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I1I

INTRODUCTION

The present work is concerned with two particular problems
in the theory of ionic systems: (i) a comparative study of the freezing
of molten alkali halides into a normal solid phase and of molten
alkaline—earth halides into a superionic phase and (ii) a discussion

of the high temperature defective structure of some ionic solids.

A theory of the first order liquid/solid (or solid/liquid)
phase transition should start from the evaluation of the free energies
of the solid and liquid phase. There is no need té’comment on the
difficulties of such a program (1). Much effort has consequently been
devoted to predict the conditions under which a solid will melt or
a fluid will freeze (2). Various authors have in this context looked
for an instability in either the liquid or the solid phase. Instabilities
of the solid phase associated, for instance, with the spontaneous
multiplication of defects (3,4,5), or instabilities of the liquid
against the appearance of long-range order are, of course, inconsistent
with the phenomena of superheating and supercooling.

Empirical melting/freezing rules have also benn developed

for each individual phase (e.g. the Lindemann rule (6) for the solid
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and the Hansen-Verlet rule (7) for the liquid). These empirical
'laws' summarise the 'universality' of the information gainedAfrom
laboratory (8,9) and computer (10,11,12) experiments. For our
purpose the information can be condensed in the following statements.
(i) The transition is largely independent of the details of the
interparticle potentials; the essential role is played only by the
repulsive part of the potential while the attractive part introduces
minor corrections (13,14). (ii) The volume change on melting as well
as the melting temperature show large variations but definite trends
(15). (iii) The height of the first peak of the static structure
factor of the fluid phase near freezing is remarkably constant
within each class of materials (i.e. noble gases, metals, alkali
halides). (iv) The entropy variation on freezing and the mean” square
displacement in the solid phase at the melting point also show
'universalities'. A theory of freezing should be able to present an
explaination of these phenomena starting from first principles.

A modern approach to crystallisation is based on the
density functional theory of non-uniform systems. Haymet and Oxtoby
(16) have reformulated on this ground the Ramakrishnan and Yussouff
theory of freezing (17). In this theory the response of thé density
to a fictitious external potential is studied, and a set of non-

linear integral equations for the volume change and for the 'order




parameters' of the transition is obtained, the liquid structure coming
in through the direct correlation functions. Applications have been
made only for simple systems like Ar, Na and hard spheres.

In the present work, after a summary of all these relevant
aspects (Chapter I and II), we study the freezing of alkali halides
(NaCl and RbCl) and of alkaline-earth halides (BaCl2 and SrClZ) which
freeze into a superionic phase (Chapter III). For this aim the March
and Tosi scheme (18,19,20) has been used.

The strong charge ordering in NaCl and RbCl and the free
energy gain associated with the large volume on freezing are the main
qualitative factors which govern the freezing of these materials,
good agreements with experimental data being founévin the actual
calculations. In the case of freezing into a superionic phase: the
major features are the strong ordering of the divalent component and
the difference in the partial molar volumes of anion and cation. The
results indicate that the disordered chlorine ions behave in the hot
solid to some extent as a liquid in an external potential created by
the cation lattice. At present a theoretical description, on a
microscopic scale, of the superionic materials when the temperature

is progressively lowered is still lacking.

The principal observed characteristics of superionic
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materials with the fluorite structure are: (i) a peak in the specific
heat at a temperature below the melting point and (ii) an increase

of the electrical conductivity to values of the same order of ionic
melts. The transition is due to disordering of anion sublattice (21).
The superionic transition temperature has been successfully
correlated to the Frenkel energy using the Debye-Hlickel theory to
account for the Coulomb interaction between defects (4).

The final part of the present work (Chapter IV) is
concerned with the behaviour of AgBr in the high temperature region
below melting. AgBr, which is also a Frenkel conductor at low temperatures
like fluorite-type crystals, does not become superionic before
melting. In order to make comparison between AgBr And superionic
conductors, the relevant defect parameters of the former are determined
in detail. For this calculation N.M.R. (22,23), diffusion (24,25)
and ionic conductivity (26) data are extensively used. Both Frenkel
and Schottky defects appear to be present in this material at high
temperatures. Using a Debye-Hiickel model modified for saturation of
screening at high defect concentrations, it has been suggested that
this behaviourn'frustates' a superionic transition before melting

(27), though high ionic conductivity is induced in the hot solid.



CHAPTER I

A BRIEF SURVEY OF THE EXPERIMENTAL AND THEORETICAL SITUATION OF

FREEZING




CHAPTER T

A brief survey of the experimental and theoretical situation of

freezing

The freezing/melting phenomenon is one of the most
important fundamental processes in nature and we can observe it in
virtually every substance. The coexistence between the two condensed
states of matter, the liquid state and the solid state, is the
particular characteristic of this phenomenon. A great deal of
experimental data and empiric generalisations concerning freezing/
melting have been collected (8,9,10). But in spité’of this, the
progress made in equilibrium statistical mechanics, that in pfinciple
should be able to describe all the characteristics of a phase diagram,
has been very slow. A 'complete' description of the phenomenon is
only now beginning to be available, thanks mainly to models
sufficiently suited to the liquid state (12).

The aim of this introductory Chapter is toc present some
basic information on the freezing phenomenon both from the experimental
and the theoretical point of view. Section 1 deals with some important
relations that characterise the thermodynamics of transitions in simple

model systems. The proof of the existence of phase transitions for




these simple model systems is given in Section 2, in which the
principal and most recent results of numerical or computer experiments
are collected.

Section 3 describes connections between data obtained
for real systems and those obtained for model systems. The conclusion
of this Section is that it is possible to establish that thermodynamic
relations of Section 1 are still valid for the real systems in the
limit of high temperatures and densities. In this way the role of the
interatomic forces in the phase transition is made clear.

Section 4 examines the empirical laws of fregzing/melting
(Lindemann's rule, Ross's rule, Hansen-Verlet's rule). They account
for the 'universality' of the properties listed in the previous
Sections and they allow for the localisation of the transition. These
considerations are extended in Section 5 to ionic materials, these
being of main concern in the present work.

Section 6 offers a brief examination of the 'first principle!
theories of freezing up to the recent Ramakrishnan and Yussouff theory
(17), whose application to ionic materials will be described later

in Chapter III.




I.1 Thermodynamics of simple model systems

A simple idealisation of interparticle force laws is given

by the inverse power potential

- s )"
P = €(3)

in which €& and o are constants with the dimensions of energy and
length and r is the distance between particles. The hardness or
rigidity of the particles is measured by the exponent n: ton = o
corrgsponds, in 3-D, the hard spere system, to n = 1 corresponds

the one-component classical plasma (0.C.P.). The potentials for five

values of n are shown in Fig. (I.1-1).
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Fig. I.1-1: Interparticle potential energy functions for the five

inverse power potentials, n = 4, 6, 9, 12 and oo . From ref. (28)

The thermodynamic properties of inverse power potential



systems are particularly simple. This follows from Klein's theorem
(29,30) which says that for a system whose potential energy is a
homogeneous function of order n of the particle coordinates, the

non-ideal part of the partition function depends only on the variable

g/n 3
x=/o(_§__, , with ,DE-N—G , rather than on V and T
separately. The canonical partition function, Z(TyV;N) , using the

reduced distance s=¢t (__’\\)7> is given by

1}
N 3 & MYz de (I.1-1)
Z(TV,N) - NQVA:"N J...jexy(_/a ) 2 Si; ) o}s1 JSN

with X = (h/(@Tmkn)"

It is easy to show that all the thermédynamic properties
obtainable by differentiation of the partition function depend only
on the variable x (11). So a single isotherm, with x varying from O
to o0 , will be needed to describe the whole state equation of the

system. From eq. (I.1-1) we get a state equation such as

z = 1 + @(p( € )S/n) (I.1-2)

KegT
where 2z :% is the compressibility factor. The onset and the end

of the melting phase transition will be indicated by two universal

values of x



3/n 3/n
1= B

in which Ps and /Oi. are the solid and liquid phase density. From
eq.s (I.1-2) and (I.1-3) we get the equation of the melting curve

and the volume and entropy discontinuities

3 n+3
PEG _ (kZT) h =, %, (I.1-4)
AV —~ consth. (I.1-5)
V
AS - const. (I.1-6)
R

In the case of the hard spheres, relations (I.1-5) and (I.1-6) remain

unchanged, while the relations (I.1-3) and (I.1-4) beconme -

Xg = Pg =P (I.1-7)

P = const. x T (1.1-8)

In the case of the 0.C.P. (system of point-like charged particles in

a uniform compensating background), the canonical partition function is

Z(TVN) = W}_’%J exp (T Gyes8) 48,42, (1100)



in which n (3Q,__,,§L) is a function that characterises the
spatial arrangement of the ions, and
2 2
r - _Z e (I.1-10)
o Ka T
is a function that expresses the ratio between Coulomb energy and
thermal energy with Yo radius of the sphere containing one ion.
The thermodynamics of the transition of the 0.C.P. will be determined

by the I parameter. For the density at the phase coexistence we

have

Psi oC (KBT)3 (1.10-11)

For this system we do not have volume change at the transition.



I.2 Computer experiments on freezing/melting

The preceeding thermodynamic relations have been proved
Vfor all the systems drawn in Fig. (I.1-1) by means of computer
experiments (28). In addition, numerical studies of phase transition
have been made for a system of particles interacting by a Lennard-
Jones potential (7,31-34) and for the 0.C.P. (35-38). These studies
determine the melting curve from the properties of the homogeneous
phases. Indeed, the fraction of particles in the interface between
the two phases, of the order N2/3, is not negligible for the systems
that can be studied with the computer. The free energy of these
particles is higher than the free energy of the bulk, and the computer
results, for the two phases in equilibrium, would then strongly
depend on the number of particles.

The thermodynamic criterion for the coexistence of the
two phases is that the Gibbs free energy of the two phases is the
same at the equal pressure and temperature. From computer experiments
the free energies of the two phases cannot be directly calculated.

In order to determine them one starts from a reference state in which
the free energy is exactly known (e.g. ideal gas) and one calculates

the difference between the free energy of the liquid (or solid) phase

and that of the reference state. An efficient method has been developed



by Hoover and Ree (39). In their scheme the reference state is still
the ideal gas and the solid is artificially stabilised down to low
densities by dividing the whole volume into Wigner-Seitz cells, and
imposing a 'single occupation' constrain on the particles. The
thermodynamic state equation thus determined in shown in Fig. (I.2-1)
for the potentials with n = 4, 12, e . Fig. (I.2-2) éhows the phase

boundaries for the same systems. As expected from relation (I.1-7)

I I I T 1 I
16— -
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v
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Nc‘ £ \%
vV (kT)
Fig. I.2-1: Thermodynamic equations of state for three inverse
power potentials from computer experiments. A;f——— is the increase

in the compressibility factor over that of a perfect static lattice
at the same density and temperature. The discontinuities in the
slopes of the three curves correspond to the melting and freezing
transition. From ref. (11).

the melting and freezing densities for the hard spheres (n = oo ) are

temperature independent.

Fig. (I.2-3) shows the phase diagram for the Lennard-Jones
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Fig. I.2-2: Boundaries of the two phases, fluid and solid, for

inverse power potentials. The narrow strips (clear for n = 00 and
black for n = 12) correspond to the two phase region where fluid

and solid can coexist. This region is very narrow for the case n = 4.
From ref. (11).
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Fig. I1.2-3: The Lennard-Jones phase diagram. Superimposed on this

diagram is the soft-sphere phase diagram resulting when only repulsive
forces are used. The fluid-solid two-phase region for the soft-sphere
potential is lightly shaded. From ref. (11).
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-12 -€ ' .
system (LP(}") = Ar -Br ). A region, corresponding to the

gaseous phase, 1s generated because of the introduction of the
attractive part in the potential. The data characterising the
thermodynamics of freezing for a certain number of model systems

are shown in Table (I.2-1) both for the 3 - D and 2 - D cases.

&T/"P!é)z% AF | au | as | Av Py € V0
m | \kgh/ | NKgT | N¥aT R Vs NKkT

n = 0 0.736 0.667 -1.16 0.00 1.16 0.103 8.3

n =12 0.844 0.813 -0.72 0.18 0.90 0.038 16

n=29 0.971 0.943 -0.63 0.21 0.84 0.030 22

n==a6 1.56 1.54 -0.50 -+ 0.25 0.75 0.013 61
n=4 3.94 3.92 -0.45 0.35 0.80 0.005 426 |

2 -D
n= oo 0.798 0.761 8,08
0.C.P.

3-D [y =(Ze)2(4TT/°/3)V5/KBT = 155£10 Aplp 2 3x10™"

2 -D T’mz(Ze)a (TTp)A/Z/kBT = 12515 Aplp < ax10”2
Table I.2-1: Thermodynamic properties of the crystal-liquid phase

transition of a number of inverse power potential systems.
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I.3 Real systems

The thermodynamic relations on freezing in the model
systems discussed above and the results of the computer experiments

can be connected to the liquid/solid phase transition in real

systems.
The volume change, AV/Vs , and the entropy change,
AS , for a certain number of elements are shown in Table (I.3-1)
N kg

together with the respective melting temperatures to give an idea
of the order of magnitude. The elements are grouped according to
their crystalline structure at high temperature.

It is interesting to follow the behaviour of AV/\/"S and
AS/N ks along the melting curve. In Fig.s (I.3-1), (I.3-2), (I.3-3)
the curves A\//\/S and AS/NKB against T for argon and sodium, and
against P for NaCl, are traced. We see that AV/VS and AS/NKB,
after a rapid decrease at low temperatures, become practically
constant. For the asymptotical values of A\//\/s and _ﬁ% Figures

B

(I.3-4) and (I.3-5) give additional information. The conclusions are

that

=L consl.

== const.

~
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B.C.C. T (°K) AV/vg AS/kg
Li 454 0.0165 0.795
Na 371 0.025 0.84
K 337 0.0255 0.835
Rb 312 0.025 0.845
Cs 302 0.026 0.835
Ca 1111 e 0.93
Sr 1041 e 1.1
Ba 987 e 0.93
La 1193 e 0.62
Cr 2148 e 0.815
Mo 2883 @ e 1.35
W 3683 000 e 1.16
Mn 1518 0.017 1.16
Fe 1809 0.035 0.92
Tl 576 0.022 ) 0.86

F.C.C
Ag 1234 0.038 1.10-
Al 933 0.080 1.4
Au 1336 0.051 1.13 R
Co 1768 0.035 1.10
Cu 1356 0.0415 1.18
Ni 1726 0.054 1.22
Pb 600 ' 0.035 0.96
Pd 1825 0.059 1.13
Pt 2042 0.066 1.16

H.C.P.
cd 321 0.040 1.25
Mg 650 0.041 1.17
Zn 419 0.042 1.27

Table I.3-1: Melting temperatures, volume changes and enfropy changes

for a number of elements.
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Fig. I.3-1: Temperature dependence of the relative volume

discontinuity AV/V and entropy discontinuity AS/R in the melting
of argon. From ref. (8).

A AsR

Fig. I.3-2: Temperature dependence of the relative volume
discontinuity AV/Vs and entropy discontinuity AS/R in the melting
of sodium. From ref. (8).
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Fig. I.3-3: Pressure dependence of relative volume discontinuity
and entropy discontinuity during melting of NaCl. From ref. (9).
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Fig. I.3-4: Relative volume discontinuity AV/Vg and entropy

discontinuity AS/R  in the melting of argon, as functions of the
volume discontinuity AV (AV— 0 corresponds to P — o0 ), From
ref. (8).
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Fig. I.3-5: Entropy of melting AS/R and relative volume
discontinuity AV/Vs  as functions of the volume discontinuity AV
in the melting of sodium ( AV —# O corresponds to P — & ). From
ref. (8).

For argon the extrapolated values of AS/NK, and AV/Vg  are

AS  _, ~ 0.3

NKB T —» [o'e}
AV — ~ 0.03

\Y4
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which are practically the same values obtained from the computer

simulation of the freezing of particles interacting with the law

@

| 182
plr)y = & (o/r) (see Table (I.2-1)). For sodium the

A 0.7 while the limiting value

extrapolated value of AS/NKB is
of AV/VS is not well defined; in this case we cannot make comparison

with the computer simulation results of Table (I.2-1). This

asymptotic value of the melting entropy, _A___S__ ¥ In 2 when
Nk
B

AV/V,S" 0, has been also found for a range of metals (see Fig. (I.3-6)).

