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work., Zach block is self-contained, in that all the introductive as wel

lugive discussion, is given together with the work. In each case

ot

is interesting to note the vast richness of new situations encounter

[

and of new results that have been derived by a variety of analytical

end numerical approaches. The work on the Quantum Hall Effect is conti-

s

nuing, and the results presented here, though definite, are conly preli-

fte
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ted in the past several years even
erties of graphite both

ave come out as the results
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{HLR) and Posternak,
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rt {PBFWW) have, by very elabo-

which was shown
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seudopotential used by Van

ke

-

adjusted so as to obtained a

Hasringen and Junginger

3
<@

asonable band structure for diamond and silicon carbide. While the sim-
plicity of the pseudopotential method is very attractive, there is, to my
knowledge, no local pseudopotential for carbon sultable to deal with gra-
phite has been published. In view of the interest in practical calculations
for GIC, it is worth while to have a local pseudopotential for carbon
empirically adjusted to obtain-a reasonably satisfactory band stiructure

for grephite which has a strongly anisotropic layer structure.

In this part of my thesis, I will present such carbon pssudo-

potential in sect. 1.A. With this potential, the band structure of gra-
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3 ~ T
y i.2., excluding

For A-B stacking graphite with lattice pmrameters a=2.46 L and
-~ ™ TOT T 3 3 ~ 3
c=6.71 A, kF=1.239 a;U., zel,bSb Ry and the atomic volume £33 =8.79 A .
We adjust the pseudopotential in the Tunctional form to obtain the bang
BN A e 4 B - kY 3 (1) bl
structure matching the result of HLR celculation . Special care has m

been taken

thus cobtained is shown in Fig. 1.1 in sbsclute scale.

1.8. BAND STRUCTURE OF GRAPHITE.

The band structure of graphite has been calculated on plane-
wave basis with cut—off kinetic esnergy of 22.3 Ry (egquivalent to 417 plane

waves at |’ point) using our pseuddpotential for carbon and with satisfactory

-1.2-



is fairly good in view of the simple form of

The interlaysr state which lies above EF 2.7 ev at grpoint
Y g + - Ps . Py . . .
nas f71 ymmetry and its charge distribution at r'p01nt is concentrated

as shown in Fig., 1.3, wich is in a

been calculated using our

pseudopotential seudopotential for Li taken from
{
!

Cohen and Heine ', The lattice parameters are s=2,48

The result is shown in Fig. 1.4. The whole band is shifted -
down by an amount of roughly 1 ev(take the top occupied ©O~Dband as repre-

sentative), with an extra shift of sbout 1.4 ev for the interlayer state

(5)

as compared to graphite, relative to the respective Fermi level. HLR

{
6 . s . . o
1 interpreted this extra shift for the interlayer state

—r

and Fauster et

8

&s an indication of the hybridization between Li(2s) and carbon interlayer

w

tate. To investigate this point as well as the character of this state

o
»

n LiC _, we

8
graphite with the same carbon layer separation (6.71 A/2) as graphite but

LEV

]

alculated the energy levels at [ pocint for A-A stacking

the same basal plane parameter (a=2.485 A) as LiCsi and also for LidCG for
& ranging from O to 1 (ol=0 corresponds to A-A stacking graphite with

lattice parameters of LiCs). The results are shown in the left panel of

®

~1.3~



The increase of the component of Li stom affects all the levels. Ra-

lative to the case of Li C the Fermi level of LiC increzses =sbout
o 6, &)

0.6 ev. The top o~ band increases 0.4 ev, Just a little less than the

increase of the Fermi level. The top occupied 7 band increases

about 0.25 ev and the interlayer state decreases shout 0.25 ev,

A
I\

'
ks

rom the above investigation we can make some comments:
If we ignore the change (0.4 ev) in the top 0 band due to the
LiC_ the shift of the

6
whole band by about 1 ev with respect to the Fermi level is due to

(o]

presence of Li atom, going from graphite t

the increase.in the Fermi level resulted from the filling of the

antibonding W bend with Li(2s) electrons.
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of the wavefunction of this int

s we have done

or carbon and

+

addition to that,

t the Li(2s) state has a considsrable

_;o)> =

because of their

we interpret t

1.5,the charge distribution of the

olag7 .

the Li(2s) state

and the
large overlap with sach

amount of contribu-

graphite and interpreted the structure with negligible

.1 ev below the bulk interlaver stabte at

the presence of this surface states
(8)

slab calculation of graphite using our pseudopotential

paper collaborated with Selloni, Carnevali and Tosatti

recovered the surface state of graphite which lies about
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VOLTAGE-DEPENDENT SCANNING-TUNNELING

MICROSCOPY OF A CRYSTAL SURFACE: GRAPHITE

A. Selloni, Dipartimento di Fisica, Universita’ La Sapienza, Roma, Italy

P. Carnevali, IBM Rome Scientific Center, Roma, Italy

E. Tosatti and C.D. Chen, International School for Advanced Studies, Trieste,

Italy




PACS Index Categories: 73.20.-r, 73.40.Gk

We diséuss the application of the scanning tunneling microscope (STM) to surface
electronic spectroscopy, with an explicit calculation of the voltage-dependent
tunneling current for an ideal STM experiment performed on graphite. We study
how surface and bulk electronic states are reflected in the tunneling J-V spectra,
and show that empty surface states of graphite can be well discriminated against
bulk-like structures by considering STM spectra at different tip-surface separa-

tions.

[



The newly developed technique of Scanning Tunneling Microscopy has been
proven to be very useful for the study of surface structures M, In usval applica-

tions the scanning tunneling microscope (STM) is operated in the so-called
constant-tunneling current mode: both the applied voltage V and the tunneling
current J are kept fixed while the tip performs a lateral scan over the surface.
The resulting surface of constant J, z = z(x, y) , is the STM ’real space image’
of the surface ( z is the vertical position of the tip, while x and y are coordinates
in the surface plane). Several theoretical papers have recently appeared, investi-

gating the relationship between the STM images and the surface structure 2-4,

In this note we dlSChSS a different and so far unexploited application of 8TM,
surface electronic spectroscopy. It is intuitively clear that vacuum tunneling into
a surface should be stronger when the electron epergy is such that it can flow
into, or out from, a discrete surface state, or an impc;.:rtant surface resonance (even
if degenerate with bulk states). We show that the voltage-dependenée of the
tunneling current can give important information on both filled and empty elec-
tronic states. In addition lateral scanning of the tip could be used to obtain a

detailed picture of the spatial distribution of each energy-resolved electronic state.




We have chosen to illustrate our idea by direct calculation of the tunneling current
J flowing into, or out of, a graphite surface, as a function of an applied voltage
V. The point is to show how J(V) is related to the surface electronic structure

at energy E ~ Er = V. Graphite has been chosen as an important test case, because
both its atomic and electronic structures are well known. In particular, both

localized o and r states, as well as fairly delocalized interlayer states ) and

recently discovered empty surface states ¢7), coexist within a range of a few

eV around the Fermi energy. We suspect it might be technically difficult to achieve

such large tunneling voltages over a semimetallic surface. Typical! voltages yielding
reasonzably small currents such as 5 x 10™°4 are in the range of 10mV in metal-
metal tunneling ), However, it is not inconceivable that much higher voltages

could be applied, for example, for very short times.

'We calculate J using the approach outlined in Ref. 2. Assuming an idealized tip

with constant density of states D, (®), the differential conductivity dJ / dV is

proportional to the local density of states of the sample evaluated at the tip

position r = (x, y, z) and at energy £ = Er + V,



% « p(rV) = > [¥u() | 8(Ey —Ep~ V) (1
nk

where y, (r) and E,; are the two-dimensional Bloch functions and the correspond-

ing eigenvalues of the semi-infinite crystal.

In the present approach we replace the semi-infinite crystal with a n-layer slab
of finite thickness = (n—- 1)c/2, in a repeated slab geometry, where
c/2= 3.353; is the interlayer spacing in bulk graphite. The width of the vacuum
region between adjacent glabs is 2¢ = 13.42A. Four layers are sufficient for the
purpose of describing most of the relevant features of p(x, y, z ;¥), but slabs

up to 10 }zyefs thick are used, when ﬁeeded, to investigate finer details.

The graphite slab electronic structure is calculated using a plane wave representa-
tion, along wi.th a carbon local pseudopotential & empirically adjusted to give
a reasanaﬁly aécurate overall fit of ’aby initio’ LAPW results for bulk graphite
(), Bach V’slab is further encased within a square potential well along z. The well

depth, ¥y = 6.4¢V, is chosen to yield a reasonable value, ¢ = 5S¢V, for the

workfunction (!9, The width 4 is empirically adjusted by the requirement that

the interlayer surface state should have approximately the same characteristics

s




as in a full LAPW slab calculation (7)., We find thatd = + 0.75c is a satisfactory

value. Fig. l1a shows the energies of the empty surface and interlayer states,

calculated at k = 0 for slabs of increasing thickness. Similarly to the finding of
Posternak et al. (7). two surface states split off below a band of bulk states. For

large thickness the split-off surface states lie about 0.1eV below the k = 0 bulk

band bottom, a value compatible with the inverse photoemission data ®), The

(x, y) averaged charge density of the surface state for a 10-layer slab is plotted

against z in Fig. 1b. The exponential tail into the vacuum corresponds to a decay
length A = 0.63A. From this value we estimate E ~ —1 / (4A2) ~ 2.4eV for the

energy of the state relative to the vacuum, which well agrees with the calculated

value reported in Fig. la.

Our plane wave basis provides a good description of the delocalized interlayer
states and empty surface states. On the other hand, many plane waves are required
for a good descriptidn of the exronéntia] decay of the wavefunction outside the
sm*face; With a 4-layer slab, we have uséd 705 plaze waves (corresponding to
a kinetic energy cut-off of 13R y) to obtain an exponential decay accurate over
five orders of magnitude for the (x, y) averaged valence charge density. A

somewhat poorer accuracy is usually obtained close to the 'hollow’ site. due to



the relatively low values of the corresponding charge density. Our total valence
charge density for a 4-layer slab is shown on Fig. 2, as a function of z, for (x, y)
corresponding to "hollow’ (S), "bridge’ (SP), and ‘atop’ (A) positions. The calculat-
ed corrugation at an average distance z ~ 2A from the surface is 0.22 + 0.27A

(the uncertainty being related to the above mentioned difficulties at the S site),

which compares well with the He-scattering values of 0.21 + 0.20A 0D,

The use of empirical, not norm-conserving pseudopotentials to study wavefunction
properties might be generally guestioned (12) Of course, our reason for using

a local pseudopotential is entirely one of convenience, and is only justified as
a first approach. However, we stress that in the deep exponential decay region
which is of interest for tunneling, the wavefunction is governed entirely by the
state energy relative to vacuum, which is reasonably good in our calculation. For
example, the energies (relative to vacuum) corresponding to (i) top of the filled
g-band, (ii) #-bonding saddle point, (iii) w-antibonding saddle-point, (iv) surface
symmetric (antisymmetric) state, given by a monolayer LAPW as -1.8, -6.9, -3.0,
-1.2 (<=0.2) eV respectively, are -8.9, -7.6, -3.8, -2.8 (~0.5) eV with our

pseudopotential.




The (x, y) average p(z; V) of the 4-layer slab local density of states p(r;V) is
plotted against z and for several values of V in Fig. 3. We have chosen values
of V which select out successively diff‘erent graphite states, i.e. top of the o-states
atT (V= - 4.eV), w states close to the Fermi energy (¥ = 0), empty = * states
at the M saddle-point (V = 1.3eV) and the empty surface state (V = 2.5¢V). A
much slower decay is obtained for the latter. As a result, starting from a distance
z~ 2A from the surface, p at V = 2.5¢V is already about one order of magnitude
larger than all relevant bulk structures. These features, and their consequences
on the tunneling current J(V), are made more evident in Fig. 4. Here we show
the voltage dependence of the tunneling conductivity for two different distances
from the surface. We take z = 2.5 and 3.8A, which are presumably quite small
as compared to typical tip-surface Sﬁparatiéns 1n present-day scanning tunneling
microscopy experiments (estimated values of z are in the range 4 — 10A (1-4)y
Although the main motivation for our choice of z is simply that our calculated
charge density is not well described beyond ~4A, it is reasonable to believe that
no significant new effect can occur between 4 and 10A. Our results should thus
remain very similar at larger distances. Bulk 'resonant’ features, such as saddle-

point ¢ and « * states, as well as surface state structures are clearly detectable

in the tunneling conductance spectra of Fig. 4 (3) 11 is also evident how,



increasing the tip-surface separation, the relative importance of each structure
changes, the surface state peak becoming more and more important. It should
be noted that the surface to bulﬁ state energy splitting (rezlly of order
0.1 = 0.2;9V) is artificially increased in a four-layer slab, as shown also on Fig.
1a. One should keep this in mind when extrapolating from the d7 / dV calculated

curve of Fig. 4 to the real situation.

So far, we have shown only the (x, y) averaged tunneling conductivity. Fig. 5§
illustrates the predicted voltage dependent z-corrugation for constant current of
a graphite surface. We note that, while the corrugation is large near the Fermi
energy and for the = * states, it is in fact very small for the surface state, which
has a rather plane-wave nature in the (x, y) plane. The maximum bheight-
difference between S and A sites is approximately 8z = 0.7 = 1.0A around

Ep (V~0), 8z = 0.2 — 0.3A for r * states (V = 1.3e¥), and &z = 0.06A for the
surface state. It is interesting to remark how the corrugation amplitude at Ep

is very much different from that of the total valence charge. This example points
to the general fact that straight identification of STM maps with surface charge

corrugation is not only in principle, but also in practice, clearly mistaken. A

D




detailed study of the corrugation at the Fermi energy is in progress and will be

reported elsewhere.
In conclusion, we have shown that voltage-scanned STM studies of surfaces, and

in particular of a graphite surface, should yield much important information on

its electronic structure, very difficult so far to investigate with other means.

10
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FIGURE CAPTIONS

Fig 1. - Fig. 1a shows the energy of surface and interlayer states for graphne
slabs of increasing number N of layers. The energy zero is the vacuum level.
Dots (triangles) denote symmetric (antisymmetric) surface states with respect 1o
z-reflection symmetry. The ticmark at £ = —2.4¢V on the left of the figure gives
the position of interlayer states in bulk graphite. Fig. 1b shows the (x, y) averaged
charge density for the symmetric surface state of a N = 10 layer slab. Note that
this is a bonding linear combination of surface states on opposite surfaces, which

makes it appear slightly more penetrating than the single true surface state is.

14



Fig. 2 - Valence charge density py{x, y, z) as a function of z for (x, y) correspond-

ing to: atop (full line), bridge (dashed line) and hollow (dotted line) sites on the
gurface plane. The inset shows the (x, y) averaged valence charge density. z = 0

coincides with a surface plane.

Fig. 3 - z-dependence of p(z,V) for: ¢ states at V ~ -4.eV, « states close to the
Fermi energy, v * saddle-point states at V ~ 1.3eV and surface states at V ~

2.5 eV of a 4-layer graphite slab. z=0 coincides with a surface plane. p is in

A3ev! units.

