Dibai (1980) gives the values of the central mass
for 37 Seyfert 1 galaxies and 12 nearby quasars. All masses are in the
range 10° — 10°My. Wandel's {1986) mass-luminosity relation is shown in
Figure 1. 10° - 10°My is a common range for both Seyferts and quasars.
10° — 10° Mg is the Seyfert domain and the region 10° — 10'°M}, is mainly
populated by quasars.

Joly et al. (1985) pointed out one of the problems with such an
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Figure 1: The optical luminosity versus the dynamical (Hyz) mass. Crosses
mark Seyfert 1 nuclei, while quasars are denoted by circles {Wandel, 1986)

approach for high luminosity quasars, namely the masses involved in the

model should be as high as 10 Mg for Ly =~ 10%erg s71.

Burbridge and Perry 1976 evaluated the central mass by analysis of
the interaction between emission line clouds. They found masses between
5 x 107 and 2 x 10%M.

The mass of NGC 1566 (Alloin et al 1985), derived from BLR line
widths {ZC20 km/s) and size of BLR (3 x 10!° cin), is about 5 x 10%A44.
Alloin et al.(1988) made a quantitative analysis of the Balmer and C IV
line profiles in Akn 120 and found that the broad line region comprise two
distinct regions. One of them is an accretion disk with size equal to a few
couple of light months, with inclination i < 60°, and with the mass of the
central black holes Al > 7 x 10" Mg. Peacock (1987) obtained for NGC
4151 the mass 5x10% — 10°My. Clavel 1988 derived for the Fairall 9 mass
M =2 x 108 M.

c} Direct estimation from the bolometric luminosity

Estimating the bolometric luminosity of observed quasars and con-
verting this into energy radiated per bright galaxy one is able to deduce the
mass of the source. (Soltan 1982 and Phinney 1983). The infalling matter
is accumulated in the black hole during the lifetime of the quasar. Soltan
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(1982) used this fact to estimate the total mass of the black hole, due to
accretion:
m=c kLT

L is the luminosity, T the lifetime of the quasar, and & the efficiency of
energy conversion. Only L is known for an individual object. Using quasar
counts he calculated the total energy emitted by all quasars in a unit volume
and found limits for the total mass of the black hole (10% — 10°My). It is
comparable with upper limits on reported measurements of central mass
of galaxies as our own, M31, MB87, {Kormedy, 1987). In the case of the
largest radio galaxies, the energies in the radio lobes can exceed 10°A .
Adopting an efficiency of 10% this translates into a minimum mass of 107 Mg
for the central black hole. The most powerful quasars in the universe require
central black hole masses in excess of 3 x 10° My, if they radiate at the
Eddington limit.

d) Evolution arguments

In the simplest quantitative model for evolution (Blandford, 1986)
black holes grow continually from modest initial masses 2z 1000, with an
e-folding time =2 10% yr, until the rate of gas supply is insufficient to allow
them to grow further. Black holes which are formed early in the Universe
are able to grow to masses &= 10? — 10'°A{, in = 10° yr, and correspond to
the brightest high-redshifl quasars . They also become the most energetic
radio sources after accretion was stopped. Black holes that start to grow
somewhat later are only able to achieve masses = 10° — 10 M. They also
cease {orning at z = 2 and constitute the majority of the quasars. The
last galaxies to form are only able to grow central black holes to masses
2z 10% — 107 M. These are now actively accreting for about 1-10% of the
tinme and are now called Seyfert galaxies.

d) Gravitational lenses

The gravitational effect was tested on a close pair of quasars, 1548+115
a, b (Paczynski 1974, Gott and Gunn 1974). Lack of the appreciable inag-
ining of the more distant pair member by the nearer one provided an upper
limit of 4 — 7 x 1012 Mg for 1548+115a.

e) Masses from the variability timescales

It is often held that the x-ray emission from active galactic nuclei
arises from a region close to the central energy source. Thus x-ray ob-
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Figure 2: The dynamical mass versus time variability (Wandel and Mushot-
sky 1986)

servations may provide the best constraints on the central engine. X-ray
time variability data can constrain the size and the mass of the continuum
source. Assuming that the shortest observed timescales of the variability is
equal to dynamical timescale, t; =~ 27/Qx, where Qp =~ (GM/r*)/2, one
can get the mass of the central source. Wandel and Mushotsky (1986) give
the dynamical mass - variability time relation for Seyferts and Quasars. It is
shown in Figure 2. Pounds and Turner {1987) derived a mass ~ 1.5 x 106
for I Zw 2, irom the dynamical timescale of == 1500 s.

) Masses derived from the UV continuum.

Malkan {1983) analyzed the ultraviolet spectra of six quasars. The
continua are fitted with spectra predicted for optically thick, steady- state
accretion disks, which include the effects of general relativity. The two fit-
ting parameters, the mass of the accreting black hole and accretion rate,
are determined by data having accuracy of 20% . The masses range from
2-5 x10® for 3C 273 and PKS 0405-123 to 1-3x10° Mg, for the high redshift
quasars. The simplest accretion disk models have difficulties explaining the
optical- UV-soft x-ray big bump in quasars. Czerny and Elvis (1987) found
that opacity effects can explain the uniform 20,000-30,000 K "maximum
disk temperature”. The observed spectral turn off would be the result of
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electron scattering and should not be identified with the hottest part of
the disk. The frequency at which this spectral turn off occurs is depend-
ing only weakly on the accretion disk parameters. These opacity effects
also allow high- frequency EUV and soft x-ray extension of the big bump,
without exceeding the Eddington limit by much . They have applied the
disk spectrum model to interpret the optical-UV-soft x-ray big bump in
the quasar PG 12114143 (Bechtold et al., 1987). Counstraints on the mass
of the black hole and the accretion rate gave the values 5 x 10" Mg and
= BMg/yr, respectively, so luminosity of the disk is only about factor 3
higher than Eddington value.

.2 Constrainis on viscosity in accrefion disks.

The optical, UV and soft x-ray continua can be modelled as thermal
emission from an accretion disk. The predicted thermal timescales for vari-
ability depend strongly on the assumed viscosity parameter. Comparing
with the observed timescales one can constrain the values of viscosity. Cz-
erny and Czerny (1986) found that the rather large values of the viscosity
parameter is more likely. Their results are presented in Figure 3. In a re-
cent paper Sitemiginowska and Czerny (1988) considered the same problem
using numerical methods. They concluded that the viscosity parameter in
accretion disks in AGN is required to be smaller than 0.1 but greater than
0.01.

6.3 Shim disk models around supermassive black holes

Taking into account all arguments for estiimzating the mass and vis-
cosity in accretion disks in AGN a possible range of parameters has been
chosen to calculate slim disk models (Abramowicz, Czerny, Lasota and
Szuszkiewicz 1988).Our parameter space is (a,fl:f,ﬂff), where 10%AM5; <
M < 10°My, 1077 < o < 10° and M is constrained by the existence of
the transonic solution for the slim model. The upper and middle branches
of the resulting S-curve do not depend on the mass of the accreting black
hole. This result is a consequence of the thin disk properties in the case of
radiation pressure dominance (equation (40), Chapter 3) and nature of the
stabilizing mechanism (equation (57), Chapter 3). The comparison between
models with & = 10° and 108y is shown in Figure 4. The agreement be-
tween numerical and analytical solutions is even stronger comparing masses
for galactic black holes (10Mg (see Figure 5). In Figure 6 we represented
the sequence of S-curves for M =10°My, for different viscosity parameters
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starting from o = 1 and going up down 1077, The lower turning points
correspond to J = 2/5. S-curves for & > 107? are not completed. We can-
not obtain the self-consistent transonic models in this case. these accretion

rates.

We present here in some detail the structure of the slim disk models
with high accretion rate (Figures 7, 8 and 9}. The thickness of the disk
increases with increasing accretion rate until A = 50A{..;; but the shape
does not change qualitatively. The model for 500 i gets characteristic
form of the thick disk. Sonic point position is changing in the range: from
close to 3r, for small accretion rates to close to 2r; for the high accretion
rates.

A different mode of accretion appeared in the sequence of models for
M=10%My and viscosity 10~ — 10~® for accretion rates as high as 57 and
58 ﬂ:fc,.it. There is no continuous change between modes in the range 56 and
57 ﬂ;[m-t,t since the location of the sonic point jumps to distances about 90
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rg from the black hole. The angular momentum is constant. This could be

the second mode of accretion suggested by Abramowicz and Zurek (1981).
The shape of the accretion flow is shown in the Figure 10.

We assume in our models that the flow is optically thick. The tem-
perature distribution proves that it is a good approximation in the region
we considered. The surface and equatorial temperatures shown in Figure
11 are different from each other about one order of magnitude.

6.4 Shape of the optical - UV - soft x-ray confinuum.

There are some general trends in the evolution of spectra in AGN.
Some of them can be explained using a sequence of equilibrium models of
the accretion disk . The spectra for three values of viscosity are presented
in Figures 12, 13 and 14.

We calculated also the spectrum for the second mode of accretion,
with the sonic point located at big distances. The flux from such disks
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is small in comparison with the first mode, and tends to decrease with
increasing accretion rate (Figure 15).

6.5 Top Ten List of AGN

I will discuss some of the spectral properties following the variability
of the best studied objects in terms of the position on our theoretical tracks.

NUMBER ONE - FAIRALL 9

Without any doubt the number one is Fairall 9, because of the high quality
dala of simultaneous optical and UV speciral observations. The source
is classified as a Seyfert 1. But at the time of its discovery it was so
bright that it was thought to represent the overlap between QSO’s and
Seyfert I galaxies (Danks et al, 1979). The UV continuum showed dramatic
variations, its intensity decreasing by a factor of 30 in terms of bolometric
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luminosity, from a maximum in 1978 to a deep minimum in mid-1984.
The near IR and optical fluxes changed by a factor = 3. Its position on
the equilibrium sequence is shown in Figure 17. The high state accretion
rate as derived by Clavel et al 1988. The low state is found from the
relative changes in intensity. The intermediate stale in October 1983 was
obtained in the saine way. The energy distribution {rom the disk is shown
in the Figure 16 for this particular models. An interesting thing is that
quantitative changes of spectral index from these spectra can reproduce
the ohserved one. Morini et al {1986) gave the value of spectral index in
the UV for the two periods (October 1983 and October 1984) as 0.40 £0.11
and 0.86 £0.11. Our accretion disk models for M=10%°Ady and viscosity
0.001 have the same UV slope, i.e. 0.39 and (.86, for accretion rates 0.03
and 0.1 M respectively. The difference in flux between these models is as
the observed one - factor 0.4 in logarithm (table 4 in Morini et al , 1986).

NUMBER TWO - NGC 1566
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The schematic ight curve of NGC 1655 is shown in Figure 18. The
ohserved variability of the broad emission lines H, and Hjp is interprefed
as a variability of the accretion rate in the accretion disk orbiting the black
Lole in the center of NGC 1655 (Abramowicz, Lasota and Xu, 1986). The
shaded areas are equal. This defines both the characteristic accretion rate
I\;fg =3~ T”‘lf\-:fg and the two timescales of 900 and 400 days. The two
regimes occur along the rising branch: first a mild increase on a timescale
of 310 days followed by a steep rise on a timescale less than 20 days. The
decreasing part of the bursts corresponds to an exponential decay between
390 and 475 days. The three successive sub-bursts observed in the last

cycle are separated by 310 days.

