ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES :

ON POSITIVE SOLUTIONS OF TWO-POINT
BOUNDARY VALUE PROBLEMS

NJOKU Franic Ikechukwu

Ph.D. Thesis 5/0Oct.88/M

Al

VAR A , TRIESTE
WVAUNL -




Il presente lavoro costituisce la tesi presentata dal Dr.Franic Ikechukwu Njoku, sotto
la direzione del Prof. Giovanni Vidossich e Prof. Fabio Zanolin, in vista di ottenere
l'attestato di ricerca postuniversitaria "Doctor Philosophiae", settore di Analisi Funzionale e
Applicazioni. Ai sensi del Decreto del Ministro della Pubblica Istruzione 24.4.1987,

n.419, tale diploma € equipollente con il titolo di dottore di ricerca in matematica.

Trieste, anno accademico 1987/88.

In ottemperanza a quanto previsto dall' art.1 del decreto legislativo luogoteneziale
31.8.1945, n.660, le prescritte copie della presente pubblicazione sono state depositate
presso la Procura della Repubblica di Trieste e il Commissariato del Governo della Regione
Friuli Venezia Giulia.




I wish to express my profound gratitude to Professors Giovanni Vidossich and Fabio
Zanolin for their kind and patient co-operation throughout the preparation of this thesis.

Also, I am grateful to Professor J.0.C.Ezeilo for all his kindness. May I also thank all
my colleagues and well-wishers both at SISSA and at the ICTP for the warm enviroment
afforded me during my studies at SISSA.

Finally, I express my gratitude to my parents, siblings and Ahudaddy for the concern,
love and encouragementt given to me during these years.




TESI DI "PHILOSOPHIAE DOCTOR"

ON POSITIVE SOLUTIONS OF TWO-POINT
BOUNDARY VALUE PROBLEMS

Settore: Analisi Funzionale ed Applicazioni
Relatore: Prof. Giovanni VIDOSSICH
Correlatore: Prof. Fabio ZANOLIN
Candidato: dott. Franic Ikechukwu NJOKU
Anno Accademico: 1987/1988




Contents.

Introduction

Chapter 1: On the existence of the principal eigenvalue

Chapter 2: Existence and multiplicity of positive solutions for 2-point BVPs
Chapter 3: Solvability of the nonlinear BVP between the first two eigenvalues

References

pg. 18

pg. 33

pg.56




CHAPTER 0
INTRODUCTION

The purpose of this thesis is to study various topics linked to the existence of positive
solutions for linear and nonlinear two-point boundary value problems.

In chapter 1, we detect some common features among some well known orders, namely
(a) the orders in RN obtained by specifying which of the coordinates must be positive and
which others must be negative;
(b) the order in the spaces of real symmetric matrices obtained by the positive semi-definite
symmetric matrices;
(c)  the usual order in the spaces of continuously differentiable functions on a compact
topological space;
in order to define the concept of compactly generared ordered Banach space.The definition is
based on the existence of a family of continuous linear functionals which is compact in a
suitable topology. This is used to study the existence of the principal eigenvalue for the two-
point boundary value problems located in these spaces. Namely, we consider

u" = AL(tu); u(a) = 0 = u(b) 0.1

where, for a compactly generated ordered Banach space X, the operator L . [a,b] x X— X
verifies the following conditions:
(1) L satisfies the generalised Carathéodory conditions;
(i) forevery bounded B € X, L([a,b]xB) is compact;
(i) forevery t, L(t,s) : X — X isa continuous positive linear operator.
The main result is applied to the comparison of the principal eigenvalue for different problems
as well as to the existence for some nonliﬁear problems.

In chapter 2, we present some results of existence and multiplicity of positive (nontrivial)
solutions for the two-point boundary value problem

—u" = f(x,u) 0.2)

u(a) = u(b) =0. (0.3)




Problem (0.2)-(0.3) has been widely investigated, both from the point of view of the
theory of ordinary differential equations [4,5,7,8] and as a particular case of the second order
elliptic problem

-Au = f(x,u), xe Q, 0.4)
with Dirichlet boundary condition
u =0, x € 0Q. (0.5)

In particular, for (0.4)-(0.5), a great deal of existence and multiplicity results has been
obtained under various assumptions concerning the interaction of f(e,e) with the first
eigenvalue A; of the associated linear problem —Au = Au (see for instance [3,6,11,21,24]).
Restricting ourselves to problem (0.2)-(0.3), we provide some new conditions of

nonresonance with respect to
A = (n/b-a)%, (0.6)

in the case of positive solutions. To this end, we combine some classical facts from the theory
of elliptic equations [10] with some recent estimates for the "time-map" associated to equation
(0.2) (see [17,18,30,33]).

In chapter 3, we provide some new conditions for the solvability of the nonlinear two-

point boundary value problem

il

u'(x) + glux)) = p(x) (0.7)

u@) =r,ub) =, (0.8)
where g : R — R is a continuous function, p : [a,b] — R is Lebesgue integrable and
ri.rpe R.

Starting with Dolph [15], various existence theorems concerning (0.7) - (0.8) have been
proved under suitable nonresonance conditions on the nonlinear term g . The usual

(W)

. . . u .
assumptions require that asymptotically, the range of &1—1—- , does not intersect the spectrum of

the differential operator u — —u" , subjected to the homogeneous boundary conditions (see




for instance [11,12,21,24]). In particular, it is known that (0.7) - (0.8) has at least one
solution, for any p(e),r;, 1, provided that

A < hmmf&(-—l < lim sup g-(-—-)—< Ay,

U—too U-—>teo

where A; and A, are the first two eigenvalues of the associated linear problem.

In some recent papers, [26,27], the growth restrictions on g(u’l) have been relaxed to

2G(u)
u2

analogous conditions involving the ratio , where

u
G(u) := [g(s)ds . 0.9)
0

In [26], Mawhin-Ward-Willem found a general necessary and sufficient condition for the
solvability of (0.7) - (0.8) between the first two eigenvalues. In particular, a simple corollary of
their result in [26], is the following.

Proposition 0.1. Assume that g(u) — Aqu is nondecreasing and

2G(u)

A; < liminf g-c-}—g—u—)- < lim sup < A,
U——o0 U——00

A1 < liminf G(u) < lim sup ——= 2G(u) < Ay
U—ytoo U—3+o0

Then (0.7) - (0.8) has at least one solution for all r;,1, € R and p € L%(ab).

Further extensions were obtained in [27], however, a key assumption in all such results
(obtained by variational methods) is that g(u) — A,u is nondecreasing. As far as we know, the
problem of avoiding such technical condition is still open. Now we propose in this chapter a
different approach to this problem. In the same spirit as in [18,30], we prove existence results
for (0.7) - (0.8) using topological degree and some estimates for the time map. In particular, as
a corollary of our main theorem in chapter 3, we have the following. ”




Proposition 0.2. Assume that Ig(u)l — e for lul — o, and

2
Ay < limsup _G(z_u) < lim sup g <Ay,
U—y=c0 u u—~00 u

Ay < liminf (u) < lim inf -2—9%12 <\,
U—y+oo u—>too u

then (0.7) - (0.8) has at least one solution for all rj,r, € B and p € Ll(a,b).

The striking difference between propositions 0.1 and 0.2 is clear. We avoid to require

g(u) — A nondecreasing and we get some improvements allowing better conditions on the
2G(u)
02

ratio . In this manner, we can deal with nonlinearities such that on one side (if for

. g(u . ) ) .

instance, u = 0), Egu—)- may interfer with all the eigenvalues of the linear operator. On the other
. N . g(u

hand, we pay the price of considering the less general assumptions on %—l , and so we cannot

generalize completely the previously quoted results. Proposition 0.2 follows from a more
general result for the equation

u"(x) + h(x,u(x)) = p(x) (0.10)

and the case of jumping nonlinearities (c.f. [9,16,19]) is also covered.

Finally, we remark that although we have confined ourselves to the study of the above
mentioned two-point boundary value problems; however, similar results can be achieved with
respect to other boundary value problems as well. For instance, in [20], we have studied the
Neumann problem for nonlinear second order differential equations with singularities at the

origin.




