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This Thesis

This thesis is devoted to the study of Si,Ge;_x alloys and ultra-thin super-
lattices, using the state-of-art density functional theory and norm-conserving
pseudopotentials. The present work is the only available ab-initio study for
Si-Ge alloys. For the alloy phase, we have introduced a model for the micro-
scopic atomic structure based on the tetrahedron approximation. Nine different

ordered structures (each corresponding to a different configuration of the tetra-
hedra) have been studied.

These ab-initio calculations allowed us to study the structural properties
(lattice parameter, bond length alternation and their variation with z), bond
ionicity and its dependence on the chemical environment, stability of the bulk
ordered structures and (assuming completely random distribution of atoms at

the lattice site) the energy of mixing of Si,Ge;_x alloys.

‘Using our previously calculated formation energies of the tetrahedra con-
figurations, and solid state statistical mechanical methods (cluster variation
method and a modified quasi-chemical approximation), the entropy, enthalpy,
Gibbs free energy and other thermodynamical functions are calculated from
first-principles, as functions of z and temperature. Since bulk ordered struc-
tures are found to be unstable, only disordered alloys have been studied. From
the calculated free energy of mixing, the phase diagram has been constructed
and the critical temperature is deduced. Also, the tendency to clustering in
these materials has been studied. Furthermore, the effects of the pressure on

the above properties have been studied, by performing similar calculation under
hydrostatic pressure.

The band structure and its pressure dependence for Si, Ge, And Si,Ge;_«
alloys have been studied using the same approach. For the alloys, the calcu-
lations are performed within the virtual crystal approximation (VCA) and the
supercell approach; the latter is done by performing different supercell calcu-

lation at (z = 0.5), from which we were able to study the effects of ordering,
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charge density distribution and microscopic structural relaxation on the band .
structure. The pressure coefficients of the band gaps at the high symmetry
points have been determined for Si and Ge; for the alloys this has been done

only at (z = 0.5), within VCA and Zinc-blend structure.
;
Finally, we have studied the stability and the electronic structure along

the high symmetry lines of two Si;Ge; superlattices, having (111) and (001)-
orientations. The (110)-oriented superlattice has the same crystal structure as
the (001)-oriented one. Therefore, the three high symmetry directions are con-
sidered in our study of the above superlattice. The total crystal charge densities
and that corresponding to the lowest conduction band states are displayed, and

the electronic confinement of the conduction band states is studied.

The material of this thesis is divided into four chapters, in addition to
the introduction. Each of the chapters 2-5 is treated as an independent report

having its own introduction, and a summary of the main results and conclusions.

The results reported in Ch. 2 are the subject of a paper acceptéd in final
by the Physical Review B, and now in press. Those reported in Ch. 3 are the
subject of a paper accepted (subject to a miner revision) by Physical Review

B. The results of Ch.’s 4 and 5 are the subject of further papers, which are
presently being written. '




Chapter 1

Introduction

The possibility of producing new materials with designed optical and electri-
cal properties makes the study of semiconducting alloys and superlattices of
paramount importance. Specially if one is talking about alloys and superlat-
tices of Si and Ge which have great potentials for device applications. Recently,
new important developments have been achieved in the field of semiconductor

alloys. Here, we will start by mentioning some of these developments which
have a direct connection with the subject of the thesis.

e The observation of the long-range ordering in some of strained and un-
strained semiconductor alloys superlattices, by annealing the grown layers
[1-7]. For example, the observed tetragonal structure in GagsAlgsAs (2]
superlattice grown on GaAs substrate. Previously, they were known to
form disordered alloys with positive interaction parameter (i.e. to be
thermodynamically unstable). Srivastava, Martins and Zunger [9] have
shown how this can be possible, through ab-initio total energy calcula-
tions, while Martins and Zunger [10] have studied the effects of strain
in stabilizing the ordered structures observed in strained alloys superlat-
tices. However, this is still a controversial subject, since Kunc and Batra
(11] and Ciraci and Batra [12,13] have shown that the observed ordered



structures, in Ga;_,Al As and Si,Ge,_, alloys, can be described as a mod-
erate tendency towards segregation into isolated regions having only bulk

properties.

The developments in the high precision growth techniques, such as, the
molecular beam epitaxy (MBE) and metalorganic chemical vapor depo-
sition (MOCVD). The degree of control is now so advanced that novel
synthetic structures, with layer thicknesses down to one monolayer have
been grown [14-16]. The stability [11-13,17,18] and the electronic struc-
ture properties [19] of the ultra-thin superlattices are now of current inter-
est. They have been found to have different electronic structure properties

than random alloys having the same concentration.

— The folding of the Brillouin zone may lead to a new optical transi-
tions, as the new quasi-direct transitions observed in SigGey (001)-
oriented superlattice grown on Si substrate [14].

— The energy gaps of the ultra-thin layered superlattices are usually
smaller than that of random alloys [7,20,21]. In Fig. 1.1 we show
the photoluminescence spectra of (InAs);(GaAs); superlattice and

of IngsGagsAs alloys, where the difference s very clear.

Extended X-ray absorption fine structure (EXAFS) measurements [22-26]
have shown that the bond lengths of the different bonds are neither equal
among themselves nor equal to the corresponding ones in the pure materi-
~als, being however much closer to the latter, and having weak dependence
on the alloy composition. These observations provide a direct evidence for
the existence of structural disorder, in addition to the chemical disorder
(ie. random distribution of the atoms at the lattice sites) which usually
exists in such materials. The structural properties of alloys are also of
current interest for the variety of problems connected with them such as,

the energy gap bowing [8], stability and other thermodynamic properties
[9,28,27],... etc.

Previously, the thermodynamic properties of semiconductor alloys were
studied using only phenomenological approaches. The major aim for this

type of calculations is to calculate the energy of mixing, which can be split
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into elastic and chemical contributions. In these approaches only one of
the contributions (chemical [29-32] or elastic [33-35]) is often considered
in an approximate way. Both contributions are considered in some cases
[27]. The new development is the determination of the structure config-
urational energy [36-40] using the state-of-art density functional theory
(DFT) [41,42], which takes properly into account both of the above con-
tributions on the same footing. In this type of calculations, the alloy is
considered to be formed from basic building blocks (basic clusters) con-
sisting of a small number of atoms. The basic assumption is that each
configuration of the basic clusters can be realized by an ordered structure,
consisting only of clusters of this configuration. Therefore, the problem

of determining the thermodynamic properties is divided neatly into two
steps:

1. The calculation of the ground state properties such as, the total -
energy of each configuration of the basic cluster which is the key
quantity. Because of the above assumption, this can be done using

a first-principle approach.

2. The calculation of the thermodynamic properties (such as entropy,
enthalpy, ...), starting from the calculated energies in the previous
step, and using the methods of solid state statistical mechanics (é;g

cluster variation method).

It has been shown by Zunger and co-workers [36,37,38] that proper ac-
count for both the elastic and chemical contributions is essential and leads
to new features in the phase diagram. Up to now, only the solid phase
is considered. The determination of the above properties for the liquid

phase is lacking behind, and requires new developments.

Recently, Si,Ge;_, alloys properties of the bulk and in the form of super-
lattices have became a subject of increasing interest. The strained Si/Si,Gej—x
superlattices have been found to have very intriguing transport, structural and
electronic structure properties, such as the observed strong low-temperature

mobility enhancement in selectively doped Si/SixGe;—x [43], the long-range or-
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Figure 1.1: The photoluminescence spectra of (InAs);(GaAs); superlattice and
IngsGagsAs alloys at 77 K. (from Ref. 21) : :

dering observed in Si/Sig46Geos4 [1] and the new quasi-direct optical transitions

observed in ordered Si;Gey [14] strained-layer superlattices.

In this thesis we will focus on SixGe;_ alloys. Both Si and Ge belong to
the same group IV of the periodic table, which contains in addition to them C,
Sn and Pb. Among all the possible binary compounds of this group only SiC is
known to exist in stable ordered structures, while Si and Ge are known to form
random alloys with positive interaction parameter. The lattice constants of pure
Si and Ge are mismatched by 4%; this implies that the microscopic structures
of 8i,Ge;_y are usually strained. Only very limited EXAFS measurements for
these alloys are available [25,26]. Whereas from the experimerntal point of view,
the band structure of Si,Ge;_, is well established [44,45]. = -

Here, the structural, thermodynamic and electronic structure properties of
random alloys, and the stability and the electronic structure of Siy;Ge, (001)
and (111)-oriented superlattices have been studied. The calculations are per-
formed using the local density approximation (LDA) [46] of (DFT) and norm-
conserving (NC) pseudopotentials [47,48]. To our knowledge this is the most
complete and detailed study for these materials.



The calculations of the ground state properties of solids has advanced sig-
nificantly in recent years. It is now possible to carry out within a unified theory
(based on DFT-LDA and NC pseudopotentials) accurate calculations of the
static [49], dynamic [50] and other ground state properties. The fundamental
quantity in this theory is the total energy. If one is able to calculate the to-
tal energy for a given ionic configuration, the calculation of the experimentally
measurable quantities can be easily carried out. In DFT, the Kohn-Sham eigen-
values are only meant to be used in the total energy calculations. However, they
have been used as excitation energies. The calculated gaps of semiconductors in
this way are underestimated by 20 - 50 %. The discrepancy is now understood
as a consequence of a discontinuity in the exchange and correlation potential
[51]. This method is now a standard technique in solid state physics. Excellent
review articles are available in the literature [52-56]. For this reason and be-
cause of space limitations, the method will not be reviewed here. It should be
mentioned at this point that very recently Car and Parrinello [57] have com-
bined LDA with moiecular dynamic simulations, providing in this way the basis

for new interesting and exciting developments.

The thesis is divided mainly into four chapters, each one having its own
introduction, and a summary of the related main results and conclusions are
given at the end of the chapter. In the following we give a very brief summary
about the contents of each one:

Ch. 2 is devoted to studying the structural properties {such as bond length
alternation and the variation of lattice constants and bond lengths with z),
and the stability of ordered and random Si,Ge;_, alloys. This has been done
first within the virtual crystal approximation (VCA). It has been shown that
the obtained results are far from being satisfactory. In order to go beyond
VCA a model for the atomic microscopic structure of binary alloys has been
introduced. Within this model the 5-site tetrahedron is taken as basic cluster.
Nine ordered structures (each corresponding to different configuration) have
been studied. The total energy as a function of the lattice parameter a (in-
cluding local structural relaxation) has been determined. Therefore, the first
step in the determination of the thermodynamic properties is done. None of

the above ordered structures is found to be stable. Good agreement between



the z variation of the bond lengths of Ge-Ge and Ge-Si pairs and the available
theoretical and experimental results has been found, the one of the Si-Si pairs
is predicted. The ionicity of the Si-Ge is found to be very small and unaffected
by the chemical environment. The energy of mixing and the interaction param-
eter of random alloys are calculated, by assuming random distribution of the
tetrahedra. The calculated interaction parameter at z = 0.5 is found to be in
very good agreement with the available experimental data. The convergence of
our calculations has been checked by recalculating the energy of mixing within

the pair approximation (considering the bond as basic cluster).

In Ch. 3 we complete the calculation of the thermodynamic properties of
Si,Ge;_y, using the energies calculated in Ch. 2, and the methods of solid
state statistical mechanics. Since the long-range ordered structures are found
to be unstable, only disordered alloys are studied. Two approximations for the
configurational entropy have been used, which are the cluster variation method
(CVM) [58,59] and a modified quasi-chemical approximation (QCA) [60]. As a
consequence of our structural model, only constrained CVM calculations can be
performed. The thermodynamic function such as entropy, enthalpy, free energy
and others are calculated as functions of temperature and composition. The
phase diagram is also calculated and the critical temperature is predicted to
be around 360 K. The tendency to clustering is found to be very small, which
provides further support for the instability of ordered bulk Si-Ge structures.
The effects of the pressure on the phase diagram, thermodynamic functions
and clustering have been studied. For the phase diagram, it has been found
that by increasing the pressure the instability region shrinks and moves toward
the Ge-side while the critical temperature increases, and it has drastic effects

on the other studied properties.

In Ch. 4 we digress from random alloys to study the stability and the elec-
tronic structure of Si;Ge, (001) and (111)-oriented superlattices. The (110)-
oriented superlattice has the same crystal structure as that of the (001)-oriented
one. It has been found that they are thermodynamically unstable. The (111)-
oriented superlattice is found to be relatively more stable than the other one
which, in turn, is more stable than the zinc-blende structure (Si;Ge; superlat-

tice along both directions). This shows clearly the tendency of Si-Ge systems
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toward segregation. The band structure of the equilibrium structures has been
calculated, and compared with that of Sip5Gegs alloys within VCA and zinc-
blende structure. It has been found that both of the two superlattices are
indirect gap semiconductors. The mixing between the conduction band states
is found to be appreciable, and has direct effects on the conduction band struc-
ture. The level charge density of the lowest conduction band levels at the high
symmetry points is displayed. )

In Ch. 5 we go back to random alloys to study their band structure and
its pressure dependence. It has been found that if the band structure of Si
and Ge are calculated at the calculated equilibrium volumes, desirable results
within LDA can be obtained. The underestimation of the band gaps of the
two elements are found to be comparable, and correct topology for the band
structure of Ge is found. Using VCA meaningful variation of the band gaps of
Si,Ge;_x alloys with z has been found, the crossover point in the lowest optical
transition from Ge-like (at L-point) and Si-like (at A-line) is found to be at
r = 0.12, in good agreement with the experimental value z = 0.15 [44]. To
go beyond VCA some supercell calculations at £ = 0.5 have been performed;
the effects of ordering, charge density distribution and microscopic structural
relaxation are discussed. The pressure coefficients of the band gaps of Si, Ge and
Sip.5Gegs alloys within VCA and zinc-blende struéfﬁre ha:s;e‘ been calculated.
Our calculated values for the pure elements are in very good agreement with
experiment and with other self-consistent calculations. For the alloy (at'a: = 0.5)

our calculated results are closer to Ge than to Si.



Chapter 2

Structure Properties and
Stability

Extended X-ray absorption fine-structure (EXAFS) measurements have shown
that the bond lengths in alloys are not strictly equal to lga (where @ is the
lattice constant of the alloy), but different type of bonds have different bond-
lengths which are closer to that of the corresponding pure materials. This
has been found in several pseudobinary alloys [1-5]. As a consequence there is
structural disorder in addition to the chemical disorder (random distribution
of the atoms in the lattice sites) which usually exists in these materials. The
determination of these properties is of current interest for variety of problems
connected with the structural disorder such as:

e It has been shown by Jaffe and Zunger [8] that major part of the energy
gap bowing is due to such kind of disorder.

e The energy of mixing is a direct measure of the alloy stability. It can
be split as a sum of elastic and chemical contributions. By definition

the chemical term is due to the electronic density redistribution and local



structural relaxation. Bublik et al. [61] have shown that the chemical
contribution to the interaction parameter can be determined experimen-
tally by X-ray diffuse scattering technique; for Si,Ge;_ it is found to be
x-independent.

e For excitons bound to isoelectronic impurities (such as GaP,As;_,: N
and Ga,In; P : N) it has been found that the chemical disorder around
N modifies the exciton lineshape (broadening and shift) and induces mi-
gration of the exciton from site to site [62]. The excitonic transfer oc-
curs as a consequence of the different energies associated to the different
nearest-neighbors configuration of the atoms surrounding nitrogen which,

in turn, is connected with the bond length alternation.

Another interesting aspect is the recently observed long-range ordering in
semiconducting alloys superlattices, which is a novel feature in semiconducting
alloys. Previously they were known to form disordered alloys with positive inter-
action parameter. This has been observed in strained Si,Ge;_, [1] grown on Si
substrate, and unstrained (or weakly strained) Al,Ga;_As [2] grown on GaAs,
GaAs.Sbi_« [3] and In,Ga;_xAs along < 100 >[4], < 110 > [5] and < 111 >-
directions [6] grown on InP substrate. Thesé observations have raised iniporta.nt
questions concerning the equilibrium phases of these alloys at low temperature
and the thermal stability of the ultra-thin superlattiées grown‘by‘moleCUIar
beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). It
has been found theoretically that coherent ordered structures could be stable
[9,63], despite the positive interaction parameter of the disordered phase. The
ordered semiconducting alloys are new materials which have different properties
from the disordered phase having the same composition [20,21,43]. Understand-
ing the mechanism behind the stability of ordered structures is of paramount

importance from the conceptual and praétical point of views.

This chapter is devoted to the study of the structural properties (lattice
parameter, bond length alternation and their variation with z), bond ionicity,
stability of bulk ordered structures and energy of mixing of the random Si, Ge;_,
alloys. The calculations are performed using the state-of-art density functional

theory [41,42], within the local density approximation [46] and norm-conserving
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pseudopotentials [47,48]. In order that the calculations can be performed at the
first-principle level, a model for binary alloys based on the tetrahedron approx-
imation has been introduced in the spirit of the model for ternary semicon-
ducting alloys recently proposed by Srivastava, Martins and Zunger [9]. Nine
different ordered structures (each belonging to different configurationsof tetra-
hedra) are studied. None of them is found to be thermodynamically stable, and
this has been attributed to the very small ionicity of Si-Ge bond. Such a fea-
ture contrasts the large ionicity of the Si-C bond, which was found to stabilize
the Si-C ordered structures [64]. Furthermore, the Si-Ge bond is found to be
localized (the ionicity is unaffected by changes in concentration and chemical
environment), in full agreement with the experimental finding that the chem-
ical term in the interaction parameter is z-independent [61]. The variation of
the bond lengths of Si-Ge and Ge-Ge pairs with = are found to be in good
agreement with the available experimental [25,26] and theoretical [35] results,
and the variation of the Si-Si bond length is predicted. Assuming completely
random distribution of tetrahedra the energy of mixing and hence the inter-
action parameter are calculated as functions of z. At £ = 0.5 the interaction
parameter is found to be equal to 1.05 kcal/mol (mole referred to a formula
unit with one atom throughout the thesis) in good agreement with the experi-
mentally estimated value 1.21 [33] and 0.97 kcal/mol [65] Whereas, around 20%
of the interaction parameter is found to be z-dependent, in contradiction with

the regular solution model which assumes constant interaction parameter.

For completeness, we have performed independent calculations using the
virtual crystal approximation (VCA). Our main finding is that VCA gives
unsatisfactory results. The energy of mixing and the z-variation of the lat-
tice parameter are in large disagreement with the experimental results. This
demonstrates the necessity of going beyond VCA.

The rest of the chapter is organized as follows. In Sec. 2.1 we report and
discuss the results obtained using VCA. In Sec. 2.2 we describe the structural
model and the way used to deduce results for random alloys from calculations
performed for periodic structures. In Sec. 2.3 we describe the crystal structure
of the simplest coherent periodic structures which realize the tetrahedra con-

figurations. In Sec. 2.4 we give details on the calculations and results for the
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periodic structures. Sec. 2.5 is devoted to the study of bond lengths (alterna-
tion and z-dependence) and bond ionicity. In Sec. 2.6 we consider the energy of
mixing and the interaction parameter of the completely random alloys. Finally,

Sec. 2.7 contains summary of our main results and conclusions.

2.1  Virtual crystal approximation (VCA)

As we have mentioned above there are two kinds of disorder exist in alloys. 1)
Chemical disorder which is related to the random distribution of the constituent
atoms at the lattice sites. 2) Structural disorder which is related to the bond
length alternation. Because of disorder it is very difficult to attack frontly
the problem of the alloys. Different approximations have been proposed to
describe alloys, such as VCA, coherent potential approximation (CPA) [66],
molecular CPA [67] and the cluster averaging approximation [27]. Due to its
attractive simplicity, VCA is widely used in the literature to describe alloys.
Specially in the band structure calculations. Some VCA calculations [68] of the
structural properties have been also performed for Si,Ge;_, alloys. However,

these calculations are not at the first-principle level.

VCA is a very crude approximation. Even if the structural disorder is
neglected, it is valid only when the difference in the potentials of the constituent
materials is very small [69]. In VCA the chemical identities of the

individual alloyed elements and bonds are eliminated oy assuming that
e The atoms are occupying without vacancies the lattice sites of perfect zinc-
blende structure. Thus, the structural disorder is completely neglected.

e The potential is a weighted average of the ionic potentials at the alloyed

lattice sites. For binary alloys it is given simply as
V =2V, + (1-z)V5,
where V4 and Vp are the ionic potentials of the constituent materials.

e As a consequence of the previous points, the alloy has the same point
group symmetry as that of the end materials.