Abramowicz, Alloin, Lasota and Pelat {(unpublished) have suggested
an explanation for this variability: a limit cycle which works due to thermal
and viscous instabilities present in the innermost region of an accretion disk

orbiting a black hole.
NUMBER THREE - PG 12114143

uasar PG 12114143 has an unusual spectrum. The x-ray spectrum
P
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Figure 18: The light curve of NGC 1655 (Abramowicz, Lasota and Xu,
1986)

of this object is very steep, with the best-fit power law Fg o« £78 yielding
a spectral index ap = 2.2 & 0.4 (Bechtold et al. 1987). One possible
explanation {or the steepness of these spectra is that we are seeing the soft
x-ray excess arising at the hot inner edge of an accretion disk. Czerny
and Elvis (1987) have applied the model of disk spectrum to interpret the
optical/UV/x-ray big bump in PG 12114143, The accretion disk in this
quasar must be face-on {cosi > 0.7), in order to account for the observed
soft x-ray cacess. Constraints on the mass of the black hole and accretion
rate gave the value =~ 5 x 10" My and = 5Mg/year respectively, i.e., the
Iuminosity of the disk is only about a factor 3 higher than the Eddington
luminosity. Fit to the data for PG 12114143 by an accretion disk is shown
in Figure 19.

NUMBER FOUR - Akn 120

Akn 120 was subsequently reported to vary both in the continuum
and in the broad line emission (Lyutij, 1979; Kollatschny et al, 1981; Schulz
and Rafanelli, 1981; Peterson et al., 1985). Variability properties ofter us
a unique opportunity to find the size of the region producing the emission
lines and to test the existence of disc accreting massive black holes. For
any frequency, light from the surface of the accretion disk should show the
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characteristic two-peaked signature of large rotational motions. The two-
peaked profiles (Figure 20} have been observed in Akn 120 { Alloin, Boisson
and Pelat 1988). From variability studies of the AGN in this source and
line profile analysis,it was found that its broad line emitting region contains,
within a radius 2 light-months, a disk-structure.

NUMBER FIVE - NGC 4151

This Seyfert galaxy is the one which has been most extensively studied
in the UV and x-ray ranges. One of many remarkable aspects of this object
is that, based on the UV data alone, 1t seems to have changed regime
or behaviour around 1981, being a "normal” bright active Seyfert nucleus
before this date and changing to regime where it is weak to very weak with
brighter episodes (Ulrich, 1986).

NUMBER SIX - Mkn 335
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This is a galaxy with one of the largest observed UV bumps. IUE ob-
servations over several years have yielded little evidence for flux or spectral
shape variations larger than 50% . It is therefore interesting to compare
UV data with the variations in x-ray observed with EXOSAT. The mediumn
energy component displays unusually strong variability on the timescale of
1 to 2 hours. There is also an intense soft x-ray component whose short
term variability is not known. Both x-ray components increased by a factor
6 between November 1933 and December 1984 (Stanger and Pounds, 1986).
The reason for the difference in behaviour hetween the UV and the x-ray
ranges is not well understood. One possibility is that both the UV and
soft x-ray components are radiated by an accretion disk with the variable
soft x-ray component coming from the innermost edge where the luminos-
ity and energy are expected to change more rapidly than near the outer
cooler edges emitting the UV radiation. In this picture the similarity of the
large decrease of the soft x-ray and medium energy components is not due
to a common origin of the two components, but to the fact that 2-6 keV
emission is coupled to the rate of accretion occurring near the innermost
part of the disk.

NUMBER SEVEN - MGC-6-30-15

MGQC-6-30-151s a typical Seyfert galaxy {Ly—10 = 10%%1g/s). The rel-
atively short EXOSAT spectral survey observation in June 1934 revealed
continuous variability on timescales down to 1 hour (Pounds et al., 1986).
To examine this Seylert galaxy in greater detail, a further EXOSAT obser-
vation was carried out in January 1986, extending over 2 days. The source
was again bright and strongly variable. Figure 21 shows the ME (2-6 keV)
light curve. Two particularly strong ’outbursts’ are seen = 9 x 10% apart,
but the variability is essentially continuous. Strong correlation of the short
term variability in the soft and hard x-ray components showed that these
components have a close physical connection. In this regard the evidence
for a lag of hard x-ray variability is especially intriguing. A straightforward
explanation may be that the accretion process proceeds through the region
of soft x-ray emission (inner, quasi-stable region of an accretion disk?), with
the harder x-rays being produced in a chaotic region closer to the hole.

NUMBER EIGHT - 3C 120

The x-ray luminosity of 3C 120 is variable by a factor of 2.5 on
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Figure 21: Background subtracted 2-6 keV light curve of MGC-6-30-15
during 29-31 January 1986, Pounds and Turner (1986)

timescales of days to months. The spectral slope of the 2-10 keV x-rays
changes systematically in the sense that the higher intensity stales are
steeper (Halpern, 1985). The optical nucleus is variable almost 2 mag on
timescales of years, with smaller changes occurring in ten days {Lyuty,
1979; Pollack et al 1979; Wlerick, Westerlund and Garnier 1979). A similar
behaviour is seen in the infrared {Reike and Lebofsky 1979) and radio flux
at several frequencies (Epstein et al. 1982). The most interesting obser-
vational results are, perhaps the VLBI maps of Walker et al. (1982, 1984)
which show structural variations indicative of multiple ejection at apparent
superluminas velocities. As the nearest and most rapidly varying superlu-
minal source, 3C 120 is a prime target for mouitoring at all wavelengths

NUMBER NINE - NGC 4051

The x-ray luminosity of NGC 4051 is extremely small, L(2-6 keV )=
3% 10*! erg/s (Lawrence et al. 1985). The importance of the x-ray data lies
in two qualitatively new features: continuous variability with a character-
istic timescale of about 1 hour, and spectral changing during fluctuations.

NUMBER TEN - Mkn 841

The energy distribution for the best determined continuum distri-
bution (PG 15014106, Mkn 841) is shown in Figure 22. The luminosity
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distribution across the entire five decade frequency range is remarkably uni-
form (Elvis, 1986). This continuum could be interpreted in many ways, the
simplest, however, is to divide the distribution into just two components: a
power low of slope = 1 in the infrared extending, without a break into the
soft x-ray region; and a "big bump” in the optical-ultraviclet superimposed
on this power-law.
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Figure 1: Theoretical timescales (a) and observed timescales (h). Names
refer to the objects which are discussed in the text

7. Variability of AGN. Observational data

We start our review of the observational data with a comparison of
two Figures: in Figure la we show the typical causal, dynamical, thermal
and viscous timescales estimated from equation (1), i.e. from theory, and
in Figure 1b we present the timescales actually observed in different objects
and at different frequencies. Both theory and the observations cover several
orders of magnitudes, but it can be seen that there is a general agreement
hetween them. We shall now describe the observational data in some detail.

7.1 Typical light curves at different frequencies
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The new optical catalog of quasi-stellar objects (Hewitt and Burbidge
1987) contains 427 objects. References to variability are made for only 12
percent of quasars in this catalog. In other samples, however, a substan-
tially larger fraction of sources was found to vary: in the Rosemary Hill
Observatory sample 50 percent of the objects are variable (Pica et al. 1980},
and in the Asiago sample 43 percent of observed objects show variability
(Barbieri et al. 1983). When all of the published data is included, then 36
percent of the objects from the Asiago sample are variable. This is contrary
to the commonly held opinion, that variability of AGN is rare.

The Rosemary Hill classification (Mc Gimsey et al. 1975) describes
the complex morphology of the light curves of AGN in terms of four basic
{ypes by using two main characteristics of the time behavior: short-term
flickering occurring with time scales of days or weeks and having amplitudes
0.5—1™, and long-term variations (secular trends) occurring with timescales
of months or years. The first type contains light curves dominated by rapid
short-term flickering. Long-term trends are inconspicuous and, if present,
are very gradual. The second type is characterized by prominent long-term
variations in the mean level. Flickering appears as minor excursions about
this chauging average. In the third type, the light curves are dominated by
a mixture of the two components which here have comparable amplitudes.
The fourth type contains light curves having long periods of quiescence
which are interrupted by relatively brief periods of activity {bursts). These
four types are generic for AGN variability and are characteristic not only
of optical light curves but also (with different timescales and amplitudes)
of other varavility phenomena. For the real data, they can be recognised
in Figure 2, which shows the variability of 3C 345 (Kidger and Beckman
1986), and in other Figures presented in this section. One can also add to
this classification a fifth fype having no variability at all.

In addition to explaining the existence of the five main types of vari-
ability and the statistical distribution of AGN among these types, a success-
ful theoretical model must also explain the characteristic detailed features
which are observed in many of the light curves. Some of them, especially
the optical light curves for BL Lac objects, show not only outbursis but
occasionally also deep minima. Often, after a primary maximum of bright-
ness, there is a decline followed by a secondary mazimum. The secondary
maximum can be delayed after the primary one a few days (e.g., 17 days
for AO 02354164, Dent and Balonek 1980, a month for ON325, Pica et
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Figure 2: The optical variability of 3C 345

al. 1980), some months {e.g., 3 months for OJ 287, Sillanpaa et al. 1985)
or even several years (Barbieri et al. 1988, University of Padova preprint).
Such a behavior suggests that the mechanism of the outburst may be a
sort of damped oscillation. Outbursis appear also at other frequencies, and
events occuring at different wavelengths are often correlated (e.g. Bregman
et al. 1986 for 3C 345).

To illustrate mentioned characteristic of optical light curve of BL Lac
objects we will use detail long term observations of three objects from this
class performed in Asiago Observatory (Barbieri et al 1988). For three
sources: ON 231, ON 325 and RS4 we have rich observational data, suffi-
cient for constructing the historical light curves. The light curve of ON 231
is shown in the Figure 3. It consists of a set of outbursts. Neglecting the
oldest (1898-1916) quite uncertain observations {Wolf, 1916), two major
outbursts were observed., one in 1940, and second in 1968 (Pollock et al.,
1974), while another possible active period in 1952 was not completely cov-
ered by observations. It is very interesting to note the similar structure of
these two outbursts (one magnitude pulse of halfwidth about 3 years). The
complicated behaviour of the intensity of the source after 1960 is presented
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Figure 4: The optical light curve of ON 231 after 1960.

on the larger scale in Figure 4. After peaking in 1968, the light decreases
{forming a deep minimum. Other two smaller pulses are observed at the
distance of 9 years and 16 years from the 1968 major event. The Fourier
analysis does not reveal any clear periodicity; it is possible to interpret the
light curve as a slow secular decrease of the intensity and sporadic outbursts
overlapping on it (see also Webb et al., 1988).

The historical light curve for ON 325 is reported in Figure 5. The
variation of the optical luminosity of this object is irregular. The ampli-
tude of pulses is around one magnitude. A deep minimumn appears around

JD=2442000.

Figure 6 presents the light curve of RS4. Data are mainly Asiago
observations (open circles). In 1941 a one magnitude outhurst took place
{Schwartz et al., 1979). No other clear feature is present in the Light curve
given by this author. From our measurements is evident the existence of
the peak around 1975. The source appears to be less variable than the two
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Figure 7: The infrared and radio observations of 3C 345

others examples of the BL Lac class in our sample (ON 231 and ON 325).
The history ot the optical variability can be summarized as two outbursts

at a distance of 34 years.

In the infrared, both flickering and secular trends have been ohserved
(with the shortest timescale for flickering being about 40 days in the case
of 3C 345). In general there is a close correspondence between the bright-
ness changes in all of the infrared bands. OQutbursts are more pronounced
at shorter wavelengths. The October 1982 infrared outburst of 3C 345 is
shown in Figure 7. Salonen et al. (1987) have reviewed long term mon-
itoring (over a few years) of AGN at radio frequencies. The same vari-
ability features are usually observed at several frequencies, but typically
the outhursts at lower frequencies begin later and have smaller amplitudes.
Flickering is not observed. Although the three largest infrared-optical out-
bursts of 3C 345 preceded the three largest radio outbursts by roughly 1-2
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231.

years, the correlation between these events is doubtful. Another example of
the possibilitv of optical-radio correlation in intensity we found in the BL
Lac type object, ON 231 (Barbieri et al., 1988). We compare our optical
light curve with the radio observations by Altschuler and Wardle (1976).
We found that the begining of the active period in radio (at 8.1 GHz and
2.7 GHz) occurs around JI =2442500 so at the same time as the optical
outburst (Figure 8). In general, there is no obvious correlation between
variability in the optical-infrared and radio frequencies.

