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Abstract

Accretion onto a black hole must be transonic. For a stationary,
adiabatic flow the specific energy E, specific angular momentum L
and mass accretion rate M are constant in space. The condition for
regularity o??%ransonic solution, F(L,E,M) = O, reduces the number
of independent parameters to two. For a fixed pair of E(>0) and L
satisfying EC>’E:>EBarr(L), where EC is a critical value and EBarr
is the potential barrier connected with the centrifugal force, the
regularity condition equation gives two different formal accretion
rates corresponding to different locations of the sonic point in the
flow. However, the physically acceptable global solution is unique:
it is always realized for the smaller of the two accretion rates.

For a non-rotating or slowly rotating black hole the accretion
occurs in two regimes: Bondi-type in which both the rotational and
relativistic effects are negligible in the transonic part, and disclike
in which they are dominant. Transition between the two, which is based
on a discontinuous jump in location of the sonic point, is caused by
a continuous change in the flow parameter (angular momentum, say) .

The Bondi-type accretion defines a high state and the disklike a low

state, in the sense that the former always requires a higher accretion



rate. When the black hole rotates very rapidly, however, the two-
regime—character of accretion no longer occurs, only the Bondi-
type is possible.

For a flow characterized by the initial data L, E and M which
do not obey the regularity condition, the stationary, regular,
transonic accretion is impossible. The flow would oscillate between
the Bondi-type and disclike solutions, exhibiting a quasi-periodic
or chaotic behaviour. This could be used to explain the luminosity
variability of active galactic nuclei and Cyg X-1, thus providing

strong observational support for the existence of black holes.



1. Introduction

A black hole accretes matter from its surroundings.The radial
drift velocity of the accreted matter tends to zero at infinity
and approaches the velocity of light at the event horizon (Thorne
et al. 1981). Thus, somewhere in between, there must exist a
boundary defining the transition from subsonic to supersonic flow.
This boundary is callegﬁgonic point, or sound horizon ,since it
separates the region which can send sound signals out to a distant
observer (who is immersed in the subsonic flow) from the region
which cénnot (Moncrief 1980). The existence of the sound horizon
is an important global property of the accretion flow onto a black

hole.

1.1 Historical review

a) Spherical accretion

The first page in the history of the field was written by Bondi
(1952) who investigated steady, adiabatic and spherically symmetrical
accretion onto a star. For a polytropic gas with n > 3/2, he showed
that among all the theoretically possible solutions to the
basic equations describing the accretion flow, there is oné?particular

which is transonic:
the radial drift velocity of the accreted gas is highly subsonic near



infinity, increases smoothly and monotonically with deqreasing
distance to the central object,and reaches the local velocity of
sound at a certain radius (the sonic point) after which the gas moves
supersonically. The transonic solution corresponds to the
greatest possible mass accretion rate and is physically most
likely to be realized. All other solutions with smaller accretion
rates are either always subsonic, or always supersonic. For the
case where the polytropic index n<(3/2, there is no transonic
flow at all.

Bondi's results can be written more explicitly as follows (
see, e.g. Zel'dovich and Novikov 1971). The location of the sonic

point is given by

a -2
_n=3/2 ( 0") ro o (1.1.1)
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where 2y is the sound speed at infinity, c is the light speed,
andzﬂggg ZGM/C2 is the gravitational radius of the central object,
with G being the gravitational constant and M the mass of the
central object. The radial velocity of the accreted gas at the
sonic point is
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The mass accretion rate is a unique function of a and M,

oo

. 5 , n aio n-3/2
m = T (GM) Ek(l+n)] [n—S/Z] ) (1.1.3)

where k is the constant in the polytropic equation of state,

P =k §l+l/n with P and g being the pressure and density,
respectively. Although in realistic situations Bondi's model is

far too simple (see, e.g. Alcock and Illarionov 1980, Bisnovétyi—
Kogan and Blinnikov 1980), its basic ideas, like transonic solutiors,
sonic points,etc. contribute to a general understanding of spherical
accretion.

The relativistic generalization of Bondi's purely Newtonian model

was first discussed by Michel(1972). He derived the general
relativistic equations for steady spherical flow of a perfect fluid
in the Schwarzschild metric. Solving the equations in the case of a
polytropic gas with n = 3/2 and n = 3, respectively, he also came to
the conclusion that there exists a unique analytical solution which
passes through a critical point (sonic point). Begelman (1978) further
argued that for a gas with n > 3/2, the only critical point is the
one found by Bondi (1952), which lies well outside the black hole
event horizon. He also found that for the case 1/2 < n < 3/2, there
is a relativistic (also unique) critical point which lies near the
horizon??%hus was missed in Bondi's Newtonian study. For n<<1/2.

all the .~ 7 critical points would be within the horizon, and



are therefore unphysical.

The uniqueness of the critical point stated above was queried
by Ray (1980). He showed by a more careful study that there are
two critical points for a flow of a n > 3/2 gas. However, as
clarified by a very simple argument in this thesis (§3.2), only one
of Ray's two critical points 1is physical. Thus the critical point
in spherical accretion whenever it exists is unique.

Spherical black hole accretion has been studied also by many
other authors under a wide range of flow regimes. Blumenthal and
Mathews (1976), Carter et al. (1976), and Brinkmann (1980) have
considered also adiabatic flows, but using more sophesticated
equations of state, rather than a simple polytropic one. Optically
thin accretion with radiative cooling has been treated by Shvartzman
(1971), Shapiro (1973 a,b), Bisnovatyi-Kogan and Ruzmaikin (1974),
and Isper and Price (1977). Optically thick flows have been
investigated by Mészaros (1975 a,b), Schmidt-Burgk (1978), Maraschi
et al. (1979), Yahel and Brinkmann (1981), Yahel (1982), Maraschi
et al. (1982), Flammang (1982), TIsper and Price (1982, 1983), and
Vitello (1984). The most complete equations applicable to quite

general astrophysical context were derived by Thorne et al. (1981).

b) Accretion of rotating matter

In many astrophysically realistic situations (e.g. in binary



systems) the accreted gas possesses significant angular momentum.
In this case, accretion is no longer spherical, rather, a disk
around the central object forms.

The study of the dynamics of rotating gas masses started .long
ago . as an early stege in the consideration of the formation and
evolution of the solar nebula witﬁ%articular regard to Laplace's
nebular hypothesis. The general properties of the evolution of
rotating gas disks were well understood by the 1920s (Jeffreys
1924). I§§f9405, Peek (1942) and von Weizsidcker (1943) pointed out
the importance of the effect of turbulent viscosity on the evolution
of the solar nebula. von Weizsdcker Ql948) derived the equations
of motion of disk gas. The general solutions for time-dependent,
viscous disks were given by Liist (1952) and Lynden-Bell {(1960).

In the 1960s interest switched from the secular dynamics of
rotating gas masses to the radiation they might emit, owing to the
discoveries of X-ray stars and quasars. Salpeter (1964) and Zel'dovich
(1964) were the first to suggest that quasi-stellar objects could
be massive black holes accreting the interstellar medium. Hayakawa
and Matsuoko (1964) proposed firstly that X-rays might be produced
by accretion of gas between two normal stars in close binary systems.
Zel'dovich and Guseynov (1966??§Novikov and Zel'dovich (1966) pointed
out that gas accretion onto compact components in binary systems

a :
should produce X—rays,?ghus could be the explanation of the newly

- 10 -



discovered X-ray sources. Shklovsky (1967) applied this idea to Sco
X~1 which is supposed to contain a neutron star. Cameron and Mock
(1967) suggested that gas accretion onto white dwarfs could also
produce X-rays. The history of these early ideas was reviewed by
Burbidge (1972).

The essential role of the angular momentum of the gas in binary
accretion was first emphasized by Prendergast (Prendergast and Burbidge
1968). He built a model for disk-type accretion onto white dwarfs in
binary systems. On a larger scale, Lynden-Bell (1969) argued that
galaxies may have supermassive black holes at their centers and
analyzed disk-type accretion onto such holes.

In the early 1970s the theory was established in a more complete
form by several authors. Shvartsman (1971) studied disks around isolated
stars. Lynden-Bell and Rees (1971) extended the work on supermassive
holes hidden in the centres of galaxies. Pringle and Rees (1972)
applied the theory to Cyg X-1 which supposelly contains a black hole.
Shakura (1972 a,b), and Shakura and Sunyaev (1973) derived formulations
which are now followed by most authors in the field. Lynden-Bell and
Pringle (1974) also gave an elegant description of the problem. Lightman
(1974 a,b) constructed a time-dependent model of accretion disks. The
general relativistic model was made by ' : Cunningham (1973),
Novikov and Thorne (1973), Page and Thorne (1974) and Thorne (1974).

The models constructed in these classical papers are all of &

- 11 -



geometrically thin , © Keplerian variety. The elements of the
accreted fluid follow circular geodesics to?very good approximation,
with the addition of a very small inward radial drift velocity
because the angular momentum is _ . gradually removed
and transported outwards by viscous stresses. The energy of the
shearing orbital motion of the gas is dissipated by viscosity as
heat, and thence radiated away. Since the only energy source is the
gravitational potential (release of the internal energy of the accreted
material was considered by Fang 1981, Zhu 1981, and Zhang and Jiang
1983, however), the total amount of energy radiated by a unit mass
of gas during its passage inward through the disk must equal
approximately the gravitational binding energy of the unit mass when
it eventually reaches the inner edge of the disk. Thus, a proper
description of the inner edge of the accretion disk is very important,
as 1t determines the total disk luminosity and, as will be seen later,
influences the structure of the whole disk.

The conditions at the inner edge depend of course on the nature
of the central object. For a main-sequence star, - white dwarf or
neutron star the inner edge of the disk is close to the star's surface
(when the central object is a strongly magnetized neutron star or
white dwarf, the disk extends inward only as far as the Alférn radius,
see Lamb and Pethick 1974). In the case of a black hole, it was assumed
in all the classical papers that the disk extends down to the marginally

stable circular orbit of a test particle (rms), given by Bardeen et al.

- 12 -



(L973) (for a Schwarzschild black hole this orbit has a radius of

3 rg). Inside this edge, the gas falls freely towards the hole and the
gas density is low in comparison with that in the region outside the
edge. Because of this sharp density discontinuity, the edge is
regarded as a free surface —- viscous stresses do not act across it.

Due to this rather artificial boundary condition, however, some
physical quantities become infinite at the edge (Stoeger 1976). For
example, the surface density becomes infinite in the radiation-
pressure dominant case, while in the gas-pressure dominant case the
radial velocity becomes infinite. This singular behaviour can be
removed by considering carefully gravitational and viscous effects,
as done by Stoeger (1980) and Kato et al. (1982). It was argued that
there must be a very narrow region near roo where the viscosity is
very important —-- due to its influence in this layer, the material
in the disk flows from the circular geodesics, across rms’ to the
geodesics of spiral infall, and into the black hole.

There is yet another way to solve the problem. A theory of thick
accretion disks developed since the late 1970s (Abramowicz et al.
1978, Kozlowski et al. 1978, Paczyfski and Witta 1980, Jaroszynski
et al. 1980, Abramowicz et al. 1980, Abramowicz and Lasota 1980,
Paczynski and Abramowicz 1982, Wiita 1982) helped to understand the
conditions at the inner edge. Though it was assumed in the classical
models that the disk is thin, there is no reason why this should

always be so. Disks may become geometrically thick if the internal

- 13 -



pressure builds up so that the thermal energy is competitive with
the gravitational energy. This can happen either because the disk
radiates at a super-Eddington luminosity, thus radiation pressure
is competitive with gravity, or because the material is unable to
radiate the energy dissipated by viscous friction, which then
remains as internal energy. It was shown by Abramowicz et al. (1978)
and Kozlowski et al. (1978) that the inner edge of the thick disk
is the "cusp" where an equipotential surface crosses itself. The
cusp resembles very much a similar one located on the Roche lobe in
a close binary system (the inner Lagrange point). Noting this
analogy Paczynski (1978) proposed that the accretion onto the black
hole is driven through the vicinity of the cusp, due to a little
overfloWingOfAthgritical equipotential surface(this surface crosses
itself and forms the cusp) by the surface of the disk, i.e. by a
little violation of the hydrostatic equilibrium caused by the pressure
gradient forces (Figure 1), just as material leaves a star that
fills its Roche lobe in a binary system. In this scenario viscosity
is not necessary to support the accretion through the inner edge.
The cusp is located between the marginally bound and marginally

stable particle orbits. For a Schwarzschild black hole one has

= = . 1.1.4
ng P << Tin << T.. 3rg ( )
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Fig. 1 Paczyhski's mechanism for accretion through the inner edge of

an accretion disk, where W is the effective potential (
gravitational plus centrifugal). (Adopted from Abramowicz

et al. 1980)

The radial drift velocity of the accreted gas is subsonic for radii

r > . while for r < r.,a stream formggdthe gas is freely falling
towards the hole with a supersonic velocity. The sonic point is

expected to be located close to r.o
1



Several attempt%@ave been made to analyse more carefully the
transonic nature of the accretion flow at the inner disk boundary.
The earliest published paper concerning this subject was that by
Henriksen and Heaton (1975). Those authors studied the hydro-
dynamical accretion and effluxion of isentropic or isothermal
material with uniform specific angular momentum, and clarified the
nature of the critical points (the sonic points). However, because
a Newtonian gravitational potential was used, they found only the
outer sonic point (Bondi-type), and missed the inner one (disklike)
which is due to general relativistic effects (see §2.4 of this thesis).
Also using Newtonian dynamics, Maraschi et al. (1976) showed that
when radiation pressure is important, the Keplerian approximation
for the rotation of ﬁhe gas, what was adopted in the classical models,
becomes inadequate in the inner region of ‘the accretiodn disk.The first
relativistic model of transonic accretion was made by Liang and Thompson
(1980). They assumed a quasi-radial flow confined to a solid angle (U,
and argued that the critical transonic solution whenever it exists is
unique, similar to the case of spherical Bondi accretion. Abramowicz
and Zurek (1981) also used this simple flow model and simulated the
relevant general relativistic effects by using a pseudo-Newtonian
gravitational potential. They considered for the first time the case
of positive total (specific) energy of the gas, and found . what
they called bistability. There exist two separate regimes: disklike

accretion for large specific angular momenta, and quasi spherical

- 16 -



accretion for small r thetgormer, the sonic point is always

/angulagomomen .

inside, and very close to, the cusp. With?decrease of angular momentum,
the sonic point jumps discontinuously to r > rg. Thus, the
important role of angular momentum in transonic accretion was first
emphasized. Later on, Loska (1982) described the detailed structure

of the cusp region of an adiabatic accretion flow. He neglected
viscosity, assumed that the radial velocity is a function of radius
only, and that hydrostatic equilibrium holds in the vertical direction.
Paczynski and Bisnovatyi-Kogan (1981), Muchotrzeb and Paczynski (1982),
and Muchotrzeb (1983a) built a thin disk model with?%mphasis on the
structure of disk's inner region. They took into account the radial
pressure gradients and the inertial term in the equation of radial
motion, anggsiscosity, radial heat diffusion and heat carried with the
accretion flow in the energy conservation equation. This model removed the
infinities present in the classical thin disk models at the inner disk
boundary r. = Srg, whil%fhad its inner boundary somewhat closer to

the black hole, and the radial flow transonic at that place.
Contrary to the SSWtS @F  0cr (1980), the "no torque" condition at

the inner boundary,which was assumed in the classical models, was shown
to be very good. Another interesting result in the model was that there
is an upper limit (of the order of 0.02) fo;fﬁélue of Ot (the Shakura-—
Sunyaev viscosity parameter), above which stationary transonic solution
does not exist. The effect of viscosity on the flow around the disk's
inner edge was also discussed by Matsumoto et al. (1984). They found
that i%?%iscosity is large (Q{ = 0.05), all transonic solutions which

ot
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are Keplerian in the outer region pass through a nodal type critical
point outside the radius of the marginally stable circular orbit. After
passing through the nodal point, there is a set of continuous solutions
which are connected smoothly with the outer solution. One cannot
determine which solution should be chosen, unless one follows the
flow structure up to the black hole horizon. Thus the physical
meaning of a nodal critical point is not yet clear, and needs to be
studied further.

