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Introduction.

In this tesis work, we have tried to describe, in an unified way, the results which are the
outcome of a research undertaken under the supervision of Prof. A. Ambrosetti. Such a research
had, as main objective, the study of dynamical systems obying to systems of differential equations
of the form ’

(H) Jz' = V_H(t,2),

where z = (p,q) € R?N, He C{RxQR), Q open subset of R2N and 7, the symplectic
matrix, is defined by J(p,q) = (-q,p). Such a system of equations is called an Hamiltonian system.
It describes the motion of a classical mechanical system, and it has been widely studied. See for
example [10] for a detailed analysis.

The particular problem which we have studied is that of finding T-periodic solutions of (H)
and of the so called classical Hamiltonian system

V) §=V, V),

where y € RN, Ve CI(RXQ,R), Q open subset of RN We remark that (H) reduces to %)
for Hamiltonian functions H(t,p,q) = (1/2)lpi2 + V(t,q).

This problem has been tackled with the methods of variational nonlinear analyis, associating
to (H) or (V) afunctional f defined in a suitable Hilbert space, and finding the T-periodic
solutions of the systems (H) and (V) as critical points of this functional. Such an approach has
drawn a lot of attention in recent years and has generated a lot of interesting abstract results in
nonlinear analysis (such as the so called "infinite dimensional linking-theorems" or the S! invariant
indeces). We want in particular to recall here the pioneering paper of Rabinowitz [62], and the
papers of [8, 41, 42]. For a review of the results, see [63].

More precisely, we have here found the critical points of the functional f by means of
Morse theory, and we have tried to use such a theory to unify all the results we have obtained in
our research.

The tesis is organized as follows: Chapter I is devoted to abstract Morse theory, with a
particular emphasis on its connection with critical point theory. In particular in §2 we prove,
using Morse theory, some well know theorems on existence of critical points, such as the Mountain
Pass Theorem, as well as some theorems, such as Theorem 2.22, which are not known to us in
this form. In §3 we give some results on Morse theory and perturbations, which are essentially
contained in [7, 31, 58].

Chapter I is devoted to the application of the theory developed in Chapter I, to the search of



T-periodic solutions of (V) for potentials V bounded and such that VyV(t,y) —0 as y = oo

Such a problem, discussed in the papers [5, 33], is particularly interesting since the functional f
associated to it does not satisfies the compactness condition of PS, so that the application of the
usual existence theorem is problematic. Morse theory seems instead a very natural tool to deal with
this kind of problems, see also [13]. For a different approach, see [14].

‘Chapter III is devoted to the study of singular potentials, i.e. potentials defined in an open
subset Q of RN such that V(y) = %o as y — 0Q. Various cases are examined there; in
particular §6,7 deals with potentials of the form V(y) = lyl'®, o =2, and rely to arguments
similar to those of Chapter Il (i.e. Morse theory) while §8,9 deal with the case on £ bounded
and V convex (or concave). To study this last cases, we use the Dual Action Principle (see [27,
28]). The results of this chapter are contained in [4, 5, 6, 35, 36].

In the last chapter we have studied the perturbation problem, i.e., we suppose that (V) has
one T-periodic solution and we look for T-periodic of

(He) -Jz' = V_H(t,z) + €h(1),

for € small. In particular we have analyzed the problem of perturbing a T-periodic orbit of a time
independent Hamiltonian by a small forcing term; such a problem is particularly interesting since,
thanks to the natural invariance under the time-translations of time-independent Hamiltonians, one
usually finds many T-solutions of the unperturbed problem. We find that, for every unperturbed
solutions, one usually finds two solutions of the perturbed one. The results of this chapter are
contained in [7, 31].



Chapter I: Morse theory and critical points.

In this chapter we want to recall the basic facts of Morse theory and show some of the ways
in which it can be used to find critical points of functionals. We will employ here the "classical"
Morse theory, as it has been developed by Morse in [56]. Standard references are [55] for the finite
- dimensional theory, [57, 59] for the infinite dimensional one, and [18, 19, 68] for the extension of
the theory to deal with functions having nondegenerate critical manifolds and functions invariant
under the action of some compact group G.

In recent years several authors have modified Morse theory wishing to extend its applications
to a wider class of problems, in particular
(a) to deal with degenerate critical points [49, 58];

(b) to deal with functionals having less regularity [20];
(c) to deal with functionals having less "compactness"” than it is usually required [13].

In the following, we will use some of these results. We will not make use, though, of some
of the other interesting developements the theory has had, such as the Conley index theory [29,
301, the Morse-Conley index theory [16] or the equivariant Morse theory [19].

§1. Preliminaries.

Let E be an Hilbert space with scalar product (-,) and corresponding norm IFll. Let f e
CI(E;R). We say that u € E is a critical point for f if f'(u) = gradf(u) =0. We set

Zf)={ue E: f(w)=0},
and, for c € R,
Z(H={ue Z(f) : fw) =c}.
If Z.(f)#@ wesay that c is acritical value for f. For -eo<a<b < +eo, we also set
{a<f<b}={ue E: a<f(u)<b},
{a<f<b}={ue E: a<f(u) <b]},
fP={f<b}={ue E: - < f)<b)},

and so on.

1.1. Definition. We will say that f € CYE;R) satisfies the PS (Palais-Smale) condition in S,



where S is a subset of E, if for every sequence {u,} in S such that f(u,) is bounded and
f'(u,) = O there exists a subsequence converging to an element of S.

1.2. Definition. Let f € CY(E;R). A vector field V: ENZ(f) - E, lipschitzian, such that

(V),F'()) 2 If )12
HIVE)IEL 21 &)l

is said to be a pseudo gradient vector field for f.
1.3. Lemma. Let f € CY(E;R). Then there exists a pseudo gradient vector field for f.
Proof. See [60, theorem 4.4].

1.4. Theorem. (deformation lemma) Let -o0 <a <b < +eo. Suppose that f e CYE;R) satisfies
PS in the set {a < f<b} and that {a < f<b} NZ(f) = D. Then there exists a deformation H e
C([0,1] x £%; £) such that

a)HOx)=x Vxefb

b) H(t,x) =x V (t,x) € [0,1] x f3;

c)H(1,x)ef® Vxefb.

Proof. The proof is similar to that of theorem 5.9 in [60].
Let V be any pseudo gradient vector field for f. Since {a<f<b}NZ(f)=0, V isdefined V
x€ {a<f<b}. Takeany x e {a <f<Db} and consider the solution o, (t) of

do

——=- V(@)
(1.1) dt

o, (0) =x

Let [0,8] be the maximal interval of definition of o,. Then there exists a unique T=T(x) € [0,8[
such that

f(oy(T(x))) = a.

In fact, by Theorem 5.4 of [60], either B =+e or f(o, (1)) = -co as t—=B. So, if B < +eo,
the existence of T(x) follows from f(o., (0)) = f(x) 2 a and the continuity of f(o,(t)) in t. So
we can suppose B =+ and f(o,(t)) >a Vt. Since



d f(o (1)
1.2) —aq— = - Ve, ®), Fla,®)<-I o I,

we deduce f(o, (1) < f(x)<b Vt20,hence a,()e {a<f<f(x)} Vt20. Since PS holds in
{a < f<b}, we have that lIf'(yII28>0 Vye {a<f<f(x)}, so we can deduce from (1.2)
that df(o,(1))/dt < -82. It then follows

a < fo, (1)

t
=f(x)+ J;) (df (o (s))/ds) ds

< f(x) - 62t

and we reach a contradiction taking t = (f(x) - a)/8% = 0.

So we have proved that V x € {a < f < b} there exists T e [0,8[ such that f(o,,(T)) = a. The
uniqueness of sucha T follows from the the fact that (1.2) implies that f(ou (1)) is strictly
decreasing in t for f(o (1)) € [a,b]. We will denote sucha T by T(x). From the continuous
dependence on the data of the solution of (1.1) and the strict monotonicity of f(a., (1)) in t, it
follows that T(x) is a continuous function of x. We set

x V (tx) e [0,1] x

H(t,x) = {
o, (Tx)) V (tx) € [0,1] x (fO\ F3).

Such an H clearly satisfies a), b) and c). It also follows, from the continuity of T(x) in x and
of a,(t) in (t,x), that H is continuous in (t,x), hence the lemma is proved.

1.5. Definition. Given fe CI(E;R), we say that a subset S of E is positively invariant under
the steepest descent flow of f if for every pseudo gradient vector field V of f, and for every x
e S\Z(f)

o eSS Vte [0,8]
where o (t) is the solution of (1.1).

1.6. Remark. Itis easy to check that Theorem 1.4 can be generalized as follows:

Suppose f € CYE;R) satisfies PS in S N {a<f<b}, where S isa subset of E positively
invariant under the steepest descent flow of f. Suppose, moreover, that S N {a < f <b} N Z(f)
= (3. Then there exists a deformation H e C([0,1] x (f°® N S); (f°® N S)) such that

) HOx)=x Vxe f°nS;

b) H(t,x) =x V (t,x) e [0,1] x (fANS);



c)H(1x)e fAnS Vxe fons.
1.7. Let A, B be subset of an Hilbert space E, ASB. With

Hq(A,B;G)
we will denote the g-th homology group of the couple of topological spaces (A,B) relative to the
coefficient group G. We set Hq(A;G) = Hq(A,(Zi;G) and usually we will simply write Hq(A,B),
Hq(A). With F{q(A,B;G) we will denote the g-th reduced homology group of the couple of
topological spaces (A,B). See [40] for definitions and properties.
1.8. Definition. Given two subsets A,B of E, we say that A is a deformation retract of B (in
symbols A =B) if Bo A and 3 o€ C([0,1] x B; B) such that
i)o(0,b)=b Vbe B;
ii)o(l,a)=a Vae A;
iii) o(l1,b)e A Vbe B.
It is well known that
1.9. Proposition. A =B implies Hq(A) = Hq(B) Vq.

Proof. See [40].

1.10. Remark. It is clear that the hypothesic of theorem 1.4 imply fP = 2, hence Hq(fa) =
Hy ().

1.11. Proposition. Let f e CZ(E;R) satisfy the PS condition in the set {-c0 <a < f<b}, and
suppose {a<f<b} NZ(f) =@ and that Z,(f) consists of finitely many critical points. Then

H(MZ,(M =H(fH Va

Proof. See [25,Thm 1.2].

1.12. Definition. Let ue Z(f), fe C2(E;R). We can define the Hessian operator H(f),:E—
E as (H(f),v,w) = dzf(u)[v,w]. We will say that u € Z(f) has (Morse) index =n if n is the
dimension of the maximal subspace V of E on which d2f(u) is negative definite, and we will
say that u has nullity m if m if the dimension of the largest subspace N of E on which d2f(u)
is indefinite (we remark that N = ker H(f),)-



1.13. Definition. A submanifold V of E will be said to be a critical manifold for f if V=0
and Z(f) o V. Itisclearthat Vue V T,V (the tangent spaceto V in u) is contained in ker
H(f),. Itis then possible to define H;(f): E/T,V = E/T,V as H;(f),[V] =[H(),v]. If H;(f),
is an isomorphism V ue V, then V is said to be a nondegenerate critical manifold. In such a
case every u€ V has the same index; such an index is called index of the nondegenerate critical
manifold V. We remark that, if V is nondegenerate, then ker Hf),=T,V Vue V.

1.14. Definition. Let f e CXER). f is said to be a Morse function if it satisfies PS and if Z(f)
is the union of nondegenerate critical points, and f is said to be a generalized Morse function if it
satisfies PS and if Z(f) is the union of nondegenerate critical manifold.

§2. Morse theory and existence of critical points.

One of the basic facts in critical point theory, which will be often used in the applications, is
the following:

2.1. Theorem. Let fe Cl(E;R), and let Y be a subset of E positively invariant under the
steepest descent flow of f. Suppose f satisfiesthe PS in {a<f<b} NY, where -.c<a<b
< 4o, If it exists q € Z such that

(2.1) H (N Y) 2 H (2N Y),

then it exists at least one critical point u of f with ue {a<f<b}NY.

Proof. Itis an immediate consequence of Remark 1.6 and Proposition 1.9. In fact, if {a<f<
b} N'Y =@, one deduces Hq(fbm Y)=H/(fANY) Vqe Z

We can deduce from theorem 2.1 two well known theorems on existence of critical points. .

2.2. Theorem (existence of minimum). Suppose f € Cl(E;R) is bounded from below . Set m =
inf f, and suppose f satisfies PS in the set {f <m+g;} for some €,>0. Thenitexists ue
Z(f) such that f(u) =m.

Proof. V € € ]0, g)] we have that fM*€x (J and that PS holds in f™*€ Since M€ =0,
Hy(f™%) = Hy( f™¥) V € € 10, g,]. Hence, applying Theorem 2.1 with Y =E we deduce that
Vee ]0,g) itexists uge Z(f) N {m-€ < f <m+e}. Since Z(f) N {m-€ < f < m+e} is



compact (PS holds there), we can deduce that exists a subsequence u; such that u; — v, f(u) —
m, f'(u;) =0; this implies f(v) =m, f(v) =0.

2.3. Theorem (Mountain Pass Theorem [9]). Suppose f € CI(E;R), f(0) = 0 and, moreover,
that exist 1,0 >0 and e € E such that

(1) f(w)26>0 Vu suchthat llull=r;

(i) llell >t and f(e) <0.