Before going to the next range of {requencies few words are needed
about polarization which seems to be the bank of informations for variabil-
ity and their interpretations. The linear polarization of the radio sources
has been observed to vary in the rapid and complicated way (Altschuler
and Wardle, 1976). We found that the changes in radio polarization of ON
231 lLiave clear similarities to changes in intensity in the optical range. The
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Figure 9: The correlation between optical polarization and intensity of ON
325

changes of optical polarization in ON 325 (Angel et al., 1978) are extremely
well correlated with the optical light curve (Figure 9). From the comparison
with the optical light curve we can then better derive the minima of the de-
gree of polarization. As noticed by Kikuchi et al.{1988)}, two interpretations
of rapid flux and polarization in blazars, i.e. relativistic beaming and sim-
ple two component model, predict that the minimum degree of polarization
is always associated with the maximum rate of variation of the polariza-
tion angles. They have found consistency with their observations of OJ
287. In our case the position angle does not show large amplitude changes,
remaining in the range 135-175 degrees. However two fast changes appear
correlated with the polarization minima. Optical polarimetry of RS54 is ex-
tremely poor. We found only four poiuts in the V band and in the B band
(Wills et al., 1980, Sanduleak and Pesch, 1984). The four points in the V
band show tendency to increase starting from 4.6% in 1980 and reaching
8.4% in 1982. The position angle in this period is changing in the range of

124



{J{-{i:fh 1333 2ATZI9 + 305
ik al. w_rs kD il

.

Fiux Density | ! ; ;
1SS] counts 571 - it X
. Lo

-
S R WY

JL".".’M Erid] '-]\'.nu Liﬁai
i 4 T I 1 1 1
a
155 F ; §
o)
o J
— o =
L
= -160 }
) g ’
m
Q
-16.5 L
Q
_ . i
o
-17.0 B
2442000 2442500 2443000 2443500
I.D.

Figure 10: The correlation between optical and x-rays observations of R54.

48-58 degrees. No clear correlation with light curve can be found.

Long-term monitoring of AGN at X-ray wavelengths has been carried
out for onty a few objects. One of the best cases (B2 12184-305, reported
by Wilson et al., 1979) consists of a light curve which spans four years and
show some possible outbursts. In most of the other studies, the X-ray light
curves are hased on only a {ew points (e.g., 3 points for 3C 345, Bregman et
al. 1986). Comparing optical data for B2 12184305 obtained in Asiago with
the X-ray measurements by Wilson et al. {1979) one can find a correlation
between active periods for this source at these two wavebands. The X-ray
outburst took place at the beginning of 1974 while the optical one was a
hundred days later (Figure 10). Bregman et al. {1986) discussed the results
of comparing X-ray, optical-infrared and radio variability data for 3C 345.
The beginning of the radio outburst coincides with the X-ray measurements
and the increase in the X-ray flux is about the same as the increase in the
15 GHz radio flux. They did not find any apparent correlation between

125



the X-ray and optical-infrared fluxes. Unless variations occur much niore
rapidly at X-ray frequencies than at optical and infrared frequencies, the
X-ray emission is probably associated with the radio emitting region rather
than with those regions emitting in the infrared or optical.

The short-term X-ray variability usually occurs on all of the relevant
timescales. Pounds et al. (1987) have illustrated this by discussing three
generic types of X-ray variability, similar to the Rosemary Hill types (but
omitting the third). The example of the first Rosemary Hill type is the rapid
variability of NGC 4051 (Lawrence et al. 1985). The source varies with
a timescale < 1 h and with large amplitude. The variability is essentially
continuous. Some "outbursts” can be seen. The same type of behavior
is shown by MCG-6-30-15. McHardy and Czerny (1986) concluded from
their analysis of the light curve of the Seyfert galaxy NGC 5506 (obtained
by continuous 3-day observations with EXOSAT in medium X-ray energies)
that the observed variations which have amplitudes of up to 30 percent and
timescales of hours, can be explained as a random distribution of events
with random amplitudes. The example of the second Rosemary Hill type
is the variability of NGC 4151 which shows secular trends, rather than
rapid fluctuations. The fourth Rosemary Hill type is represented by the
variability of III Zw 2, where a large flare was found in the X-ray light curve:
the flux increased by a factor of 3 in about 1500 sec and then decreased
again to nearly the initial level in a {further 4000 sec. Most recently Turner
and Pounds {1988) reported distinctive short term variability in the soft
X-ray excess of the Seyfert galaxy Mkn 335. This is the first observation
of this kinu aud it strengthens the proposed identification of the soft X-ray
excess as being of thermal origin and coming from an accretion disk.

7.2 Line variations

The intensity of the broad emission lines (BEL} observed in many ac-
tive galactic nuclei is proportional to the flux of jonizing radiation (Kwan
and Krolik 1979, 1981) which is believed to come directly from the ac-
cretion disk. Therefore, variation of the intensity of BEL may be an in-
dicator of non-stationary accretion processes occurring directly inside the
disk. However, it is not possible at present to make a direct quantitative
link, as the kinematics and internal physics of the so called "broad emis-
sion line clouds”, where the emission lines originate, is still a matter of
dispute among experts. Even the very existence of such clouds is some-
times questioned and it has been suggested that the emission lines might
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instead originate at the surface of the accretion disk itself (Shields 1977),
at some high velocity stars passing nearby { Paczynski, unpublished sugges-
tion), or due to action of "duelling” winds {Mardaljevic et al. 1988). The
most convincing and well established theoretical discussion of the broad
emission line emitting region is that given in a series of articles by Collin-
Souffrin (1986) and her collaborators (e.g. Joly et al. 1985). Observations
of variability of BEL have recently been reviewed by Peterson {1988).

Alloin et al. (1986) reported variability of BEL in the Seyfert galaxy
NGC 1566. Their data covers 15 years and suggests the occurrence of four
almost periodic active events (bursts), each lasting for about 1300 days, in
which the intensity of the H, and Hp lines first increased sharply (in about
20 days) and then decreased again (in a much longer time of about 900
days). The total energy involved in each burst was 10°* ergs. The peaks in
ihe intensity of the lines coincided with increased intensity of near UV con-
tinuum. Another well-known examiple of a correlation between variability
of lines and continua was given by Peterson and Ferland (1986), who ob-
served that the optically variable Seyfert galaxy NGC 5548 experienced an
increase in optical luminosity accompanied by the appearance of a strong
and abnormally broad He II [4686 A| emission line. Krolik (1988) has dis-
cussed further examples of such correlations. However, in our opinion the
presently available data do not provide a clear, quantitative, case for there
being a universal correlation between variability of emission lines and of
the continuum.

Abramowicz and Lasota (1985, unpublished) studied the case of NGC
1566 using the (then unpublished) data of Alloin et al. (1986). Taking the
mass to be 5 x 107 M (in accordance with an earlier estimate by Alloin et
al. 1985) and the efficiency to be = 0.06 they concluded that the accretion
rate averaged over the whole cycle was about 0.3Mpg and that the amount of
matter accreted during one burst was about 1072 Af;. This suggests that the
variability was not caused by a change in the supply rate due to the capture
of a single star during each outburst (random capture of four unusually low
mass stars in an almost periodic fashion has a small probability). They
argued that the most natural explanation of the periodic outbursts of NGC
1566 is the existence of a limit cycle produced by accretion disk instabilities.
Figure 11 shows the 1982 outburst of NGC 1566.

7.9 Search for periodicities
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Figure 11: The 1982 outburst of NGC 1566

Some QSOs are believed to have periodic light variations. The first
indication of the possible existence of nearly periodical brightness varia-
tions was found, for quasar 3C 273, by Smith {1965) but was immediately
questioned by Ozernoy and Chertorpud (1966). Nearly periodic variation
in the optical luminosity of the quasar 3C 345 was suggested by Kinman
et al. (1968) and later confirmed by Smith and Wolstencroft (1970). The
existence of periodicity in the brightness variations of 3C 446 and 3C 454.3
was suggested by Lii and Hunter (1969} and later by Kinman (1970). Ju-
rkevich et al. (1971) reported a periodic component with P = 350¢ for
3C 120. Visvanathan and Elliot (1973) discovered, using Fourier analy-
sis, that the brightness of OJ 287 varies with a surprisingly short period
P =39.4 minutes. This was confirmed by Frohlich (1973} but questioned
by Kiplinger (1974). Other examples are NGC 4151 (Pacholczyk 1972), 3C
371 (Babadzanjanz and Belokon 1975), NGC 1275 (Lutyi and Pronik 1975),
BL Lac in optical (Ozernoy and Usov 1977), BL Lac in radio (Gorshkov
and Popov 1972) and OJ 278 in radio (Hagen-Thorn et al. 1977). This
long list of successes in finding periodicities may be too optimistic. The re-
cent analysis of all existing data for 3C 345 by Kidger and Beckman (1986)
shows that there is no periodicity which is free from doubt. In particu-
lar they exclude the long periods of 1000-2000 days obtained by Barbieri
et al. (1985). A recent paper by the Rosemary Hill group (Webb et al.
1988) used only the data gathered by the same instruments and reduced by
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the same procedures. It discussed three objects in detail: 3C 120, 3C 345
and 3C 446. The sinusoidal component found for 3C 120 with a period of
12.45 yr and the components for 3C 345 with periods of 11.4 and 5.6 years
did not agree with any periodic components suggested by other authors.
The conclusion of the paper was that identification of periodic components
in a finite data set does not prove the existence of "real” periods in the
source. Barbieri et al. (University of Padova preprint 1988) carried out a
similar study with the Asiago data and reached a similar conclusion. They
then discussed the Rosemary Hill data for ON231 (Webb et al. 1988) and
performed a Fourier analysis using the program of Deeming (1975). They
found the same periods as the Rosemary Hill group. However, when they
repeated the procedure with the Asiago data for the same source (which is
as extensive as the the Rosemary Hill data) none of ihe periods which they
found agreed with those found by Webb et al. As a last step they took all
of the data reported in the literature. All periods disappeared except a 27
year period - the interval between two almost identical outbursts found for
this source a long time ago (Pollock et al. 1974).

The nature of the optical observations is not very convenient for mak-
ing periodicity searches: there are unequal intervals of time between obser-
vations and annual gaps in the data, together with the normal observational
uncertainties and the relatively short baseline of the data set. For a recent
discussion of this point, see Krolik (1983).

The same difficulties may explain the conflict between the results ob-
tained by the EXOSAT and Einstein Observatory X-ray satelites. Zamorani
et. al {1984), using the Finstein Observatory data, concluded that for
roughly half of their sample of bright quasars they should have heen able
to detect variations of the order of 30 per cent in amplitude and with
timescales shorter than 10* seconds but, in fact, did not see any such varia-
tions. A similar conclusion, that short-term variability in optically selected
Seyfert galaxies is rare, has been reached by Urry et al. (1987), who also
used the Finstein Observatory data. On longer timescales (months, years)
Urry et al. found that variability is more common. However, recent EX-
OSAT results have called these conclusions into question. These results do
not indicate long-term variability and suggest that short term-variability is
common at X-ray frequencies (Pounds 1985, Warwick 1986).