There has been a considerable body of literature with many
remarkable achievements in the exploration of transonic accretion onto
a black hole. , However, none of the previous works
is complete enough. All of them dealt with only the case of negatiVe
energy except Abramowicz and Zurek (1981), and all of them were
in the framework of the pseudo-Newtonian model of black holes except
Liang and Thompson {[1980). Furthermore, they assumed exclusively
that the flow is quasi-radial -- the validity of this assumption was
never examined, and they consideredoglyfhe stationg%§eé— time dependent

problem has not been touched.

1.2 Framework of the thesis

In this thesis adiabatic, transonic accretion onto a black hole is
. . The entire
studied more completely. physically acceptable range of values of

the energy and angular momentum of the accreted gas 1S considered,

Both spherical accretion and that of rotating matter are included.

- 18 -



Although the pseudo-Newtonian model of black holes is used in a main
chapter (Chapter 2) in order to simplify the calculations, the correct
relativistic equations describing the accretion are also solved, both
in the Schwarzschild and the Kerr spacetimes (Chapter 3). The influence
of the meridional velocity of the gas on the transonic solution is
examined for the first time (Urpin 1983 calculated also the vertical
component of the gas velocity, but for a different purpose). The
problem of the time-dependent flow is attacked by using a simple
model which shows the possible existence of periodic or quasi-periodic
behaviour in non-stationary transonic accretion flows (Chapter 4).
Astrophysical implications of the results are evaluated in Chapter 5.
Perhaps the only restriction made here is that viscosity is assumed

to be unimportant in the transonic part of the flow. But, as argued

in the next section,this assumption appears reasonable.
1.3 Basic assumptions
The following assumption%?re made throughout the thesis.
a) The transonic part of the flow is geometrically thin
Paczynski and Bisnovatyi-Kogan (1981) argued that even though the
disk may be geometrically thick for r > rin’ it forms a thin cusp at
the transition radius, and flows in a thin supersonic stream for

r < rin' Recently, Abramowicz (1985) showed that for a

- 19 -



flow composed of a mixture of ideal gas and black body radiation,

the relative geometrical thickness of the transonic part

(vertical thickness)in
(1.3.1)

o = (radius) .
in

depends strongly on

(gas pressure)
B = , (1.3.2)
(total pressure)

and only very weakly on all other parameters, namely, the mass of
. the .. | . .
the central object and.accretion rate. It is given by
-2

H, = 10 “X/48 (1.3.3)

with X &~— 1 for black holes with mass valOMQ , and X =~ 0.1 for

those with M/N/lOBMO . It is seen that increasing radiation pressure
-4 i

makes the flow thicker, but only when B << 10 for galactic black

holes and B << 10_6’f0r the extragalactic ones can the thickness of

the flow not be small.
b) Dissipation is not important in the transonic part

Disk accretion is driven by angular momentum transfer due to some

viscosity. The physical nature of this viscosity is not yet understood.

- 20 -



Nevertheless,‘some general arguments can be made. It is likely that
viscous processes can transfer angular momentum only with a subsonic
speed; this is the reason why in the classical "alpha disk" model
the viscosity parameter ({ should not exceed unity. Thus, in the
transonic part of the flow, dissipation should not be importan%?gthe
angular momentum as well agégnergy of the fluid element are likely
to be conserved.

Kozlowski et al. (1978) first realized that the transonic motion
of the fluid cannot be strongly influenced by dissipation, as the
travel time for a fluid element in the transonic part of the flow is
shorter than the time scale for dissipative processes to occur at
2s the kin

that place. Define the travel time, ttrav Ch a fluid element

located at the radius r travels a distance r,
=r/v_, (1.3.4)
r

where V. is the radial drift velocity of the element. The dissipation

time, tdiss , is defined as the heat content per unit volume divided

by the local energy dissipation rate per unit volume,

~ gaZ/Q“L , (1.3.5)

t
diss ™

where ? is the density, a is the sound speed, and Q+ is the local

dissipation rate :
Q" = 2r\62 , (1.3.6)

- 21 -



. . . . - 2 .
with being the dynamic viscosity and the magnitude of the shear
g

tensor. These last two quantities were expressed in the classical models

(Shakura and Sunyaev 1973, Novikov and Thorne 1973) as
q — ?O(Ha , (1.3.7)
and

ngﬂ , (1.3.8)

where ({ 1s the Shakura-Sunyaev viscosity parameter, H is the half-
d
thickness of the flow?n 1l is the angular velocity of the fluid

element. From (1.3.4)-(1.3.8) and replacing v, by a for the transonic

flow, the condition

<< t (1.3.9)

trav diss

is equivalent to
oA <<<< H, . (1.3.10)
This is always fulfilled when X == 0.05, as Muchotrzeb (1983a) showed

that for ({s~ 0.05 one has (f <= O.llH/r‘g, but typically O(<O.1H/rg.

-3
If one adopts a more realistic value X =< 10 as Shakura and Sunyaev

- 22 -



(1973)

conclusion can

estimated, then the dissipation is totally negligible. This

also be supported by the result of Muchotrzeb

(1973a) which shows the variation of the angular momentum with radius

for the transonic part of the flow (Figure 2). The angular momentum

2.602

2.600

| NGH T,

2.598

Fig. 2

r—-
_oe=100
o =0 F=17x102
{ !

28 2.9

[e)

3.1

rirg

Variation of specific angular momentum with radius, for two

*
different values of viscosity parameter ({ . Note that o is

the upper limit on { . 1, is the Keplerian distribution of

k

angular momentum. (Adopted from Muchotrzeb 1983a)
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is almost constant: |dinl/dlnor]| << 10”2. Note that the centrifugal

force Fc changes in the same region with the characteristic scale

]dlnFC/dlnr | =~ 3.

Although he had a different opinion on the structure of the inner

disk edge, Stoeger (1980) came to the same conclusion that very little

energy or angular momentum is radiated or transported outward from

inside the inner edge.

It is not
by the recent
the existence

circular tori

clear, however, whether the above conclusion is changed
work of Papaloizou and Pringle (1984). They demonstrated
of a dynamical instability in non-accreting, purely

subject to non-axisymmetric perturbations. This instability

may saturate at a finite amplitude causing turbulence and therefore

providing viscosity. The question whether this instability is impertant

for accretion systems, particularly for thick accretion disks was

discussed by Abramowicz (1985) and Abramowicz et al. (1985).

Other assumptions are standard and need no explanation: self-gravity

of the accreted matter is negligible; accretion flows are symmetric with

respect to the axis and the equatorial plane; accreted matter obeys a

polytropic equation of state.
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2. Stationary flow: pseudo-Newtonian theory

In this chapter stationary accretion is studied within the framework
of the pseudo-Newtonian theory. A Newtonian model of black holes first
introduced by Paczynski and Witta (1980) is used to simulate the
relevant general relativistic effects. Although the model was employed
by several authors to study accretion onto black holes, it is necessary
to describe its properties and compare them with the corresponding

properties of the correct relativistic model of black holes.

2.1 Newtonian model of a black hole

The Newtonian effective potential for radial motion of a test
particle with non-zero specific angular momentum 1 in a spherically

symmetric gravitational field (written on the equatorial plane),

2 2
W= -GM/r + 1 /2r , (2.1.1)

depends on the angular momentum of the particle. It always has the
characteristic shape shown in Figure 3a. Asymptotically (r-— o)
it goes to zero. Then, at some r, = r+(l) it has a minimum which
corresponds to a stable circular orbit, and at r = 0 it blows up

forming an infinite potential barrier. Because of this barrier

Fig. 3 Effective potential and Keplerian angular momentum distribution
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Newtonian
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Figure 3
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a particle with non-zero angular momentum cannot be accreted by
the gravity center. The radius of the stable circular orbit on the

equatorial plane for a given angular momentum is
2
r, = 1 /GM . (2.1.2)

The inverse of (2.1.2) gives the Keplerian distribution of angular

momentum

1 :A’GMr y (2.1.3)

which is shown in Figure 3c.

The effective potential in the gravitational field of a black
hole is quite different (see, e.g. Misner, Thorne and Wheeler 1973,
Chapter 25). Its asymptotic behaviour when r —» 0O 1is the same as
in the Newtonian case. But, instead of always having a minimum as
in the Newtonian case, its shape depends on the value of the angular
momentum of the particle. For angular momenta langer than that
corresponding to the marginally stable circular orbit, lms , the
effective potential not only has a minimum at r = r+(l) corresponding
to the stable circular orbit, but also a finite maximum at r = r_(l)
corresponding to the unstable circular orbit, and then drops to
minus infinity. The fact that the potential barrier is finite for

any value of the angular momentum means that any particle can be

accreted by the central black hole provided the particle has high

- 27 -~



enough energy. As the angular momentum decreases, r 1ncreases
while r, decreases. When 1 = lms s rf =r =T _ (for a
Schwarzschild black hole rms = Brg). Thus lms is the critical
value of the angular momentum for the stable circular orbit to
exist. This is the reason why the orbit with radius T is called
the marginally stable circular orbit. For angular momenta less than
lms , neither minima, nor maxima exist; the effective potential
decreases monotonically to minus infinity so that circular orbits
are not possible. Any particle with 1 < lms can be accreted by the
black hole, independently of the particle's energy. In addition, there
is one potential curve corresponding to a particular value of the
angular momentum, 1 = lmb’ whose maximum is equal to the asymptotic
value of the effective potential at infinity. The unstable circular
orbit corresponding to this maximum is called the marginally bound
orbit because, obviously, it defines the transition from bound to
unbound orbits of the particle (for a Schwarzschild black hole
rp = ng). All these properties of the effective potential are
shown in Figure 3b. Also in contrast with the Newtonian case, the
Keplerian angular momentum distribution is not monotonic, but has a
minimum at r = L (Figure 3d).

Paczyriski (1977) noticed that one can construct a purely Newtonian

model to describe accurately all these properties by assuming an

artificial Newtonian gravitational potential

- 28 -



F -- o (2.1.4)

(2.1.5)

In this model the evaluation of the '"Keplerian" (i.e. corresponding
to the circular geodesic orbits) quantities follows from the usual

Newtonian definitions:

) . . ., dd . 1/2
(linear velocity) = v, = ( s ) , (2.1.86)
(angular velocity)== j11<55 vk/r , (2.1.7)
) >
(mechanical energy) = e, = Vk/2 +p (2.1.8)
, . . 2 dde 1/2
(angular momentum) == lk= v, * =ﬂ_kr = r(r~———dr )

(2.1.9)

All these quantities are defined on the equatorial plane, Q =Tr/2.

The explicite formulae read (Paczyfiski and Witta 1980)

(1 - 2r /r)
) *—”—”“‘g—“g , (2.1.10)
(L - r /r)
g

- 29 -



k 1 GM
= (Z =) ) (2.1.11)
dr 2 r2 (1 - r /r)3
g
1 = (GMr)l/Z[—-——-—L——-] (2.1.12)
k 1i-r/r}’ T
g
dl 1 - 3r /r
E—k _ l(_G_M)l/2[__g ] , (2.1.13)
r 2'r 2
(1 - rg/r)

GM,1/2 1
1 K = r—.g) [——————] , (2.1.14)

afl 1-3r /r
d £- -2 (@)1/2[“—"——_‘% ) (2.1.15)
r 2 5 2
r (L ~r /r)
g
GM,1/2 1
Vk = (;—) [ff:—;—7;] ’ (2.1.16)
g
dv 1 +r /r
d_E - _l@mi/e (2.1.17)
r 2 3
r (1 - rg/r)

In the square brackets the corrections to the otherwise purely
Newtonian quantities for the case of a central point-mass are given.
Equation (2.1.10) shows that ) vanishes at r = Erg, thus it is

identified with re = ng, as for the Schwarzschild geometry. Likewise,
it is seen from equations (2.1.11) and (2.1.13) that dl/dr = O and

de/dr = 0 at r = Brg, thus one concludes that rms = Brg, as an orbit

can be stable only when dl1/dr> 0 and de/dr = 0. The efficiency of
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Conversion of gravitational potential energy into radiation is given
by Y\: e/cz, so that at r = ros equation (2.1.10) yields the result
Y\ = 0.0625, while the correct result for the Schwarzschild metric is
0.057. At smaller radii the relative agreement is even closer. It is
therefore expected that errors introduced by using this model will
not be more than 10%, while calculations will be greatly simplified.

The fact that the Newtonian model of a black hole very accurately
describes the motion of free particles around the hole suggests
strongly that accretion flows would also be accurately described by
the model. Of course, in order to have confidence, a direct éﬁmparison
between exact general relativistic calculations and those based on
the Newtonian model is necessary. This will be done in the next chapter.
‘Obviously, the Newtonian model can only describe a spherically symmetric
gravitational field; it does not work for a rotating, especially a
rapidly rotating, black hole. In that case the correct general
relativistic equations must be applied. This will also be a task of

the next chapter.
2.2 The full set of time-dependent equations
The basic equations describing the accretion flow are (cf. Landau

and Lifshitz 1959 or Tassoul 1978):

i)Equation of continuity or mass conservation

- 31 -



%% + Vi( gvi) =0 . (2.2.1)

ii)Fuler's equation or momentum conservation

i

v
a't

L yrp. (2.2.2)

ig i i _
PV =gt YRS ;

iii)Equation of state

1+ 1/n

P =k % (2.2.3)

Here g , P and Vi::: dxi/dt are, respectively, the density, pressure
and velocity of the accreted gas,aé is the gravitational potential
which is given by (2.1.4). The indices i and j run through 1, 2, 3.
The Einstein summation convention is used. The symbol vi dénotes a
component of the coordinate velocity, not the physical velocity. For
example, v¢> = dc#/dt = f1l = (angular velocity). The symbol §7i
denotes the covariant derivative in the 3-dimensional space with the
metric gij' Spherical coordinates are used, therefore grr =1,
ggs = r2, chq: = rZSinZQ and all the off-diagonal components of the
metric are equal to zero. All physical quantities depend on the time
t and the spatial coordinates r and 9 but not on.qb (axially symmetric
flow).