Setting I' = {p e C([0,1LE) : u(0) =0, pu(l)=e} and

¢ =inf {max {f(u(s)): se [0,1]}: pe T},
one has that c26>0 and, if PS holds in {c- ;< f < c+ g} for some €;> 0, then Z (f) = @.
Proof. ¢ >8>0 since, by continuity, every L e I" has to cross {llull =r}. Set €, = min {g;,C}.
Take any € € ]0, €[ and p, e I' such that max {p,(s) :s € [0,1]}) < c+e. Let A be the

connected component of f*¢ containing p,([0,1]). It is well known that rank Hy(A) = 1, and
that A is positively invariant under the steepest descent flow of f (in fact, for fixed t, o, (t) sends

" f°*% into itself; since it is continuous in (t,x) it also sends connected components into connected

components). Consider now B = f® N A. First of all we remark that 0 € B, ee B. In fact 0,
ee€ A, f(e) £ f(0) =0<c-e. Then we observe that B cannot be connected, otherwise it would
exists W,e C([0,11,B) with p,(0) =0, p,(1) =e, hence e I and f(,(1) <c-e Vte
[0,1]. So B has at least two connected components and rank Hy(B) = 2. From this fact follows
that Hy(f*"®* N A) 2 Hy(f*¢ N A) V e e 10, g[, hence, applying Theorem 2.1 we deduce that
Vee 10, g itexists ug € Z(f) N {c-e < f <c+e}n A, Using PS, one can pass to a subsequence
converging to z € Z (f).

2.4. Remarks. a) We have proved the Theorems 2.2 and 2.3 for functionals definited in an
Hilbert space. Actually the proof can be carried over without any change also for functionals
defined in a Banach space.

b) As we shall see later, the use of Morse theory permits to prove, for functionale of class
C?, additional properties of the critical point of "Mountain Pass type", in particular that its Morse
index is 0 or 1 (1 if it is nondegenerate). On this argument see [1, 43, 50, 52, 25 §7].

¢) Using the same tecniques of Theorems 2.2, 2.3 it would be possible to prove also many
finite dimensional "linking" theorems.

d) In the applications we will, sometime, use directly Theorem 2.1. In such cases the
problem will be to evaluate the homology of suitable sublevels f°.

We have seen that whenever Z(f) N {a<f<b}=@ and PS holds, Hq( )= Hq(fa).



Morse theory permits to study the change in homology in crossing a critical level c. More precisely

2.5. Theorem. Suppose f e C%(E;R) satisfies PS in {a < f < b}. Moreover suppose that ¢ is
the only critical level in [a,b] and that all the critical points at level ¢ are nondegenerate. If f has
ny critical points of finite index A in Z(f), then

rank Hq(fb, A =n.
Proof. See [58, Theorem 3.1].

2.6. Remarks. a) Since every nondegenerate critical point is isolated and Z_(f) is compact (PS
holds) we have that in the hypothesis of Theorem 2.5 Z.(f) consists of finitely many critical
points, hence X nj < +eo,

b)if Z.(f) = {u} and u is a nondegenerate critical point of infinite index, then

rank Hy(f%, f) = 0.
2.7. Using Theorem 2.5, Proposition 1.11 and the subadditivity of Rq(a,b) =rank Hq(fb, o)
(i.e., the fact that a <b < c¢ implies Rq(a,c) < Rq(a,b) + Rq(b,c)) one can deduce the Morse
inequalities. Here we will present them following [19]. Suppose f € CZ(E;R) satisfies PSin {a

< f<b}, with -.e<a<b<+e and that f has only nondegenerate critical points in {a < f <b}.
We can then associate to such an f a (formal) power series

(2.2) M,(f.a,b) = Zq thq

where N(11 =# {ue Z(f) N {a< f <b}: u has index q}. We can also introduce another (formal)
power series, the Poincaré polynomial of the couple (f?, ), defined as

(23) 2(f%, 2, G) = £ tdrank H(f%, f2,G).

We will usually write just B,(fP, £2).

We can now state

2.8. Theorem (Morse inequalities). Suppose f € CZ(E;R) satisfies PS in {a < f £ b}, with -eo
Sa<b <+, that Z,(f) =Z,(f) =@ and that f has only nondegenrate critical pointsin {a < f<

b}. Then it exists a (formal) power series Q,(f) = q0+q1t+q2t2+. .. with nonnegative coefficients
g; 2 0 such that
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(2.4) M(f.a,b) - B(fP, £2, G) = (1+t) Q,(f).

Clearly this equality means that the coefficients of each power in left and right member of (2.4)
must be equal.

2.9. Remark. If -eo <a <b < +c0 and the assumptions of theorem 2.8 hold, then follows from
PS and the nondegeneracy of the critical points (which implies that the critical points are isolated)
that Nq <+ V(q, and that there exists a q, such that N, = 0 Vq > q,. Using Morse inequalities
one deduces

rank Hy(f% f2) <+ee Vg,
rank Hq(fb, =0 Vq > q
We will see later (Remark 2.15) that this fact is true for every f e CZ(E;R) satisfying PS in {-eo

<as<f<b<+4eo} and such that f' is Fredholm of index zero, even if we allow degenerate
critical points.

2.10. Some conseguences of Morse inequalities. First of all, equating the coefficients of the k-th

powers in (2.4), one deduces

2.5) Ny —rank Hy (%, £2) = qy + qp;;
and, in particular
(2.6) Ny = rank Hy (f°, £9).

The peculiar form of the right member of (2.4) allows us to get other information. In particular one
can see that the critical points on index A interact with critical points of index Ax1. To better
illustrate this concept, suppose f is what is usually called a perfect Morse functional in {-ec <a <
f £b < +eo}, ie. afunctional f: E — R such that

N, =rank H (f, 3.

Let N(f,ab)=2Z, N;. We claim that any other functional g satisfying the assumptions of
Theorem 2.8 and such that g2 = f2, gb=fb will satisfy

11



2.7 N(g,a,b) = N(f,a,b) + 2m forsome me N

and, moreover, if Ny(g,a,b) > Ni(f,a,b), then also Ny ;(g,a,b) > Ni41(Fa,b) or N 4(g,a,b) >
Ny 1(f,a,b). In fact, from (2.5)

N(g,a,b) = Z; rank Hy (g, g?) + Z (g + Gy, 1)
=2, rank Hk(fb, f+2% q
= N(f,a,b) + 2m.

(m is finite since N(g,a,b) is finite). If Ny (g,a,b) > Ny (f,a,b) we have that

Ni(g.2,b) =rank H (fY, f2) + q, + qy{
= Ny (f.a,b) + g + g g-

hence gy + gy, ; = Ni(g.a,b) - Ny (f,a,b) 2 1 and either q 21 or q ,21. If g ;21 we
deduce from (2.5) Ny_;(g.a,b) = N;_;(f,a,b) + Q-1 + Q.o > Ny 1(f,a,b) while if g, 2 1, always
from (2.5) we get Nk+1(g,a,b) = Nk+1(f,a,b) + qk+1 + qk > Nk+1(f,a,b).

2.11. The Morse inequalities require f to have only nondegenrate critical points. In spite the fact
that this is a generic property (at least in the finite dimensianal case - see [11, Chapter 2, §6,
Proposition 8] and Theorem 2.14 below), this is a major drawback of the theory when one uses it
to find critical points of an assigned functional. Moreover in some situations one knows a priori
that all the critical points are degenerate - for example every time f is invariant under the action of
some continuous Lie group G. To this purpose, let f € C2(E;R) be a generalized Morse function
in the sense of Definition 1.14. Let N be a nondegenerate critical manifold for f, and VN the
normal disc bundle of N. The nondegeneracy of N implies that f restricted to each normal disc
is nondegenerate; this gives a decomposition of VN into positive and negative part: VN = v*N @
V'N, where vp"“N and vp'N are respectively spanned by the positive and negative eigendirections
of the Hessian of f at p. The fiber dimension of V'N is the index Ay of N. Setting 6" =

orientation bundle of Vv'N, one has

2.12. Theorem. Let f e CZ(E;R) be a Morse function in {a < f <b}. Then setting
CH MG =Inezpnpssen) L BNIEO)

where BN, 67®G) = Zq t9 rank H(N, 6"®G), one has

2.9) M(f.a,b) - B(fY f2, G) = (1+1) Q (),

12



for some Q(f) = qut, q 0.

Proof. See [18,19].

We will now state some theorems which will allows us to deal with degenerate critical points
of manifolds.

2.13. Theorem. Let E be an Hilbert space and f € CZ(B;R). Suppose that, given -0 <a<b<
+eo, the following holds

1) f'(x) is Fredholm of index zeroin Z(f) N {a< f <b};

) Z,(H =Zy(f)=0;

3) Z(f) n {a < f < b} is compact.
Then Vo,8>0 Jge CZ(E;R) such that

i) g(x)=f(x) if dX,Z(f))=08 or x& {a<f<b);

i) Igx) - f(x)l <eg, lig'x) - FEI<E, lg"x) - f' &) <e.

iii) g has only finitely many, non-degenerate critical points in {a < f < b}.

‘Moreover,if (PS) holds for f in {a <f<b}, g can be chosen satysfying the same property.
Proof. See [58, Lemma 2.4 and Theorem 221

2.14. Remark. We can deduce from Theorem 2.13 that given any f e C2(E;R) satisfying the

hypothesis of Theorem 2.13 and PS, one can attach to it a series M "(f,a,b) = M(g,a,b) for
which the Morse inequalities must hold. Such a correspondence it is not unique, since g is not
uniquely defined, but it is nontheless useful in critical point theory. Benci, in [16], has developed a
theory which defines uniquely such a correspondence.

2.15. Remark. As already remarked in Remark 2.9, one has as an easy consequence of Theorem
2.13, that for any f e CX(E;R) satisfying PS in {a < f < b}, with -oo <a < b < +o, 1) of
Theorem 2.13 and such that Z,(f) = Z,(f) = @ '

Hy(f, ) = Hy(gb gd =0 Vgzgq,
for a suitable q = 0. Moreover, rank Hq(fb, fH <+ Vq.
2.16. We want now to describe more in detail what happens of Hy(f°) in crossing a critical value

¢ where one has only isolated critical points. Suppose f € C%(E:R) satisfies PS in fagf<
b}. Let c be the only critical value in [a,b], and suppose Z.(f) = {zq,...,z3 }. Then, by



Proposition 1.11

Hq(fb, ) =Hy (% f\ 27 ).

If U;, j=1,....k, are small neighborhoods of z,,...,2, such that U;nU;j=@ V iz#j, then, by
excision

Hq(fc3 fc\{zl’- '-szk}) = @J Hq(.fcnUJ, U]\Z_])‘

So, to have a complete picture, we only have to to describe Hq(fchj, Uj\zj) = Cq(f,p), the g-th
critical group, which does not depend on the particular choice of the neighborhoods of z; (see [25,
§2]).

2.17. Theorem. If fe CZ(M;R), where M is an n-dimensional manifold, and p is an isolated
crirical point of f, then, setting ¢ = f(p)

() if p isalocal minimum Cy(f,p) =G, Cq(f,p) =0 Vq=0;

@ii) if p is alocal maximum C(f,p) =G, Cq(f,p) =0 Vqg=#n;

(iii) if p is neither a local minimum nor a local maximum Cy(f.p) =0, Cq(f,p) =0 Vqg2n

Proof. See [25, §1, Example 1 and 4].

2.18. Theorem. Let fe C2(E;R) and suppose p is an isolated critical point for f. Let ¢ = f(p)
and assume f satisfies PS in {c-e < f<c+e} for some €= 0. Moreover assume that 0 is
either an isolated point of the spectrum of d2f(p) or does not belong to it and let n = dim ker
d%f(p). If A is the Morse index of p, we have that

Cq(f,p) = Cq-}\,(h,P) v qa

where h is a function defined on a n-dimensional manifold which has p has an isolated
(completely degenerate) critical point.

Proof. See [25, §2] and [37].

2.19. Remark. From Theorem 2.17 and 2.18 it follows that Cyfp)=0 Vq<i, Vg>Ai+n
and that

a) Gy (f,p) #0 implies Cq(f,p) =0 Vq#\

b) Cpn(F:p) # 0 implies Cy(f,p) =0 V q=A+n.
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We can reformulate the Morse inequalities in terms of the critical groups. Precisely

2.20. Theorem. Let -eo<a<b<+e and suppose f e CX(E;R) satisfies PS in {a<f<b},
Z,(f) = Zy(f) = @. Assume f has only isolated critical values in ]a,b[, each of them
corresponding to a finite number of critical points and that f' is Fredholm of index 0. Then we
have that

M (f.ab) - B(P, 2, G) = (1+1) Qt)

where M*'(f,a,b) = Z, B, (a,b) i, Bi@ab) = Zpe Z(Hnfa< f<b) Tank Cu(f.p) and Q) =Z qy
K, qx 2 0.

Proof. See [25, Remark 1.4] and remark that each critical point has finite rank critical groups
since Remark 2.15 holds.

As already observed in Remark 2.3 b), one can use Morse theory to prove additional
properties of the critical points found in Theorem 2.2 and 2.3.

2.21. Proposition. (i) Suppose the assumptions of Thorem 2.2 are satisfied and that the point u
of minimum (which exists by Theorem 2.2) is isolated. Then Cy(fw) =G, Cq(f,u) =0 Vqg=
0. Moreover, if f e C2(E;R), the Morse index A of u is 0.

(ii) Suppose the assumptions of Theorem 2.3 are satisfied. Suppose, moreover that c,
which is a critical level for f by Theorem 3.2, is an isolated critical level for f. Then, if fe
Cz(E;R), it exists a critical point at level ¢ whose Morse index A is 1 or 0.

Proof. (i) Itis clear that Cq(f,u) = Hq(fch,j“mU\{u}) = Hq({ u},d) and the first statement of
(i) follows. Itis then an immediate consequence of Remark 2.19 that A > 0.