The best example of the short-term X-ray variability is provided by

NGC 5506 which was observed continuously for 3 days by EXOSAT (Cz-
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Figure 12: The X-ray light curve for NGC 5506 and its power spectrum

erny and McHardy 1987). The light curve (Figure 12) shows variability
on all timescales. The power spectrum has a slope of -1 in the frequency
range 1078 — 1073® Hz, similar to that found for the galactic X-ray source
Cyg X-1, which is believed to be a 10Mg accreting black hole (McClin-
tock 1986, Tlovaisky 1987). Czerny and McHardy did not find any obvious
strong feature in the power spectrumn and concluded that there are no pre-
ferred timescales - variability occurs in a perfectly scale-invariant manner.
They reached the same conclusion using fractal analysis, showing that the
X-ray variability of NGC 5506 is well described by a fractal dimension 0.6
over at least 2.5 decades of frequency so that the variability is self-similar.
The comparison with the fractal dimension of Brownian motion (0.5} sug-
gested to them that random processes might be responsible for the irregular
shape of the X-ray light curves. They also investigated the variation of the
medium energy spectrum as a function of intensity and found no evidence
for any changes.

The different results obtained using Finstein Observatory and EX-
OSAT may reflect inherent differences between the sources observed , as
the selection criteria were different: The EXOSAT survey used well-studied,
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X-ray bright, historically variable X-ray sources, while the Finstein Obser-
vatory survey was based on complete, optically selected samples. However,
the differences may be of a purely technical nature connected with the fact
that EXOSAT was capable of niuch longer observing times (for each ob-
servation) than the Einstein Observatory but had a shorter total life time.
This stresses the importance of good selection criteria and [requent sam-
pling in future space missions which plan to study variability of AGN (see
e.g. Broadfoot, Duran and Stalio 1988 in the case of the Santa Maria
satelite).

7.4 The shortest observed timescales

Short term variations in luminosity provide the best upper limits for
the size of AGN active regions. The causality argument implies that a
timescale of variation cannot be shorter than ¢, = 107?m days. Assuming
also that the luminosity L cannot be greater than the Eddington value,
Elliot and Shapiro (1974) derived from these two counstraints the simple
condition logAl,;, > logl — 43.1 where the observed minimum variation
timescale At,;, is measured in seconds and the observed luminosity L is
in ergs per second. According to the Elliot-Shapiro condition, all observa-
tional points should be above the corresponding diagonal line in Figure 13a
(adopted from Bassani et al. 1983). However, even for sources which are
not affected by relativistic beaming {discussed in Section 1.2), one should
take into account the super-Eddington luminosities of radiation pressure
supported tori {Abramowicz and Nohili 1982). The corresponding line in
the Figure assumes that the limiting luminesity is 100Lg, in agreement
with Sikora (1981) who calculated (using a precise numerical code} the ra-
diation field of several thick accretion disk models. We have added a radial
scale to this Figure which shows the muinimum possible radii consistent
with the observational data and with the Ellict-Shapiro condition. This
scale is diagonal in a direction orthogonal to the line representing the E-S
condition and is marked by numbers giving the radii in terms of rg. Barr
(1986) constructed a similar diagram for the X-ray data which is shown in
Figure 13b. The scatter of the observational points is smaller for the X-ray
data, which suggests that the X-ray emitting regions are responsible for
the shortest variability timescales. The two lines marked by E-S and A-N
(which have the same meaning as in the previous Figure)} have been added
by us.
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8. Variability of AGIN. Accretion disk in-
stabilities

We now turn to the theoretical side of the problem. Most of the
computed stationary accretion disk miodels assume axial symmetry. To
check whether these models can describe real physical flows one must dis-
cuss their stability with respect to small non-stationary and non-axially
symunetric perturbations. Discussion of the stability and pulsation proper-
ties also gives information on non-stationary behavior which is crucial in
understanding the variability data.

In a linear perturbation analysis, one expresses the perturbations of
the five independent physical quantities @; =(density, pressure, and the
three components of velocity) in a form which reflects the time and ax-
ial symmetries of the unperturbed flow: §Q; = Qi(r,z)expli(wi + mp)).
Here Q;(r, z} is a real function which determines the amplitude of the per-
turbation, w is in general a complex number and denotes the {requency,
while m is an integer which denotes the azimuthal wavenumber. A per-
turbation is stable if and only if its frequency has non-negative imaginary
part: Ifm{w)} > 0. When m = 0 the perturbation is axially symmetric.
The behavior of perturbations is given by the linearized version of the non-
stationary, non-axially symmetric Navier-Stokes equations, which describe
the hydrodynamics of dissipative flows in termis of mass, momentum and
energy conservation (see e.g. Tassoul 1974). Together with suitable bound-
ary conditions, the linearized equations provide, for fixed wavenumber m,
an eigenvalue problem for the modes of pulsation. The n-th mode is de-
scribed by eigenfrequency w, and eigenfunction Qin(r, z). Knowledge of all
of the modes gives a global, complete picture of the pulsation properties
and stability in the linear regime (i.e. for infinitesimally small amplitudes).
However, it is very difficult, in general, to compute these global modes of
pulsation for accretion flows. The main difficulty is usually connected with
the boundary conditions. To get some approximate information on stability
one often uses a local stability analysis where the influence of the boundary
conditions is neglected and the perturbations are described by local plane
waves, which means that the amplitude Q;(r, z) = Q; exp[i(k, + k:)]. Now
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the Q; are five a priori unknown constants and (k,, k.) = i is the wave
vector whose length will be denoted by k. Linearization of the Navier-
Stokes equations produces an equation of the form A,-j@j =0,{1=1,..5)
which has a non trivial solution for Q; if and only if the determinant of
the matrix A;; vanishes. This produces a fifth order dispersion relation for
w. Let H, and H. denote the scaleheights in the r and = directions. For
thin accretion disks one has H. < H,, while for the thick accretion disks
H. ~ H. ~ H. In the case of peturbed thin disks, one considers pertur-
bations with wavelength A = 1/k much shorter than the radial scaleheight,
but longer than the vertical scaleheight H. < A <« H,.. For thick disks, on
the other hand, one demands that A <« H. Different physical situations
may suggest different ordering of these or other terms.

Abramowicz, Livio, Piran and Wiita (1986) proposed a method for
studying the linear, local stability of general hydrodynamical flows, which
guarantees that all physical possibilities (corresponding to different relative
magnitudes of terms in the dispersion relation) are accounted for. They
then used this to give a complete picture of stability of non-dissipative
flows. In a follow-up paper by Abramowicz, Livio. Soker and Szuszkiewicz
(to be published), the same was done for accretion flows with viscosity and
thermal heat diffusion. We shall now describe some of the results found in
these two papers.

The basic assumption of the local analysis provides us with a natural
small parameter ¢ = A/ H, < 1. It is then helpful to introduce the "mag-
nitude parameters” (k,m,7,[,§) which denote the powers of ¢ to which
terms in the dispersion relation are proportional. In particular, the terms
H./H. = k./k, = v./v, have magnitude f-‘c, the term w/! has magnitude m,
the term v, /v, has magnitude 7, the viscosity parameter a has magnitude
[, and the terms connected with heat diffusion (and therefore containing
the coefficient of radiative diffusivity, x,.¢) have magnitude §. The param-
eters m,n, and ¢ vary from —2c to +20 and the parameters ]:,f vary {rom
0 to +oc (assuming o« < 1). The problem is then to find all of the regions
of the five dimensional parameter space (k,m,7, {, ), corresponding to dif-
ferent dispersion relations in which only the lowest order terms in € have
been kept, write down these relations and then check whether they admit
unstable modes.

8.1 Local stability analysis for thick accretion disks (k = 0) with respect
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to azisymmetric perturbations (m = 0)

We start with the non-dissipative case {{ = § = 00). Here, the param-
eter space is two dimensional (m,7} but in addition there is a "diagonal
fold symmetry” with respect to the line 7 = ¥+ 1 and this makes the prob-
lem effectively one dimensional. The diagonal symmetry line corresponds to
perturbations propagating with velocity equal to the unperturbed accretion
velocity. Three types of modes are present:

neutral stable mode, w™ =0
stable acoustic mode, w™ = +vgk

Hoiland mode, w* = £0p

where w* = w + k - ¥ and the characteristic frequency 1x is defined by

Ok, k) = -p-l(‘;—i);lk-ﬁ(i? % §)- (k% VS)+ ko 2k 2(k % VI?)-& (1)
with g being the effective gravity, € the unit vector in the azimuthal direc-
tion, S the specific entropy and { = Qr? the specific angular momentum.
The Hoiland mode is stable when the quadratic form Q%(k,, k.) is positive
cdefinte, which is equivalent to the well known Hoiland stability criterion.
Tlis requires that on the surfaces of constant entropy the specific angu-
lar momentum should increase with increasing distauce from the axis of
rotation:

[? o7
UG~ (5p)s(Vp- VS) > 0
dp. BI2 985 o a8
—("5;)[(5)(5 — 3)(5)]>0

When [ = 0 this reduces to the Schwarzschild stahility criterion, and when

5 = const it reduces to the Solberg criterion, which generalizes the Rayleigh
criterion to the case of comipressible fluids. All of these criteria are inde-
pendent of the wave vector k. This is important, because it implies that
stability is a property of the unperturbed flow and not of the perturbation
itself.

When dissipation is present, the situation is remarkably different.
The parameter space (m,n,l,q) is four dimensional, (although the diag-
onal fold symmetry again effectively removes one dimension, so that the
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problem has only three independent physical degrees of {reedom). How-
ever, the characteristic {frequencies for dissipative fluids consist not only of
the Hoiland, Schwarzschild and Solberg ones {which are the same as for
the non-dissipative case) and a few frequencies which correspond to uncon-
ditionally stable viscous and thermal perturbations, but also include some
frequencies of the general type:

O (ke k) = flp, TIEH(VQ)? - 2(k - VQ)? (2)

It is obvious that now the quadratic form 0}, is indeterminate, which
tmplies that there is no general stability criterton independent of the wave
vector. Formally a local, linear analysis always indicates the existence
of unstable modes. This does not mean that thick accretion disks are
viscously or thermally unstable, but only points to the need for nonlinear,
global methods. Because an analytic approach may be possible only in
rather simple idealized situations (e.g. isothermal flows) future progress
in understanding the stability and pulsation properties of dissipative thick
accretion disks depends on developments in numerical hydrodynamics: a
two dimensional, time dependent, dissipative, relativistic hydrodynamical
code is needed which is able to handle shocks. (See Abramowicz, Henderson
and Ghosh 1983 for a quasi-stationary approach to the problem.)

Analytic work by Blandford, Jaroszynski and Kwmar (1985) suggests
that some of the axially symmelric, viscous instabilities of thick accretion
disks will lead to redistribution of entropy in such a way that the resulting
configuration is either barotropic (surfaces of constant pressure and density
coincide) . gyrotropic (surfaces of constant entropy and specific angular
momentum coincide). The gyrotropic configurations have been introduced
on general grounds by Bardeen (1973) and Abramowicz (1974) and then
studied in the context of thick accretion disks by Paczynski and Abramow-
icz (1982) and Rézyczka and Czerny (1982). They are characterized by
strong energy transport which is convective rather than radiative.