An appropriate boundary condition must be imposed on the free
surface of the flow. First, on the surface the pressure goes to zero;

second, there is no motion of matter (e.g. in the form of a wind)
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accross the surface, i.e. the flow lines must lie on the surface.

Combining the two conditions gives

P i
[5—{:‘ + v Viap=0 =0 . (2.2.4)

Because the transonic part of the flow is likely to be
geometrically thin, i.e. [Cos | <Z [Cos Q,l<o=c 1, where Q. denotes
the value of the 6)—coordinate for the flow surface, all the physical

quantities can be expanded with respect to CosQ. The expansion form
\ 2 4
X(r, 0, t) = X (r,t) + X, (r,t)Cos O ~ X,(r,t)Cos O + ...

is used for the quantities which are not identically zero on the

equatorial plane ( ?, P, vr, v¢)), and the expansion form
Y(r,@, t) = Yl(r,t)Cose + Y3(r,t)0053@ +

for'vg, which obeyS've(Iylg,t) = 0. The expansions are terminated
at the lowest possible order which can guarantee that the model of the
flow is both self-consistent and reasonably accurate.

The zeroth-order expansions of the basic equations (2.2.1)-(2.2.3)

r 1)
v

do not form a closed set, as five unknown quantities ( §°’ Poy Vg vl,

V:P) appear in four equations :
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r
§_§a+ §L+V§%§£+§govf_ v9=o, (2.2.5)

Iv rov ¢ 2 GM 1 2P
_>...Q.. + vo =0 _ r\(vo ) b —p — —20 = 0 5 (2-2-6)
at ar (1" - rg)z ?o ar
¢ ¢
1+1/n
P, = k9, . (2.2.8)

Note that one cannot simply drop the term s>gﬂ?jjxequation (2.2.5).
Although the quantity (rv9 ) is much smaller than vr, it does not mean
that (rv0) << v¥ L POy This indicates that th

at (rv; Ve, as Vo RZV Cose. is indicates a e
‘horizontal and vertical structures of the accretion flow are always
linked. In the classical models the flow equations were split into a
horizontal and a vertical part by assuming that the flow is quasi-

0

radial, i.e. v vanishes everywhere in the flow, but this is rather
crude. In order to determine the flow properties on the equatorial
plane in the most general study of the problem, one must undertake
the task of solving the off-equatorial plane equations, which are of
higher order.

Fortunately, it is enough to consider the first and second order

equations to close the system:

- r(v )2 - 2rv, V

a 4 =0, (2.2.9)



0 )
QY1 rdY1 2 r O 0.2 ¢ o
57 + v, 5% * oV vy - (vl ) (v, ) r2§ =0, (2.2.10)
¢ ¢ ¢
SVZ raVZ rav" 5 6 CP 2 . r ¢
at+v°ar+v23r_ ViV, t D Ve Y,
+ % v; vi+ 2v19v0 -0, (2.2.11)
P, = kil + 1/n)§i/n§’2 , (2.2.12)
2P, oP 2P, oP
P - P 2 + P vr - P 2 vr
2t ° Dt 2’ Jr ° 3¢ °
oF, 0
- P,v — 2P°P2vl =0 . (2.2.13)

The last equation is obtained by expanding (2.2.4) up to the second
order and replacing CosZQC)in the expansion with —PO/PZ because on the

surface

2
P, =P, +PCos"Q, =0 . (2.2.14)

This equation determines the shape of the flow,

9 0 = Qo(r,t) . (2.2.15)

Note that although (2.2.13) is obtained from the boundary conditions,
it should hold everywhere in the flow, because all the quantities in it

are functions of r and t only.
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The nine equations (2.2.5)-(2.2.13) form a closed, self-consistent

&
system for the nine unknown functions 90’ P, vz, v?z vl, ?2, P2,

$.

vg, v2 They enable one to discuss the full time dependent behaviour
of the accretion flow.

It should be pointed out that the second order expansion is the
lowest possible level for having a closed system, and it is not very
accurate close to the surface. For example, on the surface of the flow

not only the pressure, but also the density must be zero. However, from

(2.2.8),(2.2.12) and (2.2.14) it follows that the surface density is

?* = ?o nil . (2.2.15)

"The source of the inaccuracy lies in equation (2.2.14) which implies
that P, and P2C052690 are of the same order, and this is in conflict
with the basic assumption concerning the expansion scheme, P°:§:>

P200529 . Thus one can improve the scheme by replacing (2.2.14) with

the more accurate expression

4
0 =P, + P200529O + PACos @0 + e (2.2.16)
and accordingly, going to the higher order expansion. Note that the
system can always be closed at any even order. For example, one has 14
equations for 14 unknown functions at the fourth order. Generally, at
the Znth order there are (5n+4) equations for the same amount of

unknown functions.
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2.3 Reduction of the basic equations in the stationary case

In the stationary case (i.e. é?% = 0) all the functions depend on
r only, so equations (2.2.5)-(2.2.13) reduce to

r
dv r d S 2 r 6
So gt ve @ nSeve - Sy -0 (2.3.1)
r
vi . _ r(vg>)2 + < M T ) (2.3.2)
dr (r - )2 ?0 dr
¢ ¢
dv 2 '
.é?u. + ; v, =0, (2.3.3)
dv r
r 2 r dv 0 r I ¢"P
Vo Im Vo ge T 2V Y, - r(v, ) - 2rv v,
dp
¢ .2 ?2 dp 1 2
+ r(vy) ) - ?2 E;L + N 0, (2.3.4)
o
0
dv 2P
r 1 2r 0 0.2 ¢) 2 2
Vo g t pVoVy (v1 )T = (v )T = r2§> =0, (2.3.5)
o
¢
dv 0 (@
2 2r & 9 ¢
Vo Gp 2vl Vot Ve V, ot 2vl vy, =0, (2.3.8)
dp
r dP, r _ 2 r dp 9__
P2 o a;n P v, = Pov2 a;ﬂ + 2P°P2vl =0, (2.3.7)
1+1/n ,
P, = k€, , (2.3.8)
1/n
= . 2.3.9
P2 k(1 + l/n)g0 ?2 ( )



The system consists of seven ordinary differential equations and two

algebraic equations. Some of the differential equations, or their

combinations, can be integrated directly. To present the results of

these integrations and discuss the physical meaning of the integration

constants it is convenient to define the following quantities:

(sound velocity) = a = (dP/d?)l/2 )

2
(specific angular momentum) = 1 = r v4),

I
[0}

(specific total energy)

. 2
(mass accretion rate) =m = 47[r S vrou ,

where (U = | 90 —-%Ll is the half-opening angle of the flow, and

them as follows:
2 2 2
az(rn 9) = aj{r) + az(r)Cos 9 +

l(r,e)

1,(r) + lz(l‘)Cos2 0 .
el(r, 8 ) = e (r) + ez(r)Cos2 9 4

a(r) = m (r)W(r) + ...
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where

1/n

af = k(1 + 1/n)§O , (2.3.10)
2 l1p1l/n - 1
ay = k(1 + 1/n) ngo 52 , (2.3.11)
2
1, =rv,, (2.3.12)
1, = rzvcb - r‘zvff> ) (2.3.13)
1, r. 2 1.2, 2 GM 2
e, = E(VO) E lo/r‘ - -;—_—];— + na, , (2.3.14)
g
e = vEvh o+ —{IWIQ)Z + 1.1 /r2 + L lZ/r2 + 2na_.a (2.3.15)
2 °°2 2 1 o2 2 ~° °2 .,
. 2 r 2 n n 2nr
m, = 4Tr govo = 4Tr [k(l+n)] ay, v, (2.3.16)
1 a~NLl/2
w :[—m‘a‘n‘] . (2.3.17)
2

It is seen from (2.3.3) and (2.3.12) that 1, = const. and from (2.3.2)
and (2.3.14) that e, = const. The physical meaning of 1, and e, is
obvious: they are connected with conservation of angular momentum and
energy along the fluid lines in the equatorial plane. In the stationary
case the mass accretion rate m must be a constant, thus by using (2.3.1)

and (2.3.16) one gets

6
v
QEQ = - UJ—i— (2.3.18)
dr Vr
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With the help of (2.3.17) and (2.3.18), it follows from (2.3.6) and

(2.3.13) that

1, = ¢ (a/a,) , (2.3.19)

and from (2.3.4) and (2.3.15) that

e. = Ce(ag/ao) s (2.3.2.0)

where Cl and Ce are constants. To see the physical meaning of them,

consider the vorticity tensor

v’ /
wi. ==L _ avi (2.3.21)
I o) 24
The only non-zero components of this tensor are
2 ¢
U)rG ‘_-_coer B r‘(eZ ~ Vo l2)’
VO
(2.3.22)
Wad = - - -
0¢ »9 = 2l
The choice e, = 12 = 0, which is equivalent to Ce = Cl = 0, makes the

vorticity tensor identically equal to zero. When OUij = 0 the velocity
can be, at least locally, expressed as a gradient of a scalar functiorn,
v, = §711P . In this case the flow is called potential. For a potential

flow, the energy and angular momentum are conserved not only along a
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fluid line, but also throughout the flow. Thus one has (see also

Carter 1979)

The flow is Energy and angular

= [427 %)=
= \L-0)e

U)ij =0 depend on position

Q
1]
@]

potential, i.e. momentum do not

It has been seen that there are seven first-order ordinary
differential equations in the problem, and five independent integration

m, C , C,) are known, which means that the problem

constants (e,, 1 1

o?

)

can be reduced to two first-order ordinary differential equations for

two unknown functions. These two functions could be

vioir)=r v . (2.3.23)

After some tedious but straightforward algebra one obtains

(B - 2)a> r° - (12 = 1)
oy ; S (2.3.24)
dr 3, 2 2 ’ e
r(a, —v)
2 1 >
dvﬂ (Crda (2n + 1) + B(B - l)]v2 r? + 12
= - = ’ (2.3.25)
dr 3
rv
where
B= VS/V , (2.3.26)
— 2
1i(k)::; Mo/ (r - r,) (2.3.27)
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is the Keplerian angular momentum distribution, and a, can be

algebraically expressed in terms of v:

1 12 1.2, 2 GM_ 1/2
aozz;NﬁT [éo -3V -3 1,/r + ;—:—;;] . (2.3.28)

The constant C depends on the accretion rate,

2 -2n, n 2n+l .-2
C= =32 " ()7 A . (2.3.29)

By an examination of equations (2.3.24) and (2.3.25) one deduces
the following important points:

a) They are horizontal structure equations, as the quantities
appearing in them are all defined on the equatorial plane. Solving
for v(r) and v@(r) from given boundary conditions and constants 1,

e and m, the horizontal structure of the flow is completely

o

determined as

v¢(r) = 10/r2 , (2.3.30)

o

go(r) = [E(TQTTTJH a2t (2.3.31)

-n n n+l 2(n+1)
(—) a

—— . (2.3.32)

P (r) =k

b) The two equations do not depend on the integration constants

Cl and C . Therefore, without any loss of generality one can put
e
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Ce = Cl = 0, i.e. assume that the flow is potential. This may
sometimes be convenient, since there are many important theorems
concerning potential flows.

c) Once the horizontal structure is solved, the vertical structure

is explicitly given by

2
8Tl n 2n .-2 4 4n+l 2
2 "0+ 1k + 1)] mor g Vo (2.3.33)
n n 2n-1
?2 - 2n[k(n + 1)] a5 % ’ (2.3.34)
P = on n n a2n+l (2.3.35)
2 [k(n + 1)} gy Fo ’ .3.
C
¢ "1 ®
v, = _z(az/ao) + v, (2.3.36)
r
r_1 1 2 1.,2,2 o
v, = V[?e(az/ao) - 2(Bv) -3 1. /v - Cl(az/ao)lo/r - Znaoazj .
(2.3.37)

Thus the whole problem of the stationary, geometrically thin,
dissipation-free accretion flow onto a black hole has been reduced
to only two first-order non-linear differential equations for the
functions v(r) and Ve(r) by exact analytic integration of the
remaining five differential equations. In the next three sections
the critical points and global solutions of the two equations will

be discussed.
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2.4 The critical point of the radial motion equation

Equation (2.3.24) can be wtitten symbolically as

av N/D . (2.4.1)
dr
The denominator D vanishes at the sonic point (v=a,), and the

numerator N must vanish as well, in order to have a regular solution.
The point where both D and N vanish is a 'critical point' of (2.4.1)
in the usual mathematical sense of the term (cf. Birkhoff and Rota
1969). Note that (2.3.25) has no critical points and thus does not
give any additional conditions. Therefore, if one chooses the values
of v and B at the sonic point, v, and Bs’ as the two integration
constants needed to solve equations (2.3.24) and (2.3.25), the two
(and only two) sonic point conditions, D = 0 and N = 0O, give two
constraints on three quantities: vs, Bs and the sonic radius r . One
of them is therefore a free parameter and must be specified, in
addition to the three constants already appearing in the two
equations. It is concluded that in general one must specify four
independent parameters to determine the adiabatic, regular accretion
flow in the equatorial plane of a black hole. These parameters could

be: 1 , e

o m and BS.

o?

If the vertical structure of the flow is also considered, two

additional integration constants (e 12) are needed. Thus the

2’

regularity condition of the transonic solution
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Fig. 4 In the general case the condition for the regular, stationary
accretion reduces the number of free parameters (hypersurface
shown here has less dimensions than the original parameter

space). The bending defines two modes of accretion (see text).



B)=0 (2.4.2)

reduces the number of free parameters from seven to six. The six-
dimensional (or multi-dimensional in the realistic case) hypersurface
F = 0 is folded in the seven-dimensional (or higher dimensional)
parameter space (Figure 4).

It should not be a surprise that six parameters are needed in the
general case and only one for Bondi's spherical accretion. The reason
for this can be seen more clearly by writing (2.4.2) in an equivalent

way

¢, C_, , W_, B) =0 . (2.4.3)

In the Bondi case 1, = C, =C = BS = 0, and cUS = 1, so that (2.4.3)

reduces to

F(e,, m) =0 . (2.4.4)

The regularity condition also reduces the number of the free parameters
by one.

The sonic point conditions D = O and N = O can be combined with the
laws of angular momentum, energy and mass conservation, (2.3.12), (2.3.14)

and (2.3.16), and then written in the dimensionless form as

- 46 -



R
p) 1 2
Vo (2-B) = = 5 - L , (2.4.5)
R 2(R - 1)
S
1.2, 2 1

E = (2 +n) V. o+ 5 L /Rs - Z(RS B (2.4.6)
o 2 2
moomw =RVt (2.4.7)

S S S S

by introducing the dimensionless variables

2
R=rvr/r , V=v/c, A=a/c, L =1/rc, E=c¢e,/c,
g g

2 2n+1l
c

jog
(=

fl =K' (1+ 1/n)"/aTr ,
where the subscript s denotes the values at the sonic point. From
equations (2.4.5), (2.4.6) and (2.4.7) one can deduce how the location
of the sonic point RS, the radial velocity and the angular opening of
the flow at the sonic point, VS and UJS, depend on the four parameters
L, E, M and B which characterize the flow.