Tee )

She

- 24

Fig. I1.3-6: Relationship between entropy of melting AS and
. Data from ref. (40).

relative change in volume on melting AV/Vq
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I.4 Empirical laws of freezing/melting

In eq. (I.1-3) it is confirmed that freezing and melting
happens at characteristic values of x. S0, every x dependent structural
characteristic can be used as a transition indicator. One of these
indicators is the Lindemann law (41), stating that along the melting
curve the ratio between the root-mean-square displacement of a
particle from its lattice site and the first-neighbour distance,

2,02 |
F =<(Ar) /d")", is constant. Table (I.4-1) shows the values of f for

a certain number of model systems and for some B.C.C. and F.C.C.

B.C.C. Li Na K Rb Cs
elements

f 0.116 0.111 0.112 0.115 0.111
F.C.C.

C Al Cu Ag Au Pb Ni

elements

f 0.072 0.069 9.071 0.073 0.065 0.077
Model

ode n= oo n= 12 n=9 n= 6 n= 4 n= 1

systems ;

f 0.13 0.15 0.16 0.17 0.18 0.17
Hard disks system f =0.17
Lennard-Jones system f = 0.15
Table I.4-1: Values of the Lindemann parameter f for some B.C.C.

and F.C.C. materials and for model systems.
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metals. In the model systems f shows only a weak dependence on the
thardness' parameter n; in the case of the metals Lindemann's law
applies to each structure separately.

Another criterion on melting has been proposed by Ross

(42). Ross's law states that the excess part of the free energy, F ,
ex

is constant along the melting curve. That is

Fex F _ Lh(ﬁ_) + 1 - Vo - const. (I.4-1)
Nk T Nk T v NiegT
where F is the total free energy of the solid and VO is the potential
energy of the solid if all the particles are fixed in their lattice
sites. Eq. (I.4-1) is exact for the inverse power potentials. Ross's

law, that determines a value of Fex a6 NkBT, shows less variation

compared to Lindemann's law, as can be seen from Fig. (I.4-1). For

] ] ]
0_ —
Il ROSS MELTING -
Fis -
O ——— A%- D, -
MET
SRS T W S
@ 4
12 6 3
g 1}
Fig. I.4-1: Ross's melting rule as function of softness, s = 3/n.

The figure indicates a proportionality constant 6NkBT. Form ref. (28).
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hard disks, Fex = 3.9 NkBT (39); for a 2 - D Lennard-Jones system,

Fex =.3.7 NkBT (43).
A freezing criterion based on liquid phase structural
propertiés, has been formulated by Hansen and Verlet (7). This
criterion states that along the freezing curve the height of the
main peak of the static structure factor, S(k), is constant. Near
freezing the height of the main peak, in the hard sphere case, is
Speak = 2.85 (44). From the work of Hansen and Shiff (44) we observe
that for the inverse power potential systems with n = 12, 9, 6, 4,
1, Speak lies between 3.05 (n = 12) and 2.57 (n = 1). In the Lennard-

Jones system a value Speak = 2.85 allows one to predict the correct
shape of the freezing curve over a large pressure interval (7).
Table (I.4-2) shows the values of S(k) at the first peak and néar
freezing for a certain number of metals. In the Table are also

presented the values of c(k), the direct correlation function, which

is related to S(k) through S(k) =1 / (1-c(k)).
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B.C.C. S(k) c(k)
Li 2.64 0.62
Na 2.80 0.64
K 2.73 0.63
Rb 2.8 0.64
Cs 2.5 0.6
Ca 2.61 0.62
Sr 2.65 0.62
Ba 2.6 0.61
La 2.66 0.62
VA 2.37 0.58
Cr 2.46 0.59
Mn 2.5 0.6
Fe 2.41 0.58

F.C.C.

Ag 2.48 0.6

Al 2.53 0.61
Au 2.49 0.6

Co 2.44 0.59
Cu 2.59 0.61
Ni 2.42 0.59
Pb 2.78 0.64
Pd 2.64 0.62
Pt 2.69 0.63

H.C.P.
cd 2.5 0.6
Mg 2.54 0.61
Zn 2.85 0.65

Table I.4-2:

Experimental values of the static

structure factor

S{k) at the first peak and near freezing. c(k) is linked to S(k)

through the relation S(k)=(1-c(k))
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I.5 Solid - liquid transition in jonic systems

In classical ionic materials both thermodynamic and
transport data on the hot solid phasé show a variety of behaviours
that can be described, broadly speaking? as premelting phenomena.
The best known example is the appearance of a high-electric-
conductivity ('superionic') state in somé of these materials before
melting occurs.

Table (I.5-1) reports data on the fractional volume
change AV/V5 and on the entropy change AS on melting for the
alkali halides, the alkaline-earth halides and the silver halides.
The volume change in the alkali halides, as shown by Biggin and
Enderby (45), can be related to the coordination numbers in tHe

liquid and in the solid through the semi-empirical relation (46)

3
\ a
N - n s L
L= Mg (ﬂ) (I.5-1)
vl =P

where nl and ns are the coordination numbers in the liquid and in
the solid, vl and Vs are the corresponding molar volumes, a1 is the
position of the first peak in the radial distribution funcfion for
unlike ions g+_(r) (see next Chapter), and aS is the nearest

neighbour distance in the solid. Table (I.5-2) summarises the known
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Alkali AV/Vs (%) AS (cal. K mole™®)
halides
® LiF 29.4 5.77

Licl 26.2 5.39
LiBr 24.3 5.13
LiT ——— 4,72
NaF 27.4 6.2
NaCl 25.0 6.23
NaBr 22.4 6.12
NaT 18.6 6.04
KF : 17.2 5.97
KC1 17.3 6.08
KBr 16.6 6.06
KI 15.9 6.02
RbF — 5.76
RbC1 14.3 5.70
RbBr 13.5 5.77
RbI —— 5.73
CsF —_— 5.32
CsCl 10.0 - 5.27
CsBr 26.8 6.20
CsI 28.5 6.27

Alkaline—earth

halides ’
CaCl 0.9 6.49
CaBr2 ——e 6.85
Cal —— 9.5
SrcI? 4,2 3.39
SrBré —— 2.70
SrI? — 5.80
BaCl2 3.5 3.17
BaBr2 —— 6.75
Bal — 6.44

Silver halides
AgCl 8.9 4.34
AgBr 8.2 3.28
Agl o 2.7

Table I.5-1: Melting parameters of the alkali halides, alkaline-

earth halides and silver halides. Data from ref. (2).
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coordinations for both alkali chloride and alkaline-earth chloride
compounds at standard temperature and pressure for the solid phase
and near freezing for the liquid phase. As one example, the large
increase in molar volume on melting for NaCl (25 % see Table)
reflects the decrease from a value of 6 for the coordination number

in the solid at standard temperature and pressure, n , to a value
s

of 4 for the 'close contact' coordination number in the liquid, nl.

salt i n+— n+—
solid at S.T.P. melt
NaCl 6 4
KC1 6 4.1
RbC1l 6 3.8
caCl 8 5.8 )
Sr012 8 6.5
BaCl 4 7.5
2
Table I.5-2: Coordination numbers for alkali chlorides and

alkaline-earth chlorides.

The alkaline-earth halides show instead very low values

of the volume change. Several of these salts show, in the high

temperature solid phase, ionic conductivities of the same order of
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magnitude as those of simple ionic melts: they are superionic

materials. Three kinds of behaviour have been found as the temperature

of the crystal is progressively raised toward melting (47): (i)

salts such as MgClZ, CaCl2, CaBrz-and BaBr2 show a smooth increase

of ionic conductivity, with a jump by several orders of magnitude

on melting; (ii) salts such as BaCl2 or SrBr2 show a structural

phase transition below Tm accompained by a large increase in ionic

conductivity; (iii) salts such as CaF2, SPFZ, Ban and Sr012 show

a continuous increase in conductivity and a slight jump on melting.

Both type~(ii) and type-(iii) materials of the alkaline-earth

halide family have fluorite structure in the high-conductivity state.
The total entropy change,zks , found at melting for

alkali halides is roughly constant, with a value of about 6 cal/°K.

A proposed interpretation of this value is that about 2.2 cal/°X

arise from a random distribution of 'défects' in the liquid, and

about 3.8 cal/°K from changes in vibrational entropy (48). Table

(I.5-3) shows data of entropy change in the solid-solid and melting

transition for some class-(ii) superionic materials, while Table

(I.5-4) shows data of melting entropy for some class-(iii) materials.

For class-(ii) superionic conductors we see that, as in the melting

of alkali halides, the sum of the solid-solid transition entropy

-1
and the melting entropy is of 10 to 12 J°K per mole of ions. But
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So0lid transition Melting

Salt Te (°K) AS (@ Kmole) T (K )  AS, (7°K mla")
Agl 419 14.5 830 11.3
Agzs 452 9.3 1115 12.6
Ag28e 406 10.0 —_— —_—
CuBr 664 9.0 761 12.86
CuZS 376 9.9 —_— _—
708 1.8 1402 —_
CuZSe 395 17.3 —— _—
CuI 642 11.1 878 _—
SrBr2 918 13.3 930 11.3
BaCl2 1193 14.4 1233 13.3
___LuF3 1230 20.4 1457 20.8

Taple I.5-3: Entropy changes in the solid-solid and melting

transition for some class-ii materials. Data from ref. (15).

Table I.5-4:

From ref. (15).

Salt T (°K) AS,, (T°Kmolé™?)
SrCl, 1146 14.2
PbF, 1095 16.4
CaF, 1691 17.5
vo,, 3115 24.4
K,S 1221 13.8
AgBr 703 13.6
LaF 1766 28.4

Entropy of fusion of some class-iii materials.
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the melting entropy for both class-(ii) and class-(iii) superionic
conductors is anomalously low.

The entropy change, Z&Em\, has been described successfully
as the sum of a volume dependent term and a fundamental entropy
term, as follows (49)»

AS,, = xB_AV, + sRln2 (I.5-2)

m

in which & is the coefficient of thermal expansion, BT is the
isothermal bulk modulus, Aﬂam the molar volume change on melting
and o the stoichiometry of the system. For a monatomic system like
Ar or Na & = 1; for a binary system like NaCl < = 2; and for
a ternary system like Ba012 g = 3. The possibility of the use of
eq. (I.5-2) lies in the relative constancy of the & 51- product
(50). The equation (I.5-2) is plotted in Fig. (I.5-1) against uBTA\./m
for a range of materials and the three solid lines are o =1, 2
and 3. As expected, monatomic Ar and Na lie close to the line o= 1
and the alkali halides close to the line o = 2. The fast-ion
conductors Sr012 and CaFZ, on the other hand, lie close to the line
G = 1. This is consistent with the premelting transition as
shown in Figures (I.5-2) and (I.5-3). The transition is signalled

by the peak in the heat capacity from which one fixes the superionic
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0 1 i

0 1 2 3
aBAV,,/ R
Fig. I.5-1: Entropy change on melting as a function of a’Eﬁhlﬁ\Q

The symbols are: SrCl_: o ;CaF : @ ; Ar: o ; Na: ¢ ; inverse-12
soft sphere: B ; NaCl: a; KCl: A ; Nal: # ; KBr: v ; KI: » g
AgBr: > and BaClZ: © . Data from Ref. (51).

1 -
x 2r .
= | 12
§a- i%
ot 17 &
L reat capacity _3{51
1 b
T T T RS WO S —" 0

T/K

Fig I.5-2: Heat capacity and entropy for SrClZ. From ref. (51).
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Fig. I.5-3: Heat capacity and entropy for CaFZ. From ref. (51).

transition temperature. In a somewhat simplistic view, at tﬁis
transition the anion sublattice 'melts', and o at the melting
becomes the stoichiometry of the cation sublattice. Also plotted
for SrCl2 and CaF2 is the sum of the entropies of the fast-ion and
melting transitions and it lies close to the ¢ = 3 line. When
AV = 0 the entropy change ASM will be determined by the term
o Rln2 (see eq. (1.5-2) and Fig. (I.3-6)). This fundamental term
has been interpreted as arising from the localisation of the oN
pairs of propagating transverse waves (52). A last comment can be

made on AgBr, whose ionic conductivity increases smoothly but rapidly
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until melting occurs. Its entropy change is well described with

O =2 (see Fig. (I.5-1)). Its behaviour is, in a certain sense,

inté;mediate between alkali halides and superionic conductors (but

we shall speak extensively on this system in the last Chapter).
Empirical melting rules have been stated also for ionic

systems. In order to correlate melting temperatures with the

interionic pair potentials in the alkali halides, a corresponding-

states equation of state has been developed (15). This equation of

state takes the form

2 A ke T .5
P - ‘%F(yﬁ’ 1;_) (I.5-3)

e

where p is the pressure, f is a 'universal' function of the variables
in parenthesis and A is a scaling length (which may be taken as
the near-neighbour distance). One obtain a good correlation between

melting temperatures for alkali halides by expressing T simply as
m

_5 o
T, & (3~=10 /N) K (I.5-4)
The data are shown in Table (I.5-5). This rule is not followed by
lithium salts for which the neglect of short-range repulsions between

anions in the pair potential is less justified (15).
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Salt T (°K) ATy, (10%m °K)
® LiF 1121 2.25
LiCl 887 2.27
LiBr 823 2.27
Lil 718 2.21
NaF 1265 2.92
NaCl 1074 3.02
NaBr 1023 3.04
NaIl 933 3.01
KF 1129 3.02
KC1 1045 3.28
KBr 1013 3.34
KT 958 3.39
RbF 1048 2.96
RbC1l 988 3.26
RbBr 953 3.27
RbI 913 3.34
CsF 955 2.88
CsC1 918 3.18
CsBr 909 3.29
CsI 894 3.42
Table I.5-5: Scaling melting temperature )xTQ . From ref. (15).

The systematic variation of ):En with the anion radius
suggests another melting rule based on the ratio of the ionic radii
(53). The rule is formulated in terms of a lattice instabiiity due
to the overlap between the large ions (anions), and a linear relation

between the ionic radii ratio and the square root of the melting
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temperature T has been found, as well illustrated in Fig. (I.5-4).
m

4
ar) N
R,
* \\‘ALK&
~ i€l
3 ~ UMSTABLE
- mx\\us :
\\NaBr s
2 - = act .
AgBr ~KE \
Vo g T
Rb&
L A.GF 'ﬁbam KF ]
1 i k] L i L L L i . i i
28 28 30 32 34 36 /Ty (oK)
Fig. I.5-4: Ratio of the ionic radii versus the square root of

the melting temperature in the alkali halides. R_ is the ratio of

the large ion and R the radius of the smaller. A;;ﬂ?Ri—(E V2R, .
Data from ref. (53). ' X

We may also look for melting 'uniformities' in the
Lindemann theory of vibrational instability of crystal lattices.

The theory leads to a '‘Lindemann melting parameter'

1/3 1/2
L, =68,V (M/T) (I.5-5)

m

based on accesible experimental parameters. @53 is the Debye
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temperature, V the molar volume and M the atomic mass. Table (1.5-6)

reports the values of L for a range of salts.
m

@

Salt Lm Tm (OK)
NaCl 210 1074
KC1 195 1045
AgCl 239 728
KI 180 958
RbI 189 913
RbBr 206 953
AgBr 229 701
LiF 200 1121
CaF2 211 1633

Table I.5-6: Values of the Lindemann parémeter, Lm,

for a range of salts. From ref. (2).

A criterion for freezing of molten alkali halides has
been proposed by March and Tosi (54) using the peak height of the
charge-charge liquid structure factor, SQQ' In a two component
liguid, three partial structure factors are necessary for a structural
description, i.e. SNN(k), SNQ(k) and SQQ(k) (see next Chapter).
The number-number structure factor SNN has a gas-like structure,

the cross-correlation SNQ is little structured while the charge-
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charge structure factor SQQ shows a very prominent principal peak

(see Fig. (I.5-5)) reflecting the residual short-range ordering in

®

max
the ionic liquid. The values of SQQ at temperatures near freezing

Fig. I.5-5: Charge-charge structure factor for molten RbCl from
neutron diffraction data on partial structure factors.

point are listed from neutron diffraction data in Table (I.5-7).
Also listed is the percentage deviation of the temperature of
measurement from the melting temperature. Extrapolation to the

max
melting temperature leads to a value of S % 445 at freezing.