8.2 Local stability analysis of thin and slim accretion dishs (Z = oc)

with respect to azially symmetric perturbation (m = 0)

The stability of thin accretion disks is a classical subject, discussed in
many text books and review articles. The short summary below describes
the subject in a way (see Abramowicz, Lasota and Xu 1986, Abramowicz
1987} rarely used by other authors. It relates the stability of the thin (and
slim) accretion disks to the slope of the MF(Z‘) curve, and starts with an
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argument which, although not quite formal, gives a quick insight into the
nalure of the problem (c.f. Bath and Pringle 1982). Consider a sequence
of equilibrium thin aceretion disk models with fixed radius, mass of the
central object and microphysical properties (equation of state, opacity, «
viscosity). Such a sequence depends on only one parameter, M (accretion
rate): all of the physical properties of the disk, including the surface density
T, are fu~~t~ns of M only. Figure 8a shows the A (Z) curve for a par-
ticular equilibrium sequence. The points X and Y (open circles} which lie
above the equilibrium sequence represent perturbations of the equilibrium
models indicated by the black dots. Thus, in both cases, the perturbed
models have accretion rates which are too high, M (perturbed)> M (equi-
librium). They are oversupplied with matter and so their surface densities
must increase shifting them to the right in the diagram as indicated by the
arrows. This brings model X, (which is connected with a positive slope
of the ﬂ}I(E) curve) back towards equilibrium, indicating that it is stable.
However, model Y goes further away from the equilibrium curve and so
is unstable. Thus, models on the positive slopes of the M(Z) curve are
stable, while those on negative slopes are unstable. It is convenient to in-
troduce (Piran 1978) the phenomenological parameters X, £, M, A which



describe dissipative processes:

_0lnQ™ _ MNnQ~
K={Gnple  L={Ggh
alnQ* AlnQ*
M=(Gprls N ={Gegh (3)

Here QF and @~ are the total heating and cooling rates respectively. It is
assumed in most of the literature that Q% is due to viscous processes only.
(hakrabarti et al. (1987) have discussed how the thermonuclear heating
might affect the stability of accretion disks.

Quite generally, one can prove {Abramowicz, Lasota and Xu 1986)
that the slope of the M (Z) curve is related to Piran’s coefficients by
dlogh 1 K~M
dlog M~ 2KN — ML

(4)

The general criteria for thermal and viscous stability found by Piran (1978)
are also related to these coefficients:

p KN — ML .

K—-—M>0 W >0 (5)
Thus, the stability of the models is connected with the slope of the M(D)
curve and the turning points of this curve correspond to changes in sta-
bility. One can show that the existence of the turning points is always
connected with strong non-linearities in the physical functions which (im-
plicitly) describe Piran’s coefficients (Abramowicz, Lasota and Xu 1936).
This typically happens when a small change in some parameters of the
flow causes a change in the physical mechanism of cooling or heating. For
example, the very strong dependence of opacity on temperature close to
hydrogen ionization (T = 10*K’) causes the ﬂ:[(E) curves (at all relevant
radii) to bend twice, forming characteristic S-curves, similar to those shown
in Figure 8b ( taken {rom Abramowicz, Czerny, Lasota and Szuszkiewicz
1988).

Bath and Pringle (1982) were the first to notice the similarity be-
tween this situation and the one familiar in non-linear dynamics, where
an S-shaped phase portrait of a system indicates a possibility of a Hmit
cycle behavior. If the accretion rate fixed by some external conditions
lies in the unstable range (the middle branch of the S-curve with nega-
tive slope), then stationary accretion is impessible. Consider point A in
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Figure 8a. The accretion rate there is smaller than the supply rate caus-
ing local oversupply and an increase of surface density. The disk (at this
fixed radius) therefore evolves in the direction indicated by the arrow up
to point B from which further evolution is only possible after a jump to
C. Here, however, the accretion rate is higher than the supply rate. The
surface density now decreases and the disk evolves down to point D where
another jump (to A) must take place, closing the cycle. Recently many
authors (e.g. Meyer and Meyer-Hofmeister 1981, Papaloizou, Faulkner and
Lin 1983, Smak 1984) have studied how this [ocal behavior can translate
into a global disk response, in connection with theoretical modelling of
dwarf nova outbursts. (A review of both observations and theory has heen
given in an excellent, short article by Smak 1984). These studies today
consiitute the best check of accretion disk theory, which agrees quite well
quantitatively with observations of dwarf novae whereas, for AGN, the
agreement is mostly qualitafive. Several authors have proposed that the
dwarf nova mechanism might be relevant for AGN variability (e.g. Lin and
Shields 1986), but Clarke in her unpublished 1986 Oxford Ph.D. thesis has
shown that modulation of the accretion rate due to operation of this mecha-
nism in outer parts of accretion disks, relevant for AGN, will be completely
smeared out by the slow viscous response of the material located closer to
the hole and no luminosity variation will result. This is because the ratio
4 /1, is typically three orders of magnitude smaller for AGN than for dwarf
novae.

In the case of the standard disk model {opacity due to electron scat-
tering, viscouiwy given by the Shakura-Sunyaev «) Piran’s coefficients are
given in terms of 3, (the ratio of the gas pressure to total pressure) by
K=41+75)/(4-33), L =—-3/(4-33), M =2, N =1. Together
with the criteria (6), this implies that there will be thermal and viscous
instabilities when [ < 2/5,(i.e. for the radiation pressure supported stan-
dard thin accretion disks). In the limit A/h 3 1, the growth time of the
unstable thermal modes is independent of wavelength: v = (¢;/30)(56 —
573 — 33%)/(2/5 — 3). This type of instability was discovered and stud-
ied by Pringle, Rees and Pacholczyk (1973), and Shakura and Sunyaev
(1976). In the same limit, the growth time for the unstable viscous mode
is: 7= t,{A/r)*(3/10){2—-33)/(2/p—3). This type of instability was found
by Lightman and Eardley (1974) and Lightman (1974).

Abramowicz and Lasota suggested in 1985 in connection with the
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cyclic outbursts in NGC 1566 observed by Alloin et al., that these @ < 2/5
instabilities, together with the advective heat loss induced by Roche lobe
overflow, would cause the ]\I(E) curve to bend twice, for all small radii
and for accretion rates typical of slim disks. They suggested also that the
resulting S-shaped relation between M and T would cause quasi-periodic
luminosity changes, as in the case of dwarf novae, but with a period of
a few years. The first suggestion was formally demonstrated to be irue
by Abramowicz, Czerny, Lasota and Szuszkiewicz (1988). In Figure 8b
we show the S-shaped A (¥) curves calculated numerically in this work
(which used a physically realistic slim disk approach). It is still unknown
whether the nonlinear, non-stationary response of a disk with an accretion
rate corresponding to the unstable regime (middle branch) will be quasi-
periodic. Preliminary unpublished results of Lasota and Pellat indicate
that this is indeed the case.

Unfortunately, many of the results presented in this section depend on
the viscosity prescription. For example, if viscous stress is proportional not
to the total pressure (as assumed in the standard Shakura- Sunyaev model)
but to the gas pressure, the 8 < 2/5 intability disappears. The shape of
the S-curves also depends on the viscosity prescription, as many authors
Lave noticed (see e.g. Meyer and Meyer- Hofmeister 1983). Abramowicz,
Czerny, Lasota and Szuszkiewicz (1988) gave, perhaps, the most dramatic
example of this by considering the viscosity law a = g exp(—kﬂ:f/ﬂ;fg)
with & = const. The Shakura-Sunyaev model (k = 0) and its modifications
(k = 0.1, 1) are shown in Figure 9. Such a law is not purely phenomeno-
logical, buv way be caused, for example, by the Papaloizou and Pringle
instability, which is strong for small accretion rates (thus producing strong
turbulence and viscosity) but switches off at high rates. This instability
will be discussed later (in Section 3.4).

8.3 Linear and non-linear stability anelysis of the transonic part of thin

accretion disks

The most important physical effects in the transonic part of accretion
disks are the existence of forbidden regions in the parameter space {con-
nected with the regularity condition af the critical points), the change of
angular momentum distribution from almost Keplerian to almost constant,
and the advective cooling connected with Roche lobe overflow.
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Figure 2: The influence of viscosity on the S-curves

Abramowicz and Zurek (1981) found that in the case of dissipation-
free black hole accretion, the forbidden regions separate two physically dif-
ferent regimes. The first one, Bondi accretion, contains solutions in which
the sonic point is far away from the hole. These solutions resemble spher-
ical accretion of non-rotating matter. The second regime, disk accretion,
contains solutions with the sonic point close to the hole. This type of flow
is similar to that in the innermost parts of thick accretion disks and has
no Newtonian analogy. In both the Bondi and disk regimes, the topology
of the critical point is of the saddle type. Another acceptable topology
for the critical point would be the nodal type; spiral or center topologies
are excluded - see Ferrari, Trussoni, Rosner and Tsinganos (1985) for an
excellent discussion of this point.

Abramowicz and Zurek suggested that when an astrophysical situa-
tion locates a flow in the forbidden region, the non-stationary response of
the flow will be bistable, oscillating between the Bondi and disk regimes.
If true, this suggestion would have an impact on our understanding of the
fact that many active galactic nuclei (and their scaled down versions in our
Galaxy) indeed show bistable behavior, oscillating between high and low
states. Although the suggestion was later supported by other analytic ar-
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guments (Abramowicz, Livio and Lu, 1986), numerical methods would be
needed in order to give any really firm conclusion. The problem is difficult,
because it involves shock formation. Although the existing numerical codes
can cope with this, all of the altempts to model bistability have failed he-
cause of physical misunderstandings concerning boundary and shock con-
ditions. For example, Hawley (1986) constructed various non-stationary
numerical models of transonic flows with shocks, none of which showed the
bistability. However, his models covered only a very limited region of the
parameter space and they always started from supersonic flow at the outer
boundary, while the correct boundary conditions are only consistent with
asymptotically subsonic flows.

Muchotrzeb (1983) continued studies of dissipative, transonic acere-
tion flows started by Paczynski and Bisnovatyi-Kogan (1981) and herself
and Paczynski (1982). She worked in a particular sub-set of the param-
eter space consistent with the assumption that far away from the central
accreting black hole the flow is identical with that given by the Shakura-
Sunyaev solution (Keplerian boundary conditions) and she found a part of
the boundary of the region where globally acceptable transonic solutions
of the saddle type exist. She interpreted the existence of such a boundary
as an upper limit . =~ 1072 for the Shakura-Sunyaev viscosity parameter
and suggested that when o > o. no stationary solution is possible. Mat-
sumoto, Kato, Fukue and Okazaki (1984) cleared up this point by showing
that unstable nodal type transonic solutions exist beyond the boundary
found by Muchotrzeb. In a recent work by Abramowicz and Kato (1988,
preprini) au cxplicit example was given to show that instability is net in
general connected with nodal topology of the critical point when different
viscosity prescriptions are considered. In the same paper, it was shown that
stable solutions, in the sense of criterion (7}, may be found for any value of
c if high accretion rates (which were not considered by previous authors)
are allowed in addition to low ones. The fact that the situations at low and
high accretion rates are quite different is clearly illustrated in Figure 10
(taken from Abramowicz, Czerny, Lasota and Szuszkiewicz 1988) in which
the location of the sonic point is shown for different accretion rates. For
small accretion rates any increase in the rate causes the sonic point to move
either towards the hole or away {rom it depending on the value of «, and
there is clearly a critical value of o separating the two regimes. However,
for high accretion rates there is no obvious reason to define any "critical
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Figure 3: The sonic point position as a function of accretion rate for dif-
ferent o
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An instability specific to the transonic part of the accretion flow was
first suggested by Muchotrzeb-Czerny (1986) and then studied analytically
by Kato, Honma and Matsumoto {1988) and numerically by Matsumoto,
Kato and Honma (1988, preprint). They found local instabilities for an
1sothermal disk when

dv

afl(r.) > o

(6)

[+

Here the subscript ¢ refers to the critical point. The instability arises when
oscillations of the azimuthal component of the viscous force are in phase
with the variations of azimuthal velocity, so that the viscous force does
positive work on the oscillations. The local oscillations (either stable or
unstable) may develop into global trapped ones in the transonic region due
to the fact that the epicyclic frequency x* = (20/7)(dl/dr) has a maximum
close to the transonic region. This is because, as we have already stressed,
'~ const for r < r., while @ = (GM/r*)}/? for r > r.. Thus, for both
7 < 1. and 7 > v, one has x ~ 0. A positive continuous function which
equals zero at both ends of a region musi have a maxiimum somewhere in
this region. Okazaki, Kato and Fukue (1987) considered a perturbation of
an isothermal accretion disk with n nodes in the vertical direction. They
found that the radial wave vector component k can be written as k? =
(w? = x*)w? —nO?)/w?e? . Because k? > 0 for radially propagating modes,
the above expression shows that local waves with n = 0 can propagate
in regions where w > y. Knowing that € > y and denoting by xmax
the maximum of the epicyclic frequency and by r; and 7, the smaller and
larger roots of the equation w = v, one concludes that waves with n =£ () can
propagate in the region between r; and 7, when w < Ynee. This suggests
that there will be global oscillation modes trapped in the region between
71 and ry. The pulsation periods for these modes cover some range close to
about one day for disks around a 10%4; black hole.