CHAPTER ONE

ON THE EXISTENCE OF THE PRINCIPAL EIGENVALUE

1.1 A new type of order — The compactly generated order

In this chapter, we study the following type of order :

Definition 1.1 We say that a Banach space, X = ( X,llsll ) ordered by a cone is a
compactly generated ordered Banach space if and only if there is a family (@;);cy of

continuous, linear functionals on X such that
(i) I isacompact topological space;
(i) if i, — i, in I, then ®i, — ¢, uniformly on bounded sets;

(ii) x<y in X & ¢;(x) < ¢s(y) Vie L
v) llpll <1 (i e L).

We have at least four examples of well known ordered Banach spaces (OBS) that fit into

this general scheme.

Example 1.1 The Euclidean N - space RN with the usual ordering in RN (thatis, x <y
& X; £y; V i) Now I corresponds to the set {1,..,.N} while ¢;(x) = x;

Example 1.2 ( Other order in ERN). Fix J € {1,..,N} and define

X<y o {Xi <y; VvV ie 7J
X; 2 y; V ie J
We easily see that in this case
x; if i e ]
(Pi(X) = { ! . .
—x; otherwise




Example 1.3 (Spaces of real symmetric matrices) In this case, the positive cone is made up
of the subspace of positive semi- definite matrices. Now, we let I be the unit sphere SN'I, then
foreach A e X and y € SN we define

y(A) = (Ayly)
From,
(Aynlyn) = (Ayolyo) = (Aynlyo)
it is easy to deduce condition (ii) of definition 1.1.
Example 1.4 (Spaces of continuously differentiable Junctions on a compact space) Let K
be a compact space. We denote by X = C 1(K) the Banach space of all continuous

differentiable real-valued functions on K with the usual maximum norm. This space is

endowed with the natural ordering. Here I = K and
Qx) = x(1).

Condition (ii) in definition (1.1) follows from the fact that the elements of a bounded set in

C! are uniformly Lipschitz.

1.2 The principal eigenvalue for two-point BVP's in compactly
generated ordered Banach spaces

We recall that an eigenvalue A; of the BVP
u" + AL(u) = 0, Bu) = 0

is called the principal eigenvalue when A; >0, A; has a positive eigenfunction and A is the

smallest eigenvalue.
In this section, we are concerned with the existence of the principal eigenvalue for the

special case




—u" = AL(tu), u(@ = 0 = u(b).
where L . [a,b] x X — X satisfies the assumptions detailed in chapter 0 with X a given

compactly generated ordered Banach space. We assume that the order of X is generated by the
family (@;);¢ 1, where the @;'s and I have the properties listed in definition 1.1. We also

assume that X has at least one positive element. We shall denote by
B:={ue Cab,X)| u@=u®)=0 )
and define a subset P of B as follows
ue P& 0<ut) Vie [ab]
The following result characterizes the interior points of P.

Lemma 1.1 A point u € P is an interior point of P in B if and only if u'(a) >0, u'(b)
<0 and u(t)>0 for a <t < b.

Il

Proof. (=) u € 1% implies that u(a) = 0 = u(b) andu(t)20 V t. Assume that u(ty)
0 for some t; € Ja,b[. Fix a positive element x; € X and h € Cl([a,b]) with h(a)
h(b) = 0, h'(a) > 0, h'(b) < 0, h(t) >0 for a<t<b. The mapping X (t) = h(t)xq isin
P. We have

hence

(o]
X € P for sufficiently large n.

[
I
=3

Then we have that

0 < iulty) - =X (tp) Viel




= @;(u(ty)) - (Pi(;ll'_x_(to))

= — Q=)

<0
which is a contradiction. This shows that u(t) > 0 for a < t < b.

We now prove that u'(a) > 0 ( a similar argument works for the case of u'(b) < 0).
Assume the contrary, that is, u'(a) < 0. We have that

D u'(a) — %T{"’(a) < 0.
1__ 1__ ° .
The sequence (u - =X )n converges to u, hence u — T X € P forlarge n. Fix such an

n. We have
1__
(ID) u(t) — B—x(t) =20 V t
We claim that
(*) there exists € > 0 such that o;(u'(t)) — (pi(;ll-“i"(t)) <0,a<g<t<a+eg, ie L
For, otherwise there exist t, — a and i, € T such that
IH . ' . l_' > O
(1) 03, (W'(H)) — ¢ (1)) = 0.

Since I is compact, there is a subsequence of (i)x which converges. Assume for simplicity
that i — i5. We have ®i, — ¢j, uniformly on bounded sets. So, taking limits in (III) we

get
9 (@) — Q=T @) 2 0.

So,
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u'(a) — %T'(a) =0

and this is contradictary to (I). So (*) holds.
Now fix t; > 0 suchthat a+t; € Ja,a+e[. For every i € I, apply the mean value

theorem on [a,a+t;] to the functionz}l @;(u(t) — ;11-'3{“), we get that

o) - o) < g - &

with £ € Ja,a + t;[. We observe that the right hand side of the above equality is negative by

virtue of (*) and so we have

¢i(ua+ty)) < (pi(ﬂgniiﬁ).

Now we take limits with respect to n and we get
P(u(@a+t)) <0
a contradiction. Hence, we conclude that u'(a) > 0.

(<) Let u besuchthat ua) = 0 = u®d), u > 0 on la,b[ and u'(a) > 0, u'(b)
< 0. We claim that

(**) there exists € > 0 and 8; > 0 suchthat @,u'(t)) = © respecrively,
Q;u'() < §)),forall a <t =a+ ¢ (respectively, forall b — & <t =  -adforall i
e L

For, on the contrary, there exist sequences t, — a, i, € I and &, ¢ O such that
¢; (u'(ty) <6, Let iy, be a subsequence such that iy, = ip € I Taking limits in

cpink(u'(tnk)) < 8“1( we get (pio(u'(a)) < 0. This implies u'(a) $ 0, which is a contradiction.

Thus (**) holds
By using a similar argument, it is possible to show that there exists 8, > 0 such that

Iv) Qu®) 28, Viela+eb-¢l,Vie L



-11 -

Now we shall prove that the ball B(u,8) of centre u and radius & in the space
C ([a b],X) is contained in P. Consider any v € B(uJ). Forevery i € I and every t €

fa + &b — €] we have

o;(v(D) = ¢;(u®) + @((v — u)(®)

2 gu() ~ gyl v — ull -1

> ¢i(u®) - 9

>0  (by (IV)).

< a+ ¢ andevery i

This means that v(t) > 0 for t € [a + &b — ¢€]. For every a <t
€ I, we apply the mean value theorem on [a,t] to the mapping @;(v(t)), and we get

Pi(v(D) = q(v'(E).(t — a)

for a suitable & e Ja,t[. It then follows that

QUEN(t — &) + ¢;(V'(E) ~ ().t — a)

o;(v(D)

v

Q@) ~ a) ~ llpll u'E) ~ VNt - 2)

2 [o'®) - 81t - a)

> 0  (by (IV)).

This means that v(t) = 0 in [a,a + €]. Analogously, we get that v(t) = 0 in [b—g,b], and

so we conclude that v =2 0 in [a,b].
Q.E.D.
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Lemma 1.2: [f L:[ablxX — X satisfies the generalized Carathéodory assumptions
and if L(t,)) . X — X is alinear operator mapping positive elements into positive elements
Joreach t, and if G is the Green function of the two-point BVP

-u" =0, u@ =0 = ub),

then the mapping T . B — B defined by

b
Tu(t) = [G(t,s) L(s,u(s))ds
a

is strictly positive.