Fig. 4 - {(a): Voltage dependence of the (x, y} averaged tunneling conductivity,
given by Eqg. (1), for different surface-tip separations. Ticmarks at ¥V = ~ 4eV
and V = + 5eV refer to o-states and vacuum level. (b): Calculated band disper-

sions along I'X and T'M for a 4-layer graphite slab.

Fig. 5 - Height-corrugation maps (in A) in the (x, ) plane for the various states

shown on Fig. 3.
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IT. SURFACE STATE POLARONS: AN EXEMPLIFICATION FOR Si(111) 2x1

1. INTRODUCTION

The gquantitative experimental detection of surface state energies
on clean semiconductor surfaces has become possible in the last decade mostly

1 2 3 .
by means of photo-emission and also optical and energy loss techniques.

At present, these experimental results are being compared with very
4-8
elaborate self-consistent one-electron calculations , also in order to learn

about the surface geometry, which is generally unknown. The ihplication is that

effects not contained in one-electron calculations, e.g. of the local-density
type, can be disregarded, an assumption which is not always obvious. While some
work has been devoted towards many-body effectsg_ls, lattice reconstruction
effectsg-l6, and even surface electron-phonon couplingl7, there seems to be no

discussion available of polaron effects on surface states.

In this part of my thesis-.we try to study the polaron effects produced By

coupling of the surface state electrons (and holes) to the vibrating surface

- lattice. For specificity, ‘and also because of its high current interest, we
have chosen the clean 5i(111)2xl reconstructed surface as our working example.
Since at least two widely discussed reconstruction models — the buckling
model18 and the chain model19 - are available for the atomic structure of
this surface, we have decided to consider both of them. This has been done
also in the hope that our predicted behaviour could be sufficiently different
for the two cases so as to allow some conclusions to be drawn from a compari-
son of these predictions with existing or with future experiments. We stress
again however that although.most numerical calculations carried out in this
paper refer to the 2x1 reconstructed Si(111l) surface, our scope is much wider.
We intend to exemplify the relevant concepts and the main conseguences of the
more general problem of surface-state polaron, such as one could find, for

example, alsc on a nonreconstructed surface,or on a metal surface.

The structure of this part. is as follows. We first construct the
model hamiltonian suitable for our purpose and fix the parameters used.

This is done in Sect. 2.1. for the buckling model and in Sect. 3.1. for

the chain model. Eoth our model hamiltonians



are strictly one-electron, plus-coupling to a surface lattice. While of .

- course electron-electron interactions may often be relevant in a'reaf situ- .

ation, they are not an essential. ingredient of the physical effects we want

to describe, and have thus been dropped. Two provisions must however be made

- in this respect. One is that the one-electron or hole states to be considered

must always be energetically close enough to the gap - or the Fermi energy in

a metal - that their lifetime, due in effect to electron-electron interactions

1

is long enough for any lattice relaxation to play a role. The second provision

is that we will in fact reintroduce some effects of electron-electron inter-

actions when dealing with electron=hole pairs bound to form an exciton. Of

course the electron-hole Coulomb attraction is not contained in our hamiltonian

2
the optical spectrum

energies and wavefunctions are carried out explicitly in Sects. 2.3 and 3.3.

The energy shift and the lattice deformation that occurs when one
extra electron - or one hole - is injected in a surface state, otherwise at
equilibrium,are calculated for the two models in Sects. 2.2 and 3.2. This
state, 1.e. a surface state electron (hole) plus its accompanying surface

lattice deformation, is what we shall call a surface state polaron.

A surface state polaron will also build up around a bound electron-

.hole surface pair, i.e. a surface state exciton. This situation, .that typi-

cally occurs in optical absorption, is of course not just the linear super-

23-25
position of . the polarons of a free electron plus that of a free hole . .. -1, -

- and requires-separate:calculations, which are carried out in Sects. 2.4 =nd ~

3.4. The optical absorptiqﬁ itself is calculated - as it is perhaps the
most important consequence of surface state polarons of direct experimental

relevance - in Sects. 2.5 and 3.5.

.The results of Sections 2 and 3 show that surface state polarons .

can have binding energies easily cne *o two orders of ‘magnitude larger than

- in .the bulk ¢f the same material. Thus, for example the buckled Si(111)2x1-

-surface is a strong coupling case with self-trapped electrons and holes -

-2 _

4
Celculations of such surface state exciton binding

. and has to be introduced separately, to.account for this importamt feature of . .= .

U —E N



like in a bulk ionic crystal - while bulk Si is of course a case of weak
coupling. Comparison between Sect. 2 and Sect. 3, on the other hand, is
useful in that it shows how critically dependent on the detailed surface
situation the polaron effects can be, and how they can be handled in each

case.

Finally Section 4 is devoted to a discussion of situations where
surface state polaron effects will, or might, play an important role. By
analogy with known bulk situations, one wouid éxpect important consequences
on a) transport and b) spectroscopy. Of these, transport is out for a sur-
face state problem: no known evidence has so far been produced for it. One
‘is then left with polaron effects on surface state spectroscopy. The most
direct observation of polarcq»effects is expec?ed in optical absorption from
surface states. For increasing coupling strength, the nature of the absorp-
tion process goes from band to band - like in a bulk semiconductor - over +o

Franck-Condon-type, like in a colour centr92 ’

This aspect is discussed
in Sect. 4.1. The corresponding effects expected on luminescence are briefly
touched upon in Sect. 4.2, particularly in connection with the contrasting
behaviour of the two models investigated. The remaining Sections 4.3, 4.4,
and 4.5 are devoted to speculations about possible new experimental con-
sequences of surface state polarons. The ideas exposed in this last part

are totally qualitative, and may or may not turn out to be actual quantitative

relevance.

2. SURFACE STATE POLARONS IN THE BUCKLING MODEL OF Si(}ll)~2x1

In this series of Sgctions 2.1 to 2.5 we proceed to introduce and
study polarons in a semiconductor surface state. This will be done in the
following sequence. First we introduce a one-electron hamiltonian
describing the chosen model, i.e. that of a Si{(111)-2x1 buckled surface.
Then we study an electron or a hole in a surface state and determine: (a)
the form and magnitude of the accompanying lattice distortion; (b) the
energy shift (polaron binding) caused by this distortion. Lastly we con-

sider in the same context a surface electron-hole pair and the resulting

-3 -




optical absorption .lineshapey:as modified by lattice relaxation. - = . .- ey

2.1 .-The buckling model and its parameters : -

The surface geometry for the buckling model of Si(111)-2x1 ;8 is.-.
shown in Fig. 2.1. Alternate [liO] réws of surface atoms are displaced in
and out with respect to the "ideal" geometry. The outermost atomic layer
of each surface unit cell (a cell is labelled by the index n) contains one
raised atom ~ labelled (n,l) - and one lowered atom - labelled (n,2). Each
surface atom carries a dangling—bond (DB) orbital, which we denote |n, i >

(i =1,2). As it turns out? 928

the surface states of $i(111) with
energies close to the Fermi level have a very strong DB character. Thus it
is reasonable to restrict oun;éttention to DB ogbitals in this case. The-
simplest picture of a DB is a combination of s and pZ wavefunctions, with

coefficients which depend on the distance Hni of the atom from the 2nd atomic

plane

L Hoe g N2 -
lh,b):fé_._i__ Ialc)-i- 1_6(%1) [[.')ZIL),(Z.J.)

where a is the surface lattice constant (a = 3.852). With the choice (2.1),
In, i > is an sp3 orbital when Hni = HO = a/2/8 (the value for the "ideal"
. geometry) . while it reduces: {a) to a pZ orbital foruth; fully relaxed case
H = 0; (b) to a pure s orbital when Hni =2 HO = a//6, for then the angle

ni
..between each pair of back-tonds is g. ‘The DB energy depends on atomic position,

in the form . et
€ (H,;) = €p - g' H;" * , - (2.2)

where C = 12(sp - as) and € and Ep are the s and p atomic energies.

As mentioned in the introduction, we dc not intend to include

electron-electron interactions in our calculation {except when dealing with
the exciton problem). - In particular, for instance, the electronic.part of

the total energy will be simply calculated as a sum of-one-electron energies.
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The possible relevance of ﬁany—body effects in buckling~type models has

been discussed to some extent in a few paperrslo“ls and found to be
important in determining the relative stability of various surface configu-
rations (e.g. paramagnetic vs antiferronagneticla)‘ Qur point here is however
to start with the simplest possible scheme that would enable us to focus on
surface étate polarons, a one-electron effect. Thus we just assume in this
Section that the buckled non-magnetic surface is the stable ground state con-
figuration of 8i(111)-2x1 and describe single-particle properties by the

model surface state hamiltonian:

’H: Z E;(Hm-) Ihi«)(”il-&t Z{ ) [hC)(MJL-&-h,C, (2.3)
hi CHLIMJ> g

where t is the hopping integral and <ni, mj> indicates restriction to
nearest neighbours. Here electron-lattice coupling is present through the
dependence (2.2) of the on~site energy upon the atom z—cdordinate Hni' We
wish to underline” that this is by no means the only electron-surface lattice
coupling mechanism to be expected in a real situation. For example (2.3)

does not include the electrostatic coupling (Frdhlich—typezg) that might
quantitatively play a role in this case, since the buckled surface is strongly
ionic. Restriction to the coupling (2.3) helps greatly to simplify the pro-
“blem, while in-our view it should not lead to important qualitative errors.

Quantitatively we expect (2.3) to underestimate somewhat the coupling strength

and thus the polaron binding energies.

. For static and uniferm buckling, i.e. Ei(Hni) = Ei,(i=l,2) the eigenvalues

of (2.3) become

L

-
E, (K= &% ,2tcos(k.a,)¢ (53-2'-6—')7'+ btws%i tos K-2: | (2.4)
. '2 2 9

where k is a vector of the two-dimensional surface Brillouin zone (SBZ)of Fig.{(2.1lc),

and al = /3 a; , §2 = a?. The lower and upper signs in (2.4) refer to the




filled (-), or lower band, and to the empty (+), or upper band, respectively. im-

We must now provide an estimate of the parameters t, él and eé»for-Si(lll)-»'

_2x1. The results of several calculations have shown -that the width.of the - vzsu. +..

DB bands for the buckling model is quite small, typically a few tenths of

an eV 4-5;28. This is partly due to the large separation beﬁween surface
atoms, nearéest neighbours on the surface being bulk 2nd neighbours, but also
to a strong cancellation effectao. While the direct hopping has a negative
sign, there is an indirect hopping term via second layer atoms that has op-
posite sign, and slightly larger in magnitude. The latter is large enough
to offset the former, but the ensuing cancellation makes the surface band of
Si(111) particularly narrow. Assuming thus t > O, the width of the lower
-band in our model bandstructure is B_ = 4t. We take t = .075 eV resulting::~ : - =
in B_ = .3 eV, a value in the.range of currentbestimates. The appropriate

value of (52 - el) on the other hand can'be determined a posteriori, by re-

quiring that the calculated absorption peak position fits the experimental

2
value , hw ~ .45 eV, This requires, as will be shown later, £2 - €1m leV.

"With these parameters our model bandstructure (2:4) is-shown-in Fig. 2.2. A" T

useful dimensionless parameter that characterises it is

d = ¢ s (2.5)
€, - €,

which is much smaller than unity in the present casegand will be later used - o

as an expansion parameter.

- It is at this point desirable to introduce the Wannier functions of
this problem. -The Wannier states will be useful in deriving-a simple -expres- .. -:~
sion for the total energy, and also as good basis functions for the polaron

states. The Wannier functions of our model can be expressed as -

a:h = %:. '(.4i (n-m) lm,'1y>»+ C“_ (ﬁ-%)»f}*’n,ﬂ ’ (2.6)

where the c‘+'s are calculated-using the Bloch eigenstates correspending to s

(2.4). The general expression for a is quite involved. = However we can
zn

- -
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exploit the fact that the ‘''gap" (ez—el) is here sufficiently larger than
the bandwidth (4t), and expand to lowest order in o. Then the functions

Ca, take the form
n

0., = Iniy+d L Im 2 - (2.7)
: {m1,hi)

Gente IN Y 44 Z tm, 1 s (2.8)
{mMiyNnLY

where < m2, nl > (< ml, n2 >) indicates the four nearest neighbours of type
2(1) surrounding the atom (n,1) (or (n,2)). With our value ¢ = .077, the
lower (upper) Wannier state is essentially made up exclusively of the DB or-
bital on atom 1(2), with only 2.2% admixtire of atom 2(1). This means of
course that the surface is éfgongly ionic, the.electronic charge being almost

31
completely localized on type 1 atoms . The Wannier state energies are

€ n

]

é‘ -4ta (2.9)

é+h 62_"' I‘*td $ (2.10)

the difference Egn = (&2 - €._) + 8 to being the single-particle gap for local-

1
ized states.

We now'want‘to déterminé thérT =‘O°K static’eq;iiibrium‘positions of
the surface atoms corresponding to the hamiltonian (2.3) and the chosen values
of :the parameters. Thus we minimize the total energy of our model system con-
sisting of 2N surface atoms ‘and 2N surface electrons, if N is the number of

surface unit cells. Within the usual Born-Oppenheimer's approximation, the

total energy is approximately given by )

g' = _:%. Z_ Y (Hhi -H'o)1+2§ E.,. (2.11)
L

N

where H , - H' is the displacement of the atom (n, i) from an appropriate
ni o

reference value H' that will be discussed below, and ¥ is some effective
o

elastic force constant for atomic displacements perpendicular to the szurface
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. plane, therefore simulating the effect of stretching and bending the back-

bonds from their equilibrium configuration. .-In the ground state all unit

. .cells are equivalent,and we;ﬁormalize our total energy per unit cell, ...

(2.12)

-H, )% (H,-H, -
r (H' H) ( H) +2(E(H) el )

where El and 62 depend on Hl and H2 through (2.2). Minimizing g with res-

pect to Hl and H2 we find

H%z X’CLz Ho
L fat- (2-847%)C

2 (2-133)

H%— X'CLZH'O

7 = . (2.13b)

i X’al_. 8 4% C

2 2
Note that (2-84 ) and 8¢ are the fractions of electronic charge on atom 1
and 2 respectively. Egs. (2.13) show that when the height Hi of an atom
increases, so does the electronic charge on it. 1In fact, this is due to

the dehybridization effects contained in (2.1)and(2.2), that cause £i to de-

mwwcrease-with'increasing‘ﬂi; " In particular it is clear frém=(8:13) that Hé

would be the atomic position if the DB's were empty. An estimate for the num—

. °o_2
erlcal values of the parameters C, X' and H' is C = 52.8 eV, X': 20.4 eV A -,

H' = 65A , ‘as dlscussed in Appendlx A With these values the egailibrium

g g

[~] [s]
positions (2.13) of the buckled surface are Hl = ,99A and H2 = .66A .