There is also a non-propagating mode located exactly at the sonic
point. When criterion (7) predicts instability, this mode also becomes un-
stable. However, in the non-linear regime, the amplitude of the unstable
mode saturates as shown in Figure 11, taken from a poster presentation
by Kato and Matsumoto at the 20 Yamada Conference. After initial ex-
ponential growth in the linear regime, the mode saturates and its further
evolution is determined by non-linear interaction with another mode, which
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is trapped in the region of the epicyclic frequency maximum.

In the above mentioned work it was assumed that no shocks are
present. One might think that the presence of shocks would permit sta-
tionary solutions to exist in at least some parts of the forbidden regions.
This is not true, however. Abramowicz and Chakrabarti (1988, preprint)
have recently found all of the possible solutions corresponding to rotating,
stationary, axially symmetric, polytropic, dissipation-free accretion flows
which could have shocks with efficient cooling. Solutions with or without
shocks have exactly the same forbidden regions. The same conclusion holds
for all types of shock and for all accretion flows with small dissipation. The
very important conclusion from this work is that in all astrophysical situa-
tions in which the flow properties are fixed far away from the black hole by
some outside conditions, the accretion process cannot be stationary if the
dissipation is small.

8.4 Global, non arially symmetric, linear and non-linear stability
analysts for thick disks with no dissipation

Papaloizou and Pringle (1984) demonstrated that non self-gravitating
fluid rings or tori in which all of the fluid flowlines are perfect circles around
a spherically symmetric center of gravitation are unstable with respect to
global, linear, adiabatic, non-axially symmetric perturbations. When the
ratio of the ring cross-sectional radius ry to its orbital radius Ry is not
large, this instability grows on the dynamical timescale appropriate for
the ring’s physical center (pressure maximum). The original Papaloizou
and Pring!s srguments are complicated and are not easy to follow. We
shall describe them here using results of Blaes {1985) who found a simple
and elegant analytic solution for the normal modes of pulsation in the
case of a slender ring (ro/Ho = [ <« 1) with constant specific angular
momentum. The solution is based on the fact that in the limit 3 = 0 there
is an additational symmetry in the problem: all of the geometrical and
physical properties of the slender ring depend only on distance from the
circle of pressure maximum r = 7o, z = 0. This distance is denoted by 7
and normalized so that 7 = 1 corresponds to the surface of the ring. The
angular coordinate # is orthogonal to the n coordinate. For a polytropic
ring the isobaric surfaces are perfect circles, p(r, z) = p(ro, 0)(1—=%2)"*!, and
there is no shear since the angular velocity is constant, Q(r, z) = Q(r,0) +
O(8%). The unperturbed slender ring structure does not depend on the
time ¢, the azimuthal coordinate ¢, or the angular coordinate #. The normal
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mode solution to the perturbation equation (with the appropriate houndary
conditions at 7 = 0 and i = 1) can be thus written as Q;(n)exp(iw - imp +
1k#), where the integer & gives the number of nodes in the 4 direction.
Blaes (1985) found that the amplitude of the perturbation Q;(n) can he
expressed in terms of Jacobi polynomials. The frequency of a special mode
which corotates with the flow (i.e. which has pattern speed Im(w)}/m equal
to the rotation speed of unperturbed flow ) and which has no nodes in
either the 6 or % direction, is given by

-7

w = —fom & i3Q%m(3/2(n + 1) + O(5) (7)

where {1y = Q(rg,0). This corotating mode is obviously unstable, as the
solution with the minus sign has Im{w) < 0. All other (non-corotaiing)
moces remain stable for small 3. The growth time of the unstable mode is of
the order of the dynamical time v = 1/ |[Im(w)| = (1/Q%)(1/mA3). For any
nonzero [ one can find m large enough to make v < {1/}, i.e. to give dy-
namical growth of the unstable mode. This is precisely the principal mode
connected with the Papaloizou and Pringle (PP) instability. A physical ex-
planation for it (suggested by Goldreich, Goodman and Narayan 1986, and
independently by Blaes and Glatzel, 1986) points out that the surface grav-
ity waves at the inner and outer edges of the ring couple across corotation
and, since they have energy and angular momentum with opposite signs,
the waves grow by exchanging these conserved quantities. Abramowicz,
Blaes and Ghosh (1987) constructed an example of a pulsating cylinder
which admits no surface gravity waves, but is nevertheless PP unstable.
The PP iz-*-hility in this case is similar to the classical Kelvin-Hembholtz
instability of a shear layer (see e.g. Chandrasekhar 1961). Goldreich and
Narayan (1985) gave another useful interpretation of the PP instability us-
ing the WKB approximation. A wave incident on the corotation region
from the inner parts will be partially reflected and partially transmited,
The incident and reflected waves have negative angular momenta (relative
to the equilibrium flow) since their pattern speeds are lower than £ bhut
the transmited wave has positive angular momentum. Because of angular
momentum conservation, the outward angular momentum transfer to the
transmitted wave causes a reduction in the angular momentum of the re-
flected wave, which is therefore amplified. A reflecting boundary on either
side of corotation is needed to provide a feedback so that the amplitude of
the wave grows. This picture stresses the roles of the corotation amplifier
and reflecting boundary conditions, and is thus similar to the spiral density
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wave theory (Mark 1976). It has, however, only a Hmited validity because
in real situations perturbations cannot always be treated as waves. {For
more details see Drury 1985, Blaes unpublished 1986 SISSA Ph.D. thesis,
and Kato 1988, preprint.)

The principal mode stabilizes (for slender tori) when the angular mo-
mentum profile is steep enough. Assuming [ = lor*~7, stabilization occurs,
as Goldreich, Goodman and Narayan (1986) have shown, for ¢ > /3. As
the torus become thicker, the surface interaction modes progressively sta-
bilize, with the low m moces remaining unstable longest, but in addition
to these modes there are also (slower) unstable acoustic modes (Glatzel
1987). Very recently Sekiya and Miyama from Kyoto found that for flows
with finite radial thickness, the principal unstable mode (due to edge waves)
actually does not stabilize for ¢ > V3, but instead extends all the way down
to Keplerian flows, albeit with smaller growth rates (Blaes, private com-
munication}.

Although there are important topological differences between non-
accreting slender rings and thick accretion tori (as stressed by Abramowicz,
Blaes and Lu 1986) the general opinion was, until recently, that the insta-
bility of rings implies instability of thick disks. This opinion has changed
because of several important recent developments in studies of the PP insta-
bility. First of all Blaes {1987) has demonstrated {for two dimensional mod-
els of tori around black holes), that even a small amount of accretion may
stabilize the PP modes, essentially because the perturbations are advected
inside the sound horizon by the transonic accretion flow before they have a
chance to grow. In the context of spherical, isentropic black hole accretion,
the stabilizing effect of the sound horizon was known a long time ago {Mon-
crief 1980). Goodman and Narayan (1988) found that moderate self-gravity
also eliminates the PP instability in two dimensional cylinders and slender
tori. In a very interesting recent paper, Boss (1988) has discussed the non-
linear evolution of PP modes with low m in three dimensional tori with
B3 > 1 and found that such tori are PP stable. Although this result was
not totally unexpected, as it agrees with an extrapolation of earlier results
obtained by Frank and Robertson {1937), Kojima (1986) and Zurek and
Benz (1986), some of the technical {(numerical) details of Boss’s paper are
not clear enough to justify the definite conclusion that very fat tori are PP
stable. (Of course, only such very fat iori are astrophysically relevant). In
our opinion the final proof of this point should be based on analytic rather
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than numerical methods. It is, perhaps, worth noticing that infinitely {at,
constant angular momentum tori are spherically symmetric, except for a
singularity on the rotation axis. This asymptotic symmetry may help for
separating the variables in the pulsation equation, in a similar way as the
asymptotic symmetry helped in the case of the infinitely slender torus.
Numerical methods are not suficiently advanced for studying another as-
trophysically important problem - the nonlinear response of the torus to
instability and to the development of turbulence. Preliminary results have
been obtained (for very simple configurations and evolutions covering just a
few dynamical timescales) by Zurek and Benz (1986), Hawley (1987), Blaes
and Hawley (1988), and Boss (1988). A semi-analytic approach by Clatzel
(unpublished) shows that viscosity triggered by turbulence may seriously
weaken the PP instability. The simple analytic method of Hanawa (1988,
Max-Planck- Institut preprint}, who investigated PP instabilties of Keple-
rian disks taking into account quadratic terms in the perturbation, shows
(not surprisingly) that interaction of some modes enchances the instability.
Radically new approaches, both analytic and numerical, are needed in order
to treat the problem of turbulence and convection in connection with the
PP instability. (See e.g. Rieutord 19883, preprint, submitted to Journal of
Fluid Mechanics). The stability of thick, ion-pressure supported tori needs
to be examined with methods different from the purely hydrodynamical
ones relevant for studying the PP instability of tori suppoerted by radiation
pressure (or icdeal gas pressure). For ion tori, electrons and ions are de-
coupled (they have different temperatures, T; > T,), and therefore plasma
effects er= i rortant. Begelman and Chiueh (1988, preprint) discovered a
plasma instability which may lead to thermal coupling between ions and
electrons with the growth being on a timescale shorter than the Coulomb
coupling time. The unstable modes are "electron-acoustic” waves, which
propagate in a direction orthogonal to the magnetic field lines. It could be
that there is a relation between this (or similar) plasma instabilities and
the PP instability. Antonuccio (unpublished) noticed a few years ago that
in PP unstable tori the fluid flowlines close on themselves. Flowlines which
close on themselves induce phase coherence for perturbations, and this is
a factor which is relevant for instabilities of toroidal plasma configurations
in tokamaks. It is known that these instabilities may be cured by forcing
the flowlines to be open. This may be done by introducing an additional
rotation, in direction orthogonal to the general circular flow, and with the
additional angular velocity being an irrational multiple of the angular ve-
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locity of the circular flow. Antonuccio argues that the flowlines in radiation
pressure supported tori may be made open by, for example, meridional cir-
culation or by the influence of magnetic fields, and that this could be very
important for stability,

Sophisticated mathematics and advanced numerical methods are not
the only important techniques for understanding the PP instability. The
most crucial information may, ironically, be provided by very classical as-
tronomical observations: accurate spectrophotometry and photometry of
the galactic object $5433, systematically collected over many years by a
few independently working groups {Auntokhina and Cherepashchuk 1985,
Kemp et al. 1986, Wagner 1986), suggest very strongly that this object
consists of a 10Mg black hole with an associated thick accretion disk. This
suggestion arises from the use of standard techniques which astronomers
have been using for years for eclipsing binaries to determine from spectral
and luminosity changes during eclipses, the masses, shapes and luminosi-
ties of the components of the system. Ii is not, therefore, model dependent.
Abramowicz, Calvani and Madau (1987) have argued that this conclusion
agrees with all other observational data on $5433, which was previously
interpreted only in a model dependent way by theoreticians, who had a par-
ticular model in mind. (See also Zwitter and Calvani 1988, SISSA preprint).
Thus, it seems that there is an observational proof that astrophysically rel-
evant thick accretion tori are PP stable.