Proof. Let u € B be positive. Then u(t) > 0 for at least one t. Consequently, L(t,u(t))
> 0. It follows that

G,neL(tu®)) > 0
and hence, by continuity,
G(t,2)p;(L(su(+))) > 0

in an interval. Therefore

b
[GuoeLisus)ds > 0 (e D
a

b t b
which implies Tu(t) > 0 for a < t < b. Writing [. = [. + [. we compute
a a t
t b
d s — a b - s
FP(TWO) = = |———@iL(s,u(s))ds + |————@;(L(s,u(s)))ds.
b - a b - a
a t

Taking t = a and t

1l
o
b3
o

o
o
[an d
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‘Pi(gf,t=a TW) >0, o(Fli=0 TW)<0 (e

that is,
dT(u) dT(u) | .
I (=a > 0, I li=b» < 0.

o]
Therefore we are in position to apply lemma 1.1 and we get T(u) € P.
Q.E.D.

Theorem 1.1: If L:[ablxX — X satisfies the generalised Carathéodory conditions, if

L([a,b] X X) is compact and if L(t,’) : X — X is a linear operaior mapping positive

elements into positive elements for each t, then the two-point BVP
u" + AL(tu) = 0, u(a) = 0 = u(b)
has a principal eigenvalue.

Proof: It is easily seen from the uniform continuity of G and the compactness of the range of
L, that the operator

b
Tu(t) = [G(t,s)L(s,u(s))ds
a

is a completely continuous linear operator B — B. From lemma 1.2 it follows that T is

strictly positive. Then theorem 2 of Ahmad-Lazer [1] implies the conclusion.
Q.E.D.

Corollary 1.1: Ler L be as in theorem 1.1.1If [o,B] 2 [a,bl, then the principal

eigenvalue 7\.100f
u" + AL(tu) = 0, u(®) = uB) =0

is strictly greater than the principal eigenvalue A of

u" + AL(tu) = 0, u(a) = u(b) = 0
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( i.e.. the principal eigenvalue increases as the interval decreases ).

Proof: Let GO be the Green function associated to

—u" =0, u(@ = uf) = 0.

It is well - known that

(1.1 Go(t,s) < G(t,s) (ts e [o,B] N Ja,b[).

Let uy be an eigenfunction corresponding to 7&10. Define
0 ifa<t
<

o
ut) = fu) fa <t <P
0 if B<t<b.

<
<

From (1.1) and from

u(® = A;° [Go(t9)L(s,ug(s)ds
o

it follows thatfor a < t < b we have

b
ou®) < 4,° [GoeLus)ds (i I)
a

Let w = Tu. By the above, we have Xlow —u >0 and so,by lemma 1.2, T(Klow —-u) e
[e]

P. It follows that kloT(w) > T(u) = w. Then corollary 3.1 of Ahmad - Lazer [1] implies
AL > A

Q.E.D.
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Corollary 1.2: Ler Ll, L{2 . [abl x X — X sarisfies the generalized Carathéodory

conditions with Li([a,b] X X) compact and Li(t,e) . X —= X a linear operaror mapping
positive elements into positive elements. If Ll(t,u) < Lz(t,u) Jor all t and u, then for the

principal eigenvalue Kli of

u" + XLi(t,u) =0, u@ =ub) =0

we have the relationship Kll > 112 (i.e., the principal eigenvalue decreases as the operator

L increases ).
Proof: Let Ti . B — B bedefined by

b
T(w)(® = jG(t,s)Li(s,u(s))ds.
a

o
Let u be an eigenfunction to Kll.By lemma 1.2,u € P. Moreover, from L1 < L2 we get

for a <t<b:

b
u®) < At [Gts)L(s.u(s))ds
a

= Ry TCu)).

Therefore, the conclusion follows from corollary 3.1 of Ahmad - Lazer [1].
Q.E.D.

Theorem 1.2: Suppose that dimX < e and f, g:[a,b] X X = X satisfy the generalized

. ) . o
Carathéodory conditions. Assume that -a——f(t,u) exists for all u and a.e. t, satisfies the
u

generalized Carathéodory assumptions and maps positive elements into positive elements. If
there exists a positive constant | less than the first eigenvalue A, of

u"+Au =0, u@ =ub =0
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lHg(t,wll

such thar f (tu).v < uv and if lim T 0, then the two-point boundary value

Hull—yee

problem
u" + f(tu) = g(t,u), u(@ = ub) =0
has at least one solution.
Proof: The given equation can be rewritten in the form
u" + A(tu).u = g(tu) — £(t,0)

where
1
Atu) = qu(t,&u)di.

Consider the homotopic equations
u" + sAtw)u + (1 - s)pu = gt,u) — £(t,0)

and let us show the existence of an a priori bound for the corresponding two-point boundary
value problem. In the contrary, there are s, € [0,1] and solutions u, such that lluyll_—ee.

. u
Setting v, = n-“;rﬁ: we have
: " (tu,) — f(t,0)
(1.2) V"t s AU, + (1 = s, = —2 [T p—
Applying corollary 1.2 to the two eigenvalue problems
(1.3) v+ AM{s,B + (1 — spulv =0, v(@) =vb) =0

V' + A"y =0, v(a) = v(b) =0

we see that for the first eigenvalues the following relation
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}bl' > klu

holds for every continuous linear operator B which maps positive elements into positive
elements and is such that B(u) < pu. Since A" = 1, it follows that A = 1 is notan
eigenvalue of (1.3), hence v = 0 is the only solution to (1.3). From Ascoli's theorem and
(1.2) we have that (v,), has a subsequence which converges to v. in C!.The sequence
(A(e,uy())), 1is weakly compact in L' and so there is a subsequence which converges
pointwise to A... Again, there is a subsequence of (s;), which converges to s_. At the end

we can take Iimits in

b
g(s,up, ()) - 1(s,0)
lup, T

vnk(t) = JG(t,s){[snkA(s,unk(s)) + (1 - snk)u]vnk(s) - S

a
and obtain
Voo + {SeAw + (1 = s U}V, = 0, vo(a) = v (b) = 0.

By (1.3), v., = 0, a contradiction. Therefore the a priori bound does exist. Moreover, it

follows from (1.3) that the only solution to
u" + pu =0, u@ =ubd) =0
is u = 0. Therefore the conclusion follows from the well - known properties of topological

degree.
Q.E.D.
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CHAPTER 2

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR
TWO-POINT BOUNDARY VALUE PROBLEMS.

2.1 PREAMBLE

This chapter deals with the existence and multiplicity of positive (non trivial) solutions for

the two-point boundary value problem
—-u" = f(x,u) 2.1
u(@) = 0 = u(b). (2.2)
We shall assume throughout this chapter that
f:[ablxR" = R, R" = [0,+e),

verifies the ( Ll-) Carathéodory conditions, i.e., f(x,*) is continuous for a.e. x € [a,b], f(,s)
is measurable for all se R™ and for each r > 0, there is Y. € Ll([a,b]; R™) such that f(x,s) <
yr(x) forall 0<s<r andae. x€ [a,b].

Accordingly, solutions to (2.1) are intended in the generalized (Carathéodory) sense,
ie., u(?) verifies (2.1) for ae. x € [a,b] with u' absolutely continuous. Further
assumptions on f will be explicitly spelt out later.

We note that any solution u(e) of (2.1)-(2.2), with u=0 and u # 0 on [a,b] is such
that u(x) > 0 for all x € ]a,b[. This is a consequence of the following

LEMMA 2 1: Suppose that

- u"(x) = h(x), u@) = ub) =0,
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with he L]([a,b]; RN.If u # 0, then ux)>0 forall xe Ja,bland u'(a) > 0 > u'(b).

The proof of lemma 2.1 follows from elementary arguments and so it is omitted.

Let X =C OO([a,b]), be the Banach space of continuous real valued functions in [a,b]
satisfying (2.2), with the sup norm Il and let

C:={ue Xiux)=20 forall xe [ab]}
be the positive cone in X (see [2,10]). For any set W C C, wedenoteby W and oW its
closure and boundary relatively to C respectively. We also define, for R >0,
BR ={ue C:lul_<R}
Let k . [a,b]2 — R be the Green function for the differential operator u — —u"

with boundary condition (2.2). Then it is well known ( see [34] ) that the problem (2.1) -
(2.2) is equivalent to the (nonlinear) operator equation in X.

u = o) (2.3)
where
b
D(u)(x) = [k(x,0f(t,ut))dt 2.4)
a

The assumptions on f imply that @ is completely continuous and ©(C) C C. Then it is clear
that u(e) is a solution of (2.1) - (2.2) with u>0 on ]Ja,b[ if and onlyif ue C\{0} isa
fixed point of @.