Hi minimize the energy (2.12), it follows that sub-
. . - g
stitut I H =H H =H
itution o 1 + ql » H, 5

in ql and q2. To lowest order in e the two vibrational normal mode fre—

quencies are

Since H

o g

+ q2 transforms E in a quadratic form

Hal




The corresponding eigenvectors show them to consist essentially of a local
vertical vibration of atoms 1 and 2 respectively. We note that the frequeﬁcy
of atom 2 in this approximation is identical to that in the hypothetical
"empty" surface Gﬁbe = 55 meV), while that of atom 1 is lowered éﬁbi = 44 meV)

by the presence of 2 electrons.

2.2. Electron polaron and hole polaron

Different techniques are available to handle weak-coupling (WC)
32
polarons and strong-coupling (SC) polarons . Therefore we should first
recognize whether our surface-~state problem is WC, SC or intermediate. This

will be done in the following way.

“:We start by considering an extra-electron added to the system of 2N
surface atoms and 2N electrons. In the absence of coupling to the lattice
the excess electron is in a Bloch state of the empty upper band. When the
coupling to the lattice is turned on, the electron is subject to two compet-
ing tendencies: one towards delocalization, so as to minimize the kinetic
energy; local lattice distortions, reducing the electron on-site energy,
tend however to favour the localized situation. The strength of the local-
izing force is measured by the relaxation energy E; which is released when
the‘lattice is allowed to distort around a localized electronzs. More pre-
cisely, E; is the difference between the total energies 82N+1 of the syétéa
of 2N atoms and (2N+1) electrons before and after lattice relaxation. If we

.. express the wavefunction ¢ of the excess electron as a linear combination
e

of empty Wannier states
ije = = L Q, ., s (2.15)

h
the energy E;N+l

and the set of ccefficients {c 1}, g
n

is a functional of both the set of atomic coordinates {Hni}
2N+l({Hni} , {cn]). Thus the relaxation
energy is

- 9 -




'E; T gzm:(i “:‘j '{ c,?j)_ fzmn( i“:: })i o ﬁ); (2.10)

=~ where the indices 'g' and 'e' label ground and relaxed walues respectively.
Let us now tentatively assume that we are in a strong coupling situation,
so that thevBorn—Oppenheimer approximation is good. 1In this case the energy
of the relaxed state can be calculated according to the adiabatic prescrip-
tion: for any given configuration {Hni}, minimize first 82N+1 with respect
to {cn} to determine the adiabatic potential 8({Hni},{cn(Hni)}), which can
subsequently be minimized to determine Hii' Even after elimination of the
electronic coordinates, the problem of determining the infinite set of atomic
coordinates {Hii} is still generally very difficult. For our SC situation,
however, the following approximate procedure turns out to be convenient. We
start by assuming that the electron is perfectly localized in a single unit
cell, which we call '0O':

| ’ *iF h=0

Ch = (2.17)
0 otherwise

and calculate the value of E; for this test case. This value must be compared
- with <he corresponding kinetic energy B, that is the.energy . released when the.

electron, initially localized in one unit cell, is allowed to spread through-

26
--w=out the. surface lattice . Here, B is the difference between the upper-Wannier

state enetgy,,e;o , and the energy of the bottom of the uppepﬁpand,ﬁ }f E;?, B,
we can consider (2.17) as a éufficiently good guess. If on the other hand,
shoulad E; turn out to be noticeably smaller than B, then we must allow the
electron to spread over successive shells of empty Wannier states. Eventu-
ally, if the linear size of the region in which {Hii} differs significantly
from {Hfj} becomes much larger than the lattice constant, our initial SC
assumptioﬁ {i.e. Born-Oppenheimer) will be invalid, and-a different approxi- -

mation scheme should then be used. . s

et

PO S




For our buckled surface model, (2.15) with (2.17) turns out to be
a good wavefunction for the excess electron, as will be shown below. This
could in fact be anticipated, since the hamiltonian matrix element between
neighbouring Wannier functions is of order o << 1, implying precisely that

electron spreading away from the central cell is small.

2.2.1 Electron polaron

The bandwidth B, defined above, must be calculated assuming that
the surface lattice is frozen in the ground state equilibrium configuration
g g . g : g : .
= 3 = » th =.9A = . .
Hl Hl H2 H2 wi Hl 9 and H2 66A The upper band minimum
of (2.4) occurs at the J point (0,n/a) of the SBZ (see Fig. 2.2) and is
(52 - 2t). The corresponding Wannier energy ¢ 1is given by (2.10), yield-
+0

ing B = 2t + 4ta , that is B = .17eV with our choice of the parameters.

. ,
The relaxation energy ER is defined by (2.16). However with our
choice (2.15)-(2.17) of the electron wavefunction, the total adiabatic energy

g depends only on the set of atomic coordinates {H .}
ZN+1 ni

gZNH HHMS) ‘—‘-2': T éi (Hh,-' HQ)Z‘* 2 nZ ‘f_h (i Hm‘ﬁ’) (2.18)
+4£+0(i Hn,‘j) )

where €, is the energy of filled states in cell 'n', while €+o is the energy
of the extra electron in the cell 'o'. As described in Sec. 2.1, the upper

- Wannier state a_ . is basically localized on the atom (0,2), with only a.
small spread on the 4 nearést neighbours of type 1. This implies however
that even with the simplifying assumption (2.17), the lattice relaxation

will in principle affect not only the atom (0,2) but also the neighbouring
atoms. This, in turn, alters the energies of their (filled) Wannier states.
In this way the relaxation can propagate ocut to successive shells of neigh-
bours. However the relaxation amplitude decreases very quickly with increas-

33
ing distance from the central site . In this calculation we assume tenta-

tively that there is no relaxation beyond the first shell of type 1 neighbours

- 11 -




- of the atom {0,2) (see Fig. 2.8a). Taking into account the equivalence of-

these four neighbours the relevant energy to be minimized-is -

5(Ho;,Hoz)=7_‘—5’ (H,, - Ho)P 4 a(Ho,-H'o)zJ -
b 81 (o) -3t -t &, ]
+Eq_(HO7_) _thO(c /

where

t
£, (HF) - &, (Ho)

)
dg =

and

Ae = t (2.20b)
' ‘»51(902);—" £, (”ol)

The new local equilibrium positions for the atom (0,2) and its neighbours

are
2 1
e Ja Ho
ol - T r2
(R
b’a —C(z—"(c-é"(c ) :
(2.21)
= {
, He, ya Ho .
i P I 02 4 S ,'- -
- T
i [
Numerically, the central atom relaxation is quite large: from Hi = .66A to
o
ng ="vBOA.. -The corresponding relaxation of the four type 1 neighbours ==~

[+ o
turns out to be in fact negligible, i.e. from Hf = .990A to Hgl = .988A. This

[

finding  gonfirms the validity of our initial SC assumption. The relax-

[

e
ation energy amounts to ER = .15 eV, resulting from an-electronic energy
gain of .32 eV - due to the outward displacement of the central atom- --

34
approximately half-balanced by the necessary elastic cost (-.17eV) .

- 12 -
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This relaxation energy E; is almost identical to the bandwidth B (~.17 eV),
thus confirming once more that we are dealing with a strong cdupling case.
We can also calculate the mass renormalization for the excess electron. The
renormalization factor is usually expressed as exp (Se), where Se is the

26,27 . )
Huang-Rhys factor y given in our case (and T = O°k3,by

Sez-2 e <XZ 1AL,

Z, H wi%w;e (H,}—H'e)z (2.22)
r=,)2 t (“Ji%"‘ w;e)

Here Xyib are zero-point vibrational states, mf and wi

are the vibrational

frequencies in the ground state of the system with 2N electrons - given by
e e

(2.14) - while wy and W, are the corresponding local frequencies in the

relaxed state with an extra electron. The latter are calculated by expand-

ing the adiabatic potential (2.19) around the equilibrium positions (2.21),

il

which gives mi =‘44 meV and m; = 50 meV {against ”f - A4 meV andvmi = 55 meV).
The resulting value for the Huang-Rhys factor is Se = 3.6, which corresponds
to a mass enhancement factor exp(Se) n 40 for the excess electron. The orig-
inal bandwidth B = .17 eV is reduced to a few millivolts, showing that the

electron can in fact be considered as immobile, and essentially classical.

2.2.2 Hole polaron

The same approach discussed for the case of an excess electron can
h
be straightforwardly used to evaluate the relaxation energy ER around a local-

ized excess hole. We assume once more that the hole is perfectly localized

in a single-unit cell, which we call '0'; +thus its wavefunction wh reduces
to wh = a 0’ the lower Wannier state of cell '0'. The total adiabatic en-
“ergy 82&11 is a functional of only the atomic coordinatesar{ﬁni} and the

relaxation energy can then be expressed as

E;: ng-»l (1“3’, }) - -gZh'af (Il Hh’:j) ;o (2.23)

t
)
W

t




where

'£2N-I (i””"ﬁ)z"l‘ X’ Z’ (”m’ - H'o )7- O T

7 0 ni :
c1 L e, (i) + (b))
h+0

In (2.23) the index h is used to label guantities of the hole relaxed state. As
discussed in the previous Section, the lattice relaxation can in principle '
spread over a large region of the surface lattice because the Wannier func-
tions are not strictly "single-site". We assume tentatively that only the
central atom (0,1), and ité four nearest-neighhours of the type 2 can relax.

In this case and taking into account the equivalence of the 4 atoms of type

2 the relevant part of the total energy is

g ( H.Qt) Hoz ).,: _%_ X. [ (uol -"HL)I"' (HOL’T'H'Q)’I]* -
o8 [6 (M) -2t -2t 4]

(2.25)
+ 8 [ & (W?)-3td - ta,
+ € (Ho) -btdy, )
e('h - t J (2.26a) "
, €, (Ho,) - € (H3)
c[“ = t (2.28b)

€, (H,,)-¢€ (H)

- 14 -
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g, g
. z - 2ta - 2ta’ d z e (HD) = 3tg - ta'
In (2.25) €. 61(H1) 2ta o, &nd e al( 1) o o, &re

the energies of the lower Wannier functions centered on the atoms denoted
as 'a' and 'b' respectively in Fig. 2.3b. Minimization of {2.25) yields
the new local equilibrium positions
h ya*Ho
Hm = (2.27a)
yat- C(1-4d}) ”

Hos re’ Ho

2 7 (2.27b)

X’a"- C(a(:" + éo(‘:z)

o

h h h ° g h 0
i = = .99 H = ,650A
The numerical values of HOl and H02 are HOl % 764 (Hl 9%4) and 02 6

(H2 = .662). As for the electron polaron the relaxation is strong for the
atom in the central site, but almost negligible for the neighbouring atoms,
thus supporting the initial 5C assumption. Note that the sign of the relax-
ation. for the.central atom:is opposite with respect .to.the. caseiof an+excess
electron. The energy balance consists now of a strong gain of elastic energy
(~1.04eV), partially cancelled by an increase of electronic energyi(+.66 eV).
The resulting value for the hole relaxation energy is Eg = .38 eV, This must
be compared with the value for Bh, the kinetic energy of localization of the
‘hole{;:Bh is the difference between the energyof the lower Wannier.function .
and the top of the lower band in the undistorted lattice, Bh = 2t + 4ta = .17eV
in our case. Therefore we conclude that the hole should be self-trapped. This
is confirmed by the value of the Huang-Rhys factor Sh for which we find,kusing.
an expression analogous to_(2.22), Sh = 8.3 (the local vibrational frequencies
in the relaxed state are now w? = 51 meV and wg = 55 meV). The resulting
enhancement factor for the hole mass is exp(Sh) ~ 4000, and the hole can thus

rather accurately be described as a localized defect.

- 15 -




2.3  Exciton states in the buckling model s

As a first step for the calculation of the optical spectrum, in this |

Section we start studying electron-hole pair excitations - namely exciton
states - of-our model system of 2N surface atoms and 2N electrons, assuming
for the moment that the lattice is frozen in the ground state equilibrium
configuratibn. To this end we need to introduce some effects of electron-
electron interactions, so far not present in our calculations. Our model
for the exciton consists of an electron transferred from a Wannier state of
. the lower band - basically localized on an atom of type 1 - to an empty
Wannier state centered on a nearest neighbour atom of type 2. The justifi-

cation for this model is that: (a) this is certainly the lowest (singlet)

exciton state, as suggesteditw'the analogy with strongly ionic bulk materials;

(b} the dipole matrix element < a nI;]a+m> - determining the strength of op-

tical transitions - is nonvanishing only if a and a are first neighbour-
+m

ing sites. In our calculation of the exciton binding energy we shall also

neglect the terms responsible for. the exciton propagation-through.the surfacest iotor w

21
lattice . In our model these terms - roughly proportional to the sguare of

a i Bqg. (2.5)Y<vare - very small. In addition, as shown by tHe reésults of-w-

the next Section, the coupling to the lattice will cause self-trapping of

the exciton. With this simplification the singlet exciten binding energy

EBS reduces to-the sum of the e-h. Coulomb and. exchange energiesz1 B s R e iff
where
3 151 %
V. = J d’r d*r' a’,(2) a_,(z)
' 02 . ’ (2.29)
! . -

X AL ) a,, (), e

. és.l r - ril N r{‘\‘ i‘ ’ .
and
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gt %
{ ]
X a’*o(,} ) a/_o(,& ) “
€L e -l
The binding energy of the triplet exciton, instead, is unaffected by electron-
hole exchange, i.e. E =V

BT c’
screened by the underlying bulk only, whereas the dielectric screening of the

The surface electron-hole exchange (2.30) is

Coulomb attraction (2.29) contains alsoc, in principle, the screening con-
tribution of surface states themselve535. However, introduction of this 2-
dimensional screening appears to be a minor'cﬂ?rection in the present case,
where the main interaction to be screened is intra—cell, and will be approxi-
mately omitted. On the other hand, we will take care to include it in the

#-bonded chain model, where the exciton radius is somewhat larger.

In conclusion, we take the image-charge,scxgening~£sw;;gbg
for both VC and VX, where € is the bulk dielectric constant (ﬂ3¢5 12 for Si).

= (eb+1.)/2, -

Using the expansion (2.6) of the Wannier functions in-terms of DB orbitals,

(2.29) and (2.30) can be expressed in terms of intrasite

U, = {d®r o’ ¢4 (0)]" . & gt
J ! €q 10 -1 f,

and intersite

VI'J((R):JOP-’L dn' l(f' (’1_-)11 et l '(f ({L_'-(EHL
e
o i,z ; R£0

.

Coulomb interactions. The intra-site background screening Eggappearing in
U, is very hard to evaluate, and we have chosen to make it equal to the
i
intersite screening 6; =:£bg. . We evaluate Vij(R) using the point charge
g

approximation
- 17 -
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Vii (R) o~ ——
€, R

that is justified by the relatively large.distances between surface atoms
and by the lateral localization of DB statesa_e. The intrasite repulsion
Ui is evaluated numerically using tabulated atomic wavefunctlonsas. We ig-
nore the different hybridizatiorn of the two DB's, and obtain U = 1.9 eV for
sp3 hybrids. This value is in the range of current estimates of the intra-

site repulsion for silicon .