11



The ground state properties of SixGe;_, for 0 < z < 1 in steps of 0.1 of the
alloy composition x, have been determined self-consistently in the framework of
density functional theory [41,42], using the local density approximation [46] and
norm-conserving pseudopotentials [47,48]. For the exchange and correlation we
use the results of Ceperley and Alder 70|, as parametrized by Perdew and
Zunger [71]. The pseudopotentials are taken from the tabulation of Bachelet
et al. [72]. The special-point technique [73] is used to obtain the density from
the Brillouin-Zone integration, where the two Chadi-Cohen [74] special points
have been used. The one-particle wave functions are expanded in plane waves
(PW’s) with a constant energy cutoff E .. Self consistency has been achieved
to better than 10~° Ry/atom where the variational expression for the total

energy has been used.

For each of the above mentioned concentrations, the total energy has been
calculated at several values of the lattice parameter a around the equilibrium.
In this study we use E.,, = 17.5 Ry. The results are least-square fitted to
Murnagham’s equation of state [75]

B(v) =22 ((%’QEBG

By \(Bg1)

where V; is the equilibrium volume, By and B are the bulk-modulus and its
pressure derivative at V. The results of the fit are shown in Tab. 2.1. In Fig.
2.1 we show the calculated lattice parameter within VCA (diamond), compared
with Vegard’s law variation (straight line) and experiment (solid curve); to draw
this curve, we have simply scaled the experimental results to match to the the-
oretical end points. The calculated lattice parameter shows upward bowing,
in contradiction with the experimental variation which show small downward
bowing [76]. In Fig. 2.2 we show the calculated bulk moduli (diamond); the
straight line is drawn to guide the eyes. It shows downward bowing, which is

also in contradiction with experiment, since the elastic constants experimen-

+ 1)‘—}— const. o (29)

tally obtained are larger than the weighted average of the corresponding values
of pure Si and Ge [61]. Such a feature is however consistent with the fact

that the calculated lattice parameter is larger than experiment (implying larger
compressibility).

Another important discrepancy between theory at the VCA level and exper-

iment is due to the energy of mixing. The interaction parameter 0 at z = 0.5
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Figure 2.1: Equilibrium lattice parameter as a function of z. Dashed-dotted
line: Vegard’s law; diamond: this work, first-principle calculation within virtual
crystal approximation; solid line: experimental deviation from Vegard’s law -
[76]; to draw this curve, we have simply scaled the experimental results to
match the theoretical end points.

is equal to four times the energy of mixing. Our calculated value for 0(0.5) is
is 11.15 kcal/mol, one order of magnitude larger than the indirectly estimated
experimental value 1.21 kcal/mol [33].

Therefore, it is evident that VCA is a poor approximation for the structural
properties of Si,Ge;_, alloys. In addition to the fact that the informations we
get using VCA are limited, they are in contradiction with the experimentally
observed results. However, we will show in Ch. 3 that VCA is a good ap-
proximation for optical properties and band structure calculations. In order to
go beyond VCA, we will introduce in the following section a model for binary

alloys based on the tetrahedron approximation.
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Figure 2.2: The bulk modulus of Si,Ge;_, as a function of z. Diamond: the cal-
culated values within virtual crystal approximation; dashed-dotted line: linear
variation (drawn to guide the eyes).

Lattice Bulk
Composition parameter modulus Byl
X (A) (Mbar)
0.0 5.38 0.97 | 4.34
0.1 5.40 0.94 4.27
0.2 5.43 0.92 4.50
0.3 545 0.88 4.06
0.4 5.47 0.86 4.20
0.5 - 5.49 0.84 4.17
0.6 5.51 0.83 3.92
0.7 5.53 0.81 4.30
0.8 5.54 0.80 4.27
0.9 5.56 0.79 4.80
1.0 5.57 0.76 4.83

Table 2.1: The calculated values of the equilibrium lattice parameter a.,, bulk
modulus By and its pressure derivative By, within the virtual crystal approxi-
mation, at different values of the alloy composition z.
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2.2  Microscopic model for binary alloys

We will start by discussing some features of ternary semiconducting alloys (say,
AxB1-xC alloys). X-ray diffraction measurements [77] have shown that, in gen-
eral, they posses zinc-blende (ZB) like structure: one of the fcc-sublattices is
occupied by the cations (the C atoms) and the other is shared by the anions
(A and B atoms). The variation of the lattice parameter a(z) is almost linear,
therefore fulfilling Vegard’s law. Two conflicting models have been proposed
for the description of the the microscopic arrangement of the atoms in the ZB

structure.

e The approximation that the atoms occupy the ideal ZB sites (78], i.e. all
the bond lengths are equal.

e Pauling and Hugins model [79], which assumes the conservation of the
bond length (the bond lengths of the alloyed bonds equal to the corre-
sponding ones in the pure materials), leading therefore to a distorted ZB

structure when the atomic radii of the constituents are different.

Recently EXAFS measurements [22-24] for this class of materials have shown
that they are intermediate between the equal-bond-lengths and Pauling-Hugins
pictures, being closer to the latter. The main results of the EXAFS measure-
ments are the following:

e The cation sublattice is weakly distorted (the average deviation is about
1% from the equal bond length structure).

e The first neafest—neighbor anions distances are closer to the correspond-.
ing ones in the pure materials (bond length alternation), and they have
very weak z-dependence (the bond lengths change by less than 2% over

the whole range of z, the larger bond being reduced and the smaller in-
creased).

Therefore, EXAFS measurements show clearly that the structures of these ma-

terials are not strictly ZB like structure. But in the other hand, they don’t
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provide ready answer what does a real atomic-scalestructure of these materials

look like.

To study the microscopic atomic structure and the energy of mixing of the
above materials a microscopic model has recently been proposed [9,28]. The
basic assumption in this model is that the mixed sublattice remains undis-
torted, the other sublattice being allowed to relax to accommodate different
bond lengths. Under this assumption the basic unit of the crystal lattice is
a tetrahedron with the cations at the vertices and the anions inside. There
are five different configurations of such tetrahedra, according to the number
n =0,1,2,3,4 of A-atoms at their vertices. Knowing the probability distri-
bution of the tetrahedra P,(z) the average bond length, energy of mixing and

other thermodynamic properties (see Ch. 3) can be calculated.

The binary alloys A,B;_, have different features from the ternary alloys.

There are three types of bonds one of them (the A-B bond) being created in the

formation of the alloy and strongly affecting its properties [64]. Both sublattices
are alloyed. As in the case of ternaries, the bond length alternation has been
observed [25,26] in Si,Ge;—x alloy, but there is no experimental data available
for the second nearest-neighbor relaxation. A complete study of the possible
local structures would involve energy minimization over a very large number
of independent structural parameters. In this work we wish to maintain the
problem tractable at first-principle level, and yet to get some insight into local
structures, bonding and alloying in Si,Ge;—x. To this aim, we have exploited the
simplifying features of the above model for ternary alloys, by assuming that one
of the sublattices (arbitrarily chosen) is undistorted, while the other sublattice is
allowed to relax. We perform in this way only constrained energy minimization,
where in a sense we study relaxation at the level of first neighbors as a function

of the local configurations, but we ignore second neighbor relaxation.

The basic assumption of the model implies that all of the possible local
structures can be realized in coherent periodic structures having very few atoms
per unit cell (up to eight). The building unit is a tetrahedron, whose vertices
belong to the undistorted f.c.c sublattice having lattice constant a; the inside

atom is allowed to relax. As for periodic structures, we assume the smallest
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possible unit cell and the highest symmetry. The distortion of the inside atom
is thus determined by a single scalar parameter §. Since the atom inside the
tetrahedron can be either A or B type, there are ten local configurations which
we denote A, and B, : A (B) refers to the inside atom and n = 0,1,2,3,4
is the number of A atoms at the vertices. Therefore A4 and By correspond
to the pure materials, Ap and B4 both correspond to zinc-blende structure
and are equivalent; the remaining six configurations describe the other possible
bonding geometries within the present model. The crystal structure of the
simplest periodic structures which realize the local configurations A, and B,
are described in the next section. Within this model, each of the tetrahedra
contains one or two types of bond, and each of the pure (A-A or B-B) bonds
appears in only four configurations. Considering the 5-site tetrahedron as a
basic unit makes this model analogous to the central atoms model of Lupis
and Elliot [80] or the surrounding atom model of Mathieu and co-workers [81].
Very recently a similar model has been introduced to calculate the frequency-

dependent dielectric function of Si,C;_, alloys [82].

The first-principle theory is used to calculate the formation energy of the

periodic structures as a function the structural parameters

E
g At g

AE, (a,6) = Ex(a,8) — (4 tn 4- nEB>

and

AEg, (a,6) = Eg, (a,6) — (gEA 48 5 ”EB) (2.2)

where the energies of the pure materials E4 and Ep in Eq. (2.2) are evaluated
at the appropriate equilibrium geometries for the disordered alloys. Assuming
complete random distribution of the atoms at the lattice sites, the probability
distribution of a type of tetrahedra (say, A,) is equal to the probability of the
inside atom of being A-type times the probability of having n A-atoms at the
vertices. The latter is assumed to be Bernouillan. We get therefore

P, (z) = (i) (1 - z)*,
Pg (z) = (:) z"(1 — z)*™", (2.3)
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which obviously satisfy
4
> (Pa,+Pp,)=1 (2.4)

n=0

It should be noticed that this distribution is system, temperature (T') and
pressure (P) independent, which is valid only at very high temperatures. In
the next chapter we will show how T and P-dependent probability can be
evaluated by minimizing the free energy of mixing. Throughout this chapter

complete randomness is assumed.

In order to evaluate the average energy of mixing of the alloy, we start from
the expression for the periodic systems, Eq. (2.2), where the dependence on
the structural parameters a and § is explicit. We find AE strongly dependent
on a, but only very weakly on 6 (see Sec. 2.4). We notice that, at a given alloy -
concentration z, the local structures are in general strained in Si;Ge;— alloys.

We use the concentration-weighted lattice constant
i(z) = zas + (1 — z)ap (2.5)

to get the energy contribution of each kind of tetrahedra at a given concentra-
tionm, i.e. : '

AEA,,(:z:) = AEAu(&(:z:),éSeq), (26)

where §,, is the defined in the Sec. 2.4. The average energy of mixing of
the disordered alloy AE(z) in terms of the formation energies of the ordered

structures is then

4

AE(z) = ) (Pa.(z)AE4,(2) + Pp,(c) AEg, (<)) - (2.7)

n=0

We finally mention that correlation between tetrahedra is neglected within
our model; the goodness of this approximation is checked below, where it is
shown that the charge redistribution in Si,Ge;_ alloys is very small (see Fig.

2.14). More details and discussion about the this will be given in Sec. 2.7.
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2.3 Crystal structures

In the previous section we have shown that there are ten different configurations
of the 5-site tetrahedra A, and B,. As it has been already mentioned, the
basic assumption of the above models that all the possible local structures can
be realized in coherent periodic structures. In this section we will describe
the crystal structure of the simplest periodic structures which realize the local

configurations of binary alloys.

2.3.1 A4 and By configurations

In these configurations the vertices and inside atoms are of the same type. So,
they correspond to z = 1 and O respectively. Since all the bonds are equivalent,
there will be no structural relaxation. The periodic structure which realize
these configurations is the diamond (O, Fm3m) structure, with two atoms per
unit cell, shown in Fig. 2.3. The unit vectors and the atomic positions are
shown in the same figure. The first Brillouin zone (BZ) is shown in Fig. 2.4
by solid lines. All over this work the integration over the BZ is performed
using the special points technique. The Chadi-Cohen two special points (3/4,
1/4,1/4) and (1/4, 1/4, 1/4) have been used, with weight factors 3/4 and 1/4
respectively [74]. :

2.3.2 Az and B; configurations

In these configurations the inside atoms is surrounded by three atoms of the
same type and one of the other. In other words, it has three homopolar bonds
and one heteropolar bond. They correspond to z = 0.875 and 0.125 respectively.
The simplest periodic structure which realize these configurations is a simple
cubic, with eight atoms per unit cell, shown in Fig. 2.5. The symmetry point
group is (T4, F43m). The unit vectors and the atomic positions are shown
in the same figure. According to our model (which does not allow for the

second neighbor relaxation) and by symmetry reasons, only the inside atoms
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Figure 2.3: Diamond structure which realize the configurations A4 abd By (see
text). a; (¢ = 1, 2, 3) are the unit vectors, and they are a; = a(1/2,1/2,0), a,
= a(1/2,0,1/2) and a; = (0,1/2,1/2). Here, a is the lattice parameter. The
two basic atoms are located at a(0,0,0) and a(1/4,1/4,1/4).

Figure 2.4: Brillouin zones of the studied ordered structures. Solid lines: di-
amond and zinc-blende structures (shown in Fig.’s 2.3 and 2.8); dashed lines:
simple tetragonal (shown in Fig. 2.6); dotted lines: simple cubic (shown in

Fig.’s 2.5 and 2.7).
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Figure 2.5: The simple cubic structure which realize the Az and B; configura-
tions. a; (v = 1, 2, 3) are the unit vectors, and they are a; = a (1, 0, 0), a, =
a(0,1,0) and az = ¢(0,0,1). Here, a is the lattice parameter. The eight basic
atoms are located at (origin at the center of the cube) a(1/2,1/2,1/2) for B, and
a(-1/4,1/4,1/4), a(1/4,1/4,-1/4), a(1/4,1/4,1/4), a(-1/4,1/4,1/4), a(1/2,0,0),
a(0,1/2,0) and a(0,0,1/2) for A.

relax by moving along the heteropolar bond. The direction of the relaxation
depends on the bond lengths of the involved bonds; if the heteropolar bond is
longer than the homopolar bond, the inside atom will relax by moving toward
the equivalent three atoms and vice versa. This is shown in the figure by small
arrows. The relaxation parameter is defined bd 6 = d/dy, where d and dy are the
bond lengths of the heteropolar bond before and after ralaxation, respectively.
The BZ of this structure is shown in Fig. 2.4 by dotted lines. Using the method
of Monkhorst and Pack [83] a.nd‘iﬁ;cfyéfal symmetry, the two Chadi-Cohen

points for the diamond structure correspond only to one point (1/4;,1/4.1 /4) in
our present case. ~ 4

2.3.3 A; and B, configurations

In these configurations the inside atoms is surrounded by two atoms of the same
type and two of the other. They correspond to z = 0.75 and 0.25 respectively.

The simplest periodic structure which realize these configurations is simple
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Figure 2.6: The simple tetragonal structure which realize the A; and B, config-
urations. a; (¢ = 1, 2, 3) are the unit vectors, and they are a; = a (1/2,-1/2,0),
a; = a(-1/2,1/2,0) and as = a(0,0,1). Here, a is the lattice parameter. The
four basic atoms are located at (0,0,0), a(1/4,1/4,1/4), a(1/4,3/4,3/4) for A,
and (0,1/2,1/2) for B.

tetragonal, with four atoms per unit cell, shown in Fig. 2.6. The unit vectors
and the atomic positions are shown simultaneously in the figure. The symmetry
point group is (D24, P42m). In this structure the relaxations occurs by moving
the atoms at the center of the faces up or down in the same plane, toward
the atoms which form shorter bonds with the relaxing atoms. The relaxation
parameter is defined in this case by 6 = d/do, where do and d are the interplanar
distances before and after relaxation between two adjacent layers, with (100)
interfaces, having the same type of atoms. The BZ of this crystal structure is
shown in Fig. 2.4 by dashed lines. The two Chadi-Cohen special of the diamond

structure are the same points in our present case, but with weight factors 1/2

and 1/2, respectively.

2.3.4 A; and Bj; configurations

In these configurations the inside atoms is surrounded by one atom of the
same type and three of the other. They correspond to z = 0.625 and 0.375

respectively. The simplest periodic structure which realize these configurations
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Figure 2.7: The simple cubic structure which realize the A; and Bs configu-
rations. a; (z = 1, 2, 3) are the unit vectors, and they are a; = a (1,0,0),
a; = a(0,1,0) and az = a(0,0,1). Here, a is the lattice parameter. The eight
basic atoms are located at (origin at the center of the cube) a(1/2,1/2,1/2),
a(-1/4,-1/4,-1/4), a(1/4,1/4,-1/4), a(1/4,-1/4,1/4), a(-1/4,1/4,1/4) for A, and
a(1/2,0,0), a(0,1/2,0) and a(0,0,1/2) for B.

is a simple cubic, with eight atoms per unit cell, shown in Fig. 2.7. The unit
vectors and the atomic positions are shown in the figure as well. The symmetry
point group, BZ and the special points are the same as that described in Sec.
2.3.2. But the relaxation in this case occurs by moving the inside atom along the
homopolar bond. The relaxation parameter in this case is defined by § = d/dy,

where dy and d are the bond lengths of the homopolar bonds before and after
relaxation.

2.3.5 Ay and B, configurations

In these configurations the inside atoms is surrounded by four atoms of other
type. Both correspond to z = 0.5. The periodic structure which realize these
configuration is the zinc-blende structure, with two atoms per unit cell, shown
in Fig. 2.8. The unit vectors and the atomic positions are shown in the same
figure. Because all the bonds are of the same type, there is no structural

relaxation. The BZ and the special points are the same as in the case of the
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Figure 2.8: The zinc-blende structure which realize the Ao and By configura-
tions. a; (¢ = 1, 2, 3) are the unit vectors, and they are a; = a (1/2,1/2,0), a;
= a(1/2,0,1/2) and as = a(0,1/2,1/2). Here, a is the lattice parameter. The
two basic atoms are located at @(0,0,0) for A, and a(1/4,1/4,1/4) for B or vice
versa.

diamond structure.

The ground state properties of the above ordered structures are calculated
self-consistently. The details of the calculation and the results are given in the

following sectiomn.

2.4 Calculations and results for periodic struc-
tures

The prototypical geometries we have considered for the periodic structures are
described in the previous section; their unit cell have from two to eight atoms.
The technical details of the calculations are exactly the same as described in
Sec. 2.1, except the following

e For simple tetragonal and simple cubic structures, equivalent sets of spe-

cial points (see Sec. 2.3) to the two Chadi-Cohen points (in the case of
diamond structure) have been used.
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Lattice Bulk AEzgp
System parameter modulus
(4) (Mbar) (mRy/atom)
Si
Fewe =12 5.394 .81
Eeoye =175 5.378 .98
Eoye = 24 5.378 .98
Exp. 5431 .99
Ge
Eou: =12 5.593 7
Eoe =175 5.572 7
Eoye = 24* 5.573 7
Exp. 5.660 77
SiGe(ZB)
(Bewe = 12) 5.496 76 68
Eoyr =175 5.370 .87 .66
Eoye =24 5.472 87 .70

Table 2.2: Theoretical values of the equilibrium lattice constant; calculated at
different energy cutoffs (this work; the values marked with an asterisk are taken
from Ref. 10), and compared to the experiment. The theoretical formation
energy for the zinc-blende structure Sig5Geg s is also shown. ‘

e More convenient constant energy cutoff is chosen.

We show in Table 2.2 the calculated lattice constants and bulk moduli of Si,
Ge and SiGe in the zinc-blende structure for several values of E..:, as compared
to the experimental data. The formation energy of the zinc-blende SiGe is also
shown, where the positive value reflects instability of this compound toward
segregation. It is evident from Tab. 2.2 that E., = 12Ry provides good
structures and energies. All of the calculations reported in the following are
performed using such cutoff, which leads to approximately 90 - 120 PW’s per

atom.

Unlike the case of VCA the ZB structure has formation energy a little bit
smaller than the enefgy of mixing of random alloys [33,65]. This is expected
since in random alloys having the same lattice parameter, other strained local
configurations are possible and these increase the energy of mixing. Further-
more, it is worth to mention that the formation energy calculations [68] based

on perturbation theory (including in an approximate way the effect of the third
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Lattice Bulk Formation Relaxation
System parameter modulus energy parameter
(4) (Mbar) | (mRy/atom)

Sty 5.394 .81 0.00 1.0000
Sis 5.408 .86 0.18 0.9917
Sig 5.429 .78 0.47 0.9972
Sty 5.462 .66 0.66 1.0084
S1o 5.496 .68 0.68 1.0000
Geo 5.496 .68 0.68 1.0000
Gey 5.521 71 0.71 1.0099
Gea 5.542 77 0.44 1.0082
Ges 5.565 91 0.51 0.9905
Gey 5.593 77 0.00 1.0000

Table 2.3: Theoretical values of the equilibrium lattice parameter, bulk modu-
lus,formation energy and relaxation parameter for the ordered structures (see
text), calculated using constant energy cutoff F..: = 12 Ry.

and forth order terms) have led to the conclusion that disordered Si,Ge;—_x alloy
within VCA is relatively more stable than the ZB structure, in contradiction -
with our first-principle results. This demonstrates that such kind of calculations

are not trustable.