(ii) It is easy to show that (with the same notations of Theorem 3.2), rank Hy(A) = 1 and rank
Hy(B) 22 imply rank H;(A,B) > 1. Suppose f has only critical points of Morse index 2 2.
Then also every g given by Theorem 2.13 sufficently close to f will have only nondegenerate
critical points of index>2 in {c-e<f<c+€e}NA ={c-e<g<c+e}NA. But then we reach a
contradiction applying the Morse inequalities to g.

The following is an application of theorms 2.17 and 2.18 to critical point theory.
2.22. Theorem. Lert E be an Hilbert space and f € C2(E;R). Suppose that, given -eo<a<b<

+co one has that
(i) f satisfies PS in {a<f<b} and Z,(f) =Z,(f) = G;
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(i) Yue Z(f)n {a<f<b} O is either an isolated critical point of the spectrum of dzf(p) or

does not belong to it; moreover dim ker d2f(p) <N;

(i) 3q.q'e N, lg-q1 2N such that Hy( 10, 3 = 0, Hq'(fb, 12) 20.

Then f has at least two critical points in {a < f <b}.

Proof. The existence of at least one critical point u; follows from Theorem 2.1. Suppose
Z(fyn{asf<b}={u}.

Then, setting ¢ = f(u;), it follows from 2.16 that
Hq(.fb9 fa) = Cq(.f,ul)'

Let A be the Morse index of u;. Then from Theorem 2.18 follows
Hq(fbs fa) = Cq_)\'(h,u]_) v q

~where h is defined on a n-dimensional manifold with n £ N. From Theorem 2.17 we deduce
that only threee situations are possible

a) Cyathu) =0 Vg= A;

b) Cq_k(h,ul) =0 Vq#A+n;

¢) Ciothu))=0 Vg<A Vg2i+n,

and each one of them is in contradiction with the assumption Hq(fb, =0, Hq.(fb, 3 =0,
Ig-q'l = N.

On this argument, see also [Ber 1].

§3. Morse theory and perturbations.

In this section we will show how Morse theory can be employed in perturbation theory. Our
discussion will mainly rely on the paper by Marino and Prodi [58] and on the papers [7,31].

The following Lemma, due to Marino and Prodi, is the fondamental tool.
3.1.Lemma. Let A, X, B, A, Y,B' be topological spaces such that

BooY>A'DBoX oA,
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Suppose that Hq(B,A) =0, Hq(B',A') =0 V q. Then the canonical homomorphism
h: Hq(A',A) - Hq(Y,X)
is injective.

Proof. See [58, Lemma 4.1].

A direct consequence of such a Lemma is the following

3.2. Theorem. Let c be the only critical level for f e CZ(E;R) in [c-g,c+€] for some € >0, and
let Hq-(fc'*‘s,fc‘s) # 0 for some q'. Suppose, moreover, that PS holdsin {c-e<f<c+¢}.
Then, every g e C2(E;R) satisfying the PS conditionin {c-€ < g<c+e¢} and such that If - gl
< €/3 has at least one critical pointin {c-€<g<c+ e}

Proof. See [58, Theorem 4.1].
An application of Theorems 2.5 and 3.2 yields

3.3. Proposition. Let ¢ be the only critical level for f e CZ(E;R) in [c-g,c+e] for some €> 0,

and suppose f has only nondegenerate critical points at level c. Suppose, moreover, that PS
holdsin {c-e<f<c+¢€}. Then,every ge CZ(E;R) satisfying the PS conditionin {c-e<g

<c+¢€} and such that If - gl <&/3 has at least one critical pointin {c-e<g<c+E€}.

Proof. From Theorem 2.5 follws that Hq-(fc"e,fc'e) = qu(fc,f“\Zc(f)) #0 for some q', and the
Proposition follows from Theorem 3.2 (see also [7,§1]).

3.4, Remark. Theorem 3.2 and Propositon 3.3 only require f and g to be close in the CO

norm and give an explicit extimate on the distance between f and g; these are the main advantages
of this approach. On the other hand, one has no information on the closeness of the critical points
of f and g (we remark that, if f and g are close in the C? norm, then a simple application of
the local inversion Theorem gives existence of one critical point of g close to every nondegenerate
critical point of f).

3.5. Remark. It often happens that our perturbed functional g is not close to f in the C° norm;
this is the case when one adds a small forcing term to an Hamiltonian system (see §10,11). To this
purpose we remark that the assumption If - gl < €/3 can be replaced by the more general
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@3.1) fe+e 5 g0+8/2 o> fetelb 5 fC-€/6 o gc-e:/2 S foE

see [58,7].

Another way to deal with unbounded perturbations is to introduce the following
"localization" assumption [31]. Let fe CZ(E;R). We will say that f satisfies the localization
assumption if the following hold:

3 €€ R, R'>0 suchthat Vabe Ieq, ol Hq-(fb,ta) one has
Hy(f,) = H (" BN Bg) Vq.

The following proposition estabilishes a sufficient condition under which the localization
assumption holds

3.6. Proposition. Let fe CZ(E;R) be such that IR >0, J ¢, ¢y such that

(i) Vabe Jcj,col f2\cl By is a deformation retract of \cl Br ()

(i) Vabe Jcj.col f2N CR;R+1) is a deformation retract of f° N C(R;R+1),

where C(R;R+1)={ue E: R<Iull<R+1}.

- Then the localization assumption holds for f with R'=R + 1, same ¢; and Cy asin (i).

Proof. See [31, Proposition 2.1].

When the localization assumption holds, one can prove
3.7. Theorem. Let f,ge C2(E:R) satisfy the PS and the localization assumption for some R'e
]0,+e°], ¢4, Cy. Let c € Jcq,col be the only critical level for f in [c-g, c+€] (€ >0) and suppose
f has only nondegenerate critical points at level c¢. Suppose, moreover, that If - gl<€/3 Vue

Bgr:. Then g has at least one critical pointin {c-e<g<c+¢€}.

Proof. See [31, Theorem 2.3].

3.8. In the applications we will be mainly interested in the case in which the umperturbed
functional f has a nondegenerate critical manifold; in fact, as we have already remarked in 2.11,
this is always the case for a functional invariant under the action of some continuous group, and the
time-independent Hamiltonian systems have a natural S! invariance. In this case the perturbated
functional will in general have more then one critical point. Quite a few authors have dealt with this

(*) With cl Q we will denote the closure of the set Q.
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problem from an abstract point of view; we recall here [26, 38, 64, 66). In all this papers the
perturbed functional is close to the unperturbed one in the C2 norm. More precisely, if we denote
by cat(Z) the Lusternik-Schnirelman (LS) category of Z with respect to itself, namely the

leastinteger k such that Z is containedin X;U... U Xy, each X; closed and contractible to a
point in Z, what one can prove is the following

3.9. Theorem. Let f(g,z) be smoothin (g,z) € R x E, E Hilbert space. Let Z be a compact,
connected, nondegenerate critical manifold for f and suppose that f"(g,z) is a Fredholm operator
of index zero V ze Z. Then J&;>0 and a neighborhood U of Z such that V € e J-g[
f(g,®) has at least cat(Z) critical ponts in U.

Proof. See [7, Theorem 2.1] The method of the proof consists of showing that the critical points
of f(e,®) can be found as critical points of the restriction f(e,0)|z(8), where Z(g) is a compact

manifold diffeomorphic to Z.

3.10. Remark. As already stated, a c2 regularity would be enough in proving the theorem, and
the same proof works with minor modification also for a functional defined in a Banach space.

Even if it does not seem possible to obtain such a result by means of Morse theory, notheless
such a theory is useful when one has less regularity. In particular one can prove

3.11. Theorem. Let f,ge ClE;R) satisfy PS and be bounded from below, with ¢ = mingf,
Y =mingg. Further, we suppose that

(3.2) 3g* >0 such that H«(Z(f) =0

and that there exists € >0 such that

(3.3) Z,(f)=D Vbe Icctel;

(3.4 fOHE 5 gc+s/2 > f°.

Then g has at least two critical points in geter2,

Proof. ([7]) First of all we have that ¢ = Z(f) is a deformation retract of fC*€ because of

(3.2) and PS holds (and remarking that ¢ is the minimum of f, so that Theorem 1.4 still
holds). Hence
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(3.4) H,(f*%) = Hy(Z ().

Next, let u* e Zy(g) (#0). Remark that y<c + (1/2) €. Suppose, by contradiction, that Z(g) N

gc"e/2 = {u*}. Then, by the same arguments recalled before, g¥ is a deformation retract of gc“'s/ 2
and
(3.5) H(g°%%) = Hy(g") = Hy({u*)).

From (3.3) we deduce, using Lemma 3.1 with A=X=B=@, A'=f°,Y =g*¢2 B' = f*¢
that h: Hy(f) — Hq(g°+‘°~/ 2) is an injection, so that Hq*(g‘:*e’z) # 0, contradiction with 3.5.
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Chapter II: Applications of Morse theory to the search of periodic
solutions for second order Hamiltonian systems: bounded potentials.

In this chapter we will use Morse theory, as it has been developed in Chapter I, to deduce
existence of T-periodic solutions of Hamiltonian systems of the form

) § =V, V(ty),

where y e RN, V:RxQ >R, Q isasubsetof RN, V(t+T,y) = V(t,y) V (ty) € Rx Q.
Such a system is a particular case of the more general Hamiltonian system

H) - Iz’ = V_H(t,2),

where z = (p,q) € RN xRN, J is the symplectic matrix defined by J(p,q) = (-q,p), H: RxQ —
R, Q is a subset of R2N, H(t+T,z) = H(t,z) V (,z) € R x Q. (H) reduces to (V) for
- Hamiltonian functions of the form H(t,p,q) = (1/2) lp!2 + V(t,q) (classical Hamiltonians).

- In particular, we will deal in this chapter with bounded potentials. Most of these results are
contained in [5, 33, 34]. The comparisons with related results will be done during the exposition.

§4. Potentials bounded from above.
In this section we will be concerned with potentials Ve C(R x RN; R) such that

4.1) IMe R 3R>0 suchthat V(y)<M V (ty)e RxRN with lyl=R.

The results of this section are well known; see for example [65]. We will simply introduce the
notations and the methods, as well as some of the results which will be useful later.

4.1. Remarks. a) (4.1) implies that V(t,y)<M' V (t,y) e Rx RN, with M'>M.
b) (4.1) is satisfied if V(t,y) = -e= as lyl = +eo uniformly in t.

Let S!=[0,T}/{0,T} and E =HI(S!; RN) with scalar product

xy) = f<x',y'>dt + JT <x,y>dt
0 0
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(here <e,e> denotes the scalar product in RN) and corresponding norm iyl = (y,y). Itis
known that HIY(SL;RY) is compactely embedded in LP(0,T; RN) Vp=>1 andin C(0,T; RN).
We also have that E=W @ RN, where, Vye E, y= wy + F,y (we will drop the the subscritp y
when no confusion can arise), Ey = (1/T) jy, Wy =y - Z‘,y, fwy =0 (from now on, unless
explicitely stated, all the integrals will run from O to T). Itis known that -(denoting with l_OIp the
LP(0,T; RN) norm)

(4.2) w2 < (T2/4m2)lwy )2 = (T2/4n2)ly'l 2,

so that

(4.3) lyl,? = wyly2 + 1€, 1,2 < (TH4T2)ly'l,2 + 1€, < max(T¥4n2 Dlly 117,
while

4.4) lwylj < (T/6) ly'h2.

We define f:E — RN as

@4.5) fo) =) [iy? - [ vy,

It is well knonw that the critical points of f on E are T-periodic, classical (i.e. of class C?
solutions of

(4.6) -y = VyV(t,y).
We start by proving
4.2.Lemma. f is bounded from below on E and satisfies PS in {f<-TM-¢€} Ve>0.
Proof. From the Remark 4.1 a) it follows that
F&) =an) [iy? - [ vy = -T™,

hence f is bounded from below. Let (y,) be a sequence in E such that f(y,)<-TM-g, 'y
— 0. Then, from

W2) [y, ? - [ Vy) 2 2) [ly,? - T™
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and f(y,) <-TM - g, we get

(172) [y, P <TOL - M) - &,

hence

@.7) [y ?<2TOM - M) - 26 = ¢
and, from (4.4)

(4.8) lw,..2 < (T/6) c;.

Suppose lly_ |l is unbounded. Then, from (4.3) and (4.7) it follows that £, is unbounded and
ly (O = w, (1) + &
2 g, - w (Dl
2 €1 - {(T/6) ¢} 12,

so that ly ()l = +e uniformly in t. Let ngbe so large that Iy ()/2R Vit e Slvn> ng.
Then V(ty,(D)<M Vte S1, hence

Fo =) [y, ? - [ Vity)2-TM Vnzn,

in contradiction with f <-TM - €. We deduce that lly ll must be bounded and so, up to a
subsequence, y, converges weakly in H(S1; RN) and strongly in C(0,T; RN) to z. Then

j<yn',z’> - J. 1z'12
J.<VyV(t,y),yn -z> = 0.
Using (f'(yp)»yy-2) — 0 we then deduce
len'!z - j<yn’,z'> = J.<yn', Yy -2>
= (F'&p): ¥n -2 + [(V,V(LY), yp -2) O,

so that
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[1ya? = [ 122,
and y, — z strongly in HY(S!; RN). This proves the PS.
n
We are now in position to prove the following

4.3. Theorem. Let Ve CIRxRN;R), V(t+T,y) = V(t,y) V (ty) € R x RN, Suppose that
(4.1) holds and that

(4.9) 3&e RN suchthat  [V(t€)>TM.
Then (V) has at least one T-periodic solution.
Proof. (see [65]). From assumption (4.9) it follows that

f& =- [Vl <-™,
hence m=inf {f(y): ye E} <-TM.
Since from Lemma 4.2 it follows that m > - e and that PS holds in {f <-TM - g} for g,>0
sufficiently small, we can apply Theorem 2.2 to find a critical point of f, the minimum of f.
4.4. Remark. In the case in which V does not depend upon the time, a potential V satisfying the
assumptions (4.1), (4.9) has always at least one critical point z, where V(z) =max V(£). Sucha
critical point z of V isa T-periodic solution of (V) V T >0, hence it is always a critical point of
f. So it could be that the critical point found via Theorem 4.3 is equal to z. This fact cannot, in

general, be avoided. For example, if V(E) is concave, it is easy to prove that f(y) is convex and
has only one critical point, the minimum of f.

