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4. INTRODUCTION.

P.A.M. Dirac was among the founders of two basic ingredients
of  the mathematical methods needed in todays physics. His
relativistic equation [ 2 ] described the electron in terms of spinor;
the object discovered in 1913 by Cartan [ 1 1(The spinor was given
its name when Uhlenbeck and Goudsmith identified the electron extra
degrees of freedom, necessary to explain the anomalous Zeeman effect,
with the part of angular momentum of the electron which is independent
on its distance from the centre of rotation). His magnetic monopole
paper [ 3 } and the Hopf fibering [ 4 } , both published in 1931,
opened the era of fibre bundle description of gauge theories.

We shall be concerned with the combination’ of both above tools
needed for a consistent introduction of spinors in curved or
topologically nontrivial space-~times. Our original results on global
description of conformal transformations of  spinor fields, and the
detailed discussion of spin structures on the minimal conformal
compactification M of the Minkowski space-time Rl’? will be presented
in ch.(5). In the preceding ch.(3) and ch.(4) we shall review
criteria for the existence, and physical implications of inequivalent
spin structures. The attempt will be to give the subject a
coherence, which could be difficult to recover from individual
papers; however, the preliminary comparison of global properties of
this formalism with the Dirac-Kahler approach to fermions, and
comments on the relevance of inequivalent spinors 1in supergravity
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and Kaluza-Klein theories will be added in (3.6) and (4.5). When
recalling in c¢h.(2) the basic algebraic material, we shall clarify
in (2.3) the relation between signatures (s,t) of space-times
admitting Majorana spinors and types of the Wedderbrun skew-field
of relative Clifford algebras, and also propose in (2.5) to
generalize the concept of pure spinor to arbitrary Rs't.

Spinors are often thought of to be basically simpler and perhaps
more deep-rooted than tensors [44,39,5.6]. However, since the direct
geometrical interpretation is difficult, they remain a 1little mysterious,
even if the formal rules to deal with them are highly develaopad.
Because of the most intriguing property: the sign reversion under
the 2§ -rotation, spinors were sometimes considered to be unphysical.
The way out of apparent troubles 1is to pass over to the double
cover of the rotations group, and admit the object, which changes
sign after a transformation covering the continuous 249T- rotation,
while the observed vectors and tensors vremain identical. It can
be also argued that the relative 2% rogations of two parts of
a system are not necessarily unocobservable. The macroscopic construction
(atributed also to Dirac) is a solid cube, with extendible strings
attached to 1its faces, and to the walls of "laboratory!. After a
257 rotation of +the cube, strings cannot be disentangled, whereas
after a 4w rotation they can. For illuminating drawings see E 7 J ;
c.f. also [ 8 ] from which we quote:

"It is a kinematic property of the real world that (a) a coordinate

frame under rotation by 237 about any axis is in principle



distinguishable from an unrotated coordinate frame; and (b) a coordinate
frame under rotation by 43 about any axis 1is indistinguishable from
an unrotated frame". One has toc be careful with analogies between

a (pointlike) spinor and a finite size object in the Dirac
construction, or other similar '"plate of soup" and "belt twisting"
experiments. Nevertheless, the sign ambiguity should be considered
seriously. The opinion presented from time to time {c.f. for instance
[ 9 1 ) that spinor is defined "up to a sign", 1i.e. it is an
equivalence class under the 22 identification can not be accepted,
unless one gives up the linear structure of the theory, or the
Pauli principle. Finally, there is an experiment Elo ] with a split
neutron béam, part of which passes through a region of magnetic
field causing the rotation due to the spin precession effect. When

the relative rotation is an odd multiple of 23, the interference
pattern changes with respect to a rotation of even multiple of 2W.
For a proposal of another experiment, which can "measure" the spin
structure of space-time, see L1 ]

In three-dimensional Euclidean and four-dimensional pseudo-Euclidean
spaces, the double coverings of orthogonal groups are universal.
To spinors in spaces of other signatures or dimensions we shall
always attribute the double (not necessarily) universal covering,
which can be obtained by the Clifford scheme (see chapter 2.) This
can be motivated either by considering spinor as a ''‘square root"

of vector, or similarly the Dirac eguation as a square root of

Klein-Gordon equation. Being interested 1in finite component spinors,



we do not discuss '"bandors", carrying the double-valued representation

of SL(n,R) or GL(n,R), c.f. L 12 ] . In special relativity the
structure group is a (double cover of) pseudo-orthogonal group, and
the metric character of spinor requires some care in presence of the
gravitational field. A consistent way to implement spinors in curved
spaces is based on the vierbein (n-bein, orthonormal frame ) formalism.
Its essence is that spinors behave 1like spinors only with respect

to independent Lorentz rotations of the orthonormal (o.n.) frame at
each point of the manifold. In fact, in the developed 1in this spirit
variational principles for field equations, +the o.n. frame has been
given its own 1life and became a dynamical field. Furthermore
gravitation has been interpreted as a kind of gauge theory. 1In the
present thesis we completely omit the back reaction probiem, and
consider only spinor field in a fixed background metric, In local
coordinates the problem of propagation and covariant derivative of
spinors has been solved by Fock-Ivanenko coefficients, i.e. the metric
connection composed with the Lie algebras isomorphism so(s,t)= spin(s,t}.
If the space-time M has a nontrivial topology, the situation is

more complicated. The various charts on M have to be consistently
patched together. At the rigorous level, this 1is equivalent to
introducing the spin structure over M, which will be discussed in
chapter 3. The known feature is that not all manifolds admit
spin structure. (The physical arguments, based on homotopical considerations
will be presented in (3.1), while the rigorous definitions and

necessary and sufficient cohomological conditions for the spin structure

to exist, in (3.2) and (3.3)). In principle, by considering the



theory of geometrical objects as a sort of Spin(s,t) or S0(s,t)-
gauge theory, topological obstructions against spinors could be
expected. Similarly 1like charges of particles propagating in a field
of magnetic monopole must be quantized, also the global definition
of half-integer spin objects is not always possible. The analogy is
even more pronounced by observing that the pfolongation of the
structure group SO0(s,t) to Spin(s,t) is of the same character as
introducing the SU(3)-isospinors transforming nontrivially wunder the
centre 23, while the observed particles in @Q.C.D. transform only
under SU(B)/ZS. Moreover both gauges can be combined in the generalized
spinG structures, which will be presented in (3.5). Then obstructions
are weaker, or completely vanish.

Recently, there has been a growing interest in a nonstandard
approach to fermions, by means of the Kéhler—ﬁirae equation [13,14,
15,16]. It is written 1in the language of differential forms, and
seems to be conceptually different from the geometric approach,
even 1if it 1is directly related to Clifford algebras and algebraic
spinors. By geometric description of spinors we mean the approach
in which the faithful transformations under Spin, covering the
orthogonal group S0, are most important. Hence, spinor is
the object which 'transforms as spinor', 1i.e. the defigite assignment
of spinor coordinates to each spinor frame. This approach culminates
in the definition of spin structure over manifolds. The algebraic
spinors instead, are strongly based on Clifford algebras. Differently
to geometric spinors, for which the Clifford algebra is helpful

to define and represent spinorial groups, the algebraic spinors are



directly incorporated into the Clifford algebra itself. This results
in fields as sections of the subbundle of minimal 1left 1ideals in
the Clifford bundle. Obstructions in these approaches are 1in general
different.

The existence conditions are by now widely accepted when
congidering spinors on various spaces in general relativity, and in
modern Kaluza-Klein and supersymmetry theories. Another straightforward
consequence of the definition, the possibility of inequivalent spin
structures in multiply connected spaces, 1is less known.

The physical implications of inequivalent spinors have been discussed
mostly by Petry‘[ 17 ], by Isham and his colaborators [18,19,20,21 ].
Apart from possibility of inequivalent Spin(s,t)-bundles, the difference
occurs in different covariant derivatives of sginors. This can be
also translated 1into different pericdicity or antiperiodicity conditions
for spinors, which are easy to handle in the functional formalism.
The possibility of antiperiodic boundary conditions has nothing to

do with the folklore statement that ”spinér is defined up to sign".
1t holds only along exactly specified class of paths in M, and

by no means along all paths. Until now, the absolutely convincing
experimental evidence in favour of inequivalent spinors is not known.
Also Witten [ 22 ] has pointed out, that in general relativity,

unlike gauge theories, the cluster expansion cannot be wused to
justify, that inequivalent topological <configurations have to be
included in the path integral formalism. Nevertheless, Isham has
advocated the opinion that all possible consistent configurations

should be taken into considerations. Also the ‘'democracy" of Nature
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can be invoked, since in general no particular spin structure is
distinguished. In any case, modes of the Dirac operator, and the
corresponding Green functions appearing in perturbative corrections
of quantum field theory, depend on the choice of the bundle.
Rigorously, the test functions needed to smear the field operators
should be sections of the dual bundle, associated to the spin

structure bundle. Chapter 4 will be devoted for presentation of

various examples of spin, non-spin and Spinc manifolds. The known
physical effects of inequivalent spin structures will be collected,
and few comments added on their relevance in higher dimensional
Kaluza-Klein and supergravity theories.

Chapter 5 will be devoted to study the behaviour of spinors
under conformal mappings. In 5.1 we investigate the problem of
lifting the conformal map between M and M' to a map between spin
structgres over M and M'. We prove the general result

, that any conformal map can be 1lifted, provided we

admit all possible inequivalent structures "over M. This assignment
preserves (up *to a sign) the composition in the connected group
Confo(M) of conformal automorphisms of M. The sign ambiguity is
removed by passing over to the double covering E;;?:Tﬁs of Confo(M).
This induces the representation in the space of spinor fields on M.
Assuming that in M (of signature (+,-,...,-) the maximal space-like
hypersurface exists, the unitary representation in the Hilbert space
of solutions of the massless Dirac equation can be obtained in a
standard way . With respect to the Dirac operators (related to a

given spin structure) we prove that in general they are intertwined
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(up to a conformal factor) by a conformal map.
Next we shall apply these general results to the conformal

- 1,3
compactification M of the Minkowski space-time R ', In order to

: 1,3 , 1,3
have a well defined action of Conf(R } one has to enlarge R
We are interested in the minimal enlarging M , by adding only

! There are +two convenient realizations of M

1

some boundary to R
. 2,4 .
as a projective null cone in R or as the group manifold of
U(2). Usually the conformal spinors are introduced by starting from
. 2,4 .

8-component spinors of R by the Dirac-Hepner-Mack-Salam method
[?3,24,25 ], and we partially settle in section 5.3 the interesting
hypothesis { 27 ] that one of two reduced 4-component spinors can be
interpreted as the 'exotic' (inequivalent) one. In sect. 5.5 we discuss

in detail the (two) inequivalent spin structures over M , and
relate them to left br right respectively, invariant global o.n.
frames on M 2=U(2). The spectrum of the Dirac operator is computed
in sect. 5.6, and the space of solutions o¢f massless Dirac equation
shown to be {O]. The possibility of overcoming the triviality of
the resulting wunitary representation of Confo(ﬁ) {j38] by coupling
to electromagnetic field, 1is strongly suggested.

The labelling of formulas is as follows. The number before

the dot in ( . , ) denotes the chapter, after the dot and before

the comma - section, and after the comma - definite formula.

—R.



2  ALGEBRAIC PRELIMINARIES.

1. Clifford algebras, orthogonal and spinorial groups.

The standard references for Clifford algebras are [29,30,31]_

s,t n
Let V =R or C be an n-dimensional linear space over K=Ror C,
equipped with the nondegenerate bilinear form <, ) (of signature
+, «v.,+ (s factors) and -, ...,- (t factors) for K=R ). The linear

map f: V—A, from V into an associative algebra A with unity 1 ,

2
has the Clifford property iff (f(v)) =<v,v) lA for all v e V.

The Clifford algebra C(V, <, > ) (shortly: C(V)) is an associative

algebra with together with a Clifford map iv: v — C(V),

Lo(v)
such that for every Clifford map f: V—A there exists a wunique
homomorphism f': C(V)—A and f = f'®© iv (the uniqueness of £

can be replaced by the condition that the range of iV generates
c(V) as an algebra). By the universality property of the definition,
C(V) is unique up to an isomorphism. Its existence follows from

the isomorphism c(v) = T(V)/J , where T(V)= (—B V@& ..... eV and

J is a two-sided ideal in T(V) generated by {vs\/—-<v,v>\ve Vk .

These definitions imply the well known anticommutation rules

{V,w}+= 2 <bﬂu), where henceforth we denote the Clifford product by

a Jjuxtaposition, and identify V with 1 (V) and K with }{lC(V)'
v .
Denote by R " and C the Clifford algebras C(V) for
S, n
s,t n .
V=R , K=R and V=C , K=C respectively; then for any s+t=n

n S,t \ ,t
c-cch) =cR e = cR°")e® C =R  ®C, unere the real
S,

bilinear form is complexified to a C-bilinear form.

-9-



There are following isomorphisms

1 R =R R

() p+l,q+l p,qa ® 1,1 ,

(2) R = R ,
p+l,q q+l,p

(3) R = R ’

p,q+3 q,p+3

the proof of which is based on the fact +that all properties

of C(V) are determined by the orthonormal subset defined as

a set of mutually anticommuting elements with squares ¥*1, which

t c(v). 1If ces € 3 s s , tee! )
generates (V) {el, ep, ep+l ,ep+é\ {el e}
{e y ssss € , € ) y esey € } , ie , eae, € 3 € y ess, €
1 q qg+1 q+2 p+q+1 1 o} g+l p+a+3
are orthonormal subsets of R s, R , R , R , then
p,q 1,1 a+l,p a,p+3
tal e [ 1®e!'s Re' ,, cee, Qe' v,]_@ 1 ,
ielﬁ elez, , ep@ ele2 y el, ep+1 ele2 ep+q 8162 e2}
e e e , s e e e ,
{ q+2 q+l’ ! eq+p+leq+l eq+l’ 17g+1’ ! eqeq+l}

0 »

e y . ay e H 9 ] 3
{ q+1%123 Ca+p 123’ ©1%123° * ©1%1037 Cpigel’ Squeps2’ eq+p+373

where a = € e e are orthonormal subsets of
123  “g+p+l q+p+2 q+p+3

R , R R respectively.
p+l,q+l p+l,qa = p,q+3 P Y

The lowest dimensional real Clifford algebras are isomorphic to

R_ .= 2R, R, C, H, ZH, L(RZ) for (s,t) = (1,0),(0,0),(1,0),(2,0),(3,0),(1,1).

The tensoring rules (over R)

i

il
ot

R®R = R , R®C = C , ReH

2

2
cec C=C®C s C®H L(c) , H®H

1l
o
™

i
H

LRD®L(R™) = L(R™) , L(R)®D =1(0") for D=R, C, H ;

permit to identify all R " by aplying ( 1),( 2) and (3 ) .
s

b4
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In the table (1 ) it amounts to go down one step and/or perform

ok
inversions w.r.t. the column s-t=1 and s-t=-3 . Similarly C2k= L{c ),

2 ok ok ok
= “L(C = L(CT ) ® L(C ;
02k+1 ( ) ( ) ( )

Denote by: o the degree involution in C(V) induced by —idv :

@ the reversion anti-involution of C(V) induced by idv; and " T "

(£)

the conjugation anti-involution =& :eCO@(a). Let C (V) = ker{ot. x id)
+
be the even (odd) part of C(V); C( )V is isomorphic to C(V')
) X i ) . (+)
where V' is of one (timelike) dimension less than V: Crl = Cn 1
(+) (+) . .
R =R = R (to prove the isomorphism take the orthonormal
s,t s,t-1 t,s
subset
y e ;e e yeee, © e .
{eles+t * Cs%srt’ %s41%s4t s+t-1 s+t} )
n
The canonical element in C(V) defined by e¥ ='Tgéi » where
n 1=
e e is (possibly oriented) orthonormal basis of V, plays

l,..., n

an important rdle. For odd n the centre Z(V) of C(V) is K ®K &™
n

and the anticentre AZ(V) = {a.eC(V) I ab = x(b)a, for all b GC(Vﬁ] is
{O} , while for even n Z(V) =K and AZ(V) =K e®. Tt follows that
n

for even n R N is simple, and for odd n either simple when
S,

2
(e ) =-1 i.e. s-t=3 (mod 4), or a direct sum of simple eigenspaces
n

2

of 1/2(1 %t &") when (&™)" =1 i.e. s-t=1 (mod 4). Similarly for even

n n

+

n R( is either simple when s-t=2(mod 4), or a direct sum
S!

ct ~—

when s-t= 0 (mod 4). For even n Cn is always simple, and for odd n

C, is a direct sum of eigenspaces of 1/2(1* he'), where X is fixed
n

(+)

a2 L. . . ;
by (7\en ) = 1. Similarly Cn is a direct sum for even n and 1s

simple for odd n. All that can be immediately seen in the Table(1 ).

~11-



The descending sequence of groups can be defined in C(V)

(4) cx(v) = faecv) | 3 at )j ,

(5) M) = faecx) | gla)veV, forall veV }, (Clifford group)
(6) pin(v) ={ael( | Na) =a} ,

(7) Spin(V) ={aeprin(v)| oula) = al (even part of Pin)
(8) spin (V) ={a c—Spin(v)\ N(a) = +1] , (connected component of Spin)

where g : C¥(V) —» L(C(V)) defined by ‘g(a)b = <><(a)ba__1 is the

twisted adjoint representation of C*¥(V) in C(V) with kernel K¥* = K\ﬁﬁ,

and the homomorphism N : "(v) — K* is called spinor norm N{(a) = 3a @&
The group "(v) is spanned by veV of norm N(v) # 0, and Pin(V)

by Vv E&V of norm N(v) = tl. Groups Spin{V) and Spin (V) are

spanned by products of even number of veV, such that their norms

are N(v) = +1 and N(v) =1 respectively. The Lie algebra of C¥*(V)

is just C(V) with a Lie bracket beeing the Clifford commutator.

The algebra spin(V) is 1linearly spanned by e.e

,  j#k.
%k J#

For a fixed a, the restriction of .g(a) to V 1is the isometry

of (v,< ), inducing the exact sequences of isomorphisms:

(%%) Sometimes the spinor norm is defined as N'(a) = P(a)a,
however the resulting Pin'(V) covers only so(v) for

odd-dimensional V.

~12-



(9) 0 —= 22-———+ Pin(V) —=s 0(V) —— 0

(10) 0 ———*-22———-* Spin(V) ———=s S0(V) —= 0
(11) 0 > 22 & Spino(V) e soo(v)-——-o .
s,t .
In the case of C(R ') , these nontrivial (for max(s,t)32)

double coverings of 0O{s,t) , S0(s,t) and SO (s,t) are denoted
by Pin(s,t), Spin(s,t) and Spin (s,t) respectively.
Observe that they are in general not universal, since

O(s,t) = 0(t,s) and the first homotopy groups for <t3%s are

0 if s =0,1 ; t=1
VA if s =0,1 ; t=2
22 if s =0,1 ; t 23
(12) 7 (80,(s,8)) = .z i s =2 t =2
Z X 22 if s = 23 t =3
L 22x22 if s = 3 t=3,
This follows from the fact that SO(s) x SO0(t) is a maximal
compact subgroup of SO _(s,t); x&(soo(s,t)) = nﬁ(SO(s)) x ﬂi(so(t)) and
0 n=1
(13) Tﬁl(SO(n)) = Z if n =2
Z =3 .
o n
For min(s,t) 21 SO(s,t) consists of +two disconnected components

and is a semidirect product of SOO(s,t) with 22. Then Spin(s,t)
consists also of two disconnected components (except of s=t=1)

and is a semidirect product of Spin (s,t) with Z .

~13~



(16)

Similarly O(s,t) (Pin(s,t)) are semidirect products of 8S0(s,t)
(Spin(s,t)) with 22 and have twice as many components as
S0(s,t) (Spin(s,t)) respectively.

Also the double coverings of the subgroups of 0(s,t) preserving
separately the +time or space orientation can be defined.

Let us mention, that the spinorial groups arising from the
Clifford scheme are not only the particular double coverings of
connected orthogonal groups, but also specific coverings of the
discrete part (Zy; or Z,) — out of many (eight for s,t31) nonisomorphic
possibilities corresponding to various sign combinations of squares
of elements which cover P,T and PT inversions.