The total energy of each of the periodic structures has been calculated ac-
cording to the following procedure. First, the energy of the unrelaxed (6§ = 1)
structures is calculated as a function of the lattice constant @ at nine points
over a 10% range around equilibrium and fitted to Murnagham’s equation of
state, Eq. (2.1). The results of the fit are shown in Fig. 2.9 and Tab. 2.3,
for the nine periodic structures corresponding each to a different concentration
z (multiple of 0.125); the oscillatory behavior of the bulk modulus is due to
the relatively small energy cutoff we are forced to use here (see also Tab. 2.2),
and we will show below that this has negligible effect on the energy of mixing
of disordered alloys. Then, at fixed equilibrium volume, we vary the internal
relaxation parameter & (five different calculations for each structure) and we
fit the relaxation energy AEFT(6) to a parabola; this is shown in Fig. 2.10.

We thus get the equilibrium relaxation 6.y at @ = acq- We also checked that
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Figure 2.9: Total energies of the unrelaxed periodic structures. Notice the dif-
ferent scales in the two panels; Geg and S1g are identical (zinc-blende structure).

AE%(6) has a very weak volume dependence: for instance in case of Ge; we get
8., = 1.0082 and AEE(8,,) = 0.09 mRy/atom, while performing the same fit at
a = 5.398 A(i.e. at a fixed volume far from equilibrium) we get 6., = 1.0070
and AE®(6,,) = .07 mRy/atom. Energy differences of such order of magnitude
cannot affect our calculated values of lattice constants and bulk moduli. There-
fore, in the following of this work we neglect the a-dependence of both §,, and
AE%®(6,,), and we use for each structure a constant value of AEF (calculated
at equilibrium volume). A further reason for performing such approximation
is that it basically does not affect the calculated energy of mixing of the disor-
dered alloys, owing both to the weight factor in Eq. (2.7) and to the order of

magnitude of the strain energy involved.
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Relaxation energy AE® (mRy/atom)

0.80

0.40

0.25

-0.05

0.55]

0.30

0.05)

-04 a 1 -0.2 1 -0.2 L
0.995 1.010 1.025 0.992 1.008 1.024 0.970 0.990 1.010
0.80

-0.2 s 1

0.55]

0.30]

-0.2

0.977 0.991

Figure 2.10:

& A
1.00S 0.976 0.996 1.016

0.990

Relaxation parameter 6

1.010

1.030

Relaxation of the periodic structures (see text).
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2.5 Bond lengths and bond ionicity

As it has been mentioned before, EXAFS measurements have revealed that
the nearest-neighbor bond lengths are not equivalent (unless there is no lattice
mismatch between the end materials), but they are closer to the corresponding
bond lengths in the pure materials. This has been observed for different phases
of SiyGe;_, by Minomura et al [25], and for a-Si,Ge;_, by Incoccia et al [26].
In Fig. 2.11 we show the results of Ref. 25. It is clear that the variation of the
bond lengths of Ge-Ge and Si-Ge pairs is larger in the case of crystalline phase.
The small variation of the amorphous phase is also confirmed by the work of
Incoccia et al. This could be due to the stronger structural constraints in the

crystalline phase.

We show in Fig. 2.12 the calculated lattice constant as a-function of «,
together with the experimental data, [76]. With respect to Vegard’s law (straight
line) both theory and experiment show a small downward bowing. The theory
exaggerates such bowing for z > 0.5, but the overall agreement is nevertheless
good. We show in Fig. 2.13 the calculated bond-lengfhs of Ge-Ge, Ge-Si and Si-
Si pairs for each of the periodic structures; the fit of these data to straight lines is
also shown (dashed lines). Despite some scattering in the individual calculated
points (and the availability of very few points for the homopolar bonds) the
quality of the fit is quite good: this is demonstrated by the near parallelness of
the three dashed lines in Fig. 2.13, which have been independently fitted. The
structures Ge,; and Si, have the largest deviation from the fit; this is probably
an artifact of the microscopic model and we speculate that it could be overcome

using larger supercells and geometrical freedom.

Extrapolation of our results toward the end concentrations gives Rsic(1) ~
2.36 A(dilute Ge impurities in 5i) and Rsic.(0) =~ 2.40 A(dilute Si impurities
in Ge). We follow Ref. 35 in defining a dimensionless relaxation parameter ¢

(different from our previous 6), which gives the “stiffness” of the Si-Ge bond in
dilute alloys:

€sic. = Bsige(1) — Rgisi(1) s = Rsi6.(0) — Rg.c.(0)
" Rsic.(0.5) — Rgis:(1)’ oo Rsi6c(0.5) — Rg.c.(0)’

(2.8)
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where Rgig.(0.5) is evaluated for the zinc-blende structure. Our first- principle
results gives €si:ge = 0.50 and €g..si =~ 0.57, while a valence-force field model
calculation [84] indicates 0.58 and 0.63, respectively. Our theoretical values are
however strongly sensitive to the extrapolated values of Rsic.(0) and Rsic.(1)-

However, the two calculations show the same trend.

We show in Fig. 2.14a a contour plot of the valence electronic density for
zinc-blende SiGe : the most prominent feature to be noticed is the extremely
small ionicity of this compound. This is at variance with the case of SiC, where
it has been recently shown that the bonds are strongly polar [64]. A com-
parison between the bond charge densities of the two bonds is shown in Fig.
2.15. The large ionicity of the Si-C bond is the responsible for the stability of
the SiC ordered structures {64} known as polytypes. Here we argue that the
small ionicity of the Si-Ge bond makes this bond weaker than the average of
Ge-Ge and Si-Si bonds, leading to unstable bulk Si-Ge ordered structures. Ac-
cording to Miedema theory [29] (see also next chapter), the electronic energy
contribution is split into two contributions (1) positive term, which is due to
the electronic density mismatch (the energy needed to remove the unphysical
discontinuity in the charge density) (2) negative term, which is due to the elec-
tronic redistribution. Because the second term is very small (see Fig. 2.14(a))
both ordered and disordered Si-Ge alloys are unstable. We show in Fig. 2.14(b)
an analogous plot for a different structure (tetragonal Si3), calculated at the
same lattice parameter. Fig. 9.14 then demonstrates that the electronic charge

density is weakly affected by the local environment. This is in full agreement

with the experimental finding that the chemical contribution to the interaction

parameter is z-independent.

Switching now from the periodic structures to the random alloy, a scheme
for calculating average bond lengths has been proposed by Balzarotti et al [85]

and used in the literature [9,27]
4

Bag(z) = v (N2gPa,(z)Ran(z) + NpaPp. (z) Rpa(z))
Aé; S o (N3pPa,(z) + N5aPp, (=) ’

S 4 o (N3,Pa,(z)Raalz))
Raa(z) 1+ (N7, Pa.(2))
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where N[} is the number of the 75 bonds in the ¢, tetrahedra and R;; is the

bond length in the corresponding tetrahedra. The bond lengths obtained in

such way are shown in Fig. 2.13 as solid lines. The most prominent feature

RBB(ZE) -

(2.9)

is that bond lengths deviate from those of pure materials much more in the
disordered phase; this is shown in Fig. 2.13 by the steepness of the lines. This
feature is in close agreement with the finding of Ref. 9 for ternary alloys. The
available [25] EXAFS measurements are also shown in the same figure (solid
symbols). Although being very few and very poor (large error bars), they
can be said to be in agreement with our calculations. The non-monotonical
behavior of the Si-Ge bond length suggested by these data is not safely outside
experimental error, has no explanation and is not reproduced by the theory,

which gives basically linear behavior.

2.6 Energy of mixing of random alloys

Assuming completely random distribution of the atoms in the lattice sites and
making use of the the formation energies of the different configurations of tetra-
hedra calculated in the previous section, we calculate the energy of mixing of
SixGe;—x random alloys, from Eq. (27) It should be noticed that this distribu-

tion is system, temperature and pressure independent(in the following chapter
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Figure 2.12: Equilibrium lattice constant as a function of z. Dash-dotted
straight line: Vegard’s law. Circles: this work, first-principle calculations. Solid
line: experimental deviation from Vegard’s law (Ref. 76); to draw this curve,
we have simply scaled the experimental results to match to the theoretical end
points.
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Figure 2.13: Bond-lengths as a function of z. Open squares : this work, ho-
mopolar bonds Si-Si and Ge-Ge. Open circles: this work, heteropolar bond
Si-Ge. Straight dashed lines: best fit to the calculated values for ordered struc-
tures. solid curves: average bond lengths of the disordered alloys, using the
method of Ref. 85. The experimental measurements from Ref. 25, are also
shown with their (vertical) error bars. Full squares: Ge-Ge bond. Full circles:

Si-Ge bond. To draw these points the experimental lattice parameter of Ge is
scaled to match the theoretical value. '
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Figure 2.14: Contour plot of the electronic density (electron/unit cell of
zinc-blende) of Si-Ge bond in the plane of two bonds, calculated for two different
structures at the same lattice parameter. a) Sig5Gegs, zinc-blende structure.
b) Sip75Geg s, tetragonal structure.
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Figure 27.15: The Chafgé densities of C, SiC, Si, SiGe and Ge are compared
along the bond direction. For clarity of display, the densities of C, Si, and Ge
are shown only in the side of the bond where the atomic positions coincide.

(from Ref. 10)
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Author Q (kcal/mol)
Van Vechten [30] 1.67
Stringfellow (DLP) [33] 1.19
Fedders and Muller [34] - 0.89
Martins and Zunger [35] 1.63, 0.89
Present work (at z=.5) 1.05
Experiment [33] 1.21*
Bublik and Leikin (at z=.5) [65] 0.97*

Table 2.4: Interaction parameter ( of Si,Ge;_ alloys calculated using different
models, compared with the results obtained through fitting to experimental
data (marked by asterisk).

temperature and pressure dependent probability distributions of the tetrahedra
of Si,Ge;_x alloys will be calculated by minimizing the free energy). Our results
for the energy of mixing are ploted in Fig. 2.16 (solid line), where the formation
energies of each of the periodic structures (circles) are also shown. Within the

regular solution model the energy of mixing is written as
AE(z) = Qz(l— 1), (2.10)

where (1 is célled the interaction parameter. The second derivative of our curve
at its maximum, £ = 0.5, gives a value of {1 of 1.05 kcal/mol, to be compared
to an experimental [33] figure of 1.21 kcal/mol. However the experimental
measurements are only indirect. It is should be mentioned that Bublik and
Leikin [65] have obtained good fitting to the experimental liquidus and solidus

curves (usually within 10%), using interaction parameter of the form
Q(z) = .89 + .16z, (2.11)

where the x-dependent term is due to the elastic contribution. A comparison
between the values of interaction parameter of Si,Ge;—x alloys calculated using
different methods is shown in Tab. 2.4. It is evident that our self-consistent
result is in fair agreement with the values obtained through direct fitting to the
experimental liquidus and solidus curves. This agreement is much better than
all other theoretical approaches. Our calculations also indicate that (1 has an
z-dependence of the order of 20%, shown in the figure by the dashed line.
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Having calculated the average bond lengths in Sec. 2.5, the average energy
of mixing of random Si,Ge;—x can also be calculated in the pair approximation,
in which the bond is taken as the basic unit. The energy of mixing within this

approximation is given by
AE(:IJ) = ZPAB(I)EAB(:E) + PAAEA(.'B) + PBBEb(:II)

— (zE4(0) + (1 — z) Ep(1)), (2.13)

where Ep, E4 and Ep are the total energies of the zinc-blende structure and
the pure materials A and B, respectively, which have bond lengths equal to
the corresponding average bond lengths in the random alloys. P;;(z) is the
probability distribution of the the 77 bond at the alloy composition z. For

random alloys we have
Pap(z) =z(1 — 1), Paa(z)=2" and Ppp(z)=(1- z)*. (2.14)

The resulting energy of mixing is shown in Fig 2.15 by dotted curve. The small
difference between the energies of mixing calculated within the tetrahedron and
the pair approximations demonstrates the good convergence of our calculation

with respect to the size of the basic unit.

We checked at this point the sensitivity of our results to the quality of
the fitting of the total energies to the Murnagham’s equation of states. For the
simplest periodic structures (i.e. Sty = Gey, Si4 and Gep) completely converged
results are available to us: we replaced these results in the corresponding terms
of Eq. (2.7), keeping the other terms unchanged. Our final results for both
AE(z) and Q(z) change upon replacement by less than 1% over the whole
range of z, which demonstrates the reliability of our calculations.

The interaction parameter can be unambiguously split in the sum of two
terms, one purely elastic and one purely chemical (see e.g. Ref. 36). Exper-
imental evidence [61] has been given that the chemical part of Q2 in Si,Ge;—
alloys is z-independent. While most of the theoretical work assumes (1 as z-
independent, we naturally account in this work for the z-dependence of the
elastic term in the interaction parameter. First-principle theory, in fact, deals

with chemical and elastic energies on the same ground.
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Figure 2.16: The energy of mixing as a function of z. Solid line: for random
alloys within the tetrahedron approximation; dotted line: for random alloys
within the pair approximation. Circles: for periodic structures. The z variation

of the interaction parameter {1 (divided by four) is also shown to the same scale
(dashed line).
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Srivastava at al. [9] have put a lot of emphasis on the elastic contribution to
the energy of mixing, while our calculations indicate that the energy difference
between disordered and ordered Si.Ge;—, alloys at a given concentration is
fairly small. In fact the elastic energy in our system is one order of magnitude
smaller than found by Srivastava et al. for GaP — InP alloys (after Fig.3b
in Ref. 9, noticing the difference in units). This fact is due to two reasons:
First, our material has a lattice mismatch twice smaller; secondly, the formation
energies of the ordered structures are positive in our case, and increase with the
number of mixed bonds, thus making less visible the effect of strain. In order
tb better explain this, let us consider z = 0.5: the contribution to the energy of
mixing of the disordered phase from each of the (strained ordered) structures
Geg, Gey, Gey, Ges, Sty, St9, Stz and Siy is, respectively 1.11, 0.85, 0.70, 0.78,
0.76, 0.87, 0.96 and 1.10 mRy/atom; the corresponding equilibrium values are
given in Tab. 2.3. We thus get AF(0.5) = 0.83 mRy/atom, while the ordered
zinc-blende structure (Sio = Ge,) gives 0.68, only 0.15 mRy/atom lower.

2.7 Conclusions and discussion

We have introduced a microscopic model for binary alloys to study the random
Si-Ge alloys. We have studied, at a first-principle level, nine different model
structures for St,Ge;_,, using density-functional theory within the local-density
approximation and norm-conserving pseudopotentials. Independent calcula-

tions have performed with the virtual crystal approximation (VCA). We draw
the following main conclusion: | -

e In addition to the fact that the informations we get within VCA are
limited, they are in large disagreement with the observed results. This

demonstrates the importance of going beyond VCA.

e None of the ordered structures we have studied is stable towards segre-
gation. According to theory of Miedema [29], the very small ionicity of
the Si-Ge bond is responsible for the instability of any ordered structure.

Our first-principle calculations of the electronic charge distribution (see
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Fig. 2.14) indeed confirm the extreme nonionicity of the Si-Ge bond. The

same conclusion comes from previous work of Zunger and Martins {10].

Our calculations also show that the electronic charge distribution is neg-
ligibly affected by changes in concentration and chemical environment.
This explains well the experimental finding [61] that the chemical term
in the energy of mixing is basically concentration independent in this

madterial.

We calculate the interaction parameter {2 and we find a remarkable agree-
ment with the experiment. To the best of our knowledge, this is the first
ab-initio calculation of {1 for Si-Ge alloys. Previous calculation of {1 where

based on models or empirical theories.

We explicitly account for the z-dependence of the elastic term in the
interaction parameter. To date there is no experiment to compare to.
Most of the previous theoretical work assumes z-independence; some au-

thors [31] have proposed linear z-dependence. Our work shows that the
z-dependence is strongly nonlinear.

The calculated lattice constant as a function of the concentration shows
only very small deviation from linear behavior (Vegard’s law), in close

‘agreement with the experimental findings.

We calculated the bond-lengths of Si-Si, Si-Ge and Ge-Ge pairs as a func-
tion of concentration. Very few experimental data are available at present,

and only for Si-Ge and Ge-Ge; the agreement with our calculation is good.

Finally some words about the accuracy of our structural model are in or-
der. Our approximation of assuming one of the two sublattices as undis-
torted (despite the physical equivalence of the two sublattices in binary
alloys) amounts to study relaxation at the level of the first neighbors only.
This is indeed a very good approximation, as is discussed in the following.
The energy of mixing can be unambiguously split in two parts (see e.g.
Ref. 36): (1) the volume deformation contribution, which is the elastic en-
ergy needed to stretch and expand the lattice constants of the constituent

materials to match that of the alloy, and is model independent; (2) the
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chemical contribution, which is the remaining term, due to both charge
transfer and relaxation of the bond angles and bond lengths. The charge
transfer is pretty small and independent of the local environment, while
the local geometrical relaxation gives very tiny contributions. The first
principle theory deals with all the terms on the same ground; our approx-
imation, roughly speaking, accounts completely for the elastic term and
for the charge-transfer part of the chemical term, while the remaining lo-
cal relaxation is partly accounted for. Our results compare favorably with
the experiment, while the virtual crystal approximation gives energies of

mixing one order of magnitude off.
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Chapter 3

Thermodynafnic Properties

The thermodynamic properties of semiconducting alloys are a subject which
still requires a lot of developments. In spite of the technological importance
of these materials, the present understanding of their thermodynamic proper-
ties is far from satisfactory. Very recently, the state-of-art electronic structure
calculations within the local density approximation (LDA) [46] have been com-
bined with statistical mechanics methods to calculate from first-principles the
entropy and other thermodynamic properties of these materials [36-40] This
type of calculations is based on the assumption that the random alloy is built
up of random distributions of basic clusters, and each configuration of these
basic clusters can be realized by a periodic structure which consists only of this
configuration. This means that the effects of correlations among clusters are
completely neglected. We have shown that at least for Si,Ge;_x alloys this is a
very good approximation (see Sec. 2.7). As it has been already mentioned, the
problem of calculating the thermodynamic properties is divided into two steps:
(1‘) The calculations of the the ground state properties of each configuration of
the chosen basic cluster, the most important being the total energy. (2) The

calculation of the thermodynamic properties, using the results of step 1 and the
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methods of solid state statistical mechanics (e.g. the cluster variation method).

It should be emphasized that the electronic structure calculations are able
to provide accurate energies, while they deal with both elastic and chemical en-
ergies on the same footing. Previously, only phenomenological approaches were
undertaken [28-35] which can be considered as incomplete, since they do not ac-
count properly for the all aspects of the problem. The most recent first-principle
work of Mbaye, Ferreira and Zunger has shown [36-38] that proper account for
the chemical and elastic energies is essential and leads to new features in the

phase diagram.

In the previous chapter we have introduced a model for the local atomic
structure of binary semiconducting alloys; in this model the basic unit is a
5-site tetrahedron. Nine different ordered structures (each corresponding to
different configuration of tetrahedra) have been studied using local density ap-
proximation (LDA) [46] and norm-conserving (NC) pseudopotentials [68]. For
the disordered materials, the energy of mixing and hence the interaction param-
eter have been calculated by assuming a completely random distribution of the
atoms at the lattice sites (Bernoulli distribution of tetrahedra) which is tem-
perature and system independent, and linear variation of the lattice constant
(Vegard’s law). Since these materials are usually prepared at high temperatures
and quenched (rapid cooling), they maintain the stable atomic distribution at
the high temperatures (the random distribution). Therefore, the above assump-

tion is a good one for direct comparison with experiment.

Using the formation energies of the configurations calculated previously,
we calculate in this work the probability distribution of tetrahedra, as func-
tions of concentration (z) and temperature (T), in the framework of two dif-
- ferent approximations. The first is the modified quasi-chemical approximation
(sometimes referred to as third orderwquasi-chemical approximation [28]) (QCA)
[59] The second approximation we use is the cluster variation method (CVM)
[67,58]. Since no ordered structure has been found to be stable at T = 0,
and increasing the temperature is not expected to stabilize any of them, we
will study only the disordered SiyGe;_ alloys. Due to our structural model,

which distinguishes between the sites of the two sublattices, only constrained
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CVM calculations can be performed, while QCA calculations do not present
any problem. The enthalpy, entropy, free energy, interaction parameter and
the tendency to clustering as functions of z and T are calculated. The phase
diagram has been calculated and the critical temperature is predicted to be
around 360 K at zero pressure. We have performed similar study under hydro-
static pressure: our main findings are that the thermodynamic quantities and

the phase diagram are strongly affected by pressure.

