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I. INTRODUCTION

The common belief among physicists at the end of the past century
was that Newtonian mechanics could provide an accurate modeiling of
natural phenomena. If all intial data could be collected for a given
system, one would be able to predict completely its future evolution by

simply solving the associated deterministic equations of motion.

Later, it became however evident that this approach was not
manageable for macroscopic systems, due to the large number of degrees
of freedom involved. To study such systems a statistical approach was
introduced which makes extensive use of probabilistic concepts (]).

In this way one gives up a detaiied,'deterministic description of the
system in favour of a phenomenological one in which only averaged
quantities are considered. These slow-varying variables are however
allowed to fluctuate; and in fact their time evolution towards equilib-
brium is described in general by coupled non-linear differential equa-
tions in which the right-hand sides are written as a sum of deterministic
and fluctuating forces (Langevin egquations). The deterministic Newtonian
equations of motion become then stochastic differential equations (*)_

On the other hand we now understand that Newtonian mechanics
cannot give a detailed description of natural phenomena because of

the advent in physics of Special Relativity and Quantum Mechanics.

(*) For a complete introduction to stochastic methods in Physics see
for example ref's (2,3,4). Moreover note that in practice the Newton
equations are not fully deterministic; in fact, as recently discovered,
even quite simple systems of differential equations have the property

of giving rise to essentially unpredictable (chaotic) behaviour (5).

As known, Quantum Mechanics has an essential probabilistic content which
makes its methods and techniques very similar to those of Statistical
Mechanics; and really a Quantum Statistical Mechanics can be consistent-

(n

1y constructed .

Furthermore, combination of Quantum Mechanics with Special Re-
lativity requires the introduction of Quantum Field Theory. In one of
its possible formulations this theory can be elegantly summarized by

(6,7,8)

the Euclidean generating functional , Which is written using

standard notations in the following way:
o AL Sle)s T
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Consistency with Special Relativity (or better with SO(4)-invariance)
is automatic if the action S[C<] and the coupling with the external
source IJ~% are scalars. Z is also consistent with Quantum Mechanics
since the sum over all configurations, implicit in the definition of
the previous functional integral, clearly implements the quantum super-

position principle.

What is now remarkable is that Euclidean Quantum Field Theory
can be interpreted as a statistical mechanical system. In fact if one
makes the correspondences: temperature <— -, Energy < S[CPJ, then
Z becomes the partition function of a statistical field system in 4+1
dimensions (*). The equilibrium properties of this system can be derived
by studying the asymptotic Timit of equations explicitly involving the

15). Then stochastic

5th time variable, namely of Langevin-like equations (
concepts and methods vigorously enter the domain of quantum field theories

contributing, from a new point of view, to the understanding of the

(*) There is a wide literature about this connection; see for example

ref.'s (7-10). For some recent new results see ref.'s (11-14).




physical content of these models (*)_

Another element which is now playing a more and more important
role as an essential ingredient of quantum field models is supersym-
metry (]8). Supersymmetric field theories exhibit in fact quite remark-
able and unique features, and among those their very good ultraviolet
behaviour, due to some "miracolous” cancellations of divergences (19).
However, another remarkable property of supersymmetric theories has
been pointed out recently: if one looks at the corresponding generating
functional Z,it is always possible to transform the functional integral
into a Gaussian one by mean of a suitable change of integration variables

(20’2]). In the cases in which this change of variables

(the Nicolai map)
is local, one can interpret it as a stochastic differential equation

(again of the Langevin-type), and hence one can use all standard stochastic
techniques to extract further physical information on the theory (22’23).
Supersymmetric field theories possess thus a richer stochastic structure
than standard field models which makes then the connection between
Quantum Field Theory and Statistical Mechanics even more stringent and

deep.

This work presents a discussion of some aspects of such inter-
esting connection between supersymmetry and stochastic properties of
quantum field theories, with special emphasis on the new perturbative
technique that this connection produces. After a short introduction on
standard stochastic techniques, with applications to "stochastic quan-
tization", we discuss the definition and the properties of the Nicolai
map in supersymmetric theories. Taking a twe-dimensional model (N=2

Wess-Zumino model) as an example, the stochastic interpretation of Tocal

(*) In this context note that, as shown in ref.'s (16,17), there is a

strict relation between the different approaches of ref.'s (11-13, 15).

Nicolai mappings is studied in detail, together with the new perturbation

expansion which the local transformations automatically produce.

Then a perturbative study of the Tocal Nicolai mapping in the

case of four-dimensional N=1 supersymmetric Yang-Mills model is given

by computing at one-loop, using the perturbatively inverted map, two-

and three-point Green's functions. Only in the light-cone gauge these
results coincide with those obtained in ordinary perturbation theory,
thus confirming that a local Nicolai mapping for the theory is possible
only in this épecia] gauge. Finally analogous computations. are performed
also for the four-dimensional N=2 supersymmetric Yang-Mills theory in
the light-cone gauge; also in this case the results agree with the

standard perturbative ones.



I1. SOME RESULTS OF THE STOCHASTIC APPROACH TO PHYSICAL PROBLEMS

I1.1 The Brownian motion

In the first half of the past century, the famous botanist R.
Brown observed that, when suspended in water, small pollen grains are
found to be in a very irregular state of motion. A satisfactory expla-
nation of this phenomenon (the so called Brownian motion) came only at
the beginning of this century when A. Einstein published his famous

4
work (24)

. In it he showed that themotion is caused by the impacts on
the pollen grain from the incessantly moving molecules of Tiquid in
which it is suspended. Moreover the motion of these molecules is so
complicated that its effect on the gfain can only be described in
probabilistic way: this recourse to a statistical explanation was really
a new thing and can be regarded as the beginning of a stochastic model-
1ing of natural phenomena.

Some time after Einstein's explanmation, P. Langevin presented

a new simple derivation of it (25)

. The starting point is the observation
that on a small pollen particle of mass m immersed on a fluid, there

should act two forces:

1) a friction force; one can assume that it is given by the same

formula of macroscopic hidrodynamics:

F=-eAa" c{:GTr"’G.J
where v is the velocity of the particle, of transversal dimensions a,

and ﬂ is the viscosity of the fluid;

2)  a fluctuating force h which represents the incessant impacts
of the molecules of the fluid on the Brownian particle. This force h
is a stochastic or random force, the properties of which are given only

in an averaged way.

The Newton's equation for the velocity of the particle is then:
arie) + ¥YU(e) = T(t) (2.1)

with ¥= 2% and ¥ = h/m. Eq.(2.1), the so called Langevin equation, is
a first simple example of stochastic differential equation. To proceed
further we assume that ¥(t) has a Gaussian distribution and then, by

averaging over a large number of equivalent systems one gets,

<3I(eYy=0 (2.2)
<EE) (N> = q8le-e) | q- 20KT

(< > means ensamble average; T is the temperature of the fluid:, K
the Boltzman's constant). With these specifications, by integrating
eq.(2.1) one can calculate for example the diffusion coefficient D, to

find the Einstein's results:

Do KT
€T n] a,
Since §(t) is a stochastic variable, also v(t) obeying eq.(2.1)
is a stochastic varfable; then we may ask for the probability density

(*) .
p{v,t)" ’. The quantity

dP = plv,t) dv

is the probability of finding the particle with its velocity in the
interval (v,v+dv). The equation of motjon for p can be derived from

eq.(2.1) and it is given by

2
’DE =% gg’U'E! +~6“ wT 2°F (2.3)
2t @ m CY

(*) For a brief introduction to stochastic and probabilistic concepts

see Appendix C.




26). Given the

which is a simple example of Fokker-Planck equation (
initial distribution p(v,0), one can obtain p(v,t) for any later time

by solving eq.(2.3), and thus any average value can be obtained by

integration:
+ 0o
< et > = g dv G(v) plv,t)
) -ag

(G is an arbitrary function).

This example, even if extremely simple, shows many of the general
features of a stochastic approach to a physical problem. In the following
a brief study of 'generalized’ Langevin equations will be given and the
connection with the corresponding Fékker-PTanck equations will be explicit-

1y discussed.

Finally, let us mention that the study and analysis of the
Brownian motion have become nowadays much more quantitative and sophis-
ticated; thanks to the use of coherent Taser light, one can study the
motion of much smaller particles than the traditional pollen by detecting
their scattered Tight. It is with the use of these modern techniques that
important results about the sizes of viruses and macromolecules have

been obtained (2).

11.2 Langevin equation and Fokker-Planck equation

Given a stochastic variable x(t), a general Langevin equation

can be written in the following form (2’3):

% = fix,t) + glx,t) ¥ (t) (2.4)

where f is the drift or friction force and g is a given function. The

stochastic force jf(t) is again assumed to be a Gaussian stochastic process

(*'k) .

with zero mean and $-correlation
<¥wy>=0 YW N >=SE-£)

The fundamental property of the Langevin equation {2.4) with S -corre-
Jated noise is that it describes a Markov process: the conditional pro-
bability at time t, depends only on the value of x(t) at the next
earlier time & . This fact can be naively understood by noting that
a) a first-order differential equation like (2.4) is uniquely deter-
mined by the initial condition and b) the §-correlated noise E(t) at
a time t<t,, cannot change the conditional probability at a later
time t >t -

Usually a general solution for eq.(2.4) cannot be given. In order
to solve it one has to use some approximatjon methods to write down a

perturbative solution as a series in some small parameter appearing in

(**) Note that from a rigorous point of view, writing a stochastic dif-
ferential equation in the form of éq.(2.4) with the specifications of '
eq.(2.5) is ambiguous and mathematically incorrect (see for example
ref.'s<27, 2, 3, 28)). A more precise approach would require the sub-
stitution of eq.(2.4) with the following integra1£§quation:

&) - x(o) = fi(xw) ,t)dt’ 4+ L q (<, £') dar(t')
where w(t) is a Wiener process; the above integrals are stochastic
jntegrals whose precise meaning must be given>for example in terms of
Ito differential calculus. Only using these precise definitions one can
state and prove theorems on the existence and uniqueness of the solutions
of stochastic differential equations (29). However in the framework of
perturbation theory the expression {(2.4) is sufficiently well defined
and consistent once precise boundary conditions are taken into account.



eq. (2.4); we will see later in a specific example involving Quantum
Field Theory how this procedure can be explicitly worked out. However
there is also another possibility: we can set up a Fokker-Planck equa-
tion by which the probability density of the stochastic variable x(t)

(3,30-38)

can be computed . To do so, one has first to compute the so-

called Kramers-Moyal expansion coefficients:

4
14 i T-e0

D) = & K & [reen -]

wie)y=2

where x{t+z ) {Z>0) is a solution of eq.{2.4) with initial condition

x(t) = z. By first writing eq.(2.4) in integral form:
e

R(e+T) -2 = [ At {i(xw),t‘) + @(x(ﬁ‘),t’)}'(_k')}
£

and then expanding f and g in powers of (x(t')-z), one easily gets the

following results:
D{‘)(",t) = :F(":t) + ﬁ (ﬂltB Dﬁ 3(":‘&)
N 2
DY (k) = [*3 Cx,t)_-} (2.7)
B () = o ne

From the definition of conditional probability p(x,t +7T |x',t),
it follows that the probability density p(x,t + T ) at the time t + T
(z»0) and the probability density p(x, t) at the time t, are connected
by:

F("l t+t) =/c\x‘ F(_x)t-b?_‘ lx',-f_) FL"’:t> (2.8)

Assuming z small, from this relation it is possible to derive

a partial differential equation for p(x,t), the so-called Kramers-Moyal

expansion:
2 ch't = Lhn C) - ch'tB (2.9)
with
a ‘; 12
2 w)
L_wcx.t) = 42“ ( ?K> DUonED (2.10)

Since the probability p(x,t|x',t') is the distribution p(x,t) for the
special initial conditions p(x,t') = $(x-x'), it follows that also
p(x,t|x',t") satisfies eq.(2.9), with initial conditions: p(x,t'[x',t')=
= §(xx").

It is also possible to write down an equation of motion for
p(x,t|x',t') in which differential operators with respect to x' and t'
appear. This equation is the differential counterpart of the so-called

Chapman-KoTlmogorov equation for Markov processes, and reads:
L
[ — Tgry . Tyt
"a?E' blxelnt!) = o ) Plr1) 2

where

¥ 1 g ;g? I)Lh) oy ( = n
LM (<, = — <t ?x') (2.12)

is the adjoint operator of (2.10).

A fundamental result concerning the expansions (2.9) and (2.11)

is the following (39’3):

- 10 -




for positive transition probability p(x,t{x',t"), the above expansion
either stops at first or second term, or it must contain an infinite

number of terms. We are mainly interested in the expansions (2.9) and
(2.11) which correspond to the Langevin equation (2.4); in that case
the expansions stop at the second term and eq.(2.9) reduces to the so-

called forward Fokker-Planck equation:
%F(",tlx"?f} = LFP (_K',i:) . ‘F(_x‘t\ x'lt'> (2.13)

with:

L ooe) = - 20700 «

2* p® (1)
Fe ==

E) (2.14)

An analogous equation holds for the probability density p(x,t). On the
other hand eq.(2.11) reduces to

+

;i-t, Platlxtt) = — LFP Cht') - FCx.tlx'.t‘> (2.15)

with

F

which is the backward Fokker-Planck equation; it can be obtained from
eq.(2.13) by time reversal. The initial conditions in both cases are:

plx,t1x',t) = plx,t [x',t') = & (x-x').

Many different methods for solving Fokker-Planck equations have
(3)

; here we would like to mention that solutions can
(3,8)

been developed
be given in terms of path-integral . For example in the case of
the probability distribution p(x,t), the solution of eq.(2.13) can

be written in the following form:

- 11 -

+ 4 z = »
ey = B R ¢ B 2L

B PRV SIS RTE)!
F(x;t) =f 40 (KL-&)) ?(."'e“t,) e Jo

. (2.17)
) ' n dx(t;
ALY = T ey, kT
e [2r de 1) ]
where -
* 2
N _ 4 _(x-nm) i d D
OC".Xy =z B * 7T Tdx : (2.18)

The function 0(x,%) is called generalized Onsager-Machlup function; it

is a thermodynamic potential related to the rate of entropy production.

I1.3 The stochastic quantization

As an application of the previous concepts and definitions to
Field Theory, let us briefly consider the new scheme of quantization

proposed some time ago by Parisi and Wu (15’40).

Let us take a physical system described by a field 4?(x) in a
D-dimensional Euclidean space (extension to Minkowski space is discussed
in ref.'s (41,42). For simplicity, we assume that q>is a scalar; how-

' (43-45) (15,46-58)
» vector and

fields can be given). The dynamics of 43 is described

ever suitable generalizations to spinor

tensor (59,60)

by a Lagrangian czi , which, for example, can be taken of the form

L = 4 ('3,4;)24- 4w $* o+ % <\>3 (2.19)

- 12 -



We are interested in computing the Green's functions of the theory,which

in a functional approach are given by the following functional integral:

P9 R (."n)>° =
e ¥ fgs# e” > (2.20)

where S:fdbx cf is the action.

When we use eq.(2.20) we choose what one can call a 'static'
point of view, in the sense that we assume the system, interpreted as
a statistical system, in equilibrium at a given temperature (choosen
to be unity for convenience). And in fact eq.(2.20) is nothing else but

a sujtable Gibbs average in equilibrium statistical mechanics.

However we can also adopt a 'dynamical' point of view and describe
*)

the system in terms of non-equilibrium statistical mechanics ( JWe . assume that the

fielddis alsoa function of anadditional fictitious time t: b= thy Gy = d(x, £).

The system is coupled to a heat reservoir at a given temperature,
but at the beginning is not in equilibrium with it. It is prepared at
the initial time (which can be always taken to be t = 0) in a given
configuration 4>O(x); only for large values of t (really in the 1imit
t—eo) # (x,t) will reach the equilibrium configuration. The crucial
point now is to give the 'stochastic law' according to which th evolves
from the initial configuration q)o to the equilibrium. There is a large
arbitrariness in choosing this law; however one usually assumes that

the evolution in the extra time t is governed by a Langevin equation:

(*) A different stochastic approach to field theories can be given along

(61)

the Tines of the so-called stochastic mechanics ; for details see

ref. {27) and the papers there quoted.

- 13 -

+ T(X,t)

gd;(xt)__:_ %SE¢]
EX i) b= doxE) (2.21)

*
where ¥ (x,t) is a multidimensional Gaussian white noise ( ), one for

each space-time point (and field component):
{E¥(x,£)Y> =0
<Y 0at) TG e)> = S =) S(e-2') (2.22)

(as usual < > means expectation value with respect to the stochastic
variable ¥ ).