The exciton binding energy (2.28) can be explicitly written as

BS 2

+2.,(2{57- [_ \/(fe-,l) + \/(’@zl) + \/(’§,+ C}z')]

34| 3V(12 g+ Lagh)s 4‘3\/([%9 2 a.])

3 "3 ‘ | |
+ \/ ('I-ET é&g f’ ?i' é}Z,’:) 9 (2.31)

| - _ZszzU +»(/3‘f+9;(‘1+’l/a(‘1/31) \/(’%9'+ng})

2 2
where & was defined in (2.5) and g = 1 .- 4 -{recall that a, = /3 a% and

32 = a?, as shown in Fig. 2.1). Numericéliy“we obtain EBS = .55 eV, that

is, essentially, the Coulomb interaction between two point charges on near-
est neighbour sites. With the same parameters the triplet state binding

energy is EBT = .57 eV. The (electron-hole exghange) singlet-triplet split-
ting obtained here is very small, essentially because it is a contact inter-

I3

, 2
action - i.e. proportional to ]wirp = rh)l - and in our model the electron

and the holie belon almost totally to the two different sites, (0,1) and

(0,2) respecﬁyely,rlthe cell.
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2.4 Excitonic polaron

The presence of a surface state electron-hole pair will also cause a
surface lattice distortion, just as a single excess electron or hole does.
This relaxation affects the wavefunction of both particles and hence, in prin-
ciple, also their binding energy. To study this effect we follow the same
procedure of Sect. 2.2 for the electron- and hole-polarons, including however
the e-h interaction energy 5;_h as essential ingredient of the relevant energy

to be minimized:

&

ge(ash’:."’ ebctronic T ge..h . (2.32)

Our model for the exciton is the same studied in Sect. 2.3, that is - basic-
ally - a hole on the atom h = (0,1) and an electron on the atom e = (0,2).
As in the case of a single electron or hole, we assume that the only atoms
which can relax are 'h', 'e' and their respective first neighbours, as shown

in Fig. 2.4. The elastic energy is then %géglecting relaxation of atoms like

a and b, that are not first neighbours)

fega '.C:_’_ (hz+h1~;hz+-2kl+2hz+hl)’(2-33)
st ZX R oe 9 4

where we use the simplified notation hLl = HL’ - Hé and the labelling of
the various sites is given in Fig. 2.4, The part of the total electronic

energy which can change by relaxation is

ge‘e.dromic_ = £+o + o +4E o + 2 E-b

+ LIE,? + lf E-g +VQ E_e , (2.34)

where € o and ¢ o are the energies of the upper (centered-on 'e') and
+

lower (centered on 'h') Wannier states of cell '0', while ¢ X e»b; etc.
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- -are -the energies of the . lower Wannier states centered on the atoms 'm',
- 'bt.etc. in Fig. 2.4, These Wannier energies have the same meaning and ex-

.pressions as those given in the previous Sections, e.gi.p -.7°
t_z

Evo = &, (”c).-}-

2 t* t*
+ + s

EZ(HC);E,(HS) 62 (‘He)-EI(H{)

- as can be easily inferred from Fig. 2.4. Finally the.electron-hole inter— -~

action energy is approximated by a slightly simplified form of (2.31),

g, = 2 Lo Peoy U - (a};f_h Henth «;,hﬁ;_h W) 2.0

~

h “ g4 g2
ere an
v %o h Be-h

[EA] . 1 2
h' through oy = %(1-p) , Bty

i Lt® 1—-1/2

(81(He)'- gl(Hh))z .

depend on the atomic coordinates of the atoms 'e' and

= %(1l+p), with

-
]

~Minimization of (2.32) with respect to {h , h , ...} - performed numeric-

h' e

ally - leads to the local equilibrium configuration given in Table 2.1. As

in the case of the single-electron and single-hole, there is a strong relax-
ation of the atoms in the central cell (cutward and inward displacements for
‘e’ and 'h' reépectively), while all other atomic positions are substantially
unaltered. HNote that, due in part to the presence of the electron-hcle inter-

action term in (2.32), the magnitude of the displacement of the atom 'e' (and

similarly 'h') is smaller with respect to the single electron (hole) case.
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exc
The relaxation energy E around the localized exciton is obtained as

R
the difference between the values taken by (2.32) before and after the relax-
c
ation. The numerical value for E:xc is E;X = .34 eV. The effective band-

width Bexc for the exciton motion can be estimated as half of the bandwidth
for the single electron or hole, i.e. Bexc n .08 eV in our case. This
leads to the conclusion that the exciton polaron - as was the case for the
hole polaron - is self-trapped. The energy configuration diagram for the
ground and excited states of our model system is sketched in Fig. 2.5. The
vértical excitation energy is €, = E; - Egs, where E; is the local single-
particle gap and E§S the singlet exciton binding energy in the unrelaxed

lattice, numerically €, = .47 eV with our parametrization. This energy gives

the position of the absorption peak:according to Franck-Condon's principle,

. exc | . . . 26,27
while ER is the energy released after the optical excitation . For
the emission process the Franck-Condon energy € is given by e, = so-EEXC 5

where 52 is the energy of the ground state with distorted lattice configura-
tion (see Fig. 2.5). Using the results of Table 2.1 we can calculate € = .12
which yields slgu O for the peak of the emission line and correspondingly an
extremely large Stokes shift, essentially equal to the Franck-Condon excitation
energy. This is indicated in Fig. 2.5 by the minimum of the excited energy

curve essentially falling onto the ground state energy curve.

2.5 Absorption line-shape

In the adiabatic and Condon approximation, the normalized line shape
function for transitions from the electronic ground state (g) to the exciton

state (ex) can be written a327

Ty (L T LI} A, Sloy-tys-E),

where | xﬁ > and | Xex >

e are the vibrational wave functions for the

electronic ground and excited states, with total quantum numbers k and 1




- ‘respectively. Pi is the probability of the state | xi~>-~at*thermal*equili—

© - .brium, and I, is the optical (electronic) squared matrix element. .

BT «The” phonon frequencies in the ground electronic -state are -given inzoeo .-

Sect. 2.1. In this case, atomic vibrations on sites of type 1 and 2 can be
considered as essentially uncoupled, because of the small spread of valence
electrons from type 1 atoms to neighbouring sites. The ground state vibronic

wavefunctions are
g ~ o~ (9) g e
[;(‘k > = {\ /tkn ' (Qni IR g (2:37)
. ;L

where Qni and Hg, denote the actual coordinate and the equilibrium position

(g)

of the atom (n,i) and X, “is the wavefunctign of a harmonic oscillator of

n,i .
frequency w5 and quantum numbers k | (with I,  k . = k).
i n,i ni ni

When an exciton is created in the cell'0', the vibrational motions

of the atoms on which the =lectron and the hole are centered become coupled

rdsmgzthrough the e~h interaction. For small displacéements from:sthe ‘equilibrium :

~configuration the adiabatic potential for the motion of the atoms 'e' and

exc\2 excy 2
€= L (8- B ) Ly (a,-H™)
+ 8 (@ - H&) (@, - H™) {ez)

where the force constants yn,ye and § are in principle given by the respec-
exc exc
’ Q = H . It
h e e
g

: exc exc
turns out, however, that Hh and H are so veryv different from HO1
e

H§2 of the grourfd state, that the true excited state "potential energy"

(2.32) which is very nonparabelic, is badly misrepresented, in the neigh-
, Q_ = HS
e n

tive second derivatives of (2.32), evaluated at Qh = H

and

bourhood of Qh = Hi , by (2.38) if the wvalue of Y sy and §
g - 'n e -

1 2
indicated above is used.  Strictly speaking, one should determine numerically

the true vibronic levels of (2.32), that would no longer be of harmonic-

i
Ny
n

t




oscillator type. However, it is clear that we are only interested to know
these excited vibronic states.in the neighbourhood of Q@ = Hg;;'Q = Hg .
e nl’ h ne

Locally, these eigenstates will still be similar to harmonic oscillator wave-
functions, however with different parameters. We have found that these wave-
functions are reasonably approximated by the harmonic eigenfunctions of (2.38)
where However, different values of the four constants v',y', §tand ¢!
are used. We use Yg = 20.7 eV/Zg, Yé = 19.5 eV/Zz, §'= 3.1 eV/Z2 and

gé = .24 eV, which describe reasonably 25 of (2.32) in the important
region. The corresponding normal mode frequencies arefﬁm+ = 58.7 meV and
Aw = 50.2 meV. The lower frequency mode is characterized by the two atoms
"e" and "h" vibrating in phase, while the higher frequency mode has them in
opposition of phase. The frequency hw_ is close to the frequency characterizing
the outward and inward relaxation of the unréconstructed surface in its ground
electronic state, as calculated in Sect. 2.1. The other mode appears to be
pushed up in energy because it involves changes of the electron-hole inter-
action energy which itself is large. This is an example of how the pre-

sence of an exciton can stiffen the lattice; rather than soften it. ' The vi-

brational wavefunctions for the electronic excited state are

~ (3)
[ x5y =0 T X = Hy,;
{ h#o i=z by Qi - fhni ) (2.39)
(1)

o Ap (@7) X (@)

+ - . :
where Q and @ are the normal mode displacements from the equilibrium posi-

tions of the 'e' and 'h' atoms.

We have calculated the absorption line shape (2.36) numerically for
+
increasing temperatures, with cut-off k i = lf =10 in the summations over

*

initial and final vibronic states and with an energy resolution AE = 10 meV.
The results are displayed in Fig. 2.6 in the form of histograms, the vertical
lines being approximately the zeros of the &-function argument in (2.3€).

The main lines - determining the basic feature of the absorption lineshape -

are accompanied by satellites forming a fine structure which becomes increas-

[ N

ngly richer with increacing temperature. The lineshape envelope is asym-
metrical- Poisson distribution-like - at low temperaturec, and evolves slowly

-2

(V8]
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rds @ gauJssian shape with increasing temperature, as in usual strong }
) 27 '

coupling situations .
~-At-the lowest temperature (T = 2°K) the absorption starts approxi- -
mately -at the energy Eé * and 4t has'a fine structure due to the 'slight

..-difference ofiflw &and<hy.. { The peak of the absorption spectrum occurs at a-
] . -

frequency which is approximately the vertical excitation energy g = A7 eV

of Fig. 2.5.

With increasing temperature the excited vibrational states of the
initial electronic configuration give an increasing contribution to the
absorption: this produces a tail on the low energy side of the spectrum,
while the fine structure s:debands become more numerous and intense with
respect to the main sidebands. The total oscillator strength remains con-
stant, being transferred from the high spikes to the low spikes. The line-
shape becomes broader and mgye symmetrical, wh%}e there are no detectable
shifts of the peak position within the accuracy of our calculations. We

shall return to discuss this lineshape in Sect. 4.1.

3. SURFACE STATE POLARONS IN THE w-BONDED CHAIN MODEL

In this Section we shall study surface state polarons for the m-bonded
. 19
(dimerized) chain model of 2i(111)-2x1, recently propcsed by Pandey . Ve
follow closely the scheme used in Sect. 2 for the buckling model. In Sect.

3.1 we introduce our one-electron hamiltonian, fix its parameters by requir-

. Ang a.reasonable comparison of the resulting bandstructure with known expériL““rﬁ
mental results, and finally determine the corresponding equilibrium positions
{dimerization amplitude) of the surface atoms. = In Sect. 3;2fWe‘study polaron
states a;sociéted with an excess carrier - electron or hole — in a surfaée
state. In Sectis. 3;3 to 3.5 we consider an electron-hole pair as created
for instance by optical excitation. For this we study first the exciton

&
binding energy and wavefunction in the frozen lattice (Sect. 3.3) and next

the coupl;ng of the exciton to phonons (Sect. 3.4). Finally we calculate

(Sect. 3.5) the absorption lineshape.

3.1. The model and the parameters o ‘ R

19
In the n-bonded chain madel the surface atoms are each bonded to =

rn

twe: other surface stoms and forr zig~zag chains along the 1110} direction,
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similar to those occuring on the Si(110) surface. An important feature of
this geometry is that the surface atoms along a chain are as close as bulk

o
nearest-neighbours (db = 2.35A) while different chains are quite well separ-~

o]
ated, their distance being v6.7A. Because of this anisotropy the model has

7,8,19

a large dispersion of the DB bands along the chain direction Fj, and

flat bands along JK and ?3', perpendicular to the chains.

As was done for the buckling model in Sect. 2, we focus only on the
atoms of the outermost atomic plane and consider the DB-like states, which
we assume mostly pz in this case. Within this approach, the symmetric chain
model originally proposed for Si(111)-2x1 has degenerate bands along JK. To
remove this degeneracy we assume that the ground state configuration of the
surface is characterized by uniformly dimerized chains, with alternating
short (contracted) and long (stretched) bondsBB. The situation is thus very
similar to that of a Peier ls-distorted quasi one-dimensional system, particu-
larly to polyacetylenesg. As shown by Fig. 3.1, the dimerization breaks the
reflection symmétry through the xz plane and this gives rise to a finite gap
along JK. Contrary to the buckling model, no charge transfer occurs between

DB's so that the surface ground state is in this case purely covalent.

To describe the electronic structure of the above model we assume

the one-electron hamiltonian to be

H=¢ hZ)L [nid<nil + hZ t,)h [lm)(nzt' +ln2><n/l]

(3.1)

+g_ tZ)thwm-:,z; F 2y cnanyil]

with |n i> denoting the i-th (i = 1,2) DB in cell n. Here . is the DB
on-site energy - the same for all DB's - t_ is the hopping integral between
the two DB's connected by the short bond in the cell n, t2 is the hopping

n

integral between the two DB's connected by a long tond in neighbouring cells

along a given chain., For uniform dimerization, t =t and t = t_,
1 1 2,n 2

e
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diagonalization of (3.1) yields the DB's dispersion relations: -

Et(g)i Ei-.[t,,l+ tzl+ 2t, t, cosk), a] /7', (3.2)

where the minus and plus signs refer to the filled (-)Y"and empty (+) states
respectively. Reasonable values for the band parameters tl,and tz are deter-
mined by the following requirements: (a) the valence bandwidth should be

.8 eV, as suggested by angle~-resolved photo—emissionAo; (b) the optical
absorption peak should occurfat ~ .45 eV, In our calculation the absorp-
tion spectrum is inclusive of both the electron-hole interaction, leading

to exciton bound states, and of the exciton-lattice coupling, leading to
polaronsAl. The exciton-lattice coupling depends strongly on the ratio (tl/
t2), which is related to the magnitude of the ground state dimerization.
Conditions (a) and (b) are well satisfied by taking tl = -.9 eV, t2 = -.45 eV,
The resulting surface band structureis shown in Fig. 3.2. It does reproduce
fairly well the band dispersions resulting from more realistic calculations

. 8,19
for this model .

We approximate the Wannier functions of our model by simple bonding
and antibonding combinations of DB orbitals in the same cell; For negligible

.overlap between DB's.at different sites, we have mr e m -

il-

A_p

QA

_\_}_L;_- ((n[)- |h2>> , (3.4)

)

with energies

£ = &€ 4 txn ¢ o (a.s)

£n *
For the lower (upper) Wannier state the error involved in -this sapproximation
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is to neglect an antibonding (bonding) contribution of amplitude
N (t2/4t1) ~voLl2 from:neighbouring cells along the chain, more distant
cells contributing terms of higher order in a . The Wannier state energies

(3.5) on the other hand, need only ccrrections of second order in o , that

can be neglected.