§5. Bounded potentials.

We will deal, here, with potentials Ve CI(R x RN; R), V(t+T,y) = V(ty) V (ty) € R x
RN satisfying

(5.1) 0<VLy) <K V(y) e RxRN

We will set
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(5.2) ms# = lim inf ), (infi gV(ty)), m* =1lim sup y_,,..(supc RV(LY)).

From (5.1) follows that 0 £ mx <m* < K. We remark that (4.1) is satisfied with M =m* + ¢
Y £>0. We also set

(5.3) o= sup ¢ N [V(L.E).

If a>Tm*, then (4.9) is satisfied and we can apply Theorem 4.3 to find a T-periodic solution
y of (V) suchthat f(y) <- .. We will now to investigate the situation o < Tm*.

Quite a few results are known, in the literature, on bounded potentials. In particular, see
[21, 53, 54, 69] for V even or periodic in y, and [24] for a case closer to our onesThe main
problem, when one studies bounded potentials, is that the functional f defined in (4.5) does not
satisfis the PS condition on the whole space E. In fact one can find diverging sequences of
constants {E,n} such that f(!';n) — 0 and f'(§,) — 0. In particular the functional f, which is
bounded from below, does not, in some situations, attains its infimum. The way which have been
- used to overcome such a problem are: a) to restrict the functional, whenever V isevenin y, on
the subspace of E of odd functions, where it can be shown to satisfy the PS condition, as in
[21]; to show that, whenever V is periodic in x, the functional satisfies a weakened PS
condition, as in [21, 54, 69]; to show that the PS condition holds in {f 2c} for some ¢ and
impose conditions on V such that f has a mini-max level greater than ¢, asin [24] and, applied
to a different problem, in [14].

We start by studying the PS condition.

5.1. Lemma. Suppose Ve CIR xRN; R), V(i+T,y) =V({y) V (ty) € RX RN and assume
(5.1) holds for V. Then f is bounded from below. If

5.4 VyV(t,y) — 0 as lyl = 4eo, uniformiy in t,

then PS holdsfor f in {f<-Tm* -2} {f2-Tmx+¢€} Ve>O0.

Proof. The facts that f is bounded and that PS holds for f in {f <-Tm* - &} follows from
Lemma 4.2, since we have already remarkcd that (4.1) holds for V with M=m*+¢ Ve>0.

So let us take (y,) contained in E such that

Cy 2 flyy) 2 -Tmx +€, f(yy) — 0.
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From

) [y, - [ Vityp <c
follows
(112) [ Iy, <oy + [ Viry,) <cs,

hence, as in Lemma 4.2, we can deduce Iw, (1)l <c4. Suppose lly Il — +oo Since _ﬂyn‘lz < 2c5,
we deduce that 1§ | — +eo, hence ly, (1)l 2 IE | - lw ()] = +eo uniformly in t. Since

[ty = (Fywg + [ (FyV(Ey,@)wy0).

From f'(y,) — 0, since llw,|l is bounded and ly,(t) = +eo uniformly, we deduce from (5.4)
that

[lya? 0.
" Hence, using again the fact that Iy (t)l = +oo uniformly, we deduce that for n large enough
Fy) = (12) [lyg - [ Vetyy)

<e'- Tmx + €,

with € =€'(n) = 0 as n — +oo, contradiction which proves the boundedness of lly,|l. Now one
can proceed as in Lemma 4.2 to prove the existence of a converging subsequence.

We have already seen that, whenever {f <-Tm* - €} # @, f attains its minimum and a
solution exists. But this set could as well be empty, as it is the case whenever m* = K. To find a
solution in this case, we will make an assumption which will imply that H(E, £ Tma+€) g
nontrivial for some q= 0.

5.2. Lemma. Suppose Ve CI® xRN;R), V(+T,y) = V(ty) V (ty) € RxRN and that V
satisfies (5.1) and (5.4). Suppose, moreover

3¢e RN and §>0 such that
(5.5)

€ - ¢l < T{(K-ms)/3}2+8 implies V(t, &) <mx
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Then J g, >0 suchthat V e [0,e5] Hy(E.fTm*+€) 0,

Proof. First of all we remark that V €>0 3 R; >0 such that
A ={&e RN EI>R,)

is a subset of FTM**€ Infact V £e RN

F&=-[ V(&

and from the definition of ms follows that exists R; such that 1€l 2R; implies V(t, £) > mx -
/T, so that

FE) < -Tmx +&.
We will now show that 3 &, p >0 such that
£ Tm«+€y  is a subset of B,={y=wy+&; &, -LI2p)

(€ given by (5.5)). If not, V g, > 0 it exists a sequence (y,) in £ Tmatey guch that ( 1/’DJ‘ Yo =
€, with &, convergingto (. Then

(5.6) (172) [ 1y - [V(tyy) < -Tms + g
implies
[ 1y, ? <2T(K - ma) + 26,
and, using (4.4)
lw, (D € RT/6)2 {T(K - ms) + g5} 12 < T{(K- m«)/3} /2 + (Tey/3)1/2.
Then

[yn(t) - €I = lwn(t) + an - C.ul
< T((K- mx)/3} 12 + (Tey )2 + €, -
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taking €, such that (Tey/3)/2<&/2 and n, large enough so that 1€, - {l<8/2 V n2>n,, from
(5.5) follows that

SUp;e [O,T]V(t,yn(t)) < U< msx
so that
fom =) [y, - [V(ty,) 2 -Ti > -Tms,
in contradiction with (5.6) for g, eventually smaller.
Since fTMstey Tmute vy ¢ €]0,e4[, we have shownthat VeelO,gl IRy, p>0 such
that

Bp 5 f—Tm*+8 > Al'

Since A; is a deformation retract of Bp, we deduce that A; is aretract of f‘Tm*““E, hence [40,
formula (4.15) pg.37]

Hq(f—Tm*+€) = Hq(f—Tm*+€, Al) ® Hq( Al)
and, since Hq(Al) = Hq(S“'l), we deduce that

jﬁv(f-Tm,ﬁe) £0.

From the exact reduced homology sequence of the couple (E, £ TM#*8) (remark that f-Tms«+€
# (), we then deduce

— H(B) — HyEfT™E) - s ,(FT™E) — 3 1(B) -,
and using the well knonw fact that ﬂ-ql(E) =0 V q we find that
0 — Hq(E,f'Tm*+8) - %_l(f-Tm*Hi) -0
from which we get

Hq(E,f'Tm*+8) = 9_41_1()4‘-Tm*+8)’
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so that
Hy(E.f Tms+€) 2 0.
We are now in position to prove

5.3. Theorem. Suppose Ve CI(R xRN; R), V(t+T,y) = V(ty) V (t,y) € R x RN and that V
satisfies (5.1), (5.4) and (5.5). Then the system of ordinary differential equations

) 5=V, Vy)

has at least one T-periodic solution. If, moreover 3 & € RN such that jV(t, €) > m*, then (V)
has at least two T-periodic solutions.

Proof. The Theorem follows directly from Theorem 2.1 and the remark preceeding Lemma 5.1,
simply observing that the solution y, found via Theorem 2.1 is such that f(y;) >-Tmsx (actually

f(yy) 2 -Tmx + €&, g, given by Lemma 5.2).

Morse theory gives us some additional information on the solutions found in Theorem 5.3.
This enables us to prove

5.4. Proposition. Suppose the assumptions of Theorem 5.3 are satisfied. Suppose, moreover, that
Ve C¥R xRN; R) and

(5.7) V(£0) =0 <mx, VyV(£0)=0, V', (t0)=pI Vte[0T], where p> (4n¥/T?).

Then (V) has at least one non-trivial (i.e. not identically zero) T-periodic solution . If, moreover 3
Ee RN such that JV(t, €) > m*, then (V) has at least two non-trivial T-periodic solutions.

Proof. We know that 0 € Z(f) and that f(0) = 0> -Tmsx. Suppose Z(f) N {f 2 -Tmx + ¢y} =
{0}. Then, by Proposition 1.11, we have that

Hq(E) = Hq(fﬂ) and Hq(fO\{O}) = Hq(f'Tm*“'g).
Since

0= #( ) - Hy@®N\0) = 2 ;(N0}) — 2,9 =0
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we have that #_;(£%/{0}) = Hy(f%f\{0}) (see proof of Lemma 5.2) and
Hy(f%N0)) = 2, ((%(0)) = 2, (F Tve),

The groups Hq(tﬂ,fo\{O}) are the critical groups Cq(f,O) (see 2.16). From Lemma 5.2 and
Hq(f‘Tm**"s) = ﬂ{l(f'Tm*'*ﬁ) V q#0 we deduce that :

(5.8) - CN(,0) = 0.

Let us now evaluate the Morse index of zero. We have that
fO)vvl = [M2-p[W? V¥ veE

Setting, Vve E, v() =X, 7 ckeikt, where ¢, € CN, ¢k = complex conjugate of ¢, we get
d2fO)v,v] =T Ty 7 {(AnH T2 - u} Iy 12

hence index(0) 2 N + 2N = 3N. Using Remark 2.19 we then have Cq(f,p) =0 V qg<3N,in
contradiction with (5.8). The second statement follows as in Theorem 5.5.

It is possible, under some additional assumptions, to evaluate exactly the homology groups
Hy(E, £-Tm«+8); this fact will allows us to prove existence of one more solution under suitable
assumptions. We start by studying the sublevel f1m++€,

5.5. Lemma. Suppose Ve CI(R xRN; R), V(+T,y) = V(,y) V (t,y) € R x RN and that V
satisfies assumptions (5.1), (5.4). Suppose, moreover, that

(5.9) lim,yl o V(LY)=m Vte [0,T],
(5.10) 3 R >0 suchthat Iyl >R implies that V(t,Ay) is strictly increasing in
A1

Then 3 €,>0 suchthat V¢e ]0,g]
(5.11) FImste = EYT,E

with Th82 @, cl (%) Ncl %) = @, T positively invariant and closed. We also have that PS
holds in I'®. Moreover if for some € >0 I8 NZ(f) N (f>m} =@, then
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Hy(T,9 = Hq(sn-l).
Proof. We show, first of all, that it exists Ry >R and g;>0 such that
(5.12) f(y)2-Tm+¢g;, VyeE with léyl =R,.
Set Ry =R + T {(k-m)/3) 172 1 (1/3)2, Suppose lEj,yI =R,. Then, if

(1/2) j Iw'2 > T(K-m) + 1/2

we have that
F& =) w2 [Viey)
2TEK-m)+1/2-TK
=-Tm +1/2,
while, if

(1/2) [ w2 < T(K - m) + 172
we have that (see proof of Lemma 5.2)
Iwy @1 < T{(K - m)/3) 12 + (T/3)!/2,
hence
ly©! 2 &1 - Iw ()]
>R+ T{(K - m)/3) 2 + (T/3)V2 - T{(K - m)/3}}/2- (T/3)/2 >R,

and since V(t,Ay) is stricly decreasing in A for lyl>R and A 2 1, follows from (5.9), (5.10)
that

m, =sup{V(LE): te R, R<IEI <R, + T{(K-m)/3}12+(1/3)12} <m
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hence

£ =172 [ 1w [Viy)
2-Tm; =-Tm + T(m - m,),

and (5.12) holds with €&, =min (1/2,T(m - m,)).
Define now

[f={y=w+Ee fFTMe; |E <R,)
If={y=w+Ee fIMe; E|>R,).

It is trivial to check that fTm+€ = B UTLE, that T8 = @ V&> 0 (it follows from (5.9), that I
N T8 =@ and that T}# is closed fori=1,2 V e <g, We also remark that

(5.13) Vee]0gl, Vye I V(iyt) <m Vtie R.

To prove that PS holds in T';%o it is enough to remark that V sequence y, € I';%0 one has
that I§ | <R, by definition. Then using the fact that T';% is closed, the same proof of Lemma 5.1
applies.

It only remains to show that I')® N Z(f) = @ implies Hq(r‘zso) = Hq(S“'l). To this
purpose, we first remark that, Vn2>1, I“ZSO/“ is a deformation retract of I';%0; in fact, since I',%0
is positively invariant and PS holds in {€y/n < f <g,}, we can apply Remark 1.6. Let 1 be the

corresponding deformation.
We then define a second deformation

IT: [0,1] x T,€/™ — T8
as follows
T(Ly) =& + (1 - w.
We claim that I n;, suchthat V n2 n,
(5.14) y € %™ implies TI(ty) € T,% Vte [0,1].

Ifnot,Vn 3y eI /N t e [0,1] such that
n 2 &
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(5.15) I, y,) & Ty%.