For C(Cn) the groups defined by (6 ) and (7 ) are
denoted by Pin(n,C) and Spin{(n,C). However, other useful groups

s,t .
}) ® C, which depend on the

. . n
can be defined in C(C ') = C(R
signature (s,t) [65} :

s,t

Doty ={faccr®fecl 327, w@e® % er®"}

Pin_(s,t) ={"C(s,t)/R+z {agl" | %a-= 1} ,
where R+ = ‘{‘I‘GR ‘ r>0} and 'A' is ¥me conjugation (=) in R
composed with complex conjugation in C, Then Sping{s,t) and

-1
Spin®(s,t) are defined as inverse images (f(:) of S0(s,t)

. -1 s,
and SO_(s,t) respectively, where Sc(a)v = oL{a)va for veR
yields the exact sequence

0 «—»GL(1,C) — [& (s,t) — O(s,t) —= 0

Since GL(1,C) = R x U(1l), from (16 ) follows
+

18-



(17) 0 > U(1) Pinc(s,t)~————q—0(s,t) —_—w= 0

and similarly

(18) 0~ (1) —=Spinc(s,t) —=S0{s,t) ——=0
c
(19) 0 ——U(1) —5pin_(s,t) —S0_(s,t) ——= 0
In fact Jjust defined spinorial groups are 'twisted' products

of real spinorial groups with U(1l)

(20) Pin.(s,t) = Pin(s,t) x U(1) /Z2

(21) Spinc(s,t) = Spin{s,t) x U(1) /Z2

(22) Spinf(s,t) = Spin_(s,t) x U(1) /2,
where 22 = {(l,l),(—l,—l)} < Spin (s,t) x U(1) .

15—



2. The matrix forms of Spin (s,t) for 1<s+tg6.

In 1lower dimensions s + t<6 the Spin (s,t) groups can
be identified with some well known groups. Let us recall the
construction of suitable isomorphisms. This is equivalent to deter-
mining Spin_ (s;t) explicitly in the matrix representation of Clif(s,t),
but gives interesting insight in related problems[.32,33 ].

Let wus start with s + t = 6. Consider the sixdimensional

6 2 4 . .

complex vector space c =A C equipped with the nondegenerate

. 6 6 :
quadratic form Q :C” x ¢ 3 (T,T) — Q(T,T) © C given by

(1) Q(T,T) x vol = TAT ,
4 4
where vole/\ C and ~ denotes the standard wedge product
. 4 . . .
in /\ C . The GL(4,C) tranformation U induces the transformation

T .
T— UTU with the property
T T
{2) UTU A UTU = det(U)T~T .

Therefore, there is a homomorphism of SL(4,C) into $50(6,C), which

can be shown to be surjective with kernel Z

2
(3) 0 —» 22 —» SL{4,C) —= S0(6,C) —= O
Restricting both T and U to be real
(4) 0 — 22——+ SL(4,R) —s S0{3,3) —= O

shows that Spin (3,3) = SL(4,R)

~16-



(7)

(10)

Assume now that a hermitian form H is given on C ; H =H
+
in matrix notation. Denote the group {UE'C(4) l UHU = H, detU = 13
by Su(4) or SuU(2,2) if the signature of H is (+,+,+,+) or
. . . . 2
(+,+,~-,-) respectively. Introduce the duality involution on AC ,

*e ®# T =T given by

*T =1/2 T
( )ij / 6ijkl kl ,

where é'jkl is the completely skewsymmetric Levi-Civita symbol,
i
and observe that

T -1T -1
*(UTU ) = U w TU .

2
Then, the C-antilinear involution J, J =1 given by
— T
JT = H % TH ,
where T is complex conjugation of T , commutes with the action
of U because of (6), and defines the sixdimensional real,
. . 6 . 6 . .
invariant subspace R = {T | JT = T} in C with metric of
signature (+,+,+,+,+,+) or (+,+,-,-,—,~) respectively.

This construction yields

0 —= 22 —% SU(4) —= S0(68) —= O

and
0 —s 22 — SU(2,2)—~»SQ§2,4) —e 0
which shows that

Spin(6) ~ SU(4) and Spin_ (2,4) = sU0(2,2)

-17-



5
The embedding of R in H(2) given by

XS' q F
(11) (X 1 X_sX_,X ,X ) R e [ } = A ’
5

1’72’73’ 74’ s q ,-x
where g = X_+ 1ix + Jjx + kx4; together with the observation that
2 + 2 > 2 i, 0
(12) UATU = A" = > x| x [ ’ ]
; i 0, 1
i=1 4

for Ue Sp(2) yield

(13) 0 -“—'22 — Sp{(2) — 50(5) — O
hence
Spin(0,5) = Sp(2)
4 .
Embedding of C in C(2) given by

zZ + iz_, iz_+ z
3 1 2

4
14 32, e G- = A
(14) (2,125,252, _ ,
iz -z ,.z - iz
1 2 4 3
. T 4 2
and observation that det(UAV ) = det(A) = AZS Z . for U,vVssL(2,C)
i
i=1
leads to
(15) 0 —= 12z, —= 5L(2,C)xSL(2,C) —— 50(4,C) —— 0 .

4
Taking various slices of C yields all fourdimensional spin groups.

- 0, 1
When =z, are real then AE= 8 A ( 8:[ l, O] ) and
1 4y
U,V & SU(2) = Sp(1l), hence
(16) 0 — ZZ———-SU(Z}XSU(Z) - 50(4,0) —— 0 ,
. . + +
When 21,22,23 are 1imaginary and z4 real, then A=A , and V =0 ,
hence
(17) 0 ——-22 —= SL(2,C) — s0_(1,3) — O .
When z ,23 are imaginary and zg,z4 real, then A:K, and U,Ve&SL(2,R),

~18-



hence

(18) (o} '-22 = SL(2,R) x SL(Z2,R) ———*800(2,2) —p ()
Therefore
(19) Spin(0,4) = su(2)xsu(2) , Spino(l,3) = SL(2,C), Spin°(2,2) = SL(2,R)xSL(2,R) .
. , T -1
Setting z,= 0 in (14 ) yields: Tr A =0, V=U", hence
(20) o — Zé——wt SL(2,C) = S0(3,C) ——s0 .

Similar considerations as in (16 ) and (18 ) yield

(21) 0 —s 22--——+SU(2) — S50{(0,3)— 0
and

(22) o—-—..zz———~+SL(2,R)——-——» S0(1,2) —+ 0
Therefore

(23) Spin(0,3) = SU{(2) and © Spin{1,2) = SL(2,R) -

C.f. the Table ( 2 ) for a 1list of matrix forms of Spino(s,t) for
14 s+t<¢ 6 , including also the isomorphisms

Spin_(1,5) = SL(2,H)
(24) Spin_(1,4) = Sp(1,1,H) , Spin_(2,3) = Sp(4,R)
Spin(0,2) = U(1) Spin(1,1) = GL(1,R), Spin(0,1) = Z,
Recall, that GL(n,D) is a group of invertible n x n matrices with
entries in D. The SL(n,D), is a commutator subgroup of GL(n,D)
-1 -1 .
generated by all a b ab, where a,b€ GL(n,D). For abelian D=R,C ,
A & SL(n,D) if detA=1. For D=H, A&SL(nH) iff |det a[ =

df
where det A = [ 1 and ,C & GL{(n,C) , B+ jC = A . (Sometimes

df
DET(A) = exp(Re trA) = is here used [_34- ]L
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(1)

3. Spinors in n-dimensions.

2 2

Elements of the D-linear (or D-linear, D=D@D , D=R,C or H)

space B(V), on which the Clifford algebra C(V) 1is isomorphically
2. .. . . i .
represented as D or D-~linear endomorphisms {(i.e. matrices with
respect to fixed basis), are called generally spinors of V, since
their +transformations under spinorial groups included in C(V) are
determined. More specifically, we shall wuse the following names,
which are however nonstandard in the literature c.f. 230,35,36 ].
Elements of the D-irreducible part S(V) of B(V) are called
. 2 2 2 .

pinors; and of B(V) (when D= R, C or H) — binors. Elements of

the representation space of C (V) are called spinors and of

its irreducible part (when nontrivial) Weyl spinors or, since they

have half as many components as spinors, halfspinors. It can be
seen either by a computation of (efi )2, or by an inspection of the
Table ( 1 ), that Weyl spinors exist if K=C for any even
dimension, and if K =R for s-t=0 (mod 4). Then, consistency with
the Dirac equation

[593" —epA’ —nly-o
requires that m = 0, where we denoted by }@ the matrices
representing the o.n. basis e, of V.

When ' is over K = C, spinors of V are called complex, and

/2
the standard name for éh ]—component complex pinors is Dirac

spinors., When V is over K = R, spincrs are called 'real' (despite of

]
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that, D= R, C, H ). They should be distinguished from Majorana
spinors, which are eigenstates of an appriopriate charge conjugation
operator,and in some basis have real components, hence half as many
components as Dirac spinors.

The Majorana conjugated Qpn spinor has to obey the Dirac
equation that QP obeys, but with the opposite charge, hence
’([JH = B_l’w*, where BX_ = - X"f B and "*" denotes complex conjugation.

i i

For massless spinors B'Xi = + X?B is suffcient. Only for dimensions
and signatures for which (QPM)Mz‘qU i.e. B*B = 1 the Majorana
spinors (Majorana selfconjugated spinors) can be defined. A rather
lenghty explicit computation shows that this is possible iff
s-t = 0,6,7 (mod 8) for arbitrary m, and in addition if s-t= 0,1,2
(mod 8) for m=0 [37, 38, 34 v‘ﬂ31 . Cogquereaux L 41 ] proposed
to relate these Majorana ‘'reality' conditions with the D = R type
of +the Clifford algebra ({c.f. Table (1 )), which is the case
iff s-t =0,1,2 (mod 8). Since this relation is not immediately
clear, and yields only part of signatures admitting {only massless )
Majorana spinors, we shall show shortly how the complete 1list can
be obtained.

It 1is known, that Majorana spinors have 1in the particular
(Majorana) representation real components. From the universality
and simplicity properties of Clifford algebras follow that the
element B, fixed up to a phase, can be determined in any convenient
representation. By inspection of Table (1 ) we see that a family

. s,t
of real matrices B’_ representing the basis e, of R can be
3 i
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picked up in C, iff s-t = 0,1,2 (mod 8). Moreover, in Cp

a similar family ij with purely imaginary entries exists
(the bilinears Xij spanning spin(s,t) and spinors are purely
real) iff s-t = 0,6,7 (mod 8). The 'if!' follows because i ZH
represent the basis ej of Rt's with opposite signature; the
'only if', because for every family of purely imaginary Z{j’
i Kj would be a real family spanning the real representation
of C(V), what: is possible only for s-t = 0,1,2 (mod 8).

Consider s-t = 0,1,2 (mod 8) and real '5_. For m # O the only
J

candidate for B is e:. , however since
5 1 if s-=t = 0 (mod 4)
w w ™
(en )¥e, =(el ) =
-1 if s-t = 2 (mod 4) s
Majorana spinors exist if s-t = O (mod 8). For m =90 B can be

taken as 1 &R, hence massless Majorana spinors exist also for
s-t = 0,1,2 (mod 8). Consider now s-t = 0,6,7 (mod 8) and purely
imaginary ’K_ = - 2{% . For m#0 B=1=B*B is suitable and
J J
Majorana spinors exist. For m=0 also B = eﬁ_ can be taken,
but this yields (massless) Majorana spinors only for s-t = O (mod 8).
~ [s1+4

It easily follows that Weyl- Majorana spinors, with 1/4 2

independent components, exist only if s-t = O (mod 8), c.f. Table ( 1 ).

The important property of higher-dimensional spinors is that they

form multiplets, when reduced to lower-dimensions (see(4.5)). This

2k
can be seen 1in the representation of ej € C as
=1 ‘e 1 eee X , =1 x ... x1 x§_ x X..X
Xi X X xﬁ’lxcj'sx 6‘3 ka“l 5 63 G‘é
where there are i-1 factors 1 , k-i factors and 1 ig k

3
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4. Algebraic spinors

In order to discuss the algebraic spinors it 1is convenient to
consider the isomorphic matrix forms of Clifford algebras as the
particular case of more general Wedderburn decomposition theorem, c.f
[7ﬂ. ]. Obviously, the <finite dimensional Clifford algebras C(V)
belong to the class of rings with a minimum condition, and their
natural action as left multiplications on a fixed minimal left
ideal (m.l.i.) S(V) & C(V) provides the irreducible representation
of C(V). Since C(V) does not contain any nilpotent ideal, the
three following conditions are equivalent:

1 C(V)p is a m.l.i. for peC(V)

2 p is a primitive idempotent, i.e. p = p2¢ O can not be written
as a sum of p' = (p')2# 0 and p" = (p”)2 # 0 such that p'p"=0

3 pC(V)p = {papl ae:C(V)} is a sfield i.e. a (possibly)
noncommutative field.

In addition, there is also the right action of D = pC(V)p on S(V),

which commutes with the left action of C(V) due to the

associativity of C(V). Therefore C(V) can be represented as D-linear

automorphisms of the right D-linear space S(V)=C(V)p

As it 1is already suggested by the notation, and will be
clear in a moment, the sfield D is isomorphic to D of previous

section (c.f. Tab( 1 )), and S(V) to the D-linear space of 2X x1

—25



(2)

matrices (columns) with entries from D (all these

depend on the choise of basis). When C(V) is simple,

isomorphisms

the group

ilarity

C*(V) acts transitively on the set of primitive idempotents 1i.e.
any p.i. can be obtained from the fixed one by a sim
transformation. When C(V) is a direct sum of simple

Clifford algebras, every p.i. necessarily belongs to one

direct summands 1/2(1% ef JC(V), and in these subalgebras

transitivity property holds.

To find at least one P in C(V) observe that the

R and CO contain only one trivial p.i.

y R b
0,0 0,1 0,2

and C are

R ,R rojectors on
1,0' 70,3 1 proJ

the only p.i. in

two simple direct summands: p = 1/2{(1 % ef ). Next, the

every Rs t and Cr1
*

X
-X
If p=2 T[(l + is a p.i. in R &
i=4

)
1 S,

instance p'= 1/2(1 + ei), then
p" = (p® 1)(1® p')

is a p.i. in R . Now the p.i.

in R
s+1,t+1 every s

s

obtained substituting the o.n. subset of R {(or R
s ,t+s s+1,

expression in terms of the o.n. subset of {or

R
t,s43

(1,3 ) and (1,2). The p.i. in C =R ®C

according to
n s,t

can be taken from R , for instance.

s,t

From the above considerations follows that every p.

can be written as

L=

%K LS
p = 2 H(l + C&J) ’
A 1

Y

and p' in R

R
s,t+1

(nonuniversal)

of two

the

algebras

p=1. Also

one of

p.i. in

can be constructed using (1,1) (1,2) and (1,3).

(for
1,1

can Dbe
by its
t) Ng

)

y S+t=n

i. in R



(3)

(5)

(6)

(7)

(8)

2 .
where . = 1, [oJ, a%] =0 for i,j =1,...,X; and X given by
S+t — [Eﬂ] 0,1,2
X = Z for s - t =
s+t - 15_;“32 -1 3,4,5,6,7

is related to the Radon-Hurwitz number [: 31 ]. The sfield

D = pR p is isomorphic to

s,t
R 0,1,2
. 8
D= C if s-t = 3,7
H 4,5,6 ().

By varying the signs of Ldi in (2) one obtains the complete system

X
of 2 mutually commuting primitive idempotents [35,36]

X
af -%
p = 2 JL (1+ &, W)
€ =1
satisfying
T $
= = ¥
Pg Pe! See‘ Z‘; €HEL
b, =1
e € ’
here = yree & s =21, i=1,...%; d =Pp.
v e=(¢g, %) € K5 end po =P

%
Hence, C(V) splits into the direct sum of 2 minimal left ideals

se(v) = C(V)P Each Se,(V) is an irreducible representation space

of C(V) acting from left, and also a right D-linear space of

¢
dimension 2, since pevC(V)pe are l-dimensional right spaces for

(4 ) For Rs (and CZ~) the particular primitive idempotent

s S 3
-s s S -8 S
p =2 (1 +ee. )=4 jr e, 2 jj:(e, + e )
. 1 148 : 1 z J J+s
i=1 i=1 J=1
yields D=R f{(or D=2¢C), and the known Cartan and Chevalley minimal
: . .y s,s 28
left ideal, related to the Witt decomposition of R (or C
respectively) into the direct sum of maximal isotropic subspaces.
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each €', and C(V)p‘,’:% Py C(V)p,
The isomorhpisms of sfields p&,C(V)pG.Mpe C(v)pG , and the
isomorphisms of 1l-dimensional right spaces pe,C(Vk)enrpéﬁ(V)p&“ over
Pe C(V)p6 and pG‘C(V)p&‘ respectively, easily follow from the fact
that all p.i. in the simple (sub)algebra of C{V) are similar, and
the direct summands (1% ef;)C(V) are isomorphic for nonsimple C(V).
For a future reference let us pick up the family of t&GC*(V),
satisfying for p and Pg in the same simple subalgebra
(9) t
The elements ‘% can be constructed by induction, in agreement with
our convention for p (c.f. (1 )): if te is a relevant family for

R d t' £ R th the suitable famil for R is
s,t o0 e O By qr them Y s+1,t+1

df
= @ ¢
(10) th (e 6 ) e ® Yoy

It 1is clear that chosen in this manner tly belong to cannonical
basis constructed from the o.n. subset of C(V), and moreover for

a fixed € both signs in p(tﬂé) =ft',, and similarly in =f(t})=2ty ,

can be achieved b taki t!' =1, and t' =e!' o t'. = e'e'. Usin
Y me M 1T %2 T RaT 5% &

the isomorphisms (1,2) and (1,3) tG) out of the basis, can be

obtained for arbitrary RS + however no longer both (%) signs of

£
transformations under of and d@ are realized.

ar

-1
For fixed &€ , b ,= te,p'te form basis of SQIV), i.e. every

G‘
a& Sy (V) can be uniquely decomposed as a = bé\ae\, where
a,& p&C(V)p‘ab‘D. Then the assignment a — dgr o eD, given by
(ll> abG\ = be'ﬂ ag‘\)e\ 7

yields the matrix representation of C(V) (see. Appendix A).
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(12)

(13)

Observe, that starting with real vector spaces and Clifford
algebras, the complex or quaternionic character of geometric objects
appears naturally. From the other side, the abstract C or H
numbers gain the geometrical interpretation (c.f.[ 50 ]).

All above considerations hold for every p'= apa_l, a & C*(V) .
However, it 1is important to realize, that the physical properties
of different p's will be in general different, for instance with
respect to the spinorial transformations and involutions & and ¢@
This follows because S(V) = C(V)p can be variously placed in C(V)
with respect to Vv, and 1is important for defining a scalar
products of spinors Log, 35 ]

{ap,bp? =t @(ap)bp = pt B(a)op e D ,
<ap,bp>°‘ = t-c «f(ap)bp = ptﬂx(:(a)bpeD .

where t or t which obey

t ({.(p) = pt N
tw%@(p) = ptﬁ( ]
are introduced in order to 'improve" the noninvariance of p under

antiinvolutions t or t respectively. The existence of t and ¢t

o ?

is wverified by observing that @ (or « ) applied *to p, chosen

according to our convention, varies only the signs of . in
i
a prescribed way, i.e. P — Pg for some & . Then the rdle of
-1
t (or t, ) can be played by t, . For a general p' = apa |,
a e C*(V), ate(%(a) (or atgec(3(a)) is suitable. We know that

and then t or t

s < * can be chosen

for our conventional p, t
to get a definite sign (and often both signs) in formulas

DT



(16)

(17)

(18)

(19)

(20)

B(t) = £¢ or &@(t&) =2t
In fact, for t<‘ and t this holds also for arbitrary p'= apa ,
since taking t. and  t, suitable for p' : ﬁ(at B(a)) =% at B(a) and
cxP(at*ac:(a)) = t.ag*oaﬁ(a) . Therefore, the scalar products ( 12 ) or
( 13 ), in general without definite symmetry, can be chosen to be
symmetric or antisymmetric over the antiinvolutions of D = pC(V)p,

1

a —tb(a)t or a--s tdaU§(a)t—

< respectively:

£6( <ap,bp> )t =% Cbp,ap>
tep( <ap,bo>, )t_:l = +<bp,ap ™,
Other properties of (12 ) and (13 ) can be uniformly described when
in the case of non-simple C(V)7 one replaces S(V) by
P(V) = S(V) + «(S(V)) over the ring rC(V)r, and p by r =p +x(p),
vhere  «(s(v)) =Ha) | aes] (A(V) = 8(v) for simple c(v)).
Then the resulting scalar products (12 ) and (13 ) on P(V) are
nondegenerate, (12 ) can be made positive definite only for (s,t)=(n,(
and otherwise 1is neutral except for (s,t) = (0,1),(0,2) and (0,3);
and (13 ) can be made positive only for (s,t)=(0,n) and otherwise
is neutral except for (s,t)=(1,0). Moreover the automorphism groups,
defined as rC(V)r-linear homomorphisms of P(V) preserving these
scalar products contain Spin _(V), and can be realized as
ta & C(V) \ glala = l} .
and similarly for «£( . The Lie algebra
{_a & C(V) l @(a) +a=01]
of (19) 1is generated 1linearly by elements of the form a(g(b)~b g(a),
where a,b &P(V), and similarly for =<3 , c.f. also the Appendix A.
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5. Correspondence between spinors and tensors. Pure spinors.