QQ
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NaCl KC1 RbC1 CsCl
Sag. 3.6 4.4 4.1 3.1
(T=Tm)/ T 0.070 0.023 0.035 0.059
&/(akT) =T 71 65 66 65
Tab. I.5-7: Height of main peak in S in molten alkali chlorides

and [ parameter. From ref. (15).

The last row of the Table shows the remarkably constant values of
the plasma parameter | previously defined in eq.“(I.l—lO). If in
the definition we replace 1, by the sum of ionic radii, R+ + R_,
we reach, apart from a scaling factor, the Reiss et al. (55)

criterion which states that the melting temperature of alkali

2
halides is directly correlated with e / (R++R ).
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I.8 Survey of theories of freezing

All the theories of freezing developed until now and
which try to explain the experimental results shown in Sections 4
and 5 in terms of a 'first principles' theory, can be put into two
groups: (i) distribution function theories and (ii) density functional
theories.

The theories in the first group have been developed
starting from the work of Kirkwood and Monroe (56) of 1941. Kirkwood
and Monroe observe that, for a certain type of closure, the Kirkwood
hierarchical equations for the one-particle distribution function
are non-linear (and therefore they allow for more ﬁhan one solution
for a given set of constraints). They examine whether changes in the
analytic structure of the one-particle distribution function are to
be associated with the beginning of a phase transition. The results
obtained are not satisfactory and the amount of input thermodynamic
data is considerable.

Developments in this direction have been facilitated by
the fact that the distribution functions satisfy various systems of
integro-differential or non-linear integral equations. Tyaﬁlikov (57)
has studied the Bogoliubov hierarchy; Vlasov (58) his own equation;

Raveché-Stuart (59) and Raveché-Kayser (60) the Yvon-Born-Green
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hierarchy; Weeks et al. (61) and Jancovici (62) a modified version
of the Kirkwood-Monroe theory. None of these authors have applied
the theory to real systems and when applied to model systems, like
hard spheres in 1, 2 and 3 dimensions, the results are often
contradictory. The explanation for these failures is to be found in
a series of reasons: (i) the linearisation of the equations is
obtained by treating the liquid/sclid transition as a 'soft bifurcation'
problem while the first order character of the transition requires
the use of a 'hard bifurcation' treatement; (ii) the closure of
hierarchical equations leads them to give great importance to the
first peak of the pair correlation function while the phase transition
is linked to the oscillations which follow the first peak; (iii) in
hierarchical equations the interparticle potential explicitly appears,
while the experimental data of Sections 4 and 5 show a non-critical
dependence of the transition phenomenon fromthe potential details.
Problems (ii) and (iii) are easily resolved in the
framework of the density functional theories. This modern approach
to the transition was begun by Lovett (63) and Lovett and Buff (64).
They try to determine the bifurcation point by investigating the
stability of the liquid compared with the crystalline staté on the
basis of a relation between the one-particle distribution function

and the direct correlation function. The solutions found are
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characteristic of a second order transition. The discontinuous
character of the solid/liquid transition is restored by Ryzhov and
Tareeva (65) and Bagchi and Rice (66). The results are not quantitative
and the connections between the mechanical instability of the liquid,
the bifurcation point and the transition point are not yet clear.
Quantitative agreement with the experimental results for hard spheres,
argon and sodium has been obtained by Ramakrishnan and Yussouff(17).
They add to the theory the balance and minimum conditions of the
grand-canonical thermodynamic potential at the two phase equilibrium.
Haymet and Oxtoby (16) have reformulated the Ramakrishnan and
Yussouff theory in the scheme of the 'density functional' theory of
non-uniform systems (67). March and Tosi (18) haveAdeveloped a scheme
for the application of the theory to more complex systems like alkali

halides and alkaline-earth halides. These developments will be

presented below in detail.
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CHAPTER TII

EQUILIBRIUM STATISTICAL MECHANICS OF THE LIQUID-SOLID PHASE TRANSITION
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CHAPTER II

®

Equilibrium statistical mechanics of the liquid-solid phase transition

In this Chapter we present the freezing theory following
the Haymet and Oxotoby method (16). A great deal of the material
shown here is absolutely necessary for the applications that will
be made in the next Chapters.

Sections 1 and 2 of this Chapter are dedicated to the
formal theory of statistical mechanics of non-uniform fluids. Two
key quantities 3[)0] and .Q.VLPJ (the Helmholtz free energy and the
grand canonical potential), which are functionals of the one-particle
density /3(:), are introduced and the variational principle fdr the
ogrand potential is derived. The functional derivatives of SLPl with
respect to p(g) give rise to the direct correlation functions, while
the functional derivatives of 2 [P] with respect to a fixed external
potential give the n-particle distribution functions.

In Section 3 we derive the general equations of freezing.
They are obtained by considering the solid as a perturbation about
the uniform liquid. Ramakrishnan and Yussouff (17) have shéwn that
such a simple idea correctly correlates structural features of the

liquid with the order parameters of the hot sclid in equilibrium
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with the liquid. The approximations regarding the replacement of the

Gz 2.7

generalised direct correlation functions C(Fl’Fé) and ¢ 1 2,r3

- 3 - - g
with the corresponding c(]rl—Fél) and c( )(Ir [, |T.-F_|) defined

) 13

in the infinite fluid phase, are introduced. In this Section we also
illustrate the microscopic physical interpretation of the freezing
process that the equations suggest. We will reach this objective by
looking at the connection between an external perturbation, the
response of the fluid and the energy balance of the process (15).

Section 4 is dedicated to a simple application of the
theory to the freezing of metallic systems into b.c.c., f.c.c. and
h.c.p. lattices. The main approximation here concerns the
'incompressibility limit', i.e. volume change n — 0.

Section 5 deals with the freezing of the hard sphere
system (68). Here we have listed all the approximations that we must
perform for the practical solution of the equations.

Section 6 is dedicated to the 'subtle' problem of the

determination of the entropy change per particle at freezing, _éfi .

NKg

Here we have presented the results obtained for the entropy change

in the case of the hard sphere system.
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IT.1 Thermodynamic potentials

Let us consider a classical system of N identical particles
in a volume V. Let the total Hamiltonian of the system be composed
of (i) a term due to the free motion of the particles, (ii) a term
corresponding to the interactions of the particles with each other
and (iii) a term describing the action of an arbitrary external
potential depending only on the coordinates of the particles. We

can write it as

HN =T + U +V (IT.1-1)
where ~
N 2
i=1

U = U (ED
\/ = JZ=:1 \/ext(;:> ]

m is the mass of the particles and UN is the potential energy. UN
includes any containing walls present in the system and no pairwise
additivity is assumed for it. The system, with a prescribed chemical

potential /4 , is in thermal equilibrium in a bath at temperature T.

For the thermodynamic description of the system we will
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use a grand canonical ensemble because the equilibrium phase
conditions, that is P, T and M constant, are in it easy accesible.

The equilibrium probability density, fe , is defined as
q

-1

Feq = Z, exp[-p(H, ~uN)] . (II.1-2)

The grand canonical partition function is given by

Z_(V,T ) = T {explpH NYTY (11.1-3)

where TrCl denotes the usual classical trace operation, that is

@D
T = 2 _LTF[ F':J.djbl : (II.1-4)
h

ct N=0 NI =1

The macroscopic value of a generic operator A is defined by taking

the configurational average

CA> = T f A (11.1-5)

CcL eq

and for the equilibrium density, F@ch) , we have

/oeqcﬂ = < plrdy (II.1-6)
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where
®» N
/g‘(;.') = Z § v - rj) (I1.1-7)
=1

is the number density operator.
The connection between the thermodynamic properties and the grand
canonical ensemble is obtained starting from the relation between

the grand canonical potential,S?. , and the grand partition function,

js ln 2 = - %2 = PV (II.1-8)

Other useful thermodynamic functions are the ‘'intrinsic' Helmholtz

free energy, E% , and the Helmholtz total free energy, F,

&

I

AP —jd; peq('r:)vext(\:) + ﬁj&;peq<:) (I1.1-9)

F= 3~ ja: PaqF) Vext () (11.1-10)

The role of these two thermodynamic functions will be clarified in

the following paragraph concerning the density functional theory.
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II.2 The density functional formalism

According to Mermin (69), we introduce the functional

of the probability density f

QLT = T FCHG-uN *F—1L“ £) (II.2-1)

which, in the case of the equilibrium probability density fo,

coincides with the grand canonical potential
QRIFBI = KL2W,T,um . (II.2-2)

From the Gibbs-Bogoliubov inequality (12) for two arbitrary -

distribution functions f and g,

TPCLCFLHF) % TPCL (FLHS) ’ (Ir.2-3)

we immediately obtain the following relation

QRIFI > QLIFI] (II.2-4)

where we have used the relations (II.1-2), (II.2-1) and {(II.2-2).
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Using the same arguments of Hohenberg-Kohn-Mermin (70) it is possible
to show that, for a given interaction potential U and chemical

potential u , Ve t(;) is a functional of /%(;): it means that Vv (%)

X ext

-
is inequivocally determined if the density f;(")is known in all T
points of the system. Omitting the exact proof we can see (from

relation (II.1-2)), that fo is a function of V t(?) and therefore
e

X

the more important result that f is a functional of /%(:5 .
o
Let us introduce, now, the two key quantities of the

theory, that is the functionals

FLpl = Tr, F(T+U *ﬁ_1lnFo) (II.2-5)
and

S\)_v[f"] = Jci?,o(?) vext(;) + 3LP] “/deF /o(_r?) , (II.2-6)

Let us derive the variational principle for the grand canonical
ensemble. The functional §2v[fﬂ will coincide with the grand canonical
potential when the density 0 is equal to the equilibrium density g, .

!
For a generic density /3' and probability density F' we obtain
QUFT = BIF1 ~+ Jd? PG Vext (F) = p[dF )

=RV[P'] (IT.2-7)
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and from the relation SeLF1> GQLF.J it follows that
_Qv[p'] > Q,Lpal . (II.2-8)

We can conclude that QV[F] reaches its minimum value when ‘p(F)=PQ(‘?).

These results can be expressed through the relations

§ S2, el - D (II.2-9)
S p@) o,
L Lpd = Q. (II.2-10)

Remembering the general definitions of functional derivative,

9o “
$G =§ dy ACy, Iyl) S y) (IT.2-11)
g4
namely
G - Ay, Lvypl), (II.2-12)
Sy (y)

we can calculate the functional derivative of the equation (II.2-9)
using for.SEV[f] the expression (II.2-6). We obtain in this way the

fundamental equation of the theory of non-homogeneous fluids

vext(;:) T Pin Lesrl = p (II.2-13)
with
S Fpl (11.2-14)

/Jm h é,o(?")
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In fact, if we give some meaning to '3'[P] . fhe relation (II.2-13)
is an explicit equation for the equilibrium density.

Let us apply the relation (II.2-13) to the system of
Section 1, that is to a system of interacting particles. The effect
of interactions may be put in evidence by decomposing E}{FJ in an
ideal part,E&hi[P] , and a part corresponding tec the interactions,
$Lpl,

TPl = I, LRl - dLel . (I1.2-15)

The ideal contribution is easily determined from the non-interacting

system (U = 0). We have for it

'}id el :jz:i jd?[tn(po(v‘-’)/&)*ﬂpo(?) (I1.2-16)

a

and
p(F) = =z exp[-P Vet ()] (II.2-17)

x/2 -1
where A = (hg/(ETrmKJD and =z = /\ exp (55}.1) is the fugacity.

The relation (II.2-14) then becomes

Bpn = nCap (") —clp; 7] (II.2-18)
where
clp;v] - & Ef"] (II.2-19)
Splr)

is the contribution due to the interactions. The equation (II.2-13)
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can be explicitly solved and for the equilibrium density we obtain

Py = F exp [-PVo (O + ¢ Lo FIL (11.2-20)

This equation tells usthat the effect of the interactions may be
dealt with through the one-body effective potential c.[f%;F?]
If we calculate the successive functional derivatives of the equation

(IT.2-19) we generate a hierarchy of correlation functions

— 2
cLp;F, ol = Sclp il _ __ & OLAl
SF(FQ) Sp ¥ 8o (Fy)
3) - o~ 2 . (II.2-21)
é [/O;"'u"'za"'s] = éCEP jk"] etc.

Sp C_st) Y /O[-FZ)

The meaning of these functions is further clarified by
introducing another hierarchy of functions. We define a local’

potential
ulr)y = p = Ve, (9 (IT.2-22)

and we transform the equation (II.2-6) as

R LAl = _Jd:pmum + TPl (11.2-23)

If we take the functional derivative with respect to u(T) we obtain
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58,01 _ - P (F) (II.2-24)
Sulr) °

and that is, by successive iterations, another series of hierarchic

functions. Explicitly

G (F,,F) = §° &pelrd)

SulFa)
= )  pFDE T - AFIAT) (112729

2),»
where ¢ )(V' ¥,) is the usual pair distribution function (71). By using
P \ish2

the eq. (II.2-20) we can write the first of equations (II.2-21) in

the form
I iu(f:)) = g{é;ﬂgfi) - C E/Oos—}:" :;aj = K(;f :;2) . (IT:2-26)
P2 Po

One can see that K(;l’?z) is the inverse of G(Fl,?z)
JdF1 G(.F,‘) F) K(i",' ,F') - é(?";l) . (II.2-27)

With these definitions we can see that eq. (II.2-27) is nothing but
the Ornstein-Zernike equation, providing that ¢[p,;¥,%] = CQE"E))'
We can conclude by saying that the function C [Ioo;.‘\% ,?’e] is the direct

correlation function of Ornstein-Zernike, generalised to the case of
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a non-uniform fluid.

The last step of the theory consists in expanding the
difference in the grand canonical potential, AQER[}’]“QL between
the non-homogeneous and homogeneous fluid, in terms of the
corresponding difference in density, Ap(;)sp(f:)-—p,‘, for sufficiently
small differences. The effective potential C [F; *1 , as defined

in eq. (I1.2-19), can be functionally expanded around its value Cl

corresponding to the uniform fluid

i =c + JWQCC:«::& Ap ) ngaad‘»:; B

x Ap(F)aplrs) + ... ‘ (IT.2-28)
- 3 <.
where c(rl,i’z) and c( )(?l, ?2,?3) are the quantities defined in

eq. (II.2-21) (we have omitted the functional dependencies on /o(;)) .
In the same manner one can expand the contribution of the interactions

to the free energy @,
§ = B+ 4R L 8p For L |47,47, <67 o) A Ap (T v (11229

The difference ASY we were looking for can be easily determined

by writing again the eq. (II.2-23) as
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S = ‘3‘—3'-,0{ *Bid *[d?/otﬂ u ()

= - .;.)3—1[6?/0(;) [ctmy =13 (I1.2-30)

and substituing in it equations (II.2-28) and (II.2-29)

PAQ =p (- ) = —-J‘ci'xz1 Ap(F) + %j&ﬁd?a clim,m) Ap(F) [pR) +p,]

+ %P"’«dﬁ;d% B ) [20@E)+p T Ap(R) Ap(Fs) +...  (I1.2-31)
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IT.3 Freezing in a crystalline phase

The volume change at freezing, as we can see from
Tables (I.3-1) and (I.5-1) of Chapter I, only in a few cases exceeds
15 %. Then, assuming that the transition can be treated as only
weakly of the first order we apply the density functional theory of
Section 2 at the uniform fluid - perfect crystal transition.

In a theory of freezing one start from the fluid phase
side. We describe the uniform fluid phase by a uniform density PL
and we inquire for the existence of coexisting crystalline solutions
of prescribed lattice symmetry at the equilibrium between the two
phases. We simplify the problem inquiring for freeéing of the fluid
into a prescribed crystal lattice leaving the question of the - relative
thermodynamic stability of the different crystalline lattices to
later studies.