In order to find nontrivial solutions of (2.3) we shall use some results from the theory
of positive operators in Banach spaces as deveioped in [2,10,22]. Precisely, we employ the
properties of the fixed point index ( see [2,31] ). In particular, we denote by ix( \;f,BR ),the

fixed point index (relatively to C) of a compact map y . _}?R — C, suchthat y(u) # u

for u e E)BR, with respect to BR.



2.2 MAIN RESULTS.

Following the previous section, we give some results for the computation of i-(®,Bp),
with @ defined by (2.4). These results will be employed for obtaining existence and
multiplicity theorems to equation (2.1).

Our first result concerns the case in which the map f can be suitably linearized around
0. To this purpose, we recall some basic facts about the linear eigenvalue problem with weight.

Let us consider the linear problem on [a,b]
-u" = umx)u, u=0, 2.5)
u(a) = u(b) = 0, (2.6)

where m € L™([a,b]; R") and m > 0 on a set of positive measure. Then it is well - known
( see [2,10]) that (2.5) — (2.6) has only one eigenvalue [;(m), which is positive and it is
equal to the first eigenvalue of the linear problem —u" = pmu, u(a) = u(b) = 0. Moreover,
we have [ (m) > p(m*) for m < m*, with strict inequality on a set of positive measure,

and [, is continuous with respect to m. Then the following result holds true ;

PROPOSITION 2.1: Assume

(f) lim sup f“;’S) < m(x),

s—0F

uniformly a.e. in xe {ab], with m € L7([a,b], R™) and m >0 on a set of positive

measure and

(my) Mym) > 1.

Then there is RO > O such that

ie(®, By) = 1
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holds forall 0 < R < Ro‘

Assume

(£ liminf {58 > mex)

s — 0

uniformly a.e. in xe [ab],with m € L™([a,b], R") and m>0 on a set of positive

measure and

(my) Ly(m) < 1.

Then there is RO >0 such thar
ic( D, BR ) =20
holds for all 0 <R < Ro‘

The proof is omitted since it can be easily obtained using general results on elliptic
equations ( see, for instance [ 10, chapter 3 ]). Observe that (f;) implicitly requires that
f(x,0) = 0.

The next results are based on some estimates for the computation of the time-map used
in [18,30]. However,with respect to [18], the proof is considerably simpler.
Let g B™ — R" be a continuous function and define

S
G(s) := C{g(t) dt

and

Fg(s) = %—klsz - G(s) 2.7

Then we have

PROPOSITION 2.2: Assume
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(g1) f(x,5) < g(s)

forall s € R™ and ae. x € [ab] and

(G) GOW) < 502

for some W > 0.Thenthereis 0<w < W suchthat iC(CD,BW) = 1.

Assume
(g2 f(x,s) = g(s),
forall s € BR" and ae. x e [a,b] and

(@G,) G(W) > (1/2Mw?

for some W > 0. Then thereis O <w < & such that ic(®B ) =0

Proof. We examine the first part of the statement. From (G 1), we have Fg(W ) > 0, while

Fg(O) = 0 (by definition of I‘g ). Therefore we can choose
w:= min{se [0O,W]. Fg(s) = I‘gCW') } (2.8)
and 0 <w < W. Moreover, by definition of w, Fg(s) <Fg(w), forall s € [0O,w], thatis,
G(w) — G(s) < (1/2)A (w2 — s2), for 0 £ s < w. (2.9)

We want to prove that

u = 00 (u), (2.10)
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forall 0 < 6 < 1 and u e JB,,. Assume, by contradiction, that for some 0 < 8< 1 and
u(.) € 0dB,, wehave u = 6® (u). Equivalently, we have

—-u"(x) = Of(x,u(x)), (2.11)

for a.e. x € [ab], with u =0, satisfying (2.2) and such that max u(.) = lul, = w. Let

x* € [a,b] be such that

u(x*) = maxu(.) = w.
As w > 0, we have a < x* <b and, by lemma 2.1, u(x) > 0 for a < x < b und u'(s)
> 0 > u'(b).

Now we perform some phase-plane analysis on equation (2.11). Setting y = u', we
have

u =y, y' = —0f(x,u),

sothat y . [a,b] — R isa nonincreasing function such that y(a) > 0 > y(b) and y(x*)
= (. Define

= min{x . uX) = w}

(6
B = max{x . ux) = w}.
We have a<a £ x* < B < b and, moreover,
y(x) >0 fora<x <o
yx) =0 for o < x £
y(x) < 0 for B < x < b,
0 <ux) <w for x € J :=[a,af U ]B,b]. Finally, we define
z(x) = (12)y%(x) + 6G(u(x)).

Themap z . [a,b] — R is absolutely continuous and we have, for a.e. xe€ [a,b],
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zZ(x) = y(x).y'(x) + 0g(u(x)).u'(x)
= 0 yx) [ glux) — f(x,ux) 1.

Then, by (g;), z(.) is nondecreasing on [a,a] and nonincreasing on [J,b]. Hence, for x e
[a,], we have

(1/2)y3(x) + 6Gu(x)) < (12)yX(o) + 6Gu(®) = 0 + 6G(w)
and

(1/2)y2(x) + 6Gu(x)) £ (1/2)y2(B) + 6Gu(B))

0 + 8G(w),

for x € [B,b]. Therefore, (2.9) and 6 < 1 imply

g

y2(x) < A(w? — u(x)?), for x €

and so,

la'(x)l
V(w2 = u(x)?)

<1, for x e J.

Integration on J gives

b-azb-f+a-2a> ol dx
VA (w2 - u(x)2)
J

w

=2 ds =L -p-a

and so, a contradiction is achieved. Thus (2.10) is proved and by the properties of the fixed
point index, we get



=25 -

ic((D,Bw) = iC(O,BW) = 1.

Now we proceed to the second part of Proposition 2.2. From (G,) we have Fg(\/z\v) <

0, while T" g(()) = (). Therefore we can choose
w:=min{s e [0,¥] : L6 = rg(\’b)} (2.12)

and 0 <w < W. Moreover, by definition of w, I'g(s) > Fg(w), for all s € [0,w[. This

implies T"g(w) = Aw — g(w) < 0. Thus we have proved that
Gw) = G(s) > (1I/2)hy (w2 — s2), for 0 £ s < w (2.13)
and
g(w) > 0. (2.14)

Fix v > A; and define the operator

b
Q*(u)(x) = v [k(x,t)u(t)dt.
a

Itis clear that @* . §; — C iscompactand @D*(u) # u for u e BBW. Moreover, as

Hi(v) < 1, then iC(<D*,BW) = 0, according to [10, Prop. 3.7]. We want to prove that

u #= 60W) + (1-06)D*(u) (2.15)

forall 0 £ 6 <1andu e an. Assume by contradiction, that for some 0 < 6 < 1 and

u(*) € aBW, we have u = 0D(u) + (1- 8)D*(u), that is

—-u"(x) = 0f(x,u(x)) + (1-6)vu(x) (2.16)

for a.e. x e [ab], with u 2 0,lul, = w and u() satisfying (2.2). Let x* € [a,b] be
such that u(x*) = max u(s) = w. Arguing as above, we set y = u' and observe that y(e)
is nonincreasing and y(a) > y(x*) = 0 > y(b). In this case, it is important to observe that
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0 £ ulx) <w for x # x*.

(2.17)

Infact, a < x* < b and g(u(x*) > 0 by (2.14). Then, from (g,), f(x,u(x)) = € > 0

for some € and a.e. x in a neighbourhood U of x*. Hence, by (2.16),
u'(x) £ -8 <0 for ae. x € U,
with & small enough. Then y(.) is decreasing on U and so
y(x) >0 for a £ x < x*
yx) < 0 for x¥*<x £b

and the claim is proved.
Now we define the absolutely continuous function

z(x) = (12)y%(x) + 6Gu(x)) + (1= 6)(1/2)vu(x).
We have for ae. x € [a,b],
Z'(x) = y®y'(x) + 0gux)Hu'(x) + (1= 8)vu(x)u'(x)

= - 0y(x)[ f(x,ux)) — glux)) 1.