We shall determine the groundstate configuration and the electron—

lattice coupling by assuming that tln and t2n depend on bond lengths accord-

ing to

t

To CXF (—F Ad’hl)

1h

ch

(3.6)

i

t,, &XIO ("'{B Ad‘nz) 9

where to is the hopping integral between DB's at distance do (equal to the
o]
bulk nearest neighbour distance db = 2.35 A), and ad IKAd 2) is the contrac-
n n

tion (expansion) of the short (long) bond referred to d0
Adyi = dy; -d, . (3.7)

The functional form (3.6) has been extensively used in surface electronic
structure calculations to describe the scaling of tight-binding parameters
with distance28 and is quite reasonable so long as [Adni}/do<< 1. The values
Adnl and Aan are connected by a simple geometrical relationship in our model.
With dO = 2.35 Z and !Adni' << do, bond angles for uniform dimerization are

® 7 109.5° resulting in

(3.8)

Ad’hl - ---é_ Adh’

This condition, combined with (3.6) and the values of tl and tz, yields the

F

relation between dimerization parameters and hopping integrals

@Adw"-‘: . % b (t,/t,) (3.9)



- numerically ga d 1 = -.52.  The hopping parameter for the undimerized chains-:

, n

-'rto = tl exp(@A d l) is then determined to be to = -.54 eV in our case. This
n

~value is in fair agreement with commonly accepted first-neighbour: (ppy )} -

28
interaction parameters in Si .

To calculate the ground state structural configuration of the sur-
face, we consider now the total energy of our system of 2N surface atoms
(N is the number of unit cells) and 2N electrons occupying valence band

states. Within Born-Oppenheimer's spproximation the total energy is

i Bt B (1)) 0 oo

her is the lattice {potential and d ] is the elec-
where £iatt. is ip al) energy s gel({ ni}) is the elec
tronic energy corresponding to the configuration specified by the dni's.

To evaluate f we restrict to the dimerization mode - shown in Fig. 3.1 -

latt.
and describe it in terms of the force constant y in the approximate form

€ = ;{-X L (sd,) (8dy, )

P (3.11)

while the electronic energy is simply

ge@ = 2%— E—h 4 -~ (3.12)

with the Wannier state energies ¢ given by (3.5). By minimization and

with the geometrical constraint (& ), we find

Ad’m = _g_ {5 t‘ /X’ . (3.13)

We need to estimazte the values of the parameters g and y. The dependence
of the total energv on bond-length contraction was recently calculated by
vPandey/ for the symmetric chain model of Si{111)-2x1. His results - in the

form of total energy per surface atom - can be parameterized as follows:
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€ = COhSF. + _é. K (AO(,)z y (3.14)

Symm

02
where K = 18.5 eV/A and M is the bond-length contraction/expansion with
R o
respect to the calculated equilibrium value, ds= 2.2A. Within our scheme
and for -small deviations from eguilibrium, the total energy per surface atom

of the Symmetric chain model can be expressed as:
- 3
6 4Ymm = COVLSt + .é. (X'-(-Fa to><Adr ) ) (3.15)

where the equilibrium bend-length value - to which Ad' is referred - is as-
sumed to be dO = 2,352 . We ignore the difference between ds in (3.14) and
do in {(3.15) and require tha¥. our parameter (¥ + tho) equals the calculated
value for K.. Combining this condition with (3.9) we get vy = 22.3 eV/Z2 and

o1
B =2.7A . In the resulting ground state configuration bond-length con-

[+ o]
tractions and expansions are then Adf = ~,194 A Adi = +.065 A. For small
'kfdisplacements,qni = Adni - Adii ~.from equilibrium the total energy. increase

to second order is
Aé:.:;_)%(.‘g_bf‘-f- szt,) Cﬁ” ’ (3.16)

~This relation defines the freguency W of the long wavelength ‘dimerization

mode'

% w‘: - %2 X+2(‘)>ztl 'f (3.17)
yielding‘ﬁ%)z .058 eV uitﬁ our model parametrization.
3.2 Eleétron polaron and hole polaron

We consider now an excess electron which, in the absence of coupling
to the lattice, cccupies a Bloch state of the conduction band. As discussed
in Sect. 2.2, the localization or delocalization of this excess electron is

. e e . o
roughly determined by the reatio ER/B’ where ER is the energy relezsed when

9 -

[




the lattice relaxes around the locelized electron while B is the kinetic
energy of localization of the electron, B = |t2| in the present model. If

E; >.B the electron will be localized. Since electrons and holes are per-

fectly symmetric in this model, we shall restrict our discussion to eléctrons.

Implicitly all the results will refer also to holes.

We shall also require that the lattice distortions qni caused by the

excess electfon satisfy
¢
/C]m'/ << /Ad’nél

where Z}dii is the bond-length contraction or dilation in the ground state
dimerized configuration. By this restriction we shall automatically exclude

from our treatment the possibility of soliton formation.

A) Limit of strongly localized polaron

We first calculate the relaxation energy assuming that the excess

electron is perfectly localized in one cell, say cell '0'. We denote by
o .

’-{dﬁ;@mﬁthe;configurationrparameters of-the ground state -ibefore::the:iattice"

e
distortion induced by the excess electron - and by {d .} those after dis-
ni

~tortion. Within the adiabatic approximation, the total energy is ¥ ™% . <o

yé =1
IN+1 2

+ 22- g_h(d’n;) + £+D(d°’) ¢
h

JZY-; (Ad:l"'Ad’:z)

(3.18)

Since we assume perfect localization, the only bond lengths which change

afte latti ti d 4d , i = =
er lattice relaxation are dO,l’ 0,2 an d-l,z with Ad02 AQ&Z

-1
= 5 (ad__ + Ad—lf (see Fig. 3£3). Minimizing & with respect to ad

01
we obtain

2N+1 o1’

v

10

ﬁ 4 O!:‘;,;: MF (16[\ doe‘ ) = 7?_. ‘/82 1:0 /0){'”’ g (3;.712{’)5.1:‘;;

A

B et




¢

e o e e
which gives Ad01 = -.069 A end AdO2 = Ad_12= +.044 A, As shown by Fig. 3.3a

the lattice distortion caused by the excess electron is & local reduction
of the dimerization with respect to the ground state configuration. This in

turn implies a reduction of the lattice potential energy and correspondingly
ecl
10

is decreased. On the whole the relaxation energy is Ee Eg ({dg,}) -
. R 2N+1 ni

fi ({d°.3) = .14 eV. This value must be compared with B = .45 eV for the
2N+1  ni

an increase of the valence electron energy, since the bonding energy |t

e
kinetic energy of localization. Since here ER << B we deduce that,unlike

)

in the buckling model of Sect. 2, the excess electron will in this case not
stay localized, but will spread to find a configuration energetically more

favourable. This is substantially confirmed by the value of the Huang-Rhys
e e e e - 26,27
factor S . The expression for S at T = 0% is S = ER/hw where
, o
o~ L
is an appropriate average between mf - the phonon frequency in the ground

€1

0
state, defined by (3.17) - and wi, the local value of the phonon frequency

in the presence of the excess electron. The local freqguency is

- . |
e 2 [0 1p e
. € . . e N .
Numerlcallyk;O = . 077 eV, resulting in S & 2.1, a value which indicates

an intermediate coupling situation (the mass enhancement is exp(S ) A 8).
e

Note that mz is larger than the phonon frequency in the ground state.

B) Pplaron radius

To account for the spatial extent of the polaron, we now express
the wavefunction of the excess electron as a linear combination of upper

Wannier states |n >
+

Hue = 2!;- Ch, | hyd (3.20‘)

2

it fficients ¢ normalized to unity Iic = 1. For v=1¢ . [in >
with coe e 0 V., n! n‘ Ve Xyib gl _

the total energy expectation value <¥ |[H|¥ > is
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g =Ly Z (Ad‘nz,.”-i- Ad'nlz) <+ 2 % (».E-l't,h)-g B

=4

ZN+ 2 : (3.21)
2 - - # . ¥® \
<+ Z. (&-t|n)lcn‘+2,;th (Chc'h'&l""chch-l)’
’ h » o
wheretn = -‘% o is the hopping integral between |n+> and l(nil)+> .

Since we assume that the distortion of the ground state configuration is

small, i.e.

BAd, = 8T 49, wtn | Qi / pdZ | <<l

tlh = t4 ( | - I@th) p (3.22)

where Itll is the vélue of the bpnding@energy in the ground state. For
simplicity we shall neglect the dependence of tn on the cell index by taking
tn = - é t2. Since the present situation is one of intermediate coupling,

we are in the embarrassing situation that neither the strong-coupling approxi-
mations nor the weak-coupling ones are really guantitatively reliable.

Another way of putting this, is that in principle we are not allowed any kind
of adiabatic approximations, such as: (a) freezing the Adni’ determining the
corresponding . and by substitution into (3.21) obtain the adiabatic poten-
tial é;N+l'as a functional of Adﬁi alone {good for strong-éoupling), or (b)

. freezing the_cﬁ, determining’ the corresponding Adhi' and by’ 'substitution

into the minimum condition of (3.21) with respect to Cn' obtain an equation

« for < alone (good for weak coupling). Rather than going into more elaborate’
intermediate co?pling methodssz, we have chosen to follow route (b) anyway
because it is still qualitatively correct, if numericzlly inaccurate, and
~.&lso because it has in this caze less variational parameters to be determined--

than the corresponding SC treatment.  Freezing first the electronic coefficients

c the minimum condition with respect to the lattice coordinates yields

Ca)
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|




Ad,?
[+ bc, @

ic,h'['z- y (3.23)
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i.e. the excess electron acts to reduce the dimerization magnitude. Substi-

tuting into (3.21) we get, to first order in qnl

IN+1

€ = ctonst + _%Q Y Adl%Zh: T
-28t, Z gy,
+ L (-t +B¢t ) lcal?

| S ¥ *
”i‘tz% Ch Chir + Cn Cne ‘
By virtue of (3.23) the second and third terms correspond to the elastic

gain obtained by "undimerization" and to the related electronic loss in the
filled lower band. Using (3.13), we see that these two terms cancel exactly

. . 42 .
in this case , leaving

Eanar =const + L (e-t, +f Cfm) lc, I

n

-%t2§' (C: Cper 1 Ch Ch-’> ’

We can therefore focus on the motion of the excess electron -~ the distortion
being caused by the electron itself through (3.23) - and ignore from now on

4
the valence electrons. Our treatment now follows closely that of Holstein

The coefficients cn of the electron wavefunction satisfy the Euler

equation genérated by the a&bove form of @éN+l

(E'tm) C-h.’ ';j tz(chu +Ch-l) -Ec, |,

2
where E is the polaron energy. We use (3.22)-(3.23) to relate tln to [cn(

ek e e e ey
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self-consistently <

-3

t‘hvzvt".y g"ChIz
n ‘E,_' p Ad.'g‘ ‘t S0 ) (3.‘24)- .
Z T+($Ad,3

I

We then obfain

( €. - Qlcnlz) Ch —-2': t, (Ch+‘+Cn_l+QCh) =0 , (3.25)

where e, = (e—t1+t2)—E is the polaron binding energy referred to the bottom

of the upper band at J-,e+(J) = e—tl+t . Eg. (3.25) can be solved taking

2 JE -8
cn = (_1)ngn and using the epntinuum approximgtion
2 ~ _d_ig_"‘ .
3?:.4.3 + 3'1-1 - %h '
dnt?
: T, 43
~.The bound state solutions (gp > 0) have the form . - . ovime ovmn i e,y

SR %(ﬂ-ho>; 2_5__&"/2 Sech ZEp
A t, |

where the cell index_no labels the (infinitely degenerate) set of localized

solutions

|
|
/|
|
i
5

Su-e (“0):%“6")h g (h-ny) 1Ny > ’3 (3.;2?)” <

analogous of the upper Wannier states for the problem without coupling. The
polaron binding energy can be determined using the normalization constraint

2
f dn g (n) = 1,.which yields

) A
g oA
o8t

(3.28)" ~ ST

[#3]
oS
|



Using A = .49 eV, as given by (3.24), we find ep = ,066 eV. The polaron

radius

3___ It. ]
F 2 Ep

(3.29)

o
is then of the order of 7A (n 2 surface cells), confirming the intermediate

coupling nature discussed earlier on. The envelope function (3.26) is shown

in Fig. 3.3b.

c) Polaron Bands

The localized states (3.27) are not yet complete solutions of the
polaron problem. Because of the translational symmetry, the true polaron
eigenstates should be Blochiﬁﬁnctions labelled by k, the total momentum of

the electron and phonon system

Y, = NEL g, (ng) Lno)

v:where~bx(n00'is the vibrational wavefunction of the lattice when the electron
is in the state we(no). The eigenvalues corresponding to Wk form then
a band, whose width is substantially reduced with respect to the bare width
2B = 2|t2|, since hopping integrals are multiplied by the overlap between

the lattice wavefunctions. One way to determine the polaron band energy is
of course..to ‘just evaluate the expectation value Ek =< Wk{H!W;>T/'<h¥k{awk>
However we prefer to calculate the polaron band dispersion in a different
(though ; .in principle equivalent) way. Using Bloch eigenstates to represent
the excess electron wavefunction, we determine the polaron energies Ek by =

. 26,44
solving the Dyson equation-

E, = £,(K) ¢+ Ak (Ek) ’ (3.30)

.

where AP(EK) is the real pzrt of the electron self-energy, after averaging
over the state of the phonon system (at thermal equilibrium). While this

- procedure is not really more convenient than calculating < qkal wk > in =~
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this cese, having established it it will be very convenient leter, for the

problem of the electron-hole polaron. . , o A

We set our total hamiltonian Htot as the sum R - S

, o
consisting of an electronic part

Hc = % €, (k) ct Cx p (3.32)

of a lattice contribution

H = hw, g by b v N

and of a coupling term

! +
H = g-k’ V‘S‘E' (b~!5+s_<' +l=5_5,)’ CZ‘ C_’S’ . | \ (3.33)

In (3.32) c; creates a Bloch electronin the umerband and ¢ (k) is the

-
corresponding energy, the lattice being frozen in its ground state configur—
ation. Since we are interested in states close to the band edge along the

TJ direction (see Fig. 3.1), we shall use the simplified dispersion € (k) =
+

= k?/Zm; » k being measured relative:tc the J point. We taks “the effective s
mass m; to be .57 m_, as required by our bandstructure (3.2). In the lattice
hamiltonian HL’ we have restricted ocur attention to the optical mode modu-

lating the dimerization along thé chains, which is takeri‘to be Einstein-like. -

0 = 0y with wg, given by (3.17). Finally ka. is evaluated as a function

of the derivative of the band energy at k = O (point J of the SBZ) with res-

45
pect to the lattice displacements, in the following way

‘ ~
Let us call ¢(n) the dimerization amplitude operator in cell n

4\5 (n)= %:' u‘_j (b;ej%‘gn + h.c. ) 9 (334) ,
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iq 29
1 and 2 in the chain. In the simplest model of a diatomic chain, we have

where uq = u - u_ , and ulq, uzq are the displacement amplitudes of atoms

/h 2 dg+ (k=0
u = ﬁ—— + 0(q ). If wecallD = —gi%a——l'L, the deformation potential,
q w .

o A
where L is the bond length, the coupling ka is obtained as

Q.
)

Ol'Rh “C'> (3.35)

=1 D (k-k'). u

Viw = D <Kkl

Kk

For our purposes, the presence of the k-dependent interaction ka'
in this formula is rather inconvenient, turning the self-energy calculation
into a somewhat extensive numerical problem . For the sake of simplicity, /
N PR

we then replace the true expression (3.35) with a crudely approximate k-

independent value

Vo= D u/L . | (3.36)

The deformation potential is easily derived from the tight-binding

gnergy to be

I) = —~(g L. l tq 4

|h
With our parameter values, uo= ﬁ*— = 0.095 au, L = 4.44 a,, D =6.6 eV,
iy
0
this yields VO = 0.14 eV. We stress that in view of the large arbitrari-

- ness involved in the approximation of replacing V by V , our numerical-
o]

kk'
results will have only order of magnitude significance.