Since (1/T )_[H(t,y(s))ds = F,y Vy,Vse [0,1] and since 1’280/“ is a subset of I'y%0, we have
that (5.15) implies

(5.16) FI(t,, yp)) > -Tm + g,

From

flyp =(1/2) j w12 - _’.V(t, ¥y) <-Tm + gy/n,
taking into account (5.13), we get
(5.17) (1/2) J Iwn'I2 <gyn and lwn(t)l2 < (SOT)/(3n),
so that w, — 0. Moreover, from

Tm2 [V(ty,) 2 Tm - gg/n + (1/2) [ w2,
it follows that

[v(ty,) — Tm,

which, together with (5.9), (5.13) implies 1§ | — +co. Take now R so large that £ > Rs
implies V(t,£) > Tm - €,/(2T). From our preeceding discussion follows that it exists n, such that
Vnzn, ly,()I>R3 Vt, hence V(t, y (1)) 2m-¢gy/(2T) V t,V n2n, We finally get that V n
2 max(n,2)

FAUy) = @/2) 12 [ 1wy - [V, y®)
< (1/2) [ w2 - [Vt y 1)
<gyn-Tm +gy2
<-Tm+ €p»

in contradiction with (5.16).

We finally consider a third deformation, the projection P of RN \Br on asphere of radius
R, >R, where R, is chosen in such a way that f(I€l = R,) < gy/n,. It is easy to check that the
composition of the three deformations h, IT and P is a deformation o€ C([0,1] x fTm+&;
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- Tm+€q) such that

o0y =y Vye fTmey;

i) oty)=y Vye {Ee RN:EI=R,} Ve [0,1];
iii) o(L,y) e {E€ RN: [E|=R,} Vye fTmg,
This proves that Hy(I',%0) = Hy(S™!).

Using this Lemma we can prove

5.6. Theorem. Suppose Ve CZR xRN;R), V(t+T,y) = V(t,y) V (ty) € R xRN, that V
satisfies (5.1), (5.4), (5.9) and (5.10) and also assume

(5.18) V@0 =0<m, V,V(t0)=0, V', (t0)=pTI Vte[0,T], where p >
(16n%/T2), p=k? (4n/T?).

Then (V) has at least two non-trivial T-periodic solutions . If, moreover, 3 & € RN such that
JV(t, €) > m, then (V) has at least three non-trivial T-periodic solutions.

Proof. We first remark that assumptions (5.9), (5.10) imply that (5.5) holds. Then the
existence of at least one nontrivial T-periodic solution y; for (V) follows from Proposition 5.4.
We also remark that from the proof of such a Proposition follows that f(y;) > -Tm. Suppose

(5.19) {f>-Tm) N Z(H) = {0, y,).

Let & =min {gj 0, f(y;)} (g, given by Lemma 5.5) and take €€ ]0,;[. From Lemma 5.5
follows that f'T™+€ =T € UT,¢ and that these sets are positively invariant. Then

Hy(f T™8)=H(T'1®) © Hy(T,®)
=Hy(S"™) @ H (T ).

From this we deduce

HS™) if T)F=0

Hq(E,f-Tm+8) = { . . . .
Hq(S )@%(1“2 0) if F2 0.

Step 1. THLE=@.
Suppose that I',& = @. Then
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Hq(E, f-Tm+e) = %(Sn- 1).

Reasoning as in Proposition 5.4 one can easily show that 0 is a nondegenerate critical point of
index iy = N + 2N[(T/2®) ul/2], where [o] denotes the integer part of o. From our

assumptions follows i, = 5N. Then Cq(f,O) =Gif g=i, and Cq(f,p) =0 if g =i, while, if

A =index(y;), we have that (see Remark 2.19)

CqfyD=0 Vg<i Vg>A+m,

where m = dim ker dzf(yl). Since u e ker d2f(y1) iff -i= V"yy(t,yl(t)) u, u € E, we have that
m < 2N, hence "

Cyfyp=0 Vq<A, Vg>A+2N.
We can now apply the Morse inequalities (Proposition 2.20), to deduce
(5.20) t0 + Z_g on Coi(Fy DM = N+ (141) Q),

which can never be satisfied under our assumptions. In fact, we first deduce from i, > 5N that A
<N, and then '

ZicooN Oy M =N+ 2o (g5 + g, ) B

= tN + Zl=0,2N+] (ql + ql-l) ti \A S_] < iO‘
This implies
3.

i=2N+120+ @i+ Q) =0 VYV 1<j<i,

and since q; 20 we deduce q;=0 V 2N <i<ij- 1. Equating the coefficients of t iy and tig*1
in (5.20), we then deduce

1=q;+q; 4

0=qj41 +9j,

Since Qi1 = 0, q 0=1, we reach the desired contradiction.
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Step2.I' )= @.

Suppose now I'j®# @ - remark that this is the case whenever 3 € € RN such that IV(t, )
>m. In this situation one can find a solution y; minimizing f in I',%; in fact f is bounded from
- below in I'y® and PS holds there and this set is positively invariant. If y; is not the only critical
point of f inI'\% we are done (remark that 0 ¢ I';%). If ¥y, is the only critical point of f in I';%,
it is immediate to deduce from Proposition 1.11 and Theorem 2.17 that

Hq(I‘la)=Cq(f, ypPp=0if q#0, G if q=0,
hence II{](FZE) = {0} and the proof of Step 1 applies to prove the existence of a third critical point.

5.7. Proposition. Suppose Ve C2(R X RN; R), V(t+T,y)=V(ty) V (ty) € R X RN and that
V satisfies (5.1), (5.4), (5.19) and

5.21) lim|y| 4oV (1Y) =KV t€[0,T], where K = supg, gN V(ty),
(5.22) 3R >0 such that lyl>R implies V(t,Ay) is nondecreasing in A > 1.
If (5.7') holds with m =K, then (5.7) has at least two non-trivial T-periodic solutions.

Proof. It is easy to see that Lemma 5.5 continues to hold when assumptions (5.9), (5.10) are
replaced by (5.21), (5.22); then the Proposition follows exactly as in Theorm 5.6.

Using Proposition 5.7 we can prove

5.8. Proposition. Let Ve C2R xRN; R), V(t+T,y) = V(t,y) V (t,y) € RxRN . Suppose 3
Q, subset of RN, Q open, convex and diffeomorphic to a ball such that

0<V(ity)<m Vye Q
V(t,y)=m and VyV(t,y) =0 Vte [0,T], Vye 0Q;
V(t,0)=0<m, VyV(t,O) =0, V"yy(t,O) =oal Vte [0,T].

Then, if o > (4n2)/T2, (V) has at least one T-periodic solution y(t) € Q V t, while if o >
(16n2)/T2, o= k2(4n2)/T2 V k e N, then (5.16) has at least two non-trivial T-periodic solutions
' yiiDe Q Vit

Proof. Define U(t,y) tobe equalto V(ty) if ye Q,andto m is ye Q. Sucha U is of class
chLl, Suppose y(t) is a T-periodic solution of -¥ = VyU(t,y). Suppose it exists t'€ RN such
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that y(t') does not belong to Q. Then either y(t) € Q V t or 3 t; such that y(t;) € 9Q and y(t)
is not constant. In the first case -¥(t) = 0 V t, hence (since y is T-periodic), y(t) =& ¢ Q and
(&) =-Tm. In the second case u(t) = x(t+t;) solves the Cauchy problem

-ii = VyU(t,u)
u(0) = y(t;) € 0Q
u'(0) = y'(ty).

If y'(ty) = 0, the solution of such a problem is y(t+t;) = u(t) = y(t;) V't, so that y(t) € 0Q V't
and f(y)=-Tm. If y'(t;) # 0 follows from the convexity of Q that y(t) must describe a straight
line in the future or in the past, in contradiction with the periodicity of y. From the above
discussion follows that a T-periodic solution y of the problem -y = VyU(t,y) is either a constant
€ such that f(§) =-Tm or is contained in Q and it is a solution of -y = VyV(t,y). From this
follows that any critical point y of

g =172) [y - [Ucey)

such that g(y) >-Tm is a T-periodic solution of our original problem; moreover g is of class C2
in a neighborhood of Z(g) N {g=-Tm+¢€} V e€>0. This allows us to use Theorem 5.3 and
Proposition 5.7 to prove the Theorem. We orly remark that in the case I',® # @ one could have
that -Tm =inf{g(y): y € I';%}, so that one of the critical points would be at level -Tm. But g(y)
=-Tm imply (1/2) J ly'i2 =0, so that y(t) =&, while y e I';® implies § e Q, so that this is still ¢
‘solution of our original problem.

5.9. Remark. The above Proposition covers the case of a potential V(E) = p(I€l), where p isa
~ T-periodic function from R to R.
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Chapter III: Applications of Morse theory to the search of periodic
solutions for second order Hamiltonian systems: singular potentials.

In this chapter we will study existence of T-periodic solutions for the equation
V) 5=V, V(L)

for potentials V e CZ(RXQ,R), V(t+T,y) = V(t,y) V (t,y) € RxQ, where Q is and open subset
of RN,N>2, Q=RN/C with C compact and V — *ee as y — 9dQ. The existence of one or
more solutions for such an equation will be proved finding critical points of the functional f
introduced in (4.5), the main deifference being now that f it is not defined on the whole Hilbert
space E. In fact we will take f to be defined in the set A= {ue E: u(t) e Q V t}, which is an
open subset of E. In such a situation, one has to study the behaviour of f on 0. We will show
in Lemma 6.1, following Gordon [45], that, assuming the so called "strong force condition" on V
(see [45]), one has that "f(u) =+ on dQ". This fact will allow us to use the usual variational
tecniques in every set {-eo <b < f <a < +eo}. The results discussed here are contained in the

~ papers [3, 4, 5, 35, 36]. For other results on singular potentials, see [15, 22, 23, 45, 46, 47, 48,
51] and [6] for areview of such papers.

More precisely, in §6 we will prove existence of infinitely many T-periodic solutions in the
case V— -0 as y — 0Q,in §7 we will prove existence of at least one T-periodic solution in the
case V — +eo as y — 0dQ. In both these sections we will assume the strong force condition.

The restrictions the strong force assumption pose on the potential V imply that, if V(y) =
Hyl'®, then o 2 2, so that the Newton potential is not cover by our discussion. Little is known on
the case in which the strong force assumption is violated (on this argument, see [46, 39]). In §8
we will discuss such a problem in the case in which Q is convex and bounded and V is concave;
this problem will be tackled using the Dual variational principle of Clarke and Ekeland [27, 28],
while in §9 we will deal with the problem Q convex and bounded and V convex, proving
existence of a solution of minimal period T (on this problem see also [15] . On the problem of
existence of solutions of minimal period see [2, 8, 28, 43, 44]).

§6. The case V. — +o00 _as v — dQ.

Let Q=RMC, Ccompact, N>2 and assume
6.1) Ve CZRx QR), V(i+T,y) = V(L,y) V (ty) € RxQ.

Define A={ue E: u(t)e QVt},andlet f: A— R be defined by (4.5). From (6.1) follows
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that f e C2(A,R).
On the behaviour of V near C we will assume

(SF) there exist £ >0 and Ue CHQR) such that

(6.2) U(y) 2> -~ as y>y*e C, ye Q,
(6.3) V(ty) <- lVyU(y)I2 VteR, Vye Cua=(ye Q: dist (y,C) <¢'}.

Conditon (SF) (=Strong force) has been first introduced by Gordon [45]. The motivation of such
a contition is the following

6.1. Lemma. If (SF) holds, then V (u,) in A, u, converging weakly in E to z e JdA one has
that f(u,) — +ee.

Proof. See [45, 47]. We give the proof for completeness. From u, converging weakly in E, to z,
we deduce llull<const and u, — z strongly in C(0,T; R). Suppose f(u,) bounded. Let t* be
such that z(t*) € dQ. If z(t) e Q V't, then, since u, converges to z uniformly, we have that
V(t, un(t)) — -o uniformly in t (follows from (SF)), hence, using the boundedness of - lhap ll, we
have f(u,) — -eo. Then 38 >0 such that z(t*+8) ¢ dQ and z(t) € Cer Vte [t*,t*+3]. Using
(SF) we deduce

*+8 g
Ulun(t*+) - Ul (t4) = | T, Ulup(9) ds
t*

t*+3
= '[t* <V,U(uy(s)), u,'(s)> ds

t*+3 T t*+5 9411
<{j IV, Ul (s))%ds)} 72 ([ L ©Pds) 12

t*+8
< Veu,e) ds)V2 I

t*

Since u(t*+8) — z(t*+8) ¢ 0Q, U(u,(t*+8) is bounded, while U(u,(t¥)) — -eo. Being Il
bounded, we deduce that

t*+8
[ Vsuy)ds = o as n— +ee.
[l
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Since V is bounded from above in a neighborhood of z(t) (V can only go to -o), we have that

T t*+8

[ Visunds = [ V) ds+[ Visue)ds (8= [0TNe t++5)
0 t* B

t*+9
< f V(s,u,(s)) ds + const — -eo as n — +oo,
[*

and again we find that f(u,) — +ee.

6.2. Remark. The above Lemma permits to use the usual variational methods in working with the
- functional f, regardless of the fact that it is defined in an open subset of E (for a different
approach, see [15]).

In order to prove existence of T-periodic solutions for V in the present situation, some
assumptions on the behaviour of V at infinity are in order. We will make here assumptions which
are similar to the ones made for V bounded in §5, even if also different situations could be dealt
with in an analogous way (see [47, 48] for some other kinds of behaviour).More precisely, we
assume

(6.4) V(ty) =0 as lyl = +co uniformly in t, and 3 R;>0: V(t,y)<0 VIyl>Ry;
(6.5) VyV(t,y) — 0 as lyl > 4o uniformly in t.
Using these assumptions, we can prove

6.3. Lemma. f is bounded from below. Moreover: (i) V &> 0, PS holds in the set {f = €}; (ii)
(PS) holds in every closed set where I | < const.