Since 4>(x,t) obeys eq.(2.21), it is now a stochastic variable

and the relevant correlation functions can be computed in the usual way:

dta,t) - lmta))= f934> pLd ] bt - Plen £2)

(2.23)

where p[cp,t_] is the probability density associated with the stochastic
process 49 . From eq.(2.21) it is easy to compute the drift and diffusion

coefficients (remember eq.(2.6) and (2.7)):

h“)[+.t] - - %24‘543‘]

peodennd

n?ld,t] = 4 5 (2.24)

p[e,t] satisfies then the following Fokker-Planck equation  (see
eq.(2.13)):

(*) Extension to Poisson noises has been proposed in ref.(62). A modi-

fication of the Langevin equation (2.21) has been studied in ref. (63).

- 14 -




%Fwﬂzfdgls¢[ss[ﬂ [M]] s_,_t__.t.JJZ (2.25)

(a suitable regularization is understood in the right-hand side of
eq.{2.25)).

The stochastic approach to quantization is based on the following

property:

Vi L b (aat) - Plen,t)y = <POGY - - EIERPA

tea (2.26)

or equivalently,

-S

[e4e= (2.27)

42?£liﬂﬂ. P [f4> : i:]

in other words at large times the probability distribution reaches the
equilibrium one and the 'static' definition of eq.(2.20) is recovered
(the 1imit in eq.(2.27) is a weak limit, and the equilibrium solutions

*)

of eq.(2.25) exists only in a weak sense; see ref.(64) for details)

(*) A11 the advantages of this approach are now transparent. First of all
stochastic quantization clearly represents a new independent kind of quan-

tization of field theories, which is particularly relevant for gauge
theories (]5’55). HMoreover the dynamics in the additional time is non
trivial and gives rise to the possibility of a new kind of regularization

the so-called 'stochastic regularization' (65,45,66,63,72)

. This produces
the possibility of renormalizing the theories at finite extra time (i.e.

before the limit t — “ﬂ(67’68)
(869)

, making possible an independent computation
of critical exponents . Finally, and this is the original motivation,
the additional time t can be considered as a computer time; the stochastic
quantization approach can be then used as an algorithm for computer Si-

mulations in Quantum Field Theory (70)

- 15 -

Many different proofs exist of eq.{2.26) and eq.(2.27) (64’54’7]-76§

here we would Tike to mention an approach based on a diagrammatic technique

(65’75’76’77). The idea is to perturbati-

which will become useful later
vely solve the Langevin equation (2.21). First of all this equation canbe

transformed intoan integral equation in momentum space:

P (<) = Jte\'\:‘ G (r; t-t') { flet') -

(2.28)
B
d - 1
-3 [ dCra) B er ) §
where G is the forward stochastic propagator
- (t-t')(l&‘d-m") .
G(r)e-t)= o(e-v) ; (2.29)

we choose for simplicity the boundary condition 4Xx,0) = 0. Solving
eq.{2.28) by iteratidn one arrives at a power series expansion of 4> in
the coupling constant, which can be diagrammatically written in the fol-

Towing way

i . %
- s 3+ R
4; o—x 3 D_k‘ (2.30)

where we denote G by a Tine and ¥ by a cross. The n-point Green's
function <: 4>(x1,t ¢>(x >t) ;> can be now written in terms of

the so-called ‘stochastic diagrams', obtained by joining together the
various crosses in all possible ways according to the rules (2.22). One
can prove that in the Timit t —» o8 the sum of all these stochastic
graphs coincide with the standard Feynman diagram expansion of the

n-point function; and this is another way to express eq.(2.26).

- 16 -



The correlation functions (2.26) of the stochastic variable #(x,t)
can be formally obtained from a generating functional Z[Jj in the following
*
way ( ):
2]
5" Z[x]

) bl ed) =

STt - $T(enartn)

T=o
(2.31)

It is easy to check that Z has the following expression (7]’]6):

Z[x]= fm_(a?) 40 (%) pLé.o) S(d-dg)-

[

'Iai {%guﬂa} (2.32)
e °° ;

<ﬁ>5 is the solution of the Langevin equation (2.21), solved with
initial probability p [¢,O] . To define the measure dLL($),we slice the
interval [O,t] in N infinitesimal parts £ , with tn =n & ; if <P\._“

are the field configurations at time tn’ then:

an (¢) = Xm T D,

(]
In other words this measure is a product of usual four-dimensional
functional measures. The & -function js a formal expression which assures
that the integral (2.32) is performed over the solutions of eq.(2.21); it

can be more correctly written as:
. sk
S(4-b5) = S(4+ T -§> det (23

where the determinant is the Jacobian of the transformation ¥ = fF .

(*) Functional approach to stochastic problems has been also studied in
ref.'s (78,8,67,79,80).

- 17 -

Choosing propagation forward in time this determinant can be ex-
plicitly computed, giving at the end, after integration over dLu(X), the
following expression for Z:
t
' - jdt'Jd&{ L +7é (
o
251 [206@) pT8] ©

with

2.33)

£*°S

Lot (ee) 2 SR e

L3

M-

On the other hand, if we choose propagation backward in time , we get for

Zback. [J] the same expression of eq1(2.33) but with

. s 2 4 SZS
L. = AE(‘P‘* %@ Tz g (2.35)

in place of L+._ The 'Lagrangian' (2.34) is nothing else that the genera-
Jized Onsager-Machlup function already encountered in the previous section;
and in fact eq.(2.33) is exactly the analogue of eq.(2.17).

However one can also express the Jacobian det(3 3/54’) by introducing

| (e
aet (34) = f“mw) e(F) e [ %63

suitable anticommuting variables L‘) . \_-\3 :

What is remarkable is that if one properly choose p[¢,0] , namely
p[tp, 0] = S(*D(o) - %D(t)) (i.e. periodic boundary conditions),

- 18 -




*
then the system reveals an hidden supersymmetry ) . In fact Z[;;] can

be now written as:

_ [ar [ Zemef
Z[3] = fanw) dopysa (@ e (2.36)

with
"~y L3 2 PR 2
i 83 £°S
=%¢+E<§>+‘*’(Dﬁ?,z>‘1’ (
2.37)

This Lagrangian manifests a sort of non-relativistic supersymmetry; in

fact it changes only by a total time derivative under the following

transformations:

S - - (e EF)
Sip = a(%*%)
=3

(2.38)

> 2

sp- 2 (-
B

e

{(*) The presence of this underlying .supersymmetry was first .

noted in ref. (22); then it has been studied by many authors, see ref.'s

(71,72,67,81,82,83). Finally it is interesting to observe that, by a similar

mechanism, any gquantum mechanical system reveals an hidden supersymmetry;
see ref. (84).

- 19 -

where &, £ are infinitesimal anticommuting parameters. And this is
clearly a first important connection between stochastic properties of a

field theory and supersymmetry.

To finish, let us stress that in this case the full stochastic
interpretation of the system is really recovered only in the limit
t — oo 71, 83’85)2 In fact having chosen periodic boundary conditions,
there is no clear causal interpretation of the Langevin equation (2.21),
which on the ohter hand has to be interpreted as a forward-time process
if one wants to preserve its stochastic character. If one carefully
performs the integration over the anticommuting variables in eq.(2.36),
one really discovers that with periodic boundary conditions the generating
functional contains both the forward and the backward dynamics in the

fictitious time t. Explicitly one gets:

2[03] = | Zp 03] - Zea I ]

Only in the 1imit t = ¢, where any trace of specific boundary
conditions disappear, cne recovers the standard stochastic interpretation

for Z[:f] , since, if the underlying supersymmetry is unbroken:

‘t oo

Xm 2 [T] :—'—/la:;o Z g [7]

- 20 -



III.  STOCHASTIC PROPERTIES OF SUPERSYMMETRIC FIELD THEORIES

II1.1 Nicolai map and stochastic identities

Among quantum field theories, those exhibiting supersymmetry
invariance have attracted more and more interest due to their peculiar
features. It is well known, for example, that supersymmetric field models
present very remarkable cancellations of divergences in the perturbative

(19)

expansion ; even more in some special cases of extended supersymmetric
. : C s . 86-89
theories one obtains vanishing B -functions ( ). Furthermore, some

relativistic supersymmetric models exhibit remarkable stochastic properties.

This fact was first realized in ref.(22) in which it is shown the
possibiTity of constructing supersymmetric theories from classical
stochastic equations. In addition to that another important property of
supersymmetric models was first pointed out in ref.'s (20,21). It is
suggested there that, after integrating out the fermionic fields in the
Euclidean functional integral which defines the theory, the resulting
partition function can be rendered Gaussian by performing a suitable

change of bosonic variables (Nicolai map).

The existence of the Nicolai mapping is essentially a consequence
of the fact that the vacuum energy for supersymmetric models vanishes if

(90). In absence of interactions, this

the ground state is supersymmetric

just means that the number of fermionic and the number of bosonic degrees

of freedom are equal. For interacting theories the vanishing of the

vacuum energy is equivazent to the condition that the Euclidean functional
*)

integral is a constant . It is then quite natural that unbroken super-

symmetric models can be also characterized by some properties of the

(*) As it will be apparent in the following, this constant coincides

(120)

with the winding number of the Nicolai mapping

- 21 -

(91)

corresponding functional integral measure

To be specific let us consider an Euclidean supersymmetric theory
containing some scalar fields ‘#i(x) and the fermionic partners L}%(x),
which are usually Majorana spinors. For simplicity we assume that all
auxiliary fields have been eliminated. The lagrangian of the model can

be written as the sum of a fermionic and a purely bosonic parts:

L (&, %9;9) = Lald9)+ L(dw;9) G
where we can write in general:

Lo = £ B DEPP (3.2)

(g is the coupling constant). Since the expression of “fF is quadratic
(92)

in the fermions, one can integrate them out in the functional integral s

obtaining as a result the Matthews-Salam determinant (93):

J‘&“T’ S e—jdxiz [ﬂ‘&th(@ 3)J %. (3.3)

In this way one can transform the functional integral measure

_deuf
c%;& = éfﬁ%? 533{53 & Lf’ e

into a purely bosonic one:

- J.Gchl?E
du = &HF[MB(#)Q)‘J e - (3.4)
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If supersymmetry is an exact symmetry, there exists then a transfor- For gauge theories, the presence of a gauge fixing term in the Lagrangian

mation T of the bosonic variables: ’ which violates supersymmetry, s1ighlty modifies the above property 3);
9
in that case (21 the Jacobian of the corresponding Nicolai mapping is
. — . ) E equal to the Matthews-Salam determinant times the Faddeev-Popov determinant.
T3 ¢ %l HESHCIEIED ‘ . o T
(3.5) This property of admitting a transformation Tg is clearly a fundamental one
and it can be taken as-characterizing field theories with unbroken super-
with the fo110Wing properties: . symmetry.
L . . . . . . (96,23,98) . . .
1) Tg is invertible at least in the sense of formal power series; The simplest example of Nicolai mapp1ng( 05 1? obtained in
97-105,80,85
the study of Supersymmetric Quantum Mechanics *7727"", The Euclidean
2) Lgldsg) = 1 5 2 4 total deriv. (3.6) Y persymn e v

Lagrangian is
(this total derivative can be eliminated by choosing suitable

L=43+ i[vi] L (V)P s

3) the Jacobian of the transformation (3.5) equals the Matthews- where q(t) is the bosonic varfable and P (t), :F(t) are the corresponding

boundary conditions};

Salam determinant, i.e. anticommuting ones; V(q) is the superpotential (a prime means functional
derivative with respect to q). The Nicolai mapping is simply:

4
det _3_35:;) } = [a@t INCT ):) (3.7) .

. (3.9)

From eq.(3.6) it follows that the measure (3.4) becomes, in terms of the

(%) In fact when expressed in terms of the Nicolai variable X (t), the bosonic

Nicolai variables ., Gaussian wi i .
;f1, ussian with zero mean and covariance one part of the Lagrangian becomes:

Lo = 4 5= 3. V(1)

(*) It is interesting to note that the fundamental property of the super-

symmetric functional integral measures to have a Nicolai mapping has a and the Jacobian of the transformation coincides with the Matthews-Salam
superspace analogue: the Jacobian for the change of variables in an determinant: det {ci + Vu(q)—f
: N .

(94)

integral over unconstrained superfields is always equal to one H
The proof of the existence of the Nicolai mapping in unbroken

this means that the measure is unique and universal. This property, as (106-108,91)

. . supersymmetric models can be based on a recently developed method
shown in ref. (95), has also important consequences for standard non- persy y P

which direct truct , i ive way.
supersymmetric field theories. jch directly constructs the map, step by step in a perturbative way
The central point of the construction is the introduction of an operator

R which generates infinitesimal shifts in the coupling constant g of a

- 23 -
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generic supersymmetric theory such that the Jacobian of the finite shift
is equal to the Matthews-Salam determinant originating from the integral

of fermionic variables. The Nicolai mapping is then obtained by integrating
the coupling constant flow generated by R using the free theory as initial

value; it turns out that:
(3.10)

Note that this procedure has also the advantage of possessing a graphical
expansion -in terms of suitable tree diagrams (see ref. (109) for an

example of application).

From the above method of expficit construction of the Nicolai map,
it is also clear that the relation between the Nicolai variables and the
old bosonic ones is in general non-local and non-polynomial. Neverthelesss,
there are some models for which the mapping becomes local and polynomial;
relevant examples are the Supersymmetric Quantum Mechanics (Took at eq.
(3.9)) and the N=2 supersymmetric Wess-Zumino model in two dimensions

(*)

(which will be discussed in detail in the next section) ’. In these

cases the map can be interpreted as a stochastic differential equation

which closely resembles a Langevin equation (23)

. Thus once a supersym-
metric theory possesses a local Nicolai map, we can automatically describe

it in terms of stochastic processes; we will return later on this point.

(*) Other Tower-dimensional models which admit a local Nicolai mapping
are discussed in ref.'s (110,111,127). Furthermore note that at least
for non-gauge theories, it is possible to give some general conditions

for the existence of a Tocal mapping; see ref.(112) for details.
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‘3—
Another approach to the whole matter is however possible (170 ]16)‘

It originates from the observation that in some supersymmetric theories
certain local combinations of bosonic variables (stochastic variables)
satisfy free-field vacuum expectation values, the so-called 'stochastic
jdentities’'; relevant examples arecertain classes of four-dimensional
supersymmetric Yang-Mi1ls theories in the light-cone gauge.The connection
with the previous Nicolai approach can be easily found. Since the expec-
tation values of the stochastic variables can becalculated by using the
functional measure of the free thedry (i.e.by simply calculatingwhite.noise
avereges), these variables are obviously independent.of the coupling constant.g,and
then they annihilate the infinitesimal generator R of the coupling con-
stant shift. Remembering eq.(3.10), it is thus evident that stochastic

variables are local fixed points of the corresponding Nicolai mapping.

The stochastic identities are then elementary consequences of the
Nicolai mapping and can be therefore derived from it whenever a closed
expression for such a map exists. However it is possible to derive
stochastic identities directly from the theory by using the algebraic
structure of supersymmetry, independently of the expression of the
Nicolai mapping. In particular stochastic identities can be derived even
in cases in which the Nicolai map is non-local and not explicitly known
(see ref. (114)).

It follows that the detailed study of these stochastic identities
clearly represents a fundamental step towards a full understanding of
the stochastic properties of supersymmetric models. This observation is
even more important if one notices that a'complete set of. stochastic.
identities allows a new scheme of perturbative analysis of supersymmetric
field theories, along the Tines of the classic stochastic perturbation

(23)

theory . The main idea is to compute the Green's functions containing

only bosonic fields in terms of the correlation functions involving the
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stochastic variables, by simply inverting the relation between stochastic
*
and bosonic variables ( ); in this way one can fully describe the bosonic

sectors of supersymmetric theories by means of the stochastic identities.

In the following sections we will see how powerful this new pertur-
bative technique is in extracting physical information from supersymmetric

field theories by applying it to some interesting models.