The rest of this chapter is organized as follows. In Sec. 3.1 we give brief
survey and discussion about the used theoretical method to calculate the ther-
modynamic properties. Sec. 3.2 we give detailed description for the configu-
rational entropy and free energy. In Sec. 3.3 we give the basic equations and
definitions of the thermodynamic functions. In Sec. 3.4 we report and discuss
the results obtained at zero pressure. In Sec 3.5 we discuss the effects of ap-
plying a hydrostatic pressure on the thermodynamic properties. Sec. 3.6 is
devoted to discuss the tendency to clustering in these materials. Finally, Sec.

3.7 contains a summary of our main results and conclusions.
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3.1 Theoretical Approaches

The determination of the thermodynamic properties, in particular the energy
of mixing, is an intriguing aspect with long history. Theoretically very different
approaches have been employed. As it has been already mentioned the energy of
mixing can be thought of as a sum of chemical and elastic energies, which have
opposite effects. The elastic term is positive, so it has the effect of destabilizing
the system. Whereas, the chemical term is negative and tends to stabilize it.
Therefore, the stability of the system depends on a delicate energy balance
between the two terms. It has been shown that proper account for both terms
is essential and leads to new features in the phase diagram. In this section we
give a critical survey and discuss the used theoretical approaches. Bearing in
mind the above splitting of the energy of mixing they can be classified into the

following categories.

e Models considering only the elastic term. These models assume that
the energy of mixing is due to the mismatch in the lattice parameters of

the constituent materials. Among these models one finds

1. The delta lattice parameter model (DLP) of Stringfellow [33], which
assumes that the interaction parameter is proportional to the square
of the lattice parameter mismatch. The proportionality constant is
found by least-square fitting to the available experimental data. The
idea behind this model is that the binding energy is proportional to
the band gap which, in turn, is proportional to a power of the lattice
constant. Because of the direct fitting to the experimental results
and the correlation between the lattice-lattice mismatch-distortion
and charge density distribution, the chemical term is partly taken
into account in this empirical model. This explains the remarkable
agreement between the DLP and experiment. This model has been

extended recently to take clustering into account by Mardenf and
Guillaume [86].

2. The elastic model of Fedder and Muller [34], which assumes that

the energy of mixing can be calculated from the macroscopic elastic
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properties. Since only the elastic contribution is considered, the
calculated values are 4-5 times greater than the observed values.

When empirically scaled, this model gives reasonable results.

3. The valence-force field based model of Martins and Zunger (35]: this
model takes into account the structural relaxation (bond alterna-
tion), but it neglects any electronic charge redistribution, by assum-
ing the transferability of the bond charge density. The agreement
with experiment is almost the same as the DLP model and the scaled
elastic Fedder-Muller model.

It should be noticed that these models don’t distinguish between the or-
dered and disordered alloys. Recently first-principle calculations have
shown that contrary to the prediction of the above models ordered struc-
tures alloys can be thermodynamically stable, despite the positive energy
of mixing for the disordered alloys. This has been confirmed experimen-

tally in some semiconducting alloys.

Models considering only the chemical term. In these models the
energy of mixing is assumed to be due to the difference in bonding energies
and electronegativity of the constituent materials, and the charge density

redistribution. Among these models one finds

1. The theory of Miedema et al. [29]. They characterize each element
in the periodic table by two co-ordinates ¢* and p/%; the energy of

mixing of a binary AB alloy is then written (in the simplest case) as:
AE = —P(A4") + Q(Ap*3), (3.1)

where P and Q are positive constants. The attractive term depends
on the difference in the elemental work functions, A¢, (latter mod-
ified to A¢*) and is similar in spirit to Pauling’s electronegativity
contribution. The repulsive term depends on the difference in the
cubic root of the electron densities at the elemental Wigner-Seitz
sphere boundaries, Ap!/3, and it was argued to arise from the dis-
tribution of the charge density across the AB interface. Equation

(3.1) has been useful in providing quantitative values for the energy
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of mixing, and it is found to be most successful in the treatment of

binary transition-metal alloys

2. The Van Vechten model [30]. In this model the energy of mixing
is calculated from the energy band gaps bowing, using the spectro-

scopic theory of the heat of formation.

3. Regular solution model (RSM), which assume that the energy of
mixing is due to the difference between bonding energies of the ho-

mopolar and heteropolar second nearest-neighbor bonds, namely
1= 6N0(2612 — €11 - 622), (32)

where ¢;; are the bonding energies. The quasi-chemical approxima-
tion is a more realistic version of RSM, which doesn’t assume the
random distribution. Using this model Jones, Porod and Ferry [31]
were able to get some insight about clustering in some semiconduct-

ing alloys.

4. The more formal models, such as Kikuchi model [32]. In these models
the entropy of mixing is calculated apprdxima.tely by taking certain
clusters as basic units, while the internal energy is calculated as a
sum of a pairwise interactions. In this approach the calculation of
the entropy is satisfactory. But in addition to the pairwise approxi-
mation of the interaction, the volume deformation and the structural

relaxation contributions are also neglected.

e Phenomenological models considering both chemical and elastic
contributions [28]. Recently Balzarotti et al. have introduée_d a model
which takes into consideration both the chemical and elastic contributions.
In the configurational energy calculations the elastic energy is calculated
using a simplified the valence force-field model: they neglect both the
bond bending and second-neighbor relaxation which found to have oppo- ‘
site effects and almost equal contribution. Whereas, the electronic term is
calculated from the experimental interaction parameter. This gives a pos-

itive chemical contribution for ordered structures, contrary to the present

understanding.
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o Ab-initio calculations [36-40] The calculation of the enthalpy of mixing
using the self-consistent band structure techniques is the most ambitious
and accurate approach; in this framework the elastic and the chemical
contributions are treated on the same footing. Since this type of calcula-
tions requires a boundary conditions, the disordered alloy is thought of as
constructed from a random distribution of some basic clusters. The basic
assumption is that all possible local structures can be realized in coherent
periodic structures, each corresponding to a different possible configu-
ration of the basic cluster. The accuracy of this approach increases by
increasing the size of the basic cluster. Up to now the largest cluster con-
sidered is a 5-site tetrahedron. In the case of ternary alloys it reduces to a
4-site tetrahedron (since one the sublattices is alloyed). As shown in Sec.
2.6 reliable results can be obtained by considering clusters of this size.
The properties of the disordered alloys can be calculated from the results
obtained for the ordered ones if the probability distribution of the basic
clusters are known. Some authors assume a random (Bernoulli) distribu-
tion, which is temperature and system independent, while. in principle it
should be calculated through free energy minimization.
adopted here.

The effects of the elastic and chemical contributions on the phase-diagrams
of semiconducting and metallic alloys have been studied recently by Ferreira,
Mbaye and Zunger [36-38]. We show in Fig. 3.1 their results for the phase-
diagram with (a) and without (b) including the elastic term, and also using
positive chemical energy of mixing (c). The drastic difference between the
first and the other two phase-diagrams demonstrates the importance of taking
properly into account both chemical and elastic contributions to the enthalpy

of mixing; this can be done using self-consistent ab-initio calculations.
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3.2 Configurational entropy and free energy

The key quantity in statistical mechanics is the partition function, which is

defined as a sum over the probability of all possible states of the system

f= 2 e~E(statc)/kBT, (3.3)

states

where the energies E(state) contain configurational, vibrational and electronic |
contributions. For simplicity and following most of the workers in the field we
will consider only the configurational contribution. The other contributions are
assumed to be configuration-independent and they are usually neglected in the
calculation of the configuration-related properties. For a binary system of N

lattice sites, there are 2V possible configurations. Usually not all of them are
different, so Eq. (3.3) can be rewritten as

f=3 gie BilksT, (3.4)

where g; is the number of possible configurations having the same energy FE;

(from hereon referred to as degeneracy factor) which, in turn, can be rewritten
as

f=3 e FilkaT (3.5)
where the non-equilibrium free energ‘y Fis
F, = E;—T5; (36)
and the configuration entropy is
S; = kglng;. (3.7
The equilibrium Helmholtz free energy is
F.y = —kgTinf (3.8)

In the case of solids and liquids the Helmholtz and Gibbs free energies are
equivalent, since the difference term PV has a negligible effect. Therefore, one
can also write

Geq = -—kBTlnf, (39)
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where G, is the equilibrium Gibbs free energy.

The sum over all possible different states in Eq.(3.4) is formidable task; the
sum is therefore usually replaced by the largest term. In effect, the fluctuations
about the most probable state are thereby neglected. The equilibrium Gibbs
free energy is then obtained approximately by minimizing the non-equilibrium
free energy function

Gy = mingy F;. (3.10)

Even after using the above simplifying feature the calculation of G, is still a
very difficult task and exact solutions are not possible (since complete setsof {7}
configurations are unavailable); to proceed one has to make some approxima-
tions. Instead of dealing with the whole system, we consider small clusters of
sites (subsystems) known as basic clusters. The accuracy increases by increasing
the size of the basic clusters. But in the other hand, the computational effort
increases rapidly. Therefore, usually the size of the basic clusters is chosen to

compromise between the accuracy and the computational efforts.

In our structural model described in Sec. 2.2, the basic cluster was a 5-site
tetrahedron. Taking into consideration our basic cluster, approximate entropy
can be calculated using a modified quasi-chemical approximation (QCA) of
Guggenheim [60] or more accurately using the cluster variation method (CVM)
of Kikuchi [58,59]. ’

3.2.1 Modified quasi-chemical approximation

In strictly regular solution (SRS) model the atoms of the constituent materials
are randomly distributed at the lattice sites. In spite of the fact that this is
valid only at very high temperatures, SRS has been widely used in the literature
to describe alloys. The QCA is a more realistic model, which allows to study
clustering effects [31] in random alloys. The basic assumptions of the latter

model are:

e Even in the case of liquids some sort of lattice is assumed, or in other

words, each atom is attributed to a lattice point.
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e Only the chemical energy contribution is taken into account, the lattice
relaxation and the volume deformation energy contributions being com-

pletely neglected.

o Usually the effects of the first neighbors only are considered and pairwise

interactions are assumed.

e Instead of assuming a random distribution of atoms (as in SRS), we as-

sume a random distribution of pairs.

Thus, for a system of total number of N atoms having N4 atoms of type A and

Np atoms of type B, one can write
. %Z(NA + Np)
Naa!Npp![(Nas/2)1]*

where Z is the number of the first nearest neighbors. Since random distribution

g (3.11)

of pairs overestimates the degeneracy factor ¢', one has to write

g = hg' (3.12)

where h is a correction factor. This because the pairs can not truly distributed

at random. The determination of h is discussed below.

‘In what is called modified QCA (or third order QCA [28]) the first assumip-
tion is kept (from hereon QCA refers to the modified QCA, while the former
is referred to by simple QCA). Approximate entropy is calculated by assuming

random distribution of clusters consisting of an atom and its surrounding atoms
(5-site tetrahedron in our case). Taking our basic cluster as an example, the
degeneracy factor g can be written as

?:1 N, "!
ijttm (NiZijrim)!

where z;;um is the concentration of the ijklm tetrahedra having i as inside

g="h

(3.13)

atom, 1, 5, k, [, m = 1 or 2. Here 1 refers to A and 2 refers to B-atom. h is the
correction factor similar to that of simple QCA. To determine h, we note that

if the atoms were distributed at random, we would have

B MmN N
9= RS
iktm (NiZi5m)! I Ni!

(3.14)
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or

h= N (3.15)
(H?=1 Ni!)z H:’jklm(]vi zi(ji)lm)!
Thus,
. (B)
4= N =1 Lijum(Vizgjim)! (3.16)

N ILiitim (Vi Zijhim) !
here the superscript B refers to the Bernoulli distribution (completely random
distribution of atoms at the lattice sites). The correction factor of the sim-
ple QCA can be determined following the same procedure. Using Stirling’s

approximation (InN!'= NinN — N) the corresponding entropy is

S(QCA) ES —kB (Z m;ln:z:; -+ Z (z,(ﬁ)lmlnz,(ﬁc)lm - z;jklmlnz,-jkzm)) (3.17)
i ijklm

In addition to the accuracy gained by increasing the size of the basic cluster
in QCA, it allows for more realistic calculation of the enthalpy of mixing by
including also the effects of some local structural relaxation. This has been done
using different levels of approximations, ranging from the simple pair interaction

to the ab-initio calculations.

3.2.2 Cluster variation method (CVM)

The CVM ?(58,59] is the most successful and accurate method for calculating ap-
proximate configurational entropy. Within this method the entropy is given in
terms of the concentrations of the basic cluster and hierarchy of its subclusters.
The major difficults encountered in CVM calculations are (1) the derivation
of an expression for the degeneracy factor g suitable for the system and the
chosen basic cluster, and (2) the computation of the equilibrium concentration
of the basic cluster and its subclusters, which appear in the éxpression. Now,
expressions have been derived for variety of crysta.l‘structures, éonsidering basic
clusters of different size and shape. Whereas, the natural iteration method (87]
of Kikuchi, who originated and developed CVM, emerged as a practical and
easy way for solving the set of nonlinear equations in a self-consistent manner.
This is exactly the reason for the increasing interest in the CVM and its appli-
cation to the solid solutions. For more details and discussion about the method

see the review articles of de Fontaine (58] and Burley [59].
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For our present case (binary alloys with two alloyed fcc-sublattices of zinc-
blende type, within the tetrahedron approximation), an entropy expression do
not exist in the literature, to our knowledge. In appendix A we give derivation
of a suitable expression for this case in two different ways. The subclusters
which give nonvanishing contributions are, in increasing order of complexity:
points, first and second nearest neighbor pairs and tetrahedra surrounding an
interstitial site in zinc-blende structure. We call the concentration of each of

these clusters z;, ysllj), yg:‘;-) and w;;y respectively. In these notations the CVM

expression is given as

SECVM) — _kp (8 S zidnzi + Y Zijumlnzirm + > wijnlnwiju

t7klm ijkl

—2 Z yg)lnyi(;) —6 Z yg)lnyg)) ‘ (3.18)
i i

where z; and 2;jum have the same meaning as in Eq. (3.17) The explicit ap-
pearance of the concentrations of some of the clusters in S (CVM) takes care of
the cooperative nature of the problem and makes CVM in principle more accu-
rate than other approximations. However, in our present case only constrained

CVM calculation can be done as we will see later .

3.3 Basic equations and definitions

In this section we show how the probability distribution of tetrahedra is calcu-
lated from the previously calculated energy of mixing for the different configu-
rations of tetrahedra, as functions of the alloy composition =z and temperature
T; and we complete the definitions of the thermodynamic functions. According
to Eq. (3.6) the Gibbs free energy of mixing is

AG=AH-TS, (3.19)
where AH is the enthalpy of mixing defined as

AH = Z zl‘jklmAEijklm (320)

ijkim
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and S is the configurational entropy, which have been derived in the last sec-
tion within QCA and CVM. The probability distribution of tetrahedra or the
variables z can be determined by minimizing at fixed z and T the Gibbs free
energy of mixing AG with respect to the variables z, under the constraint

> (Mijim — 52) 2ijpim = 0 (3.21)
i7kim
where ;1 is the number of A-atoms in the 1 7klm cluster, which takes into

account both the fixed concentration

1
== Z NijklmZijklm (3-22)
ijklm
and the normalization condition (the sum of the variables z is equal to one).

Therefore, the free energy to be minimized is

G(z,T) = 3 zjum(z, T)AEijpm — TS (2, T) + >~ (Pijuim — 52)2i50m (2, T),
ijkim ijkim

| (3.23)

which should also be minimized at each values of z and T over the lattice

parameter a. In the case of QCA, minimization of AG with respect 10 2k, is

straightforward and gives

(niskim—52) ;~ AE;jktm [kpT
¢ e

Eijkl S-(ni,'um ~52) o~ AE;jim k5T

Zijum (T, T) = (3.24)

where ¢ = e~ k8T 5 5 posmve and real quantity, which can be determined by
solving the fifth order polynomial

> (Rijkim — 5z)¢(Miskim=52) g~ AB:jum [kaT __ (. (3.25)
i7klm :

For the case of CVM minimizing G with respect to the independent variables
Zijkim 1s more complicated and gives

X—5/8Y11/2Y‘2W—1§(n;jum—-5::) e"AEx’jklm/kBT
Zijklm X—5/8'Y'11/2Y2W—lg-(n"j“m—Sz) e“AEijklm/kBT

Zijum(z,T) = (3.26)
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where

X = :t:;xj:z;ka:z:z:m,

Yy = v Py v vl

Y, = yﬁ)yﬁ)yﬁlyg)yﬂyﬁf and

W = Wikl

The subcluster variables z, y(1, y® and w are dependent variables, which

can be written in terms of the independent variables z as follows

yf}) = Zijkim; yﬁ) = Zijkmi  Wikim = 2 Zijkim (3.27)

klm ilm 1

at a given concentration the variables z; are in fact constants, and they don’t
need to be calculated. At given T , r and a, the system of nonlinear equa-
tions Eq. (3.26) can be solved numerically for the variables 2, using the
Newton-Raphson method, or more easily using the natural iteration method
of Kikuchi[87]. The latter consists of the following steps:

o Start with initial guess values for the dependent variables z, y®), y@ and
w, which could be that of the random distribution.

e Obtain the value of )\ by solving the fifth order polynomial, Eq. (3.25).

e Calculate the independent variables zijkm, using Eq. (3.26).

e Obtain new values of the independent variables using Eq. (3.27).

e Use the the new values of the independent variables to calculate a new
set of values for A and the variables z, and so on so forth until good

convergence is achieved.

It has been found that the calculated values of the first-neighbor mixed bond
concentrations are not symmetric (e.i., yﬁ’ #* ygi)), this being a direct con-
sequence of our structural model which distinguishes between the neighboring

sites, or in other words, between the two fcc-sublattices of the crystal. Whereas,

56



in real disordered alloys they are equivalent. To go around this problem we
have symmetrized them by assuming that each of the 5-sites of the tetrahedron
could be an inside atom: in this way we allow for the inside atoms to belong to
both of the sublattices. Thus, in our calculations Eq. (3.27) is modified to

L
@ = = 2 Z(Zijklm + Zmijkt + Zimijk + Zkimi; + Zjkimi)

Yii" = Yi;
! ! 5 kim
and .
Wikl = 3 Z(zijlclm + Zmijki + Zimijk + Zkimi; + Zikimi)- (3.28)

m

It should be noticed that the first and second nearest-neighbor pairs concentra-
tions are equal after symmetrization. We found that this is unavoidable to get

meaningful results.

Having calculated the tetrahedra concentration z, the thermodynamic func-
tions can be calculated easily. The enthalpy of mixing is defined in Eq. (3.20);

the entropy and the Gibbs free energy are given as in Eq. (3.17) or Eq. (3.18)
and Eq. (3.6), respectively. The excess Gibbs free energy is

GE(z,T) = G(z,T) — ksT (zinz + (1 — z)ln(1 — 7)), (3.29)
from which the interaction parameter 1 is calculated

G*(z,T)

Q(z,T) = 20-2)

-~ (3.30)

In the previous chapter we calculated a temperature independent (z), where
complete randomness was assumed. In present chapter we have T-dependence

and an excess entropy contribution from the clustering effects.
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3.4 Results and discussion at P =0

Using the formation energy of different tetrahedral configuration AE;juim(a)
calculated previously in Sec. 2.4., the tetrahedral concentrations z;jum are cal-
culated using Eq. (2.24) after solving Eq. (2.25) for the case of QCA, and
solving self-consistently Eq. (2.26) starting from random distribution of tetra-
hedra. The lattice parameter a(z) is assumed to vary according to Vegard’s
law. In principle it should be calculated by a free energy minimization, but this
is a very good approximation since the variation of a is experimentally found
to be almost linear in these alloys. From the theoretical side, we have found
previously (see Sec. 2.5 and Ref. 27) that Vegard’s law is very well satisfied
in the periodic structures at 7 = 0. Here we content ourselves by checking at
z = 0.5 that the calculated a giving minimum G is 5.491 and 5.493 AatT
equal to 100 and 300 K, respectively, compared to 5.494 assumed by Vegard’s
law. In Fig. 3.2 we show the resultant Ps;, and Pg., (the multiplicity factor

(i) times the corresponding tetrahedra concentration) as a function of z for

different values of T, using QCA (dotted curves) and CVM (dashed curves),
compared with the random (Bernoulli) distribution (solid curves). The domi-
nant features to be noticed are (1) the large difference between the CVM and
the random distributions at high temperatures, which does not seem to vanish
by increasing further the temperature (notice the small difference between the
CVM distributions at 400 and 1400 K), (2) the small discrepancy between the
CVM and QCA at low temperatures, which increases by increasing T', and (3)
the symmetry of Ps; and Pg., shown in the figure at T = 100 k. The results
of CVM are obtained using the symmetrization procedure described in the last
section. It should be mentioned that that taking simply the average of yg) and
yg) leads to unphysical results (sudden and sharp decrease in the free energy
at some z).