Proof. [5]. The proof is essentially the same of that of Lemma 5.1; in fact the proof there, one
only uses the boundedness from above of V and the boundedness at infinity of V and (6.5), so
that from that Lemma follows that every sequence u, such that f(u,) is bounded and f'(u,) —
0 converges weakly (up to a subsequence) to z € E. From Lemma 6.1 we then deduce that z &
dA, and the (i) follows. (ii) is immediate; it is enough to observe that the boundeness of liw Il is a
direct consequence of the fact that V is bounded from above, and then proceed as in (i).

Asin §35, we study the sublevels f&. We find, similarly to Lemma 5.5,

6.4. Lemma. It exists R* >0, €* > 0 such that V € e ]0,e*]

40



fE=TFUTl,f
with

FE={ue f&IE | <R*},

r2£ = {u e fet Igll' > R*}a
where cIT'1®* N clT,* =0 and PS holdsin I'; The sets T';€, ', are positively invariant under
the steepeste descent flow of f. Moreover, if Z(f) N I,® =@, then SN-1 js a deformation retract
of er.
Proof. See [5, Corollary 2.3, Lemma 2.8 and 5.1]. The proof is completely analogous to the
proof of Lemma 5.5: in fact, there, only the boundedness from above of V has been used; then,
taking into account the discussion in the proof of Lemma 6.3 and remarking (i) m = 0 in the
present situation and (ii) replacing (5.9) and (5.10) with (6.4) one does not affect the validity of _
the arguments there (in fact (5.10) has been used only in proving ‘my <m), the Lemma follows.

To be able to apply the kind of reasoning used in Chapter II to prove the existence of

T-periodic solutions for (V), it is necessary to study the topology of set A in which f is defined.
To this purpose, we prove:
6.5. Lemma. If Q =RMC, with C compact, then
(6.6) Hq(A) # 0 for infinitely many q.
- Proof. [5, Lemma 6.2]. Let pe C and R >0 be such that C is contained in Bg. Set Q; =
RMBp, Q)=RM({p} and A;={ue E:u® e Q; V1), Ay={ue E:ult)e Q, V1t}. Clearly
Ay D> AD Ay, and since A, is a deformation retract of Ay, Aq isaretract of A. Then [40,
(4.15)]

(6.7) Hy(A) = Hy(A)) @ Hy(AA,)).

Since it is well known [19, (3.10)] that (6.6) holds for A, then (6.7) implies that (6.6) holds
for A as well.

We can now prove
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6.6. Theorem. Suppose Q =RMNC, C compatto, and let V satisfy (6.1), (SF), (6.4) and
(6.5). Then (V) has infinitely many T-periodic solutions.

Proof. [5, Theorem 6.3]. Suppose, by contradiction, that Z(f) = {uj,...,u;}, k < +e. Take €€

- 10,g¢] such that fENZ(f) =@ and [LENZ(f) =@. Set M= max; f(u;), m = min, f(u). Then,
by Proposition 1.11 and Lemma 6.1 follows

Hy(A.f®) =H (M50,
Since f is of the form identity - compact, it is Fredholm of index zero V u e A. Then we can
use Remark 2.15, together with Lemmas 6.3, to prove that 3 g, =0 such that Hq(A, =0V q
2 qq. This fact , together with the exact homology sequence of the couple (A,f%) (see proof of
Lemma 5.2) permits us to prove that

Hyh) =H (W) Vq

=H,(f) Vqzgq

and, using Lemma 6.4,

Hy(A) = Hq(I‘ls) @ Hq(I‘Za) Vqgzq,

=H, %) @ H(SN) Vg2q,

Since PS holds in I';%, we can apply again Remark 2.15 to prove that Hq(I‘le) =0 Vqzq,
for some q,. Setting q, = max{q,q;,N-1} we finally deduce

HyA) =0 V g>gq,
contradiction which proves the theorem.
It is also possible to prove
6.7. Propositon. Let the assumptions of Theorem 6.6 be satisfied. If, moreover, 3R, 8> 0

such that lyl2R, IEI<8 imply <VyV(t,y+§),§> > 0, then it esists a sequence u, of T-periodic
solutions of (V) such that f(uy) — +ee.
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Proof. [5, Theorem 6.4]. We only remark that the assumption we are making ensures us that
there are no critical points of f in I',® for & sufficiently small; this fact implies that we can reach
a contradiction exactly as in the proof Theorem 6.3 assuming that M = sup{f(u): ue Z(f)} <
+oo,

In another situation it is possible to prove existence of infinitely many T-periodic solutions for (V):
itis the case when V satisfies (6.1), (SF) and, instead of (6.5), satisfies

(6.8) V(t,y) = 0 as lyl — +eo, uniformly in t, and
dRy: <VyV(t,y),y> <0 VIylzR,, V.

The situation is now quite different from the situation seen above and in §5.In fact, while Lemma
6.3 continues to hold, different is the "topology" of the set f€. In fact, one can prove

6.8. Lemma. V £>0 esite R >0 such that
(6.9) f@u)>0 VYV ue 5 lull>R.
In particular f® N By is positively invariant. Moreover €N By is a deformation retract of f%.
Proof. [5, Lemmas 3.2, 3.4 and 6.5]. We know that u e f® implies Iwu(t)l < const. Then, If
the first statement is not true, it must exists a sequence u, such that liw Il < const, 1€ | — +eo
and (f'(up),uy) £0. Then lu (t)) — +eo uniformly int and, using (6.8), we get

_[Iunl2 = (f'(up)u,) + I<VyV(t,un(t)),un(t)> <0 for n sufficiently large,
contradction which proves the first statement. The other statements follow easily from the first one;
in particular the deformation is just the projection on the bail Br N f® (it is decreasing thanks to
(6.9).
Using this Lemma, we prove
6.9. Theorem. Suppose Q= RMC, C compatto, and let V satisfy {6.1), (SF), (6.5) and
(6.8). Then (V) has infinitely many T-periodic solutions; moreover it exists a sequence u, of

solutions such that f(u,) — +ee.

Proof. Suppose that M =sup {f(u): ue Z(f)) < +eo. Asin Theorem 6.4 we deduce that esite

qo such that
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Hq(A) = Hq(fe) Vq=2qq
But now Lemma 6.5 implies that

Hq(A) = Hq(ff) Vqgz2q,

EHq(fﬁnBR) Vq2gq,
and since PS holds in f®*n By (I, is bounded V ue Bg),and f€n By is positively
invariant, again fron Remark 2.15 we deduce that Hq(f“: NBr)=0 Vq=2gq,;, contradiction
with Lemma 6.5.
If V does not depend on t, the problem becams to find non-constant periodic soluitons of

(6.10) §=V,V().

In such a case one can prove, essentially with the same arguments used in Theorems 6.6, 6.7 and
6.9, the following

6.10. Theorem. Suppose Q =RNC, C compatto, and let V satisfy (6.1), (SF), (6.4) and
either (6.5) or (6.8). Suppose, moreover, that

Z(V) is a compact subset of Q.
Then (V) has infinitely many T-periodic non constant geometrically distinct solutions.

Proof. See [5, Theorem 7.1].

§7. Effective-like potentials.

In this section we will study existence of T-periodic solutions for the equation

(V) ‘S’ = Vy V(t,y)

for potentials V € CZ(RXQ,R), V(t+T,y) = V(t,y) V (t,y) € RxQ, where Q= RN/{0} and V
— 400 as y — 0Q. The "model" potential is V(y) = -lyI"! + IxI"2, the Newton effective potential.
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This case, even if can be dealt with the same tools as the cases studied in §6, it is quite different
from that one for the fact that now the functional f: A = R it is no more bounded from below.
The results we will describe here are contained in [35].

More precisely, on V we will assume

(7:1) Ve CZRxQR), V(t+T,y) = V({ty) V (t.y) € RXQ, where Q= RN/{0}; -

(7.2) lim,_,4V(t,y) = +eo, uniformly in t and monotonically increasing along the rays as
lyl small;

(SF) 3U e C{(QR),e >0 such that

(1) U@y) 5+ as y—> 0
() V(ty) ZIVyU'(y)I2 Vy withlyl<g, Vte R.

(7.3) V(t,y) = 0 as lyl — oo, uniformly in t and monotonically increasing along the
rays as lyl small, and VyV(t,y) — 0 as lyl = 4o, uniformly in t;

(7.4) <VyV(t,y),y> <c; Vty)e RxQ for some ¢; 20 (*).
7.1. Remarks. (i) if V satisfies (SF'), then -V satisfies (SF) with U=-U" (U' given by
(SF")) and the same €'
(1) (7.3) implies that I3 m >0 such that
(7.5) - Vy)2-m V(ty) € RxQ,
and that 3 R >0 such that
(7.6) -m<V(y) <0 V(ty) e RxQ with lyl>R.
(iii) (7.4) is a conditon at infinity; in fact (7.2) implies that (7.4) is satisfied in a
neighborhood of the origin.
@iv) (7.2) implies that

(7.7) 3d >0 suchthat V(t,y) >d implies V(t,By) = V(ty) V Be 10,1].

Let A be defined asin §6, and let f: A — R be given by (4.5). First of all, we have that

(*) In this section ¢; (i=1, 2,...) will denote a nonnegative constant.
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7.2.Lemma. If (SF) holds, then V (u,) in A, u, converging weakly in E to z e 9A one has
that f(u,) — -eo.

Proof. It follows from Lemma 6.1, taking into account Remark 7.1 (i).
Next, we investigate the PS condition.
7.3. Lemma. The PS condition holds: (i) in the sets {f 2¢€} and {f<-€} Ve>0;(ii) in
every closed set A such that, for some nonnegative constants c4, 4, g, <c A{flwu'lz} 124 ¢ AD
Yue A.
Proof. See [35, Lemma3]. Even if the result is similar to that of Lemmas 5.1 and 6.3, the proof is
sligthly different.
(i) Let (u,) beasequencein A such that
(7.8) f(u) = c#0 and f'(u,) — 0.
Then
(F g = flug? - <V, V(tup)u>
implies
JrugP < (Fug ) + Tey,
so that

[lug < thugll 15" (ay)lig + Tey

where E* = H'1(SL,RN). Using the fact that f'(u;) — 0, together with Il |l < cylw 'l +c5 IE |
(see (4.2) and (4.3)), one then gets

(7.9) jlun'lz S cgllf Cap)llgs 161 + ¢cs V {u,} satysfing (7.8)..
Using now (4.4), we find that

(7.10) b (01 2 1€ - cg{cyllf (up)llgs €] + c5} 2V {u,} satysfing (7.8).
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Suppose now, by contradiction, that I§ | — +ee. Using (7.10), which implies that lu ()] = +eo
uniformly in t, and (7.3) we have that

(7.11D) V(t,u (1)) = 0 uniformly in t as n — +eo,
(7.12) VyV(t,un(t)) — 0 uniformly in t as n — oo,
And using

(Fp)wy) = [lug? - <V V(tu ©).wy>,
we deduce
jxunwz < Uf (ugligs woll + IV V(g (0] Twy (0.
< c5(If ()l + IV, V(L uy(0)l) (o212,
Using (7.12) we finally deduce
(7.13) g —0 as n— e,

and from this and (7.11) we get that f(u,) — 0 as n — +eo, contradiction which proves the
boundedness of I | and hénce, using (7.9) the boundedness of {u,} in E. From now on the
proof proceeds exactly as in Lemma 6.3.

(ii) It is enough to remark that, under this assumption, one immediately deduce from (7.9)
the boundedness of w,, and, using again this assumption, also that of ..

We can now state our main Theorem of this section.

7.4. Theorem. Let V satisfy (7.1), (7.2), (7.3), (7.4) and SF'. Then (V) has at least one
T-periodic solution.

Proof. See [35].

Let us suppose, by contradiction, that f has no critical points in A. The proof will be
carried on in several steps.
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Step 1. The homology groups of €, £> 0.
First of all we prove that
(7.14) A g={ue A:llull <8} isa deformation retractof A V 6> 0.

This follows easily using as a deformation the Projectioh P on the ball By of E defined by

u if lull<d

F(s,u) = {
{1-(1-8/lullys if lull>a.

Such a deformation is well defined even when restricted to A, since it is just a multiplication by a
nonnegative constant, so that if u e A (which is equivalenttou € E and u(t) #0 V t) also
Pis;u)e A Vse [0,1], Vue A.

Then we prove

(7.15) 387>0 suchthat V3e]0,8;[ A g is a deformation retract of <.

Since u e A g implies llull <6, we have that (1/2)JIu'l2 <8 and ()l < cgd. We deduce that
V(t,u(t)) = b(d) and (1/2)_[lu'l2 <8 VYue A & Wwhere b(0) — +eo as 8 — 0. Then

f@) = @/2) [P - [Vtu®) <822 - bET — -e as 0.
This implies that
(7.16) V K>0, 38,>0 suchthat V 8 10,5)[, A g isasubsetof £

Take now g e N suchthat q=1+ T(d + m)/e, where dis given by (7.7) and m by (7.5).
We have that

12w [Vew<-ge V ue £,
which implies
[vw zge+ a2 ¥V ue o

Let A(u) = {te [0,T]: V(tu(t)=d}, B()={te [0,T]: V(u(t)) <d}. Then
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(7.17) [avu®) = qe + (1/2)[u? - [5Vtu) 2 ge + (1/2)[w'? - dT.
Take now & such that f9 5 A 5 and consider the deformation F(s,u) defined above. We have
that from (7.7) follows that A(F(s,u)) D A(u) V se [0,1], and that, Vte A(u) V(t,F(s,u)t)
2 V(t,u(t)). Then
[AEm) VEFEW) 2 [yVtw
and, if llull > §, using (7.17) one gets
FEG) =(1/2) (1- (1 - M) - [5 rs gy VEGW) - fpepsyy VEGW)
<(1/2) (1 - (1 - 8/Mu}? - [,V(EGs,v) +Tm
< (1/2) {1- (1- §/Mul)}2 - ge - (1/2)tw'® + Td + Tm
<(1/2) {(1 - 8/tul)}2 s2 + 2(1 - &/ltull) s} (1/2)‘[|u'|2 - g€ + T(d+m)
<-g¢ + T(d+m) < -¢,
so that
(7.18) f(F(s,u) <-¢ Vse [0,1], Yue f9,
Since in ¢ PS holds, and there are no critical point of f, there exists a deformation 1 from f®
into f9€ Since (7.18) holds, then the composition of the two deformations, | and F, shows
that A g is a deformation retract of f¢, so that (7.15) holds with 3, given by (7.16), where K
=qe. Using (7.14) and (7.15), we deduce that

(7.19) Hq(f'e) = Hq(A) Ve>0.