111.2 A two-dimensional example

To render more transparent all above considerations, we consider
now in some detail the study of a specific supersymmetric field theory:
the two-dimensional N=2 Wess-Zumino model (23). It is described in terms
of two scalar fields Lgaia = 1,2) and a two-component Dirac spinor LF
together with its conjugate ¢ . The corresponding Euclidean Lagrangian

(**).

can be written in the following form

i = %CDFL?&)Z + Fcu (2(4)&& v:‘ - AZ F‘\z *+

+ P P .s,JS(XA-\/”)L}J (3.14)

(*) Note that, with the conventions used in the definitions of the Nicolai
map, this relation practically coincides with the Nicolai transformation.
(**) For a precise definition of Dirac and Majorana spinors in Euclidean
space see ref.'s (117,118). We use the following representation for the

Y -matrices: ”‘4 = &0, ¥, - Yg =~‘-3'B/ 6 1,2,3)

are the Pauli matrices. Moreover, by convention: X f“fs(t,x), M= 1,2,

- 27 -

where Fa are auxiliary fields and V is the superpotential which, to be

specific, we take to be:
: z
Ve v &g (e -590) o

(m is the mass and g is the coupling constant); finally in eq.(3.14) we

have used the following compact notations:

2y 8l = H
Vi = 3% Vau = o (v as 60 v“"

S fa Spaspe

After the elimination of the auxiliary fields the Lagrangian (3.14) takes

on the standard form:

L = ofa + Le (3.16)

R CORE-L TS SO,

(3.17a)

ng = P 2 P+ m +3(Lf,, -ul“{s(_?z)} o (3.17b)

As one can easily check the action A = ydzk,f is invariant under the fol-
Towing set of supersymmetric transformations (€, £ are independent anti-

comut ing parameters):
QL%: Ew +.pe
s 9. —;(E“(g,up +$Xss>
s o= P (g -i)e -(Fu-inh)e
P = —E#(Lﬁu{j(ﬁ) Z(F-i6R)
92)

Sﬂ=-(§$$+ e
5F. = L (EY b + P 9 *(3&>
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i

(3.18)

v



The model admits a local Nicolai map which can be explicitly

written in the following way (23):

sw/ L]

(3.19)
% Ralsd

EQ. (.Ky = %tL?Q. C") +

where

whgl = [afdqSq vV

3.20)

The bosonic part of the Lagrangian (eq.(3.17a}) becomes in fact guadratic
in the new variables g a (we neglect as usual surface terms); moreover

the Jacobian of the transformation (3.19), which explicitly is

Aetzn-[? ¥t g CL?M'*G’B.L?Z)_—}} >

clearly coincides with the Matthews-Salam determinant obtained from the
integration of the fermionic variables «}* and :¥; in the functional
integral. As a consequence the variables :Ea(x) are Gaussian and obey the

*
following stochastic identities )

CEa ) 5 (DD = Sab S 0= (3.21)

(*) The name 'stochastic' given to these relations is now clear: it fol-
Jows from the observation that these identities can be viewed as the

ensamble averages typical of a Langevin system in which §;(x) is the

white noise.

- 29 -

and in general:
< fa, () - T, ) =

n w (3.22)
e 2)
= én,s Su,‘qs & me‘xs) < —Er?* s Ea_,? ("r)>c

In the spirit of ref.'s (113,114) however, these identities can
be derived directly from the supersymmetry transformation (3.18), without
any reference to the Nicolai mapping. Even better only a subgroup of
the full supersymmtry transformation group is really necessary. In fact,

for the choice € 20, g = (’;:, 0), the transformations (3.18) become:
Spa = - 5 Ma (3.23)
S We, = ©

i

where we have introduced the short notations
,Y]o. = <¥A>=«£ Ea. o, = <¢ +VH)°1=L‘)’= (3.24)

The lagrangian (3.16), (3.17),which can be now written in compact
form as

L= £ v b

is obviously invariant under the transformations (3.23). We now use the
property of unbroken supersymmetric models that the vacuum expectation

value of the supersymmetry variation of any functional G of the fields is
zero:

LSE>, - 0
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If we take for G the expression qSqub, from the above condition, using

eq.(3.23), we obtain the following Ward identity:

dMal) M) D, = - < Wa ) @O (D%
" (3.25)

— ) : .
But € Pa tOuBH= —Sab %czx-x'), as simply follows from
S < Pa I =&
S Py (x')

As a consequence, from eq.(3.25) we reobtain the stochastic identities of
*
eq.(3.21) ( ),

It is interesting to observe that really the model admits an entire

family of Nicolai maps. Eq.(3.19) can be in fact generalized in the fol-

Towing way (119):

Yo () = a0y + s Wil
%r_?,_c,x) (3.26)

where now:

A st "o

with:

Ve om (9l-q7) v B (9 5 90)

(*) The other identities can be similarly derived by considering for G

the expression: FWSG‘ (%) “’)qz (%) - N)&“ CKn) .
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and V as in eq. (3.15): moreover € = *1 and & & [e, 21\’] . The arbi-
trariness connected with the parameter o is simply due to the invariance

of the fermionic functional measure under the following chiral transforma-

tions: ] .;-N‘P—
[RSS— e A
L‘J Ll—) R - Ai“s
. - 2
- ef -+

On the other hand the ' £ -freedom' is probably connected with the presence

in the theory of two supersymmetric vacua (at least at the classical Tevel).

Before discussing in detail the limits of the stochastic properties
of the model and in particular if eq.(3.15) can be really interpreted as
a true Langevin equation, let us spend a few words on the problems connected
with the rigorous definition of the Nicolai mapping. Even if these questions
are not of immediate relevance for a perturbative study of the Nicolai map-
ping, they are, on the other hand, crucial for understanding the various

aspects of the stochastic jnterpretation of the supersymmetric theories.’

111.3 A word on rigour

It is well known that in order to give meaning to the functional

(*)

*
integral involving the Euclidean Lagrangian (3.14)
' (10)

, one has to suitably

regularize the theory . We first suppose then to put our model in an

Fuclidean box, choosing periodic boundary conditions for both bosonic and

fermionic fields (97’120’121’23); note that this choice is crucial if we
want to preserve supersymmetry invariance. After that the model has a

finite number of degrees of freedom.

(*) To be specific we take as a reference model our two-dimensional
theory; all the discussion however has a more general validity. Furthermore,

for a rigorous approach to one-dimensional models,see ref.(98).
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Furthermore in order to cure ultraviolet divergences we introduce
a suitable cut-off. A\ by decomposing the fields into Fourier-series
companents, and then by summing over all the 'frequences’ Viu for which
x| < /\(23). This reqularization has the property of respecting
all symmetries of the periodic box; moreover it is supersymmetric - in-
variant if the Fourier decomposition is made on all fields, i.e. before
the elimination of the auxiliary fields from the Lagrangian (a different

regularization is discussed in ref.(122)).

At this point all objects entering the theory have a mathematical
meaning; in particular the bosonic fields are even C e operator valued
functions *). Now a regularized Nicolai mapping clearly exists for the
model and can be explicitly constructed; it assumes the form of a map
between two well defined functional measures: that of the full inter-
acting theory expressed in terms of the variables Lf;\and the Gaussian

. ~
one for the variables Eﬂl(the fields depend now on the cut-off /A ).

The problem now is to see what happens if one removes the cut-off
A\ (i.e. let A ->=oo) and takes the thermodynamical Timit. The question
is not yet completely solved, even if, as claimed in ref.(23), one probably
cannot expect to obtain a Nicolai map in the infinite volume Timit. There

are in fact many open problems.

First of all, due to our choice of boundary conditions (periodic
both for bosons and fermions), the functional integral has no Tonger an
obvious interpretation as a partition function of a classical statistical

system (]24).

(*) The fermionic variables are usually integrated out; one then gives
meaning to the resulting Matthews-Salam determinant by a suitable renor-

malization procedure (see ref.(123)).
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Moreover for the same reason the model presumably does not satisfy the

Osterwalder-Schrader positivity condition (125)

; thus the analytic
continuation of the Euclidean theory into the physical Minkowski sector
is not automatically guaranteed. Furthermore the theory possesses two
distinct classical supersymmetric ground states (the bosonic potential
is double well-like). There is thus the suspect, in analogy with other
cases (126), that the quantum theory really.has two phases; the corre-

sponding Nicolai map should then show a sector (or phase) structure.

It is clear that all these questions require a deeper study.
They are not simply academic problems since they directly involve the
relation between supersymmetric models and corresponding statistical

systems: their solution would further clarify the stochastic properties

of supersymmetric field theories.

I11.4 Nicolai vs. Langevin

Let us consider once more the explicit form of the Nicolai map-
ping for the two-dimensional Wess-Zumino model; it can be written in the

following way (eq.(3.19))

. S wiLel
T = = & Pa v Ea

(3.28)

As already said, this equation has the general structure of a Langevin

equation (compare with eq.(2.21)). However we will show in this section

that Lf;(t,x) cannot be considered as a full stochastic process in the

time t, because eq.(3.28) does not really have the correct causal bahaviour
) F*

for a transport phenomena

{*) This fact was first pointed out in ref. (23)
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To grasp the reason of this phenomena it is sufficient to discuss
the free case (g = 0). Moreover, since the boundary conditions on eq.(3.28)
become now crucial, to be as close as possible to physical interpretation,
we will consider the Minkowski-like version of the Nicolai mapping. In

this case eq.(3.28) is still valid, but now:

W, [¢] ’S""" l—;—*— L?z"i Py + Lm»f.uya}

(3.29)

By rearranging a little eq.(3.28) and (3.29) one can write the Nicolai
map in the following more compact matrix form (we choose ¥ = 5, y‘=;,¢5

for the Minkowski ¥ -matrices):
M= (Frim)ep
= M4 = P .
y ('12) % (fg) (3.30)

f‘o}a_is still a yuhite noise.

T

The solution of eq.(3.30) can now be given in terms of its corre-

sponding Green's function Ga (x-x")

b

Pa ) = j A%t Gan (x-2) 'Y]'a ') (3.31)

with
( P+ 4 '\'\’\)ﬂ.b Gre (x-%')= Sac ¥ le-x") (3.32)

As usual eq.(3.32) can be solved through a Fourier transform; setting

.:.P . (_x-x‘) o~

2
Goy (x-x) = J a8 Gaw CP)

Cemy®

we get

(‘?‘*""M)a\n gbc (p) = -+ 8ac  (3.33)
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The problem now is how to avo»id' the pole at p2=m2; this is clearly con-
nected with the appropriate choice of boundary conditions in eq.{3.31).
These are dictated by the physical interpretation of eq.(3.31) as an -
(inverted) Nicolai mapping. In fact using it one can compute the two-
point Green's function < ol T s_ L?,_ (%) L-P,, Lx‘)}lc}in terms of
the Ma -correlations; the request that this two-point function coincides

with the standard propagator, namely with

<o\ T %, Wa =) L?b(x‘)} le) = Gak D (x-x%)

be—x') = {AZE

(=x)* P: - M* +LE

ei' p- (e=xt)

(3.34)

directly gives

Gap (x-2) = C-— ‘$K +L~\\)nb De-xt)  (3.35)
To obtain the physical interpretation of .eq.(3.35); we explicitly :
perform the p, integration in eq.(3.34):

Dlx-x) = =i jiﬂ e * p e st {e.~i£?(t_t|!a)}(t—t’)&.
) (uwED

N eL Fp (£ -t 9(_-&'—1‘.)} (3.36)

1
vith Ep = (p2 + mz)z. Moreover we imagine our system enclosed in a box

of size L; then the momentum integral in eq.(3.36) is replaced by a sum,

A
{_‘z"_s —_— T Z\v since P ——,%n(neZ} . Introducing the following
periodic solutions of the homogeneous Klein-Gordon equation (i.e. the
one-particle wave functions):
_i (2Bl 2 x)
L

LEy 4
¢y| (x) = T e
L* {ze

n
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(the plus or minus sign refers to the sign of the energy), eq.(3.36) can

be finally written as

& & ®
steem v 5 2o o) £ [1%]
(3.37)
P ehe) 870 [@f"o«-sj*} .

From this result and from eq.(3.35), we see that Ga (x-x') propagates

positive (negative) frequences, forward (backward) ?n time. On the other
hand a full interpretation of eq.(3.28) as a Langevin eguation would
require a propagation forward (or backward) in time for both positive
and negative frequency solutions. It follows that the Nicolai mapping
cannot be interpreted as describing 'a full stochastic process (*): in
agreement with the general causal structure of Quantum Field Theory, it
is a forward process for particles with positive energy and a backward

process for negative energy particles, i.e. for antiparticles.

This conclusion can also be obtained by comparing our free Nicolai
mapping eq.(3.28), (3.29) with the corresponding Langevin equation which
correctly describes the fie]dcfg(t,x) as a Gaussian Markov process. In

61)

fact generalizing the methods of stochastic mechanics , 1t is possible

to give a full stochastic description of the free scalar field ?%(t,x)

(*) Note hawever that a full stochastic interpretation of the Nicolai
mapping can be recovered either in the limit |t]—>e=(see the discussion
of section II.3), or by restricting the study of full supersymmetric
theories to particular fermion sectors. In this second case one obtains
effective purely bosonic theories which remember their supersymmetric
origin by the presence of the corresponding Nicolai maps. Many egémpTes

(]19,127); of particular interest

(128,129)

of this phenomenon have been discussed

is the study of a pure Yang-Mills theory in the temporal gauge
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(27):

based on the following stochastic differential equation
‘—Yq_ = 4 \}B,‘Z+Ma" (&L?)g_ + Za
This equation does not coincide with our free Nicolai mapping.

This conclusion has been obtained in the case of a simple two-
dimensional model, but clearly it remains true for any supersymmetric
field theory which admits a local Nicolai mapping. Note however that
the existence for such theories of mappings with an almost, but not
complete, stochastic structure ) , is still relevant and interesting
and helps a Tot in understanding their structure. In particular, as we
will see in the next section, it gives the possibility of a new pertur-

bative approach to these theories.

II1.5 The new perturbative expansion

We have already claimed that one of the most important conse-
quences of having a Tocal Nicolai mapping, or more in general, a set of
stochastic identities in a supersymmetric field theory, is the possibi-

1ity of setting up a new scheme of perturbation analysis of the theory.

When expressed in terms of stochastic variables, a supersymmetric
theory looks quite simple, since the correlation functions involving
these variables are the Gaussian ones (remember eq.(3.22)). However the
physical information on the theory is contained in the old bosonic fields;
we are thus interested in computing Green's functions involving these
variables. The idea of the new perturbation scheme is then to invert the
relation connecting the stochastic variables with the bosonic ones and
to use this inverted Nicolai mapping to compute the bosonic Green's

)

1
i
!

(*) It is called 'parastochastic' in ref. (23).
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functions involving these variables. The idea of the new perturbation
scheme is then to invert the relation connecting the stochastic variables
with the bosonic ones and to use this inverted Nicolai mapping to compute
the bosonic Green's functions of the theory in terms of the simple corre-

*
lation functions of the stochastic variables ( ), in strict analogy with

what is done in stochastic quantization. That the fermion contributions
to these purely bosonic Green's functions are correctly taken into account
by this method is a direct consequence of the characteristic properties

of the Nicolai mapping.

The cancellations of divergences between bosonic and fermionic
Toops are then automatic in this formalism and thus the new (stochastic)
graphs ) that this perturbation scheme produces have a better ultra-
violet behaviour than the corresponding Feynman diagrams. This fact
suggests that this approach can be very useful in understanding how this
miracolous cancellation of divergences can produce, in some special cases,

completely finite supersymmetric field theories.

For the two-dimensional Wess-Zumino model all the properties of
this Qﬁgogerturbation technique become transparent, since the theory is
finite. Even if we are really interested in four-dimensional theories,
it is interesting to spend a few words to study in more detail the per-

turbative expansion for this Tower dimensional model.

First of all note that the Nicolai map for the model,eq.(3.19),
can be rewritten by a suitable redefinition of the stochastic variables

{eq.(3.24))in the following explicit form:

{*) Note that the rest of the physical content of the theory,namely the
Green's functions containing explicitly the fermionic fields,can be re-
constructed by using for example the Ward identities of supersymmetry.
(**) These diagrams were first considered in ref. (23) where they are

called 'infradiagrams'.
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o= h (Fam)qfl g tare fuqe

(3.38)

where

A
take = 2 (345 Sac * Bue Sap - Ean $,. - Eac %,_b) .
(3.39)

This map can be easily inverted; going to momentum space one finds:

k?“' () = M‘* ").,Uc) -

2 + m2z

_8 (m-ivdaw £, ]o\zl: . cr r.fd(n-r) (3.40)

2 ® + mE

which implicitly defines cf%(k) in terms of the stochastic variables

ﬂqa(k), obeying now the relations:

< ﬂqa. ()Y >, =0
(3.41)
<Ma () M () D, = San & (et )

Clearly eq.{3.40) allows to calculate perturbatively Green's
functions involving the f1e1d¢§3 in terms of the correlations (3.41)
involving the stochastic variables 4%. For example one can check that at
Towest order (i.e. for g = 0) the Green's functions calculated using
eq.(3.40) coincide with the tree-level expressions one deduces from the
Lagrangian (3.16), (3.17).
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To compute higher order centributions it is useful to introduce
i ic expansion. (3.4 i i i
a diagrammatic exp Eq.(3.40) gives Lfa in terms ofnﬂ a only in
an implicit form. Thus the solution of this eguation can be only found
by iterations and diagrammatically this solution can be expressed in the

following symbolic form:

Bo () = o + N

(3.42)

where the crosses represent the 'stochastic sources' ’qa (note the ana-
Togy with what was done in sect. II.3). It is not difficult to see that,
as in usual stochastic quantization approach, the Green's functions for
the fie1dcya are now obtained as a diagrammatic expansion in which the
crosses of the above tree stochastic graphs are connected in all possible
ways, using the rules [3.41), to form closed Toops. Then, for instance,

one gets:

= w !
<t?a,(.*<) L?bUc‘)7o = W + by h&----

In practice to compute Green's functions one needs only the
Feynman rules to build up these 'stochastic graphs' and not the explicit
form of the solution of eq.(3.40). Looking at this equation one easily

finds the following stochastic Feynman rules:

14 Sak
" —
@ b 2 A
g ( )
. 3.43
M-
- % ( }’é)ac\ tc\\ac.
o 2 ME+KZ
<
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and no explicit propagator is associated to uncrossed lines (a momentum

integration for each Toop 1is understood).