Then, by (g,), z(.) is nonincreasing on [a,x*] and nondecreasing on [x*b]. Hence x* isa

point of absolute minimum for z(¢) and so,
(172)y2(x) + 6G(ux)) + (1 -0)(1/2)vui(x) =

2
> Lyaeny + 0G@en) + (1 - oy

= 0 + 8G(w) + (1-6)(1/2)ow2.

Therefore, (2.13), (2.17) and v > A;, imply




vi(x) > Aj(w?Z-u(x)?), for x = x*
and so,
')A (w2 — ux)?)1/2 > 1 for x # x*.
Integration on [a,b] gives

b-a=b-x¥+x*-a <

b

X*
< s+ ux) dx
(w2 = u(x)2) V(w2 = u(x)?)
X a

=Db —~ a,

_ 5 - dg __x
J\/xuw? - i

and so, a contradiction is achieved. Thus (2.15) is proved and by homotopy of the fixed point
index, we get

ic(@,B,) = i(@*B,) = 0.

Therefore, the proof of proposition 2.2 is completed |

REMARK 2.1: From the proof it is clear that, under (g;), we have i.(®,B,) = 1 for

any w > 0 such that Fg(s) < Fg(w) for all s € [0O,w[. Respectively, when (g,) is
assumed, we have ic(®,B,) = 0 forany w>0 such that I'y(s) > I'y,(w) forall s €

[0,w].

2.3. EXISTENCE AND MULTIPLICITY THEOREMS.
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In this final section of the chapter, we present some results for positive solutions of
(2.1) — (2.2) which can be obtained by combining Propositions 2.1 and 2.2.

THEOREM 2.1: Assume (f;), (m;), (g,) and (Gz)' Then problem (2.1) - (2.2) has

at least one solution u(*) with u(x) > 0 for x € ]a,b[.

THEOREM 2.2: Assume (f;), (m,), (g) and (Gl). Then the same conclusion of
Theorem 2.1 holds.

THEOREM 2.3: Ler gy, g - R — R be continuous Junctions such that

(ky) g1(s) £ f(x,5) £ gy(s)

forall se R* and ae. xe [a,b]. For G1 and G2 defined accordingly, suppose that there

are W, W > 0 such that
G, > a2nmb2, G < (120W2

Then the same conclusion of Theorem 2.1 holds.

The proof of all the theorems is a straightforward consequence of Propositions 2.1 and

2.2, using the additivity / excision property of the fixed point index.

Our results extend to equation (2.1) some analogous theorems, for the autonomous
scalar equation —u" = g(u), obtained recently in [17]. A particular case in which all the

theorems may be applied is the following

COROLLARY 2.1: Assume that either

limsup&;—’ﬂs 6 <Ay < < liminf

s—07 S—>+eo

f(x,s)
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or

liminff-(—xs’—s—)-z C>A >0 2 limsup

s—0t §—3>t-00

f(x,s)

holds, uniformly a.e. in x € [ab]. Then the same conclusion of Theorem 2.1 holds.

For analogous results for the Dirichlet problem for elliptic equations, see [10,13].

A simple application of Theorem 2.3 can be given to the problem
—-u" = g(u) + hx) (2.18)
u@@a = u) = 0, 2.2)

with g. R* > RmT a continuous functionand h € L7([a,b]; FR+). We set

S
G(s) := [g(dt and H := Inl_.
0

Then f(x,s) = g(s) + h(x) and (k;) is trivially satisfied with the choice g1 =8 & =8
+ H and so we have

COROLLARY 2.2: Problem (2.18) - (2.2) has a (nontrivial) positive solution provided

A P
that there are w, W > 0 such that

%7\.1&’2 < G(G\’), G(—W.) < %‘)\,1_‘7\/—2 - Hw.

REMARK 2.2: In [18], the problem

) u' + g(u) = p(x), u@ =ub) =0
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was considered and an existence theorem was proved under the assumptions p € L™(a,b) and

2
#) liminf 250 < 2.
u—teo

So, the question arises to whether such condition can be relaxed to

() lim inf&(Q < M
U—>teo u ’

By using analogous arguments as developed in [14] ( for periodic BVP ), we see that in

general the answer is in the negation. Indeed, we have
EXAMPLE 2.1: Thereare g - B — R and p . [0,r] — R continuous, with

= liminf &2 < limsup &2 = |

U—ytoo U—ykoo

[N e

such that there are no solutions to BVP (7).

This example as well as further investigations concerning the nonlinear BVP (7) will

appear in a forthcoming paper [28].
In conclusion, we give a multiplicity result for (2.1) — (2.2).
THEOREM 2.4: Ler f satisfy (ky) and assume

I‘gl(s) < lim sup I"gl(s), I‘gz(s) > lim inf I“gz(s) Vs=20

S—3+oo §yf-00
and

(ko) lire: sup rg1(5> > 0 > lim infrgz(s),
S—>too

§—s-+oo

(with I‘gi (i = 1,2) defined as in (2.7) ). Then problem (2.1) — (2.2) has a sequence

u,(?) of solutions with uy(x) > 0 for xe Jab[ and max u, (¢) — +eo.
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Proof. Let us set

pp = limsup Ty (s), py := liminf I’y (s).
§—>+too S§=>ee

By condition (k;) we can find two increasing sequences (w,), and (Vp)n With W, — oo,
v, — +oo, such that Tgl(wn) - P, ng(Vn) - p, and

I‘gl(s) < Fgl(wn), forall s € [O,wy], (2.19)

[g,(s) > T'g,(vp), forall s e [O,vyl, (2.20)

respectively.
Moreover, we can assume without loss of generality (possibly passing to

subsequences), that
Vrl < Wn < Vn+1

holds for each n € N. Then, by Proposition 2.2 and Remark 2.1, we have from (2.19)
and (2.20), respectively,

io(@Bw,) = I, i(®Bv,) = 0

forall n € N. Hence the additivity / excision property of the fixed point index guarantees, for
each n, the existence of a solution up(¢) to (2.3) with

vp < lupl = maxuy(s) < wy

and the theorem is proved.
Q.E.D.

Multiplicity results similar to Theorem 2.4 have been recently obtained in [17,18,32].
However, we point out that our result is independent of those contained in [18] and [32]
where the positivity of f is not assumed but further restrictions are considered. With respect to
[17], a more general equation is examined. Furthermore, we note that the assumption that f is

non-negative may be relaxed to
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f(x,s) 20 forall s 2d >0 and ae. x € [ab],

provided that supplementary conditions are taken into account.

Finally, we observe that a multiplicity result for equation (2.18) may be easily obtained
from Corollary 2.2.




CHAPTER THREE

SOLVABILITY OF THE NONLINEAR BVP BETWEEN THE
FIRST TWO EIGENVALUES.

3.1 PREAMBLE

In this chapter, we provide some new conditions for the solvability of the nonlinear two-
point boundary value problem

u"(x) + h(x,u(x)) = p(x) (3.1
u@) = 1y, u(b) = 1, (3.2)
where h . [a,b] xR — R verifies the Carathéodory conditions, p . [a,b] — R is

Lebesgue integrable and 1; , 1, € R .Further assumptions on h will be explicitly required in

the next section.

3.2, STATEMENT OF MAIN RESULT.

In this section, we shall state our main result which concerns the boundary value problem
(BVP) (3.1) - (3.2). Besides the proof of Proposition 0.2, which is given as a consequence of
the main result (Theorem 3.1), we shall also prove some lemmas which will be needed for the
proof of the main result in section. 3.3.