Let us expand the solid phase density in its Fourier
components,

-

Lk

,oS('\:) = pL('1+q)-;- PL };/JH e (I1.3-1)

where V)= RPs ~PL is the fractional density change and the Fourier

P
coefficients,/un , are the 'order parameters' of the theory (}Ah =0



53

in the liquid phase,);n # 0 in the solid phase). The translational
and .rotational crystalline symmetry of /95(?> is guaranteed by eq.
-
(II.3-1) if respectively k 1is a reciprocal lattice vector of the
n
given direct crystalline lattice and if all the Ma o corresponding
to a given 'star' of reciprocal lattice vectors, are identical.
Taking the infinite volume limit and relaxing to external field
V = 0, for the non-uniform equilibrium density we get the equation
Rad
-1 PMs clr)
Ps = N € e . (II.3-2)
If we use for c(}’) the expansion (II.2-28) truncated at the second

order, the equation (II.3-2) becomes

& s (B > = -
pAg HAEC(‘;’;)[F(E)—PJ 1—]&%;&%2 < Cmrar) (Pl = A1 [-PW)“PL]}
pF)=pe e (11.3-3)

where /;)Lz/-&-:1 eﬁ/ULJr “ and A’M is the difference of chemical
potentials between the two phases (vanishing at coexistence).

For the determination of coefficients c(?,;l) and
c (r‘,r_? ,1—4’2) we refer to the uniform liquid. It follows that

- P ~

c(r,prp = CUV“Fﬂ} . (11.3-4)
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Inserting the eg. (II.3-1) in eq. (II.3-3) we obtain

LKook

= 4 ® 2 4 =) 2 ()
ln BsCrd _ J’Q,A).A .;_ccvl.;--é.co’oq 1—2-;%_”/4“ 1-;(%-&—6;%0'!_)]4”9 n

PL
1 Z CCS) ei(kh+ KW‘).P
N E vi,m mm )AW}"{M
3

(3)

where ¢ and c¢ are the Fourier transforms of the Ornstein-
n n,m

(I1.3-5)

Zernike direct correlation function, c(r), and of the triplet direct

. . (3B), = =
correlation function ,c¢ )( Fsfaste),

- ':En';
c, = PJ’AY c(r) e (I1.3-6)
;-T‘ + LK ? 7
_ 2 - - (B),~» —» = L n 1z m 134
Ca,m = P J&P,'Zdrﬁ) c (V17Y‘2!r5)e . . (I1.3-7)

The integration on T of the exponential form of the eq. (II.3-5)

-

-3
leads, for the components at k =0 and at k £ 0 , to the set of
n n

equations

A [ m }
o P 7S
V — i nd
ke LRyt K )
L% LA%h m
Jére e , (11.3-9)

. 8
Pi Y

where for conciseness we have put
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(3) 2 (2) 2
X°=Co +%C 12 -n/uha

(3
Xh = (Ch + Ch)o h_)j"n b4

RS
Zaym = z Chym M P -

The equations (II.3-8) and (II.3-9) can be solved for a

set a values and c . The conditions =0 and pu: = 0,
¢ “ {Cn} { n,m} nson Mi
corresponding to the liquid phase, are always a solution while a
solution with n £ 0, M # 0 and periodic ‘p(:) can occur for an
opportune choice of -{c } and -{c }
n n,m

The two phases will be in equilibrium if the difference

between the thermodynamic potential,S?.5 , of the solid and that,

2

Lo of the liquid is zero. The thermodynamic potential variation
in the liquid-solid transformation,ASE , 1s obtained by subs%ituing

in the eq. (II.2-31) the Fourier expansion (II.3-1) and using the

equations (II.3-6) and (II.3-7)

PAQ - (<, —1)}1.,._.(c +CO°) : ;3 Si"(+ Z[C *(2"[*‘1)5 ]/“g

3)
Ly e,
= < ).A\ (I1.3-10)
hym h/wm /)¢ y
Smm ¥
- - -
The last sum will appear only if the condition kK =k + Kk is
p n m

satisfied. The equations (II.3-8), (II.3-9) and (II.3-10) are the

basic equations that is necessary to solve in any application of the
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freezing theory. The first order character of the liquid/solid phase
traq?ition is preserved by the non-linearity of the equations.

Some insight into the physical interpretation of the
. freezing process can be gained if we are able to connect quantities
like c(T¥) and C(Fl;;é), that appear in the freezing equations, to
more immediate physical concepts.

It is well known that the static response function )LCK)
of a classical fluid to a weak external perturbation, which couples
with the density fluctuations, is correlated with the static structure

factor, S(k), through the equation

X(k) - _ P S5(k) . (I1.3-11)

L

And, if we remember the Ornstein-Zernike relation, we can also connect
the response function to the Fourier transform of the direct correlation

function, c(k), using the relation

Sk) = 1 i (II.3-12)
1 - c(k)

S(k) is simply proportional to the static response and

it can be interpreted as a 'generalised softness' of the fluid in
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response to a weak density perturbation with wave number k. This
interpretation of S(k) is a direct extension of the well known

®

relation

Lim Sk) = pk,T K, (11.3-13)
k-0 ‘
where KT, the isothermal compressibility of the fluid, denctes the
degree of 'softness' of the system in responsé to a uniform compression.
The equation (II.3-11) is the generalisation of eq. (II.3-13) to an
arbitrary wave vector.
In Fig. (II.3-1) is shown the structure factor, S(k),
for a monatomic fluid in two different thermodynamic states, (i) real
gas and (ii) liquid near freezing. Qualitatively one can state that
it is much more difficultlto compress the liquid .n the thermodynamic
limit (rel. (II.3-13)), and that it is instead much softer and can
be easily modulated in the density through perturbations with wave
number in the region of the peaks (rel. (II.3-11)).
Let us return now to the equations of freezing (II.3-8),
(I1.3-9) and (II.3-10). The eq. (II.3-10) is composed of the sum of
terms depending on 1 and terms depending on )Ah . Then thé solution
AxSE. = 0, which corresponds to the equilibrium of the two phases,

exists if the change in free energy due to the change in the average
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Fig. II.3-1: Structure factor, S(k), for two thermodynamic states:
real gas and liquid near freezing.

density is compensated by thelchange in free energy due the modulation
in density. More particularly, free energy is gained in the first

case while it is expended in the second case. The most efficient way
of 'switching on' the transition is therefore to modulate the system

with a perturbation with wave number in the region of the peaks.

The development and first applications of this theory
have been given by Ramakrishnan and Yussouff (17). They analyse the

freezing of the hard sphere system and of argon in the f.c.c. lattice,
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the freezing of molten sodium in the b.c.c. lattice and the freezing
of the hard disk system in a two-dimensional h.c.p. structure.

) The input information required are only the crystal
structure and the fluid compressibility (related to co). In
Table (II.3-1) the crystallographic data for the s.c., f.c.c. and
b.c.c. lattices are collected. The first 12 stars of reciprocal
lattice vectors of the s.c. structure are classified according to
the increasing value of f;|2 =h + k2 + 1.

The output obtained are values of the direct correlation
functions cj, of the volume change on freezing n o of the entropy
change AS and of the Debye-Waller factor at freezing.

In Table (II.3-2) are reported the freezing parameters
for argon (f.c.c.) determinad by Ramakrishnan and Yussouff. The results
in the first row have beenvobtained using only the first star of the
reciprocal lattice vectors, of the type (1,1,1). In the second row,
the results obtained introducing a second star of reciprocal lattice
vectors of the type (3,1,1) are shown. The third row reports the
results obtained introducing the three-body direct correlation
function C(3) in the equation for the grand potential change. The
same considerations hold for the freezing parameters of soaium (b.c.c.)

listed in Table (II.3-3). The numbers are all in good agreement

with those available experimentally.




60

(E')Zzn k s B.c.c. F.c.c. exp i(k-71)
n n n
9 (0,0,0) 1 yes yes 1
1 (1,0,0) 6 no no 2(cos X + cos y + CcOS z)
2 (1,1,0) 12 yes no A(cos X cOS ¥ + COS X COS Z
+ CcOs y cos z)
3 (1,1,1) 8 no yes 8(cos x cos y cos z)
4 (2,0,0) 6 yes yes 2(cos2x + cos2y + cos2z)
5 (2,1,0) 24 no no 4(cos X cos2y + COS2X COS ¥y
+ CcOs X co0s2z + Ccos2X COS zZ
+ cos y cos2z + cos2y cos z)
6 (2,1,1) 24 yes no 8(cos x cos y cos2z
+ COS X CcOSs2y cos z
+ COS2X cos y cos Z)
7 —_— 0 — —— e
8 (2,2,0) 12 yes yes 4A(cos2x cos2y + cos2x cos2z
+ cos2y cos2z)
9 (2,2,1) 24 no no 8(cos2x cos?2y cos z
+ cosS2X cos y cos2z
+ cos x cos2y cos2z)
(3,0,0) 6 no no 2(cos3x + cos3y + cos3z)
10 (3,1,0) 24 yes no 4(cos x cos3y + cos3x cos ¥
+ cos x cos3z + cos3X cos Z
+ cos y cos3z + cos3y cos z)
11 (3,1,1) 24 no yes 8(cos3x cos y cos gz
+ cos X cos3y cos z
+ cOos X cos y cos3z)
12 (2,2,2) 8 yes yes 8( cos2x cos2y cos2z)

Table II.3-1:

The successive stars of the s.c. structure listed

- 3 . g
according to increasing wave-vector length |k |
n

s is the number of r.l.v.

n

in the star n.

1
=k up to k = (12)
n n

/2
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c c ;

N j n ‘? FJ /“h
Theory I 0.95 0.00 0.074 0.0598 0.20
{one order parameter)

Theory II 0.65 0.23 0.270 0.90 0.75
(two order parameters)
Theory III 0.65 0.23 0.166 0.91 0.74
(two order parameters with c =-110.0)
oo
Experiment 0.65 0.23 0.148
Table II.3-2: Freezing parameters for argon (f.c.c.). From ref.(17).
Cj Cn n Mi Hn
Theory I 0.69 0.00 0.048 0.70 0.31

(one order parameter)

Theory II 0.63 0.07 0.052 0.71 0.71
(two corder parameters)

Theory III O.§7 0.13 ( 0.029 0.63 0.34
(two order parameters, ¢ =-75.0, c_ . =-0.103)
00 J 'J'l

Experiment 0.66 0.12 0.026

Table II.3-3: Freezing parameters for sodium (b.c.c.). From ref. (17).
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IT.4 A simple application to freezing of metallic systems

The volume change associated with the liquid/solid
transition of metallic systems rarely exceeds a value of 6 % for
metals that freeze in b.c.c., f.c.c. and h.c.p. lattices (see Table
(I.3-1)). This suggests to consider the fluid phase as 'virtually'
incompressible. So the freezing equations can be simplified using
the incompressibility limit approximation , i.e. volume change
n —+ 0, —co—>0° but ¢ v finite. Using this approximation we
have applied the Ramakrishnan-Yussouff theory to the freezing of
metallic systems.

For molten metals that freeze in the b;c.c. lattice we
have used only the smallest set of reciprocal lattice vectors‘ignoring
all other order parameter modes. The smallest set -{Ei} are reciprocal
vectors of the type (1,1,0) and correspond to the principal peak in
the structure factor S(k) (see Fig. (II.4-1)).

The structure factor of a f.c.c. metal (Al) is shown in
Fig. (II.4-2). The dominant order parameter comes from the density
fluctuation mode with a wave vector k corresponding to the position
of the first peak. Placing the first star of reciprocal lattice

vectors (vectors of the type (1,1,1)) under the first peak we see

that also the second star of reciprocal lattice vectors (vectors of
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(1,4,0)

S(K)

(2,0,0) (24,1 (2,2,0)

% - ]
* k(A °
Fig. IT.4-1: Structure factor of molten Na near freezing. The
vertical lines are the relative star positions of r.l.v. for the
b.c.c. lattice.

Al
3
{11 ‘)
5(K) ’
(2,0,0) (2,0,0)  (3,1,1)
3 * k&N P
Fig. IT.4-2:

Structure factor of molten Al near freezing. The
vertical lines are the relative star positions of r.l.v. for the
f.c.c. lattice.
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the type (2,0,0)), is situated in the region of the first principal
peak of S(k). For the f.c.c. metals we have done two distinct
calculations. In the first one only the first star of r.l.v. has been
considered while in the second one we have added the second star {E,UJ%
to the first star{j,gg}. In the second case the freezing equations
are practically equal to the first case, the only difference being
the number of reciprocal lattive vectors taken into account.

For metals that freeze in the h.c.p. lattice quite similar
considerations to the b.c.c. case hold. The structure factor S(k)
of zinc is illustrated in Fig. (II.4-3). Under the first peak we have
placed the second star of r.l.v. because the vectors of the first
star have a too small length. Also in this case twb distinct
calculations have been performed. In the first calculation we have
used the set named 2 (see Fig. (I1.4-3)), while in the second
calculation we have used both sets 2 and 1. Nevertheless, the
equations necessary to describe the freezing into a h.c.p. lattice
are different from those of the f.c.c. and b.c.c. cases. The basic
difference resides in the fact that in the h.c.p. lattice there are
two atoms per unit cell. The adapted set of freezing equations for
the h.c.p. systems have been developed by Yussouff (72) introducing

a 'density structure factor' f in order to take account for the

density variations within the unit cell.



o Set 2 Zn
3L
S5 Set 4
Set3 Set4
2L

5 7.'5 k (&-1‘) '1‘0

Fig. IT1.4-3: Structure factor of molten Zn near freezing. The
vertical lines are the relative star positions of r.l.v. for the

h.c.p. lattice. Set 1: (100), (010), (1-10), (-100), (0-10), (-110).
Set 2: (101), (-101), (0-11), (-10-1), (O11), (10-1), (O1l-1), (0O-1-1),
(1-11), (-111), (-11-1), (1-1-1). Set 3: (102), (-102), (012), (0-12),
(-10-2), (10-2), (0-1-2), (01-2), (1-12), (-112), (-11-2), (1-1-2).

Set 4: (112), (-1-12), (11-2), (-1-12), (2-12), (-212), (1-22), (-122),
(=21-2), (2-1-2), (~12-2), (1-2-2).

The results of all calculations are shown in Table (II.4-1)
in which the experimental ranges are derived considering all the
metals listed in Table (I.3-1). Qualitative agreement with the

experimental values is obtained despite the roughness of the model.
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c -Mc
- 1 % o
Theor 0.7 1.71
B.C.C. ¥
1
metals Exp. range 0.58 - 0.64 0.82 - 1.51
T
heory 1. 0.98 0.8
F.C.C (1 star of r.1.v.)
e Theory II
tal 0.56 0.8
metals (2 stars of r.l.v.)
Exp. range 0.59 - 0.64 1.2 - 3.5
Theory I
(1 star of r.1l.v.) 0.94 1.35
H.C.P. S e
Theory II
metals 0.63 1.35
(2 stars of r.1.v.)
Exp. range 0.6 - 0.65 1.7 - 3.1
Table II.4-1: Freezing parameters for B.C.C., F.C.C. and H.C.P.

metals in the'incompressibility limit' approximation. Experimental
ranges refere to the metals listed in Table (I.3-1). ’
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IT.5 Application of the theory of freezing to the hard sphere

system

The freezing of the hard sphere liquid is one of the most
direct applications of the theory. Using analytical structural
information about the liquid' of hard spheres and no computer simulation
results, Haymet (68) has been able to predict the liquid and solid
densities at which the freezing into a face cubic centred lattice
occours. We shortly present the Haymet results.

The theory of freezing as it has previously presented
needs, for the purpose of calculation, same well-defined approximations.
The first approximation concernes the expansion (Ii.S—l). The sum
that appears is, in principle, over an infinite number of vectors
but in practice it must be truncated after a finite number of terms.