Before going on to the detailed calculations, however, it is worth
stating some general constraints on the transonic accretion which can
be obtained immediately. From equation (2.4.5) and the condition

BS<:: 2 one gets (cf (2.3.27))
< ——— =L (R ) , (2.4.8)

which means that at the sonic point the angular momentum of a fluid

element must be less than the corresponding Keplerian value. This was



noticed by Abramowicz and Zurek (1981) in the BS = 0 case.

From equation (2.3.14) one gets (cf, also (2.4.6))

L2< oR%E 4 —— = f(E,R) . (2.4.9)

This inequality gives a necessary condition for the energy of the
fluid element to be high enough to overcome the potential barrier

connected with rotation. The function f(E,R) has a minimum

/2 e - 1% (1 + 168)2 4 3)

32 [(1 + 16m) Y/ - 1}

[(1 + 16E)

min

(2.4.10)

Since L = const, inequality (2.4.9) implies that for the accretion to

be possible, it is necessary that the condition

L2< f . (E) (2.4.11)

min
be satisfied.

By combining equations (2.4.6) and (2.4.55 with the requirement

2n > 1 - Bs one gets

R
B> S - L - g(R.) . (2.4.12)
A(R_ - 12 2R -1 s :

Another necessary condition for the accretion to be possible is

therefore
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E> g . (RS) = - 1/16 . (2.4.13)

The physical meaning of this condition will be seen below.
Note that M is not needed to determine RS and VS. These two
quantities can be computed from given E, L and Bs through equations

(2.4.5) and (2.4.6). By eliminating VS between these two equations,

one gets
4(2 - B _)E 2(2 - B)
s 2 2 s 2 3
2n + 1 Rs (Rs - 2n + 1 Rs (Rs - 1) - Rs
2(2 - B )
s 2 2
+ [2 -~ ]L (RS -1y =0 . (2.4.14)

3
For BS =0 and n = 3 the solution for RS = RS(E,L) is shown in

Figure 5. In the case of negative energy (Figure 5a), the transonic

* When BS 4 0 the location of the sonic point is shifted inwards or

outwards, but the graphs have similar features as those for BS = 0.

Fig. 5 The location of the sonic point as a function of the energy and

angular momentum, for n = 3 and BS = 0. Fig. 5a is for E<O,

and Fig. 5b E;;CL The heavy line corresponds to the Keplerian

distribution of angular momentum. The dashed parts of the curves

show unphysical critical points. Points in the dark region would

2
correspond to a solution with Vs<: 0, which is impossible. Note
that accretion can occur only for E ;; -1/16 and that for O0=<E

<:_EC —~ 0.02 there are three different locations of the sonic

point (e.g. points A,B,C). However, the points which are located

2
on the parts of L (RS) curves with a positive slope do not

represent a physical solution.
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solution exists only for E > -1/16. For E < -1/16, the angular
momentum is always larger than the corresponding Keplerian value,

and this violates the condition (2.4.8). Muchotrzeb (1983a) examined
the conditions for transonic accretion flows with dissipation using
numerical models. She found that for thin flows, stationary transonic
accretion does not exist if the (A -viscosity is bigger than a critical
value CXC .. A= 0.02. Her critical solution has a sonic point at

rit

Rs = RmS = 3, which is just the tangent point of the Keplerian angular
momentum distribution curve and the curve of Lg(RS) when the energy
E = -1/16, the critical value of the energy for the existence of a
stationary transonic solution. Thus the condition (2.4.13) provides
the physical explanation of her numerical result.

More interesting is the case of positive energy (Figure 5b, which
is similar to a corresponding figure in Abramowicz and Zurek 1981).
For a fixed pair of L and E there are three possibilities. The transonic
solution does not exist at all when the energy is too low to overcome
the potential barrier connected with the centrifugal force: E'<:EBarr(L)
(cf. (2.4.9), (2.4.11) and Figure 3). When E > EC (EC::: 0.02 for BS = 0),
the location of the sonic point is always unique. In the most interesting
case EBarr<: E <:EC there are formally three locations of the sonic point
(e.g. points A, B and C in Figure 5b). The first question is then: are
all the three formal sonic points physically possible? Muchotrzeb (1983b)

has pointed out that only two of them correspond to physically possible

flows. Her conclusion can be examined and improved as follows.
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Rewrite equation (2.4.1) in the dimensionless form

= N/D (2.4.15)

where

N=3 [E To2®- 1) T %E - _L;i](gﬁ - %y) - LBV " : 2
2R R 2(R - 1)

D= % [E T 2(R i 1) ~ 222 - 722 ] (2.4.16)

This is a non-linear differential equation. In the case where VQ is

%
nearly constant in the vicinity of the sonic point , equation (2.4.15)

can be linearized around the point as

a §v d ¢ Sv Sv
. - A , (2.4.17)
[ng b a [éR] SR

where

gvzzv-vs, ngl%—RS,

i)

2D _ (2N 9N
a = (‘é——é)s 5 b avs ’ c = (aR)S H d = (av)s 9
(2.4.18)

* This assumption does not contradict the system (2.3.24), (2.3.25),
and it makes the following analysis possible. Otherwise, the only way
to examine the nature of a critical point of (2.4.15) is to use

numerical methods.
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the subscript in the partial derivatives, s, denotes their values

at the sonic point. The nature of the critical point of the linearlized
system (2.4.17) is completely determined by the set of two eigenvalues

of the matrix A, and the critical point of (2.4.15) has essentially

the same nature as that of (2.4.17) which is derived from it by taking
the linear terms of the Taylor expansion for N and D (cf. e.g. Hurewicz
1958, Holzer 1977). The eigenvalues kl and k2 of A can be obtained by

solving the equation

= k2 - (a + d)k + (ad = bc) =0 . (2.4.19)

The classification of the critical point is given in Table 1.

Table 1. Classification of the critical point

sign s .
a + d (ad - bc) kl, k2 critical point
+ purely imaginary vortex
=0
_ r§al and of opposite saddle
sign
real and of the same spiral or
* sign, or complex nodal
£ 0
3 réal and of opposite saddle
sign
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For the problem at hand, one can obtain, after some algebra:

a +d=-B VZ/R , (2.4.20)
s s s

dL2

sign(ad - bc) = sign(aﬁ—) . (2.4.21)
S

Here dLZ/dRS denotes the slope of the curves LZ(RS) in Figure 5.
When the slope is negative the corresponding critical point is always
of the saddle type. When the slope is positive the critical point is
of the vortex type for BS = 0, and of the spiral or nodal type for
BS # 0. Numerical examples showing different types of critical point
are given in Figure 6. Only a saddle type critical point corresponds
to a physically possible sonic point, as only in this case there exists
one characteristic passing regularly through the critical point (there
is another characteristic having the same behaviour, but it represents
the transition from subsonic to supersonic flow in the opposite direction,
i.e. effluxion, rather than accretion). For the vortex type the critical

point is located at the centre of a family of ellipses, so it can never

be passed by any characteristic. For the spiral type, the critical point

Fig. 6 Types of the critical point (sonic point), for n = 3, L2 = 3.2,
E = 0.006. Fig. 6a is for the inner critical point. Fig. 6b and
6c the middle critical poini, BS = 0 and BS # 0, respectively.
Fig. 6d the outer critical point. The middle critical points,
located on those parts of the LZ(RS) curves which have a positive
slope, are unphysical. The physically possible solution is shown

by a heavy line in Fig. 6a and 6d.
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appears as tre terminus of all characteristics, it can be reached
only after infinite spiraling. Thus these two types of critical
point do not represent physical sonic points. It is concluded that,
for negative energy, of the two formal sonic points corresponding
to the same pair of E and L, only the inner one is physical (Fig. ba)
(this is consistent with the numerical results of Muchotrzeb 1983a
and of Matsumoto et al. 1984 for transonic flows witn dissipation).
In the case of positive energy, there are two physically possible
locations of the sonic point for a given pair of E and L (the outer
one A and the inner one C, while the intermediate one B is always
unphysical, see Fig. 5b).

Tt should, however, be noticed that the above examination is
performed only locally, i.e. only in the vicinity of the critical
point. There is yet another question which should be answered: does
a locally physical sonic point represent a globally realizable
transonic solution? In the case of a unique sonic point, it seems
reasonable that there must be a (unique) transonic solution. When
the location of the sonic point is non-unique, however, the question
becomes more interesting and less transparent: is the global transonic
solution also non-unique? The answer to this question is given in the

next two sections.

2.5 Global solution: quasi-radial flow

In this section a simple case is studied. It is assumed that the
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meridional velocity of the accreted gas vanishes everywhere in the

flow, V695§ 0. In this case the flow is termed quasi-radial. Then the

system (2.4.5)-(2.4.7) reduces to

3
1 Rs 2

5 v2 _ S - L , (2.5.1)

S R (2(R_ - 1)

S
2 1.2, 2 1

E=(3+n)V_ + 3L /R 2® -1 (2.5.2)
. 2 _2n+l

= = R . °
M, = M/ < Vg (2.5.3)

Equations (2.5.1) and (2.5.2) enable one to obtain RS and VS from a
given pair of E and L. When RS and Vs are evaluated, the specific mass
accretion rate, M, is determined from equation (2.5.3). It is seen from
(2.3.18) that for a quasi-radial flow, the opening angle of the flow, (W,
is a constant, and thus M, is also conserved in space. Note that (2.5.1)
is the regularity condition which holds only at the sonic point, while
(2.5.2) and (2.5.3) are versions of the laws of energy and mass

conservation at the sonic point. They are in general (cf. (2.3.14) and

(2.3.16)):
1.2 2 1.2, 2 1
E=SV +nA + > L /R - SR -1 (2.5.4)
. 2
m, = RS A% v . (2.5.5)

Having E, L, and accordingly MO, these two equations can be used to
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solve for V and A at any radial distance R, i.e. the global solution
of the accretion is obtained by solving the two algebraic equations
(2.5.4) and (2.5.5); there is no need to solve differential equation
(2.3.24).

A global physically acceptable solution must satisfy the following
conditions:
a) It passes through the critical point (sonic point) regularly.
b) After passing the sonic point, it remains supersonic until the black
hole horizon.
c¢) Before reaching the sonic point, it is subsonic out to infinity.
d) It satisfies the boundary condition at infinity, i.e. V—> 0 when
R—>00 .

It is known from the last section that for E rr<: E < EC there

Ba

exist two physically possible locations of the sonic point, the inner

one R;l) and the outer one Rég), Rél)<<: R;Z), and two different values
A s . L : . (1) (2) .
of the radial velocity at the sonic point, VS > VS . In general they

determine two different accretion rates. Figure 7 shows all the three

Fig. 7 Global solutions of stationary, quasi-radial, transonic accretion.
The coordinates V/A and R are, respectively, the Mach number and
the spherical radius scaled with the gravitational radius rg. There
exist two saddle type (X-shape) critical (sonic) points and one
unphysical vortex (O-shape) critical point. The physically realized
solution is shown by a heavy line. For L<:LC the solution is of
Bondi-type (Fig. 7a), while for L > LC it is of disk-type (Fig. 7c).

In the case L = LC the physical solution is not unique (Fig. 7b).
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possible cases of the global solution. For a given E, there is a
strictly defined value of angular momentum, LC = LC(E). When L # LC

the physical global solution is unique, and is always realized for

(1) and M<2)

the smaller of the two formal accretion rates, MO o

For
L <C LC(Figure 7a) the global solution passes through the outer sonic

point Réz), with accretion rate Mgg) smaller than the unrealizable

-(l); MEZL: (1)

one M M, . For L >’LC(Figure 7c¢) only the inner sonic

point R;l) corresponds to a physical global solution, and the realizable

(1) . (2) (1) Mgz)

accretion rate is again the smaller, Mo < M, . When M, =

7

which happens only when L = Lc (Figure 7b), the global solution is not
(1) (2)

unique: both RS and Rs are possible as the sonic point. It is also
seen from Figure 7 that both the inner and the outer critical points

are of saddle type, while the intermediate one is of vortex type,
consistent with the local analysis made in the last section.

The behaviour of the location of the sonic point as the angular
momentum changes with a fixed value of the energy is shown in Figure 8
(cf. also Figure 5b). Starting with zero angular momentum, which is
exactly the Bondi spherical accretion, the location of the sonic point
is uniquely determined by the value of the energy (cf.(1.1.1); E is
equivalently replaced by 850 there). With continuously increasing L,

RS moves inwards. It experiences a discontinuous jump when L reaches
the critical value LC. After jumping, it moves inwards, again continuously

with continuously increasing L, until L is so large that the energy is

insufficient to overcome the potential barrier.
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Jump

Disk

| |
L L ]

Fig. 8 There are two different regimes of accretion: Bondi-type and

disklike. The location of the sonic point experiences a discontinuous
jump when the continuously increasing angular momentum reaches the
critical value L. For L> L, = L, (E) accretion is impossible as

the energy is too low to overcome the potential barrier.
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Fig. 9 The location of the realizable sonic point as a function of

C

< E<E .

Barr

angular momentum and energy satisfying E
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The location of the realizable sonic point as a function of
angular momentum and energy (satisfying EBarf<: E <:EC) is shown in
the three dimensional graph Figure 9. The smaller the energy is, the
larger the jump in the location of the sonic point, and the larger the
value of the angular momentum at which the jump takes place, LC. The
location of the sonic point is always unique for a given pair of E
and L.

The specific mass accretion rate is a continuous function of the
independent parameters (Figure 10). It decreases monotonically with
increasing angular momentum. There is, however, a turning point where
the location of the sonic point jumps. Before the turning point the
line has very small slope. This reflects the fact that the accretion
rate depends only very weakly on the angular momentum. The nearly
vertical line after the turning point shows that here rotational effects
are dominant. In his classical paper, Bondi (1952) argued that for
spherical (no rotation) accretion, the transonic solution always
corresponds to the greatest possible mass accretion rate. Since it has
been seen that the effect of rotation is always to decrease the accretion
rate, Bondi's conclusion is reproved here, but under more general
circumstances, i.e. rotation and general relativistic effects have been
taken into account.

Another three-dimensional graph (Figure 11) shows the behaviour of
M, in L-E phase space. It is also a unique function of a given pair of L
and E, and generally increases with increasing energy. The effect of the

rotation is always to decrease the specific accretion rate.
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Bondi
Jump

Disk

L, L, L

Fig. 10 The specific mass accretion rate is a continuous function of
the angular momentum for a fixed value of the energy. The
effiect of rotation is negligible in. the Bondi-type accretion

regime, while in the disklike accretion regime it is dominant.
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Fig. 11 The behaviour of M, in the E-L phase space
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Although it is the specific mass accretion rate M, = M/ which
is depicted in Figures 10 and 11, 1t should be pointed out that the
real mass accretion rate M should have thé same behaviour, as the
opening angle of the flow, (L), only depends strongly on B, the ratio
of the gas pressure to the total pressure, and very weakly on all the

other parameters (cf. §1.3),

W 2= 1072 x4B . (2.5.6)

S

The quantity X /&= 1 for central black holes with mass M ~ 10M and

O’
. 8 . . . .