Step 2. The homology groups of f%, &> (.
Let's prove, first of all, that

(7.20) Je,>0, ae ]0,1[, R*>0 suchibat f(u)>g; Vue Sa,R*’

where
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(7.21) Sage = (ue A: 22 IE,2- (1/2)fwi =R*2 ).
In fact, if v € S, g, we deduce
lw, ()] < cgfa? IE |2 - R¥2}1/2
so that
la(t)l = €| - cg{a? IE 2 - R¥2}172,
Taking a < 09'1/2, one can prove that
(7.22) R¥/2){1 - (cga)?} 2 Slu(t) S [E | + co{a €2 -R*2}12 Vue S, pu

Let R beasin (7.6), and take R* >R such that (R¥/a){1 - (cga)?}/22R. Then, Vue
Sa R+ We have that

f) = /2 i - [V
= (1/2)(@2 1,2 - R*2) - [Vi(tu).
If (1/2)@2 1,2 -R*2)> 1 from (7.22) follows (V(tu) <0) and f(u) = 1. If (1/2)(a2 1§, -
R*2) < 1, one deduces IE,2 < (R*2 +2)/a? and, from (7.22) follows (R¥/a){1 - (cqa)?}/2 <
ha(t)l S{R*2 +2}12/a + c42172,
Let
M = sup{V(E): (R*/a){1 - (cga)?} 2 <IEI <[R*2 +2}12 fa + c2172 } <.
Then
f) =(1/2)@% 6,2 - R*2) - [V(tu)
2-[Vtw 2 TM > 0.

It is then clear that, taking €, <1, €y <TM, (7.20) follows. Set now

Cp = (ue A: 2252 - (1/2)[u? <R¥2),
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Cy={ue A: a? £,2- (1/2) [l 2 R¥2),
Both this sets have non empty intersection with f€ (in fact C; contains the constant of small
norm, while C, contains the constant of very large norm. Moreover, the PS condition holds in C;
M f* (see Lemma 7.3). From (7.20) it also follows that C; N C, = @, and that these two sets are
closed.
Now, as already done in Lemmas 5.5, 6.4, one can prove that
(7.23) Hy(Cy= Hq(SN'l),
while, since PS holds in C,, one finds

(7.24) Hy(Cp = Hq(f‘e).

Step 3. Proof of theorem compled.
Since PS holdsin {f =€}, taking into account (7.19), and (7.24), we deduce

Hy(A) =Hy(f%)
=H,(Cy) @ Hy(Cy)
=Hy(f® @ Hy(S™)
=Hy(A) ® Hy(SN D,
which yields a contradiction for q =0,N.
We state here, without proving it, a theorem on time-independent effective-like potentials.

7.5. Theorem. Let V be a time-independent potential satisfying (7.1), (7.2), (7.3), (7.4), SF'
and

Z(V) consists only of finitely many nondegenerate critical points.

Then it exists a Ty>0 such that V T2 T, (V) has at least one T-periodic, non-constant
solution.
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Proof. See [35, Theorem 1].

§8. Weak forces.

Let €2 be an open, bounded and convex subset of RN, with 0 e Q.Let Ve CY(Q; R),
h e C}S; RN), where S1=[0,T]/{0,T}. In this section we will study the existence of T-periodic
solutions for the system of ordinary differential equations

V) =V V(L)

where V(t,y) = V(y) + <h(t),y>, under the assumptions:

(8.1) V(y) > -» as y — 9dQ, uniformly;

(8.2) itexistsa m>0 such that -V(y) + (1/2) m lyl? is strictly convex;

(8.3) there exists 6 € 10,1/2[, € >0 such that V(y) 26<y,VV(y)> forevery y e (90Q), = {y
e Q : dist (y,0Q) < &}.

8.1. Remark . (8.2) is a condition on the behaviour of V near the boundary of €.
8.2. Remark. (8.3) is always satisfied if V is concave and radial. In particular, it is satisfied if €2

={ye RN: lyl<1} and V@) =-p(y) (1 - lyly!, where pis of class C!, radial, p(0)=p'(0) =
0, p(y)=1 if lyl>1/2 andis such that V is concave.

8.3. Remark. (8.3) implies that there exists a ¢, 20 such that

(8.4) V(y) 26<y,VV(y)> - ¢; Vye Q.

To study (V) under assumptions (8.1), (8.2) and (8.3) we will employ the Dual Action
Principle. The same device will be used in §9, where we will deal with the case V(y) — +o as y
— 0Q.

The content of this section is contained in [36]. This paper is strictly related to [4], a
preceding paper which will be described in §9, and to which we will often refer to.

Setting V_(ty) =-V(y) + (1/2) m lylZ - <h(t),y>, one has that (V) is equivalent to:
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8.5) -y-my= —VyVm(t,y).

We also remark that V_ is such that

(8.6) V_(t,y) = +oo as y— 0Q uniformly in (t,y);
(8.7) V_(ty) isstrictly convex in y forevery t;

(8.8) there exist 0'e 10,1/2[, € >0 such that V_(ty) < 9'<y,VyVm(t,y)> for every y €
(0Q),.

In fact (8.6) and (8.7) are direct consequences of (8.1), (8.2), while (8.8) follows from (8.1) and
(8.3) taking 6'=00 (0 given by (8.1))) with any o > 1 such that a0’ e 10,1/2[.

Let us now introduce the Legendre transform of the function V  *(t,x), defined as
Vm*(t,x) =sup {<x,y>-V_(ty): ye Q}.

From (8.6), (8.7) and (8.8) follows, in a standard way (see [4], and, for more general propertis
of the Legendre transform [27, 28]), that

8.9) V_*e CISx RN, R);

(8.10) cylxl-¢c5 < Vm*(t,x) Scylxl+cs V(tx)e RxRN (¥);
®.11) V_*tx) 2 (1-0)<x,V,V_*tx)>-cs V (tx) e R<RY;
8.12) IV, V_"@x) <c,.

We take now X =LY0,T; RN) and define, for m # k*w?, o =2mn/T, the operator L_: X
— X setting

(8.13) L v=u iff i+mu=v.

We remark that L_(X) is a subset of W1,

(*) Here and in the following, c; will denote non-negative constants.
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We set, forevery ve X,
om) = V'tV - 1/2) [ <v.Lyv>.

" @ is clearly of class C! on X. If ve X issuch that ®'(v)=0,then L_v= Vme*(t,v). :
Set

(8.14) usL v=V,V_*tv).

From u=L_v it follows that ue W>! and, in particular, that u' is an absolutely
continuous function. Since (see [27, 28])

(8.15) x=V,V,(ty) iff y=V,V, (tx),
one has that Vme*(t,RN) = Q, hence, since v is a.e. bounded, one has u(t) € Q for
~almost all t and, since u is continuous, u(t) belongs to the closure of £ for all t's.

Without loss of generality we can assume u(0) € W. From. (8.13), (8.14) and (8.15) we
deduce

i+mus= VyVm(t,u)
(in the W2! sense), hence
(8.16) -ii(t) = V_ V(@u(®)) + h() in the W21 sense.

Let I=[0,t*] be an interval such that u(t) € W forevery te I (it exists since u 1is
continuous, u(0) € £2). Define, for te I,

8.17) E(1) = (1/2) l'(t)? + V(u(®)).

For te I we find that

B =E(0)-| <h(s)u(s)>ds
0

We note that:
@) E(0) = (1/2) '(0)% + V(u(0)) is bounded because u(0) € Q and u' is absolutely continuous;
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t
(i) |_[0<h(s),u'(s)>| < lihll, 1 flu'll, = < const.

From (i) and (ii) it follows that IE(t)l <c; forevery te I, and cg is independent from 1. This
clearly implies that E(t) < const. for every t, and from this follows that u(t) € Q for every t
since lu'(t)l < const for every t.

The above facts can be collected in the following

8.4. Lemma. If ve L! is a critical point of @, then

u=L ve W?!
is T-periodic solution of (V) such that u(t) € Q forevery t.

8.5. Remark. One can use the usual regularity theorems to prove that the solution given by lemma
8.4 is actually of class CZ.

In order to find a critical point of @, we prove
8.6. Lemma. @ satisfies the Palais Smale conaition.
Proof. See [36, Lemmas 6 and ACzl, Lemma 2.4]. From
D = 1] V. vy - (1/2) [ <vpLov>i<c
and
I <V, Vo v - [<vllov> 1= <@ v, >l S g, v,
using (8.10) and (8.11), we deduce
llv Il 1 < const.
Hence (up to a subsequence), L _v_ — z (recall that L is compact) and z =

Vme*(t,vn) =L v, -®'(v)) >z in L™, moreover z(t) belongs to the closure of Q for
every t. Asin Lemma 8.4, one can actually prove that z(t) € Q for every t. Then
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v, =V, Vv, (tz) = VyVm(t,z) in L*,
and the lemma follows.
Define
X, = span { e¥®, @2 < m},
X, = span { e*®, @2 > m)}.
It is well known that X =X, @ X,. Moreover
(8.18) [ <wLv><0 VveX,
since it is true for all the finite combinations. Thus
(8.19) oW 2| Ve <e, M- ¢V ve X,

and @ is coercive on X,. On X, one has (v =Z v, ek®)

Ivkl2
dv)<c, vl 1-F ——— -¢ VveX
L Z (m-mzkz) 12 1
< vili-cZ vl -c,  V ve X,

Since X is finite dimensional, all the norms are equivalent, hence
(8.20) dW)<cy Vil 1-¢py (vl D2-cpp ¥V ve X,

and -@ is coercive on X;. (8.19) and (8.20) allows us to apply a well known linking theorem
[61] which implies

8.7. Theorem. Let  be an open, bounded and convex subset of RN. Let Ve CY(Q; R) satisfy
(8.1), (8.2) and (8.3). Then, for every h e CY(R;RN), h T-periodic, it exists at least one
T-periodic solution y(t) of (V) such that y(t) € Q forevery t.

8.8. Remark. The interesting point of this theorem is that no strong force condition is required on
the behaviour of V near the singularity set. As we have seen in Lemma 8.4, one can rule out the
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solutions crossing the singularity thanks to the additional regularity of the solutions corresponding
to the critical points of ®. Let us point out that this additional regularity it is not shared by all
solutions of (V); in fact there can exist solutions of (V) which are of class H'*2 but not of class
W21, For example, in one dimension (but the example easily extend to any dimension), consider
the Kepler's problem

-y = V(-lylh.
A particular (classical) solution of such an equation is given by
(8.21) E-[y(1+Ey)]Y2+ (2EN-E)larcsin(2Ey+1) = t + T/(4EN-E), Vi=0,y >0,
where E is a negative constant, the energy of the motion:
A2)y'®2-y®1l=E V0.
Such a solution has the following properties:
(@) y(t) =13 as t—0.
(b) ly()I<-E1 V t20;

(©) y'(z/2)=0, where t=n/Q2IEP)12,

Take now any potential V:]J0,1[5R satisfying the hypothesis of theorem 8.7 (in particular the
potential of Remark 8.2)

V) =yl  Vy e 10l
Suppose any T>0 is given and choose E<(Q such that

-Elc<eg;
TQIER) 2/ =ke N.

It is easy to check that (8.21) defines a H12 T=kt-periodic function which is a weak (in the H-2
sense) solution of equation (V). Such a function, though, is not, by (a), a W2! function.

The above argument rules out the possibility to prove that any weak solution of (V) is of
class W21,
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§9. Singular potentials and minimal period.

In this section we will describe some of the results contained in the paper [4]. The method
employed here is based on the use of the Dual Action Principle (see Lemma 8.4), and on the
connection between critical points of Mountain Pass type (see Theorem 2.3 and Remark 2.4 b)) and
solutions of minimal period of Hamiltonian systems. Such a connection has been estabilished by
Ekeland and Hofer (see [43, 44]) and is based on some geometrical properties of the critical
points of Mountain Pass type (see [50]).

The setting will be very similar to that of §8, and, since the metheds we are going to use are
quite different from those used up to here, we will skip most of the proofs.

Let Q be an open, bounded and convex subset of RN, with 0 e Q. In this section we
will study the existence of T-periodic solutions for the system of ordinary differential equations
™) -§=VV(y)
under the assumptions:
9.1) Ve C¥Q; R);
9.2) V(0) =0 =mingV;
(9.3) V(y) > +o as y — 0Q, uniformly;
(©.4) 3 8 ]0,1/2[, € >0 such that

V(y) £6<y,VV(y)> V ye (0Q), = {y € Q:dist (y,0Q) <&e}.

Let us point out that (9.4) is the usual assumption of "superquadraticity" (near dQ).If U is
radial and convex, (9.4) follows from (9.3), and that no "strong force" condition is required.
See Remark 8.2.
We will prove

9.1. Theorem. Suppose V satisfies (9.1), (9.2), (9.3) and (9.4) and

(9.5) Jk>0 suchthat (V'(y)x,x) 2kix?2 Vye Q, Vxe RN.
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Let wy be the gratest eigenvalue of V"(0), and T, = (2/ey)"/2. Then, V T e J0,T,[, (V) has
at least one T-periodic solution u# 0 having T as minimal period.