Qur electron self-energy zk(E) satisfies the approximate Brillouin-

Wigner egquation

L ()= LIV, I°

N(we ,.) +!

(E-h &)
(3.37)

E"Eki"uwk_kl "Z

k'
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where n(wk) is the phonon thermal occupation number. It is easy to verify

that with our approxima?ions R wk = mo and ka' = Vo . Ek(E) is also inde-
pendent of k. This allows the explicit evaluation of the sum over k' in

(3.37), which of course simplifies a great deal the numerical iterative solu-
tion of I(E). The details of this calculation are given in appendix B. .The
resulting real and imaginary parts of (3.37), A(E) and T(E), are plotted in

Fig. 3.4 for T = 0°K and T = 300°K. At T = O%K, the dominant feature of A(E) .
is the inverse sguare-root siﬁgularity - relafgﬁ to the one-dimensionality

of this model ~occuring at an energy E¥* slightly above the unperturbed band

edge (the zero of our energy scale). At the same energy E* also T(E) -

which is zero below E* ~ has an inverse square-root singularity and is then
finite and positive-at -higher energies. 1In Fig. 3.4 we also show the graphi— /.-

cal solution of the Dyson equation (3.30) for a few values of the electron

bare energy e (k). The + = O (J point) renormalized electron energy EO =
+ k)
Y
A(EO) is -.051 eV, which vields a polaron radius, rz " (2m*lEoi) . of the
e

order of 3 unit cells, in substantial agreement with the results of the pre-

vious section.  The energy E* defined.above is simply E* = EO +‘Hmo.'Because~ﬂerglfg?‘k

of the singular behaviour of A(E) it is always possible to find a solution fi
of (3.30) in the range (EO, Eé +'ﬁwc,, for any value of the bare energy |
£+(k). The free electren parabola £+Lk) = k2/2m; is modified into(a) a lower
band, compressed between EO and EO +'Emo; (b) an upper band which exists
only for k > /EE:B;7H , and tends asymptotically to k2/2m; for large k. The
T = 0°K '"polaron band structure" is shown in Fig. 3.5, where both bands -

when coexisting r are indicatsd. Noting that our starting problem has full =~ .

electron-hole symmetry, all results derived above for electrons, remesin-

valid also for holes, once the sign of all energies is reversed.
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At T # 0°K also phonon absorption processes contribute to $(E), as
shown by (3.37). The calculated real and imaginary parts of p(E) at T = 300°K
are shown in Fig. 3.4b. At finite T, all singularities are smoothed out
because of the finite value of T throughout the spectrum. A cutoff wave
vector appears, whereby the lower branch of polaron states remains well
defined only out to a certain value, as illustrated by the graphical solution
of the Dyson equation in Fig. 3.4b. This cut-off wavevector is as small as

o-1
~ 15 A at T = 300°K while the shift increases gently from 51 meV to ~ 60 meV.

3.3 Excitons

As a preliminary step for the calculation of the optical spectrum,
in this Section we stud& éuéféce state excitons, in‘particular singlets of
total momentum k = 0. We sﬁ;ll be interested in the way such excitons are
affected by coupling to the surface lattice. To this end we must however study
first excitons in a frozen lattice. To simplify matters we shall assume the
electron and theﬁholé fo be on the same chain. One further motivation for
this assumptién is that'the optical cross section for creation of electron-
hole pairs on different chains is exponentially small due to the large inter-

chain separation.

21
Using a standard approach , we expand the exciton wavefunction in

. terms of singlet,states,xm(kg,kh)ﬂwith an electron in the upper Bloch state

ke and a hole in the lower state kh

@(k=0).—z_’ C(k')‘f’(k;K') | 5 (3.38)

The coefficients c(k) obey the equation

L | (e -t (k) -E5) 6,0 + Wk, k'):}cuc').—.o, (3.39)
kl

where EB is the exciton binding energy and W(k,k') is the sum of the electron-

hole exchange and Coulomb interaction potentials. For vanishing overlap
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-r#.is, the corresponding electron-hole Coulomb interaction:-In.{3.41) &:

between Wannier functions cof different cells, W(k,k') can be expressed as.

Wk, k') =N %é"(""*')'& w(g) e

with . e

2% X{m)- C(o) £ -0
wit) )

- L#0 -

Here

X(ﬁ):jolsn, d'r a, (%) a_yin)
2 (3.41)

£ ate(’é') Qyyp (1)

8,,3 lr-r

is the exchange interaction between electron and hole separated by 1, while

() - [ don Ta,, (0l

(3.42) 7

Lt la_, (x)]"

E [b-r'

b
is the background screening accounting for bulk peolarization effects not

—directly included in our treatment, while ES in (3.42) should "also “incltide

. .35
the screening of DB electrons, éS =”Ebg + (eDB—l) . The DB.screening is--

46
known to be ineffective (i.e. 1) at short and large distances , but

€
DB
can be significant at intermediate distances, where virtual transitions

between DB's can occur.

In order’to calculate X(£) and c), we expand the Wannier functions
into DE orbitals, retain only *wo-centre integral terms and evaluate the
Coulomb interaction between charge distributions centered at Qifferent sites

with the point charge approximation, similarly to what was done in Sect. 2.3
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for the buckling model. With the above simplifications the central cell

potential W(0) becomes

';T Vc (Hgos = Bozl) s 3

2
where U is the intrasite repulsion, Vc(R) z e /£SR and Eﬂ is a lattice sum

W(O):%U—En_

of dipole-dipole-type interactions

En = vx (!’go;"’goz‘) + Z:,' \4 ([go;'?m'z')'\&agol' Bm'xl) 9

M0

m
(¢}
~
(4]
=y

with V (R)
X

We take U = 1.9 eV{as for the buckling model; the calculated value
of EH is .62 eV, including Soth intrachain and}interchain contributions. We
approximate the surface screening function Es at distances of 1st, 2nd and 3rd
neighbours using the expression suggested by Keldysh47'48 and based on the
macroscopic three layer model. In our case we find Es = 15,3, 12.8 and 9.6

for first, second and third neighbours respectively. The resulting exciton

potential W(1l) along the chain is shown in Fig. 3.6a.

We calculate the exciton binding energy EB by direct diagonalization
of (3.39) over a suitable mesh of k-points along the I'J direction of the SEZ.
The resulting value of EB is .20 eV, of the same order as other independent

estimates for surface state excitons . In Fig. 3.6b we show the exciton

envelope function in real space

.

L) - N Lok ofFE

o

representing the probabilify amplitude for the electron and hole to be at
distance 1. Our exciton is mostly localized on nearest and next-nearest

neighbour cells with an average radius r ~ 4 unit cells.
exc

2

The next higher (singlet) exciton state is found at energy .86 eV, i.e.
.16 eV above the lowest singlet and just 4 meV below tih— upper surface band
edge, and is totally insensitive to the details of the central cell potential

(e.g. the value of U), as it is appropriate to large radius excitons. In
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contrast the energy of the optically inactive triplet exciton (which can be
calculated in the same way as the lowest singlet exciton, but excluding the
exchange potential from (3.39)) is strongly dependent on the details of the .
potential 'in the central cell; in particular large values of U would tend to

give a negative triplet excitation energy, thus implying an instability of

49
the ground state against triplet exciton formation (i.e. antiferromagnetism) .

With our values of the parameters the triplet binding energy is ~.6 eV,
resulting in a positive excitation energy ~.3 eV from the ground state.
Interestingly, triplet excitons play an important role also on the buckled
surface models. Del Sole and Chadi13 in particular noted that with large

but not unrealistic Hubbard U's the buckled surface was also unstable against

formation of triplets, and thus turning into a 2-D antiferromagnet.

- "

3.4 Excitonic polaron

The coupling of the exciton to the lattice in our model is character-
ized by the polaron radii- for the 'single (unbound) electron and hole being
of the same order of the exciton radius in the frozen lattice (see Sects. 3.2
and 3.3). In such cases a‘étrong interference between the electron-hole and
the electron-lattice interactions can occur, so that the two terms should be
treated simultaneously and on the same footingzs_gs. A similar situation

occurred for the bucklingﬁﬁbéélﬁ and actually the electron-hcle "and electron-
lattice couplings were both included in the minimization of the total adia-
batic energy (see Sect. 2.43;"“Thé‘approach used for that case however is

not convenient for the chaiﬁamodel;*essentially because the exciton and pola-

ron states extend cver a large number of unit cells. For this reason we use

a k-space formuletion consistent with the previous part of this Section.

We. proceed as in Sect. 3.2.C, replacing the electron Bloch states by
exciton states Wk >, where k denctes the total momentumzs. We consider only
the lowest (singlet) exciton, since the energy separation of the rext exciﬁed
state -es well as of the continuum is rather large compared to the phonon fre-

quency. We describe the exciton propagztion along the chain by the effective
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mass dispersion

Eem Eac Kkt

K T Yo % * g (3.44)
ZMg
exc . . .
where ¢ = E - E (= .7eVwithE = .9EVand E_ = .2 eV) is the exciton
o - g B g B
energy in the frozen lattice, m;:c = m:'+ m:'(ml.ld mo) is the exciton mass

and k the total momentum in the chain direction, measured relative to the J
point where the minimum gap occurs. The exciton hamiltonian - corresponding

to (3.32) in Sect. 3.2 - is then

He.xe’ ?‘;( E:KC IK><K‘ ¢ (3.45)

The lattice hamiltonian HL is the same as in Sgct. 3.2, Eq. (3.33). The

coupling of the exciton to the optical dimerization mecde is included by add-

ing a term of the form

H- L v, (bt

kk! kk's P =ktk! + EK-K') “(><K.‘.(346)

\Y = .
exc 00

%
(ﬁ/MmO)ZA, where A 1is the derivative of the exciton energy (at k = 0) with

Once again we approximate the matrix element ka'bya constant V

respect to the dimerization amplitude. A simple estimate for A -which neglects

the dependence of the exciton.binding energy on atomic displacements - is

A= é-.t:i = 2 dlt“tzl 9 (3.47)

dcf' o d,c,'

where qi is the length variation of the short bond, while the stretched bond

1 .
has q2 = - g q1 according to the constraint (3.8). With this approximation

Y = 2V0(= .28 eV}, where VO is the coupling constant (3.36) for a single
exc

electron or hole, and correspondingly the exciton-polaron shift Aexc is
about four t;mes the shift for the electron-polarcn or hole-polaron (using
(2.37) we find Aeyc = —-.21 eV at T = 0% ). We expect this value to be an
overestimate, sinée the choice (3.47) implicitly assumes a complete overlap
between the lattice distortions induced by the electron and the hole separ-

ately. A correct estimate should probahly be intermediate between our value

!
I
(]

}




€ h .
end that for a lerge radius exciton (i.e. rexc>> rp, rp), for which the

polaron shift is just the sum of the shifts for the single (unbound) elec-

32
tron and hole {in that limit Ae + n w1 eV for our model). - - s

XC

3.5 Absorption lineshape of the W -bonded dimerized chain model

The absorption lineshape is strongly dependent on whether the exciton
is in a "free" (weak coupling) or self-trapped (strong coupling) state.
26
Toyozawa's criterion for exciton self-trapping is V. .»> B , where V

exc exc exc

is the coupling constant defined in Sect. 3.4 and B the exciton effective
exc
bandwidth. In our case a fair estimate for B is B . a %lt. ]| (a .23 ev), .
exc exc 2
since !tzl is the halfwidth of both the hole and the electron bands. This
yields (Vv /B ) ~ 1, characterizing an intermediate coupling situation.
exc’  exc

Accordingly the absorption spectrum is expected to be more complicated than
for the limiting situations of WC (lorentzian lineshape) or SC (gaussian

lineshape). To calculate the lineshape we use
Toxe (E o
e eXC( ) (3.48)
exc 2 M2 4
[E'Ea - exc,(E)] + ‘exc(E)

where Ae C(E) and rexc(E) are the real and imaginary parts of the exciton
X )

I(E) — Ic

™

" self-energy, calculated using (3.37). Self-consistency modifies the simple
lorentzian shape predicted by lowest order (Rayleigh-Schr8dinger) perturba-
tion theory (good for the extreme WC), giving rise to multiple "phonon struc-—
tures which can be interpreted as indirect transitions involving phonon emis=
sion and/or absorption. Our calculated absorption spectra at various temper-
atures are shown in Fig. 3.7. The overall shape of the spectra retains the
typical one-dimensional character which is appropriate to our model. It is
interesting to note that the energy separation between the variocus phonon
-structures approximately corresponds to twice the phoncntfrequency. The
reason why. these structures appear is because the transition probability to

. "~ . :
exciton states of total momentum i = O - involving an even number of phonons
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in our model - is very high, because the density of states of a one-dimen-
sionael band is divergent at the edges. The effect of increasing temperature
is to broaden and smooth out the structures of the spectra, as usual, as

well as to cause shifts towards lower frequencies. The position of the first
peak - which should be identified with the peak observed experimentally in

ref. ?’is given at various temperatures in Table 3.1.




4. EXPERIMENTAL CONSEQUENCES OF THE EXISTENCE OF SURFACE-STATE POLARONS

This section deals.with experimental consequences of the existence of

surface-state polarons, as exemplified by the models studied in the previous

sections. We will discuss here two classes of effects. The first class con=-.-

sists of effects on optical absorption and luminescence from surface states.
The theory of these optical processes in the presence of polaron effects is
long understood, and through it we can make, particularly for absorption,
detailed predictions on lineshape and temperature dependence. The effects

in the second class are new, and constitute a rather more speculative part

of this paper. They concern: a) spectroscopic effects that might become
~.visible in angle-resolved suFfaoe photo—emission‘near,EFg,and in the new tech-
nique of Scanning Tunneling ébectroscopy of Biﬁnig and RbhrerSO; b) possible

Wigner crystallization of surface-state polarons on heavily doped semiconduc-

tor surfaces. A quantitative theory of these effects has not yet been worked

out at this stage, and we plan to devote some work to it in the future. Never-

theless, it seems -of use to present here a first qualitative discussion of & =ur Twws

these potentially interesting situations.