Theorem 3.1. Ler h : [a,b]xB — R verify the Carathéodory conditions and denote by
r : = max{inl, Ir,l} . Suppose that there are continuous functions gy : R — R for which

u
lg ()l = +oo as lul = +oo; (with Gy(u) : = Jgi(s) ds) and constants q* > Ay such that
0

the following conditions are satisfied:



-34 -

h(x,u) £ g (u) V u £r1 anda.e. xea,b] (3.3)
h(x,u) < g (u) V u 2 -1 and a.e. xe[ab] 3.4
2
lim sup Cifz(u) 2 pu- >N (3.5
U-—p—o0
. . . h(x,u) . .
lim inf ——2 wt > A, unif. a.e.in xe[a,b] (3.6)
U—ytoo
lim sup 1—1%-’92 < q unif. a.e. in xe[a,b] (3.7
U—>—o
2
timinf 2252 < g (3.8)
U—ytoo
1 1 1
+ > . (3.9
+ —
ORI

Then the BVP

u'(x) + h(x,u(x)) = p(x) (3.1)
u(a) = ry, u(b) = r, (3.2)

has at least one solutionfor all 11,1, € R, and p(°) € Ll(a,b).

We now give the proof of Proposition 0.2 from Theorem 3.1.

Proof of Proposition 0.2. By comparing (0.7) with (3.1) we see that g(u) = h(x,u)
Vx,u and g_(u) = g, (u) = g().Hence G_(u) = G,(u) = G(u) . Call

q- := limsup gw < A
U300 u
and
q* := liminf 2%”) <.

U—r+o0
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Then

1 1 1 1
4=

2 1
> + = =
Voo N \/—7:2 \/Iz \[—7:2 ﬁl

Before stating our first lemma whose proof depends mainly on the combination of the

g.e.d.

Leray-Schauder topological degree and the properties of the Futik's spectrum, we consider the
following parametrized family of problems:

Op(x) (2.1g)

{u"(x) + f(x,u(x):0)

u(a) = Or; ,u(b) = 6r,,0 < 6 < 1 (3.2¢)

where

f(x,u(x);0) := (1 — 6) [L'ut — Lu] + 6h(x,u);
1

1 1
+ >
VLY AL Ay

with L* > A ;

+ —
L",L are constants :

ut = max (1,0); u~ := max (—u,0).

Let K : [a,b]2 — R be the Green function for the differential operator u — —u" with
boundary condition u(a) = u(b) = 0, thatis, for any we Ll([a,b],fR) ,

b
u,(x) 1= [ K(x,s) w(s) ds

is the unique solution of the BVP
—u"(x) = wx) , u(@) = ub) = 0.

Define the Cl-function

Iy — I'] b
\]I(X) = —6——:-—5— (x — a) + 1 - a{[K(X,S) p(S) ds
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with y'(x) absolutely continuous. Also, let
b
OO :=By() + | K(x,8) f(s,u(s) ; 8) ds

where, X = (([a,b],R) is the Banach space of continuous real vaiued functions in [a,b],
with the sup norm Il , ¢ . Xx[0,1] — X is continuous and compact on bounded sets.
Then it is clear that u(x) = ¢(u;6)(x) if and only if u(x) is a solution of (3.1g) - (3.2¢).

Lemma 3.1. Assume that there are two constants A, B > r,such that the following
condition holds:

(ig) "If u(e) 1is any solution of (3.15) - (3.24) for some 6¢€ (0,1) , such that
—A £ ulx) £ B Vxe [a,b] ,then —A < u(x) < B Vxe[a,b]".

Then (3.1) - (3.2) has at least one solution u(e) suchthar — A < u(x) £ B Vxe[ab].

Proof. Define
Q= {ueX . —A < ux) < B Vxela,b]}

we have that
Q= {ueX ! -A < u®x) < B Vxelab]}).

We note that Q € X is open, bounded, 0e Q and 9Q = Q\Q . Also,® = d(u;8) :
Qx[0,1] — X is compact. We also remark that u = ¢(u;0) if and only if u is a solution of
(3.1p) - (3.2p) . This is equivalent to

u" + Ltut - L-u- = 0

u(a) = 0 , u(b) = 0
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Hence u = 0 (see Futik [19] or Drdbek [16]).Then, u # ¢(u;0) on 0Q and so
degrs (I — ¢(e; 0), £,0) is defined.

Moreover, from Fucik's theorem [19, page 325], degis(I — (s 0), Q,0) = 0. So, the
statement of the lemma also holds for 8 = 0.For 6 = 1,if u = ¢(u;1) with ue9Q , then
(3.1) - (3.2) has a solution u(*) such that — A < u(x) £ B Vxe[a,b]. Then, we can assume
without loss of generality that u # ¢(u;1) for uedQ . Hence, when 6 = 0 and 6 = 1,u
# O(u;0) for uedQ).

Assume as a way of contradiction that u = ¢(u;8) for some uedQ,0 < 6 < 1.Then
u is a solution of (3.1g) - (3.2g) and — A < u(x) £ B Vx . But by the hypotheses of the

lemma this implies that — A < u(x) < B Vx, and so, ue Q , ug dQ . This gives a
contradiction.
Then we have that
u # 0(u;0) YueoQ , vVoe[0,1].
Hence
degi s — 0(;0), Q,0) = constant
with respect to 6<[0,1]. Therefore
degps( — ¢(+:1),2,0) = degrs(I — ¢(+;0),€2,0) = 0.
This implies that (3.1) - (3.2) has a solutionin Q. Q.E.D.
Remark 3.1. If -k < u(x) £ k Vu solution of (3.1g) - (3.29),0 < 6 < 1 then take

A = B = k + 1 and the hypotheses (i) of Lemma 3.1 is fulfilled.

We proceed to find the appropriate A and B . But first, we give the following
definitions.
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Definition 3 1. For any u(e) solution of (3.1g) - (3.2g), we define by u* : = max u(e)

and choose x*e[a,b] the point of maximum. So
u* = max u(e) = u(x¥).

Definition 3.2. Forany d > r,let J;' := [04pB,] be the maximal interval containing x*
and such that u(x) = —d .Similarly, J d_ is defined.

Definition 3. Forany L > 0,let J_ := [0,B] be the maximal interval containing x*

and such that u(x) 2 u* -~ L.

Next we perform some phase-plane analysis on (3.1g). Setting y(x) = u'(x) — 6 P(x)

X
where P(x) := [p(s)ds andcall M := IPl, we have
a

u'(x) = y(x) + 6 P(x) (3.1g)

y'(x) = —f(xu(x);6) . , (3.1")
Lemma 3.2. Suppose that there is ¢t = r such that f(x,u;8) > 0 for a.e. xe[a,b],

u>ct,0<0 < 1.Forany d = r,thereis Ry > ¢t such thar if u(e) is a solution of
(3.1g) - (3.29) with u* > Ry then,

(iy) there are unique oy < o0 < Yy, < x* < v, < B < By such that u is increasing on
[ag,Y1]; u is decreasing on [Y2,B4] ; w(o) = u(PB) = c*.y is decreasing on [o,B];
y(y1) = M;y(y,) = —M. Also, u* =2 u(x) =2 u* — 2M(b — a) for xe[Y1.Y2l;

im o -oy=0and lm B4 - P =0.

U¥ oo U*—>+oo
Furthermore, if
(i) lim f(x,u;0) = +oo unif. a.e. on xe[a,b] and 6<[0,11, then, forany L > 0, lim

u—>+oo u*—too

B —o) =0.
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[In particular, if

(1z) lIm f(x,u;0) = +eo unif. a.e. in xe[a,b] and Oe [0,1] then Lm vy, — 7y, = 0.]

U—>+eo u¥ 400

Proof. Let u(e) be a solution of (3.1g) - (3.25) forsome 0 < O < 1. Assume that
u* > c* + 2M(b — a) then a < x* < b and u'(x*) = 0. So from (3.1")

0 = y(x*) + 6 P(x*)
and hence ly(x*)| < M. Define

o :=max {x < x* : u(x) = ¢t} and

B :=min{x > x* : u(x) = c*}.Then

ct = u(@) = uP);ct < ukx) < u* for o <x <PBj;and a <o <x* <P <b.We

further observe that
y(@) > M and y(B) < — M.