As an example, Tet us now compute the one-Toop corrections to the
connected two~point Green's function; taking into account the symmetry

factors, one can write:

€ uts> Rt |y = :

(3.44)
O e OR) [
3+ 2 + o +
@ 'S a 1Y [K‘—»—KJ

the symmetry factor 2 takes into account the two possibilities of
contracting the various crosses in the graphs. Moreover it is easy to

realize that:

O = O

Thus to calculate < K e K > !%z one has to compute explicitly
only two stochastic graphs. Using the previous Feyman rules one immediately

obtains:

S ! Bab %(zzlc-«-k') g° I

(3.45)

!

a b kz+ml 2
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B (k24 rur)?

(3.46)

where 4
I = f 4%
(pramt)[ Ce-p)s wt)

Using eq.(3.44) one finally gets:

2 Sab 80w ) (eome) T
(=2 + m2)2 )

<ol O, = - 8

This is also the result one obtains with usual perturbation techniques,

by summing up the following Feynman graphs (fermion and boson propagators

are respectively indicated with: e-.- Poersand = P o)
P
Ratad 2) '
te K : ! 2 S (esrrt)
—_—— — — ——— - = — 29 — .
a e b (1e? + ma)

CCe-p)
. za;QI—%M,JoFF P-E-P f
{M’t ( ) b CPI'*““I)[C""F)z*Wﬂ
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i / ) 2 A
N s 2 &7 (eriet) &
— e N e - =—zﬂ3___-—z—£5ak I
a " wt B (24 m?)
>
VARl () .

— :_.( — & — = Mlzaz §.__..£:.E:__..K)‘:_ { Z(X,_)ah{- 359‘_‘, I
o ‘oo =& (™4 m)

Note that while some of the above Feynman diagrams are logarithmically
divergent and only their sum is finite, the correpsonding stochastic
diagrams (3.45), (3.46) are both finite.

III1.6 The classical interpretation of the Nicolai variables

Before discussing in detail the case of more realistic four-dimen-
sional models, it is interesting to describe the classical meaning of the
Tocal Nicolai or stochastic variables. Since in practice there are no
fermions at the classical Tevel, we can take into account in our present
discussion all those models for which the bosonic part of the action can
be put in a quadratic form. And in fact, besides the supersymmetric
theories which really admits a Tocal Nicolai map, namely the Supersym-
metric Quantum Mechanics, the N=2 Wess-Zumino model already considered
and the four-dimensional supersymmetric Yang-Mills theories discussed in
the following chapter, also for the pure Yang-Mills theory in eight dimen-

(131) (132)

sions and for the four-dimensional conformal gravity one is
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*
able to find local combinations of fields that quadratize the actions( ?

A part from the gravitational case which will be briefly discussed
at the end, it is interestingto note that the above theories are respect-
ively connected with a particular class of abstract algebras, the so-

(133)

called alternative algebras : the real numbers R, the complex

numbers € , the quaternion numbers &, the octonion numbers @ . These
algebras possess respectively one, two, four and eight unities; by
means of them one can write in a compact form the transformations

'Ic*)

between the Nicolai variables ( and the original bosonic ones for

all the four theories. Let us collect these unities as

Su = C" e'imﬁ ‘) g)‘ = Ceib): 4>

(D is the dimension of the space which coincides with the dimension of

(***)

the corresponding algebra: D = 1,2,4,8) . Furthermore one has:

(*) If these combinations of fields are really stochastic variables

for the supersymmetric extension of these two theories is sti11 an open
problem (see also Appendix B).

(**) By extension, we call here Nicolai variables all local combinations

of bosonic fields which put in quadratic form the classical actions.

(M

in the case of real numbers; for the

= i, the imaginary unity; finally e§4)and eis)

coincide respectively with the quaternions ("iﬁ;.,ﬁgare the Pauli

(***) Obviously there are no e

(2)

complex numbers e

matrices) and the octonions.
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e®) o) te) By
e. e, = -%ak + -?-MC e. (3.47)

(D) (n

where fabc are the st?ucture constants of the various algebras (fabc =
N -3 . (4) _ (8) _
= fabé-.c since R and {C are commuting algebras ’fabc = gabc’ fabc = Cabc)'

If one indicates with A}* the standard bosonic field variables
of the four theories and with N, the corresponding Nicolai variables (in
the case of gauge models, A 4 and N, belong to the Lie algebra of the
gauge group), then the relations between the two can be written in the

following compact form
(s ™) =(53)(s A)+3 UlsA,34) o

(15_ takes into account the self-interaction between the A .(g is the
coupling constant), and it is equal to the derivative of the superpoten-
tial

AV (5-A)

$(5- A)

-

for the theories in one and two dimensions, and to

AV = - “;‘ EM S» [A)‘l A”] (3.49)

for the gauge theories (in 4 and 8 dimensions).Really in the case of
Yang-Mills theories eq.(3.48) holds only in the covariant gauge Z%MAA‘= 03
however it can be easily generalized to a generic gauge F(A) = 0 by
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substituting in it

(§3>(5A> with ‘ Z S, QAA‘,*%(E'S)(FCAD

where &L, = —i— ( S.S, - S, 5») .
Using eq. (3.47), it is easy to see that in all four cases the

classical action can be written as
= B A
As = [l 4 v 2T

with i:{u a certain Tocal polynomial in the fields. A surface term in
the action does not contribute to the equations of motion, which then
reduce to

(q”x‘ Nooe) BR-CD o
T Aw0d

From this equation it is apparent that N, = 0 corresponds to particular
classical solutions of the field equations; these solutions have finite

action and energy and moreover possessnon-trivial topological properties.

For the four-dimensional gauge theory (D=4) this situation is well

known since the equation N, = 0 gives the instanton solution (]34’135).
In fact in this case the Nicolai variables are simply:
NS o FL o+ Ae F
' = > T =

A S 2 4 9 (3.50)

a,d, k= 4,2,3

where F ..., is the field strength (the fourth Nicolai variable gives the

. ‘s . . x)
gauge fixing condition); then imposing Ni = 0 amounts to select selfdual
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or antiselfdual solutions of the classical equations of motion. The same

situation holds in the case of Supersymmetric Quantum Mechanics (D=1)(96)

(131)

and for the eight-dimensional Yang-Mills theory (D=8) , Where the

instantons corresponding to the condition N,= 0 have been found.

In the fourth case (D=é), since the theory is'a purely scalar one,
one can hope to obtain through the condition N, =0 a soliton-1ike sol-
ution (*). By looking at the Lagrangian of themodel (eq.(3.16), (3.17))
one realizes that the theory possesses two disé&nct classical supersym-

metry vacua {obtained by minimizing the bosonic potential):

Fo=© fo= - 2
P = J2=°
g = o P =0 :

(3.51)

It is now easy to obtain from the condition N 4 = 0 thesoTliton solution which

interpolates between these two vacua. looking at the explicit expression

of the Nicolai mapping one gets the conditions:
E Lf-i - & O Kz + M 9= + § ‘Y« Pz = o
'QtL?z-t-E: ?,gl-?,‘k-\» MLY""'%C"?,‘?'-LF,,;):O

(we have explicitly taken into account the possibility of introducing

the parameter & : € = ¥ 1). Imposing ‘f,_= 0, one obtains
3i=‘f% = O

S T B

(*) Soliton solutions in scalar two-dimensional supersymmetric models
were first studied in ref. (136); formore recent results see ref.(137)

and the works there quoted.
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whose solution is:

ey = e 2 ) R[] e f

{ X, is an arbitrary integration constant). Then equating to zero the

Nicolai variables produces:
L - ! tgh [ )] -]

Kz =© (3.52)
Li) = o

namely the soliton ( & = +1) and antisoliton (E= -1) solutions of the
classical equations of motion. Classical stability of above solution can

be checked using standard procedures.

The Nicolai variables for Euclidean conformal gravity can be
obtained in strict analogy with the four-dimensional Yang-Mills theory

The Lagrangian is simply given by:

4 py g
L = ie Iy C C o g

where C;)u.p [ is the Weyl tensor, the traceless part of the Riemann

curvature. One can check that by introducing the following variables

(c - (*)
ompare with eq.{3.50))

(*) Note that also this model, being in four dimensions, is connected with
the quaternionic algebra; in fact in eq.(3.53) the quaternionic structure

constant appear.
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(132)

(&)

5 _
Ny = 3 ! (Co'm;\ 4 & Co;ks,>

(3.53)

the above Lagrangian can be rewritten, up to surface terms, as:

i - 4 N:§t> N e A

=
()

.
The condition Nij_ = 0 selects now Weyl selfdual and Weyl antiselfdual

solutions of the classical equations of motion, which in analogy with

the Yang-Mills case, are called gravitational instantons (]38). A

particularly interesting case of gravitational instanton is given by the

(139)

so-called Fubini-Study metric on the complex projective space PZ(C)'

The corresponding real four-dimensional metric has the following form:

_ L&Ql % prv,i-;)»;u
ny = -
% (x*+a?) ke 2+a>)
where @, is a constant Tength and
Xy = Spo xV *x*= S, xMx¥
X= Y x¥ ¥= a6: @ 4
o i = 2 z

This metric is also a solution of the vacuum Einstein's equations with

cosmological constant A = 3/2a2.
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Iv. FOUR-DIMENSIONAL GAUGE MODELS

V.1 Preliminaries

The correspondence between stochastic and supersymmetric properties
of field theories discussed in the previous sections in the framework of
simple models, can be extended to the case of gauge theories in physical
four-dimensional space. In fact a complete set of stochastic identities
have been discovered in the case of pure N=1 supersymmetric Yang-Mills

(113-114)
theory

multiplet is coupled with a matter scalar multiplet

and recently also for theories in which the N=1 gauge
(116) |, .
(including

thus the N=2 supersymmetric Yang-Mills model).

The presence of gauge invariance clearly makes the study of these
identities more complicated than in the case of standard non-gauge theories.
In fact it is well known that in order to give meaning to the functional
integral involving gauge fields one has to introduce a suitable constraint
(gauge fixing) which eliminates the sum over the redundant degrees of
freedom in the path integral. This gauge-fixing procedure explicitly
breaks supersymmetry and then the derivation of those special supersym-
metric Ward identities which are the stochastic identities is clearly
more delicate. Really the existence of stochastic identities in above
supersymmetric gauge theories has been proved in a particular gauge, the
so-called light-cone gauge. However, on the basis of the requirement of
gauge invariance of physical results, one might hope that the same set
of identities holds also in other gauges, for example in the covariant

{(*)

ones

In the following this problem will be carefully analyzed within

a N=1 supersymmetric gauge model by computing, using the stochastic

(*) And indeed this was suggested in ref. (107); see however ref. (108).
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identities.along the Tines described in sect.III.5, two- and three-point
bosonic Green's functions at one-loop level. Comparison of these results
with the analogous ones obtained using standard perturbative techniques,
confirms the full validity of the stochastic identities only in the Tight-

cone gauge (140) (*).

This conclusion can be easily understood if one notices that only
in this particular gauge a residual supersymmetry invariance survives in
the effective action. Since the stochastic identities can be derived
directly from the supersymmetry algebra, the unique role of the Tlight-
cone gauge appears evident. However, a direct and independent Took at
this situation using the new perturbative scheme discussed in sect. IIL.5
is celarly useful. Furthermore, in view of the substantial simplifica-
tion that the presence of stochasfic identities leads, due to the complete
elimination from the theory of fermion fields, the direct computation at
one-loop of two- and three-point bosonic Green's functions in the Tight-
cone gauge for the above supersjmmetric Yang-Mills models is clearly a
non trivial check on the consistency of the new perturbation expansion

which the stochastic properties of these theories produce.

Let us first consider the case of the N=1 supersymmetric Yang-
Mills theory. In the so-called Wess-Zumino gauge, after the elimination
of the auxiliary fields, the model can be described by a gauge field A,
and a two-component Weyl spinor field Aa together with its conjugate
j{i . A1l these fields belong to the adjoint representation of the
interné] gauge group, that for simplicity we assume to be SU(2):
A= Bt?, = AL €%, (0) =g, (aibic, = 1,2,3).  The

corresponding Euclidean action for the model is

(*) Note that this conclusion can also be obtained using different tech-

niques; see ref. (141).
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(4.1a)

Li-2(E) 24X

(4.1b)

where the field strength F)f;is defined by

Faw = B t%= 9 A -i8] Au, A,:] =

- "§' [hﬁib,_,] . (4.2)

D=2 'iﬁ[Af“;] is the covariant derivative and <™ = (*'9—', 41)
are the quaternionic unities (see sect. III.6). It is easy to check that

the action (4.1) is invariant under the following supersymmetry trans-
formations:

SA, = & X5
S A = ﬁp (%\J)gq F,“, . (4.3)

As already noticed in sect. III.6, the following variables

R - A . (=9 — R e
.= R v 28l = BEo 4 B (4.4
(1,3,k = 1,2,3)

reduce the bosonic Lagrangian °ZB to a quadratic form:
4 @ N 2
= - +
”Z& 2 ( 3’;,) g.*‘ 3./“ (4.5)

( J.is the topological current; then the term 2u J s Can be neglected
either discarging multi-instanton effects or by choosing suitable boundary

conditions). Then the variables (4.4) are good candidates to be Nicolai
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variables of the theory. Note however that the correspondence fiae—b A;
is not one to one, since we have not yet fixed the gauge to eliminate

the redundant degrees of freedom.

Let us add thén to the action (4.1) the following gauge-fixing
term 51& f d*x (6°[A] )2, introducing also the corresponding Faddeev-
Popov ghosts, the gauge fixing procedure results in the following

additional contribution to the action:
s ]
¢ %
A "'[dx{’fe""("'} (4.6a)

o z v — a IR
Ls = (o [A:D L. =¢ é—iﬁbbﬂc- (4.6b)
/“ -

U i
At this point the full bosonic action Ag = jdx { afej'g[a}can be
written in the following form:

Ag = %fdl:‘ é(ﬁ)2+ % G:)zj (4.7)

1= e Al

(4.8)

Moreover the partition functionfor the theory in the new variable f;

takes the expression:

Z = J/aﬂ(i):‘) Aet(%ﬁ-) det (D) - @y
et [ E& D) e Aa[%};

o
%Aﬂ
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then eq. (4.4) and eq.(4.8) are the Nicolai map for the theory only if

the Jacobian det(:-—g) of the transformation A , =" fy equals the

product of the Matthews-Salam determinant det(S-D) times the Faddeev-

Popov determinant det(‘—“’—G D, ) (see also sect. III.1). In this case
She M

*
the T’i satisfy the following stochastic identities ()

]

T 2Tea) - 5 RN B, -

(4.10)

- T %:P ("f’)>°

 PFRs

KU ) 2o Y = Bae, B, 8700 x)

(4.11)

4 M= =42, 3
P
gl“d“‘z - & M= = L
(o] otherwise

(the covrelations containing an odd number of 7,'s vanish).

By assuming true these jdentities, one can now compute the
Green's functions for the fields Ap in terms of variables f, by
simply inverting the relations (4.4) and (4.8). Note that due to the

eq.{4.3) this inversion can be explicitly given only after the choice

(*) Note that GaEA] is surely a stochastic variable as explicitly

shown in ref.'s{108, 91).
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of a specific gauge fixing function e [A] .

.

v.2 N=1 supersymmetric Yang-Mills theory: the covariant gauges

a) The Lorentz gauge is characterized by the choice:

c=[A] = 2. AT . (4.12)

We already know from sect.III.6 that the relation between the variables

fi. and Ai,_ can be written in the following compact form:

(4.13)
where again s¥= (‘: ?;',4) ) g’“=(s“)+. A more convenient formalism

can be adopted by introducing four-dimensional Euclidean ¥ -matrices

L[ o -5 4 ©
6‘}‘=L(3,“D> 55:(0-1)

After some manipulations eq.(4.13) can be in fact reduced to the following

form in momentum space:

Aj: (K) = -i ke {Ekwug 3—;(“) -

- (4.18)
2 Eave Lavag j(i_;.% AL (P AY (K'F)}
where
‘-E)MAS = —3— Tra{ (1-95) Fu ¥ ¥ 3’3} =
(4.15a)
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and

t»v,\g = {:/uw[Ag]
(4.15b)

Eq.(4.14) clearly allows to compute perturbatively Green's functions
involving the field A%&» in terms of the correlation functions of the

. a
variabies f

LA (), =0

b A "
£ g,j (=) %, (_K')>= = Sab Sup 5 )(K-&-K')
(4.16)

SO ENTOPEY:

and so on.