The Gibbs free energy as a function of z at different values of T, shown
in Fig. 3.3a, has a quasi SRS-like behavior [88]. The concavity of the CVM
free energy (solid curves) vanishes faster than that of QCA (dashed curves)
leading to a lower critical temperature. Even if the behavior of the CVM free

energy is reasonable, the relatively large deviation from randomness at very high
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Figure 3.2: The probability distribution of the tetrahedral conﬁgurations as
functions of the concentration at different temperatures and P = 0. Dashed
curves: CVM results; dotted curves: QCA results, compared with the Bernoulli

distribution (solid curves).
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Figure 3.3: Gibbs free energy of mixing as functions of z at different tempera-
tures at P = 0. Solid curves: QCA results; dashed curves: CVM results. (b)
The phase diagram of Si,Ge;_x alloys at P = 0. Solid curve: miscibility gap;
dashed curve: spinodal curve. '

temperatures (see Fig. 3.2) could be an artifact due to the symmetrization of
the dependent variables. We finally calculated the CVM free energy in a non-
self-consistent way, using in its expression simply the QCA derived variables z.
The results coincide with the one derived completely at QCA level, thus giving
us confidence in the accuracy and the reliability of QCA in this system. All the
results shown in the following are strictly at the QCA level.

In Fig. 3.3b the phase diagram of the disordered Si,Ge;_, alloys is shown:
the instability region is where
8*F(z,T)
—-—a‘;i‘— <0 "(3.31)
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Figure 3.4: (a) Free energy of mixing at 50, 150 and 250 K. (b) The calculated
phase diagram. (from Ref. 89)

which is bounded by the spinodal curve (dashed curve) calculated from the
values of = at which the second derivative is equal to zero. The miscibility
gap (solid curve) is by definition the region where the disordered alloys are
metastable and is calculated here from the values of z at which G(z) have
cominon tangent at fixed T. The spinodal curve and the miscibility gap are

calculated in the following steps:

e The inversion points and the values of £ which have common tangent of

AG(z) have been determined at discrete set of T' values.

e The critical temperature was determined as the minimum temperature

where a;ff becomes positive for the whole range of z and the z location

of these minima is specified.

e The information we got from the previous points are used as input data
to a second-order polynomial interpolation routine to calculate the shown

curves for the spinodal curve and the miscibility gap.

The critical temperature above which the disordered alloys are stable in the

whole range of z is predicted to be around 360 K (see also Fig. 3.3a). For
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Figure 3.5: Excess thermodynamic functions of mixing at T=100 and 400 K.

At P =0 (2) and P = 30 Kbar (b). Solid curve: excess Gibbs free energy;
dotted curve: enthalpy; dashed curve: entropy.

the sake of comparison we show in Fig. 3.4 the free energy of mixing (a) and
the phase diagram (b) of SixGe;_x calculated by Soma [89], from which he has
concluded that the critical temperature is around 160 K. It should be noticed
that in this work they use the second-order perturbation theory to calculate
the internal energy (the third and the forth order terms are included in an
approximate way [68]), and the completely random distribution to calculate
the entropy at all temperatures. The large difference between our and these
calculations demonstrates the importance and the need for performing our first-

principle calculations.

We show in Fig. 3.5a the excess free energy, enthalpy and entropy of mixing.
The dominant features to remark are the small values of the excess entropy,

which gives small entropy contribution to G (the difference between the solid
and the dotted curves). This fact is physically due to the small deviation of the
tetrahedral distribution from complete randomness even at small temperatures
(see Fig.2). As a consequence both the excess free energy GF and the interaction

parameter {1 (shown in Fig. 3.6a) have a weak T-dependence.
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Figure 3.6: Interaction parameter as a function of z at different temperatures.
At P =0 (a) and P = 30 Kbar (b). Solid curves: up to 500 K; dashed curve:

1.40

120 |

at 1400 K (random distribution).

63

1.40

1.10 L
0.80
0.50

0.20

-.10

0.0




3.5 The pressure effects

The results reported so far are obtained at P = 0. In this section we will study
the effects of applying a hydrostatic pressure on the thermodynamic properties.
The lattice parameter a of Si and Ge at given P can be determined from the
calculated equations of state. Here we will also assume a Vegard’s law variation
of a(z) between the calculated values of Si and Ge at the same P. The formation

energies of each kind of tetrahedra at fixed T is recalculated according to

AEa(z, P) = Ea.(a(z, P)) — (4 TG (P) + . "EB(P)) (3.32)

and similarly for AEp,_, where E4(P) and Ep(P) are the total energies of
the end materials under fixed P. We found that AFE of the ordered structures

decreases by increasing the pressure, but this reduction is not enough to stabilize
them (e.g. AE for zinc-blende structure is 0.68, 0.66, 0.60, and 0.51 mRy/atom
under 0, 50, 70 and 90 Kbar, respectively). Our prediction is therefore that
isotropic pressure does not make this compound stable; we comment at this
point that uniaxial strain on the contrary has been recently found to stabilize

ordered structures in this material [1,10].

At given P the calculations of the thermodynamic properties are carried
out as described before, using the formation energies calculated at the same
P. As a consequence of the volume reduction by applying hydrostatic pressure
the strain energy of the Ge-rich tetrahedra increase. Therefore, the probability
distribution of the Si-rich tetrahedra will increase because they have less strain

energy.

For the purpose of displaying, all the following results are shown at P = 30
Kbar. The probability distributions at different temperatures as functions of
z are shown in Fig. 3.7; by comparing it to Fig. 3.2 we see the pressure-
induced change in the probability distributions of Si, and Ge, clusters, which
has a direct effects on the thermodynamic properties. In Fig. 3.5b we show
the calculated excess Gibbs free energy, enthalpy and entropy of mixing, to be
compared with the zero pressure behavior shown in Fig. 3.5a. The interac-
tion parameter at different values of T as function of z is shown in Fig. 3.6b

(notice the difference in scale in Fig. 3.6a and b). The dominant feature to
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be noticed is the relatively strong T-dependence in the Si-rich side and the T-
independence in the Ge-rich side, the same feature existing also in Fig. 3.5b for

the thermodynamic functions.

The Gibbs free energy at different values of T is shown in Fig. 3.8a; this
quantity is in general lower than at P = O, having a larger difference in the
Si-rich side, and it is mainly due to a reduction in the enthalpy of mixing.
The corresponding phase diagram is shown in Fig. 3.8b, where the effects of
the pressure on the phase diagram can be seen: the main effect is that the
instability region moves toward the Ge-rich side and its width decreases. We
show in Fig. 3.9 the critical temperature as a function of P. The behavior is a
monotonical increase of T, (P) with a rather small derivative at pressure up to
about 50 Kbar and a steeper increase beyond. This can be understood since the
total energy is flat around the equilibrium volumes. Finally we show in Fig.’s
3.10 as functions of z at different values of P, the energy of mixing, interaction
parameter and phase diagram of Si,Ge;_, alloys. These results are taken from
the work of Soma and co-workers [90], in which they use VCA and their model
calculations [68]. It should be noticed that (in addition to the fact that these
are semiquantitative calculations) the quasi-monotonic behavior is a result of

the complete neglect of the local structural effects.

3.6 Clustering

Because of the difference in bonding between different types of atoms in alloys,
the atomic distribution at the lattice sites is usually not completely random,
and it depends instead on many factors, such as the system, temperature, pres-
sure and concentration. The deviation from randomness (clustering) has direct
effects on the properties of alloys. In spite of this fact the random distribution
has been assumed by many workers. To estimate the deviation from randem-
ness different clustering parameters have been used in the literature [31,86];

they are nevertheless intimately related. Here we define a clustering parameter

Az,T) = yi}—z(1-xz)
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Figure 3.7: The probability distribution of the tetrahedral configurations as
functions of the concentration at different temperatures and P = 30 Kbar.
Dotted curves: QCA results, compared with the Bernoulli distribution (solid

curves).
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Figure 3.9: The critical temperature as a function of the pressure.
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3 > ((5 — majkim) 2ijkim + NajiimZ2jkim) — (1 — ) (3.33)

jklm

as the difference between the calculated and the random values of the first mixed
nearest-neighbor bond concentrations. Similar to excess mixed second neighbor

pair probability distribution used [31,86] for ternary alloys.

In Fig. 3.11a we show A(z) at different values of T: it has a negati%re
sign near the end points and a positive one around z = 0.5. This behavior is
different from the one found by Balzarotti and co-workers [27], which is always
positive, within modified QCA. We mention also the fact that the simple (i.e.
non modified) QCA (for ternaries) gives always a negative deviation [31]. The
behavior of A in our case can be easily understood. For example, in the Si-
rich side the Si-rich tetrahedra have less strain (positive) energy, which tends to
increase their probability distribution (see Fig.(1)). As a consequence the values
of y(sl,-)Si increases on the expense of y‘(gl‘-)gc and ygzcc. Therefore the negative sign
of A near the end points is explained. The same arguments can be used to
explain the positive sign of A around = = 0.5. The small tendency to clustering
(A is one order of magnitude smaller than the values calculated for ternary
alloys), i.e. small tendency to ordering in these materials, provides further

support to the conclusion of the instability of any coherent structure for bulk
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Si,Ge;_y alloys.

The effect of applying hydrostatic pressure on the tendency to clustering
has been also studied. In Fig. 3.11b we show A(z) at different values of T as
a function of x, under 30 Kbar pressure. We found therefore that the pressure
has also a drastic effect on the clustering in these materials, because A is no
more symmetric and the tendency to clustering increases (notice the change in
scale in Figs. 3.11a and b). This behavior can be explained as a'consequence

of the change in the role played by the strain energy.

3.7 Conclusions

A combined electronic structure and statistical mechanical approach has been
used to calculate the thermodynamic properties of SixGe;_, alloys. The forma-
tion energy for each of the 5-site tetrahedral configurations have been calculated
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using the local-density approximation and norm-conserving pseudopotentials.
Whereas, an approximate entropy of mixing is calculated within the framework
of the modified quasi-chemical approximation (QCA) and the cluster variation

method (CVM). We draw the following main conclusions:

e Because of our structural model which distinguishes the inside site from
the others, the calculated mixed first neighbor pair concentration is not
symmetric. The CVM calculations are carried out by symmetrizing all the
dependent variables; this leads to unphysical deviation of the CVM proba-
bility distributions from randomness at very high temperatures. However
we found that QCA free energy coincides with that of CVM calculated
using the same QCA probability distributions, which demonstrates the

power and the reliability of QCA. The following conclusions are based on

this approximation.

e The Gibbs free energy shows a regular-solution like behavior, and the
critical temperature above which the disordered alloy is stable for the

whole range of concentration is predicted to be around 360 K.

e The interaction parameter shows a weak temperature dependence spe-
cially around room temperature, in addition to the weak concentration

dependence previously found.

e The tendency to clustering is found to be much smaller than that cal-

culated for ternary alloys [27], which provide additional support for the
instability of ordered bulk Si,Ge;_x structures.

o The pressure has a sizable effects on the the;iﬂbaj?ﬁamic functions and
clustering. The pressure tends to decrease the width of the instability
region and to shift it toward the Ge-rich side the; the critical temperature

increases by increasing the pressure.
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Chapter 4

Stability and Electronic
Structure of Si,Ge, (001) and
(111)-oriented Superlattices

Superlattices and heterostructures have attracted much interest in both ap-
plied and fundamental research. Recent developments in high precision growth
techniques have made possible the fabrication of novel materials consisting of
layered structures. The degree of control is so advanced now such that strained
superlattices, such as Si/Si, Ge;_,, having 1ayér thicknesses down to one mono-
layer have been grown [14-16] and have been the subject of many experimental
and theoretical investigations. These novel structures have been fouhd to have
very intriguing structural [1-6] transport [43] and electronic structure properties
[19-21]. In particular, we mention here the new quasi-direct optical transitions
[14] observed in strained Si,Ge4 superlattices grown on the top of Si along the
(001) direction. This was the subject of much theoretical investigations, where

the band structure of Si,Ge, (001)-oriented superlattices of different thicknesses
has been calculated [91-94].

In this chapter we will consider another aspect of the problem, which is

the effects of the growth direction. ‘To this aim , we have studied in some
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details two Si;Ge, superlattices along < 001 > and < 111 >-directions. The
(110)-oriented superlattice has the same crystal structure as that of the (001)-
oriented one [95]. It should be emphasized that these are not hypothetical
structures, but they can be prepared over SigsGegs alloy, which has almost
the same lattice parameter. An extensive total energy minimization has been
carried out to determine the equilibrium structures and the relative stability.
Then, the band structure of the equilibrium structures has been calculated
and compared with that of the zinc-blende (Si;Ge; superlattice along both
directions) and SigsGegs alloy within VCA. The charge density distribution
for the lowest conduction band states at some high symmetry points has been
calculated. It has been found that both of the superlattices are unstable toward
segregation. The (111)-oriented superlattice is relatively more stable than the
other one which, in turn, is relatively more stable than the zinc-blende structure.
The calculated bond lengths of the (001)-oriented superlattice are found to be in
good agreement with that calculated by neglecting the second nearest-neighbor
relaxation, and the small ionicity of the Si-Ge bond is negligibly affected by the
structural relaxation. For the band structure, it has been found that both of the
superlattices are indirect gap semiconductors, and the folding and the symmetry
breaking have drastic effects on the charge density distributions corresponding

the the lowest conduction band states.

The rest of this chapter is organized as follows. In Sec. 4.1 we describe
the crystal structure of Si;Ge; (001) and (111)-oriented superlattices. Sec. 4.2
is devoted to study of the stability and the equilibrium structures of the two
superlattices. In Sec. 4.3 the band structures of the relaxed structures are
displayed and compared with that of SipsGeps alloy within VCA and zinc-
blende structure; the level charge density of the lowest conduction band levels

at the high symmetry points is also given. Finally, in Sec. 4.4 we give our main
results and conclusions.

4.1 Crystal structures
4.1.1 Si;Ge, (001)-oriented superlattice. The lattice structure of this su-
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Figure 4.1: Structure of Si;Ge, (001)-oriented superlattice. a;(¢ = 1,2,3) are
the unit vectors, and they are a; = a(1/2,1/2,0), a; = a(—1/2,1/2,0) and
as; = a(0,0,1). Here, a is the lattice constant. The Si-Si, Si-Ge and Ge-Ge
bond lengths are assumed to be equal. The four basic atoms in the unit cell
are located at @(0,0,0), and a(1/4,1/4,1/4) for Ge, and «(0,1/2,1/2) and
a(3/4,1/4,3/4) for Si. . e

< 001 >
(a) 1 | - (b)

dsige

. ‘ $ —_dsiGe
dGeGe dGeGa

-1 3 L ] c b
dsice —-—asm

19 dgisi
dsisi

A b
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Figure 4.2: Schematic illustration of the studied Si,Ge, superlattices.
djj(i,j = Si,Ge) are the interplanar distances and ¢ is the period along the
growth direction. (a) The (001)-oriented superlattice. (b) The (111)-oriented
superlattice, for the ideal structure shown in Fig. 4.4, c is equal to —%a 1. In

the text we refer to scaled units, and we indicate both the rhombohedral and
tetragonal structures as ideal when ¢/a; = 1.
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Figure 4.3: The first Brillouin zone of the Si;Ge, (001)-oriented superlattice.

perlattice is obtained by alternating two layers of Si and Ge along the < 001 >-
direction. The structure is shown in Fig. 4.1. The unit vectors and the atomic
positions are shown in the same figure. Here, the bond lengths of Si-Si, Si-Ge
and Ge-Ge bonds are assumed to be the same. This structure is a simple tetrag-
onal having C,, symmetry and four atoms per unit cell. The above structure is
shown schematically in Fig. 4.2a. It has four independent structural variables,
which can be chosen as the lattice parameter normal to the growth direction
a, and the three interplanar distances shown in Fig. 4.2.a. The first Brillouin
zone (BZ) is shown in Fig. 4.3. Since the unit cell of this structure is two times
larger than the unit cell of the diamond structure, the BZ is one half of that of
the diamond structure. A direct comparison of the two BZ’s are shown in Fig.

2.4. The X and L-points of the diamond structure are folded as follows

e The L-points are not affected by the folding, and they are designated by
R. "

o The X-points in the (x,y)-plane are also not affected, and they are desig-
nated by Z,.

e The X-points along the z-direction are folded to T'; the mid-points (001)
are designated here by Z.

4.1.1 Si;Ge; (111)-oriented superlattice. The lattice structure of this
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Figure 4.4: Structure of Si;Ge; (111)-oriented superlattice. a;(i = 1,2,3) are
the unit vectors, and they are a; = a(1/2,0,1/2), a; = a(1/2,1/2,0) and
az = a(0,1,1). Here, a is the lattice constant. The Si-Si, Si-Ge and Ge-Ge
bond lengths are assumed to be equal. The four basic atoms in the unit cell
are located at a(0,0,0), and a(3/4,3/4,3/4) for Ge, and a(0,1/2,1/2) and
a(5/4,5/4,5/4) for Si.

superlattice is obtained by alternating two layers of Si and Ge along the < 111 >
direction. The structure is shown in Fig. 4.4. The unit vectors and the atomic
positions are shown in the same figure. Here, the bond lengths of Si-Si, Si-Ge
and Ge-Ge bonds are assumed to be the same. This structure is a rhombohedral
one having D3y symmetry and four atoms per unit cell. The above structure is
shown schematically in Fig. 4.2b. The remarkable feature of this structure is
that the bond léngth can take any values without affecting the bond angles. In
the total energy minimization this feature is maintained. As a consequence a;
and dsig. are related. Therefore, there are only three independent stfuctural
variables, which can be chosen as the a; and the two homopolar bonds (in this
case they are equal to the interplanar distances) shown in Fig. 4.2b. Since the
unit cell of this structure is two times the unit cell of the diamond structure,
the BZ is one half of that of the diamond structure. The X and L-points of the
diamond structure are folded as follows

e The L-points along the growth direction are folded to I'; the mid-points
(1/2,1/2,1/2) are designated by L,.
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Figure 4.5: Schematic illustration of the folding of the A-line of the zinc-blende
in the Brillouin zone of the Si;Ge; (111)-oriented superlattice.

e The L-points normal to the growth direction are not affected, and they

are designated by L.

e The X-points are folded to L, as shown schematically in Fig. 4.5.

The equilibrium structures and stability of the above structures will be the

subject of the next section.

4.2 Stability and equilibrium structures

For the above structures there are four and three independent structural vari-
ables for the (011) and (111)-oriented superlattices, respectively. For the former,
they could be chosen as a,, ¢/a; and any two of the interplanar distances. For
the latter, they could be chosen as a,, ¢/a; and one of the homopolar bonds.
To determine the equilibrium structures, we have carried out total energy min-
imization over the independent variables. For the tetragonal structure this has

been done as follows

o At the weighted average lattice parameter and considering ¢/a; =1, the

equilibrium interplanar distances have been determined by total energy
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minimization. Since a; and c¢/a; are kept fixed, the other two indepen-
dent variables could be any two of the interplanar distances (say dsis; and
dgege). About twenty five total energy calculations around the equilib-
rium have been performed. The results are are least-square fitted to the

following quadratic function

E(dsisi, dgege) = bo + bidsis; + b2dcege + b3dsisidaege + badsisi® + bsdace
(4.1)
to determine the equilibrium values of dg;s; and dgege, from which the

dsige can be easily obtained.

e The equilibrium values of a; and ¢/a, are then determined by a similar
total energy minimization. The interplanar distances are considered as
scaled variables (in units of a, ), and are assumed to have the same values
as calculated above multiplied by the ¢/a, ratio. About twenty five total
energy calculations around the equilibrium have been performed. The
results are fitted to a quadratic function similar to the one given in Eq.

(4.1), to determine the the equilibrium va,lues. of a; and c/a;.