Indeed, suppose by contradiction that y(o) < M . Then, by (3.1g")

X* x*

u* —u(e) = [y(s)ds + 8 [P(s)ds
SE*F—-—o)M + 6@x* — )M
<2(Mb-aM.

So

u* < u(@) + 2M( - a) = ¢t + 2M(b — a)

and this gives a contradiction. Similarly, we can show that y(B) < — M.
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Using the fact that if o < x < 3 we have that u(x) > c*, which in turn implies that
f(x,u;80) > 0 (by hypotheses), it follows that y'(x) < 0 a.e. xe[ab] . Hence y is
decreasing on [o,f3] . So

vi) > M 2 y(x*) 2 -M > y(B).
Therefore, there are unique o < y; £ x* < vy, < B such that

yr) = M, y(vn) = -M.
Moreover, for o < x < v, we have that

yx) > M,I6PX) <M . (3.10)
We show that

u* 2 u(x) 2 u* — 2M(b - a) for xe[yy.72] .

Let x;, x2e(V1,¥2] , then

X2 X2
lu(xy) — uxpl < 1 [y@s)dsl + 61 ] P(s) dsl
X X1

S MIxy — x40 + Mlixy — x5
= 2M |K2 — Xll
< 2M( - a).

Hence,
u* —2M((b - a) Sux) Su* Vy <x<v,.
Next, we show that u(e) is increasing on [0ty,Y;] . Since f(x,u;0) satisfies the

Caratheodory condition, there is yye Ll([a,b],fR) such that If(x,u;0)l < y4(x) for a.e.
xefa,b],—d < u < c*,V 6€[0,1] . Integrating (3.15") for xe[oy, o] :
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Y = y@ + [ f(s,u;0) ds

Il

y(o) + [ £ + Jf

{s:u(s)>c™) [su(s)<e™)

\v}

y(o) + | £

{s:—d<u(s)sc™)

\V

y(@) = [yq(s) ds

v

y(o) — N’d'Ll- (3.1
Buton (o,x*), we have from (3.14") that
u* — ¢t = ux*) - u(w)

x ¥ X¥*

= [y(s)ds + 6 [P(s) ds

< y@)(b —a) + M(b - a).

So (3.11) becomes

Hence,

y(x) > M Voyg £ x £«
(3.12)
provided u* > c* + (b - a) [2M + hyg4l; 1] holds .

Therefore from (2.10) and (3.12), we have that u(e) is increasing on [04,Y;] . By similar

steps, we can show that u(e) is decreasing on [y,,B4] .
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Toseethat lim o« — oy =0 and lLm By — B = 0, we recall that if 0y £ x <

UF—3teo U* oo
« then
u* — ¢t
D cmercorm——___ —_
y(x) 2 T M !u/dlLl

and —d £ u(x) < ¢+ Integrating (3.14") :

ct +d 2 u(a) - uloy)

o o
= Jy(s)ds + 6 [P(s)ds
Gy Oq
> (o -—ad)Eb—— ~ 2M — hygpt |
~ a
Hence,
0sa—-oa4< e+ b - a)

u¥ — [c* + (b = a)2M + Iyl 1)].

We remark that the above inequality also holds for By — B. Hence o — oy (and By — B)
— 0 as u* - oo,

For the remaining part of the proof, we note that by (i,), for any K >0 there is ug
such that f(x,u;0) > K for u > ug. So, let u(x) = u* — L > ug for x; < x < x, then
f(x,u;6) 2 K for x; € x< Xy. Integrating (3.15") ;

X
Y = yx®) = [f(s,u(s);0)ds
X*

xF

= y(x*¥) + ff(s,u;e)ds
X

2 -M + Kx* - x)
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holds for any x; < x < x* since ly(x¥)l < M. But,

W) = y(x) + BP(X)

2 -M+ Kx* — x) for x; £ x < x*

So,
K s 2

u* = u(xy) =2 - ME* - x) + Fx* = xp)

and
K . .
L>2-Mb-a) + -z—(x* - x)? since —u(x;) < —u* + L.
Therefore
K(x* = x;)?2 < 2L + 2M(b - a).
Hence,
2L + 2M(b -

X~ %, < \/ K( 2) (3.13)

Also,
X

Y =y + [(= £(s,u30)ds)
X*

<M - K(x - x%

since — f(x,1;0) < =K for x* < x < x,. Now, from (3.15") we also have on integrating

that

X2
ux) - u* < (M - K(s — x*))ds
X ¥




-44 -

which implies that

- L £ M(xy — x*) — -Izg(xz — x*)2.

That is,
K ;
L 2 -M(x, — x*) + (% — x*)2
K
> —-M( - a) + 7(x2 - x*)2,
So,
D) —
(Xp = x¥) < \/2L i 1;{4(13 a). (3.14)

Summing (3.13) and (3.16) to get

2L+ 2M(b - a)
OSXz“Xlsz’\j 74 .

Without loss of generality, we set x, = B[, x; = oy and the required result follows as K
— oo,
Q.E.D.

3.3. PROOF OF MAIN RESULT.

In this section, we give the proof of Theorem 3.1. This will be achieved by means of the
following steps :

Step I: Assume that

(A1) h(x,u) 2 L'u  forall u < —c* andae. x € [ab]..
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Then, for any € > 0, there is a constant R = R(e) > c¢™, such that, if min u*) < - R

and uw(ar’) = uB) = —ct, ux) < —ct for x e Jo' B[, min u(x) = min_ ux).
[a,b] [a.B]

Then

(A2) B - o > —— — ¢

Step 1II: Assume that

2G,
(B.1) lim inf 225 < L+
U—+co U

Then, for every € > 0, there are an increasing sequence B_(€) — +oo and a constant R =
R(e) > ¢ such that if maxu(s) = B, > R and u(ocn+) = u(Bn+) =c, ux) > c’ for

X € ]ocn+,[3n+[, max u(x) = max u(x) = B, .Then,
[asb] [an+ :Bn+]
(B.2) B - a2 L V n
VL*

From steps I and II, we have the following :

Claim 1; There are a constant K > ¢+ anda sequence B, — + oo such that there is no
solution u() of (3.1g) — (3.29) with min u(*) < =K and, for some n, max u(s) = B,

> K.

Proof of claim 1; By the assumption (3.9) we know that

b T
+ ——>b - 2.

DN
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. L -
Hence, wefix 0 < & < %—[-—E—: + —— - (b - a)] . For such ¢, from steps I and II

N
we know, respectively, that there are a constant R and a sequence B (g) = B, — + 0.

Now, we have that the claim is true for any K 2> R. In fact, if by contradiction, max u(e) =
B, > K and minu(s) < — K forany u(e) solution of (3.15) — (3.25) then,

b-a>@ -aH+ B -a)

2(\/_14_:-8) + (:/-——;"’8)

>b - a,
and this is a contradiction. |
Step III : Assume that
(C.1) h(x,u) = vtu for u = ¢+ with LT 2 v+

andlet 1,7 = [oy By"] be the maximal interval containing the point of maximum of u(*) and

such that
ux) =2 —d for x € Jd+.
Then, for any € > 0, there is a constant R = R(d,e) > c*, such that if,
max u(e) > R

then

By" — g’ <

<

Step IV : Assume that
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(C.2) h(x,u) = v*u for u = c+t with L™ > v+t > A,
Then, for any —d < —rt thereis a constant R = R(d) > ¢t such that

minu(¢) 2 — d = maxu() £ R.

T, 1
5 (—= — —=) and let R = R(d,). If minu(*) > —
"NV

d then Jd+ = [a,b] = [ocd+,[3d+]. Assume, by contradiction that max u(e) > R. Then,

Proof of step IV : Take € :=

b—-a<g

T
+e<b-a
‘\,0+

which is a contradiction. |

Combining steps III and IV we have :

Claim 2 : There is a constant D > K such that there is no solution u(¢) of (3.1g) —
(3.2g9) with minu(¢) 2 —K and maxu(s) > D.