Consider S = C2, which can be interpreted as the space of

4 . 3,0

Weyl spinors of Rl 3®C = C , or  the space of pinors of R .
¥

Then 4,12) and (4,13), with the choice t=1 and t = el are

scalar products which are hermitian positive definite, and bilinear

skew (symplectic), resbectively. In the latter case let {bl,bzk be

the suitably normalized basis <bA,bB>; = EA 5 where A,B = 1,2
0,1 o q s
and G:AB =l_1.0 . Introduce the space S of C-valued C-antilinear

functionals on S, and S the space of C-valued C-linear

functionals on § . Let Ssd —deS be defined by d(}) = T1(a),

— ——

for any (e §, Then bA’ is a symplectic basis in S, and there

is an 1isomorphism of the hermitian part of the tensor product

- AB' ‘ B'A AB‘] 1,3 AB
@ = = = 1 3 el
S HS {Z Z bA®bB' Z Z with R "y given by (SM hAﬁ)hB' =N
AB s . . ;
where 5;_ are (hermitian) Pauli matrices and €. 1is the
. 1,3 . .
orthonormal (o.n.) basis of R . The primed indices conventionally

indicate the transformations under the complex conjugate representation
of SL(2,C)z Spin_(1,3). Consequently, components of arbitrary tensor

can be expressed in a spinor equivalent form as

(1) TAAB;,...,APB; _ EA‘Bl A,BF"YV4 . G)H Wt ’
C, D4‘,...,CqD" o T C4D4' C, Dg Ve Ve
where
] t
(2) Tuﬁ_‘. e - G_.uq . . 6"04 D4 N Cq Dﬂe' TA" B4 .APBF' ’
1 ¥
%...v* AABA A B Vg (3_4D4...C“D‘t

The unprimed, primed and vector indices are lowered by symplectic

tensors 'EAB' eA'B’ and metric tensor g,y respectively, and raised
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by their inverses. The expression (1) can be simplified for tensors
with definite symmetries, like g‘a,e“,%% : RQ7MJ, Fog »
The spinor equivalent form is particularly convenient to discuss ghe
duality properties or to classify the Petrov type of Weyl or
Maxwell tensors [ 5, 43 ]'

The interesting question is up to what extent the spinor
can be described in terms of tensor-like objects. A prototype is
the Cartan [ 44 ] way of introducing spinor as ''polarized" isotropic
vector, or the well known Penrose flag [ 45 } . It turns out,
that most whatv can be achieved, is a 1:2 correspondence, with a

spinor defined up to a sign.

Let wus consider in more detail the Cartan concept of spinor.

3
The components of an isotropic vector in C can be expressed as
2 2 o 2
x, = io ‘11 y X, = i({. +}4 ) Xy = -2 }oid , where ; , and ]4

are components of a spinor ] . Also 3 - tvx.+;xt , f = “-—x“uxt
o 2 EY 2‘ 3

where it 1is impossible to fix signs in a continuous way. It follows

that isotropic 1line determines a spinor (up to nonzero factor) by

i 2k+1
xi G i = 0 . This construction can be generalized to C * . The
. . . . 2k+1
maximal isotropic plane Zi}{ in C ¥ , Spanned by vectors xu:..,fk)
determines a spinor I ‘{}-)ZL;‘--]L,)N-»Lu} , ij =1,..,k (up to nonzero

factor), and vice versa. Because, the number of components of f
grows up faster than of Z.k with k-, it is clear that

they are not independent in general, but fulfil some recursive
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relations. It has been proposed, that these relations may have
interesting physical interpretation as vanishing of particular
transition amplitudes [ 6 1 . Restricted in this way spinors are
called pure . Pure spinors form an orbit of the connected Clifford
group, and any spinor is a sum of pure spinors. Chevalley [ 29 1
generalized this concept also to real spaces equipped with a

2s 2s+1 S,S s,s5+1

quadratic form of maximal index i.e. V = C , C , R or R

Pure spinors are defined as elements of a fixed minimal left ideal

s .
@
of the particular form C(V) J1 x (c.f. footnote on p.25 ) which
=4
$
belong also to some minimal right ideal Ely“h(v), where y“lspan
LE

a second maximal isotropic plane in V. In fact this concept can
be generalized to arbitrary V. Let us observe that the intersection
of any minimal left ideal with any minimal right ideal in C(V) is
either {OL or of dimension (over K) equal to dimKD. The {DB
intersection is possible only for s-t=1 (mod 4) if K = R, or oddn
if K = C; when these ideals belong to different simple summands of
C(V). This can be proved by noting the factorization property of
any element of minimal left (or right) ideal [45,127](In any matrix
X
representation it factorizes as U x V, where U,Venbd are regarded
as row and column, respectively). Now, for any given p, d & C(V)p will

be called pure iff d & p'C(V), where p'=apa , acel! (V). Then
components of a pure spinor d are constrained in a similar way as

in  the case discussed by Cartan and Chevalley.
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(1)

3. SPIN STRUCTURES.

1. Motivation.

There is

spinors in the curved

pseudoriemannian metric

the notion of a spin

essentially one

way to introduce consistently

n-dimensional space M, with the

g, of signature (s,t). It 1is based on

structure over M. Let us present some

physical motivation for this construction before we shall recall
the specific definitions in next sections. Assume that M is space
and time oriented (however later the orientability conditions

will Dbe released),

orthonormal

isomorphism of the tangent to

~ s,T

X
Spin_(s,t)

representation to some

It turns out however,

and let F be the

{o.n.) frames over M. One is

R , which

SOo(s,t)—bundle of oriented

interested in the

M bundle TM with the bundle
is associated by the vector (i.e. spin-1)
principal  Spin (s,t)-bundle T over M.

that then the bundle E?, called the Dbundle

of spinor frames, has to be 'properly' placed over the bundle F;
namely g2 regarded as a 22 bundle over F has to restrict

on each fibre to the nontrivial double covering, identical +to the
covering -f of relative typical fibers

This 1is always possible to be

small (contractible) U_

patching together can

0 —e 22—_—o8pino__* SO, —= 0

achieved locally over any

out of the open covering {Ux} of M, but

be inconsistent.

32—
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To visualize the sort of pathologies, which can be encountered,
we recall two necessary conditions for a spin structure to exist
over manifolds with signature (s,t) ; s=0,1; t33 of the metric
(5r1(SO(s,f):=Zz, c.f. (2.1,12)). The first condition is that
noncontractible 1loops in every fibre of F should not be contractible
as loops in the total space F, for instance by going out of the
fibre [47] (#). In other case some discontinuity must occur; lifts
of noncontractible loops 1 ame open paths 1 in fibres of F, and
by no continuous deformation in F 1 can be made closed (equal to
the 1ift of some contractible loop). The second condition states
that the following situation can not happen [48]. Consider the parallelly
transported vector along the loop 1 in M., Its final position
differs from the starting one by geO(s,t) . Now let 1S
A [O,l] be a family of 1loops, i.e. a closed 2-surface 2 in M,
such that 1, and ll are trivial i.e. consist of a point.
Then the relative g form a loop 1y in. O(s,t) such that
g,= g,= id . However, if this 1is the odd 1loop then the parallel
transport of a spinor @p can not be defined: its final
position after the transport along the (trivial) loop 1 has
to be both 1” (since nothing happens) and —qp , by continuity
with respect to other ls transports.

Lo e et

(*ﬁ In the case of other signatures it has been proposed E]Sl to

demand, instead of the condition I, that odd loops l#&2ﬂ1(p—l(x))

-1
should not be deformable in F to even loops 1€ 2]{1(p {x)).
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(2)

(3)

This suggests that such inconsistencies on some manifolds,
precluding the introduction of spinors, have something to do with
holes or obstructions against the smooth contraction of two-
-dimensional surfaces in M. The condition I is equivalent to the

condition II . This follows from the exact homotopy sequence

j* ~1 i# p*
vou __‘ﬁm(M’X) ——-—bgtm-l(p (X),EX) '————-—-Pjtm-l(F ,EX) -—————bﬂm_l(M,x)-—%..,

-1
where Ex is arbitrary o.n. frame over x, E ep {(x) ¢ F; and
X
the maps p¥* , i* and j* are induced respectively by the
bundle projection p: F—-—eM , fiber inclusion i into F, and maps

similar to the map j:E;—*ZLZ ( § described in the second

condition, 1s clearly homotopy independent i.e.‘!li]:{}iv] eT&(p—l(x))
if b and ="’ are deformable one into another). Specify m=2

. . . - . . . -1 .

in(2). Then i* is injective (noncontractible loop in p (x) 1is

not contractible in F) if and only if j* is zero (no family Z.

of parallel transports 1S in M generates the odd 1loop 1 in SOO).
Also from (2) follows that for simply connected M ( ﬂi(M) = 0)

and metrics of signatures for which 'ﬂl(SOo(s,t)) = 22 (c.f. 2.1,12),

the first and//or second conditions are sufficient. In fact,

since JIQ(SOO(s,t)) =0 (as for every Lie group) and
Jrl(SOD(s,t)) = 22, the relevant part of (2) is
0 7 (F) 2 o 37 v
M -
e . " —_—— 5 ) 22 JCl(F) 0
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Then by exactness either jtl(F)= 0, which 1is excluded by
condition (1), or Jnl(F) = 22, which allows F to be defined
as the (unique) universal covering of F L a7 ].

Geroch [ 47 ] discussed various criteria for a fourdimensional

noncompact , oriented and time oriented Lorentz space-time to

admit a spin structure. The equivalent condition 1is parallelizability

of M (then moreover the global o.n. frame 1ifts to a global
section of ?'). The short cohomological proof we shall present
in the next section. This result is +trivial for dim Mg 3

since then orientability implies parallelizability [; 49 1 and
false for dim M 2 5 , Other sufficient conditions are the Weyl
tensor to be of particular Petrov type and the integral over M
of curvature not to exceed some critical amount. The last result
is rather surprising, since we shall show in’ a moment that the
existence condition is a purely topological property.

Therefore it seems that non-spin manifolds are sufficiently
twisted in order any metric on M to be of a high curvature.
In the riemannian case there is a stronger result [ 48 ] o ifM

2
is not a spin manifold then there exist a 2-sphere S such

1/2

kY

+ v o
that 1/2 'SZ (*'R,{_‘,goa R xp d2 dzs() > 23 , where
S
XR = 1/2(R + *R) are selfdual (anti-s.d respectively) parts of the

curvature tensor R . Therefore, spaces of anti- or selfdual

curvature always admit spinors.
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Still another characterization is based on conditions I/II and Geroch
construction of generic example, which we shall present in ch.4 .

X . . 2 . .
The idea is to 'thicken' a 2-sphere 3 in M and consider

. 2 .
the resulting neghbourhood as a plane bundle over S . This
i : s 2
bundle is associated to some principal S0(2)( = U(1)) bundle over S ,
which 1is classified by the winding number m . If for at least
2 . . : .

one S in M the relative m is odd, then M is not a spin
manifold.

For charged spinors, coupled to some gauge field in M, the
existence conditions are weaker in general; we shall discuss
this case at the and of +this chapter.

Rather different way to avoid problems when introducing
spinors globally in M [ =1 ] , (see also [ 52 1 and [ 53 ]
in case of isospinors) 1is to require vanishing of spinors on some
lower dimensional subset of M . We shall not pursue this approach,
since it is not clear whether it means that the space is cut out,
or the external boundary conditions are imposed. Let us mention
only that wusually in such situations the formally defined quantum
mechanical Hamilton operator may have many-parameter family of
different selfadjont extensions [ 54 .] , which can be even of
a nonlocal type [ 55 ].

Summarizing, to introduce spinors on a (pseudo)-riemannian space
in a global way and to ensure the consistent distribution of

the well known sign ambiguity, the spin structure is necessary.
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2. Definition of spin structure.

Let M be a connected oriented pseudoriemannian manifold
with metric tensor of signature s+ t=n, and F the
S0,(s,t)~bundle of orthonormal {(oriented) frames in M.

The spin structure (F,n) on M consists of the principal

Spino(s,t)-—bundle ¥ over M together with the Q-—equivalent
bundle morphism n onto F such that the following

diagram commutes

F x Spin(s,t) —3> F
nxgl m

F x 50(s,t) _

where is the covering homomorphism (1.1,11) 0: Spin,(s,t) — 80 _(s,t)

and horizontal arrows denote right actions of groups on
relative bundlesl c.f. 56,57 ).

Then, M is called a spin manifold if it admits spin structure.

Theorem

An oriented riemannian manifold M admits spin structure

iff the second Stiefel-Whitney class of M ( WZ(TM)) vanishes.

The proof of the Theorem(2) will be given in a more general context

in the next section.
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Now let us present the short and abstract sheaf theoretic
Justification, essentially due to Haefliger L ss ] , c.f. also {-SQJ

for a Lorentzian case. The exact sequence

(3) 0 —ézz—HSpin(n) ——> s0(n) —3> 0

yields a 1long exact cohomology sequence (Appendix B)
1 1 . 1 2
(4) oo o—>H (M,ZZ)-—->H (M,Spin(n)) — H (M,S0(n)) ——3> H (M,ZZ)——ﬁ..

The collection of SO0(n)-valued transition functions of bundie
of o.n. frames over M forms the Cech l-cocycle k on M
. . +1
which fixes some cohomology class [k]e H (M,S0(n)).
-2

It can be shown that image of k in H (M’ZZ) is w2(M).

Now Dbecause of the exactness: w2(M) =0 iff k is image of
some &k in H (M,Spin(n)) . Any Cech l-cocycle representing %
is a collection of Spin(n) —valued transition functions and
determines a spin structure.

The equivalent definition of a spin structure, as the

. . ~ vl .
particular 22 covering m : F—F (such that m eH (r,ZZ) is

nontrivial) has been already mentioned in Sect.(3.1). It yields

another justification of (2) [ 60 ]; the exact sequence

i
(5) 0 — S0(n) -5 F 5 M — 0 ,
where i is the inclusion map into some fibre, induces the

short Serre exact sequence

.1 p* .1 E! T w2
(8) 0 —H M,2) —= H (F,2,)——H (50(n),2,) —> H (M,Z )
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Now M is nontrivial iff i*(m]) =[d'J#0 e El(so(n),zz),
but then 'r([S])Evuz(M) has to be zero.

Let us show now how the Geroch result, that parallelizability
is equivalent to the existence of spin structure, follows for
oriented and +time oriented 4-dim. noncompact 1lorentz manifolds.

If M is parallelizable then there exist a global o.n. frame

in M and F is trivial F = M x 50_(1,3). Then (F,?L) can be
obviously defined as FT-Mx SLZC and #(p,h) = (p,g(h)).

Now let M admit the spin structure (?}¢L). The structure group
Sch of F can be restricted to SU(2) since SU(2) is a maximal
compact sugroup of SL(2,C) = SuU(2) x R3 (topologically).

Principal SU(2) — bundles : over M are classified by homotopy
classes of maps from M into 54 (since the Hopf fibering

S7 §Eigl%84 is  4-universal); that is by HA(M,Z), which is
trivial for noncompact M. Therefore F must be +trivial and admit

a global section ; . Then ?L°5: is a global section of F

and F is also trivial, hence parallelizable.

Let us observe that M is a spin manifold if and only
if any of its coverings M is (WZ(M) = WZ(M))’ whereas if M
is not a spin manifold then for any N also M x N is not, what

« b
is an opposite behaviour to the vector field problem on

spheres:

-3G ..



(8)

(9)

1 3 7
parallelizable are group manifolds (8 and S ) and S but

odd
also any ) X pr--.xSq- However, boundaries and direct products

of spin manifolds are also spin manifolds [ 61 }.

Definition
Two spin structures on. M (f,TL) and (FZTﬁ) are equivalent iff
there exist a (strong) bundle morphism ﬁ : ?“——a-? which
intertwines M, and M o meB =" .
B F
nooon

F

P

M
Lemma

Inequivalent spin structures over riemannian M are in 1-1

vl
correspondence with elements of H (M’ZZ)'

The cohomological justification is as follows. Let

~ ~ ~1
k, k' e H (M,Spin) yield two spin structures over M. Then image

~ I~

P Vl "
of k - k' is O eH (M,SO ) and by exactness of (4) k - k!

~1
is the image of some class in H (M,ZZ). Similarly, by the

equivalent definition, if m and 41' are two spin structures

3*

*
then i (M'-m) =0 and by exactness of (6) n -n=p (0
wl
for some oL &H (M’ZZ)' Hence inequivalent spin structures are

~1
labeled by classes of H (M,ZZ).
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Detailed proofs (2) and (9) which are more suited for a physicist's
point of view at fibre bundles, we shall present in the next
section. They will be wvalid for a wide variety of similar
situations, requiring the prolongation of the structure group

to some covering of 1it. In fact the pgeudo- or riemannian
character and the signature of +the metric are irrelevant in
the following sense. There can be topological obstructions to
equip M with the pseudoriemannian metric, the orientation or
time orientation, but when it is done, the prolongation problem
will be precisely governed by the theorems. Furthermore it will
apply to the full O(s,t) and its three subgroups containing

one of P,T or PT transformations, c¢.f. also 162]_

In these cases M no 1longer need to be space or time orientable:

Similarly  other interesting homomorphisms will be covered

.

0 ~—s 7 ——— SU(n) —s SU(n)/Zn—————> 0

0 > 7 = R = U{l) —~———= O

There 1is one common property in all above cases; the kernel
of the homomorphism g : G — G is discrete and contained in

the centre of G. Let us present now following [ 63 ] the

existence and inequivalence theorems for the prolongation of G to

G . This will fix also our notation in subsequent sections.
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~ . .
3. G structure, existence and uniqueness.

Let g: G—a be a homomorphism of Lie groups G and G,
such that its kernel K is discrete and contained in the centre of G
Let F = [F,p,M,G] be a principal G-bundle over M. Then ‘é structure
is a pair (%;q), where F = [?,;,M,a] is a principal 'E—bundle over M
and 7 is the (étrong) bundle morphism ) : F—F (pe = ?), which it
equivariant wunder the right actions of relative groups.
Two G structures (g;Q) and (F',Vu) are equivalent 1iff there 1is
a strong bundle morphism E, : F—sFr , 'k = TP) such that ﬂ'oﬁ =,
Let {Q& be a simple open covering of M (i.e. all nonempty
intersections qﬁﬁ...n U(L = Ud.-'g are contractible), and let {:Uﬁ—o F
be 1local sections with transition functions %“F:Qx@** G.

The existence of E'structure is equivalent to +the possibility

o~ o~ fad
£ 1ifti t U G = i h
o ifting %tﬁ o %LP —» G, g OTZP f;ﬁ in suc a way

P
7~ o~ ~
that \f are transition functions in F. Define k ] —e G by
*4 *fy =0y
~ e =1 o~
(1 k = .
) rx(ig ﬂ,x \ﬁ“{ k?aé(s
Since 4§ok = ide G, then k eK. by a straightforward computation
=Gy 0y
it can be shown that k is closed (dk) [ = id., Its cohomology
class 1is independent on the choice of local sections and liftings :F
=
2 ~
and K‘G determines k(F)ef&(M,K), called G obstruction (see App.B).
11
These observations 1leed to
(2) Theorem: F  admits 5 structure if and only if k(F) = 0.
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It can be seen that for G = O(n) and bundle F of o.n. frames
in M k(F) = w2(M), i.e. the class k(F)e §2(M,ZZ) is equal to
the second Stiefel-Whitney class of the associated to F tangent
bundle TM. This can be proved starting from 0(1)-bundles for which
k(F) = wz(F) = 0, and then by induction [ 63 ].

When M is orientable ( iff the first Stiefel-Whitney class of F
is =zero wl(M) = 0 ), then the structure group 0(n) of F can be
reduced to S0(n) and the obstruction class k(F) for S0(n)-bundle
is equal to that of O0O{(n)-bundle. Hence the Spin(n) structure on M
exists if and only if wl(M) =0 = WZ(M). Similarly, provided that
the reduction of F to SO0 (s,1) ( SO(s,1), O(s,1) ) does exist,
the Spino(s,l) ( Spin(s,l), Pin(s,1) respectively ) structure over M
exists iff w_(M) = 0.

2

Now assume that there are two G structures (fyq) and (E',mﬂ)

over M. Let ‘Ei and Ei be relative local sections with +transi-
~~ ~ ~
ti £ ti ! i » - - ' '
ion unctions %L§ and T*@ respectively, such that n,(z U; T 6;
Define & : U — G by
o o
(- %
Then ge {«(s = id, and in fact 5';(!: U&()._, K. The 5;(5 determines

~ o~ ~«1
the element S(F',F) & H (M,K), called the difference class.
~ ~ ~ A
(4) Lemma: (F,v,) and (F',vﬁ) are equivalent iff ,S(F,F') = 0,
Proof.

(=) Let é be the isomorphism G :%:—sF'. With respect to local
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~ o~ ~ ~ ~
> 3 1] 3 | B —_
sections q; in F and G; defined by @' = @0 G; , g;g‘ 0.