The second approximation is connected with the expansion of c(F)
around the value Cl corresponding to the uniform liquid (eq. (II.2-28)).
This expansion is truncated after the second order terms 0(3)(;i,;é;;3).
The third approximation consists in putting equal to zero the
coefficients ciz) for Eg and Eg different from zero that appear
in the equations (II.3-8), (II.3-9) and (II.3-10). The last
approximation concerns the choice of a theory of the liquid structure

(3

from which to obtain the coefficients ¢ and ¢ . The analytic
n no
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solution of Thiele (73) and Wertheim (74) of the integral equation

of Percus - Yevick (75), has been chosen. In this scheme we have

c. = —4—'?Tpa-3(k6)-i[)\.111(k,,)+ 6le2Ta(kn)+1zgl4IA(kh)], (11.5-1)

n

C = ~-C + P _D__ Cn (11.5-2)
W}O n 'alo 4

where

1 :
Ij(kn) =J dx x* sin(k,ox) ,
A, = (1“*23)2/(1“-5)4 and A, = ~(’i+tj/2)/(1~g)4

with Yy = ?%L P 6'3 packing fraction. Tﬁe equations of the
freezing (II1.3-8), (II.3-9) and (II.3-10), with the use of structural
data of the liquid (equations (II.5-1) and (II.5-2)) can be
numerically solved.

Table (II.5-1) and Fig. (II.5-1) show the freezing results
of the hard sphere into the f.c.c. lattice. As clearly shown by the
T.able, 15 shells of R.L.V. have been used to obtain convergence. From
Fig. (II.5-2) one can see the relative position of the 15 shells once
the first one has been fixed at the first peak position of the structure
factor S(k). In Table (II.5-2) the values of the liquid and solid

densities and of the volume change are compared with those of the
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k s k b4 A
| nI n n Hn n n
0 0.0860 -5.096
3 8 (111) 0.998 0.719 0.895
4 6 (200) 0.891 -0.027 0.436
8 ° 12 (220) 0.918 -0.151 -1.483
11 24 (311) 0.875 0.244 0.898
12 8 (222) 0.863 0.080 0.425
16 6 (400) 0.805 -0.252 -1.138
19 24 (331) 0.773 0.005 -0.188
20 24 (420) 0.760 0.079 0.164
24 24 (422) 0.717 0.079 0.383
27 8 (333) 0.686 -0.061 -0.237
27 24 (511) 0.680 -0.060 -0.237
32 12 (440) 0.636 -0.068 -0.407
35 48 (531) 0.608 0.017 0.017
36 24 (442) 0.601 0.039 0.146
36 6 (600} 0.593 0.039 0.146
Table II.5-1: Freezing parameters for hard spheres at the density
0.976 from the Percus-Yevick structure factor. x is defined as
X 4 tz).2 4 (8) . 3 n
o= Gl * 5 Cop U + E;Chb P (3))<YI = Cenx Cho\'L)jun )
An is defined as ¢, +(2n+1)¢,, . Data from ref. (68).
05
~ 086
Aw
Aw 7 Yl
0.0+ —.680
- 855
-0.5
—.050
- { L
1‘00,90 085 100 165
P
Fig. II.5-1: The thermodynamic potential MAw and the fractional

density change on freezing m for the hard sphere freezing. From
ref. (68).
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3_ -
Sk}
z__ -
-
0 H
b 5
Fig, II.5-2: The liquid structure factor, S(k), for hard sphéres

at a density close to freezing o = 0.95 and the relative magnitudes
of the r.l.v. of the f.c.c. crystal. From ref. (68).

Monte Carilo

Theor
Y simulations
es 1.035 1.036 - 1.041
e, 0.976 0.939 - 0.948
n 0.06 0.09 - 0.11
Table II.5-2: Numerical and computer predictions for freezing

of hard spheres into an f.c.c. lattice. The values are in units of

3

<3 , where o 1is the hard sphere diameter.
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Monte Carlo simulation of Hoover and Ree (39). The predicticns of the
theory are in good agreement with them.

The freezing of the hard sphere system has been reinvestigated
by us using a self-consistent procedure for the choice of the lattice
constant and consequently for the input liquid structural data. No
solution of the set of freezing equations was found. Afterwards,
we have enquired for the freezing of hard spheres into a b.c.c. and

1

a h.c.p. lattice. Also, in the b.c.c. case no solution has been found.
The main reason for this failure is the strongly negative value of

-
the direct correlation function CE (G2 denoting the (2,0,0) star).
Nevertheless, we cannot exclude the freezing of hard spheres into a
b.c.c. phase because of omission of terms like the three body

. i (3) . ) . )
correlation function ca-.a in the freezing equations. That this would
1’2

be the case has been demonstrated by Rovere and Tosi (76) for the
freezing of a classical plasma on a neutralizing background into a
b.c.c. lattice. They found that a quantitative role is played by

couplings between some of the order parameters of the transition, the

more important one being that beéetween the order parameters fﬁf and
4

i.e 0(3)
- 5 22, - -
G ,G .
Mg, G,
At the time of writing, we have only preliminary results

for the freezing of hard spheres into the h.c.p. lattice.
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IT1.6 Entropy change on freezing

The change of the thermodynamic quantities on melting/
freezing is experimentally determined by measuring the (P-T)-co-
ordinates of the melting curve and one of the quantities appearing
in Clausius-Clapeyron equations dP _ AH, i.e. either the heat of

dT TAV
melting 4 H or the volume change AV at melting. From calorimetric
measurements, the enthalpy of melting per mole (or per particle) can
be obtained. These experimental values of the entropy change must be
compared with those coming from the theory of freezing.

From the theory, which is developed in the grand
canonical ensemble, we obtain the change of the gfand potential 'per

unit volume", ZXS?'AV. The corresponding entropy change per unit

volume, defined as ATS_ = (8-5,)/V, is given by

(I1.6~1)

L o)
T by T

- 208N

WH-— 3_T v, M

AS _ _ (82 /V)
v

7

However, caution is needed in using the theoretical expression of the
grand potential change Zﬁgz (eq. (II.3-10)) in this calcu}ation,
since the theory is approaching the ccexistence point from the liquid
side only. If no caution is taken on this point, one findsa result

for AS which (obviously incorrectly) depends on the atomic mass.
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To overcome this difficulty we have sought to determine
the entropy change on freezing by starting from the chemical potential

change Z%M . More precisely, we have solved the set of equations

() 3 2
; Coal +1 +Co )q+(c -1 12-; c +(2Q+1)C ] =0  (11.6-3)
K v c(Kvﬁrk )
fie Ko {200 4 D K }
Pi= (1+n) (I1.6-4)

[ T ST

the condition on the equality of the chemical potentials of the two

phases at equilibrium being expressed by

L . L k+Km)
the h ""thm ( P}}
pA/h[n('lﬂq) ~%g —Ln{ Ja\re ) k:ﬂ (11.6-5)

By solving the new freezing equations (II.6-3), (II.6-4) and (I1.6-5)
we get a funttion AVA::AF(PL)WhiCh vanishes at the transition.

We now present the application of the above freezing
equations to the entropy change determination of the hard sphere
system.

From thermodynamics we have for the entropy change

per particle

As=5,-5 = 'afuu}_ Pps| _ A (11.6-6)

0T
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and using the P-Y equation of state for hard spheres,

2
P _ 1l+y+y (II.6-7)
Pkl (1-y)®
we get
As 1 -y 2 (PAM (I1.6-8)

PLliz2g? ap

in which all the quéntities can be extracted from the theory.
By means of A“N one can also, in a certain sense, verify
the thermodynamic self-consistency of the theory. In fact, starting

from the thermodynamic relation Vv — EL&_ we get, for hard spheres,

oF Ir
the equality
1 (=Wt (R
= P — (1I1.8-9)
’{-.-yl (1+2y) 0P

which must be verified at the two-phase equilibrium once we have
solved the equations (II.6-3), (II.6-4) and (II.6-5). Using 21

stars of reciprocal lattice vectors, we have obtained for the entropy
change A s = - 0.62 k,(to be compared with A Sexp = " lf16 k, from
Table (I.2-1)). The values of the two sides of the equality (II.6-9)
differ for about 24 %. The reason for which this "thermodynamic

consistency'"fails is not yet well understood because of the complexity

of the approsimations involved.
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CHAPTER III

FREEZING OF IONIC LIQUIDS
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CAHPTER TIIT

Freezing of ionic liquids

In this Chapter we present a theory for the process of
freezing of ionic liquids (19,19,77). For this aim one will have to
refer to much of the content of Section 5 of Chapter I and of Section
3 of Chapter II, i.e. the introdﬁctory survey on the experimental
data of the liquid-solid transition in ionic systems, and the general
description of the freezing in a crystalline phase.

Section 1 of this Chapter deals with main features of
ionic systems near freezing. The structural properfies, as derived
from neutron scattering experiments, of the alkali chlorides NaCl,
KC1l and RbCl and of 2 : 1 chlorides CaClz, SrClZ, BaCl2 and ZnCl2
are compared and contrasted. In this Section we also put in evidence
the transition of Sr012 and BaCl2 into a superionic phase with
fluorite-type structure.

In Sections 2 and 3 we examine more specifically the
freezing mechanisms of molten alkali halides typified by NaCl and
RbCl on one hand, and of molten fluorite~type materials Srél2 and
BaC12 on the other hand. A rather different mechanism is found for

these two classes of materials since: (i) the volume change across
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the transition for alkali chlorides is large ( ~ 20 %) and the fluid
phase is characterised by a strong charge ordering; (ii) the volume
change for 2 : 1 chlorides is small (~» 3 %), they freeze into a
superionic phase and the liquid is characterised by a strong ordering
of the divalent cation component. The results we have obtained are
presented and discussed in these Sections.

In Section 4 we give a comparative discussion of freezing
for the two previous classes of compounds, based on the numetical

results and on the freezing mechanism described in Sections 2 and 3.
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IT11.1 Partial structure factors and pair correlation functions

In view of the application of the theory of freezing to
the alkali halides and to the superionic conductors it is essential
to know the liquid structure. In fact, one will finds that the
freezing process is strictly related to the behaviour near freezing
of the partial structure factors Sdﬁ(k) or of the Bhatia-Thornton
(78) structure factors S_ (k), S (k), 8 (k). First of all we

NN NQ QQ

review the way in which all the structural informations can be

extracted from the X-ray and neutron diffraction experiments.

(a) X-ray and neutron diffraction

The natural way to introduce the liquid structure
factor, S(k), is to look at the scattered intensity I(6 ) measured
in an X-ray diffraction experiment. If we introduce the variable

=(4T/X)smB8 , in which A is the wavelength of the incident
radiation and 8 is half the scattering angle, then S(k) is

defined (for monatomic fluids), by

S(k) = T(B)Y/ (N F(x) (II1.1-1)
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where N 1is the number of atoms in the liquid sample and f(k) is
the atomic scattering amplitude. The liquid structure factor is

related to the pair distribution function g(r) through

<D
S(k) =4 +4Tn | [q(r) ~ 1] sin(kr) (24, (I11.1-2)
Kr

¢}
where n is now the number density of particles in the sample.
g(r) is defined so that dhr ='¢ﬂW13(r)r?dr gives the number of
paticles occupying a spherical shell of radii r and r % dr.
Alternatively

gry = 1 4 ﬁiz.;[[f)(k)—ﬂ SJL\‘LEtlkdk , (III‘.l—S)

which allow us to derive g(r) rather directly from the measured S(k).
For a two-component liquid, such as NaCl, there are three

partial pair distribution functions g (r), g (r) and g (r) and
-+ -

correspondingly three partial structure factors S +(k), S (k) and
+

S+ (k). The partial pair distribution funtion g°<ﬁ(r) is defined by
placing an o« -type ion at the origin and asking for the number of

f5 -type ions that occupy a spherical shell of radii r and r + dr.

That number is given by

dnh = 4—’1Tn}S 9@({30-) 2 dr (I1I.1-4)
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where nﬁ = Nﬁ /V is the number density of ions of species ﬁ (for

alkali halides, n =n = 1/2 n with n the total number density of
+ —

®

ions). The partial structure factors are defined by
g _ 172 [ - ken) 2
So(p(K) = o(p-t- 47 (nd\nb) JO[SO(p(r) -1] 5_“:r.,,__."‘ wdr . (III.1-5)
The scattered intensity per unit volume is given by
2 4
T1(k) = rzjf(k) S, K+nf ()8 (k) + 2 F)FW)S, (k) (II1.1-6)

where fo( (k) is the scattering amplitude of the ions of species .
The experimental results are often presented in the form of functions

agp (k) defined by

a, (k) = 1 n Sealk) = 8&,.) (III.1-7)
*P N (v\qh%)“ac “F “P

in terms of which the scattered intensity is given by
2
= h - L1-
T(k) %no(ﬁ((k) *é(“‘ne)ﬁe(k)’cﬁ(k)[a@(k) 17 . (I11.1-8)

The same expressions (III.1-6) and (III.1-8) hold for

neutron diffraction, with f (k)'s replaced by the neutron scattering
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length f,, . T4 is now independent from k but dependent on the
isotopic state.

The experimental scattered intensity I{k) is a weighted
average of all the partial structure factors but if I(k) can be
changed by isotopic substitution, enough data can be obtained in
order to extract the partial structure factors. More precisely, for
a binary fluid (such as molten NaCl) the "isotopic substitution"
technique requires measurements from three samples of the same chemical
material prepared with different isotopic concentrations of the
components. The different isotopic concentrations change the value
of each f, that can be made very different in three samples, while
the partial structure factors remain the same in the three samples.

This method was applied extensively to the study of
molten alkali halides (79 - 82) and of molten alkaline-earth halides
(83 - 85). The experimental results are sensitive to errors in the
neutron scatteringamplitudes. One good way to test the reliability
of these experimental results is to compare the measured X-ray
pattern with the one obtained from neutron data. Such a test is
shown in Fig. (III.1-1) for molten NaCl (81). In order to obtain a

37
good agreement an adjustement of the scattering amplitude of Cl

is necessary.
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Fig.ITI.1-1: The normalized coherent x — ray scattering intensity

i (k) of molten NaCl. Full curve, derived from neutron partial structure
factors; dotted curve, from x - ray diffraction experiments. From
ref. (81).

(b) Structure of molten salts

Let us first consider the results of a neutron experiment
on the molten NaCl at 875 °C, carried out by Biggin and Enderby (81).
The partial structure factors and the pair distribution fuﬁctions
are shown in Figures (III.1-2) and (III.1-3). From these data some

general properties of Soig(k) and go(ﬁ(r) for 1 : 1 ionic melts
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Partial structure factors for molten NaCl at 875
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°C.
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Fig.IIT.1-3: Pair distribution functions for molten NaCl at 875 °C.
Full ; brok ; dotted curve . From
ull curve, g aCl roken curve, gClCl otted cu ; gNaNa
ref. (81).

can be identified. They include:

(i) a peak in 8 (k) and S (k) at the same wave number

++ -
°-1

(k ~ 2 A "), where a corresponding dip is presented in 8 (k). The
Fourier transforms of qu (k) consequentely show an alternation of
the distribution of the charge as shown by Fig. (III.1-3). One sees
a well defined first-neighbour shell of anions (cations) around a
cation (anion). The presence of a second shell of like ions is also

evident.

(ii) The first peak of S (k) is rather weak.
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(iii) g++(r) and g__(r) are very similar (even though
the ;pnic size of Na+ and Cl‘ ions is quite different.

(iv) g++(r), g+-(r) and g-ﬁ(r) are in phase and for

o

r » 4 A the cancellation of charge is complete.

(v) a small penetration of the like species into the
first coordination shell.

Property (i) reflects the relative ordering of the two
jonic species induced by the Coulomb interaction, while property (ii)
indicates that the order is rapidly destroied beyond the first
coordination shell.

Some of the features previously stated can be better

appreciated by introducing the Bhatia-Thornton (78) structure

factors. For 1 : 1 ionic melts they are defined by

Saall) = L[S0 +S (W -2S,.K)] (II1.1-9)
SQN(K) - %[5++(K) - 5__(*0] R (IIT.1-10)
SNN(k) - jé"[s’“*(k) +35 (k) +?.6+_(K)] . (III.1-11)

s (k), s k) and S (k) are respectively linked to the fluctuation
0 ) NN( ) NQ ) pectively ctuati

in number density n(T) = n+(?) +n () and to the fluctuation in

"concentration" q(T) =n () - n (?) through the relations
+ —
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Saqtk) = "éig < qK)q=K)y | (II1.1-12)

Sl = éln- {n(K) h(—ﬁ)>, (II1.1-13)

Spal®) = _41_. < n (k) q(—F) + n(-¥) q(K)) (III.1-14)
n

Fig. (II.1-4) illustrates these three functions for molten NaCl from
the data of Fig. (III.1-2). The previous properties are easily recognized
from Fig. (III.1-4):

(a) property (i) is reflected in the strong main peak
of SQQ(k) at the same wave number k showing a good short-range
order in the charge density.