One can then check that at the lowest order (g=0) the Green's
functions calculated using eq.(4.14) coincide with the standard tree-

level expressions. In particular for the two-point function one has

A () AL ()P0 =

S ' phy K i< pn
= G (k+x') Sa.a, Sy,  2a e Ty,
(="

using eq.{4.15), one easily finds:

CAL () AT O = 8W0ew) 220 AL ()

A Mz
® (4.17)

A, (k) = { Suu, + (X-1) Fa, kﬂz}

®
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t
L Ay v /“g_a\z"ll)z

which is the standard A,, - propagator.

As explained in sect. III.5, in order to compute higher order
contributions or Green's functions involving more fields A, , one can
use a diagrammatic expansion in terms of stochastic graphs. Looking at

eq.(4.14), one finds that the corresponding Feynman rules to build up

(*),
these graphs are now :
K _
% Sar A, (k) (4.18a)
M, e v b k=
»2 By
k a
28 Eajaay Tavsuy Ex
Y 2 (zm) '
(4.18b)
Mz,

and no explicit propagator is associated to uncrossed lines ( a four-

dimensional integral for each loop-momentum is understood). It is now

(*) Note that eq.(4.14) is not fully covariant. This is a consequence

of the choice (4.8) which makes fi a 5ca1ar and not the 4th-component of

a vector. However, the following Feynman rules are fully Lorentz-covariant
since the non-covariant part of eq.(4.14) is only used to build up the

propagator (4.18a). As a consequence any stochastic graph preserves Lorentz-
invariance.
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easy, for example, to evaluate the three-point vertex using the correspon-

ding (amputated) stochastic graphs; one has:

permutations
c.f. 4,2, 3

(4.13)
: %‘ g)'zfﬁ (k=¢ k")}“; + 6"‘4}‘3 (K4 - K5>/“z * S'“3pz( ks- kz>)“ }

which is the well known standard result.

At this point it is important to observe that, due to its structure,
eq.(4.14) allows to compute the full bosonic Green's functions including
the self-energy inserctions on the external legs. This observation is by
no means trivial: in fact if one tries to compute using eq.(4.14) or the
corresponding Feynman rules eq.(4.18), the one-particle irreducible (1PI)
part of a given Green's function by considering only the sum of the 1PI
stochastic graphs in the corresponding diagrammatic expansion, one finally
gets a wrong result (as we will explicitly see later). Clearly this is a
general remark, and applies to any gauge, not only to the present Lorentz
one; actually this remark is crucial in the Tight-cone gauge in order to
obtain the correct Lorentz structure in the case of the three-point

function.
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b) Let us now calculate the connected two-point Green's function
at one-loop level, using the stochastic graphs. The diagranmatic expansion

exactly coincides with that of eq.(3.44 ). Thus also here to compute
(z) ®¢22 « Gy Az '
& Ayby (k) =< A/"‘A ('K) A/"‘z (K )>c cmc‘e&gz (4.20)

one has to explicitly evaluate only two graphs, and precisely:

) a8, -
™. (=)

z

I |

M, @y Mz, 8y

2
= 3 Saa, K« Kg t/uuvg t,ugisx—*'s' ’
2 (zw)"
Yy
: f,_if_ A (1) By (2)
Pe -
and
K -K = T_‘/:Iia,_‘az -
’“’qu /“,_/Qz v A M,
P

2 i

- _?.—~ Sa“a‘; k,( t/u,‘v’:c' t);zﬂ(\élf j——d—;f-——' (P')a- Awpl (P-l-x
ZLZW)" J BFpR®
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where P = P % % . We have multiplied the above graphs by the

inverse free propagators of the external legs; in this way at the end we
will obtain instead of the two-point Green's function of eq.(4.20), the

a,a,

corresponding 1PI proper part F/‘L:)pz (K) .

Note that both the contributions are transversal

(i) GaQa 2y e,
K/Wr ('K>=k/“z.r‘() 42:0 i=1,11

Mgy My My

then the above graphs can be put in the form

T - B e R R 00
Puju, = Bus, - "EA;%L
with
Gp - 2 Kakiﬁ taavs Lupwlp! j_si"—# A (F) Do (P
G = é‘; {z. tpvge Euav'e f ::5;1 (2)e Ao () .
2

The one-Toop corrections to the 1PI two-point Green's function

can now be written as:

(z) %48z 2
T )= A a0 P, P wa

(%) b 2

where

U= 200+ u ] g (D g ]
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Using eq.(4.75) one can explicitly compute §x and Lfﬂ ; after a

lengthy calculation one gets

cl;(r-): %f‘dh" g 2 (3-) + (u-a)‘): 4 - w:}+

PS £2 BF R*

+ 5(4-,)[4+ 2 (BB ( (x=-P) N (k_h))J (4.22)

k& P2 P

This result exactly coincides (both in the finite and divergent part)

with the analogous one obtained using standard Feynamn diagrams tech-
*

niques ( ). In particular for the divergent part, one has, using

dimensional reqularization:

aga,
Dy T'“) (=) = 32 Sam, ©° ﬁm& (z-«) T (4.23)

Ay,
where
. th 4 4 2
I = b&\/ ( )“ -—"—"Pz - = 4—-‘-51"'2- —&:‘
27 2 P
(4.24)
This infinite must be cancelled by the following counterterm
9—55—@'—-‘—“’ = - (Zs—"> gg‘qa k? F)“A»“z
My, Ry, Mz, Gy

(*) One can also play the inverse game: calculate the correlation function
£ ff,‘ f?, >_ starting from eq.(4.21) and eq. (4.22), to check the consist-

ency of the procedure up to order gz. Using directly the 'Nicolai map'

eq.(4.4) one obtains: <¥:‘(.¢) i‘:: (DD = S, ;S(h()_l!‘vk')-}-O(f'}k)‘

28y S}‘v}"
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Thus one obtains for the wave function renormalization constant Z, the

well known standard result

Z,= A+ a*(2-0)T . (4.25)

c) Let us consider now the computation of the three-point Green's
function
a;Q;aqg

Gu Ay My (KA, K.,K5> = <A::(K4> (") A C‘3)>

(4.26)

at tnhe one-Toop level (we will consider for simplicity only its divergent
part). As already noticed, the methods of computation based on the Nicolai
mapping allows us to calculate the full (connected) Green's function. Then
to get the correct final result one has to consider not only the stochastic
graphs which are 1PI, but also those graphs which correspond to self-en-

ergy insertions on the external Tegs.
Let us first devote our attention to the 1PI diagrams; the cor-

responding one-loop contribution to eq.(4.26) is given by:

Mz, a,
Qg aa

i

ﬁ
95
Iy"u‘»‘ g ; [ma * ]‘L
e

M3, @ q

(4.27)
} + permutations of 1,2,3

{for simplicity all graphs are supposed without the propagators on the
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external legs). However from the explicit expressions of the four graphs
one can note that only the Tast two are divergent. The infinite parts of
these two diagrams can be computed using dimensional regularization. After

some efforts one finally obtains the following result:

Q,2,a ., a.qij vy
biv Im»z»} (K‘ K"k’> /‘uu» R "3) 3 (E+z°‘)I
(4.28)
QA4 Ay Qo ) ; .
where ’T}J,‘*‘345 is the tree-level contribution to the three-point

function of eq.(4.19).

To complete the computation of the one-loop contribution to
a; R, Qa

eq.(4.26), one has to add to the result (4.28) the sum R ., u, puy
of the stochastic graphs corresponding to self-energy insertions on the

external legs. Explicitly one gets, with the correct symmetry factors:

Mz'qz
a;a; a
Rm“z“z‘s = { D—Q—%—< w—@—{ ]
M3, Qy
(4.29)
+h[u——<>'—<

Now all the four graphs are divergent; they can be expressed in terms of

permutations
* ai 4,2,3

the functions ¢y and @g introduced in the evaluation of the one-Toop

correction to the two-point function.

After some calculations, one finally gets
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a,a;a; — SR, A 2 /4
N - 3= fof .
Div 2},‘%#3 (k4,»<z,)<3> = \)uhupu:5 (K,.,k:’Kb) 9 ( %)I_
(4.30)
Qg R Rg 2 _—
- Z,uww_; (e, k“k-") d (-5 L
Sy Q;a, s — ey q,a
- e 1 =
I Y <] e T ()

+ cyclic permutations of 1,2,3 }

From the sum of eq.(4.28) and eq.(4.30), the complete one-Toop correction

to eq.(4.26), one can now obtain the corresponding one-loop proper part
r{as Qs R, ag (*)_
A Ay g :

rcﬂ af,ag a.a,ay

Biv Py py (’K" <z, K3> = ‘T;alv\z}*s (s, k'?-;\‘3> gz ( -i;a(—2> 1

(4.31)

(*) Eq.{4.31) clearly shows that the 1PI stochastic graphs do not Tead

to the TPI three-point function; there is also a contribution (the first
term of eq.(4.30))coming from the graphs of eq.(4.29), which are apparent-
1y reducible. This result is due to the fact that it is really impossible
to distinguish between reducible and irreducible stochastic diagrams; in
fact in stochastic graphs two kinds of internal lines appear: crossed

and uncrossed ones, and irreducibility with respect to the latter cannot
be defined.
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This divergence contribution is cancelled by the following counterterm

Mz, 6,
a4z Qs

= (21—1) T)“AM;}As

M’”“’S . (4.32)

44,9,

Comparison with eq.{4.31) gives for the vertex renormalization constant:

= 4-9*( 2« - T
24 stock, -9 (-2“ Z> (4.33)

in constrast with the well-known result calculated using Feynman techniques:

.

- - q% B -
S = <d QI (4.34)

In particular, the result (4.33) would produce the wrong one-Toop
@ -function.

This conclusion clearly suggests that the transformation (4.4} is

not the Nicolai mapping for the theory or equivalently that the variables
a . X z) Ry Qzgag
fu. are not stochastic. In particular the fact that Mg g gy

calculated using stochastic diagrams does not coincide with the one
calculated using standard Feynman techniques suggests that (fff>o # 0.

This can be also directly proved by separately computing in a perturbative
2 3n
S Ay,
the product det (S-D) det (2-D) of the Matthews-Salam determinant

expansion the Jacobian det of the transformation A,*"*f. and
times the Faddeev-Popov determinant, considering the field A, as external
and given. In fact, as already observed, only if the Jacobian coincides,
order by order, with the product of the other two determinants the variables

f are stochastic.
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In practice one has to check whether

a
T % ( S 3.

SA“) = Tl (s.b> +T"LR~\(?'D> (4.35)

which diagrammatically means:
MO + N\AO\/\A— + /\/\ﬁd -+ .- -
(4.36)

o

The Feynman rules to compute these graphs are derived from the following
two actions: the total fermionic action of the theory (see eq.(4.1) and
eq.(4.6))

A, - (4‘; g AeD)Y + © (’a-b>c} (4.37a)

and

~ —a = N b
A= Jdg‘ o ( ?.»> $. (4.37b)

S AS

where an auxiliary fermionic-type field LP»Q is introduced together with
its conjugate E:', In the diagrams (4.36) the (¥ q.») s (3: >~> and

(cc) propagators are respectively indicated with: —>— , — =+ — , --- 5 ---

One can now compute the graphs appearing in the left-hand side of

eq.(4.36) to compare them, order by order in g, with the analogous cal-
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- TN e s ’,.J’(
i%\ )+f\r\_l ;}4—{1\/\_{ /M+AA_.’ vr\n.fq,zm(’ | 'f4—
L S L n
- -

culations of the diagrams in the right-hand side. It turns out that the
two kind of graphs differ at order g3: the divergent parts of the dia-

grams with three external A, -lines are different.

This fact can be summarized in the following way:

SAL , . _
M alet(——-u—S};: det (o b) det (2 b)} _
(4.38)

84Rz: Q4

3 L ﬂ; N
= - []'Ir& AKL A)‘,; ()‘L)} 2 T/J,;Mzus (m,\c,,l:;) ,iij_' " f;v:v::} +O[§") ;

asq, a . . .
T#‘MZA:—” and I are aga1n3g1ven by eq.(4.19) and iq.(4.24). Thus
eq. (4.35) is violated at order g~ and consequently the f, are not
stochastic variables. In particular the partition function (4.9) can

*
be now symbolicallywritten (

- f j1p7e £ 1 eow)]
z = fm(” < . ;
and this explicitly shows that <fff>o # 0. This result also explains
why using eq.(4.27) and eq.{4.29) we obtain the wrong result for the
three-point Green's function: in eq.(4.32) we missed the contribution
coming from the fact that (fff)o # 0. And in fact it is easy to show
that the sum of this contribution and of eq.(4.32) gives the correct

divergent one-Toop correction to the proper three-point function.

(*) Note that while the fz-term is local the f3-term is highly non-Tocal!l
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d) It s possible to repeat all the above considerations by fixing

the gauge in a different way. If one chooses the so-called axial gauge(]az),
then
édl:A] ) M'M Aj ! mz'-f»o (4.39)
( My is a fixed vector), and the definition (4.8) becomes
fg = ono A (4.40)

In this gauge it s a little more difficult to express A%, in terms of fj.

However with techniques similar to those used to obtain the result (4.14),

one can write in momentum space:

!L < L RLKe ~ Ky Ne
Mo P m—

AT () —

} “'truuxiCM+
} :

2 AL AL e

K. ho

+ _}__?; Eabe Cory

2

[ 5
(4.47)

o +
. — >
=t gj

Obviosuly a prespcription should be given here to avoid the pole
1/k-n; a useful one has been indicated to be the principal value prescrip-

tion (]43). This fact however shows that the rigorous definition of the
axial gauge requires some care (see in particular ref.'s (144-1469, In

the following we neglect these problems ; our aim is simply to investigate
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in a naive way the stochastic properties of the variables fﬁ .

The Feynman rules to build up the stochastic graphs are now:

. "~
w <
e ‘ —2%' Aﬁv(K) (4.42a)
PN ¥k k '
Az, R,
< .
23 E 4&,,:\3.&)\ LY ‘(:)(4 .42b)
My, e, z2(2m) k‘
H;,Rs
where

Kuhyp 450
(e n)

A -ls (ke +n?)
A)M; (‘c) % vy '——('T:;: k/»kw -

W ny
D..(&) = {_ Sae T ‘7?&5?;?; j

Note that (4.42a) is simply the free propagator of the field Aé&;-

Let us now evaluate the divergent part of the TPI two-point function

i

at order 92: T‘f;l, . The expansion (3. 44 ) is still valid; then to
obtain 1";ftu:“az one has simply to compute the two (amputated) diagrams:
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——— asa, 't/-q AN P
2(zm)"
M, 4, !

a' N N
t/‘"z §v'§ KK kP 5 F*-Z?F-_z A Wyt ({’+> Asf‘ ( F—)
< 2° < +
= - Qya, Caamw
Ma,Q ’uzlq; (ZT)“
oy x
tf‘z Be¥ kp j B l?P 2 G’“)d ayae (ﬂh bf*

(?1 = P x £ > To simplify the calculations we choose & = 0
and the external momentum X, such that: k-n = 0; this is always possible
since we are interested only in the divergent parts. Using the principle

value prescription to evaluate above integrals, after some calculations

one gets:

. [2) %1%z — 2 z _

b\V My CK) - g Sa‘az < %é :P/“U“z b N/“A”a} I
(4.43)
where
e, K nan
‘P - g < Mg g - Ay e
MMy LSMaM, <z > N/A,/u, n

-7 -

This result does not coincide with that obtained using standard Feynman
(147)

diagrams : the term proportional to N_‘.“,z should not appear

in eq.(4.43). This discrepancy clearly suggests, at Teast in the framework
of this naive treatment, that also in the case of the axial gauge the
variables fi* start to loose their 'stochastic properties' at one-loop

1eve1(*).

Iv.3 N=1 supersymmetric Yang-Mills théory: the light-cone gauge

In dealing with the light-cone gauge it is useful to write the
components of the vectors in the so called 1ight-cone basis; the
(f;) connection between the standard basis and the new basis is given, e. g.

for the coordinates, by the following relations:

A
4
|
A
+
U

§ (4.44)
xE=xR=%(x31}xu)

Then we eliminate the superflous gauge degrees of freedom of the theory

described by the action (4.1) by

ALe)

simply putting to zero a component of

A, =0
(4.45)

(*) By using different techniques, the same conclusion is also obtained
in ref. (141).
(**) This is equivalent to choose &°[A] = n- 4%, with n, = é- (0,0, 4,-3—>

and Tet o —> £ in eq.(4.7) and eq.(4.9).
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] e
Thus the re1ation§z = BN+ ESf'between the variables . “and the
remaining physical fields Ag: C§=+7-,§)becomes a one to one mapping;

explicitly:

L <

P = ~LOL AT YL AT -4 Eave Al A

fQ = . Sk A‘i— (4.46)

2r AL 43 (2 AT-2, A%) - igEanc ASAS

i
v op
]
}..