(€< ) Let Skf,g') =0 , then there exist " : QL——-E' such that
o,

-1 w =1 ~ .
S‘,.L(,’:’)@’)“ . Then the map (5& PP (U,) — F' given by

oA

(5) (Ju(E) = P():'(P(E)) )“(’E(E)) hr

~ ~

where the unique h  satisfies E = a;(ﬁ'(E)) h is « 1independent.
It defines the global map @ : F—TF' such that B (Eh) = (%(E)h
and nQ}a@ =n_ , what proves the equivalence of (?;NL) and (fw,nj).
(6) Theorem:
The inequivalent G structures are in one to one correspondence
1
with elements of H (M,K).
Proof':
Observe that §(F,F') SKFW,EH) = 5(?}5"). Then given (%ZWL)
~1 . . .
and g-efi {M,K) the proof amounts to the explicit construction
of (F',q') such that §(F,F') =J . set ?é' = cS"l'“ . Then
! ’ =< g fhﬁ
because of § eKccentre of G, (JdG') = id  and %i are
2¢ { epy ¢
o~ ~
transition functions in some bundle F'. The bundle F' can Dbe
constructed by Steenrod method (see the section (5.1)). Assume now
that E:' are local sections in F' relative to C?'
o =<3
Then because of §0\€&% = ga ?;ﬁ = fkﬁ the map Mm' ¢+ F'—F
. ] ‘~' - . s
defined 1locally by ’H;{G;fﬁl = G;g (h) is well defined

and equivariant. Moreover 5(?1%7) =4
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(1)

(2)

4, Spinors, Dirac equation and probability current.

Given a spin structure, or a pin structure in general,

(E,WL) over M the spinor fields on M are defined as sections

of some associated bundle to F. In particular, spinor field of type Yy

is a section of the bundle F x;xv, where ‘X is a representation

of Spin{s,t) (or Pin(s,t) ) in the spinor space V.

Equivalently, the spinor field ¥ : M—F x v can be described by

¥

the X —equivariant V-valued map gp: F — v
~ -1
PEn = gy ) PO,

—~ ~
where E € F, h & Pin(s,t).

Given a connection F‘ on F, there 1is a natural connection I1

- i
on F obtained as a pull back of |

by m*

=1 -1

F: g* %*P ,

where -g* is the isomorphism of Lie algebras spin(s,t) and
induced by the homomorphism ‘g . Henceforth we assume that

the wunique Levi-Civita connection, preserving the metric and

torsionfree.

~

Let wus check that [1 is indeed a connection on the principal

Pin-bundle ?. The continuity properties are rather obvious,.
Now let E e F , A e spin , then from the relation between
the right actions of structure groups

41(5 exp sA ) = /nﬁg) (exp sA) = qﬁﬁ) expl(s §*A)

follows
Malag) = QM)
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where E =an(§) and Af on the 1l.h.s. denotes the relative vertical

vector at E, and similarly on the r.h.s.. Hence
o~ .1 -1 -1
(5) Piag = ¢ [Mm ] - 2 Er‘(g*AE) ] - (o guh =
and
- T -1 -1
(6) Re [ =To(r), = (. 2Dom e (R, = ¢7e T RN P

-1 ~
= d - e = ad
g, @ g(h‘)P " « - [
Therefore [ is a well defined connection cf. [ 64.], which in
. . . . Hq; P. 7
a standard way determines the covariant derivative d of : F—eV,
H | . . .
where d is the horizontal part of d. Given a local section
E:: U;—;E , we shall denote the components of a covariant derivative
o
of 45 in the direction XeTM by
Fytem 1y ooy,
-1 = .
where l"d(x) = ¥°%. [0:‘* r‘(X)J and 0, = M6, " U, —F
Next , the Dirac '5' matrices can be generalized as follows.

We are interested in Dirac spinors, for which the representation g

in (1) comes from the (irreducible) representation of +the complex

2{"‘/21 '
Clifford algebra € in the space L(C ), n=s+t. Given a local
n
21:"‘/1]
section d; , define the L(C ) valued one form
o [l
Yo ™ — L(C ) by
(8) ~*
Y% = Lo e ]
s,T . .
where © : TF — R igs the canonical form defined on arbitrary

W St
vector tangent to F at E eF, (E : R —e T M) by
X X

X
(9) o (V) = 56,V

-1 -1 t
Then  ¥(X) = ¥(0, (X)), where on the r.h.s. G . TM —e R’

o ol
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The standard anticommutation rules hold

(10) {30,y § = 2ex,v).
Finally, the Dirac operator 1is defined by
o ab
(11) Py, = ia%'zln X(EJVI(E Dy,
where Ea’ a,b=1l,...,n are components of the arbitrarily

frame E . The Dirac equation is:

chosen o.n.

(12) ﬁﬁt =m Y, .
In practice, given a local frame E = {Eak in U, we can take
> ns]
K(E ) to be constant matrices X’ in L(C ) representing
a a

s,t
the pseudo-Euclidean basis in R ' e R

3,

o~

Then the spin connection matrix r‘(X) is uniquely determined

by two properties. It has to be a linear combination of comutators
of matrices, that is enerators of Spin(s,t)c R

Y a & pin(s,t) s,t
This guaranties that +the anticommutation rules (10) are preserved,
and the metric g is covariantly constant. Also the torsion of [

~A

(or rather of r which comes from | by pushing forward by

the horizontal subspaces in TF) has to wvanish

(13) de + Mae =0
3t
Composing (13 ) with a,
( ¥#* ¥* #*
14) du;@Jrg;FA@;@:o,
and then with the Clifford representation X , one gets
(15) qu +r‘oLA Xd‘ =0 .

N &

Applying (15) to a pair of arbitrary basis vectors X,Ye {e } yields
a

(16) dy (X,Y) + [E(X),XQ‘(Y)] - [ E(Y), ¥ (%) ]

it

0



(17)

(19)

(20)

(21)

(22)

which, because X(Ea) are constant, becomes
[Feo, yol - [Fo, ywo] -yclouvh - o,
where we have ommited the reference +to a particular local section
o~
From (17 ) r can be solved, or easily guessed.
Let wus restrict. our attention to the generalized Lorentzian
case of signature (1,n-1), and define the Dirac conjugated spinor

—

field 3? by local components as .qz = \ﬁjk{o , Wwhere X’o is the

constant matrix in Rl,n—l , and 1y(Eh) = 3{TE)K’UH . The Dirac
equation (12) can be obtained by the variational principle from
action integral 5 = S-l:d,(, where the Lagrangian density .L is
- i/2vaab["‘ Y. v - (Y )Y &ﬂ - my Yy |
YYa bY b’ ba

The current 1-form 3l q& %ﬂ) locally given by

3 , t X - 7 X !

JA(\P g (X) Y*X( )\K‘

is «-independent and divergencefree if T’ and *ﬁ are solutions of (12)

™ o Ty 4 - Py (Vg e g -

e(j( Y u(‘)

g {Ea ?X(Eb) '+ G?K(Ea)Eb Y- ?[T‘(Ea), X(Eb)] Ll,-}
:qlab§f5(Ea) [Eb + rkEb)]%’ Yo+ qfx(Ea) [Eb + P(Ebj]kfi}
= YPy - By y' =0

Let «J denotes the Hodge dual of Jjy defined in a coordinate frame by

= Hg\ ev...V“ngwVw

(-)(-j)\]"-- \)VI-A A

Then given any maximal space-like n-hypersurface S in M, the expression
v> =_S i ( ")
’ S #] 1
<y y 3 30y y
is Dbecause of (20) S-independent (in a homotopy <class), and defines

the nonnegative scalar product <%U %N>' of \f and ?’.
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5. Spin, and generalized sping structures.

(1) Definition

Let G be a Lie group with the centre containing VA
Let M be a connected, pseudoriemannian, oriented and time
oriented manifold, and F the bundle of oriented o.n. frames over M.
The spinG structure (FG,11G) consists of
1° the principal G x Spin/ z, -bundle F, over M, where the

equivalence group 22 is the diagonal of sz ch:Spin x G,

2°  the equvariant with respect to group actions (strong) bundle

ma : F —pF
P Mg ' g

eqiuvalent iff there 1is a (strong) bundle morphism @6: F(’}.—»FG

such that = '
TeoBg e
In anology to 35, the alternative definition of FG would be

the covering in of the (direct) Whitney sum of F and the

principal G/Zg—bundle EL , which on each fiber restricts to the
covering SpinG = (Spin x G)/Z2 —s S0 x G/Z2 . However, the associated
notion of 'equivalence' as the bundle map between Fé and

G’ is slightly different

Fé which intrwines }{G and €

from the definition  (2) [ 60 J.
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From the latter definition of ¥ follows that in order
to specify the covariant derivative of G-spinors, the (Levi-Civita)
connection on F has to be combined with some connection on
the principal G/Zz—bundle E . Then the product connection S0 x G/Z2
pulls back by 1%5* to a connection on FG. This means, that
some G/Zz—gauge field lives on M and spinors have to be charged.
Since representations of SpinG are constucteed from (trivial on 22)
representations of Spin x G, the relation between the internal
spin and statistics. arises[lOG.}.

The motivation to introduce the spinG structure 1is to weaken
or evade the obstructions against the wusual spin structure, by
compensation of +the nonvanishing wz(M) with the HZ(M,ZZ) characteristic
class of Ei .
Forger et. al. [AQT}have shown that for the properly chosen G,
such that ZZCZKerG and there is a homomorphism T{ : Spin{(2n)-—» G
with the bijective restriction rx‘Ker Spin(2n) — 22 < KergG,
spinG(Zn) structure always exists. In fact, SpinG(A) structure
can be always defined for simply connected G.

In a rather complicated classification of inequivalent SpinG(d)
structures the group HA(M,jcég)) plays an important rdle [_60 ]

In general, SpinG forms multiplets of spinors, but the
particular case G = U(1) yields Spin denoted by Spin ,

U(1) c

which is a relatively mild deviation from standard Spin.
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The group Spinc arises naturally in the (complexified) Clifford
scheme (see <ch.(2,1)), and the definition of Dirac spinors ( 2.3 )
is still wvalid.

The spinC structure Fc exists iff WZ(M) is reduction mod 2

2
of some integral cohomology class, i.e. there exists cle H (M,Z)

such that w_(M) is the image of cl under the homomorphism

2 2
H (M,Z) — H (M’ZZ)’ induced by the homomorphism of +the coefficient

groups Z -—->22 E 66 ] . Then the map Spin x U(1)s (h',h) —& hze. U(1)
passes to the homomorphism Spincm¢ U(1l), and yields the complex
line bundle L associated to FC with cl being the first Chern
class of L. The U(1) = gauge is usually interpreted as the
electromagnetic field on M. The obstructions against the spinC
structure still do not vanish, but are weaker than obstructions
against the spin structure (any spin manifold has also the canonical
spinC structure, which need not to be unique).

The spinC structure can be equivalently defined as the

U(1)-bundle FC over F
0 =2 U(1l) o FC.ZEE»I? —2 0 ,

which restricts over each fibre to the homomorphism
0~ U(1l) —p SpinC —» SO —¥ O

induced by

Spin x U(1) ® (h,h') —s g(h) € 30
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(7)

For s=0,1 and t%3 the U(l) fibration (4) over S0 is nontrivial,
because if it was trivial then 3Cl(SpinC) would be 22 x Z
which is not the case; 1[1(Spinc) = 7Z , since topologically
(not as group) Spinc & Spin x U(1)

Now, U(1) bundles over F are in 1-1 correspondece with elements

2
of H (F,Z) . The short exact sequence

L P
Qs SO~ F ——s M —s 0

induces
% il v

1 2 P 2 2 3
. —= H (SO ,2) —» H (M,Z) —» H (F,Z) == H (S0,Z) —ep H (

M,Z) —» ....,
2 . . X :
and E:dl ] £0eH (F,2Z2) is a splnc structure if and only if
c
. 2 . .
1*{%3 % 0 & H(50,2) . But w (M) =Te 1*[«]4_01 , and the spin_
structure exists if and only if the third integral Stiefel-Whitney
class of M vanishes {: 67 ].
The classifiacation of inequivalent Spin structures still
c
is complicated. It has been shown that in the case of spin (4)
c

structure the inequivalence of F bundles 1is responsible for
c

the 1nequivalence of spin structures (up to the 2-torsion
c

in HZ(M,Z)) Lso].
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6. Fermions without spinors?

Another, conceptually different, attempt to describe fermions
c.t.[13, 68, 14, 15, 16, 83 | is based on a globalization of the
concept of algebraic spinor. Let M be a manifold with a (pseudo)
riemannian metric g. Then the Clifford bundle Clif(M), with fibers
p—l(x), X € M isomorphic to C(TXM), can be defined as Clif(M):zé%aéﬂl,
where Tens(M) is the full bundle of tensors and J(M) is a 2-sided
ideal generated by X ® X - g(X,X) for arbitrary vectors X. One can
work also in linearly isomorphic bundle A (M) of differential forms,
equipped with a metric T induced by g, exterior product, and a
Clifford product (defined by awb =aab + g(a,b) for a,beA(M), and
extended to A(M) by associativity and linearitﬂ. Then the square

of d-§ (where d 1is exterior derivative, S = (s) lda&, and % is a
Hodge dual) 1is a Laplace-Beltrami operator . In a flat space this is
a common property with a Dirac operator. Kahler E,13 .]showed that in a
flat space, 1in presence of electromagnetic potential A, the equation
(d -§ - m)a - ieAva = 0 is equivalent to Dirac equation, provided
that a is restricted to belong to minimal left ideal of A(M) & C.
In general, this equation describes a flavour multiplet of fermions
(number of fermions equals number of minimal left ideals), and it
is not always possible to globally split A(V)®C into subbundles

of minimal 1left ideals. If this can be done, another pecularity is

that the Dirac-Kdhler equation in presence of gravitation mixes
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spinors belonging to different minimal left ideals (see however [_69 ]
for modified equations). The conceptually most intriguing aspect of
the above approach, is 'its aim to describe the halfinteger-spin
objects in terms of integer-spin tensors. This exploites the fact
that the fixed Clifford number ae A(M) can be viewed either as a
spinor 1i.e. an element of a minimal left ideal I(M)e A(M), or as
an inhomogeneous tensor, i.e. element of‘.N(M), considered as the bundle
of automorphisms of I(M). Alsoc the rdle played by the primitive
idempotent, necessary to split /\(M)}at least 1locally, is interesting.
To illustrate +this point consider a 4-dimensional Lorentzian time-
oriented M, of signature (+---). Then, given local coordinates,
p can be taken as p=1/2(1+ goodxo). Given a local {dual) vierbein
Ea, p can be also 'aholonomic'; p:l/2(1+EO). Finally, any p=1/2(1l+a)
with (not necessarily vector) ae A(M), agzl, is possible. This last
possibility can be called '"second aholonomization'", and the primitive
idempotent p considered as a dynamical entity, with the 1local gauge
group C*(Rl,g). This corresponds to gauging the freedom of choice
of the representation of B’—matrices.

Whether the Dirac or Dirac-Kahler equation 1is better suited for
a description of physical particles in gravitational field, the lattice
theories L 14 ], or in higher-dimensional Kaluza—Klein theories [ 70 ],
should be a matter of detailed examination. Let us point out few

differences with the standard approach to spinors presented in previous

sections. First of all, the spin structure may be helpful to interpret

—Bl



the sections of the minimal left ideal subbundle of /M) as spinors,
but 1is not necessary. In fact, the sufficient condition for a

global splitting of A(M) is the existence of a global primitive
idempotent in A(M). However, in the case of real Clifford bundles
crif(m) == A (M) , and riemannian oriented fourdimensional M,

p can be always defined as p=1/2(1+w), where & is the volume

form. In the Lorentzian case of signature (+---), time orientability
or orientability are sufficient: p=1/2(1+e ) or p= 1/2(1+ ). For
(complex) Clif(M)&C, and Lorentzian, <time oriented and oriented M,

p can be defined as p=1/4(l+e )(1+w) for signature (+---) and
p=1/4(1+ie_)(1+w) for signature (-+++). As follows, these conditions
are rather different from the condition for a spin structure to
exist. In pérticular cases, there c¢an be some coincidence, 1like the
Geroch results (c.f.( 3, 1)). Also, according to L71:7é], the existence
of a global field of maximally isotropic hyperplanes

in the complexified tangent bundle TM®C 1is equivalent to the existence
of sgpin structure (#). In the case of 4-dimensional Lorentzian
oriented and time oriented M, this implies +that the structure

Lorentz group reduces to the spinoriality group of topology R2 [73 1 3

therefore: parallelizability = spin structure.

(¥) However, the definition of a spinor frame % in[ 71 ]is in

variance with the wusual one, and the topology of"{E] is 8Q(1,3),

instead of Spin/(1,3).
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4 EXAMPLES AND APPLICATIONS.
1. Spin structure on nonorientable manifolds and on spheres.

In this section we first 1illustrate briefly how spinors on
nonorientable manifolds can be introduced, and then we recall following
Trautman L 75 1, some interesting relations between the canonical
spin connections and nontrivial gauge configurations over spheres.

Let us start with the nonorientable M=K x 23 xR, where
> is the Klein bottle, i.e. R xR - with the points

1 2 1 1 m 2 2, . o
(x ,x ) and (x + mB , (-1) ¥ + nB ) identified for all m,neZ . By
enlarging the structure group from Spin (1,3) to Pin(1,3) , the
spin structure can be defined: “an element of Pin(1,3) corresponding

3 3 . . -
to the x=p-x inversion in 0(1,3) can be used for defining

the transition functions in F. The Dirac spinors have to obey

then [c.f. 20 ]
\t"(x",x‘,xl;xs) = (E’u ' B/L)m v (XO»"4”"‘541(‘4)'”"2*"82’)(3)'

(In fact, in this case it would be enough +to consider the
orthochroncus Lorentz group 07(1,3) and 1its covering Pin1(l,3)).
Another example of a nonorientable space is provided by the
2-dimensional real projective space RP(2) (R2 with the identification
(xl,xz) ~ ((—l)n xl + mBl, (—1)m x2 + nBZ) for all m,n & Z )
The 0(2) bundle of o.n. frames is F = 8S0(3), since 80(3).0(2)=RP(2),

and F = SU(2). The spin structure map . agrees with the

standard homomorphism S : SU(2) —=S0(3)
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There are known examples of (unique for n z2) spin
n
structures on spheres S . The total space F of the bundle
n
of o.n. frames ['F,p,s ,SO(n)] has the topology of S0(n+l),
n
since  S0(n+1)/80(n)= 5 .
Then the total space F of the bundle of spinor frames
~ n . . .
[F,p,S ,Spin(n)] is  Spin(n+l), since +this is the only nontrivial

covering of S0(n+l). Let I' be the Levi-Civita connection on F

and r the induced one on f.
[+]
n=1 so(1) ={1}, Spin(1l) = Z, =8
1 ~ . 1
F =280(2) =U(1) =5 |, F = Spin(2) = U(1) = S ,
R 2
the map U(1) = =z —3 z & U(1)

has the winding number 2 and corresponds to the Mobius strip.

1
There 1is also the second inequivalent spin structure over S

. .. 1 2 ~ n’ 1
given by the trivial F' = S xZ and F 3(z,%t1) —>(z,1)e s x{1}

This 1is the only case known to the author when the inequivalence

of spin structures comes from nonisomorphic bundles F, and not

from inequivalent maps M. , c.f. sect.4
n =2
3 o . 3
F = S0(3) = RP(3) = S /Z2 , F = Spin(3) = sU(2) = S s
D =pom is the well known Hopf fibering and i% describes
2

the magnetic monopole on S of unit strenght.
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n=23

F = SO(4) = SU(2) X SU(2)/22= su(2) x so(3) , F - Spin(4) = SU{2) x SU(2)
3 ) 3 .
are trivial principal bundles over S, since § is parallelizable;

the su(2)-valued connection one-form I’ describes the

meron solution[. 76 ].