4,1, Temperature-dependent optical absorption; strong coupling versus

weak coupling

The optical absorption calculation for the strong-coupling Si(111)2x1
buckling model has been outlinadearlier in Sect. 2. A weak-coupling calcu-
lation of optical absorption of S5i(111)2x1 in the w-bonded chain model is
correspondingly given in Sect. 3.

For strong coupling, the absorption lineshapes are Poisson-like in

27
shape, as in colour centres , as exemplified by Fig. 2.6. The fine-structure

oscillations in this figure are due to our assumption of narrow §~function like

z

phonon lines, and may or may not in reality be washed out by finite phonon life-

times. Witll increasing T, the peak position approaches meore and more closely

to the Franck-Condon limit for a "vertical" transition in.a configuration
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27
coordinate picture such as that in Fig. 2.5. Like in F-centre absorptionc ,

t
b
this ‘implies a weak to negligible blue~shift with increasing T, associated g
e
with a linewidth increasing asymptotically like ¥/T. For the actual parameters g

describing our model of the buckled Si(111)2x1 surface, this temperature

dependent shift turns out to be essentially nil, as shown by Fig. 2.6.

in the alternative case of intermediate coupled n-bonded chains, the
optical absorption mechanism is more akin to that of bulk Si: transitions
occur between the ground state and a fully relaxed excited state. The peak
position should shift towards the red, for increasing T, like in bulk Si, due
chiefly to the usual FanSl mechanism of increasing self-energy with T.
This absorption line is (motionally) narrowzs, and all lineshape effects are

due to the electronic band diépersion, which is strong in this case.

This contrasting temperature behaviour of the strong-coupling and
weak-coupling models is worth considering in more detail, as it may provide

a useful clue towards identifying the actual reconstruction mechanism of

Si(111).

In addition to the "intrinsic" shifts discussed above - a weak or
negligible blue shift for buckling, or a Fan red shift for n-bonded chains -
we must consider the concomitant effect of a generally temperature-dependent
magnitude of the reconstruction itself. This is the equivalent of lattice

expansion in a bulk problem. The T = 0°K reconstruction magnitudes ¢(0)

@(0) = H. - H_ for buckling, #(0) = -aé. for the dimerized = -bonded
2g lg lg
chain, are such as to minimize the total energy Etot at T-= Q% . However
as T increases the corresponding minimum of the total free energy Ft £ will
o

in general be attained at different effective reconstruction magnitudes,

(T

for buckling, or

i.e.

H,, (T) - H;_ (T) : (4.1a)

55 ('T') ‘=' - AO!, (‘T‘) . (4.1b)



for n-bonded chain. The state favoured at high T is one that is "softer",
both electronically and vibrationally, and thus has a larger entropy (like

an expanded crystal in a bulk case)sg. The free energy depends on the effec-
tive magnitude @ of the reconstruction in a way that can be generally written

as an expansion

Ftot= F0+CA¢1+ g A¢3+"' 7 (4.2)

where AP(T) = @(T) - @(0). The presence of the anharmonic coefficient f
implies that the distortion will vary with increasing T, roughly in the form

. 53
described by Kittel

A 525 (T') = -------g—-—~7> kB T . (4.3)
et
For the case of buckling we obtain from (2.12), at T =0
t2a®
4 | C (H, + Hz )(H, - Hz ) (

4.4)

F _ /6 tz&z
T RERE) (1T HE)"

For m-bonded chains, similarly at T = O, we have

By 0d) o 2fse it

whence

Cor

.95_Jﬁ~+t4ﬁz o, } -

(4.6)
HreLt B ,

. g
iith t0 = ¢ -gAdT) .
wi 1 o exp(-p l)
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We note that the cubic anharmonicity f has opposite sign in buckling
(fb > 0) and s-bonded chains (ﬁw < 0). Hence, by (4.3) we expect the recon-
gtruction magnitude @ to decrease with T in the buckling case, and to increase
for s-bonded chains. The physical reason for this latter increase is the
nonlinearity of the electronic energy gain in (4.5); due in turn to the ex-

ponential behaviour of hopping integrals.

In conclusion, the additional energy gap shifts expected from this

mechanisnm.are

A E y b =7 C (Hl‘}"’ Hzg’) 31&; ks'T’
2at 4eg

for buckling, and
2t°*
0 va-2 , 2¢, 1%
A

for % -bonded chains. With the present values of the parameters, C= 52.8 eV,
o o .
i) = 1.65 4, (Hf ~ Hi) = .33 A, one can extract an addi-

tional temperature-induced red-shift of 1.72x1C T for the ionic reconstruc-

AEy -

kg T

t = .075 eV, (Hf + B

tion, e.g. AEgb = -5 meV at T =‘SDO°K. Since the Franck-Condon blue-shift
of Fig. 2.6 is in this case negligible, we conclude that the weak red-shift
just calculated is all one expects for buckling. On the other hand, with

°-1 : ~0.2 :
T-bonding parameters of tl =-.9eV, 8 =2.74 , vy =22.3 eV A we expect -

-5
an additional blue-shift of 5.1x10 T, or AE = + 15 meV at 300°K. This
g

amount is not sufficient to offset the large red Fan shift for this case.

Table 4.1 summarises the total changes in peak positions expected as a func-

tion of T for the two models of Si(111)-2xl. The red shifts predicted for
the two caseé are almost one order of magnitude different. It seems possible
that experimental investigation of this point might bring further information

on the actual nature of this reconstruction, which is otherwise still un-

certain, since new evidence keeps appearing, which conflictingly points

- 49 -



- ST TR SO IR T S ST TR peo
Cr ToOwelUl CUlHLITE~LYpe Ietol-

40.54.5%
sometime: -oweordy  n-tocded :yg;~»%9 .

structionssé, or neither of the twos7. The room temperature absorption spec-
trum of the Si{111)2x1 surface is shown on Fig. 4.1. Its shape seems roughly
compatible, after damping is considered, with both the buckling-model result
of Fig. 2.6, and the 7-bonded chain model of Fig. 3.7. Its temperature-

dependence has not yet been studied experimentally. However, very recent

polarized-light resultssa'&eem to yield selection rules which favour the 7w-

bonded chain .model.

It is‘interesting that the T-dependent absorption spectrum measured
very recently on a different surface, the Si(111)7x7, shows precisely a red-
shifting peak, with a shift of about 40 meV between 15 k and 3O°k58, which
is very similar to the predicted m-bonded chain value of table 4.1 for

Si(111)2x1.

4.2 Luminescence

The emission behaviour for a weak-coupling and strong-coupling system
is very different. For weak coupling, absorption and emission occur at the
“sametﬁrequency. For strong coupling, the emission line .is Stokes-shifted by
an amount ZShwo towards the red. If one includes finite carrier
lifetimes in a strong case a two-lobed spectrum, like that discussed by

59
Almblacdh ~, may also be expected.

No experimental luminescence spectra of Si{111)2x1 are available to
€0

date. However, Evangelisti and McGroddy ““have studied the-closely analogous ™: '

case of Ge(111)2x1 and find no surface luminescence at fw larger than 0.2 eV.
If this could be simplistically taken as representative of the Si(111)}2x1 too,
it would imply a Stokes shift.larger than 0.3 eV. Our estimated Stokes shift

20.4 eV, that would suggest exactly this outcome.

in the buckling model is
Hence a careful experimental study of luminescence from Si(l111)2x1 can yield

crucial information on the actual existence of such surface-Stokes shift.

’

In the chain model case, however, an alternative explanation for

the lack of luminescence could be thermalizaticn of electron-hol

T e pairs
created by light into triplet excitons @ {of much lower * ° energy than the
singlets), whose radiative decay is then forbidden, or very weak. Our esti-
mate for the relaxed triplet exciton energy for the n-bonded chain modsl is
~ LeroeV, to be compared w..un the value ~ D.4% eV for the relaxsd singlet
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B GRS e e e

CHAEN

TR S




4.3 Photo-emission

Valence UPS and XPS studies of surface states on Si(111l) have been
1,40, 61
very numerous - if somewhat confusing ' ' - over the last decade. The

view that a photo-emission process must as a rule be assumed to be sudden

from the lattice point of view, justifies the complete neglect of all
polaron effects - except for a broadening, of the kind discussed by Hedin

62 . . ~
and Rosengren for a core line - in photo-emission spectra.

There may however be one kind of polaron side-effect, that appears
not to have been discussed so far. The reason that makes a photo-emission
process generally a fast one is evidently not the high energy of excitation,
~but rather the short lifetimes-of.the end products, i.e. the electron angd
the hole. In particular th; hole inverse lifetime increases very fast away
from the Fermi levelzo. This sﬁggests, however, that long enough hole life-
time could be achieved when photo-emitting from a narrow energy shell around
the Fermi level.- The lifetime of a high energy electron, however, will be
~generally short, if the cofresponding wavepacket crossés any amount of bulk.
For example, the plasmon mean free‘path at E = 100 eV is only 5 Z. If we
however consider electrons photo-emitted from az surface state into a final
state described by a wavepacket whose trajectory moves away from the surface
without scattering further off the electrons of the sample, it might be con-
~ceivable to attain‘a‘lifetime“longer than l(’)_13 sec: ~If this situation, ad-
mittedly rather speculative, were achieved, then in surface photo-emission
from a state very near EF a hele polaron can form, and thé'hole polaron shift
would be transferred to the_outgoing electron. Thus the high-energy part of
the photo-emission spectrum would not terminate at the "bare' E; , but would
extend above it with a tail, or an extra peak, reaching to a higher "renor-
1 For strongly coupled polarons, such as those dis-
cussed in Seét. 2., E is a measurable guantity of o .0.4 eV. The dis-

pol
tinguishing feature of this phonomenon should be z very weak k-vector-dspend-

o)
lized" E_ = E E
malize - gt po

ence of the apparent "band" energy close to E_ - reflecting the heavy polaron

ct ')

masses of the strong-coupling case. Rather, the angular photo-emission
intensity would go down as one moves away from k = kF, reflecting the local-

ized nature of the hole.

e

ey



. An effect of this kind may already have been observed in photo-~
emission from the chalcogenide layer compoundséa. It seems possible to en-
.visage a similar;explanation for the peak just below EF seen by Himpsel et
alél, on the Si(111)2x1 surface. 1In this interpretation of their data, the -
peak at -0.75 eV would constitute the bare-surface state "band". The peak
at ~0.15 eV would be the ""polaron" peak, which is stronger at point 3, in
agreement with the fact that the Fermi level of the bare band is closest to
EF at that point. The extracted hole polaron shift of 0.6 eV is of the right

order of magnitude for a localize: hole, for which our model gave 0.4 eV.

4.4 Surface-state polaron effects in Scanning Tunneling Microscopy

The great usefulness>zf tunneling of electrons from a sample surface
to a metal tip in the study of surface structure has been recently demonstrated
experimentallySO. The tunneling process occurs between electron states on the
metal tip and the outermost surface states protruding towards the tip. If V
is. the voltage drop between the tip and the surface,‘then'tﬁﬁhélihg will occur
from surface states lying within a depth V from the Fermi surface. Incident-
ally, this implies that this experimentél technique is potentially extrenmely
interesting, when used to study spectra taken as a function of V (positive V

would bring information on the filled surface states, negative V on the empty

possible for this technique to develop into a powerful new form of spectro-
scopy of the surface electron structure (while real-space scanning has al-
ready been shown to yield a valuable microscopy of the surfade atomic struc-

ture) .

Surface-state polaron effects may be expected to play an intérésting
role in the future interpretation of the voltage surface-state spectroscopy
suggested above, ILet us consider, to start with, the case of V positive,
when an electron, criginally belonging in a filled surfabe'band, tunnels

away from it to flow into the metal tip, leaving a hole in the surface state

behind. Two extreme types of situations can be envisaged. If the electron
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stripping process is "fast", the lattice has no time to adjust and form a
polaron around the hole. Then, the hole energy will be uninfluenced by
pclaron effects, that can be thus ignored. This is the straightforward analogue
of a Franck-Condon transition, such as described for optical absorption, or

& photo~emission process. If, on the other hand, the electron stripping

occurs sﬁowly enough, the surface lattice will have the time to form a pola-

ron about the hole, whose energy will then be shifted upwards by the amount

calculated in the previous sections.

The relevant question is then: how "long" does it take for a surface
electron to tunnel from the surface state into the tip? This question, as it
turns out, has been rather extensively discussed in the literature, with some-
what variable conclusions. Following Leggettﬁf, one may define two kinds of
times in the problem. One is To = h/r , with [ ~ constxexp<;d45567gzj,
for a barrier of height @ and thickness 4. Another is ?a = d4m/20 . The
time 2& is the "bounce time" over which a successful tunneling event takes
place; The time‘uzo is the average time one has to wait for a successful
attempt, and can clearly be very much longer than'Zi. For ¢ of a few Kngstroms
and @ ~ 5 eV, 2& is of the order of 10—15 sec. We note that this value is

about two orders of magnitude shorter than typical lattice readjustment time.

It is at present unclear to us whether the relevant time-scale to
discuss pos§ible surface polaron formation during tunneling is Tb, or 2&,
and this problem will require a separate investigation. The viewpoint that
all holes are the result of successful attempts only, each-of which lasts
the short time Zi, would lead to the conclusion that polarcons have néytime
to form, and are irrelev;;t to tunneling. If alternatively we consider that

electrons do anyhow leave the surface state, to venture, successfully or not,

into the tunneling region with time scale 7%, then a surface state polaron

~13 -13
may be ready around the hole, if“Zb > 10 sec, or not if 2% < 10 sec.