8.5 Some other intrinsic accretion disk instabilities {connected with

self-gravity)

Abramowicz, Calvani and Nobili {1983) noticed that, since the mass
and angular momentum of the central black hole increase as a result of
accretion, the location of the Roche lobe must change and this changes the
amount of the Roche lobe overflow. In the case of an increase there will
be a runaway instability, as growth of the hole increases the overflow and
the overflow will speed up the growth of the hole. This happens when the
ratio of the mass of the torus to the mass of the hole is greater than ~ 0.01.
Wilson (1984) rediscussed the problem and found no such runaway insta-
bility. However, neither Abramowicz et al. nor Wilson have taken proper
account of the self-gravity of the torus which is crucial to the problem,
but is difficult to calculate. Lanza (unpublished 1986 SISSA PL.D. the-
sis) and Brandt and Lanza (1988) report preliminary results in developing
a general relativistic hydrodynamical code which will be able to compute
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self-gravitating tori around rotating black holes. If the runaway instability
exists, it may cause a typical AGN to go through a sequence of long qui-
escent states interrupted by accretion bursts. Timescales depend strongly
on the dimensions of the torus and of the accretion rate but for some rea-
sonable choices may be astrophysically relevant. Self-gravity also plays an
important role in the model suggested by Paczynski (1978) in which the
disk cools and increases its density until, when p =2 M/r?, local instabili-
ties develop whicl are similar to the Jeans instability. If the optical depth
is large enough so that the cooling time is much longer than the orbital
one, the instabilities will increase the velocity dispersion in the gas, and
this will produce turbulence, thereby enchancing viscous stresses, which in
turn produce heat. This heating will cause expansion and a decrease in
the disk density. The disk will either oscillate between a hot expanded
state in which self-gravity is not important and a cool, collapsed state in
which it is dominant, or it will settle down at the marginally stable state
(as indeed Paczynski assumed) in which the cooling and heating rates are
exactly equal. Oscillations may occur on the local thermal scale ,. Alter-
natively, for small optical depth, condensations would lorm and this might
trigger star formation. In this picture, elaborated by Bailey (1982), the
lifetimes of AGN consist of long, quiet periods interrupted by short active
ones, with timescales being difficult to estimate {see Abramowicz 1982 for
a short discussion of this paper).

The paper by Goodman and Narayan (1988), which we have already
discussed in connection with the PP instability, also contains other results
and othe, ... lul references concerning self-gravity of accretion disks.

4.6 Other possibilities (midway, supply and atmospheric variability)

In this section we discuss possible mechanisms of variability which
are not intrinsic to the accretion processes. We start from a really dis-
turhing one - that variability might not be a signature of the plysics of
AGN at all, but might originate "midway” due to influence of matter he-
tween us and the source. We know that, at radio frequencies, only about
10 percent of the observed variability of AGN is intrinsic, and that the rest
should be attributed to midway inhomogeneities of the intergalactic and
galactic medium, and of magnetic fields. This is not very disturbing, as
radio data are not a good probe of the innermost parts of accretion disks
anyway. However, it has been suggested recently that a large fraction of
quasars may be gravitationally microlensed and that the resulting time de-
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pendent amplification may explain a large part (or, at least, some part) of
the variability of active galactic nuclei also at frequencies higher than the
radio ones (Ostriker and Vietri 1985, Schneider and Weiss 1985, Paczynski
1986). The microlensing is provided by individual stars in an intervening
galaxy. For a moderate number of microlenses, typical theoretical light
curves show sudden, double peaked outbursts in which the rise and decay
times are quite symmetric. The bursts have very characteristic U-shapes
between the peaks, and are separated by long quiescent periods. A quasi-
periodic bursting may easily occur by chance. The predicted timescales for
variation due to microlensing range from weeks to centuries, depending on
the impact parameter and the relative velocities of the lens and source on
the sky. In theoretical models dense star fields in the lensing galaxy are
found to produceirregular flickering without much change in apparent mag-
nitude and without periodicities. This agrees, very nicely, one might think,
with the fourth and first types in the Rosemary Hill classification. There
are, however, some important detailed differences (cf. Abramowicz 1987):
{(a) Variability of the intensity of the speciral lines cannot bhe explained by
lensing, especially when some other lines do not change or when, as some-
thimes happens, there is a correlation between variability in lines and in
the continuum. (b} Gravitational lensing cannot explain secondary mazima
or the fact that many outbursts have a much shorter rise time than decay
time. These features are characteristic of damped oscillations caused by an
instability. Double peaked outbursts are not common. (¢) Variability of
active galactic nuclei and X-ray sources within our Galaxy show many sim-
ilarities when the necessary scaling factors are introduced. Sources in our
Galaxy are obviously not lensed. (d) The light curve of 3C 345, shown in
Figure 3, was considered as a particularly good exanmiple of possible lensing
by Schneider (Max-Planck-Institut Seminar, 1986). It indeed shows a suc-
cession of strong bursts, which could be interpreted (although not uniquely)
as double peaked, U-shaped and symmetric. This would point to a moder-
ate number of microlenses. After 1975, however, there have been no bursts,
but only an irregular flickering with large amplitude (Kidger and Beckman,
1986). This rules out lensing as the mechanism since that would imply a
sudden change of the number of stars in the lensing galaxy in 1975. If the
angular size of the source is much larger than the scale of deflection then
microlensing is unimportant. If the UV bump emitting region (see Section
1.4) has a size of = 10® cm or smaller, microlensing can occur, but cannot
explain variability on the scale of months or years which would imply a size
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of 2 10'" em. Therefore, although gravitational lensing of quasars by indi-
vidual galaxies, reviewed in a very complete and scholarly series of lectures
by Blandford and Kochanek (1987, Caltech preprint), or even by clusters
ol galaxies (there is a fascinating new discovery of a "luminous arc”, see e.g.
Paczynski 1987, or the lecture by Fort 1988 at the ESO/CERN Conference
in Bologna) is well established, the role of microlensing in AGN variability
1s unknown. The same conclusion has been reached by Schneider (1988,
Max-Planck-Institut preprint) in his recent review of the subject.

Variability might be caused by variation in the mass supply to the
disk. Abramowicz, Blaes and Turolla (unpublished} used a numerical,
quasi-stationary model of AGN evolution to show that matter stored in
a large torus around a supermassive black hole is not sufficient to support
quasar-like activity. Continuous supply from the hosting galaxy is needed.
The galaxy can supply fuel to its active nucleus either through mass loss
from stars, or by processes of stellar collisions, captures and disruptions,
which may be very effective if the central black hole is surrounded by a
dense star cluster. Tidal interaction with a nearby galaxy may also trigger
mass supply {(Lin, Pringle and Rees 1988) and the same is true for hypo-
thetical close pairs of supermassive black holes. Hills (1975), Frank {1979)
and others have studied the tidal capture and disruption of stars by a black
hole. The main result is that a star with density p will be broken apart by a
black hole with mass Af if it passes within a distance » = {64 /7p)"/*. Once
all of the stars whose orbits pass close to the hole have been destroyed, fur-
ther capture can only occur when dynamical interaction between the stars
in the ciusver can repopulate the close orbits, and this happens on a time
scale longer than 10'? years. Direct collisions between stars in a dense clus-
ter are also important. The capture processes can be an efficient supply
mechanism only for a low mass central hole with M < 10°A,. Carter and
Luminet (1982) argued that a star in a very close orhit will experience tidal
compression and subsequent thermonuclear delonation (see also Luminet
and Carter 1986, and Luminet (1987) {or a review). Very recently, tidal
thermonuclear detonation has also been discussed by Hills (1988) and Rees
(1988). Beckman and Kidger (1986) studied statistically the resulting vari-
ation in AGN luminosity due to this process, but no quaentitative analysis
of individual cases has been performed. Thus, a varying supply rate is still
an important theoretical possibility but has only very limited observational
support. Sillanpaa et al. (1988) argued that quasi-periodic bursts in the
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light curve of OJ 287 may be explained if the object is a binary black hole.
They constructed a model consisting of two supermassive black holes, with
masses 2 X 10" Mg and 5 x 10°Ay, closely orbiting each other on an elliptic
orbit and each having its own accretion disk. At each of the close encounters
(which happen at about 11 year intervals) enchanced accretion is triggered
producing the observed burst. However, the amplitudes calculated from the
model are much smaller than those observed, and also the observed bursts
are similar to those of many other BL Lac objects (Barbieri et al. 1988,
preprint) so that, on purely statistical grounds, the binary explanation for
OJ 287 seems unlikely to be correct.

Variability of AGN might be connected not with unsteady accretion
processes, but with some "atmospheric” phenomena, occurring at much
greater distances from the central black hole and being governed by radi-
ation transfer instabilitics. An important example of this possibility was
discussed in a series of papers by Begelman, McKee and Shields (1983a, b).
The main ingredient of the idea is that the X- ray radiation from the hot,
innermost region of the disk may be absorbed by the much cooler outer
parts which heat up, forming a tenuous corona and giving rise to a strong
wind. The authors assume the disk to be geometrically thin and consider
cooling and heating of the wind and corona by Compton scattering. The
wind takes with it some of the matter at large radii, so that the amount of
matter arriving at smaller radii, where the X-rays are produced, decreases.
This then decreases the X-ray luminesity providing a feedback mechanism.
Depending on the parameters, the feedback may cause either stable, or un-
stable, usuiiavions with a typical timescale of 10* years which is much too
long to explain any of the AGN variabilities discussed in this review.

Radiation transfer instabilities with much shorter timescales can oc-
cur due to the existence of eTe™ pairs in AGN "atmospheres” (Svensson
1987, Fabian et al. 1986, Sikora and Zbyszewska 1985, Zdziarski and Light-
man 1987, Ghisellini 1988, and others). Pair creation is possible, because
the energy per accreted particle exceeds the rest mass of the electron. The
dominant mechanisim for pair creation is likely to be photon-photon colli-
sions in which v-rays of energy ¢ > m.c* (produced by energetic particles)
collide with X-rays of energy =~ ¢/2. This happens when the compactness
(luminosity /size) parameter, . = Lor/Rm.c®, is larger than about 207
(Guilbert, Fabian and Rees, 1983). Here or is the Thomson cross section.
The compactness parameter for super-Eddington sources is greater than
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Figure 5: Hlustration of Fabian’s arguments

4000 and thus many AGN are compact in the above sense (Cavaliere and
Morrison, 1980). Fabian (1987) proposed a variability mechanism, based
on a chain of processes schematically shown in Figure 12, which is taken
from his article. The shortest variability timescale potentially visible to
an observer is the cooling time for an electron, which may be much less
than the light travel time across the source region R/c. However electron
scattering in a cooled pair plasma of Thomson optical depth 77 will damp
all variations up to the timescale 7rR/c. Large changes in input power
can cause large changes in 77 through increased pair production or anni-
hilation and this has important consequences for the luminosity and for
the variability timescale. When the source is "switched on” electron scat-
tering in cooled pairs impedes the outflow of X-rays so that the spectrum
builds up over a time rrR/c. At "switch off”, pair anihilation controls
the process, which can then proceed on a much shorter timescale, A large
variation in input power can thus produce a slow X-ray increase and rapid
X-ray decrease, which can be preceded by a brief burst of emission (Figure
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12). This model (and other similar ones) depend critically on unknown
theoretical parameters, and direct comparison with observations is not yet
possible.
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Figure 1: The limit cycle operating in dwarf novae

9. Discussion, conclusions and ... crazy
thoughts

I would like to finish my thesis not giving the general conclusions but
telling few thoughts, single thoughts which help us to understand better
the results [ have got.