F = S0(5) , T = Spin(5)
, a connection 1-form on F with values in spin(4)=su(2)+su2),
can be split into two components, and projected down to
) 7 . :

a connection on S = Sp(2)/Sp(l) with wvalues in sp(2)= su(2)

i
(the t'Hooft symbols M. ,] are involved). This corresponds to

H

the BPST instanton [ 77 ]‘

n=2>5

F = SO(6) F = Spin(6) = su(4)

5
shows that SU(4)/Sp(2) = S . Moreover F is the only nontrivial

5

Sp(2) bundle over S  since ‘ﬂ;(Sp(2)) ='Z2 .

n==6

o~
F = S0(7) F = Spin(7)
. 6

shows that  Spin(7)/SU(4) = S

n=>7
F = S0(8) F = Spin(8)

7
Since S is paralelizable and simply connected,

7
the wunique spin(7) structure over S is trivial, which shows

7 7
that Spin(8) =~ Spin(7) x S and S0{(8) = SO(7) x S



2. Non-spin manifolds.

The 'generic' examples of four-dimensional manifolds Mm without
spin structure have been described by Geroch C a7 ]. Consider plane
2 . 2
bundles over S  associated with some principal SO0(2) bundle over S .
These are classified by the winding number, i.e. homotopy class of
1 2 . 1 L
a map from the equator S of S into S0(2)=S . The explicit
construction of M is as follows. Let D xC. = {(z_,z!)e CxC 'Izj 51}
m i i i1 i
be two copies (i=1,2) of a direct product of a 2-disk with a
. . . - 2
2-plane. Identify boundaries of disks {ziz lk (obtaining S ) and
m
relative planes according to zlzz2 ; zi: zézl for fixed integer m .
2
It can be seen that wrapping over the S adds the twist 2%m to
any loop in the fiber of +the frame bundle over M , and therefore
m
for m odd interchanges even and odd loops.
The important observation is that if some noncontractible lecop 1 in
4 :
p (x)=0(s,t)cF, where s=0,1 and t»3 can be contracted to a point in
the total space F of the o.n. frame bundle over M (by going
outside the fiber for instance), then the spin structure cannot be
defined over M (c.f. (3.1)). This follows because noncontractible
loops lift to open paths in F which connect +two distinct points
(counterimages of the starting point in F ). If these points are kept
fixed, the 1lifted path cannot be deformed into the closed 1ift
of some contractible loop.
The Mm for m odd are generic non-spin manifolds in four

dimensions in the sense that given a 2-sphere in any manifold one

. , . 2
can thicken it to a neighbourhood which is topoclogically a R -bundle
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2
over Sz. If for at least one S5  this bundle is classified by odd m
then M is not a spin manifold.
2 2 .
The twisted S -bundle over S is a manifold of that type.

It can be given a nonsingular positive definite metric [ 78 ]

2 2 2
(1-v cos. @) de N
(3-vi ) —vE(1+vi)cos

2 2
2 -1 2 l1-v cos @
ds = 3A (1+v){ — (d')\ +51nan)
3+6vi-v?

(1)

2 2 2 2
(3=v ) = v (1+v )cos © Sin2Q ( a8 x1Sinaz d )2}
+(3+v7-)2'(1—v"1:0319) 5 41 ’

where O0<£LX<T , 0<O<TT |, (X,m+27j, 8+27k) are identified for jkeZ;
2 2 4 -1
= 4v(3+v ){3+6v ~v ) , V = —l—(2+a—b) [4—a+b+8(a—b) (a+b) ]
and a = ( ’2+l)1/3 . b=a‘1=(‘{511)1/3, This metric solves the Einstein

equations

(2) Ruv - 1/2 Rg,, + A gy =0 .

#*¥#

#*
The topological signature is T= SRR = 0, the Euler number 'X:iSRR = 4,
and spin structure does not exist. The +total volume is

S 1/2 4 2 2 2, -1 2, ~1 2 4. -1,-2
g

(3) dx =487 (3-v J(1+v ) (3+v ) (3+6v -v ) A ,

and the action
-1 1/2 4
(4) S = -(16 ) S(R-—2A) / d x = (84T) Av
. . . . -1 2 2 .
is a little 1less negative than the action 2 %A of 8 xS . This
latter space with T=0, X=4 and the metric (1), where v=0,
also solves (8), and admits the unique spin structure.
Apart from the two spaces above, only three other gravitational
. Lo 4 4 4
instantons are known explicitly: § , Cp(2), and T . The 4-spheres S ,

with  T=0 and the metric (1 ) where v=1 and ¥ is 4’  identified

rather then 2% ['78], admits a unique spin structure.
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The flat T4, which admits 16 inequivalent spinors, and CP(2),

which admits a spinC structure, but no spin structure, will be
discussed separately in next sections. Here 1let us mention only

that to obtain a pseudoriemannian model without spin-structure, one
can consider [ 79- ] a real ¢” function on CP(2) with only isolated
critical points. With these points removed, its gradient 1is a

nonvanishing vector field U which can be used to define a metric
: -1
g'(W,v) = g(wW,V) - 2g(U,W)g(u,v)g(u,u)

of signature (-,+, ..., +) . The resulting space 1is orientable and

time orientable without spin structure.
The examples [ 80 ]of compact oriented and time oriented Lorentz

. . . . 2
manifolds without spin structure are 2k copies of CP of
topological signature 2k and FEuler number 6k. By adding 2k-1

3 . .
handles of topology S xR to connect the manifold, and then still
k+1 handles, the Euler number is reduced to =zero and the Lorentz
metric exists. Since the signature 1is preserved and not divisibile
by 16 (when k<8), the resulting manifold has no spin structure.
In order to complete the list of gravitational instantons let us
mention the infinite family V2 of compact fourdimensional
m
algebraic submanifolds of CP(3), satisfying the homogeneous polynomial
. n+1l 1
equation of degree 2m. They admit spinors and ’E(V2 ) = =16( 3 ) L81 Y
m

The V4 is the famous K(3) surface, known to admit a Ricci

flat metric, whose explicit form (without Killing vectors and

involving 58 parameters) has not been obtained yet.



(1)

(2)

(3)

3. CP(2) and spin. structure.

The complex two-dimensional (real fourdimensional) manifold CP(2)

3
consists of complex one-dimensioconal linear subspaces in C:

3
CP(2)=C /~ |, where for any leC\{O} (21,22,23) -~ ()\zl, lzz, }{23

Since U(3) acts in this set transitively, and the stability subgroup

is  U(2)xU(1) there is a diffecmorphism
CP(2) ®&= U(3)/U(2)xU(1)
Different partitions of (1)

5
CP(2) = s /U(1) (Hopf fibering)

cp(2) = SU(a)/Zs/ o)

are useful to discuss tensorial (i.e. metric, curvature, connection),

and spinorial properties of CP(2) respectively.

2
5 ;S = . 3 6 . . .
The 5-sphere S =)< 0 Z. 7 =1 in C =R ig invariant under
i= ii
is
transformations Z. ~» e Zi' The set of orbits is a quotient
i
manifold covered by coordinates zZ = Z_/Z0 , J=1,2,
J

2
with exception of {z} 2z, = 0}=CP(1) =s”; hence CP(2) can be

4
thought of as a compactification of R by a 2-sphere at infinity.

The (Fubini-Study) metric on CP(2)

2 — -1 - - =2 _
ds = (1 + 22, ) dz dz - (1 +z.z ) dz dz z.z (sum over j,k)
JJ k k JJ j kJjk

can be obtained projecting along orbits of U(l) the standard

. . . 5 - 3
U(1l)~invariant metric on S (coming from dz,dz; in C )



2 2
ds + (dr=-A)

-1 i€
where ZOIZOI = e . and
= i z z - az
(5) A 1/2 i(1 + ijj)(zkdzk Zk Zk)
In coordinates X+ ix2= 1/2 2, 3 X+ ix4= 1/2 z, (4) becomes
the Eguchi-Freund [ 82 ] gravitational instanton
(6) g S (x+1/8) 0 - (x x +% T )x" + 1/4)
pv uv v TRRAY
where X = x_ X , X=0C x and
v H Y v
. 1 .
-1 .
C =
Hv e .
. -1
The metric (4) (or (6)) 1is Einstein gw=1/6 Rw,and

solves the Einstein equations with a cosmological constant N=6

(7) R,y- 1/2 Rg ,+ Agw=0
. 5 . -1
(had one started with S of radius 6A , one could solve eq.(7) for

any Zk ). The Weyl tensor is selfdual (since A#0 the Riemann

tensor cannot) and its Weyl spinor is of Petrov type D i.e.

(8) wA'B'C'D'zg(A.g .QC,QD.)
The total volume is 1/2;71’2, the index 'L’:j'RR* =1 and the Euler
characteristic Z=SRR**=3 . Since the maximal isometry group is
SU(3)/23, CP(2) is an attractive candidate for an internal

Kaluza-Klein space; however it is not a spin manifold E 43 ]Q

To see this let us follow the reasoning of previous section

and find the odd 1loop in the fibre , which can be contracted
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to a point in the total space of the bundle of o.n. frames
over CP(2), (CP{(2n) in general). From a formula similar to (3)
follows that SU(2n+1)/Z2n+l can be considered as the total space of
the bundle of unitary frames in CP(2n). Because of the inclusion
U{2n) e 0(4n), this is a subbundle of the bundle of o.n. frames
in CP(2n) considered as a 4n-dimensional real manifold with
a riemannian metric. Since 3fl(SU(2n+l)/22n+l) = 22n+f the noncontractible
loop 1, [1] € (2n+1) ﬂi(UZn)' being (2n+l) power of some loop,
must be contractible in SU(2n+l)/Z2n+1 . It remains only to find
at least one loop as above, such that it 1is also noncontractible
as a loop in the group O(4n).
The example 1is the loop
1 z , 0, ..., 0
0,2%) 3 s —> ? sy 1, «v., Oy &U(2n), z= exp[§2n+l)s]
6 s Oy ceey 1

which is noncontractible in  U(2n) and [1]1e (2n+l)JIl(U(2n)), This

can be easily seen from the set diffeomorphism (which is not a group

isomorphism)
U(1l) x U(2n) 3 (X, A Ye—A(Xr) . & U(2n)
1] 1]
where
C A A , A , eeey A 7
1,1’ 1,2 1,2n
XA , A y ssey A
Al A) . = 2,1 2,2 2,2n
1]
A A JA yeee, A
. 2n,1" 2n,2 2n,2n |
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(11)

(12)

(13)

A, eC; i,j=1, ...2n ; al=1, A, K =Q. , det(A, )=1,

Moo By b= i | % ik jk 0,y (A5

As an 0(4n) transformation 1 1is still noncontractible, and generates
4n .
the (2n+1)25 rotation in the (1-2) plane of R (i.e. in the
. 2n .
first component of C ). This completes the proof.
Obviously, the 1lack of spin structure on CP(2) prevents us from

aplying powerful topological identities in which spinors are involved.
It is known that by ignoring this point one is 1led to selfcontra-

dictionss these can serve also as a '"physical" proof that

w2(CP(2)) # 0, For instance, for the metric {6)

4 2
SR ) TP
uvpao
Then by the index theorem, the difference between +the number of
righthanded and lefthanded helicity =zero-eigenmodes of the Dirac

operator seems to be noninteger [ 48 ]

1 2
R L 384 mt K

@1 -

A similar inconsistency appears L 126] when "introducing" the action

) . . . . 3,1
functional with chiral fermions and topological terms on R ' xCP(2),
and discussing the resulting reduced fourdimensional theory.

However, the charged spinors can be defined on CP(2); 1i.e. the
spinc—structure exists[84,85]. The idea is to introduce a U(l) gauge

potential, which cancels the unwanted sign factor of the parallel

transport of spinors. Therefore instead of the ‘'integer" Dirac condition,

F should satisfy
uv
u v 27
SAu ax' = SFW az" - Z(ns1/2) .
e
oS S
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(14)

(15)

Given by (5) A is a perfect candidate for a U(l) gauge field
. . 5

on CP(2). It comes from the standard metric connection on S

which is a total space of nontrivial Hopf fibering [ 86 ].

The CP(2), and CP(n) in general, are most important examples of

Kahler manifolds. To appresciate +their properties, 1let us recall

the appropriate definitions. A Kahler manifold is a complex manifold

equiped with:

1° almost complex structure J i.e. type (1,1) tensor field J

2
such that J = -1, considered as a linear operator on vectors;

2° Kahler metric i.e. the riemannian, hermitian (g(JU,JV)=g(U,V))
metric g, such that the corresponding 2-form K(U,V)=g(JU,V)

is closed dK=0

In local coordinates = dz dz , where is a ositiv
g gjk ik gjk P ive

definite hermitian matrix, and its Kéhler form is
K =1/2 ig  dz dz
/2 igy dz dz,

On CP(n) the standard K&hler metric is

2
B a In(i+ z;z; )

gij a
azj Z,

n+l
where zj: ZJ_/Zo and zZ_, Jj=0, ..., n are coordinates in C

J
It can be seen that {4) is in fact (proportional to) the Kahler

metric on CP(2), and the curvature F=dA of A (5) is its

Kdhler form [ 86 ] .
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(16)

Being <c¢losed, F solves the Maxwell equations. Because the volume
form on CP{n) is proportional to FA ... AF (2n factors) the
dual of F is proportional to Fa ., AF {(2n-1 factors), and F
is source~free d*¥F = 0 .

In the n=2 case F is selfdual and its energy-momentum
tensor vanishes. Hence the Einstein equations still hold in presence
of F and CP(2) is an example of a ‘'gravito-electromagnetic'
instanton with the second Chern number S FAF = 419¢ 2.

To avoid inconsistencies in presence of charged scalars, one puts
the Dirac condition ;-i SFdE =neZ. Now the fermions with
halfinteger charge are well defined on CP(2) . The additional

contribution to (12 )
2 4 2
e
—_— F F* =1 1
o S Vg dx=1/2(n+1/2)

makes nR—nL integer, as it should be.

w37 -



(1)

4, Twisted spinors.

In this section various physical consequences of the
mathematically inequivalent spin structures, known in the
literature, will be collected.

As a model space, we shall consider the generalized torus

M =T xR", where
" = g x...xS={(z,...,z)ecnllzlzBi>01,
1 n i J

M is a flat parallelizable multiply connected manifold with
n . . . .
ﬁl(T ) =2 x ...x 2 (n factors), admitting a pseudoriemannian
metric of arbitrary signature (t,s) , t+s=n+m; and time and

space orientations.

Since Hl(Tn,ZZ) = 22 X .. X 22 {(n factors) there are 2n
inequivalent spin structures (?,ﬂg) on M, all with the +trivial
pundle F = M x Spin (t,s) and inequivalent maps 4Q§ only, where

=3 is a multiindex & = ( el, cens 611) , ei =0 or 1, for

i=1, ..., n. To describe M, let us denote by § one of the
obvious inclusions U(l)ews SO (s,t) coming from identification of
U(l) = S0(2) with a subgroup of SOo(s,t), where to avoid

inessential complications, we assume max (t,s)>» 2. Then WLe are given

Mg ((z,x), h) = ((z,x), 7] (2) Q(h))
where

(z) L(Hzie‘) € 50 (s,t) .

i=4

N
o
it

~-68-
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These inequivalent spin structures can be most easily
. . n+m 0] . Iy
visualised by considering M as a box 1in R with periodically
identified points in the first n directions.
The map &ie‘determines a (n + m)-bein in M, which is twisted

with respect to the standard one, in such a way that it

performs the full S0.(s,t)-rotation by 2 along every direction

for which ei =1,

Alternatively, by performing ;M local Spino(s,t) rotation,
which covers &{g , the inequivalent spinors can be viewed as
obeying antiperiodic boundary conditions along the &, = 1 directions.

i
In the simplest four-dimensional cases: the <trivial compact

4
riemannian gravitational instanton (c.f. (4,2)) T , the space-time

3
T x R with the compactified space part, and the 'toy' space
1 2 . . .
5 xR xR there are 16, 8, and 2 inequivalent spin structures
respectively.
4 )

The space T has been employed in the <t'Hooft [ s3 }
treatment of confinement, which 1is similar to the inequivalent
spinors problem. Twisted versions of tori, including the Klein
bottle and RP(2), have Dbeen also considered L. 20 1. Exotic
spinors on the conformally compactified Minkowski space will be
discussed in detail in the next chapter. However, the physical

implications of mathematically inaquivalent spinors have been

1.2
most often discussed in the space S xR xR
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Petry [_I7 ] has assumed that the electrons of the superconducting
. . . 1.2
ring are confined to live in the space-time of topology S xR xR .
In his model the relative nontrivial Lorentz twist is replaced by
the nontrivial rotation of the phase. This can be thought of as
introducing the spinc structure. Then the only difference between

normal and exotic spinors appears in the covariant derivatives
VM =%, or Vu: = au-—( ?\—13%‘)\ ), where A: M —C, ‘7\\ =1 cannot
be gauged away. It turns out that under some technical assumption,
neglecting the quantum fluctuations of the electromagnetic field,
and assuming the Meissner effect inside the superconductor, the two
inequivalent spin structures 1leads to a novel explanation of the
observed quantization (the famous factor 2 included) of +the magnetic
flux trapped in the ring. Usually it 1is described by the pairing
hypothesis based on the B.C.S5. dynamical theory [-87 ] . Also the
correct periodicity of +the Josephson junction current can be explained.
It should be noted, that in the Petry model the description of
the mechanism of superconductivity 1is not intended, but rather the
periodicity effect and the extremal precision of the measurement of
the factor 2e 1in superconductors and Josephson junction is attributed
to the nontrivial +topology of the system. A quite similar point of
view has been also proposed in recent discussions of the quantized

Hall effect, where the stability and precision of the measurement

relates to the topological properties [ 83 1.
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Whereas the laboratory systems are always embedded in flat
surroundings and the nontrivial topology of rings or circuits
has to be only approximate, it is difficult to answer on
which grounds in the whole Universe some particular type could
be distinguished and others inequivalent rejected. This yields
the possibility of more advanced speculations, which are rather
difficult to be confirmed experimentally but may offer a new
insight and influence other domains 1like the quantum field
theory. In the gravitation theory and cosmology the topological
considerations are essential, and several solutions of the
Einstein's equations admit multiply connected space-times {, 39 ] .
Before discussing the most challenging quantum field theory
in curved space-time ; some effects of the global nontrivial

topology can be seen even on metrically flat manifoldsé?u.

(#) The true mulitple connectivity of the space has to be
distinguished from the completely artificial string-like singularity
caused by adopting a particular coordinate system, which does not
cover the whole space. For instance, working in +the c¢ylindrical
coordinates, the antiperiodic angle conditions for spinors are

excluded if the space remains simply connected. Therefore, the different
spectra of hydrogen atoms due to twisted spinors (c.f.[ 90 })

are not possible in this case.
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(5)

(6)

Several consequences are known for boson fields : the Casimir
effect, the generation of topological mass, finite temperature effects,
the suppression of spontaneous symmetry breaking, and relations to
the confinement problem [ 18, 91, 93, 94, 95,531- For spinors interesting
effects have been also predicted.

Assuming that spinors éxist, Isham [_96 ] discussed various
possibilities to accomodate inequivalent spinors in +the functional
integral formalism. The Dirac lagrangian in a gravitational background

(3.4,8), written in the natural basis, takes the form

Ly - {é‘ Py Ly - Vg, - m\?\f} det (),
where E = E;* is the n-bein field, ‘Z:f = 2L“Y + ir:“Y ,

A L N N S I AR R
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are Christoffel symbols. Next assume that the generating furictional

z. = 5 Dy Dy exp iS_QE (y)

is given a meaning by some method. On simply connected M, ZE

is invariant under the Lorentz gauge rotation L of a wvierbein
E—sE' = EL . In fact, L can be 1lifted to a Spin transformation
and then shifted on spinor fields, with no effect on ZEv: ZE .

since the integration measure is invariant. This is not the case

for multiply connected M and L, which can not be lifted to

a continuous spin transformation. Therefore ZEL # ZE , and in
k . . .
general ZE # ZE , where k labels the inequivalent spin

1
structures which are in 1-1 correspondence with H <M’22)'

TP



(7)

(8)

(9)

k
Before presenting different physical effects of ZE , let wus
note that in principle the gauge 1invariance can be restored in

several ways [ 96 ]. One can write the weighted sum
k
E E
k
1 A

where the character ,x: H (M,ZZ)-+ {—1,1) plays the r&le analogous
to f) labelling different wvacua of the instanton field [ 87 ] .
For inequivalent spinors the supression of higher k 's does not
seem to hold, while the tunnelling phenomenon could be found

some interpretation in the Petry model.

Another possibility 1is to work with the product

K
z =H2E

E g

which is equivalent to summing up Lagrangians of inequivalent spinors.

They are therefore +treated as a multiplet of distinct fields
in the theory. There are also intermediate possibilities, which
combine (7)) and ( 8 ).
The vacuum expectation values of the energy-momentum tensor Tpv

have been computed both by the image method and g—function

. . . . . 12 [ ]
regularization, for two inequivalent spinors on M=SxR=xR 20 J.

. . . . s 1

The exotic spinor is assumed to be antiperiocdic on ) of

a circumference B. The first regularization method amounts to the

rejection of n=0 term in the Green function expansions

1  (normal)
G (x“,x'u) = 2 Gg(xu,x’UJ,-é’;nB)x
O#ne 2z (-1)" (twisted)
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(10)

(11)

(12)

where

-1
G, (x Hoxiby =(é];52 [ (x-x')H (x-—x')u + iO]
Then 1
w2 2 -1 1 {normal)
T - [—213 G (x.x')] = X 4 |x
e ox" 9x Y ren x=x' 458 3 ~-7/8 (twisted)

It turns out that the twist lowers the energy of spinors,
Moreover the normal (and twisted) Majorana spinors have the vacuum
expectation value of T minus twice as 1large as the normal
. . 13 . . .