9.2. Remark . Existence of at least one T-periodic solution for a similar problem has been proved
by Benci in [15].

Proof. The proof will be carried on in the following steps:
Step 1: use of the dual action principle, asin §8, to transform (V) in a critical point problem for
a functional @ in a Banach space E.
Step 2: application of the Mountain Pass theorem to .
Step 3. use Ekeland-Hofer's argument (see [43]) to show that the Mountain Pass solution has
minimal period.
Step 1: (dual action principle).
Asin §8, one finds that the Legendre transform of V, defined as
V) =sup (<x,y>- V(@) : ye Q)

is such that (see §8 and [4, Lemma 2.2 and Remark 2.3])
9.6) V¥ e CARN; R) and it is strictly convex;
O.7) c)lyl-c, <V () <cylyl+c, VyeRN;
9.8) V¥y) 2 (1-0)<y,VV*(y)>-cs VyeRN
9.9) IVV*(y)l<c, Vye RN,
We now introduce

E={ve LI(0,T;R): [v=0),

and define, V u e E, the operator L setting

Lv=u iff -li=wv.
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Then, we set
o) = [V(¥) - (1/2)<v,Lv>].

@ isclearly of class C! on X. If ve X issuchthat ®'(v) =0, then 3& e RN such that Lv =
VV*(v) +E. Set

(9.10) u=Lv-E=VV*w).

Then -ii =v and, from the properties of the Legendre transform (see (8.15), -ii = VV(u). This
concludes step 1.

Step 2. (application of the Mountain Pass theorem)

One starts by proving that @ satisfies the PS condition (see [4, Lemma2.4]). The proof is
similar to that of Lemma 8.6 and will be omitted here. Then one investigates the bahaviour of @
at v=0 and at infinity. One proves (see [4]) that

(i) esiter,a>0 suchthat ®(v)=a V llall; =1;

(i) 3v*e E, Iiv¥ll; >r such that O(v¥)<0.

Then it is possible to apply the Mountain Pass theorem (see Theorem 2.3) to ®, thus finding a
critical point u € E of @. Such a u, according to stepl, gives rise to a T-periodic solution of

(V).

Step 3. (minimality of period)

To show the solution of Mountain Pass found in step2 has minimal period T, one repeats the
arguments of [43]. The proof is quite technical, since one has to use a finite dimensional reduction
to show that our critical point has "index 0 or 1" (we remark that our functional is not of class CZ2,

also we are working in L1(0,T; RN), which is not a reflexive space).

9.3. Remark. In the paper [4], also results on existence of T-periodic solutions for a complete
Hamiltonian system '

H) -1z =V H(1,z)

are given, where, roughly speaking, H: QxRN — R, Q subset of RN, and H — +e as (p,q)
— 9(QxRN),
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Chapter IV: Perturbations of Hamiltonian systems.

In this last chapter, we are going to discuss some results on perturbation of Hamiltonian
systems contained in the papers [7, 31]. We will use the abstract tools developed in §3, and we will
describe the results contained in the papers [7, 31]. In particular we will be interested in existence
of T-periodic solutions for time-independent Hamiltonian systems perturbed by a small forcing
term.

§10. Morse theory and perturbation of Hamiltonian systems.

We start by describing some results on second order Hamiltonian systems which are
contained in [31]. Let V: RxRN — R be such that

(10.1) Ve C3SIXRNR), V(,0)=0 Vte R;

(10.2) V(ty) = (1/2)kly2 + U(t,y), where k e 10,1[ and IV UEy)I <oy V (ty) e
RxRN and where ¢(s)/s — 0 as s — +oo.

(10.2) implies that

(10.3) Ve>0 3 A=A() >0 such that IVVU(t,y)I <elyl+ Ae) V (t,y) € R<RN and
U(t,y)l <(1/2) elyl2 + Ae) lyl perongiy e RN

Let, asin §4,5,E=H!Y(SLRN) and f:E 5 R be defined by (4.5). We will write here,
always asin §4,5,6,7, YVue E u= wy, + &

We start by proving

10.1. Lemma. Let V satisfy (10.1) and (10.2). Then f is such that
(1) Z({f) is bounded;

() 3 cy>0 suchthat Vue Z(f) Fal<cy

(iii) f satisfies PS.

Proof. See [31, lemma 3.2].

10.1. Lemma. Under the assumptions of Lemma 3.2, and for ¢, given by Lemma 10.1 (ii), the
localization assumption (seeRemark 3.5) holds with ¢, = - ¢, C,y = ¢y
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Proof. See [31, Lemma 3.4]. Here we will just sketch the proof.

First of all, one shows that 3 Ry, k;, k, k3, ks >0 suchthat V ue {-cj<f<cyj}n{ueE:
llull >R} one has 1< llull kull‘l <kj, I<lull llﬁull'1 <kj, k3 <liwli III’;UII‘1 <k,. Then one
defines a deformation ¥: [O,l]x(fb\BR) — E as follows

(Ilull/liw ) sin(®s - 8) w,, + (Iull/Ig II) cos(®s - 8) §, if w=0,
(10.4) Y¥(s,u) = :

g, if w=0.
where 0 € ]-w/2,0[ is defined by
(10.5) sin(-0) = llw[/llull, cos(-6) = lIg I/lhull.

Such a deformation is such that

(10.6) ¥YO,u)=u VuekE,
(10.7) Y(Luw=IllNENE, VuekE,
(10.8) FGull=lul Vse [0,1], Vue E.

One can also prove that, for R large,

g{(‘?(s,u))ls=0<0 Vue {-cg<f(u)<bs<cy, \Bg

Using this deformation, togheter with the fact that ¥(0,u) = - ¢, implies that ¥(1,u) <- ¢, for
llull large, one can show that 3 R >0 such that V a,b € [-c5,cyl a<b, fANC(R,R+1) isa
deformation retract of f°NC(R,R+1) and facl B is a deformation retract of ol By, so that
Proposition 3.6 apllies to prove the lemma.

Finally, using again the deformation (10.4), one finds that [31, Lemma 3.5]
10.2. Lemma. S™-1 s a deformation retract of FCo.

We can now state the following

10.3. Theorem. Suppose V satisfies (10.1), (10.2) and
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(10.9) V'yt0)=KI, KeZ, VyV(t,O) =0 V te R. Then

@) If K<0 or K>1 (V) has at least one non-trivial 2n-periodic solution;
@) If K>4 (V) has at least two non-trivial 2x-periodic solutions;

(i) If V(g,t,y) = V(t,y) + €Uy (t,y) satisfies (10.1) and (10.2), then 3 €*>0 suchthat Vee
[0,e*[,

(10.10) ¥ =V VEty)

has, if K<0 or K> 1, atleast two 2m-periodic solutions and, if K > 4, at least threee
2n-periodic solutions.

Proof. The proof of part (i) and (ii) is essentially the same of that of Proposition 5.4 and
Theorem 5.6, once we observe that from Lemma 10.2 follows that Hq(f'co) isomorfo Hq(S"'l)
and that PS holds. Part (iii) follows noticing that the functional

Fe(w) = f(u) +€[U; (L)

still has a nondegenerate critical point near zero of index equal to the index of 0 with respect to the
unperturbed functional f, and then apply the same reasoning ad in (i), (ii).

Also the case V time-independent can be dealt with using the same tecniques; in this case,
though, we will find nontrivial homology groups for f imposing a non-degeneracy condition on
the critical points of f. We find

10.4. Theorem. Suppose V is time-independent and satisfy (10.1), (10.2), (10.9) and
(10.11) VyV(y)¢O Vy=0;
(10.12) if y(t) is a 2m-periodic solution of (V), then y'(t) is the only 2r-periodic
solution of
-i= VyV(y(t))u.
Suppose that V(g,t,y) = V(y) + Uy(g,t,y) satisfies (10.1) and (10.2) V €> 0, that U,(e,ty) —
0 as € — 0 uniformly in (y,t), and that U; is continuousin € Then 3 &*>0 suchthat Vee

[0,e*[, (10.10) has atleast m* = min{m e N: m > (2N[k12]/(2N+1)}, ([«] denoting the
integer part of o) 2m-periodic solutions.
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Proof. The Proof will be carried on in two steps.
Step 1. Use of Morse theory to find the nondegenerate (in the sense that satisfy (iii)) solutions of
the unperturbed, time-independent equation.

First of all, from Lemma 10.1, (10.9) and (ii) follows that the functional f, defined in
(4.5), is such that

ZH={0}UN;u... uNj,

where

(a) O is a nondegenerate critical point of index N + 2[K1/2];

(b)Vi=1,..,j N; is diffeomorphic to S! andisa nondegenerate critical manifold for f ((iii) is
the nondegeneracy condition: see [42]).

Now one can apply the Morse inequalities (2.9), taking a coefficent G such that every negative
bundle is orientable (this is possible, choosing, for example, G = Z,), so that 2 ,(N;6°®G) =Z;
*MOH,  (N;8"®G) = (1 + 1) D, L) being the index of N;. It is easy to deduce that f must

have at least N + 2[K1/2] critical orbits, nondegenerate by (iii), at least one for every index = N +
2i, i=0,1,...,N+2[K12]-1,

Step 2. Critical points of the perturbed functional.

From step 1, using again,y at every critical level (which is isolated) the Morse inequalities 2.12,
(which implies that Hq(fc*’e, € #0 for some q) and Theorem 3.7, one finds the critical points
of the perturbed functional. We only remark that, whenever at the level ¢ one has more then one
critical orbit, one must, in order to prove the desired multiplicity for the critical points of the
perturbed functional, use Theorem 2.22.

10.5. Remark. Using Theorem 3.9, one could find two solutions of the perturbed system for each
solution of the unperturbed one, but one should require more regularity in €.

Finally, we come to general Hamiltonian systems. More precisely, we will consider
time-dependent perturbations of conves, autonomous Hamiltonian systems. More precisely,
consider

(He) -Jz' = H'(z) + €h(t),

where z = (p,q) € R2N, H' is the gradient of H and J is the symplectic matrix defined by
J(p.q) = (-q,p). We assume that h is T-periodic, and we look for T-periodic solutions of H,
when € is small.

On H we will assume
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(10.13) He CIRINR), is strictly convex, H(y) 2H(0)=0, and 3y>0 and ¢, such
that

<H'(z),z)> 2 Ylzl - ¢5;
(10.14) 3k, ¢, such that
H(z) =< k2)IzP + ¢
(10.15) lim inf, [H(z)/1z12] 2K/2 for some K >k;
(10.16) esite g€ L™ such that dg/dt =h - & in the sense of distributions.
We remark that (10.16) allows, for instance, h to be a Dirac mass.

To be able to apply Theorem 3.11, we have to use a slight modification of the Dual Action
Principle. Let G be the Legendre transform of H, ie. G(y) =sup {<z,y>-H(z): z e RZN}.
We have that such a G is a well defined convex function, strictly convex ond of class Cl, and
that G(y) 2 G(0) = 0. We consider the Hilbert space

E={ue L’OTR™): fu =0},
and we define a linear, self-adjoint operator L€ L(E) by
Lu=v iff -Jv'=u,
and a functional f.:E — R by
Fe(w) = [[G(u- &) - e<uJg (> - (1/2)<u,Lu>].
This functional is the sum of a convex term and a quadratic part. While the quadratic part is of
class C*, the convex term is not Cl, so that we will have to use the subdifferentials.
Suppose 0 € df(u). Then

(10.17) G'(u(t) - €§y) - eJgt) - Lu =&,  ae,

where . e RN s some constant vector. Inverting G' one gets
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(10.18) u(t) - €§;, = H'(Lu + eJg(t) + &8) a.e..
Set now z = Lu+eJg(t) + §,. Differentiating, we get
(10.19) Jz=u+eh-§) ae,
so that equation (10.18) becames

-Jz' = H'(z) + €h(t).

It is well known (see [28]) that, for 21Kl < T <2nk’!, fidentico f, has a global minimum u*
# (0, with ‘

(10.20) c* = f(u*) =min f < f(0) = 0.

Using now some a priori estimates ([7, Lemma 3.2 and 3.3]), one can prove that Theorem 3.11
holds, so that

10.6. Theorem.  Assume (10.13), (10.14), (10.15), (10.16) and let 2rK-! < T < 2xnkL.
Moreover suppose c¢* (given by (10.20)) is an isolated critical level for f and that there exists u*
€ Z(f) such that the orbit {u*(e+q), O € S1} isisolated in Z.«(f). Then there exist  and
€* >0 suchthat, Vee ]- €% e*[, €= 0, the system (Hg) has at least two T—pCI‘lOdlC
solutions, whose corresponding critical point lies in f© +8,
Proof. see [7, Theorem 3.4].

We finally describe an application of Theorem 3.9 contained in the paper [7].
10.7. Theorem. Suppose
(10.21) He C*R™R) and Jcs>0: <H"@)y,y>2cslyl? V¥ z,y e R?N,
and let z; be a nondegenerate T-periodic solution of (HO). Then there exists €* >0 such that V
ee ]-e*e*[,e#0, the forced system (H;) has at least two T-periodic solutions near {z,(t+6),

8 eSl).

Proof. ([7, Theorem 3.6]). We only remark that, now the perturbation is local (it can be seen as a
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bifurcation problem from the unperturbed solution - see [7, §4]). This permits to modify the
Hamiltonian in such a way to have a strictly convex Hamiltonian which coincide with H in a
neighborhood of z,. To this modified Hamiltonian one applies the Dual Action Principle, finding a
functional g, very similar to the functional f, used above, to which Theorem 3.9 can be
applied.
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