Proof of claim 2: By assumption (3.6) we can find L™ > v+ > Ay such that (C.2)
holds ( for a suitable ct). Then, it is sufficient to put d = K and then choose D = R(d).

Step V:  Assume that

. 2G_(u)
(D.1) lim sup s 2 U°
u——c U

and that J; = [04 ,B4 ] be the minimal interval containing the point of minimum of u(e)
and such that u(x) < d for x € Iy .Then,forany € > O there are a decreasing sequence
— A(g) = —oo and a constant R = R(d,e) > c* such that, if°

minu(?) = —A, < —R,



- 48 -

then

IN
+
m

Bm = %
s

Step VI: Assume that

. 2G_(u) . -
(D.2) limsup—=—2 v with L. 2 v > Ay,
u
u——oo

Then, there are a sequence —A, — —eo such that, for any d = 1, thereis a constant R =
R(d) suchthar maxu() <d = minu() # -A, < —R.

Proof of step VI: Take ¢:= T—t-(-—-—— - —),

-

[¢]

—

~
|

= R(d,e) and — A, — —oo

depending on such &.If max u() < d,then J; = [a,b]. Assume by contradiction that min
u(*) = — A, < —R, then

which is a contradiction. |

Combination of steps V and VI gives:

Claim 3: Forany constant d 2 r, thereis a constant — Ay < —XK such that there is no
solution u(*) of (3.1g) - (3.2g) with maxu(s) < d and minu() = — Ay.

Proof of claim 3: By assumption (3.5), we can take v~ aS in (D.2). Then, for any
d=2r wecanfind ~Aje {—-A, : ne N} suchthat -A; < -R(d) and -A4 < -K,

0
hence the claim is proved. |
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Before proving steps I, II, III and V, we give the proof of theorem 3.1 by using the

above claims.

Proof of theorem 3.1: Let r and c* be as defined earlier with ¢t > r. We fix the
g's asin claims 1 and 2. Choose K > c* according to claim 1. Then fix D > K
according to claim 2. Since B, — + oo, fix one of the B,'s with B, > D. Call B sucha
B, andlet —A := —Agp according to claim 3.

Now, let u(¢) be a solution of (3.1g) — (3.2g) such that —A < u(x) < B. Suppose
that max u(®) = B > D, then it follows from claim 2 that min u(¢) < =K and by claim
I, we have the contradiction that max u(e) # B. On the other hand, if we suppose that min
u(e) = —A, thenclaim 3 gives that max u(s) > B which is also false, since u(x) < B V
x. Hence, our supposition holds.

We conclude the proof by applying lemma 3.1 and obtain the existence of at least one
solution u(e) of (3.1)—(3.2) with —A < u(x) £ B.

Q.E.D.

We now end this section by proving steps I, II, III and V. Steps I and III will be
proved together by using the next lemma; in a like manner also, steps II and V will be

proved.
Lemma 3.3: Assume that
fxu0) £ Mmu (=2 mMu) Vuzch

Then, for any € > 0, thereis R = R(e) > c¢* such tharif maxu(s) > R and u(x) =
u(B) = ¢t ux) > ¢t for x € Jo,B; max u(e) = max, we have

[a,b] [o,B]

T T
B-az2=— -8 (<—+ ¢)

Wt

Proof : We shall only prove the first part since the second part follows exactly the same line
of argument. Consider the function

2(x) = 3 (M2 + [y(x) ~ MP).




Then,
Z(x) = nux)u'x) + y'&yx) - M]
= (yx) = M) (—f(x,u;6) + nu®x)) + nux)(©OP + M).

Sincc f(x,u;0) £ nux), we have that z'(x) = 0 and so z(x) is increasing for x such that
y(x) =2 M. Hence, z(x) < z(yl), which implies that

2V a<x <y,

1,
z(x) < 5 nu* )

And so, we have

(y(x) = M)* < n(u* - u(x))

or

u'(x) — 0P < M + \/n( u*? — u(x) ).

So,

0 < 2M + Yn(uF? - u2(x)).

Forany m; > n thereis L; = L;(n;) such that

0(x) € VM@ -u2(x)) V¥ x suchthat ¢t < u(x) € u*—L,.
1

Define u(&l) = u* — Ly. Then the above inequality holds for o < x < &1 and where o
< &1 < 7. Following the proof of lemma 3.2, we see that v; — &1 tends to zero as u* —
+oo. Hence

A
o

u'(x)
VM, (¥ -u2(x))

(04

A
dx < Ocl-—Ot
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which shows that

u* - L1
J di <oy — o
V' (u? = €2)
ct ‘
=x*—0(+(6\(.1 - X*).
But
s
dé __n
V@ - €2 2nn
SO
u*® - Ll ct u*
J de N de ) J de
Vnie? - ey 2nfny JVn? - ey I§/m<u*2 — &)
ct u® - Ly

It is routine to see that

ko _
u L1

lim dg __T
¥ = oo J\/m(u*2 - &) 2my

C+

Repeating the same process for (Y,,$3,], we obtain on the whole that

Bu®) — o(u¥) = —=.
M

Hence



-5

liminf [B(u*) — ou*)]

T
u* — 4oo \/—?

Also, from the other part,we obtain that

[\

lim sup [B(u*) — o(u®)] -

u* — oo \/;

Then, using the definitions of lim inf and lim sup we obtain the required conclusion.

IN

B
Next, we give the lemma for the proof of steps II and V.
Lemma 3.4  Assume that, either
h(x,u) £ glu) for u =2 0
lim inf 290 < .(3.15)
u
U —> +eo
or
h(x,u) 2 g(u) for u 2 0
lim sup 228 > .(3.16)
Uu— 4o U

with g(u) = +eo for u— +eo. Then, for any € > 0, there are an increasing sequence
Bn(€) = +e and a constant R = R(g) > c, suchthatif maxu(s) = B, > R and u(a,)

= uBy) = c*, ux) > c* for x € Jo,Byl, maxu(x) = max u(x) = B,, where
[a,b] [ot,B,]

u" + (1 = 6)nu + 6h(x,u) = Op(x),

then
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or (respectively)

T
Bp — o £ —+ &.

Vn

Proof . As in the proof of the previous lemma, we shall only give the proof of the first part,
that is, the proof of assuming (3.15). Now, let ' > 7 (arbitrary), then

lim sup (%—u2 — G(u)) = +oo.
U — +oo

Hence, there is an increasing sequence B, — +eo such that

1 1

2
- G <28, -~ GB) V0<u<B,

2

n

So,

G(B, - G() < -5‘-'(13“2 ~u?) V 0<uc<B,
Consider the function

2(x) = (1 = O3 u(x) + 6G(u(x) + [y(x) — M].

Z(x) = (y(x) = M)[B(g(w) - h(x,w) + (1 = )M - Mu)] +
+ (M + 6P)(Bg(u(x)) + (1 — O)n'u(x)).
We easily see that
Z(x) > 0 for x e [o,]

and so, z(x) isincreasing on [c,y;]. This implies that
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z(x) < z(y;) for a £ x < 7.

That is,
B u(x)? 1 a2
(1 = ON'=5=+ 6Gux) + 5lyx) - M]° <
n' 2

< (1 = 65u(y)” + 6Guly))
<1 - (‘:)}2—'11(;@'5)2 + 8G(u(x*))
< (1 - e}’}u*z + 6G(u*),

So,

, 1—
Sy - MP < L2 w61 + 8iGwH - G

< (12_9)n'[u*2—u2(x)] + e—zn—'[u*2 - u2®x)].

Setting u* = B,, we obtain,
[yx) = MI* € '[B,* — u2(x)] for o < x < v,.

And so,

Ue) < 2M + YN'(B,2 - u(x)?) for o < x < v,

Repeating the same computations as in the previous lemma,we get that

T
liminf (B, — 00) > —e
n— +oo " 8 ‘\/n'

(respectively, for the second part, that is, for (3.16), we get




-535-

limsup (B, — a,) < )
N — oo \n

Finally, it is sufficient to take M' such that

L= I ¢ where n' > M (respectively, =L 1 ¢ where n <n).
Vo A

YA
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