(and twisted) scalar fields on S x R, which is a typical
supersymmetric outcome (c.f. sect.5).

It is not yet known whether the field theories remain
renormalizable when put on topologically nontrivial spaces.
Ford [ 19 ) has performed a detailed study of spinor electrodynamics

1 2 : . .
on S'x R xR, where the one 1loop corrections do not spoil
renormalizability. Again, the method relies upon different periodicity
conditions for inequivalent spinors. In all momentum-space computations
one integral is replaced by a sum, which’ runs over integers or
halfintegers respectively. All quantities are computed by dimensional
regularization in the same way for both kinds of spinors s

The one 1loop correction to +the vacuum polarization tensor

IT (0 = eB3 > Sdsp Tr‘[ }’“(;ﬁ+m)}’v(¢ +m -4q) ]
Hv (

2%B  nezZ pt-m? +i0) [ (p-q)* -m?+i01

° 1
gives the finite part in the form II () +[I (a) ,
BV UV
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where the first term is identical to the correction in the Minkowski
1 Baoc
space-time (B independent), and the second 11-v — 0 .
H
t t ] Q
For twisted spinors II ) = oIT (28) -II ), II - II
HV TRV Hv HV Hv
t 1 B—* oo 1
and the  B-dependent part is different: 11- —_— = 11- .
TRV (TY]
It turns out that for normal spinors the one 1loop corrections
generate the imaginary mass term of the photon and the tachyonic
character can spoil the causality. This is not the case for
twisted spinors; however both 'types mixed in any way again lead
to tachyonic modes. Ford has computed also the vacuum energy for
. . . 1 3 )
massive Dirac spinors on S xR and confirmed the results of

De Witt et al . In the B— limit +the wvacuum energy density

2 2
goes like 1/45B° for normal and -7/360B° for twisted spinors.

It has been proposed that inequivalent srinors can be related
to the different flvours of fermions [_98 ]. In order to be
nearest to the observed number of flavours, the gquantum

. . . 3
chromodynamics was considered in the space RxT . The effects of
eight inequivalent spinors were summed in the one-loop corrections

2
to the gluon propagator, which again exhibits m <:O modes.

Let us observe, that the possibility of inequivalent spin

structures appears also when momentum cut-off (box 1in Fourier space)
is introduced to regularize divergent quantities. One can speculate
also about the possibility of adding toroidal flat, but compact,

additional dimensions in the dimensional regularization scheme.
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5. Spin structures in Kaluza-Klein and supergravity theories.

In modern higher dimensional supergravity and Kaluza-Klein theories,
or combinations of both, there is enough room to consider various
nontrivial space-times (c.f.[99,lOO,101,102,103,104 }). Problem of spinors
seems to be one of the most acute in 'realistic" higher-dimensional
theories, and we shall discuss only two basic aspects of it : the
existence and inequivalent spin structures. In supergravity one works
from the begining with spinors. Obviously, this means that the
underlying space-time carries some sort of spin structure. For a
simple N =1 supergravity this cannot be neither the generalized,
nor spinC structure, since most often spinors are Majorana in order
to balance the number of bosonic and fermionic degrees of freedom.
In the N =2 case, spinors can 1in general build pseudo-Majorana
multiplets. and the generalized spin structure can be admited. The
global existence .of spinors in the Kaluza-Klein theories is a
reasonable physical postulate. The space-time is assumed there <to be
a direct product M x Q, where M is a four-dimensional maximally
symmetric Lorentzian space-~time which we observe (Minkowski, anti-, or
de Sitter) and Q is an internal riemannian space, 'spontanecuosly"
compactified, and of very small volume ( the inverse Planck mass
being the typical order of length). As we already discussed, the

spin structure exists on M x Q (and M) iff it exists on @ (this
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is not immediate for models with twisted M x @ products). Because

Q

M . .
=P + P of Dirac operator, it

M
of (2.3,3 ) and the form P xQ

. d/2
follows that there will be an infinite +tower of multiplets of 2 /

#Q

spinors on M (d = dimQ ), with masses equal to eigenvalues of P
(A1l classical parameters are subject to quantum corrections, rather
difficult to predict). Since starting from pure gravity and fermions
in d+4 it 1is difficult [ 102 J to obtain the observed chiral
asymmetry in 4 dimensions, often the extra gauge fields are also
intoduced in d+4 dimensions L105]. Then one needs only a generalized
spin structure to exist, but not always physical relations between
charges of bosons and fermions, or their multiplicities, arise {106 }.
In supersymmetric Kaluza-Klein theories the upper bound d<£ 7 comes
from the inconsistency of coupling the spin higher than two. Also
d=7 1is minimal for obtaining the phenomenological SU(3) x SU(2) x U(1)
gauge symmetry purely from isometries of Q.

In[107]the existence of spin structures on the Witten {101‘]
spaces Mpqr = G/H , where G = SU(3) x SU(2) x U{1), H = SU(2) xU(1)xU(1),
and p,q,r determine the details of +the embedding, 1is discussed.

The method is based on the condition II {(c.f. (3.1)), which is
necessary for a spin structure to exist, and the conjecture is made,

2
that it is in fact sufficient for homogeneous spaces. The S

ar P:Q,r

oM

representing the generator of ) is explicitly constructed, and

p,q,T

the transitive action of the isometry group of M (at 1least

SU(3) x SU(2) x U(1)) is used to spread out the orthonormal frame

TV



over 82 but a single point x . This determines the local
. 2 . .

parallelization. The loops wrapping S > {xl induce loops in the
orthonormal frame bundle F, which by continuity arguments can be

2 ) ) -1
extended to whole S, by adding some loop in p (x)eF. The
noncontractability of +this loop implies the nonexistence of spin
structure. In conventions of 11073; this  holds when p/s is
even, where s is the highest common factor of p and g. For instance

0,1,0 3
" a2 CP(2) x S is without spin structure (c.f.(4.3)). As follows,

M
on homogeneous spaces the rigorous cohomological arguments can be
simplified. For CP(2) also the group theoretical justification has
been presented [99]

s . . 1

The original Kaluza-Klein internal space S , as well as many

. 1 : i
other candidates of the form Q =Q' x S are multiply connected and
admit nonequivalent spin structures. These spaces are unfavoured by
Einstein equations, without presence of matter. However, many other

RgT

possibilities exist, for instance in conventions of [107']J1T1(M =7

l’
2 2 . .

where 1 = (3p + g )/k, and k 1is a highest common divisor of 2pr, rq
2 2 . .

and (3p + q ). Provided that the spin structure exists, there will be

only one for odd 1, and exactly two for even 1. The number of

local Killing spinors determines the supersymmetries. In general, they

are suppressed by the global ("boundary") periodicity conditions. At

this point, the twisted spinors could in principle increase the

number of globally allowed Killing spinors, by the possibility of

. > . . - . » I‘
antiperiodic conditions (unfortunately this 1is not the case for Mp,p, ).

~78~



The important observation [. 18 ], concerning inguivalent spinors,
is that the numbers of inequivalent spin structures and different
'twisted' scalar field configuration spaces are both labelled by
1
H (M,Z_). Chockalingham an Isham ave shown a wiste scalars

(m,2, kalingh d TIsham h hown L108 ) that twisted scal
and spinors can be meaningfully combined to built the twisted

supersymmetric multiplet. This requires that the sum of twists of

individual fields in the multiplet vanishes modulo 22 in order the
Lagrangian density be a normal function. Also the fermionic
infinitesimal group parameter & has to be twisted. For instance,
The Lagrangian of N = 1 supergravity multipletA[109 _:} containing
vierbein Ea’ 3/2-spin Majorana spinor v‘lM_,auxiliary scalars M, N and
vector b)t fields, does not impose any condition on the twists. The
supersymmetry transformations with the parameter € restrict the twists
of different fields +o be tle ) = t(\.)(”) and t(M) = t(N) = t(bﬁ_) = 0.
In the quantized theory the ghosts Cg, Cab, and (complex spinor) C
must be included [ 110 ] Because of the B.R.S. symmetry t(C) = tlyw)
and t(C%) = t(Cab) = 0 . Coupling the N = 1 supergravity [111,112] to
the Wess-Zumino scalar multiplet (A,B,X,F,G), where A,B,F,G are scalars
and * is a Majorana spinor, yields t(*_f'\,..) + t(G) + t(X) =0
from the consistency of the trilinear term in the Lagrangian. It turns
out that, including the supersymmetry ’cransforme&:ions, there are left
many possibilities, which have to be consistent only with t(6)=t(\f‘,~)
and  t(A) = t(B) = t(G) = t(™) + t(e) . Also the twisted ~ vector

multiplets coupled to the N=1 supergravity can be constructed L 108 1.
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(1)

5 SPINORS ON CONFORMALLY COMPACTIFIED MINKOWSKI SPACE-TIME.

1. Conformal transformations of spin structures

In this section we shall investigate the way, in which spin
structures transform under the conformal mappings of manifolds[lZQl‘
Since the metric is explicitly involved in the definition of
spinors, the isometries are a natural class of transformations to
be considered . Also the conformal transformations can be easily
included, which is of some relevance for various massless systems
in physics.

Let M and M' be n-dimensional, connected, pseudoriemannian
manifolds with metric +tensors g and g' respectively, both of
signature (é,t). The map f: M—eM' is conformal if the pulled back

metric g' is conformally related to g,

where fL: M—R is a conformal factor. The group of all conformal
(isometric if [LL=1) transformations of (M,g) onto itself is called
conformal (isometry) group of M and denoted by Conf(M) (Isom(M))
respectively. Let Conf (M) and Isom (M) be connected components of
the identity.

P
There is a natural 1lift of f to a bundle map f Dbetween principal

o.n. frame bundles over M and M' respectively, given by

~ -1
TE ) =LL e £*E
X X X

where the o.n. frame Ex at x is identified with the isometry
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(4)

s,t s,t
E : R — T M of the standard pseudoeuclidean space R ' onto the
X X

tangent to M space at x & M. The ?(EX) given by (2 ) is a well
defined frame at f(x)eM' (i.e. isometry RS’%—¢AT M'). The map ;
is. naturally equivariant with respect to the actions of 0(s,t) on
F and F' given by
F x O(s,t) 3 (E,h) —=*Esh & F ,

and similarly for F'. This wuniquely determines +transformations of
tensorlike objects. However, in order to determine transformations of
spinors, also the analogous map between spin structures, compactible
with % has to be given.

In order to include the orientation-reversing conformal maps,
or to work from +the begining with not necessarily oriented manifolds,
we consider the full O(s,t)-bundles F and assume that M and M
are pin manifolds. We are interested whether the conformal map f

and the bundle map T can be 1lifted to a bundle map '? between

spin structures over M and M' respectively.

weeps- %‘ -
F e o= - B!
e
n n
] ? 3
Foro
P p'
4 v

The diagram ( 4 ) has to commute.
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(6)

(8)

To answer this question we shall introduce some l-cocycle,

which represents a c¢lass in Hl(M,ZZ). Let Ua and U& be
simple coverings of M and M', and 1let for any & there
exist a such that f(U ) < UL .
Let Oa' : U& — T be local sections with +transition functions
?' : U, n Uy — Pin(s,t). Then o = M’ o 5‘;_' are corresponding
sections in F' with +transition functions %;$=: S(EFLG ) ' where

is the standard 2:1 covering map : Pin(s,t) —> 0(s,t).
s

Now set
A =1 [
o:L(X) =1 o cs“&(f(X)) ,
. A . -1
which makes sense because b can be inverted on P (£(Ug))
%
provided sufficiently fine covering is chosen. Then G;F:‘f&ﬁ 6'3
. oop ~ ~

on U‘*(—’- . Choose now 1liftings o’d_ such that T e 0"_= 6"‘_ and

o~ o~ o~ o~

Cu= Pup & 3“{’""9‘ Cupe
Define

~d ~
Kep (¥) = Yuplx) Pep(f(x)
From g (k_,_@ )=1 follows kg.e.:il (constant on U= UO Uel
Straightforward computation shows that
af -1
& Mgy = Keghagkup=1
hence kd.ﬁ define a 1-cocycle with wvalues in 22.
LEMMA
~ - ~!
The bundle map f: F—F of the commutative diagramm ( 4 ) exists
-1

if and only if k.s is coexact, k.g= (§k) g = kok.
for some k& : U, — 22 .
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(9)

(10)

(11)

(12)

Proof.

Ld -1
(&) . We shall construct f assuming k_t‘5 = kg k,
Let X = p(EX) e U, ix = Ei(x)h& . Define
FOE) = %r&x)n, k,
134 1t
and observe that this definition is oL independent. Indeed,

let X = p(EX) e U n Ue# @, Ex= o‘a(x)he

Then

&

The equivariance property FE ny = f(E

X
is a well defined bundle map, which
commute

o o %’(EX) = M T (£(x))h, K,
Ll A—l [
=f f o g.{f(x)) g(h
-5
= 'f‘ o E .
m ( x)
(=) Assume that f exists and
k, : U Pin{(s,t) by E(E) = i;(f(x)

From (11) (commutativity of (4))

is a O-cochain, and from (10) k

is coexact, which finishes the proof

LEMMA

t is unique up to a sign.
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FaEx)h, k=

follows

«=p

=1

and he‘: f<§(x)h¢'

TE) =T Tk = & Gia(£x) i(xk, k, k b=

Yh is obvious, and £

X

makes the diagram ( 4 )
) = q;(f(x))g (h,k, ) =

<) = T o (x) gihL)) =

( 4 ) commutes. Define (unique)

Yh, k_ (x) where E =
x
S (k. (x)=1, hence k, =*1
-1
= kg k, . Therfore Kag

of the 1lemma. [



Proof.

Assume that there are f and Fr such that (4) commutes.

~ _l
Again we can invert f on p (f(Ug)) and define smooth,

-1
equivariant, fibre -preserving map of P (U, ) onto itself. Because

51
jo}
o]
Q.
Lo}

of properties of new sections defined as

~% . ﬁ—l ~ o~
fe,=f fmo,=a, , hence

T'= 5iku. for k_ =t1. Moreover, the choise of the sign of k

for some Uy determines that for others UG . Indeed on u,n Ue £ 0
k, = k@ because of
=T k. = & Pk d F-TFNE L, -k G
«ﬁ— 0‘@ (5 - G:L \fdg 8 an G‘&”‘ 0‘;‘{&@ - G;. d_\fd.ﬁ
~ - «r
Hence there are exactly two 1liftings of f : f and -f. J

Obstructions of the Lemma ( 8 ) can be evaded when one replaces
the pin-structure (?,n) by some nonequivalent one. Given a nonzero
element [k&ﬂ] e ﬁl(M,Z2) the construction of the nonequivalent
pin-structure f(k) was described by Greub and Petry {63 }
Moreover, all nonequivalent classes can be obtained in that way.

We shall fill up some points of their construction, oOmitting

again the continuity questions.

Functions
-1
~k R . ~ i - ~
(13) Py U,n U2, defined by  §f = $ogk
fulfil the cyclicity property ?ﬁ; (?t; )%ﬂ;: 1 and
~ ~
(14) § Hup= §(Fe) = Tup .
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~

The total space Af‘(k) with transition functions ‘f:@

is constructed following Steenrod [113 7] as

o

(15) Flk) = U (U_x Pin)/ar ,
e
where (x,h)“ e U, x Pin and (x',h')(3 eLgx Pin are =~ related iff
~L
(16) x=x'eUnnl, #8 and h = quph' .
Denote by [ ] the equivalence class with respect to &~

The action of the Pin group given by

(17) lem) o= feehn, ), neepin
does not depend on the representative element
(18) [(x,(n?:(z—%)ﬁ__l h' = [(x,hh')“-]

similarly the projection p: F(k)—>M

(19) plix,n) ] =xem

is well defined. The local sections Ei(x) = [ﬁx,l)*l have precisely

~ L
%>&@ as transition functions.

(20) E&(x) = [(X,l).‘.] = [(X, Cf:ﬂ)ﬁ] = ‘_(X,l)&] ~:(S = E:P(X) :%:ﬁ .
Finally, the pin-structure map m(k) : F(k)——»?
(21) qgfk) [(x,h)‘l = o, (%) g(h) is also o —independent and

f-—equivariant m(k) ([(x,h)ﬂ]h'): o“(x)s(hh') = m (k) ([(X,h)&]) S(h') .

Moreover,

(22) mk)e TX=msG, = o, .

From Lemmas ( 8 ),(12) and the observation that k“? computed

for f(k) and F“ is exact, follows our main result:
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(23)

(25)

PROPOSITION

Let the situation be that of a commutative

diagram (4 ), A conformal map f: M—M' and a bundle map frF—rr
o~ oot L

can be lifted to a pin-structure bundles map f: F(k)—F' for

exactly one (up to equivalence) pin-structure F(k) where kg

is given by (6). The 1lifting f is wunique up to a sign.
Consider now the case M =M', F =F' and the group Conf (M)
of conformal maps f: M— M.
According to proposition 1 the possibility appears that there
exist spin structure changing transformations. By continuity arguments
this is not the case for the connected component of Conf(M),
but c¢an happen, as we shall show in ch.(5), for some orientation
reversing transformations.
Let wus check now, that the assignment f — ?' yields the
representation of the double cover of Confo(M) in the case

of spin manifolds.

Consider fixed x € M, then the assignment f — f and

. A . -1 .
restriction of f to the fiber P (x)cF determines some
element A(f)eso, by

£l 6 (x) = m(£(x)) A .

We want to 1ift this assignment to 7\(f)eSpino

» A(f) € spin,

-
-
Ve
-
.
-

Conf, 3 f ——> A(f) e 80, .
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For any path connecting id with f in Conf there is

a unique lifted path in Spin, starting at id, the end point

~

of which determines /\(f). Now for a closed rath c at idGConfo

~

the above construction yields A(id) = % id

Spin,
In fact, we have a map c —> kc € 22 € Spin such that
i) ec+c¢' — k Kk
c c!
ii) ¢ and ¢! are homotopic = kc= k
c
i.e. the group homomorphism a: JIi(Confo) — Z2

If Q is trivial, there is obviously the unique lifting £ A(f),
and then f — ; preserves the group structure. If a is
not trivial, take +the wuniversal covering Conf? of Conf given

by {(f,c)} /~ , where feConf, c is a path in Conf,

connecting f with the identity and (f,c) ~ (f',c") iff

f =1 and c and c'! are homotopic. There is a natural
action of JTl(Confo) on Conf? coming from (f,c)e' = (f,coc') ,
where c! is closed 1loop at idl . It can be seen that

Confo

Conf = Confy XCZK is a double covering of Conf .
Repeating the previous construction of /\(f) for f e Conf  leads

to a trivial group homomorphism Q: ﬂl(Confo)—-—>22 and

"

unambiguous homomorphic 1lifting f—f1.
Results of this section generalize I:lld ] for inequivalent

spin structures.
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(1)

(4)

2. Conformal properties of Dirac operator.

The map g: §-4=§' between spin structures over M and M!
can be wused to define the transformation (pull back) of spinor

fields
f

— ~ =
Y (E) =" ®&E),

X X
where the scaling degree w  will be fixed by the invariance of
the massless Dirac equation. In local components

f= TV 0Ty QR Y- 0

w
(

E;S)*S{ _ gzﬂagey%f**

where S: Ug—aPin(s,t) is determined by

fol,s™) = G’sef

(for special choice (1,5) of sections S = id \Pin)

It is clear, that the assignment f—ef yields for M=M'  the
representation of the double cover of ConfO(M) in the space of
spinor fields on M. Now, we shall proceed in the well known way
in order to obtain the unitary representation in the space of
solutions of +the massless Dirac equation. First we shall find

the transformations of ¥ and T; of (3.4,17) and (3.4,8)

-1 ~ -1, .-1
¥2(0.0 = floy (5,0 = ylECps™n T 0] -

gl o6 ] = Dy g gTh

E 3
where S is given by ( 3). Then the unique f r; has to be

(f*EA)(X)

o

> | -1 -1
£ ("az K(SL X(s )+5(SdS ) + 5(5) Bx(s )

-88-



where B(x) === -1/4 JL-IEEA(VSIX, X&(x)] and the gradient of &
satisfies g(VR ,X) = dfl(x) = xQ for any X e TM,

: #*
Indeed, a detailed computation shows that f F& is torsion-free

(6) aLagery, ys )+ [y My - X(Sds°l) . X(S)BK(sﬂ]a QX(S’&X(gl’ -0

where the '"double" wedge 2 indicates the {adjoint) action by

a commutator. This follows, because E* is torsion free and

7) (R84 X0 = -1/4[y (9.0), yx0] ¥ )] - xewy) =
= 172 {YVR), ¥ 0], g X) - (Xey) =
= afl(v)y (x) = (xe*y) = ald(y) g (x) - ax) g (¥) =

= -~ ¥ (x,Y) .