(note that for convenience we have introduced the redefinition:ft-—rfiil).

(13 that the Jacobian

In this gauge it easy to check directly
(S5 s .
det T AL exactly coincides with the product of the Matthews-Salam
and Faddeev- Popov determinants: det (5 ‘ﬁ) det (93). As a consequence

the variables ¥t s ;Ssurely obey the following stochastic identities

CETCY 3T - £ San $0ex)
(4.47)

(e 00 500y = Sal $100x-xt)

(the other two-point correlations vanish). These identities can also be
obtained by using the residual supersymmetry invariance which is Teft
after the gauge chojce of eq.(4.45), in strict analogy with the procedure
used in sect. III.2 for the two-dimensional Wess-Zumino mode] (see ref's

(113, 114) for details).

Using eq.(4.47) we can now compute in a perturbative expansion
Green's functions involving the bosonic field lkik; what we need is

simply to invert the Nicolai mapping of eq.(4.46). This can be easely

- 73 -

done in momentum space; one explicitly obtains:

AT () = ke § (9) -y B0 ¢ k2 AT (E) &

. 4P A (- .
+ 49 ®r Babe ng;')z Ay Ce-p) (4.48a)

b
(» e oL BV ARy . B OAC
.2— 3 +<-;;+;f:>A_(.F) S A+£?)}+

Pr R

+ 9" kg Eabe Ede jf‘it Exi AT (=-p) AZ (9) A (p-9)

() Pe
) o (4.48b)
AQ(K) - %i..é:— + .-Ei'-- A_(") - '
- g ke

(4.48c)

These relations are however ill-defined unless we give a
prescription to avoid the poles in the integrals. Various possibilities

*
have beenstudied and discussed in the literature ); we choose the

, 150 .
Mandelstam-Leibbrandt prescription (86, 149, 150) essentially for reasons

of simplicity: in this way in fact we can use nafve power counting in

(*) See for example (148) and the references there quoted.
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evaluating the divergent part of the integrals which appear in the Toop
()

corrections to bosonic Green's functions . Note that there are also

. R 51
deeper theoretical reasons for preferring this prescription t ).

We are now ready to compute the one-Toop corrections to the
connected two- and three-point functions in order to explicitly check
the consistency of the new perturbative approach based on eq.(4.48). To
do that we simply iterate these relations up to order 93 and use the
stochastic identities of eq.(4.47). This procedure is simpler than the
method based on stochastic graphs; in fact the relations (4.48) are non-
-covariant and thus the corresponding Feynman stochastic rules are now

{(x*)

complicated

2
Let us compute the g -corrections to the connected two-point

function:

abk < L
Gup (o) = LA () Ag (K)o (4.49)

SR =4,y, L

Note first that at lowest order (i. e. for g=0) eq.(4.48) gives the correct

free propagator:

(*) Analogous computations performed using for example the principal
value prescription are considerably more complicated and lead to
ambigous results.

(**) Note however thata pseudo-covariant formalism can be developed also
in this case following the discussion of the previous section for the
axial gauge and the techniques developed in ref.(149, 150) in the

framework of standard perturbation scheme.
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(-9 ( ]
Ad;(k,n’) 8N kerE) San

kg [ 3

Then substituting in eq.(4.49) the order-gz

-1,

Ke

-t

- }C+
- e (4.50)

- 2%,

after a lengthy calculation, one reaches the following results

CAZ (kY AS () = AL (e { 4 4

+2325

CAT (L) A: (=)D =

Y
+ 23:32 ~[ =

iterations of eq.(4.48),

(140)

(4.57a)
a'p 4 [3 - ke },
G P (- P
als

Al (=, =) { 4 +

(4.51b)
3 <4+ 2 ke P\ ke
k+ Pe P=

Gry PPt

CATWA S (=)D

= 0O
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(4.51c)



CATUATOND = AT () |4~

(4.51d)

!
S P

G P =y o P T Pr

These results exactly coincide (both for the finite and infinite parts)

with those obtained using standard perturbative techniques (149, 152).
<4

This means that the relatjons (4.48) connecting the variables /&‘< with

e
gc* reproduce the Nicolai mapping for the theory up to order gz.

By using the Mandelstam-Leibbrandt prescription it is now easy to

extract thedivergent parts of eq.(4.51). Since the following integrals

(R f A P
FTT peDTe G p b b
are finite, one explicitly obtains, up to order 92:
. b
Div CAL (%) A?CK‘)Z = AL ) Q €9°I j (4.52a)
b
Div (AT (=) A ()Y = A,: (e 292 I} (4.52b)

Biv £ At (=) At(k')‘z = Afi (=, ") {-—z ca"_]f} (4.52¢)

T is again given by eq.(4.24).

With the same techniques one can also compute the divergent part

of the one-Toop corrections to some three-point functions;using the
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*
relations (4.48) iterated up to order g3 ) explicitly one finds:

aa,Qs

AT () AT () A2 (k)= T2 Ut ke 129713

(4.53a)

Q4Q,Qy

LAZR) AT () AT ()0 = T o) | 83217

(4.53b)

GAQ q
where _T";“_ are the tree-Tevel contributions

(KA K;, S) = % 213 ____—___—Eq‘agﬁs ’
™ wE IS (4

(k,.)g{is_:_f.i:_ﬁ .

kSR kzg

Q,.a q_,‘

It is a remarkable fact that the results (4.53) exactly coincide with

(153, 154), as it has

those obtained using standard Feynman techniques

been explicitly checked. This is the proof that,at one-loop,the variables
(=9

i“ are stochastic for the N=1 supresymmetric ‘Yang-Mills theory in the

Tight-cone gauge.

A remark concerning the computation of the three-point function
of eq.(4.53) is in order here. As already stressed in discussing the

covariant gauge, the inverted Nicolai mapping of eq.(4.48), due to its

(*) For what concernes the lowest order contribution, one can easely verify

that eq.(4.48) reproduces the correct tree-level three-point function.
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intrinsic structure, is suitable for computing the full (connected) Green's

functions and not their TPI parts; this is a consequence of the fact that

. =2 Z 2 xewn, @
the definition of the 1PI part for stochastic diagrams is ambigous. Ad = » A o0 X = + - L
(Also here if one computes for example only the 1PI stochastic contributions :
- .
to Ay AL A_}aa wrong result follows for the corresponding proper th = ( 4+ 3 32 I) (4.55)
three-point function | ).

(41-9T)

As a consequence the three-point Green's functions of eq.(4.53) can be

4,
¢z
2.

Moreover in the light-cone gauge there is an additional difficulty:
the one-Toop corrections to the 1PI Green's functions do not have the

t ial i - . . . . .
same tensorial Lorentz structure of the corresponding tree-level result consistently made finite by definingthe following connection between bare

And in fact if one computes the one particle reducible contributions, : .
and renormalized coupling constant:

e. g. the self-energy insertions on the external legs of the three-point

function, one finds the same result. It is only after having summed % = 3’%“ (4 -3 gzuh I) (4.56)
reducible and irreducible parts that all the spurious terms which do not

have the tree- L tz struct i . Thi d . . s
e tree-level Lorentz structure disappear. This unexpecte With this relation one obtains the correct one-loop ﬁ—func’cwn(155 89)

phenomenon is due to the residual symmetry group preserved by the gauge
condition (4.45). This Tittle group contains the rotations around the 3

‘ . e o B(g)= -6 5 (4.57)
third axis, which distinguish among 4+ , — and & components of A,‘ . ATz .

The above remark is particularly important din carrying out the

renormalization program for supersymmetric Yang-Mills theories in the
*

(%) Additional studies are clearly needed to understand if this
Tight-cone gauge . Using the results of eq.(4.52) and eq.(4.53) one

renormalization program can be generalized to any loop (153, ]56). The

can easil that the th i iplicativ izable, s . .
¢ Y prove the e theory is multiplicatively renormalizable above explicit proof that the theory is consistent up to one-loop

at least at one loop. In fact to make finite the two-point functions of - : : . *) .
P P represents already a non-trivial result: indeed in the literature *) it

eq.(4.52) one can define the following wave function ren Tizati
’ ) "o *k) ormatization is claimed that Yang-Mills theories in the Tight-cone gauge can not be

e (
constants for the gauge fields Aa' and A
9ats * L renormalized in a simple way because, as already observed, the divergent

parts of the 1PI Green's functions have a richer tensor structure than the

*) The status of the renormalizati -Mj D B ) ) .
) - rene ization program for Yang-Mills theories in corresponding tree-level contributions.

the Tight-cone gauge is summarized in ref.(153).

(<5
(**) Note that since the components A,and A‘::of the gauge field have
(*) See however ref.(153).

different renormalization constants, it is impossible to define a
renormalized Nicolai map; in fact looking at eq.(4.46) it is evident that
the stochastic variables _ﬁ:renormaﬁze in a complicated way.
- 80 -
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V.4 The N=2 supersymmetric Yang-Mills theory

In the previous sections we have studied in detail the properties
of stochastic identities of a four-dimensional supersymmetric gauge theory
containing only a pure N=1 vector multiplet. Recently it has been

established (116)

a complete set of stochastic identities alsoc in the
case of an analogous theory in six-dimensions (in the Tight-cone gauge).
After najve dimensjonal reduction this theory describes in four-dimensions

a N=2 supersymmetr.ic qauge theory (157,158)

, 1.e. a N=1 vector multiplet
coupled with a matter multiplet in the adjoint representation of the
gauge group (generalization to an arbitrary representation can be easely

obtained).

In this case the relation between the stochastic variables and
the old bosonic ones s, strictly speaking, non-Tocal, if we restrict
our attention to the physical fields; however one can easily make this
relation a Tocal one by introducing suitable auxiliary variables. As
before, by inverting this relation, it is possible to compute at one-

-Toop two- and three-point Green's functions for this extended theory and

compare these results with those obtained using standard Feynman techniques.

The N=2 supersymmetric Yang-Mills theory is described by a gauge
field #\;f and a complex scalar field 4>GL, plus the fermionic
partners, two Majorana spinors which for simplicity we combine in a
Dirac spinor X% (all these fields belong to the adjoint representation
of the gauge group, which again we assume to be SU(2) ). After the
elimination of auxiliary fields, the corfesponding Lagrangian reads (in
Euclidean space; F‘i’ = jjii‘-i ):

L= 4 (B + DF 0y - T (are #73°)

(4.58)

rRPx rilEgeate XTI P S B 3ot
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Using the notations and the conventions of sect.IV.3 we now fix the Tight-

~-cone gauge by imposing

A:’ = O | (4.59)

With this conditfon it is easy to check that by introducing the following

transformations

B,= P A -LBLA HigEar, (AEAE+$LA§>

i

:‘"Qp AL

i

Pl a9 AT i (AL -2 AY) -

]

iqeabe (A AT +$3°)
(4.60)

B = a3t DAY ig ta (ATESHATAD)
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the bosonic part of above Lagrangian can be put in a quadratic form,
(*),

and precisely

’f + %, <9RA5_ b+¢‘)z =

(4.61)

£

1]

=4 () 423080 4 4 (RY) veRES

FS and Asare auxiliary variablesintroduced to write in a simpler way

the transformations (4.60); the equation of motion F;--o defines A:
<

in terms of the physical fields C}?“and A+ .

To prove that eq.{4.60) is really the Nicolai map for the theory,
one has to write the partition function of the model in the following way
{with aﬁ evaluated at A;z =0 ):

Z = IAQ(A+,A_JAL’$,‘¥>)AS>“Q (<. %)

(4.62)

I

- (det)” e’Idx L * 4 (PeAs-u) |

(a factor (a\et ;R> is the Faddeev -Popov determinant; the remaining

factor (de*: Jp ) is introduced to correctly normalize the functional

(*} This result can be generalized to the case of the Yang-Mills

Lagrangian in any even number of dimensions (G.Veneziano, private

comunication).
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integral over the auxiliary field A ). Performing in (4.62) the change

of variables (4.60), one gets:

z = jm('ﬁs;gf;":s.?t) T Aus

v (4.63)
- Jd“x ,,f
- 2

where A ms 1S the Matthews-Salam determinant and J is the following

Jacobian: T = deit M (note that the transformation
2(d.As, A+,AD .

(A, 47) —> (f,_, il )simp]y cancells the factor ( det '3,2> in

eq.(4.62) ). By choosing now a suitable representation for the Euclidean

¥ -matrices (e.g. : &4 = d‘”@o’z ¥, =@, ¥;= °3®°—4.Xu='°:l°"7°)

2
one can show that:

) = AHS

As a consequence the variables (:Fs, ‘ft lﬁ)obey for example the

following stochastic identities:

L350 RR e, = <RI BV = 4 S £%%-x)

(4.64)
L
< ?_:' e £5 (DD, = Sab SMZX—x‘)

(the remaining two-point correlations vanish).

Going to momentum space eq.(4.60) can be, at Teast implicitly,
. —_ . i . a Q.
inverted; eliminating the auxiliary fields -Fs and As , one

explicitly gets:
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= -5 =8
KAL) = wel(R) -k T ) + k] AT (R 4 _
z Note that if we put 4:; = ¢ =0, these transformations exactly coincide
. with those of eq.{4.48) (here again we choose the Mandelstam-Leibbrandt
4
n Lg Kp Eabe J(_ﬂ_f)zzAi (k~g>)[-— ‘?3. £2) + F+ + L)A r) + prescription to avoid the poles A/PR in the integrals).
2% FR KB
(4.65) Using the inverted relations(4.65) one can now compute Green's
65a . . . . e e 1 a .
?_ A ( ) k+ .ft ( (“- functions involving the fields A;,,. , 4’ , 47 (N- +,-,L}in terms of
- = P - D P (e . .
the correlation functions of eq.(4.64). For example,at the Towest order

one easily finds:

LY < e
-+ ga ke E’abc, &ba\e, Jﬂ“ 2p { A-L O“F)[Ai(ﬂ) A_CP-?>4.
e Pp

AT ARG | = AL (=e)

A BS(r-a)] + AL (9) £ (r-q) (- -
A OEACE)] D F ) 2 <CEUUS FN] s AT =)

o N O T ko AT (1<)
AT () = - Ia o ALR) - S As - b ok sab ¢80
=y Fr (4.65b) where A,,‘p. (*-,K') .explicitly given in eq.(4.50), and A (kW) = 5 & ety
- & . .
. Y v . [N —_— are the free propagators for the fields A,‘ and q’; respectively.
i3 e [ ] AT () AT o) ¥ Fe :
kg ] wy? Iterating eq.(4.65) up to order g, one can compute the complete
two-point Green's functions at one-loop; they can be written in the
R following way:
&,
A (e) = - .;E.:.__C_E:) (4.65¢)
e

als
CAT(Y AZOR)D = Al (o) |4y
_ < g Cal. a'p c ) (4.66a)
() = FH¥(x) +igEal f.__.gy 5P

y
ez |94p 4 [, Lk T roab
os | e (PR )] e,

-{E\i A’Z (e-%) + Af(t-y)\u —E: ,é,_"(\c-f)j+

(4650 « L al ‘
CZW)“ Fg (4.66b)
; \ .
= : a 4
S o Bl ' $ob 2J L ke Pr _ 5 kg
4> {K—> =T lc'ﬁ (4.65¢e) 3 (2—71'_)!’ Fz(k_P>Z- 1= Pe FR
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LA ADLDD, = AL (=) | 2 s

(4.66c)

b 32~ ] Jéﬁt- . (j 4 4 ExPrE-Pe =y ko
G pre-p) kL Pe P

AT () A (=)D =0 . (4.66d)

These results exactly coincide (both in the finite and infinite parts)
*
with those obtained with standard perturbative techniques ( ). Moreover

only eq.{4.66a) and eq.(4.66¢c) have divergent contributions; precisely one

has:

Biv LAT D) AT (DD = Dy LFV(R) Sy =
(4.67a)

= A?_L (=, =) {hgzI}

abk
Ny Af[s:) At L\f_‘)>o = A, (=xY i'“é'lj
(4.67b)

4 2
where as usual: L = 7z (E> (see eq.(4.24) ).

With a further effort one can also compute the divergent part of

some three-point Green's functions:

(*) Note that the Ward identity <A, A_D> = <> proved in ref.(114)

is exactly verified.
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—_—g

Div £ AT (o) A?z(“z) A?SC“3>>‘, =1, (m,\cz,ks) 3’ 8%2 I}

(4.68a)

Div <A:4Ch) A?tckz) A?s (,“3)2, = _E?fché,\:z,kl) ihq‘l}

(4.68b)

—_— RuRgag
where 1+ . _

are the tree-level contributions of eq.(4.54). Also these
results exactly coincide with those obtained using standard Feynman
technigues. This conclusion can be clearly considered as the perturbative
proof, at least at one-loop Tevel, of the validity of the stochastic
jdentities (4.64). Then also the general theory described by the Lagrangian
(4.58) 1in which a Yang-Mills supermultiplet is coupled to a matter
multiplet possesses remarkable stochastic properties, if formulated in

the light-cone gauge.