In this case, what appears to be a rather sudden shift of kole energy should

show up in the voltage spectroscopy suggested above, as a function of surface—

tip distance d, i.e. of current, which depends exponentially upon 4.
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w
§

L TR L S

3 AP AN Y

s,



4.5 Wigner crystallization of carriers in surface states

It is well known that the surface states of semiconductors can be
replenished, or emptied of electrons by varying the bulk doping level. 1In
particular, it is known from studies of band bending65 that on the Si(111)2x1
surface electrons as many as n h’5x1013 electrons/cm2 can be driven into
the upper surface state band - or out of the lower surface state band - by
strong bulk n-doping - or p-doping. This is quite a large density, and it
may not be totally academic to speculate about the state of these excess
surface state electrons.A mean distance of the order of 10 Z is already sub-
stantially smaller than the average distance of two surface defects on a
good quality surface, and so defects can be approximately ignored. In the
absence of polaron effects, @ne would normally ®xpect two—dimensionai elec-
trons of this density to be fluid at T = 0. In fact, here, r v (m*/gagﬁfg)

~3 (if E ~ 6 is an effective surface screening, aB the Bohr rad:us and a

mass m* = 1 is assumed). The effect of strong electron~lattice coupling,

. -however,- is that of increasing:enormously the effective-electron mass. The -

hole polaron mass for the buckling model of sect. 2, for example, was ~4000.
An electron, or a hole, trapped inside a small polzron of this kind is
essentially a classical object. Classical 2-dimensiocnal electrons will
"Wigner crystallize', neglecting other effects due to long-range fluctuations,
. all the way from T = O“up.to;a:meitipg temperature TM6§Lgiven approximately
by = (kBTM)—l(eg/f) M n ~130. From this, we estimate a melting tempera-
ture as high as 25 K. Although-residual -quantum-effects may reduce this tem—
perature, it is nevertheless still substantially4higher than 2D melting tem-
peratures seen for electrons.on liquid He surfaces 7, of order of 0.4K. In
conclusion, we suggest that excess surface state electrons or holes that are
responsible for band=~bending in a dopedvsemiconductor may be self-trapped
polarons, and hence essentially classical objects. As such, they should
crystallize at sufficiently low temperature. The crystalline state might
become observable experimentally. Forirexample, deformation potentials gen-

erate a coupling mechanism between the two-dimensional plasmon-like modes
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of this crystal and the Reyleigh wave of the semiconductor. In a way simi-
lar to that of electrons on Héﬁﬁ, this mechanism would lead to folding of
the Rayleigh wave from K = G = 4Tfn/273 ~0.5 A back to k = 0. In analogy
to that case, mixing with the plasmon would make this mode, of frequency as
high as 15meV, that would be optically active, and thus observable with

either IR absorption or high resolution electron energy-loss,

oy
o
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5. CONCLUDING REMARKS

-~ The main aim of this papt has been to introduce the concept, and
show the relevance of, polaron effects on electrons that belong in surface

states.

Thié has been pursued by direct .study of prototype situations. For
this purpose, the 2x1 reconstructed Si(111) surface has been selected, as a
system that has received very considerable attention in the past and for
which polaron effects, not discussed before, may be of considerable import-
ance. Among the existing models for the reconstructed surfaces, we have
chosen the most popular, i.e. buckling, and W-bonded chains. Polaron effects
- are shown to be very important in either model, and gquantitatively more than
an order of magnitude larger‘than in bulk 5i, or about as important as in a

three-dimensional ionic crystal.

Since strict surface-state transport will probably never be measurable,
the main impact of surface state polarons .should be on the .spectroscopy of
surface states. We have concerned ourselves here mostly with optical absorp-
tion.- A careful polaron study of the electron-hole pairs has been carried
out in this light, and a detailed analysis of the absorption lineshape is
presented, which also brings out ir-cresting differences between the two
reconstruction mocdels. A short discussion. at a much more qualitative level
is given for surface luminescence, photo-emission, scanning tunneling spec-

.troscopy, as well as for a possible classical crystallization of a dense
- -gystem of surface state polarons. Our hope is that this-papér will stimulate
niew experimental efforts aimed at elucidating the importance of these polaron

effects in surface state spectroscopy.
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APPENDIX A

Estimate for the numerical values of the parameters C, ¥ and Hé in the buckling

L

model

In order to determine quantitatively the equilibrium values of Hl and H2
given by .Egs. (2.13), we must specify the parameters C, Y’and Hé. For C we
simply take the value C = 52.8 eV, correspdnding to (E.p - 88) = 4.4 eV, a

value introduced empirically by Pandey and Phillips2 to fit other accurate
bulk and surface state calculations. The elastic constant X' and the ref-
erence height Hé are in fact properties of a hypothetical Si(111) surface

which a) has no electrons at all in the DB state; b) is ideal, i.e. unre-
constructed. We determine them in the following way. Suppose we start with
§i(111) in this hypothetical situation. Then “pcur in" the 2N surface elec-

trons, while keeping the surface unreconstructed. The total energy change

E= Ly (M- e(h) 5

£ - c
where ' is the energy of one electron per DB, & (H) = Ep - E(—) . Minimiza-
a

tion of (Al) yields

2 1!
H = X‘a, Ho (a2)
Z
yo* - C
[s]
If we fix HO = .79 A, the expected interlayer spacing in the absence of

relaxation, then (A2) connects X' and Hé. For a small uniform displace-

ment Q@ from equilibrium?jthé total energy (Al) becomes

€(H+ Q) = const. +-é- ( ¥- %z)(Ho-rQ—H;),Z(AS)

I3

We can then relate (5-—

m e

a ) to the frequency*u% of the surface phonon

characterizing the outward/inward relaxation mode of the surface by

C 2
s(-g)=1 e, -

/

=)
- T -




where M is the atomic mass. We take-hzoo= 50 meV, a value of the order-of

a general short wavelength phonon in silicon, and also close to the experi-

mental value of the surface phonon energy observed on Si(111)-2x1 63.- This.

yields ([aZ—C) ~ 250 eV, and from (A2) we obtain Hé = .652. Comparison with
o

HO = .79 A shows that "pouring in" one electron per DB has produced an out-

wards surface relaxation. This was of course to be expected, since .outwards

relaxation of the first layer, by Egs. (2.1) and (2.2), increases the s-ad-
mixture in the DB wavefunction relative to pz, and Es is about 4 eV lower

than .
£P

- 58 -

Y




APPENDIX B - CALCULATION OF THE SELF-ENERGY (3.37)

For w w and V z V (independent of k and k'), Eq. (3.37) can

k' o kKk'
be rewritten in a slightly more convenient form

Z(E) = VI (ny,+1) L ’
K E-g,-hwo- AlE-hw,)- i T(E-he)

[
Avitn, L
° k! - . ™ (B1)
- E—Ek.«&two -—A(ti’ﬁwo)’l , (E'f’ttwo)’

oy

where we have taken into account the independence of zk(E) on k and used
t(E) = A(E) + iT(E). For our dimerized chain model the sums over k' reduce
to one-dimensional integrals from _i to i along the TJ direction of the

) . 2
SBZ. For the simple effective mass dispersion ¢ = "—_ 7, these integrals

k = om* ’
can be carried out analytically. However, before writing down their expres-
sions - which are quite cumbersome - it is convenient to establish a few

notations. Separating the real and imaginary parts of I(E) on the left-

hand side of (Bl), we can write

A(E):_!l_ ‘V‘l (H.hwo) A‘(E)"' nwo Az (E)

\}&_Bwo
VI

M{e)=1
4 €, he

(1+0,) T (E) ¢ 1y, r;(r;)],
(B2)

h?n?

L m*al

et us next define (i =1, 2)

=

&
M
]
[v]
m

|
-

§
o
fa)
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‘]OI(E) = Ma Q, (E) 9 (B4) -t o ..

Q (E)- (n(E)(' ; 55)

’R; (E)z (RQ [_ ﬂ;-| (E)] s (B6)
Il (E):-%m[Q"'(E)] » (B7)

where

R, (E)-
- E-fiw, - B(E-hwe)-i T (€ -Fies)

, (88)

and

92 (E): ] (B9)

Eihwe-D(E+twe) - i M(Eshick)

We start with r1(E), which has a somewhat simpler expression

TE -‘W{S n(Lf/z

o+ 2 605(((,'/2) (9' i :‘)7;!) S , (B10)

L"' 2 @@S(Cfa'/z) t i

with

61_-4-248 Q; cos’ (?'/2)4' Q‘ 'l




(B11)

Vg (E):‘fg"v £ - O .
2 Ve, & sin(¢;/2)

For the two terms contributing to A(E) in (B2) we find

A, (E) = \’ E&‘Q:.". %..LQ_'. g{n(ﬁpl./z) Dol & +2VE, Q7 0s(qi/2)+ Q;
B 6,2 VEL Qs cos )l

, Bs(gi) EICH I E I
Sin Cf,‘ & :

where

8‘;1(6)‘*,- fg" . \IZ ps \’—QT CcoS (((i /2_) (813)
@T Sin (Cf;/z_,)

We recall that all terms, such as Qi’ Ri, ?i’ etc. in (B10) and (B1l2) are

functions of E through (B4)-(B7).

The expressions (B2) and (B3) - with (B10) and (B12) - are already
in a form whiéh can be easily programmed for a numerical iterative solution,
starting for instance from A(E) = 0 and T{E)=v<< 1 (a small but finite
value of ¥y is of course ﬁeceésary to avoid divergencies). To test the

convergence we monitored the value 2f(>f the integral of the spectral func-

N 1 st "(E) -
i C(E-A(E))*+ T2(E)

Good convergence. ( <1074 usually requires about 20 iterations.

tion




Before
relaxation

After relax.

(exciton)

After relax.

{electron)

After relax.

(hole)

. L
Vertical distance from the second atomic plane (in

.657

727

.801

.653

) Iable 2.1

.990

.860

.988

.765

.657

.658

.657

.653

.657

.658

.657

.653

[+]

.990

. 990

.988

.990

A} of the surface

.990

.890

.988

.990

atoms

shown in Fig. 2.4, before and after the relaxation following creation of an

exciton (with the electron at 'e' and the hole at 'h').

Also given for com-

parison are the relaxed atomic position for a single electron at 'e' and a

single hole at 'h'.

]
the first and the second atomic plane is HO = ,79A.

For the 'ideal® Si(111) surface, the distance between



Table 3.1

T(°K) 2 " 152 302 452 602

EO(eV) .49 .49 .45 .40 .35

-5 -3 -2 -2
Io(eV) 1.5x10 9.1x10 4.4x10 8.8x10 .13

Position and halfwidth FO = T(EO) of the main peak in the
absorption spectrum of the dimerized chain model of Si(111)-
2xl as a function of temperature, as given by Eq. (3.37). In
the absence of coupling to the lattice the peak position would
be EO = .70 eV. Note that the values of EO in this Table do

not include the effgct of temperature dependence of the recon-

struction magnitude, discussed in Sect. 4.1. This additional

effect is included in the values reported in Table 4.1.
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‘Table 4.1

T(°K) 2 152 302 452 602

to
peak
{ Buckling )

(V) w70y .47(0)  .a6(8)  .46(5) .46(2)

Fe  (ev) .49(4).49(8) .46 (5) .42(3) .3g(0) -
peak

T -bonded
chains

']
Position of the absorption peak as a function of temperature for
the buckling and m-bonded chain models of Si(111)-2x1. In both
cases the calculated values are inclusive of the lattice dilation

effects and coupling to the vibrational modes.
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FIGURE CAPTIONS

Fig. 2.1 Geometrical arrangement of surface aféms for the buckling médel

of Si(111)-2x1. Black dots and empty cifclésjfe;£esent raised and lowered ,
first-layer atoms reépectively.

(a) Top view; a = 3.85 Z is the surface lattice constant along the [110]
direction.

(b) Side view; Hl and H2 are the vertical distances of the raised and

lowered atoms from the second atomic plane (not in scale).

(¢) The surface Brillouin zone.

Fig. 2.2 Surface-state energy bands for the buckling model of Si{11l1)-2x1,
with (52-61) - .98 eV and t = .075 eV. The zero of the energy scale is the Lo
L]

midgap energy.

Fig. 2.3 Surface atoms involved in the relaxation following injection of

a) an excess electron in (0,2); b) an excess hole in {(0,1). The figures

in square brackets denote the -electron (hole) wave function square amplitude - -..--

at the various sites after relaxation.

Fig. 2.4 Surface atoms involved in the relaxation following creation of

an exciton, with the hole localized at 'h" and the electron at 'e’'.

Fig. 2.5 Qualitative energy-configuration diagram for the ground state
and the lowest singlet exciton of our buckling model of Si(1ll)-2x1.

€g = .47 eV is the .position of the absorption peak according to Franck-Condon's

C exc . . . .
principle, ER " .= .35 eV is-the energy released after optical excitation,
ext - . e g . :
%_:ﬁ E {8 + £°Y=0 is where the luminescence line should be.
0 R 2
rig. 2.6 Normalized absorption lineshape at various temperatures for the

RN = SO,

buckliing model of Si(111)-2x1, in the Condon approximation. The width of . wel

each line of each line of the histogram is E = 10 meV. The modulations




are due to two different vibrational frequencies of the excited state

Gnki = 59 meV and ey = 50 meV), as discussed in the text. Note that before
these calculated lineshpaes can be compared with experiments, the additional
rigid red shift due to T-dependence of the reconstruction magnitude discussed

in Sect. 4.1 must be considered.

Fig. 3.1 Atomic arrangement in the surface plane for the m-bonded chain
model of Si(111)-2x1 (top view):

(a) the symmetric chain model, where (n,i) is the i-th atom in the n-th
unit cell and a = 3.85 Z;

{b) the dimerized chain model (for clarity of the figure the dimerization
is strongly magnified); &

(c) atomic displacement pattern for the 'dimerization mode';

(a) the surface Brillouin zone.

Fig. 3.2 The surface bandstructure of the dimerized chain model of Si(111)-

2x1, with tl = -.92 eV and tg = -.45 eV. The zero of the energy scale is

the midgap energy, i.e. the surface Fermi level.

Fig. 3.3

(a) Qualitative picture of the lattice distortions caused by a strongly
localized excess electron ®r the dimerized chain model.:

(b) Electron-polaron envelope function gn, Eg. (3.27); n is the cell

label along a given chain; gn is symmetric for n + (-n).

Fig. 3.4 Real (a) and imaginary (r) parts of the electron and hole self-
energies, Eq. (3.37):

(a) at T = 0°K and (b) at T = 300°K. The zero of the energy scale is here
the bottom of the conduction band at J (on top of the valence band for the
hele). The intersections between the lines E - e°(k) and A(E) give the solu-

ticons of the Dyson eguaticn (3.30).




-Fig. 2.5 Polaron bands along the chain direction ?3, obtained by solution
of the Dyson equation as shown in Fig. 3.4: ST T v

{a) at T = 0°K;  (b) at T = 300°K. The dashed lines are the bare bands,

before coupling to the lattice. The solid lines show the first, sharp, polaron

band. The.shaded area is centered about the mid-point of the second,~broad

polaron band, its width reflecting the corresponding energy width 2T.

Fig. 3.6

(a) (Inverted) electron-hole interaction potential for singlet excitons along the

chain direction using: U = 1.2 eV, e'bg = 6.5 and DB screening evaluated
according to the macroscopic three-layer model (see text).

(b) Envelope function for the lowest singlet exciton.

Fig. 3.7 Absorption spectrum of the dimerized chain model at various tem—

peratures, calculated according to (3.48). Note that before these calculated

lineshapes can be compared with experiment, the additional rigid blue shift
discussed in Sect. 4.1 must be considered. The origin of the oscillations

is described in the text.

Fig. 4.1 Room temperature optical absorption of the Si(111)2x1 (after

Chiaradia et. al, ref.(s4)).
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eturn to our main problem, i.e., finding the ground

state of H_, or of P VP ;-egs.(5) and (7). Preliminary to that, we list

here socme simple known facts,
a) Exact solution at ¥=1

For complete filling, ¥=1, there is only one state (Slater

=7, _
Y c;[O) : (22)
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E,p B = -0.782)7 e [f + Naw/2 27)

q

In words, the energy of a classical triangular Wigner lattice provides an
; _ . . —
shsolute lower bound for the true ground state energy E at all fill

ings.
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