We have discussed in Chapter 7 that Bath and Pringle (1982) have
noticed the similarity between the S-curves obtained in dwarf nova case
and the ones known in non-linear dynamics.

Figure 1 shows how an S-shaped relationship between flux and surface
density can give rise to the observed behaviour of dwarf novae.



9.1 Ezamples of §-curves not necessartly connected with astrophysical

objects.

a) The Hamilton-Jacobi equation and a typical singularity of its so-
lution

as as

— + H{— t) = 0. 1
This non-linear first-order partial differential equation is called the

Hamiltonian-Jacobi equation. The Cauchy problem for this equation is

as as
5(q, to) = Solq) ~67+H(-5£1~, q, ) =10 (2)

In order to construct a solution to this problem, we look at the hamiltonian
system

__ eH . _oH )
We consider the initial conditions (see Figure 2):
050

Q(fn) = n p(tﬂ) = E'Qn (4)

The solution corresponding to these equations is represented in (q, t) -space
by the curve q = ¢(¢), which is extremal of the principle 6 [ Ldt = 0 {where
the lagraneian L{q, ¢, 1) is the Legendre transformation with respect to
p of the hamiltonian function H(p, ¢, t}). This extremal is called the
characteristic of the problem, emanating from the point q,

If the value ¢; is sufficiently close to tp, then the characteristics ema-
nating from points close to ¢ do not intersect for 1o <t < #y, |q ~qu| < R.
The action function Sg:

A
S(A4) = Solao) + [ Ela, a, )yt

qu,ty

——
<n
e

is a solution of Cauchy problem (2)

A typical singularity of a solution of the Hamiltonian-Jacobi equation
is presented in Figure 3. This Figure shows the multiple-valued "functions”
S(q) and p{q) for t = t5.
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Figure 2: Characteristics for a solution of Cauchy’s problem for the Hamil-
ton-Jacobi equation.

—7

Figure 3: A typical singularity of a solution of the Hamiltonian-Jacobi
equation.
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Figure 4: The illustration of the Maxwell convention.

b). The construction of the equilibrium values of potential Vy(¢), and
the Maxwell convention.

To illustrate the Maxwell convention we will use the following form
of the potential:

Vie) = ex — ax” +ex*; ¢ > 0. (G}

The values of V at the equilibrium positions, Vy(zo), depend on eand a. If
we were to solve the cubic equation, (8V/dz), = 0 for zo, and substitute
back in V, we should learn little more about the form of V. To compute
the cusp curve it is easy to choose zy and evaluate ¢ = 2azy — 4.:.1»3, and
then to evaluate V() directly to give ¥(¢); but to understand why it has
this shape a simple trick is helpful. Consider [ zode, taken at the constant
a; integration by parts reduces it to ery — [edzy, which is immediately
integrable to yield the result apart from an insignificant constant;

Vo = Virg) = fmode. {

-1
L—

Figure 4 shows how the integration of the many-valued upper curve
yields the cusped lower curve.

The stretch PQ yields AC in the lower curve, and QQ yields O'C.
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Since dVp/8e = @, the two branches must have the same gradient at €,
which is therefore a cusp of zero angle. A similar argument accounts for
the rest of the curve. The cusp are present only if @ > 0; when a < 0, V; is
a single-valued {unction peaked at ¢ = 0, but with no crossover.

The range QR describes points of unstable equilibrium, and hence C(
is not stably realizable, but only AC and B(C’. The limit point instabilities
are at U and C’; on climbing AC (e increasing) the only thing to do at C
is to fall back to the branch B(C’. If it is possible to switch from branch
to branch there is a continuous path available from A to B, with branch
switching in I. This is indicated by the arrowed path on the top curve, and
clearly involves switching the system from one minimum of V to the other
at the point (¢ = 0} when they are equal. The two ways going from A to
B, the irreversible path through the limit point C, or the reversible path
involving a switch at I are possible. One must examine the physical system
to discover which course it will take. If it is a ball rolling on a curve it
will proceed to the limit point and then roll over to the other side. But
a fluid obeying van der Waals’ equation has the possibility of proceeding
reversibly, through of a mixture of phases, from liquid to vapor, a process
that the same as the reversible path we have just described.

¢). Van der Waals’s equation.

We introduce van der Waals’ equation as an example of a cusp catas-
trophe, not as a contribution to the theory of phase transitions. Historically
the equation played a central role in elucidating the transition between lig-
uid and »~7--r; almost inevitably it came to be accepted as a valid model
of critical behaviour, which it is not: It still has its uses, but must be
treated with great caution, as discussed Pippard (1985). The details of
what really happens at the critical point of a phase transition, are much
more complicated than anything described by the theory of the cusp catas-
trophe. Superficially they may look alike, but to stop at the point reached
by van der Waals is to accept a most unphysical description of one of the
really important problems. Let us then take van der Waals’ equalion as a
mathematical model showing interesting features in its own right.

Except that they are turned through 90°, the isotherms of van der
Waals” equation, (P + 4/v*)(v — b) = RT, in the vicinity of the critical
point are very similar curves of that shown in Figure 3. They can be
approximated by cubic curves (Figure 5).
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Figure 5: The isotherms of van der Waals’ equation.

Betfore discussing the analogy further let us look critically at the
isothermal transition between liquid and vapour, at any temperature helow
the critical one., which proceeds inhomogeneously along horizontal line of
constant pressure, line LV in Figure 5.

According to Maxwell (1875) the areas between this line and the
isothern1, one area above and one below, should be equal. This prescription
is the same as is involved in the branch switch at I in Figure 4. To see this
one must appreciate that in the thermodynamic system in equilibrium the
role of V4 is played by the Gibbs function per unit mass, g = v — T's -+ Pov.
A phase transition can take plays reversibly if the value of ¢ for each phase
is the same. The horizontal line must therefore be drawn so that g; = gy
Now (8¢g/0F)r = v so that g = fvdP, the integral being evaluated along
the 1sotherm. This integral generates a cusped curve for g, and intersection
gives the value of P that must be chosen to make the integral from L to V
vanish. This is the Maxwell’s condition of equal areas.

This argument, however, suffers from a fundamental difficulty which is
absent from a simple dynamical system, or one to which previous procedure
can be applied. In the latter case V' exists at all * and one can imagine
the system traversing the whole curve; thus a ball rolling on a strip can be
held at the point of unstable equilibrium by a gentle lateral constraint that
does not alter V. By contrast the thermodynamic properties of the gas can
be defined only in states of stable equilibrium, and the region of van der
Waals’ equation between maximum and minimum is totally unrealizable.
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Figure 6: The electrochemical potential ,it of the single component system
versus pressure, P

9.2 Critical S-curves in the non-dissipative disk accretion case

Figure 3 in Chapter 5C shows the relationship between angular mo-
mentum in the critical point and location of the critical point. Notice
that for 0 < T, < T. there are three critical points, as was also shown by
Abramowicz and Zurek {1981) for conical flows. For the T > T. the flow
Lias only the innermost critical point. The outermost and innermaost critical
points are saddle types and the middle one in a nodal type. Two saddle
type critical points can, in principle allow two local stationary transonic
solutions, however, only one of them can join the black hole horizon to the
large distance (Lu and Abramowicz, 1988, Anderson, 1988, Abramowicz
and Chakrabarti, 1988).

The cusp curve M versus E represented in Figure 7 was used by
Abramowicz and Chakrabarti (1988) to discuss the nature of the various
shock transitions.

9.3 S-curves - what can they tell us about the time dependent

behaviour of the system.

By solving stationary equations describing transonic aceretion flow,
we get the S-shape relation for M (). In the qualitative analysis of dynam-
ical systems, such a solution is known as a relaxation oscillation. The time
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dependent equations for this oscillations are as follows (nonlinear oscillator,
e.g. van der Pol oscillator}):

dz

= =9le - F(2)) (8)

dz 1
pri i (9)

where v is a damping constant, which should be in this case very large and
F(z) is a known function of z.

Eliminating t we can get

z 1
2= (e - F() (10)
Ye-Fz))=-Z"~0 (11)
E 3
It means
Tz =F(z)

Without solving these equations we know what is the phase portrait in (z,x)
space.

Looking at the time dependent equations for accreting flow we can
derive the local (for a fixed r) equations which are very similar to the
nonlinear oscillator equations. This is straightforward for the dwarf novae
case. The equations govern their structure are as follows (Meyer and Meyer-
Hofmeistes, 1984):

a_E _ E 7‘1/2~Q— 1/2

where

F= f: ndz (13)

is the integral of the viscosity,

of df ef _ f

_.......__}_v _'_-I/th"'““-,_:__'
at " or ar? T
where ¥ = T°(f,r} is the relation between surface density and viscosity
in thermal equilibrium and v,y is the thermal diffusivity. This equilibrium
function has the characteristic S-shape in the region of partial ionization
and convection which allows three different values of viscosity integral f

log="(f,r) — logX] (14)
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Figure 8: The m(X) relation and the cusp curve for the sequence of slim
disks

for the same value of the surface density. Tn that case 1/ from the equa-
tions (8) and (9) correspond to the thermal timescale, and + to the viscous
limescale. It must be stressed that it is crude approximation, we use the
fact that these two timescales are not of the same order of magnitude.

Since we do not have strong arguments, but only intuition to guide
we assume that the non-linear oscillator can work also in the case of slim
disk (equation of mass conservation correspond directly to equation (9)
- with the 4! playing réle of viscous timescale). The first step in the proce-
dure is to fit the equilibrium solution by polynomial . Figure 8 shows the
agreement for the fitting. The solid line represents the original results, the
dashed line represents the polynomial approximation. We obtain the best
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Figure 9: The time dependent behaviour of accretion rate in the non-linear

oscillator approximation

{ satisfactorily) numerical fit for polynomial of order 7.

The nexs step is to solve equations (1) and (2). We do it numerically
for different values of 4. The results are shown in Figure 9.

The time scale involved are of order 1/ for the fast jumps and of

order v for the slow traverses. The period can be evaluated by:

B B d: B dz
TN/;E( c0e) =2 ) 27[5 ez )

T z

The amplitudes of variability can be seen directly from S-curves when
the cycle occur along ABDE. There is also irreversible path for the system

to go from A to C.

9./ Time dependent case




One can write the time dependent equation in the following way:

0% 1@

ol o 1 8., 0 1
—_— P — —— E___ . -
5t~ Rap T RzaR g ) (17)
duvg dvr [z 1aP GAM

Bt T "R T T ,0R  (R- Ref

orT oT 4—-33 T @
B~ T'RaR T 12— losg RoR-wRIt
T 8 _ ar
RP(12 -1057) 8k X3R
TF.

HP(12 - 10.53

TSu R a 1 |
2HP(12 — 10.5/3)[ﬁ(ﬁ” (19)

)__

] +

This set of four partial differential equations with following algebraical
relations give the full description of the behaviour in time of the disk:

44 (O __4.n R EQTU?' 1/2
P=— 4 [(=T" + — R 2
6 + 6 411 By ) 2 ! (20)
2B, R*
i (22)
P = 4B RP
2B)*R
Cs E'U_ﬁ P (23)
4BP RS
= EEU?{ (24)
R DLTvi .,
= P 25
2acT?
F. = B, s (26)



_ daqcT™ _ 16B4R*ac _,

X = TP 27
& Ikp LTI, (27)
I rl/? (28
Vo ToEY ’
r
R o= — 2
= (29)

The meaning of all the quantities has been already given (e.g. Chapter 3).

The problem to find the solution of the time dependent equations of
the slim disk structure is still open. However the first, necessary and not
trivial step seems to be done. We have got the stationary solutions and
now ... it is time for the next step.
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