X /== 0.1 for those with M ~ 10 MO' The quantity B is an intrinsic

property of the accreted matter. It is known that a mixture of ideal

gas and black body radiation can be described by the polytropic equation

of state with n = 3 and the polytropic constant

cm

1/3 3
' 1/3 2 ’
g S

1 -8

= 6.6533X1015( )

B B

)

ec
(2.5.7)

where a is the radiation constant, kB is the Boltzmann constant, and

mp is the proton mass. The unit for accretion rate used here depends

on k:

2 2n+1
c
g

m=mki(1+ 1/n)"/4Tr (2.5.8)

*

The critical accretion rate ﬁcrit is defined as the accretion rate

- 66 —



which would give the Eddington luminosity for a disk wich its inner

edge at the marginally stable orbit (see Paczyfiski 1981 for details):

32Tm ¢

r

. 18

Moo= ——P— r = 2.24x10 (B) B (2.5.9)
crit O g rgQ sec

where (TT is the Thompson cross section, and

LA t' r
" _ (grav1ta ional

5
g0 radius of the Sun) = 2.96X10 cm

Combining (2.5.7)~(2.5.9) one gets, for B << 1:

-20 M
6.5X10 9]
orit = 84 (ﬁ_) . (2.5.10)

Thus the value of M, which corresponds to the critical accretion rate

is

W ~17 M
i _ _erit 6.5X10 -2y . (2.5.11)
OCI‘it ws e B7/2 M

Formula (2.5.11) provides a physical scale for the accretion rate. For

example, for a galactic black hole M = lOM@, M, = leO_5 in Figure 10

. . -4

corresponds to M = M __ . whne B = 1.7X10 .
crit

It is concluded from the study in this section that, for EBarr

=< EC, although the regularity condition equation

F(L, E, M) =0 , (2.5.12)

o
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which is the reduction of the general regularity condition {(2.4.2)

in the case of a potential, quasi-radial flow, has two formal solutions,
i.e. there are two formal values of M, corresponding to the same pair

of L and E, only one, the smaller MO, is realizable in the global
physically acceptable transonic solution. Thus the accretion rate in the
adiabatic, transonic accretion flow of rotating matter cannot be assumed
but is an eigenvalue of the problem, it is always uniquely determined

by two intrinsic parameters of the accreted matter, L and E:

m, = f (L, E) . (2.5.13)

This conclusion is similar to that reached by Bondi (1952) in the case of
spherical, adiabatic, transonic accretion flows where the accretion

rate is uniquely determined by only one intrinsic parameter (the energy):

M = M(E) . (2.5.14)

The difference is only that there is now one more dimension (L) in the
phase space. One can therefore clearly define two different regimes of
accretion: the first one bears a strong resemblance to the classical
Bondi solution for accretion with no angular momentum. The sonic point
lies very far from the black hole. Neither the rotation nor the
relativistic effects are important in the transonic part of the flow.
The second regime, on the other hand, is relativistic; it has no

Newtonian analogy (and thus was missed by Henriksen and Heaton 1975 in
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their earliest, but purely Newtonian, study of accretion with rotation).
The sonic point lies very close to the hole and the rotation is one of
the dominant features in the transonic part. Different names were given
by Abramowicz and Zurek (1981) to these two accretion regimes: Bondi
type to the former, and disklike to the latter.

Figure 12 shows the distribution of transonic solutions in the
L-E phase space, where LiaX(E) and Li. (E) denote the loci of maxima

in
and minima of the curves LZ(E, RS) shown in Figure 5; fmin(E) is the
function given in (2.4.10). For E<-1/16, or L2:> fmin’ accretion is
impossible (cf. (2.4.13) and (2.4.11)). For -1/16 << E<CO0 or E >>EC
~ 0.02, the transonic solution is unique whenever it exists. For

2 2
positive energy E << E<tE and L7, <C <<y, , there are two
rr c min max

Ba
possible locations of the sonic point, but the realizable transonic

solution is unique. The regions of Bondi-type accretion and disklike

. 2
accretion are divided by the curve LC(E).
2.6 Global solution: general flow

In general, accretion flows can not be exactly quasi-radial; there
must be some motion of matter in the Q—direction. The equations
discribing general flows are (2.3.24) and (2.3.25). They can be rewritten
in dimensionless form with the help of the dimensionless variables given

in §2.4 as
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Fig. 12 The distribution of transonic solutions in L-E phase space. Three
regions, no solution, unique solution and non-unique possible
location of the sonic point but still unique physical solution,
are shown. The region VS:> 1 means that the radial velocity at the

sonic point would be larger than the light speed, which is

impossible.
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av (B - 2)A2R2 - (L2 - Li)

ar =V 3 2 2 ’ (2.6.1)
R (A - V)

dVG [CR4A2(2I1+1) + B(B - 1)]\/‘2R2 . Lz

i 3 , (2.6.2)

RV
where
B = VB/V,

1 1.2 1. 2,2 1 1/2
==[e-Ltv_z1 ————————j
A ﬁ[ > s L/R 4 sR-o D ’

2 3 2
Lk:R/Z(R—l) ’

n + 1

Due to the appearence of VQ , an analytic solution is no longer possible,
and the only way to get a global solution from (2.6.1) and (2.6.2) is to
use numerical methods.

Apart from the conditions stated in the last section, a physical

global solution should satisfy one more boundary condition:

V.—» O when R —» CQ

It has been seen in §2.4 that the values of V and Ve (or equivalently
B) at the sonic point, VS and (VG)S (or BS), are not independent of each
other, provided three physical constants in (2.6.1) and (2.6.2), L, E and
M, are given. This is because the two sonic point conditions of (2.6.1),
D=0and N =0, give two constraints on three quantities: VS, (V’G)S and
Rs’ and thus only one of them is free. This means that VS and (WS)S must

obey the regularity condition
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DU Va) ) = 0 . .B6.
F(L, E, M, VS, (/Q)S) 0 (2.6.3)

Starting the integration of (2.6.1) and (2.6.2) with VS and (V@)s at
the sonic point RS, one arrives at any other radial distance R* with
V* and %; . The values of V* and Vg will therefore be related to each

other:

v* = y*

o 6

(L, E, M, V*). (2.6.4)

Proceeding further, one eventually arrives at infinity with %yo and (VG)DO

and

(Vglog = (Vgloo (L By T, Vo).

However, the boundary condition at infinity is

\ = 0, (Ve)oo =0 . (2.6.5)

This means that not all the initial data L = L E = EOO and M = Moc

oo b

will give stationary, regular, transonic accretion but instead a condition
F(L, E, M) =0 (2.6.6)

must be fulfilled. If one chooses L and E as two independent parameters,
the accretion rate M as well as the global solution, including the location

of the sonic point, are determined accordingly. This general argument has
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been confirmed in the last section for the special case of quasi-radial
flows.

Confirmation of (2.6.6) for general flows is slightly more difficult.
The reason for this is as follows. If one starts numerical integration of
the system (2.6.1), (2.6.2) at infinity (at some large distance, in
practice) using a given pair of E and L and boundary condition W?Q = (VQ)OO
= 0, it is very difficult (almost impossible in practice) to find a
solution passing regularly through the sonic point. This is because both
the denominator and the numerator of (2.6.1) vanish simultaneously at the
sonic point, which is very hard to treat numerically. If the integration
is satrted at the sonic point, and performed inwards toward the horizon
and outward towards infinity, respectively, then the difficulty can be
avoided. But in this case, in order to determine the location of the sonic
point and the radial velocity at the sonic point, one has to specify a
priori the value of (V@)S (or Bs) in addition to L and E (cf. equations
(2.4.5), (2.4.6)). This is not very nice of course because the values of
all physical quantities at the sonic point should be determined by L, E
and the boundary condition at infinity, through equations (2.6.1) and
(2.6.2). Thus it seems that neither of these two integration methods works.

However, one can try a third way which is a combination of these two.
Start the integration of (2.6.1) and (2.6.2) at infinity with given L, E
and boundary condition. Although it is very hard to find the exact location
of the sonic point, one still can, by choosing the value of M very carefully,
go very close to it, and hence have at least some estimates of the values

of Vs and (Ve)s. Then, choose appropriate values of Rs’ VS and (Ve)S so
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that the sonic point conditions N = D = 0 are fulfilled, and start the
integration again at the sonic point (with the same L, E and M, of
course). If the solution obtained is always supersonic 1inside the sonic
point, and subsonic outside it, and when R goes to infinity the asymptotic
behaviour of the solution is consistent with that obtained by integration
starting at infinity, then a global physical transonic solution has been
found.

In practice, the first step of the integration (i.e. from infinity)
can be started only at some sufficiently large distance (R = 500, say).
It is reasonable to choose the boundary condition (i.e. the values of V
and VQ there) to be purely spherical Bondi accretion (with zero angular
momentum) i.e. using the value of V which can be calculated from a given
E (L = 0) and VG = 0 (this treatment was also adopted by Hawley and Smarr
1985 even at a much smaller distance R = 50).

A number of numerical integrations, using all the representative
values of E and L, have been performed in this way. It is found that
the global transonic solution whenever it exists is always unique, i.e.
for a given pair of E and L, one can find one and only one value of M
which makes the global transonic solution realizable. There are also two
separate regimes of accretion: Bondi-type and disklike, depending on
whether L is smaller or larger than the critical value which is defined
by the value of E, LC = LC(E). All these conclusions for general flows
are consistent with the quasi-radial case. It is also found that the
absolute value of the radio of VQ to V at the sonic point, Bs’ is usually

less than 0.1 and the sign is negative. This means that the motion of the
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matter in the 9-{Mrection is to tend to leave the equatorial plane
and go towards the surface of the flow.

Figure 13 gives two typical examples of global transonic solutions
for general flows and compares them with quasi-radial flows and spherical
accretion. It is seen that both the effect of rotation and that of motion
in the @-{ﬁjection is to move the location of the sonic point inwards
from that of spherical accretion. This can be understood as both rotation
and motion in the @—direction take some kinetic energy from the radial
motion. Hence the accretion flow has to go further inwards to reach the
sonic point, as the release of gravitational energy increases with
decreasing distance. The following analytic analysis makes the numerical
results in Figure 13 clearer.

Assuming L<<< 1 and IBS|<5<,1, then the accretion flow is nearly
spherical, and one can expand all the quantities of interest at the sonic

point accotding to
2
o(E, L, B) = Qsp(E)[l v 150, (E) + B_OL(E) + ] (2.6.7)

The index sp refers to the Bondi(spherical) solution in the potential
(2.1.4), the index L represents a correction to the Bondi solution due to
a small rotation and the index B refers to a correction due to the small
gquantity BS. All the functions Q depend only on one parameter (energy,

say), as the Bondi solution is a one-parameter one. The results are:

Fig. 13 Examples of global transonic solutions for general flows (the
curve c¢). For comparison, solutions for guasi-radial flows (the
curve b) and spherical flows (the curve a) are also given. Fig.

13a is for L << LC(E) and Fig. 13b for L > LC(E).
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2n - 3 + [k2n - 3)2 + 32(2n + l)Ejl/2 .

E) = ' 6.
Rsp( ) 16E i, (2.6.8)
R
5 :
Vo (E) = ——————fﬂl——§ , (2.6.9)
P 4R - 1)
sp
2 2n+l
fi, (E) = R V" (2.6.10)
sp sp  sp

The small corrections due to rotation and the 9—£omponent of velocity,

V"™, are:
2(1 - 2n)(RSp— 1)3
R.(E) = R (2.6.11)
L R3 [}2n - 3)R + 2n + 5]
sp sp
3
N 4(Rsp - 1) 2(1 - 2n)(RSp - 1)
Vp(E) = = ————5~ [@ " Ton - 3)R__ + 2n + 5] ’ (2.6.12)
(2n + 1)R sp
sp
i, (8) = - 2R - /RS, (2.6.13)
sSp sp
(2n + l)(Rsp - 1)
R (E) = , (2.6.14)
B 2 [(2n - 3)Rsp + 2n + 5]
5 Z(Rép - 1)
VB(E) =~ TGn 3R s onis (2.6.15)
Sp
MOB(E) =0 . (2.6.16)

One sees from (2.6.11), (2.6.14) and (2.6.15) that a small rotation as
well as a meridional circulation always makes the location of the sonic
point move inwards if n > 3/2 (note that BS is negative), and that a

small meridional circulation increases the value of the radial velocity
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at the sonic point. The corrections due to rotation are of the same
order as those due to BS as Figure 14 shows. One can also see something
more interesting from (2.6.13) and (2.6.16): a small rotation always
decreases the specific accretion rate independently of the equation of
state, while a small meridional circulation does not change it at all.
Thus although the location of the sonic point and the radial
velocity at the sonic point obtained from the gquasi-radial accretion
flow model in the last section are not quantitatively correct, the model
can qualitatively describe the behaviour of the general flow. It gives
the correct specific accretion rate, and the most important conclusion

drawn from the model, i.e. that the regularity condition equation

M = M(L, E) (2.6.17)

has a unique solution, is confirmed in this section for the general flow.
One last remark should be made, however. The value of M satisfying
(2.6.17) can only be obtained, unfortunately, after numerical integration
of equations (2.6.1) and (2.6.2). It sometimes seems unphysical as it
requires an opening angle of the flow, ({J, larger than one. This is
because one of the two basic equations, (2.6.2), is inaccurate as it is
derived by terminating the expansions at the lowest possible (the second)
order (cf. §2.2). This problem is not very serious if one is interested
in qualitative conclusions rather than quantitative values. Anyway, 1f
an unphysical value of M appears, one can always divide it by the
corresponding value of the opening angle at the sonic point, a)s, and then

the resulting specific accretion rate, MO, is always consistent with that
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obtained from the guasi-radial flow model. Of course, in order to
get an exact value of M, one can go to the higher order expansions

and solve a larger set of differential equations instead of only two.
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3. Stationary flow: relativistic theory

All the studies in the last chapter are based on a purely Newtonian
model of a black hole. Although it is known from §2.1 that this model
describes the motion of free particles very accurately, in order to see
whether it has the same power for fluid motion, a correct general
relativistic analysis of the problem and a comparison with the pseudo-
Newtonian treatment are necessary. Furthermore, it is apparent that the
pseudo-Newtonian model can only describe a spherically symmetric
gravitational field. It does not work for a rotating black hole which
produces an axially symmetric gravitational field and is described by
the Kerr metric. In this chapter the correct relativistic equations are
used to study transonic accretion onto a black hole, both in the
Schwarzschild and the Kerr cases.

In addition to the assumptions stated in §¢.4, i.e. the accretion
flow is geometrically thin, adiabatic, symmetric with respect to the
axis and the equatorial plane, has negligible self-gravity, and obeys a
polytropic equation of state; it is also assumed that the flow is
quasi-radial (the 9-4xmmonent of the four-velocity of the accreted
gas, ue , vanishes) since, as seen in the last chapter, all conclusions
drawn from the quasi-radial flow model are, qualitatively at least,
correct for the general flow. For a quasi-radial flow, the expansion
scheme given in §2.2 can make a closed system at the zeroth order
(cf. (2.2.5)-(2.2.8)), i.e. the horizontal and vertical structure of

the flow can be separated. It is therefore sufficient to study the
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accretion flow on the equatorial plane, so that all quantities are
reduced to functions of r only.
Geometric units, in which G = ¢ = 1, are used.