Similarly the equilibrium structure of the (111)-oriented superlattice has
been determined in two steps:

© As described above, a, and c/a; (see Fig. 4.2b) are first kept fixed.
As a consequence, we are left with only one independent variable, which
could be any one of the two homopolar bonds (say dsisi). The value of
dgege changes by changing dsisi, while dgige is kept fixed. Six total energy
calculations have been performed around the equilibrium. The results are
least-square fitted to parabola to determine the equilibrium value of dg;g;,

and hence dgeg. under this restriction.

e The equilibrium values of ¢, and ¢ /a, are determined as described above
for the tetragonal structure. The only difference is that dgg. is determined
directly from a,, while the rest of c¢/a, is shared by dg;g; and dgege; in
such a way that dsis;/dgege is kept fixed and equal to the one obtained

from the equilibrium values calculated in the previous step.
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The results obtained for a;, ¢/a; and the bond lengths of Si-Si, Si-Ge and
CGe-Ge bonds for the two structures are given in Tab. 4.1, together with the
formation energy AE (defined in Eq. (2.2)). The remarkable features to notice
are the values of AE. The positive sign of AE in both superlattice reflects
their thermodynamically instability towards disproportionation into pure ele-
ments. The (111)-oriented superlattice is found to be relatively more stable
that the (001)-oriented one which, in turn, is relatively more stable than the
7B structure, which can be considered as Si;Ge; superlattice in both of the
growth directions (AE(ZB) = 0.21 kcal/mol, see also Sec. 2.4). This shows
clearly the tendency of SiGe system towards segregation. The above finding
is in contradiction of what has been recently assumed by Martins and Zunger
[10] that the strain free structures (ZB and rhombohedral) are the most stable
structures for the SiGe system. According to Zunger and co-workers [9,10], the

formation energy can be written as
AFE = AEchem -+ AEcz (42)

where AE,; is contribution to the formation energy resulting from the volume
deformation and microscopic strain (bond lengths and angles deformation),
and AE.i.m is the contribution from all other chemical changes. Since the
second contribution to AE,; is positive, they have assumed that the strain free
structures are relatively more stable that the others. Here, we mention that the
formation energy depends strongly on the number of the heteropolar bonds (see
Sec. 2.4); it is worth to mention that Zunger et al. [10] have arrived to the same
conclusion. For the tetragonal structure 50 % of the bond are heteropolar, while
they are 100 % and 75 % of the bonds in ZB and the rhombohedral structures,
respectively. Therefore, without microscopic strain the tetragonal structure is
expected to be the most stable one. However, the strain will tend to destabilize
it; a priori it is very difficult to predict its thermodynamic stability. In their
work, Martins and Zunger have tried to explain the observed long-range ordered
structure (thombohedral) in strained SiGe grown on the top of Si substrate, but
they arbitrarily consider only the structures which are free from microscopic

strain. The present work shows instead that tetragonal structures should not

be ruled out.
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¢/ar | Bond lengths (A) [ Formation energy

System ay
(A) | (A) |Si-Si| Si-Ge | Ge-Ge (keal/mol)

Si; Ge, (001)-oriented
superlattice 5.51 | 0.994 | 2.35 | 2.38 2.41 0.10

SiyGey (111)-oriented
superlattice 5.52 | 0.990 | 2.31 | 2.39 2.41 0.05

Table 4.1: The calculated values of the normal lattice parameter a,, ¢/a; ratio
(see Fig. 4.2), the bond length of the equilibrium structures of Si,Ge, (001)
and (111)-oriented superlattices.

The calculated bond lengths, shown in Tab 4.1, are in good agreement with
these calculated in Sec. 2.5, specially for the (001)-oriented superlattice. It
should be emphasized that the calculations reported in Sec. 2.5 are performed
by neglecting the second nearest neighbor relaxation. This gives more confi-

dence in our previous calculations.

As arepresentative we show in Fig. 4.6 the valence charge density of the fully
relaxed rhombohedral structure. The charge transfer from Ge to Si atoms is
very small. In Sec. 2.5 we have shown that the small ionicity of the Si-Ge bond is
not affected by changing the concentration and the chemical environment. From

Fig. 4.6 it is evident that it is also not affected by the structural relaxation.

4.3 Electronic strﬁcture

In this section we show the energy band structure of the two superlattices under
consideration. The calculations are performed using LDA and norm-conserving
pseudopotentials [72]. Within LDA, the energy gaps of the semiconductors
are underestimated. Some authors have used artificially the value « in the
X o approximation of the exchange and correlation potential as an adjustable
parameter to reproduce the energy gaps of the constituent materials [96,97].
Here, we continue using the Ceperley and Alder results [70,71]. Therefore, in

our calculations the energy gaps are underestimated. In the next chapter, we

79



electronic density (electron/unit cell)

of the Si;Ge, (111)-orie

Figure 4.6: Contour plot of the valence ‘
nted superlattice.
80

in the [011] plane



- show that at the calculated equilibrium lattice parameters the underestimation
of the band gaps of Si and Ge is comparable, and correct topology for the band
structure of Ge and meaningful variation of the band gaps of Si,Ge;—x alloys
with z are obtained. This gives us confidence in the reliability of the calculated
band structures for the superlattices, of course not in the calculated values of
the energy gaps, but in the other properties, such as, the character of the gap
(direct vs indirect).

For the calculation of the structural properties, constant energy cutoff E,,; =
12 Ry was enough. It has been found (see next chapter) that in order to achieve
good convergence, specially for the I'§ state, a higher E,, is needed. In this
calculations we use E,,; = 14 for the charge density calculations and 17.5 Ry

to calculate the band structure.

In the following we give a detailed description of the band structure of the

above two superlattices.
4.3.1 Si;Ge, (001)-oriented superlattice

The band structure of the fully relaxed structure along the high symmetry
lines is shown in Fig. 4.7. The conduction band has four minima at T, R, Z,
and the I' — Z line, which correspond to T, L, X and A-line of the zinc-blende
structure. The calculated band gaps corresponding to the above minima are
0.49, 0.87, 0.35 and 0.37 eV, respectivgly. So, the above superlattice is an
indirect-gap semiconductor. In Fig. 4.8a and b we show a comparison between
the band structures of the zinc-blende SiGe and Siy;Geqgs alloys within VCA
along the A-line and the corresponding lines of the above superlattice (the band
structure of the first two systems are discussed in details in the next chapter).
The important features to notice are:

e In the case of the zinc-blende and VCA the conduction band minima occur
at the A-line. For the unfolded A-line of the above structure the minima.
moves to the Z, point, while for the folded one the it occurs at the line.

The former has lower energy.

e The folding of the conduction band along the growth direction is not a
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Figure 4.7: The band structure of the fully relaxed Si;Ge, (001)-oriented su-
perlattice along the high symmetry lines.
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Figure 4.8: Companson between the band structures along the A-line of
SipsGegs within VCA (dotted lines) and zinc-blende (solid lines) in the left

panels, and that of the corresponding folded (a) and unfolded (b) lines of the
SiyGe; (001)-oriented superlattice (solid lines) in the right panels.



simple one. As it is clear from Fig. 4.8 there is an anti-crossing in the
conduction band levels. A similar results has been obtained by Nakayama
and Kamimura [98] in the (GaAs),(AlAs)m superlattice, and they have

shown that it is a consequence of the mixing of the conduction band states.

o The gap which opens due the zinc-blende symmetry at X-point in the
valence band disappears in the supercell when the X-point is folded to T.
While at the unfolded points it shrinks.

To clarify the origin behind the above differences in the behavior of the
lowest conduction band along the A-line, we have calculated the level charge
density which correspond to the lowest conduction band levels at Z, and T.
The results are shown in Fig. 4.9a and b. It is evident that they are different.
The one which correspond to the lowest conduction band at I' is concentrated
in the interstitial region between similar layers, while the other is more spread.

This shows that the mixing with other conduction states are appreciable.

In Fig. 4.10 the band structure of the zinc-blende and VCA along
the T-line are compared with that of the above superlattice. It is evident that
apart from the anti-crossing, the corresponding conduction and valence band
are very similar. The level charge density of the lowest conduction band state
at R is shown in Fig. 4.11. It is concentrated in the interstitial region between

the layers of the interface.

4.3.2 Si;Ge, (111)-oriented superlattice band structure

The band structure of the fully relaxed structure along the high symmetry
lines is shown in Fig. 4.12. The conduction band has four characteristic minima
at T, L, and along the T-L, and M-L, lines, which correspond to the I', L=
(111), and the ¥ and A-lines of the zinc-blende structure. The calculated
band gaps corresponding to the above minima are 0.83, 0.39, 0.82 and 0.39,
respectively. Therefore, it is indirect gap semiconductor. A comparison between
the band structure of the SigsGegs alloy within VCA and the zinc-blende along
Y-line and the corresponding lines of the above structure is shown if Fig. 4.13a

and b, for the unfolded and folded lines, respectively. From Fig. 4.13a it
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Figure 4.9: The level charge density (electron/unit cell) of the lowest conduction
band levels at (a) I' and (b) at Z, of Si;Ge, (001)-oriented superlattice.
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Figure 4.10: Comparison between the band structures along the X-line of
SigsGeps within VCA (dotted lines) and zinc-blende (solid lines) in the left
panel, and that of the corresponding line of the Si;Ge; (001)-oriented superlat-
tice (solid lines) in the right panel.
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Figure 4.11: The level charge density (electron/unit cell) of the lowest conduc-
tion band levels at R of Si;Ge; (001)-oriented superlattice.
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is evident that apart from the splitting of the degenerate levels, the unfolded
levels of the superlattice are very similar to the corresponding ones for the other
structures. From Fig. 4.13b the folding of the conduction and valence bands
is very clear. Here, the mixing with other conduction band levels is manifested
in the moving of the conduction band minima from I' (the lowest level at T
correspond to LS level of the zinc-blende structure) to I' - L, lines. The level
charge density corresponding to the lowest conduction band levels at T’ and
L, are shown in Fig. 4.14a and b. The remarkable feature to notice here is
the large difference between the two distributions. From Fig. 4.14a it is clear
that the level charge density of the conduction band level at T’ is concentrated
in the interstitial region between the layer of the interface near the Si atoms,
while that of the lowest conduction band at L, is concentrated in the interstitial
region between the Ge layers. From Fig.’s 4.9 and 4.14, it is evident that the
level charge density distribution of the folded levels is different from that of the
unfolded ones.

In Fig. 4.15 we show a comparison between the band structure of the
Sip sGegs alloy within VCA and the zinc-blende along the A-line with that
of the corresponding lines of the above structure. The band structure of the
superlattice along these lines is more complicated than the others; folding and
mixing lead to a lot of anti-crossing in the conduction band levels. At L, the
levels at T' and X-points of the zinc-blende structure coincide, as an example,
of the four lowest bands shown in Fig. 4.12 at L.-point, the first and the fourth
correspond to the zinc-blende L, while the second and the third correspond to
X-point. The level charge density of the lowest conduction band level at L; is

shown in Fig 4.16. It is mostly concentrated in the interstitial region at the the
interface near the Si atoms.
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Figure 4.12: The band structure of the fully relaxed Si,Ge, (111)-oriented su-
perlattice along the high symmetry lines.
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Figure 4.13: The level charge density (electron/unit cell) of the lowest conduc-
tion band levels at (a) ' and (b) at L, of Si;Ge, (111)-oriented superlattice.
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Figure 4.14: Comparison between the band structures along the Y-line of
SiosGegs within VCA (dotted lines) and zinc-blende (solid lines) in the left
panels, and that of the corresponding folding (a) and unfolding (b) lines of the
SizGey (111)-oriented superlattice (solid lines) in the right panels.
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Figure 4.15: Comparison between the band structures along the A-line of
Sig.sGegs within VCA (dotted lines) and zinc-blende (solid lines) in the left
panel, and that of the corresponding line of the Si;Ge, (111)-oriented superlat--
tice (solid lines) in the right panel.
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Figure 4.16: The level charge density (electron/unit cell) of the third lowest
conduction band levels at L, of Si;Ge, (111)-oriented superlattice.



4.4 Conclusions

In this chapter we have calculated the stability, equilibrium structure and the
band structure at equilibrium of Si,Ge, superlattices grown along the < 111 >
and < 001 > directions. The calculations are performed using local density
approximation (LDA) and norm-conserving pseudopotentials [72]. In the fol-

lowing we draw our main conclusions:

e Both of the studied superlattices are found to be thermodynamically un-
stable toward segregation. The (111)-oriented superlattice is relatively
more stable that the (001)-oriented one which, in turn, is more stable

than the zinc-blende structure.

o The calculated Si-Si, Si-Ge and Ge-Ge bond lengths, specially for the
(001)-oriented superlattice, are in good agreement with those calculated
by neglecting the second-nearest neighbor relaxation. This demonstrates
the reliability of our calculations reported in Sec. 2.5, where second-

nearest neighbor relaxation was neglected.

o The small ionicity of the Si-Ge bond (see Sec. 2.5) is found to be unaf-
fected also by the structural relaxation. ‘

o Both of the studied superlattices are found to be indirect gap semiconduc-
tors. The lowest level of the conduction band occurs at what we call the
7, point and the M — L.-line (which correspond to X-point and A-line of

the zinc-blende structure) for the (001) and (111)-oriented superlattices,
respectively.

e Even for such very thin layered superlattice, the mixing between the con-
duction band states are appreciable, and has direct influence on the con-
duction band structure. It is responsible, e.g. for the anti-crossing of the

levels and the displacement of the conduction band minima.

e The level charge densities of the lowest conduction band levels at the high

symmetry points are calculated, and the confinement of the conduction
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" states is studied. It has been found that it is different for the equiva-
lent levels of the zinc-blende structures, which are either folded or

unfolded upon superlattice growth.
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Chapter o

Band Structure

This chapter is devoted to the study of the band structure of Ge, Si and Si,Ge;_x
alloys and their pressure dependence. The band structure of SixGe;_x alloys
is still an intriguing subject, which has been studied using different theoretical
techniques [99-102]. Special attention is given here to the self-consistent calcu-
lations of Podgorny, Wolfgarten and Pollmann (PWP) [102]. It is well known
now that there are serious problems encountered when calculating the band
structure of Ge within local density approximation (LDA) (almost 100% reduc-
tion of the energy gap and the lowest conduction band edge is calculated to
be at T rather than at L-point). Using pseudopotentials constructed by them,
PWP have obtained roughly 50% reduction of the band gaps of both Si and
Ge, and a correct topology of the band structure of Ge. These results appear

to be in contradiction with the previous ab-initio calculations [103].

The LDA of the density functional theory (DFT) has been emerged as the
most successful tool in describing the ground state properties of inhomogeneous
electronic systems, such as atoms, molecules, solids and surfaces. In spite of
the fact that the eigenvalues of DFT are formally lagrangian parameters, to be
used only in the total energy calculations, they have been used as electronic

excitation energies. In the case of semiconductors the calculated energy gaps
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are of order 20 - 50% of the observed values. Apart from this reduction, the
conduction band structures are usually well reproduced. The shortcoming is
now understood as a result of a discontinuity in the exchange and correlation
potential [51]. It has been demonstrated that LDA can be used successfully to

obtain conduction band related properties [104].

For the band structure calculations of semiconductor alloys VCA has widely
been used. In VCA the identity of the alloyed atoms and bonds is completely
neglected. In other words, both chemical and structural disorder are neglected.
To go beyond VCA different approaches have been proposed, such as coherent
potential approximation (CPA) [66], molecular CPA (MPCA) [67], the recursion
method [105] and the supercell approach [8]. Each of these approaches has its
own problems and limitations. The main disadvantage of the first three is that
they are limited to the empirical tight binding method, while the last one is
attractive because is allows for more accurate band structure techniques, where
the effects of the charge density redistribution and the bond length alternation
can be accounted for properly. However, this can be done only at a discrete set

of z values and at the price of a large computational effort.

Recently, the pressure dependence of the energy gaps of semiconductors has
become a subject of renewed interest. This is because of the new improvements
in the experimental techniques, which give more accurate results [112]. And
also due to the finding that the results obtained from ab-initio calculations are
in good agreement with experiment [107-111], despite the underestimation of

the energy gaps within LDA.

Here, we have first shown that the appealing features of the PWP results,
which are obtained using the experimental lattice parameters and atomic or-
bitals expansion of the wave functions, are not reproducible using plane wave
expansion. On the contrary PWP pseudopotentials give much worse results
than Bachelet, Hamann and Schliiter (BHS) [72] pseudopotentials. Moreover,
the'appealing features can be obtained using BHS pseudopotentials and the cal-
culated equilibrium values of the lattice constants rather than the experimental
ones. This is justified, because we want our calculated crystal to be under zero

pressure. The calculated a., are usually smaller than the experimental values.
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Therefore calculating the band structure at the latter is exactly the same as
if we were performing these calculations under negative hydrostatic pressure,
which is around -15 kbar in the case of Ge. This is very important because
of the sizable effects of the pressure on the band structure of semiconductors,
specially on the E, transition. Using the calculated a4, our results for the band
gaps of Si and Ge are around 40% of the observed values; and a correct topology

of the band structure of Ge is obtained. These calculations are performed using
BHS pseudopotentials.

Using VCA and Vegard’s law variation of a(z) between the calculated a.
of Si and Ge, a meaningful variation of the band gaps with z is obtained.
However, we have found that the Ey and E, optical transition show pronounced
downward and upward bowing, respectively. While the other transitions show
almost linear variation. At z = 0.5 the bowing in the Eq transition is around
0.1 eV. We have found that this can be eliminated via supercell calculations.
So, it is to be considered as an artifact of VCA. Moreover, the effects of the
ordering, charge density distribution and the bond length alternation have been

studied, by performing different supercell calculation at z = 0.5.

The pressure coefficients of Ge, Si and SixGe;—x alloys are studied: the ab-
initio calculated values for the pure materials are in good agreement both with
experiment and other similar theoretical calculations, which insures the predic-
tive power of this approach. As a representative of Si,Ge;_x alloys, the pressure
coefficients of SigsGegs alloys within both VCA and zinc-blende structure are
studied. Both systems show Ge-like behavior. Furthermore, the Eq (the lowest
direct transition at ') shows a sublinear variation with z, as that observed in
the case of Ge [111] and GaAs [112].

The rest of the chapter is organized as follows. In Sec. 5.1 we give detailed
comparison between the band structures of the Si and Ge.

Sec. 5.2 is devoted to study the band structure of SixGe;_4 alloys, within
three different approaches (1) Self-consistent VCA calculations (Sec. 5.2.1). (2)

Self-consistent supercell approach (Sec. 5.2.2). (3) Empirical pseudopotential
VCA calculation (Sec. 5.2.3).
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In Sec. 5.3 the pressure dependence of the band gaps of Si, Ge and Si,Ge;_
are calculated and discussed. And finally, Sec. 5.4 contains summary of our

main conclusions.

5.1 The band structure of Si and Ge

The band structure of Si and Ge have been widely investigated by many authors,
using different theoretical techniques, such as orthogonal plane-waves method
(OPW) [113], k.p method by Cardona and Pollak [114], empirical pseudopoten-
tial method (EPM) by Cohen and co-workers [115,116], tight-binding method
by Chadi [117] and self-consistent density functional and norm conserving (NC)

pseudopotential approach [104]. This is to mention only some representative
calculations. '

Both Si and Ge have the same diamond crystal structure (i.e, the same
symmetry point group). In Fig. 5.1 we show the electronic band structure of
Si and Ge as calculated using EPM by Chelikowsky and Cohen [115], which are
considered as the best fit to the experimental results. Apart from the splitting
due to spin-orbit interaction, and in spite of the relatively small (~ 4%) lattice
mismatch, it is evident from Fig. 5.1 that on going from Si to Ge there are two

important differences

e Large reduction at k=I" of the I'; conduction band energy; the difference
is 3.1 eV. This makes the direct optical transition at T of the same order
of magnitude as the indirect transition at L and X-points. It should
be noticed that also GaAs has the three transitions of the same order,
and there are larger and more serious problems encountered in the band
structure calculations using LDA for both Ge and GaAs.

e Large reduction at k=L of the L; conduction band energy; the difference
is 1.3 eV. As a consequence, Ge is unique among semiconductors in having
the lowest conduction band edge at L-point.

The variation of the band gaps on going from Si to Ge, by increasing the
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Figure 5.1: Band structures of Si and Ge. In the case of Si two results are pre-
sented: nonlocal pseudopotential (solid line) and local pseudopotential (dashed
lines). (from Ref. 115)

concentration z of Si,Ge;_y alloys, is a very interesting subject and has been

extensively studied both experimentally and theoretically. This will be the
subject of the next section.