Now the Dirac operator is transformed as

f ) -1 W -1 ab B
(8) (By) (x) = Qg IR(rx)) = fy(sTIm b’,é“a’[Eb"‘E‘quTéf(x”“

=Q“‘2Z(s“l)ﬂab5;(dfxlza) [dfxizb +\;(dfx}zb)} Yo l£x) =
SQ T e (B, ¢t e £ =
0TI ¥(E) {Xm"l)zb + 2 (B) X(s'l) +E_ X(s'l) +
- 1/2 Q7 [ VQ) g (6] 5(5'1)} f*xffam -

- Q70 ¢ QTET e (V) yoo,

Where the 1last equality follows from the identity

’YLabXa [XC' Xb]= -2(n-1) XC , IrLab =diag(s factors +1; t factors -1),
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It follows, that under conformal transformations f, which

do not change the spin structure, the massless Dirac operator

is invariant (up to a factor &2,) for exactly one scaling

dimension o o= ELE;L— . If the spin structure 1is changed,
n-1 ~ . . - .

then for W = f intertwines +the relative Dirac

2

operators (again up to a factor JZ ). In particular their

kernels are mapped 1-1 one onto another. For m# 0 the conformal

factor &?, forbids ¥ + m to be invariant.

Now because of the conformal transformation rules

v - A
W(;;E§= Q" Vigf, (f*ng = (2 2g Y and

- f ~ n-1-——

§Up 0 = oyt g o = QTR yoor g - 7 ]y

the scalar product (3.4,22) 1is conformally invariant in every dimension

[

Ly =3 §OFer o = S iy -
S S

= S oy ey
£(5)
After passing to equivalence classes with respect to the norm
induceed by < ; > and completion, one can construct
the Hilbert space of spinor fields fulfilling the massless
Dirac equation. Then the double covering of the connected
conformal group can be wunitarily implemented in the space of

massless, "free" Dirac spinors, i.e. obeying (3.4,12) with m=0.
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1,3
3. Conformal compactification of R .

—

The idea of conformally compactified Minkowski space-time M
has been considered in physics with various motivations; for instance
Jjust to avoid the singularities in the action of the conformal
group in R1’3, to study cosmological models, asymptotic flatness or
gravitational radiation, and to gain the compact space-time -with
the Lorentzian analogs of the Euclidean space instantons [115, 1186,
45, 33, 1171, c.f. also [118:] . Attempts +to attribute the direct
physical meaning +to M are limited by the well known existence of
time-like loops in this space and lack of +the global causality.
However M can be at least interpreted as imposition of special
asymptotic conditions in Rl’s. Conformally related to the flat
Minkowski space-time, M can be used to study the conformally
invariant Yang-Mills systems, also coupled to massless fermions 53.1191.
Tensorlike objects has been in detail discussed on N [ 120 ], and M
plays a prominent r8le in the Penrose twistor theory, however the
global properties of spinor fields on M have not been discussed at
least in the 1literature available to the author.

Apart from cosmological models the relevance of M is sometimes
guestioned [ 121 1,and the conformal symmetry postulated only

infinitesimally at the Lie algebra 1level. To deal with the finite

transformations the notion of a 'local group action' has been introduced
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(1)

[;22] . As is well known, every special conformal transformation in

1,3 - . w
R = ix = X cgﬁ\ parametrized by k = k"G, # 0

X - Kk {x,xX»
x
1 - 24{1}(>+Q{1%7X>
where <x,x> = det(x) = x“ﬂ%wﬁf, m. = diag(+1,-1,-1,-1), ik‘ = <k4k>>,

k. 2 2
is well defined only outside the light cone {x | (x 1 =0} if || £ o,
. " . 2
and outside the hyperplane {x l K'x = 1/2} it k|7 =0
We are of the opinion, that generally singularities may indicate some
nontrivial situation to occur, and therefore should be treated
carefully. Quite often in mathematical physics one encounters the
cases when the infinite curvature 1is concentrated only in a discrete
subset, gauge fields are string-like singular, or the wave function
is discontinuous on zero-measure surfaces. This can happen to be the
key point, which can be consistently worked out by passing to the
topologically nontrivial point of view.
: . - o . = 1.3

We are interested in the minimal compactification M=8x§8 /22,
. . . . 1,3 |
in which +the standard Minkowski space R is densely embedded.

. = = 3 . . . . =

The double covering of M, M =S x 5 is in fact diffeomorphic to M,
but the loops generating the first homotopy group yl(ﬁ) = Z are
of different metric character, as we shall see. Since inequivalent
spinors arise only when 3T1(M) # 0, we shall not be working with

the universal (infinite) open covering Mu', which is often discussed

because of its global causal order (c.f. [116J }. Different
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(2)

(5)
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[Mv«w ’ Poc]

[D,P.]=-

[p,x_ ]=x
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as the set of one
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J
ab
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the Lie algebra isomorphism

a,b = 0,1,2,3,5,6 be

J J o -
("M ag Joe Mo Yaa = Mac Yba

generators

- qlbd Jac)

where Tlab = diag(+1,-1,-1,-1,~1,+1). Then the 1linear combin

E. = J4¢L+ sz& , D= J45 ' Kwkz JSuA— J4u&
tion relations of conf(1,3)
,Vlmstaa + M \JoLMJ-bF - ’Q.».a.MV@ - NLV[‘ Moo ?

P

M

/yl‘wb(

2,3

v (VL\,D‘K

[P, kK, ]=2%_D+oam,,

and

™

MLmo&P\l = 'Vl-v,g Pu.«, !

uA !

diag(+1,-1,-1,-1). Next, M is

dimensional isotropic 1linear

ﬁ:{_weRg’al w40, <, w>_o}/~

iff 3 0#4reR,

where [w] = [w’]

By picking up a

i.e.

pair

w.vw

Fo

9
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(6)

(7)

(8)

from each ray in the null cone o)?+ wGZ - :,u% - w% - (,._JS -w%s =0,

. - . . ' . 1 :
it can be seen that M is the direct product of a circle S in

3 . . . : :
0,6 plane and a 3-sphere ©§ in 1,2,3,5 coordinates with identified
. . ) = 1.3 . .

opposite points i.e. M =5 xS /Z2 . While the topological properties
of M are most easily discussed in the second realization (U(2)),

the action of +the conformal group can be seen now. The null cone

2,4 }

in R~ N0 forms an orbit of the natural (and 1linear) action of

'™, which induces well defined transformations of M uJA{buJ.

0(2,4) in R
Since the centre of 0(2,4), 22 = {1,—1} acts trivially, the
effective group is 0(2,4)/22 , identified with the full conformal

group Conf(1,3). The centre 22 belongs also to 80_(2,4) (both space

. 2,4
and time dimensions in R are even), and there is a similar

isomorphism of the connected components

Conf (1,3)= soo(?.,zl)/z2

The four disconnected components of Conf(1,3) are generated by
24 = 0(2,4)/800(2,4) = {I,P,T,PT}CLO(Z,A) , where the 6 x 6 matrices
I,P,T, and PT have the fourdimensional reversions embedded in the

left wupper corner and 12 in the right Ilower corner.

The standard Minkowski space R’ is injected in M by the map

j: x“'—a{ﬂx“‘, 1/2(l+x2), l/2(1—x2)x .

which can be inverted on its range (the dense in M set of rays [uq

5 6
for which w +w #£0 ) and defines the 1local coordinates &_ 23 1

- e i} -1
x7 =3 l([w}) = w“‘(w5+wc)

- 1,3 .
The rest M N\ j(R } of M forms the 1light cone at 'infinity’,
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of topology

(9) (Sl X 53/ 22)\ 31’3 =U:°~’] ‘ 0320”@42‘@22"’“’32: 03 w,-g= O}

- 1,3
In terms of objects in R MNF(R7'7) can be thought of as follows.

1,3 1,3
Consider straight 1lines u + rv in R passing through u & R’ in

1,3
the direction 0O#veR"’ parametrized by r & R. Then, since

2
[f'=0, 1, 1] vo >0
. . e . 2
(10) lim j(u + rv) = B» =0, -1, 1] if v {0
r"‘"'":pa
U u P8 ] 2
[tpv™ ,zpu'v, ,3pu’v,] v =0,

-1/2 1,3

2 2 1 3
where p = [Vb + (W v,) ] , any point anle S xS /22'\ R

can be obtained as a limit (10 ) ‘taking

. 1,3 . 1,3 . o
arbitrary u &R and arbitrary 0 # veR if W =20
(11)
3 - [ AL . o
ut = U“/éd ,0,0,0) and vo= o) if w£ 0
. . L 2
Since the limits T —+ +ee and r —+ -~ & coincide for v £ 0 ,
. . . . 1,3 .
all nonisotropic 1lines in R form closed loops. Similarly all

isotropic 1lines approach asymptotically points differing only by
sign and therefore 22 identified. It +turns out that every isotropic
line represents the generator of Stl(ﬁ) [123 ], what will be seen
easily in the next section.

Now, we shall show that conformally covariant 1/2-spin fields
on the Minkowski space Rl'3 constructed following [ 25.1from 800(2,4)

2,4
covariant spinor fields in R ! cannot be extended to the conformally

— 2,4
compactified Minkowski space M [123]. Spinor field "K(w) in R’

has eight complex components as an element of the representation

space of a relative Clifford algebra. In order *to be well defined
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2,4 . .
on rays in the null cone of R A () is required to be

homogeneous of degree n
(12) Tirw) = X (w), rer

The 50(2,4) algebra is realized in spinor space as =M + s ,

J
ab ab ab

.
where Mab:i(00;€§;ﬁ - Oﬁ)Bcua) is the orbital part taking in

coordinates (8) the form

S i 12 (x5
MMV = 1( XABX\, - X,V, }X“)’ M6A.+ M5l4-= l;x.,u. s M65= l(ngxv - n)
(13) ) ? 29
M - M = 2 - N owm T anx
6. Vs, i(2x, x, %, b N x )

and the spin part is chosen in the 8x8 matrix representation
(14) S ., = Lywv]® s Sus=-1/2Y26,, 5, =1/2] o6, Sgz = i/2&673.
Usually the spin part 85 + SB of translation generators is
» M

removed by the =x-dependent similarity transformation

A 14 ! 0

which obeys .
' -1 [ 3 ’] P
T X i——.+ 5 + S T(x) = 1i— .
(16) (x) ox M5 A4 6 (x) DX
Generators of Lorentz transformations and a dilatation remain unchanged.
Now a pair of spinors depending only on X0 variables can be defined
eigenvectors of S
as ger 65
(17) Yelx) = 1/2(1 % 5. ) (ores)” T0x) (o)
- = 65 5 76
where ¢ =¢ix) is given by (7).
The eigenspace S6 5 = + 1/2 of spinors ‘P4 » with only Ilowest
four components nonzero, 1is preserved under the action of all

conformal generators and for n = -2 has the physical scaling dimension

n+ 1/2 ==3/2
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(18)

1,3
This conformally covariant spin=-1/2 fields on R , because

of a construction, can be obviously extended to M provided T(x)
transformation is legitimate. From the homogenity condition (12)
-n
follows the asymptotic behaviour of (605+CQ6) ')((W) on any straight
3

line u + rv ; ueRl'? O#VGRL , reR

lim <o>5+m6>’“'x<w> - (-1)nlim(b~>5+w )X (W) =

T i 0P I%apo 6
2n vt vt
r X (0,0,0,0,- —, —) if vi£ 0
- 2’2
r f)((vo,vl,vz,vzs,-—uv,uv) if vi= 0
where W= (u + rv) ,
Hence for n = -2 Dboth (xi‘= 1/2(1.‘;5_86 5) are periodic (because

of asymptotic vanishing derivatives play a réle) and can be called
normal spinors on IG But the \V+ field due to the appereance of x
in T(x) (15) is a 1linear combination of periodic and completely
antiperiodic parts. Thus, it  cannot be interpreted neither as a
normal, nor as an exotic spinor field on M, since the periodicity
condition on any timelike as well as space 1like 1lines is not

fulfilled. It can beseen that replacement of (12) by W([r[o.:}:lrln')((w),

Y (- ) =-r),(¢,.;) or taking the field \r_for n= -1 do not help.
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(1)

(2)

(4)

4. M as U(2).

In the second realization as the group manifold u(2) ,
it is evident that M is connected, compact and parallelizable,.
It can be given the Lorentz metric, and time and space orientations.
There are +two natural global sections of the frame bundle over M.

Consider a Dbijective isomorphism X HRX of hermitian 2x2

matrices and the tangent space Tu at each ue U(2) given by

v X
RX \f(u) =3 \tso‘f(eft "Q 3

3T

and another one X«——PLX given by

X p(u) =2

u) =7
L T Jtic=o0
where we identify vectors with differential operators on functions

'f : U(2)—~= C . Then define the global four independent vector

fields (frame) by {Ro‘qzkﬁ", and the other frame by {Ld¢‘§2 L(j‘,where

0, 1 0,-1 1,
e Z rrl = Xl, Ol 3 6‘2 =X'i, Ol 3 GJS - [O,—]i&

are the Pauli matrices. The +time orientation, orientation and metric

q
I
[

on U{(2) are fixed by setting Ro’o to point into the future,

and RG’ to be oriented and orthonormal
a

g(RGa’RO/b) = anb = diag(+1,-1,-1,-1)
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(6)

(7)

(10)

(12)

(14)

Then also LC{ are orthonormal of the same orientation and time
a

orientation, and g(X,Y) can be obtained by polarization of

g( Xa X) =g(

X, X) = det(X)
R 'R 'L

Th £
e vectors G riifil

{RG/“RG,J']: o rRGj’RG’ka 2€,5 g0, skie{r,zey

a
Denote by Rq: the dual to Rcr basis of right invarient
a

l-forms in T*U(2)

a
T = 80
They fulfil
° A~ Jkl 1
a b =0, a1 --¢€ R(’:‘k/\a't
and the Maurer-Cartan right invariant 1-form on U(2) is

:E a
O (u) = = Rﬂ: Gii
a
The connection 1-form | defined by
d Ta+fqaﬁ'tb=0
R * b R

is

J Jkl __k © J

M =& 2, I,=M,=0,=0.

the curvature 2-form

a a c d a a c
R ® R rT AT =dr‘b+r!c/\(1b

yields the curvature tensor zero when any a,b,c,d = 0, and
R = - g +
Jjkim Sgk im Sjl gkm ,
Ricci tensor zero when a or b =0, and

R =m  =-2§
km kjm km,
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(15)

(16)

(17)

(18)

(19)

(20)

and curvature scalar

Now as a group U(2) =(U(1) xSU(Z))/Z2 , but topologically

— 3
M=8 x 8 , which follows from the set diffeomorphism (c.T.4.3,10)

. a, b da, b
U(1) x su(2) > ()\, L’ dD - L»c. dl e U(2)

where a,b,c,d e C , \M:\a\z -Mbl‘2 =1c‘2 +ld(2 =1

ac + bd = 0, ad-bc =1 . It follows that the first homotopy
3

1
group of M is 'ﬁl(M) = 'STl(S ) X 3Tl(S Yy = 2 and

its generator can be represented by the loop

g /2 - . 0
{0, 27) 3 r —» expiir" (o, + 53)é= exg e 1| € u(2)
?

Let us introduce the chart {Uwz-tg on U(2) =UJu ,
Py i
where U= {u eU(Z)\ det(u + = ) # O} , c&é{l,—l,is and

193 ~ } .
z : Yy —+R ;{z:z Gy is given by

of
. oe =\
z(u) = i ——
S oL+ WU
. -1 .
The inverse z of =z is
L= 2y
u(z) = & -
=< L+ Z,

(in the notation we notoriously mix the maps and their values,

the meaning should be c¢lear from the context). )

The +transition functions \70""@ on

(Uny) = { z = i"o‘v\det{z;((s—oc) + i((5+o()] # Ok
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are

-1 e - -+ (o ﬂ
(21) \-64(5: io Z(5 — "( (“)ﬁ ( *c 2(‘;

<+ - Ue-p) Zg .

-1
Denote z = a_, and observe that z is the well known Cayley map,

1,3
thought of as the injection of +the Minkowski space R intoe U(2)

Then Z are coordinates on Lﬂ , the dense in U(2) image of
-1 i e . }
z . The light cone at infinity is {u € U(Z)\ det(1l + u) = 0J.
. 1,3
It turns out that the flat metric 2. on R , M(z,2z) = det(z)

. . 1,3 . 1,3 , .
(we identify R with TR ) and the metric g on U(2) defined

-1
by (4 ) are conformally related by the Cayley map Z

]

(22) (z*m ) Adet(u) det”2(l +u)g ,

-1 2. -1
Adet(1l + z ) m

N
w
S’
N

*
ije]
Il

which follows either from

-1

il

(24) z (X)) =2(1 + u)_1Xu(l + u) 1/2{z + i)X(z - 1)

or

2(1 + u)—luX(l + u)_l 1/2(z - i)X(z + i) .

(25) z {_X)

I

where z*¥ and zZ denote the induced by =z pulled back, or push
forward maps, respectively.

Let us note, that the standard o.n. frame (coming from coordinates)

1,3
in R™’ does not behave asymptotically in a proper way, in the

sense that for any =8 the conformally rescaled frame Cﬂ; in Rl’3
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. -1
(26) Ea = det(i + 1)(3 ), Gy

3

can not be extended to the global frame in U(2). Indeed, on

z{ Uny ) in coordinates z@ it becomes

IS ¢
-1 .
(27) (), (B) = detli 4 g) det Lale -« ) il re )
206 -2 )+ 1B +e) G, (206 -« ) il +=)],
On =z( g o Up) this is the rescaled and Lorentz rotated G,

& a

which in general becomes singular on z{ UNU rqu .

e &
1,3
Examples of frames on R , adapted to the global topology of
U(2), are provided by
(28) z,( 0o ) = 1/2(z £ 1) Tolz= 1),

L

which are suitable rescaled and Lorentz rotated standard frames

. 1,3
in R .
The group Spin (2,4) & sU(2,2) and the homomorphism
(29) 0 —» 22-4-SU(2,2)—* S0 _(2,4) =0 have been described in (2.2)
The composition of (29) with the Klein homomorphism (3,6)
(30) 0 =2, 850(2,4) — Conf (1,3) —0
leads to
(31) 0 —»Za—a-SU(Z,Z)——’ Confo(l,S)-—*O
where Z4 = {l,—l,i,—ig is the Centre of 8U(2,2).
. ) . .10, 1 .
In +the basis in which H =1 1.0 one has the following
?

block diagonal SU(2,2) realization of conformal transformations:
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i, "

translation , Z —tz+t, t=t ¢, ,
0, 1

. A,
Lorentz transformation , z —+§(A)z, {O ,\ ] AesL(2,C) ,
(32)

e

dilatation , z —+ ‘p —'r\/zl ; L €R >

special conformal transformation ,

z - k z¥z, 1, O ‘e
. k =k
2T 1o Kyt Kk, 2% k ,

a,b
where the action of X’dXe U(2,2) on z is
c,

7z = z' = (az + b)(cd + d)_

The globally defined action on U(2) is given by

(33) u —— (Au + B)(Cu + D)
where
A=d+a+ i(b -c) B=d-2a+i(b + ¢c) ,
(34)
C=4d~-a - i(b + ¢c) , D=4+ a-i(b - ¢)

Disconnected part of Conf(l,3) is generated by the reversions P, T

1,3

and PT, In metrix notation their action on R and U(2)
is respectively
-1
T(z) = - & z* & , T(u) = gu* €
-1 T -1
P(z) = ez* € , P{u) = éu &
(35)
-1
TP(z) = -2 y TP(u) = u
z -1 T ~1
z) = = e R{u) = - u €
(z) ol T (u) € )
. O!_l T . .
where € = 10“2 =1 ol z¥ and 2z denote complex conjugation
3

and transposition respectively, and we have included also the

which sits in the P sector of Conf(M)

conformal inversion R(z)=—;

z¥ 2z,

~103-



5. Spin structures on M.

Since W = U(2) 1is parallelizable, the G -bundle F of
orthonormal frames (G = 0(1,3), s0(1,3), 500(1,3)) can be trivialized
as a direct product F = U(2) x G with respect to some global

frame E (u). Then the G structure (F,w) exists

(T = Pin(1,3), Spin(1,3), Spin_(1,3)), where

T = u(2) x G R and Mk F - F is given by
(1) 0 (u,n) = (u, g () .
To determine the number of inequivalent E structures observe
. 1
that there is a 1 - 1 correspondence between H (M’ZZ) and
Hom(,(M), 22) \:BO] . Since g, ( M) = Z therefore there are

exactly two inequivalent spin structures on D71 To find the second one note
that the generator of ’jr,l(ﬁ) is explicitly known and we can follow
the Isham [ 18}, argumentation. Suppose we succeeded in finding

another global o.n. frame (vierbein) E'(u) in M such that

E'(u) = L(u)E(u), where L : M=G is not 1iftable to a continuous

T : ¥~ G, i.e. makes odd number of 237 rotations along some

"generic" loop 1 in M. Then another G structure (F ,m.'), defined

by T =F=MxC and m (u,h) = (u, Lul(u)g (h)), is inequivalent

o~
to F

—

7, ). Indeed, assuming the contrary that some equivariant
~

(5 . F=F' exists, which in case of trivial bundles is necessarily

of the form @(m,h\: (u,,-é(uv)k\ for some @: M—~G, we are

'O
led +to contradiction with the property ]2 P = BeTL
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and then L(u) = S\gi

Namely S(h) = L_l(u)g(@.(ﬂ\)g(h) ,

cannot hold &along the loop 1.