(b) Property (ii) is reflected in the small coupling
between charge-charge and density-density fluctuations, that is in
the small value of SNQ(k).

(c) Property {iii) is reflected in the behaviour of
SNN(k) which shows a poor ordering in the number density.

Now let us proceed to an analysis of some specific
properties of a range of molten salts and more precisely of the

alkali chlorides NaCl, KCl and RbCl and of the divalent-ion chlorides

SrCl , BaCl , CaCl_ and ZnCi _.
2 2 2 2
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Fig. IT11.1-4: Charge-number structure factors for molten NaCl at
875 °C from the data of Fig. (III.1-2). From ref. (86).

b. 1) NaCl, KC1 and RbCl

Table (III.1-1) collects a set of structural data for
molten NaCl, KCl and RbCl. In the first three columns are reported

the wave numbers kl and k3, that correspond to the position of the
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k k k r r r n n
. 1 2 3 +— ++ - c n

EH @Y @& A K& &

NaC1(875°C) 1.8 2.6 3.5 2.78 3.96 3.91 3.9 5.2

KC1 (800°C) 1.6 2.3 3.0 3.06 4.84 4.82 4.1 6.1

RbC1(750°C) 1.5 2.1 2.9 3.18 4.86 4.80 3.5 6.9

Table III.1-1: Structural properties of molten alkali chlorides
from neutron diffraction. From ref. (86).

first and second peak in S (k) and S (k) and the wave number k2
++ -

that corresponds to the first peak in S+ (k). We must note the

) and k_ =~ 1.9 k_ that
3 1

regularities k & 1.4 k=~ 1.1 (2™ /r
2 1 +
appear on the relative peak positions.

The next columns show the average positions r , r and
+- ++

r of the first peak in the corresponding pair distribution functiions,

i.e. the average distance of the three types of neighbouring pairs.

In this case the regularities r =~ r =« (1.4+ 1.5) r are also
++ - +-

evident.
In the last two columns are reported the coordination

numbers n and n for unlike ions. These two kinds of coordination
c n

2
number can be extracted from r g (r) by integration (87). The
+—
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"slogse-contact'" coordination number, n , is obtained from
c

rqu 2
N, = ZJ 4Mnr g _(r) dr (III.1-15)

}'

]

“where ro is the left-hand edge of the first peak in g+ (r) and r
, - max

is the position of the first maximum in r g (r). Only data on
+-.
short r-side are used. The "near-neighbour" coordination number, nn,

is defined through

) "min 2
h :J 4Trnrg (rmdr (II1.1-16)

Fo

- 2
where r in is the position of the first minimum in r g (r). We

would like to stress the fact that the difference between these two
sets of results is linked to the ambiguity of the definition of
coordination number in a liquid. The reduction in coordination
number from 6 (solid) to ~ 4 (liquid) reflects the large increase

in molar volume of the alkali halides on melting as can be checked

from rel. (I.5-1).

(b. 2) Divalent-ion chlorides

Four molten divalent-ion chlorides have been extensively



90

studied by neutron diffraction experiments. They are CaCl2 (83},
Srcl, (85), BaCl, (84) and 2nCl, (45).

The pair distribution functions are compared in Figures
(f1r.1-5), (IIr.1-6) and (III.1-7). The dependence of these functions
on the ion sizes has been removed using for each salt the normalised
distance r /(r+ ; r‘) in which r, and r are the cation and anion
radii. The main structural features of these four compounds are
summed up in Table (III.1-2).

From Fig. (III.1-5) it is evident that the pair

distribution functions g (r) of BaCl2 and Sr012 are similar. The
++

first £ d occur at a shorter distance than those
irst peaks o gCaCa an anZn a t
WSk
Lo secly,  ——————
Ball,  -----------
5 Call, =—===-=-
ntt, — — —
30+
T 2sb
S
20 F
15+
10| —
05|
0 5 6 7
/e er}
Fig. III.1-5: g (r) for some molten 2-1 salts. From ref. (85).

++
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Fig. III.1-6:

g (r) for some molten 2-1 salts. From ref

i e

&0

35 F

Sril, —e
Ball,  ---7-7m-m-

all, -~—-----
In{l, _ - —

Fig. III.1-7:

=4

(r) for some molten 2-1 salts. From ref.

(85).

(85).
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of g and g and the first minima of the formers are very
BaBa SrSr

close to zero. Therefore the coordination number for gCaCa and

@

are - well defined while those for g and g are
Srir

E7n7n BaBa

les well defined (for the values see Table (III.1-2)).
The pair distribution functions gC for this four

1Cc1
compounds are shown in Fig. (III.1-6). In this case the gClCl for
BaClZ, Sr012 and CaCl2 are similar while the first peak of ZnC12 is
higher and occurs at higher distance.
The g pair distribution functions (Fig. (III.1-7)) for
g -
SrCl_ and BaCl are also similar. The first peak of g is very
2 2 ZnCl
high whereas the heigth of the gc c1 peak is intermediate between
a

and of gB and g . The coordination numbers

the ks of
peass ot &, ¢ aCl SrCl

1
increase with cation size (see Table (III.1-2)).

The above observations on the pair distribution
functions show that SrCl2 and Ba012 on the one side, and ZnClZ‘on
the other, have a rather different structure. The results for molten
Ca012 indicate that this compound is intermediate between Ba012 and
ZnCl1

2

The similarity of molten Sr012 and BaCl2 is also reflected

in the structure of these compounds in the high-temperature solid

phase. At a temperature just below the melting point, SrCl2 and Ba012

have the fluorite-type structure, and both show a superionic behaviour.
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Sr012 shows a diffuse transition to the high-conductivity state
over, a range of temperature and without changes in crystal structure
(88). The heat capacity has a peak which is used to define the
transition temperature TC (see Fig. (I.5-2)). Besides Ba012 shows a
structural phase transition to the fluorite structure at T = 1193 °K
and melts at T= 1233 °K. In the superionic state, the cation sublattice
remains essentially unchanged while the anion sublattice is strongly
disordered due to the appearance of a high dynamic concentration of
Frenkel defects.

This behaviour is reflected in the liquid state where a
good short-range ordering is shown by the partial structure factors
of the cations and a poorer short range ordering is shown by the
partial structure factors of anions. The freezing in the superionic
phase can be regarded as driven by the marked cation ordering in
the liquid in which the anions are subjected to a modulation of‘their
singlet density by this cation sublattice order (19).

The structure of molten ZnCl2 appears to be different
to that of the other three chlorides. In Fig. (III.1-8) we see the
partial structure factors corresponding to the pair correlgtion
functions showed in the previous Figures. The very unusual feature
is the presence of an additional extra peak,well resolved, in

o
-1
Sznzn(k) at low values of k (k1 A "), The data listed in



Fig.
ref.

Table (III.1-2) also show that the molten ZnCl2

95

= | {
R
m -J

-
g

A\Y

7\

[

20+

Sualh)
2
T

-10 : L

}
N
l

f*}

e
E%mwd \ 5

f
I

¥

N;{H&HWWWHW

o
gt

ITT.1-8:
(45).

The partial structure factors for liquid ZnClg.

From

is characterised by

a well defined local structure corresponding to a close-packed

arrengement of €l ions. The ratio

r
ClClL

/ r =1.62 % 0.04 is
ZnC1l

1/2
very close to the value (8/3) for the perfect local tetrahedral

coordination. As evident from Fig (III.1-9), the penetration of

like ions into the first coordination shell does not occur because
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® Lo
30 A
= 2%
= Y
20 b= b
10
Fig. I1T.1-9: The pair distribution functions for liquid ZnClz;
H k curve, ; dotted curve . From
full curve, anCl broken cu gClCl ’ anZn
ref. (45).

the small cations are shielded by the anions. These unusual properties
of molten ZnCl are due to the very high viscosity, the remarkably
low electrical conductivity near freezing (Tm = 318 °C),.and the
supercooling possibility into a glassy state (45), with a glass

transition temperature T <« 115 °C.
g
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ITI.2 Freezing of alkali halides

In this Section we shall discuss the freezing process
of RbCl and NaCl using the microscopic theory given by March and
Tosi (18). One of the major features in freezing of NaCl and RbCl
is the large volume change across the liquid—solid transition
AV/V = n o which is of the order of 15 - 20 %. They freeze into
a f:c.c. lattice with a two-ion basis.

The basic equations have been recently developed by
March and Tosi (18). These authors have also shown (20) that these
equations, when applied to monatomic systems, are closely linked
to the work of Ramakrishnan and Yussouff (17) (seefalso Chapter II
Section 3). The basic set of equations relates the singlet densities
p1 and/oz of the binary system to the partial direct correlation
functions 3;,(k). Therefore the basic input information required to
develop the microscopic theory is the knowledge of the partial
direct correlation functions E;j(k)’ or, more conveniently for
present purposes, the charge-number (Q-N) counterparts. We shall
see that in the freezing process for molten alkali halides, the two
ionic components play essentially equal parts, and the most important

structural parameters are E&N(kzo) (namely the compressibility) and

~

¢ (G ) at the first set of ipr 1 latti t G .
0 1) et of reciprocal lattice vectcrs { ix
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(a) Microscopic theory of freezing of NaCl and RbCl

The theory formulated in Chapter II can be generalised
for binary systems with two single particle densities/%(;3 and;%ﬂ:).
A corresponding set of coupled equilibrium equations for these
densities is obtained by expressing the thermodynamic potential
as a functional of these densities and by requiring that §2 be a
minimum. For coexistence between liquid (1) and solid (s) phases,
the difference ZXS?.zuSE§521must vanish.

The equilibrium equations for the single particle
densities in the two-component ionic system, including the non-linear
effects via three-body partial direct correlation functions are as
follows

ln(_P*;M‘;4’) = 3 |4% @R Ip R - Ay
il J

- - (%) - -» @ - -

- - ITT.2-1

._,,.12- Z“rdradg cLJ.k(r-ﬂr-a,Q) [,:j.s(@ %L][pks(rs) Pell ( )
NS

for i = 1,2. The first term. on the right-hand side contains the

-l

—p
direct correlation functions c¢. (r.,r ) =c.  (]r

) o - T |) of the
ij 1 2 ijJ 1 2

liquid and represents the first-order response to the change in

(3)-0_.

densities. The three-body correlation functions c | (r ,r ,? ) =
ijk 1 2 3
c. .. (lr. =T |,Ir. = r_|) of the liquid which enter in the second
ijk 1 2 1 3 ‘
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term are defined by the functional derivatives

€3) .
< Lk (r1,r2,r-3) = o i OA‘_’” 2) . (III.2-2)
op (T)

The corresponding equation for the difference in thermodynamic
potential is

AQ zjda [pisF-p]

KeT

’ %ZJ dF, a7 [psPa pul < ®,%) [P () =Ryl

bl

-\ - (3) » = = =
+ 20 || | e o @ ra ol ol ) [P ) ~ 4]
Lk

x [Pks(Fz,) = Pel] . (III.2-3)

We introduce now the Fourier expansions for the solid

phase densities

R

) LG
F 4 . e (III.2-4)
Py <(F) Zpt[iﬁ—qdrg_ﬂa ]

I

and
/ozs(r):ja‘f)l.[i*'n*é/oé'e ]

(I11.2-5)

~
where p is the density of the liquid and h 1is the vector joining

the two ions in the unit cell of the crystal. We also Fourier analyse
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the direct correlation functions by writing

. - K-F
ci r) = (2_) Z c.b.(k) e (III.2-6)
] N % 3]
‘—4.-. ,‘\zt.—l:,
3 [y (z) = =, (LKl )
C:;jku') = (%)%'C-&jk(k;k) e . (III.2-7)
7 .

With the aid of equations (III.2-4)-(III.2-7) the freezing relations
(I11.2-1) and (IITI.2-3) can be rewritten in terms of Fourier transform.
We assume that the only important contribution of the non-linear

terms comes from the change of the compressibility in volume, which

is expressed by the double Fourier transform of the quantity

¢ GFEE) =AY 2%y Fur) (111.2-8)
4 & So (n
L)k AN

in the limit of long wavelengths. If we denote this quantity by
T _(0), the equilibrium equations for the Fourier components of the

NNN

single particle density become

e[q’c“w(o)w?aw(o,o)] JJ’: e[FN(?)+ Fa(™)]

= (I11.2-9)
E V
and . .
[0S0+ Sun@0] 1 16w R+ FelF)]
ZPZ: = Jdre € . (I1r.2-10)
vV

Here
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. D LG T (&N
F,F) = Z_pg c.(@ e [1+ e ] (III.2-11)
G
and _
. L LG LG W
Fe(F) = Z pz C la)e [1 - e ] . (I11.2-12)
&

Finally, the expression for the thermodynamic potential change on

melting A $2is

+2 ;' [€NN(G) /32’ cosz(iz_g-?\) + CQQ(C‘*)Pg sin (125 i)] , (III.2-13)

A\SE being equal to zero at coexistence.

(b) Numerical prediction for NaCl and RbCl

The freezing equations of the previous Section have
been written in a form which is most convenient for their numerical
solution. We have assumed that the inclusion of the first two sets

- —p
of lattice vectors enly, {Gl} and {GZ} , is sufficient. The set
{ El} are reciprocal vectors of the type (1,1,1) and correspond

to the principal peak in the charge-charge structure factor S Q(k)

—~—gr
in the liquid. For the second set {Gz} we have choosen the vectors
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of the type (2,2,0) corresponding to the principal peak in SNN(k).

We have solved the equations using as input €

QQ(Gl) and

cNN(k=O) in order to determine the volume change n s the value of

~

CNN(GZ) and the Fourier components of the single particle densities

at {5\ and { G } . In this calculation ¢ at long wavelengths

1 ~2 NNN
has been treated like a free parameter. For ionic liquids,
experimental information on the three-body correlation functions is
laking and we cannot make comparison between experimental and
theoretical values. However, the inclusion of the three-body
correlation functions was suggested by the results of a previous

work of Rovere, Tosi and March (89) on freezing of RbCl. In their

analysis they found a value of EﬁN(GZ) in a reasonable good

agreement with the measured value, but a value of E§N(k=0) appreciably

more negative than the experimental value.
For RbCl and NaCl, the numerical results obtained are
shown in Table (III.2-1). For RbCl the theory foresees E&N(GZ) to be

in agreement with experiment. The value of T N(O,O) of - 105 is

NN
of the same order of magnitudes as that found for the corresponding
three-body function for liquid argon by Ramakrishnan and Yussouff.

In the case of NaCl, the prediction of ’c“NN(GZ) is only

semiquantitative whereas the value of E&NN(O,O) is only about 1/3

of that for RbCl. One can see that, in both cases the Fourier
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T (0) T (G )T (G)T 0,0 -
. @) CoelCr) S(%) Fgm (0O b,  Pg
Th. -7.33 0.75 0.29 -105 0.14 0.46 0.36

RbCl

Exp. =7.33 0.75 0.29 —— 0.142 — ——
Th. -6. 0.72 0.28 -3 0.25 0. 0.42

NaCl 3 1 53
Exp. -6.3 0.72 0.15 —— 0.25 —— —_—
Table III.2-1: Detailed numerical predictions on ¢._ (G ), PZ
NN 2 Gq

= and ¢ .(0,0).
P62

NNN

components of the density are quite similar in magnitude and

behaviour.
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ITI.3 Freezing of SrCl__and BaCl2
<

When compared to the alkali chlorides NaCl and RDC1,
SrCl2 and BaCl2 show a completely different behaviour on freezing.
In fact, SrCl2 and BaCl2 freeze into a superionic phase characterised
by a fluorite-type structure in which the cation sublattice provides
a periodic potential for still relatively moving anions while, as
already seen, the molten alkali chlorides freeze into a normal
f.c.c. phase. The volume change AxV/V'avz on freezing for SrCl2 and
BaCl2 is small and of the order of ~ 2 - 4 %.