As we have mentioned above, within LDA the energy gaps of semiconductors
are underestimated. It has been found that the reduction of the direct optical
gap at T is ~ 100%. In addition to this the lowest conduction band edge is at T
and not at L-point. This problems has been considered as an artifact of LDA.
Almost all the above calculations are performed, using the standard BHS pse-
upotentials, at the experimental lattice parameter. Very recently, PWP have
constructed new pseudopotentials for Si and Ge using Kerker scheme [48]. Us-
ing these pseudopotentials and atomic orbital expansion of the single particle
wave-functions, at the experimental lattice parameter, they have found that for
both Si and Ge the direct optical transition at T is roughly 50 % of the ob-
served values, and the topological problems encountered in the band structure
calculation of Ge are corrected (they got correctly the lowest conduction band
edge at L-point). So, what is then the reason for the problems inherent in the
band structure calculations of Ge? Is it really LDA, the pseudopotentials or

something else? In Tab.’s 5.1 and 5.2 we show the check of the convergence
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Ecut EO Eé EI E2 Ll Xl
(Ry) (eV) (eV) (eV) (eV) (eV) (eV)
10 0.50 2.57 1.78 3.84 0.41 0.82
12 0.51 2.55 1.60 3.75 0.20 0.70
14 0.05 2.56 1.55 3.73 0.17 0.70
16 0.02 2.56 1.52 3.72 0.15 0.69

Table 5.1: Check of the convergence of Bachelet et al. with respect to the
constant energy cutoff.

Ecut EO E(IJ El E2 Ll Xl
(Ry) (eV) (eV) (eV) (eV) (eV) (eV)
10 0.59 2.57 1.89 3.98 0.42 0.75
12 0.39 2.53 1.56 3.81 0.08 0.63
14  -15 2.54 1.50 3.80 0.06 0.66
16 -21 2.56 1.47 3.79 0.03 0.65

Table 5.2: Check of the convergence of Podgorny et al.  with respect to the
constant energy cutoff.

of both BHS and PWP pseudopotentials ! using plane wave expansion of the
the wave functions. The charge densities are calculated using Chadi-Cohen two
special points, while the experimental lattice parameter is used. It evident that
the reduction in the E, optical transition is larger in the case of PWP pseupo-
tential, contrary to what they have reported. The origin of the discrepancy
between our and PWP results is unknown to us; but it seems that it is due to
a poor convergence of the PWP calculations. For both potentials the drastic
reduction occurs above E,, = 12 Ry, which supports our explanation of the
above conflict. Therefore, the solution of the gap problem for Ge is not in the
pseudopotentials suggested by PWP.

It should be noticed that the calculated equilibrium lattice parameter using

1We are grateful to PWP for sending us the coefficients of their pseupotentials
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Transition Theo. a. Expt. a,

(eV) (eV)
Eq 0.43 0.03
B 2.59 2.57
X — T 0.64 0.69
LS —T¥y 0.29 0.16
E 1.74 1.54
E, 3.83 3.73

Table 5.3: Some direct and indirect optical transitions of Ge calculated at the
theoretical and the experimental equilibrium lattice constants.

BHS potentials for both Si and Ge are about 1% smaller than the experimental
values (see Sec. 2.4). These results are very good as far as the structural
properties are concern. But this has drastic effects on the band structure.
For example, the fully converged calculations for Ge give a., = 5.57 compared
to 5.66 A the experimental value. It has been shown also that in the fully
converged calculations the quantum mechanical pressure [118] is equal to zero
at the calculated equilibrium lattice parameter. Therefore, calculating the band
structure at the experimental a.q, for this theoretical system, means that we are
performing these calculations out of equilibrium (P = 0), under around -13
kbar isotropic pressure. The importance of this point comes from the sizable
effects of the pressure on the band structure of semiconductors, specially on the
E, transition (the pressure dependence of the band gaps will be the subject of |
Sec. 5.3). In Tab. 5.3 we show the energy band gaps of Ge calculated at both
the theoretical and experimental lattice parameters, using E.,; = 17.5 Ry. It
should be noticed that the largest effect is encountered, as expected, in the E,
transition. Therefore, we believe that large portion of the reported problems
inherent in the ab-initio calculations of the band structure of Ge is due to

the carring out of these calculations out of equilibrium of the theoretical

system.

Tab. 5.4 contains our calculated values of lowest energy gaps of Si and

Ge compared with some other calculations and experiment. The remarkable
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System | Transition | Expt. | Present work PWP WR

value | corr. | value | corr. | value | corr.

Eq 419 | 3.55 | 0.64 | 3.22 | 0.78 - - - -
E} 3.37 | 2.54 | 0.83 | 2.57 | 0.80 | 2.55 | 0.82
Si X;—-T% | 1.30 | 0.56 | 0.74 - - 0.64 | 0.66
Le—Tvs | 210 | 1.55 | 0.55 | — - | 145 | 0.65
Ey 0.89 | 044 | 045 | 043 | 0.46 | 0.02 | 0.87

E} 3.32 | 2.59 | 0.73 2.46 | 0.86 - -
Ge Xe—Tv | 1.30 | 063 | 067 | - - | 0.61 | 0.69
Lt —T% | 074 | 0290 | 0.45 | 0.39 | 0.35 | 0.09 | 0.65

Table 5.4: The calculated values of some direct and indirect optical transitions
of Si and Ge, together with the results of Podgorny et al. (PWP) and the
results of Van de Walle and Martin (WM), compared with the observed results.
The values of the correction term (see text) is also shown.

features to notice are:

In both our and PWP calculations the correction term (the difference
between the calculated and the observed values of the energy gaps) is not
a constant, but it is almost equal for the same transition in both systems;
except for the FEy transition, which could be due to the large difference in

the value of of F, in Si and Ge, and the sensitivity of this transition to

the choice of a.

In both our and PWP calculations the correction term is different for the
E, and Ej. Whereas, Van de Walle and Martin (WM) [104] have found

that it is the same for the lowest direct transition at I' for both systems.

In our calculations the correction term is generally smaller by roughly 0.1
eV in Ge.

Our results for the lowest energy gaps are Efi = 0.34 and Ef‘ =0.29 eV
(not shown in the table), which are around 60 % out of the experimental

values 1.10 and 0.74 eV, respectively.
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5.2 The band structure of Si,Ge;_4 alloys

In the previous section we show that there are large differences between the band
structure of Si and Ge, specially at L and I'-points, despite the relatively small
lattice mismatch. Due to this fact and the technological importance of these
systems, the band structure of Si,Ge;_, alloys is an intriguing subject, which
has attracted the attention of a lot of researchers in semiconductor physics.
Different theoretical approaches have been used, ranging from simple empirical
schemes to ab-initio self-consistent calculations [99-102]. From the experimental
point of view the band structure of Si,Ge;_, is well established [44,45]. On going
from Ge to Si by increasing z, a crossover of the lowest conduction band edge
from Ge-like symmetry (L-point) of Si-like symmetry (A-line) occurs at £ = .15
[44]. Another crossover of the direct transition at k=T from Ge-like (I' state)
to Si-like (T’ state) takes place at = = .83. The variation of the energy band
gaps with z is found to be almost linear [45].

The lowest energy gaps of semiconducting alloys are usually smaller than
the concentration weighted average of the corresponding band gaps of the con-
stituent materials. The deviation AE, is often expressed phenomenologically
by [119]

AE, = bz(1 — 1), (5.1)

where the bowing parameter b is positive, reflecting a downward bowing. For
III-V alloys b is in the range < 0.9 eV, and < 2.4 eV for II-IV alloys. Whereas,
for SiyGej_y it is ~ 0.23 eV for X{ — I'{y (XT') optical transition; this shows
clearly that the energy-gaps bowing in the latter systems is much smaller than
in ITII-V and II-VI alloys. The energy-gaps bowing has been ascribed both to
intrinsic interelectronic interactions already present in the hypothetical ordered
"virtual” alloys and in the VCA description, and to local structural relaxations.

In general, VCA is not expected to reproduce well the bowing; in the case of
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SixGe;_y, nevertheless, VCA is reasonable because the bowing is small.

In the rest of this section the band structure is calculated self-consistently

within VCA and in the supercell approach, and using improved EPM approach.

5.2.1 Self-consistent VCA calculation

Very recently, PWP have provided the first ab-initio self-consistent calculations
of the band structure of Si,Ge;_, alloys, using NC pseudopotentials and LDA.
In the previous section, we have shown that their results, which are based on
atomic orbital expansion of the single particle wave functions, are not repro-
ducible using well converged sets of plane waves. Furthermore, we have shown
also that the good features of the PWP calculation can be obtained using the
standard pseudopotentials [72], at the calculated lattice constants rather than

the experimental ones.

Bearing in mind all the real and artificial differences between the band
structures of Si and Ge discussed in Sec. 4.1, we have carried out ab-initio
calculations of Si,Ge;_4 alloys. The technical details are the same as described
previously in Ch 4. The calculations are performed within VCA in the whole
range 0 < z <1, in 0.1 steps of the concentration z, and linear variation of the
lattice parameter is assumed (Vegard’s law).

In Fig. 5.2 we show the lowest direct (solid lines) and indirect (dashed lines)
energy gaps as functions of z. For the sake of comparison we show in Fig. 5.3a
the results of PWP, while the experimental results are shown if in Fig. 5.3b. In
our results the self-consistently calculated values are designated by circles (open
circles for the F, transition and closed for the others). The straight lines are
drawn by joining simply the end points to guide the eyes. The remarkable thing
to notice is the astonishing similarity between the two theoretical results. The
major differences is the downward bowing of the E, transition and the upward
bowing of the E, transition in the present calculations, which is absent in the
others. This bowing can’t be understood as a consequence of the used Vegard’s

law variation of the lattice parameter of the alloy, while experimentally it shows
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Figure 5.2: Some direct (solid lines) and indirect (dashed lines) optical transi-
tions of Si,Ge;_x alloys as functions of z. Circles: calculated values; straight
lines: assumed linear variation drown to guide the eyes.

a downward bowing (see Sec. 2.5). 'At z = 0.5 the bowing is ~ —0.1 €V; only
40 % of it can be attributed to the above effect.

From Fig. 5.3 it is clear that the crossover in the lowest conduction band
state occurs at £ = 0.12 in good agreement with the experimentally determined
value z = 0.15 [44], We mention also that exactly the same result has been
obtained by PWP. These results and others found using different theoretical
approaches are given in Tab. 5.6. This shows the prédictive power of LDA,
despite the shortcomings in the absolute values of the gaps; this predictive power

is even better than for approaches that start with experimentally-adjusted gaps.

106



Energy [eV/

Figure 5.3: Some direct (solid lines) and indirect (dashed lines) optical tran-
sitions of Si,Ge;_, alloys as functions of z. (a) The experimental results [45].
(b) The results of Podgorny et al. [102]. (from Ref. 102)
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Method Crossover point

Expt. 0.15°
LDA + VCA 0.12%¢
k.p 0.25¢
EPM 0.18¢, 0.21°
Tight binding + VCA 0.11°
CPA 0.13/
a) Ref. 44.

b) Ref. 102.

c) Present work.

d) Ref. 100.

d) Ref. 99.

e) Ref. 120.

f) Ref. 121.

Table 5.5: Crossover point of the lowest conduction band edge from Ge-like
to Si-like of SixGej_x alloys, as calculated by different theoretical approaches,
compared with experiment.

The variation of the eigenvalues with z is shown in Fig. 5.4; the open circles
are the calculated values and the straight lines joining the end values are drawn
to show the deviations from linearity. It is evident that most of the upward
bowing of the E, transition discussed above is due to a downward bowing of

X, state eigenvalue.

As a representative we show in Fig. 5.5 the band structure of S155Geqs alloy
within VCA (dotted lines), compared with that having zinc-blende structure
(solid lines), the same value a = 10.346 a.u has been used in the two cases.
This situation is very similar to the case of Ge and GaAs, both systems having
the same lattice parameter. It is evident that apart from the splitting of some
degenerate states, the two band structures of SiGe systems are equivalent. The
L —T3 (LT) and E, optical transition (not affected by the splitting) are almost
the same in both cases. It should be noticed that on going from Ge to GaAs,
one founds that, in addition to the splitting of some degenerate states (which
is larger than in the SiGe zinc-blende structure), the LT' transitions behave
differently in the systems, since there is an energy difference of order 0.5 eV

in the case of E, transition and 1.1 €V in the LT transition [122]. The above
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eyes.
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dated. This will be the subject of the next subsection.

5.2.2 Self-consistent supercell calculations

As we have mentioned before VCA is a kind of zero order approximation, which
is valid when the difference in potential of the alloyed materials is small. It
is evident from Sec. 2.1 that going beyond this approximation is necessary
to obtain good ground state properties. Whereas in the previous subsection
we show that it is a good approximation for the band structure and optical
transitions calculations. Here, we study the effects of going beyond VCA by
considering some SiGe supercells: the effect of the structural relaxation, the

type of ordering and the electronic charge density distributions are studied.

For the electronic structure calculations the coherent potential approxima-
tion (CPA) is often used as a higher order approximation: CPA takes care of
the chemical disorder due to the random distribution of the constituent atoms
in the lattice sites. In order to take into account the recently observed bond
length alternation (structural disorder), molecular CPA (MCPA) has been de-
veloped [67]. The idea behind these approximations is that a complex MCPA
effective potential is defined by the condition that a cluster of sites embedded
in the effective medium, on average, produces no further scattering. For the
simple CPA a single site is embedded in the effective medium. The imaginary
part of the potential reflects the fact that alloy quasiparticle states are damped.
The main disadvantage of the CPA and MPCA is that they are limited to an
empirical tight-binding description. So, they do not take into account the effect
of the electronic charge density redistribution.

An alternative approach is through supercell calculations, by introducing an
artificial periodic ordering. The advantage of this approach is that it allows the
use of modern crystalline band structure techniques, whose predictive power is
very accurate. The unit cell in this approach is chosen to represent the most
probable local configuration of the alloy. For example, for binary AgsBos the
most probable configuration is that each atom is surrounded by two atoms of

the same kind and two of the other in the first nearest neighbors shell. The most
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Figure 5.6: Comparison of IngsGagsAs densities of states calculated in (a)
MPCA, (b) bond-centered CPA, and (c) supercell approaches. (from Ref. 67)

suitable periodic ordering is along < 100 > direction by alternating two layers of
each kind AABBA.. along the ordering direction. Very recently, Lempert, Hass
and Ehrenreich [67] have shown that the density of states for IngsGagsAs and
ZnSepsTeos calculated within the supercell approach, are remarkably similar
to that calculated by MCPA, except for some additional fine structures. Their
results for the IngsGagsAs are shown in Fig. 5.6. The two calculations are

done under the same conditions.

The supercell approach is very attractive since it allows for more accurate
band structure methods than the tight binding method, such as, LDA or even

the more advanced approach which based on the self-energy calculations (i-e.
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like the work of Hybertsen and Louie [123]).

To study the effect of the ordering (i.e. the effect of a particular ordered
structure or supercell chosen), three different ordered structures with equivalent
number of Si and Ge atoms are considered, which are ZB, simple tetragonal and
rhombohedral structures. The ZB crystal structure is described in Sec. 2.4.5,
and its band structure is shown in Fig. 5.5. Whereas the stability and the
band structure of the full relaxed structures of the other two kinds were the
subject of Ch. 4. It should be noticed that the local structure is different in the
three ordered structures; the number of atoms of different type surrounding a
given atom is four for ZB, three for rthombohedral and two for the tetragonal
structure. Only the energy gaps at the high symmetry points T » L and X of the
ZB and the equivalent points after folding in the case of the other structures
are calculated. The calculations are performed self-consistently, using LDA and
NC pseudopotentials; the technical details are exactly the same as described
previously in Ch. 4. Since we are interested here in studying the band struc-
ture of the alloys, which have cubic symmetry, the c¢/a, ratio is taken to be
equal to one for both tetragonal and rhombohedral structures. For the sake of
meaningful comparison the lattice constant is taken to the same for the three
structures; and it is chosen to be ¢ = 10.386 a.u., the equilibrium value for ZB.
In order to isolate the effects of the prdering we start assuming‘the following'

e The atoms occupy the ideal ZB sites (the local structural disorder is com-
pletely neglected).

® The same electronic charge density distribution for the three structures;
we have used that of VCA (the effects of the charge density redistribution

are discussed below).

In Tab. 5.7 we give the calculated values of some direct and indirect optical
transitions for the three structures, compared with that obtained within VCA.

The remarkable features to be noticed are:

e For the E, transition, the calculated values for the ordered structures are
almost equal, and around 0.1 eV higher than that of VCA. It should be

113



Transition VCA 7B Tet. Rho.

(eV) (eV) (eV) (eV)
El 2.57 2.57 2.58 2.57
E, 1.91 1.99 2.04 2.01
X:—Ty 062 0.66 0.61 0.56
L — Ty 0.92 0.97 0.96 1.12

Table 5.6: Comparison od some direct and indirect optical transitions of three
ordered structures of SiGe (zinc-blende, tetragonal and rhombohedral), and
that of SipsGegs alloy within VCA.

noticed that in the previous subsection, the pronounced downward bowing
of this transition at z = 0.5 was of the same order ~ 0.1 eV. Since the

three ordered structures give the same value, the pronounced bowing can
be attributed to VCA.

e For the rhombohedral structure, the calculated values for the XT" and LT
transitions is different from that of the others, this is a consequence of the
BZ folding of this particular structure (X — L), and results from the
mixing of states, which push the L state up and the X; state down in
energy. If one is interested in the band structure of the alloy, this critical
folding should be avoided.

e The remaining transitions are practically the same as the calculated values
within VCA; the largest difference is 0.05 eV.

Even at this very rough level of approximation, the supercell approach shows
the shortcomings of VCA.

Then, in order to isolate the effect of the charge density redistribution, we
have repeated the calculations of the band structure of the tetragonal supercell,
using different charge density distributions. The used charge densities are that
of the VCA, ZB and the unrelaxed tetragonal structure. In Tab. 5.8 the ob-
tained values of some direct and indirect transition are shown. The remarkable

thing to notice is that the calculated values of the same transition are equal,
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_ Tet. , ZB VCA
Transition charge density charge density charge density

E] ‘ 2,58 2.58 2.57
E, 2.04 2.06 2.04
Xe — Ty 0.61 0.61 0.62
LS — T 0.96 0.96 0.96

Table 5.7: Comparison of some direct and indirect optical transitions of the
ideal tetragonal SiGe structure calculated several charge density distributions.

the maximum difference being 0.02 V. This can understood as a consequence
of the very small ionicity of the Si-Ge bond, and it is expected to be system
dependent.

To study the effects of the structural relaxation on the band structure of the
Si,Ge;_y alloys, in particular on the energy gaps bowing, we have calculated
the band structure of the relaxed rhombohedral structure (here also we keep
using ¢/a; = 1')'; The triplet I'Y; splits into douBlet and singlet states, while the
doublet X7§ state splits into two siglet states. For Vthe,unrelaxevd structure, the
difference in energy is 0.01 and 0.17 eV for the I"{s and X7 states, respectively.
Whereas, after relaxation they are 0.05 and 0.27 eV. For the unrelaxed struc-
ture, the lowest XT transition betWeen the splited states is 0.47 eV, while it is
0.56 eV for the weighted average states. In the case of the relaxed structure
they are 0.37 and 0.52 eV, respectively. It should be noticed that the observed
bowing is ~ 0.1 eV [44]. Therefore, it is evident that large portion of the bowing
of the 2T transition is due to structural disorder. We mention here that Jaffe

and Zunger [8] have arrived to the same conclusion in the case of ternary alloys.

5.2.3 Empirical pseudopotential calculations

The EPM is nowadays the simplest method for the band structure calcula-
tions for semiconductor elements and compounds [115]. Because the pseudopo-

tential from factors are  fitted to excited-state spectra, the detailed properties
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of the electronic band structure are reproduced accurately. Because of the crys-
talline periodicity only a few (three in the case of Si and Ge) pseudopotential
form factors are needed to represent the crystal potential felt by the valence
electrons. For finer details and better agreement with the experimental results,
other terms are added to take care of the non-local effects. Since the screening
effects are included in these potentials, the transferability to other systems is
questionable. Previous EPM calculations of the band structure of Si,Ge;_x al-
loys have been carried out within the VCA, by simply assuming that the form
factors of the alloy potential are the concentration weighted average of the cor-
responding form factors of Si and Ge. The resultant energy gaps show upward
bowing, contrary to the downward bowing observed experimentally [45]. The
unreliability of the EPM has been also pointed out by Bergstresser and Van
Vechten [124].