It turns out that in our case such two global frames

are already given: the left and right invariant éf’ and RGT defined

by (4,1) and (4,2).They are related one with another by a point

dependent rotation

(2) AR AR

(3) T ) = lu ) )
(The phase of u annihilates, and only the SU(2) part acts effectively).
This 1is a nontrivial rotation which can not be 1lifted to a
continuous SL_C +transformation. It performs the full 27 angle

along the locop

oarSysr —s ulr) = eiﬁ2 SEARY e u(2),

(4)
which, as we have sgeen in last sectiom’ generates the homotopy
group  T,(M).
Summarizing , the two ineguivalent spin structures (F,n ), (g':7t')
on M=U(2) are given by
F=0@2) xCT=TF
(5) mluh) = (o (@) 3(W) = (v, g el gl) = (o, S(‘*W))
and
(6) mf(u,h) = (w, ér(%)g(hj\ = (u,) g(“))
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where on the 1right hand sides of (%)  and (86) we have
assumed F to be trivialized by and G (h) = (‘?G'FJ
: R -9 » R &f "R &t .
The inegquivalence of (%ﬂﬁt) and (E;ﬁl') is clearly the =

global property. Locally, over simple connected regions in ™M s

— 1,3
for instace over the dense in M image of R , One can undo
the relative twist of (5) with respect to {(6). By performing
a gauge vrotation of spin frames which covers (3) one can achieve

the same spin structure over Rl’B, but then the spinors have to

obey antiperiodic boundary conditions along any loop which can be

continuously deformed into .the loop (4,17)representing the generator of

Tﬂ(—m: In terms of objects in RLB, this can be any isotropic line,

for instance (0,2 Ysr — z (expir/2(oﬁ+gé)) = 4 tg(r/Z)(d;+oé)€:Rl’3,

and one can speculate that the difference between +the inequivalent

spinors should be manifested in the massless sector of the theory.
Now in order to include the full group of conformal

transformations we consider the case G = Pin(1,3) and G = 0(1,3)

It turns out that Confo(T) and <the time reversion T (439 1lift

to the automorphisms of the pin structure (giwz) onto itself, and

similarly for (%”, 'Y. This is not +the cese for P, PT and R
L

reversions. For instance the parity inversion (4.35)
. Tt
P:u— Plu) = e

interchanges frames RO‘ and ff
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(9)

(10)

P, (0, )(u) = ecT ey (P) = (,?P)a(%)),

where in order to avoid confusion with different P's we have
to recall that:
%g: fﬁ-/bTﬁ is the derivative of parity inversion P : M- M
and J{P denotes the result of the right multiplication of the
frame G = by the element PePin(1,3).
. .
In the g;r trivialization of F (8) becomes P{u,h) = (u, g(u)Ph)
Ly ~ o~ P
Because of (2) the 1lifting of P to P : (Fym) ~(F,yq) can not
exist, but the 1lifted maps between inequivalent pin structures
~ ~ 8 e ] ~
P : ((fm’) -+ (F,m) and P': (F,‘n,‘) —(Fm) do exist.
o~

Let (u,h) & F x Pin(1,3), define

fo o

P(u,h) = (u,Ph)

then (1,4) is satisfied

' ol h) = (u, Pel)) = (e, &) ple) Pyln)) = Pom (u,h)

where Pe&Pin(1,3) , 5(?) = P e 0(1,3)
Therefore we have found the example of pin structure changing
tranformation of the space-time, which proves +the content of the
theorem (L,23) to be nontrivial.

Let wus observe that in our case there is no preferred
spin structure over ?E, and moreover, if one wants to implement

some basic geometrical tranformations of the space-time, then both

of them have to be included into considerations.

-107-



6. Spectrum of P on M.

On a parallelizable manifold M, the spinor field 1is described
by 1ts components with respect to the global spinor frame E@ﬁ in ?ﬂ
~
which we choose to be such that /.G = RG’. Herice spinor field is a
~F

function Y: M —+V. Under the change 6= Esh for some h: M—=Pin(1,3),

'
the o.n. frame transforms as RGZ* = G’g(h) and the spinor

R

components as
' v -1

g il il LIl

4

For Dirac spinors the representation X: Pin(1,3)=L(C ) is chosen
according to ch.(2), with the only exception for the time reversion,
which 1s more appropriate [ 124 ] to be defined as the C-antilinear
operator

(2) Y'e) = ¥, 1)

To write the Dirac equation we follow the prescription presented in

o, 0

ch.( 3 ). Let E be some o.n. frame. Set X(E ) = X = a

a a a ad .o

-3

where ¢, =6, = 12 and - §.=0. are Pauli matrices. A straightforward

- - i
computation shows that
(3) Po=lE) =0, T=leE)=2,
=106,0 s o . i
where E:j =Lo g} , fulfils +the condition (3.5,20) and is the

unique spin connection matrix.

The Dirac operator is

(4) po= 10 Yt M)
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(6)

(7)

(8)

After some rearrangement and similarity transformation ( 4 ) becomes
E E. - 2 i
o + XB( ZJ J 3/ 1)1

- 3 _ 0
where XS_lXO?{lKQXB* g;_4 .

The spectrum of (4 ) can be obtained analogously +to the standard

gquantum machanical +treatment of the angular momentum. Let L.=+i/2 E ,
J

s =% 2 . Then
J J
[Lj, L] -1 €l [sj, s, ] = 1 €15

[Lj, E]=o0-= [sj, el L (L., sk] -0

J

o

2 2 2
Set J =1L +s and observe that 2Z E = -2i(J - L= 7).
K k k K k

2
Now, from the Casimir eigenvalues; E = im , s = 3/4, L = l(l+1), and

2
J o= (1 +12X)(1¢+%), where me& 2, 1 is nonnegative halfinteger,

and for 1 =0 only (+) is possible, folleows +hat the possible
spectrum of B is

mz (21 + 1) - % for b'g"k/:u{’

mE (21 +1) + % for XSY:_Y
However, in order to be well defined on M = U(1) x SU(2)/Z2 the
eigenfunctions have to assume the same values at the points in

[y
22 = i(l,l), (—l,—l)}. Therefore only the following two combinations

out of (7 ) are appropriate
m even, 1 integer
m odd, 1 half integer

The inegquivalent spin structure on M yields the covariant derivative

¢
‘7 and the Dirac operator D', related to V and D by
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(10)

~ sy -~ ~—l
V' =LVL and P'=LBT |,
-~ -1/2 .
where L{(u) = u det(u) covers the Lorentz transformation (5,3),
by which LG’ and RG’ are related. This yields the spectrum
) 5
mg (21 + 1) + %  for ¥ ¥ =y

5
mt (21 + 1) =% for X\.\l

I

O\Y )

out of which again only +the combination ( 8 ) is possible. However,
this exactly completes the table ( 7 ) . This can be also seen by

gauging away the relative twist of inequivalent spin structure maps M.

and VL', which results in antiperiodicity of spinors (note that L
is discontinuous due to the presence of a square root). Therefore in
7))

m evern, 1 half integer

m odd, 1l integer
are also possible for 'exotic' spinors.

None of these pussibilities gives =zero eigenmodes of the
massless Dirac operator on M. The reason is <the presence of 1/2
in the spectrum. If follows, that the kernel of the Dirac
operator is <trivial, and the most straightforward way to get unitary
representations of Conf(M) on spinor fields gives +the trivial
representation.

There may be some ways out. One can admit the torsion, work on
the open covering ﬁu. ElZSl , or on W = U(1l) x U(2) where Hexotic",

i.e. antiperiodic on U(l) spinors admit =zero eigenmodes. One can

minimally couple the spinors to some extra gauge field on M

-110-



(12)

in order to kill the 1/2 summand. The simplest possibility is

the U(1l)-gauge potential

A= 1/4 det‘l(u)d det{u),

o [s]

i
i.e. A=1i/2E , A

0O . Then the =zero eigenmodes of +the Dirac
operator iP + £ on M have +1 helicity for 'normal" spinors and
{(-1) for ‘'exotic" spinors, or vice versa for A'=-A. For a fixed
gauge field A (12) the conformal invariance is explicitly broken
and to restore it one should go over to the corresponding field
theory with additional conformally invariant equations for A itself.
This may be interesting for a Yang-—Mills system with massless
fermions [33, 119 ]. It seems that the conformal compactification
may be relevant only for spinors in VYang-Mills theories.

At this point some remarks are in order. There exists a well
established theory of induced representations of the conformal group,
and all unitary representations should be included at this
list, c¢.f. [12631 On the other hand, +the unitary representations
of the conformal group induced from the representation of the little
(Weyl) subgroup, or rather from the (1/2,0)@®(0,1/2) representation

Es

of the Lorentz group, are related to Dirac spinors. According to
our rtresult, the obtained in that way equations of motion either
are nonfree (in the sense described in a moment), or are not
written on ﬁ

Let wus stress again, that we followed the standard differential-

gecmetric way to introduce Dirac spinors in pseudo-riemannian spaces,
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and unitarily implement the conformal group. The negative result,

i.e. the triviality of such representaticn, concerns only the case

of massless, free , Dirac spinors on M, by which we mean sclutions
of Etf: 0, where P is defined by (4). These spinors are subject

only to interact with a fixed conformally flat metric, and topology

of M . This result doces mnot concern the covering spaces of M ,
and the interacting spinors on M , by which we mean either presence

of torsion, or additional gauge fields on M . In fact this last
possibility seems to be the most interesting one, and can make a
virtue of our negative result. We intend to investigate these
additional forces, and the conformal invariance of +the coupled

system, in future.
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G. CONCLUSIONS.

We have considered spin structures over topologically nontrivial
spaces My and collected examples of non-spin manifolds. The generalized
spin structure, when charged (single or multiplet) spinors propagate
in a Dbackground gauge field A on M, can be easier defined on M.

Fa

However, then some relations between charges of particles with
different parity of spin arise, and it 1is not known what happens
if A becomes a dynamical field. Another sapproach to fermions, by
the Dirac-Kahler -equation, seems <o be conceptually different, also
from the glcobal point of view.

As a conseguence of +the definition, the possibility of inequivalent
gpin structures on multiply connected M arises. They yield in general
different physical results. We have investigated the way in which
spin structures, and spinor fields <transform under conformal mappings.
The main result is that the double covering of the connected
conformal group of M can be represented in the chosen class of
spinors, while disconnected transformations 1lift, in general, to maps
which change the spin structure. In particular, the known conformal
invariance (up to a conformal factor) of the Dirac operator has

to be generalized: conformal maps intertwine the Dirac operators of

(possibly) nonequivalent spin structures.
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The spinor fields on the minimal conformal compactification WM

of Rl,3 were discussed in detail. The two inequivalent spin structures

correspond to left or right invariant global frames on M , realized
as U(2). In the Minkowski space-time Rl'B, they correspond to two
frames, which are Lorentz rotated one with respect +to another. The
total twist along every isotropic 1line is an odd multiple of 2%,
while along every space- or timelike 1line 1is an even multiple of Zsy
This can be translated into relative periodicity conditions for
spinors. The |‘'parity" inversion on U(2) is shown to interchange
these inequivalent spin structures, hence both of them should be
included in a theory, which implements this fundamental symmetry.
Applications of M are limited by the existence of time 1like

loops, i.e. the 1lack of global causality. However M can be modelled

1,3 —

as particular asymptotic conditions in R The kernel of B on M

is shown to be trivial. Therefore in order to unitarily implement
the conformal group in the space of spinors on ﬁ , the additional
gauge Tfields should be introduced. In the simplest considered case
of U(1)-field, the solutions of ¥ ? = 0 are of definite chirality

(@ifferent for different spin structures), and obviously are interchanged
P y E

by the parity inversion.
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7.

APPENDIX A

TABLE 1. Metrix forms of Rg  for s+t&7 ( D(n) =1(d™) ).
e-t
set -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0 R
1 c *R
2 H R(2) R(2)
3 ’H c(2) *R(2) c(2)
4 H(2) H(2) R(4) R(4) H(2)
5 c(4) *H(2) c(4) ’R(4) c(4) PH(2)
6 R(8) H(4) H(4) R(8) R(8) H(4) H(4)
7 |*R(8) c(8) 2H(4) c(8e) 'R(8) c(8) 2H(4) c(s)
TABLE 2. Matrix forms of Spin_(s,t)=Spin (t,s) for s+t 46
% 2
- 0 1 2 3 4 5 8
0 1
1 yA
2 GL(1,R) 2 U(1)
3 SL(2,R) su(2)
4 | sL{2,R)xSL(2,R) sSL{z,C) SU(2)x50(2)
5 Sp(4,R) Sp(1,1;H) Sp(2,H)
6 SL{4,R) S(2,2) SL(2,H) SJ(4)

e
@+
[y
.
3
+

TABLE 3. Automorphism groups (2.4,19) of the scalar product <, >.} c.f. [35 }

-7 -6 -5 -4 =3 -2 -1 0 1 2 3 4 5 6 7
o 0(1)
1 0(1,C) o(1)
2 S0%(2) 0(1,1) 0(2)
3 GL(1,H) U(1,1) GL(2,R) u(2)
4 Sp(2,2) Sp(2,2) Spl4,R) Sp{4,R) Sp(4)
5 3p(4,C) *3p(2,2) 50(4,C) 5p(4,R) Sp(4,C) 25n(4)
6 Sp(8,R) Sp(4,4) Sp(4,4) Sp(8,R) Sp(8,R) Sp(4,4) Sp(8)
7 1 GL{8,R) U(4,4) GL(4,H) u(4,4) GL(&,R) U(4,4) GL{4,H) u{8)
TABLE 4. Automorphism groups (2.4,18) of the scalar product < 7?,‘“(:‘1“, [35 ]
et
s+t -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
o} 0(1)
1 U(1) GL(1,R)
2 Sp(2) Sp(2,R) Sp{2,R)
3 Sp(2) sp(2,6)  *sp(2,R)  5p(2,0)
4 Sp(4) 5p(2,2) Sp(4,R) Sp(4,R) sp(2,2)
5 u(4) GL{2,H) u(2,2) GL(4,R) U(2,2) GL(2,H)
6 o(8) S0*(8) S0%(8) 0(4,4) 0(4,4) So*(8) S0*(8)
7 j*0(8) 0(8,C) So*(8) 0(8,C) *0(4,4) 0(8,C) 250*(8) 0(8,C)
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Exampies of the construction of matrix representation of R by (1.4,11).
o
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~y

R R ") R0 ( ) 1/2(1 + e)
=~ . = gpan_\(e_,e_,e , = 2
3,0~ 3,1 PaNp1€: €505 P AR
pRa’Op o= spanR {_l, 6123} p ~ C, where 1 e» 1 , 123«~+ i Here,
. . . 3,0
i—e —1 under every reflection in R and g(p) = p, u@(p)# D.
The t =1, t =ee_ , and basi -
hen 1 4= 8,8 » and a basis of S+1(V) is b+l P,
-1
b_y= (e8] p=egep
0,~-1
e =b , b =b (- , ’ ,
1Ph1= Pg®ipaP 0 &P 4= P (= 0P €= [i, o]
0,~-1
eb = -b b = -b
o%,1T TPl €% 17 TP ez"”’[r , ol ’
1, 0
eb =2b s e b = -b € <o l
3 +1 41 3 -1 -1 3 0,-1
R Rl’s nle ,e_,e_,e_ ) 1/2{1 )
= Spa 5 [AS ’ = + € s
Y1,3 S AN P o
pRl’ap = Span(l,elz,eZB,eSl) =~ H , where 1l es1 , eléy¢i , 62§¢j, e3¢»k.
Here b(p) =p, aplp) #p, Then £ .=1,%t =e, b =p, b= e.p
b b b < [1’ O]
= y e = - € —
%17 P 1T TPoa o 0,-1
b b _(-k) b b _(~k) O’"kl
= — K (<] = - [S4 :
©1°4017 "n ’ 17-17 "a1 ' 1‘”*[¢k, 0
b =b _j b _=b [O’ J 1
pot e = y e -2 .
€17 Pod a7 2 2713, 0
bm b b b e O"1‘X
= e o 5 e
®3%,17 "1 3717 35711, o
51 / )( )
R , R '~ = span NS = 1/4(1 e 1 e e .
3,1 spanle ,e ,eg.e,) » P AR AR
R = span 11 = R .
om, p o~ epan 11
t = , t =ee , T , =e , =T = e .
{(1,1) {(1,-1) 2 3 (-1,1) 2 (-1,-1) 3
b = sy b = e_e , b = e , b = e y
(1,1° (1,-1)" 2% ' P17 %P 0 P(a1,-1)T %EP
e b =b e b, = b e (b =-b ., e (b =-b
1 (191) (1§l)’ 1 (l,—'l) (l:"'l)’ l( —lyl) (“1al) 1( —ly"l) ("’l""l)
e b =Db , b =b e =b e b =Db
27(1,1) (-1,1)" "27(1,-1)" (-1,-1) "27(-1,1) “(1,1) , "2°(-1,-1) (1,-1
e b =D , e.b =-b e b =-b , e b =b
3 (lyl) ("11"‘1) 3 (ly"l) ("‘lrl)’ 3 (_191—) (17"1) 3 ("‘ll"l) (lsl)
e b =Db , eb =b e b =-b , eb =-b
27(1,1)7 "(-1,-1)" “a’(1,-1)7 T(-1,1)’ "4 (-1,1) (1,-1)° 4 (-1,-1)  (1,1)
A . . coeq . A . -4
P oA .eq R
elH c—a - b9 e <% A - - - 19 630 _— 3 eA,H DA .
C -4 A4 A . A . °



(B.1)

APPENDIX B

CECH COHOMOLOGY

Any +two sheaf cohomology theories on M are uniguely isomorphic.
The Cech cohomology for differetiable manifolds seems to be best
suited for a physical point of view at fibre bundles. Let us
sketch now basic facts of its description; for details see ch. 5
of a beautiful Warner's book [26].

The g-simplex ¢ is a collection (U,, ... ’Uq) of open sets
(out of the given cover {U,,L} of M) with nonempty intersection
loe| = UpU, ... Uq;é @#. The i-th face of ¢ is the g-1 simplex

,U ce ,Uq)-

i-l’Ui+l’
6
Let for g<€0 C( {UN},S) be zero, and for q2»0 be the K-module

of cochaing, that is functions which assign to each g-simplex ¢~

an element of [*(|g|,5). The K-module [ (|&|,8) consists of

sections f: |g| — S, @e°f=1id from |0 |eM to a sheaf
S = {S,'ﬂ', | O"l} of K-modules over ||, where:
(i) s: S— |g| is a local homeomorphism onto |¢'|,

-1

(ii) T “(p) is a K-module for each peldg],
(iii) the composition laws are continuous in ‘topology of S.
_ 4 . . 49 . a+l, s o
The coboundary homomorphism d&: C ({'U&& ,S) = C ({‘U&& ,S) defined

(with a little abuse of notation) by

ar(g) = -t reoh

iMe

+*
with a property d°d = 0, determines the cochain complex C ({U&E,S)
- a
whose g-th cchomolegy module is Hq('{U‘A,S) = Z/Bq, a guotient

of g-cocycles (ker @) by g-boundaries (im d). The whole construction
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(B.2)

behaves in a proper way under the refinement of covers
{U;'} < {UL&<:&Umx , and there exist canonical homomorphisms such

that the disgram (B.2) commutes.

7% {uy,s) — 5%{uy,s)

NS

P9

Then one defines the g-th Cech cohomology module for M with

coefficients in +the sheaf of K-modules S as a direct 1imit
r%o,s) = dir 1im BO(ULY,S).
.
Tt can be shown that the Cech cohomology satisfies the axioms
of sheaf cohomology theory. Among them we make use of the
following property: given a short exact sequence of sheaf

. . -1 . .
homomorphisms (in each K-module gt “(p) the image of a given

y

homomorphism is the kernel of the next)
0-—+5! =S —>35"'" —0
there 1is an exact seguence of homomorphisms
= i,sn) — 5%m,s) — 5%0,s0 ) — BT s - L.
For applications the ring K is wusually taken to be 2
herice +the K-modules are abelian groups or a real vector space
respectively.

From considering local sections o U&f~~»F and their transition
functions <., with values 1in the Lie group G, follows that there is
a 1-1 correspondence between isomorphism classes of principal G-bundles

«l x

and +the Cech cohomology set H (M,G) of M with coefficients in the

constant sheaf G.
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