Finally note that also in this case using the results of eq.#.67)

and eq.( 4.68) one can show that the theory is multiplicatively
(*)

renormalizable at one-loop . In fact introducing in the standard way

the wave function renormalization constants:

(*) The same conclusion is obtained in ref.(159), using standard

perturbation techniques.
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A/z h
AD{ = ZO< Ac:( o< = +;—I|_
L
& = Zy em )
the choice:
% %
Zy = Zy = (a4 z2g* T )

i:"z - (4_2?215

makes finite the two-point Green's functions of eq.(4.66). Moreover the
divergent parts of the three-point functions (4.48) can be consistently
eliminated if the following relation betweenthe bare and the renormalized

coupling constant holds:

9 =?"’-B\4(4"2§Z,u.\~1) .

This relation gives the correct one-Toop B -function:
32
B(3) = -y 8=
4émw=
Note that this is also the exact B-function because for the N=2 super-
symmetric Yang-Mills theory there is no divergent coupling constant

renormalization above one-loop (89).

IV.5 Discussion

The most striking outcome of the previous computations is that
the results of equations (4.51), (4.53), (4.66), (4.68) coincide with those

of standard perturbation theory. In this way we have explicitly verified

-89 -

that the stochastic identities (4.47) and (4.64) persist unchanged up to
one-Toop order and as aconsequence that the considered supersymmetric

Yang-MiT1s theories really possess an underlying stochastic structure.

It is remarkable that those stochastic properties are really
present only if the models are formulated in the Tight-cone guage, as we
have explicitly shown. It is well known that this gauge has many other
attractive properties. For example the cancellations of the ultraviolet
divergences which lead to a completely finite field theory in the case of
the N=4 supersymmetric Yang-Mills model is particularly evident in this
gauge. Furthermore the infinite-momentum 1imit (the light-cone) constitutes
an optimal frame of reference to obtain simple picture of physical
phenomena.The fact that the stochastic identities are completely valid

only in the light-cone gauge confirms the special role of this gauge.

Moreover the above resultsclearly show that the presence of the
stochastic identities is a fundamental property of some supersymmetric
field theories. These exact constraints on certain bosonic correlation
functions can contribute to the full understanding of the intimate
structure of supersymmetric models. For example eq.(4.47) and eq.(4.64)
should in principle give a detailed information about the characteristic
properties of the supersymmetric vacuum (see the discussion of Appendix A).
Furthermore stochastic identities can be the basis for new tests on
supersymmetric theories, not directly involving the fermionic degrees of
freedom, and thus they can be used for new lattice investigations in

gauge theories.

However, as repeatedly stressed in the previous sections, one of
the most interesting feature of the presence of stochastic identities or
equivalently of a local Nicolai mapping in supersymmetric theories is the
possibility of a new understanding of these models at the perturbative
Tevel. In fact the alternative perturbation expansion based on stochastic

diagrams has several advantages, as it has been explicilty shown in
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various models. In particular stochastic diagrams do not exhibit divergences
worse than logarithmic. Moreover a supersymmetric regularization of these
graphs can be easely performed since these purely bosonic diagrams

automatically take into account the corresponding fermionic contributions.

Clearly all these new techniques based on stochastic identities
have some limitations and some problems. For example working in Euclidean
space, the stochastic variables *;hof eq.{4.46) are certainly real;
on the other hand the Euclidean light-cone gauge is not completely well
defined since the condition (4.45) implicitly assumes that at least the
3- and 4-components of /R:: are complex. This problem can not be solved
by going into Minkéwskispace since in this case the variables ¥ ,fh

(*)

become complex

In spite of these and other difficulties the existence of
stochastic identities 1in a supersymmetric theory clearly constitutes
an important and remarkable property, which has a deep and fundamental
meaning. A more accurate and complete study of this stochastic structure
is obviously needed, since probably other gauge models (e.g. the N=4
supersymmetric Yang-Mills theory) might present similar properties; and
from these studies new interesting aspects of the connection between

stochastic properties and supersymmetry will surely emerge.

(*) For a discussion on this point see ref.(114).
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APPENDIX A

The canonical formalism

In chapters III and IV we have studied the properties of local
Nicolai maps and of stochastic variables mainly in the framework of a
path integral formulation of supersymmetric quantum field theories. It is
however meaningful that a parallel discussion on the stochastic properties
of supersymmetric models can also be performed in the framework of a

canonical approach‘]]S).

Let us first consider the simple case of Supersymmetric Quantum
Mechanics (see sect. III.7; we work now in Minkowski space, as the
canonical treatment requires). The Hamiltonian of the system can be

written as:
He=43¥ 8- Vig)
=45y VI v P
where the Nicolai variables are now:

. i
}: ?—l—k\/(ﬁ)
S \/'(q) (A.2)
{p is the conjugate momentum to q). p, g, «J°> are operators taken at a

fixed time (e.g. t=0) in the Schriodinger picture; they obey the following

canonical commutation or anticommutation relations:

ilrql=1-31%.¢f -
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From these relations it is easy to check that

{@, Qf=2n

where CQ B ffi are the supersymmetric charges.

The possibility of defining the variables _E , 'gfal1pws a
detailed description of the quantum vacuum of the theory. As shown in
ref.{160), the ground states of supersymmetric quantum mechanical models
share a simple structure in the empty and filled sectors of the fermion

Fock-space, defined by:
Wisy = |-y = O . (A.3)

V4> is the fermion vacuum and | —) denotes the filled fermion state,

*
with fermion number 1 ( ). In these null sectors the supersymmetric

invariant zero-energy states ch! % > satisfy the condition
Hle, z>=0

remembering eq.(A.1) one gets

§+IO +> =0

4

$lo,-> =0

(*) Note that the in the null sectors one can define two different
purely bosonic theories described by the following Hamiltonians:
He = £xlHIE> = 7 P2+ (V) 2 Viq)
These effective theories can be obtained in a functional formalism by
simply computing respectively with advanced and retarded boundary conditions

the Matthews-Salam determinant coming from the integration over the
(119, 115)

fermions
- 93 -

These conditions are clearly the analogue of the stochastic identity

' >, =< , and can be considered the quantum version of the classical
zero-energy equations § = D=§+’ (see the discussion of sect.lII.6).
In a Schridinger picture (g —» x , p — - %) eq.(A.4) gives
the following ground state wave functionals:

V(x)
o (=) v e

-V {x) (A.5)
Y () ~ e

{note that only for some choices of the superpotential V(%) one of
these two wave-functions is normalizable and really belongs to the .
Hilbert space of the physical states of the model; these are just the
superpotentials for which the Nicolai variables (A.2) can be consistently

defined (96» 120)

Nicolai map, which produces the 'stochastic identities' (A.4), gives us

). Thus in this simple example, the presence of a Tocal

acomplete information about the structure of the vacuum.

For the four-dimensional supersymmetric Yang-Mills theories
discussed in chaptIV the situation is more complicated and obscure and a
complete determination of the vacuum wave functional cannot be achieved.
Let us consider for example the N=1 supersymmetric gauge model; it 1is
well known that the canonical structure of the theory is more transparent

(161, 162)

in the so called temporal gauge A_=0 . In fact the conjugate

momenta to the variables A‘:Lx)(iﬂ, 2, 3) are simply 'TT;'C;‘) = G,,A?'
= EZEMCKEand the corresponding non trivial canonical commutation

relations read

[ ee), A Cxe)] = -4 s €5 892D

- 94 -




The fermions on the other hand obey canonical anticommutation relations:

[ 30 Ga), am (e e)f =82 San 802

Introducing now the Nicolai variables (see sect.III.6):

M () +i B2

L3
o
—~
X
~s
i

-+
vop
~F
IR
v/
il

™) - L B (x) (A.6)

RUeH =4 g0 F¥oo

2 ERS

the Hamiltonian of the model can be written as

(A.7a)

a t a 1
Hg = fdsx 1 3%y 3 (.’_‘)-—jdi 4Py 37 )
(A.7b)

We are here in aSchrodinger picture; thus all our dynamical variables are

consideredat a fixed time, e.g. t=0.Moreover note that in this gauge

SVLCA]

B, (%) = T AT
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*
where

VAl = 4 eux okt fAsaian s 2o AAAT

Then eq.(A.6) can be rewritten in the form

35 - me .+ o SVLA)
* * SAD
(A.8)

:¥j% + _Triau _ L. ° \'4 [:izi]
* S A

and the analogy with eq.(A.2) is now apparent.

Unfortunately the variables _?:u . %,Q T are not the correct
Nicolai variables for the theory (see sect. IV.2); then all the discussion
previously done in the case of Supersymmetric Quantum Mechanics can not
be repeated here. Nevertheless as shown in ref.(128) if we fix our
attention only to the null sectors of the theory, defined in analogy
with eq.(A.3) by

Awl+> = X% |-> =© (A.9)

and moreover we consider the theory only in a finite time interval, then
the variables (A.8) become stochastic variables. In this case the theory
reduces to apurely bosonic effective theory which Tooking at eg.(A.7) is

described by the Hamiltonian

(*) V[é.] is the integrated Chern-Simons O-cocycle.
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=
®
[}
Nl
Sy
Q
x\?)
s
LA
+
ek
bop
i

B

(A.70)

in other words we have obtained a standard non-supersymmetric Yang-Mills

(*)

mode . The ground states inthe two null sectors are clearly

characterized by

(A.11)

In the Schrodinger picture these states are represented by functionals
-5

P+ of the real functions !\; () at fixed time; remembering that

in this case Ti"-“' = -a % Af’ sthe solutions of eq.(A.11) are

(*) This phenomenon can be easely understood also in a functional integral
formalism; in fact working in the null sectors is equivalent to choose
retarded or advanced boundary conditions in computing the determinants
involved 1in the Nicolai procedure. Note that the starting theory is still
the supersymmetric one; however the fermion structure is completely
masked by that particular choice of boundary conditjons. One can now use
the 'Nicolai map' (A.8) to set up a perturbative study of the obtained
effective bosonic theory; the unnatural choice of boundary conditions

{see the discussion of sect. III.4) makes however the whole procedure a

Tittle involved (129).
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‘-Pt[ﬁj o et VIa] ,'

(A.12)

note again the analogy with the quantum mechanical case. However these
solutions cannot be accepted as ground state functionals of the effective
theory (i.e. the standard four-dimensional SU(Z) gauge model) since Py
are not normalizable and do not transform in the correct way under time-

-independent gauge transformations (161, 163).

This conclusion is relevant also for the full supersymmetric
theory, since in practice it means that the null sectors do not contain
the supersymmetric vacuum. This can be also understood by noting that the
null fermion states | & :> are orthogonal to the usual field theory
vacuum, in which only the Dirac sea is filled (]]9). Thus the absence
of a local Nicolai map for the supersymmetric Yang-Mills theory in the
temporal gauge does not allow a detailed understanding of the vacuum
functional of the theory. Even more, the previous discussion suggests
that the Tack of a normalizable ground state functional in ordinary non-
-supersymmetﬁif gauge theories has something to do with the fact that the

variables ii are, in general, not stochastic.

At this point a more careful analysis of all these problems would
be clearly necessary, in particular within the framework of a light-cone
gauge formulation of supersymmetric gauge models, where a local Nicolai

%
map really exists( ). However the canonical structure of the theory is less

(*) Nevertheless note that, as discussed in sect. III.4, even in this case
the Tocal Nicolai map can not be interpreted as a full stochastic process;
this is another relevant difference of a gauge field model with respect

to the one-dimensional case previously discussed.
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transparent in this gauge and then a simple reformulation of above The action A = [d‘;t cf_ is invariant under the following local

formalism does not seem completely straightforward.

symmetries:
A
a) general coordinate transformations T x)
b) Weyl transformations (=)
APPENDIX B ¢) chiral transformations PNIED
d) Q-supersymmetry £ (=)
The linearized conformal supergravity e) S-supersymmetry P <)

In sect. II1.6, we have seen that there exists a set of (on the right the corresponding infinitesimal parameters are indicated).

transformations which gives the Lagrangian of conformal gravity a Due to these local invariances, the partition function

quadratic form. It would be interesting to understand whether these

transformations really are the Nicolai mapping for the supersymmetric LA

version of the theory, i.e. for the conformal supergravity (164-168) Z = I Al (kH 7 A/A) a ('*’/‘l “Pv} & (B.2)

Here we 1imit ourselves to a rough study of the question in the

linearized version of the N=1 model. is not well defined, unless a suitable gauge-fixing procedure is introduced.

The conformal supergravity multiplet contains besides the To implement the following covariant gauge-fixing conditions:

gravitational field \t‘\),.p , connected to the metric by the standard

. - . - . " _ - ) -
relation  q .. B v+ N s the spin 3, gravitino field YPu o 9'“\'\,.»- -0 Wa=0 2. A=0 2 -Pp=0 ¥ p =0
a Majorana spinor, and a chiral U(1) vector field A}& . The (B.3)
corresponding linearized Lagrangian has the following form: (169) . . s
we use the standard techniques ; we multiply the previous partition
i =~ i i i F 2 furiction by the product of the Faddeev-Popov determinant A Ep times
= C v S~ c TR e

(B.1) the following functional integrals:

A

-5 Pu {? (O 8uo =2,20) -4 ¥s¥, 3. O z‘;’*“?&j--Pw -i[dk a Dan

[a8(5) @ .

(det O) € (u-2oh,,
(*).

a2
where T, , =3, A_-3, Ajpad <, P~ is the linearized Weyl tensor

i, u 2
~ /éJ Adx |y D }D (20

(*} We use here the conventions of ref.(168), with a suitable redefinition jAQ (,U) $ b = (“e’t D) S (b - \“/“o“->
of the fields. Hereafter the ten independent components of \nﬁ\, will

be called W, ,M=1,2, ..., 10.
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. W 2
[EEISE Y SHfH e L 3-A%)

I

(45 () x I FH L (cmd)

-L/%y

fg_ﬁ(@) @A‘? e dx;}ﬂﬁ’v] ("\btﬂé)-‘/&g(n)—‘b"-i»’%>

where (&, , b , ¢ ; X, “*) ) are suitable bosonic and fermionic
fields (the various determinants are introduced to normalize the
corresponding functional measures). clﬁ_() are invariant measures on
the corresponding parameter groups.

Since the functional measure in eq.(B.2) is invariant under the
symmetries of the action, one easily finds integrating over (Gf., L ,c;
x5 ):

Z = (a\ﬂ(hH,A)J AD (B, &L/i‘#d; .

L (8.
- Agp (det [])3 (det ;4)"{ (M(D?‘))-i

where
DZ‘%T- L + Ler =
© e D 1 (v B30k + (Bt ) +
— ('
ERCRS ETE A IC D A L
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is the sum of the starting Lagrangian (B.1) and of the gauge fixing one:

afch = - (?,.L,Av)D('};.\«x‘a) *é Vs Dz how =+
. (B.6)

A (A Y E oy ey - L v OF vp

To compute the Faddeev-Popov determinant AFP , we need the
explicit expression of the symmetry transformations on the fields.
Remember however that we are interested only in the linearized expression
of the theory; then introducing suitable ghost fields, we have actually
to find the free Faddeev-Popov Lagrangian of gp - For this reason one
can show that only the general coordinate and Weyl transformations of
oy » chiral transformations of A,,_ and supersymmetry transformations

of Py are explicitly needed
S hpw z‘aﬂ?v +Pn S v 2w §av
AL = PuX

If we call (2%, ¢,), (B, b ), ("W, K ) the anticommuting scalars
ghosts associated to the general coordinate, Weyl and chiral transformations
and (§ . s )s (ﬁ > ) the spinor commuting ghosts of Q- and S-

supersymmetry, one can easily show that
Lep = €7D + T2 & V82D ¥

szRB5c *»udDd +HORN +» 7 O0F +

$ 378 +NPg + uAHY
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Then,up to a numerical multiplicative constant, which we omit for simplicity

L falhx IFP

AFP=jA_Q (, d,R) o\D_(g,«.pe = (a\etD>

(B.8)

Collecting all the results one finally finds for the partition function
the following expression:

ilak Lot
Z =«{Aﬂ—(kH/AP>c£Z($hqb e | £

(B.9)
By introducing the following variables:
2= (%5, %, 30) i, 31, 2, 3
Fo=(Fo, Fu) A =1, 2, 3, 4
with
~ . AS
g_ 3 = L'(C-OIOA +5{'&le C°,k2_>
2 = & Owe (B.10a)
¥» = 2L 0% 9. hew
.= F. Log . .
Fp Fko *' > &«sak ‘FAK (B']Ob)
Tﬂ, =43 A

it is easy to see that the bosonic part of af €?% can be written as:

Gf% bosonic - % (3’”)z+ %CFJ‘*>Z
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(B.11)

where

I = M(é}i‘-— -M(%F"> (B.12)

S hy S Ao

is the Jacobian of the transformations (B.10) and A 4 is the Matthews-
Salam determinant obtained performing the functional integral over the
gravitino field Lf;g .