Very recently, an extrapolation procedure has been propose_d- by Bednarek
and Rossler (BR) [125], which gives matrix element for phonon-assisted indirect
transitions of Si and Ge in good agreement with experiment. This procedure
has been checked also by Allen and Cardona [126] by calculating the absolute
shift of the energy eigenvalues under hydrostatic pressure, and they show that
it is much better than the previous extrapolation schemes (see Fig. 5.7). Since
there is a 4. % lattice mismatch between Si and Ge and the lattice constant
varies almost linearly between the end points, the lattice constant of the alioy
is larger than the lattice parameter of Si and smaller than that of Ge. So, this
situation is very similar to the band structure calculation under ‘high pressure
[128]. Because of the change in the valence charge density, the change in the
screening effects must also be taken into account. One approximation which
has been proposed to this effect [129] is

Vig) = Qel(q) [V(r)e—iqrdr, (5.2)

where €(g) is the dielectric function,  is the unit cell volume and V(r) is the

ionic potential. Thus, multiplying both sides of Eq. (5.2) by e(g) we obtain
A(g) = f V(r)e"9Fdr (5.3)

which is independent of the volume and the chemical environment. Since ¢(0)

is finite for semiconductors, according to BR extrapolation scheme, one has
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Figure 5.7: Two extrapolation schemes for the empirically determined form fac-
tors of Si. V4 is due to Bendarek and Rossler [124], and V3 is due to Glembochi
and Pollak [126]. (from Ref. 125)

A(0) = 0. Instead of fitting the known V(q) to some form factors, such as
that of Cohen and Bergstresser, one can fit the above function A(qg). The
extrapolation procedure becomes important in the supercell calculation, where

the form factors at some new G-vectors do not vanish by symmetry.

We have found that the simple metallic Thomas-Fermi (TF) dielectric func-
tion, at the G # 0 vectors -

€(q) =1+k3/q*, (5.4)
is sufficient to give excellent pressure coefficient E, optical transition (see next
section); this agreement is the same as that obtained by Welber et al., using
Penn’s dielectric function which requires self-consistency loop, since €(g) is a
function of the average (Penn) gap. It should be noticed that semiconductor

TF model dielectric function has been derived by Resta [130], but it requires
the knowledge of ¢(0) for the alloy.

In view of these developments it is necessary to recalculate the band struc-
ture of Si,Ge;_, alloys. For this purpose we use the most accurate émpirical
pseudopotentials of Chelikowsky and Cohen [115]; we consider the local one for
Si and the non-local for Ge. The form factors of Si and Ge at each value of z

are calculated according to the following

° The values of the function A(q) is calculated at each of the three values
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Figure 5.8: Some direct (solid lines) and indirect (dashed lines) optical transi-
tions of Si,Ge;_y alloys as functions of z calculated using empirical pseudopo-
tentials [115]. ‘Circles: calculated values; straight lines: assumed linear variation
drown to guide the eyes.
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of G which have nonvanishing V(G) in the pure materials, by multiplying
by the corresponding Q¢(G).

e Following BR scheme, the three nonvanishing values of A obtained above
in addition to A(0) = A(16) = 0, are fitted to a polynomial of order four.
Then the values of A at the G-vectors of the alloy are calculated.

o The form factors of each element is calculated by dividing such values of
A(G) for Si and Ge by Q¢(G), which corresponds to the alloy.

To calculate the band structure of the alloy we have used VCA; the non-
local part of the Ge potential, multiplied by the atomic concentration of Ge, is

considered as non-local part of the VCA potential.

In Fig. 5.8 we show some direct and indirect energy-gaps of Si,Ge;_, alloy
as functions of z. The circles are the calculated values, and the straight lines are
drawn simply by joining the end values to show the deviation of calculated ‘gaps
from linearity. We have found almost exactly the same energy gaps for Si,Ge;_,
if the effects of the change in screening are not taken into account. This shows
clearly that EPM is not a good approach to calculate the band structure of

semiconductor alloys, even after taking care of the above improvements.
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5.3 The pressure coefficient of Si, Ge and Si,Ge;_

The study of the pressure dependence of the band structure of semiconduc-
tors has become a subject of renewed interest; not only because of the new
achievements in the the experimental techniques, such as the development of
the diamond-anvil cell and the ruby fluoresence manometer, but also because
of the finding that the first-principle ab-initio calculations based on LDA give
good account for the pressure dependence of the energy gaps [107-111] and
are superior to any previous theoretical technique, such as the semiempirical
pseudopotential scheme [128] or the modified version of Van Vechten’s dielec-

tric theory [131], despite the severe underestimation of the energy gaps within
LDA.

For Ge it has been found that the direct energy gap at k = I' shows a sublin-
ear behavior with pressure. The nonlinearity is attributed to the nonlinearity in
the bulk modulus, since it disappears when the gaps is plotted as a function of
the lattice parameter. A sublinear behavior has also been recently observed for
GaAs. To our knowledge such behavior has not been reported for Si. The XT'
transition has a negative coefficient, unlike the other transitions. This means
that it decreases by increasing the hydrostatic pressure, which would imply
that at high pressure the system becomes metallic: this in fact does not occur
because a structural phase transformation takes place before this stage. There-
fore, the reduction of the XT' energy gap is responsible for the instability of
the diamond or the zinc-blende structure at very high pressures. The negative
pressure coefficient of the XT' transition is understood as an effect of the d lev- -
els, which lie in energy well above the X minima of the conduction band. By
increasing the pressure these levels repel the conduction band at X downward
relative to the top of the valence band at T (i.e, reducing the XT' energy gap).
Lee, Sanchez-Delesa and Dow have shown that without the d states, the pres-
sure dependence of this transition is not correctly reproduced by the theory.
Furthermore, Fahy et al. have shown that the anomalous (positive) sign of
the pressure coefficient of this transition in diamond is due to the absence of d
states with the same quantum number as the low-lying s and p valence states

of the carbon atom.
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In this section we will concentrate on the pressure dependence of the energy
gaps of Si, Ge and Si,Ge;_, within VCA and having ZB structure. The calcula-
tions are performed at the ﬁrst—prihciple level. The technical details are exactly
the same as described in Ch. 4. The band structure of the above systems has
been calculated at six different values of the lattice constant smaller than the
equilibrium one. The change in the energy gaps is calculated by subtracting
from each of them the corresponding value at @.,. The pressure is determined

from the calculated Murnaghan’s equations of states
= (Bo/By)[(Vo/ V)% — 1], (5.5)

where V is the volume under pressure P, Vo is the equilibrium volume (P =0),
By and Bj are the bulk modulus and its pressure derivative. The theoretically
calculated parameters V,, B, and By, in Sec. 2.4, are used here to calculate
P. Therefore, the pressure coefficient determination is fully ab-initio. The

calculated changes in the energy gaps of the above systems are least-square

fitted to the quadratic equation
AE,=a+bP +cP?. o (5.6)

The initial slope of the variation of the energy gaps of Ge are compared with
other theoretical results and experiment in Tab. 5.8. Our results are in good
agreement with experiment and other self-consistent calculations. In the same
table we show the pressure coefficients obtained from Cohen-Bergstresser em-
pirical pseudopotentials, where the change in the screening effects is taken into
account as described in the previous section. It should be noticed that the
pressure coefficient of the E, optical transition is in very good agreement with
experiment and with the results of Welber et al. [111], while that of the XT
transition has a positive sign, in contradiction with experiment. This shows

the predictive power and the reliability of the ab-initio calculations compared
to EPM ones.

The pressure coefficients of the lowest energy-gaps of Si is given in Tab. 5.9.
The agreement between our results and other self-consistent results and experi-
ment is also good. The remarkable thing to notice is the similarity between the

pressure coefficient of Si and Ge for almost all the energy gaps. Because the
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Transition Present work CFC? LSDb RBC® Expt.

SFC EPM

E, 1195 1556 12.8 16.19 1247 15.3+.5%,12.0%12.5%13.0°
Ej 0.66 2.31 080 - - -

E, 6.16 864 - 628 - 7.50°

E, 276 5.74 -  2.36 - 5.50°

Xe—-TY -162 293 -140 -L11 - —1.50°
LE—TY 427 746 450 490 - 5.00°

a) Ref. 109.

b) Ref . 110.

c) Ref. 107.

Table 5.8: Comparison of the calculated and measured values of the pressure
coefficients of the band gaps at the high symmetry points of Gé. Units are in
meV /kbar.

lowest conduction band edge and the direct transitions at k = I’ have different
characteristics in Si and Ge, their pressure dependence is very different in both
systems. For example, the lowest conduction band edge is at k = L for Ge
and k = 0.83X for Si (see Sec. 5.1). So, its pressure coefficient is negative
in Si and positive in Ge. In Si, Gej_x the pressure dependence of the lowest
direct and indirect transitions will not vary smoothly with respect to z, but it
will change suddenly at the crossover points which, in turn, will be pressure
dependent. For example, the crossover point of the lowest indirect transition
moves rapidly toward the Ge end by increasing the pressure; the crossover of
the optical direct transition at k = T shows the same behavior, but it becomes

zero at much higher pressure.

As a representative of Si,Ge;« alloys, we have studied the pressure de-
pendence of the energy gaps of Si,Ge,_, alloy within VCA and having 7B
structure. The calculated pressure coefficients are given in Tab. 5.10. The

remarkable features to notice are

o Both systems have more Ge-like behavior; the calculated pressure coeffi-

cients are, in general, larger than the weighted average of the correspond-
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Transition Present work CFCP LSD2 Expt.

SFC EPM
Ey 11.52 11.00 11.6 - -
E; 0.45 095 0.50 0.48 1+1°
Ey 4.22 5.85 — 445 6.2404°
E, 0.70 369 — 1.64 3.0¢
Xi—-T{% -1.80 0.93 -1.60 -1.34 -1.5%
L{—TY 345 470 3.80 330  —
a) Ref. 110.
b) Ref. 109.

Table 5.9: Comparison of the calculated and measured values of the pressure

coefficients of the band gaps at the high symmetry points of Si. Units are in
meV /kbar. '

ing values of pure materials.

e The pressure dependence of the energy gaps are not equivalent in both

systems. This is a consequence of the difference in the charge density
redistributions at high pressure.

In Tab. 5.11, we give the calculated pressure coefficients of the quadratic
~ term in Eq. (5.6) for the lowest direct optical transition at T, of Si, Ge and
SixGe;_x within VCA and having ZB structure. The available experimental and
theoretical results are also shown in the same table. It is evident that sublinear
variation of this transition observed in Ge is reproduced by the theory, while
in Si it shows a linear variation. In both systems of Sig5Geg s alloy a sublinear

variation of the above transition is predicted.

5.4 Conclusions

In this chapter we have studied the band structure and its pressure dependence

for Si, Ge and Si,Ge;_, alloys, using Local density approximation (LDA) and
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Transition VCA 7B

Eo 11.84 11.98
E! 0.55 0.61
E, 5.71 5.48
E, 1.86 1.48
X5 T -1.78 -1.97
L — T 4.27 4.15

Table 5.10: Comparison of the calculated values of the pressure coefficients of
the band gaps at the high symmetry points of SipsGegs within VCA and having
7B structure. Units are in meV /kbar.

System Theory Expt.
Ge T10.0°,—20.4%, —70.4° —45 £ 10°
Si -2.0° -
VCA —22.0° -

7B -10.0¢ -

a) Present work.

b) Ref. 106.

c) Ref. 110.

d) Ref. 111.

- Table 5.11: Comparison of the calculated coefficients of quadratic term (in Eq.
(5.6) of the lowest optical gap at T’ of Si, Ge and SipsGeos alloy within VCA
and having ZB structure. The available theoretical and experimental values are

also given. Units are 1076 eV [kbar.
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norm-conserving pseudopotentials. For the ailoy, the calculations are performed
within VCA and the supercell approach. Some calculations using the EPM have
been performed. A similar band structure calculations within VCA has been
recently carried out by Podgorny et al. [102], who have obtained roughly the
same underestimation of the band gaps of Si and Ge, the correct topology
for the band structure of Ge and a meaningful variation of the band gaps of
SixGe;_y with z. We have found that this calculations is poorly converged and
the good results are basically an artifact. In the following we draw our main

conclusions.

We have used the standard Bachelet et al. pseudopotentials [72], well con-
verged PW’s expansion of the wave functions and the calculated equilibrium
lattice constants (this is justified because we want the calculations to performed

at zero pressure). Our main results are the following

e For pure crystals:

1. The calculated energy gaps are Ef" = 0.34 and EgG" = 0.29 eV,
which means about 40% of the experimentally observed values 1.10

and 0.74 eV, respectively.

2. In agreement with experiment, the band gap of Ge is found to be
indirect at L-point.

e For the alloys within VCA we obtained:

1. A meaningful variation of the band gaps of Si,Ge;_, alloys with z
has been found. The crossover point in the lowest optical transition
from Ge-like (T' — L transition) to Si-like (I' — A-line transition) is
found to be at z = 0.12, in agreement with the experimental value
z = 0.15.

2. It should be noticed that these results are almost the same as the
Podgorny et al. results, but here we get such results from a well con-

verged calculations at zero pressure, and using standard ingredients.

e Going beyond VCA, we have performed supercell calculations, all other

ingredients are unchanged. Our main findings are:
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1. The effects of ordering is discussed by calculating the band structure
of three ordered structures (zinc-blende, tetragonal and rhombohe-
dral), which have the same composition z = 0.5, using the same
(VCA) charge density distribution. Some levels are split; but when
taking a suitable average, the calculated band gaps are almost equal
in the three structures at the high symmetry points, except for XT
and LT transitions of the rhombohedral structure. This is under-
stood as a result of the critical folding (X — L) which occurs in
this structure. The other band gaps can be used safely as those of

the random alloys having the same composition.

2. The calculated values of the Ey optical transition is almost the same
for the above three structures and it is around 0.1 eV higher than
that of VCA, which shows a downward bowing of the same order at

— 0.5. This shows that even at this level of approximations the
supercell approach is better than VCA.

3. Because of the very small ionicity of Si-Ge bond, the effect of the
charge density redistribution is negligible. This has been demon-
strated by calculating the band structure of simple tetragonal SiGe

structure using VCA, ZB and its own charge densities.

4. To study the effect of microscopic structural relaxation, we have
compared the band structures of the unrelaxed and relaxed rhom-
bohedral structure (¢/a; ration is taken to be equal to one in the
two cases). We have found that the X§ — I'}; optical transition is
lowered by 0.04 eV in average. Recalling that the observed bowing
at z = 0.5 for this transition is ~ 0.1 eV, we conclude that large
portion of the observed bowing is due to such structural disorder
(VCA gives essentially no bowing).

e We have tried some EPM calculation. It has been found that this ap-
proach is unreliable for alloys, even after using the best extrapolation

scheme and taking into account the change in the screening effects.

o The pressure coefficients of the band gaps at the high symmetry points of
Si, Ge and SigsGegs alloy within VCA and having ZB structure have been
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calculated, by simply repeating the band structure calculations at differ-
ent lattice parameters smaller than the equilibrium one. The pressure is
determined from the calculated equations of state. OQur main findings are:

1. The calculated pressure coefficients of Si and Ge are in good agree-
ment with other ab-initio calculations and experiment, in spite of
the underestimation of the absolute values of these gaps.

2. For the alloy systems they show more Ge-like behaviors, and they
are not equivalent.

3. The lowest direct optical transition at T' of the alloy system shows

a sublinear variation with pressure, similar to that observed for Ge
and GaAs.
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Appendix A

Full derivation of the CVM entropy expression

The cluster variation method (CVM) gives an approximation for the con-
figurational entropy of the system in terms of the concentration (probability
distribution) of a cluster configuration on the the lattice. In Sec. 3.2.2 an ex-
pression of the entropy for binary semiconducting alloys within the tetrahedron
approximation is given. In binary alloys all the lattice sites are alloyed. Here

this expression is derived in two different ways:

1. Following the notations of Sanchez and de Fontaine, the entropy in CVM

is given as

S = Nkg Yy (1) S au(r, t)zi(r, t)inz(r, t) (A1)
(rit) L

where N is the total number of lattice points or sites and kg is the Boltzman’s
constant. The index t in (r,t) labels a specific type of r-sites cluster. Since each
site can be occupied by either A or B type of atoms, there are generally 2" con-
ficurations of an (r,t) cluster. However, some will be equivalent (In our present
case there are ten different configurations of the 5-sites tetrahedron). The vari-
able z;(r,t) is the concentration of the lth configuration of the (r,t) cluster, and
ay(r,t) is the degeneracy factor, which takes into account the equivalent con-
figurations. The largest clusters to be considered must be chosen in advance in
order to calculate the entropy using Eq. (A.1). These clusters are called basic
clusters and contain n points. There can be many independent basic clusters

with different values of n. The coefficients y(r,t) are given by

q(n,t) = =N(n,t)/N (A.2)

for the basic clusters and by

4(r,t) = =N(r,t)/N — iIZM(T,t;q,S)’Y(q,S), 1<r<n (A3)

for all other clusters, where N(r,t) is the total number of (r,t) clusters in the

system and M(r,t;¢,s) is the number of (r,t) clusters contained in a (g,5)
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cluster. For any (r',t') cluster which completely contained in (n,t) basic cluster

and is not shared by any other basic clusters,
N(r',t') = M(r',t';n,t) N(n,t) (A.4)

Using the relationship in Eq.’s (A.2) and (A.3) results in v(r',#') = 0. Hence
the only nonzero contributions to the entropy come from clusters formed from
intersection of two basic clusters, or from intersection of other clusters for which

~(r,t) is nonzero.

For the 5-site tetrahedron considered here as a basic cluster for binary alloys
with diamond like structure , the tetrahedron surrounding an interstitial site

(referred to here bas empty tetrahedron) can be thought as

e A subcluster which has non-vanishing contribution, in spite of not being
an overlap of basic clusters; this is because one half of these clsters lies

outside the basic clusters.

e Another basic cluster, which is adopted here.

Both choices give the same result. Now, the overlap regions of the two basic
clusters can be a second nearest-neighbors (nnn) pair between 5-site and adja-
cent empty tetrahedra, first nearest-neighbors (nn) pair between two adjacent
5-site tetrahedra and a point if the center of the 5-site tetrahedra are nnn (see
Fig. A.1). The values of N(r,t) and ~(r,t) are given in Tab. A.1.

(r,t) cluster N(r,t)/N M(5,7) M(4,r) M(2(2),r) M(2(1),r) ~(r, 1)

5-site tet. 1 -—- -- -- - -1
Empty tet. 1 --- .- B R -1
nnn pair 6 6 6 --- --- 6
nn pair 2 4 --- -—- N 2
Point 1 5

4 2 2 -8

Table A.1: The entropy coefficients of 5-site and empty tetrahedra of the
diamond structure.
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Figure A.1: The diamond structure. A typical 5-site tetrahedral cluster is indi-

_cated by the sites numbered 1-5 site 1 is the center of the cluster (cluster 1) and
9.5 are the first nearest-neighbor sites of site 1. Sites 1, 2, 6, 7 and 8 represent
another 5-site cluster centered on site 2 (cluster 2) which overlaps cluster 1 at
the first-neighbor pair cluster composed of sites 1 and 2. Sites 2, 4, 9 and 10
represent a 4-site cluster centered by vacancy (cluster 0) which overlaps cluster
1 at second-neighbor pair composed of sites 2 and 4. Sites 3,9, 11, 12 and 13
represent a 5-site cluster (cluster 9) which overlaps with cluster 1 at the one
point (site 3). .
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Using the coefficients of Tab. A.1 and Eq. (A.1), the CVM configurational

entropy can be written as

ifklm 17kl

SEVM) — (s ): Tidnzi + D Zijumlnziipm + > wijulnwijy

——22_1;” lny GLygz)lnyt(Jz)) (A.5)

where z, w, y®, y() are z are the concentrations of 5-site tetrahedron, empty

tetrahedron, nnn pair, nn pair and point, respectively.

II. We can derive the same expression in a different way, thinking of the
diamond structure as a bec structure were one half of the sites are vacant. the

vacant sites, in turn, form a second diamond structures. F or the standard bcc

structure the degeneracy factor [132] per point is

(A.6)

Gbec = ’

DI 1 (1]

10

in the standard CVM notations (e.g. {e—} = I17 ;=1 vi;!, where n is the
number of different types of atoms), where each cluster has been labeled with

reference to Fig. A.2

For our modified bce case, each of the clusters appearing in Eq. (A.6) splits

into smaller or equal subclusters as follows
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Figure A .2: Basic clusters for the bece structure.
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Taking into account the fact that the number of atoms is one half of that of
full bee-structure, the degeneracy factor of the diamond structure having the

5-site tetrahedron as basic cluster is

gdia.mond - { 1{ 1.~ 2}2{ i — ; }GL!Z (A.8)

DT ey

the corresponding entropy expression is exactly the same as that given in
Eq. (A.5).
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