3.1 Basic equations

The basic equations describing the accretion flow are:

i) Rest—-mass conservation

(goud);o( =0, (3.1.1)

h TBZ’;BI =0, (3.1.2)

u,T ; =0 . (3.1.3)

In these equations Greek indices ol , B, and 5’ run from O to 3; the
semicolon denotes the covariant derivative; g’o is the rest-mass
density; uO( is the four—-velocity of the accreted gas, which obeys
the normalization condition

u u = -1 ; (3.1.4)
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6 .
TO( is the stress—energy tensor and %XB is the orthogonal (to the

flow) projection operator:

TO«B = g + P)uduB + Pgo<B , (3.1.5)

Uy Uy - (3.1.6)

o8~ &xs 3

Here g is the total mass—energy density and P is the pressure of the
gas, as measured by a comoving (with a fluid element) observer (as well

3
as g’o), gxp is the metric tensor and g<>< is its inverse,
B B
I = § , (3.1.7)
i8]
g(x is the Kronecker symbol,

(3.1.8)

<S g { 1 for 18]
A 0 for of # B

o

In addition, an equation of state should be provided. The polytropic

relations (Tooper 1965)

P = kg%”/” , §= SDO + 0P (3.1.9)

where k and n are constants, are adopted.
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3.2 The Schwarzschild metric

The gravitational field of a non-rotating black hole is described
by the Schwarzschild metric which, when the (—+++) signature is used,

can be written in the spherical coordinate system as

-1
gt't = —(1 - 2M/r), grr = (1 - 2M/r) ’
g =10 g . = rosin
8o~ el ’
and (3.2.1)
s (s o), T = (1 - 2w/,
geg = r_g, g¢¢::r—28in_2 R

B
and all the off-diagonal components of gCXB and of gO( are equal to

zero. The affine connection T?XB is defined as

v o8 g o
r;B-%gXp( o) 9%y 9Pxs (3.2.2)

ax®  ax®  ox”

Its non-zero components in the Schwarzschild metric are (Weinberg 1972)

t t M
r-tr - r-rt 2 !

r (1 - 2M/r)

M

r r
- - , = -r(1 - 2M/r),
D er rP(1 - 2m/r) [ o0

M(L - 2M/r)/r°,

Il
i

r%i% —r(l - 2M/r)51n29 , B it
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9 V)
er: rr - 1/r , [;) - —sinfBcosh ,

)

Il
I

rip: Epf 1/r , ]; = ]_439 cot§ .

= ©

a) Spherical accretion

6

(3.2.3)

In the case
(3.1.1)-(3.1.3)

writting on the

of spherical accretion (u
can be reduced to (by using

equatorial plane)

= ucP = 0)

- ?

the basic equations

(3.2.1) and (3.2.3) and

r
d 2 r d
§°(E§—+§“ ) +ur—§;“:0 y (3.2.4)
du
t dp
(§+p)dr +utdr_o, (3.2.5)
t t du” r. dp
( g + P)(—§ Uu ot u g T uu )+ (I +uu) = = 0 ,(3.2.8)
r r
(0 +py (@ L2y, W ds g (3.2.7)
g dr r r ) T

There are five

t r
u o, u

unknown quantities in the equations, namely, ?0, g’, P,

but g . g , and P obey the two relations (3.1.9), ut and u
follow the normalization condition (3.1.4), and thus only two of the
four equations are independent.

Equations (3.2.4) and (3.2.7) give the relation
d d
__S_ = H ._in (3.2.8)
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where H is the enthalpy per unit rest mass,

H = ( § + P)/g . - (3.2.9)

With the help of (3.2.8), the t-component of the Euler equation (3.2.5)

can be integrated to give
Hu, = ‘Hc<7: const (3.2.10)

-1 at infinity if the gas is at rest there). The r-component of

-
i

the Euler equation (3.2.6) and the equation of local energy conservation
(3.2.7) can be combined to give the central equation for studying

transonic accretion:

%%i = N/D , (3.2.11)
where

D= (1 - bz)urur ~ b2, (3.2.12)
N = (1 + u u ) — urb2 + ;E uuu - ;5 ututur , (3.2.13)

and b is the adiabatic sound speed,

b2 = dP/dg . (3.2.14)
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Critical points occur where both D and N vanish simultaneously.
t
Replacing u with ur by using (3.1.4), the two critical point conditions

D=0and N =0 yield

r. .2 1
(uc) = T (3.2.15)
C
r. 2
2 1 (uc)
bT = = (3.2.16)
-3 2
c 4R, 1 - 3(u))

where R is the dimensionless form of r, R = r/rg = r/2M, and the
subscript c denotes the value at the critical point. The physical
meaning of the critical point is not clear from (3.2.16), as what
appears there is the four-velocity, not the physical three-velocity.
Flammang (1982) has shown, however, that a critical point is a sonic
point for a locally static observer.

In the case of the polytropic relations (3.1.9), the specific
enthalpy can be expressed in terms of the sound speed as

H= (1 - nbz)‘1 . (3.2.17)

Combining (3.1.4), (3.2.10), (3.2.15), (3.2.16) and (3.2.17), one

obtains, after some algebra,

2 3 ‘ P 2
64(Hpg ~ 1)R_ + (}44 - 32(n + S)Hcc:]Rc

2
+ [(ZH + 6) H2 - 108] R +27 =0 . (3.2.18)
o C
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Thus the location of the critical point is determined from a given
constant HcO (the specific enthalpy at infinity) when the polytropic
index n is fixed. All the above results are the same as those obtained
by Michel (1972) and Begelman (1978), but are in a slightly different
form.

Begelman (1978) made an approximate study of equation (3.2.18), and
came to the following conclusions:
(i) There is no critical point for 0 < n< 1/2;
(ii) There is one and only one critical point for n > 3/2, which is
just the one found by Bondi (1952);
(iii) There is one and only one relativistic critical point for 1/2 <<
n< 3/2, which was missed in Bondi's purely Newtonian analysis.

Ray (1980) studied (3.2.18) more rigorously. His results are as
follows.
Case(i) n<<1l - - , which approximately means n << 1/2 because, from

2Hoo

physical considerations (cf. (3.2.17)), it should be true that

H > 1, (3.2.19)
oo

and it is likely that

(Hoo— ==l 1 . (3.2.20)

There is no critical point, consistent with Begelman's conclusion (1).

Case(ii) 1 - Eﬁ?—-<:x1<: 1+ which approximately means 1/2<n
o

<< 3/2. There is one and only one critical point, consistent with

2Hoo



Begelman's conclusion (iii).
1
2Hoo

two critical points lying outside the black hole horizon,

Case(iii) 1 + < n, which approximately means n > 3/2. There are

1< R((:l)< nt 3 <R22)

(3.2.21)

(Note that RC is in dimensionless form by regarding the Schwarzschild
radius rg as unity), contrary to Begelman's conclusion (ii).

An interesting question arrises from Ray's new result in case(iii).
If both of the two critical points are physically possible, there would
also be bistability for spherical accretion flows, as that for accretion
flows with angular momentum, discussed in the last chapter. However, a
very simple argument shows that, of Ray's two critical points, only one,
Réz), is physical.

The key point is that the condition for a physical critical point,

which was adopted by Begelman (1978) and Ray (1980),
RC> 1 (3.2.22)

is insufficient. From relations (3.1.9) it is easy to express the rest-

mass density g . as

2

i/n nb
g = . (3.2.23)

o kin + 1)(1 - nb2)

% , must be positive, and this requires that
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b2< i/n . (3.2.24)

Combining (3.2.24) and (3.2.16) gives

(3.2.25)

This condition is satisfied only by Riz) in (3.2.21).

Thus, condition (3.2.22) works only for n<C1l, because in this
case (n + 3)/4 << 1. It should be replaced by condition (3.2.25) when
n> 1, then (N + 3)/4> 1. Therefore, Ray's conclusion in his case(1i)
is correct, i.e. for n<<1l - l/ZHOQ, no root of equation (3.2.18)
satisfies (3.2.22). However, his case(ii) should be divided into two
subcases:

Case(iia) 1 - —%?—~<:r1<:ZL, condition (3.2.22) is applicable. There

2Hpo
are two positive roots of equation (3.2.18):

o<p V< 1<3®
C C

(3.2.26)

’ 2
Only Ri ) represents a physical critical point.

Case(iib) 1<<n<<1 + , condition (3.2.25) is applicable. One has

2Hoo

now

o< r'H<< n+ 3. g2 (3.2.27)
C 4 c

There is one and only one physical critical point.

Once the location of the critical point in a spherical accretion
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flow is determined from given HOO and n, the rest-mass accretion rate
can be obtained accordingly. Rewrite the equation of rest-mass

conservation (3.2.4) in integrated form
. 2 r
m = 4T r go u = const (3.2.28)

By using (3.2.15), (3.2.16) and (3.2.23), the accretion rate can be

expressed in dimensionless form as

3/2 1 n
f = oTR [4—-——-—-——RC ] . (3.2.29)

Thus, the accretion rate is a unique function of Hoo when the polytropic

index n and black hole mass M are fixed. The regularity condition
F(Hoo, f) =0 (3.2.30)

reduces the number of free parameters by one, so spherical accretion is
a one-parameter problem.

The discussion has been complete. It has been shown that spherical
accretion onto a black hole is characterized by a unique critical point
(whenever it exists) in the flow, while bistability exists only for
accretion of rotating matter, due to the non-uniqueness of the location
of the critical point (a correct relativistic proof will be given later
in this section). This gives an important distinction between the two

types of accretion, with and without angular momentum.
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b) Accretion of rotating matter

For accretion of rotating matter, the basic equatlons (3.1.1)-(3.1.3)

read

du 2 r r<i€
= = —Za = 2.
gl(dr + 3 u ) + u i o, (3 31)
du
. t dp
( g T e i (3.2.32)
(Q + P)(M— ot v EEi Mo - ru¢1f§)
g 2 r dr 2 rr
T T
dpP
=2~ 0
+ (1 + uru ) o , (3.2.33)
du
dpP
(€ +P) — * U G = 0, (3.2.34)
r
du 2 r r d$
( g + P)(dr +u ) + u = - 0 . (3.2.35)

Only three of these five equations are independent, because the unknown

. . N r q)
functions go’ g and P obey relations (3.1.9), and u , u and u obey
the condition (3.1.4). Equations (3.2.31) and (3.2.35) are exactly the
same as (3.2.4) and (3.2.7), respectively. So the relation (3.2.8) still
holds. Thus (3.2.32) can be integrated again to give (3.2.10). In addition,

(3.2.34) can also be integrated to give
HHCP = const (3.2.36)

(3.2.36) and (3.2.10) are the relativistic Bernoullil equations.
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The existence of two counstants along the flow lines occurs because
the flow is stationary and adiabatic, and the background spacetime is
endowed with two Killing vector fields which satisfy the Killing

equation

. +§B.D(: 0. (3.2.37)

Tn this case the relativistic Bernoulli equation is implied

d(Huaga)

T =0, (3.2.38)

here d/dT, is the derivative with respect to the proper time along the
world lines of the fluid. In the spherical coordinate system, the
Schwarzschild metric g(XB is symmetric with respect to the t- and the

(P-—coordinates,

O8yp O2%us

_Ejg__ - —253;— =0 , (3.2.39)

thus the Killing vectors have components

3¢ _ %

(0) 0
o S
2" S, - (3.2.40)

The subscripts 0 and 3 represent t and 4), respectively. Equation (3.2.38)



gives (3.2.10) and (3.2.36). Note that the ratio of the two constants

is

- —L = L = (the specific angular momentum

as measured at infinity)

const (3.2.41)

L is in the dimensionless form by regarding 2M as unity.

Now, combining (3.2.33) and (3.2.35) gives

r

du_ _ yp, (3.2.42)

dr

where
2 ol

D= (1-b7) urur - b°, (3.2.43)

2 2 M M t t

N =1(1+u ur) =W b + 1 urucpucf> + — u u W - = uu ur .

r r 2 'r 2

(3.2.44)

Equation (3.2.42) has critical points where both D and N vanish. In
contrast to the case of Newtonian theory, the physical meaning of the
critical point is not apparent, since what appears here is the four-
velocity, not the physical three-velocity. The measurement of the
three—-velocity depends on the observer, and in relativity there is no
longer any uniform reference frame; all measurements can be made only
locally. In the case of relativistic, adiabatic, spherical accretion

(Flammang 1982), a critical point means a sonic point for a locally
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static observer, i.e. the radial physical velocity measured by this
observer is equal to the local sound velocity. It does not appear,
however, that a static observer is also suitable for accretion flows
with rotation. This can be checked as follows.

The four-velocity of the static observer in the Schwarzschild

coordinate system is

W* - (—— . 0, 0, 0, (3.2.44)
—gtt

and the velocity of the accreted gas measured by him 1is

ﬁx d 8
X
VOL = - B , (3.2.45)
28 de
g
where
Bxp = 8xs """
is the observer's space-projection operator. Clearly,
i i
ve =0, vl e ——— (3.2.46)

the latin index i runs through only 1, 2 and 3. The physical velocity
(ordinary three velocity) of the gas is defined as
1/2

v = (vivl) for a fixed 1 . (3.2.47)

(1)
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By using (3.1.4), (3.2.41), (3.2.46) and (3.2.47), the relations

L= (1- l/R)_l/2 R v(q)) = const (3.2.48)
and

oo mTYR AT (3.2.49)
where

V2= Vipy * v?4>) , (3.2.50)

can be obtained.
Now, the conditions D = N =0 at the critical point, together with

(3.2.46)-(3.2.49), yield two relations

2 2 2 3
Yime = bc[} - L(R_ - 1)/R] ] , (3.2.51)
2 Pl
1 -v (R - 1)
(r)c c 2 2 3
Z(Rc - 1) R3 = 2bc [l - L (Rc - l)/RC]. (3.2.52)
C

The radial velocity of the gas measured by the static observer at a
critical point is not equal to, but is less than, the local sound
velocity. This is not a general-relativistic, but is a special-
relativistic effect because the difference is caused by the ”ZT—factor”

corresponding to the linear rotation velocity of the gas,
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Zf = (1 - quD))’l/Z = [} - LZ(R - 1)/R3J'l/2 . (3.2.53)

Therefore it is expected that the sonic points and the critical points
would coincide in the reference frame of the co-rotating observer.