The direct computation of the determinants of eq.(B.12) (in
particular of the first one) is very complicated; however, up to
multiplicative numerical constants, we can evaluate them by noting that
since our gauge fixing conditions have a formally covariant form, the
above determinants must have too a formally covariant form. Furthermore
the Nicolai transformations (B.10) are linear in the fields and their
(first and second) derivatives; then the Jacobian (B.12) must be
proportional to some power of det O . By looking at the explicit form

of eq.(B.10), it is not difficult to find that:

ar () = (@)

ok ( %F,..)
S A,

(B.13)

1]

(ewr0)”
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(the Tast result can be obtained also by a direct computation thus
confirming the argument).
On the other hand the Matthews-Salam determinant can be

computed with a suitable redefinition of the fields:

. \
S T P

_ [am; (agﬂ)]"{&(%,%) ef]‘dh"“f

(B.14)

N_ it 4 i4 9.
L ‘AE #{g»*’ﬁx“xﬁ*%%‘“}*‘)

By the same argument used before, the last functional integral in eq.(B.14)

is a numerical constant, and thus:

Ans = (d&t G)Az .

Then eq.(B.10) is really the Nicolai mapping of the theory. Finally note
that the extension of these arguments to the full interacting theory is

. (1
quite difficult since Tooking at the explicit form of the Lagrangwn(

one discovers the presence of quartic fermion couplings.
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66)

b

APPENDIX C

Probability concepts

In probability-theory ) one deals with a single experiment E .
The results of this experiment (the elements) are some well defined objects
T which form a space S, called sure event. The events are certain
subsets A , B, C, ... of S which form a Borel field Gy (**). Two
events A and B are mutually exclusive events if they do not have any
element in common, i.e. if A f} B =0. To each eQent A we assign a
number P(A) , which we call probability of the event A , such

that the following axioms are satisfied:

N P(A) »o
2) P(2)=1

3) if éA,;i,;é_N is a countable collection of mutually
exclusive events, i.e. A;NA;=O for i#j, then: P(.q A;) =
= Z. PLAY).

From these axioms it follows that: PC#’) =C P(Z) =4- P(A> .

(*) Many introductory reviews on probability theory and stochastic
processes are available; for example see ref.'s (2, 3) and references

there quoted. Here we follow ref.(170).

(*%) A field @ is a non empty class of sets such that:
1) if A& & , then Xé‘s“ ;
2) if ABER ,them AUB e
It follows that also AR , A-B, ¢ , Sem A sa

Borel field if it is closed with respect to union and intersection.

- 106 -




If the event M is such that P(_M)i"o, the probability of
the event A conditioned by the event M is:

P(aNM)
Plalm) - P(MD (c.1)

where P(ANM) is the joint probability of the two events A and M
( AN M is the event containing all the elements common to A and

M ). Two events A and B are called independent if:

PLANBY) = P(A) P(®)

Thus, it turns out that an experiment & is defined by three objects

S. ¥, P
E: (s, B, P) .

(c.2)

Let £ be an experiment as in eq.(C.2). A random variable X is
a law which assigns a real number X (S to each result 35 of the

experiment E . More rigorously a random variable is a function
x: S — R
such that:

1) the set {5 g x} (i.e. the set of all the results ¥ such

*
that () § x ) is an event for every real X ( );

(*) This is equivalent to say that the function 2 s measurable in the

field 2 .
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?) the probability of the two events Ilé =+w} and { & == @}
is zero:

P(x=+°°)= P(_;.:—oo)—_-o

Given a random variable X we can speak of the probability P(é $;<>
of the event 35 £ XE ; this is a function of the number X . We call
this function,distribution function of the random variable % and we

write:

Fx)= P(xsx) <e IR .

In short one can say that F(!‘) is equal to the probability that X $x .
It is easy to prove that the distribution function F satisfies the

following properties:
) F(-ee) =F(+e)=1 ;
2) it is a monotonic function:FQﬂ)SF(&)for Ky Xy 3
3) it is continuous on the right: e F(x+g)=F(x),
€ -» oF
The derivative of the distribution function

a4 Flo)
ey = S (c.3)

is called density function (or probability density)of the random
(*)

variable X . Since the derivative of ¥ is not guaranteed to exist,

it is necessary to distinguish varjous kind of random variables.
Let us suppose first that F(x)is continuous and that the points

in which it is not derivable form a denumerable set . In this case the

(*) In the mathematical Titerature F is called the distribution function,
whereas in the physical literature the probability density :?- is often
also called the distribution function. We follow here the mathematical

conventions.
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random variable X is called continuous. Then from the properties

of F(x), it follows that
2y zo
+eo
f dx g,o?) = 4

Moreover, from the definition (C.3) one gets

Foo = [ ay S0
- 80

and thus the fundamental relation holds

Az
Pl cxgx) =] dy iy

%4

or in infinitesimal form

P(xs x¢ x+o\><>= ¥cx) dx |

Finally:

P(x =x) =0 ¥<elR

If the distribution ¥ (<) of the random variable X Jumps
of an amount P; at the discrete points X; , then X 1is called

discrete. In this case

P(x=x)=p 2 pi=4

)

Introducing a & -function, one can write for the density function the

following expression

Y =2, pi S(x-x)
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since
d Fu

4 x lx:x,;

= & F () - F(x;—a)? S (x-%5)

(e>0
Then by allowing Q~fu_nct1’on singularities in the probability density,
we can formally treat the discrete case by the same expressions used in
the continuous case. In the following we shall limit to the latter.

Applying eq.{C.T1)jt is easy tosee that the conditional distribution
F(x!M)of a random variable %, conditioned by the event M , is
defined as the conditional probability of the event § x gx ]

Plzsx, ™M)

F(xiM)=P(xsxIM) = o

where {_L‘\<><, H?I is the event consisting of all the results 5 such that

§(3>Sx and T e ™

If the event M:is expressed in terms of the random variable

X, then chlhj
can be expressed in terms of F (=),

In probability theory a very important parameter is the
expectation value of a random variable X . It is defined by the integral

"= Efsf -

x
-as

+ oo

g(x) dx
In the same way one can define the conditional expectation value:
4+ oo
E )___‘ IM = J X P d)(
fami=| «Poam

Another very important parameter is the variance or dispersion <2 :
+ oo

o= E{ («-m)] = Lo(xw])‘ Py dx .

One can easely see that:




"'t and o* give only few informations on the density of # . A more
complete specification of the statistics of & is possible if one knows
its moments M, defined by:

4+ oo
me = E} 2%§ = f «* ¥ ey dx
- 6o
in particular: mg=4 , fW\Af-N’ . The constants

Me = E{ ("“N))k}

are called central moments (or cumulants); e.g. =1, M=0, M, = &z,

One can show that the following relation between s, and M, holds
= |4
LI 3
pe = T (R) E T

The Fourijer transform of the density function .?cx}of the random

variable & is called the characteristic function; it is defined by:

peoy = B eV f

From @(w) one can obtain the moments by differentiation:

w
m 4 e
’ = e
4 dwr w=-o
1 a¥ % L)
(similarly: M = Tw dis® L,_,_). Then if one knows all

the moments of a random variable X , one canbuild up the characteristic

function 42(@) and then the density function ¥(x) by Fourier transform.

A1l these cosiderations and definitions can be easily extended to
the case of a collection of n real random variables: %, ,...., X, .
First of all the marginal or joint distribution is defined in the
following way:

F(x4)..,)x“>=P( IR .,.)5hgx,‘>
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where 354\<X,{)-v-,’.ﬁ.h"‘n}={é4$ﬂ4%n"‘n{fh\<"n§
The corresponding density function is obtained from ¥ by derivation

with respect to all the variables; this function is positive and moreover
N 4
fdx (e, ooy%n) =

Note that from above definition substituting some variables with + o=

in Flre, .., xh) we obtain the joint distribution for the remaining
variables.For example: F (x4,x5)= 'F(x4,+m_,x5;-m>. Analogously
integrating .f(_:u, e x") with respect to some variables, we obtain

the joint density in the remaining variables; e.g. :?. qu, "3) =
Sd"‘ Axy ¥(’“1’<z/‘<5,x‘). We indicate with

%(,’4"")?‘)&\"“04,"';’(“)

the conditional density of %, ... ,%, with respect to 2w, .. , X s

explicitly one has

_ {('x“...,x.,.) ‘
.:?('xk,” .../x“) (c.4)

¥ (.«’(‘/ sy X l"k—u, "',xw>

Using this relation one easily concludes that:
? c"4,...} 7‘\1) = ¥(xﬂli‘h-4) .--IX4> - ¥("z‘x4) ?‘C"A}

A11 these properties can be summarized in simple rules. Let us
call left and right variables the ones respectively on the left and on
the right of the vertical bar in .?(x(,...,x,‘lxm.,_.,’xh) Then to eliminate
a certain number of left variables, it is sufficient to integrate with
respect to these variabies. To eliminate some right variables, it is
pecessary to multiply %, by the density of these variables conditioned
by the remaining right ones, and then integrate with respect to the:

former. For example:
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';("4 %37 = j¥ (%4,%2 1537 dix,

¥C"4 U‘u) = j£ (%4 lxz,xs,x..) ?—("a,xxjx,,A i, dxg

The random variables %4, ... , x, are independent if the

events
ETR L 7 N NI

are independent for any X, ., ... , , . In this case, distribution
and density functions fanctorize. Moreover we can define the (generalized)

moments of order & = Z K. , as
4 o

- by,
I‘V\/\KA,___}KH - E&éd éh j =

W 4 14
= fd)( %()‘4)_,,/ ,(H> Ky oo XKy, w
As in the case of one random variable:

A 3’14’(_'-'3&/---, u.')_v,)

AE 2 o )«.o=o

/WK‘)__"\‘“ =

where the characteristic function is now:
i
bl o) - E] e

if #, , ..., %, are independent, then: q?(wh...,poh)-.- ch(w‘)...d,w(_@;),
We say that the random variables %, , ..., Z, are

L)
;R th‘_‘_w_§
3

uncorrelated if the covariance of any two of them is zero:
Eb=ix;] = EY 2] B {x] L ¥iti

in this case: c-le+...+£ = cg‘z.,. ---4+ s . They are orthogonal if:
= "
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Elre x5 =, Y it} ,

in this case: E 5’(75_14— ---+§“)25 = E&L‘,zf + - +E&é:j

Stochastic processes

Let us consider an experiment & (S % P) and imagine to
assign the following function of the time _>5(t,'s>to each result Te £ .
We have then a set of functions, one for each & . If for any t, X(t)
is a random variable,then the family of functions define a stochastic
process. Following what we have done for a random variable, we can define

for X(t) the distribution FC&t), which in general depends on time:
Fl<,e) = P (el sx) .

The corresponding density function can be obtained deriving F(»“,t) with

respect to X
DF(=t)
D x

3, Lx‘t) =

But given two different times £, and t, , one can consider the random
variables x [t4) and X (t,)and then study the corresponding joint
distributions. It follows that a stochastic process is statistically

detrmined if one knows the n-order distribution function:

F(ri,tas ate; -5 ) =P (26 5 %4, -'ué(tn):m)
(c.5)

for any n and td s «-s » Ty (usually one considers only increasing
times: T4 > £, 2 --- 2 £ ). These functions are not arbitrary; in
particular a distribution of a given order is determined by a distribution

of higher order.
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The n-order density function

%()‘4,1}4'} sy "u,tm) (C.6)

of the process £ {t) is obtained by deriving eq. (C.5) with respect
(*)

to all the Xi's . The expectation value and autocorrelation of a

stochastic process are defined in the usual way; one has respectively:

) = E =]

R(t‘,tz) = E {é(.tll) 5(.'&41)} .

Moreover the quantity

El x(e) 2 () - é(tg)}

is a moment of order k.

A stochastic process X [t)has uncorrelated (orthogonal,

independent) increments if

is a sequence of uncorrelated (orthgonal, independent) random variables;
the intervals (t;‘ t,;H) are disjoint, but otherwise arbitrary (analogous
definitions hold in the case of two or more stochastic variables).

Of particular importance are the Gaussian stochastic processes; x(+)

is normal if the random varijables

x(t), - -, xltn)

{*) The generalization to the case of more stochastic processes is

straightforward.
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*
are normal for any value of n and ’f:1 , .. s E “( ). Then for X(&)

to be normal it is necessary that the density functions are normal to

any order.

A very important concept is that of a stationary stochastic
process. We shall say that X (tY is stationary {in strict sense) if the
two processes X (&) and £ Lt+e) have the same statistics, for any €.
From this definition it follows that the n-order density function of a

stationary process must satisfy the property:
¥(x4,£43 ) xn,t“) = '%-(,»ﬂ,t,ﬁ—&,) -t xm,th-&-a) ,

In particular the first-order density function is t-independent; as a

consequence

E E_ )_<L+:')3 = ’Vl = constant

Moreover the second-order density is a function of the variable Z=t,-z,:

3,(;‘4,'t4}7‘altz)=¥(."41"2)t) 5

then %(n, Ay r) is the joint density of the two random variables A(E+T)

(*) A set of n random variables X4 , ... , %, 1is Gaussian (or normal)
if the joint density function has the following form (using a compact
vector notation):
-
o - ) A (-m)
%, (%, ...,x“) _ (detA) e " "
(2™

with

E ) xi} U
Bl Gi-n)Cz-%)F = (A")up

A is a positive-definite, symmetric matrix.
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and X (£). In the same way, also the autocorrelation K (ta, t,-,) is a

function of T
R(zd= BE{x(t+z) 2D} = R(-z)

A stochastic process is weakly stationary if its expectation
value is a constant and the autocorrelation is a function only of the
variable 77 . Obviously if a process is weakly stationary is not in
general strictly stationary; however a weakly stationary Gaussian process
is also strictly stationary (*). Finally we shall say that X({&is a
process with stationary increments if the process g.(t)= & (t+&) - 2{)
is statjonary for any value of £ .

We can now classify the varijous stochastic processes using the

conditicnal probability densities (32).

a) Purely random processes
The process X () is purely random if the n -order conditional
density does not depend on the values of the random variable at earlier

times:

2? (%4, t4 | ""z,‘t‘-z) S xh"ty.) = ?CP‘M*—A) .

Then it follows that:

Yoeita; oy mnrl) = Y oa,t)) ?(xz,t,-, e b))

and thus the n-order joint density factorizes:

%(n,t‘-} e x,,ﬂc,,} = 3. (_n,t‘) <. 3(3‘w,iu>

(*) An important example of stationary Gaussian process is the so called
white noise; it is characterized by having zero mean value and uniform
spectral density (the spectral density of a stationary process is the

Fourier transform of its autocorrelation):

ez} -o Ef 2509 = S(e-t) |
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The complete information on the process is then contained in ¥ (#,t) .

b) Markov processes

Whereas for a purely random process there is no memory of values
of the stochastic variéble at any preceding time, for a Markov process
there is only a memory of the value of the stochastic variable for the
latest time where we measure A {t). In other words one can roughly say
that #&) is a Markov process if, known the present, the future behaviour
of (&)Y is not influenzed by the past behaviour. In terms of conditional

probabilities this means:

Plzten) sxn | 2 (2us) --- >_<(t4)> ]
= P(’S(_tu)SxH} )_('(th_‘>>

ty >ty > o>k, ¥n
or equivalently:

P2 sx ]l g6, ¥egta,) =

= PCa(t»)sxnlé(th_4)> i

Then one concludes that

¥ C"h,“’:h ) ""/‘, X4‘t4> = 3’ (""\‘bh i )(\4-4I't“-4>" .

R (xea] x4, t0) ¥ (on,t0)
Thus for Markov processes the complete information on their statistics
is contained in ¥ (x4, %, i xz!t-a> (or equivalently 'F("x.f—,c)”z,t z))-
Let us .indicate with:
P (et | e,£0) = guﬂ (x \ ,_5(_1:9) = x°>
tzt

©
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the density of X Lt) under the condition 5Lto)=x°. Obviously
one has:
Plrtl X 1) O & (x-x0)
E-ts

and + 80

L%a\x Pl | x,'t°> = 4

If +£>%; >t_ , one can prove the following fundamental relation

+ O

P (=t} xa,t,) = f dx, ?(x‘t \n‘to PL"‘:tA l»“o,‘bo>

it is called Chapman-Kolmogorov equation. Finally, if p depends only on

+ - £, , then the process is called homogeneous.

c) General processes

These are the non-Markovian processes, for which the complete

information on  them is not contained in £ (xa,ty ; ><2,tz>;

these processes can be described by a collection of more Markov

variables.
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