In a previous work on freezing into a superionic phase,
) March and Tosi (19) used a linear response theory to estimate the
ratio of aparticular Fourier component of the anion density to that
of the corresponding component for the cation sublattice. Here we
present a fully non-linear solution, which, as will be seen, validates

their linear response assumption.

(a) Microscopic theory of freezing of SrCl_ and BaCl _into
-4 [t

a superionic phase

We Fourier analyse the singlet densities in the superionic
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phase by writing

° b

- -4 1 LG""
pilFY = pug +V Y Pz e (III.3-1)
&
for i = 1,2. If we also Fourier analyse the partial direct correlation
functions by writing

—
Lker

cylr = (V/o,_)_izk_; c (ke (1II.3-2)

—
then, the component with G = O of eq. (III.2-1) leads to

nTALEO S SldmE SO
1+n =2 Jd?e Ve VAL (I11.3-3)
V

The quantity appearing in the first summation on the right-hand side
of this equation can be related to N-Q direct correlation functions

using

(&L_) c,;0) = i (0) - Cua(@ (I11.3-4)

MR

The discussion of the behaviour at small k of the partial structure
factors and the partial direct correlation functions for 2 : 1

liquids follows closely the one given by Rovere et al. (90) for
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molten alkali halides, the main results we need below being

. ) »
Cn(0) = 1 - 3:35) - 4 - (FLkBTKT) | (III.3-5)
and
ENQ(D) _ 2pu(ve-v4) (III.3-6)
fik87-¥<7

where KT is the isothermal compressibility and vl and v2 are the
partial molar volumes of the two species, 1 now being the cation.

The thermodynamic definition of v, is
i

v, — (DM) , (III.3-7)
TN

It is therefore clear that the difference in partial molar volumes
of anion and cation enters the calculation of the volume change on
freezing, via eq. (III.3-3).

The other equations entering the theory are the relations

derived from (IIT.2-1) for the G # O components

NGl -

PiL 7 g }:2;
L pALEgr GF ]
pE _e s Jdre gig Vi (II1.3-8)

and the condition of coexistence of the two phases, which means

equating to zero the difference AS2in their thermodynamic potentials.
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This difference is given by

ﬁ;?— = ~(p-P)V + —;_—V(PE/PLZ -1) ENNCD)

'N
: _Z Clj(G)/OLTs' Pz

L &

+(2vp) X

in which the compressibility appears through E&N(O).

(TI1.3-9)
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(b) Numerical predictions for SrCl_ and BaCl2
<

In the case of Sr012 and BaC12 the freezing equations
are solved by including on_ly the first set ‘{Ei} of reciprocal
lattice vectors. We have positioned this sel just below the first
peak in the cation-cation structure factor S++(k). The numerical
solution is reached as follow: (i) we fix a value for ¢ (0) and we
take g++(Gl) from experiment; (ii) we change the values of the volume
change il and of the compressibility (EﬁN(O)) until a solution is

found; (iii) we repeat the same procedure, changing the value of

~

c
NQ

(0) until a good agreement between the output ¢ (Gl) and T (Gl)
+_ —
and their experimental values is obtained. The results are listed

in Table (III.3-1).

T T (G T (G ¢ (G = =
S0l@ S M F 60 TG T () pg A,
Th. =16 0.073 0.035 0.150 -3.1 -2.2 0.53 0.22
BaCl2
Exp. ——— 0.073 0.035 0.150 -2.3 -3.0 —— ——
Th. -12 0.066 0.024 -0.46 -2.9 -1.2 0.42 0.24
Sr012
Exp. —-— 0.066 0.024 -0.46 -2.5 -1.8 —— ——
Table IIT.3-1: Numerical results of microscopic theory for Ba012

d SrCl_.
an 5



109

The agreement with experiment of E; (Gl) and of ¢ (Gl)

is not quantitative but we must remember that only a set of reciprocal
lattice vectors was used.

The negative values obtained for'gNQ(O) for both salts
imply, through eq. (1;1.3—6), that the molar volume of the cation is
greater than that of the anion. The sign of E&Q(O) is in agreement
with that found in the work of Abramo et al. (91) who have fitted to
the measured structure factors the mean spherical approximation to
a model of charged hard spheres. But the reverse situation is
predicted from the ionic radii. However we believe that the negative
sign can be caused by the large charge + 2 e on the cations, which
tends to lead to a "classical Wigner lattice". Thewhole generated
around a chosen cation is related to Coulomb repulsion rather than
the ionic core radius.

The values listed in Table (III.3-1) have been derived
solving the non-linear equations of the theory. We have also found

that the values determined in this way agree with those obtained by

linearising in /{_E , namely
3

Pz = e (&) Py,g (I11.3-10)
’ (P/Ps) = . _(a)

Of course, the extension of the present theory to a finite temperature
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below the freezing point, at which the still moving chlorine ions
equ?ience the periodic lattice potential of the rigid cation
sublattice, requires the knowledge of the anisotropic partial direct

correlation function at the corresponding temperature.




111

ITI.4 Comparative discussion of freezing for different types

of ionic materials

The freezing transition for the alkali chlorides NaCl
and RbCl and for Sr012 and BaCl2 has been determined by choosing the
position of the stars of reciprocal lattice vectors {6&} ’ {Eé} in
a suitable way, and consequently the experimental input partial
direct correlation functions ci,(k). For the alkali chlorides NaCl
and RbCl we have positioned the set {Ei} just under the principal
peak in the charge-charge structure factor SQQ(R) of the liquid,
whereas in the case of SrCl2 and BaCl2 we have positioned it under
the principal peak in the cation-cation structure-factor S++(k).

The molten alkali halides are characterised by a marked
degree of ordering in the charge density and consequently by a strong
first peak in SQQ(R). Therefore, we suggest that the freezing of
alkali halides is driven by this charge ordering, and that the
estimated value of about 5 for the charge-charge structure factor
maximum at freezing (see Table (I.5-7)), can be viewed as the
analogue for ionic liquids of the Hansen-Verlet rule of freezing for
simple monatomic liquids with Lennard-Jones type interaction.

On the contrary, the molten S,r-Cl2 and BaCl2 are

characterized by a good short-range ordering of cations while the
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structure factors S and S have much less pronounced features. In
+_.

this.case we can think of the freezing into a superionic phase as
driven by the cation ordering and this order provides a periodic
potential that modulates the single anionic density.

The above considerations can be connected with defect
properties. The principal peaks in SRbRb and SClCl in liquid RbC1l
are of the same height, signalling a similar degree of order of
cations and anions. This can be connected with the defective structure
of the crystal in which an equal number of vacancies occurs on the
two sublattices. The Schottky defects are the dominant type of
defects. In contrast, the good ordering of cations in molten SrC]2
and BaCl2 can be connected with a crystal structuré with anion
Frenkel defects. Another evidence of the different part played by
Schottky and Frenkel defects resides in the different volume change
on freezing: large for NaCl and RbCl, small for SrC12 and BaClZ. In
fact, it is known that the volume of formation of Schottky defects
is higher than that of Frenkel defects.

As last comment we note that the prediction on the
difference of the partial molar volumes in Sr012 and BaClZ, for
which we have proposed the existence of a classical Cculomb hole

due to the strong Coulomb repulsion between cations, could be

verified by a small-angle scattering experiment.
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CHAPTER IV

DEFECTS AND TRANSPORT IN HOT IONIC SOLIDS
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CHAPTER IV

Defects and transport in hot ionic solids

In this Chapter we shall report a study of the defective
structure of silver bromide from the melting point downward (92).

The behaviour of AgBr in the high temperature region, where this
material attains a rather high ionic conductivity before melting,
will then be compared to and contrasted with that of fluorite-type
superionic conductors.

As an introduction, we give in Section 1 an overview of
the experimental information on the strusture of sﬁperionic materials.
In the first part of this Section a systematic classification of the
superionic materials is done and the specific trends of each group
are illustrated. In the second part special emphasis is given to the
- defective structure of fluorites in the superionic phase, analysing
recent neutron diffraction data. The experimental data are interpreted
in terms of fluctuating clusters of anions. In the last part of this
Section the superionic transition temperature TC is correlated to
the Frenkel pair formation energy EF in crystals with fluorite
structure (4). The transition is described using the Debye-Hiickel

theory. In order to explain the enhancement of defect concentration
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at the transition point, the Coulomb interaction between defects is
taken into account.

) Section 2 presents the derivation of the intrinsic
defect parameters of AgBr from experimental data. The bromine vacancy
concentration is generally believed to be very low in solid AgBr and
is often ignored in the charge neutrality equation. In this Section
we show that the bromine vacancy concentration is by no means
negligible at high temperaures but is of the order of the concentration
of silver intersfitials. Making use of N.M.R., diffusion and
conductivity experimental data, a set of new Frenkel and Schottky

defect parameters have been derived.

The new Frenkel and Schottky defect parameters have been

used by Andreoni and Tosi (27), as reported in the second part of this
Section, in a Debye-Hlickel model, modified for satgration of screening
at high defect concentrations. This work has led to the suggestion that
the contemporaneous presence of Frenkel and Schottky disorder frustrates
the superionic transition in AgBr. The model leads to melting accompa-—
nied by an anomalous ionic conductivity in the premelting region, as is

observed in the conductivity experiments.
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Iv.1 Fluorite-type superionic conductors

(a) Superionic materials

Most ionic materials, generally referred to as superionics
or fast-ion conductors, show in the high temperature solid phase,
values of the ionic electrical conductivity quite comparable to those
of simple ionic melts. The high ionic conductivity is a consequence
of disorder in the sublattice of a component. Superionic conductors
have the following characteristics: (i) the crystal bonding is ionic,
(ii) the charge carriers are ions and (iii) the electronic conductivity
is small.

The values of the electrical conductivity for a range
of ionic and superionic materials are shown in Fig. (IV.1-1). Different
behaviours are observed. For example, some superionic materials change
gradually the electrical conductivity (as in B-alumina) whereas
some others show an abrupt jump ( as in AgI, Ag3SI, etc.).

On the basis of this property and on the basis of the
structures that allow fast-ion transport, and that can be ''channelled",
"layered" or generally disordered (93), the most important superionics

can be classified under the following three main groups (21,94,95):
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FIg. IV.1-1: Electrical conductivity versus temperature for some

ionic and superionic solids. From ref. (21).

{i) The compound of this group which has been most

extensively studied is the sodium J3 —alumina (see Fig. (IV.1-2) for

the unit cell). Sodium ﬁ:—alumina has hexagonal symmetry. The crystal

consists of spinel bocks formed by four layers of oxigen and aluminium
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Fig. IV.1-2: Crystal structure of sodium B - alumina.

ions. The spinel bocks are separated by symmetry planes containing
oxigen and sodium ions. The symmetry planes are perpendicular to the
hexagonal symmetry axis and the sodium ions can move relatively
freely in these planes. Sodium ions can occupy positions A and C
(see Fig. (IV.1-3)). Their motion can be explained by an
interstitialcy mechanism (97) in which a cation in an interstitial
site jumps in an occupied adjacent site A, forming a new péir of
interstitials and leaving behind an occupied site A. This mechanism

+
requires an excess of Na ions and therefore the ionic conductivity
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Fig. IV.1-3: (a) Cross section of sodium P -alumina containing
the hexagonal axis; (b) Mirror plane perpendicular to the
hexagonal axis. From ref. (94).

is a property of non-stoichiometric crystals. X-ray diffraction
experiments carried on silver ‘ﬁ —-alumina (98) have shown a behaviour
characteristic of a two-dimensional "liquid-like" lattice (see Fig.
(IV.1-4)), for the cation sublattice at temperatures of the superionic

phase.

(c)

Fig. IV.1-4: X - ray diffuse scattering from silver ﬁ —alumina,
with the hexagonal axis parallel to the incident beam at temperature
(a) 700 °K, (b) 300 °K and (c) 77 °K. From ref. (98).
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(ii) The prototype material of this group is the silver
iodide, AgI. AgI has a first-order phase transition at T = 149 °C
passing from the hexagonal wurzite structure with two unit formula
per cell to a body cubic centred lattice with I ions at (0,0,0)
and (1/2,1/2,1/2). Going through the transition, the ionic conductivity
changes by several order of magnitude (see Fig. (IV.1-1)). In the
high conductivity phase the Ag+ ions are distributed on the tetrahedral
interstices of the iodine sublattice. Because there are twelve such
sites in the defective structure, the diffusion of Ag+ ions occur
from one tetrahedral site to an adjacent empty one (99). In

Fig. (IV.1-5) the structure of the high conductivity phase of Agl

is shown.

Fig. IV.1-5: Schematic structure of o« -AgI. The iodine ions
(circles) occupy a b.c.c. lattice and the silver ions sit
preferentially at tetrahedral sites (triangles).
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(iii) The fluorite structure is shown in Fig. (IV.1-6).
The unit cell is a face cubic centred lattice with four unit formula.

The structure can also be seen as a simple cubic lattice of anions

whose centres are alternatively occupied by cations. Fluorite-type

Fig. IV.1-6: Structure of CaF . Black circles are Ca, open circles
are F. The Ca ions sit on a f.c.c. lattice.

materials show a diffuse transition to a high conductivity state few
hundred degrees below the melting temperature (see Table (IV.1-1)),
without change in structure. The ionic conductivity and the heat
capacity are shown in Fig. (IV.1-7) for CaF2 and SrC12

At low temperatures the intrinsic defects present in

fluorite are Frenkel pairs, i.e.fluorine vacancies and interstitials
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Salt T (°K) T (°K)
m c

° CaF2 1633 1430
SrF2 1723 1400
BaF2 1550 1230
Sr012 1146 1000
PbF2 1158 705

Table IV.1-1: Melting temperatures T of fluorite crystals and

.
transition temperatures to the superionic state, TC.

Fig.IV.1-7: Ionic conductivity o (upper curves) and heat capacity

¢ (lower curves) for CaF2 and SrClZ. From ref. (104).
p

(100). At high temperature the defective structure has been
extensively studied by several neutron scattering techniques (101,102,
103) and the transition temperature,; T , has been correlated to

c

Frenkel pair formation energy EF (4). The next two paragraphswill
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will deal with these questions.

{(b) Anion disorder in the superionic phase of fluorites

At low temperatures it is a well established fact that
the predominant intrinsic defect in fluorite crystals is a Frenkel
pair of an interstitial anion and an associated vacancy (100); the
interstitial occupies thecube-centre site and the associated
vacancy is at a greater distance then the next nearest-neighbour
anion site (105).

Neutron scattering experiments (lOl,lOé,lO3) and molecular
dynamic simulations on CaF2 (106,107,108) and on Sr012 (107) indicate
that at high temperature the disordered anions tend not to reside
on the cube centre, suggesting that the cube-centre-interstitial
model is unsatisfactory for the superionic phase. Alternative models
have been formulated after analysis of the experimental data.

The neutron Scatteringspectrum from flucrites in the
superionic state has revealed a coherent diffuse quasielastic
component arising from the dynamically disordered anion sublattice
(103). The energy spectrum is well described by a Lorentzian shape

function S(k,w ) centred on zero energy transfer <« = 0. The
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integrated intensity 5(R>:=-[5(¥ﬁu)du1 increases rapidly in the
region of the transition temperature and it peaks prominentl& in the
region ; g.%¥X243DﬂD . Simple defect models have been suggested to
fit these data on S(k). Each model allows a fraction D of the
anions to leave their regular sites and move to occupy different
sites in the unit cell. There are two such different sites: (i) "R"
sites at ( £(1/2-x), *(1/2-x), *(1/2-x)) and (ii) "I" sites at
(*(1/4-y), = (1/4-y), 0), relative to the empty cube centre and in
units of lattice parameter. By using a model in which equal number
of displaced anions occupy the 12 "I" sites and the 8 "R" sites, a
better agreement with experimental data is obtained.

This way, the anion defects are able to form simple
fluctuating clusters , known as 2 : 2 : 2 clusters. The defect
configuration cluster is reported in Fig. (IV.1-8): it consists
of two anion interstitials placed near the mid-anion position and
of two anion vacancies that do not held a critical position. The
two neighbour anions nearest to the interstitials are relaxed from
their regular lattice sites. The average clusters life-time is
estimated to be = 10 ° sec.