The four-velocity of the co-rotating observer in the Schwarzschild
coordinate system is

& v yN

w 2(_——-*'10907

N8t AN 7Bt

where jl is the coordinate angular velocity of the gas, JQ_:

) (3.2.54)

WP ap
t ~ dt

u
and the velocity of the gas measured by him would be
~ r
# S u r
v = - = Xv . (3.2.56)
“Epp ¢

All other components of the measured velocity of the gas vanish. Thus

equations (3.2.51) and (3.2.52) become, for this observer,

v =pe (3.2.57)
() c
> 2

5’ — (#)e (5'2 1) = 2b° (3.2.58)
2(RC - 1) - T e e

This is just the expected result that a critical point is a sonic point
and this fact can be realized only by the co-rotating observer.
By using (3.2.10), (3.2.17), (3.2.48), (3.2.49) and (3.2.53), the

constant HOO can be expressed as
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Ho - (1 - 1/m)? -1/2

0o (1 - a2yt [} - v%

0 3
o - L (R-1)/R ]

1/

2 2. -1 2 ,-1/2
- (1 - 1/R) (1= m07) 7 (1= v, a” : (3.2.59)

Equation (3.2.59) together with (3.2.51) and (3.2.52) (or (3.2.57) and

(3.2.58)) can be used to obtain R , b and v {or v, . =b ) from
c’ ¢ (r)c (B)c c

the given constants L and Hoo. After considerable algebra, one can get

5 ZRC - 2 3 2RC -2 5 ZRC -2
[; n (Zﬁz—:—g) + n(n + 2)(Z§;—:‘§) - (2n + 1) Zﬁ;—:—g + %]

L°(R - 1)53 SR -2 _ 2R - 3 (R - 1)(2R - 3)
1 - —S= + [3n® (=S )2 < — 4n(n + 2)—= <
2 2R - 3’ 4R - 3

R c c (ARC - 3)

2RC - 3 5 LZ(RC - 1)~2
+ (2n + l)z§~—:—§ - (1 - l/RC)HCK;] [l - _——_7§*——i]
c RC

2
2R - 2 2R - 3 2R -3 L™(R - 1)
- {?HZ( = ) ( = )2 - n(n + 2)(——9~———fi] [ _ _ﬁ__E_____J

4R - 3 4R - 3 4R - 3 3
c C c R
c
2R - 3
2 c 3
+ n (4RC — 3) =0 , (3.2.860)

which is much more complicated than the corresponding formula (3.2.18)
for spherical accretion, and also than that for accretion with rotation
in the pseudo-Newtonian theory.
The solution of equation (3.2.60) for the location of the critical
point Rc as a function of the specific angular momentum L and the specific

enthalpy H is shown in Figure 15. The graph is very similar to the

co
corresponding one in the pseudo-Newtonian theory, Figure 5b. Note from

(3.2.17) that
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n >chrh‘ ~

ol o\ A N
1 10 100

Fig. 15 The location of the critical point Rc as a function of the specific

enthalpy at infinity Hpp and the specific angular momentum L
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H ~ 1 + E , for E<< 1 (3.2.61)
cQ
because

E = b2 (3.2.62)
—I'loo. -y
It is seen from Figure 15 that for 1<<H < H ., o=~ 1.02, there
o cocrit

exist three formal critical points (e.g. points E, F and G) for a given
pair of L and Hoo' According to the analysis in §2.4 and §2.5, only two
of them,the inner one (E) and the outer one (G), are physically possible
because they are saddle type critical points, while the intermediate
one (F) is a vortex type critical point. Only one of E and G, depending
on the value of L when HOO is fixed, corresponds to a realizable global
transonic solution.

The specific rest-mass accretion rate can be obtained once the
location of the critical point, the sound velocity and the radial
velocity of the gas at the critical point are evaluated. Integrating

(3.2.31) gives
r W = ———— = const (3.2.63)
go T ATTw T
where m is the rest-mass accretion rate and ¢ is the opening angle of

the flow. Using (3.2.23) and (3.2.46)-(3.2.49), the specific rest-mass

accretion rate can be expressed in the dimensionless form as

2 2
. M 2 i/2 b n 2 LR - 1)7-1/2
o= LR - R () [l—v _L(R-1)
w 1 - nb2 (r) (r) R3
2 1/2 b2 n 2 ,-1/2
=R (1 - 1/R) (I——~——§) V(f)(L - v(f))
- nb
= const (3.2.64)
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Figure 16 glves i, as a fuction of L for a fixed Hoo' For comparisorn,

the relevant result in the pseudo-Newtonian theory is also given. This

is calculated using the Newtonian furmula (cf. Figure 10)

(@]

()
—
(W
(Y
—

Fig. 16 The specific rest-mass accretion rate M  as a function of the
specific angular momentum L for a given value of the specific
enthalpy at infinity, HOO - 1.006 (solid line). The relevant
result in the pseudo-Newtonian theory is also presented (dashed

line).
M= rZ 2" Vi - ' (3.2.65)
Two accretion regimes (Bondi-type and disklike), defined in the last
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chapter, are clearly seen in the relativistic theory.

uvantitatively, the specific rest-mass accretion rate is systematicall
y y

overestimated by the pseudo-Newtonian theory. However, as reflected in

the exterme similarity of the shape of the two curves, and in the very

small quantitative difference between them, Paczynski's purely Newtonian

model of a black hole provides a very good description of accretion flows

onto black holes, and greatly simplifies the calculations.

3.3 The Kerr metric

In the standard Boyer-Lindquist coordinate system, the Kerr metric is

-(1 - 2Mr/3 )
_ 0
g(XB =
0
. 2
—-2MarsSin Q/:i)
-A/T AN
oAB 0
g =
0
—2Mar/2£l;
where

2 2
Zﬁ&: r - 2Mr + a ,

2/
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_oMarsin-8/ S
0
0

ASin-0/ =

—ZMar[zigx
0

0]

ZX— aZSiQZQ

> A Sin2 9

(3.3.1)



2 2. 2
r + a Cos 9 ;

N

2 2.2 2 2
A= (r +a) -aAsin Q ,

and a is the specific angular momentum (angular momentum per unit mass)
of the black hole.
The non-zero components of the affine connection, calculated from

(3.2.2) and (3.3.1), are:

il

r-tr = f—t (2Ma2rSin29 - A) i (1 - 2r2/zi),

rt S2A
2 .
fomTge - 2R fowe® 4y - ]
t rt Masin 0 > 2. 2 2 .2
prz e = —EZEZE—— A - 4(r + a)r + 2a r(r - M)Sin 9 ,
2 2
t t Mar 2A(r~ + a )SineCose . 2 . 2
r = = - 281n8€os@ (4 - a"Asin )],
6P @9 22/3[ s J
r = M_é_(l _..2_1"_2_)
tt - Z2 B >
2
Asin“B 2
[ o= Tpe = —os— - 2/z),
pa
[rp= Tgn = = sinfcosf/5
ro_ 1 Z(r - M)
r~rr 2> [? - PaS ’

3"
i
I
>
s
M
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.2
rr _ .4__3}@_2@_ A onp? s 2% . a281n29 (r - M);} ,
b =2 (=2

_ _oMa‘rsin Qcos@ /Z3 ,

1
a @
ot

i

aZSinQ cos@ /ZQ )

. |

) 2...
réQ: -a SlnGCOSQ/Z .

6 sin® cos® 2. ..2
I;tP:——}E—'Z—L(A—aASln 9),

l-—I‘Q - r;r

il

r/Z ,

Ti = ri = ZLA EZM ar + Ma( A - aZSinZQJ (1 - 2r2/z),

r¢ _ r‘b _ 25in 0 cos B ?M2 32 . Mar( A - .51281'_:129)(1‘2 + aZ)J
5 A Z3A Sin29

l" F¢r

2
{2M2a2rSin2@ (1 - -2%) + %(A- 2%5in°Q)

[41‘(1“2 + a2) - 2a25in29 (v = M) ~ %r—‘ } ,

. 222, 2 2 _ 2. 2
r‘ %9 ZSlngch;)se {21\4 a rz(.r + a ) . %LA— aZSéLn 0 (A - azASinzg)]} )
Z Sin

(3.3.2)
By using (3.3.1) and (3.3.2), the basic equations (3.1.1)-(3.1.3)
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keep their explicit form (on the equatorial plane). The equation of
rest-mass conservation, the t- and the ¢>—components of the Euler
equation, and the equation of local energy conservation are, respectively,
exactly the same as (3.2.31), (3.2.32), (3.2.34) and (3.2.35). Thus
(3.2.10) and (3.2.36) also hold here, i.e. there exist two constants
of motion along the flow lines. This is because the Kerr metric in the
Boyer-Lindquist coordinate system is also symmetric with respect to the
t- and CP—coordinates, i.e. the spacetime is also endowed with two
Killing vector fields.

However, in contrast to (3.2.33), the r-component of the Euler

equation is now

+ (1 + urur) < _o, (3.3.3)

which can be combined with the equation of local energy conservation

(3.2.35) to give

s}

~— = N/D , (3.3.4)
r

where

- 105 -



2 r
D =u ub - b (1L +uu),
r r
2r
N = b u (1 +u ur) 5
r r P2

2 2 . r 2 2.t
‘zMr - ar)u urur + (Mr™ + Ma Ju u u®

(3.3.5)

£

t 2 3 r 3 2 2 i
+ Mau uruq:s - (3Mar  + Ma )ucu ud:Y + (r - Ma - 2Mr )uruqbuqb].

(3.3.6)

From the discussion in the last section, it is apparent that a co-rotating

observer is a suitable one for
critical point of (3.3.4). The
physical three-velocity of the

can be obtained by the Lorentz

understanding the physical meaning of the
only non-vanishing component of the
accreted gas measured by this observer

transformation

V(r)
Vo) T2, )R (5.3.7)
($)
where
rr.1/2 “r
Vip) T —(—gttg ) E; ) (3.3.8)
¢¢:U2[’ 1/2 "¢ gt ]
v =-(g*") (-g,.) , (3.3.9)
(CP) tt ut (-g )1/2

tt

are, respectively, the physical radial and azimuthal velocities measured

by a locally static observer.

By using (3.3.7)-(3.3.9) and the normalization condition (3.1.4),

one can obtain the expression
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i/2 2 . =1i/2,. 2 -1/2
(1 - v(f)) (1 - V(CP))

- g 21 -1/2
\1/2 2 -2y dd E(_gtt)l/zL B <f>tl/2] ’

(—gtt)

(3.3.10)

where L is the specific angular momentum of the gas defined in (3.2.41),

and the critical point condition D = O reads
v = b . (3.3.11)
Thus, for adiabatic accretion onto a rotating black hole, the sonic

point is located at the critical point of (3.3.4), and this fact can

be realized only by the co-rotating observer. The other critical point

i

condition N 0 yields another useful relation:

1

2 2
(2r2 - 3Mr a ) {r2(r2 - 2Mr + az) - [}r - 2M)L + ZM%] }
c c c c c c V2
r_ - 2M (®)c

2 2 2 2
+ (r3 - 4Mr2 + AMr - Ma ) L - (8M ar - 6Mar2 - 2Ma3) L
c c c c c

2 2 4
+ (4M2a v, - 2Ma ri - Ma - Mri) =0 . (3.3.12)

By substituting (3.2.17) and (3.3.10) into (3.2.10), the constant

H can be expressed as
oo

~1/2 (e - 2m)L + 2ma)® -1/2

1/ ) 1 -

H = (L - 2M/1) 2(1 - nbg)—l(l - v
o<l

2
~ 5
(£) r2(r2 - 2Mr + a )
(3.3.13)
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Equation (3.3.13) together with (3.3.12) can be used to obtain r.

and Vig)e (= bc) from the given constants L and Hoo- By eliminating

\Y between these two equations one obtains, after quite hard algebra,

(T)c
3 2 2
[n2D3/A _E° — (n® + 2n)DE/A° & (2n + l)EZD/é] i~
2.2, 3 2 2 2 2 2
- [3& CD /AT - 3E2F - (n + 2n)DF/A” - 2(n + 2n)CDE/A

+ (20 + 1)E°C/A + 2(20 + 1)EFD/%} >

+~{3n2C2D/A3 + 3n2BD2/A3 - 3E2G - 3EF2 + [? - (1 - ZM/PC)H;iJEZ
+ (n2 + 2n)D2/A2 - (n2 + Zn)CZE/A2 - (n2 + Zn)DZG/A2 - 2(n2 + ZH)BDE/A2
- 2(n2 + 2n)CDF/A2 — 2(2n + 1)ED/A + (2n + l)EgB/A + (2n + l)FgD/A
+ 2(2n + 1)EFC/A + 2(2n + l)EGD/A} L4

2

quEF - F3 - BEFG + DZCS/A3 + 6n2BCD/A3

- {2[3 - (1 - ZM/PC)H
+ 2(n2 + 2n)CD/A2 - (n2 + 2n)C2F/A2 - 2(n2 + 2n)BCE/A2
~ 2(n® + 20)BDF/A° = 2(n° + 20)CDG/A” - 2(2n + 1)EC/A - 2(2n + 1)FD/A
+ (2n + l)FZC/A + 2(2n + 1)EFB/A + 2(2n + 1)EGC/A + 2(2n + l)FGD/A} L3
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+ E’a - (1 - 2M/rC)H;] (F2 + 2EG) - 3EG2 - 3F2G + 3n252D/A3
+ 3n28C2/A3 + (n2 + 2n)C2/A2 + 2(n2 + Zn)BD/A2 - (n2 + 2n)B2E/A2
- (0® v 20)¢®6/a% - 2(n® 4 20)BeF/a® - 2(a®+ 20)B0G/A% 4 (20 + 1)D/A
- 2(2n + 1)EB/A - 2(2n + 1)FC/A - 2(2n + 1)GD/A + (2n + 1)F2B/A

2
+ (2n + 1)G D/A + 2(2n + 1)EGB/A + 2(2n + 1)FGC/A

2

+

-2
[2(1 - 2M/rC)Hoo - ] E7 L

_ {2 [3 _ (1 - 2M/rC)H;§JFG ~ 3FG° + 3n°BC/A° + 2(n? + 2n)BC/A°
— (0% + 20)8%F/8% - 2(n® + 2n)BCG/AZ + (20 4 1)C/A - 2(2n + 1)FB/A
~ 2(2n + 1)GC/A + (2n + 1)G°C/A + 2(2n + 1)FGB/A
+12(1 - 2M/r )H“Z_ ]F L
c ©oQ
+ (n2 + 2n)B2/A2 - (n2 + 2n)B2G/A2 + (2n + 1)B/A - 2(2n + 1)GB/A
(2 1)G28/A (1 - 2m/ )H‘2 [2(1 oM/ )H'2 SJG
+ n + —_ - I‘C oo + - l"C oo -

-2 2 3 23,3
+ [? - (1 - ZM/PC)%)O] G -G +aB/A +1=0, (3.3.14)
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where
5 2 2 4 2 3 4
A = (2r6 - 7Mr~ + 6M r4 + 33 r —-5Mar + a r2)/(r - 2M) ,
c c c c c c c
B = 4M232r - 2Ma2r2 - Ma4 - Mr4 y
c c c
C = 8M2ar - 6Mar2 - 2Ma3 R
c c
2
D = r3 - 4Mr2 + 4M r - Ma2 y
c c c
2
E = (r - 2M) /rz(r2 - 2Mr o+ a2) ,
c c c c

F = -4Ma(r - 2M)/r‘2(r2 - 2Mr + aZ) ,
c c ¢ c

G = 4M2a2/r2(r2 - 2Mr o+ a2)
c ¢ c

The solution of equation (3.3.14) for the locations of the critical
point r. as functions of the specific angular momentum and the specific
enthalpy at infinity, L and HOO, are showg in Figure 17 for different
values of a. When a = O (Schwarzschild black hole), the graph is perfectly

symmetric with respect to the axis L = 0 (Figure 17a), as it should be.

Fig. 17 The location of the critical point r_ as functions of the specific
angular momentum and the specific enthalpy measured at infinity,

L and H for four different values of the specific angular

OQ 3
momentum of the black hole a. Fig. (a), (b), (c) and (d) are for
a =0, 0.1, 0.9 and 1, respectively. In all the figures curves

a, b, ¢ and d are for HC(): 1, 1.004, 1.02 and 1.085, respectively.
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It is exactly the same as Figure 15 and needs no discussion. For non—
zero, but small, values of a, the asymmetry in the graph caused by a is
very small (Figure 17b), and all the properties for accretion onto a

Schwarzschild black hole still hold. For 1< Hoo<< H there may

oocrit’
exist three formal locations of the sonic point corresponding to the
same L and Hoo' but only two of them are physically possible, and only
onie corresponds to a globally realizable transonic accretion flow; there
exist two separate regimes of accretion: Bondi~type and disklike.

More interesting is the case of a sufficiently large value of a.
When a ;3 0.9 (Figure 17c,d), the effect of the interaction between the
spin of the black hole and the rotation of the accreted gas (spin-
rotation interaction) plays an important role in determining the location

of the sonic point. According to the criterion given in §2.4,

. vortex type —s unphysical
critical point o )

2
. dL . dL
sign (a;~) = sign (2L E;—)
c c

saddle type ‘
- g —
critical point physical

it ig seen from the lower part of the curve b in Figure 17d that there
exist two physically possible locations of the sonic point, thus two
accretion regimes, only for accretion flows with negative angular

momentum. Note that

y g¢4>(CU -SU)
B uq) YT gtc{>(ﬂ+ gtt/gtq))

[
il

_ (r3 + ra2 + 2Ma2) () -SU) (3.3.15)

2Ma r - 2M ’
(SU+ e
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whercbft is the cuordinate angular velocity of the gas, and

2lfa (3.3.16)

w:_g¢t/g¢¢:r3+

2
ra + 2Ma

is the angular velocity of the locally nonrotating observer (cf. Bardeen
et al. 1973). Thus L<0 means j1‘<:(i) , i.e. the flow is rotating in
retrograde orbits. For co-rotating flows (direct orbits, L:><3,J7‘)>UJ),
of the two formal locations of the critical point corresponding to the
same L and H.4 (e.g. points M and N), only the outer one (N) represents
a physical sonic point. The two-regime-character of the accertion is now
destroyed by the spin-rotation interaction, and only the Bondi-type
accretion is possible (the piece JK), i.e. the flow becomes supersonic
when it is far from the black hole. The properties of a co-rotating
accretion flow onto a very rapidly rotating black hole are similar to
those of a spherical (no rotation) accretion flow onto a non-rotating
hole. The case that both a black hole and an accretion flow are rotating
in the same direction seems to be equivalent to both of them being non-
rotating.

Astrophysically realistic accretion flows are likely to be co-rotating
(e.g. in the case where the accreted matter is from a normal star which
together with a rotating black hole form a binary system). On the
theoretical side, it has been pointed out that for the inner regions of
an accretion disk, the angular momenta of the disk and the black hole
are aligned. This is because the rotation of inertial frames close to
the hole causes precession of the disk and eventual alignment (Bardeen
and Petterson 1975). Thus, a clear distinction appears between the
accretion of rotating matter onto a very rapidly rotating black hole and

that onto a non-rotating, or slowing rotating, one. The astrophysical

implications of this distinction need to be studied.
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4. Time-dependent flow: a simple model

The discussion of stationary, adiabatic, regular, transonic accretion
of rotating matter onto a black hole has been completed in the last two
chapters. The results can be summarized in one seritence: the accretion
rate is an eigenvalue of the problem and is uniquely determined by the
given physical situation (fixed specific energy and specific angular
momentum); it cannot be assumed.

However, the accretion rate could be fixed by outside physical
processes (e.g. by the mass-losing star in a binary system), or in
numerical calculations by outside boundary conditions. In this case
the regularity condition (2.6.6) is in general not fulfilled, and then
the regular, stationary, transonic solution is impossible. What will
happen for such a flow? Abramowicz and Zurek (1981) argued that the
flow would oscillate between the Bondi—tyﬁe and the relativistic
solutions. It will be confirmed in this chapter that this oscillatory
behaviour is indeed possible, by discussing a time—dependent model of
the flow. It will also be shown that a large variety of temporal

behaviour can be expected from black hole accretion.

4.1 Formalism

Two simplifications are still adopted here: the relative general-
relativistic effects can be simulated by the Newtonian model of a non-
rotating black hole, and the flow is quasi-radial. As seen in the last

two chapters, these two assumptions are not essential as the qualitative
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conclusiovns are not changed by them.
For the quasi-radial flow, the basic equations (2.2.1)-(2.2.3) can

form a closed system at the zeroth order of expansion (withdrawing the

!

2 :
subscript O and using v = vr, L=r v4>):

9? ov 29 2

at + ? ar\ + v ar r §V = O y (4.1-1)

o v Dv 2. 3 aM 1 2P

e, — — L / 4+ = = O y (4.1-2)
t + VvV al" r + (r . )2 ? ar

oL, , 9L _4 (4.1.3)
t r

P = kS’“l/n ) (4.1.4)

If it is further assumed for simplicity that the angular momentum L is
constant in time (and thus in space), then the above equations can be

reduced by using the polytropic relation

n n 2
- i at 1.
g’ [‘*":—zi] (4.1.5)

where a is the adiabatic sound speed, to

2n éié + a ELX + 2nv §L§ + 2 va = 0 , (4.1.6)
ot or or r

Qv  9v, .92 QU _, (24.1.7)
t r T E)r

- 115 -



where

1.2, 2
W= —SM 12 (4.1.8)

is the effective potential for radial motion.

Regular accretion onto a black hole must be transonic, even if it
is non-stationary, because two boundary conditions still hold: the
radial velocity of the flow is highly subsonic at large distances from
the hole and reaches the velocity of light at the horizon. If one
denotes by rs(t) the location of the sonic point on the equatorial
plane, and by Xs(t) the value of every physical quantity X at the

sonic point, then

X (t)= X(t, r (t)), (4.1.9)
s - s

and

dX dr
S 2X S oX

& - s * (at)s : (4.1.10)

Note from the definition (4.1.9) that

v (t) = —-a (t) , (4.1.11)
] S

and

dvS daS

2 = 4,.1.12
dt dt ( )
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. s . dr :
(v is regarded as negative because for accretion flows v = ac < 0).

From (4.1.10)-(4.1.12) one gets

3 a v
ar (Gt (s ,
_S _ _ , (4.1.13)
dt (Eié) + (EZX)

Jgr's or's

da, , OV Jdv., ,2a
da, (59 G50 - G
= - (4.1.14)
dt (éié) + (éiﬁ)
or's or's

Replacing the time derivatives in (4.1.13) and (4.1.14) with spatial
ones by using equations (4.1.6) and (4,1.7), and after some straight-

forward algebra, one can derive the following two basic equations:

, 1,2V 2a 12 oW

G CEAF E G905 el - G (1 18)

dt (iié) " (éiX) ’ o
or s or's

da_  ena_[(28)° - <-5-—Y>2/4n2] L1222y (28 (2Y
S r s S n S S
at 3aa oV

(4.1.16)

4.2 Limit cycles

Tt is still not easy to fully solve the system of equations (4.1.15)

and (4.1.16). However, the purpose now is to demonstrate that the system

is capable, in principle at least, of producing a periodic variability
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v,

Under certain circumstances. It 1is assumed for the moment that (E;;)S
a . .
and (Esg)s are known functions of r_ and a (their actual knowledge

does of course require a full solution). The system then has the form

(for a given constant angular momentum and polytropic index)

dr
_S_f 4.1.17
dt l(rs’ as) ’ ( )
das
a;— = FZ(rs’ aS) y (4.1.18)

where Fl and F2 are two nonlinear functions. For the sake of definiteness

c
it is now assumed as an example that (é;§£¢:: 0 (which actually means
2

a IV . . .
|(8I)S‘<i%:_|(aljs|). Tn the stationary case at least, this approxima-

tion is not entirely bad. In this case it can be shown that for
consistency with the stationary flow one needs (——X) =:§ r;9/7 where
% is determined by the accretion rate.

The equilibrium curves (EC) F, =0 and F, = 0 in this case (3 = 0.394,
L2 = 3.15) are shown in Figure 18 in the (rs, as) phase space. It can be
shown that Fl is negative above its EC while F2 is positive above its
respective EC. Under these conditions, points A and B are points of
stability exchange, namely, the intermediate branch of the EC of Fl, AB,
is unstable while the inner and outer branches are stable. A small
perturbation from the lnner or outer branch cannot grow in time, while

it does grow if it is from the intermediate branch. The intersection

(equilibrium) point O therefore becomes a doubly unstable nodal point.
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02

01

Fig. 18 The equilibrium curves of equations (4.1.17)-(4.1.18). The limit

cycle is represented by the curve AA'BB' (see text).
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As a counsequence, this system can exhibit a limit cycle AA'BB',
namely, if an accretion flow is in its equilibrium state and is described
by a point on the A'B branch, then the only possible direction of
evolution is that towards B. This is because A'B is above the EC of
FZ’ and in this region F2 is positive, i.e. as can only increase in
time evolution. When the point B is reached, the gradual evolution
cannot continue as AB is unstable. But it is possible that a jump
from B to B' happens. After jumping, the flow can evolve only towards
A, as AB' is below the curve FZ = 0, and in this region as should
decrease in evolution. When A is reached, another jump to A' happens.
The limit cycle here is similar to the one obtained, for example, in
the case of Liénard's equation (e.g. Minorsky 1962). If the functions
F,oand F, satisfy in addition |F21<-< lFll, then the limit cycle is a
relaxation oscillation, the system evolving from A to A' (as well as
from B to B') on a timescale that is short compared to the period. If
{le is not small compared to ‘FlI, the existence of the limit cycle
is not ensured but is still possible, provided that the other
equilibrium points P and P' are sufficiently far from B' and A' (in
the particular case considered here iFZI/IFlIr\/ [(%%%)S|<:: 1).

It is extremely important to note that the S shape of the EC of Fl,
which is the essential ingredient for producing the limit cycle, is a
direct consequence of the general relativistic potential near the
black hole (represented by a pseudo-Newtonian form here). An S shape
is not obtained using a purely Newtonian potential. It should also be
emphasized that only the possibility of obtaining a limit cycle has

been demonstrated, as lFZl may not be sufficiently small compared to
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]Fll in the present approximation scheme. To determine whether such

a limit cycle is actually obtained and what timescales emerge will
require a full solution of the time—dcpendent problem with realistic
parameters. Another point that has tov be made 1is that while it 1is true
that a limit cycle produces a '"perfect clock", it suffices that some
of the parameters assumed constant (such as angular momentum) do
change a little, to change the exact periodicity into a quasi-periodic

variability.

4.3 Conclusion and discussion

The model presented here is very simple and crude. However, some
quite definite conclusions can be drawn even now:

An isolated cloud with angular momentum could tune itself to a
state in which the regularity condition (2.6.6) is fulfilled, but a
non-isolated one may not. This suggests that there are two different
types of accretion flows. One in which the accretion rate is not
determined by outside conditions can be stationary and regular, as
condition (2.6.6) is fulfilled. In the second type of accretion flow
the accretion rate is determined by the outside conditions and (2.6.6)
is not fulfilled. In this case the accretion cannot be stationary, but
is either:

(a) Not stationary and not regular. This means that shock fronts are
developed. This possibility was numerically examined by Hawley and
Smarr (1983).

(b) Not stationary, but regular, i.e. shock free as suggested in this

chapter. The accretion flow undergoes a limit cycle behaviour: it
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oscillates between Bondi-type and disklike solutions. Since the Bondi-
type solution always corresponds to a higher accretion rate, it can

be called high state while the disklike solution is low state.
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5. Astrophysical implications

Many of the objects believed to be black holes accreting rotating
matter show violent variability. Very short term (in the range of hours
or minutes), irregular or gquasi-periodic variations in luminosity of
active galactic nuclei have been monitored in many observational
programs (e.g. O'Dell et al. 1978, Abramowicz and Nobili 1982, Carrasco
et al. 1985, Valtacja et al. 1985, and the recent review of Wiita 1985).
They provide the best upper limit for the size of active regions in
these objects. The evidence for long-term (months or years) periodicities
has also been found in, for example, the light curves of the quasars
30273 (Smith 1965) and 3C345 (Barbieri et al. 1977, Kidger and Beckman
1985), the intensity of the broad emission lines HCK and HB in the
Seyfert galaxy NGC1566 (Alloin et al. 1985) and soft X-ray outbursts
in some other active galactic nuclei (e.g. Marshall et al. 1981, or
Lawrence 1980). In addition, it is well known that the X-ray luminosity
of the galactic black hole candidate Cyg X-1 oscillates between high
and low states, with irregular durations of weeks to years (e.g. Margon
et al. 1971, Sadeh et al. 1979, Ogawara et al. 1982, Ling et al. 1983,
and the recent review of Liang and Nolan 1984).

The mechanism for this variability is not clear. Of course, it could
be a consequence of extremely complex conditions which are, in addition,
different for each object. If this is indeed the case, no general
explanation would be possible. A much more appealing hypothesis would
be, however, that there exists a simple and universal mechanism producing

all these complex phenomena. A theoretical proof that such a mechanism
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operates due Cu some black hole properties would give strong observational
support for the existence of black holes.

Such a universal mechanism may indeed exist due to the non-unique
location of the sonic point in the transonic accretion of rotating matter
onto a black hole. This was noticed a few years ago by Abramowicz and
Zurek (1981) and confirmed more rigorously in this thesis. Non-stationary
accretion flows would most likely oscillate between the Bondi-type and
the disklike solutions. Since the Bondi-type solution always corresponds
to a state of higher accretion rate, and the disklike solution to a lower
accretion rate, the oscillation may lead to a guasi-periodic or chaotic
behaviour in luminosity. This model has two attractive advantages: it is
characteristic only of accretion onto a black hole, because the inner
sonic point is located at a few gravitational radii and therefore cannot
be realized for accretion onto a Newtonian object; it depends weakly on
the inherent uncertainties in the microphysics which plague the models
of black hole environments.

The amplitude of the variations observed in some parameter can be
roughly estimated as (cf. Figure 10)

Meondi ~ MDisk <
,\/

A= 1. (5.1.1)

MBondi

This agrees with the relative luminosity variations 1in quasars (~0.4,
see,e.g. Wiita 1985) and Cyg X-1 (~~1, see, e.g. Liang and Nolan 1984).
Much more difficult would be to estimate the timescale for variation.

The observational data suggest that in the case of Cyg X-1 the mass 1is

- 123 -



f\/lOMQ and the typical timescale of variation ~ 0.1 yr, while in the
case of gquasars the mass is nv'lOBM@ and the timescale ~—1lyr. Thus, if
the timescale depends mainly on the mass, there should be a scaling

E ~ Ml/s. This would not be possible when the timescale t = btdyn with

b having the same value for Cyg X-1 and quasars. If however the quantity
b depends on some other properties of the model (e.g. radiation pressure)
one could in principle explain the variations of both Cyg X-1 and guasars
by the same mechanism. An accurate estimation of the timescales must be
achieved by solving (numerically) the relativistic, time-dependent

equations, in order to confidently compare theory with already existing

observational data.
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