The cluster picture of defect allows us to maké a

distinction between the true interstitial anions of a Frenkel pair

and the neighbouring anions relaxed from their regular sites. As a
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Fig. IV.1-8: Sketch of the arrengement of two interstitials, two
vacancies and two relaxed anions giving agreement with neutron
diffraction data from superionic PbFZ. From ref. (103).

cosequence, the Frenkel defects can increase (& 24 % in PbF2 above
T ) without any contradiction with the static energy calculations

c

on the stable maximum numbers of Frenkel defects (& 10+-20 % as

determined by Catlow (88)).

(c) Transition temperature and Frenkel defects in fluorite

crystals

The values of defect concentration in the superionic
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phase, expressed as a fraction of anions that leave their regular
sites, D, are shown in Table (IV.1-2) for the four flourites PbFz,

SrClz, BaF2 and CaF2 (109). The temperatures of measurements, Tl,

are also given. Below the transition temperature the defect

Salt T (°K) T (°K) T (°K) D (%)
c m 1

PbF2 705 1158 973 49+ 3
SrC12 1000 1146 1073 21*6
BaF2 1230 1550 1373 34*6
CaF2 1430 1633 1403 23*3
Table IV.1-2: Values of T and T for four fluorites and values

of D determined at Tl. Data %rom re?. (23).

concentration is much lower and, for example, in Sr012 the maximum
value reached by the defect concentration is about 3 %. The
transition has been described by March, Richardson and Tosi (4)
using an extended Debye-Hiickel theory. An instability of the Frenkel
defect assembly was found while describing the rapid increase in

Frenkel defects at the transition in terms of Coulomb interaction



between defects.

The concentration of non-interacting Frenkel defects in

@

the state of equilibrium is given by
c, = exp(-ag/(2kT)) (1v.1-1)

in which GF is the Gibbs free energy of formation of a Frenkel
defect. The interaction between defects leads to an enhancement
factor F(c) and the equilibrium condition without interaction

(IV.1-1) is replaced by
c = ¢, Fle) . (IV.1-2)

According to the debye-Hiickel theory, the enhancement factor F(c)

can be expressed through the relation

Fle) = exp[e®ky TeCt+k,R)kgT]] (1v.1-3)

where kD is the usual inverse Debye length, & the dielectric
constant of the material and R the closest approach distance of a
vacancy and an interstitial. At the transition temperature T the

C

equilibrium equation (IV.1~2) becomes
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Er St lne -Fle) - 0 (Tv.1-4)

2kT.  2ks

where cC is the defect concentration at Tc and EF and SF are
respectively the formation energy and the formation entropy of the
Frenkel defect. Kurosawa (3) ﬁas shown that when the concentration
reaches a certain temperature dependence value the Coulomb interaction
between defects induces an instability. The results for the defect
concentration at the transition and for the critiéal temperature

T of the instability are of the form (15)

C
ke Te : (IV.1-5)
c. F <we2/eR )
and
2
kele = e Ko(Te) . (IV.1-6)

41+ K (TOR]?
For the superionic materials for which Cc ~ 3%
and using the value SF = 5.6 kB for the Frenkel formation entropy
(110), one can estimate that the Frenkel formation energy obeys the
relation E%‘ > 16 kBTC. This regularity can be verified by

looking at the experimental data shown in Table (IV.1-3).
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Salt T (°K) E_(eV 10k_T /E
LK) gev) al./Ep

CaF2 1430 2.71 0.45
SrF2 1400 2.28 0.55
BaF2 1230 1.91 0.56
PbF2 705 1.0 0.61
Sr012 993 1.70 0.50
Table IV.1-3: Correlation of the superionic transition temperature

and the Frenkel defect energy in fluorite-type crystals. From
ref. (15).
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IvV.2 Silver bromide at high temperatures

Silver bromide, AgBr, is an ionic material with roksalt
structure. At low temperatures the ionic intrinsic conductivity is
of the order 10-4-% 10—3, due to the presence of cationic Frenkel
defects. At intermediate temperatures (about 100-150 °C below the
melting point Tm = 701 °K), the ionic conductivity starts to rise,
in an anomalous way, above the value extrapolated from low temperaturés
(26) (see Fig. (IV.2-1)). In the same interval of temperatures, the
anionic diffusion coefficient becomes correspondingly large (24).

At the melting point the conductivity rises to practically
1 (& cm)—l. (

Such behaviour can be contrasted with that of fluorites
reported in the previous Section. At low temperatures the defects
present in fluorites are of Frenkel-type. The fluorites present a
diffuse phase transition to the highly conducting phase. This
transition has been associated with an instability in an assembly
of Frenkel defects interacting through Coulomb forces (4).

The behaviour of Agl is very different from that of
AgBr. The low temperature structure of Agl is of wurtzite—gype. It

undergoes a structural phase transition to a b.c.c. lattice of

iodine ions in which the silver ions are disordered cver many sites,
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Fig. IV.2-1: Tonic conductivity o of AgBr. Data from ref. (27).

at TC = 420 °K, Correspondingly the ionic conductivity changes
abruptly and Agl becomes superionic.

Now, let us present a detailed study of the defective
structure of AgBr at high temperatures, in order to understand the

lack of a superionic phase in this compound.
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(a) Defective structure of AgBr

Although the literature titles are quite abundant as far
as phisical properties of AgBr are concerned, the defect structure
(specifically the Br defect structure) in AgBr has - only been
discussed in a limited number of papers. Electrical conductivity
t26,111,112,113), Br nuclear magnetic resonance (22,23), Br self
diffusion (24,25,114,115), thermodynamics of imperfections (116,117,
118) are the principal techggiques by which information can be
obtained on the concentration and the free energy of formation of
defects in AgBr.

Many years ago some interest arose about whether the
Schottky defect concentration would be high near the melting point.
Kurnik (111) has given a value of the order of 10—2 for the atomic
concentration of the free Br vacancies, Xv,Br' In recent literature
(26,114) it is widely accepted that in AgBr the concentration of
Schottky defects at high temperature is negligible compared to that
of Frenkel defects. We do not share this point of view and present
a determination of the intrinsic parameters of defects allowing
explicitly for the presence of Schottky defects.

Aboagye and Friauf (26) and others judged that experimental

evidence was against any appreciable concentration of Schottky
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defects at any temperature in AgBr and therefore wrote the charge

neutrality equation without the x term. Of course their set of

v,Br
derived AgBr thermodynamic parameters was somewhat affected by the
omission. In fact, the set of intrinsic parameters for the Frenkel
defects that they found fitting the low and intermediate temperature
data on conductivity, did not allow them to reproduce the a (T)
anomaly, at temperatures above 550 °K. However, in the forthcoming
discussion we shall make use of the experimental results of Aboagye
and Friauf and Kao and Friauf (113) and of their formalism.

By conductivity measurements Kao and Friauf determined
an excess Frenkel free energy ﬁxg: = F(TU which, when subtracted
from the Frenkel free energy g; = 1,134 - 6.55 kBT (eV) determined
by Aboagye and Friauf, gives the product x X, according to

v,Ag 1i,Ag

the expression

* *
X X = E_exP[__ w} . (IV.2-1)
v,hg - LAg Kel

Here the factor 2 comes from the fact that the interstitial positions

are twice the lattice sites.

The free energy g; = ¢ (T) and the excess free energy

[33:.=:F(T7 are not perfectly correct when taken separately, as in

their derivation, the concentration of bromine vacancies was not
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taken into account in the charge neutrality equation. However as a
¥
first approximation, the difference SF -éxgt is to be considered

exXact because it refers to the product x , admittedly defined

X
v,Ag 1,Ag

2
as x in ref. (26). In eq. (IV.2-1) xV A is the true silver-
o

3

vacancy concentration and x. A the true silver-interstitial
1,88

concentration. At not too low temperatures, the charge neutrality

equation can be written as follows

— X . = X . .-

v Ag L, Aq v, Br (1v.2-2)

If the value of x is known, the true values of x and
v,Br : v,Ag
xi Ag can be determined from equations (IV.2-1) and (IV.2-2).
k]

Assuming that the diffusion of Br ions in AgBr is

essentially based on a free-vacancy mechanism (92), x , as a

v, Br

function of temperature, can be determined from the relation

_ 12 Do (1Iv.2-3)
fvee TOTp (T) a*
vv,&r @

where f' = 0.782 1is the tracer correlation factor, a 1is the

lattice parameter of the unit cell of AgBr, ¥ is the Br vacancy

v, Br

jump freguency and DL is the diffusion coefficient in the lattice.

The vacancy jump frequency, v

v, By

, can be determined by using the
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X-ray diffraction data of Berry and Skillman (119) and the N.M.R.

data (22,23). For \>V we get the following expression

, Br

41 43 . )
Vg = 8.‘3_4':10 exp [- (0.74 £0.01)/k,T] ¢t . (1v.2-3)

At low temperature, the diffusion coefficient DL is given by (92)

3 -
DL = &.7 =10 exp ('—'1.86/)(5"") emt o1 (IV.2-4)
while the high temperature values of DL are taken from the

experimental data of Tannhauser (24).

The true Frenkel and Schottky free energies gF and

gS are defined by the relations

= - ~4Ag IV.2-5
%'V;A‘S X‘:;Ag = 2 hals [’(3; Aaextvaﬁ AﬂDHL)/kBT:[ ( )
XV'AS x\/,Br = ex?[’CSS_Agextra,ShASDHL)/kBT] . (1v.2-6)
A gextra,F and /\ gextra,s are contributions to nonlinearities

and A gDHY is the Lidiard contribution (120,26). The temperature

dependence of mole fractions x|, and x is reported in
i,Ag v,Br
Fig. (IV.2-2); the free energies g' =g - Ag and
E F extra,F
g' =g - Ag , which can be determined by iteration from
s S extra,S
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Fig. IV.2-2: Temperature variation of mole fractions of defects

in AgBr. From ref. (92).

equations (IV.2-5) and (IV.2-6) are plotted against T in Fig. (Iv.2-3).
All the intrinsic defect parameters determined are listed in

Table (IV.2-1).
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Fig. Iv.2-3: Free energy of formation of Schottky and Frenkel

defects in AgBr. From ref. (92).

E (eV) E (eV) SF/k Ss/k

1.14 1.66 6.75 15.3

Table IV.2-1: Intrinsic defective parameters in AgBr.From ref. (92).
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From the results obtained we can reach the conclusion
that:

(i) The formation energy EF of a Frenkel defect is lower
than the formation energy ES of a Schottky defect and this is in
agreement with the low temperature behaviuor of AgBr as a Frenkel
conductor. The large value of the formation entropy, SS, indicates
the correctness of this model based on both Frenkel and Schottky
defects.

(ii) The high concentration of Schottky defects in the
high temperature region improves, although slightly, the agreement

with the experimental conductivity data.

(b) Instablility and melting in AgBr

The intrinsic defective parameters that we have obtained
have recently been used by Andreoni and Tosi (27). They constructed
a model for a conductor with a mixed assembly of Frenkel and Schottky
defects, treating the interactions between defects in the framework
of the Debye-Hiickel theory modified for saturation of screening at
high defect concentration. This way, they showed possible

interpretations for the lacking of a high temperature superionic
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phase in AgBr. We shortly report their analysis.

The equilibrium concentration of interstitials x. in
° i

an interacting assembly of mixed Frenkel and Schottky defects is

given by
172
x (1+p) " =T exp[-9./2Kk,T] (IV.2-7)
or equivalently
Ee _ ¢ k o Se _LnxL.g. ifm( 2 ) (Iv.2-8)
2k, T 2&kgT 2 Ks e Mep/
Here
1/2
k= KQ ﬁ‘ez(ﬂwo)] X‘f (1v.2-9)
EV kBT

is the Debye-Hiuckel inverse screening length, where P = f&ﬁﬁ; is the

ar

ratio between the concentration of the anion vacancies and that of
the interstitials, which only depends on the intrinsic formation
free energies. The quantity v 1is the volume per ion pair in the
crystal. EF and EF have the usual meaning.

The equation (IV.2-8) is of the same type as the
corresponding equation deduced some years ago by Kurosawa (3). This
equation shows an instability at a certain temperature TC. If P <K 1
for temperatures below TC, which means disorder of Frenkel type, we

call the instability at T a "Frenkel instability". If o> 1 for
c

temperatures below Tc, which means disorder of Schottky type, we
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call the instability a "Schottky instability!.

Following March, Richardson and Tosi (4) the Frenkel
instability is associated to a transition in a superionic phase, in
which a sublattice is disordered. This is the case of superionic
fluorites. Following Kurosawa (3) the Schottky instability reflects
the tendency for the whole crystal to melt. This seems to be the
case of the alkali halides.

The solution for Xi and ”XV,A in AgBr as function of
T obtained by Andreoni and Tosi (27) using the data of the previous
Section are shown in Fig. (IV.2-4) (full iines). The value obtained
for is about 1/3 and this, together with the data obtained for
"isolated" assemblies of Frenkel and Schottky defects, means that
the instability is still of the Frenkel type, though the presence of
the Schottky defects cannot be neglected.

This simple Debye-Hiickel model does not have a solution
for T > TC. Andreoni and Tosi have overcome this deficiency by
introducing the saturation of the screening length in the simple
Debye-Hlckel theory, as the concentratim of defects increase. The
results for xi and XV,A at temperatures above TC are shown in
Fig. (IV.2-4) (dashed lines). The saturation of the screening length

has been switched on abruptly at T and for the inverse screening
c

length the value k obtained at T = T has been used.
c c
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Fig. IV.2-4: Concentrations of interstitials, x_, and anion

vacancies X

in AgBr as function of temperature.

Full lines up to

T are obtalned by the Debye-Hiickel theory; dashed lines at high
temperatures are obtained by including saturation of screening. From

ref.

(27).

The principal effect of the saturation of the screening

length is a rapid increase of defect concentrations and, at

T

780 °K, a crossing point x

v,A

= x_ 1is found.
i

The results are not gquantitative but qualitatively this

model explains the anomaly in the ionic conductivity and the absence
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of a superionic phase in AgBr which is frustrated by the rapid increase
of the anion Schottky defect concentration. The temperature of the
crossing point, though too high, can be taken as indicative of the

melting transition.
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SUMMARY

The main original results of this Thesis are as follows.

(i) Numerical predictions for the freezing of the alkali
halides RbC1l and NaCl into a '"normal" solid phase. In particular,
the structural predictions for RbCl are in excellent agreement with
liquid structure data, while the numerical estimates of the Fourier
components c¢f the particle densities at the first two reciprocal
lattice vectors (simply related to Debye-Waller factors in the hot
solid), still wait for experimental check. For NaC}, the agreement
with the data is less good, but still semiquantitative. In both
cases the behaviour of the Fourier components of the particle

densities are quite similar in magnitude.

(ii) Numerical predictions for the freezing of the
alkaline-earth halides Sr012 and Ba012 into a fast-ion conducting
phase. Semiquantitative agreement with liquid structure data is
again obtained. Most importantly, our results have stessed differences
in the freezing process between 'normal' and superionic materials,
which appear through the different behaviour of the wvolume of

freezing and through a behaviour of the anion-lattice structure in
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the hot solid which may be assimilated to that of a modulated "lattice
liquid". A role played by the difference in the partial molar
volumes in the freezing of the alkaline-earth halides has been

demostrated and interpreted.

(iii) A determination of the intrinsic parameters of
defects in the hot AgBr solid from experimental data. The main
result is that, in the high temperature region immediately below
the melting point, the orders of magnitute of the Frenkel and
Schottky defect concentrations are comparable.

Further results are a simple analysis of the freezing
parameters of many metals into various structures by means of the
thecry of freezing, and an analysis of the calculation of the

entropy of freezing for the hard sphere liquid within the same theory.

In conclusion, I may mention some interesting directions

of further development of this work:

(i) calculations of the structure of the liquid sclid
interface for ionic materials, generalising studies for monatomic
systems already given by Haymet and Oxtoby (16) and Harrowell and
Oxtoby (121), the main new point of interest being the role played

by the interfacial dipole layer;
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(ii) extensions of the theory to the freezing of a
modq}ated liquid, in particular in connection with the superionic
transition in the fluorite materials and with simulation work on
the two-dimensional classical plasma in an external periodic

potential. (122).
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